
Constraint Propagation

Models, Techniques, Implementation

Guido Tack

Dissertation

zur Erlangung des Grades

des Doktors der Ingenieurwissenschaften

der Naturwissenschaftlich-Technischen Fakultäten

der Universität des Saarlandes

Saarbrücken, 2009

Dissertation zur Erlangung des Grades
des Doktors der Ingenieurwissenschaften
der Naturwissenschaftlich-Technischen Fakultäten
der Universität des Saarlandes,

eingereicht am 5. Dezember 2008 von
Dipl.-Inform. Guido Tack,
geboren am 6. Oktober 1978 in Lippstadt.

Berichterstatter:

Prof. Dr. Gert Smolka
Prof. Dr. Christian Schulte
Prof. Dr. Frédéric Benhamou

Dekan:

Prof. Dr. Joachim Weickert

Prüfungsausschuss:

Prof. Dr. Holger Hermanns
Prof. Dr. Gert Smolka
Prof. Dr. Christian Schulte
Dr. Alexander Koller

Tag des Kolloquiums:

29. Januar 2009

Textfassung vom 29. Januar 2009

Copyright c© 2008, 2009 Guido Tack

Abstract

This dissertation presents the design of a propagation-based constraint solver. The
design is based on models that span several levels of abstraction, ranging from a
mathematical foundation, to a high-level implementation architecture, to concrete
data structures and algorithms. This principled design approach results in a well-
understood, correct, modular, and efficient implementation.

The core of the developed architecture is the propagation kernel. It provides the
propagation infrastructure and is thus crucial for correctness and efficiency of the
solver. Based on a mathematical model as well as a careful design of the employed
algorithms and data structures, the presented architecture results in an efficient
and domain-independent kernel. Constraints are realized by propagators, and im-
plementing a propagator is a challenging, error-prone, and time-consuming task. A
practically useful solver must however provide a comprehensive propagator library.
This dissertation introduces two techniques for automatically deriving correct and
efficient propagators. Views generalize variables and are used to derive propaga-
tors from existing propagators. For constraints over set variables, propagators are
derived from formal constraint specifications.

The presented techniques are the basis of Gecode, a production-quality, highly effi-
cient, and widely deployed constraint solver. Gecode is the empirical evidence for
success and relevance of the principled design approach of this dissertation.

iii

Kurzzusammenfassung

Diese Dissertation entwirft einen propagierungsbasierten Constraintlöser auf unter-
schiedlichen Abstraktionsebenen, von einem mathematischen Fundament über eine
Implementierungsarchitektur bis hin zu konkreten Datenstrukturen und Algorith-
men. Dieser Ansatz führt zu einer gut verstandenen, korrekten, modularen und effi-
zienten Implementierung.

Das Kernstück der vorgestellten Architektur ist der Propagierungskernel. Er stellt die
Infrastruktur für Constraintpropagierung zur Verfügung und ist daher von großer
Bedeutung für Korrektheit und Effizienz. Diese Dissertation entwickelt die Architek-
tur für einen effizienten, domänenunabhängigen Kernel, basierend auf einem ma-
thematischen Modell und einem sorgfältigen Entwurf der verwendeten Algorithmen
und Datenstrukturen. Constraints werden durch Propagierer realisiert, und das Im-
plementieren eines Propagierers ist fehleranfällig und zeitaufwändig. Andererseits
muss eine ausreichend große Propagiererbibliothek bereitstehen. Diese Dissertati-
on untersucht zwei Techniken, um korrekte und effiziente Propagierer automatisch
abzuleiten. Views verallgemeinern Variablen und dienen dazu, Propagierer von vor-
handenen Propagierern abzuleiten. Für Mengenconstraints werden Propagierer von
formalen Spezifikationen der Constraints abgeleitet.

Die vorgestellten Techniken bilden die Grundlage für Gecode, einen umfangreichen,
hocheffizienten und weit verbreiteten Constraintlöser. Gecode liefert den empiri-
schen Nachweis dafür, dass die in dieser Dissertation gewählte Vorgehensweise rele-
vant und in der Praxis erfolgreich ist.

v

Acknowledgements

The research that I report on in this dissertation is the result of several years of
work—but not only my own. I take this opportunity to express my deep gratitude
towards my advisors, colleagues, friends, and family.

I consider myself extraordinarily fortunate, being able to work with my two advi-
sors, Gert Smolka and Christian Schulte. Gert let me choose my topic freely, and
then supported me in numberless discussions with a fresh, outside look on my re-
search and his enthusiasm for the perfect, elegant formalism. Christian offered me
to join the Gecode project, and I quickly found out that that offer included the best
supervision one can hope for as a doctoral student. To him I owe nearly everything I
know about software design and implementation, about writing papers and writing
reviews, about organizing my work and my thoughts. Mikael Z. Lagerkvist was my
fellow doctoral student on the Gecode project, and I very much enjoyed working
with him, sharing thoughts and discussing ideas. Furthermore, I thank Frédéric Ben-
hamou for giving his expert opinion on this dissertation, and Holger Hermanns and
Alexander Koller for serving on my examination committee.

The Programming Systems Lab at Saarland University has been an inspiring and
gratifying working environment for the past seven years. I especially want to thank
Marco Kuhlmann, my long-term office-mate, for his great friendship and his trust in
me. For interesting discussions, their willingness to share their knowledge, and help
whenever needed, I thank all my current and previous colleagues: Gert, Marco, Chad
E. Brown, Mark Kaminski, Mathias Möhl, Sandra Neumann, and Jan Schwinghammer;
Christian, Ondřej Bojar, Thorsten Brunklaus, Ralph Debusmann, Denys Duchier, Leif
Kornstaedt, Didier Le Botlan, Joachim Niehren, Tim Priesnitz, Andreas Rossberg,
Lutz Straßburger, Gábor Szokoli, and Ann van de Veire. Thanks to our student
assistants Christophe Boutter, Robert Künnemann, and Hannes von Haugwitz, who
made system administration much less of a hassle.

Being employed by the university of course involved teaching duties. However, the
kind of teaching I was allowed to do made this an opportunity rather than a burden.
I thank all my students, and I want to mention in particular those who worked with
me on Gecode, Niko Paltzer, Patrick Pekczynski, and Raphael Reischuk. I hope they
learned as much from me as I learned from them.

For the last year, I have had the freedom to work exclusively on my dissertation,
which was partly made possible by the support from the Saarbrücken Graduate
School of Computer Science. Scientific work requires meeting people in person from
time to time. Both my doctoral project as well as Gecode have benefited from the
DAAD travel grant that allowed me to visit Christian and Mikael in Stockholm twice
a year. Peter J. Stuckey invited me to visit the G12 project at Melbourne University

vii

and NICTA for six weeks in 2007. I am grateful for having had this opportunity,
and I thank the whole G12 crew for the great time. For further cooperations and
discussions, I thank Martin Mann and Sebastian Will; Mats Carlsson, Pierre Flener,
and Magnus Ågren; Yves Deville, Grégoire Dooms, and Stéphane Zampelli; as well as
Claude-Guy Quimper, Andrea Rendl, and Peter Tiedemann.

My friends and my family have been a constant source of support. Thank you, Paul,
Achim, and especially Monika. Finally, I want to dedicate this dissertation to my
mother, Ulla, whom we all sorely miss.

Saarbrücken, January 2009 Guido Tack

viii

My freedom will be so much the greater and more

meaningful the more narrowly I limit my field of

action and the more I surround myself with obstacles.

Whatever diminishes constraint diminishes strength.

The more constraints one imposes, the more one frees

one’s self of the chains that shackle the spirit.

Igor Stravinsky, Poetics of Music

Contents

1 Introduction 1

1.1 Constraint Programming . 1

1.2 The Thesis . 2

1.3 Overview . 4

2 Constraint Programming 7

2.1 Modeling Constraint Problems: Sudoku 7

2.2 Constraint Propagation and Search . 9

2.3 Set Constraints . 10

I A Propagation Kernel 13

3 A Model of Constraint Propagation 15

3.1 A Denotational Model of Constraint Problems 15

3.2 An Operational Model of Constraint Propagation 18

3.3 Propagation as a Transition System . 23

3.4 Idempotency, Monotonicity, and Confluence 27

3.5 A Many-Sorted Model . 32

4 Propagation Strength 33

4.1 Weakest and Strongest Propagators . 34

4.2 Domain Approximations . 35

4.3 Strength with Respect to a Domain System 38

4.4 The Integer Interval Approximation . 41

4.5 The Interval Approximation for Set Variables 44

4.6 Related Work . 45

5 Efficient Propagator Scheduling 47

5.1 Propagator-Centered Propagation . 48

5.2 Event-Directed Scheduling . 51

5.3 Dynamic Dependencies and Propagator Sets 55

5.4 Self-Rescheduling Propagators . 59

5.5 Propagation Conditions and Modification Events 62

5.6 Related Work . 65

xi

6 Implementing a Propagation Kernel 67

6.1 Copying Versus Trailing . 68

6.2 An Object-Oriented Design . 71

6.3 Domain Modules . 74

6.4 Dependency Management . 81

6.5 The Priority Queue . 85

6.6 Control . 88

6.7 Copying and Memory Management . 88

6.8 Gecode . 92

6.9 Performance Analysis . 93

Contributions of Part I 101

II Techniques for Deriving Propagators 103

7 Views 105

7.1 Motivation . 105

7.2 Views and Derived Propagators . 107

7.3 Correctness of Derived Propagators . 108

7.4 Completeness of Derived Propagators . 109

7.5 More Properties of Derived Propagators 111

7.6 Related Work . 113

8 Deriving Propagators Using Views 115

8.1 Transformation . 115

8.2 Generalization . 117

8.3 Specialization . 118

8.4 Type Conversion . 119

8.5 Limitations . 120

9 Implementing Views 123

9.1 Parametric Propagators . 123

9.2 Parametric and Constant Views . 127

9.3 Event Handling . 128

9.4 Applicability and Performance Analysis 129

10 Range Iterators 133

10.1 Range Iterators . 133

10.2 Set-Valued Operations for Integer Variables 135

10.3 Computing with Iterators . 136

10.4 Integer Views with Set-Valued Operations 138

10.5 Set Variables and Views . 139

xii

10.6 Iterators as Adaptors . 140

10.7 Performance Analysis . 141

11 Deriving Propagators for Boolean Set Constraints 145

11.1 Boolean Set Constraints . 145

11.2 Propagators for Boolean Set Constraints 149

11.3 Negation of Boolean Set Constraints . 155

11.4 Techniques for n-ary Boolean Set Propagators 158

11.5 Implementing Boolean Set Propagators 159

11.6 Related Work . 163

Contributions of Part II 167

12 Conclusions 169

12.1 Summary and Main Contributions . 169

12.2 Future Research . 172

A Benchmarks 173

A.1 Models with Integer and Boolean Variables 173

A.2 Models with Set Variables . 174

A.3 SAT Problems . 175

A.4 Stress Tests . 176

A.5 Gecode Performance . 176

Bibliography 181

xiii

1 Introduction

This dissertation presents the design of a propagation-based constraint solver. The
design is based on models that span several levels of abstraction, ranging from a
mathematical foundation, to a high-level implementation architecture, to concrete
data structures and algorithms. This principled design approach results in a well-
understood, correct, modular, and hence efficient implementation. The presented
models and techniques are the basis of the Gecode constraint solving library.

This first chapter briefly explains the context, and then lays out the motivations and
contributions of this dissertation.

1.1 Constraint Programming

Constraint programming is a powerful method for solving combinatorial (optimiza-
tion) problems, which has proven effective and efficient in a wide range of applica-
tion areas.

CSPs. A combinatorial problem is modeled as a set of variables, representing the ob-
jects the problem deals with, and a set of constraints, representing the relationships
among the objects. Such a combinatorial problem is called a Constraint Satisfaction

Problem (CSP). The common case where the variables can only take values from a
finite universe is called a finite domain constraint satisfaction problem. A constraint
programming system implements variables and constraints and provides a solution

procedure for CSPs, which tries to find an assignment to the variables that satisfies
all of the constraints. Clearly, solving CSPs is NP-hard in general, as the satisfiability
of Boolean formulas (SAT) is one instance.

Application areas. Many hard, real-world combinatorial problems lend themselves
to modeling as constraint satisfaction or optimization problems. The Handbook of
Constraint Programming (Rossi et al., 2006) lists example applications in the areas
of scheduling and planning, vehicle routing, configuration, networks (such as power
or pipeline networks), and bioinformatics. Further application areas include compu-
tational linguistics (for example Duchier, 1999), as well as verification (Yuan et al.,
2006) and optimization (van Beek and Wilken, 2001) of computer programs.

1 Introduction

Constraint solvers. The success of constraint programming as a field is due to
the availability of effective and efficient solution procedures that can solve these
practical problems. This dissertation concentrates on finite-domain constraint pro-

gramming, implemented in a propagation-based constraint solver, based on exhaus-

tive search. This class of solvers has been successful because of its best-of-several-
worlds approach. They combine classic AI search methods with advanced implemen-
tation techniques from the Programming Languages community and efficient algo-
rithms from Operations Research. Furthermore, the Constraint Programming com-
munity has identified global constraints as an important tool to make the structure
of constraint problems explicit and achieve strong propagation. Dedicated propaga-
tion algorithms for many different global constraints are available.

Propagation-based constraint solving. At the heart of a propagation-based con-
straint solver, propagators realize the constraints of a CSP by pruning the variable
domains. A propagator removes values from variable domains that cannot be part of
any solution of its constraint. Propagators for particular constraints are usually im-
plemented as specialized algorithms. The constraint solver computes a fixed point
of all propagators, maximizing the amount of inference they can contribute. It then
splits the problem and solves the resulting smaller problems recursively.

Literature. A thorough discussion of the historical foundations and an overview of
all aspects of constraint programming appears in the Handbook of Constraint Pro-
gramming (Rossi et al., 2006). A more didactic approach to constraint programming
is provided in the textbooks by Marriott and Stuckey (1998), Apt (2003), Dechter
(2003), Frühwirth and Abdennadher (2003), as well as Apt and Wallace (2007).

1.2 The Thesis

The thesis of this dissertation is that principled models and a careful design en-
able the implementation of correct, well-understood, modular, comprehensive and
efficient propagation-based constraint solvers. This section motivates the approach
and summarizes the contributions of this dissertation.

Motivation and approach

Constraint propagation is the essential ingredient that makes constraint solvers fea-
sible and efficient. Complex problems can only be modeled and solved with an effi-

cient infrastructure for constraint propagation, as well as a comprehensive library of
efficient propagator implementations.

2

1.2 The Thesis

To substantiate the thesis that efficient, comprehensive implementations follow
from a principled design, this dissertation develops mathematical models, imple-
mentation architectures, and concrete algorithms and data structures for a propaga-
tion-based constraint solver. These different levels of abstraction are closely linked:
The models are abstract enough for reasoning about important properties like cor-
rectness and strength of propagation. At the same time, they do not oversimplify,
but capture the essence of the implementation.

A mathematical model of constraint propagation. This dissertation establishes a
mathematical model of constraint propagation, based on a minimal definition of the
central concept, the propagator. The model elegantly captures essential properties
of propagators such as correctness, (non-)monotonicity, and strength of propaga-
tion. Furthermore, it explains techniques for efficiently computing the fixed points
of a set of propagators.

