
Automatic Symmetry Detection and Dynamic Symmetry

Breaking for Constraint Programming

by

Christopher David Mears, BSoftEng (Hons)

Thesis

Submitted by Christopher David Mears

for fulfillment of the Requirements for the Degree of

Doctor of Philosophy (0190)

Supervisors:

A/Prof. Maria Garcia de la Banda

Prof. Mark Wallace

Clayton School of Information Technology

Monash University

October, 2009

c© Copyright

by

Christopher David Mears

2009

Contents

List of Tables . vi

List of Figures . vii

Abstract . x

Acknowledgments . xii

1 Introduction . 1

1.1 Thesis Outline and Contributions . 5

2 Background . 7

2.1 Constraint Satisfaction and Optimisation Problems 7
2.2 Constraint Programming . 9

2.2.1 Finite Domain Constraint Solvers . 9

2.2.2 Search . 12
2.3 CSP symmetry . 14
2.4 Graphs . 18

3 Symmetry Detection . 21
3.1 Introduction . 21
3.2 Background . 22

3.2.1 Puget’s coloured graphs . 25
3.2.2 Puget’s representation for expressions 30

3.3 Problems with Puget’s Representation . 31

3.3.1 Problems with the Boolean Graph 32
3.3.2 Problems with Expression Representation 32

3.4 A new graph representation . 33

3.4.1 Allowed and disallowed assignments 34
3.4.2 Disallowed assignments and the microstructure complement 35
3.4.3 Allowed assignments and the microstructure 37

3.4.4 A graph including allowed and disallowed assignments 39
3.4.5 Representing Sets . 42

3.5 Reducing graph size . 43

3.5.1 Minimising the number of assignment nodes 43
3.5.2 Minimising the number of literal nodes 44

iii

3.6 Experimental evaluation . 48

3.6.1 Implementation . 48

3.6.2 Benchmarks . 50

3.6.3 Results for symmetry detection . 53

3.6.4 Results for symmetry breaking . 56

3.7 Conclusion . 57

4 Model Symmetry Detection . 61

4.1 Introduction . 61

4.2 Background . 62

4.3 Running Example: The Latin Square Problem 63

4.4 From CSPs to parametrised CSPs . 66

4.5 A framework for detecting parametrised symmetries 68

4.5.1 Step one: Detecting symmetries for some CSP [d] 68

4.5.2 Step two: Lifting symmetries to parametrised permutations 68

4.5.3 Step three: Filtering parametrised permutations 71

4.6 Detailed Examples . 72

4.6.1 N-queens . 72

4.6.2 Social Golfers . 73

4.6.3 Golomb ruler . 75

4.7 Results . 76

4.8 Proving parametrised symmetries . 77

4.8.1 Proving via Parametrised Graph . 78

4.8.2 Proving via Constraint Program . 81

4.9 A General Framework for Detecting Properties 83

4.10 Conclusions . 86

5 Symmetry Breaking . 89

5.1 Introduction . 89

5.2 Background . 90

5.2.1 Reformulation . 91

5.2.2 Static Symmetry Breaking . 92

5.2.3 Dynamic Symmetry Breaking . 93

5.3 Lightweight Dynamic Symmetry Breaking 98

5.4 Common Symmetry Patterns . 101

5.4.1 Interchangeable Variables . 101

5.4.2 Interchangeable Values . 101

5.4.3 Interchangeable Variable Sequences 101

5.4.4 Interchangeable Value Sequences . 102

5.5 Symmetry Representation and Search . 102

5.5.1 Interchangeable Variables . 103

5.5.2 Interchangeable Values . 106

5.5.3 Interchangeable Variable Sequences 108

5.5.4 Interchangeable Value Sequences . 111

5.6 Composing Symmetries . 112

iv

5.7 Implementation . 114
5.8 Experimental Results for ECLiPSe . 117

5.8.1 Discussion . 119
5.9 Experimental Result for Gecode . 123
5.10 Conclusion . 124

6 Generality of Dynamic Symmetry Breaking 125
6.1 Introduction . 125
6.2 Background . 126
6.3 SBDS with Domain Splitting . 126

6.3.1 Symmetries of Branching Constraints 127
6.4 Detecting scon(Cp) . 129

6.4.1 Only Cp . 129
6.4.2 Cp and the constraint store . 130
6.4.3 Only the Constraint Store . 131

6.5 Effects of Propagation . 131
6.6 Domain Splitting and Cp . 133
6.7 Experiments . 135
6.8 Conclusions . 135

7 Conclusion . 137

Appendix A Benchmark Problems . 143
A.1 N-queens . 143

A.1.1 Integer model . 143
A.1.2 Boolean model . 144

A.2 Social Golfers . 144
A.3 Golomb Ruler . 145
A.4 N × N Queens . 146
A.5 Balanced Incomplete Block Design . 146
A.6 Steiner Triples . 147
A.7 Steel Mill Slab Design . 147
A.8 Latin Square . 149
A.9 Graceful Graph Labelling . 149
A.10 Concert Hall Scheduling . 150
A.11 Graph Colouring . 151

Vita . 153

v

List of Tables

3.1 Graph sizes. 54
3.2 Running times. 55
3.3 Running times to find all solutions with and without SBDS. 56

4.1 Symmetry detection results . 77

5.1 Benchmark Results, first-fail variable ordering, first solution. 600 second
timeout. 120

5.2 Benchmark Results, first-fail variable ordering, all solutions. 600 second
timeout. 120

5.3 Benchmark Results, input-order variable ordering, first solution. 600 second
timeout. 121

5.4 Benchmark Results, input-order variable ordering, all solutions. 600 second
timeout. 121

6.1 Results for finding all solutions for the graceful graph problem K5 × P2. . . 134

vi

List of Figures

1.1 Part of a possible search tree for aircraft allocation. 2

1.2 Rotational symmetry of a rectangle. 2

1.3 Partial search tree for aircraft allocation. If aircraft 1 and aircraft 2 are
identical, the subtree under aircraft 2 can be ignored. 3

2.1 Assignments A1 and A2 for the 8-queens problem. 8

2.2 Bipartite matching problem constructed for the all-different constraint in
the CSP ({x1, x2, x3}, {{1, 2}, {1, 2}, {1, 2, 3}}, {all different({x1, x2, x3})}). 11

2.3 Depth-first search tree. 13

2.4 Search tree where x1 = 1 is tried before x1 = 2. There is no solution
containing x1 = 1. 14

2.5 Partial search tree with equivalent subtrees due to symmetry. Subtrees A
and B are equivalent: neither has any solutions. Subtrees C and D are
equivalent: a solution in C (e.g. {x1 = 2, x2 = 3, x3 = 1}) has a symmetric
counterpart in D (e.g. {x1 = 3, x2 = 2, x3 = 1}). 15

2.6 Symmetries of an assignment for the 8-queens problem. 17

2.7 Two graphs and one of their possible automorphisms. 19

3.1 Variable, value, and variable-value symmetries. The grey queen is the sym-
metric image of the black queen. 24

3.2 Variable graphs using allowed extensional, disallowed extensional, and in-
tensional constraints. 26

3.3 Graphs for CSP=({x, y, z},{1, 2, 3},C) where C is given in the caption of
each sub-figure. 27

3.4 Extensional constraint in variable graph construction (left) compared with
boolean graph construction (right). 28

3.5 Representations of CSP ({x, y, z},{1, 2, 3}, {all different({x, y, z})}) 29

3.6 Representing all-different using n-ary and binary constraints. 30

3.7 Implied boolean constraint. 30

3.8 Variable graph of a CSP with constraint x + y > z. The extra variable t
represents x+ y. 31

3.9 Variable graph of a CSP with constraint x+1 > y. The expression x+1 is
represented without additional variables. 31

3.10 Boolean graph construction with automorphisms that are not symmetries
of the CSP. 32

vii

3.11 Graph of CSP ({x, y, z}, {{1, 2}, {1, 2}, {1}}, {x + z 6= y, y + z 6= x}) 33

3.12 Representing expressions as allowed assignments 34

3.13 Graphs using allowed (a,b) and disallowed (c,d) assignments. 35

3.14 Graph for CSP ({x, y, z}, {{1, 2}, {1, 2}, {1}}, {x + z 6= y, y + z 6= x}) 35

3.15 Graph for instances of N-queens using disallowed tuples. 36

3.16 Constraints over the same scope. 37

3.17 Pairs of literals for the same variable linked by disallowed assignments.
Black nodes are allowed assignments, grey nodes are disallowed assignments. 40

3.18 Full assignments graph of CSP ({x, y, z}, {1, 2, 3}, {x < y, y < z}) 41

3.19 Symmetry 〈x = 1〉 ↔ 〈z = 1〉 is not present in (c) (see Example 29). 41

3.20 Different representations for set constraint |(s1 ∩ s2) ∪ s3| = 2 42

3.21 Arc-consistency reducing symmetry. 45

3.22 CSP with rotational symmetry. 46

3.23 Pruning unnecessary values. 47

3.24 System design. 48

3.25 Literal nodes of 4-queens. 49

4.1 Variables in the Latin square and the effect of a diagonal symmetry. 64

4.2 Full assignment graphs and generators for LatinSquare[3] and LatinSquare[4].
Note that parts of the graph are obscured. 65

4.3 Full assignment graphs of instances NQueens[4] and NQueens[5] 73

4.4 The N-queens problem. 79

4.5 Program to find a symmetric edge. 82

4.6 Program to determine whether an edge is in the graph. 83

4.7 Part of a search tree showing equivalent subtrees T1 and T2. 85

5.1 Equivalent solutions of two different models for the same problem. 91

5.2 A node in an S-excluding search tree (by Backofen and Will (1999)). 94

5.3 Overview of SBDS decision point. 95

5.4 Overview of an LDSB decision point. 103

5.5 Evolution of ListW during search for interchangeable variables. Symmetry
breaking constraints are shown to the right of x 6= v nodes. 104

5.6 Evolution of ListW during search for interchangeable values. Symmetry
breaking constraints are shown to the right of x 6= v nodes. 107

5.7 Impact of the choice of search heuristic on completeness. The highlighted
nodes represent the same constraint store, but LDSB’s pruning depends on
the search order. 111

5.8 Graph Colouring (a and b) and Concert Hall Scheduling (c and d) 122

5.9 Steel Mill Slab Design . 123

6.1 A node in an S-excluding search tree Backofen and Will (1999). 126

6.2 SBDS with domain splitting. Search decisions are on each edge; additional
symmetry breaking constraints are in bold. 127

6.3 At the search node marked α, scon(Cp) holds and is detected, where s = x ↔ y.130

6.4 Undetected entailment. At the search node marked α, scon(Cp) holds but
is not detected, where s = x ↔ y. 130

viii

6.5 Undetected entailment of sconCp using only the constraint store. 131
6.6 Incorrect entailment test due to incomplete propagation. 132
6.7 Incorrect entailment. Bounds-consistency is required for correctness. 133
6.8 Typical search tree with domain splitting and first-fail heuristic. One vari-

able (here x with domain 1..10) is instantiated before any other variable is
considered. 134

ix

Automatic Symmetry Detection and Dynamic Symmetry

Breaking for Constraint Programming

Christopher David Mears, BSoftEng (Hons)
cmears@infotech.monash.edu.au

Monash University, 2009

Supervisor: A/Prof. Maria Garcia de la Banda
Prof. Mark Wallace

Abstract

Constraint satisfaction and optimisation problems occur frequently in industry and are
usually computationally expensive to solve. Constraint programming is a technique for
solving these difficult problems using specialised algorithms and search heuristics. The
presence of symmetries in constraint problems provides an opportunity to reduce the
computational effort required to solve these problems. To exploit symmetries, a problem
must first be analysed to determine what symmetries are present and then the search
algorithm must be modified to use the known symmetries.

In this thesis we provide contributions to both the research areas of automatically
detecting symmetries and of exploiting them to improve search performance. The auto-
matic detection of symmetries in constraint problems has been studied for some time, but
existing methods can handle realistically-sized problems only by sacrificing the number
and kinds of symmetry they can find. We contribute to this area in two parts. First, we
present a method of automatically detecting the symmetries of a constraint problem that
is capable of finding many small problems in a practical amount of time, and prove its
correctness. Second, we use this method as the foundation of a framework for finding the
symmetries in entire classes of problems. Symmetry detection on classes of problems has
been little studied; our approach greatly improves the practicality of automatic symmetry
detection as the symmetries found apply to many problem instances, small and large.

The exploitation of symmetries for improving search has been the subject of research
for many years, but there is yet to be a method that is easy to use and that gives good
performance under different search heuristics. We present a method of symmetry break-
ing, Lightweight Dynamic Symmetry Breaking (LDSB), that seeks to fill this void. We
describe how LDSB focuses on common symmetries to maximise performance, and show
experimentally that it performs consistently and is competitive with other dynamic sym-
metry breaking methods. Finally, we show how LDSB can be extended to much more
general search techniques.

When considered together, these contributions form the components of an automatic
system for detecting the symmetries of a problem class, and exploiting those symmetries
when solving different instances of that class.

x

Automatic Symmetry Detection and Dynamic Symmetry

Breaking for Constraint Programming

Declaration

I declare that this thesis is my own work and has not been submitted in any form for
another degree or diploma at any university or other institute of tertiary education. Infor-
mation derived from the published and unpublished work of others has been acknowledged
in the text and a list of references is given.

Christopher David Mears

Notice 1.
Under the Copyright Act 1968, this thesis must be used only under the normal conditions
of scholarly fair dealing. In particular no results or conclusions should be extracted from
it, nor should it be copied or closely paraphrased in whole or in part without the written
consent of the author. Proper written acknowledgement should be made for any assistance
obtained from this thesis.

Notice 2.
I certify that I have made all reasonable efforts to secure copyright permissions for third-
party content included in this thesis and have not knowingly added copyright content to
my work without the owner’s permission.

xi

Acknowledgments

I owe thanks to the many people who have supported me during my PhD and before. I

thank my supervisors, Maria and Mark, who provided advice, instruction, ideas, criticism,

collaboration and friendship. Despite their busy schedules, their doors were always open.

Maria also provided employment, and her dedication is inspirational and exemplary. I

wish to thank also our collaborator, Bart Demoen, who not only did good work with us

but also gave sage advice.

I thank my other colleagues at Monash University, with whom I shared many interest-

ing discussions, particularly over lunch. They are too numerous to list here, but I wish to

mention in no particular order Cagatay, Marc, Peter, Mauro, Peter, Kim, Bernd, Sarah,

Michael, Cameron, Dhananjay, Chris, Tim, Daniel, Simone, Nathan, Reza, Kerri, Karen,

Robyn, Joachim, Wenkai, Ranga and Pramudi.

I would like to thank those who gave assistance along the way, by pointing me in

the right direction or answering my questions. This includes, but certainly is not lim-

ited to, Peter Stuckey, Toby Walsh, Joachim Schimpf, Mark Brown, Guido Tack, Mikael

Lagerkvist, Claude-Guy Quimper, Justin Yip, Angelika Kimmig and Sebastian Brand. In

particular I would like to thank Peter Baumgartner for his generous assistance in theorem

proving, and Blair Bethwaite for helping to run experiments.

Finally, I thank those who have truly made my work possible: my family and friends.

It is to you that I am most grateful.

Christopher David Mears

Monash University

October 2009

xii

Chapter 1

Introduction

Combinatorial problems require the calculation of a particular combination of features
that satisfy a set of constraints. Such problems occur frequently in logistical and indus-
trial settings in areas as important and varied as environmental preservation, hospital
management, drug design and resource allocation to optimise services and minimise costs.
As an illustrative example, consider a simplified aircraft assignment problem whose aim is
to allocate aircraft to the flights serviced by an airline company. In this case, the features
are the flights to be covered and the fleet of aircraft available for use, while the constraints
to be satisfied may relate to the capacity of the craft, regulations on aircraft operation
times, the availability of crew at given times, and so on. Often the problems demand not
merely an assignment that satisfies the constraints, but an assignment of high quality,
where quality may be measured by its agreement with, for example, crew preferences,
schedule flexibility, or maximised profit. The difference between a low and a high quality
solution for a given problem might be measured in units as important as the number of
millions of dollars lost, the amount of water waster or even the number of species made
extinct.

Combinatorial problems are usually specified by a collection of variables, each of which
may take a value from a certain domain, and a set of constraints. In our airline example
above, each flight would be a variable and each aircraft a value the variables may take.
The values taken by the variables should satisfy the constraints – that is, they should
form a solution to the problem – and possibly also optimise some objective function that
measures the quality of the solution. Unfortunately, combinatorial problems are difficult
to solve and for many problems the best known algorithm to solve the problem includes
some form of enumeration. That is, in order to find which combination of values form a
solution, one must simply try a large number of combinations until a satisfactory one is
found. At worst, all combinations must be tested. This strategy is inherently unsuitable
for large problems, because as the number of variables and values increases, the number
of possible combinations increases exponentially.

To illustrate the nature of the difficulty, consider a possible search for a solution to
our airline example, shown in Figure 1.1. The steps followed by the search form a tree,
usually called a search tree, where parts on the left side of the tree are explored before
those on the right side. The first step of the search is to assign one of, say, five aircraft for
the first flight, called flight A. The next step is to assign a craft for flight B, then for flight

1

2 CHAPTER 1. INTRODUCTION

Aircraft 1 Aircraft 2 Aircraft 3 Aircraft 4 Aircraft 5

Flight A

Flight B

Figure 1.1: Part of a possible search tree for aircraft allocation.

C, and so on. At the bottom of the tree all flights have been allocated an aircraft, and
each path from the top of the tree to the bottom represents a unique overall allocation.
Whenever a subtree has been completely explored, the most recent decision is undone and
the next untried case is examined. It can be seen that the number of overall allocations is
exponential in size – adding just one more flight to the problem increases the number of
allocations by a factor of five.

Constraint programming (Jaffar and Lassez, 1987; Marriott and Stuckey, 1998; Rossi
et al., 2006) is a very effective technique for solving combinatorial problems. Arguably,
two of constraint programming’s strengths are its ability to significantly reduce (prune)
the search tree, and the development of effective heuristics for guiding search choices. A
region of the search tree can be pruned – that is, excluded from examination – if it can be
determined that exploring the region would not lead to any solution. Pruning is achieved
by examining the constraints at each node of the search tree and excluding the subtree
under a given node if at least one constraint is known to be violated at that point. Search
heuristics guide the decisions made by the search and can therefore have a significant
impact on the time needed to solve the problem. The key decisions to specify a particular
search heuristic are in which order to choose variables to assign values to, and in which
order to try the values in each variable’s domain. In the example shown in Figure 1.1,
the variables (flights) are assigned in the order A, B, C, etc. and the values (aircraft) are
tried in the order 1, 2, 3, etc. The variable and value ordering heuristics can be decided
statically before the search, or chosen dynamically during the search.

Many combinatorial problems exhibit symmetry. A symmetry is a manipulation of an
object that returns it to its original state. For example, as shown in Figure 1.2, rotating a
rectangle 90 degrees around its centre changes its appearance while rotating it 180 degrees
around its centre leaves the shape as it was originally. In the context of our airline example

original 90 degrees 180 degrees

Figure 1.2: Rotational symmetry of a rectangle.

3

Aircraft 1 Aircraft 2 Aircraft 3

Flight A

Figure 1.3: Partial search tree for aircraft allocation. If aircraft 1 and aircraft 2 are
identical, the subtree under aircraft 2 can be ignored.

combinatorial problem, a symmetry might occur due to the airline’s having two aircraft
– say, aircraft 1 and 2 – of the same model that are in effect identical. Any allocation
of aircraft to flights can be transformed into a different, but equivalent, allocation by
exchanging the two identical aircraft. For example, the allocation A=1, B=2, C=5 is
equivalent to the allocation A=2, B=1, C=5 if aircraft 1 and 2 are identical.

The presence of symmetry in a problem can provide opportunities for increased ef-
ficiency when the problem is solved using constraint programming. This is because the
problem’s symmetry causes some assignments of values to variables to be equivalent to
other assignments. In our example, assume that aircraft 1 and aircraft 2 are identical. If
the assignment of aircraft 1 to flight A is explored before considering aircraft 2, then there
is no need to later consider assigning aircraft 2 to flight A (see Figure 1.3). To check every
equivalent assignment would be redundant and possibly involve a great deal of pointless
work.

There has been a significant amount of work done in defining the notion of symmetry
in constraint programming (see e.g. (Cohen et al., 2005) for an overview), in devising
algorithms for detecting symmetry (e.g. (Puget, 2005a)) and in exploiting symmetry (e.g.
(Gent and Smith, 2000; Puget, 2002)). Our work in this thesis contributes to the latter
two areas.

Research on detecting symmetries in constraint programs has covered many different
approaches (e.g. (Backofen and Will, 1999; Freuder, 1991; Benhamou, 1994; Puget, 1993;
Roy and Pachet, 1998; Meseguer and Torras, 2001; Ramani and Markov, 2004; Frisch
et al., 2003b)), with the focus varying between speed and completeness. The task is to
automatically find the symmetries, if any, of a given constraint program.

The most accurate and efficient method in this area (Puget, 2005a) is quite efficient
and is able to detect all kinds of symmetry in a problem. However, its informal definition
is incomplete and, as a result, it is not clear how it is applied to certain problems. In
addition, much of its strength lies in its special treatment of certain constraints. As we
will see later, while this can yield significant gains in efficiency, it can also result in a loss
of accuracy.

Motivation 1. There is a need for a method that is accurate and able to work on
any problem – regardless of the syntax used to express it – and that can run in a practical
amount of time.

Even the best algorithms for detecting symmetries are limited either in the size of
problems that they can handle, or in the kinds of symmetry they can find (such as only
symmetries among the problem’s variables, or only among its values). Although we present
a new algorithm for symmetry detection that is highly accurate, it still does not scale well

4 CHAPTER 1. INTRODUCTION

to large problems. This is however not an issue for us, since our real aim is to use
this method as the foundation of a new method that operates on constraint satisfaction
models: i.e. on representations of the problem that contain abstractions of some of the
data, rather than the actual values. In this way, the model represents many problem
instances at once. For instance, our airline example can be generalised into a problem
model by fixing the set of aircraft but leaving the exact number of variables – the flights
– and their constraints unspecified. This reflects the situation of an airline that changes
its flights daily but maintains a stable set of aircraft. In general, the data may describe
the size of the problem or some other feature such as the capacity of a container, the cost
of a resource, or the particular aircraft in a company’s fleet. The model is instead defined
in terms of the type of the data.

Just as an individual problem instance may have some symmetries, the model itself can
also have symmetries. The symmetry among identical aircraft would in our example be a
model symmetry, since no matter what set of flights is given as data, the symmetry among
the aircraft is always present. Importantly, a symmetry that is present in the model must
be present in every problem that is an instance of the model. Therefore, any symmetry
present in the model is a symmetry of every possible instance of the model. As a result,
a generally applicable symmetry detection method for constraint models would mitigate
the efficiency problems of instance symmetry detection methods, as the symmetries could
be found once for the model, and the results applied to many instances of the problem.

In contrast with symmetry detection for problem instances, there has been little work
on automatically detecting symmetries in problem models. The primary reason for this
is that the task is very difficult due to the complexity of the operations that a system
needs to be able to abstract from a constraint program. This difficulty is clear when
comparing the results of research in program analysis for logic programs with those for
constraint logic programs. While many different frameworks have been proposed for logic
programs and many analysers have proved successful for a range of useful optimisations,
(e.g. (Muthukumar and Hermenegildo, 1991; Marriott and Søndergaard, 1993; Howe and
King, 2003; Genaim and Codish, 2005; Puebla et al., 2005; Voets and De Schreye, 2009)
and e.g. (Bossi and Deville, 1999)) very few frameworks and analysers have been proposed
for constraint logic programs (e.g. (Marriott and Stuckey, 1994; Garcia de la Banda et al.,
1996, 2000; Szilagyi et al., 2002)) and those that have been defined can only operate
accurately when restricted to particular subsets of constraints.

We believe the inherent difficulty of analysing constraints is the reason why we know
of only two methods for automatically detecting symmetry in constraint program mod-
els. Work on model symmetries by Van Hentenryck et al. (2005) focuses on finding the
symmetries that are inherent in global constraints and composing them to find the overall
symmetries of the model. This limits the applicability of the method to problems that
are expressed using specific global constraints whose symmetries are well understood, and
where the symmetries of the problem are preserved by the composition. Such an approach
might be unable to detect symmetries that arise due to the conjunction of more than
one constraint, as is common where global constraints are not used. Another approach to
model symmetry by Roy and Pachet (1998) uses problem-specific methods of finding model
symmetry and is therefore inherently not automatically applicable to arbitrary problems.

1.1. THESIS OUTLINE AND CONTRIBUTIONS 5

Motivation 2. There is a need for a symmetry detection method for models that
operates on any kind of constraint problem without requiring particular constraints to
be used, or imposing a large burden on the user. Finding the symmetries of a class
of constraint problems at once greatly offsets the main drawback of accurate symmetry
detection methods that operate on instances: the need for an impractical amount of
computational effort for large problems. A method that operates on models needs to be
run only once, and its results can be applied to all instances of the problem class.

Once the symmetries of a problem are known, they can be used to improve the efficiency
of the search. The exploitation of symmetry is called symmetry breaking ((Puget, 1993;
Crawford et al., 1996; Puget, 2005b,c; Flener et al., 2002a; Backofen and Will, 1999; Gent
and Smith, 2000; Gent et al., 2005; Roney-Dougal et al., 2004; Gent et al., 2002, 2003;
Focacci and Milano, 2001; Fahle et al., 2001; Sellmann and Van Hentenryck, 2005)) and
can be broadly divided into two groups: static and dynamic. Static symmetry breaking
methods add constraints to the problem before the search to exclude parts of the search
space that are symmetrically redundant. Dynamic methods alter the search algorithm to
make use of the symmetry as it progresses, deciding which redundant regions to eliminate
during the search.

Each kind of symmetry breaking method has strengths and drawbacks. Static sym-
metry breaking methods have proved to be very efficient in many cases, but are sensitive
to the variable and value ordering heuristics used by the search. In addition, the symme-
try breaking constraints are not always easy to derive, and some powerful methods are
available only when the symmetries have certain properties, such as when the symmetric
variables are constrained to be distinct. Dynamic symmetry breaking methods are com-
patible with all search heuristics, but can impose a larger overhead on the search algorithm,
especially when there are very many symmetries to be considered. For a new problem, it
is not clear what kind of method – static or dynamic – will give the best performance, or
even whether the best method might cause a decrease rather than an increase in speed.

Motivation 3. There is currently no method for symmetry breaking that can be used
by default. Such a method must be easy to use, impose only a small and predictable
overhead in most cases and often yield substantial improvements in search time. In par-
ticular, it should do so regardless of the particular search strategy used and the number
of symmetries to be considered.

1.1 Thesis Outline and Contributions

In Chapter 2 we introduce the background and notation required for later chapters. The
contributions presented in Chapter 3 arose from motivation 1: the need for an accurate
symmetry detection method that works regardless of the syntax used to express the prob-
lem. To achieve this we first study the state of the art method by Puget (2005a), identify
examples where this method is incorrect, and show how to modify the method to ensure
correctness. We then define new forms of graph construction to represent a constraint sat-
isfaction problem and its symmetries in a more accurate and less syntax-dependent way.
We describe how to reduce the size of the resulting graph representations, by enforcing
arc-consistency on the problem and by reducing the arity of the constraints. Finally, we
evaluate an implementation of our method and compare it with Puget’s method, showing

6 CHAPTER 1. INTRODUCTION

how our method finds all of the symmetries that Puget’s can find, and does not require
specially crafted representations of global constraints to do so.

The contributions presented in Chapter 4 arose from motivation 2: the need for a gen-
erally applicable symmetry detection method for constraint models. We present a radically
novel approach that exploits the effectiveness of our graph-based detection method while
avoiding its main drawback of inefficiency in large problems. The idea underpinning our
approach is to find the symmetries of small instances of the problem and then to generalise
them to the problem class. We also describe an implementation of the method that is ca-
pable of generalising the most commonly occurring symmetries by matching the instance
symmetries against general symmetry patterns. We test our implementation on several
varied benchmark problems and show that it finds almost all of the symmetries of the
problems without having to examine large problem instances. In addition, we present two
methods for automatically proving that a generalised instance symmetry is a symmetry
of a model. Finally, we discuss how our approach, originally designed for symmetry, can
be applied to the detection of other properties such as finding opportunities for caching.
Like symmetry, caching has been shown to improve the efficiency of search in constraint
programming (Smith, 2005; Garcia de la Banda and Stuckey, 2007).

The contributions presented in Chapter 5 arose from motivation 3: the need for a sym-
metry breaking method that performs well consistently and that can be used by default.
We present a method for breaking symmetries during search called Lightweight Dynamic
Symmetry Breaking, or LDSB, that is a formalisation of the shortcut SBDS method (Gent
and Smith, 2000). The strengths of LDSB are that it adds little overhead to the search, it
imposes a small burden on the user, and it often significantly improves search performance.
LDSB focuses on symmetries that are common in practice and that can be represented
simply and manipulated efficiently. In addition, we provide two publicly-available im-
plementations of LDSB for the popular constraint programming platforms ECLiPSe and
Gecode. Our experiments with LDSB show that despite its simplicity, it is competitive
with other dynamic symmetry breaking methods and often surpasses them in performance.

The contributions presented in Chapter 6 arose from our experimentation with our
symmetry breaking method, LDSB. We discuss how an extension of the popular SBDS
method – and therefore LDSB – to more general branching constraints has pitfalls leading
to incorrectness and describe how the extension can be done correctly for both SBDS and
LDSB. We also examine the interaction between LDSB and constraint solvers and give
minimum conditions on a solver to ensure that the symmetry breaking operates correctly.
Finally, we show in a small experiment that our dynamic symmetry breaking method
appears to be less sensitive to changes in search heuristics than a simple static symmetry
breaking method and, thus, achieves more predictable behaviour.

When put together, the above contributions form an integrated, practical, implemented
and widely available new system of handling symmetry in constraint programming, from
automatic detection through to breaking. This and other conclusions are discussed in
Chapter 7, where the contributions are summarised future work is discussed.

Chapter 2

Background

In this chapter we provide some of the background and notation required for the remainder
of the thesis. While each chapter in this thesis contains a section explaining the particular
items needed for that chapter, here we discuss terms and information common to all
chapters. Citations given here are representative and not exhaustive.

2.1 Constraint Satisfaction and Optimisation Problems

A constraint satisfaction problem P is a triple (X,D,C) where X represents a set of
variables, D a set of domains and C a set of constraints. Each variable xi ∈ X is associated
with a domain Di ∈ D of potential values. In this thesis we will consider only finite domain
variables, where every Di ∈ D is a finite set. In an abuse of notation, for convenience if
∀Di,Dj ∈ D : Di = Dj – i.e. if all variables have the same domain – we will present the
CSP in the form (X,Di, C).

A literal of P = (X,D,C) is of the form xi = di where xi ∈ X and di ∈ Di. For any
literal l of the form xi = di, we will use var(l) to denote its variable xi. An assignment A
of P over a set of variables V ⊆ X is a set of literals that has exactly one literal xi = di
for each variable xi ∈ V . An assignment of P over X is called a complete assignment.
Where the identity of the problem P is clear, we will abbreviate “literal/assignment of P”
to “literal/assignment.”

A constraint c is defined over a set of variables called its scope and denoted by vars(c).
A constraint c specifies a set of allowed assignments over vars(c). An assignment over
vars(c) that is not allowed by c is disallowed by c. Let the projection of an assignment A
over a set of variables V be defined as {l ∈ A : var(l) ∈ V }. An assignment A over V ⊆ X
satisfies constraint c if vars(c) ⊆ V and the projection of A over vars(c) is allowed by c.
An assignment A over V ⊆ X violates constraint c if vars(c) ⊆ V and the projection of
A over vars(c) is disallowed by c. A solution of a CSP is a complete assignment which
satisfies every constraint in C.

Example 1. The 8-queens problem requires the placement of 8 queens on an 8 by 8
chessboard such that no queen attacks another (see Section A.1 for a detailed discussion
of the problem). This problem can be modelled as a CSP with one integer variable xi
for each queen i on the board so that each value, d ∈ {1, . . . , 8}, represents the column

7

8 CHAPTER 2. BACKGROUND

x1

1

x2

2

x3

3

x4

4

x5

5

x6

6

x7

7

x8

8
x1

1

x2

2

x3

3

x4

4

x5

5

x6

6

x7

7

x8

8

Figure 2.1: Assignments A1 and A2 for the 8-queens problem.

position of queen xi in row i. The CSP is then
({x1, . . . , x8}, {1, . . . , 8}, {∀i, j ∈ {1, . . . , 8}, i < j : xi 6= xj ∧ |xi − xj | 6= j − i}).

One literal of the problem is x2 = 3, representing the queen in row 2 being placed in
column 3. Consider an assignment A1 (Figure 2.1, left) of the problem where A1 = {x1 =
1, x2,= 3, x3 = 2}. Assignment A1 satisfies the constraint x1 6= x2 because the projection
of A1 over {x1, x2} is allowed by that constraint. Assignment A1 violates the constraint
|x3−x2| 6= 3−2 because the projection of A1 over {x2, x3} is disallowed by that constraint.
Assignment A1 neither satisfies nor violates constraint x3 6= x4 because the scope of the
constraint is V1 = {x3, x4}, assignment A1 is defined over the set V2 = {x1, x2, x3} and
V1 6⊆ V2. Consider another assignment A2 = {x1 = 1, x2 = 5, x3 = 8, x4 = 6, x5 = 3, x6 =
7, x7 = 2, x8 = 4} (Figure 2.1, left). This assignment is defined over every variable of the
problem, so it is a complete assignment. It also satisfies every constraint of the problem,
so it is a solution of the problem.

A constraint c ∈ C can be represented extensionally by the set of allowed assignments
over vars(c), or intensionally by a function that, given an assignment A over variables V
where V ⊇ vars(c), returns true if A satisfies c, and false otherwise. Since we deal only
with finite domains and global constraints whose arguments are known, any intensional
constraint can be converted into its extensional equivalent. The extensional representation
has as its meaning the disjunction of the set of allowed assignments.

Example 2. The constraint xi 6= xj used in the above 8-queens problem can be repre-
sented extensionally as the set {(1, 2), (1, 3), . . . , (1, 8), (2, 1), (2, 3), . . .} of allowed assign-
ments, or intensionally by the function f(a, b) = (a 6= b).

An extension of a constraint satisfaction problem is a constraint optimisation problem.
In an optimisation problem, the task is to find an assignment that satisfies all constraints
and that optimises (usually, minimises or maximises) some objective function. We focus
only on constraint satisfaction problems here, although many of the topics covered apply
to optimisation problems as well.

2.2. CONSTRAINT PROGRAMMING 9

2.2 Constraint Programming

Constraint programming (Rossi et al., 2006; Marriott and Stuckey, 1998; Jaffar and Lassez,
1987) is a paradigm for solving constraint satisfaction and optimisation problems. The
use of constraint programming to solve a problem requires three parts: a specification of
the problem, a constraint solver, and a search algorithm. The recent trend in constraint
programming is to use a CP modelling language to specify the problem (e.g. (Smolka, 1995;
Van Hentenryck, 1999; Garcia de la Banda et al., 2006; Frisch et al., 2007; Flener et al.,
2004; Van Hentenryck and Michel, 2005) Modelling languages for constraint programs vary
and we do not discuss them in detail here. Instead, we focus on constraint solvers and
search algorithms. For simplicity, in this thesis we will use simple mathematical notation
rather than any particular modelling language.

2.2.1 Finite Domain Constraint Solvers

A constraint solver’s task is to determine whether a CSP has a solution. Given a CSP
P , a solver outputs either “yes”, meaning there is at least one solution, “no”, meaning
there is no solution, or “maybe”, meaning the solver has not yet determined with certainty
whether there is a solution. The ways by which constraint solvers produce their answers
vary, but in the case of CSPs where the variables have finite domains, most solvers operate
by propagating constraints.

Constraint propagation is the process of “reducing” a problem by eliminating from
the domains of the variables those values that can be determined never to participate
in a solution. A CSP P ′ = (X ′,D′, C) is a reduced form of a CSP P = (X,D,C) if
X = X ′ ∧ ∀D′

i ∈ D′.D′
i ⊆ Di and the set of solutions of P is the set of solutions to P ′.

The values removed from any Di (D
′
i \Di) are said to have been pruned .

There are many ways in which a constraint solver can propagate constraints. One
method of propagating a constraint is to achieve some form of consistency. Below we
discuss node consistency, (generalised) arc consistency and bounds consistency.

A constraint c is unary if vars(c) is a singleton set. Likewise, a constraint c is binary
if vars(c) has cardinality two. A problem is node consistent with respect to a unary
constraint c where vars(c) = {xi} if di is a subset of the allowed assignments of c. In other
words, every value in di satisfies constraint c. A problem is arc consistent (Waltz, 1975;
Mackworth, 1977a) with respect to a binary constraint c where vars(c) = {xi, xj} if for
every value a ∈ di there exists a value b ∈ dj such that the assignment {xi = a, xj = b} is
allowed by c. For a given value a ∈ di, the allowed assignment {xi = a, xj = b} is called a
support for xi = a. The relationship among the variables induced by the notion of support
is directional, in the sense that for a given constraint c where vars(c) = {xi, xj}, there
may be a value for xi that has no support while every value for xj has a support.

A problem is called node (arc) consistent if it is node (arc) consistent with respect to
every unary (binary) constraint in the problem.

Example 3. Consider the CSP ({x1, x2}, {1, 2, 3}, {x1 < x2}). It can be seen that x1
can never take the value 3, because there is no allowed assignment for the constraint that
contains x1 = 3. Similarly, x2 can never take the value 1 because there is no allowed

10 CHAPTER 2. BACKGROUND

assignment for the constraint that contains x2 = 1. The reduced, arc consistent version of
this problem is the CSP ({x1, x2}, {{1, 2}, {2, 3}}, {x1 < x2}).

Arc consistency can be extended to constraints whose scope contains more than two
variables (Mackworth, 1977b; Freuder, 1978). A problem is generalised arc consistent with
respect to a constraint c where vars(c) = S if, for every variable xi ∈ S and every value
a ∈ di, there exists an assignment A over S such that (xi = a) ∈ A and for every literal
(xj = b) ∈ A it is true that b ∈ dj . As for arc consistency, such an assignment A is called
a support for xi = a.

A naive way of propagating a constraint is to achieve generalised arc consistency by
checking for a support for every value of every variable in the scope of the constraint, and
removing from its domain any value that does not have a support. Given a constraint c,
if every value of every variable in vars(c) has a support, then the domains of the variables
cannot be reduced any further by propagation of c. If the problem is generalised arc
consistent with every constraint of the problem, then the problem is said to be generalised
arc consistent.

When the values in the domains of the variables are numbers – or more generally,
totally ordered – another form of consistency is possible. Instead of trying to find a
support for every value in the domain of each variables, only the bounds – the minimum
and maximum values – of each domain are tested. This form of consistency is often less
expensive to achieve and, in many cases, leaves the domains in the same state as generalised
arc consistency. In general, however, bounds consistency is weaker than generalised arc
consistency; there are cases where generalised arc consistency can reduce the domains
further than bounds consistency.

Example 4. Consider the CSP:

({x1, . . . , x5}, {{1, 2, 3, 4, 5}, {2, 3}, {2, 3}, {1, 2, 3, 4}, {1, 2, 3, 4}},
{all different({x1, . . . , x5})})

(where the all different constraint ensures that the five variables take distinct values).
To achieve bounds consistency the minimum and maximum values of each domain are
checked to see if they have a support. As for generalised arc consistency, we consider
xi = a to have a support for constraint c if there exists an assignment A over vars(c)
such that (xi = a) ∈ A and for every literal (xj = b) ∈ A we have that b ∈ dj .
x1 = 1 has no support, so 1 is removed from d1. The new minimum of d1 is 2, which
has no support and is removed. Likewise, the new minimum 3 is removed, and so is
4. x1 = 5 has a support and remains the only value in d1. After that, the mini-
mum and maximum values of every variable have a support, and the reduced CSP is
({x1, . . . , x5}, {{5}, {2, 3}, {2, 3}, {1, 2, 3, 4}, {1, 2, 3, 4}}, {all different({x1, . . . , x5})}).
Generalised arc consistency can also remove the values 2 and 3 from the domains of
x4 and x5.

In general, propagation is incomplete. That is, it may leave a value v in the domain
of a variable x even though the literal x = v does not participate in a solution. This is
because the constraints are considered separately and domain reductions that rely on their
conjunction are not inferred.

2.2. CONSTRAINT PROGRAMMING 11

x1

x2

x3

1

2

3

Figure 2.2: Bipartite matching problem constructed for the all-different constraint in the
CSP ({x1, x2, x3}, {{1, 2}, {1, 2}, {1, 2, 3}}, {all different({x1, x2, x3})}).

Example 5. Consider the CSP ({x1, x2, x3}, {{1, 2}, {1, 2}, {1, 2, 3}}, {x1 6= x2, x1 6= x3,
x2 6= x3}. Enforcing generalised arc consistency does not alter the domains of the variables.
However, the literal x3 = 1 cannot participate in a solution and could be pruned.

To this point we have considered mainly primitive constraints. While the precise defi-
nition of a primitive constraint is not clear, a constraint is usually considered primitive if it
is supported directly by a constraint solver and cannot be decomposed into a combination
of simpler constraints.

More recently, a different kind of constraint has arisen from the observation that there
are certain patterns of constraints that occur frequently in constraint programs. For ex-
ample, a set of variables may be constrained to take distinct values. This constraint can be
represented by a conjunction of xi 6= xj, with one such constraint for each pair of variables
in the set. However, as shown in Example 5, this may give inadequate propagation. A
global constraint is a specialised constraint designed to capture a common pattern (see
(Beldiceanu et al., 2007) for a library of global constraints). One global constraint that
is very commonly used in constraint programming is the all-different constraint. This
constraint takes as a parameter a set of variables ensures that every variable in that set
takes a distinct value.

Example 6. Consider the CSP:
({x1, x2, x3}, {{1, 2}, {1, 2}, {1, 2, 3}}, {all different({x1, x2, x3})})
This problem has the same variables and domains as the CSP in Example 5, but uses a
single global constraint instead of three 6= constraints.

It is possible to replace a global constraint with a set of non-global constraints that
has the same meaning. However, global constraints are useful because they can often
be propagated more effectively and/or more efficiently than the equivalent set of simpler
constraints. For example, a propagation algorithm for the all-different constraint exists
that prunes all possible domain values and runs in polynomial time (Régin, 1994). This
algorithm is based on the construction of a bipartite graph representing the variables and
values involved in the constraint and finding a maximum matching on the graph. For
example, Figure 2.2 shows the matching constructed for the all-different constraint in
Example 6.

In practice the algorithms used for constraint propagation and the level of consistency
they achieve depend on the constraints involved. Usually node consistency is achieved for

12 CHAPTER 2. BACKGROUND

unary constraints and at least bounds consistency is achieved for binary constraints. In the
specific case of linear arithmetic constraints, such as x1+x2+x3 = x4, bounds consistency
is often as strong as arc consistency, and the cost of achieving bounds consistency is much
less than for generalised arc consistency. At a minimum, the propagation algorithm must
be able to detect whether an assignment violates a constraint.

For a problem with more than one constraint, one possible method of propagation is
to examine each constraint in turn, possibly more than once. In practice, this is achieved
by representing each constraint by a propagator, i.e. a daemon that watches for changes
to the domains of the variables in the constraint’s scope and, upon such a change, is added
to a queue to execute the consistency algorithm. What constitutes a change to a domain
depends on the propagator itself; it may be a reduction in the size of the domain, a change
in the minimum or maximum values of the domain, etc. The propagators in the queue are
executed in turn until the queue becomes empty.

Example 7. Consider the CSP ({x1, x2, x3}, {1, 2, 3}, {x1 < x2, x2 < x3}. Propagation
proceeds as shown in the table below. At each line, the propagator for the constraint
at the front of the queue is executed. Any change in the domain of a variable in the
scope of a constraint may cause that constraint’s propagator to be added to the queue.

d1 d2 d3 queue
{1,2,3} {1,2,3} {1,2,3} x1 < x2, x2 < x3
{1,2} {2,3} {1,2,3} x2 < x3
{1,2} {2} {3} x1 < x2
{1} {2} {3} -

There are many solvers commonly used for finite domains, including Gecode (Gecode
Team, 2006), the IC and FD solvers for ECLiPSe (Wallace et al., 1997), MINION (Gent
et al., 2006), ILOG Solver (ILOG) and Comet (Van Hentenryck and Michel, 2005).

2.2.2 Search

Constraint propagation rarely reduces the domains of the variables of a problem to single
values. In most cases, it is necessary to reduce the problem further by way of search,
i.e. by exploring the different values in the domain of the variables. Here we will discuss
one of the most common search mechanisms in constraint programming: a complete,
backtracking tree search that branches by assigning values to variables. The search is said
to be complete because every solution (if any) of the problem will be found, and if no
solution is found then the problem is known not to have a solution.

Consider the CSP P = (X,D,C); the search proceeds as follows (see Figure 2.3).
First, the constraints in C are propagated, leading to a reduced problem P ′ = (X,D′, C).
If the domain of any variable has become empty – i.e. if there exists any d′i ∈ D′ such that
d′i = ∅ – then there must be no solution to P ′ and the search fails. If all variables have
domains of size one – i.e. for all d′i ∈ D′ the cardinality of d′i is one – then the current
domains D′ represent a solution to the problem and the search returns that solution. If
the search has failed, or if a solution is found but more solutions are sought, then the
search backtracks to the nearest ancestor in the tree where there is a child yet unexplored,
and select a different child to explore.

2.2. CONSTRAINT PROGRAMMING 13

xi = a xi 6= a

P1 = (X,D′, C ∪ {xi = a}) P2 = (X,D′, C ∪ {xi 6= a})

P ′ = (X,D′, C)

Figure 2.3: Depth-first search tree.

If the search has not failed and there remains any variable whose value is not yet fixed
– whose domain has size at least two – then the search chooses such an unfixed variable
xi and a value a from the domain of xi. The search then splits the problem into two
subproblems P1 = (X,D′, C ∪ {xi = a}) and P2 = (X,D′, C ∪ {xi 6= a}) and recurses
on subproblem P1 until a solution is found. If no solution to P1 is found then the search
backtracks to P2. If neither P1 nor P2 has a solution, then P has no solution.

Note that at each point of the search tree where the search branches, we must select
a variable and a value on which to branch. The order in which variables and values are
tried can have a large impact on the search performance. Variable and value orders can
be fixed before the search begins, or chosen dynamically as the search progresses.

