The Weighted Average Constraint

Alessio Bonfietti <alessio.bonfietti@unibo.it> Michele Lombardi <michele.lombardi2@unibo.it>

DEIS, University of Bologna

Paper topic: a global constraint for weighted average expressions

$$\operatorname{average}([\mathtt{W}_{\mathtt{i}}],[\mathtt{V}_{\mathtt{i}}],\mathtt{Y})\leftrightarrow \mathtt{Y} = \frac{\sum_{i=0}^{n-1} \mathtt{W}_{\mathtt{i}} \cdot \mathtt{V}_{\mathtt{i}}}{\sum_{i=0}^{n-1} \mathtt{W}_{\mathtt{i}}}$$

Equivalent for integer variables:

$$\operatorname{average}([\mathtt{W}_{\mathtt{i}}],[\mathtt{V}_{\mathtt{i}}],\mathtt{Y})\leftrightarrow \mathtt{Y}=round\left(\frac{\sum_{i=0}^{n-1}\mathtt{W}_{\mathtt{i}}\cdot\mathtt{V}_{\mathtt{i}}}{\sum_{i=0}^{n-1}\mathtt{W}_{\mathtt{i}}}\right)$$

Motivation

Context: workload dispatching for high performance computing

Server room

Multi-core Platforms

Context: workload dispatching for high performance computing

- Jobs arrive in batches
- Jobs are assigned to different machines/cores

Motivation

- Local scheduling (by the OS)
- **Obj:** maximize worst core efficiency

) customer (size = demand)

facility (size = capacity)

Single Source Capacitated Facility Problem

Motivation

- Assign customers to facility
- Meet capacity constraints

...with Fair Travel Times

Balance the average travel time per facility

Which Model?

Modeling Choices:

- Assignment variables: $X_i \in \{0..m - 1\} \quad \forall i = 0...n - 1$
- For each facility/core k:

$$POWER = \frac{\sum_{i=0}^{n-1} (X_{i} = k) \cdot power_{i}}{\sum_{i=0}^{n-1} (X_{i} = k)}$$
$$TTIME = \frac{\sum_{i=0}^{n-1} (X_{i} = k) \cdot ttime_{i}}{\sum_{i=0}^{n-1} (X_{i} = k) \cdot ttime_{i}}$$

 $\sum_{i=0}^{n-1} (\mathbf{X}_{i} = k)$

By abstracting a little bit:

$$\mathbf{Y} = \frac{\sum_{i=0}^{n-1} \mathbf{W}_{i} \cdot v_{i}}{\sum_{i=0}^{n-1} \mathbf{W}_{i}}$$

Fixed denominator

$$\mathbf{Y} = \frac{\sum_{i=0}^{n-1} \mathbf{W}_i \cdot v_i}{w} \quad (\text{sum constraint!}) \text{ spread and deviation} \\ \text{to improve filtering} \end{cases}$$

Just post it!

$$\sum_{i=0}^{n-1} \mathbf{W}_{i} \cdot v_{i} = \mathbf{Y} \cdot \sum_{i=0}^{n-1} \mathbf{W}_{i}$$

Likely weak propagation...

• Otherwise, we need a new global constraint:

 $\operatorname{average}([\mathtt{W}_{\mathtt{i}}],[\mathtt{V}_{\mathtt{i}}],\mathtt{Y})$

Spring equivalent: average as a bar pulled by metal spring

• Weights W_i = spring thickness, Values v_i = anchor points

Spring equivalent: average as a bar pulled by metal spring

Assumption 1: fixed values (adapted to variable V_i)

Assumption 2: continuous domains (adapted to integer domains)

Pruning the Average Variable

Y upper bound = right-most position for the bar

- Minimize all weights
- Scan W_i from right to left

Pruning the Average Variable

Y upper bound = right-most position for the bar

- Minimize all weights
- Scan W_i from right to left
- Maximize W_i if: $v_i > \text{current avg}$
- Repeat the process
- WC complexity: O(n)
 + O(n log(n)) for the ordering

TO TO BB

Pruning the Weight Variables

W_i upper bound = largest thickness so that the Y boundaries are not crossed

Pruning the Weight Variables

Wi upper bound = largest thickness so that the Y boundaries are not crossed

- Maximize \mathbf{W}_i if: $v_i \leq \max(\mathbf{Y})$
- Minimize W_i if: $v_i > \max(Y)$
- UB if $v_i > \max(Y)$ • LB if $v_i < \max(Y)$

Pruning the Weight Variables

W_i upper bound = largest thickness so that the Y boundaries are not crossed

Pruning the Weight Variables

W_i upper bound = largest thickness so that the Y boundaries are not crossed

- Maximize W_i if: $v_i \leq \max(Y)$
- Minimize W_i if: $v_i > \max(Y)$
- UB if $v_i > \max(\mathbf{Y})$
- LB if $v_i < \max(\mathbf{Y})$
- WC complexity: O(n)

Incremental Filtering

Problems of this class can grow pretty large:

- Thermal Aware Workload Dispatching: 120 to 480 jobs
- Fair Capacitated Facility Location: 50 customer, 16-50 locations

Incremental filtering can save a lot of computation time

- Rules for the fixed values case
- Particularly effective for {0,1} weights

the that what

Store:

- num(Y_{UB})/den(Y_{UB})
- Index of the last maximized Wi

Store:

- num(Y_{UB})/den(Y_{UB})
- Index of the last maximized Wi

When a weight changes:

Store:

- num(Y_{UB})/den(Y_{UB})
- Index of the last maximized Wi

When a weight changes:

Update current avg

Store:

- num(Y_{UB})/den(Y_{UB})
- Index of the last maximized Wi

When a weight changes:

Update current avg

Store:

- num(Y_{UB})/den(Y_{UB})
- Index of the last maximized W_i

When a weight changes:

- Update current avg
- Maximize new W_i
- No more than n shifts
- No more than n × dom size updates
- WC complexity
 O(n × dom size)

Experimental Results

Experiments on:

- Capacitated Facility Location (max worst case average travel time)
- Thermal aware workload dispatching: max worst case efficiency

Benchmarks:

- Problem #1: Single Source instances by Beasley in the OR-Library
- Problem #1: custom (publicly available) instances

Solution method (goal: testing constraint propagation):

- Random restarts with fixed threshold
- Random variable and value selection

Compare with competitor approaches

Results for Capacitated Facility Location

the the the state of the state

Results for Thermal Aware Dispatching

The Top Top of the and

Results for Thermal Aware Dispatching

the the the states

Main results

- A global constraint for weighted average expressions
- Useful for allocation problems with balancing components
- (Incremental) Filtering algorithms

Future work directions

- Apply incremental filtering ideas from the sum constraint
- More application scenarios
- Devise constraints for other classical inputs to machine learning models

Questions?

Funded by a Google grant

DEIS, University of Bologna