A propagation kernel. Based on the mathematical model, this dissertation presents
a principled design for a propagation-based constraint solver. The mathematical
model explains the overall architecture, and carefully justified and evaluated design
decisions lead to the concrete algorithms and data structures. From a software
architecture viewpoint, a constraint solver should be modular. In a modular solver,
a propagation kernel provides the domain-independent infrastructure for constraint
propagation; on top of the kernel, domain modules realize the domain-specific parts,
including data structures for variable domains and actual propagation algorithms.
Both the model and the implementation architecture in this dissertation force a
clean separation of domain-independent from domain-specific tasks.

Deriving propagators from existing propagators. Providing a comprehensive li-
brary of propagation algorithms is challenging, because designing and implementing
them is a tedious, time-consuming, and error-prone task. Moreover, the task is often
also repetitive, because many propagators follow a common algorithmic pattern but
are subtly different (for example a simple sum and a weighted sum; Boolean con-
junctions and disjunctions; set union and intersection). This dissertation therefore
develops a technique for reusing existing propagators for variants of their original
constraints, by systematically deriving propagators from existing propagators using
views. Derived propagators inherit crucial properties like correctness and propaga-
tion strength from the original propagators, and can be implemented efficiently. The
technique of deriving propagators using views is widely applicable.

Deriving propagators from constraint specifications. Certain classes of constraints
expose a regular structure. For a class of constraints over set-valued variables, the
underlying structure, Boolean algebra, is well understood. Taking advantage of this
structure, this dissertation derives correct, strong propagators and propagation al-
gorithms directly from formal specifications of these Boolean set constraints.

3

1 Introduction

Gecode. All abstractions and techniques that this dissertation presents have been
implemented in the Gecode (2009) constraint solver. Gecode is one of the fastest con-
straint solvers available and comes as a production-quality, widely deployed open-
source C++ library. Gecode meets all of the claims: its high performance, its compre-
hensive library of propagation algorithms, and its modularity and clean architecture
result directly from the principled models and powerful techniques presented here.
Gecode is thus evidence of the viability and the success of the principled design
approach.

Contributions

The central contributions of this dissertation can be summarized as follows.

1. This dissertation develops a solid mathematical foundation for a constraint
solver. Particular contributions are the elegance and uniformity of the model,
the thorough discussions of non-monotonicity and strength of propagation,
and an implementation model of event-directed propagator scheduling.

2. Based on the mathematical model, this work presents a clean design for an
efficient, modular propagation kernel that strictly separates the domain-spe-
cific from the domain-independent parts of the constraint solver. The design
decisions for the central data structures are carefully justified and evaluated.

3. This dissertation introduces the novel technique of deriving propagators using
views, discussed on both the mathematical and the implementation level. The
technique is widely applicable and leads to more comprehensive libraries of
efficient propagation algorithms.

4. For the first time, this dissertation presents a theory and implementation of
propagators for Boolean set constraints. Efficient propagation algorithms are
generated systematically from constraint specifications.

5. The models and techniques developed here are paramount for the efficiency,
comprehensiveness, and modularity of the Gecode constraint solver.

Detailed summaries of the contributions of each of the two parts of this dissertation
are given after the respective parts, on pages 101 and 167.

1.3 Overview

The next chapter recapitulates the fundamental ideas behind propagation-based con-
straint solving by means of examples. The technical content of this dissertation then
follows in two parts. The first part presents the infrastructure for propagation, a
propagation kernel. The second part develops techniques for deriving propagators
from other propagators and from declarative constraint specifications.

4

1.3 Overview

The first part comprises Chapter 3 to Chapter 6.

A Model of Constraint Propagation. Chapter 3 lays the foundations for the remain-
ing chapters with a mathematical model of constraint propagation. The model
is the basis for a propagation kernel, and is later used to prove properties of
views, derived propagators, and propagators for set constraints.

Propagation Strength. Chapter 4 characterizes propagators by their strength, that
is, by how much a propagator prunes the search space. Propagation strength
is defined with respect to domain approximations.

Efficient Propagator Scheduling. Chapter 5 extends the model from Chapter 3 to-
wards a realistic propagation kernel, incorporating techniques for efficient
scheduling of propagators.

Implementing a Propagation Kernel. Chapter 6 develops techniques for the imple-
mentation of an efficient, domain-independent, modular constraint propaga-
tion kernel, based on the models from the previous chapters. The presented
techniques are implemented in the Gecode constraint solver, which is used to
evaluate the approach empirically.

Chapter 7 to Chapter 11 make up the second part of the dissertation.

Views. Chapter 7 introduces views as powerful abstractions that are used to de-
rive propagators from existing propagators. The chapter discusses properties
of derived propagators like correctness and propagation strength. Chapter 8

presents generic techniques that can be used to derive propagators using views.

Implementing Views. Chapter 9 presents implementation strategies for views and
derived propagators, and Chapter 10 introduces range iterators as an imple-
mentation strategy for set-valued variable and view operations. Both chapters
evaluate different possible designs empirically, and present evidence for the
wide applicability of views and derived propagators in practice.

Propagating Boolean Set Constraints. Chapter 11 derives propagators and the cor-
responding propagation algorithms for Boolean set constraints from declara-
tive specifications of the constraints. The chapter presents implementation
techniques for the propagation algorithms and evaluates the implementation
empirically.

Chapter 12 concludes the dissertation with a discussion of the presented material
and an outlook to future work. Figure 1.1 shows the dependencies among the main
chapters. The material of the first part appears in the dashed box.

5

1 Introduction

3/4 Basic model

7/8 Views 5 Scheduling

6 Kernel

9/10 Implementing views 11 Set propagators

Figure 1.1: Organization of the dissertation

Source material

Parts of this dissertation are based on material that has already been published.
These parts contain a unified and extended presentation of the following articles.

Views and iterators for generic constraint implementations.
In Mats Carlsson, François Fages, Brahim Hnich, and Francesca Rossi, editors, Recent

Advances in Constraints, 2005, volume 3978 of LNCS, pages 118–132. Springer, 2006.
Joint work with Christian Schulte.

Generating propagators for finite set constraints.
In Frédéric Benhamou, editor, Principles and Practice of Constraint Programming,

12th International Conference, CP 2006, Nantes, France, September 25-29, 2006, Pro-

ceedings, volume 4204 of LNCS, pages 575–589. Springer, 2006.
Joint work with Christian Schulte and Gert Smolka.

Perfect derived propagators.
In Peter J. Stuckey, editor, Principles and Practice of Constraint Programming, 14th

International Conference, CP 2008, Sydney, Australia, September 14–18, 2008, Pro-

ceedings, volume 5202 of LNCS, pages 571–575. Springer, 2008.
Joint work with Christian Schulte.

How to read this dissertation

The most important concepts in this dissertation are introduced in dedicated, num-
bered definitions. Other definitions appear in the main text, highlighted like this.

Throughout the dissertation, related work is usually discussed in separate sections.
The interested reader may consult these sections for the technical and historical
context, but they do not contain any material that is necessary for understanding
the technical parts of this text.

6

2 Constraint Programming

This chapter contains a brief introduction to the field of constraint programming.

The term constraint programming should be understood in the tradition of linear

programming, integer programming, or dynamic programming, in that it is not a
general-purpose programming paradigm, but rather a technique for solving certain
kinds of problems. Constraint programming refers to a methodology for solving
combinatorial problems.

The success (and the beauty) of constraint programming is due to the clear sepa-
ration between model and solver: The problem is stated declaratively, in terms of
variables and constraints, modeling real-world objects and the relations the objects
are engaged in. Then, this high-level model is passed to a constraint solver, which,
given enough time, will return a solution to the problem.

This dissertation deals with constraint solvers that are based on constraint prop-
agation and exhaustive search. In this chapter, we will explain these concepts by
means of simple examples. Real-world constraint problems are solved using the
same techniques.

Structure of the chapter. We start with modeling the well-known Sudoku puzzle as
a constraint problem (2.1). Using the example of Sudoku, we then recapitulate the
basic techniques of propagation-based constraint solving, propagation and search
(2.2). Finally, we have a brief look at set constraints (2.3).

2.1 Modeling Constraint Problems: Sudoku

The first step in solving a combinatorial problem using constraint programming is to
model it in terms of variables and constraints. In the following, we develop a model
for solving Sudoku puzzles, which are probably the most well-known combinatorial
problems today.

2 Constraint Programming

2 5

9 7 3

2 9 6

2 4 9

7

6 9 1

8 4 1

6 3 8

6 8

3 7 8 2 6 5 9 1 4

5 9 6 8 1 4 7 3 2

1 4 2 7 3 9 5 6 8

2 1 7 3 8 6 4 5 9

8 5 4 9 7 1 6 2 3

6 3 9 5 4 2 8 7 1

7 8 5 4 2 3 1 9 6

4 6 3 1 9 7 2 8 5

9 2 1 6 5 8 3 4 7

a

9

b

8

c

7

d

6

e

5

f

4

g

3

h

2

i

1

a

9

b

8

c

7

d

6

e

5

f

4

g

3

h

2

i

1

Figure 2.1: A Sudoku puzzle (left) and its solution (right)

Sudoku puzzles

A puzzle consists of a 9×9 matrix, which is to be filled with numbers from 1 to 9 in
such a way that each row, each column, and each of the nine 3 × 3 blocks contains
exactly the numbers from 1 to 9. The given matrix is partially filled so that there
is a unique solution. Figure 2.1 shows a typical Sudoku puzzle on the left, and its
solution on the right.

The history of the Sudoku puzzle cannot be traced completely. It is a refinement of
the magic square problem (Euler, 1849), with the additional constraints on the nine
3 × 3 blocks. Sudokus first appeared in the May 1979 issue of Dell Pencil Puzzles &

Word Games under the name “Number Place”, probably designed by Howard Garns.
The puzzle was made popular in 1984 by the Japanese company Nikoli, which also
coined the name Sudoku, meaning “single number” in Japanese.

Modeling Sudoku

The straightforward model of Sudoku as a constraint problem identifies each of the
81 fields with a variable. Each variable can take a number from the set {1, . . . ,9}
as its value. This initial set of values for each variable is called its variable domain.
The model has 27 constraints, each stating that the variables that represent one
particular row, column, or block, must take exactly the numbers from 1 to 9. Each
constraint is an instance of the well-known all-different constraint, which states that
a set of variables x1, . . . , xn must take pairwise different values.

8

2.2 Constraint Propagation and Search

2.2 Constraint Propagation and Search

Now that we have a model of Sudoku as a constraint satisfaction problem, we can
pass it to a constraint solver to obtain a solution. This dissertation deals with a par-
ticular class of constraint solvers, based on constraint propagation and exhaustive

search, which we will now introduce informally using the Sudoku example.

Constraint propagation

The unwritten law of Sudoku is that you play with a pen, not a pencil. This means
that you are not supposed to guess and later backtrack, but to solve the puzzle by
inference alone. Let us look at the top right block in Figure 2.1. The 1 is still missing
from this block, but both column g and i already contain a 1, so it must be in column
h. As there is only one empty field left, we can infer that the 1 must be at position
h1. Now we can make further inferences from the fact that h1 is 1. Both the second
and the third row already contain a 9, as well as column i. There is thus only one
field left for the 9 in the top right block, which is field g1.

This process of inference is called constraint propagation. As the main inference
method in constraint programming systems, constraint propagation infers that cer-
tain values cannot be part of certain variable domains any more because they violate
some constraint. In the above example, we inferred that all values except the 1 can-
not be part of the domain of the variable representing the field h1. The entities that
perform constraint propagation are called propagators.

Two things are crucial for successfully solving a hard combinatorial problem with
a propagation-based constraint solver: (1) a model that makes the structure of the
problem explicit, stating it in terms of high-level constraints such as all-different;
and (2) a solver that provides efficient implementations of a sufficient number of
these high-level constraints as propagators. This dissertation develops an architec-
ture for efficient constraint propagation, as well as techniques for implementing a
comprehensive number of propagators.

Search

While Sudokus are usually designed such that they can be solved by propagation
alone, this is not true for constraint problems in general. Constraint propagation
alone is incomplete. A propagation-based constraint solver interleaves constraint
propagation with search, thus providing a complete solution procedure. First, a
mutual fixed point of all propagators is computed, making as many inferences as
possible. Then, the problem is split into smaller problems, which are solved recur-
sively. The recursion is implemented as a backtracking search procedure, exploring
a tree of subproblems of the original problem.

9

2 Constraint Programming

Group 1 Group 2 Group 3 Group 4 Group 5

Week 1 1, 2, 3 4, 5, 6 7, 8, 9 10, 11, 12 13, 14, 15

Week 2 1, 4, 7 2, 5, 10 3, 8, 13 6, 11, 14 9, 12, 15

Week 3 1, 5, 14 2, 4, 12 3, 7, 11 6, 9, 13 8, 10, 15

Week 4 1, 6, 15 2, 11, 13 3, 4, 9 5, 8, 12 7, 10, 14

Week 5 1, 8, 11 2, 9, 14 3, 5, 15 4, 10, 13 6, 7, 12

Week 6 1, 9, 10 2, 6, 8 3, 12, 14 4, 11, 15 5, 7, 13

Week 7 1, 12, 13 2, 7, 15 3, 6, 10 4, 8, 14 5, 9, 11

Figure 2.2: Scheduling 15 golfers in groups of three over seven weeks

2.3 Set Constraints

This section takes a brief look at constraints over set-valued variables. Many of the
later chapters discuss propagation for this kind of constraints, so we give a short
introduction here.

Modeling with sets

Many constraint problems can be formulated naturally in terms of sets of objects
instead of just individual objects. A good example is assigning people to groups
and then stating constraints on the groups, such as size limits or that people can
only be in one group at a time. For this purpose, many constraint solvers provide
variables that range over sets of objects, and corresponding set constraints.

Here is a classic problem that can be expressed elegantly with set constraints. We
use this example to introduce the most important constraints over set variables.

Example 2.1 (The Social Golfer Problem) The task is to schedule g × s golfers in g
groups per week, each group of size s, over a period of w weeks, such that no two
golfers play against each other in a group more than once. ∗

A solution for the particular instance1 g = 5, s = 3, w = 7 appears in Figure 2.2.
Every golfer is represented by a number between 1 and g × s = 15.

The social golfer problem has a natural model in terms of set variables and con-
straints. For each group i in each week j, there is a variable xi,j. The initial domain
of each such variable is the set of all s-element subsets of the golfers:

∀1 ≤ i ≤ g,1 ≤ j ≤ w : xi,j ⊆ {1, . . . , g × s} ∧ |xi,j| = s

1This instance is known as Kirkman’s schoolgirl problem, and according to Graham et al. (1995) was
stated in 1850 by Thomas Kirkman in a magazine called The Lady’s and Gentleman’s Diary.

10

2.3 Set Constraints

Let us now turn to the constraints linking the groups. Each week, the groups form
a partition of the full set. This ensures that each golfer is assigned to exactly one
group in each week:

∀1 ≤ j ≤ w : x1,j ⊎ · · · ⊎xg,j = {1, . . . , g × s}

The second requirement is that no two golfers play together more than once. Thus,
for each group xi,j, the intersection with any other group must not have more than
one element. For this constraint, we introduce additional set variables for the inter-
sections of each pair of groups, and constrain their cardinalities to be at most 1.

∀i, i′, j, j′ : i′ ≠ i∨ j′ ≠ j =⇒ yi,j,i′,j′ = xi,j ∩ xi′,j′ ∧ |yi,j,i′,j′| ≤ 1

Certain instances of the social golfer problem turn out to be surprisingly hard for
constraint solvers. For example, we are not aware of any constraint solver that can
produce a solution for the instance g = 8, s = 4, w = 10.