Most constraint programming platforms (e.g. Gecode (Gecode Team, 2006), ECLiPSe

(Wallace et al., 1997), Minion (Gent et al., 2006), etc.) offer a few common, generic
variable ordering heuristics such as input order and first fail, and a few value ordering
heuristics such as ascending order, descending order or middle-out order. The variable
ordering heuristics take as a parameter a sequence of variables to be assigned values by
the search. The input order variable ordering assigns values to variables in the order that
they are specified; e.g. if the variables are [x1, x2, . . . , xn], then x1 is tried first, then x2,
and so on. The first fail variable ordering selects the variable from the given sequence
with the smallest domain size. This is calculated at the time of branching, according to
the domains as they have been reduced by search and propagation. Alternatively, the user
can specify a customised ordering of variables and values that is tailored the the specific
problem to be solved.

The variable and value orderings can have a dramatic effect on how much of the search
space needs to be explored in order to find a solution. A good heuristic is one that is more
likely to guide the search towards a solution earlier in the search. For example, Figure 2.4
shows a search tree for a problem where no solution contains the literal x1 = 1, but there
is a solution where x1 = 2. If the search was to try x1 = 2 before x1 = 1, then the solution
would be found more quickly.

A feature of constraint programming is the ability to easily specify problem-specific
search algorithms. In some cases a generic search is inadequate and the use of a customised
strategy for dividing the problem into subproblems is vital for efficient resolution. For
example, for the N-queens problem (see A.1) it is known that using the values in the
middle of the domain first is an effective strategy. As another example, Puget and Smith

14 CHAPTER 2. BACKGROUND

x1 = 1 x1 6= 1

fail

x1 = 2 x1 6= 2

Figure 2.4: Search tree where x1 = 1 is tried before x1 = 2. There is no solution containing
x1 = 1.

(2006) show that a problem-specific variable ordering for the graceful graph labelling
problem (see A.9 gives good performance.

2.3 CSP symmetry

A solution symmetry σ of a CSP is a permutation of its literals that preserves the set
of solutions (Cohen et al., 2005). A symmetry can be extended to act on assignments
by applying the symmetry to each literal in the assignment: σ(A) = {σ(l)|s ∈ A}. In
other words, a symmetry is a bijection from literals to literals that maps solutions to
solutions and consequently non-solutions to non-solutions. As a consequence, for any
solution symmetry σ, assignment A is a solution if and only if σ(A) is a solution. A
constraint symmetry is a solution symmetry that preserves the constraints of the CSP.
That is, the symmetry maps each constraint in the set of constraints C onto a constraint
that is in C (possibly the same constraint).

Example 8. Consider the CSP P = (X,D,C) where X = {x1, x2, x3}, D = {1, 2, 3}
and C = (x1 + x2 = 5) ∧ (x3 < 3). One solution of this problem is A = {x1 = 2, x2 =
3, x3 = 1}. Let us define the permutation of literals f such that f(x1 = i) = (x2 = i),
f(x2 = i) = (x1 = i) and f(x3 = i) = (x3 = i); i.e. f interchanges the literals involving x1
and x2. Permutation f is a solution symmetry of P because it maps solutions to solutions;
for example, f(A) = {x1 = 3, x2 = 2, x3 = 1}, which is also a solution of P . Now let us
define the permutation g such that g(x1 = i) = (x1 = i), f(x2 = i) = (x3 = i) and
f(x3 = i) = (x2 = i); i.e. g interchanges the literals involving x2 and x3. Permutation g is
not a solution symmetry of P because it maps solutions to non-solutions and vice versa;
for example, g(A) = {x1 = 2, x2 = 1, x3 = 3}, which is not a solution of P .

The presence of symmetry in a constraint satisfaction problem can be used to reduce
the search for the problem’s solutions. This is because a symmetry causes some subtrees
of the search space to be equivalent, in that if one subtree has no solutions then the other

2.3. CSP SYMMETRY 15

x1 = 1 x1 6= 1

x2 = 1 x2 6= 1

x1 = 2 x1 6= 2

x2 = 2 x2 6= 2

A

B

C

D

fail

fail

(2, 3, 1)

(3, 2, 1)

Figure 2.5: Partial search tree with equivalent subtrees due to symmetry. Subtrees A
and B are equivalent: neither has any solutions. Subtrees C and D are equivalent: a
solution in C (e.g. {x1 = 2, x2 = 3, x3 = 1}) has a symmetric counterpart in D (e.g.
{x1 = 3, x2 = 2, x3 = 1}).

subtree also has no solutions, and every solution present in one subtree has a symmetric
counterpart in the other subtree. As a result, if two subtrees are identified as symmetrically
equivalent, only one needs to be explored.

Example 9. Recall the CSP from Example 8 P = (X,D,C) where X = {x1, x2, x3},
D = {1, 2, 3} and C = (x1 + x2 = 5) ∧ (x3 < 3). Part of a possible search tree for this
problem is shown in Figure 2.5.

We now introduce some common, orthogonal classes of symmetries. A variable symme-
try is a permutation of the variables that is a constraint/solution symmetry (Puget, 2002).
Since the inverse of any such permutation is also a symmetry, we will use 〈x1, x2, . . . , xn〉 ↔
〈x1′ , x2′ , . . . , xn′〉, where {x1, . . . , xn} = X = {x1′ , . . . , xn′}, to denote the variable symme-
try which maps every xi to xi′ (or every xi′ to xi). For simplicity of notation, if we have
{x1, . . . , xk}, {x1′ , . . . , xk′} ⊂ X, then 〈x1, . . . , xk〉 ↔ 〈x1′ , . . . , xk′〉 denotes the symmetry
which maps each xi to xi′ leaving the remaining variables unchanged.

A value symmetry is a permutation within the sets inD (i.e., a bijection from the values
of a variable to values of that variable) that is a constraint/solution symmetry (Puget,

16 CHAPTER 2. BACKGROUND

2002). We will use 〈di1, di2, . . . , din〉 ↔ 〈di1′ , di2′ , . . . , din′〉, where {di1, di2, . . . , din} =
Di = {di1′ , di2′ , . . . , din′}, to denote a value symmetry for a given variable xi ∈ X. A
variable-value symmetry is a permutation of the literals (i.e. the set V × D) that is a
constraint/solution symmetry, and is not a variable symmetry or a value symmetry. Note
that a variable-value symmetry of a CSP is not necessarily a composition of a variable
symmetry and a value symmetry of that CSP (i.e., one or both might not be symmetries
of that CSP). These kind of symmetries will be referred to as non-compositional variable-
value symmetries.

Example 10. The 8-queens CSP in Example 1 has 8 symmetries, including the identity.
These symmetries include:

• the variable symmetry 〈x1, x2, x3, x4〉 ↔ 〈x8, x7, x6, x5〉, representing the reflection
around a horizontal axis through the centre of the board,

• the value symmetry 〈1, 2, 3, 4〉 ↔ 〈8, 7, 6, 5〉, representing a similar, vertical symme-
try,

• the variable-value symmetry that maps every xi = j to xj = i, representing a
reflection around the top-left/bottom-right diagonal.

These three symmetries are shown in Figure 2.6. Note that the third symmetry cannot be
obtained by composing the variable and value symmetries of the problem. The remaining
symmetries of the problem can be obtained from those given here by composition. For
example, the 90 degree clockwise rotation symmetry can be achieved by first applying the
diagonal reflection symmetry and then the reflection around the vertical axis.

The symmetries of an object form a group. A group is a set G and an operator
∗ : G×G → G that together satisfy the following laws:

• the operator is associative: (a ∗ b) ∗ c = a ∗ (b ∗ c)

• there is an identity element: ∃e ∈ G.∀a ∈ G.a ∗ e = e ∗ a = a

• each element has an inverse: ∀a ∈ G.∃b ∈ G.a ∗ b = b ∗ a = e

Where the definition of the operator ∗ is clear or is unnecessary, we abbreviate 〈G, ∗〉 to
G. The order of a group is the cardinality of the set G. The symmetries of an object
then form a group where the set G is the set of symmetries, and the operator is function
composition.

Example 11. The symmetries of the 8-queens problem form a group of order 8. The
elements of the group are:

a the identity

b reflection around the central horizontal axis

c reflection around the central vertical axis

d reflection around the top-left/bottom-right diagonal

2.3. CSP SYMMETRY 17

x1

1

x2

2

x3

3

x4

4

x5

5

x6

6

x7

7

x8

8

(a) Original assignment

x1

1

x2

2

x3

3

x4

4

x5

5

x6

6

x7

7

x8

8

(b) After reflection around horizontal
axis

x1

1

x2

2

x3

3

x4

4

x5

5

x6

6

x7

7

x8

8

(c) After reflection around vertical
axis

x1

1

x2

2

x3

3

x4

4

x5

5

x6

6

x7

7

x8

8

(d) After reflection around diagonal
axis

Figure 2.6: Symmetries of an assignment for the 8-queens problem.

18 CHAPTER 2. BACKGROUND

e reflection around the top-right/bottom-left diagonal

f 90 degree clockwise rotation

g 180 degree clockwise rotation

h 270 degree clockwise rotation

A group 〈G, ∗〉 can be generated from a set X if every element in G can be obtained
by a finite sequence of applying ∗ to elements of X and their inverses. Such a set X is
called a generating set of G. Importantly, there may be many distinct generating sets for
a group. For a given generating set, an element of that set is called a generator .

Example 12. One generating set of the symmetry group of the 8-queens problem is {b, f}
where the labels are as in Example 11. All other elements can be written as the products
of these two elements and their inverses. For example a = b ∗ b−1, c = f ∗ f ∗ b, etc. This
is not the only generating set; for example, {c, f} is also a generating set.

Software packages, such as GAP (Group, 2006), are able to represent and manipulate
groups efficiently. They are able to compute properties of groups such as the intersection
of groups, the orbits of group elements and membership of elements in groups.

2.4 Graphs

A graph is a pair 〈V,E〉 where V is a set of vertices and E is a set of edges (u, v) such
that u, v ∈ V . For our purposes we assume that the edges are undirected (i.e. for every
edge (u, v) = (v, u)) and that each edge has distinct endpoints (i.e. for every edge (u, v),
u 6= v).

An automorphism f of a graph 〈V,E〉 is a permutation of the vertices such that
∀(u, v) ∈ E : (f(u), f(v)) ∈ E. That is, an automorphism permutes the vertices of the
graph in such a way that the graph remains unchanged.

A graph may be coloured . A coloured graph is a triple 〈V,E, c〉 where V and E are
as before, and c is a function V → C, where C is a set of colours. An automorphism
of a coloured graph is as for an uncoloured graph, with the additional restriction that
each vertex must be mapped to a vertex of the same colour. Formally, an automorphism
f of a coloured graph 〈V,E, c〉 is a permutation of the vertices such that ∀(u, v) ∈ E :
(f(u), f(v)) ∈ E and ∀v ∈ V, c(f(v)) = c(v).

Example 13. The graph shown in Figure 2.7a can be reflected across its vertical axis
resulting in that of Figure 2.7b, where the dashed arrows indicate the vertex permutation
used for this reflection. Since the graph edges are preserved, the permutation is an auto-
morphism. Consider now the graph shown in Figure 2.7c where colours are represented
by shading patterns. Its reflection over the horizontal axis results in Figure 2.7d, where
the dashed arrows again indicate the associated vertex permutation. This permutation is
also an automorphism. Note that reflecting the graph across the vertical axis no longer
results in an automorphism due to the vertex colours.

2.4. GRAPHS 19

1

2
3 4

5

6

(a)

5

6
4 3

1

2

(b)

1

2
3 4

5

6

(c)

2

1
3 4

6

5

(d)

Figure 2.7: Two graphs and one of their possible automorphisms.

20 CHAPTER 2. BACKGROUND

Chapter 3

Symmetry Detection

3.1 Introduction

The purpose of studying symmetries in constraint programming is to use the symmetries
that are present in a problem in order to solve the problem more quickly, or to eliminate
redundant solutions. In order to exploit a problem’s symmetries, it is necessary to know
what symmetries exist in a problem, either by finding them before the search begins or
determining them while the search is in progress. In this chapter we discuss the task of
automatic symmetry detection, which is to determine automatically what symmetries (if
any) a given problem has.

First, we discuss the work that has previously been done in the area of automatic
symmetry detection and give a brief chronological survey of existing definitions and meth-
ods. Symmetries may be detected automatically in several different ways. One may find
all of the solutions to a problem and then examine the set of solutions to determine the
symmetries of the problem. Of course, this approach is hindered by the requirement of
finding all of the solutions; for many problems it would take an impractical amount of time
to do so. Another method is to examine the constraint problem expressed by its concrete
specification in some modelling language: if the problem involves two variables x and y
and those two variables can be interchanged while leaving the program unchanged, then
x and y are symmetric. Such an approach would find some, but not all, of the symmetries
of the problem because some symmetries appear only when one considers the meaning of
the constraints, rather than their concrete expression.

In this chapter we focus on another approach to symmetry detection that is to use
a graph-based representation of a constraint problem. In particular, we discuss in some
detail the work presented by (Puget, 2005a) who demonstrated a method of automatic
symmetry detection that gives good practical results. This approach relies on work in
graph theory that allows us to find symmetries in graphs in a reasonable amount of time.
If we are able to transform a constraint problem into a graph, we can then find the
symmetries of that graph which correspond to symmetries of the problem. It is necessary
that the transformation of a problem into a graph is done in such a way that the resulting
graph is not too large, or the time and space needed for the transformation may become
prohibitive.

21

22 CHAPTER 3. SYMMETRY DETECTION

We present a new method of constructing graphs for symmetry detection, similar
in spirit to Puget’s, and prove that the construction gives correct results. We also de-
scribe how we have implemented a system that takes a constraint program written for the
ECLiPSe system, automatically finds its symmetries using our method and can then solve
the problem using automatic symmetry breaking to speed up the search. Parts of this
chapter have previously been published in (Mears et al., 2009).

3.2 Background

The field of symmetry analysis in constraint programming has been explored for many
years. However, the terminology used and even the fundamental definitions of symmetry
differ considerably among the work. In this section we describe some of the important
kinds of symmetry that have been subject to study.

A symmetry in a problem is, in a sense, a redundancy in the problem: a symmetry
indicates that parts of the problem can be removed without affecting the solutions to the
problem. Freuder (1991) developed the notion of interchangeability in constraint problems
as one such form of redundancy. He proposed that if two values are interchangeable, then
it is necessary to keep only one of them and discard the other. Freuder provided the
definition of a general form of interchangeability, given below.

Definition 1. (Freuder, 1991) Two values a and b for a variable x are fully interchangeable
if and only if:

1. every solution that assigns b to x remains a solution when c is substituted for b, and

2. every solution that assigns c to x remains a solution when b is substituted for c.

In general, the effort required to find all fully interchangeable values is equivalent to
that needed to find all solutions to the problem. Freuder provided algorithms to detect
this general form of interchangeability, and also methods to find certain restricted forms
of interchangeability that are faster to compute because these kinds of interchangeability
can be detected by examining the problem without having to find all of its solutions.

As discussed in the previous chapter, there is a distinction between those symmetries
that can be found by examining the constraints of a CSP and those that require all of the
solutions to be found and inspected. Following the terminology of Cohen et al. (2005), we
call the former constraint symmetry and the latter solution symmetry . Benhamou (1994)
also made this distinction in the context of value interchangeability, calling the former
syntactic symmetry and the latter semantic symmetry.

Other definitions of symmetry focus on the variables of the problem. Puget (1993)
describes the concept of a symmetric constraint as a natural counterpart of a mathematical
symmetric relation. Such a constraint may be a simple binary constraint like x = y =
or x 6= y, where the operator is commutative and therefore the variables x and y are
symmetric, or a more complex one such as the count constraint that is introduced in the
same work. The count constraint acts on a set of variables V , a value d and an integer
variable c, and ensures that exactly c variables among V take the value d. The variables
in V are treated symmetrically according to the definition of the constraint.

3.2. BACKGROUND 23

Roy and Pachet (1998) present a similar form of symmetry, where two variables are
intensionally permutable if they have the same domain and any constraints involving either
variable must involve both and act on each variable in the same way. Determining which
variables are intensionally permutable is done by partitioning the variables into intensional
permutability classes (or IP-classes). Variables that are in the same IP-class will be treated
the same way during problem resolution, that is, their domains will be pruned in the same
way. Each constraint separates the variables it acts upon into IP-classes, and the entire
problem’s IP-classes are computed by combining the IP-classes of each constraint. For
example, the all-different constraint treats all of its variables identically and, therefore, all
of its variables are in one IP-class. The count constraint described above would have the
variables V in one IP-class and the variable c in a singleton IP-class.

The definitions mentioned above define symmetries that act only on values, or only on
variables. Some symmetries are not an instance of either of these kinds.

Example 14. For example, in the integer model of the N-queens problem (see Sec-
tion A.1.1), a 180 degree rotation of the board involves both the variables and the values.
Figure 3.1 shows some of the symmetries of the problem. The horizontal reflection of the
board corresponds to a variable symmetry (Figure 3.1a) and the vertical reflection to a
value symmetry (Figure 3.1b). Combining these two gives another symmetry that involves
both the variables and the values (Figure 3.1c). The fourth symmetry (Figure 3.1d) in-
volves the variables and the values, but cannot be obtained by composing any variable
symmetries and value symmetries of the problem.

Meseguer and Torras (2001) give a broader definition that allows a symmetry to be
the composition of a variable and value symmetry, which admits the example of the 180
degree chess board rotation. Their definition of a permutation is the composition of a
permutation of the variables θ and a permutation of the values σ, so that a literal xi = j
is mapped to xθ(i) = σ(j). In the N-queens example of Figure 3.1c, θ(i) = σ(i) = n− i+1
and maps the queen x2 = 1 to x3 = 4. However, there are still symmetries not covered by
this definition, such as the 90 degree rotation of a chess board (Figure 3.1d).

Cohen et al. (2005) give a general definition of symmetry that captures any form
of symmetry. This was the solution symmetry introduced, in the previous chapter, as
a permutation off the literals of a problem that leaves the set of solutions unchanged.
Similarly they define a constraint symmetry as a permutation of the literals that leaves
the constraints unchanged.

Regarding symmetry detection, the Cgrass (Frisch et al., 2003b) system for trans-
forming constraint problems performs some detection of constraint symmetry. It detects
interchangeable variables by testing pairs of variables, using the transitivity of interchange-
ability to minimise the number of tests. A pair of variables is deemed to be interchangeable
if the set of constraints remains the same after the two variables are exchanged wherever
they appear in the set. Determining whether the two constraint sets are the same involves
a comparison of the normalised versions of the sets, so that equivalence is not solely syn-
tactic. For example, with the constraint set {a < b + 1, 1 + b > c} it can be seen that a
and c are symmetric, although a naive syntactic comparison would not show it.

Cgrass can also detect symmetries among terms that are larger than simple variables.
The search for this kind of symmetry is guided by structural equivalence. Two terms are

24 CHAPTER 3. SYMMETRY DETECTION

x1

1

x2

2

x3

3

x4

4

(a) Value symmetry

x1

1

x2

2

x3

3

x4

4

(b) Variable symmetry

x1

1

x2

2

x3

3

x4

4

(c) Composed variable-value symmetry
(180 degree rotation)

x1

1

x2

2

x3

3

x4

4

(d) Non-compositional variable-value
symmetry (90 degree rotation)

Figure 3.1: Variable, value, and variable-value symmetries. The grey queen is the sym-
metric image of the black queen.

3.2. BACKGROUND 25

structurally equivalent if they are identical once every variable is replaced by a single
symbol. For example, the terms a∗b

c
and d∗e

f
are structurally equivalent because they have

the same structure X∗X
X

.

To determine if this structural equivalence is actually a symmetry of the problem, the
system exchanges throughout the constraint set simultaneously each pair (a, d), (b, e), (c, f)
and tests the resulting constraint set for equivalence.

Since it is impractical to detect all solution symmetries for anything but the smallest
of problems, for the remainder of the chapter we focus on constraint symmetries. The
set of constraint symmetries of a problem is a subset of the set of solution symmetries,
because every constraint symmetry is also a solution symmetry. The most general form
of constraint symmetry, which allows a symmetry to be any permutation of the literals of
the problem, can be found by converting a CSP into a graph and then finding the auto-
morphisms of that graph. These automorphisms then correspond directly to symmetries
of the problem.

In general, any CSP can be converted into a graph, called the microstructure (Jégou,
1993). The microstructure of a problem is a graph where there is a node for each literal
of the problem, and an edge between any pair of literals which is explicitly allowed by a
constraint, or allowed because there is no constraint between the literals’ variables. Also
useful is the notion of the microstructure complement graph, which has the same nodes
as the microstructure but an edge for each pair of literals which are incompatible due to
a constraint, or due to their being different literals of the same variable.

Depending on the constraints of a problem, the microstructure (or microstructure com-
plement) graph can contain so many edges that it is impossible to use in practice. Puget
(2005a) presents a method to find constraint symmetries via a more compact coloured
graph that achieves good results for several problems. Puget’s method, and our exten-
sions to it, are presented in the remainder of the chapter.

3.2.1 Puget’s coloured graphs

The symmetry detection method presented by Puget (2005a) has two steps. The first
takes a CSP P = (X,D,C) and constructs a coloured graph that represents it. Recall
that, as introduced in Section 2.4, a coloured graph is a graph represented by the triple
〈V,E, c〉 where V is a set of nodes, E is a set of edges and c is a map from V onto a set of
colours. The purpose of colouring the nodes is to give them a “meaning” and ensure that
only nodes of the same kind are interchanged. The second step finds the automorphisms
of this coloured graph.

Puget presents two possible forms of graph construction. The first, which we will call
the variable graph construction, has a node for each variable in X and a node for each
constraint in C. Variable nodes have the same colour, and two constraint nodes have the
same colour if they represent the same kind of constraint (e.g. x1 < x2 and x3 < x4 have
the same colour). How constraint and variable nodes are linked depends on whether the
constraint is described intensionally or extensionally. For an intensional constraint c ∈ C,
an edge is added between the constraint node representing c and the node of each variable
in vars(c). Dummy nodes might be required to prevent the appearance of symmetries that
do not truly occur in the constraint. Automorphisms of this graph correspond to variable

26 CHAPTER 3. SYMMETRY DETECTION

1

2

3

4

x

1

2

3

4

y

(a)

1

2

3

4

x

1

2

3

4

y

(b)

x y

≥

(c)

Figure 3.2: Variable graphs using allowed extensional, disallowed extensional, and inten-
sional constraints.

symmetries and thus a variable graph that uses intensional constraints can detect only
variable symmetries.

For an extensional constraint c ∈ C, a value node is introduced for each value of
each variable in vars(c), and an assignment node is created for each assignment allowed
by c. Edges connect each value node to its variable node, each assignment node to the
value node representing each literal occurring in the assignment, and each assignment
node to the constraint node. These nodes are coloured as follows: all value nodes for a
given variable must have the same unique colour if we want to detect value symmetries,
while all value nodes (regardless of variable) must have the same unique colour if we also
want to detect variable symmetries. All assignment nodes have the same unique colour.
As indicated by Puget, if the set of allowed assignments contains many more elements
than the set of disallowed assignments, then the latter can be used to construct a smaller
graph that is equivalent for detecting symmetry. Automorphisms of a variable graph
that uses extensional constraints correspond to variable symmetries, value symmetries
and compositional variable-value symmetries.

Example 15. Consider the CSP ({x, y}, {1, 2, 3, 4}, {x ≥ y}). Figures 3.2a and 3.2b
show the variable graphs obtained by using the extensional constraint representation with
allowed and disallowed assignments, respectively. Both graphs have 1 constraint node
(shown as grey), 2 variable nodes of the same colour (shown as square), 8 value nodes of the
same colour (shown as large and white), and either 10 or 6 assignment nodes, respectively,
of the same colour (shown as small and white). Figure 3.2c shows the variable graph
obtained for the same CSP using the intensional constraint representation. This graph
needs 1 constraint node and 2 variable nodes as before, plus a dummy node (shown as a
dark square) to prevent the appearance of symmetry.

Example 16. Consider the CSP ({x, y, z}, {1, 2, 3}, {x = y, y = z}). Figure 3.3a shows
the graph obtained by using the extensional constraint representation with allowed as-
signments. The graph has three value nodes per variable.1 It also has three assignment
nodes corresponding to each allowed assignment {x = 1, y = 1}, {x = 2, y = 2}, {x =

1Note that, for simplicity, only the leftmost value nodes are labelled, their associated value being shared
by all value nodes at the same horizontal level.

3.2. BACKGROUND 27

1

2

3

x y z

(a) {x = y, y = z}

1

2

3

x y z

(b) {x < y, y < z}

1

2

3

x y z

(c) {x = y, y = z, x = z}

Figure 3.3: Graphs for CSP=({x, y, z},{1, 2, 3},C) where C is given in the caption of each
sub-figure.

3, y = 3} of x = y, and another three for those of y = z. All assignment nodes have
the same colour (small and white). Finally, the graph has two constraint nodes, each
connected to its associated assignment nodes and mapped to the same colour (grey), since
they represent constraints of the same kind (equality). The graph associated with CSP
({x, y, z}, {1, 2, 3}, {x < y, y < z}) using the extensional constraint representation with
allowed assignments is shown in Figure 3.3b.

While the method described above is correct (any automorphism of the graph cor-
responds to a symmetry of the CSP), it is not complete (some CSP symmetries might
not appear in the graph). This was demonstrated by Puget (2005a) using the graph of
Figure 3.3a which represents constraints {x = y, y = z}. The graph does not contain
any variable symmetries involving y, even though both 〈x, y〉 ↔ 〈y, x〉 and 〈y, z〉 ↔ 〈z, y〉
are symmetries of the CSP. To reduce this problem, Puget suggests to take the transitive
closure of equality and less-than constraints, and also to replace pairs of constraints such
as x ≤ y and y ≤ x by x = y. Applying this to the graph of Figure 3.3a leads to the
addition of x = z, and results in the graph of Figure 3.3c, which does contain symmetries
〈x, y〉 ↔ 〈y, x〉 and 〈y, z〉 ↔ 〈z, y〉. Note, however, that the transitive closure does not
make the method complete.

Furthermore, and as mentioned before, there are symmetries of the CSP that cannot be
expressed as the composition of variable and value symmetries present in the CSP. These
non-compositional symmetries cannot be expressed using the intensional representation
of constraints proposed by Puget since, as he indicates, it is only suitable for variable
symmetries. Neither can they be represented using the extensional representation, due
to the existence of variable nodes and to the different colour used for different kinds of
constraints.

Puget addresses this issue with a second form of graph construction, which we will
call the boolean graph construction. This construction is based on the notion that any
CSP with finite domain variables can be converted into an equivalent CSP with boolean
variables. The direct encoding (Walsh, 2000) represents the problem P = (X,D,C) with
one boolean variable xij for each literal xi = j of P , where xi ∈ X and j ∈ Di. The variable
xij takes the value true if and only if xi should take the value j. An allowed assignment
of a constraint in P corresponds to an assignment of true to all the boolean variables

28 CHAPTER 3. SYMMETRY DETECTION

representing literals in the assignment. A solution to P corresponds to an instantiation of
the boolean variables such that:

• precisely one boolean variable for each variable xi ∈ X is set to true, and

• each constraint in P has at least one allowed assignment.

Puget proposes a graphical representation of the original CSP based on this boolean
model. Each literal xi = j of the problem is represented by a literal node xij (note that
there are no variable nodes). Each primitive constraint, such as x = y, is represented by a
constraint node and one assignment node per assignment allowed by the constraint. The
constraint node is linked to all assignment nodes for the constraint, and each assignment
node is linked to the literal nodes involved in that assignment. A CSP with only one prim-
itive constraint is therefore represented by a graph that is very similar to the extensional
form of the variable graph construction.

Example 17. Consider the CSP P = ({x, y}, {1, 2, 3}, {x = y}). Figure 3.4 compares the
variable graph construction with extensional constraints and boolean graph construction.
In the boolean graph construction, there are no variable nodes and therefore some non-
compositional variable-value symmetries can be represented.

3

2

1

3

2

1

A3

A2

A1

=

x y
x = 3

x = 2

x = 1

y = 3

y = 2

y = 1

A3

A2

A1

=

Figure 3.4: Extensional constraint in variable graph construction (left) compared with
boolean graph construction (right).

While the boolean graph representation has significant advantages over the variable
graph representation, it also has two significant problems. First, as is, Puget’s definition of
the boolean graph is incorrect. In particular, automorphisms of this graph representation
do not necessarily correspond to solution symmetries of the original CSP. A counter ex-
ample can be illustrated with the CSP ({x, y, z}, {1, 2, 3}, {x < y}) (shown in Figure 3.10
in Section 3.4.3). The permutation 〈x = 3〉 ↔ 〈z = c〉, for any c ∈ {1, 2, 3}, is an auto-
morphism of the graph but is not a symmetry of the CSP. In Lemma 2 in Section 3.4.4,
we impose some restrictions on the boolean representation to guarantee that graph auto-
morphisms do indeed correspond to symmetries.

Second, the link to the original constraint node precludes symmetries involving differ-
ent kinds of constraints (such as an all-different and a disequation). Interestingly, Puget’s
boolean model for the all-different constraint (in (Puget, 2005a) and explained below) does

3.2. BACKGROUND 29

x y z

(a)

x

y

z

1

2

3

(b)

x y z

1

2

3

(c)

1

2

3

x y z

(d)

Figure 3.5: Representations of CSP ({x, y, z},{1, 2, 3}, {all different({x, y, z})})

not appear to include a link back to the original constraint node. For clarity, we briefly
summarise four alternative representations for this constraint under Puget’s different con-
structions. Note that these are our interpretations of Puget’s constructions, as the original
work (Puget, 2005a) does not provide a formal definition.

The first and second representations use the variable graph construction while the third
and fourth representations use the boolean graph construction. The first representation is
an intensional representation, consisting of a node for the constraint itself, a node for each
variable in its scope, and an edge between the constraint node and each variable node (Fig-
ure 3.5a). The second representation is the extensional representation with O(mn) nodes
representing allowed assignments of n variables each with a domain size of m (Figure 3.5b).
The third representation is the standard boolean one with an assignment node for each
allowed assignment. Note again that this is almost the same as the extensional represen-
tation, but without any nodes corresponding to the original variables (Figure 3.5c). The
fourth representation also uses the boolean graph construction, but is a specialised form
devised particularly for the all-different constraint. In this representation, the constraint
is reformulated as a set of special constraints over the boolean variables; each constraint
states that only one of the connected boolean variables is true (Figure 3.5d, where each
black circle is one of these new constraints). The all-different constraint over n variables
vi can be represented by m constraints (one per value, cj), each of which is connected to
the n boolean variables bij : i ∈ 1..n, representing vi = cj .

It can be seen from Figure 3.5 that the graph using the special representation of
all-different (Figure 3.5d is much smaller (O(m.n) nodes) than the graph that uses the
extensional form (Figure 3.5c) of the all-different constraint (O(mn) nodes). The auto-
morphisms of these two graphs represent the same symmetries.

Using a special representation for a global constraint such as all-different, rather than
decomposing it into smaller constraints, can reduce the amount of symmetry found.

Example 18. Consider the CSP ({x1, x2, x3, x4}, {1, . . . , N}, {all different(X), x2 6= x4}),
where all-different is represented using N disallowed assignments nodes. Figure 3.6 shows
two graphs representing this CSP for N = 1. Figure 3.6a shows the boolean graph with
the all-different constraint represented in its usual k-ary form and Figure 3.6b show the
graph where the all-different constraint is decomposed into not-equal constraints. In the

30 CHAPTER 3. SYMMETRY DETECTION

x1 x2 x3 x4

1

(a)

x1 x2 x3 x4

1

(b)

Figure 3.6: Representing all-different using n-ary and binary constraints.

1

2

3

x y z

Figure 3.7: Implied boolean constraint.

first graph, the representation of x2 6= x4 limits the symmetries of the graph to those
generated by 〈x1, x3〉 ↔ 〈x3, x1〉 and 〈x2, x4〉 ↔ 〈x4, x2〉. As a consequence, symmetries
such as 〈x1, x2〉 ↔ 〈x2, x1〉 are lost since they do not correspond to automorphisms of the
graph. However, in the second graph where all-different is represented by the disallowed
assignments of the equivalent constraint {xi 6= xj |1 ≤ i < j ≤ 4}, all variable symmetries
are present in the graph.

To complement the special representation of all-different, Puget also proposes a similar
representation of the implied constraint between the different values of a single variable,
connecting the boolean nodes bij : j ∈ 1..m (see Figure 3.7 for an example). This is
necessary to ensure graph automorphisms correspond to solution symmetries. We show
in the next section that these are not only necessary, but also sufficient for correctness.
However, if this is expressed via an all-different constraint, then opportunities for detecting
symmetries may be lost since this representation does not allow a disequation between two
values to participate in a symmetry with a disequation between two variables (a similar
situation is shown in Example 18).

3.2.2 Puget’s representation for expressions

Puget’s method is based on constraints whose arguments are distinct variables. In order
to be able to handle constraints involving expressions, Puget proposes to represent any
expression of the form xi op xj , where xi, xj ∈ X are distinct variables, as the extensional
constraint associated with op(xi, xj , t), where t is a new (temporary) variable which is
then used to replace the expression xi op xj as the constraint’s argument.

3.3. PROBLEMS WITH PUGET’S REPRESENTATION 31

1

2

1

2 1

2

3

2

3

4

x y

zt

Figure 3.8: Variable graph of a CSP with constraint x + y > z. The extra variable t
represents x+ y.

1

2

3

1

2

3

x y

Figure 3.9: Variable graph of a CSP with constraint x + 1 > y. The expression x + 1 is
represented without additional variables.

Example 19. Consider the CSP P = ({x, y, z}, {{1, 2}, {1, 2}, {1, 2, 3}}, {x + y > z}),
whose variable graph with extensional constraints is shown in Figure 3.8. The expression
x+ y is represented by a new variable t with domain Dt = {2, 3, 4}.

We believe this method was suggested because (a) it reuses the already defined con-
straint representation, and (b) uses the same colour for constraints with and without
complex expressions. For example, A < B can be represented by the same colour as
C < D + 1 if the latter constraint is expressed as a combination of E = D + 1 and
C < E. This reduces the syntax dependency of the graph and thus might result in more
symmetries being detected.

Since this approach can lead to very large graphs, Puget also proposed a more compact
alternative approach for handling expressions of the form op(x), where the variable x is
only allowed to occur once in the expression. The idea then is to use the literal x = d to
represent t = op(d) wherever it would have occurred.

Example 20. Consider the CSP P = ({x, y}, {1, 2, 3}, {x+1 > y}), whose variable graph
is shown in Figure 3.9. The expression x+1 is represented without any additional variables.
The node x = 1 represents (x+ 1) = 2, and node x = 2 represents (x+ 2) = 3.

3.3 Problems with Puget’s Representation

The graph representations described in the previous section have some flaws that lead to
incorrect or suboptimal results. In this section, we describe these problems.

32 CHAPTER 3. SYMMETRY DETECTION

1

2

3

x y z

Figure 3.10: Boolean graph construction with automorphisms that are not symmetries of
the CSP.

3.3.1 Problems with the Boolean Graph

In some cases the boolean graph construction can give incorrect results. That is, the graph
can have automorphisms that correspond to permutations of the CSP’s literals that are
not symmetries of the CSP.

Example 21. Consider a CSP P = ({x, y, z}, {1, 2, 3}, {x < y}). Figure 3.10 shows the
boolean graph construction for P using allowed assignments for the constraint. The graph
has automorphisms that are not solution symmetries; for instance, the automorphism
〈x = 3〉 ↔ 〈z = 3〉 is not a symmetry of P .

3.3.2 Problems with Expression Representation

As described in Section 3.2.2, expressions involving more than one variable are broken into
sub-expressions, each of which is represented by a new (temporary) variable ti. Constraints
involving expressions as arguments are simply treated by replacing each such argument by
a new variable representing the expression. As noted by Puget and others (Puget, 2005a;
Ramani and Markov, 2004), this can lead to the unintentional loss of symmetries due, for
example, to the associative nature of operators.

Example 22. Consider the constraint x+ y + z > w. If the constraint is parsed as (x+
y)+ z > w, it would be transformed into constraint t1 > w, where the new variable t1 has
associated constraint +(t2, z, t1) (representing the constraint t2+z = t1), and new variable
t2 has associated constraint +(x, y, t2). Although in the expression all three variables are
interchangeable, the associated graph only has the variable symmetry 〈x, y〉 ↔ 〈y, x〉.

The problem can be ameliorated (Puget, 2005a; Ramani and Markov, 2004) by rep-
resenting multiple occurrences of a binary associative operator with a single n-ary oper-
ator. For instance, in the previous example we would only introduce one extra variable
t3, and the constraint +(x, y, z, t3). As recommended by Puget (2005a), asymmetric bi-
nary arithmetic operations, such as x − y and x/y, are decomposed using their unary
inverse operators, resulting in x + (−y) and x ∗ (1/y). This allows further grouping of
associative operators while at the same time preventing the creation of false symmetries.
Unfortunately, as mentioned before, this preprocessing only reduces the problem instead
of eliminating it, since the intermediate variables can still prevent some symmetries from
being captured by the graph, even after performing all the preprocessing steps indicated
above.

Example 23. Consider the CSP ({x, y, z}, {{1, 2}, {1, 2}, {1}}, {x + z 6= y, y + z 6= x}).
This CSP has a variable symmetry 〈x, y〉 ↔ 〈y, x〉, and a value symmetry on variables x

3.4. A NEW GRAPH REPRESENTATION 33

and y that exchanges 〈1, 2〉 ↔ 〈2, 1〉. The expressions in the two constraints are represented
by t1 = x+ z and t2 = y + z. The associated extensional graph is shown in Figure 3.11,
with grey and black constraint nodes linking assignment nodes for equality and disequality
constraints, respectively. It can be seen that the graph captures the variable symmetry
(achieved by reflecting the graph in a vertical axis positioned over value node 1 of z), but
not the value symmetry (which would be achieved by reflecting the graph in a horizontal
axis positioned in between value nodes 1 and 2 of x and y).

x y

z

1

2

1

2
1

t1 t2

2

3

2

3

Figure 3.11: Graph of CSP ({x, y, z}, {{1, 2}, {1, 2}, {1}}, {x + z 6= y, y + z 6= x})

The above discussion highlights the considerable influence that the constraint syntax
bears on the resulting graph. Since the same constraint can usually be expressed in several
equivalent ways, it would seem advantageous to determine which normal form would yield a
graph that captures the greatest number of symmetries. It was while trying to determine
such a normal form that we decided to develop a new method, since this one not only
generated too many intermediate variables (as already indicated by Puget), but it could
also easily result in symmetries being missed due to the use of a particular syntax.

3.4 A new graph representation

Puget (2005a) presents experimental results that show that his graph constructions are
able to detect many symmetries of benchmark problems with reasonable running time.
However, as illustrated in the previous section, the constructions as described do not
satisfactorily cover all possible kinds of CSP where one may wish to use automatic sym-
metry detection (such as those involving set variables), depend strongly on syntax, and,
as mentioned before, in some cases may lead to incorrect results.

In this section, we formally define new graph representations of CSPs that can be
used to detect symmetries. Our main aim is to explore representations that are able to
detect as many symmetries as possible in all kinds of CSPs and to ensure their correctness.
While we are also interested in minimising the size of the graph as far as possible, this
is secondary to ensuring correctness and accuracy. Our overall motivation is to develop a
method that can be used as a foundation for a symmetry detection method that will act
on problem models (described in Chapter 4), and as such our method presented here does
not need to be used with very large problem instances.

34 CHAPTER 3. SYMMETRY DETECTION

3.4.1 Allowed and disallowed assignments

Instead of using intensional constraints or factoring out expressions with temporary vari-
ables, we believe it is cleaner and simpler to return to extensional constraints. An impor-
tant motivation for us is to eliminate different “kinds” of constraints, which are represented
by nodes with different colours and stick to just two kinds: constraints represented exten-
sionally by allowed and by disallowed assignments. When seen in this light, it becomes
clear that we can avoid the representation of temporary variables and constants by ab-
sorbing expressions into the constraint in which they appear. We also decided to drop
variable nodes and value nodes and, instead, use literal nodes. The consequences of this
will be discussed in section 3.4.3 below.

Example 24. Consider the CSP ({x, y, z},D, {x+ y > z},) where Dx = Dy = {1, 2} and
Dz = {1, 2, 3}. The ternary constraint x+ y > z can simply be represented extensionally
by its set of allowed assignments, {{x = 1, y = 1, z = 1}, {x = 1, y = 2, z = 1}, {x = 1, y =
2, z = 2}, {x = 2, y = 1, z = 1}, {x = 2, y = 1, z = 2}, {x = 2, y = 2, z = 1}, {x = 2, y =
2, z = 2}, {x = 2, y = 2, z = 3}}, all linked to an additional constraint node, as illustrated
by Figure 3.12.

x = 1

x = 2

y = 1

y = 2

z = 1

z = 2

x = 3

Figure 3.12: Representing expressions as allowed assignments

We would like to simplify the graph further by eliminating the constraint nodes. This,
however, cannot be achieved if the CSP contains at least two constraints c1, c2 ∈ C such
that c1 6= c2 and vars(c1) = vars(c2). This is because while each constraint must be
interpreted as the union of its allowed assignments, their conjunction must be interpreted
as the intersection of the set of assignments allowed by each. Without constraint nodes,
the graph cannot distinguish between the set of assignment nodes representing c1∧ c2 and
that representing c1∨ c2. By contrast, representing c1∧ c2 by their disallowed assignments
is correct and unambiguous even without constraint nodes. This is because the set of
disallowed assignments {A11, . . . , A1s} and {A21, . . . , A2t} for c1 and c2, respectively, is
interpreted as the conjunction of all their disallowed assignments, i.e., ¬A11 ∧ . . .¬A1s ∧
¬A21 ∧ . . .¬A2t.

Example 25. Figures 3.13a and 3.13b show the graphs obtained by representing the
allowed assignments of the constraints in CSPs (X,D,C) and (X,D,C ′), respectively,
where X = {x, y}, Dx = Dy = {1, 2}, C = {x > y, x < y}, and C ′ = {x 6= y}. It is clear
that, without the constraint nodes, the graphical representation of these two CSPs are
indistinguishable, even though while the first CSP has no solutions, the second has two.
The confusion is due to x 6= y being logically equivalent to (x > y ∨ x < y). Figures 3.13c
and 3.13d show the graphs obtained by representing the disallowed assignments of the
constraints (note that, for clarity, identical assignments disallowed by different constrains

3.4. A NEW GRAPH REPRESENTATION 35

have been merged). As it is clear from the figure, the graphs are perfectly distinguishable
even though constraint nodes are not represented.

x = 1

x = 2

x = 3

y = 1

y = 2

y = 3

(a) x 6= y

x = 1

x = 2

x = 3

y = 1

y = 2

y = 3

(b) x > y, x < y

x = 1

x = 2

x = 3

y = 1

y = 2

y = 3

(c) x 6= y

x = 1

x = 2

x = 3

y = 1

y = 2

y = 3

(d) x > y, x < y

Figure 3.13: Graphs using allowed (a,b) and disallowed (c,d) assignments.

The simplicity of this method is pleasing since it eliminates problems such as the ex-
plicit representation of constants (which is now avoided regardless of whether the constant
appears as a constraint argument or not), the normalisation required when multiple oc-
currences of a variable appeared in a constraint (such as A×A=1, which can now be easily
treated by computing the values of A for which the constraint is satisfied), the problem of
associative and non-symmetric operands appearing in the same constraint, and in general,
any such normalisation issue affecting a single constraint. For instance, Figure 3.14 shows
the graph obtained for the CSP of Example 23 using the new representation method. The
elimination of temporary variables yields a graph that has not only the variable symme-
try 〈x, y〉 ↔ 〈y, x〉, but also the value symmetry for variables x and y that exchanges
〈1, 2〉 ↔ 〈2, 1〉.

1

2

x yz

Figure 3.14: Graph for CSP ({x, y, z}, {{1, 2}, {1, 2}, {1}}, {x + z 6= y, y + z 6= x})

The method also avoids syntactical issues regarding constraints whose name appears
to be different but is actually equivalent (e.g., x < y and z > w should be considered
as constraints of the same kind). However, some problems remain when a CSP has two
constraints with identical scopes (see section 3.4.3).

3.4.2 Disallowed assignments and the microstructure complement

Given the above discussion, it would seem advantageous to represent a CSP using only
its disallowed assignments. Let us consider the advantages and disadvantages of such an
approach.

36 CHAPTER 3. SYMMETRY DETECTION

Definition 2. A CSP (X,D,C) is represented by the disallowed assignments graph if the
graph contains two kinds of nodes:

• Literal nodes, each representing the assignment of a specific value to a specific vari-
able

• Assignment nodes, each representing either a disallowed assignment from any con-
straint in C, or a (disallowed) pair of distinct literals {x = a, x = b} for all x ∈ X
and all a, b ∈ Dx such that a 6= b

All literal nodes have one colour and all assignment nodes have another. The graph con-
tains an edge from each assignment node to each of the literals involved in it.

Example 26. Figure 3.15 illustrates the disallowed assignments graph for the 3- and 4-
queens problems (with disallowed disequality assignments shown as small black nodes).
Note the need to represent the disallowed pairs of distinct literals for each variable, to
capture all the symmetries of the chessboard. Without these disallowed pairs, the 90
degree rotation symmetry would not be an automorphism of the graph.

Q1 Q2 Q3

1

2

3

(a) 3− queens

Q1 Q2 Q3 Q4

1

2

3

4

(b) 4− queens

Figure 3.15: Graph for instances of N-queens using disallowed tuples.

The disallowed assignments graph is similar to the microstructure complement intro-
duced by Jégou (1993) and extended by Cohen et al. (2005) (described in Section 2.3).
The only difference between the disallowed assignments graph and the microstructure
complement is that each disallowed assignment is represented by an assignment node and
the literals linked to it, whilst the microstructure complement represents a disallowed
assignment by a single hyperedge linking the literals.

The main drawback of both the microstructure complement and the disallowed assign-
ments graph is their size. Firstly, they have, in general, more nodes than necessary. Every
value for every variable is represented as a node, although many of these nodes could never
appear in a solution (techniques for pruning nodes will be discussed below). And secondly,
the number of hyperedges (or assignment nodes) in the graph is high. A mathematical

3.4. A NEW GRAPH REPRESENTATION 37

equation, such as x = 2y + z requires approximately d3 hyperedges, where d is the size of
the domains of x, y and z. While for some constraints the set of disallowed assignments
is the most compact way to represent the constraint, many others, such as mathematical
equations, are much more compactly represented by their allowed assignments. Moreover,
the microstructure complement requires d2 edges to disallow multiple assignments for a
variable in the CSP with domain size d. Thus, for n variables, nd2 edges are needed.
While this number could be kept to nd using intensional constraints, as described before,
this would limit the symmetry possibilities, making non-compositional variable-value sym-
metries unlikely. Therefore, in the next section we consider an alternative graph in which
only allowed assignments are represented explicitly.