Set constraints

The social golfer problem exhibits the typical constraints that are used when model-
ing with set variables:

• The initial domains of the variables are often the subsets of a specific set of
possible values (here: the set of all golfers).

• The cardinalities of the sets in the initial domains are often restricted (here:
groups have size s).

• Constraints between set variables involve the usual set operations like inter-
section, union, partition, or complement, and typical relations such as equality,
subset, or disjointness. We call these constraints Boolean set constraints, as
the operations are taken from the Boolean algebra of sets.

• Constraints often involve set constants such as the empty set, or the set of all
elements (here: the set of all golfers).

Additionally, solvers typically provide constraints that link integer and set variables,
such as x ∈ y or x = |y| for an integer variable x and a set variable y .

Symmetries

Besides offering expressivity that leads to more natural models for some problems,
set constraints have another advantage, as they avoid introducing symmetry into
a model. For example, we could have modeled the social golfer problem using s
integer variables per group instead of one set variable. This however would have

11

2 Constraint Programming

introduced symmetry, as any permutation of the integer variables within a group
would still be a valid solution.

Symmetries can increase the size of the search space dramatically. The search does
not only have to enumerate all the symmetric solutions, but also the symmetric

non-solutions that are not pruned by propagation. An integer model would have to
use special additional techniques for avoiding this symmetry in order to be solvable
efficiently. Avoiding symmetry is an active area of research. For a detailed overview,
see the chapter in the Handbook of Constraint Programming by Gent et al. (2006c).

Approximating set variable domains

Many constraint solvers do not represent the domain of a set variable completely, as
a complete domain representation is in general exponential in size. The alternative is
to approximate the variable domain as an interval described by a lower and an upper
bound [l,u]. The lower bound contains all the elements that are known to be in the
set, while the upper bound contains the elements that are possibly members of the
set. Only this approximation technique, developed by Puget (1992) and Gervet (1994,
1995), has made set constraints successful in practice. We will cover this technique
in detail in Section 4.5. Chapter 11 of this dissertation is concerned with propagation
algorithms for Boolean set constraints based on the interval approximation.

In its simplest form, the set interval approximation cannot represent cardinality
information: the set variable domain {{1}, {2}} can only be approximated by the
interval [0, {1,2}], losing the information that all possible sets are singletons. Car-
dinality must hence be realized by propagation. Assume that we want to propagate
the cardinality constraint m ≤ |x| ≤ n. Then, if the lower bound of x already con-
tains n elements, we can assign x to its lower bound. Dually, if only m elements are
left in the upper bound of x, we can assign x to its upper bound.

More elaborate techniques for cardinality reasoning have been developed, and will
be discussed in the section on related work at the end of Chapter 11.

12

Part I

A Propagation Kernel

3 A Model of Constraint Propagation

This chapter introduces a mathematical model of constraint propagation. The model
serves as the basis for the theoretical results in this dissertation, and at the same
time justifies the implementation architectures we develop.

We present a framework that captures a denotational model of constraint problems,
expressing constraints in extension and defining constraint satisfaction problems
(CSPs), the problems we aim to solve. Within the same framework, we develop an
operational model, realizing constraints using propagators, and yielding the opera-
tional equivalent to CSPs, called propagation problems.

The framework we present is inspired by many sources, as discussed in several para-
graphs on related work in this chapter. One of the contributions of this chapter is
to present the state of the art in a concise and uniform way. The further contribu-
tions, such as the notion of induced constraints, the discussion of non-monotonic
and idempotent propagators, and the modular treatment of different variable sorts,
will be pointed out in the text.

Structure of the chapter. We start with the denotational model that expresses con-
straint problems in terms of assignments, constraints, and domains (3.1). The op-
erational model defines propagators as refinements of constraints (3.2). Next, we
show that constraint propagation can be expressed as a transition system (3.3). We
discuss idempotency and monotonicity of propagators (3.4), and finally show how
the framework can be extended to support different sorts of variables (3.5).

3.1 A Denotational Model of Constraint Problems

The aim of this section is to clearly define what we want to solve: Constraint satis-
faction problems.

Constraint satisfaction problems are modeled with respect to a finite set of varia-
bles X and a finite set of values V . We typically write variables as x,y, z ∈ X, and
refer to values as v,w ∈ V .

3 A Model of Constraint Propagation

Assignments and constraints

A solution of a constraint satisfaction problem must assign a single value to each
variable. A constraint restricts which assignments of values to variables are allowed.
The following definition captures assignments and constraints.

Definition 3.1 An assignment a is a function mapping variables to values. The
set of all assignments is Asn := X → V . A constraint c is a set of assignments,
c ∈ Con := P(Asn) = P(X → V) (we write P(S) for the power set of S). It
corresponds to a relation over the variables in X. Any assignment a ∈ c is a solution

of c. ∗

We base constraints on full assignments, defined for all variables in X. However,
for typical constraints, only a subset vars(c) of the variables is significant; the con-
straint is the full relation for all x ∉ vars(c). More formally, a constraint c is the full
relation for a variable x if and only if ∀v ∈ V ∀a ∈ c : a[v/x] ∈ c, where a[v/x]
is the assignment a′ where a′(x) = v and a′(y) = a(y) for all variables y ≠ x.
Consequently, the significant variables of c are defined as

vars(c) := {x ∈ X | ∃v ∈ V ∃a ∈ c : a[v/x] ∉ c}

Constraints are either written as sets of assignments, or just stated as mathematical
expressions with the usual meaning. We use the notation J·K when we want to stress
that we mean the constraint; for example, we write Jx < yK to denote the constraint{
a ∈ Asn

∣∣ a(x) < a(y)}.

Example 3.2 (A sum constraint) Let X = {x,y, z} be the set of variables, and let
V = {1,2,3,4} be the set of values. Then the constraint Jx = y + zK corresponds to
the following set of assignments:

Jx = y + zK = {(x ֏ 2, y ֏ 1, z ֏ 1),

(x ֏ 3, y ֏ 1, z ֏ 2),

(x ֏ 3, y ֏ 2, z ֏ 1),

(x ֏ 4, y ֏ 2, z ֏ 2)} ∗

Domains and constraint satisfaction problems

Constraints constitute one of the two crucial ingredients of constraint satisfaction
problems. The other part is the initial set of values that each variable can take. For
example in a Sudoku (as introduced in Section 2.1), each variable must take a value
from the set {1, . . . ,9}. A mapping from variables to sets of possible values is a
domain.

16

3.1 A Denotational Model of Constraint Problems

Definition 3.3 A domain d is a function mapping variables to sets of values, such
that d(x) ⊆ V . The set of all domains is Dom := X → P(V). The set of values in
d for a particular variable x, d(x), is called the variable domain of x. A domain d
represents a set of assignments, a constraint, defined as

con(d) := {a ∈ Asn | ∀x ∈ X : a(x) ∈ d(x)}

We say that an assignment a ∈ con(d) is licensed by d. ∗

Now we have all the definitions in place to introduce the denotational model of
a constraint problem. It consists of a domain that restricts the initial values that
the variables can take, and a set of constraints that express the relations over the
variables.

Definition 3.4 A constraint satisfaction problem (CSP) is a pair 〈d,C〉 of a domain
d and a set of constraints C . The constraints C are interpreted as a conjunction
of all c ∈ C and are thus equivalent to the constraint {a ∈ Asn | ∀c ∈ C : a ∈ c}.
The solutions of a CSP 〈d,C〉 are the assignments licensed by d that satisfy all
constraints in C , defined as sol(〈d,C〉) := {a ∈ con(d) | ∀c ∈ C : a ∈ c}. ∗

Example 3.5 (Sudoku as a CSP) The Sudoku model from Section 2.1 can be cast into
a CSP as follows. We have 81 variables {x1, . . . , x81}, and the initial domain maps
each variable to either the set {1, . . . ,9}, or the singleton set {i} for fields which are
pre-filled with the number i.

We have 27 constraints. Each constraint expresses the fact that a certain row, col-
umn, or block takes exactly the numbers from 1 to 9. For example, assume that the
first row is represented by x1 . . . x9, then the constraint for the first row is

cr1 =

a ∈ Asn

∣∣∣∣∣∣
9⋃

i=1

a(xi) = {1, . . . ,9}

This constraint consists of 9! × 972 assignments (9! for the permutations of 1 . . .9
in variables x1 . . . x9, the remaining factor of 972 for the unconstrained variables
x10 . . . x81). In practice, it is clearly infeasible to represent a constraint in extension
like this. Even if we restricted ourselves to the significant variables, storing (and
computing with) 9! different assignments for each of the 27 constraints would not
lead to an efficient solution procedure. ∗

More on domains

Domains are not only used to specify the initial sets of possible values in a CSP.
They are also a vital part of the operational model introduced in the next section.
We therefore now identify some of the properties of domains and establish useful
notation.

17

3 A Model of Constraint Propagation

A domain d represents the set of assignments con(d). However, domains cannot
represent arbitrary sets of assignments. They are restricted to a Cartesian repre-
sentation, expressing exactly conjunctions of unary constraints (those that have a
single significant variable). The following inequation describes the relation between
domains and constraints:

{con(d) | d ∈ Dom} ⊂ Con

In this sense, any domain is also a constraint. We therefore take the liberty to omit
writing the conversion and simply use domains as constraints, resulting in a more
uniform presentation. In particular, we will write a ∈ d (instead of a ∈ con(d)) for
an assignment a that is licensed by d, and we will write c∩d (instead of c∩ con(d))
for the intersection of a constraint with a domain.

A domain d that maps some variable to the empty set of values is called failed, and
we write d = 0, as it represents no valid assignments (con(d) = 0). We carefully de-
signed all definitions in this dissertation to not distinguish between different failed
domains, so we will sometimes identify all failed domains and talk about the failed
domain 0. A domain d that represents a single assignment, con(d) = {a}, is called
assigned. We will sometimes write assigned domains as {a}.

We define a partial order on domains as the point-wise lifting of the subset order:
d ⊆ d′ :⇔ ∀x ∈ X : d(x) ⊆ d′(x). We say that d is stronger than d′, and that d′ is
weaker than d. A domain d is strictly stronger than a domain d′ (written d ⊂ d′) if
and only if d is stronger than d′, d′ is not failed, and d(x) ⊂ d′(x) for some variable
x. We will see in the next section that the goal of constraint propagation is to prune
values from variable domains, thus inferring stronger domains, without removing
solutions of the constraints.

3.2 An Operational Model of Constraint Propagation

As we have just seen in Example 3.5, representing (let alone solving) constraint satis-
faction problems directly on the extensional representation is infeasible. In practice,
constraint solvers employ propagators to realize constraints. This section develops
a mathematical model of constraint propagation.

Propagators

The basis of a propagation-based constraint solver is a search procedure, which sys-
tematically enumerates the assignments licensed by the domain d of a CSP 〈d,C〉.
For each assignment, the solver uses a decision procedure for each constraint to

18

3.2 An Operational Model of Constraint Propagation

determine whether the assignment is a solution of the CSP. Enumerating all assign-
ments would be infeasible in practice, so in addition to the decision procedure, the
solver employs a pruning procedure for each constraint, which may rule out assign-
ments that are not solutions of the constraint.

These two tasks, the decision and the pruning procedure for a constraint, are real-
ized by propagators. Each propagator induces a particular constraint. A propagator
decides for a given assignment whether it satisfies the induced constraint, and it
may prune those assignments from a domain that do not satisfy the constraint. In-
terleaving propagation and search yields a sound and complete solution procedure
for the CSP. It is complete, because only assignments that are not solutions are
pruned by the propagators, and all remaining assignments are enumerated. It is
sound, because for each of the enumerated assignments, the propagators decide
whether it is a solution.

The formal definition of propagators we develop below captures the minimal prop-
erties that are required in order to get a sound and complete solver. In this way,
our model differs from the definitions usually found in the literature, which will be
discussed later. Furthermore, to our knowledge the characterization of propagators
by unique induced constraints is novel.

We define propagators in terms of domains. A propagator is a function p that takes
a domain as its argument and returns a stronger domain, it may only prune assign-
ments. If the original domain was an assigned domain {a}, the propagator either
accepts it (p({a}) = {a}) or rejects it (p({a}) = 0), realizing the decision procedure
for its constraint. In fact, each propagator induces a unique constraint, the set of
assignments that it accepts. To make this setup work, we need one additional re-
striction. The decision procedure and the pruning procedure must be consistent: if
the decision procedure accepts an assignment, the pruning procedure must never
remove this assignment from any domain—this property is called soundness. We
compress all these considerations into the following central definition:

Definition 3.6 A propagator is a function p ∈ Dom → Dom that is

• contracting: p(d) ⊆ d for any domain d

• sound: for any domain d ∈ Dom and any assignment a ∈ Asn, if {a} ⊆ d, then
p({a}) ⊆ p(d)

The set of all propagators is Prop. If a propagator p returns a strictly stronger
domain (p(d) ⊂ d), we say that p prunes the domain d. The propagator p induces
the constraint cp defined by the set of assignments accepted by p:

cp :=
{
a ∈ Asn

∣∣ p({a}) = {a}} ∗

19

3 A Model of Constraint Propagation

Soundness expresses exactly that the decision and the pruning procedure realized
by a propagator are consistent. A direct consequence is that a propagator never
removes assignments that satisfy its induced constraint.

Proposition 3.7 Let p be a propagator and d a domain. Then cp ∩ d = cp ∩ p(d). ∗

Proof. We prove the two subset relations.

⊆ Let a be an assignment. By soundness of p, a ∈ cp ∩ d implies that a ∈ p(d). So
cp ∩ d ⊆ cp ∩ p(d).

⊇ As p is contracting, p(d) ⊆ d, and thus cp ∩ p(d) ⊆ cp ∩ d.

Soundness is a weak form of monotonicity. Traditionally, propagators are often
defined to satisfy two more properties, idempotency and (strong) monotonicity.
However, these stronger properties are not required for the constraint solver to
be sound or complete. We will discuss idempotency and monotonicity in detail in
Section 3.4.

Propagation problems

We have defined propagators as a refinement of constraints—each propagator in-
duces one particular constraint, but in addition has an operational meaning, its
pruning procedure. We can now define the operational equivalent of a CSP, a prop-

agation problem. Propagation problems realize all constraints of a CSP using prop-
agators. All techniques we develop in this dissertation aim at implementing and
efficiently solving propagation problems.

Definition 3.8 A propagation problem (PP) is a pair 〈d, P〉 of a domain d and a set
of propagators P . The induced constraint satisfaction problem of a propagation
problem 〈d, P〉 is the CSP 〈d, {cp | p ∈ P}〉. The solutions of a PP 〈d, P〉 are the
solutions of the induced CSP, sol(〈d, P〉) := sol(〈d, {cp | p ∈ P}〉). ∗

The set of solutions of a PP 〈d, P〉 can be defined equivalently as sol(〈d, P〉) :={
a ∈ Asn

∣∣ ∀p ∈ P : p({a}) = {a}
}
, just applying the definitions of induced con-

straints and solutions of CSPs.

Existence of strongest and weakest propagators

Propagators combine a decision procedure with a pruning procedure. While the
decision procedure determines the constraint a propagator induces, there is some
liberty in the definition of the pruning, as long as it is sound. Thus, there are differ-
ent propagators for the same constraint, and they can be arranged in a partial order
according to their strength:

20

3.2 An Operational Model of Constraint Propagation

Definition 3.9 Let p1 and p2 be two propagators that induce the same constraint.
Then p1 is stronger than p2 (written p1 ⊆ p2) if and only if for all domains d,
p1(d) ⊆ p2(d). ∗

Propagation strength has important practical implications. A stronger propagator
performs more pruning, and therefore leaves a smaller search space to explore.
Solving hard problems typically requires strong propagation. On the other hand,
stronger propagators are often algorithmically more complex than weaker versions
for the same constraint. It is hence important to strike the right balance between
pruning power and run-time complexity of a propagation algorithm.

The remainder of this section develops the basics of propagation strength, show-
ing that for each constraint c, there are unique strongest and weakest propagators
that induce c. The next chapter develops a detailed characterization of propaga-
tion strength, helping us to identify classes of propagators that lie in between the
weakest and the strongest propagators for their induced constraint.

A first observation that leads to a more precise characterization of propagation
strength is that the set of propagators is closed under functional composition, point-
wise union, and point-wise intersection. We write p1 ∩ p2 for the point-wise lifting
of the intersection on domains, λd.p1(d)∩ p2(d), and similarly for union.

Proposition 3.10 Let p1 and p2 be propagators. Then p1 ◦ p2 and p1 ∩ p2 are
also propagators, both inducing the constraint cp1 ∩ cp2 . Furthermore, p1 ∪ p2 is a
propagator, inducing the constraint cp1 ∪ cp2 . ∗

Proof. All operations clearly preserve contraction:

• p2(d) ⊆ d, so p1(p2(d)) ⊆ d

• p1(d) ⊆ d and p2(d) ⊆ d, so p1(d)∩p2(d) ⊆ d and p1(d)∪p2(d) ⊆ d

Soundness is also preserved, as the combined propagators prune at most the assign-
ments that the individual propagators prune.

The composition p1 ◦p2 and the intersection p1∩p2 induce the constraint cp1∩cp2 ,
because if either propagator rejects an assignment, the combined propagator rejects
it, too. The union p1 ∪ p2 induces cp1 ∪ cp2 , because if at least one of the two
propagators accepts an assignment, the combined propagator accepts it, too.

As the partial order on propagators is just lifted point-wise from the partial order
on domains, which is lifted point-wise from the partial order on the subset lattice
of values, the set of propagators Prop forms a complete lattice. The lattice is finite,
since the basic sets X and V are finite. If two propagators p1 and p2 induce the
same constraint c, then clearly both p1 ∩ p2 and p1 ∪ p2 also induce c. But p1 ∩ p2
is stronger than both p1 and p2, and p1 ∪ p2 is weaker than both. It thus turns out
that p1 ∩ p2 is exactly the weakest propagator that is stronger than both p1 and p2,

21

3 A Model of Constraint Propagation

and therefore the meet in the propagator lattice. Conversely, p1∪p2 is the join, the
strongest propagator weaker than both p1 and p2.

Complete lattices have unique suprema and infima, so there is a unique weakest
and a unique strongest propagator for each constraint c. We call the strongest
propagator pmax

c , and the weakest propagator pmin
c , accordingly.

The strongest propagator pmax
c for a constraint c is an important concept, as it

represents the maximal pruning that we can achieve for c. We call a propagator
p that is the strongest propagator for its induced constraint (p = pmax

cp) domain-

complete.

Domain completeness is not a compositional property. Let p1 and p2 be domain-
complete propagators inducing different constraints. Recall that the induced con-
straint of p1 ◦p2 is cp1 ∩ cp2 . However, the composition p1 ◦p2, even when iterated
to idempotency, is in general not domain-complete for cp1 ∩ cp2 .

Propagation algorithms

In order to implement a constraint solver, propagators have to be realized algo-
rithmically. Just as there are several propagators that induce a single constraint,
there can be several propagation algorithms for a single propagator, and, of course,
different implementations of the same propagation algorithm. On these levels of
abstraction, different properties become important. We can talk about soundness
and completeness on all levels, for example stating that a propagation algorithm is
domain-complete if the propagator it realizes is. On the algorithmic level, asymp-
totic run-time and memory complexity become important, which also carry over to
the implementation. The implementation finally fixes the concrete data structures
as well as the implementation language that is used, and thus determines the actual
performance in practice.

Related work

◮ A whole line of research is concerned with solving a constraint satisfaction prob-
lem directly, where constraints are given in extension as tables of allowed (or some-
times forbidden) tuples of values. This CSP approach was pioneered by Montanari
(1974), Mackworth (1977), Freuder (1982) and Dechter and Pearl (1987). While this
approach provides insight into the fundamental structure of CSPs, it is no efficient
solution procedure for hard, real-world combinatorial problems.

◮ The propagation approach we follow here, as opposed to the CSP approach to
solving constraint problems, has evolved from constraint logic programming, pio-
neered by the CHIP system (Dincbas et al., 1988; Van Hentenryck, 1989).

22

3.3 Propagation as a Transition System

◮ The term propagator was coined in the context of the Oz programming model
(Smolka, 1995). Other terms for the same concept are filter functions, narrowing
operators (Benhamou et al., 1994), or reactive constraints (Maher, 2002).

◮ The definitions of propagators by Saraswat et al. (1991) are close to ours, they re-
quire propagators to be contracting, monotonic, and idempotent functions. In their
work, propagators describe the semantics of concurrent processes that implement
constraints.

3.3 Propagation as a Transition System

The previous section introduced propagation problems, which are the operational
equivalents of constraint satisfaction problems. A propagation problem is opera-
tional in the sense that its propagators induce constraints by operating on domains,
successively strengthening the propagation problem.

A propagation-based solver interleaves constraint propagation and search, where
constraint propagation means to prune the domain as much as possible using prop-
agators, before search resorts to enumerating the assignments in the domain. Prop-
agating as much as possible means, in the context of propagation problems, to
compute a mutual fixed point of all propagators. This section presents transition
systems whose terminal states are the desired fixed points.

Transitions

Let 〈d, P〉 be a propagation problem. If there is a propagator p ∈ P that can prune
the domain d, that is, if p(d) ⊂ d, then applying p yields a new, simpler propagation
problem,

〈
p(d), P

〉
. Soundness of p makes sure that the new problem has the same

set of solutions as the original problem, sol(〈d, P〉) = sol(
〈
p(d), P

〉
).

A propagation problem thus induces a transition system, where a transition is pos-
sible from a domain d to a domain d′ ⊂ d if there is a propagator p ∈ P such
that p(d) = d′. We write such a transition d ⊢p→ d′. Figure 3.1 shows how the
transitions from a given initial domain d may look like.

Definition 3.11 Let d be a domain. A transition d ⊢p→ d′ with a propagator p to a
domain d′ is possible if and only if d′ = p(d) and d′ ⊂ d. The transition system

of a propagation problem 〈d, P〉 consists of all the transitions that are possible with
propagators p ∈ P , starting from d. A terminal domain, that is, a domain d such
that there is no transition d ⊢p→ p(d) for any propagator p ∈ P , is called stable.
We write d ⇒ d′ if there is a sequence of transitions that transforms d into a stable
domain d′. This sequence is empty, d⇒ d, if d is stable. ∗

23

3 A Model of Constraint Propagation

d

d1

d2

d3

d4

d5

d6

p1

p2

p
3 p2

p3

p2

p1

p1

p3

p2

p
1p

2

Figure 3.1: The transition system of a propagation problem

Note that a domain d′ is defined to be strictly stronger than a domain d only if d
is not failed. Thus, any failed domain d = 0 is stable. We can lift the transitions to
propagation problems, such that 〈d, P〉 ⊢p→ 〈d′, P〉 if and only if d ⊢p→ d′ for some
p ∈ P . A propagation problem 〈d, P〉 is called stable if and only if its domain d is
stable.

Example 3.12 (Transitions) Let d be a domain such that d(x) = d(y) = d(z) =

{1,2,3,4}, and assume three domain-complete propagators such that cp1 = Jx < yK,
cp2 = Jx +y = zK, and cp3 = Jy < zK. Then Figure 3.1 shows the transitions that are
possible for the propagation problem

〈
d, {p1, p2, p3}

〉
. The transition system has a

unique stable domain d6. The values of the domains are

d1(x) = {1,2,3} d1(y) = {2,3,4} d1(z) = {1,2,3,4}

d2(x) = {1,2,3} d2(y) = {1,2,3} d2(z) = {2,3,4}

d3(x) = {1,2,3,4} d3(y) = {1,2,3} d3(z) = {2,3,4}

d4(x) = {1,2,3} d4(y) = {2,3} d4(z) = {3,4}

d5(x) = {1,2} d5(y) = {2,3} d5(z) = {2,3,4}

d6(x) = {1,2} d6(y) = {2,3} d6(z) = {3,4}

Section 3.4 will show that not all propagation problems have transition systems
with unique stable domains, and argue that monotonicity of propagators guaran-
tees confluence of the transitions. Furthermore, we will prove in Section 4.1 that
domain-complete propagators are monotonic. So the situation in Figure 3.1 is not
coincidental, but due to the properties of p1, p2, and p3. ∗

The transition system of a propagation problem is non-deterministic, as there are
many possible chains of propagation that result in a stable domain. Chapter 5 ex-
plains how an implementation of a constraint propagation engine determines an
efficient order of propagator invocation.

24

3.3 Propagation as a Transition System

Fixed points

The important theorem that ensures that constraint propagation is useful in prac-
tice is that, given a propagation problem 〈d, P〉, its transition system is finite and
terminating. No matter in what order the propagators are applied, we reach a stable
propagation problem after a finite number of steps.

Theorem 3.13 Let 〈d, P〉 be a propagation problem. The transition system of 〈d, P〉
is finite and terminating. A terminating transition sequence d ⇒ d′ consists of at
most k = 1+

∑
x∈X(|d(x)| − 1) steps. ∗

Proof. Termination is an immediate consequence of the fact that each transition
yields a strictly stronger domain. As d is finite, the order on domains is well-
founded—a domain can only be made strictly stronger a finite number of times.
As the number of propagators is finite, there can only be finitely many transition
sequences d ⇒ d′. Any step di ⊢p→ dj in such a sequence yields a domain dj that
contains at least one element less in some variable domain, dj(x) ⊂ di(x) for some
variable x. There can hence be at most k = 1+

∑
x∈X(|d(x)| − 1) transitions before

the empty domain is reached.

Let 〈d, P〉 be a propagation problem, and let d′ be a stable domain reachable from
d. Then d′ is a mutual fixed point of all propagators p ∈ P , as by definition of the
transition relation, no propagator can prune d.

A simple propagation-based solver

The naive approach to solving a propagation problem 〈d, P〉 is to generate all assign-
ments a ∈ d, and then use the propagators p ∈ P to check whether a satisfies all
constraints. This approach makes use of the fact that propagators realize decision
procedures for their induced constraints, but does not use their pruning capabilities.
A solver that proceeds naively in this fashion is said to follow the generate-and-test

approach.

The generate-and-test solver is too inefficient to solve real-world problems, as it
requires enumeration of all assignments. We now improve on this naive method by
pruning the set of enumerated assignments using propagation.

A propagation-based solver interleaves propagation and enumeration (search). For
a propagation problem 〈d, P〉, the solver determines a stable propagation problem
〈d′, P〉 such that d⇒ d′. Then the domain d′ is split into two non-empty domains d1
and d2 such that sol(〈d1, P〉)∪ sol(〈d2, P〉) = sol(〈d, P〉), and the resulting, smaller
propagation problems are solved recursively. Pseudo-code for this algorithm ap-
pears in Figure 3.2. The propagate method returns a fixed point of the propagators.
We will come back to it in Chapter 5. The task of the branch procedure is to split
the domain into two stronger domains, which are solved recursively. By splitting

25

3 A Model of Constraint Propagation

solve(〈d, P〉)

1 d′ ← propagate(〈d, P〉)

2 if d′ = 0 then return 0 � failed
3 if d′ = {a} then return {a} � solved
4 〈d1, d2〉 ← branch(d′)

5 return solve(〈d1, P〉)∪ solve(〈d2, P〉)

propagate(〈d, P〉)

1 return d′ such that 〈d, P〉 ⇒ 〈d′, P〉

Figure 3.2: Propagation-based constraint solving

domains using the branch procedure, the algorithm explores a tree of propagation
problems, the search tree. More elaborate branching schemes are possible, for exam-
ple adding propagators to the branches instead of splitting domains. As the topic
of this dissertation is propagation, we content ourselves with this simple scheme
and leave the implementation of branch abstract, just assuming that it satisfies
the condition that sol(〈d1, P〉) ∪ sol(〈d2, P〉) = sol(〈d, P〉). This guarantees that all
assignments are generated eventually.

Propagation does not discard solutions, and for an assignment a, propagate de-
cides whether a is a solution. The solver will thus only return solutions, and it will
find all solutions—it is sound and complete.

The advantage over generate-and-test is that propagate is applied to domains, not
only to assignments. In practice, propagation can prune big parts of the search
space—only a fraction of the assignments have to be enumerated.

Let us briefly look again at soundness and completeness of the solver. A solver
returns solutions, soundness therefore means that a solver returns only solutions,
and completeness means that it returns all solutions of a given propagation prob-
lem. Interestingly, these notions are exactly dual for propagators: a propagator
prunes non-solutions. Hence, a propagator is sound if it prunes only non-solutions,
and, as we will see in Chapter 4, it is complete if it prunes all non-solutions. Propa-
gation-based solvers are sound, because each propagator is complete when applied
to an assignment (it realizes a decision procedure for its induced constraint on as-
signments), and they are complete, because all assignments are enumerated and
because each propagator is sound (it does not remove solutions).

Related work

◮ The generate-and-test approach is sometimes referred to as the “British Museum
method”. An early reference to this folklore term is Prawitz (1960). He refers to

26

3.4 Idempotency, Monotonicity, and Confluence

the fact that one could in theory produce all the books in the British Museum by
enumerating all the finitely many strings of appropriate length. Prawitz also calls it
the “Fifty Million Monkeys method”.

◮ Solving constraint satisfaction problems by constraint propagation and backtrack-
ing search dates back to the 1960’s, with the famous Davis-Putnam algorithm for
solving propositional satisfiability problems (Davis and Putnam, 1960; Davis et al.,
1962).

◮ The presented solver stands in the tradition of algorithms like CS2 (Gaschnig,
1974), MAC (maintaining arc consistency, Sabin and Freuder, 1994) and FC (forward
checking, Golomb and Baumert, 1965; Haralick and Elliott, 1980), in the sense that
it interleaves propagation and search. However, no particular propagation strength
(such as arc consistency) is built in.

◮ Hard problems can often only be solved if branching is done according to a good
heuristic, such as fail-first (Haralick and Elliott, 1980). This dissertation concentrates
on propagation, so we just assume an exhaustive branching procedure.

3.4 Idempotency, Monotonicity, and Confluence

In addition to being contracting and sound, propagators are traditionally required
to be idempotent and monotonic. This section explains why our definition of propa-
gators is sufficient, and what the stronger properties imply.

Definition 3.14 A propagator p is idempotent if and only if for all domains d,
p(p(d)) = p(d). It is monotonic if and only if for any two domains d1 and d2,
d1 ⊆ d2 implies p(d1) ⊆ p(d2). ∗

Idempotency

The result of applying an idempotent propagator is a domain that is a fixed point for
the propagator. However, for solving propagation problems, we are not interested in
fixed points of individual propagators, but in mutual fixed points of all propagators.
As we have seen, the transition systems produce mutual fixed points, independent
of whether the individual propagators are idempotent. In this dissertation, we thus
do not require propagators to be idempotent. However, if a propagator is idempo-
tent, we can take advantage of this fact in practice to compute the fixed point more
efficiently (see Section 5.4).