3.4.3 Allowed assignments and the microstructure

The microstructure described in Section 3.2 (page 25) suffers from a flaw caused by the
same problem that prevented us in Section 3.4.1 from eliminating constraint nodes for
allowed assignments: if two or more constraints have the same scope, then the set of
hyperedges over that scope represents the disjunction, instead of the conjunction, of the
constraints.

x = 1

x = 2

x = 3

y = 1

y = 2

y = 3

(a) x < y

x = 1

x = 2

x = 3

y = 1

y = 2

y = 3

(b) x > y

x = 1

x = 2

x = 3

y = 1

y = 2

y = 3

(c) x < y ∧ x > y

Figure 3.16: Constraints over the same scope.

Example 27. Figure 3.16 shows the result of two constraints over the same scope using
allowed assignments. The constraints x < y and y < x (shown in the first two subfigures),
when combined, result in the same graph as the constraint x 6= y (shown in the third
subfigure).

This flaw can be easily fixed, however, by a preprocessing step which replaces each set
of constraints that have the same scope by a new constraint whose allowed assignments
are those that satisfy all constraints. From now on, we will assume that every CSP
(X,D,C) has already been preprocessed and, therefore, it is true that for every two
distinct constraints c1, c2 ∈ C : vars(c1) 6= vars(c2).

Unfortunately, there is another serious drawback to using the microstructure: the in-
clusion of a hyperedge for each assignment “allowed because there is no constraint between
the associated variables”. Assuming there are n variables in the CSP (X,D,C), there will
be 2n subsets of X, with each subset Xi being either equal to vars(c) for some c ∈ C,
or unconstrained. An unconstrained set of variables {xi, · · · , xj} has |Dxi

| × . . . × |Dxj
|

38 CHAPTER 3. SYMMETRY DETECTION

allowed assignments. Since the number of constraints is typically much smaller than 2n,
the number of hyperedges in the microstructure is typically very large indeed.

We seek a graphical representation of the CSP that has a small number of edges, but
for which graph automorphisms correspond to symmetries of the CSP. Luckily, it turns
out not to be necessary to add allowed assignments for every set of variables that do not
form the scope of a constraint in the CSP. It is sufficient to add allowed assignments for
each pair of distinct variables which do not both belong to the scope of a constraint.

If (X,D,C) is a CSP, its binary constraint completion, BC, is the set of binary con-
straints whose scopes are the pairs of distinct variables xi, xj ∈ X for which there is
no constraint c ∈ C with {xi, xj} ⊆ vars(c) - i.e., the constraints in BC are logically
equivalent to true.

Definition 3. A CSP (X,D,C) is represented by the allowed assignments graph if the
graph contains two kinds of nodes:

• Literal nodes, each representing the assignment of a specific value to a specific vari-
able

• Assignment nodes, each representing an allowed assignment from a constraint in
C ∪BC.

All literal nodes have one colour and all assignment nodes have another. The graph con-
tains an edge from each assignment node to each of the literals involved in it.

Lemma 1. Every automorphism f of an allowed assignments graph for CSP (X,D,C)
represents a solution symmetry.

Proof. Let S be a solution to the CSP. We will prove that f(S) is also a solution by first
showing it is a complete assignment, and then showing it satisfies each constraint in C.

Let lit1 and lit2 be two distinct literals in S. Then, var(lit1), var(lit2) ∈ vars(c) for
some c ∈ C ∪ BC. Since S is a solution, it satisfies c and, therefore, {lit1, lit2} ⊆ A
for some assignment A allowed by c. As a result, they must both be linked to at least
one allowed assignment node n. By the definition of automorphism, {f(lit1), f(lit2)} are
linked to f(n), which means they also belong to an assignment allowed by some constraint
c′ ∈ C ∪ BC. By the definition of an allowed assignment, var(lit1) 6= var(lit2) and
var(f(lit1)) 6= var(f(lit2)). Since this holds for every pair of literals in S and f(S),
every literal in f(S) must have a different variable. By the definition of automorphism
card(f(S)) = card(S) = card(X) and because each literal in f(S) has a different variable,
each variable in X is given a value by f(S) and therefore it is a complete assignment.

Let us now show that every constraint in C is satisfied by f(S). If there are m con-
straints in C∪BC, then there arem subsets of S which correspond to allowed assignments.
Let c1, c2 ∈ C ∪ BC be two different constraints and A1, A2 ⊆ S be assignments allowed
by c1 and c2, respectively. By assumption of the preprocessing step and the choice of BC,
vars(c1) 6= vars(c2). Also, by definition of automorphism, the image f(A) of any allowed
assignment A is also an allowed assignment and, therefore, for every two distinct literals
lit1, lit2 ∈ A we have var(lit1) 6= var(lit2) and var(f(lit1)) 6= var(f(lit2)). Therefore, if
v ∈ vars(c1)\vars(c2), and v = var(lit) with lit ∈ A1, then var(f(lit)) is not in the set of
variables over which f(A2) is an assignment. It follows that f(A1) and f(A2) are allowed

3.4. A NEW GRAPH REPRESENTATION 39

assignments over distinct sets of variables and, therefore, they belong to two different
constraints. This means that f(S) also satisfies m distinct constraints and, therefore, all
constraints in C∪BC. Since f(S) is a complete assignment, it must also be a solution.

3.4.4 A graph including allowed and disallowed assignments

We now present a new graph representation for CSPs that does not require all constraints
to use the allowed (or disallowed) assignments and, thus, permits different constraints to
use different assignments. The representation takes many ideas from the work of Puget
(Puget, 2005a) but is also closely related to the microstructure and microstructure com-
plement of Cohen et al. (2005). As before, our graph representation of a CSP (X,D,C)
has a node for every literal (and, thus, for every value of the domain of every variable in
X). However, we now admit both allowed assignments and disallowed ones, distinguished
by different colours.

We call an allowed constraint one that is represented by all its allowed assignments,
and a disallowed constraint one represented by all its disallowed assignments.

Definition 4. A CSP (X,D,C), where no two constraints have identical scopes, is rep-
resented by the full assignments graph if the graph contains three kinds of nodes:

• Literal nodes, each representing the assignment of a specific value to a specific vari-
able

• Allowed assignment nodes, representing an allowed assignment from a constraint in
C

• Disallowed assignment nodes, either representing a disallowed assignment from a
constraint in C, or a (disallowed) pair of distinct literals {x = a, x = b} for all
x ∈ X and all a, b ∈ Dx such that a 6= b.

All literal nodes have one colour, all allowed assignment nodes have another, and all dis-
allowed assignment nodes have a third. The graph contains an edge from each assignment
node to each of the literals involved in it.

Two conditions are imposed to ensure that graph automorphisms correspond to solution
symmetries.

1. Each constraint must be either allowed or disallowed

2. Either:

• every pair of variables is in the scope of an allowed constraint (i.e., ∀x, y ∈
X,x 6= y : ∃c ∈ C, x, y ∈ vars(c)), or

• every pair of literals within a variable is linked by disallowed assignments, for
all variables (i.e., ∀x ∈ X,∀a, b ∈ Dx, a 6= b : ∃ an assignment node linking
literal nodes x = a and x = b)

Example 28. Consider the CSP P = ({x, y, z}, {1, 2, 3}, {x < y}) (the same CSP as in
Example 21). Figure 3.17 shows the boolean graph of this CSP as in Figure 3.10, but the
now graph has been augmented with disallowed assignments between each pair of literals

40 CHAPTER 3. SYMMETRY DETECTION

1

2

3

x y z

Figure 3.17: Pairs of literals for the same variable linked by disallowed assignments. Black
nodes are allowed assignments, grey nodes are disallowed assignments.

in the same variable. The permutation 〈x = 3〉 ↔ 〈z = 3〉 is no longer an automorphism
of the graph.

Lemma 2. Every automorphism f of the full assignments graph for CSP (X,D,C) rep-
resents a solution symmetry.

Proof. Let S be a solution to the CSP. We will prove that f(S) is also a solution by first
showing it is a complete assignment, and then showing it satisfies each constraint in C.

If every pair of variables is in the scope of an allowed constraint, then this is proved in
Lemma 1 above (note that the set BC is empty in this case). Otherwise, for each variable,
all its pairs of literals are linked by disallowed assignments. Let us reason by contradiction
and assume that f(S) is not a complete assignment. Then, there must be two literals, say
f(lit1) and f(lit2), for the same variable. Therefore, {f(lit1), f(lit2)} must be linked to
one binary disallowed assignment node and, by the definition of automorphism, {lit1, lit2}
must also be linked to a binary disallowed assignment node. But this is impossible since
they belong to a solution. We conclude that f(S) must be a complete assignment.

Let us now show that every constraint in C is satisfied by f(S). If every pair of variables
is in the scope of an allowed constraint, then the proof is again as in Lemma 1 above.
Otherwise, by the definition of the full assignments graph, there must be a disallowed
assignment between every pair of literals with the same variable (x = a and x = b, for all
a 6= b). Consider a pair of literals lit1, lit2 ∈ S and let v1 = var(lit1) and v2 = var(lit2).
Because S is a solution, v1 6= v2. For f(S) to be a solution, we must be able to show that
f(lit1) and f(lit2) are not connected to the same disallowed assignment node. Because S
is a solution, lit1 and lit2 must not both be connected to any disallowed assignment node.
Therefore, f(lit1) and f(lit2) cannot both be connected to the same disallowed assignment
node.

In addition, if v1 and v2 are in the scope of an allowed constraint, we must also show
that f(lit1) and f(lit2) are connected to an allowed assignment node. Because S is a
solution, lit1 and lit2 must be connected to some allowed assignment node n. Therefore,
f(lit1) and f(lit2) are connected to the allowed assignment node f(n).

Since the coexistence of f(lit1) and f(lit2) is permitted in a solution, and since f(S)
is a complete assignment, f(S) must be a solution.

Lemma 3. Not every solution symmetry for a CSP (X,D,C) is an automorphism f of
its full assignments graph.

Proof. It is easy to prove the lemma by contradiction. Consider the CSP represented by
({x, y, z}, {1, 2, 3}, {x < y, y < z}) whose only solution is {x = 1, y = 2, z = 3}. While this
CSP has the solution symmetry 〈x = 2, x = 3〉 ↔ 〈x = 3, x = 2〉, this is not a constraint

3.4. A NEW GRAPH REPRESENTATION 41

symmetry since it maps the allowed assignment {x = 2, y = 3} of constraint x < y to the
disallowed assignment {x = 3, y = 3}. The full assignment graph for the CSP is shown in
Figure 3.18, using disallowed assignments to represent both constraints. It is clear that
the solution symmetry is not an automorphism of the graph.

1

2

3

x y z

Figure 3.18: Full assignments graph of CSP ({x, y, z}, {1, 2, 3}, {x < y, y < z})

While supporting both allowed and disallowed assignments makes it possible to reduce
the size of the graph, it might lead to detecting fewer symmetries. This can occur even if
we consistently represent constraints using the method that ensures the minimum number
of assignments.

Example 29. Consider the CSP ({x, y, z}, {1, 2, 3}, C), where C = {c1(z, y), c2(x, y), x =
z}, c1 = {1, 2}×{1, 2, 3} and c2 = {1}×{1, 2, 3}. This CSP contains a solution symmetry,
〈x = 1〉 ↔ 〈z = 1〉. As illustrated by Figure 3.19, if this CSP is represented using only
disallowed assignments or only allowed assignments, the symmetry is present in the graph.
However, if we use the representation with the smallest graph (disallowed assignments for
c1(z, y) and allowed assignments for c2(x, y) and x = z), then that symmetry is not present
in the graph.

1

2

3

x y z

(a) Allowed graph

1

2

3

x y z

(b) Disallowed graph

1

2

3

x y z

(c) Full graph

Figure 3.19: Symmetry 〈x = 1〉 ↔ 〈z = 1〉 is not present in (c) (see Example 29).

Lemma 4. All results proved for a full assignments graph hold for the allowed and disal-
lowed assignments graphs.

Proof. Immediate since, by definition, any allowed (disallowed) assignments graph is an
instance of a full assignments graph in which only allowed (disallowed) assignments are
used for representing constraints.

42 CHAPTER 3. SYMMETRY DETECTION

3.4.5 Representing Sets

While sets are used in modelling many problems – arguably most problems coming from
the real world – they are not covered by Puget’s method (Puget, 2005a). Consider a set
variable xi ∈ X known to be a subset of set S. Its domain Di is equal to the power-set
of S, i.e., Di = {S′|S′ ⊆ S}. In any graph representation which includes value nodes or
literal nodes, a node is required for every element of the power set, and this leads to large
graphs. Using the extensional method (e.g. in Figure 3.20a) the graph has one variable
node and 2|S| value nodes (e.g., if S = {1, 2, 3, 4} the graph contains 1 variable node for
xi and 16 value nodes representing values {}, {1}, {2}, . . . , {2, 3, 4}, and {1, 2, 3, 4}). Set
constraints are then extensionally represented as usual by using their allowed or disallowed
assignments.

An alternative approach is to use a boolean representation, (e.g. in Figure 3.20b).
Then, rather than using each element in the powerset of S to create a value node, we
would use each element in the set, i.e., we would obtain |S| + 1 nodes where one node
represents the empty set, and ∀d ∈ S there is a node representing di ∈ xi (e.g., if S =
{1, 2, 3, 4} the graph contains 5 nodes representing xi = {}, 1 ∈ xi, 2 ∈ xi, 3 ∈ xi, and
4 ∈ xi). A constraint on the set is represented by its allowed assignments. A set’s value
is represented, in an assignment, by its elements. Therefore, the assignment includes the
nodes of all the elements which belong to the set value (or the empty set node if the set
value is the empty set). The constraint is, as usual, the disjunction of the represented
assignments. In the graph, a constraint is represented by a constraint node and a node for
each of its allowed assignments. The assignment node is then linked to each of the nodes
representing an element in the set value, or the node representing the empty set. This
boolean representation results in fewer nodes but more edges.

Example 30. Figure 3.20a and 3.20b show the two alternative graphs obtained for CSP
({s1, s2, s3},D, {|(s1 ∩ s2) ∪ s3| = 2}) where Ds1 = Ds2 = {{}, {1}, {2}, {1, 2}}, and
Ds3 = {{}, {1}}.

s1 s2

s3

{}

{1}

{2}

{1, 2}

{}

{1}

{2}

{1, 2}

{1}

{}

(a) Extensional

s1 = ∅

1 ∈ s1

2 ∈ s1

s2 = ∅

1 ∈ s2

2 ∈ s2

s3 = ∅

1 ∈ s3

(b) Boolean

Figure 3.20: Different representations for set constraint |(s1 ∩ s2) ∪ s3| = 2

The significance of these alternative representations for our implementation is shown
in section 3.6.1 below.

3.5. REDUCING GRAPH SIZE 43

3.5 Reducing graph size

While the full assignment graph might result in smaller graphs than those obtained using
only allowed or only disallowed assignments, even full assignments graphs tend to be rather
large (see Table 3.1 for size data). Consider, for example, the number of nodes in the full
assignment graph of a CSP, which is the sum of:

• the number of literals, which is the product of the variable domain sizes

• the number of allowed assignments for constraints and its binary constraint comple-
tion, if these are explicitly represented

• the number of disallowed assignments for constraints, and for pairs of literals from
the same variable, if these are explicitly represented

The following subsections describe some general methods that help reduce the size of
the graph.

3.5.1 Minimising the number of assignment nodes

In the worst case, a constraint over k variables may need to be represented in the full
assignment graph by O(dk) allowed or disallowed assignment nodes, where d is the size
of the smallest domain. A way to minimise the number of assignment nodes is to keep
k as small as possible. Consider for example an all-different constraint on k variables,
where d is larger than k. Using allowed assignments the graph representation requires
d× (d− 1)× . . .× (d− k− 1) assignment nodes or O(dk). Using disallowed constraints the
number is O(d(k−1)). However, when split into k × (k − 1) binary constraints, the total
number of disallowed assignments is d per binary constraint, making a total of O(k2 × d).

Example 31. Consider the CSP (X,D,C) where X = {x, y, z}, D = {1, 2, 3} and C =
{alldifferent(X)}. Using allowed assignments, the graph would require the following 6
hyperedges, which are flattened into 6× 3 = 18 edges.

x = 1− y = 2− z = 3 x = 1− y = 3− z = 2 x = 2− y = 1− z = 3
x = 2− y = 3− z = 1 x = 3− y = 1− z = 2 x = 3− y = 2− z = 1

Using disallowed assignments, the graph would require the following 21 hyperedges,
which are flattened into 21× 3 = 63 edges.

x = 1− y = 1− z = 1 x = 1− y = 1− z = 2 x = 1− y = 1− z = 3
x = 1− y = 2− z = 1 x = 1− y = 2− z = 2 x = 1− y = 3− z = 1
x = 1− y = 3− z = 3 x = 2− y = 1− z = 1 x = 2− y = 1− z = 2
x = 2− y = 2− z = 1 x = 2− y = 2− z = 2 x = 2− y = 2− z = 3
x = 2− y = 3− z = 2 x = 2− y = 3− z = 3 x = 3− y = 1− z = 1
x = 3− y = 1− z = 3 x = 3− y = 2− z = 2 x = 3− y = 2− z = 3
x = 3− y = 3− z = 1 x = 3− y = 3− z = 2 x = 3− y = 3− z = 3

44 CHAPTER 3. SYMMETRY DETECTION

Finally, breaking the all-different constraint into binary constraints requires the fol-
lowing 9 edges:

x = 1− y = 1 y = 1− z = 1 x = 1− z = 1
x = 2− y = 2 y = 2− z = 2 x = 2− z = 2
x = 3− y = 3 y = 3− z = 3 x = 3− z = 3

Breaking down each constraint into a logically equivalent conjunction of constraints
with as small scope as possible, has a very useful side-effect: it will tend to increase
the number of constraints with the same scope, which can be integrated (during the
preprocessing step) into a single constraint, thereby increasing the number of detected
symmetries (see Example 18).

Note that we can also represent the all-different constraint extensionally using only
O(d.k) nodes. Suppose we order the k variables in the constraint, v1, . . . , vk. We will
use boolean variables bjc to represent vj = c. We now introduce, for each value c, k new
boolean variables tjc : j ∈ 1..k. tjc is true if any of b1c, . . . , bjc are true. Let t1c = b1c, and
for each j ∈ 2..k there is a constraint with scope tj−1,c, bj,c, tj,c defined by three allowed
assignments: < 1, 0, 1 >,< 0, 1, 1 >,< 0, 0, 0 >. There are just k such constraints for
each value c, and each constraint has just three assignments, so the total number of edges
required is 3.d.k which is O(d.k). While this representation is very compact, it has the
same problem as the boolean representation proposed by Puget: it might lead to a loss of
symmetry detection if it has to interact with that obtained for other kinds of constraints.
Since our main aim is accuracy rather than reducing the graph size, we have not used it
in our implementation.

Minimising the number of variables in the scope of constraints has other advantages.
If all constraints represented in the graph have less than k variables in their scope, then
the number of edges is less than nk where n is the number of nodes. Moreover, as pointed
out in by Cohen et al. (Cohen et al., 2005), by adding enough disallowed assignments over
k variables it is possible to create a (microstructure complement) graph whose automor-
phisms represent all solution symmetries of the CSP. Their proof is easily adapted to show
that the same holds true of the full assignment graph.

This result gives an upper bound on the size of the graph needed to capture all the
solution symmetries of a given CSP. It follows that by representing constraints with an
equivalent conjunction of constraints of minimum possible arity, we achieve a lower bound
on this worst case. Naturally, it remains an NP-hard problem to elicit all the disallowed
assignments, but this at least gives us a theoretical upper bound on the size of the smallest
graph that captures all the symmetries of the problem.

3.5.2 Minimising the number of literal nodes

CSPs can be simplified by using standard propagation techniques that reduce the domains
of the variables and, thus, the number of literal nodes that appear in the full assignment
graph. Correct simplifications to achieve node- and arc-consistency (see Section 2.2.1) are

3.5. REDUCING GRAPH SIZE 45

well-known, and yield a reduced CSP that has the same set of solutions as the original one.
Indeed, consistency algorithms were first devised for improving the efficiency of picture
recognition programs, to reduce the size of the graph, which is exactly what we are seeking
to do!

Perhaps surprisingly, these methods can also yield a loss of detected symmetries, i.e.,
they can exclude graph automorphisms which were present in the graph G of the original
CSP but are eliminated from the graph G′ of the simplified CSP. In particular, graph G
may have an automorphism that maps a literal lit onto another literal f(lit), while G′ has
node lit but not f(lit).

1

2

3

x y z

(a) Before arc-consistency.

1

2

3

x y z

(b) After arc-consistency.

Figure 3.21: Arc-consistency reducing symmetry.

Example 32. Consider the CSP ({x, y, z}, {1, 2, 3}, {x ≥ y, x 6= y, z > y}). While arc-
consistency will eliminate value 1 from Dz and 3 from Dy (due to constraint z > y), the
domain of x will remain unchanged after achieving arc-consistency (since all its values
are supported), obtaining the arc-consistent CSP ({x, y, z}, {{1, 2, 3}, {1, 2}, {2, 3}}, {x ≥
y, x 6= y, z > y}). If we choose to represent each constraint of the original CSP by
its disallowed assignments, the graph has an automorphism corresponding to the variable
symmetry 〈x, z〉 ↔ 〈z, x〉 as shown in Figure 3.21a. However, the graph associated with the
arc-consistent CSP no longer has this (or any) variable symmetry as shown in Figure 3.21b.

We have already motivated the need to merge all constraints with the same scope before
generating the graph associated with a CSP. Such a merging for the previous example
would have ensured that value 1 was also removed from Dx, thus preserving the variable
symmetry between x and z. If we assume this preprocessing step has been carried out,
we can show that any algorithm which achieves arc-consistency preserves all the variable
and value symmetries that were present in the original CSP.

Let us now consider n-ary arc-consistency.

Lemma 5. Let f be an automorphism of the full assignment graph for a CSP (X,D,C)
whose constraints all have distinct scopes. If f represents a variable or a value symme-
try, then the graph of the n-ary arc-consistent version of the CSP has an automorphism
representing the same symmetry as f .

Proof. Let lit(xi) be the set of literals associated with a variable xi ∈ X. By assump-
tion, f is a variable or value symmetry and, therefore, ∀xi ∈ X,∃xj ∈ X such that
lit(xj) = f(lit(xi)) and lit(xi) = f(lit(xj)). Also, ∀c ∈ C, each assignment A over vars(c)

46 CHAPTER 3. SYMMETRY DETECTION

x y z
1

2

3

Figure 3.22: CSP with rotational symmetry.

has an image assignment f(A) over the variables {f(x) : x ∈ vars(c)}, which we will
write f(vars(c)). Since each assignment in c has an image over the same set of variables
f(vars(c)), and since each constraint has a different scope, we can call f(c) the unique
constraint over f(vars(c)). This constraint has the same number of tuples as c. Also, if c
is an allowed constraint then so is f(c), and if c is a disallowed constraint then so is f(c).
Note, finally, that since f is a one-to-one mapping of constraints, each constraint c ∈ C is
the image of another constraint c′ ∈ C, i.e., c = f(c′).

The proof will show that if f is a graph automorphism satisfying this condition, then
a literal lit will be unsupported if and only if its image f(lit) under the automorphism is
also unsupported, and it will be supported by constraint c if and only if its image f(lit)
is also supported by f(c). This shows that every such automorphism is preserved after
establishing arc-consistency on the CSP. Let us first show that lit will be supported by
constraint c if and only if its image f(lit) is also supported by f(c). The property clearly
holds if c is an allowed constraint, by definition of automorphism. If c is a disallowed
constraint, then lit is supported if there is an assignment A over vars(c), whose literals
belong to the current domains of their variables. Suppose the literals in f(A) were linked
to a disallowed assignment node, then A would be a disallowed assignment, which is false.
Therefore, the literal nodes in f(A) are not linked to a disallowed assignment node, and so
f(A) provides support for f(lit) with respect to f(c). In the other direction, if A′ provides
support for f(lit) with respect to f(c), then there exists f(A) = A′ and, by the same
proof, A provides support for lit with respect to c.

To complete the proof, if lit is unsupported, then it has no support with respect to
some constraint c and, therefore, f(lit) has no support with respect to f(c). If f(lit) is
unsupported, it has no support with respect to some constraint c′; c′ = f(c) for some
constraint c; and lit has no support with respect to c.

Having established that n-ary arc-consistency preserves variable and value symmetry,
we show that there are variable-value symmetries that are not preserved after establishing
arc-consistency.

Lemma 6. Arc-consistency does not necessarily preserve all variable-value symmetries.

Proof. We prove this by showing an example of a symmetry that is present before arc-
consistency is reached but not afterwards. Consider the CSP ({x, y, z}, {1, 2, 3}, C), where
C = {x 6= y, y 6= z, x 6= z, con(x, y), con(z, y)}, and con is defined by the following
disallowed assignments: {〈2, 1〉, 〈2, 3〉}.

3.5. REDUCING GRAPH SIZE 47

The disallowed assignments graph, illustrated in Figure 3.22, admits the rotational
symmetry: 〈x = 1, x = 2, x = 3, y = 1, y = 2, y = 3, z = 1, z = 2, z = 3〉 ↔ 〈z =
1, y = 1, x = 1, z = 2, y = 2, x = 2, z = 3, y = 3, x = 3〉. The literal node x = 2 can
be removed because it is incompatible with every value of the variable y. However, the
node y = 1 cannot be removed because it is compatible with x = 3 and with z = 3. Our
pruning procedure only removes two literal nodes x = 2 and z = 2 from the graph, and
the disallowed assignments that contain them. As a result, the pruned graph no longer
has the rotational symmetry exhibited by the original graph.

The effect of pruning can be dramatic when eliminating literals of set variables that
were represented using the extensional representation. This is indeed the case for cardi-
nality constraints of the form |xi| = I, where I is an integer constant, since assignment
nodes can then only be created for literals xi = di for which |di| = I.

Example 33. Consider the CSP (X,D,C) whereX = {s1, s2}, Ds1 = Ds2 = {{}, {1}, {2}, {1, 2}}
(that is, s1, s2 ⊆ {1, 2}) and C = |s1 ∩ s2| = 1. The graph of this CSP using the full
assignment graph and allowed assignment nodes is shown in Figure 3.23. As can be seen in
the figure, none of the assignments that satisfy the constraint involves s1 = {} or s2 = {}.
The literal nodes associated with these literals can thus be removed from the graph.

s1 s2

{}

{1}

{2}

{1, 2}

{}

{1}

{2}

{1, 2}

Figure 3.23: Pruning unnecessary values.

From a theoretical point of view, it is advantageous for the CSP on which the arc-
consistency algorithm is applied to include global constraints with many variables in their
scope. This is because establishing arc-consistency on an all-different constraint is more
powerful – and prunes more domain values – than on the set of binary disequalities that
are logically equivalent to it. From a practical standpoint, however, there are very few
implementations of propagation on complex global constraints, such as the cumulative,
or cycle constraint, that establish arc-consistency. Consequently, there is no guarantee
for the properties of preserving variable or value symmetries to be preserved by current
implementations of global constraints.

More work will be needed to establish a real understanding of the trade-offs between
the extra pruning due to global constraint propagation, and any loss of symmetries that
may result. What seems clear is that once arc-consistency has been established, constraints
should be rewritten and expressed using a logically equivalent representation with minimal
constraint scopes. An automated system to perform this rewriting is future work.

48 CHAPTER 3. SYMMETRY DETECTION

Automorphism
Finder (e.g.,Saucy)

Graph
Generator Automorphism

Interpreter

Graph Automorphisms

Symmetries

Goal

Eclipse CSP Model

Solvable
instance
model

Eclipse + Library

Text file

Eclipse

Solutions

Figure 3.24: System design.

3.6 Experimental evaluation

In this section we evaluate our full assignments graph construction experimentally by ap-
plying it to several benchmark problems. We compare the results with our implementation
of Puget’s variable graph using extensional constraints, and Puget’s boolean graph con-
struction. We have extended Puget’s representations to handle sets for the purpose of this
comparison. The aim of the experiments is to verify that our method can find as many
symmetries as possible and that it runs in a reasonable amount of time.

3.6.1 Implementation

We have implemented an automatic symmetry detection system for the subset of ECLiPSe

programs (Apt and Wallace, 2006) that only use finite domain and/or set constraints. The
main components of this system are depicted in Figure 3.24, with ovals representing in-
put/output files, white rectangles representing system components, and shaded rectangles
indicating external components used by the system.

The first component is an ECLiPSe library that receives as input the ECLiPSe program
specifying the CSP P = (X,D,C) and outputs a text file containing the set of (syntactic)
constraints that would be posted to the solver during the execution of the program. In
this file is a line for each variable for each variable xi in X, indicating its name and domain
Di, and a line for each constraint in C.

This file is, in turn, processed by a graph generator that produces, three possible graph
representations of the CSP: the full assignments graph, Puget’s variable graph construction
using extensional representations of constraints, and Puget’s boolean graph construction.
This is done as follows. For the full assignments graph, equality constraints are represented
by their allowed assignments, disequality constraints by their disallowed assignments, the
all-different constraint is split into the equivalent conjunction of binary disequalities, sets

3.6. EXPERIMENTAL EVALUATION 49

are represented using the extensional representation, and cardinality constraints are rep-
resented using their allowed assignments. No other kinds of constraints are needed to
represent all our benchmarks. For Puget’s extensional representation, equality, disequal-
ity, sets and cardinality constraints are represented as before, the all-different constraint
is decomposed into disequalities, expressions of the form op(x) where x occurs only once
are treated specially, and any other expression is treated using temporary variables as
described in Section 3.2.2. Finally, for Puget’s boolean representation, each benchmark
is converted into a boolean representation as indicated by Section 3.2.1 and all-different
constraints are handled using the special representation also described in that section.

For all representations, set variables whose cardinality is constrained to be a constant
have their domains pruned so that only those values with the correct cardinality are kept
in the graph; in this case, pruning reduces the graph significantly. In other cases no
pruning is done as it may reduce the number of variable-value symmetries found as shown
in Lemma 6.

Note that while generating the text file significantly slows down the process, it allows
us to easily explore different alternatives for constructing the graph.

The resulting graph is input to the graph automorphism package Saucy (Darga et al.,
2004) which returns the generating set of the automorphism group. One minor point
must be considered: graph automorphism packages consider a graph to be labelled by
non-negative integers, whereas our graph nodes have more descriptive labels. Therefore,
our system creates a map from graph labels (e.g. x = 2) onto integers. This map is also
used to convert the numeric labels of the automorphisms found back into descriptive graph
labels and allows the detected symmetries to be represented in a more intuitive form for
the user.

Example 34. Consider the literal nodes of the graph shown in Figure 3.25 for the 4-
queens problem. The label (xi = di) of each literal node is mapped to the positive integer
shown within each node (for simplicity, the mapping for assignment nodes is omitted).
For this graph, the output of Saucy (omitting the assignment nodes) is:

12

13

14

15

8

9

10

11

4

5

6

7

0

1

2

3

Q1 Q2 Q3 Q4

1

2

3

4

Figure 3.25: Literal nodes of 4-queens.

(1 4)(2 8)(3 12)(6 9)(7 13)(11 14)

(0 3)(1 2)(4 7)(5 6)(8 11)(9 10)(12 15)(13 14)

Each line represents one symmetry and each pair of numbers represents a swap of
nodes. The first line corresponds to the diagonal variable-value symmetry:
〈Q4 = 2, Q4 = 3, Q4 = 4, Q3 = 3, Q3 = 4, Q2 = 4, Q3 = 1, Q2 = 1, Q1 = 1, Q2 = 2, Q1 = 2, Q1 = 3〉
↔

〈Q3 = 1, Q2 = 1, Q1 = 1, Q2 = 2, Q1 = 2, Q1 = 3, Q4 = 2, Q4 = 3, Q4 = 4, Q3 = 3, Q3 = 4, Q2 = 4〉.

50 CHAPTER 3. SYMMETRY DETECTION

This symmetry is the reflection of the chessboard around the diagonal that runs from
the top-right to the bottom-left of the board.

The second line corresponds to the value symmetry 〈1, 2〉 ↔ 〈4, 3〉, for each queen.
These two generators can be composed to form the group that represents the eight sym-
metries of a square.

Although we conducted most of our experiments using Saucy to find graph automor-
phisms, our implementation is not tied to any particular package. Any graph automor-
phism package could be used in its place, such as Nauty (McKay, 1981) or AUTOM
(Puget, 2005a). For instance, we have successfully tested Nauty with our implementation.
We would have liked to use the faster AUTOM (Puget, 2005a), but it is not publicly
available.

Section 3.4.5 described two possible ways of representing set variables: using an exten-
sional and a boolean representation. We use the former when evaluating the extensional
meaning of constraints and when pruning, and the latter when producing a graph to be
searched for automorphisms. This is because the latter yields automorphisms which re-
flect permutations of the possible elements rather than of the possible sets themselves,
a form more suitable to be used as input to symmetry breaking packages such as GAP-
SBDS (Gent et al., 2002).

Once the symmetries of a CSP have been found, they can be used to aid a search for
the CSP’s solutions. While the symmetries detected by our system are only of interest
to us as stepping stones towards model-based symmetries (as described in Chapter 4),
we wanted to connect our current system to ECLiPSe and GAP-SBDS to make sure
everything was working as expected. The automatic coupling of symmetry detection and
symmetry breaking is complicated by the distinction between model and instance. Since
the symmetries detected by our system are not applicable to the model, the system creates
a new program composed of the original model, the goal that specifies the parameter values
used as data for this instance, the symmetries that apply to the instance, and the search
predicate that will be used to find a solution. This program can then be executed in
ECLiPSe to solve the CSP instance. Note that, as in most symmetry breaking systems,
only unique solutions – those that are not symmetrically equivalent to other solutions –
are found.

3.6.2 Benchmarks

Let us now provide a brief summary of the set of benchmarks used in our experimental
evaluation. In doing this we will follow the descriptions given in CSPLib (Gent and Walsh,
1999). See Appendix A for more details.

Balanced incomplete block design: A balanced incomplete block design is an arrange-
ment of v distinct objects into b blocks such that each block contains exactly k distinct
objects, each object occurs in exactly r different blocks, and every two distinct objects
occur together in exactly λ blocks. Therefore, a BIBD is specified by five parameters,
(v, b, k, r, λ). This benchmark is listed in the results as “bibd-v-b-k-r-λ”.

We model this problem as a v× b binary matrix, with constraints that force exactly r
ones per row, k ones per column, and a scalar product of λ between any pair of distinct

3.6. EXPERIMENTAL EVALUATION 51

rows. The symmetries found by all three implemented methods – the full assignments
graph, Puget’s variable graph construction and Puget’s boolean construction – are:

• all blocks are interchangeable (variable symmetry)

• all objects are interchangeable (variable symmetry)

These correspond to permutations of the rows and columns of the binary matrix.

Social golfers: The social golfers problem aims at scheduling g groups, with p golfers per
group, over w weeks, in such a way that no golfer plays in the same group as any other
golfer twice. This benchmark is listed in the results as “golf-w-g-p”.

We model this problem using one set variable for each group, constraining each group
to have cardinality p, and each intersection between any pair of distinct groups (from any
weeks) to have cardinality at most one. The symmetries found by all three implemented
methods are:

• all golfers are interchangeable (value symmetry)

• all weeks are interchangeable (variable symmetry)

• all groups within a single week are interchangeable (variable symmetry)

Golomb ruler: A Golomb ruler is a set of m integers (marks on the ruler) 0 = a1 <

a2 < ... < am such that the m(m−1)
2 differences aj − ai, 1 ≤ i < j ≤ m are distinct. One

problem involving such rulers is to find a valid set of m marks. This benchmark is listed
in the results as “golomb-m”.

We model this problem using m integer variables and one integer variable per pairwise
difference. The difference variables must be all different. A single symmetry is found using
the full assignments graph and Puget’s boolean graph construction, but no symmetry is
found with Puget’s variable graph construction. The symmetry corresponds to a 180◦

reflection of the ruler. This is a variable symmetry on the difference variables, and a
variable-value symmetry on the marks variables.

N-queens: The N-queens problem is to place N queens on an N × N chessboard such
that no queen attacks another. We model this problem using one integer variable per row
in the board. Each value, from 1 in N , represents the column position of the queen in
that row. This benchmark is listed in the results as “queens-N”.

Puget’s boolean method and our method find all symmetries of a square. Puget’s
extensional method finds only the variable symmetry and value symmetry, and misses
the non-compositional variable-value symmetry. In terms of the chessboard, it finds the
horizontal and vertical reflections but not the rotational symmetry.

Latin square: A Latin square is an n×n matrix where each element is a value from 1 to
n. Each value must occur exactly once in each column and exactly once in each row. The
problem is to find such a square for a given n. This benchmark is listed in the results as
“latin-n”.

We model this problem as an n × n matrix of integer variables with domain 1 to n.
An all-different constraint is posted on each row and each column. The symmetries found
by Puget’s boolean method and our method are:

52 CHAPTER 3. SYMMETRY DETECTION

• all rows are interchangeable (variable symmetry)

• all columns are interchangeable (variable symmetry)

• all values are interchangeable (value symmetry)

• the row and column dimensions are transposable (variable symmetry)

• the row and value dimensions are transposable (variable-value symmetry)

As for N-queens, Puget’s extensional method finds the variable and value symmetries, but
not the non-compositional variable-value symmetry.

Most perfect magic square: A most perfect magic square is an arrangement of n2

integers, 1 to n2, into an n × n matrix such that the n numbers in all rows, columns
and diagonals (with wrap-around) have the same sum, each 2 by 2 subsquare (with wrap-
around) sums to 2(n2−1), and all pairs of numbers distant n

2 on a diagonal sum to n2−1.
The problem aims at finding such a square for a given n. This benchmark is listed in the
results as “mostperfect-n”.

We model this problem as an n × n matrix of integer variables with domain 1 to n2.
Sum constraints are posted on the rows, columns and diagonals to enforce the magic-
square property. Additional sum constraints over all 2 by 2 subsquares, and on the pairs
of numbers on the major diagonals, enforce the most-perfect property.

This model resulted in a graph for n = 4 that was too large for our implementations
of either of Puget’s methods. Using our method, the symmetries found are:

• the symmetries of a square (rotations through 90, 180 and 270 degrees and reflections
about the horizontal and vertical axes) (variable symmetry)

• the rows (or columns) can be cycled (variable symmetry)

• value i is interchangeable with value n2 − i− 1 (value symmetry)

Steiner triples: The Steiner triple problem of order n consists of finding a set of n(n−1)
6

triples of distinct integers from 1 to n, such that any pair of triples has at most one element
in common. This benchmark is listed in the results as “steiner-n”. The symmetries found
by all three implemented methods are:

• all triples are interchangeable (variable symmetry)

• all values are interchangeable (value symmetry)

N × N-queens: The N × N-queens problem is to place a coloured queen on every square
of an N × N chessboard so that no two queens of the same colour attack each other.
There are N colours. A solution to this problem is equivalent to N simultaneous non-
overlapping solutions to the N-queens problem. This benchmark is listed in the results
as “nnqueens-n”. The symmetries found by all three implemented symmetry detection
methods are:

• the symmetries of the chessboard (variable symmetry)

3.6. EXPERIMENTAL EVALUATION 53

• all colours are interchangeable (value symmetry)

Graceful graph: The graceful graph problem is to find a labelling f of the vertices of
a graph such that f assigns each vertex a unique label from {0, 1, . . . , e} (where e is the
number of edges in the graph), and with each edge (a, b) labelled by |f(a)− f(b)|, all the
edges labels are different. This benchmark is listed in the results as “graceful-m-n” for
the graph Km × Pn. The symmetries found by all three implemented methods are:

• the symmetries of the graph itself (variable symmetry)

• the value symmetry that swaps a with x − a, where x depends on the particular
instance (value symmetry)

3.6.3 Results for symmetry detection

Tables 3.1 and 3.2 show the results of our experimental evaluation of the automatic sym-
metry detection tool. Each row in the tables corresponds to a different instance of a
benchmark problem described in the previous section. A bold font indicates the best
result for that row in the table.

The columns in Table 3.1 compare the total number of nodes (Nodes) and the total
number of edges in the graph (Edges) when using our implementations of Puget’s exten-
sional method (Puget’s (Ext)), Puget’s boolean method (Puget’s (Bool)) and our method
(Ours).

The columns in Table 3.2 show the total running time in seconds (Total), followed by
a breakdown (expressed as a proportion of the total time) indicating where this time is
spent. In particular, the table shows the proportion of time spent in graph generation
including the computation of the extensional constraints plus the time spent printing the
graph to be input to Saucy (Gr) and the proportion of time taken to read Saucy’s output
information and print our human-readable form (HR). Any time not accounted for by
these two columns is spent running Saucy, and is usually small in comparison. Again,
there are three sets of data; one for Puget’s extensional method (Puget’s (Ext)), one for
Puget’s boolean method (Puget’s (Bool)) and one for our method (Ours). Running times
were measured on a desktop with a 3GHz Intel Pentium 4 CPU and 2 GB RAM, running
Linux kernel 2.4.22.

The results show that Puget’s boolean method is much more efficient when the prob-
lem has all-different constraints (e.g. the Latin square instances), since it handles these
constraints specially. When the problem has many complex expressions (e.g. the Social
Golfers instances), our method is more efficient because it avoids having many temporary
variables.

We were unable to run the most perfect magic square problem using either of Puget’s
methods. The model we used has constraints of the form x1 + x2 + x3 + x4 = c where the
xi are variables and c is a constant. For the size 4 instance, each variable has a domain
of 16 values. To represent the addition as a temporary variable, each assignment over
{x1, x2, x3, x4} is represented in extension, resulting in 164 = 65536 combinations with
one node and five edges per combination. As there are several of these constraints, the
resulting graph is too large for our implementation to handle.

54 CHAPTER 3. SYMMETRY DETECTION

Graph Details
Instance Puget’s (Ext) Puget’s (Bool) Ours

Nodes Edges Nodes Edges Nodes Edges

bibd-3-3-1-1-0 216 477 216 477 141 297
bibd-6-10-5-3-2 23737 243576 23737 243576 3857 26730
golf-2-2-2 1722 4670 1722 4670 1034 2640
golf-2-2-3 25242 73854 25242 73854 10650 29344
golf-2-3-2 62841 184515 62841 184515 24762 68109
golf-3-2-2 4245 11667 4245 11667 2703 7374
golomb-4 1245 3332 1006 2708 2484 5456
golomb-5 4815 13505 3670 10380 9380 21250
golomb-6 14658 42072 10809 31272 27978 64422
golomb-7 37632 109424 27181 79583 70665 164297
graceful-3-2 1626 4380 1085 3000 2235 5070
graceful-5-2 27160 78520 17897 52520 38155 91390
latin-10 11000 28000 1300 3000 14500 27000
latin-11 15972 41261 1694 3993 21296 39930
latin-12 22464 58752 2160 5184 30240 57024
latin-13 30758 81289 2704 6591 41743 79092
latin-14 41160 109760 3332 8232 56252 107016
mostperfect-4 - - - - 80704 314112
nnqueens-4 460 976 152 304 464 800
nnqueens-5 1110 2525 270 605 1175 2100
nnqueens-6 2282 5436 432 1056 2496 4560
queens-10 1265 3160 154 396 1570 2940
queens-20 9730 26620 514 1596 12940 25080
queens-30 32395 91380 1074 3596 44110 86420
queens-40 76260 218440 1834 6396 105080 206960
steiner-5 3282 9276 3282 9276 2115 5904
steiner-6 41975 123090 41975 123090 22440 65850
steiner-7 347760 1032689 347760 1032689 154294 459557

Table 3.1: Graph sizes.

3.6. EXPERIMENTAL EVALUATION 55

Running Time
Instance Puget’s (Ext) Puget’s (Bool) Ours

Total Gr HR Total Gr HR Total Gr HR

bibd-3-3-1-1-0 0.04 0.50 0.50 0.04 0.50 0.50 0.02 .50 .50
bibd-6-10-5-3-2 20.80 0.90 0.07 20.61 0.90 0.07 1.96 .83 .14
golf-2-2-2 0.50 0.78 0.20 0.50 0.78 0.20 0.18 .72 .28
golf-2-2-3 17.16 0.89 0.09 16.90 0.89 0.08 2.71 .73 .23
golf-2-3-2 44.68 0.87 0.10 44.14 0.87 0.10 6.72 .72 .22
golf-3-2-2 1.36 0.76 0.21 1.32 0.76 0.21 0.56 .71 .25
golomb-4 0.28 0.86 0.14 0.26 0.85 0.15 0.41 .85 .12
golomb-5 1.41 0.91 0.08 1.31 0.90 0.08 2.00 .91 .08
golomb-6 5.36 0.93 0.05 5.03 0.94 0.05 7.67 .93 .05
golomb-7 16.97 0.95 0.04 15.90 0.95 0.03 24.45 .94 .03
graceful-3-2 0.22 0.68 0.27 0.19 0.68 0.32 0.31 .71 .26
graceful-5-2 6.20 0.76 0.19 4.95 0.82 0.15 8.41 .82 .14
latin-10 1.68 0.34 0.51 0.46 0.26 0.70 2.78 .48 .41
latin-11 2.53 0.33 0.49 0.61 0.25 0.70 4.27 .47 .40
latin-12 3.73 0.33 0.47 0.78 0.24 0.72 6.37 .47 .39
latin-13 5.71 0.30 0.42 1.01 0.25 0.70 9.17 .46 .37
latin-14 7.50 0.31 0.43 1.31 0.25 0.70 12.86 .46 .36
mostperfect-4 - - - - - - 31.70 .85 .10
nnqueens-4 0.03 0.66 0.33 0.01 0.00 1.00 0.05 .60 .40
nnqueens-5 0.09 0.44 0.55 0.05 0.60 0.40 0.12 .58 .42
nnqueens-6 0.20 0.50 0.50 0.08 0.38 0.62 0.30 .60 .33
queens-10 0.08 0.63 0.38 0.03 0.33 0.67 0.15 .73 .27
queens-20 0.74 0.62 0.30 0.13 0.31 0.69 1.61 .80 .16
queens-30 2.74 0.63 0.25 0.33 0.33 0.67 6.62 .82 .13
queens-40 7.04 0.63 0.22 0.65 0.35 0.63 18.43 .84 .11
steiner-5 1.42 0.86 0.12 1.39 0.86 0.12 0.46 .74 .24
steiner-6 28.12 0.88 0.09 27.89 0.88 0.09 5.92 .74 .21
steiner-7 488.38 0.93 0.05 492.85 0.93 0.05 57.49 .76 .17

Table 3.2: Running times.