A more direct way to see that idempotency is not important for propagators is to
show that it can be achieved for any propagator by iteration.

27

3 A Model of Constraint Propagation

Proposition 3.15 For each propagator p, there is a number n > 0 such that pn

(which means p iterated n times, p ◦ p ◦ · · · ◦p) is idempotent. ∗

Proof. Any domain d is finite, and each application of p either arrives at a fixed
point or makes d smaller. As p is a function, p(d) = d implies p(p(d)) = d. So the
length of any chain p(p(. . . p(d))) where each application yields a strictly stronger
domain is bounded by the size of the domain d.

Given a propagator p, we define p∗ := pn to be its idempotent closure, where n is
the constant that ensures idempotency of pn.

Monotonicity

The terminal domains of the transition systems are always mutual fixed points of all
propagators. However, these fixed points are not necessarily unique—the transition
systems are not confluent. Traditionally, confluence has been considered essential
for constraint propagation, and the usual way to guarantee confluence is to restrict
propagators to being monotonic, as we will see below.

Before discussing monotonicity and confluence in more detail, let us look at an
example that exhibits non-monotonic, non-confluent behavior.

Example 3.16 (Propagation may not be confluent) Let 〈d, {p1, p2}〉 be a propaga-
tion problem with d(x) = {0,1,2}, cp1 = Jx ∈ {0,1}K, and cp2 = Jx = 0K, without
specifying the propagators any further for the moment. Assume that the propaga-
tion problem has the following transition system:

x ֏ {0,1,2}

x ֏ {0,1}

x ֏ {0}

p1

p
2

Clearly, p2(d) is a fixed point of p1, too, so the domain x ֏ {0} is stable. But how
can x ֏ {0,1} be stable? We can define p2 to only propagate if the domain of y is
assigned or has more than two elements:

p2(d)(x) =

x ֏ d(x)∩ {0} if |d(x) = 1| or |d(x)| > 2

d(x) otherwise

The transition system of
〈
d, {p1, p2}

〉
is not confluent. ∗

28

3.4 Idempotency, Monotonicity, and Confluence

contracting

sound

monotonic

idempotent

propagators

Figure 3.3: Functions in Dom → Dom

The source of the non-confluence in the above example is that the propagator p2
is contracting and sound, but not monotonic. Clearly, x ֏ {0,1} is stronger than
x ֏ {0,1,2}, but in the example, p2(x ֏ {0,1}) ⊃ p2(x ֏ {0,1,2}), showing that
p2 is not monotonic. Monotonicity is in fact a sufficient condition for confluence,
and in addition guarantees that the stable domain reached by transitions is the
weakest mutual fixed point of the propagators.

Theorem 3.17 Let 〈d, P〉 be a propagation problem where all propagators p ∈ P are
monotonic. Then the transition system of 〈d, P〉 is confluent, and its unique stable
domain is the weakest mutual fixed point of all p ∈ P that is stronger than d. ∗

Proof. We will show that for any stable domain d′ reachable by transitions from d,
any mutual fixed point d′′ ⊆ d of the propagators in P is stronger than d′. Con-
fluence then follows from the fact that all stable domains reachable by transitions
from d are mutual fixed points of the propagators in P .

Let d ⊢p1→ d1 ⊢p2→ d2 . . . ⊢pn→ dn = d
′ be a sequence of transitions leading to

the stable domain d′, and let d′′ ⊆ d be an arbitrary mutual fixed point of all prop-
agators in P . We will show by induction over the length of the transition sequence
that d′′ ⊆ d′. The base case is clear, as we assumed d′′ ⊆ d. For the induction step,
assume d′′ ⊆ di. Then, by monotonicity, pi+1(d′′) ⊆ pi+1(di). As d′′ is a fixed point
of all p ∈ P , we get d′′ ⊆ pi+1(di) = di+1.

Monotonicity subsumes soundness: if a function f ∈ Dom → Dom is monotonic,
then {a} ⊆ d implies f({a}) ⊆ f(d), which is the definition of soundness. Figure 3.3
shows a diagram of the different classes of functions in Dom → Dom. Propagators
are at the intersection of sound and contracting functions, and can in addition be
idempotent and/or monotonic.

29

3 A Model of Constraint Propagation

Non-monotonicity in practice

The practical consequence of allowing non-monotonic propagators is that the size
and shape of the search tree, as well as the order in which solutions are found,
depends on the order of propagator application. The set of solutions that is found
is however independent of the application order, as each propagator is still sound.

The main reason why confluent propagation is desirable is that it makes debugging
of a constraint model easier. The fundamental rule in a confluent system is that
adding propagators results in a smaller search space. With non-monotonic propa-
gators, this may no longer be true: adding a propagator can prevent another propa-
gator from pruning, leading to less pruning and a bigger search space. Depending
on the concrete implementation, the order of propagation may even be non-deter-
ministic. In this case, non-monotonic propagators lead to different search trees in
different runs of the solver using the same propagators.

In practice, most propagators are monotonic. The only reason to resort to a non-
monotonic propagation algorithm is usually its asymptotic run-time. For instance,
Baptiste (1994) shows that edge finding with task intervals (a propagation algorithm
used for scheduling problems and first described by Caseau and Laburthe, 1994) is
non-monotonic. Instead of considering all (exponentially many) subsets of activities,
the algorithm restricts itself to only quadratically many subsets. While this makes
the algorithm tractable in terms of run-time, the choice of these subsets depends on
the current domain, and hence propagation becomes non-monotonic.

In this dissertation, we do not require monotonicity of propagators. None of the
properties or techniques we discuss in the following chapters rely on propagators
being monotonic. However, as monotonicity plays such an important role in prac-
tice, we will show how the techniques we develop behave for monotonic propagators.
For example, Chapter 5 discusses the relation of (non-)monotonicity and propagator
completeness. In Chapter 7, we show that a propagator that is derived from a mono-
tonic propagator using a view is again monotonic. Finally, Chapter 11 shows that the
propagators we derive for set constraints are always monotonic.

Monotonic and idempotent propagators in the lattice

Given an arbitrary propagator p, its idempotent closure p∗ is always stronger than
p. We can define the weakest monotonic propagator stronger than p as pms , and
the strongest monotonic propagator weaker than p as pmw . These two exist because
monotonic propagators are closed under intersection and union.

Proposition 3.18 Monotonic propagators are closed under intersection and union.∗

Proof. Let p1 and p2 be monotonic propagators, and let d and d′ be domains such
that d′ ⊆ d. From monotonicity, p1(d′) ⊆ p1(d) and p2(d′) ⊆ p2(d), it follows that

30

3.4 Idempotency, Monotonicity, and Confluence

p1(d
′)∪p2(d

′) ⊆ p1(d)∪p2(d) and p1(d′)∩p2(d′) ⊆ p1(d)∩p2(d), as both union
and intersection are monotonic.

These propagators, together with their idempotent closures, are arranged in the
propagator lattice as follows:

pmin
cp

pmw

p

pm∗w

pmsp∗

pm∗s

pmax
cp

⊇
⊇

⊇

⊇⊇

⊇⊇

⊇

⊇

If p is monotonic, all these propagators collapse into pmin
cp , p, p∗, and pmax

cp .

Related work

Propagators are traditionally required to be monotonic. To the best of our knowl-
edge, this dissertation presents the first systematic discussion of non-monotonic
propagators.

◮ A function that operates on a lattice (like Dom) and that is contracting, idem-
potent, and monotonic is called a closure operator (Ward, 1942) or consequence

operator (Tarski, 1930, 1983). In the context of logical deduction, in which Tarski
developed the consequence operator, idempotency characterizes the fact that all
consequences of consequences of a set of sentences are themselves consequences.
Monotonicity captures that from more facts, more consequences can be deduced.
In constraint programming, however, this philosophical point of view is not impor-
tant: When computing a fixed point of a set of propagators, the idempotent closure
is computed automatically; and fixed points are only required to still contain all
solutions of the original problem, so that soundness is sufficient.

◮ Saraswat et al. (1991) explicitly relate their definition of propagators to Tarski’s
consequence operator, and thus require both monotonicity and idempotency. The
propagators in their system are models for concurrent processes. Idempotency thus
means that a process only stops if it cannot contribute any more information. Mono-
tonicity guarantees unique fixed points. Thus, Saraswat et al. can identify processes
with their sets of fixed points.

31

3 A Model of Constraint Propagation

◮ Benhamou et al. (1994) also essentially model propagators as closure operators.
Benhamou (1996) drops idempotency, but still lists monotonicity as a requirement.

◮ In Constraint Handling Rules (see Frühwirth, 1998), propagators are implemented
by sets of rules. Confluence plays a prominent role: any (terminating) set of rules
can be made confluent using a method similar to Knuth-Bendix completion.

◮ Indexicals, as defined by Van Hentenryck et al. (1991) or Carlson (1995), are con-
structed to be monotonic and idempotent propagators. Van Hentenryck et al. (1991)
explicitly link indexicals with closure operators.

◮ The Mozart (2009) system allows non-monotonic propagators, but fixes their or-
der of application, so that fixed points remain unique (Müller, 2001). This is a vital
prerequisite for the correctness of recomputation as described by Schulte (2002).
Section 6.1 reconciles recomputation with non-monotonicity.

3.5 A Many-Sorted Model

In the model presented so far, there is a single set of values V common to all vari-
ables. Constraint solvers typically offer different sorts of variables, such as integer,
Boolean, or set variables. This section presents the minimal extension of the mathe-
matical model that is necessary to capture different sorts of variables.

The fundamental difference in a many-sorted system is that instead of a single set
of values V , we have a family of sets Vx , one per variable x ∈ X. The set Vx is the
sort of the variable x.

The basic entities in our model—assignments and domains—are mappings from
variables to values or sets of values, respectively. Instead of functions X → V , we
now need a mapping x ֏ v where v ∈ Vx . This cannot be captured in a simple
functional type. A dependent type

∏
x ∈ X. Yx describes a mapping from variables

to a family Yx for each x. Using this notation, we can bootstrap the remaining
definitions:

• Assignments a ∈ Asn :=
∏
x ∈ X. Vx

• Domains d ∈ Dom :=
∏
x ∈ X. P(V)

All other definitions are not affected. For instance, constraints are still sets of as-
signments, propagators are still functions in Dom → Dom, and the definition of the
operator con(·) does not change.

As none of the proofs in this dissertation takes advantage of the fact that two vari-
ables are mapped into the same set of values, all results immediately generalize to
the many-sorted case by simple textual replacement of the relevant types.

32

4 Propagation Strength

This chapter presents a characterization of the strength of propagators. The char-
acterization serves two purposes. It yields a more complete mathematical model
of propagation, explaining propagation strength precisely and in an abstract way.
More importantly for this dissertation, it is a tool that we will use later to show how
techniques we develop preserve or influence propagation strength (Chapter 7), and
to show that propagators we generate have a particular strength (Chapter 11).

We already saw in the previous chapter that propagators differ in strength, and that
there is a unique weakest and a unique strongest propagator for each constraint.
We now identify classes of propagators that lie in between the weakest and the
strongest propagators for their respective induced constraints. As a measure for
propagation strength, we weaken the notion of domain completeness and introduce
completeness with respect to domain approximations, restricting the domains that a
propagator may return to be at least of a certain strength.

Weaker propagators matter in practice because for many constraints, domain-com-
plete propagation algorithms are computationally expensive or even intractable.
Therefore, often propagators are used that for example only propagate the bounds
of integer variable domains, or even only prune the domain if some variables are
assigned. We define these classes of propagation strength, and relate our defini-
tions to the more classical notions of domain or bounds consistency known from
the literature.

This chapter builds on the notions of domain approximations and completeness
with respect to approximations developed by Benhamou (1996). We use these no-
tions slightly differently, though. While Benhamou combines heterogeneous con-
straint solvers, we characterize the propagation strength of different propagators
within the same constraint solving framework.

Structure of the chapter. We start the discussion of propagation strength by again
looking at the unique weakest and strongest propagators for a given constraint (4.1).
Next, we discuss domain approximations (4.2), and how they serve as a measure
for propagation strength (4.3). Finally, we define the integer interval approxima-
tion (4.4) and the set interval approximation (4.5), two domain approximations that
are important in practice.

4 Propagation Strength

4.1 Weakest and Strongest Propagators

The previous chapter showed that for each constraint, there is a unique weakest
propagator pmin

c and a unique strongest propagator pmax
c . Before looking at propaga-

tors in between pmin
c and pmax

c in the following sections, this section develops more
concrete definitions of pmin

c and pmax
c . We will see later how the definition of pmax

c

can be weakened in order to yield the desired classes of propagation strength.

The weakest propagator for a constraint c, pmin
c , only realizes the decision procedure

for c on assignments, checking for an assignment a whether it satisfies c or not.
Otherwise, it does not prune the domain. We can define it as

pmin
c (d) := if d = {a} and a ∉ c then 0 else d

Proposition 4.1 The function pmin
c as defined above is a propagator, it is idempo-

tent and monotonic, it induces the constraint c, and it is the unique weakest propa-
gator that induces c. ∗

Proof. Contraction, idempotency, and monotonicity are all obvious from the defini-
tion of pmin

c , and the propagator clearly induces the constraint c. Let p be any other
propagator with cp = c. In order to prove that pmin

c is the weakest propagator for
c, we have to show that p(d)∪ pmin

c (d) = pmin
c (d) for any domain d. There are two

cases.

• Case pmin
c (d) = 0: Then d = {a} for some assignment a, and as cp = c, we

know p(d) = 0. So p(d)∪ pmin
c (d) = 0 = pmin

c (d).

• Case pmin
c (d) = d: Then p(d)∪ pmin

c (d) = p(d)∪ d = d = pmin
c (d).

At the other end of the spectrum is the strongest propagator pmax
c . A propagator re-

turns domains, so propagation strength is limited by what a domain can represent.
Given a domain d, pmax

c must yield the strongest domain that contains all assign-
ments of c that are still licensed by d. This is captured in the following definition.

Definition 4.2 The domain relaxation of a constraint c is defined as

VcW :=
⋂
{d ∈ Dom | c ⊆ con(d)} ∗

As domains are closed under intersection, VcW is the strongest domain that licenses
all assignments of the constraint c. The propagator pmax

c (d) must therefore com-
pute the domain relaxation of c ∩ d:

pmax
c (d) := Vc ∩ dW

34

4.2 Domain Approximations

Proposition 4.3 The function pmax
c is a propagator, it is monotonic and idempotent,

it induces the constraint c, and it is domain-complete. ∗

Proof. The full set of domains Dom is closed under intersection, so that Vc ∩ dW ∈
Dom. From c ∩ d ⊆ d, it follows that Vc ∩ dW ⊆ d. Set intersection is monotonic, so
Vc ∩ dW is a contracting, monotonic function in d.