56 CHAPTER 3. SYMMETRY DETECTION

Running Time (seconds) Detect
Instance No SBDS SBDS(ratio) (seconds)
nnqueens-7 > 30min 1.62 (-) 0.7
steiner-7 392.55 0.87 (0.002) 58.0
bibd-7-7-3-3-1 157.89 1.01 (0.006) 0.55
graceful-4-2 296.02 2.57 (0.008) 2.2
golf-3-3-2 76.34 0.77 (0.01) 21.0
queens-13 48.23 118.09 (2.45) 0.5
golomb-6 8.73 67.89 (7.78) 7.5
latin-8 81.12 647.21 (7.98) 1.0

Table 3.3: Running times to find all solutions with and without SBDS.

However, Puget reports that one of his methods (it is unclear precisely which) can
handle this problem very efficiently. There are several possible explanations for this dis-
crepancy: (a) he may use a special representation of these “sum” constraints, like for
all-different, (b) he may detect only variable symmetries in his experiments, or (c) his
implementation may be more efficient than ours (for example, using AUTOM instead of
Saucy). While (a) is the most likely answer, we do not see any natural way to model
x1 + x2 + x3 + x4 = c as a conjunction of boolean constraints. Thus, Puget’s second
boolean model - without variable nodes or constraint nodes - is not naturally applicable.
It is also possible that Puget used a combination of the standard boolean method for this
constraint, and the conjunctive boolean model for the all-different constraint, but Puget
offers no proof that for a graph combining both kinds of boolean representation, its auto-
morphisms correspond to symmetries of the CSP. Indeed, the two boolean representations
associate a different semantics to a literal node, so having both in the same graph seems
problematic.

3.6.4 Results for symmetry breaking

As mentioned before, we used the symmetries detected by our implementation to automat-
ically break symmetries during search, using the GAP-SBDS (Gent et al., 2002) library
for ECLiPSe. Results of the experiments for symmetry breaking are shown in Table 3.3.
For each benchmark, times are shown for finding all solutions with and without SBDS.
The numbers in parentheses show the ratio obtained by dividing the time with SBDS by
the time without SBDS. Note that the times shown in Table 3.3 do not include the time
needed to find the symmetries. We have omitted these times because the techniques devel-
oped in this thesis are ultimately targeted towards finding symmetries in models - though
in this chapter we only find symmetries in problem instances. With a symmetry detection
method that operates on models, the time to find the symmetries can be amortised over
all the problem instances in the class defined by the model, and therefore will be small in
comparison with problem-solving time.

Note that the aim of this section is not to demonstrate that speedups can be achieved by
symmetry breaking methods – this has been the subject of much other work, for example
by Freuder (1991), Puget (2005c) and Ramani and Markov (2004) – but, rather, to show
that our system is implemented and that the output of our symmetry detection tool can

3.7. CONCLUSION 57

be easily integrated with a symmetry breaking method, such as GAP-SBDS. Still, we can
conclude from the results shown in Table 3.3 that GAP-SBDS performs much better than
a simple search when finding all solutions for more than half the benchmarks, with most
speedups being of several orders of magnitude. For the rest, the overhead of symmetry
breaking is greater than the time saved by reducing the search space. Reducing this
overhead is one of the main aims of Chapter 5.

3.7 Conclusion

This chapter has explored the automatic detection of symmetry in CSPs based on graph
automorphism. Symmetry detection by graph automorphism can, in theory, be done quite
simply: construct a graph with a node for each literal of the CSP and an edge for every set
of literals that is disallowed by some constraint or disallowed by being literals of the same
variable. This approach is simple but can result in large graphs since a simple constraint,
such as an arithmetic equation over several variables, may require very many disallowed
edges in its representation. We have examined in detail a method of graph construction
described by Puget (2005a), that represents constraints more flexibly. This flexibility can
be exploited to keep the graph small, but it could lead to either a failure to capture some
of the problem’s symmetries, or – worse still – the claimed detection of symmetries that
are not truly symmetries of the problem. In order to address this potential drawback,
we have identified the conditions under which incorrect results may arise and developed a
new graph representation for automatic detection of symmetries.

Too few symmetries may be represented by a graph construction if the graph includes
a node for each variable, so that only combinations of value and variable symmetries
can be represented and other variable-value symmetries cannot be found. Therefore,
we have described a graph representation without such nodes. The drawback of such a
representation is that a graph automorphism could map sets of nodes representing solutions
to the original problem onto sets of nodes which do not represent a solution, because they
require a variable to simultaneously have more than one value. Accordingly, we imposed
sufficient conditions on the new graph representation to preclude such automorphisms.

Too few symmetries may also be captured if the graph distinguishes different kinds
of constraints. This would prevent, for example, a disequation from being involved in
a symmetry with an all-different constraint. To maximise the number of potential sym-
metries, the graph representation introduced here made no distinction between different
constraints. Moreover, it made no distinction between an edge connecting two literals ex-
plicitly allowed by a binary constraint, or allowed because their associated variables do not
belong to the scope of any constraint. Similarly, it made no distinction between an edge
connecting two literals explicitly disallowed due to a constraint, or disallowed because they
represent distinct values for the same variables. The main drawback of such a represen-
tation is the sheer size of the resulting graph: in principle an allowed edge is required for
every compatible set of nodes, and a disallowed edge between every incompatible set. To
mitigate this problem, we introduced a full assignments graph representation that uses as
few edges as possible without significantly reducing the number of potential symmetries.
Since this requires all constraints to be represented extensionally, keeping the size of the

58 CHAPTER 3. SYMMETRY DETECTION

graph as small as possible is very important, particularly for variables with large domains
such as set variables.

Too many symmetries are represented by a graph if it has automorphisms that do not
correspond to symmetries of the CSP. This can arise, for example, if the existence of an
edge does not have a unique meaning. For example, the existence of two edges representing
the only two allowed tuples for a single constraint means that one should be in a solution,
while the existence of two edges representing the only allowed tuples from two different
constraints means that both should be in a solution. Also, the absence of an edge should
have a unique meaning, such as that the two unconnected nodes are unconstrained, or
that they are incompatible (e.g. if they represent two different values for a variable). The
full assignments graph introduced here is constructed in such a way that the meaning of
an edge, or the absence of an edge, is unambiguous and it was proved that every graph
automorphism corresponds to a problem symmetry.

This chapter also introduced two additional ways of reducing the size of the graph
representation. The first approach is to achieve arc-consistency on the original problem,
and build a graph representing this reduced problem. It is shown that achieving arc-
consistency by reducing the domains of the variables preserves the variable and value
symmetries detected by our approach. However, it also gave an example to show that non-
compositional variable-value symmetry may be lost as a result of achieving arc-consistency.
The second approach is to represent a constraint by a logically equivalent conjunction of
constraints, each with a smaller scope. This was shown to reduce the size of the graphical
representation, and potentially improve pruning.

In summary, when compared to Puget’s approach, the full assignments graph is simpler
but potentially more verbose than the combination of Puget’s different graph construction
approaches. Indeed, the full assignment graph admits only allowed and disallowed exten-
sional constraints. The benefit is that we have been able to eliminate constraint nodes
from the full assignment graph, so as to be able to capture non-composable variable-value
symmetries and, at the same time, obtain proofs that graph automorphisms correspond
to symmetries of the CSP even when combinations of allowed and disallowed constraints
are represented. Puget never attempted such a proof and, without the restrictions intro-
duced in Section 3.4.4, it is shown that certain combinations would lead to graphs whose
automorphisms did not correspond to symmetries of the CSP. Moreover, and perhaps
surprisingly, it is shown that the extensional graph representation does not necessarily
lead to larger graphs than the intensional representation for the boolean model: even for
the all-different constraint exampled by Puget, there is an extensional representation with
comparable size.

The method of graph construction described in this chapter has been implemented in
the constraint logic programming system ECLiPSe to automatically detect symmetries in
a CSP program. The CSP is automatically transformed into a graph, the automorphisms
are found using the Saucy package and expressed as constraint symmetries of the CSP,
and the CSP is solved using the discovered symmetries to automatically prune the search
tree. Experiments were performed on a range of benchmarks to establish the correctness
of the implementation.

The approach presented in this chapter is designed to be able to detect as wide a class
of constraint symmetries as possible. The key drawback is that it can be used only on

3.7. CONCLUSION 59

very small problem instances. The efficiency of the symmetry detection method has been
a secondary consideration, since we do not plan to use it to detect and apply symmetries
for each new problem instance. Rather, the aim is to detect as many representational
symmetries as possible for several problem instances, so that they can be tested against
a generic problem model, to determine which ones hold for the whole problem class.
The key outcome is that the new graph representation presented here finds all of the
symmetries that Puget’s best graph construction can find, and does not require specially
crafted representations of global constraints to do so. These symmetries can then be used
to accelerate the solving of any instance of the model. Accordingly, the cost of detecting
symmetries can be amortised across all the instances of the problem which are eventually
solved using the detected symmetries. Further, the resulting model-based approach will
be able to scale up the applicability of our automatic symmetry detection system, since
the detected symmetries can be used to accelerate the solving of large practical problems
involving hundreds or thousands of variables and constraints.

60 CHAPTER 3. SYMMETRY DETECTION

Chapter 4

Model Symmetry Detection

4.1 Introduction

As discussed in the previous chapter, there has been much work done on the detection of
symmetries in constraint satisfaction problems. Almost all of this research has been for
individual CSPs, where the exact set of variables, their domains, and the set of constraints
are known. However, the utility of such work is limited because the symmetries must be
found separately for each CSP, a costly process whose overhead may entirely nullify the
savings achieved by exploiting the symmetries found. The time taken in detection of
symmetries would be easier to offset if the results applied not only to the problem at
hand, but to many other similar problems.

For this reason we explore the detection of symmetries in constraint satisfaction prob-
lem models. As mentioned in Chapter 1, a CSP model is a parametrised form of CSP,
where the overall structure of the problem is given but particular details, such as the size
of the problem or a cost threshold, are omitted. These missing data are given as param-
eters to the model so that the model and a particular parameter set combine to give a
CSP. In this way, the model represents a class of CSPs, while the model and appropriate
data combine to specify an instance of that class (i.e. a CSP). We will use the term “CSP
instance” to refer to an instance of a CSP model.

For example, recall the Latin square problem of size N (see Section A.8) which is to
find an N × N matrix of values from 1 to N such that each value occurs exactly once
in each row and exactly once in each column. The Latin square problem of size 3 can
be represented as a CSP that has 9 integer variables {x11, x12, x13, x21, . . . , x33}, where
xij represents the cell in row i and column j, each with domain 1..3, and 18 disequality
constraints resulting from having 3 constraints for each row and column; for example,
in the top row x11 6= x12, x11 6= x13 and x12 6= x13. Alternatively, the problem can be
separated into two parts: first, a model that is parametrised on the board size N (with N2

variables, each with domain 1..N , and 6(N
2−N
2) disequality constraints), and second, the

data part that simply indicates N = 3. Different instances of the class – different CSPs –
can be obtained with the same model simply by modifying the value of N in the data.

As far as we known, only two methods for detecting symmetries in CSP models have
been proposed. The method by Van Hentenryck et al. (2005) works by having knowledge
of the symmetries of individual constraints, and then constructing the symmetries of the

61

62 CHAPTER 4. MODEL SYMMETRY DETECTION

whole model by composing the symmetries of the constraints. This approach can detect
only a relatively small set of “simple” symmetries (piecewise value and piecewise variable
interchangeability) and is strongly dependent on the particular syntax used to specify the
model. The approach by Roy and Pachet (1998) finds structures – a subset of the model’s
variables and constraints – within the CSP model that are symmetric. It is possible to
detect the symmetries among these structures automatically, as one would detect the
symmetries of a CSP instance. However, identifying the structures of a problem is not
done automatically and requires some problem-specific effort from the user. We propose
a radically new approach that:

1. uses accurate symmetry detection methods on a series of small CSP instances to
elicit candidate symmetries,

2. parametrises these candidate symmetries to be defined on the model rather than on
a particular CSP, and

3. determines whether these candidates are indeed symmetries of the model.

The remainder of this chapter will explain our approach in detail, discuss the results
of our experimental evaluation of the framework and explore how the approach is widely
applicable to useful properties other than symmetries. The results of our evaluation show
that the approach is capable of finding almost all symmetries of a set of benchmark prob-
lems in a practical amount of time. Parts of this chapter have previously been published
in (Mears et al., 2008b).

4.2 Background

As mentioned before, we are only aware of two automatic symmetry detection methods
that deal with CSP models rather than CSP instances. One approach explored by Van
Hentenryck et al. (2005) involves defining the symmetries of individual constraints, and
then combining these symmetries to obtain the symmetries of the model. This method is
based on the fact that many commonly-used constraints are symmetric. For example:

1. simple equality and disequality: x1 = x2 or x1 6= x2. In these constraints both vari-
ables are treated identically and therefore there is a variable symmetry x1 ↔ x2, and
all values are treated identically and therefore all pairs of values are interchangeable.

2. linear constraints, e.g. x1 + x2 + 2x3 = d. In such a constraint, variables with
the same coefficient are treated identically. Therefore, in this example there is the
variable symmetry x1 ↔ x2.

3. various global constraints, e.g. all different(x1, . . . , xn), where all xi are treated
identically and therefore all pairs of variables are interchangeable.

The key observation that allows symmetries to be derived by composition is the fol-
lowing (proposition 1 in (Van Hentenryck et al., 2005)):

4.3. RUNNING EXAMPLE: THE LATIN SQUARE PROBLEM 63

A value-interchangeable CSP is a CSP where all values are interchangeable.
(Recall, from Section 3.2, that two values a and b are interchangeable if a
can be substituted for b and vice versa in any assignment A without affect-
ing whether A is a solution.) Let P1 = (V,D,C1) and P2 = (V,D,C2) be
two value-interchangeable CSPs. Then, their composition P1 ∧ P2 is value-
interchangeable.

The above proposition can be illustrated by an example.

Example 35. Let C1 = all different({a, b, c}) and C2 = (d 6= e). Both C1 and C2 are
value-interchangeable, so C1 ∧ C2 is value-interchangeable.

Although the above proposition is defined only for the case in which all values are
interchangeable, similar results apply when only some values of the problem are inter-
changeable and also for certain kinds of variable-interchangeability, such as row- and
column-interchangeability on matrices of variables.

Unfortunately, this method is limited in its application. A crucial drawback is that
symmetries are not inherently compositional: two sub-problems P1 and P2 may have no
symmetry when considered independently, yet P1∧P2 may contain symmetries. This kind
of symmetry cannot be captured by compositional derivation.

Example 36. Let x and y be finite integer variables with the same domain D. Let
P1 = ({x, y},D, {x − y < 5}) and P2 = ({x, y},D, {y − x < 5}). Taken alone, neither P1

nor P2 has symmetries, but in the composition P = ({x, y},D, {x − y < 5, y − x < 5})
the two variables are interchangeable.

The authors note that many problems can be expressed using global constraints, and
such constraints are often symmetric. This mitigates the above drawback in some cases
but does not help for problems where symmetries are introduced by the composition of
constraints, or where global constraints are not (or cannot be) used. Global constraints
may not be available in the modelling language or constraint solver used, the problem
may be more easily expressed without them, or the modeller may not have the necessary
expertise to use them.

In contrast to this approach, the method of Roy and Pachet (1998) attempts to reduce
a CSP model to a CSP instance and then apply a instance symmetry detection method.
A model M is transformed into a CSP M ′ by identifying structures of the model, each
of which is represented by a single variable in M ′. Then, the symmetries of the CSP M ′

correspond to symmetries of the model M . However, the difficult problem of identifying
the structures of the model is left to the user.

4.3 Running Example: The Latin Square Problem

This section describes an example that will be used to illustrate concepts throughout the
chapter. We begin with a concrete CSP instance of the Latin square problem, and show
how the symmetries of the instance can be used to find the symmetries of the model.

64 CHAPTER 4. MODEL SYMMETRY DETECTION

Example 37. The CSP for the Latin square problem of size 3 can be defined as follows.
There is one variable xij for each cell in row i and column j, as shown in Figure 4.1. The
domain of each variable is {1, 2, 3} and constraints ensure that each value occurs exactly
once in each row and exactly once in each column.

X = {x11, x12, x13, x21, x22, x23, x31, x32, x33}

D = {1, 2, 3}

C = {x11 6= x12, x11 6= x13, x12 6= x13, x21 6= x22, x21 6= x23, x22 6= x23,
x31 6= x32, x31 6= x33, x32 6= x33, x11 6= x21, x11 6= x31, x21 6= x31,
x12 6= x22, x12 6= x32, x22 6= x32, x13 6= x23, x13 6= x33, x23 6= x33}

x11 x12 x13

x21 x22 x23

x31 x32 x33 3 2 1

2 1 3

1 3 2

⇒

2 3 1

3 1 2

1 2 3

Figure 4.1: Variables in the Latin square and the effect of a diagonal symmetry.

Example 38. The Latin square CSP of Example 37 has

• variable symmetries that swap any two columns: 〈x11, x21, x31〉 ↔ 〈x12, x22, x32〉,
〈x11, x21, x31〉 ↔ 〈x13, x23, x33〉, and 〈x12, x22, x32〉 ↔ 〈x13, x23, x33〉

• similar variable symmetries that swap any two rows, and

• variable-value symmetries that transpose any two of the rows, column and value
dimensions.

The full assignments graph (left hand side of Figure 4.2) has 9 × 3 = 27 nodes (labelled
[i, j]
k

) representing the 27 literals xij = k where i, j, k ∈ [1..3], and 18 × 3 + 9 × 3 edges

representing the 3 assignments disallowed by each of the 18 constraints, and the 3 extra
edges needed to disallow each pair of values of the 9 variables. Each variable of the problem
can be seen in the Figure as a line of three nodes perpendicular to the front-most face.
The front-most face of the cube has, for each variable x, a node representing the literal
x = 1. Note that much of the graph is omitted for the purpose of legibility.

As discussed in detail in the previous chapter, the automorphisms of the full assign-
ments graph correspond to symmetries of the CSP.

Example 39. For the Latin square graph of size 3 given in Example 38, the automorphism
detection tool Saucy (Darga et al., 2004) returns the following set of generators (illustrated
in the left hand side of Figure 4.2):

4.3. RUNNING EXAMPLE: THE LATIN SQUARE PROBLEM 65

C

C

C

F F

F

A

B

D D

C

C

C

C

C

C

F

F
F

F

F
F

B1

B

A A1

E

E1

E

1
[1,2]

2
[1,3]

2
[1,2]

2
[1,1]

1
[2,2]

1
[2,1]

1
[1,1]

1
[1,2]

2
[1,1]

1
[2,2]

1
[2,1]

1
[3,1]

1
[3,2]

1
[1,1]

1
[1,3]

2
[1,3]

2
[1,2]

3
[1,1]

3
[1,2]

3
[1,3]

1
[2,3]

2
[2,3]

3
[2,3]

1
[3,3]

1
[2,3]

1
[4,4]

1
[1,4]

1
[3,1]

1
[3,2]

1
[4,1]

1
[4,2]

1
[1,3]

1
[4,3]

2
[3,4]

2
[1,4]

2
[4,4]

4
[3,4]

4
[2,4]

3
[4,4]

3
[3,4]

3
[2,4]

4
[4,4]

3
[1,2]

3
[1,3]

3
[1,4]

1
[3,4]

1
[2,4]

1
[2,4]

1
[3,3]

2
[3,3]

3
[3,3]

3
[1,1]

4
[1,1]

4
[1,2]

4
[1,3]

4
[1,4]

Figure 4.2: Full assignment graphs and generators for LatinSquare[3] and LatinSquare[4].
Note that parts of the graph are obscured.

A 〈n121, n122, n123, n221, n222, n223, n321, n322, n323〉 ↔
〈n131, n132, n133, n231, n232, n233, n331, n332, n333〉

B 〈n211, n212, n213, n221, n222, n223, n231, n232, n233〉 ↔
〈n311, n312, n313, n321, n322, n323, n331, n332, n333〉

C 〈n121, n122, n123, n131, n132, n133, n231, n232, n233〉 ↔
〈n211, n212, n213, n311, n312, n313, n321, n322, n323〉

D 〈n111, n121, n131, n211, n221, n231, n311, n321, n331〉 ↔
〈n112, n122, n132, n212, n222, n232, n312, n322, n332〉

E 〈n112, n122, n132, n212, n222, n232, n312, n322, n333〉 ↔
〈n113, n123, n133, n213, n223, n233, n313, n323, n333〉

F 〈n112, n113, n123, n212, n213, n223, n312, n313, n323〉 ↔
〈n121, n131, n132, n221, n231, n232, n321, n331, n332〉

where node nijk represents literal xij = k. Generator A states that columns 2 and 3 can
be swapped, B that rows 2 and 3 can be swapped, C that the square can be reflected
across the top-left/bottom-right diagonal, D that values 1 and 2 can be swapped, E that
values 2 and 3 can be swapped, and F that the second dimension of the square can be
swapped with the value dimension. Their combination results in the symmetries detailed
in for Example 38 (e.g., to swap columns 1 and 2 (〈x11, x21, x31〉 ↔ 〈x12, x22, x32〉) apply
first F, then D, and then F).

The generators found for the size 4 version of the problem (right hand side of Figure 4.2)
are similar. That is, they result in symmetries that have the same meaning as those
described in Example 38, but are not always identical. For example, the symmetry that
swaps the first two rows will map n141 to n241 in the size 4 instance, but not in the size
3 instance since those nodes do not even exist for the smaller size. Also, in the size 4

66 CHAPTER 4. MODEL SYMMETRY DETECTION

problem two additional symmetries are found: A1, which swaps columns 3 and 4, and
E1, which swaps values 3 and 4.

4.4 From CSPs to parametrised CSPs

There is no standard notation to distinguish a CSP instance and a CSP model (or
parametrised CSP). Herein, we denote a parametrised CSP as CSP [Data], where Data
represents the parameters, and a particular CSP instance in that class as CSP [d], where d
is the value given to Data to yield that CSP. In a sense, the parametrised CSP CSP [Data]
is a function that maps a parameter set onto a CSP instance. While we use mathematical
notation to specify parametrised CSPs, any high-level modelling language can be used
(such as Zinc (Garcia de la Banda et al., 2006), OPL (Van Hentenryck, 1999), Essence
(Frisch et al., 2007), etc.) as long as it separates the model from the data, has multi-
dimensional arrays of finite domain variables, and supports iteration over those arrays.

Example 40. The parametrised LatinSquare[N] for the CSP of Example 37 is as follows:

X[N] = {squareij|i, j ∈ [1..N]}
D[N] = [1..N]
C[N] = {squareij 6= squareik|i, j ∈ [1..N], k ∈ [j + 1..N]}∪

{squareji 6= squareki|i, j ∈ [1..N], k ∈ [j + 1..N]}

This parametrised CSP defines N2 integer decision variables (squareij) with values in
1..N , and conjoins the disequality constraints for every row i and column j.

Our aim is to determine the symmetries of every CSP in the class represented by
CSP [Data] – in other words, the symmetries of CSP [d], for every d that could possibly
be given as Data. To formalise this task, we define the parametrised graph G[Data] of
CSP [Data] in such as way that, when instantiated by giving a value d to Data, G[d]
yields the full assignments graph of CSP [d]. The parametrised graph can be viewed,
similarly to the parametrised CSP, as a function that maps a parameter set onto a graph.
Formally, G[Data] is obtained from CSP [Data] = (X[Data],D[Data], C[Data], dom [Data])
as follows:

• G[Data] = 〈V [Data], Ev [Data] ∪Ec[Data]〉

• V [Data] = {xi = di|xi ∈ X[Data], di ∈ dom(xi)[Data]}, i.e., V [Data] contains a
node for every literal in CSP [Data].

• Ev[Data] = {{x = di, x = dj}|x ∈ X[Data], di, dj ∈ dom(x)[Data], di 6= dj}, i.e., an
edge exists for every two nodes that map a variable to different values.

• Ec[Data] =
⋃

c∈C[Data]{A|vars(A) = vars(c), A is an assignment disallowed by c},
i.e., a hyper-edge exists for every disallowed assignment A of every constraint c, and
connects the nodes associated with all literals in A.

Note that G[Data] is simply a syntactic construct that represents a class of graphs, much
as CSP [Data] represents a class of CSPs.

4.4. FROM CSPS TO PARAMETRISED CSPS 67

Example 41. The parametrised graph G[N] associated with LatinSquare[N] is as fol-
lows. V [N] is defined as {nijv|i, j, v ∈ [1..N]} where nijv denotes literal squareij = v.
Ev[N] is defined as {{nijv1 , nijv2}|i, j, v1, v2 ∈ [1..N], v1 6= v2}, while Ec[N] is obtained
by transforming the two constraints in LatinSquare[N] into the set of assignments they
disallow:

Ec[N] = {{nijv, nikv}|i, j, v ∈ [1..N], k ∈ [j + 1..N]}∪
{{njiv, nkiv}|i, j, v ∈ [1..N], k ∈ [j + 1..N]}

Note that the nodes in G[N] maintain some of the structure of LatinSquare[N] thanks to
the reuse of the i and j identifiers appearing in LatinSquare[N]. This is important for the
automation of the construction of the edges in G[N] and, as will be discussed later, for
the parametrisation of the symmetries of a CSP.

We can now define a parametrised symmetry.

Definition 5. Given a parametrised CSP [Data] and its parametrised graph G[Data], a
parametrised permutation f [Data] is a bijection of the nodes of G[Data]. That is, for
all values d given to Data, f [d] permutes the nodes of G[d]. A parametrised symmetry
of CSP [Data] is a parametrised permutation f [Data] of the nodes in G[Data] s.t. for all
values d given to Data, f [d] is a symmetry (an automorphism) of G[d].

Example 42. Two parametrised symmetries of the parametrised LatinSquare[N] CSP of
Example 40 are the one that reflects the square from top to bottom and one that reflects
around the diagonal. These can be written as:

f [N](squareij = k) = (squareji = k)
f [N](squareij = k) = (square(N−i+1)j = k)

Note that these hold for all values of N .

We denote by S[Data] the group of parametrised symmetries of CSP [Data]. Note that
for all values d given to Data, S[d] is a subset of the symmetries in CSP [d]. The subset
is proper if some symmetry in CSP [d] does not apply to all other instances of the CSP.
In other words, parametrised symmetries must be determined by information explicitly
represented in CSP [Data], without requiring information only present in a particular d.

Taken to its extreme, this definition of parametrised CSP allows all problems to be rep-
resented by a single model. This model would leave the variables, domains and constraints
completely unspecified, and the data is required to fill in all of the details. However, by
our definition of parametrised symmetry, this model has only one symmetry – the identity
– and is not an interesting example for symmetry detection. As discussed in the next
section, our implementation restricts the parameter of a model to be a sequence of inte-
gers. That the model symmetries must be present in every instance is a limitation of the
framework. For example, if the data is a graph, a symmetry in the graph given as data
may result in a symmetry in the CSP. However, if the structure of the data is unknown,
our framework cannot find that symmetry. It is possible that more expressive kinds of
parameters may still allow useful symmetries to be found, but this is outside the scope of
this thesis.

68 CHAPTER 4. MODEL SYMMETRY DETECTION

4.5 A framework for detecting parametrised symmetries

We have introduced the main concepts of parametrised CSPs and parametrised symmetries
and can now turn to the problem of detecting parametrised symmetries for a class of CSPs.
Our approach is based on a generic framework which, given a CSP [Data], performs the
following steps:

1. Detect the instance symmetries of CSP [d] for a number of values d given to Data,

2. Lift the symmetries found in step one to obtain parametrised permutations of the
literals in CSP [Data],

3. Filter the parametrised permutations from step two to keep only those that are likely
to be parametrised symmetries,

4. Prove that the parametrised permutations selected in step three are indeed parametrised
symmetries.

This section deals with the first three steps in detail. The final step will be discussed
in Section 4.8.

4.5.1 Step one: Detecting symmetries for some CSP [d]

The first step of our generic framework can be realised in different ways by the choice
of parameter values and of symmetry detection method. These choices are somewhat
mutually dependent: using a powerful symmetry detection method will usually force the
parameter values to be small (e.g. if a graph automorphism method is used, the instance
must be small enough for the graph to be computed in a reasonable time). Our imple-
mentation uses the detection method described in the previous chapter which returns the
group of symmetries in a CSP [d] as a set of group generators. Note that since the in-
stance symmetry detection method is incomplete (i.e., might miss some symmetries), our
implementation of the generic framework is also incomplete. As mentioned before, for
simplicity our implementation assumes that the parameter Data is a tuple of k integers,
(p1, p2, . . . , pk) and generates different parameter values d by increasing each component
of the tuple individually, starting from some user-defined base tuple (typically the smallest
meaningful instance of the class).

Example 43. For LatinSquare[N], Data has a single component: the board size N . If
the user provides (3) as the base tuple, we increment the component twice obtaining three
values for d: (3), (4), and (5). For the social golfers problem (see Section 4.6), Data
has three components: the number of weeks, groups per week and players per group. If
(2, 2, 2) is the base tuple, we increment twice each component to get nine values for d
(seven of which are distinct): (2, 2, 2), (3, 2, 2), (4, 2, 2), (2, 2, 2), (2, 3, 2), (2, 4, 2), (2, 2, 2),
(2, 2, 3), and (2, 2, 4).

4.5.2 Step two: Lifting symmetries to parametrised permutations

This step requires taking every symmetry g detected in step one for any of the CSP [d]
considered, and determining one or more parametrised permutation(s) f [Data] for which

4.5. A FRAMEWORK FOR DETECTING PARAMETRISED SYMMETRIES 69

f [d] = g. Since computing f [Data] from g alone is quite a task, our implementation
uses a much simpler, although incomplete, method: it first defines a set of “common”
parametrised symmetries Per = {f1[Data], · · · , fm[Data]}, and then checks every genera-
tor g against them.

The success of our implementation relies on the parametrised CSPs having literals
that can be arranged into an n-dimensional matrix, and having “common” parametrised
symmetries that permute particular matrix elements, such as rows or columns. These are
the kind of symmetries that we will add to Per. This limits the kind of symmetries we
can consider, but matrix models of problems are very common (Flener et al., 2002b) and
these symmetries seem to be those that are most useful in practice (as seen in the next
chapter).

Consider a CSP [Data], with an n-dimensional matrix-like structure described by the
user, L[Data] whose elements correspond to the literals in CSP [Data] (and, thus to the
nodes in G[Data]). The exact number of elements in each of the n dimensions of L[Data]
depends on the integer values given as Data and can be obtained by means of a function
Dims[Data] = (d1, d2, . . . , dn), where di indicates the exact number of elements in the ith

dimension for i ∈ [1..n].

Example 44. The parametrised LatinSquare[N] problem has a matrix like structure, since
its literals can be arranged into a 3-dimensional matrix where each literal squareij = k
is indexed as L[N]i,j,k. This is clearly visible in Figure 4.2, where the only difference
between G[3] and G[4] are the exact values of each dimension: Dims [3] = (3, 3, 3) while
Dims[4] = (4, 4, 4).

Parametrised permutations can then be easily expressed as permutations on the el-
ements of L[Data] without reference to any specific value d given to Data. This allows
us to express a parametrised permutation as a single entity, even though each specific
instantiation might involve permuting different nodes. The following are some com-
mon parametrised permutations for a CSP [Data] with n-dimensional matrix L[Data] and
Dims[Data] = (d1, d2, . . . , dn):

• Value swap: interchanges values v and v′ of the kth dimension and is defined as:
L[Data]i1,...,ik−1,v,ik+1,...,in ↔
L[Data]i1,...,ik−1,v

′,ik+1,...,in ∀ij ∈ [1..dj], j ∈ [1..n].
For example, the symmetry represented by generator D in Figure 4.2 is a value swap
with k = 3, v = 1, v′ = 2.

• Dimension invert: interchanges every value v of the kth dimension with value
n− v + 1 and is defined as:
L[Data]i1,...,ik−1,v,ik+1,...,in ↔
L[Data]i1,...,ik−1,n−v+1,ik+1,...,in , ∀v ∈ [1..dk], ij ∈ [1..dj], j ∈ [1..n].
For example, the symmetry represented by generator A in Figure 4.3 is a dimension
invert with k = 2.

• Dimension swap: swaps kth and k′th dimensions and is defined as:
L[Data]i1,...,ik−1,ik,ik+1,...,ik′−1,ik′ ,ik′+1,...,in

↔
L[Data]i1,...,ik−1,ik′ ,ik+1,...,ik′−1,ik,ik′+1,...,in

, ∀ij ∈ [1..dj], j ∈ [1..n].

70 CHAPTER 4. MODEL SYMMETRY DETECTION

For example, the symmetry represented by generator B in Figure 4.3 is a dimension
swap with k = 1, k′ = 2.

Example 45. The generators found for LatinSquare[3] in Example 39 can be automati-
cally matched to the following parametrised permutations for L[N]:

A value swap with k = 2, v = 2, v′ = 3: L[N]i2l ↔ L[N]i3l, ∀i, l ∈ [1..N]
B value swap with k = 1, v = 2, v′ = 3: L[N]2jl ↔ L[N]3jl, ∀j, l ∈ [1..N]
C dimension swap with k = 1, k′ = 2: L[N]ijl ↔ L[N]jil, ∀i, j, l ∈ [1..N]
D value swap with k = 3, v = 1, v′ = 2: L[N]ij1 ↔ L[N]ij2, ∀i, j ∈ [1..N]
E value swap with k = 3, v = 2, v′ = 3: L[N]ij2 ↔ L[N]ij3, ∀i, j ∈ [1..N]
F dimension swap with k = 2, k′ = 3: L[N]ijl ↔ L[N]ilj , ∀i, j, l ∈ [1..N]

Consider the graph G[4] associated with LatinSquare[4], shown in the right hand side
of Figure 4.2. Saucy finds 9 generators for this graph. Six of them are simple extensions
of those found for G[3]. For example, the extension of A is:

A 〈n121, n122, n123, n124, n221, n222, . . . , n321, . . . , n421, . . .〉 ↔
〈n131, n132, n133, n134, n231, n232, . . . , n331, . . . , n431, . . .〉

and similarly for B, C, D, E and F. The other three generators found are:

A1〈n131, n132, n133, n134, n231, n232, . . . , n331, . . . , n431, . . .〉 ↔
〈n141, n142, n143, n144, n241, n242, . . . , n341, . . . , n441, . . .〉

B1〈n311, n312, n313, n314, n321, n322, . . . , n331, . . . , n341, . . .〉 ↔
〈n411, n412, n413, n414, n421, n422, . . . , n431, . . . , n441, . . .〉

E1〈n113, n123, n133, n143, n213, n223, . . . , n313, . . . , n413, . . .〉 ↔
〈n114, n124, n134, n144, n214, n224, . . . , n314, . . . , n414, . . .〉

The generators A, B, C, D, E and F in G[4] match the parametrised permutations
used for G[3], while A1, B1 and E1 match:

A1 value swap with k = 2, v = 3, v′ = 4: L[N]i3l ↔ L[N]i4l,∀i, l ∈ [1..N]
B1 value swap with k = 1, v = 3, v′ = 4: L[N]3jl ↔ L[N]4jl,∀j, l ∈ [1..N]
E1 value swap with k = 3, v = 3, v′ = 4: L[N]ij3 ↔ L[N]ij4,∀i, j ∈ [1..N]

The generators found by Saucy for LatinSquare[5] are the simple extensions of A, A1,
B, B1, C, D, E, E1 and F (which can be parametrised as before), plus three more A2,
B2, and E2, which can be parametrised as:

A2 value swap with k = 2, v = 4, v′ = 5: L[N]i3l ↔ L[N]i4l, ∀i, l ∈ [1..N]
B2 value swap with k = 1, v = 4, v′ = 5: L[N]3jl ↔ L[N]4jl, ∀j, l ∈ [1..N]
E2 value swap with k = 3, v = 4, v′ = 5: L[N]ij3 ↔ L[N]ij4, ∀i, j ∈ [1..N]

Considering a symmetry in isolation is not always productive. This is because some
parametrised permutation patterns, when instantiated, correspond to a group of symme-
tries rather than to a single symmetry. For example, we can introduce a new “all values
swap” pattern (which interchanges all values in a dimension) that is a combination of at
least two generator symmetries. Thus, to detect such a parametrised pattern we cannot
simply parametrise each symmetry on its own; we must consider groups of symmetries
{g1, · · · , gm} such that f [d] = {g1, · · · , gm}. This prompts us to add another kind of
symmetry pattern:

4.5. A FRAMEWORK FOR DETECTING PARAMETRISED SYMMETRIES 71

• All values swap: interchanges all values of the kth dimension and is defined as:
L[Data]i1,...,ik−1,v,ik+1,...,in ↔
L[Data]i1,...,ik−1,v

′,ik+1,...,in , ∀v, v
′ ∈ [1..dk], v 6= v′, ij ∈ [1..dj], j ∈ [1..n].

For example, the symmetries represented by generators D and E and their combi-
nations in the left hand side of Figure 4.2 are an all values swap with k = 3.

For the “all value swap” case, we group symmetries by keeping track of any pair
of value-swap pattern symmetries that operate on the same dimension and whose inter-
changed values overlap. These are combined into a single symmetry stating that all values
involved can be freely interchanged. Our implementation considers the “all values swap”
pattern matched if, by applying this kind of combination until a fixpoint is reached, we
obtain a symmetry that interchanges all [1..dk], where dk is the value returned by Dims[d]
for dimension k.

Example 46. The generators D and E for LatinSquare[3] form an instance of the “all
value swap” pattern L[N]ijv ↔ L[N]ijv′ ,∀v, v

′ ∈ [1..N], v 6= v′, i, j ∈ [1..N]. The genera-
tors D, E and E1 for LatinSquare[4] form the same pattern.

4.5.3 Step three: Filtering parametrised permutations

Step two identifies our candidate parametrised symmetries. However, it is likely that some
of these candidates apply only to a few instances, rather than to the entire class. We would
like to eliminate unlikely permutations before performing the (possibly expensive) proof
step. Our implementation uses a simple (and again incomplete) heuristic which selects as
likely candidates the intersection of the parametrised permutations present in all tested
instances.

Example 47. In the case of the Latin square problem, using instance sizes 3, 4 and 5,
the following parametrised symmetries are found by our implementation:

• dimensions 1 and 2 swap (diagonal reflection of the square)

• dimensions 2 and 3 swap (column dimension swaps with value dimension)

• all values of dimension 3 are interchangeable (all values interchangeable)

Each of these symmetries is found in every tested instance, so a simple intersection of the
symmetries would result in all symmetries being found.

Unfortunately, the success of such an intersection relies on Saucy returning the same
(or equivalent) set of generators for each CSP [d]. This is because, as mentioned before,
our implementation only attempts to parametrise the generators returned by Saucy (as
opposed to every symmetry in the group), and a group can be obtained from many dif-
ferent sets of generators. We solve this problem as follows. If a particular parametrised
permutation is found in more than one instance but not in all, we check the group of sym-
metries of the other instances to see if the permutation is, in fact, present. This is done
via the GAP system for computational group theory (Group, 2006). If the parametrised
permutation is indeed found in all instances, it is marked as a candidate.

72 CHAPTER 4. MODEL SYMMETRY DETECTION

Example 48. Consider the social golfers problem with values of d being (2, 2, 2), (3, 2, 2),
(4, 2, 2), (2, 3, 2), (2, 4, 2), (2, 2, 3), (2, 2, 4). Our implementation finds an instance of the
“all value swap” pattern for the third dimension (golfers are interchangeable) for every
value of d. However, the “all value swap” pattern for the first dimension (the weeks
are interchangeable) is found for only 5 out of the 7 values of d, due to the particular
generators given by Saucy. Searching explicitly for this pattern in the groups found for
the other values of d shows that it is indeed present in all of them and can thus be
considered as a likely candidate.

4.6 Detailed Examples

We have discussed how the first three steps of our implementation work with the Latin
square example. Here we illustrate them further with some detailed examples, and de-
lay the discussion of the fourth step until Section 4.8. We provide three more examples:
N-queens, for which our method again detects all parametrised symmetries as likely candi-
dates; Social golfers, for which it also detects all symmetries (after adding a new pattern);
and Golomb ruler, for which it fails to detect any likely candidate.

4.6.1 N-queens

The N-queens problem is to position N queens on an N×N chess board without attacking
each other (see Section A.1). The following parametrised CSP NQueens[N] uses N integer
variables qi where qi = j if a queen appears in row j of column i.

X [N] = {qi|i ∈ [1..N]}
D[N] = [1..N]
C[N] = {qi 6= qj |i ∈ [1..N], j ∈ [i+ 1..N]}∪

{qi + i 6= qj + j|i ∈ [1..N], j ∈ [j + 1..N]}∪
{qi − i 6= qj − j|i ∈ [1..N], j ∈ [j + 1..N]}

The qi 6= qj constraint ensures that no two queens share a row, and the other two
constraints ensure that no two queens share a diagonal in either direction (rising or falling).
The parametrised graph G[N] = (V [N], Ec[N] ∪ Ev[N]) is:

V [N] = {qiv|i, v ∈ [1..N]}
Ec[N] = {{qiv, qjv}|i, v ∈ [1..N], j ∈ [i+ 1..N])}∪

{{qivi , qjvj}|i, vi, vj ∈ [1..N], j ∈ [i+ 1..N], vi + i = vj + j)}∪
{{qivi , qjvj}|i, vi, vj ∈ [1..N], j ∈ [i+ 1..N], vi − i = vj − j)}

Ev[N] = {{qivi , qjvj}|i, vi, vj ∈ [1..N], vi 6= vj}

where node qiv represents literal qi = v. Given the initial base tuple (4), our imple-
mentation generates G[4], G[5] and G[6]. Figure 4.3 shows the full assignment graph for
instances G[4] and G[5], together with the generators found by Saucy. Each node in the
graph is marked by “qi” and a value j, representing the literal qi = j. Each edge, shown
with a thin black line, indicates that the two literals at the end-points are disallowed. The
symmetries are marked with thick arrows.

For G[4] the following symmetry generators are found by Saucy:

A 〈q11, q12, q21, q22, q31, q32, q41, q42〉 ↔ 〈q14, q13, q24, q23, q34, q33, q44, q43〉
B 〈q12, q13, q14, q23, q24, q34〉 ↔ 〈q21, q31, q41, q32, q42, q43〉

4.6. DETAILED EXAMPLES 73

A A

B

B

B

B

B

B

B

B

B

B

B B

BB

B

A1 A1

1
 q2

1
 q3

1
 q4

2
 q1

2
 q3

2
 q4

3
 q1

3
 q2

3
 q3

3
 q4

4
 q1

4
 q2

4
 q3

4
 q4

1
 q1

1
 q2

1
 q3

2
 q1

2
 q3

3
 q1

3
 q2

3
 q3

1
 q1

1
 q4

2
 q4

3
 q4

4
 q1

4
 q2

4
 q3

4
 q4

2
 q2

2
 q2

1
 q5

2
 q5

3
 q5

4
 q5

5
 q5

5
 q4

5
 q3

5
 q2

5
 q1

Figure 4.3: Full assignment graphs of instances NQueens[4] and NQueens[5]

Symmetry A corresponds to an inversion of the values, mapping each value i to 5− i.
This is the reflection of the chessboard around the central horizontal axis. The symmetry
B swaps the variable index and value dimensions, corresponding to a diagonal reflection
of the chessboard. These symmetries can be parametrised to match:

A dimension invert with k = 2: L[N]iv ↔ L[N]i(N−v+1),∀v, i ∈ [1..N]

B dimension swap with k = 1 and k′ = 2:L[N]ij ↔ L[N]ji,∀i, j ∈ [1..N]

For G[5] Saucy finds the following symmetry generators:

A1〈q11, q12, q21, q22, q31, q32, q41, q42, q51, q52〉 ↔
〈q15, q14, q25, q24, q35, q34, q45, q44, q55, q54〉

B 〈q12, q13, q14, q15, q23, q24, q25, q34, q35, q54〉 ↔
〈q21, q31, q41, q41, q32, q42, q52, q43, q53, q45〉

where B is an extension of the generator with the same name found for G[4] (and matches
the same dimension swap pattern), and A1 is a new generator that matches the same
dimension invert pattern as A. The generators found for G[6] are, again, an extension of
B that matches the dimension swap pattern, and a new generator A2 that matches the
same pattern as A and A1. The intersection of the patterns results in both parametrised
permutations being marked as likely candidates. These parametrised permutations form
all of the actual symmetries of the problem.

4.6.2 Social Golfers

The social golfers problem is to build a schedule of W weeks, with G equally-sized groups
per week, and P golfers per group, such that each pair of golfers may play in the same
group at most once (see Section A.2). A parametrised CSP Golf[W,G,P] is:

X [W,G,P] = {playerswg|w ∈ [1..W], g ∈ [1..G]}
D[W,G,P] = ℘({1..P ∗G})

74 CHAPTER 4. MODEL SYMMETRY DETECTION

C[W,G,P] = {|playerswg| = P |w ∈ [1..W], g ∈ [1..G]}∪
{|playerswg1 ∩ playerswg2 | = 0|w ∈ [1..W],g1, g2 ∈ [1..G], g1 < g2}∪
{|playersw1g1 ∩ playersw2g2 | ≤ 1|w1, w2 ∈ [1..W],w1 < w2, g1, g2 ∈ [1..G], g1 < g2}

where ℘ denotes the powerset. The associated parametrised graph G[W,G,P] is:

V [W,G,P] = {nwgp|w ∈ [1..W], g ∈ [1..G], p ∈ ℘([1..P ∗G])}
Ec[W,G,P] ={〈nwgp〉|w ∈ [1..W], g ∈ [1..G], |p| 6= P}∪

{〈nwg1p1
, nwg2p2

〉|w ∈ [1..W], g1, g2 ∈ G, g1 < g2,
p1, p2 ∈ ℘([1..P ∗G]), |p1 ∩ p2| 6= 0)}∪

{〈nw1g1p1
, nw2g2p2

〉|w1, w2 ∈ [1..W], w1 < w2, g1, g2 ∈ G,
g1 < g2, p1, p2 ∈ ℘([1..P ∗G]), |p1 ∩ p2| > 1}

Ev[W,G,P] ={〈nwgp,p, nwgp2
〉|w ∈ [1..W], g ∈ [1..G],p1, p2 ∈ ℘([1..P ∗G]), p1 6= p2}

where node nwgp represents literal playerswg = p. The three components of Ec are:

• a unary edge for each literal for which the value’s cardinality is not P .

• an edge between any two literals for the same week whose intersection is not null –
this ensures that the groups in each week form a partition of the set of players.

• an edge between any two literals for distinct weeks whose intersection is more than
one – this is disallowed by the specification of the problem.

For Golf[2, 2, 2] the following symmetry generators are found by Saucy. For brevity we
use a slightly different notation here: the term vwgx represents playerswg ∋ x; i.e. player
x is in group g of week w. A value of 0 for x represents an empty set; i.e. v110 represents
the literal players11 = ∅. This notation also allows the symmetry among the players to
be seen more easily.

A 〈v113, v123, v213, v223〉 ↔ 〈v114, v124, v214, v224〉
B 〈v112, v122, v212, v222〉 ↔ 〈v113, v123, v213, v223〉
C 〈v111, v121, v211, v221〉 ↔ 〈v112, v122, v212, v222〉
D 〈v110, v111, v112, v113, v114〉 ↔ 〈v120, v121, v122, v123, v124〉
E 〈v210, v211, v212, v213, v214〉 ↔ 〈v220, v221, v222, v223, v224〉
F 〈v110, v111, v112, v113, v114, v120, v121, v122, v123, v124〉 ↔

〈v210, v211, v212, v213, v214, v220, v221, v222, v223, v224〉

Generators A, B and C represent symmetries that swap golfers 1 with 2, 2 with 3, and
3 with 4, respectively. Taken together, our implementation detects the combined all value
swap permutation pattern on dimension 3, which states that all golfers are interchangeable.
Generator F represents the symmetry that swaps week 1 and week 2. This trivially
matches the all value swap pattern that states that all weeks are interchangeable, and
also the dimension invert pattern that reflects the weeks. Generators D and E represent
symmetries that swap groups 1 and 2 within week 1, and within week 2, respectively. Our
implementation did not consider parametrised patterns that perform a swap on only a
subset of the literals and, thus, failed to detect such pattern as likely candidate. However,
once we extended the set of patterns to include one that represents the interchanging of
values within a particular row or column, this symmetry was captured. This pattern is
defined as follows:

4.6. DETAILED EXAMPLES 75

• Conditional value swap: interchanges values v and v′ of the kth dimension under
the condition that the value of another dimension l is some constant x.
L[Data]i1,...,x,...,ik−1,v,ik+1,...,in ↔
L[Data]i1,...,x,...,ik−1,v

′,ik+1,...,in ∀ij ∈ [1..dj], j ∈ [1..n].

The generator D is a conditional value swap with v = 1, v′ = 2, k = 2, l = 1 and x = 1.
The generator E is a conditional value swap with the same parameters, except that x = 2.

The generators for G[2, 3, 2], G[2, 2, 3], G[2, 4, 2] and G[2, 2, 4] include the extended
versions of generators A to F in G[2, 2, 2], plus additional generators representing the
interchangeability of the extra golfers, and of the extra groups. As before, our imple-
mentation detects the combined all value swap pattern that states that all golfers are
interchangeable and that all weeks are interchangeable. With the inclusion of the pattern
mentioned above, the interchangeability of groups within each week is also marked as a
likely candidate.

The generators for G[3, 2, 2] include the extended versions of A, B, C, D and E.
However, Saucy produces generators that do not have a simple parametrisation. The
situation for G[4, 2, 2] is similar. But since the weeks were found to be interchangeable in
all of the other instances, the implementation consults GAP to check whether this holds
for [3, 2, 2] and [4, 2, 2], even though the generators from Saucy don’t directly correspond
to it. GAP indicates that it does and, therefore, the parametrised permutation is marked
as a likely candidate.

Therefore, our implementation marks as likely candidate the following parametrised
permutations:

• for each value of dimension 1, the values of dimension 2 are interchangeable – the
groups are interchangeable independently for each week.

• values of dimension 1 are interchangeable – the weeks are interchangeable.

• values of dimension 3 are interchangeable – the players are interchangeable.

These parametrised symmetries cover all of the constraint symmetries found at the
instance level of the problem.

4.6.3 Golomb ruler

is defined as a set of N integers (marks on the ruler) a1, . . . , aN such that the N(N−1)
2

differences aj − ai, 1 ≤ i < j ≤ N are distinct. The problem involves finding a valid
set of N marks (see Section A.3). The following parametrised CSP Golomb[N] uses N

integer variables (the marks) with domains in [0..N2], plus N(N−1)
2 integer variables (the

differences) with domains [1..N2].

X [N] = {marki|i ∈ [0..N]} ∪ {diffij |i ∈ [1..N], j ∈ [i+ 1..N]}
D[N] = {[0..N2], [1..N2]}
C[N] = {marki −markj =diffij |i ∈ [1..N], j ∈ [i+ 1..N]}∪

{diffij 6=diffik|i, j ∈ [1..N], k ∈ [j + 1..N]}
dom(mi) = [0..N2] ; dom(dij) = [1..N2]

The parametrised graph associated with Golomb[N] is:

76 CHAPTER 4. MODEL SYMMETRY DETECTION

V [N] = {miv|i ∈ [1..N], v ∈ [0..N2]}∪
{djiv |i ∈ [1..N], j ∈ [(i+ 1)..N], v ∈ [1..N2]}

Ec[N] ={{miv1,mjv2 , dijv3}|i ∈ [1..N], j ∈ [(i + 1)..N], v1, v2, v3 ∈ [1..N2], v1 − v2 6= v3}∪
{{dijv, dijv}|i ∈ [1..N], j ∈ [(i+ 1)..N], v ∈ [1..N2]}

Ev[N] ={(miv1 ,miv2)|i ∈ [1..N], v1, v2 ∈ [1..N2], v1 6= v2}∪
{(dijv1 , dijv2)|i ∈ [1..N], j ∈ [(i+ 1)..N], v1, v2 ∈ [1..N2], v1 6= v2}

where node miv represents literal marki = v and node dijv literal diffsij = v. The
generator found by Saucy for G[3] is:

A 〈d121, d122, d123, d124, d125, d126, d127, d128, d129〉 ↔
〈d231, d232, d233, d234, d235, d236, d237, d238, d239〉 plus
〈m10,m11,m12,m13,m14,m15,m16,m17, . . . ,m24〉 ↔
〈m39,m38,m37,m36,m35,m34,m33,m32, . . . ,m25〉

which swaps the lengths of the spaces between the marks, i.e., turns the ruler back-to-
front. This symmetry involves variables from two separate matrices, dij and mi, and
our simple implementation cannot yet handle this. Even if we only consider the search
variables mi, our implementation would need to obtain for G[3], G[4] and G[5] the pattern
{miv ↔ mjv′ |i, j ∈ [1..N], i = N − j + 1, v, v′ ∈ [0..N2], v = N2 − v′ + 1}. Since our
implementation currently does not take this pattern into account, it cannot recognise the
permutation as likely candidate. It would not be difficult to add a pattern to match
this kind of symmetry. However, if this pattern occurs only rarely then it may not be
worthwhile, as each pattern increases the amount of time needed to parametrise instance
symmetries.

4.7 Results

Let us evaluate our simple implementation (which includes the patterns described in Sec-
tion 4.5.2 plus the additional pattern described for Social Golfers) over a set of problems
that include those discussed earlier in this chapter, plus the following (see Appendix A for
details):
Balanced Incomplete Block Design: with parameters (v, b, k, r, λ), where the task is
to arrange v objects into b blocks such that each block has exactly k objects, each object
is in exactly r blocks, and every pair of objects occurs together in λ blocks. The objects
are interchangeable and the blocks are interchangeable.
Graceful Graph: with parameters (m,n), where the edges (a, b) of the graphKm×Pn are
labelled by |a−b|, and there is no two edges with the same label. The corresponding vertices
in each clique are simultaneously interchangeable, the order of the cliques is reversible,
and the values are reversible.
N × N queens: where an N ×N chessboard is coloured with N colours, so that a pair of
queens in any two squares of the same colour do not attack each other. The symmetries
are those of the chessboard, plus the colours are interchangeable.
NQueens (bool): which uses a Boolean matrix model for the N-queens problem of
Section 4.6. The symmetries are those of the chessboard.
Steiner Triples: where the task is to find n(n−1)

6 triples of distinct integers from 1 to
n, such that any pair of triples has at most one element in common. The triples are
interchangeable and the values are interchangeable.

4.8. PROVING PARAMETRISED SYMMETRIES 77

Table 4.1: Symmetry detection results

Problem Tuple Amount Symmetries Time Instance
BIBD (2,2,2,2,2) +3 objects X 19.0 20%

blocks X

Social Golfers (2,2,2) +2 rows X 376.4 96%
groups X

players X

Golomb Ruler (3) +3 flip X 6.7 99%
Graceful Graph (2,2) +3 intra-clique X 9.0 44%

path-reverse X

value X

Latin Square (3) +3 dimensions X 13.7 10%
value X

N × N queens (4) +3 chessboard X 8.0 21%
colours X

NQueens (int) (8) +3 chessboard X 3.6 36%
NQueens (bool) (8) +3 chessboard X 5.4 64%
Steiner Triples (3) +3 triples X 16.8 32%

value X

Table 4.1 shows the results, where the columns indicate the problem name, the base tu-
ple, the amount by which each component is increased, the known symmetries and whether
they are marked as likely candidates by our implementation, the total running time in sec-
onds, and the percentage of that time spent in detection (as opposed to parametrisation).
The experiments were run on an dual Intel Core 2 1.86GHz computer with 1GB of mem-
ory. No effort has been made to optimise detection time; the times are included simply to
show the practicality of the approach.

The results show that the approach is capable of finding almost all symmetries of this
set of problems. The constraints used in each problem vary, from many simple constraints
to global constraints. In particular, all symmetries are found in the two quite different
representations of the N-queens problem. The times taken are small, due to the small
instances used. However, the small instances do not seem to be an impediment to finding
all of the symmetries.

4.8 Proving parametrised symmetries

The final step of the framework is to check whether the parametrised permutations marked
as likely candidates in step three are truly symmetries of the problem. This step is im-
portant if the symmetries are to be later used in symmetry breaking to make the search
more efficient, for if the permutations are not symmetries then the search may fail to find
some solutions.

In many cases this step can be performed trivially by a human. Although it is often
difficult to discover the symmetries of a given problem, it is generally easy for a person
who is familiar with the problem to confirm that a given candidate symmetry is correct.
Therefore, an automatic method that implements only the first three steps and leaves the

78 CHAPTER 4. MODEL SYMMETRY DETECTION

confirmation of symmetries to the user is still useful. However, the ability to automatically
prove that symmetries hold over all instances of a model would make the framework even
more useful.

The proving of parametrised symmetries can be achieved, for example, by first repre-
senting both the parametrised CSP and the candidate parametrised permutation in the
logic formalism described by Mancini and Cadoli (2005), and then making use of theorem
proving techniques. Of course, such a technique is in general undecidable. This approach
suffers from another problem in that a user must find an equivalent logical expression
for their constraint program model, a task that may be difficult. In this sense, such an
approach is not truly automatic.

We have explored two alternative methods of proving that symmetries hold on a model.
Although neither is sufficiently robust to be used generally, they show the direction in
which a more general approach to symmetry proving might be found.

4.8.1 Proving via Parametrised Graph

The first approach is to use the parametrised graph of the constraint model to prove that a
parametrised permutation is a model symmetry. Since the symmetries of the parametrised
graph reflect symmetries of the problem, showing that a parametrised permutation is an
automorphism of the parametrised graph is sufficient to prove that it is a symmetry on
the model.

Consider the parametrised graph G[Data] of a parametrised CSP [Data]. Let
neighbours(n) be a function which, given a node n ∈ V [Data] returns all nodes in V [Data]
that are adjacent to n; that is, all nodes u for which there is an edge (n, u) ∈ E[Data]. To
prove that a parametrised permutation σ is a model symmetry, we must prove that for all
nodes n:

σ(neighbours(n)) = neighbours(σ(n)) (4.1)

To prove that (4.1) holds, we must show that every element of the left hand side is also
a member of the right hand side. We illustrate how this might be done with an example.

Figure 4.4 shows a simple representation of the N-queens problem and the neighbours
function for its parametrised graph. Note that the representation of the problem is similar
to how the problem might be expressed in a constraint programming language. In this
form, the only constraints are binary 6= constraints, although the operands can involve
the addition of constants.

The constant N is the parameter to the model, and q is an array of integer variables
whose domains are 1 to N . When calculating the neighbours function, we represent the
literal qi = j – which is represented as a single node in the graph – by the pair [i, j].
As can be seen in Figure 4.4, the neighbours of a node [i, j] are all other literals that
involve the same variable (by definition, a variable has only one value) and any literals
that are disallowed from occurring with [i, j] by some constraint. These latter neighbours
are computed by substituting the variable index i for the indices in the problem, namely
x and y. For example, in constraint (1), substituting i for x gives qi 6= qy, where y is
restricted to be i + 1 ≤ y ≤ N . This is the set of nodes denoted by (1a). For example,
with N = 4, the constraint after substitution is qi 6= qy, where i + 1 ≤ y ≤ 4 and for all

4.8. PROVING PARAMETRISED SYMMETRIES 79

for 1 <= x <= N

for x+1 <= y <= N

q[x] /= q[y] (1)

q[x]-x /= q[y]-y (2)

q[x]+x /= q[y]+y (3)

neighbours([i, j]) ={ [i, k], 1 ≤ k ≤ N, k 6= j (defn. of variable)

[k, j], i + 1 ≤ k ≤ N (1a)
[k, j], 1 ≤ k ≤ i− 1 (1b)

[k, j − k + i], i+ 1 ≤ k ≤ N (2a)
[k, j − k + i], 1 ≤ k ≤ i− 1 (2b)

[k, j + k − i], i+ 1 ≤ k ≤ N (3a)
[k, j + k − i], 1 ≤ k ≤ i− 1 (3b)

}

Figure 4.4: The N-queens problem.

1 ≤ i ≤ 4. Similarly, substituting i for y in constraint (1) gives qx 6= qi, where x must
obey 1 ≤ x ≤ y−1. This leads to the nodes denoted (1b). Similar reasoning leads to (2a),
(2b), (3a) and (3b).

Expressed in this form, one symmetry of the problem is

σ([i, j]) = [N − i+ 1, j] (4.2)

This is the reflection of the variables, equivalent to the reflection of the chessboard. We
now show how to prove this symmetry. The LHS of (4.1) is σ(neighbours(n)), which is
the symmetry σ applied to the neighbours of [i, j].

LHS = { [N − i+ 1, k], k 6= j (a)
[N − k + 1, j], i + 1 ≤ k ≤ N (b)
[N − k + 1, j], 1 ≤ k ≤ i− 1 (c)
[N − k + 1, j − k + i], i + 1 ≤ k ≤ N (d)
[N − k + 1, j − k + i], 1 ≤ k ≤ i− 1 (e)
[N − k + 1, j + k − i], i + 1 ≤ k ≤ N (f)
[N − k + 1, j + k − i], 1 ≤ k ≤ i− 1 (g)

}

The right hand side is the neighbours of σ([i, j]) = [N − i+ 1, j].

RHS = { [N − i+ 1, k], k 6= j (A)
[k, j], (N − i+ 1) + 1 ≤ k ≤ N (B)

80 CHAPTER 4. MODEL SYMMETRY DETECTION

[k, j], 1 ≤ k ≤ (N − i+ 1)− 1 (C)
[k, j − k + (N − i+ 1)], (N − i+ 1) + 1 ≤ k ≤ N(D)
[k, j − k + (N − i+ 1)], 1 ≤ k ≤ (N − i+ 1)− 1(E)
[k, j + k − (N − i+ 1)], (N − i+ 1) + 1 ≤ k ≤ N(F)
[k, j + k − (N − i+ 1)], 1 ≤ k ≤ (N − i+ 1)− 1(G)

}

Now we must show that every element in the LHS is a member of the RHS. (a) is
clearly a member of the RHS; it is identical to (A). We can show that (b) is equal to (C),
by first manipulating the bounds of (b).

i+ 1 ≤ k ≤ N

−i− 1 ≥ −k ≥ −N

n− i− 1 ≥ N − k ≥ 0

n− i ≥ N − k + 1 ≥ 1

Let x = N − k + 1. Then (b) is equivalent to [x, j], 1 ≤ x ≤ N − i which is (C) and
therefore (b) is (C).

Similarly, we can show that (c) is equal to (B).

1 ≤ k ≤ i− 1

−1 ≥ −k ≥ −i+ 1

N − 1 ≥ N − k ≥ N − i+ 1

N ≥ N − k + 1 ≥ N − i+ 2

Let x = N − k + 1. Then (c) is equivalent to [x, j], N − i + 2 ≤ x ≤ N which is (B) and
therefore (c) is (B).

We can show that (d) is equal to (G) by first examining the bounds on the first
component of (d), namely α = N − k + 1.

i+ 1 ≤ k ≤ N

−i− 1 ≥ −k ≥ −N

N − i− 1 ≥ N − k ≥ 0

N − i ≥ N − k + 1 ≥ 1

N − i ≥ α ≥ 1

The second component of (d) is β = j − k + i, which by substituting k is equivalent to
β = j−N+α−1+i. Therefore (d) is equivalent to [α, β] : 1 ≤ α ≤ N−i, β = j−N+α+i−1.

Now let us look at (G); its second component is γ = j+k−(N−i+1) = j−N+k+i−1.
Therefore (G) is equivalent to: [k, γ] : 1 ≤ k ≤ N − i, γ = j −N + k + i− 1 which means

4.8. PROVING PARAMETRISED SYMMETRIES 81

(d) is equivalent to (G). Similar reasoning shows that (e) is (F), (f) is (E) and (g) is (D).
Since each part of the LHS matches a distinct part of the RHS, we have that LHS = RHS.
Therefore, σ([i, j]) = [N − i+ 1, j] is indeed a symmetry of N-queens.

This process can be automated for some cases. In the example shown here, the reason-
ing requires only syntactic manipulation and some basic arithmetic. However, this case
has only binary constraints involving simple arithmetic expressions. It remains to be seen
how far this method can be extended to other problems.

4.8.2 Proving via Constraint Program

Another approach to proving that a parametrised permutation is a symmetry is to use a
constraint programming system. Here we describe how a constraint satisfaction program
can be manually derived from a CSP model whose execution can prove or disprove a
symmetry. Again, we illustrate this with the simple N-queens problem.

Similar to before, we have a simple representation of the problem:

forall i,j in 1..N where i \= j:

q[i] != q[j] /\

q[i] - i != q[j] - j /\

q[i] + i != q[j] + j

The parametrised graph is shown below. Each literal in the graph is a pair [i, v], repre-
senting qi = v.

V [N] = {[i, v]|i, v ∈ [1..N]}
Ec[N] = {{[i, v], [j, v]}|i, v ∈ [1..N], j ∈ [i+ 1..N])}∪

{{[i, vi], [j, vj]}|i, vi, vj ∈ [1..N], j ∈ [1..N], i 6= j, vi + i = vj + j)}∪
{{[i, vi], [j, vj]}|i, vi, vj ∈ [1..N], j ∈ [1..N], i 6= j, vi − i = vj − j)}

Ev[N] = {{[i, vi], [j, vj]}|i, vi, vj ∈ [1..N], vi 6= vj}

For the purposes of this example, we provide a simpler representation of the set of
edges in the parametrised graph:

E[N] = {([i, x], [j, y]) | i ∈ 1..N, j ∈ 1..N,
x ∈ 1..N, y ∈ 1..N,
(i 6= j ∧ x 6= y)∨
(i 6= j ∧ x− i 6= y − j)∨
(i 6= j ∧ x+ i 6= y + j)}

A parametrised permutation σ is a symmetry of the problem if, for a given edge e in
the graph, σ(e) is also in the graph. To extend this to model symmetries, the above must
be true for all values of the model parameter N .

Formally, let E be the set of edges in the parametrised graph. We wish to show that
e ∈ E ⇒ σ(e) ∈ E for a given σ and for all e. In other words, we wish to prove that there
exists no element such that e ∈ E ∧ σ(e) 6∈ E. We ask the constraint solver to find for us

82 CHAPTER 4. MODEL SYMMETRY DETECTION

symEdge(N,SI,SA,SJ,SB) :-

integers([I,J,A,B]),

% enforce bounds on literals, and ensure i != j

% (1)

1 $=< I, I $=< N,

1 $=< J, J $=< N,

1 $=< A, A $=< N,

1 $=< B, B $=< N,

(I+1 $=< J ; J+1 $=< I),

% ensure that one of the constraints is violated.

% (2)

constraint(N,I,A,J,B),

% relate Sx with x via the symmetry.

% (3)

SI $= N-I+1,

SJ $= N-J+1,

SA $= A,

SB $= B.

constraint(N,I,A,J,B) :- A $= B.

constraint(N,I,A,J,B) :- I+A $= J+B.

constraint(N,I,A,J,B) :- I-A $= J-B.

Figure 4.5: Program to find a symmetric edge.

such a counterexample e – if the solver can prove that no such e exists, then the symmetry
must hold.

Figure 4.5 shows an ECLiPSe program that uses an arbitrary constraint solver via
eplex to find some σ(e) where e ∈ E. First we ask the program to find some e ∈ E.
An edge between the literals qi = a and qj = b has four parts: i, a, j, b. Each part must
lie within its bounds (1), and the pair of literals must be disallowed by at least one of
the constraints (2). Then we find the symmetric image of that edge (3). As before, the
symmetry is a variable symmetry that reflects the chessboard, σ([i, j]) = [N − i+ 1, j].

If the symEdge predicate succeeds, the variables SI,SA,SJ,SB represent an edge σ(e) =
([si, sa], [sj, sb]) where it is known that e ∈ E. The next step is to try to show that σ(e) 6∈
E. If this can be proved, then the symmetry does not hold and e is a counterexample;
however, if the solver exhausts the search space and fails, then no counterexample exists
and the symmetry holds.

Figure 4.6 shows the ECLiPSe program that succeeds if the edge e, represented by its
four components as above, is not in the set of edges E. An edge e is not in E if it lies
outside the bounds (1) or if it satisfies every constraint (2). After a symmetric edge is
found by symEdge, it is passed to notEdge to check whether it is truly in the set of edges.

We have tried this method with the four symmetries of N-queens that it can represent:
the identity symmetry, the variable reflection, the value reflection and the composition of
the latter two. In each of these cases, the solver fails to find a counterexample and proves
that the symmetry holds. The only bound given by the user for N is that it is positive.

4.9. A GENERAL FRAMEWORK FOR DETECTING PROPERTIES 83

notEdge(N,I,A,J,B) :-

% If any of these succeed, the element is outside the

% bounds.

% (1)

(1 $>= I+1 ; I $>= N+1 ;

1 $>= J+1 ; J $>= N+1 ;

1 $>= A+1 ; A $>= N+1 ;

1 $>= B+1 ; B $>= N+1) ;

% If all of these succeed, the element satisfies all

% constraints and therefore is in the set of edges.

% (2)

((A $>= B+1 ; B $>= A+1),

(A+I $>= B+J+1 ; A+I+1 $=< B+J),

(A-I $>= B-J+1 ; A-I+1 $=< B-J)).

Figure 4.6: Program to determine whether an edge is in the graph.

In addition, we have tried to disprove permutations that are not symmetries of the
problem. For example, a symmetry that arbitrarily interchanges the variables (or values)
of the problem. In this case, the solver finds a counterexample edge between the literals
q1 = 3 and q3 = 1 whose symmetric image is the edge between q1 = 3 and q2 = 1 under
the symmetry that swaps q2 and q3. The symmetric image is not a edge in the graph. It is
interesting to see the solver finds a counterexample for N = 3 and not for N = 1 or N = 2
as N must be at least 3 for a counterexample to be found. A similar counterexample is
found for the interchangeable value case.

Finally, if the diagonal constraints are removed from the program – changing the N-
queens problem into a variant of the Latin square problem – the above interchangeable
variable and interchangeable value symmetries are shown to hold.

As with the first proving method, it is yet unknown how this method can be extended to
other problems. One limitation already encountered is the inability to represent variable-
value symmetries. However, the use of a constraint solver in the proving program has
a benefit: any constraint that might appear in the CSP model can also be used in the
proving program as is. It is possible that this approach can be automated, although that
remains future work.

4.9 A General Framework for Detecting Properties

The framework presented in this chapter for detecting symmetries in constraint satisfaction
models can be generalised to other properties. The steps performed by the framework can
be tersely summarised as follows:

1. Find symmetries of several different instances of the model,

2. Generalise these instance symmetries to model symmetries,

3. Keep only those symmetries likely to apply to the model, and

4. Confirm that the symmetries do apply to the model.

84 CHAPTER 4. MODEL SYMMETRY DETECTION

There is nothing about this approach that is particular to symmetries. If we were to
replace the symmetry-specific parts with more general terms, the approach would be:

1. Find properties that apply to instances of the model,

2. Generalise these instance properties to properties of the model,

3. Keep only those properties likely to apply to the model, and

4. Confirm that the properties do apply to the model.

For different properties the individual steps might vary greatly. The framework is in the
same spirit as that used for generating implied constraints (Charnley et al., 2006), where
the solutions of small instances of a constraint program model are manipulated to find
additional logically true statements. In this section we discuss one potential application:
finding opportunities for caching during search in a constraint program. As in symmetry
detection, the knowledge of caching opportunities allows a search to exclude regions of the
search space without missing solutions. However, unlike symmetries, determining where
caching might be profitable is a difficult problem for which a practical automatic method
has never been achieved. An automatic method that could find caching opportunities for
an entire class of problems would be a very useful tool for improving the time required to
solve many combinatorial problems.

In the remainder of the section we outline very briefly how our framework for symmetry
detection could be generalised to find caching opportunities in constraint program models.

Caching is a modification to a search algorithm where the results of exploring some
subtrees are stored and reused wherever possible. A subtree t does not need to be explored
if a previously explored subtree p is known to contain all of the information that might
be found in t; that is, any solution found in t is equivalent to, or worse than, a solution
in p. Caching is only profitable, of course, where the number of occurrences of redundant
subtrees is enough that it offsets the expense in time and space of storing results and
detecting the redundancy of new subtrees to those already explored.

Example 49. Consider the CSP (X,D,C) where X = {a, b, c, d}, D(a) = 1..3,D(b) =
1..4,D(c) = 1..5,D(d) = 1..6 and the only constraint is a+ b+ c+ d = 10 (see Figure 4.7).
The search may proceed by asserting a = 1 and b = 4, leading to a subtree T1. In this
subtree there is the subproblem induced by the earlier assignments where c + d must be
made to equal 5. Later in the search, the initial decisions may be undone and instead the
search may try a = 2 and b = 3, leading to a subtree T2. The two subtrees T1 and T2 are
equivalent, because every assignment over the variables {c, d} that leads to a solution in
T1 also leads to a solution in T2 (and vice versa). The two induced subproblems in T1 and
T2 are the same.

Caching has proved very effective in reducing search time for some problems. For
the minimum number of open stacks problem, Garcia de la Banda and Stuckey (2007)
developed a dynamic programming approach that proved faster than any other previous
approaches to the problem. Smith (2005) also shows the gains achievable via caching in
constraint programming for satisfaction and optimisation problems.

4.9. A GENERAL FRAMEWORK FOR DETECTING PROPERTIES 85

a = 1 a 6= 1

b = 4 b 6= 4 a = 2 a 6= 2

b = 3 b = 3
T1

T2

Figure 4.7: Part of a search tree showing equivalent subtrees T1 and T2.

Let us see how to apply the proposed framework to caching. The first step of the
framework is to detect potential caching opportunities in individual instances. A simple
but effective way to do this is to find all solutions of the instance and look in the resulting
search tree for subtrees that are identical, as in the above example. Unfortunately, and
unlike symmetries, caching opportunities may only exist under certain orderings of the
variables during search. For this reason it is necessary to examine several search trees per
instance, one for each variable order under consideration. Although finding all solutions
of the problem and examining the search tree is expensive, the process needs to be carried
out only for small instances.

The second step consists of the generalisation of caching opportunities to the problem
class, which requires the notions of variable order and subproblem to be generalised. For
example, a problem may have two sets X and Y of variables, where the size of the sets
depends on the particular instance. A general variable ordering that is independent of
instance is “label X first and then label Y ”; a general subproblem is “the sum of Y must
be less than some constant c”. This step is the most difficult one. However, well-known
variable orderings, such as labelling a matrix row-by-row or column-by-column, can be
used as patterns to match against a concrete ordering for an instance. It is clear how such
general notions can be instantiated to particular instances similar to how parametrised
symmetries can be instantiated into instance symmetries.

This second step generalises the caching opportunities of instances into general patterns
of caching opportunity which are conceptually similar to parametrised symmetry patterns.
Because of this, the third step of filtering the potential caching opportunities can be done
simply by taking the intersection of the patterns found for different instances.

An implementation of the framework for detecting caching opportunities could be used
as a proposer of candidates for caching. In this form, the system would suggest potential
caching opportunities and the user would exploit whichever ones they thought would
be most useful, or easiest to use. The user would then be required to confirm that the
proposed redundancy is correct, or subtrees may be incorrectly ignored. It is not necessary
to confirm that the caching is actually profitable: the only damage that might be done is

86 CHAPTER 4. MODEL SYMMETRY DETECTION

that subtrees are stored where it will not be profitable but the search will find the same
solutions as it would otherwise.

4.10 Conclusions

We have discussed in this chapter the automatic detection of symmetries in constraint
program models. Unlike the symmetry detection method presented in the previous chap-
ter, the approach used here can find symmetries in a whole class of problems rather than
only in one instance at a time. This advantage greatly improves the practicality of the
method, as symmetry detection does not need to be run on every instance to be solved or
on large instances.

We have described a new framework that takes advantage of existing, and even future,
powerful detection methods defined for problem instances by generalising their results to
models without requiring these models to use any particular syntax or constraints. We have
described a very simple, and incomplete, implementation that requires the problem to have
matrix-like structure and only considers a pre-determined number of model symmetries:
those that correspond to permutations of the objects in the matrix. While this is a very
limited implementation of the general framework, it is nonetheless capable of detecting
almost all of the symmetries in the benchmarks we have tested. Of course, more complete
implementations of the framework will be able to detect even more kinds of symmetries.

While our approach has been shown to find almost all of the symmetries in our bench-
marks, there remain some symmetries that it cannot find. The main source of incomplete-
ness in our implementation is that only known symmetry patterns are found. However, it
does find some of the most commonly occurring forms of symmetry, and it is these kinds of
symmetry that we believe are the most profitable to exploit in symmetry breaking. This
will be discussed in the next chapter. The approach is also limited to finding symmetries
that appear in every instance of a CSP model. A symmetry that occurs due to the data
and therefore appears only in some instances (such as where the data part is a graph that
has a symmetry) cannot be found.

Automating the fourth step of the framework – proving that candidate symmetries
are symmetries of the model – remains a challenging problem. There has been some
previous work in the area, and we have demonstrated some simple approaches to tackle
the problem here, but nevertheless there is still the lack of a reliable, easily used solution.
It is fortunate that this lack is not a major barrier to the practical utility of the framework,
but the approach would be much improved if this gap was to be filled. We are exploring
other avenues to a solution to this problem, including automated theorem proving.

We have also discussed the generalisation of the framework to properties of constraint
programs other than symmetries. The approach behind the framework is not specific to
symmetry, and by replacing its components with others tailored to different properties,
the framework can be used to detect other useful features of programs. One such example
is caching, which like symmetry breaking is used to avoid searching redundant areas of
the search space and reduce search time. Although this application has not yet been
implemented, it shows the potential of this approach to be used for detecting properties
of constraint programs.

4.10. CONCLUSIONS 87

In summary, our contribution in this chapter is a new framework that exploits the
power of existing symmetry detection methods to find symmetries in CSP models. The
major benefit of this approach is that symmetry detection needs to be performed only
once per model, as the results apply to all instances of the model. In the next chapter,
we tackle the next stage of handling symmetry in constraint programming: the use of the
symmetries to improve the performance of searching for solutions.

88 CHAPTER 4. MODEL SYMMETRY DETECTION

Chapter 5

Symmetry Breaking

5.1 Introduction

To this point we have mainly discussed methods for finding symmetries in a given problem,
where the problem is stated either as a CSP instance or as a CSP model. In this chapter
we will discuss how the symmetries of a problem can be used.

The primary use of symmetries in constraint programming is for reducing the amount
of effort required to solve problems. This is possible because symmetries cause redundancy.
In particular, a symmetry causes a CSP to have redundant subtrees in its search space. A
subtree of the search space is redundant if it can be obtained from another subtree simply
by application of a symmetry, i.e. if it is symmetric to the other subtree. Redundant
subtrees need not be explored: if subtree A and subtree B are symmetric, then any
solution to the CSP that is contained in a subtree A has a symmetric counterpart in
subtree B, and if subtree A has no solutions then subtree B has no solutions; therefore,
only one of the subtrees A and B needs to be explored. By knowing what symmetries are
present in a problem, one can determine which subtrees are redundant and avoid exploring
them.

In this chapter we discuss symmetry breaking . Symmetry breaking is the term used to
describe methods for reducing search effort by avoiding the exploration of the subtrees in
the search space that are redundant due to symmetry. We explore some existing symmetry
breaking methods and present a new method whose focus is on speed and practical utility.
This new method, coined Lightweight Dynamic Symmetry Breaking (or LDSB), is an
extension of the shortcut Symmetry Breaking During Search (SBDS) method (Gent and
Smith, 2000) and fills a void in previous research by its being a viable generic symmetry
breaking method, able to be used easily and effectively for many kinds of problems. LDSB
focuses on symmetries that occur frequently in practice and that can be represented and
manipulated efficiently. Interestingly, these symmetries include those detected by our
symmetry detection method described in Chapter 4.

Our contributions are as follows. We identify common symmetry patterns that can
be broken efficiently, formally define LDSB as an instance of the shortcut SBDS method
for these symmetries, and prove that LDSB is correct and sometimes complete. Also, we
show how LDSB is extended to combine symmetries. We discuss the techniques used by
our ECLiPSe and Gecode implementations, techniques that can be incorporated into any

89

90 CHAPTER 5. SYMMETRY BREAKING

other constraint system. Finally, our experimental results show extremely good perfor-
mance for our Gecode implementation, and very good comparative results for our ECLiPSe

implementation: it significantly reduces the overhead required to exploit symmetries when
compared to other dynamic symmetry breaking methods, and does not significantly in-
crease the overhead when compared to a method without symmetry breaking. In fact, the
results are so promising that we believe LDSB is general and practical enough to be used
as a default dynamic symmetry breaking method. Parts of this chapter have previously
been published in (Mears et al., 2008a).

5.2 Background

The purpose of symmetry breaking is two-fold. In some cases, one may wish to find a
set of solutions where no two solutions are symmetrically equivalent. In other cases, one
may tolerate symmetrically equivalent solutions and employ symmetry breaking simply to
decrease the time to find one or many solutions to the problem. Let us introduce some
concepts that will help us to illustrate these aims.

Definition 6. Let S(P) be the set of symmetries of a CSP P . Two solutions A and B of
P are symmetrically equivalent if there exists a symmetry σ ∈ S(P) such that σ(A) = B.

Note that a solution is always symmetrically equivalent to itself regardless of its CSP,
since the identity symmetry is present in every CSP.

A search for the solutions of a CSP P using symmetry breaking will find a subset T
of the solutions of P . The set of solutions found is called a set of unique solutions if no
two distinct elements of the set are symmetrically equivalent.

Definition 7. Let Sols(P) be the set of solutions of a CSP P . A set T ⊆ Sols(P) is a set
of unique solutions of P if for every pair of solutions A,B ∈ T , A 6= B, A and B are not
symmetrically equivalent, i.e. there does not exist any σ ∈ S(P) such that σ(A) = B.

It is desirable for a symmetry breaking method to eliminate as much search as possible,
but it should find at least one representative of each solution.

Definition 8. A symmetry breaking method is correct if it finds a set T ⊆ Sols(P) of
solutions of a CSP P and for every solution A ∈ Sols(P) there exists a solution B ∈ T and
a symmetry σ ∈ S(P) such that σ(A) = B. We say that the solution B is a representative
of A.

Note that a solution may be a representative of many solutions.

Definition 9. A symmetry breaking method is complete if it is correct and it always finds
a set of unique solutions.

Note that correctness of a symmetry breaking method is a strictly weaker condition
than completeness: any symmetry breaking method that is complete must be correct, but
a symmetry breaking method may be correct without being complete. For example, a
symmetry breaking method that performs no symmetry breaking at all is correct but not

5.2. BACKGROUND 91

complete as it will find the entire set of solutions of a problem. If a CSP has no solutions
at all, then any symmetry breaking method is complete for that problem.

In the rest of this section we will discuss the ways in which the symmetry of a problem
can be used to improve the performance of search.

5.2.1 Reformulation

In some cases it is possible to transform a model that contains symmetries into an equiva-
lent model that has fewer symmetries or no symmetries at all. In general, a given problem
can be represented in many different ways and it is usually not possible to predict with
certainty which one will be the most efficient.

Example 50. Consider the simple CSP ({x1, x2, x3}, 1..10, {all different({x1, x2, x3}) ∧∑
i xi = 15}). A solution of this problem is a triple of distinct integers whose sum is

15. There is a variable symmetry in this model: the order of the variables is irrelevant
and x1 can be swapped with x2, x2 with x3 or x1 with x3. The symmetries will give rise
to equivalent subtrees in the search tree whose exploration would be redundant. Also,
multiple equivalent solutions would be found, such as (2, 3, 10) and (3, 10, 2). The prob-
lem can be remodelled using a set variable in the place of the three integer variables:
({s}, ℘({1..10}), {

∑
s = 15, card(s) = 3}). In this model, there is one set variable whose

values must sum to 15. See Figure 5.1 for some solutions of the two problems. Clearly,
the second formulation does not contain the variable symmetry of the first model, even
thought the two models are equivalent; i.e. every unique solution to the first model has a
corresponding solution in the second model and vice versa.

Unfortunately, even though a symmetry has been eliminated, it is not clear that this
model’s efficiency is any better than that of the first one. Whether it can be solved more
quickly depends on the constraint solver’s handling of integer and set constraints.

Integer model Set model
x1 x2 x3 s

1 4 10 {1, 4, 10}
6 7 2 {2, 6, 7}
8 4 3 {3, 4, 8}
4 1 10 {1, 4, 10}

Figure 5.1: Equivalent solutions of two different models for the same problem.

Despite this short-coming of reformulation, it has been applied successfully for some
problems. For Kirkman’s schoolgirl problem (a specialisation of the social golfers problem
of Section A.2), Smith (2001) found a new representation that reduces the amount of sym-
metry and, coupled with a symmetry breaking method, improved search time. Likewise,
Gent et al. (2005) gave a new model for the all-interval problem (problem 7 in CSPLib
(Gent and Walsh, 1999)) that removes all symmetry and leads to dramatically improved
performance.

92 CHAPTER 5. SYMMETRY BREAKING

Unfortunately, both of these improved models were derived for their specific problems.
There is no known truly general method that we know of for reformulating models to make
them more efficient, or less symmetric. Typically, finding a better model requires some
insight into the problem itself.

5.2.2 Static Symmetry Breaking

One can reduce the amount of symmetries present in a CSP model by adding, before
starting the search, constraints that prevent some, or all, of the redundant regions of
the search space from being explored. This kind of method is called a static symmetry
breaking method, following the terminology used in program analysis, because it is applied
before run-time.

Example 51.

Consider again the CSP ({x1, x2, x3}, 1..10, {all different({x1, x2, x3}) ∧
∑

i xi = 15})
discussed in Example 50. A complete symmetry breaking method can be obtained by
adding the ordering constraints {x1 ≤ x2,x2 ≤ x3}. These two less-than-or-equal con-
straints alter the CSP in such a way that the set of solutions to the altered CSP is a
complete set of unique solutions to the original CSP. The ordering constraints ensure that
only one representative of each solution will be found. For instance, in the original prob-
lem, each of the solutions {(2, 3, 10), (2, 10, 3), (3, 2, 10), (3, 10, 2), (10, 2, 3), (10, 3, 2)} is a
representative of the set but only the first of these six is permitted in the altered CSP.

It is always possible to add constraints to any CSP P to produce an altered CSP P ′

such that the solutions of P ′ form a complete set of unique solutions of P (Puget, 1993).
Crawford et al. (1996) presented a method to generate constraints that when added to
a model break variable symmetries. This requires adding one lexicographical constraint
for each variable symmetry of the CSP. This method has a major shortcoming in that
it requires one constraint per symmetry, rendering it infeasible when there are many
symmetries.

A set of lexicographical constraints for symmetry breaking can in some cases be sim-
plified without reducing their power. (Luks and Roy, 2002)

Example 52. Consider a CSP with a matrix of variables:

x1 x2 x3

x4 x5 x6

Assume that the rows are interchangeable; i.e. 〈x1, x2, x3〉 ↔ 〈x4, x5, x6〉. This symme-
try can be broken by asserting that 〈x1, x2, x3〉 is lexicographically less than 〈x4, x5, x6〉.
However, if it is known from the constraints of the problem that x1 6= x4, the same effect
can be obtained by the simpler constraint x1 < x4.

In particular, if there is a variable symmetry over variables that are constrained to be
different, the symmetry can be broken by a linear number of binary constraints instead of
the exponential number of constraints needed for the general case (Puget, 2005b). Such

5.2. BACKGROUND 93

an improvement is not possible in general, but in some cases subsets of the full set of
constraints can be used, resulting in incomplete symmetry breaking but still acceptable
performance. Some research has focused on the special case of row and column permuta-
tions in matrix models (e.g. (Frisch et al., 2003a)), as these symmetries occur frequently
in practice. Flener et al. (2002a) showed how a subset of the symmetries can be broken
by lexicographically ordering the rows and columns of the matrix and that this method
is effective in experiments. Another way to reduce the number of symmetry breaking
constraints required is to combine the approach with computational group theory (CGT);
Jefferson et al. (2006) showed that effect of lexicographical constraints can be simulated
at less expense by the use of the group theory system GAP (Group, 2006).

A fundamental problem with using lexicographical symmetry breaking constraints is
that it results in one solution being nominated in advance as the representative of a set of
symmetrically equivalent solutions; i.e. that solution is the one to be found by the search
and the others are excluded. This solution is not necessarily the solution that would have
been found first in an unaltered search.

To illustrate this point, let us consider a search tree where the leaves of the tree
are either failed nodes or solutions. The search finds the solutions from left to right in
the tree; let us call the solutions in order A, B, C, etc. Let us assume that A, B and
C are symmetrically equivalent. A symmetry breaking constraint may select C as the
representative to be found and exclude A and B. However, the search may require a great
deal of search before eventually exploring the path that leads to solution C, where without
the symmetry breaking constraint the solution A may have been found with little search.

In some cases it is possible to choose the symmetry breaking constraints in such a
way that they cooperate with the search strategies, this prevents the use of dynamic
heuristics. In another special case of piecewise symmetry, Heller et al. (2008) showed that
the drawback of static symmetry breaking where the variable ordering heuristic conflicts
with the added constraints can be partly overcome by randomising the heuristics and the
symmetry breaking constraints and restarting the search if it appears to be taking too
long.

In summary, static symmetry breaking methods can be used to greatly reduce search
effort without introducing significant overheads, thus yielding considerable speedups (see
e.g. (Flener et al., 2002a; Puget, 1993)). However, the effectiveness of the methods usually
relies on problem-specific solutions, and can vary dramatically due to conflicts with the
search heuristics.

5.2.3 Dynamic Symmetry Breaking

An alternative approach to symmetry breaking is to inform the search algorithm of a
problem’s symmetries so that it can alter its exploration of the search tree to exclude
symmetric regions. Such a method is called a dynamic symmetry breaking method, in
contrast to a static symmetry breaking method. In this section we will look at some of
the most commonly used dynamic symmetry breaking methods.

94 CHAPTER 5. SYMMETRY BREAKING

S-excluding search tree

The S-excluding search tree (Backofen and Will, 1999) posts additional constraints on
the right-hand branches of decision nodes during search. That is, once a subtree of a node
has been fully explored – on the node’s left branch – it adds a constraint on the right
branch to exclude any other subtrees that are symmetric to that one just explored.

The general case of a decision node in an S-excluding search tree is shown in Fig-
ure 5.2. Given a set S of symmetries, an S-excluding search tree is a finite, binary, rooted
and ordered tree where every left edge is labelled by a constraint c, every correspond-
ing right edge is labelled by ¬c, and every node v is labelled by the triple of constraints
(Cp, Cn, Cstore), where Cp and Cn are, respectively, the conjunction of left-branching (pos-
itive) and right-branching (negative) constraints on the path from the root to v, and Cstore

is the set of constraints in the CSP plus those dynamically added to exclude symmetric
solutions. Note that this structure of the search tree does not restrict the order in which
variables or values are explored, nor requires all values of a variable to be tried consecu-
tively. These dynamically added constraints are computed as follows. Suppose the search
is at some node v = (Cp, Cn, Cstore) that branches left by adding constraint c and right by
adding ¬c. Once the left subtree is fully explored, we can exclude anything symmetric to
c in the subtree rooted at v. For a symmetry s, let scon be the result of extending s to act
on constraints. For example, for a variable symmetry that maps variable x onto f(x) we
could define scon(x = v) = (s(x) = v) (see Section 6.3.1 for details). Then, on the right
branch, we would like to assert ¬scon(c) for every symmetry s that is active at v, i.e., for
every symmetry for which scon(Cp) holds. This is achieved by posting scon(Cp) ⇒ ¬scon(c)
on the right branch. This constraint can be read as: if the image of the constraints Cp

under scon holds, then the negation of the image of the branching constraint c under scon
can be posted.

(Cp, Cn, Cstore)

c ¬c

(Cp ∧ c, Cn, C
l
store) (Cp, Cn ∧ ¬c, Cr

store)

C l
store = P (Cstore ∧ c)

Cr
store = P (Cstore ∧ ¬c ∧

∧
s∈S

scon(Cp) ⇒ ¬scon(c))

Figure 5.2: A node in an S-excluding search tree (by Backofen and Will (1999)).

This theoretical method is very general and has been proved correct and complete, but
has never been implemented in its general form. In fact, as pointed out in Chapter 6, it
is not clear how scon is defined for many kinds of constraints. An instance of the method
for the particular case of x = v branching constraints has independently been defined and
implemented by (Gent and Smith, 2000). This instance is discussed in the next section.

5.2. BACKGROUND 95

n

Partial assignment A

x = v x 6= v, ∀s ∈ S : s(A) ⇒ ¬s(x = v)

Figure 5.3: Overview of SBDS decision point.

Symmetry Breaking During Search

The Symmetry Breaking During Search, or SBDS method can be seen as an instance of
the S-excluding search tree but was independently developed by Gent and Smith (2000).
The core idea of SBDS is the same as for the S-excluding search tree: once a region of the
search tree has been explored then, upon backtracking, any other symmetric region of the
search tree can be excluded.