From the definition of pmax
c , we know that pmax

c (pmax
c (d)) = Vc ∩ pmax

c (d)W =

Vc ∩ Vc ∩ dWW. Furthermore, the definition of V·W yields that c ∩ d is a subset of
Vc ∩ dW, and Vc ∩ dW is a subset of d. Together, this gives c ∩ d = c ∩ Vc ∩ dW. So
pmax
c is idempotent:

pmax
c (pmax

c (d)) = Vc ∩ Vc ∩ dWW = Vc ∩ dW = pmax
c (d)

All together, pmax
c is a monotonic, idempotent propagator. Given an assignment a,

pmax
c ({a}) = Vc∩aW, and Vc∩aW = {a} if and only if a ∈ c. The induced constraint

of pmax
c is therefore c. As Dom is closed under intersection, Vc ∩ dW is the unique

strongest domain that contains all assignments of c∩d. Hence, pmax
c is the strongest

propagator inducing c, it is domain-complete.

Example 4.4 (Propagating linear constraints) Let us look at the simple ternary lin-
ear constraint c = Jx = 3y + 5zK. The weakest propagator for c, pmin

c , only decides
whether an assigned domain satisfies c. For example, it accepts the domain d1
where d1(x) = {8}, d1(y) = {1}, d1(z) = {1}: pmin

c (d1) = d1. And it rejects d2
where d2(x) = {6}, d2(y) = {2}, d2(z) = {1}: pmin

c (d2) = 0. For a non-assigned
domain d3 where d3(x) = {3, . . . ,7}, d3(y) = {0,1,2}, d3(z) = {0,1}, pmin

c does not
perform any pruning: pmin

c (d3) = d3.

The strongest propagator pmax
c removes all values from a variable domain which can-

not be part of any assignment a ∈ c. For the above domain d3, it yields pmax
c (d3)(x) =

{3,5,6}, pmax
c (d3)(y) = {0,1,2}, pmax

c (d3)(z) = {0,1}, removing the 4 and the 7
from the domain of x. ∗

The following section refines the concept of domain relaxation, introducing the
weaker notion of relaxation with respect to a domain approximation. Similar to
domain completeness, we can then define weaker notions of completeness.

4.2 Domain Approximations

Domain completeness is a very strong property. In fact, for many important con-
straints such as linear equations, deciding whether Vc ∩ dW ⊂ d (which a domain-
complete propagator would have to do) is NP-complete (Choi et al., 2004). Therefore

35

4 Propagation Strength

weaker notions of completeness have been developed, which we define here with re-
spect to domain approximations.

Domains approximate constraints. This is already witnessed in their type. We saw
in Section 3.1 that, modulo the con(·) operator, domains are a proper subset of
constraints ({con(d) | d ∈ Dom} ⊂ Con).

We can approximate even further. A domain approximation is defined by restricting
the sets of values a variable is mapped to, for example to intervals according to a
given order of the values. Two approximations that are used in almost all constraint
solvers motivate that domain approximations are highly relevant in practice.

Interval reasoning for integer variables. In practice, many constraints over integer
variables are realized as propagators using interval reasoning. The propagators re-
gard a variable domain as an interval, ignoring any holes, and only prune the interval
bounds. This often leads to a significant reduction of the asymptotic run-time com-
plexity of propagation algorithms. For instance, a domain-complete propagation
algorithm for the all-different constraint (Régin, 1994) has a run-time complexity of
O(n2.5), whereas the run-time of the weaker propagation algorithm that uses inter-
val reasoning (Puget, 1998) is in O(n logn).

Interval reasoning for set variables. The value of a set variable x is a subset of a
finite universe U , so the set of values is V = P(U). This means that set variable
domains are sets of sets, and their size is exponential in the size of the universe
U . Most constraint solvers that support set variables approximate their domains as
intervals. The idea is similar to the interval approximation for integer variables: a
set interval contains all the sets between a lower and an upper bound, only that the
subset order on sets is used instead of the natural order on numbers. However, while
most solvers implement the variable domains of integer variables completely and
only provide certain propagators that use interval reasoning, set variable domains
are typically stored as intervals. The set interval approximation was introduced by
Puget (1992) and formalized by Gervet (1995, 1997).

Domain systems

We will now define approximations of domains formally, as sets of allowed, or rep-
resentable, domains. Such a set is called a domain system, and will later be used to
define the relaxation of a constraint with respect to an approximation, and finally
weaker notions of propagator completeness.

The definition of domain systems we give below results from several requirements.
A domain system must contain all assigned domains in order to represent solutions,
as well as the empty domain for failure. Moreover, a domain system must be able to
approximate any other domain, so it must at least include the full domain. Finally,
in order to generalize the definition of domain relaxation of a constraint, we require

36

4.2 Domain Approximations

domain systems to be closed under intersection. The following definition reflects
these requirements.

Definition 4.5 A domain system is a set of domains D ⊆ Dom with the following
properties:

• D is closed under intersection

• D contains the full domain λx.V

• D contains the assigned domains {a} for all assignments a

Any domain d ∈ D is called a D -domain. ∗

The empty domain is an element of any domain system D because D is closed under
intersection, and the intersection of two different assigned domains {a} and {a′} is
empty.

The domain relaxation operator V·W expresses the fact that domains approximate
constraints, by computing the strongest domain that licenses all solutions of a con-
straint. We can generalize this notion to relaxation with respect to a domain ap-
proximation. Definition 4.5 requires that D be closed under intersection, so that the
strongest D -domain that licenses all solutions of a constraint is well-defined:

Definition 4.6 For a domain system D , the D -relaxation of a constraint c is defined
as

VcWD :=
⋂
{d ∈ D | c ⊆ d} ∗

Example 4.7 (Interval approximation) The interval approximation for integer vari-
ables corresponds to the domain system

D
[Z] := X →Pint(V) = X →

{
[i, j]

∣∣ i ∈ V, j ∈ V}

If the set of values V is an interval, then D[Z] is a domain system according to the
definition: all singleton intervals [i, i], the full interval [min(V),max(V)], as well
as the empty interval (denoted by [1,0]) are present for all variables x, and the
intersection of two intervals is again an interval (possibly empty).

For any constraint c, the interval relaxation VcWD[Z] computes the strongest D[Z]-
domain that captures c. It can be defined equivalently as

VcWD[Z] := λx.[min(VcW(x)),max(VcW(x))] ∗

Domain systems are naturally ordered by inclusion.

Definition 4.8 A domain system D1 is stronger than a domain system D2 if and
only if VcWD1 ⊆ VcWD2 for all constraints c. ∗

37

4 Propagation Strength

The smaller a domain system is, the coarser the approximation it represents.

Proposition 4.9 A domain system D1 is stronger than a domain system D2 if and
only if D1 ⊇ D2. ∗

Proof. We prove both directions of the equivalence:

⇐ Given domain systems D1 ⊇ D2, we know that for all constraints c, VcWD2 ∈ D1.
Therefore, VcWD1 can only be the same or stronger.

⇒ For the reverse direction, consider domain systems D1 and D2 such that VcWD1 ⊆

VcWD2 for all constraints c. We know that for all domains d′ ∈ D2, Vcon(d′)WD2 =

d′. On the other hand, we have d′ ⊆ Vcon(d′)WD1 . Together, we get Vcon(d′)WD1 =

d′, which means that d′ ∈ D1 and consequently D2 ⊆ D1.

According to the definition, the strongest domain system is Dmax := Dom, and the
weakest one is Dmin := {0, λx.V} ∪ {{a} | a ∈ Asn}.

The interval domain system D[Z] is strictly stronger than Dmin, as it does contain
non-singleton domains other than λx.V . At the same time, D[Z] is strictly weaker
than Dmax, because it does not contain non-interval domains.

4.3 Strength with Respect to a Domain System

Section 3.2 defined domain completeness using the domain relaxation operator V·W.
This section generalizes the definition and defines completeness with respect to
domain systems, which can characterize classes of weaker propagators.

Completeness with respect to approximations

The definition of completeness with respect to a domain system D is straightfor-
ward.

Definition 4.10 Let D be a domain system. A propagator p is D -complete, if and
only if for any domain d, p(d) ⊆ Vcp ∩ VdWDWD . ∗

Compared to domain completeness, we accept solutions in VdWD instead of the
stricter d, and we only require the result to be at least a D -domain (or stronger).
For the full domain system Dom, the definition coincides with domain completeness.
However, D completeness is only defined as a lower bound on the pruning capability
of a propagator (or, equivalently, an upper bound on the domains a propagator may
return). As a consequence, a domain-complete propagator is always D -complete for
any domain system D . For every constraint c, there is a unique weakest D -complete
propagator, which we call D -canonical.

38

4.3 Strength with Respect to a Domain System

Definition 4.11 The D -canonical propagator for a constraint c is defined as p(d) :=
Vc ∩ VdWDWD ∩ d. ∗

It is easy to see that the D -canonical propagator for a constraint c is the weakest
D -complete propagator for c. Any D -complete propagator must satisfy two equa-
tions: p(d) ⊆ Vc ∩ VdWDWD , and p(d) ⊆ d (so that it is contracting). The weakest
propagator that satisfies both equations is therefore the D -canonical propagator.

Example 4.12 (D[Z]-complete all-different) Let p be a D[Z]-complete propagator for
the all-different constraint on three variables, cp = Jx ≠ y ∧ x ≠ z ∧ y ≠ zK,
and let the domain d be given such that d(x) = d(y) = d(z) = {1,3}. Then
VdWD[Z](x) = VdWD[Z](y) = VdWD[Z](z) = {1,2,3}, and cp ∩ VdWD[Z] = VdWD[Z] . The
propagator p therefore does not have to prune the domain d. On a domain d′ where
d′(x) = d′(y) = d′(z) = {1,2}, however, we get Vd′WD[Z] = d′, and cp∩Vd′WD[Z] = 0.
Thus the propagator must detect failure, p(d′) = 0. Puget (1998) develops a D[Z]-
complete propagation algorithm for all-different. ∗

Consistency

The definition of D completeness establishes a relationship between the propagator
as a function and the constraint that it induces. For historic reasons, propagation
strength is usually defined differently, as a property of domains called consistency.
Here, we define different notions of consistency and show how they are related to
completeness of propagators. For the historic context, see Section 4.6.

The strongest consistency property is called domain consistency.

Definition 4.13 A domain d is domain-consistent for a constraint c if and only if
d = Vc ∩ dW. ∗

A propagator p establishes domain consistency if and only if its result is domain-
consistent for its induced constraint: p(d) = Vcp ∩ p(d)W for any domain d. Note
the difference to our definition of domain-complete propagators: the returned do-
main is required to be a fixed point. However, as domain-complete propagators are
idempotent, they establish domain consistency:

p(d) = p(p(d)) = Vcp ∩ p(d)W

Weaker consistency notions can be defined with respect to a domain system.

Definition 4.14 A domain d is D -consistent for a constraint c and a domain system
D if and only if d ⊆ Vc ∩ VdWDWD . ∗

39

4 Propagation Strength

For the full domain system Dom, this definition again coincides with domain consis-
tency. However, for weaker domain systems D ⊂ Dmax, the result of a D -complete
propagator is not always D -consistent for its induced constraint, as D completeness
does not imply idempotency. A D -complete propagator can be either too weak or
too strong to be idempotent.

Example 4.15 (Too weak for idempotency) Consider a D[Z]-complete propagator
for the equation x = y , defined as

p(d) = (x ֏ d(x)∩ VdWD[Z](y),

y ֏ d(y)∩ VdWD[Z](x))

Given the domain d = (x ֏ {0,2,3}, y ֏ {1,2,3}), the propagator returns the
domain p(d) = (x ֏ {2,3}, y ֏ {1,2,3}), which is clearly not a fixed point, and not
D[Z]-consistent. The propagator is too weak to achieve D[Z] consistency. ∗

Example 4.16 (Too strong for idempotency) As an example for a propagator that
is too strong, consider the all-different constraint. Assume we have three variables
and the domain d(x1) = d(x2) = d(x3) = {1,3}. A domain-complete propagator
for all-different will detect failure immediately, while a D[Z]-complete propagator
could return the domain unchanged (as seen in Example 4.12). A propagator that
lies between domain and D[Z] completeness might remove the 1 from the domain
of x1, yielding a domain that is not a fixed point and not D[Z]-consistent with all-

different. This propagator is too strong for achieving D[Z] consistency. ∗

At its fixed points, however, any D -complete propagator achieves D consistency.

Proposition 4.17 Let p be a D -complete propagator. Each fixed point of p is D -
consistent for cp. ∗

Proof. Consider a fixed point d of p. D completeness of p means p(d) ⊆ Vc ∩
VdWDWD . Substituting p(d) for d, we get p(p(d)) ⊆ Vc ∩ Vp(d)WDWD , and as d is a
fixed point of p, it follows that p(d) ⊆ Vc ∩ Vp(d)WDWD .

When a D -complete propagator p is used in a propagation-based solver, the fixed
point that the solver computes is thus always D -consistent for cp.

In Section 4.1, we saw that complete propagators are monotonic. This result does
not generalize to completeness with respect to a domain system D . As for idempo-
tency, this is due to D completeness being defined only as a lower bound. However,
the D -canonical propagator for a constraint c, defined as p(d) := Vc ∩ VdWDWD ∩ d,
is monotonic. The argument is the same as for domain completeness, both V·WD and
set intersection are monotonic operations. Another monotonic D -complete propa-
gator is p∗.

40

4.4 The Integer Interval Approximation

4.4 The Integer Interval Approximation

Let us come back to the interval approximation D[Z] for integer variables to get an
intuition for consistency and completeness with respect to an approximation.

Traditionally, D[Z] consistency is called bounds consistency. To distinguish it from
other notions of bounds consistency (for an overview, see Choi et al., 2006), it has
also been given the more specific name bounds(Z) consistency. The usual definition
reads as follows:

Definition 4.18 A domain d is bounds(Z)-consistent for a constraint c, if and only
if for each variable x, there exist assignments a,b ∈ c such that a(x) = min(d(x)),
b(x) = max(d(x)), and min(d(y)) ≤ a(y) ≤ max(d(y)), min(d(y)) ≤ b(y) ≤

max(d(y)) for all other variables y . ∗

This definition is equivalent to our generic definition of D[Z] consistency. Recall that
D[Z] consistency means that d ⊆ Vc ∩ VdWD[Z]WD[Z] . The fact that we only require
solutions for each min(d(x)) and max(d(x)) is reflected in the outer V·WD[Z] . The
inner V·WD[Z] makes sure that solutions may take values from the intervals instead
of the full domains, ignoring any holes.

The bounds(D) and range approximations

Two stronger notion of bounds consistency are known from the literature. They
are called bounds(D) consistency (discussed for example by Choi et al., 2006) and
range consistency (as presented for instance by Quimper, 2006), and strengthen
bounds(Z) consistency in different ways as follows.

Definition 4.19 A domain d is bounds(D)-consistent for a constraint c, if and only
if for all variables x, there exists an assignment a ∈ c such that a(x) = min(d(x))
and a(y) ∈ d(y) for all other variables y , and analogously for max(d(x)).

A domain d is range-consistent for a constraint c, if and only if for all variables x
and all values v ∈ d(x), there exists an assignment a ∈ c such that a(x) = v and
min(d(y)) ≤ a(y) ≤max(d(y)) for all other variables y . ∗

We can generalize the two notions to arbitrary domain systems D . Let us repeat the
definition of D consistency of a domain d for a constraint c here:

d ⊆ Vc ∩ VdWDWD

Replacing either of the two D relaxations by a domain relaxation yields the stronger
notions of consistency and completeness we want to define.