Assume we have a CSP P = (X,D,C) that has the group of symmetries S. SBDS
is based on a depth-first search of a tree (see Figure 5.3) whose nodes have zero or two
children: the left one (labelled x = v) binds variable x to value v, while the right one
(labelled x 6= v) eliminates v from the domain of x, where x ∈ X and v ∈ d(X). As for
the S-excluding search tree, this structure of the search tree does not restrict the order
in which variables or values are explored. Consider a node n in the search tree with two
children as described above. Let the partial assignment leading to node n – the set of
labels of the left branches on the path from the root to n – be called A.

The search always follows the left child of n first, asserting x = v and exploring that
region of the search tree. Once that region has been explored, the search backtracks
to n and prepares to follow the right child. At this point, we know that every possible
assignment that includes A ∪ {(x = v)} has been examined – this is exactly what is
searched in the left subtree of n. Therefore, it is correct to exclude any assignment which
is symmetric to A ∪ {(x = v)}. SBDS excludes any such assignments by posting on the
right child of n, for each symmetry s ∈ S, a constraint of the form:

A ∧ ¬(x = v) ∧ s(A) ⇒ ¬s(x = v)

If the constraint solver permits the posting of “local” constraints (which are enforced
only in a certain region of the search tree) then the constraint can be simplified to:

s(A) ⇒ ¬s(x = v)

since the A and ¬(x = v) components are guaranteed to hold in that subtree (see Fig-
ure 5.3).

SBDS has been proved correct and complete (Backofen and Will, 1999); however, it
suffers from some practical issues. There are five main sources of potential inefficiency

96 CHAPTER 5. SYMMETRY BREAKING

in SBDS. The first is vacuous posting, i.e. posting constraint s(A) ⇒ ¬s(x = v) when
s(x = v) = (x = v) and s(A) holds, since this achieves no pruning (¬s(x = v) is equal
to the already posted ¬(x = v)). The second is multiple posting due to symmetries that
yield identical conditional constraints. The third is not eliminating broken symmetries,
i.e. those for which condition s(A) is inconsistent with A – these symmetries can never
give any more pruning. The fourth is not posting a constraint that could have achieved
pruning, for example by not considering every symmetry of the problem. The fifth and last
is that if the group of symmetries is large, a serious burden is placed on the user, who has
to provide a function describing the effect of each symmetry, and on the implementation,
which must process each symmetry in the conditional constraints.

The GAP-SBDS (Gent et al., 2002) extension of SBDS avoids these issues by using
the computational group theory system GAP to process the entire group of symmetries.
However, while GAP can handle large groups efficiently, the extra prunings (if any) might
not necessarily be enough to pay for its own significant cost. Furthermore, GAP is not
available in many constraint systems. The fifth problem can be alleviated by using only
a subset of the symmetries, as can be done for static symmetry breaking; for example, it
was shown by McDonald and Smith (2002) that applying only a subset of the symmetries
can improve search times. The main advantage of SBDS, and of all dynamic symmetry
breaking methods, is that it cooperates fully with the search’s variable and value ordering.
Unlike static symmetry breaking methods, the first solution that would be found without
symmetry breaking is always a representative chosen to be found by a dynamic symmetry
breaking method.

Shortcut SBDS

In the form described above, SBDS requires one constraint for every symmetry to be
broken. Unfortunately, and as mentioned before, even for small problems there may
be very many symmetries. For example, the Latin square problem of size 5 already
has 1728000 symmetries, and the number of symmetries grows exponentially as the size
increases. To reduce the overhead of SBDS, Gent and Smith (2000) proposed a shortcut
form of SBDS that posts fewer constraints. The “shortcut SBDS” methodology is based
on the generic SBDS, but requires a problem-specific implementation that reduces the
amount of work done.

Gent and Smith (2000) discussed the idea by means of the graph colouring problem.
This problem can be modelled as a CSP (X,D,C) where there is one integer variable
xi ∈ X for each vertex of the graph, D = 1..n where n is the maximum permitted
number of colours, and C enforces the condition that adjacent vertices (variables) must
have different colours (values). Apart from symmetries that may occur in the graph itself,
this CSP has interchangeable values because the colours are interchangeable. During the
search for a solution to this problem, assume that a partial assignment A has been made
and the search branches on xi = v and xi 6= v. The only useful symmetries at this point
– those that can yield any pruning of the search tree – are those symmetries s such that
s(A) = A. These symmetries are exactly those that change none of the colours used in
A. We can further reduce the set of useful symmetries by excluding any symmetry s
where s(x 6= v) = (x 6= v) – that is, any symmetry that eliminates already pruned values.
Because s must not change a colour that has already been used, v must be an unused

5.2. BACKGROUND 97

colour, and its image under s must also be an unused colour. In short, the only time
additional pruning can be performed is when a new colour is used, and if that fails, no
other unused colour should be tried in its place.

This chain of reasoning leads to a simple rule for this example that is easy to implement.
Unfortunately, it requires effort on behalf of the programmer to derive the reduced shortcut
rule. Further, the reasoning that leads to a simple rule for this problem does not transfer
to all problems, and the effort required to derive it must be then repeated for different
problems. As will be seen later in the chapter, our new method of symmetry breaking
is based on the idea of shortcut SBDS but relieves the programmer of this burden by
automating the process for certain common kinds of symmetry.

Symmetry Breaking by Dominance Detection

An alternative to the SBDS method is Symmetry Breaking by Dominance Detection, or
SBDD (Focacci and Milano, 2001; Fahle et al., 2001). Like SBDS, SBDD works by ex-
cluding redundant parts of the search space during the search, but its manner of doing so
is quite different.

At each node in the search, SBDD asks: is this node symmetrically dominated by a
node we have already seen? If the answer is yes, then the current node does not need
to be explored and the search backtracks; if the answer is no, then search continues as
normal. To fully understand how this works, we must understand the notion of no-goods.
The following definitions are based on those by Puget (2002).

Definition 10. A node w is a no-good with respect to a node n if:

• the subtree rooted at w is explored before n, and

• w is not an ancestor of n.

Therefore, the no-goods of a node n are the roots of the subtrees that are completely
explored before n is encountered.

Definition 11. Let n and w be nodes in a search tree, D be the set of branching decisions
leading to node w, and A be the partial assignment at n. Then, n is symmetrically
dominated by w if:

• w is a no-good with respect to n, and

• there exists a symmetry s such that s(D) is entailed by A.

The intuition behind this definition is as follows. The subtree rooted at w – all of whose
nodes are extensions of D – has been explored. By symmetry, anything that extends s(D)
for any symmetry s is symmetric to something that extends D and therefore need not be
explored. If A entails s(D) for some s, then n need not be explored. Any node that is
dominated by another node need not be explored.

A search algorithm using SBDD performs a check at every node n of the search space
to determine whether n is dominated. This check consists of determining the existence of a
symmetry s and a no-good w such that s(D) ⊣ A as described above. The implementation
of this check is key to the efficiency of SBDD. As for SBDS, SBDD cooperates well with
variable and value orderings.

98 CHAPTER 5. SYMMETRY BREAKING

Example 53. Assume the search is at node n where the partial assignment is A = {x1 =
2, x2 = 1, x3 = 3} and there are variable symmetries among x1, x2, x3 such that they are
mutually interchangeable. One possible dominance check is to examine the values taken
by x1, x2, x3 – in this case {1, 2, 3} and check if there exists a no-good w whose decisions
D apply to a subset of {x1, x2, x3} and where the values taken by {x1, x2, x3} are a subset
of those taken by the same variables in A.

SBDD can be used for problems where the number of symmetries is too many for
SBDS to handle efficiently. However, SBDD requires the dominance checking function to
be tailored for the problem at hand, or else a generic dominance check to be used (as
discussed in the next section). Using a problem-specific check imposes a burden on the
user, while using a generic check may increase the overhead of the search as the possibly
slow dominance check is performed at every search node.

Computational Group Theory and Dynamic Symmetry Breaking

Both SBDS and SBDD can benefit from being combined with a system for computational
group theory. In SBDS, the group theory system aids in the representation and manip-
ulation of a large number of symmetries: it becomes unnecessary to list every individual
symmetry of the problem. Instead, a programmer can list only the set of generating sym-
metries. For SBDD, group theory has been used to create a generic dominance checker
based only on the problem’s group of symmetries, reducing the algorithmic effort required
by the programmer. The two symmetry breaking methods, linked with the computational
group theory package GAP (Group, 2006), are known as GAP-SBDS (Gent et al., 2002)
and GAP-SBDD (Gent et al., 2003).

GAP-SBDS and GAP-SBDD have publicly available implementations in the ECLiPSe

constraint programming platform. However, they are not without drawbacks. GAP-SBDS
clearly raises the number of symmetries that can be efficiently handled with SBDS, taking
it from the order of thousands into the billions. Unfortunately, even billions is not enough
for highly symmetric problems where the size of the symmetry group grows exponentially
(e.g. the BIBD problem tested by Gent et al. (2003)). GAP-SBDD has been tried in
practice with very large groups, but has been shown in some cases to perform worse than
GAP-SBDD due to the interaction between SBDD and propagation on variables that are
not labelled by the search (Petrie and Smith, 2003; Petrie, 2003).

5.3 Lightweight Dynamic Symmetry Breaking

As discussed before, static symmetry breaking methods can be used to greatly reduce
the search effort when solving problems with symmetry. In some cases, the symmetry
breaking constraints can be simplified to give a set of simple constraints that can break
most, or all, symmetry. However, in general it is necessary to use complex lexicographical
ordering constraints that are more expensive to propagate. More importantly, the addition
of constraints can alter the order in which solutions are found; i.e. the solution that would
have been found first may be now excluded, and the search may have to waste time
exploring areas that are now fruitless due to the symmetry breaking constraints. Whether
this occurs can depend on the particular search heuristics used.

5.3. LIGHTWEIGHT DYNAMIC SYMMETRY BREAKING 99

On the other hand, dynamic symmetry breaking methods do not suffer from this
problem. Whichever solution would have been found first without symmetry breaking
will still be the first solution found. However, dynamic methods require extensions to the
search algorithm that can add considerable overhead to the search. The overhead comes
from the need to keep track of which symmetries are still active as the search progresses,
of from the need to check whether a given node is dominated. In general, to consider every
symmetry of the problem requires a great deal of processing, or the use of a potentially
time-consuming computational group theory system such as GAP.

Given this state of affairs, it is not clear to the uninitiated constraint modeller exactly
how to make use of symmetry breaking for their program. The wrong choice of method
may give worse performance than even the naive search; conversely, to avoid symmetry
breaking altogether may be to miss an opportunity to drastically improve search time. Of
course, one might try several symmetry breaking methods and compare their performance,
but this can require significant effort – especially if problem-specific static constraints or
dominance checks need to be provided – possibly for little gain.

This gap in constraint programming practice prompted our development of the Light-
weight Dynamic Symmetry Breaking method, or LDSB , which can be seen as an extension
of the shortcut SBDS method. The aim of LDSB is to provide a symmetry breaking
method with the following properties.

• Automation. LDSB can be used in a constraint program by simply specifying a
generating set of symmetries for the problem.

• Efficiency. LDSB often achieves good reductions in search time and only rarely
yields significant slowdowns, relative to the same search without symmetry breaking.

• Generality. LDSB can be applied in conjunction with any variable or value order-
ing, and to a problem with any kind of constraints, whether the task is to find one
or many solutions, and do so while maintaining efficiency and without the need to
modify the problem.

The desired properties of LDSB have guided us in making decisions regarding the
design of the algorithm. Our choices were also inspired by the shortcut SBDS method
(Gent and Smith, 2000), which restricts a complete and generic method for the sake of
efficiency. The decisions we made and their justifications are described as follows:

Dynamic Symmetry Breaking

LDSB performs symmetry breaking by altering the search algorithm, rather than al-
tering the problem itself. This is because we believe it is easier to achieve our three aims
using dynamic rather than static symmetry breaking; in particular, automation and gen-
erality are straightforward. The main challenge then is to increase efficiency by reducing
overhead. Of course, this does not position our method as a substitute for static symmetry
breaking. Instead, we believe that the two kinds of symmetry breaking are complementary
and constraint platforms should have both. Which kind is used will depend on whether a
small number of efficient constraints can be added to break the symmetries.

100 CHAPTER 5. SYMMETRY BREAKING

Focus on Common Symmetries

There are several patterns of symmetry that occur commonly in constraint programs,
are easy to represent and whose exploitation yields large reductions in search space. For
LDSB to be efficient it is vital that it performs well in the most common cases. This
concern has led to the choice of a representation for symmetries in LDSB that allows the
common kinds of symmetry to be expressed in a way that is efficient to represent and
manipulate. The advantage of this approach is a significant reduction in overhead since
LDSB does not require the expense of calling a separate general-purpose CGT package to
examine the symmetry groups and instead does only the simplest kinds of group theory.
Unfortunately, this comes at the expense of those symmetries that occur less frequently.
In particular, LDSB is unable to handle variable-value symmetries.

Combination of Symmetries

Any symmetry can be composed with another symmetry (or itself) to give another
possibly different symmetry. This raises a question for symmetry breaking methods: if
the user has specified a set of symmetries, should the method try to break new symmetries
formed by the composition of the given symmetries?

This an issue both of automation and efficiency. A symmetry breaking method that
does not consider composed symmetries can be made to behave like one that does by
requiring the user to explicitly specify the composed symmetries in addition to the original
set. However, we believe this requirement imposes an excessive burden on the user, as
the full set of symmetries may be very large. For example, the symmetries among n
interchangeable variables can be derived by composing only two symmetries, while the
full set has a total of n! symmetries. LDSB handles composed symmetries without the
user having to specify the compositions, both to ease the user’s burden and to possibly
reduce the search space without having to explicitly list every possible useful combination
of symmetries.

Incompleteness

As discussed previously, symmetry breaking is often used to improve the time taken
to find solutions to a problem, but may also be used to guarantee that only symmetrically
unique solutions will be found. We believe that the former is the primary motivation for
symmetry breaking and, as such, LDSB favours speed over completeness. As a result it is
not essential for LDSB to exclude all symmetric regions of the search space; it may explore
two subtrees that are symmetrically equivalent.

A benefit of this decision is that LDSB can use a simple representation for symmetries,
one that does not need to keep track of every potential opportunity for reducing the search
space. The simplicity of the representation leads to faster algorithms for processing the
symmetries during search.

5.4. COMMON SYMMETRY PATTERNS 101

5.4 Common Symmetry Patterns

Certain patterns of symmetry occur frequently in constraint programs. This is particularly
the case when the underlying problem has some structure – this was seen in Section 4.5.2,
where common symmetry patterns are described in terms of a matrix-like formation. As
described above, the efficient exploitation of these symmetries is crucial to the success of
a general-purpose symmetry breaking method.

The following patterns of symmetry are represented in LDSB. We have identified
them as occurring often in constraint programs, being amenable to efficient represen-
tation, and worthwhile to exploit during the search. In addition, these symmetries can be
detected automatically in CSP models: each symmetry pattern maps to one or more of the
parametrised patterns discussed in Section 4.5.2. The symmetry patterns are described in
terms of a given CSP P = (X,D,C).

5.4.1 Interchangeable Variables

A set of interchangeable variables is a set of variables W ⊆ X whose members are inter-
changeable. That is, any permutation of the variables in W is a symmetry of the problem.
This symmetry is an instance of the value swap pattern of Section 4.5.2, where the variable
indices are the values being swapped.

Example 54. Consider a CSP (X,D,C) where all variables xi ∈ X have the same domain
and the only constraint is

∑
xi
xi = a where a is a constant. All variables in X are

interchangeable.

5.4.2 Interchangeable Values

A set of interchangeable values is a set of values V ⊆ D whose members are interchange-
able. That is, any permutation of the values in V is a symmetry of the problem. This
symmetry is also an instance of the value swap pattern of Section 4.5.2, where it is the
value dimension whose values are swapped.

Example 55. Consider a task allocation problem where there is a set of n tasks, each to
be executed by an individual from a group of m people, and constraints to specify which
pairs of tasks cannot be performed by the same person. This problem can be modelled
by a set of integer variables x1, x2, . . . , xn, whose domain is 1, 2, . . . ,m and where xi = j
means that person j executes task i. The constraints are of the form xa 6= xb for every
pair of tasks (a, b) that must be performed by different people. In this problem the people
are interchangeable, and therefore the values 1, 2, . . . ,m form a set of interchangeable
values.

5.4.3 Interchangeable Variable Sequences

A set of interchangeable variable sequences is a set of sequences of variables whose mem-
bers are interchangeable. That is, for any two sequences a1, a2, . . . , an and b1, b2, . . . , bn,
the permutation σ(ai) = bi is a variable symmetry. This symmetry can represent some
instances of the value swap pattern, the dimension invert pattern and the dimension swap
pattern described in Section 4.5.2.

102 CHAPTER 5. SYMMETRY BREAKING

Example 56. Recall the Latin square problem (see Section A.8) of size n whose aim is to
fill an n× n matrix with values from 1 to n such that all of the values within a single row
or column are different. A natural model for this problem is to have one integer variable
whose domain is 1, 2, . . . , n for each of the n2 elements of the matrix, as in Example 40.
Consider each row or each column of the matrix as a sequence of variables. Under this
model, the set of rows is a set of interchangeable variable sequences and the set of columns
is another set of interchangeable variable sequences.

Another symmetry of the Latin square problem is that which reflects the matrix around
the diagonal, interchanging the variable at position (i, j) with the one at (j, i). This can
also be seen as a set of interchangeable variable sequences with two elements. If xij is the
variable at position (i, j), then the first sequence would be (x12, x13, x23, x14, . . .) and the
second would be (x21, x31, x32, x41, . . .).

5.4.4 Interchangeable Value Sequences

A set of interchangeable value sequences is a set of sequences of values whose members
are interchangeable. That is, for any two sequences a1, a2, . . . , an and b1, b2, . . . , bn, the
permutation σ(ai) = bi is a value symmetry. This symmetry can represent some instances
of the value swap pattern and the dimension invert pattern described in Section 4.5.2.

Example 57. Recall the N -queens problem, whose aim is to place n queens on an n× n
chessboard so that no queen attacks another. This problem can be modelled with one
integer variable per queen, each with domain 1, 2, . . . , n. A value symmetry of this model
replaces each value x with n−x+1, representing a reflection of the chessboard. This sym-
metry can be seen as a two-element set of interchangeable value sequences: (1, 2, . . . , ⌊n2 ⌋)
and (⌈n2 ⌉+ 1, ⌈n2 ⌉+ 2, . . . , n).

5.5 Symmetry Representation and Search

The search algorithm of LDSB is similar to that of SBDS: it is a depth-first exploration
of the search space, where every branching point is a binary decision between x = v and
x 6= v for some variable x and some value v in the domain of x. Like SBDS, LDSB also
posts constraints on the x 6= v branch to break symmetries. However, unlike SBDS and
like the shortcut form of SBDS, not every symmetry is used to post constraints at every
decision node. Only symmetries that are active will be used to calculate the additional
symmetry breaking constraints. As in the shortcut SBDS, a symmetry s as active in the
context of a partial assignment A if s(A) = A. Figure 5.4 shows an overview of a decision
point in an LDSB search.

At each search node, the left branch is examined first. The branching constraint
x = v is posted, and each symmetry representation is updated, depending on its type as
described below. Note that no pruning is done on the left branch. After the subtree under
the left branch is completed, the right branch is tried. The branching constraint x 6= v
is posted, and symmetry breaking constraints are also computed and posted. Again, the
details depend on the kind of symmetry.

We have implemented LDSB in the ECLiPSe and Gecode constraint programming plat-
forms. The implementations are similar but vary in some specific points. In the remainder

5.5. SYMMETRY REPRESENTATION AND SEARCH 103

Partial assignment A

x = v x 6= v, s(x 6= v) (for active s)

Figure 5.4: Overview of an LDSB decision point.

of this section, for each common symmetry pattern, we describe the representation of the
symmetry in our two implementations and the algorithms to process it, and prove that
the algorithm is correct (finds at least one representative for every solution).

5.5.1 Interchangeable Variables

Consider a CSP P = (X,D,C), where W ⊆ X is a set of interchangeable variables. Let
r be any permutation of W , and let fr denote both its induced solution symmetry and
(by an abuse of notation) its associated solution-preserving function σfr . Let the search
be at node n with current assignment α, and let G(W,n) be the group of permutations
of W that are active at node n (i.e., any r for which fr(α) = α). Let us also assume
that none of the variables in W appears in α (i.e. scope(α) ∩ W = ∅). It is clear that
G(W, root) = G(W,n), i.e. all permutations of W are active at any node from the root to
n. In the following we will describe how the program variable ListW, which represents the
set W , changes during search.

Suppose now that the first child of n is labelled x = v with associated assignment
β = α ∪ {x = v} where x ∈ W , i.e. x is the first variable in W to occur in β. Clearly,
fr(β) 6= β for every r such that r(x) 6= x and, therefore, every such fr is broken (i.e.,
no longer active) at node x = v. As a result, ListW does not need to represent these
broken symmetries any longer, and they are deleted simply by removing x from ListW.
Note that fr might become active again at some descendant n′ of node x = v. This can
occur if there is a set V ⊂ W , x ∈ V with two or more variables and the assignment at n′

contains y = v : y ∈ V . Despite this, eliminating fr after node n is not a problem since
any potentially lost pruning will be done by another symmetry; i.e. there must be another
variable symmetry r′ with r′(y) = y : y ∈ V and r′(z) = r(z) : z /∈ V that has remained
active throughout the path to n′, is represented by the remaining list ListW \V , and in
the current path is broken by the same constraints as r.

Upon backtracking, the second child of node n will be labelled x 6= v. At this point,
for any r ∈ G(W,n) such that fr(β) 6= β, we add ¬r(x) = v and so doing prune every
part of the subtree symmetric to β under fr. This is exactly the same as adding Y \= v

for every Y in ListW and it is correct since, for every such Y, the variable symmetry
fr(x = v) = (y = v) is represented by ListW.

104 CHAPTER 5. SYMMETRY BREAKING

ListW= [x1, x2, x3, x4]

ListW= [x1, x2, x3, x4]

y1 = 1 y1 6= 1

ListW= [x2, x3, x4]

x1 = 1 x1 6= 1

ListW= [x2, x3, x4]

y2 = 2 y2 6= 2

ListW= [x3, x4]

x2 = 1 x2 6= 1

ListW= [x4]

x3 = 4 x3 6= 4

x2 6= 1
x3 6= 1
x4 6= 1

x3 6= 1
x4 6= 1

x4 6= 4

Figure 5.5: Evolution of ListW during search for interchangeable variables. Symmetry
breaking constraints are shown to the right of x 6= v nodes.

In summary, at every decision node n that branches on x = v: on the left branch, x is
removed from ListW (if it is present); on the right branch, if x is in ListW then y 6= v is
posted for every y in ListW.

Example 58. Consider the CSP ({x1, x2, x3, x4, y1, y2}, {1, 2, 3}, C) where there is the
set of interchangeable variables W = {x1, x2, x3, x4}. Figure 5.5 shows the effect on
ListW of each particular binding. Importantly, ListW only changes whenever the binding
involves a variable in ListW. Also, note that once x1 = 1 is posted, the variable symmetry
r ≡< x1, x3 >↔< x2, x4 > is not active, since it maps x1 to x2; that is why it is not
represented by ListW at node x1 = 1. However, r becomes again active at node x2 = 1.
The fact that ListW does not represent r at node x1 = 1 is however not a problem, since
it does represent the symmetry < x3 >↔< x4 > which will achieve as much pruning as r
once both x1 and x2 have the same value.

LDSB is correct for a set of interchangeable variables. To prove that LDSB breaks
interchangeable variable symmetries correctly, we rely on the correctness of an S-excluding
search tree, shown by Backofen and Will (1999). We show merely that LDSB does a subset
of the pruning done by an S-excluding search tree and is therefore correct. Note that all

5.5. SYMMETRY REPRESENTATION AND SEARCH 105

extra pruning added by LDSB occurs on the right branch, where x ∈ W . Therefore, we
need only to focus on this branch.

Lemma 7. For the CSP (X,D,C) with the set of interchangeable variables W ⊆ X, and
at a node which branches on x = v and x 6= v where x ∈ W , LDSB prunes on the right
branch a subset of the prunings done in an s− excluding search tree.

Proof. First, let W ′ = W \L, where L is the set of variables that have been used in a left
branch on the path from the root to the current branching node. By definition, x is in
either L or W ′ – it cannot be in neither or both. If x ∈ L, then x already has a value and
the search would not branch on x = a; therefore, x ∈ W ′.

Let G be the group of symmetries due to the interchangeable variables W . An s −
excluding search tree posts on the right branch s(Cp) → ¬s(x = v) for each symmetry
s ∈ G, where Cp is the set of left branch constraints posted on the path from the root to
current branching node. We assume that every left branch is of the form Var = Val and
therefore Cp is a set of literals.

LDSB posts ¬(w = v) for all w ∈ W ′. To show that the pruning done by LDSB is
a subset of an s − excluding search tree’s, we must show that for each w there exists a
symmetry s ∈ G for which s(Cp) holds and s(x) = w. To do so, for any given w ∈ W ′,
we construct a symmetry s such that s(x) = w and show both that s(Cp) holds and that
s ∈ G. First, we define s(x) = w, s(w) = x and s(y) = y for all y ∈ X \ {x,w}. It can
be seen that neither x nor w is involved in any literal in Cp: if x is involved in a literal
of Cp, then x ∈ L and therefore x 6∈ W ′, which contradicts the assumption made earlier;
similarly, if w is involved in Cp, then w 6∈ W ′ which contradicts the definition of w. Since
neither x nor w is involved in Cp, then s(Cp) = Cp. Since Cp is known to hold, s(Cp) also
holds.

The remaining step is to show that s ∈ G. Since G contains every permutation of the
variables of W , it must include s (which interchanges only x and w) because x and w both
are in W .

LDSB’s symmetry breaking for interchangeable variables is optimally efficient, i.e.
it does not post vacuous constraints, does not perform multiple postings, eliminates all
broken symmetries, and is complete. Thus, it builds the same search tree as SBDS for a
single set of interchangeable variables.

Lemma 8. A search tree produced by LDSB for CSP (X,D,C) with interchangeable
variables W has no distinct symmetric nodes. That is, for any two distinct nodes nα and
nβ in the search tree, there is no symmetry σr ∈ G(W) such that σr(α) = β.

Proof. We will prove the above proposition by contradiction. Assume the existence of two
distinct nodes in the search tree, nα and nβ, and some σr ∈ G(W) such that σr(α) = β.
We will show that such an arrangement cannot occur.

Let nγ be the lowest common ancestor of nα and nβ, and let us denote its children as
nx=v and nx 6=v. Without loss of generality, let nα be a descendant of nx=v (or that node
itself) and let nβ be a descendant of nx 6=v (or that node itself). Therefore, x = v ∈ α,
x 6= v ∈ β and r(x) = v ∈ β.

106 CHAPTER 5. SYMMETRY BREAKING

It can be seen that x 6= r(x), because if x = r(x) then β must contain both x = v and
x 6= v, which is impossible. Since r(x) 6= x, then x must be in W . Furthermore, x must
be in W ′ because it is in W and has not yet been given a value by the search.

Let us denote r(x) as y and first consider the case where y ∈ W ′. Let P (W) be the
set of permutations of W . Since x and y are both in W ′, and by definition LDSB asserts
r(x) 6= v at nx 6=v for all r ∈ P (W ′), y = v will be pruned at node nx 6=v and therefore nβ

cannot be reached. This means that y cannot be in W ′.

Let us now consider the case where y /∈ W ′. Consider the sequence [x1, x2, . . . , xn]
where xi = ri(x) and n is the smallest positive integer such that rn(x) = x. Note that
y = x1 and x = xn. There exists some smallest 1 ≤ i ≤ n − 1 such that xi /∈ W ′ and
xi+1 ∈ W ′.

The value given to y must be v, because y = v ∈ β. If x2 /∈ W ′, then x2 must also have
the value v, because x2 = v ∈ β. By induction, 1 ≤ j ≤ i, xj has the value v. Therefore,
xi must have the value v and xi+1 = v ∈ β. Because both x and xi+1 are in W ′, LDSB
will assert xi+1 6= v at nx 6=v as before. Clearly, this is impossible.

Therefore, y cannot be in W ′ and y cannot be not in W ′; so no such tree exists.

5.5.2 Interchangeable Values

Interchangeable values are handled very similarly to interchangeable variables. Consider
a CSP P = (X,D,C), where W ⊆

⋃
d∈D d is a set of interchangeable values. Let r be any

permutation of W , and let fr denote both its induced solution symmetry and (by an abuse
of notation) its associated solution-preserving function σfr . Let the search be at node n
with current assignment α, and let G(W,n) be the group of permutations of W that are
active at node n (i.e., any r for which fr(α) = α)). Let us also assume that none of the
values in W appears in α. It is clear that G(W, root) = G(W,n), i.e. all permutations of
W are active at any node from the root to n. In the following we will describe how the
program variable ListW, which represents the set W , changes during search.

Suppose now that the first child of n is labelled x = v with associated assignment
β = α ∪ {x = v} where v ∈ W , i.e. v is the first value in W to occur in β. Clearly,
fr(β) 6= β for every r such that r(v) 6= v and, therefore, every such fr is broken (i.e., no
longer active) at node x = v. As a result, ListW does not need to represent these broken
symmetries any longer, and they can be deleted simply by removing v from ListW.

Upon backtracking, the second child of node n will be labelled x 6= v. At this point,
for any r ∈ G(W,n) such that fr(β) 6= β, we add ¬x = r(v) and in so doing prune
every part of the subtree symmetric to β under fr. This is exactly the same as adding
X \= w for every w in ListW and it is correct since, for every such w, the variable symmetry
fr(x = v) = (x = w) is represented by ListW.

In summary, at every decision node n that branches on x = v: on the left branch, v is
removed from ListW (if it is present); on the right branch, if v is in ListW then x 6= w is
posted for every w in ListW.

Example 59. Consider the CSP (X, 1..10, C) where W = {1, 2, 3, 4} are interchangeable
values. Figure 5.6 shows the effect on ListW of each particular binding. Importantly,
ListW only changes whenever the binding involves a value in ListW.

5.5. SYMMETRY REPRESENTATION AND SEARCH 107

ListW= [1, 2, 3, 4]

ListW= [1, 2, 3, 4]

x1 = 5 x1 6= 5

ListW= [2, 3, 4]

x2 = 1 x2 6= 1

ListW= [2, 3, 4]

x3 = 6 x3 6= 6

ListW= [3, 4]

x4 = 2 x4 6= 2

ListW= [4]

x5 = 3 x5 6= 3

x2 6= 2
x2 6= 3
x2 6= 4

x4 6= 3
x4 6= 4

x5 6= 4

Figure 5.6: Evolution of ListW during search for interchangeable values. Symmetry break-
ing constraints are shown to the right of x 6= v nodes.

LDSB is correct for a set of interchangeable values. As for interchangeable variables,
to prove that LDSB breaks interchangeable value symmetries correctly, we rely on the
correctness of an s− excluding search tree, shown by Backofen and Will (1999). We show
merely that LDSB does a subset of the pruning done by an s− excluding search tree and
is therefore correct.

Lemma 9. For the CSP (X,D,C) with the set of interchangeable values W ⊆ D, and
at a node which branches on x = a and x 6= a where a ∈ W , LDSB prunes on the right
branch a subset of the prunings done in an s− excluding search tree.

Proof. First, let W ′ = W \ L, where L is the set of values that have been used in a left
branch on the path from the root to the current branching node. By definition, a is in
either L or W ′ – it cannot be in neither or both. If a ∈ L then LDSB does no pruning
and is therefore correct. For the remainder of the proof, assume a ∈ W ′.

Let G be the group of symmetries due to the interchangeable values W . An s −
excluding search tree posts on the right branch s(Cp) → ¬s(x = a) for each symmetry
s ∈ G, where Cp is the set of left branch constraints posted on the path from the root to
current branching node. We assume that every left branch is of the form Var = Val and
therefore Cp is a set of literals.

108 CHAPTER 5. SYMMETRY BREAKING

LDSB posts ¬(x = w) for all b ∈ W ′. To show that the pruning done by LDSB is
a subset of an s − excluding search tree’s, we must show that for each w there exists a
symmetry s ∈ G for which s(Cp) holds and s(v) = w. To do so, for any given w ∈ W ′,
we construct a symmetry s such that s(v) = w and show both that s(Cp) holds and that
s ∈ G. First, we define s(v) = w, s(w) = v and s(y) = y for all y ∈ D \ {v,w}. It can
be seen that neither v nor w is involved in any literal in Cp: if v is involved in a literal
of Cp, then v ∈ L and therefore v 6∈ W ′, which contradicts the assumption made earlier;
similarly, if w is involved in Cp, then w 6∈ W ′ which contradicts the definition of w. Since
neither v nor w is involved in Cp, then s(Cp) = Cp. Since Cp is known to hold, s(Cp) also
holds.

The remaining step is to show that s ∈ G. Since G contains every permutation of the
values of W , it must include s (which interchanges only v and w) because v and w both
are in W .

As for interchangeable variables, LDSB optimally efficient for interchangeable values,
i.e. it does not post vacuous constraints, does not perform multiple postings, eliminates
all broken symmetries, and is complete. Thus, it builds the same search tree as SBDS for
a single set of interchangeable values.

Lemma 10. A search tree produced by LDSB for CSP (X,D,C) with interchangeable
values W has no distinct symmetric nodes. That is, for any two distinct nodes nα and nβ,
there is no symmetry σr ∈ G(W) such that σr(α) = β.

Proof. We will prove the above proposition by contradiction. Assume the existence of two
distinct nodes in the search tree, nα and nβ, and some σr ∈ G(W) such that σr(α) = β.
We will show that such an arrangement cannot occur.

Let nγ be the lowest common ancestor of α and β, with the children of nγ being nx=v

and nx 6=v. Without loss of generality, let nα be a descendant of nx=v (or that node itself)
and let nβ be a descendant of nx 6=v (or that node itself). Therefore, x = v ∈ α, x 6= v ∈ β
and x = r(v) ∈ β.

Clearly, v 6= r(v) because otherwise β would contain both x = v and x 6= v. Since
r(v) 6= v, then v ∈ W . Furthermore, v must be in W ′ since if there was some y = v before
nγ , then β would contain both y = v and y = r(v), which is impossible.

Let us denote r(v) as e and first consider the case where e ∈ W ′. Let P (W) be the
set of permutations of W . Since v and e are both in W ′, and by definition LDSB asserts
x 6= r(v) at nx 6=v for all r ∈ P (W ′), x = e will be pruned at node nx 6=v and therefore nβ

cannot be reached. This means that e cannot be in W ′.
Let us now consider the case where e /∈ W ′. This means there is some a = e before nγ

and therefore β contains both a = e and a = r(e). However, r(e) 6= e and therefore this is
impossible.

Since e is neither in nor out of W ′, no such tree exists.

5.5.3 Interchangeable Variable Sequences

Consider a CSP P = (X,D,C), where S is a set of simultaneously interchangeable variable
sequences for P . For any two sequences s1, s2 ∈ S, let r be the permutation (s1 ↔ s2), and
fr denote both its induced solution symmetry and (by an abuse of notation) its associated

5.5. SYMMETRY REPRESENTATION AND SEARCH 109

solution preserving function, previously denoted by σfr . Let the search again be at node n
with current assignment α, and let G(S, n) be the subgroup of interchangeable sequences
of S that are active at node n. Let us also assume that none of the variables in vars(S)
appears in α (i.e. scope(α) ∩ vars(S) = ∅). As before, G(S, root) = G(S, n) and therefore
all interchangeable sequences in S are active at any node from root to n. In the following
we will describe how the program variable Seqs, which represents the set S, changes during
search.

Suppose now that the first child of n is labelled x = v with associated assignment
β = α ∪ {x = v} where x ∈ vars(S), i.e. x is the first variable in vars(S) to occur in β.
Clearly, fr(β) 6= β for every r such that r(x) 6= x and, therefore, every such fr is not active
at node x = d. At this point, and analogously to what we did for broken interchangeable
variable symmetries, one could remove from Seqs every list that contains X. While doing
this is correct, it eliminates too many symmetries, since this time the remaining sequences
might not represent symmetries fr′ that achieve as much pruning as the reactivated fr.
Instead, we will simply keep all sequences, even if variables in them are ground. This
allows our implementation to take advantage of reactivated symmetries.

Example 60. Consider a search where Seqs=[[X,Y,Z],[A,B,C],[U,V,W]], represent-
ing (among others) symmetry r = 〈x, y, z〉 ↔ 〈a, b, c〉. At node X=1 list Seqs becomes
[[1,Y,Z],[A,B,C],[U,V,W]], at which point r is broken. However, if the next node
binds A to 1, r is reactivated. If the sequence [X,Y,Z] had been removed from Seqs, the
symmetry would not be detected. As we will see later, by leaving the sequences intact
the reactivated symmetry can be detected from the new instantiation of Seqs=[[1,Y,Z],
[1,B,C], [U,V,W]].

Upon backtracking, the second child of node n will be labelled x 6= v. At this point,
for any r ∈ G(S, n) such that fr(β) 6= β, we add ¬r(x) = v and, thus, prune every part of
the subtree symmetric to β under fr. This is achieved by finding every sequence S ∈ Seqs

that contains X, and comparing S to every other sequence R ∈ Seqs to determine whether
S ↔ R is an active symmetry for α. This is true if for every pair of corresponding elements
A and B in S and R, either variable A has the same value as variable B or neither variable
has a fixed value. For every R for which this is true, we add Y \= v, where Y occurs in R

in the same position as X in S.

In summary, at every decision node n that branches on x = v: on the left branch,
every occurrence of x in Seqs is replaced by v; on the right branch, if x is in a sequence
S in Seqs then every other sequence T is checked to see if the symmetry between S and
T is active and if so, y 6= v is posted for the variable y in the position in the sequence
corresponding to x.

LDSB is correct for interchangeable variable sequences. As previously, to prove that
LDSB breaks interchangeable variable sequence symmetries correctly, we rely on the cor-
rectness of an s − excluding search tree, shown by Backofen and Will (1999). We show
merely that LDSB does a subset of the pruning done by an s− excluding search tree and
is therefore correct.

Consider the CSP P = (X,D,C) with the set S of interchangeable sequences of vari-
ables:

110 CHAPTER 5. SYMMETRY BREAKING

{α1, α2, . . . , αn}
{β1, β2, . . . , βn}
{γ1, γ2, . . . , γn}
...

Let G be the group of symmetries due to the interchangeable sequences in S. By an abuse
of notation we say that a variable is in S if it is in any sequence in S. At a given node the
search branches on a variable x. If x /∈ S, then LDSB does no pruning and is therefore
correct, so we consider only nodes that branch on some x ∈ S.

Lemma 11. For the CSP (X,D,C) with the set S of interchangeable sequences of vari-
ables, and at a node which branches on x = v and x 6= v where x ∈ S, LDSB prunes on
the right branch a subset of the prunings done in an s− excluding search tree.

Proof. Without loss of generality, let us assume that x is αi and consider only the sym-
metry that interchanges the α sequence with the β sequence. LDSB will assert βi 6= v on
the right branch only if, for all 1 ≤ j ≤ n, αj ≈ βj , where (v ≈ w) ≡ (nonground(v) ∧
nonground(w)) ∨ (v = w). If this property is not true then LDSB does no pruning and is
therefore correct; we assume from this point that the property is true.

To show that the pruning done by LDSB is a subset of an s− excluding search tree’s,
we must show that if the above property is true, then there exists a symmetry s ∈ G
for which s(Cp) holds and s(αi) = βi. To do so, we construct a symmetry s such that
s(αi) = βi and show both that s(Cp) holds and that s ∈ G. First, we define s(αi) = βi,
s(βi) = αi and s(y) = y for all y ∈ X \ {αi, βi}.

For s(Cp) to hold, it must be the case that, for every (y = w) ∈ Cp, s(y = w) must
also hold. For each such y = w, there are two cases: either s maps y to itself, or s maps
y to another variable. If s maps y to itself, then s(y = w) obviously holds. Assume then
that s maps w to another variable. There are two cases: either s(y) is ground or s(y) is
not ground. If s(y) is not ground, then the earlier property is violated: y is ground and
must be some αj (or βj) while its corresponding variable βj (or αj) is not ground. Assume
then that s(y) is ground. Then s(y) has the same value as y (by earlier property) and
s(y = w) holds because it is the same as y = w = s(y).

The remaining step is to show that s ∈ G. Since G contains every permutation due to
S, it must include s (which interchanges only the α and β sequences) because the α and
β sequences are in S.

LDSB is, however, not perfectly efficient: it might post vacuous constraints whenever
the two sequences contain the same variable in the same position. This is however a
rare case and modifying the algorithm to avoid posting vacuous constraints will often
result in a loss of performance (based on an experimental evaluation whose results are
not shown). LDSB might also perform multiple postings whenever there is more than one
symmetry that maps variable X to Y. It does not eliminate broken symmetries from its
representation, since it might need them to detect reactivated symmetries. And finally,
as shown in Figure 5.7, it is incomplete due to its adherence to the shortcut method, in
contrast to the cases of variable and value interchangeability. As a result, LDSB and SBDS
might not build the same search tree (depending on the choice of variable order followed
by the search strategy) whenever simultaneous variable interchangeability is considered.

5.5. SYMMETRY REPRESENTATION AND SEARCH 111

A = 1

C \= 1C=1

A \= 1

B = 2 B \= 2

Seqs = [[1,B],[C,D]]

Seqs = [[1,2] , [1,D]]

Seqs = [[1,B], [1,D]]

C \= 1

Seqs = [[A,B],[C,D]]

D \= 2

A = 1

C=1

A \= 1

B = 2 B \= 2

Seqs = [[1,B],[C,D]]

Seqs = [[1,B], [1,D]]

Seqs = [[1,2], [C,D]]

C \= 1

Seqs = [[A,B],[C,D]]

Seqs = [[1,B],[C,D]]

Figure 5.7: Impact of the choice of search heuristic on completeness. The highlighted
nodes represent the same constraint store, but LDSB’s pruning depends on the search
order.

5.5.4 Interchangeable Value Sequences

Consider a CSP P = (X,D,C), where S is a set of simultaneously interchangeable value
sequences for P . For any two sequences s1, s2 ∈ S, let r be the permutation (s1 ↔ s2), and
fr denote both its induced solution symmetry and (by an abuse of notation) its associated
solution preserving function, previously denoted by σfr . Let the search again be at node n
with current assignment α, and let G(S, n) be the subgroup of interchangeable sequences
of S that are active at node n. Let us also assume that none of the values in any sequence
of S appears in α. As before, G(S, root) = G(S, n) and therefore all interchangeable
sequences in S are active at any node from root to n. In the following we will describe
how the program variable Seqs, which represents the set S, changes during search.

It is an invariant of Seqs that no sequence in Seqs contains a value in the range of
the current assignment α. That is, every value in Seqs has been used in a left branch,
and all symmetries between pairs of sequences are active. Therefore, whenever a node n
is labelled x = v, we remove any sequence containing v from Seqs. Upon backtracking, to
node x 6= v, we find every sequence S in Seqs that contains v, and for every other sequence
R in Seqs, add X \= w, where w occurs in R in the same position as v in S.

LDSB is correct for interchangeable value sequences. As previously, to prove that
LDSB breaks interchangeable value sequence symmetries correctly, we rely on the cor-
rectness of an s − excluding search tree, shown by Backofen and Will (1999). We show
merely that LDSB does a subset of the pruning done by an s− excluding search tree and
is therefore correct.

Consider the CSP (X,D,C) with the set S of interchangeable sequences of values:

{a1, a2, . . . , an}
{b1, b2, . . . , bn}
{c1, c2, . . . , cn}
...

We assume the sequences in S are pairwise disjoint. Let G be the group of symmetries
due to the interchangeable sequences in S. By an abuse of notation we say that a value
is in S if it is in any sequence in S. At a given node the search branches on x = v and
x 6= v. If v /∈ S, then LDSB does no pruning and is therefore correct, so we consider only
nodes that branch on some x = v where v ∈ S.

112 CHAPTER 5. SYMMETRY BREAKING

Lemma 12. For the CSP (X,D,C) with the set S of interchangeable sequences of values,
and at a node which branches on x = v and x 6= v where v ∈ S, LDSB prunes on the right
branch a subset of the prunings done in an s− excluding search tree.

Proof. First, let L be the set of values that have been used in a left branch on the path
from the root to the current branching node. Let S′ = {s|s ∩ L = ∅}; in other words, a
sequence is in S′ only if none of its element values have been used on a left branch. If
v /∈ S′, then LDSB does no pruning and is therefore correct. Assume then that v ∈ S′.

Let G be the group of symmetries due to the interchangeable sequences of values S. An
s− excluding search tree posts on the right branch s(Cp) → ¬s(x = v) for each symmetry
s ∈ G, where Cp is the set of left branch constraints posted on the path from the root to
current branching node. We assume that every left branch is of the form Var = Val and
therefore Cp is a set of literals.

Assume without loss of generality that value v is ai. LDSB posts ¬(x = ρi) for each
sequence ρ ∈ S′. To show that the pruning done by LDSB is a subset of an s− excluding
search tree’s, we must show that for each ρ there exists a symmetry s ∈ G for which s(Cp)
holds and s(ai) = ρi. To do so, for any given ρ ∈ S′, we construct a symmetry s such that
s(ai) = ρi and show both that s(Cp) holds and that s ∈ G. First, we define s(ai) = ρi,
s(ρi) = ai and s(y) = y for all y ∈ D \ {ai, ρi}. It can be seen that, for any j, neither
aj nor ρj is involved in any literal in Cp: if aj is involved in a literal of Cp, then aj ∈ L
and therefore aj 6∈ S′, which contradicts the assumption made earlier; similarly, if ρj is
involved in Cp, then ρj 6∈ S′ which contradicts the definition of ρj. Since neither aj nor
ρj is involved in Cp, then s(Cp) = Cp. Since Cp is known to hold, s(Cp) also holds.

The remaining step is to show that s ∈ G. Since G contains every permutation of the
sequences of values in V , it must include s (which interchanges only the ai sequence and
the ρi sequence) because both the ai sequence and the ρi sequence are in S.

LDSB might post vacuous constraints for interchangeable value sequences whenever
two sequences contain the same value in the same position. Avoiding this will often result
in loss of performance (again based on data not shown). It might also perform multiple
postings, whenever there is more than one symmetry that maps value v to w. It does
eliminate broken symmetries from its representation, but it might eliminate too many
leading to further incompleteness. This can only happen if the same value appears at the
same position in two sequences of Seqs. LDSB might thus build a larger tree than SBDS.

5.6 Composing Symmetries

Each LDSB symmetry induces a function that takes as input the current state of the
variable domains and a literal, and produces a set of symmetric literals to be pruned.
That is, each symmetry s induces a function s(D′, x = v) = L, where D′ is the current
variable domains, x = v is the literal and L is the set of symmetric literals. When the
search backtracks and follows the right branch of a decision x = v, the literals pruned are:

⋃

s∈S

s(D′, x = v)

5.6. COMPOSING SYMMETRIES 113

where S is the set of symmetries. However, these are not the only literals that can be
excluded. If f and g are symmetries, then not only can f(D′, x = v) and g(D′, x = v) be
excluded, but also {f(D′, l)|l ∈ g(D′, x = v)} – that is, any literal resulting from applying
first g and then f to x = v.

Our implementation finds such literals, for any combination of symmetries, and ex-
cludes them. This proves in practice to be vital for certain kinds of problem. The algo-
rithm for doing so is as follows:

todo <- [x=v] \% queue of literals to be processed

done <- [x=v] \% set of literals already processed

D <- current variable domain

while todo is not empty

lit <- serve front of todo

for each symmetry f

for each literal symlit in f(D, lit)

if symlit not in done

add symlit to done

append symlit to todo

In this algorithm, todo is a queue of literals to be processed, and done is the set of
literals to be pruned. Each literal in todo is retrieved and its set of symmetric literals
computed. If any such symmetric literal has not been seen before, it is added to the set of
excluded literals and added to todo to be processed. This can be imagined as a breadth-
first traversal of a graph, where each literal is a node and there is an edge from literal a
to literal b if b ∈ s(D′, a) for some symmetry s.

Example 61. Consider a CSP ({x1, x2, x3}, {1, 2, 3}, C), that has the following two sym-
metries: (1) all variables are interchangeable and (2) all values are interchangeable. Let
us assume the search first tries x1 = 1 and then backtracks. The above algorithm first
processes the literal x1 = 1. The first symmetry adds x2 = 1 and x3 = 1 to both done

and todo; the second symmetry adds x1 = 2 and x1 = 3 to both done and todo. Next,
the literal x2 = 1 is processed. Processing this literal adds to done and todo the literals
x2 = 2 and x2 = 3. Next, the literal x3 = 1 is processed: this adds to done and todo the
literals x3 = 2 and x3 = 3. At this point, done contains all of the literals of the problem
and consequently every literal is pruned on the right branch x1 6= 1. See the table below
for an illustration.

In the first step, todo and done are initialised. In the second step, the literal x1 = 1
is served from todo and we find the literals that are symmetric to it. These literals
(x2 = 1, x3 = 1, x1 = 2, x1 = 3) are added to done and to todo. These steps are repeated
until todo is empty.

114 CHAPTER 5. SYMMETRY BREAKING

todo done

x1 = 1 x1 = 1
x2 = 1, x3 = 1, x1 = 2, x1 = 3 x1 = 1, x2 = 1, x3 = 1, x1 = 2, x1 = 3
x3 = 1, x1 = 2, x1 = 3, x2 = 2, x2 = 3 x1 = 1, x2 = 1, x3 = 1, x1 = 2, x1 = 3,

x2 = 2, x2 = 3

x1 = 2, x1 = 3, x2 = 2, x2 = 3, x3 = 2, x3 = 3 x1 = 1, x2 = 1, x3 = 1, x1 = 2, x1 = 3,
x2 = 2, x2 = 3, x3 = 2, x3 = 3

x1 = 3, x2 = 2, x2 = 3, x3 = 2, x3 = 3 x1 = 1, x2 = 1, x3 = 1, x1 = 2, x1 = 3,
x2 = 2, x2 = 3, x3 = 2, x3 = 3

x2 = 2, x2 = 3, x3 = 2, x3 = 3 x1 = 1, x2 = 1, x3 = 1, x1 = 2, x1 = 3,
x2 = 2, x2 = 3, x3 = 2, x3 = 3

.
∅ x1 = 1, x2 = 1, x3 = 1, x1 = 2, x1 = 3,

x2 = 2, x2 = 3, x3 = 2, x3 = 3

Note that this algorithm does not truly compose symmetries, but rather applies sym-
metries repeatedly to literals. This difference is important for efficiency: composing even
a small number of symmetries can lead to exponentially large sets of symmetries, but this
algorithm only needs to compute at most a quadratic (|X|× |D|) number of literals, while
obtaining the same result set of literals.

5.7 Implementation

LDSB has been implemented as a module for the ECLiPSe (Wallace et al., 1997) constraint
programming platform and for the Gecode (Gecode Team, 2006) constraint solving system.
The only requirement for a programmer to use LDSB is to specify a set of symmetries of
the problem. The symmetry breaking search in LDSB replaces the branching part where
x = v and x 6= v constraints are posted. Whenever the search would post an x = v
constraint, LDSB updates the current state of the symmetries, and whenever it would
backtrack to the x 6= v constraint, LDSB adds constraints to do the symmetric pruning.
Note that it does not interfere with the selection of x and v, so any variable or value
ordering can be used.

Example 62. The CSP ({x1, x2, x3}, {1, 2, 3}, all different({x1, x2, x3})) has interchange-
able variables and interchangeable values. It can be easily represented in ECLiPSe with
LDSB as follows, where LDSB-specific parts are marked with comments.

:- lib(ic).

:- lib(ldsb). % Load LDSB library.

problem :-

Vars = [](X1,X2,X3),

Vars #:: 1..3,

alldifferent(Vars),

5.7. IMPLEMENTATION 115

% Initialise LDSB and give symmetries.

ldsb_initialise(Vars, [variable_interchange([X1,X2,X3]),

value_interchange([1,2,3])]),

% Search with LDSB.

search(Vars, 0, input_order, ldsb_indomain, complete, []).

To perform the search without symmetry breaking, the call to the search procedure
would instead be:

search(Vars, 0, input_order, indomain, complete, []).

A custom search strategy can be implemented using the ldsb indomain predicate, which
instantiates a single variable, and the ldsb try predicates, which attempts to assign a
single value to a variable.

Common symmetries, including all variables or all values being interchangeable and
row/column symmetries, can be specified with special keywords. For example, the above
initialisation can be replaced with:

ldsb_initialise(Vars, [variables_interchange, values_interchange])

The same problem can be expressed in Gecode, but for brevity we show only the
relevant parts instead of the whole program.

#include "ldsb.hh"

[...]

Problem() : vars(*this, 3, 1, 3)

{

ViewArray<IntView> xv(*this, VarArgArray<IntVar>(vars));

distinct(*this, vars);

// Create vector of indices for variable symmetry.

vector<int> indices(3);

indices.push_back(0); indices.push_back(1); indices.push_back(2);

// Create vector of values for value symmetry.

vector<int> values(3);

values.push_back(1); values.push_back(2); values.push_back(3);

// Create vector of symmetries to use with LDSB.

vector<SymmetryPtr> s;

s.push_back(SymmetryPtr(new VariableSymmetry(indices)));

s.push_back(SymmetryPtr(new ValueSymmetry(values)));

// Pass symmetries to LDSB branching algorithm.

ldsb_branch(*this, xs, INT_VAR_NONE, INT_VAL_MIN,

VarBranchOptions::def, ValBranchOptions::def, s);

}

116 CHAPTER 5. SYMMETRY BREAKING

Note that the ldsb branch function accepts the same options as Gecode’s own branch
method, allowing any variable and value ordering to be used with LDSB.

The kernel of the search ECLiPSe implementation is as follows – the Gecode imple-
mentation follows the same principles:

try(Var, Val) :-

(

Var = Val,

update_symmetries(Var, Val)

;

compute_prunings(Var, Val, Prunings),

Var \= Val,

prune(Prunings)

).

This predicate first attempts to assign the value Val to Var . This corresponds to
the left branch of the search tree, wherein the symmetries are updated where applicable.
Depending on the symmetries of the problem, which are accessible via global state, this
may result in Var or Val being removed from interchangeable variable or value sets.

If this branch is unsuccessful – either immediately, or after some further search in the
subtree of the left branch – the right branch is tried. This involves computing all of the
literals that are symmetric to Var = Val (i.e. the function s(D′, (Var = Val)) for every
s ∈ S), and then excluding those literals along with the standard right branch constraint
Var 6= Val.

The update symmetries predicate updates the interchangeable variable, interchange-
able value and interchangeable value sequence lists by simply removing Var, Val or the
sequence containing Val respectively from them, if present. Traversal of these lists is fast
in practice. Note that interchangeable variable sequences symmetries are not modified by
it, except for the fact that variables in the sequences might become ground.

The predicate compute prunings operates on the symmetries as they appeared before
the decision point, as follows. It looks for the first interchangeable variable list W that
contains Var. If it finds one, it adds Y 6= Val to Prunings for every other Y in W. It also
looks for the first interchangeable value list M that contains Val. If it finds one, it adds X 6=
d for every other d in M. For interchangeable variable sequences, it accesses a lookup table
that indicates which interchangeable variable sequence symmetries the Var is in and, for
each such symmetry Seqs, in which sequence S of Seqs the Var is in, and its position. It
then compares each such S with every other sequence in Seqs. Having direct access from
Var to the list of symmetries is crucial for performance. This is achieved by creating the
lookup table for each variable before the search begins. For every new pruning added to
Prunings, a recursive call to compute prunings is performed to determine possible new
prunings achieved by composition, until no new prunings are obtained. Finally, predicate
prune takes a list of elements of the form Y 6= Val and posts them.

In Gecode we add the update and pruning steps to the system’s own depth-first search
engine, in similar locations to the ECLiPSe implementation.

5.8. EXPERIMENTAL RESULTS FOR ECLIPSE 117

There are several promising variations to the current implementation. One is to rep-
resent interchangeable variable (or value) sequences pairwise – i.e. represent each pair of
sequences in Seqs separately. While this results in a quadratic number of extra symme-
tries, it allows permanently inactive pairs to be deleted from the list. Additionally, when
two variables in the same position of their respective sequences are bound to the same
value, the variables can be removed from the sequences. This also eliminates the potential
incompleteness of simultaneous value interchangeability. Another variation is not to re-
move variables from the interchangeable variable lists as they become ground. This would
make updates faster but lookups slower (since the lists will be longer).

5.8 Experimental Results for ECLiPSe

In this section the empirical performance of LDSB is demonstrated by comparing the
running time of LDSB with other dynamic symmetry breaking methods. In particular,
the experiments compare LDSB with four other methods: no symmetry breaking, a generic
and incomplete form of SBDS and two complete methods based on computational group
theory, GAP-SBDS and GAP-SBDD. Each method is tested using both a naive variable
order and the first-fail heuristic. These experiments were run using the IC constraint
solver of ECLiPSe version 6.0 #80 and the GAP system version 4.4.12.

The incomplete form of the SBDS method is provided with the same symmetries as
LDSB. To do so generically it is necessary to convert LDSB’s set of symmetry patterns
into symmetry functions in SBDS. However, it is impractical to have one function for each
symmetry in the group, since this would result far too many functions. Instead, each set
of interchangeable items (whether variables, values or sequences of same) is converted into
a set of symmetry functions, one per transposition of items in the set. Also, to keep to a
practical number of symmetry functions, symmetries are not combined.

The experiments were run on a cluster of quad-core Intel Xeon E5310 1.66GHz CPUs
with a limit of 1GB of memory, using Linux kernel version 2.6.18. Although different
benchmarks may have been run on different machines in the cluster, for the purpose of
comparing the different methods, all methods for a given single benchmark were run on
the same CPU.

The benchmarks are divided into two sets. The first set of benchmarks includes con-
straint satisfaction problems often used for symmetry detection/breaking. We will call
this set the “satisfaction” benchmarks. It includes the following problems, whose details
can be seen in Appendix A:

• bibd((v, b, k, r, λ): balanced incomplete block design of v objects into b blocks of
exactly k objects, where each object is in r blocks, and every two objects occur
together in λ blocks. The objects are interchangeable and the blocks too, giving v!b!
symmetries, all represented in LDSB.

• golf(w, g, p): social golfers to arrange gp golfers each week into g groups of p play-
ers over w weeks, with no two players appearing in the same group twice. The
weeks are interchangeable, the players are too and, within each week, the groups are
interchangeable giving w!(gp)!(g!)w symmetries, all in LDSB.

118 CHAPTER 5. SYMMETRY BREAKING

• graceful(m,n): graceful graph where the edges (a, b) of the Km × Pn graph are
labelled |a − b|, and no two edges have the same label. The corresponding ver-
tices in each clique are simultaneously interchangeable, the order of the cliques is
reversible (represented via simultaneously interchangeable values), and the values
are too, giving 4m! symmetries, all in LDSB.

• latin(n): latin square with 2(n!)3 of the 6(n!)3 symmetries represented in LDSB.

• magicsquare(n): magic n × n square filled with 1 to n2 numbers such that all
numbers are used and all rows, columns and two diagonals have the same sum. We
use the symmetries of the square and the reversible value symmetries, giving 16
symmetries, all in LDSB.

• nn queens (n): an n×n chessboard coloured with n colours, so that a pair of queens
in any two squares of the same colour do not attack each other. The symmetries are
those of the chessboard, plus the colours are interchangeable, giving 8n! symmetries,
all in LDSB.

• queens(n): n queens placed on a chessboard with no two queens attacking each
other. Modelled with one variable per queen whose value is the queen’s row. The
symmetries are those of the chessboard (i.e., 8 symmetries) with only 4 in LDSB.

• queens bool(n): same as above but with a Boolean matrix model. All 8 symmetries
are in LDSB.

• steiner(n): steiner triples to find n(n−1)
6 triples of distinct integers from 1 to n, with

any two triples having at most one element in common. The triples are interchange-
able and the values too, giving n! (n(n−1)

6 ! symmetries, all in LDSB.

The second set of benchmarks are instances of the following optimisation problems,
with all their symmetries represented in LDSB. We will call these the “optimisation”
benchmarks. Further details are provided in Appendix A.

• Graph Colouring: where the task is to find the chromatic number of a graph.
The instances are randomly generated following (Law et al., 2007) to have partitions
of symmetric variables and values: n nodes are partitioned (with k = 8 set to
the maximum size) so that each partition is either an independent or a complete
graph, and each subgraph with nodes in two partitions is either an independent or a
complete bipartite graph. Instances are divided into classes according to (1) how the
partition sizes are distributed (“uniform” or “biased”), (2) the number n of nodes,
and (3) the proportion q of partitions that are complete subgraphs. There are 20
instances of each class. Colours are interchangeable (giving n!) and nodes too within
each partition.

• Concert Hall Scheduling: choose among n applications specifying a period and
an offered price to use k identical concert halls, to maximise profit. The instances
are randomly generated following (Law et al., 2007): k is set to 8 and applications
are generated in partitions of uniformly distributed size, with all applications in a

5.8. EXPERIMENTAL RESULTS FOR ECLIPSE 119

partition being identical. There are 20 instances for each size. Concert halls are
interchangeable (k! symmetries) and applications within each partition are too.

• Steel Mill Slab Design: arrange n orders of slabs of a particular size and colour to
minimise wasted space when cutting a given set of slabs of predetermined size. The
sum of the sizes of orders on each slab must not exceed the slab’s capacity, and the
number of distinct colours of orders on one slab must be at most two. The instances
are taken from CSPLib(Gent and Walsh, 1999). The slabs are interchangeable (n!
symmetries).

5.8.1 Discussion

The experimental results in ECLiPSe for the satisfaction benchmarks are shown in Ta-
bles 5.1, 5.2, 5.3 and 5.4. For each benchmark and method, the tables show the time
taken in seconds and the number of nodes of the decision tree explored to find the first/all
solutions using the first-fail and input-order variable ordering heuristics. A blank entry
indicates that the search timed out at the 600 second limit or memory was exhausted.
The table headings are “N” for no symmetry breaking, “GS” for GAP-SBDS, “GD” for
GAP-SBDD, “IS” for (possibly) incomplete SBDS, and “L” for LDSB. For each category,
the best result is shown in bold. For some combinations of search strategy and problem,
no method was able to finish within the time limit. These have been included in the tables
for comparison against other search strategies.

The results for satisfaction benchmarks show that although in some cases no symmetry
breaking is the best method (to find the first solution), LDSB is never more than 25%
slower and in many cases is faster, while no symmetry breaking can perform very badly.
When compared to the complete symmetry breaking methods, LDSB is uniformly faster
than GAP-SBDS (and often orders of magnitude faster) due to its lower overhead. The
same happens for GAP-SBDD with the exception of two benchmarks. LDSB also has
a low memory overhead compared to the GAP-based methods which have to deal with
large data structures when the symmetry group is large. LDSB’s performs worst when
eliminated symmetries become reactivated (bibd and all solutions for queens bool). In
this case the incomplete SBDS method performs best, with LDSB taking up to twice as
long. It is clear from the results that LDSB is the most consistent method (often returns
best or near best times).

Let us now discuss the optimisation benchmarks. Figure 5.8 shows the results for the
440 concert hall optimisation instances and for 440 out of a total of 2520 graph colouring
instances. The horizontal axis shows the instance size (nodes or offers) while the vertical
shows the ratio between the sum of LDSB’s running time and the sum of each method’s
running time over all instances solved by both LDSB and that method. For example, 0.25
indicates that LDSB’s time was one quarter of the other method’s for the instances solved
by both. These problems effectively cannot be solved without symmetry breaking and so
we do not show the results for no symmetry breaking. We chose to show only two plots
for the colouring problem, since the results from the others are quite similar (the ratio is
never higher that 0.4 with incomplete SBDS being the only method to gets close to 0.4, the
others being often bellow 0.1). Overall, LDSB solved 2099 of the graph colouring instances
as compared to 140 for GAP-SBDS, 1152 for GAP-SBDD and 1884 for incomplete SBDS.

120 CHAPTER 5. SYMMETRY BREAKING

Time (seconds) Nodes
Problem N GS GD IS L N GS GD I L
bibd [21, 21, 5, 13, 3] - - - 70.5 123.5 - - - 5627 27866
bibd [25, 20, 9, 7, 3] - - - 11.0 3.9 - - - 709 1448
golf [5, 5, 4] - - - 88.5 47.5 - - - 6332 6396
golf [5, 6, 4] 342.9 - - 63.3 34.7 27048 - - 5121 5121

graceful [3, 4] 373.5 228.1 276.3 154.8 153.8 202454 82206 82206 82206 82206

graceful [5, 2] - 434.2 452.7 316.3 304.0 - 52966 52966 57532 57532
latin 40 19.4 - - 38.1 21.1 1369 - - 1369 1369

latin 60 97.0 - - - 95.6 3278 - - - 3278

magicsquare 5 0.1 1.3 1.3 0.1 0.1 763 763 763 763 763

magicsquare 6 7.9 188.8 232.1 11.3 9.0 71652 71652 71652 71652 71652

nn queens 7 0.0 0.5 0.4 0.1 0.0 16 16 16 16 16

nn queens 8 - 153.1 177.7 17.2 17.8 - 76073 76079 149579 149579
nn queens 9 - - - - - - - - - -
queens 111 1.4 122.1 76.2 1.5 1.5 4570 4570 4570 4570 4570

queens 113 0.5 41.3 31.1 0.4 0.5 1378 1378 1378 1378 1378

queens bool 26 4.0 85.9 220.5 14.3 4.0 11645 11645 11645 11645 11645

queens bool 28 28.7 - - 109.1 31.5 90095 - - 90095 90095

steiner 9 1.4 7.8 4.6 0.5 0.2 660 22 22 97 140
steiner 15 0.3 - - 1.1 0.2 35 - - 35 35

Table 5.1: Benchmark Results, first-fail variable ordering, first solution. 600 second time-
out.

Time (seconds) Nodes
Problem N GS GD IS L N GS GD I L
bibd[13,13,7,7,2] - 5.6 4.2 0.3 0.2 - 28 34 33 34
bibd[21,21,5,13,3] - - - 66.2 119.2 - - - 5627 27866
golf [5, 5, 4] - - - - - - - - - -
golf [5, 6, 4] - - - - - - - - - -
graceful [3, 4] - - - - - - - - - -
graceful [4, 2] 540.0 8.2 9.1 23.2 6.2 399043 2262 2285 11710 3100
graceful [5, 2] - 492.3 544.7 - 402.1 - 64132 64168 - 97502
latin 6 - 123.5 8.7 10.7 11.2 - 110 117 14067 17102
latin 7 - - - - - - - - - -
magicsquare 4 25.1 20.3 37.0 3.4 1.9 279180 27235 31052 30326 18850

magicsquare 5 - - - - - - - - - -
nn queens 7 384.4 1.1 1.1 0.1 0.1 4324319 432 437 863 863
nn queens 8 - 146.7 184.0 17.4 17.2 - 76073 76079 149579 149579
queens 14 166.1 338.7 587.8 96.0 64.4 3195965 552180 552195 1408475 992027
queens 15 - - - 598.2 380.0 - - - 8505109 5654808

queens bool 12 16.8 38.2 85.5 9.6 15.8 125275 29415 29419 50149 105370
queens bool 13 87.7 208.2 542.8 49.7 83.5 635073 145460 145479 253892 539244
steiner 9 - 26.9 16.1 29.5 19.0 - 85 91 7528 13831
steiner 15 - - - - - - - - - -

Table 5.2: Benchmark Results, first-fail variable ordering, all solutions. 600 second time-
out.

5.8. EXPERIMENTAL RESULTS FOR ECLIPSE 121

Time (seconds) Nodes
Problem N GS GD IS L N GS GD I L
bibd[21,21,5,13,3] - - - 62.3 112.1 - - - 5627 27866
bibd[25,20,9,7,3] - - - 10.6 3.5 - - - 709 1448
golf [5, 5, 4] - - - 84.0 46.2 - - - 6332 6396
golf [5, 6, 4] 335.2 - - 62.7 34.1 27048 - - 5121 5121

graceful [3, 4] 11.5 17.9 22.3 11.2 11.0 8199 4799 4799 4799 4799

graceful [5, 2] - - - - - - - - - -
latin 40 18.4 - 77.9 35.5 17.9 1222 - 1222 1222 1222

latin 60 86.3 - 542.9 - 86.3 2952 - 2952 - 2952

magicsquare 5 0.5 7.2 10.4 0.6 0.6 5497 5497 5497 5497 5497

magicsquare 6 - - - - - - - - - -
nn queens 7 0.0 0.5 0.4 0.0 0.0 27 27 27 27 27

nn queens 8 - 228.6 251.4 17.2 17.4 - 104007 104013 207054 207054
nn queens 9 - - - - - - - - - -
queens 26 5.3 85.0 92.4 5.7 5.8 55591 55591 55591 55591 55591

queens 28 40.5 644.2 - 46.2 46.4 417043 417043 - 417043 417043

queens 111 - - - - - - - - - -
queens 113 - - - - - - - - - -
queens bool 26 2.2 85.4 211.2 12.7 2.7 11645 11645 11645 11645 11645

queens bool 28 17.7 - - 96.5 20.4 90095 - - 90095 90095

steiner 9 1.4 7.7 4.8 0.4 0.2 660 22 22 97 140
steiner 15 0.3 - - 1.2 0.2 35 - - 35 35

Table 5.3: Benchmark Results, input-order variable ordering, first solution. 600 second
timeout.

Time (seconds) Nodes
Problem N GS GD IS L N GS GD I L
bibd[13,13,7,7,2] - 6.2 4.6 0.4 0.2 - 28 34 33 34
bibd[21,21,5,13,3] - - - 65.0 113.1 - - - 5627 27866
golf [5, 5, 4] - - - - - - - - - -
golf [5, 6, 4] - - - - - - - - - -
graceful [3, 4] - - - - - - - - - -
graceful [4, 2] 514.8 17.4 20.5 45.2 13.0 367259 5223 5246 19633 5939
graceful [5, 2] - - - - - - - - - -
latin 6 - 133.1 16.5 10.6 11.2 - 122 129 13955 17139
latin 7 - - - - - - - - - -
magicsquare 4 33.5 39.9 76.7 8.2 3.7 412445 57358 57411 72342 35055

magicsquare 5 - - - - - - - - - -
nn queens 7 340.5 1.3 1.3 0.1 0.1 5412959 602 607 1079 1079
nn queens 8 - 218.7 271.8 17.3 17.1 - 104007 104013 207054 207054
queens 12 5.9 18.0 25.5 4.1 3.0 146101 31070 31079 68800 55142
queens 13 33.4 91.7 167.2 22.5 16.1 756885 159139 159151 353528 279679
queens 14 190.8 559.7 - 128.1 91.3 4198219 875178 - 1961859 1554840
queens 15 - - - - 545.5 - - - - 9066545

queens bool 11 2.3 7.7 16.2 1.6 2.2 26194 6274 6274 10371 21299
queens bool 12 11.2 36.8 86.6 7.4 11.2 125275 29415 29419 50149 105370
queens bool 13 59.4 197.0 536.2 37.6 58.6 635073 145460 145479 253892 539244
steiner 9 - 26.9 16.0 30.8 19.1 - 85 91 7528 13831
steiner 15 - - - - - - - - - -

Table 5.4: Benchmark Results, input-order variable ordering, all solutions. 600 second
timeout.

122 CHAPTER 5. SYMMETRY BREAKING

0

0.05

0.1

0.15

0.2

0.25

0.3

20 25 30 35 40

GS
GD
IS

(a) Graph, q = 0.5, uniform, first fail

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

20 25 30 35 40

GS
GD
IS

(b) Graph, q = 0.5, biased, first fail

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

20 25 30 35 40

GS
GD
IS

(c) Concert hall, input order

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

20 25 30 35 40

GS
GD
IS

(d) Concert hall, first fail

Figure 5.8: Graph Colouring (a and b) and Concert Hall Scheduling (c and d)

5.9. EXPERIMENTAL RESULT FOR GECODE 123

Figure 5.9: Steel Mill Slab Design

Of the concert hall scheduling instances, LDSB solved 340 as compared to 227 for GAP-
SBDS, 234 for GAP-SBDD and 147 for incomplete SBDS. The time comparison plots
(shown and not shown) indicate that, for the instances where a comparison can be made,
LDSB is always faster on average and usually by a factor of at least 3.

5.9 Experimental Result for Gecode

In addition to the experiments comparing LDSB in ECLiPSe with other dynamic methods,
we have performed a second experiment that provides a proof of concept of LDSB’s Gecode
implementation by comparing LDSB’s execution against a hand-crafted search strategy
for many instances of a single benchmark.

For the proof of concept of LDSB’s Gecode implementation we chose the steel mill
slab design problem (problem 38 in CSPLib (Gent and Walsh, 1999)), for which Gargani
and Refalo (2007) noted that static symmetry breaking caused a loss of performance for
their model. Following this Van Hentenryck and Michel (2008) showed that a customised
search strategy with the same model could break most of the symmetry and yield good
performance. We have used Gargani and Refalo’s model with LDSB and found that it
performs remarkably similarly to Van Hentenryck and Michel’s customised search.

This result, while preliminary, is encouraging as it shows that our generically applicable
method can perform as well as a problem-specific solution. Our method only requires the
user to provide the symmetries, rather than to hand-craft a custom symmetry breaking
search algorithm themselves.

124 CHAPTER 5. SYMMETRY BREAKING

5.10 Conclusion

In this chapter we have presented a method of symmetry breaking, Lightweight Dynamic
Symmetry Breaking, whose aim is to be used as a default symmetry breaking method.
To achieve this it must be able to handle commonly occurring symmetries efficiently and
must, in almost all cases, reduce the time taken to solve problems. It must also be
automatic, so that the user need only provide the symmetries of the problem and not be
burdened with the task of providing symmetry breaking constraints or dominance checking
functions. It should also be generic: it should not interfere with whichever search heuristics
the programmer wishes to use. For efficiency and predictability it must use only simple
algorithms and avoid the potential expense of computational group theory.

The results presented suggest that LDSB has achieved these goals. Its consistency in all
of the benchmarks indicates that a programmer can use LDSB by default, without worrying
that its running time might be inordinately high as can be the case with some complete
methods. Also, it can be used simply by specifying the symmetries of the problem. The
overhead induced by the symmetry breaking is almost always repaid handsomely by the
savings gained, and even when that is not the case, the overhead is low. However, even
LDSB’s performance is not as good as static symmetry breaking when conditions suit the
latter (i.e. a small set of effective constraints can be found that do not conflict with the
search order).

Although we have done some optimisations to the representation and its implementa-
tion, there is still much room for improvement. The method can be extended to handle
variable-value symmetries, either by supporting them directly or perhaps by transforming
them into variable symmetries. It would also be interesting to see if the focus on common
symmetry patterns can be applied to SBDD as we have done here for shortcut SBDS, and
whether better results may come by considering only a subset of a problem’s symmetries.

Chapter 6

Generality of Dynamic Symmetry
Breaking

6.1 Introduction

In the previous chapter we have presented a new dynamic symmetry breaking method
called LDSB. A primary motivation when designing our method is for it to be used in
as many situations as possible. However, as presented, the LDSB method imposes some
restrictions both on the search and on the constraint solver. Regarding search, while LDSB
does not impose restrictions on the user as to the variable or value ordering, it does require
the search to make binary decisions of the form (var = val) and (var 6= val). Therefore,
it is not possible for the search to use other common forms of unary constraints, such as
var ≤ val, as branching constraints.

Regarding the constraint solver, the correctness of LDSB relies on the properties of the
propagation performed by the constraint solver. This is because at certain points during
the search LDSB examines the current domains of the variables involved in symmetries,
domains that are maintained and modified by the constraint solver. Since solvers vary
in the strength of their propagation, equivalent search decisions may give rise to different
domains on different solvers.

In this chapter, we present a preliminary exploration of an extension of LDSB to use
domain splitting instead of solely equality branching constraints. We examine the effect of
this on how symmetry information is maintained during the search and on the efficiency
of detecting when symmetric subtrees should be excluded. In addition, we consider the
interplay between LDSB and its constraint solver, and impose some simple minimum
requirements on a solver for correct use in conjunction with dynamic symmetry breaking.

We have already demonstrated that LDSB behaves robustly for a search using instan-
tiation branching constraints. Here we show that it is robust with domain splitting as well.
Our results also show that domain splitting is indeed a worthwhile feature to support, as it
performs consistently better on our sample problem. Parts of this chapter have previously
been published in (Mears et al., 2008c).

125

126 CHAPTER 6. GENERALITY OF DYNAMIC SYMMETRY BREAKING

6.2 Background

Recall the S-excluding search tree (Backofen and Will, 1999), described in the previous
chapter (see Section 5.2.3). The diagram of a search node in an S-excluding search tree
is shown again in Figure 6.1.

(Cp, Cn, Cstore)

c ¬c

(Cp ∧ c, Cn, C
l
store) (Cp, Cn ∧ ¬c, Cr

store)

C l
store = P (Cstore ∧ c)

Cr
store = P (Cstore ∧ ¬c ∧

∧
s∈S

scon(Cp) ⇒ ¬scon(c))

Figure 6.1: A node in an S-excluding search tree Backofen and Will (1999).

It is easy to see that the S-excluding search tree can easily be instantiated for a search
that uses domain-splitting branching constraints. One needs only to instantiate c to be
of the form x ≤ v, where x is a variable and v is a value. The difficulty lies in the
definition of the function scon , which must be defined to act on the branching constraints.
With instantiation branching, each branching constraint is simply a literal and therefore a
symmetry can act as scon directly, since symmetries are defined as permutations of literals.
For domain-splitting, the branching constraint is not simply a literal, and scon requires a
different definition.

6.3 SBDS with Domain Splitting

Recall that the SBDS algorithm (on which LDSB is based), described in Section 5.2.3, is
an instance of an S-excluding search tree. SBDS adds to the right branch of each node
constraints of the form:

A & s(A) & var 6= val ⇒ s(var 6= val) (6.1)

where s is a symmetry and A is the current partial assignment.

Gent and Smith (2000) state that SBDS could be extended to other forms of branching
constraint. In particular, if the search was to use domain splitting (that is, a decision
between var ≤ val and var > val), then the general SBDS constraint would become:

A & s(A) & var > val ⇒ s(var > val) (6.2)

where s and A are as before. This constraint is equivalent to that of the S-excluding
search tree, except that the antecedent is the symmetry of the partial assignment instead
of the conjunction of arbitrary branching constraints.

6.3. SBDS WITH DOMAIN SPLITTING 127

Surprisingly, the above extension has two problems. First, symmetry s must be applied
to the constraint var > val, a task that may not be straightforward. Second, and more
important, the extension is in general incorrect.

Example 63. Consider a CSP ({x, y}, {1..6}, ∅) where there is a variable symmetry x ↔ y.
Assume that the search uses domain splitting and first branches on x (see Figure 6.2) with
the left branch of the root being labelled x ≤ 3 and the right branch x > 3. Consider
the effect of the extended SBDS constraint for the symmetry x ↔ y on the right branch:
A = ∅ and therefore the antecedent is true and s(x > 3) ≡ y > 3 is posted.

Now consider the right branch of the node marked α in Figure 6.2. The partial assign-
ment A is still empty, so A and s(A) hold trivially. The constraint s(y > 3) ≡ x > 3 is
posted, which in conjunction with the branching constraint x ≤ 3 leading to α causes the
search to fail. This is incorrect as some solutions are not found: for example, the solution
{(x = 1), (y = 5)} is not found (and neither is the solution symmetric to it).

x ≤ 3 x > 3,y > 3

α

y ≤ 3 y > 3,x > 3

solutions
where
x, y > 3solutions

where
x, y ≤ 3

failure
due to x
wipeout

Figure 6.2: SBDS with domain splitting. Search decisions are on each edge; additional
symmetry breaking constraints are in bold.

The erroneous symmetry breaking is due to SBDS’s reliance on “the current partial
assignment,” i.e. with the fact that at node α, SBDS still considers x and y to be symmetric
despite the search having made them asymmetric (by branching on x at the root). In other
words, SBDS (and LDSB) does not always work if the search can break symmetries without
making variables ground.

The S-excluding search tree defined by Backofen and Will does not suffer from this
problem because it operates on the branching constraints rather than on the partial as-
signment.

6.3.1 Symmetries of Branching Constraints

Let us now return to the problem of extending symmetries to act on constraints. The
question regards the meaning of expressions such as s(var > val) – if s is defined as a
mapping of literals, how does it act on var > val? For a variable symmetry such as the one
in the previous example the meaning is clear, but in other cases it is not straightforward.

128 CHAPTER 6. GENERALITY OF DYNAMIC SYMMETRY BREAKING

To find a general answer, we must return to the underlying definition of an S-excluding
search tree.

For a given symmetry s which acts on literals, we must find a corresponding symmetry
scon which acts on constraints. Let us define Sol(c) as the set of allowed assignments of a
constraint c. The definition of scon must be such that Sol(scon(c)) = s(Sol(c)) (following
the definition by Backofen and Will (1999)). By an abuse of notation we will also allow
scon to act on conjunctions of constraints, such that scon(c1 ∧ c2) = scon(c1)∧ scon(c2). In
addition, we would like to find an scon such that scon(c) can be represented by a primitive
constraint, such as x = v or x < v. Primitive constraints are useful because they can
be matched syntactically with one another efficiently. In order to determine whether a
symmetry s is active at a given point in the search, it is necessary to tell whether scon(C)
is entailed, for some conjunction C of constraints. Using primitive constraints allows us
to detect entailment of the conjunction of primitive constraints efficiently.

Rather than attempting to define scon for arbitrary symmetries and constraints, we
will consider particular symmetries that are known to be simple and common. Also, while
there may be more than one correct choice of scon for a given s, we are only interested in
finding one.

Let us first consider two common kinds of symmetries: variable and value symmetries.
Recall the definitions of these kinds of symmetry: for a given CSP (X,D,C), a variable
symmetry is a bijection X → X and a value symmetry is a bijection D → D. Let us
consider only the common branching constraints x = v and x < v, where v ∈ d(x).

For a variable symmetry s, we can represent scon :

scon(x = v) as (s(x) = v) (6.3)

scon(x < v) as (s(x) < v) (6.4)

That is, for a variable symmetry, it is sufficient to replace the variable x in the branch-
ing constraint with its image under the symmetry.

For a value symmetry s, we can represent scon :

scon(x = v) as (x = s(v)) (6.5)

scon(x < v) as ? (6.6)

In general, it is not clear how to represent scon(x < v) for an arbitrary value symmetry
s. However, there is at least one case where there is a simple representation. When s is
an inversion (e.g. s(v) = u− v + l, where l and u are the lower and upper bounds of the
variable), then we can represent:

scon(x < v) as (x > s(v)) (6.7)

For example, for a variable x whose domain is d(x) = {1..10}, the value inversion
symmetry maps value v to 10− v + 1: 1 to 10, 2 to 9, 3 to 8, etc.

Another common kind of value symmetry is interchangeability, wherein any two values
in some set can be interchanged. It is not clear in this case how to define scon . Intuitively, a
domain-splitting constraint relies on the values forming a number-line so that the notions of

6.4. DETECTING SCON (CP) 129

less-than and greater-than have some meaning. In the case of the value-inversion symmetry
described above, the number line is preserved and therefore scon is simple. However, an
arbitrary value symmetry (such as transposing 1 with 4) can disrupt the number line,
making the derivation of scon complex.

To illustrate the potential complexity, consider a variable x with domain 1..5 and
branching constraint x < 3. Clearly, Sol(x < 3) = {(x = 1), (x = 2)}. Let us now consider
a value symmetry s that interchanges 3 and 4. Then, s(Sol(x < 3)) = Sol(x < 3) and
scon(x < 3) = (x < 3). Now consider the symmetry s′ that interchanges 1 and 4. In this
case, s′(Sol(x < 3)) = {(x = 4), (x = 2)} which is impossible to capture by a primitive
constraint.

This property of interchangeable values leads to an interesting consequence for search
heuristics: values that are interchangeable do not require domain splitting in order to be
searched efficiently. In a sense, domain splitting and dynamic symmetry breaking have
the same aim: to reduce the search tree by making one search node act on behalf of many
nodes. In domain splitting, it is better to detect failure after branching on x < 5 rather
than detecting it separately for each of (x = 1), (x = 2), (x = 3), (x = 4). Similarly, for
dynamic symmetry breaking, it is better to detect failure (or success) for x = 1 once and
then ignore the branches (x = 2), (x = 3), (x = 4).

It is known that search heuristics should be chosen to suit the particular problem to
be solved. As we have shown, the symmetry of the problem also needs to be taken into
account when choosing the branching method. If a problem has interchangeable values,
domain splitting is pointless: it is better to instantiate a variable to one (arbitrary) value
and ignore the rest. For such a variable, the “least-commitment” philosophy of domain
splitting gains nothing.

6.4 Detecting scon(Cp)

In order to post symmetry breaking constraints for a symmetry s, the search must be
able to detect at a given decision node whether scon(Cp) holds. Note that it is permissible
(although undesirable) for the entailment test to claim that scon(Cp) does not hold even
if it actually does hold (this is called a false negative), but it is an error for the test to
claim that scon(Cp) holds if it actually does not hold (called a false positive). Therefore,
incompleteness has two sources: the antecedent not holding at a search node (even though
it may do so later), and the entailment test being unable to detect that the antecedent
holds.

The entailment test may be performed in different ways; the following subsections
describe some alternatives.

6.4.1 Only Cp

One way to detect entailment of scon(Cp) is to consider Cp as a set (rather than a con-
junction) of constraints and maintain Cp incrementally as the search progresses. Then,
to check if scon(Cp) holds, it is sufficient although not necessary to determine whether
scon(Cp) ⊆ Cp. The ⊆ relation can be determined by syntactic matching in the case

130 CHAPTER 6. GENERALITY OF DYNAMIC SYMMETRY BREAKING

where Cp and scon(Cp) contain only primitive constraints. This method does not use the
state of the constraint store in any way; it relies completely on the branching constraints.

Example 64. Consider the search tree shown in Figure 6.3, for the CSP ({x, y}, {1..10}, C)
where there is the variable symmetry x ↔ y. At the node marked α, we have Cp = {(x ≤
5), (y ≤ 5)} and s(Cp) = Cp; since scon(Cp) = {s(x) ≤ 5, s(y) ≤ 5} = {y ≤ 5, x ≤ 5}, we
see that scon(Cp) ⊆ Cp.

x ≤ 5 x > 5

α

y ≤ 5 y > 5

Figure 6.3: At the search node marked α, scon(Cp) holds and is detected, where s = x ↔ y.

This method might result in false negatives whenever inferences due to propagation
are not taken into account.

Example 65. Consider the search tree shown in Figure 6.4, for the same CSP as in the
previous example. Suppose that propagation on the unspecified constraints removes 5
from the domain of x at the search node marked α; at this point, Cp = {(x ≤ 5), (y ≤ 4)}
and therefore scon(Cp) = {(y ≤ 5), (x ≤ 4)}. It is clear that scon(Cp) 6⊆ Cp even though
scon(Cp) is in fact entailed: (y ≤ 5) is entailed by (y ≤ 4), and (x ≤ 4) is entailed by the
combination of (x ≤ 5) and propagation.

x ≤ 5 x > 5

α

y ≤ 4 y > 4

Propagation
forces
x 6= 5

Figure 6.4: Undetected entailment. At the search node marked α, scon(Cp) holds but is
not detected, where s = x ↔ y.

6.4.2 Cp and the constraint store

The incompleteness (i.e. the number of false negatives) of the previous method can be
reduced by examining the constraint store to detect entailment. The constraint store

6.5. EFFECTS OF PROPAGATION 131

contains the initial set of problem constraints and those added by the search or as a result
of propagation. Typical examples are the domains of variables or variable intervals. For
instance, the entailment in the example in Figure 6.4 could be detected by examining the
domains of x and y: if max(x) ≤ 4, then x ≤ 4 is entailed.

6.4.3 Only the Constraint Store

It is possible, in some cases, to detect that scon(Cp) holds without explicitly keeping track
of Cp. This is because it is possible to derive from the constraint store a conjunction G
of constraints that entails Cp. Therefore, if it can be shown that scon(G) holds, then it is
also true that scon(Cp) holds.

It can also be true that scon(Cp) may hold while scon(G) does not; in such a case, the
entailment test would return a false negative.

Example 66. Consider the search tree in Figure 6.5 for the CSP ({x, y, ...}, {1..10}, C)
where there is the variable symmetry x ↔ y. Suppose that propagation on the unspecified
constraints forces y to be strictly less than 5 at the search node marked α; at this point,
Cp = {(x ≤ 5)} and therefore scon(Cp) = {(y ≤ 5)} which is entailed. We derive a
conjunction G that is guaranteed to entail Cp by examining how the variables’ domains
have changed since their initial values: since the upper bound of x is now 5, we add x ≤ 5
to G, and since the upper bound of y is now 4, we add y ≤ 4 to G. Now, scon(G) contains
x ≤ 4, which is not entailed by the constraint store. In this case scon(Cp) is entailed but
scon(G) is not.

x ≤ 5 x > 5
α

Figure 6.5: Undetected entailment of sconCp using only the constraint store.

Example 67. Let us revisit Example 65; if propagation has reduced the domains of x and
y such that the domains are now equal ({1, 2, 3, 4}), then by using only the constraint store
it can be seen that the symmetry s is active. The derived conjunction G is x ≤ 4∧ y ≤ 4,
using the same method as the previous example. It can be seen that scon(G) = G and is
entailed by the constraint store.

6.5 Effects of Propagation

When checking the entailment of some constraint via the constraint store, the search
examines the domain of a particular variable as maintained by the constraint solver. In
practice, the domain reported may include values that are logically invalid. For example,
a bounds consistent solver may not detect “holes” in a finite domain variable; e.g. given
a variable x whose domain is {1..10} and constraint x 6= 5, the solver may still report the
domain of x as {1..10}.

132 CHAPTER 6. GENERALITY OF DYNAMIC SYMMETRY BREAKING

This incompleteness of constraint propagation means that one must exercise care when
using the constraint store to detect entailment. It is easy to contrive a case where reliance
on the constraint store coupled with a technically sound solver leads symmetry breaking
to prune incorrectly, even for the case of x = v branching constraints.

Example 68. Consider the search tree in Figure 6.6 for the CSP ({x, y}, {1..10}, C) and
assume the variable symmetry s that is x ↔ y. Now, suppose that the solver does not
immediately propagate the branching constraint x = 1. Therefore, at the node marked
α, the domain of x is unchanged (in particular, it is not ground) and the set G is empty.
Because scon(G) trivially holds, the search asserts the symmetry breaking constraint x 6= 1
on the right branch, which is incorrect: the solution (1, 2) will not be found. Note that
the assumption Cp ⊆ G has been broken: Cp = {x = 1} but G = ∅.

x = 1 x 6= 1,y 6= 1

α

y = 1 y 6= 1,x 6= 1

solutions
where
x, y > 1solutions

where
x, y = 1

failure
due to x
wipeout

Figure 6.6: Incorrect entailment test due to incomplete propagation.

The above example shows that we cannot naively rely on an arbitrary constraint solver
to correctly maintain the state of Cp. The problem is that after the x = 1 branching
constraint is posted, the solver has not immediately updated the domain of x to be the
singleton {1}. As G is constructed only by examining the state of the variables’ domains,
G does not entail Cp in this case. We need to either modify the search to explicitly track
Cp, or impose some minimum requirements on the solver.

In the case of Var = Val style branching constraints, G can be defined as the set of
ground variables and their values, i.e. G is the set of all Var = Val such that the domain of
x is known to be {v}. For correctness – that is, to ensure that G ⊢ Cp – it is sufficient for
the solver to immediately propagate Var = Val constraints. That is, whenever a constraint
of the form Var = Val is posted, the variable’s domain must appear to be {Val} at the
following search node.

Condition 1: when a Var = Val constraint is added, at the next search node
the domain of Var must appear to be {Val}.

This condition guarantees that G ⊢ Cp, because it guarantees that every (Var =
Val) ∈ Cp must then also appear in G at the next search node (and all elements of Cp

must have the form Var = Val). However, for x ≤ v style branching the above requirement

6.6. DOMAIN SPLITTING AND CP 133

is insufficient; indeed, it has the same problem as the one illustrated in Section 6.3 for
SBDS.

Example 69. Consider the search tree shown in Figure 6.7, for the CSP ({x, y}, {1..10}, C)
and assume the symmetry s that is x ↔ y. Assume that at the node marked α, the branch-
ing constraint has not been propagated and the domain of x still appears to be {1..10}. In
this case G will be empty and scon(G) will hold trivially, causing the symmetry breaking
constraint x > 5 to be incorrectly posted on the right child of α.

x ≤ 5 x > 5,y ≥ 5

α

y ≤ 5 y > 5,x > 5

solutions
where
x, y > 5solutions

where
x, y ≤ 5

failure
due to x
wipeout

Figure 6.7: Incorrect entailment. Bounds-consistency is required for correctness.