41

4 Propagation Strength

Definition 4.20 A domain d is D -Dom-consistent for a domain system D and a
constraint c if and only if d ⊆ Vc∩dWD . A propagator p is D -Dom-complete for c if
and only if p(d) ⊆ Vc ∩dWD for all domains d. The D -Dom-canonical propagator is
the weakest D -Dom-complete propagator, p(d) := Vc ∩ dWD ∩ d.

A domain d is Dom-D -consistent for a domain system D and a constraint c if and
only if d ⊆ Vc ∩ VdWDW. A propagator p is Dom-D -complete for c if and only if
p(d) ⊆ Vc ∩ VdWDW for all domains d. The Dom-D -canonical propagator is the
weakest Dom-D -complete propagator, p(d) := Vc ∩ VdWDW ∩ d. ∗

With this definition, bounds(D) consistency and completeness are exactly D[Z]-Dom

consistency and completeness, and range consistency and completeness correspond
to Dom-D[Z] consistency and completeness.

The Dom-D -complete propagators behave like D -complete propagators in that they
can be both too weak and too strong to achieve Dom-D consistency. However, a
D -Dom-complete propagator can only be too strong to achieve D -Dom consistency.
This is a consequence of the fact that the D -Dom-canonical propagator is idempo-
tent and achieves D -Dom consistency. It is also monotonic.

Proposition 4.21 The D -Dom-canonical propagator p(d) = Vc ∩ dWD ∩ d for a con-
straint c is monotonic and idempotent. ∗

Proof. Monotonicity follows with the same argument as for complete propagators.
For idempotency, we first apply the definition p(d) = Vc∩dWD∩d. Just as for V·WDom,
it is easy to see that c ∩ d = c ∩ Vc ∩ dWD , and consequently Vc ∩ dWD = Vc ∩ d ∩
Vc∩dWDWD . So we can rewrite the definition of p to p(d) = Vc∩d∩Vc∩dWDWD ∩d.
With the original definition, this yields p(d) = Vc ∩ p(d)WD ∩ d. As we know that
p(d) ⊆ d, it follows that p(d) = Vc ∩ p(d)WD ∩ p(d) = p(p(d)).

According to these definitions, given a domain system D , any domain-complete prop-
agator is D -Dom-complete and Dom-D -complete, and any D -Dom-complete and any
Dom-D -complete propagator is D -complete. Furthermore, Dmax completeness (do-
main completeness) is the same as Dmax-Dom completeness and Dom-Dmax com-
pleteness. The complete picture of propagator strength appears in Figure 4.1.

D[Z]-complete and Dom-D[Z]-complete propagation algorithms are relatively com-
mon, examples are given by Leconte (1996), Quimper et al. (2004), Choi et al. (2006),
and Quimper (2006). Algorithms for D[Z]-Dom-complete propagators are rarely
found in practice.

Bounds(R) completeness

For linear equation constraints, already bounds(Z) completeness is algorithmically
intractable: a bounds(Z)-complete propagator decides whether Vc∩VdWD[Z]WD[Z] ⊂ d,

42

4.4 The Integer Interval Approximation

completeD -complete

D
-Dom-

complete

Dom-D -
complete

idempotent

monotonic

Figure 4.1: Classes of propagator strength

and this is NP-complete for a linear constraint J∑ni=1aixi = kK (Choi et al., 2004).
Therefore, another important approximation has been developed that we have not
mentioned yet: bounds(R).

The bounds(R) approximation is different from the approximations discussed so far,
in that it uses a different set of values for the variables: instead of some subset of the
integers, we use a subset of the real numbers. The domain system D[R] is defined
as D[R] := X →

{
[i, j] ⊆ R

∣∣ i ∈ V, j ∈ V}. A domain is bounds(R)-consistent if and
only if d ⊆ VcR ∩ VdWD[R]WD[R] , where cR is the constraint c, relaxed to the real
numbers. Intuitively, the difference to D[Z] consistency is that it suffices to find
real-valued instead of integer solutions. The approach is similar to integer linear
programming, in that it solves a linear relaxation (see for example Hooker, 2007)
of the original problem, and uses the result to infer new lower and upper (integer)
bounds.

Of course, the notion of bounds(R) completeness only makes sense for certain con-
straints. For example, the all-different constraint relaxed to the real numbers is not
very useful: we can always find a real-valued assignment between the integer bounds
that satisfies the constraint as long as the variables are not assigned.

The following example shows what kind of inferences are required on the different
levels of completeness for linear equation constraints.

Example 4.22 (Bounds completeness for linear constraints) Let us again consider
the ternary linear constraint from Example 4.4, c = Jx = 3y + 5zK. We already saw
that for the domain d where d(x) = {3, . . . ,7}, d(y) = {0,1,2}, d(z) = {0,1}, a
domain-complete propagator for c would produce the domain p(d)(x) = {3,5,6},
p(d)(y) = {0,1,2}, p(d)(z) = {0,1}.

A bounds(Z)-complete propagator does not have to remove the 4 from the domain

43

4 Propagation Strength

of x, but could return p(d)(x) = {3,4,5,6}, p(d)(y) = {0,1,2}, p(d)(z) = {0,1}.
A bounds(R)-complete propagator does not have to contribute any propagation, as
even for x = 7, we can find a real-valued solution y = 2/3, z = 1. ∗

4.5 The Interval Approximation for Set Variables

Section 4.2 sketched the set interval approximation as an example for a commonly
used domain approximation. This section presents its mathematical definition. We
will use the set interval approximation in later chapters, in particular in Chapter 10

and Chapter 11.

The set interval approximation regards a set variable domain as an interval of sets
between a greatest lower and a least upper bound. The greatest lower bound con-
tains those elements shared by all sets in the variable domain, the elements that
must be part of any assignment. The least upper bound is the union of all sets
in the variable domain, it holds all the elements that can possibly be part of an
assignment.

The representation of the domain of a set variable using bounds can be exponen-
tially smaller than the full domain representation. Consider the set of all subsets of
{1, . . . , n}. Representing this set by its lower bound 0 and upper bound {1, . . . , n}
takes O(n) space. The full set of sets has size O(2n). For this reason, solvers not
only propagate with respect to the set interval approximation, but actually imple-

ment set domains using bounds.

We now define the set interval domain system formally. Let the set of values be
given as V = P(U), the subsets of a fixed, finite universe U . Then we can define
intervals of sets with respect to the subset order.

Definition 4.23 A set interval [l,u] is the set of sets defined as

[l,u] := {s ⊆ U | l ⊆ s ∧ s ⊆ u}

A set interval domain maps each variable to a set interval. We define the domain

system D[P(U)] as the set of all set interval domains:

D
[P(U)] := {d ∈ Dom | ∀x ∈ X ∃l ⊆ U , u ⊆ U : d(x) = [l,u]}

Given a set interval domain d, we access the two components of a variable domain
d(x) = [l,u] as glb(d(x)) = l and lub(d(x)) = u. ∗

44

4.6 Related Work

We can verify that D[P(U)] satisfies all properties of a domain system: it is closed un-
der intersection, it represents the full domain λx.V , and it contains all assignments.
The D[P(U)] approximation is similar to the integer interval domain system D[Z], as
it is also based on a lower and upper bound, but with respect to the inclusion order
on sets instead of the natural order on numbers.

An equivalent definition of D[P(U)] states that the lower and upper bounds of each
variable x in a D[P(U)]-domain d are the intersection and union, respectively, of all
assignments a ∈ d:

D
[P(U)] = {d ∈ Dom | ∀x ∈ X : d(x) = [

⋂

a∈d

a(x),
⋃

a∈d

a(x)]}

This definition will be useful for reasoning about set interval completeness of prop-
agators in Chapter 11.

4.6 Related Work

◮ The characterization of propagation strength goes back to the notion of arc con-
sistency, introduced by Mackworth (1977). The term arc consistency alludes to the
view of a CSP as a graph, where variables are nodes and binary constraints are edges
(arcs). An arc of this so-called constraint network is consistent if all values of the
adjacent variable nodes are supported by the constraint of the arc, which means that
for any value of one variable, one finds a value of the other such that the constraint
is satisfied. Hypergraphs generalize this framework to non-binary constraints. The
corresponding notion of consistency is called hyperarc consistency, generalized arc
consistency, or domain consistency, the term that we use. Apt (2003) provides a
detailed overview of further consistency notions, such as path consistency, k-con-
sistency, and directional consistency. These stronger notions of consistency are
usually not realized in propagation-based constraint solvers.

◮ Benhamou (1996) describes a model for cooperating constraint solvers based on
domain approximations. Our model builds on his idea of defining propagation
strength with respect to a domain system (which he calls an approximate domain).
Maher (2002) defines completeness with respect to a class of constraints, which is
equivalent to our definition of completeness with respect to an approximation. The
discussion of consistency versus completeness, and what role propagator idempo-
tency plays, is a novel contribution of this dissertation.

◮ A straightforward extension of the set interval approximation is to add cardinality
information. For instance, the set domain {{1}, {2}, {3}, {1,2}, {1,3}, {2,3}} cannot
be represented exactly using only bounds. With additional cardinality information,
it can be represented using an empty lower bound, the upper bound {1,2,3}, and

45

4 Propagation Strength

the cardinality {1,2}. Cardinality reasoning was already described by Puget (1992)
and later refined by Azevedo (2007).

◮ Recently, several alternative approximations for set domains have been proposed.
Sadler and Gervet (2004) add two more bounds, based on a (total) lexicographic or-
der instead of the partial subset order. This so-called hybrid representation can
express some cardinality constraints more directly. A variation of this technique as
proposed by Gervet and Van Hentenryck (2006) is to use only lexicographic bounds,
further ordered by cardinality. This length-lex ordering is reported to be at least as
strong as the hybrid approach, while propagation is at the same time computation-
ally cheaper. Finally, solvers have emerged that represent the full set of sets for
set variable domains. These solvers make use of Reduced Ordered Binary Decision

Diagrams (ROBDDs) to get small representations in practice (Hawkins et al., 2005).

◮ Domain approximations as introduced in this dissertation always aim at weaken-
ing the full domain system Dom. Recently, there has also been research on making it
stronger. While all current constraint solvers are based on a Cartesian domain repre-
sentation, Andersen et al. (2007) develop non-Cartesian domains and corresponding
propagators.

◮ We have argued that weaker notions of propagation strength are important in
practice because domain-complete propagation is often algorithmically expensive
or even intractable. Schulte and Stuckey (2005, 2008a) identify conditions under
which the stronger propagation of domain-complete propagators even does not yield
smaller search trees, and therefore the computationally cheaper, weaker propaga-
tors should be used.

46

5 Efficient Propagator Scheduling

Chapter 3 modeled constraint propagation as a transition system. The transitions
transform a propagation problem into a stable propagation problem, where the prop-
agators are at a mutual fixed point. While the transition systems are essentially
non-deterministic, an implementation of a constraint solver must decide determin-
istically in which order to apply the propagators.

This chapter recapitulates traditional as well as more recently developed techniques
for the efficient computation of propagator fixed points. The techniques are embed-
ded into our mathematical model, yielding refined transition systems that are closer
to an implementation. All techniques are based on two insights: (1) We maintain a
set of propagators for which we know that they are at a fixed point, and only apply
the remaining propagators. This is called propagator-centered propagation. (2) We
use events to describe modifications of variable domains, and only consider propa-
gators for propagation if an event has occurred that can cause them to not be at a
fixed point any longer. This leads to event-directed propagation.

In addition to reviewing the existing techniques, this chapter introduces propaga-

tion conditions and modification events. These two concepts explain what kinds of
events are relevant for event-directed propagation, and how to determine the set of
events that describes the modifications between two variable domains. The model
based on propagation conditions and modification events yields a straightforward
and efficient implementation.

Structure of the chapter. We develop transition systems that are based on queues
of propagators that are possibly not at a fixed point (5.1). Then we show how events
can be used to efficiently determine the set of propagators that depend on certain
domain modifications and thus have to be added to the queue (5.2). Next, we make
the transition systems more dynamic, by allowing propagators to change their de-
pendencies, and by rewriting propagators to other, equivalent propagators (5.3). We
then discuss two more advanced scheduling techniques, fixed point reasoning and
propagator staging (5.4). Finally, we introduce propagation conditions and modifica-
tion events (5.5).

5 Efficient Propagator Scheduling

5.1 Propagator-Centered Propagation

This section presents transition systems that are based on maintaining an agenda
of propagators that are possibly not at a fixed point.

An agenda of propagators

Given a propagation problem 〈d, P〉, its transition system non-deterministically se-
lects a propagator p ∈ P that is not at a fixed point (p(d) ≠ d) and applies it. A
perfect deterministic transition system would have to determine an order of propa-
gation that corresponds to the most efficient sequence of propagation in a practical
implementation.

Constraint solvers are not perfect in this sense. The only properties we know about
propagators in general are that they are contracting and sound, and this information
is not sufficient for determining a perfect propagation order. The naive approach
would be to try all propagators p ∈ P until finding one that can prune the domain.

Instead of trying all propagators in P , constraint solvers keep track of which prop-
agators are known to be at a fixed point. The remaining propagators are kept in
a data structure called the agenda. Processing propagators from the agenda one
by one, the solver maintains the invariant that all propagators that are not on the
agenda are at a fixed point. Propagation terminates when the agenda is empty, and
hence a mutual fixed point has been computed. When a propagator is added to the
agenda, we say that it is scheduled for propagation. The propagators on the agenda
are called active, and the propagators not on the agenda are called idle.

Transitions between spaces

We define agenda-based propagation again as a transition system. Instead of tran-
sitions d ⊢p→ d′ between domains, we now consider transitions between pairs of
a domain and an agenda, 〈d,Q〉, which we call propagation spaces or spaces for
short. The agenda must contain all propagators that are not at a fixed point. As this
property is vital for the further discussion, it deserves a dedicated definition.

Definition 5.1 A space S = 〈d′,Q〉 is admissible for a propagation problem 〈d, P〉

if and only if d′ ⊆ d, and all propagators that are not on the agenda are at a fixed
point: ∀p ∈ P \Q : p(d′) = d′. ∗

We can now define agenda-based transition systems formally. A transition now
does not necessarily prune the domain any more. Instead, each transition applies
one propagator and updates the agenda, transforming an admissible space S =
〈d,Q〉 into a space S′ = 〈d′,Q′〉 (written S ⊢p→ S′) using a propagator p ∈ Q if
and only if

48

5.1 Propagator-Centered Propagation

1. d ≠ 0,
2. d′ = p(d),
3. S′ is admissible,
4. Q′ ⊇ Q \ {p}, and
5. if d′ = d, then Q′ = Q \ {p} (which is needed for termination as we will see

shortly).

We call conditions 3–5 the agenda invariant. A space where Q = 0 or d = 0 is called
stable, coinciding with stability of propagation problems: if 〈d, 0〉 is an admissible,
stable space for a propagation problem 〈d, P〉, then 〈d, P〉 is stable, as d is a fixed
point for all propagators in P . A space 〈0,Q〉 is called failed, and this notion also
coincides with failure for propagation problems.

Theorem 5.2 The agenda-based transition system of a propagation problem 〈d, P〉

is terminating. Each terminal space 〈d′,Q〉 is stable. If 〈d′,Q〉 is a terminal, stable
space, then d⇒ d′ in the original transition system. ∗

Proof. The lexicographic ordering of spaces according to the domain (with respect to
strength) and the agenda (using the subset order) is well-founded. Each transition
either prunes the domain, or decreases the agenda size due to condition 5 of the
transition system. The transition system is hence terminating.