To correctly compute G with Var ≤ Val branching constraints we must examine the
bounds of the variable rather than only whether it is ground or not. For Var ≤ Val style
branching we can define G as {(x ≤ v)|x ∈ X ∧ v = max(x)}. Under this definition
G entails Cp only if the upper bound of x as reported by max(x) is consistent with the
constraints posted as part of Cp. Therefore, when a constraint of the form x ≤ v is posted,
we require the solver to change the upper bound of x to be at most v before the next search
node.

Condition 2: when a Var ≤ Val constraint is added, at the next search node
the upper bound of Var must be at most Val.

This condition guarantees that G ⊢ Cp as follows. Consider some (x ≤ v) ∈ Cp; we
show that G ⊢ {x ≤ v}. By Condition 2, the upper bound of x is u, where u ≤ v.
Therefore, x ≤ u is in G. Since x ≤ u ⇒ x ≤ v, it must be that G ⊢ {x ≤ v}.

6.6 Domain Splitting and Cp

With domain splitting and first-fail (minimum domain size) variable orderings, the leftmost
branch of a search tree typically resembles Figure 6.8. A variable – in this example, the
variable x whose domain is 1..10 – is chosen at the root and its domain is split. On the
right branch, a symmetry breaking constraint is posted to deal with the x-y symmetry.
On the left branch, x is likely to have the smallest domain and is chosen again to have
its domain split. However, at the node marked α, the variables x and y are no longer
symmetric (because scon(Cp) does not hold) and therefore on α’s right branch the search

134 CHAPTER 6. GENERALITY OF DYNAMIC SYMMETRY BREAKING

x < 5 x ≥ 5,y ≥ 5

α

x < 3 x ≥ 3

x < 2 x ≥ 2

Figure 6.8: Typical search tree with domain splitting and first-fail heuristic. One variable
(here x with domain 1..10) is instantiated before any other variable is considered.

does not post the symmetry breaking constraint y ≥ 3. This leads to very little symmetry
breaking and a large search tree.

However, it is correct to assert y ≥ 3 on α’s right branch. Suppose that the search had
chosen to branch on x < 3 and x ≥ 3 as the root of the search tree. In this case it is clear
that posting the symmetry breaking constraint would be correct. The only difference in
Figure 6.8 is that Cp = {x < 5} instead of Cp = ∅. However, within α’s left subtree the
constraint x < 5 is irrelevant because it is subsumed by the constraint x < 3 – it is as if
x < 5 had never been posted. Therefore, the subsumed constraint x < 5 should have no
bearing on our symmetry breaking at α.

In general, at search node v, a constraint p ∈ Cp is subsumed if (Cp ∪ {c}) \ {p} ⊢ p.
Let us denote the set of subsumed constraints by S ⊆ Cp. Given the above discussion,
now instead of checking for scon(Cp) before posting a symmetry breaking constraint, we
need check only for scon(Cp \ S).

In our experiments we have found that this reduced checking leads to significantly
improved behaviour when combining dynamic symmetry breaking with domain splitting
and most variable orderings.

Branch Var Time (s) Failures Solutions
No St Dy No St Dy No St Dy

inst

lex 467.88 1.66 4.35 123696668 35831 89246 480 1 2
anti 4610.14 57.51 4.32 123696668 844418 89246 480 1 2

mind 5044.27 1.46 5.01 136335934 31728 103601 480 1 2
maxd 1359.99 13.72 6.08 22496066 204632 97902 480 1 2

split

lex 3839.25 1.34 3.38 85564622 25936 60247 480 1 2
anti 3764.92 27.68 3.31 85564622 393801 60247 480 1 2

mind 4159.57 1.40 4.02 92959204 27538 73180 480 1 2
maxd 440.76 1.30 4.16 9002656 25010 82231 480 1 4

Table 6.1: Results for finding all solutions for the graceful graph problem K5 × P2.

6.7. EXPERIMENTS 135

6.7 Experiments

We have attempted to evaluate the behaviour of a static symmetry breaking method
against that of LDSB with domain splitting under different search heuristics. We have
implemented domain splitting for LDSB using the second of the entailment tests described
above – explicitly maintaining Cp and testing entailment using the constraint store. We
used Gecode (Gecode Team, 2006) to run the experiments.

We have used the Kn×P2 Graceful Graph problem (see Section A.9) as a benchmark.
This problem can be modelled in several ways (see (Puget and Smith, 2006)); we have
chosen the simplest model with one decision variable per graph vertex. There are three
forms of symmetry: (1) a complement symmetry among the values, where value i is
mapped to q − i (q is the number of edges in the graph), (2) the two Kn cliques can be
interchanged, and (3) the vertices in both cliques can be permuted as long as both cliques
are acted upon identically.

The symmetry in this problem can be elegantly broken for graphs of the with static
symmetry breaking constraints (Smith, 2006). The static constraints impose an ordering
on the vertices of one clique by constraining the first vertex’s label to be 0, and ordering
the other vertices in the first clique arbitrarily. In addition, there is a constraint to ensure
that the vertex labelled 24 (q − 1) is adjacent to the first vertex (labelled 0)

Table 6.1 compares three different approaches to finding all solutions to the K5 ×
P2 problem: static symmetry breaking (St) with the static constraints described above,
our extended LDSB (Dy) with the three symmetries described above, and no symmetry
breaking (No). In the branching method column, “inst” denotes x = v style branching,
and “split” denotes x ≤ v style. For variable order, “lex” assigns domain values to each
variable in increasing lexicographical order until it is ground, “anti is the same as “lex”
but in reverse order, and “mind and “maxd branch on the variable with the smallest or
largest domain size, respectively.

The results show the effects of the interaction between variable ordering, branching
constraints and symmetry breaking. It can be seen that for all symmetry breaking methods
and variable orderings, domain splitting is uniformly more efficient. When the static
symmetry breaking constraints cooperate with the variable ordering, the search tree is
small and the search finishes quickly. However, when the variable ordering conflicts with
the constraints, the search tree size and time increases dramatically. On the other hand,
the variable ordering has very little effect on the efficiency of the dynamic symmetry
breaking method, which seems to be quite consistent: neither as fast nor as slow as the
extremes of the static method.

6.8 Conclusions

We have shown how to extend an implementation of our dynamic symmetry breaking
method LDSB to cooperate with the common search technique of domain splitting. The
very preliminary experimental results show that the execution time of the resulting dy-
namic symmetry breaking method is more predictable in its interaction with variable
ordering heuristics than static symmetry breaking, which can be faster but can also per-
form badly if it conflicts with the variable ordering. This suggests that dynamic symmetry

136 CHAPTER 6. GENERALITY OF DYNAMIC SYMMETRY BREAKING

breaking is less sensitive to the variable ordering and may be preferred if the static sym-
metry breaking constraints cannot be designed to agree with the variable ordering.

In addition, we have shown that for certain kinds of symmetry breaking the constraint
solver must obey some simple conditions in order for symmetry breaking to be correct.
These conditions ensure that the symmetry breaking method can rely on the domains of
the variables as reported by the solver.

It is clear that symmetry breaking is a vital component of a successful constraint
programming technique. Equally, the choice of the appropriate variable ordering and kind
of branching constraints is crucial to search performance. There has been little exploration
of how these two techniques for improving search behave when they are combined. In this
chapter we have discussed a preliminary exploration of how the domain-splitting heuristic
and different variable orderings interact with dynamic and static symmetry breaking.
However, there is much scope for further work in this area.

Here we have covered Var = Val and Var ≤ V al branching constraints. Although these
kinds of branchings are very common, they are by no means the only possibilities; for some
problems it may be useful to branch using binary constraints to state the relationship
between two variables, or perhaps even more complex constraints. It is not clear how
dynamic symmetry breaking might interact with such a search. Also, we have considered
only variable and value symmetries independently and not discussed how a scon might be
defined for variable-value symmetries. This is the subject of further research.

Chapter 7

Conclusion

The study of symmetry in constraint programming is a challenging and productive area of
research. It has been shown that exploiting symmetry can lead to considerable improve-
ments in performance when searching for solutions to combinatorial problems. In this
thesis we have provided improvements to all parts of the use of symmetry in constraint
programming, from the detection stage through to the exploitation stage. Let us now
discuss in detail the contributions that have been made, and the future work that they
give rise to.

Instance Symmetry Detection. There has been a significant amount of work done
in the detection of symmetries in constraint program instances. We have examined in detail
one of the most promising methods of automatically detecting symmetries in constraint
satisfaction problems, that presented by Puget (2005a). This method is quite efficient and
in its most general form is able to detect all kinds of constraint symmetry in a problem,
not merely variable- or value-symmetries. However, the method was not formally defined
and its informal definition is not complete. As a result, it is not clear how it is applied to
certain CSPs. Moreover, no attempt was made at proving its correctness and, in fact, we
have shown that in some cases it produces incorrect results. In addition, much of its benefit
appears to come from its special treatment of the all-different global constraint. While
the savings in graph size are substantial, introducing custom-designed representations
for constraints risks losing some of the symmetry-detecting power of the method since
symmetries arising from the conjunction of different kinds of constraint can no longer be
captured. It is also not clear how such special representations could be extended to other
kinds of global constraint. In this context, our contributions to the detection of symmetry
in problem instances is as follows:

• We have identified CSPs for which the previous method gives incorrect results, and
provided modifications that are sufficient to ensure that the resulting method is
correct.

• We have formally defined new forms of graph construction that can be used to
represent a constraint satisfaction problem and its symmetries. We describe the
disallowed assignments graph and allowed assignments graph and also a form, the full
assignments graph, that combines the two to make a more compact representation.
We discuss in depth how our new constructions reflect the symmetries of the original

137

138 CHAPTER 7. CONCLUSION

problem and prove that the symmetries found in these graphs do indeed correspond
to symmetries of the problem.

• We have described two ways of reducing the size of the graphs representing the
problems. First, we show that enforcing arc-consistency on the problem preserves
correctness and keeps most, though not all, of the symmetries of the original problem.
This gives dramatic size improvements in some cases, such as for set variables with
cardinality constraints. Second, we show that reducing the arity of the constraints
leads to a smaller graph with possibly more symmetries – a transformation that
runs counter to the customary approach of constraint programming, which is to use
larger, more complex constraints.

• We have implemented our graph construction and used it to detect the symmetries
of a range of benchmark problems. The results show that our method finds all of
the symmetries that Puget’s best graph construction can find, and does not require
specially crafted representations of global constraints to do so. Our method has
much faster running times for some problems but sometimes slower running times
due to the special all-different representation.

The development of our new graph construction for symmetry detection raises some
topics for future research. Puget’s method of graph construction leads to compact graphs
for certain kinds of problem, thanks to the use of a representation specifically designed for
the all-different constraint. It remains to be seen whether this approach to making smaller
graphs can be extended effectively to other kinds of constraints, or indeed whether this is
a desirable trade-off against the amount of symmetries found.

Our method is not without limitations: despite the improvements brought by our
method of graph construction, we are still limited by the size of the problem to be analysed.
As the problem grows in the number of variables, the sizes of their domains and the number
of constraints, the graph’s size grows quickly. As a consequence, our method cannot be
used on very large problems, where we might desire to know the symmetries because the
savings gained in exploiting them would be substantial. However, this limitation is not a
concern because our interest lies in detecting the symmetries of problem models, where
we use our instance symmetry detection method only on small instances.

Model Symmetry Detection. In contrast to the work done for individual problems,
there has been little research in finding symmetries of constraint satisfaction models.
The task is very difficult, owing to the lack of standard notation for problem models
and the inherent hardness of program analysis. The only two methods we know that
focused on models are limited in their use either by requiring custom application to each
problem, or by being dependent on the syntax used to express the problem: only the
symmetries of global constraints were considered. The latter kind can be seen as an
abstract interpretation method (Cousot and Cousot, 1977) where a loss of accuracy occurs
in the abstraction of symmetries (only the symmetries inherent in global constraints are
considered) and when conjoining them abstractly. Our contributions to the detection of
symmetries in problem models is as follows:

• We have presented a radically novel approach to automatically finding symmetries
in constraint satisfaction models. Our approach exploits the effectiveness of our

139

graph-based instance detection method discussed earlier while avoiding its main
drawback of inefficiency in large problems. The foundation of the approach is to
construct several distinct small instances of the model, to find the symmetries of
those instances, and then to generalise those symmetries back to the model. Once
generalised, these symmetries are filtered to select likely candidates to be symmetries
of the model. The final step is to confirm that each candidate is indeed a symmetry
of every instance of the model, or to discard that candidate.

• We have provided an implementation of each component of our new framework. Our
implementation considers problems whose parameters are a vector of integers, and
constructs instances of the model by generating parameters from a base parameter
vector. For each of these instances, our implementation uses the symmetry detec-
tion method described in Chapter 3 to find the generating set of symmetries of the
problem. The next step is to generalise the symmetries, which our implementation
does by matching each symmetry against a set of patterns. The patterns include
some of the symmetries that occur most commonly in constraint problems, such
as row- and column-swaps and reflections in matrices of variables. After matching
against patterns, we take the intersection of the generalised symmetries of all in-
stances, using a computational group theory package to avoid problems caused by
the non-uniqueness of generating sets.

• We have tested our implementation on several varied benchmark problems and found
that it performs very well. Indeed, it finds almost all of the symmetries of the
problems, and does so without having to examine large problem instances.

• We have presented two methods for automatically proving that candidate symmetries
are symmetries of a model. These methods, described informally by way of examples,
are able to prove the correctness of some kinds of symmetry, and suggest promising
avenues that may lead to more general solutions.

• We have described how the framework, originally designed for symmetry, can be ap-
plied to the detection of other properties. In particular, we have discussed how the
framework can be applied to the task of finding opportunities for caching the results
of sub-problems during constraint satisfaction search. The development and imple-
mentation of the framework applied to this problem is future work whose fulfilment
would be extremely useful to constraint programming.

As our approach to detecting symmetries of constraint models is novel, there remain
many open questions. One of prime importance is the applicability of the framework to
models where the parameters are not vectors of integers, such as where the data may be a
graph or some other structured information. Indeed, it is a limitation of the method that a
symmetry that is contingent on the data itself, such as a symmetry that exists only in the
data, cannot be found. In addition, the task of proving that candidate symmetries apply
to the model remains a difficult one. Although the framework and our implementation
are useful even without a complete method for this step, a fully automatic way to perform
this task would make its use more convenient for practitioners.

140 CHAPTER 7. CONCLUSION

Symmetry Breaking. The main purpose of detecting symmetries in constraint pro-
gramming is to use them to improve the performance of the search for solutions to a prob-
lem. Symmetry breaking has proved vital for the practical resolution of some problems,
where the symmetries that exist in the problems cause a very large amount of redundant
work in a naive search. However, they have also proved to be difficult to use, either due to
unpredictable performance or to the high expertise required from the user. In the existing
literature there is no static or dynamic method that is easy for a practitioner to use and
that gives good, consistent results in general.

• We have developed a symmetry breaking method called Lightweight Dynamic Sym-
metry Breaking, or LDSB. The strengths of LDSB are that it adds little overhead
to the search, it imposes a small burden on the user, and it often significantly im-
proves search performance. LDSB achieves this by focusing on symmetries that are
common in practice and that can be represented simply and manipulated efficiently.
LDSB is a formalisation of the shortcut SBDS method, which aims to increase ef-
ficiency at the expense of completeness. Importantly, there is no need to use any
computational group theory software – such as GAP, which is commonly used in the
dynamic symmetry breaking in platforms such as ECLiPSe– nor is there any need
for the user to input the whole symmetry group, which can in practical problems
number millions of symmetries. This is not needed in LDSB because composition of
variable and value symmetries is built-in, so most of the symmetries resulting from
composition are automatically broken.

• We have provided two publicly-available implementations of LDSB for the popular
constraint programming platforms ECLiPSe and Gecode. Both of these implementa-
tions are to be distributed with these platforms, so that they can be used very easily
by constraint programmers. We expect that the distribution of symmetry breaking
methods with popular constraint systems will stimulate more interest and improve-
ments in the area. Our experiments with LDSB show that despite its simplicity
it is at worst competitive with other dynamic symmetry breaking methods and of-
ten surpasses them markedly in performance. In particular, LDSB’s performance is
consistent and predictable while other methods vary greatly in their behaviour.

LDSB has two main limitations. First, it cannot represent variable-value symmetries,
and second, it is not complete, i.e. it does not guarantee that all symmetries will be fully
broken. We believe, and our experiments suggest, that this trade-off is worthwhile. It
remains to be seen what further improvements could be made to LDSB. Just as reducing
the kinds of symmetry handled has led to performance improvements, it is likely that
other shortcuts – such as breaking symmetries only at the top of the search tree – may
lead to increased efficiency.

Usability of Symmetry Breaking. A symmetry breaking method does not act in
a vacuum; it must interact with a constraint solver and a search algorithm. The way in
which symmetry breaking cooperates (or fails to cooperate) with these components can
have a dramatic effect on the efficiency of search.

• We have shown that an apparently straight-forward extension of the SBDS symmetry
breaking method to handle x < v style branching constraints is in fact incorrect.

141

• We have discussed the implications of extending LDSB (and SBDS, on which it
is based) to use branching constraints of the form x < v. We also show how the
symmetries present in a problem can help to guide the choice of branching constraint.

• We have analysed the interaction between LDSB and the constraint solver with
which it is used. As LDSB uses the domains of the variables in a problem to make
decisions, it relies on the ability of the constraint solver to report those domains
correctly. We provide two minimum conditions that a solver must meet in order for
it to be used correctly with LDSB, both for x = v and x < v branching constraints.

• We have shown, with some preliminary experiments, how the choice of static or
dynamic symmetry breaking, the choice of variable ordering in search and the choice
of branching constraint interact. Our dynamic symmetry breaking method, LDSB,
appears to be much less sensitive to changes in variable ordering that can cause a
large variation in running time for a static symmetry breaking method.

Although we have covered some of the most common cases, there is much left to be
explored in these issues. It is not known how dynamic symmetry breaking could be applied
to non-unary branching constraints. Similarly, we have discussed variable symmetries and
value symmetries, but leave the consideration of variable-value symmetries to the future.
Finally, there is great scope for further experimental comparison and even composition of
dynamic and static symmetry breaking methods under search algorithms using dynamic
and static variable and value orderings.

In summary, in this thesis we have provided a single integrated and implemented
system for all phases of symmetry handling in constraint programming, from automatic
detection through to automatic symmetry breaking in search.

142 CHAPTER 7. CONCLUSION

Appendix A

Benchmark Problems

This appendix provides details regarding the benchmark problems used in the thesis. For
each benchmark, it provides a description of the problem together with a Zinc (Garcia
de la Banda et al., 2006) model (note that some of these models are example models
distributed with Zinc). The Zinc models are intended to be succinct specifications of the
problem rather than the most efficient model.

A.1 N-queens

The N-Queens problem is to place N chess queens on an N ×N chessboard in such a way
that no queen attacks another queen. That is, no two queens may face each other along
a row, column or diagonal.

There are two commonly-used model of the problem: one with an integer variable per
queen, and the other with a Boolean variable per square.

A.1.1 Integer model

In any solution to the N-queens problem there must be exactly one queen per column.
We can solve the problem by determining, for each column, in which row the queen is
placed. The constraints ensure that each row is taken by exactly one queen, and that
each diagonal by at most one queen. (The model show was taken from the G12 project
example (G12 Project, 2009).)

%% One queen per column.
%% An array q of size n of variables with domain 1..n.
array [1..n] of var 1..n: q;

constraint
%% For each pair (i,j) of queens.
forall (i in 1.. n, j in i + 1..n) (

%% Queen i doesn’t attack queen j.
q[i] != q[j]∧
q[i] + i != q[j] + j

143

144 APPENDIX A. BENCHMARK PROBLEMS

∧
q[i] − i != q[j] − j

);

A.1.2 Boolean model

In the Boolean model, each square on the board is represented by a Boolean variable which
is 1 if a queen occupies that square and 0 otherwise. Constraints ensure that each row
and column has exactly one queen, and each diagonal has at most one queen. (The model
show was taken from the G12 project example (G12 Project, 2009).)

type rg = 1 .. n;
%% 2d array of Boolean variables.
array [rg, rg] of var 0 .. 1: q;

constraint forall (i in rg) (
% Exactly one queen per row.
(sum (j in rg) (q[i , j]) = 1)
% Exactly one queen per column.∧
(sum (j in rg) (q[j , i]) = 1)
% At most one queen per diagonal.∧
(sum (j, k in rg where j−k = i−1) (q[j, k]) ≤1)∧
(sum (j, k in rg where j−k = 1−i) (q[j, k]) ≤1)∧
(sum (j, k in rg where j−k = i−1) (q[n+1−j, k]) ≤1)∧
(sum (j, k in rg where j−k = 1−i) (q[n+1−j, k]) ≤1)

);

A.2 Social Golfers

The Social Golfers problem requires a weekly schedule to be created for a group of golfers.
There are G × P golfers, who are to be arranged every week in G groups each of size P ,
over a period of some weeks. Two golfers may not play in the same group more than once;
that is, a player must play with different people every week. (The model show was taken
from the G12 project example (G12 Project, 2009).)

% ”Weeks” is number of weeks.
% ”Groups” is number of groups per week.
% ”GroupSize” is the size of each group.
% ”Players” is the set of players
% (the numbers 1..Groups∗GroupSize).

% 2D array of size (Weeks x Groups) of set variables , each
% of whose elements are drawn from the set of Players.
array[1..Weeks,1..Groups] of var set of Players: group;

% Constrain an array of set variables such that the maximum

A.3. GOLOMB RULER 145

% overlap between any two sets is n. The elements of the sets
% are of arbitrary type (the type variable $E).
predicate maxOverlap(array[int] of var set of $E: sets, int: n) =

forall(i , j in 1.. length(sets) where i < j) (
card(sets[i] intersect sets[j]) ≤n

);

% Groups are always the same size.
constraint

forall (i in 1..Weeks, j in 1..Groups) (
card(group[i,j]) == GroupSize

);

% No golfer plays in more than one group each week.
constraint

forall (i in 1..Weeks) (
maxOverlap([group[i,j] | j in 1..Groups], 0)

);

% Groups change each week, ie. no golfer plays in the same group
% as any other golfer twice .
constraint

maxOverlap([group[i,j] | i in 1..Weeks, j in 1..Groups], 1);

A.3 Golomb Ruler

A Golomb Ruler is a set of m integer marks on a ruler {a1, a2, . . . , am} in ascending order
such that all differences between marks ai − aj are different. The first mark a1 is taken
to be 0 and the length of the ruler is am. The task is to minimise the length of the ruler
for a given number of marks. (The model show was taken from the G12 project example
(G12 Project, 2009).)

int : n = m∗m;

% Array of marks.
array [1..m] of var 0..n: mark;

% Array of differences , one per pair of marks.
array[int] of var 0..n: differences =

[mark[j] − mark[i] | i in 1..m, j in i+1..m];

% First mark must be zero, the marks must be increasing,
% and the differences must be distinct .
constraint mark[1] = 0;
constraint forall(i in 1..m−1) (mark[i] < mark[i+1]);

146 APPENDIX A. BENCHMARK PROBLEMS

constraint all different (differences);

A.4 N × N Queens

The N × N Queens problem is to find N simultaneous, non-overlapping solutions to the
N-Queens problem. It can also be viewed as a graph colouring problem. Each square of
the N ×N chessboard is a vertex, and there is an edge (u, v) if a chess queen could move
from u to v in a single move on an otherwise empty board. The task is to colour this
graph with N colours.

% 2d matrix of integers.
array [1..n, 1.. n] of var 1..n : board;

% All values in a row must be different .
constraint forall(i in 1.. n) (all different ([board[i , j] | j in 1.. n]));
% All values in a column must be different.
constraint forall(j in 1.. n) (all different ([board[i , j] | i in 1.. n]));

% All values in any diagonal must be different , in each direction .
constraint forall(x in −n..n)

(all different ([board[i , j] | i , j in 1.. n where i−j == x]));
constraint forall(x in 1..2∗n)

(all different ([board[i , j] | i , j in 1.. n where i+j == x]));

A.5 Balanced Incomplete Block Design

A Balanced Incomplete Block Design is an arrangement of v objects into b blocks such
that each block contains exactly k objects, each object occurs in exactly r blocks, and
every two objects occur together in exactly λ blocks. The BIBD generation problem is to
generate such arrangements.

The model has a b× v matrix of Boolean variables, where the variable at index (i, j)
is 1 if and only if block i contains object j. (The model show was taken from the G12
project example (G12 Project, 2009).)

type Blocks = 1..b;
type Objects = 1..v;

% 2d array of Booleans; bibd[b,v] is 1 if object v is
% in block v.
array[Blocks, Objects] of var bool: bibd;

% Must be k objects per block .
constraint

forall (b in Blocks)

A.6. STEINER TRIPLES 147

(sum (v in Objects) (bool2int(bibd[b, v])) = k);

% Each object must occur in r blocks.
constraint

forall (v in Objects)
(sum (b in Blocks) (bool2int(bibd[b, v])) = r);

% Each pair of objects occurs together in lambda blocks.
constraint

forall (v1,v2 in Objects where v1 < v2)
(sum (b in Blocks) (bool2int(bibd[b, v1]

∧
bibd[b, v2])) = lambda);

A.6 Steiner Triples

The Steiner Triple problem requires a set of N objects to be arranged into triples such
that every two objects appear together in exactly one triple. For example, an arrangement
for the set {1, 2, 3, 4} is {(1, 2, 3), (1, 4, 5), (1, 6, 7), (2, 4, 6), (2, 5, 7), (3, 4, 7), (3, 5, 6)}.

m = n∗(n−1) div 6;

% Each triple is a set variable .
array[1..m] of var set of 1.. n : triples ;

% Each set variable must be a triple (cardinality 3).
constraint forall(i in 1..m) (card(triples[i]) == 3);

% Each pair of sets must have at most one value
% in common.
constraint forall(i, j in 1..m where i<j)
(card(triples [i] intersect triples [j]) ≤ 1);

A.7 Steel Mill Slab Design

The Steel Mill Slab Design problem requires orders of steel to be assigned to slabs. Each
order has a weight and a colour, and each slab has a capacity chosen from a specified
set. The sum of the weights of the orders assigned to a slab must not exceed the slab’s
capacity, and orders using at most two different colours may be assigned to one slab.

int : norders;

type range = 1..norders;

% Permitted slab capacities .
array[int] of int : capacities ;

148 APPENDIX A. BENCHMARK PROBLEMS

% An order has a weight and a colour.
type order = record(int : weight, int : colour);

% The orders.
array[range] of order : orders;
% The assignment of orders to slabs.
array[range] of var range : x;

% The load on each slab.
array[range] of var 0..maxcapacity : load;

% The largest permitted capacity .
int : maxcapacity = max(capacities);

% The load on a slab is equal to the sum of the weights
% of the orders assigned to that slab .
constraint
forall (i in range)
(load[i] == sum (j in range) (bool2int(x[j] == i)∗orders[j].weight));

% No slab may exceed the maximum permitted capacity.
constraint
forall (i in range)
(load[i] ≤maxcapacity);

% The largest colour in any order.
int : maxcolour = max([orders[i].colour | i in range]);

array[range, 1..maxcolour] of var int : colours used;
array[range, 1..maxcolour] of var bool : colours used bool;

array[1..maxcolour] of set of range : orders by colour =
[c : { i | i in range where orders[i].colour == c } | c in 1..maxcolour];

% Ensure that colours used[s,c] is 1 if slab s contains an
% order using colour c.
constraint
forall (s in range,c in 1..maxcolour)
(count([x[i] | i in orders by colour [c]], s , colours used[s ,c])∧

colours used bool[s ,c] == (colours used[s,c] > 0));

% The number of different colours used in any slab is at most 2.
constraint

A.8. LATIN SQUARE 149

forall (s in range)
(sum(c in 1..maxcolour) (bool2int(colours used bool[s,c])) ≤ 2);

% The loss of a slab is the amount of unused capacity.
array[0..maxcapacity] of int : loss =
[i : min([j | j in capacities where j ≥i]) − i | i in 0..maxcapacity];

array[range] of var int : waste;

constraint
forall (i in range)
(waste[i] == loss[load[i]]);

% The total loss is the value to minimised.
var int : totalloss = sum(waste);

A.8 Latin Square

A Latin Square is an N ×N matrix where the symbol in each cell is drawn from a set of
N symbols, and no symbol appears twice in any row or twice in any column.

int : n;
type range = 1..n;

array[range,range] of var range : square;

constraint
% The values in each row/column must be distinct.
forall (i in range)
(all different ([square[i , j] | j in range])∧

all different ([square[j , i] | j in range]));

A.9 Graceful Graph Labelling

The graceful graph labelling problem is to assign an integer value to each vertex of a graph
so that all vertex labels are distinct, and so that all edge labels are distinct. The label on
an edge (u, v) must be the absolute difference of the label on u and the label on v, and
the vertex labels must be drawn from the set {0..q}, where q is the number of edges in the
graph.

% The number of graph vertices.
int : nodes;
type node = 1..nodes;

150 APPENDIX A. BENCHMARK PROBLEMS

% The set of graph edges.
type edge = tuple(node,node);
set of edge : edges;

% The labels assigned to graph vertices .
type label = 0..length(edges);
array[node] of var label : m;

% All labels must be distinct .
constraint all different (m);

% The edge labels.
type edgelabel = 1..length(edges);
array[edgelabel] of var edgelabel : differences ;

% The label on an edge is the absolute difference of
% the labels on its endpoints.
constraint
forall(i in 1.. length(edges))
(abs(m[edges[i].1] − m[edges[i].2]) == differences[i]);

% All edge labels must be distinct .
constraint all different (differences);

A.10 Concert Hall Scheduling

The concert hall scheduling problem is to determine which subset of offers to accept in
order to maximise profit. A set of offers is made to rent a concert hall, each with a start
time, an end time and a price. The offers should be accepted so that the profit (the sum
of the prices of accepted offers) is a maximum, under the constraint that two offers that
overlap in time cannot both be accepted.

% An offer has a start time, and end time, and a price.
type offer = record(int : start , int : end, int : price);
array[int] of offer : offers ;

type r = 1..length(offers);

% x[i] is true if offer i is accepted.
array[r] of var bool : x;

% Do offers i and j overlap in time?
function bool : overlap(int : i , int : j) =

offers [i]. start ≤ offers [j]. end
∧

A.11. GRAPH COLOURING 151

offers [j]. start ≤ offers [i]. end ;

% Any two overlapping offers are mutually exclusive.
constraint
forall (i , j in r where i < j

∧
overlap(i , j))

((x[i]
∧
x[j]) == false);

% The profit is the sum of the prices of accepted offers ,
% and is to be maximised.
var int : profit = sum(i in r) (bool2int(x[i]) ∗ offers [i]. price);

A.11 Graph Colouring

The graph colouring problem is to colour the vertices of a graph using a finite number of
colours such that the endpoints of every edge have different colours.

% Graph vertices.
int : nodes;
type node = 1..nodes;

% Graph edges.
type edge = tuple(node,node);
set of edge : edges;

% Number of permitted colours.
int : colours ;
type colour = 1..colours;

% Assignment of colours to edges.
array[node] of var colour : x;

% The endpoints of each edge must have different colours .
constraint
forall(i in 1.. length(edges))
(x[edges[i].1] != x[edges[i].2]);

152 APPENDIX A. BENCHMARK PROBLEMS

Vita

Publications arising from this thesis include:

C. Mears, M. Garcia de la Banda, M. Wallace On Implementing Symmetry Detec-
tion. In The 6th International Workshop on Symmetry in Constraint Satisfaction
Problems. 2006.

B. Demoen, M. Garcia de la Banda, C. Mears, M. Wallace ANovel Approach For
Detecting Symmetries in CSP Models. In The 7th International Workshop on Sym-
metry in Constraint Satisfaction Problems. 2007.

C. Mears, M. Garcia de la Banda, M. Wallace, B. Demoen ANovel Approach For
Detecting Symmetries in CSP Models. In The 5th International Conference on In-
tegration of AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems. 2008.

C. Mears, M. Garcia de la Banda, B. Demoen, M. Wallace Lightweight Dynamic
Symmetry Breaking. In The 8th International Workshop on Symmetry in Constraint
Satisfaction Problems. 2008.

C. Mears, M. Garcia de la Banda, M. Wallace, B. Demoen Symmetry Breaking
and Branching Constraints. In The 8th International Workshop on Symmetry in
Constraint Satisfaction Problems. 2008.

C. Mears, M. Garcia de la Banda, M. Wallace On Implementing Symmetry Detec-
tion. Constraints, volume 14. 2009.

Permanent Address: Clayton School of Information Technology
Monash University
Australia

153

154 VITA

This thesis was typeset with LATEX2ε
1 by the author.

1LATEX2ε is an extension of LATEX. LATEX is a collection of macros for TEX. TEX is a trademark of
the American Mathematical Society. The macros used in formatting this thesis were written by Glenn
Maughan and modified by Dean Thompson and David Squire of Monash University.

References

K.R. Apt and M.G. Wallace. Constraint Logic programming using ECLiPSe. Cambridge
University Press, 2006. ISBN 0521866286.

R. Backofen and S. Will. Excluding symmetries in constraint-based search. In Principles
and Practice of Constraint Programming - CP 1999, 1999.

N. Beldiceanu, M. Carlsson, S. Demassey, and T. Petit. Global constraint catalogue: Past,
present and future. Constraints, 12(1), 2007.

B. Benhamou. Study of symmetry in constraint satisfaction problems. In PPCP’94:
Second International Workshop on Principles and Practice of Constraint Programming,
1994.

A. Bossi and Y. Deville. Special issue: synthesis, transformation and analysis of logic
programs. The Journal of Logic Programming, 39(1-3), 1999.

J. Charnley, S. Colton, and I. Miguel. Automatic generation of implied constraints. In
ECAI 2006: 17th European Conference on Artificial Intelligence, 2006.

D. Cohen, P. Jeavons, C. Jefferson, K.E. Petrie, and B.M. Smith. Symmetry definitions for
constraint satisfaction problems. In Principles and Practice of Constraint Programming
- CP 2005, 2005.

P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In Conference Record of the
Fourth ACM Symposium on Principles of Programming Languages, 1977.

J. Crawford, M.L. Ginsberg, E. Luks, and A. Roy. Symmetry-breaking predicates for
search problems. In KR’96: Principles of Knowledge Representation and Reasoning,
1996.

P.T. Darga, M.H. Liffiton, K.A. Sakallah, and I.L. Markov. Exploiting structure in sym-
metry generation for CNF. In Proceedings of the 41st Design Automation Conference,
2004.

T. Fahle, S. Schamberger, and M. Sellmann. Symmetry breaking. In Principles and
Practice of Constraint Programming - CP 2015, 2001.

155

156 REFERENCES

P. Flener, A.M. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, J. Pearson, and T. Walsh. Breaking
row and column symmetries in matrix models. In Principles and Practice of Constraint
Programming - CP 2002, 2002a.

P. Flener, A.M. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, and T. Walsh. Matrix mod-
elling: Exploiting common patterns in constraint programming. In Proceedings of the
International Workshop on Reformulating Constraint Satisfaction Problems, 2002b.

P. Flener, J. Pearson, and M. Agren. Introducing ESRA, a relational language for mod-
elling combinatorial problems. Logic Based Program Synthesis and Transformation,
13th International Symposium LOPSTR 2003 Revised Selected Papers, 2004.

F. Focacci and M. Milano. Global cut framework for removing symmetries. In Principles
and Practice of Constraint Programming - CP 2001, 2001.

E.C. Freuder. Synthesizing constraint expressions. Communications of the ACM, 21(11),
1978.

E.C. Freuder. Eliminating interchangeable values in constraint satisfaction problems. In
Proceedings of The Ninth National Conference on Artificial Intelligence (AAAI-91),
1991.

A.M. Frisch, C. Jefferson, and I. Miguel. Constraints for breaking more row and column
symmetries. In Principles and Practice of Constraint Programming - CP 2003, 2003a.

A.M. Frisch, I. Miguel, and T. Walsh. CGRASS: A system for transforming constraint
satisfaction problems. In Recent Advances in Constraints, Joint ERCIM/CologNet In-
ternational Workshop on Constraint Solving and Constraint Logic Programming, 2003b.

A.M. Frisch, M. Grum, C. Jefferson, B. Martinez Hernandez, and I. Miguel. The de-
sign of ESSENCE: A constraint language for specifying combinatorial problems. In
International Joint Conference on Artificial Intelligence, 2007.

G12 Project. G12 constraint programming platform, 2009. See
http://www.nicta.com.au/.

M. Garcia de la Banda and P.J. Stuckey. Dynamic programming to minimize the maximum
number of open stacks. Informs Journal on Computing, 19(4), 2007.

M. Garcia de la Banda, M. Hermengildo, M. Bruynooghe, V. Dumortier, G. Janssens,
and W. Simoens. Global analysis of constraint logic programs. ACM Transactions on
Programming Languages and Systems, 1996.

M. Garcia de la Banda, M. Hermenegildo, and K. Marriott. Independence in CLP lan-
guages. ACM Transactions on Programming Langugages and Systems, 22(2), 2000.

Maria Garcia de la Banda, Kim Marriott, Reza Rafeh, and Mark Wallace. The modelling
language Zinc. In Principles and Practice of Constraint Programming - CP 2006, 2006.

A. Gargani and P. Refalo. An efficient model and strategy for the steel mill slab design
problem. In Principles and Practice of Constraint Programming - CP 2007, 2007.

REFERENCES 157

Gecode Team. Gecode: Generic constraint development environment, 2006. Available
from http://www.gecode.org.

S. Genaim and M. Codish. Inferring termination conditions for logic programs using
backwards analysis. Theory and Practice of Logic Programming, 5, 2005.

I.P. Gent and B.M. Smith. Symmetry breaking in constraint programming. In ECAI 2000:
14th European Conference on Artificial Intelligence, 2000.

I.P. Gent and T. Walsh. CSPLib: a benchmark library for constraints. Technical report,
Technical report APES-09-1999, 1999. Available from http://csplib.cs.strath.ac.uk/.

I.P. Gent, W. Harvey, and T. Kelsey. Groups and constraints: Symmetry breaking during
search. In Principles and Practice of Constraint Programming - CP 2002, 2002.

I.P. Gent, W. Harvey, T. Kelsey, and S. Linton. Generic SBDD using computational group
theory. In Principles and Practice of Constraint Programming - CP 2003, 2003.

I.P. Gent, T. Kelsey, S. Linton, I. McDonald, I. Miguel, and B.M. Smith. Conditional
symmetry breaking. In Principles and Practice of Constraint Programming - CP 2005,
2005.

I.P. Gent, C. Jefferson, and I. Miguel. MINION: A fast, scalable, constraint solver. In
ECAI 2006: 17th European Conference on Artificial Intelligence, 2006.

The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.4.9, 2006.

D.S. Heller, A. Panda, M. Sellmann, and J. Yip. Model restarts for structural symmetry
breaking. In Principles and Practice of Constraint Programming - CP 2008, 2008.

J.M. Howe and A. King. Efficient groundness analysis in prolog. Theory and Practice of
Logic Programming, 3, 2003.

ILOG. ILOG cp optimizer. http://www.ilog.com/products/cpoptimizer/.

J. Jaffar and J.-L. Lassez. Constraint logic programming. In Proceedings of the 14th ACM
Symposium on the Principles of Programming Languages, 1987.

C.A. Jefferson, T.W. Kelsey, S.A. Linton, and K.E. Petrie. GAPLex: Generalised static
symmetry breaking. In SymCon’06: The Sixth International Workshop on Symmetry in
Constraint Satisfaction Problems, 2006.

P. Jégou. Decomposition of domains based on the micro-structure of finite constraint-
satisfaction problems. In Proceedings of The Eleventh National Conference on Artificial
Intelligence (AAAI-93), 1993.

Y.C. Law, J.H.M. Lee, T. Walsh, and J.Y.K. Yip. Breaking symmetry of interchangeable
variables and values. In Principles and Practice of Constraint Programming - CP 2007,
2007.

158 REFERENCES

E.M. Luks and A. Roy. The complexity of symmetry-breaking formulas. Annals of Math-
ematics and Artificial Intelligence, 41, 2002.

A.K. Mackworth. Consistency in networks of relations. Artificial Intelligence, 8(1), 1977a.

A.K. Mackworth. On reading sketch maps. In International Joint Conference on Artificial
Intelligence, 1977b.

T. Mancini and M. Cadoli. Detecting and breaking symmetries by reasoning on problem
specifications. In Proceedings of the International Symposium on Abstraction, Reformu-
lation and Approximation (SARA 2005), 2005.

K. Marriott and H. Søndergaard. Precise and efficient groundness analysis for logic pro-
grams. ACM Letters on Programming Languages and Systems (LOPLAS), 2, 1993.

K. Marriott and P.J. Stuckey. Approximating interaction between linear arithmetic con-
straints. In Proceedings of the 1994 International Symposium on Logic Programming,
1994.

K. Marriott and P.J. Stuckey. Programming With Constraints: An Introduction. MIT
Press, 1998.

I. McDonald and B. M. Smith. Partial symmetry breaking. In Principles and Practice of
Constraint Programming - CP 2002, 2002.

B.D. McKay. Practical graph isomorphism. Congressus Numerantium, 30, 1981.

C. Mears, M. Garcia de la Banda, B. Demoen, and M. Wallace. Lightweight dynamic
symmetry breaking. In SymCon’08: The Eighth International Workshop on Symmetry
in Constraint Satisfaction Problems, 2008a.

C. Mears, M. Garcia de la Banda, M. Wallace, and B. Demoen. A novel approach for
detecting symmetries in CSP models. In Fifth International Conference on Integration
of AI and OR Techniques in Constraint Programming for Combinatorial Optimization
Problems, 2008b.

C. Mears, M. Garcia de la Banda, M. Wallace, and B. Demoen. Symmetry breaking and
branching constraints. In SymCon’08: The Eighth International Workshop on Symmetry
in Constraint Satisfaction Problems, 2008c.

C. Mears, M. Garcia de la Banda, and M. Wallace. On implementing symmetry detection.
Constraints, 14, 2009.

P. Meseguer and C. Torras. Exploiting symmetries within constraint satisfaction search.
Artificial Intelligence, 129(1-2), 2001.

K. Muthukumar and M.V. Hermenegildo. Combined determination of sharing and free-
ness of program variables through abstract interpretation. In Proceedings of the Eighth
International Conference on Logic Programming, 1991.

REFERENCES 159

K. Petrie. Further analysis of SBDS against SBDD. In SymCon’03: The Third Interna-
tional Workshop on Symmetry in Constraint Satisfaction Problems, 2003.

K.E. Petrie and B.M. Smith. Symmetry breaking in graceful graphs. In Principles and
Practice of Constraint Programming - CP 2003, 2003.

G. Puebla, E. Albert, and M. Hermenegildo. A generic framework for the analysis and
specialization of logic programs. In Proceedings of the 15th Workshop on Logic-based
methods in Programming Environments, 2005.

J.-F. Puget. On the satisfiability of symmetrical constrained satisfaction problems. In
Methodologies for Intelligent Systems, 7th International Symposium, ISMIS ’93, 1993.

J.-F. Puget. Symmetry breaking revisited. In Principles and Practice of Constraint Pro-
gramming - CP 2002, 2002.

J.-F. Puget. Automatic detection of variable and value symmetries. In Principles and
Practice of Constraint Programming - CP 2005, 2005a.

J.-F. Puget. Breaking symmetries in all different problems. In International Joint Con-
ference on Artificial Intelligence, 2005b.

J.-F. Puget. Breaking all value symmetries in surjection problems. In Principles and
Practice of Constraint Programming - CP 2005, 2005c.

J.-F. Puget and B. Smith. Improved models for graceful graphs. In CP 2006 Workshop
on Constraint Modelling and Reformulation, 2006.

A. Ramani and I.L. Markov. Automatically exploiting symmetries in constraint program-
ming. In CSCLP 2004: Joint Annual Workshop of ERCIM/CoLogNet on Constraint
Solving and Constraint Logic Programming, 2004.

J.-C. Régin. A filtering algorithm for constraints of difference in CSPs. In Proceedings of
The Twelfth National Conference on Artificial Intelligence (AAAI-94), 1994.

C.M. Roney-Dougal, I.P. Gent, T. Kelsey, and S. Linton. Tractable symmetry breaking
using restricted search trees. In ECAI 2004: 16th European Conference on Artificial
Intelligence, 2004.

F. Rossi, P. van Beek, and T. Walsh, editors. Handbook of Constraint Programming.
Elsevier, 2006.

P. Roy and F. Pachet. Using symmetry of global constraints to speed up the resolution
of constraint satisfaction problems. In ECAI98 Workshop on Non-binary Constraints,
1998.

M. Sellmann and P. Van Hentenryck. Structural symmetry breaking. In International
Joint Conference on Artificial Intelligence, 2005.

B.M. Smith. Reducing symmetry in a combinatorial design problem. Technical report,
School of Computer Studies, University of Leeds, Jan 2001.

160 REFERENCES

B.M. Smith. Caching search states in permutation problems. Principles and Practice of
Constraint Programming - CP 2005, 2005.

B.M. Smith. Constraint programming models for graceful graphs. In Principles and
Practice of Constraint Programming - CP 2006, 2006.

G. Smolka. The Oz programming model. In Computer Science Today. 1995.

G. Szilagyi, T. Gyimothy, and J. Maluszynski. Static and dynamic slicing of constraint
logic programs. Automated Software Engineering, 9, 2002.

P. Van Hentenryck. The OPL optimization programming language. MIT Press, 1999.
ISBN 0-262-72030-2.

P. Van Hentenryck and L. Michel. Constraint-Based Local Search. MIT Press, 2005.

P. Van Hentenryck and L. Michel. The steel mill slab design problem revisited. In Fifth
International Conference on Integration of AI and OR Techniques in Constraint Pro-
gramming for Combinatorial Optimization Problems, 2008.

P. Van Hentenryck, P. Flener, J. Pearson, and M. Agren. Compositional derivation of
symmetries for constraint satisfaction. In Proceedings of the International Symposium
on Abstraction, Reformulation and Approximation (SARA 2005), 2005.

D. Voets and D. De Schreye. A new approach to non-termination analysis of logic pro-
grams. In Logic Programming, 2009.

M.G. Wallace, S. Novello, and J. Schimpf. ECLiPSe : A platform for constraint logic
programming. ICL Systems Journal, 12(1), 1997.

T. Walsh. SAT v CSP. In Principles and Practice of Constraint Programming - CP 2000,
2000.

D. Waltz. Understanding line drawings of scenes with shadows. In The Psychology of
Computer Vision, 1975.