If no transition is possible, then either Q = 0, or d = 0, so the terminal spaces
are stable. Consider the transitions 〈d,Q〉 ⊢p1→ 〈d1,Q1〉 ⊢p2→ . . . ⊢pn→ 〈dn,Qn〉

where 〈dn,Qn〉 is stable. Let q1, . . . , qm be those propagators pi that produce strictly
stronger domains (di ⊂ di−1), in the same order as the pi. Then d ⊢q1→ . . . ⊢qm→

dm is a valid chain of transitions in the original transition system, dm = dn because
the same propagators have been applied in the same order (except for those that do
not modify the domain), and hence 〈dm, P〉 is stable.

In summary, agenda-based propagation for a propagation problem 〈d, P〉 yields a
fixed point that can also be reached using the original transition system. With
Theorem 3.17, it follows that if all propagators in P are monotonic, then agenda-
based propagation results in the unique weakest mutual fixed point of all propaga-
tors in P that is stronger than d.

In the following sections, we present strategies for maintaining the agenda invariant.
Before we discuss sophisticated strategies, let us first look at a naive, but correct,
alternative. Assume 〈d,Q〉 is an admissible space with d ≠ 0, and there is a propa-
gator p ∈Q. Then we can make a transition to the space

〈
p(d),Q′

〉
where

Q′ =

P if p(d) ≠ d,

Q \ {p} otherwise

49

5 Efficient Propagator Scheduling

This strategy maintains the agenda invariant, as it simply schedules all propagators
whenever the domain changes. The following sections successively improve on this
scheme, presenting transition systems that avoid to schedule propagators that are
known to be at a fixed point. The transition systems are defined as extensions
of agenda-based propagation, and usually only the rules that differ from the rules
presented here are given.

Queues and priorities

So far, we left the concrete data structure used for Q open. Of course, choosing Q
as a symbol already suggests the typical data structure, a FIFO (First In First Out)
queue. The FIFO strategy ensures fair scheduling of propagators, where no group of
propagators can dominate propagation while another group is never scheduled and
starves. Starvation is an important issue, because a starving propagator may be able
to perform significant pruning or detect failure earlier than any propagator in the
dominating group. Starvation is a characteristic of LIFO (Last In First Out) stacks.

The natural extension of a queue is a priority queue. Each propagator is assigned a
priority (out of a fixed, small set of priority levels), and instead of choosing the oldest
propagator, the oldest propagator of the highest priority is chosen. Priorities can be
used for example to prefer computationally cheap over more expensive propagators,
or to order propagators by their potential impact, that is, the amount of pruning they
are expected to contribute. A prioritized system always computes a fixed point of
all the high-priority propagators before applying a propagator of a lower priority.

From now on we assume that Q is a priority queue with a fixed set {1, . . . , imax} of
priority levels. Three functions implement the queue operations.

• head(Q) returns the propagator p that is the oldest propagator at the highest
priority level in Q.

• deq(Q,p) returns Q where p has been removed.

• enq(Q,p, i) adds the propagator p with priority i ∈ {1, . . . , imax}. If p is al-
ready in the queue at a priority j ≥ i, Q is returned unchanged. If p is already
in the queue Q at a priority j < i, then Q is returned where p has been pro-
moted to priority i. If p is not already in the queue, Q is returned where p has
been added at priority level i.

For the next two sections, we will just treat Q as a set again to simplify presentation.
A transition system based on a priority queue appears in Section 5.4, where priorities
play a vital role in more advanced propagator scheduling techniques.

50

5.2 Event-Directed Scheduling

5.2 Event-Directed Scheduling

Most agenda-based constraint solvers determine which propagators are not at a
fixed point any longer using events. An event describes how a certain variable has
changed. Only propagators that have claimed interest in an event that has occurred
since their last application are scheduled for propagation. All other propagators are
known to be still at a fixed point. This section employs event-directed scheduling to
maintain the agenda invariant in agenda-based transition systems.

Overview

In typical propagation problems, most propagators only deal with a subset of the
variables. For example, a propagator for the constraint Jx < yK will only ever prune
the domains of x and y , and the result of the propagation does not depend on the
domain of any other variable, either. Usually, propagators not only depend on the
fact that a variable domain has changed, but that it has changed in a certain way.

Example 5.3 (Events for less-than) Consider the following propagator for the con-
straint Jx < yK:

px<y(d)(z) =

d(x)∩ {−∞, . . . ,max(d(y))− 1} if z = x

d(y)∩ {min(d(x))+ 1, . . . ,∞} if z = y

d(z) otherwise

The propagator can only prune the domain if min(d(x)) or max(d(y)) has changed
since its previous invocation; it depends on changes to these bounds. If only values
at the other bounds or inner values have been removed, px<y cannot prune the
domain. ∗

Example 5.4 (Events for all-different) The all-different constraint restricts a set of
integer variables {x1, . . . , xn} to take pairwise different values. A simple propagator
for this constraint removes the values of all assigned variables xi where i ≠ j from
the domain of xj :

pall-different(d)(z) =

d(xj) \

{
d(xi)

∣∣ i ≠ j, |d(xi)| = 1
}

if xj = z

d(z) otherwise

The propagator can only do any pruning if one of the xi is assigned. More powerful
propagators for all-different (for example the domain-complete propagator by Régin,
1994), on the other hand, can potentially prune the domain if an arbitrary value is
removed from the domain of any xi. ∗

The examples show that different kinds of domain changes can result in different
propagators not being at a fixed point any more. Bounds changes, the fact that a

51

5 Efficient Propagator Scheduling

variable has become assigned, or an arbitrary domain change can be a necessary con-
dition for propagation. The different kinds of domain changes are called events.

Events

An event describes the change between a variable domain d(x) and a stronger vari-
able domain d′(x) ⊆ d(x). We call a set of events that describe all possible changes
an event system. Before defining events formally, the following examples explore
part of the design space for event systems for different types of variables.

Example 5.5 (A single asn event) The most basic event system consists of the sin-
gle event asn, signaling a domain change that resulted in a variable becoming as-
signed. Although so simple, this event system is widely used in practice: Boolean va-
riables (with 0/1 domains) require no more than a single event, as any modification
means that the variable is assigned. For arbitrary variable types, the system imple-
ments forward checking (Golomb and Baumert, 1965; Haralick and Elliott, 1980). ∗

Example 5.6 (Variable-directed scheduling) If the variable domains may contain
more than two elements, the simplest event system has only a dmc event, signaling
an arbitrary domain change. In this system, a propagator is scheduled if any of
the variables it depends on is modified—the system corresponds to the so-called
variable-directed scheduling scheme without events. ∗

Example 5.7 (Events for integer variables) A typical set of events that describe the
changes between integer variable domains d(x) and d′(x) ⊆ d(x) is the following:

• asn: the variable is assigned (|d(x)| > 1 and |d′(x)| = 1)

• lbc: the lower bound changes (min(d(x)) < min(d′(x)))

• ubc: the upper bound changes (max(d(x)) > max(d′(x)))

• dmc: the domain changes (d(x) ⊃ d′(x))

This example shows that events typically overlap. Both lbc and ubc imply that also
dmc happens, and asn implies dmc and at least one of lbc and ubc. We will use this
event system for many examples in the rest of this dissertation. ∗

Example 5.8 (Simplified integer events) A simplified event system for integer vari-
ables is asn, bnd, dmc. Compared to the system from Example 5.7, the two events
lbc and ubc are collapsed into one event, bnd, signaling an arbitrary bounds change.
Schulte and Stuckey (2008c) show that this overall simpler system in fact leads to
more efficient scheduling in practice. ∗

Example 5.9 (Events for set variables) The domain of a set variable, a set of sets
of values, is exponential in size. Most systems therefore use the set interval approx-
imation D[P(U)] (see Section 4.5), representing a set variable domain by a greatest

52

5.2 Event-Directed Scheduling

lower and a least upper bound. Some systems additionally represent the cardinality
of the set, usually also as an interval. A suitable event system for this setup has
events asn, lbc, ubc, and card. The events lbc and ubc correspond to modifications
of the greatest lower and least upper bound, respectively. A card event signals a
change in cardinality, not specifying more precisely how the cardinality changed.
We do not need a dmc event, since the approximation only permits bounds and
cardinality changes. ∗

Let us now define events formally.

Definition 5.10 An event e is characterized by a condition e(d(x),d′(x)) for two
variable domains d′(x) ⊆ d(x). For variable domains d′′(x) ⊆ d′(x) ⊆ d(x), it must
satisfy e(d(x),d′′(x)) if and only if e(d(x),d′(x)) or e(d′(x), d′′(x)). An event al-
ways describes an actual domain modification: if d(x) = d′(x), then e(d(x),d′(x))
must be false. ∗

We define the set events(d(x),d′(x)) := {e | e(d(x),d′(x))} for two variable do-
mains d′(x) ⊆ d(x). This construction ensures that events are monotonic, they
are never discarded by further changes to a variable domain. For three variable
domains d′′(x) ⊆ d′(x) ⊆ d(x), monotonicity implies that events(d(x),d′′(x)) =
events(d(x),d′(x)) ∪ events(d′(x), d′′(x)). Non-monotonic events would lead to
non-monotonic propagation, as the next example shows.

Example 5.11 (A non-monotonic event) Consider the property itv, which we define
to be true whenever an integer variable domain d(x) is an interval [a, b]. We can-
not turn this property into an event: with variable domains d(x) = {1,2,3,5},
d′(x) = {1,2,3}, d′′(x) = {1,3}, we would get itv ∈ events(d(x),d′(x)), but
itv ∉ events(d(x),d′′(x)).

It is important that events are monotonic, as we want to base propagator scheduling
on the presence of certain events. In the above case, a propagator that is only
scheduled when the (hypothetical) itv event happens would have been scheduled,
because itv ∈ events(d(x),d′(x)). However, if d′(x) was {1,3,5} instead (leading
to the same d′′(x), but first pruning 2, then 5), the propagator would not have been
scheduled. Because of the dependency invariant, the propagator would even be at
a fixed point (or it would have to be subscribed in addition with a different event).
The consequence is that propagation still produces fixed points, but it becomes
non-monotonic. While this is not a problem per se, we do not want to introduce
unnecessary non-monotonicity. ∗

Event-directed scheduling

We want propagator scheduling to depend on events. For every variable and every
event, we therefore define the set of propagators that must be scheduled when the
event happens.

53

5 Efficient Propagator Scheduling

For each variable x and event e, we collect a set of dependent propagators in a
mapping deps(x)(e) ⊆ P . If a propagator p appears in the dependencies deps(x)(e)

for some variable x and event e, we say that p is subscribed to x with e. For
a propagation problem 〈d, P〉, we require that the dependencies deps satisfy the
following dependency invariant for all p ∈ P :

p(d) = d∧ d′ ⊆ d∧ p(d′) ≠ d

=⇒

∃x ∈ X ∃e ∈ events(d(x),d′(x)) : p ∈ deps(x)(e)

Intuitively, the dependency invariant states that whenever a propagator is not at a
fixed point, then the propagator must be subscribed to one of the modified variables
with one of the events that has happened. For now, the dependency mapping is
static, it is not modified by transitions. Section 5.3 introduces transition systems
with dynamic dependencies.

We update the agenda in an event-directed transition system as follows:

Q′ =Q \ {p} ∪
{
deps(x)(e)

∣∣ e ∈ events(d(x),d′(x))
}

This scheduling scheme maintains the agenda invariant. If p(d) = d, no propa-
gator is scheduled since events(d(x),d′(x)) is empty. Otherwise, the dependency
invariant guarantees that all propagators that are not at a fixed point any longer
are scheduled. In Section 5.5, we will show how to implement the agenda update in
practice using propagation conditions and modification events.

The dependency invariant implies that a propagator must only use information of a
variable domain that corresponds to the events it is subscribed to, as the following
example demonstrates.

Example 5.12 (Propagators must be honest) Consider two propagators p,p′ on in-
teger variables x and y with cp = Jy = 1 ↔ x ≥ 3K, and cp′ = Jx = yK. Both
subscribe with lbc and ubc to both variables. However, assume that p′ is domain-
complete, so it can remove inner values during propagation.

For both propagators, the domain d with d(x) = {0,1,2,3} and d(y) = {0,1,2,3}
is a fixed point. Now removing 3 from d(x) will schedule both propagators, but it
is not defined in which order. There is one scenario that demonstrates the problem:
Assume p′ is applied first, pruning d(y) to {0,1,2}. As p′ modified the bound of
one of its own variables, it is scheduled. Assume p′ is applied again immediately,
and thus does not prune the domain, as it is at a fixed point. Then p is applied and
prunes d(y) to {0,2}. However, this means that neither lbc nor ubc occurs, and p′

is not scheduled. As d(x) is still {0,1,2}, we have not computed a fixed point.

54

5.3 Dynamic Dependencies and Propagator Sets

Thus, propagators must be “honest” about their subscriptions. If they handle events
that they are not subscribed to, the terminal states of the transition systems may
not be fixed points. ∗

Most propagation-based constraint solvers use some form of event-directed schedul-
ing; Section 5.6 gives a detailed overview. The following two sections further refine
this technique, so that we can avoid to schedule even more propagators that are
known to be at a fixed point.

5.3 Dynamic Dependencies and Propagator Sets

The transition systems as presented so far neither modify the set of propagators
P nor the dependencies deps. Under certain conditions, however, the stronger do-
mains obtained by propagation yield more accurate knowledge about which propa-
gators are at a fixed point. This section shows how this knowledge can be expressed
by modifying P and deps dynamically, leading to more efficient scheduling.

In the following, scheduling is based on knowledge about propagator fixed points
that depends on the current domain as well as the concrete propagators. The im-
plementation architecture we will see in the next chapter distinguishes between the
propagation kernel, implementing the domain-independent services like scheduling
and propagator invocation, and the domain modules, implementing the actual vari-
able domains and propagation algorithms. The more accurate fixed point knowledge
clearly has to be realized in a domain module. For our more abstract model here,
we will introduce helper functions that encode this knowledge and represent the
boundary between the kernel and a domain module.

Losing interest in variables

Depending on the domain d, certain variables may not be interesting for a propaga-
tor any more. For example, consider a propagator pmax for the ternary maximum
constraint Jy = max{x1, x2, x3}K. Given the domain d(x1) = {4,5}, d(x2) = {3,5},
d(x3) = {2,3}, it is clear that no matter how the domain of x3 changes, this will
not change the maximum. So the subscription of pmax to x3 could be removed. That
way, future domain changes of x3 will not cause the propagator to be scheduled and
thus applied gratuitously.

Dependencies now become a part of spaces, so that transitions can update them. A
space is now a 3-tuple

〈
d,Q,deps

〉
, and admissibility for spaces includes the depen-

dency invariant: a space
〈
d,Q,deps

〉
is admissible if and only if the propagators not

on the agenda are at a fixed point (∀p ∈ P \ Q : p(d) = d), and the dependency
invariant holds for deps.

55

5 Efficient Propagator Scheduling

The fundamental dependency invariant is not changed. But a transition can now re-
place one mapping deps that satisfies the invariant with another mapping deps′ that
also satisfies the invariant. The transition systems have to be changed only slightly
to accommodate for dynamic dependencies: we now permit transitions of the form〈
d,Q,deps

〉
⊢p→

〈
p(d),Q′,deps′

〉
, where deps is modified to deps′. The transition

system already requires the target space to be admissible, and admissibility includes
that the dependency invariant holds.

In the above example, the dependency invariant still holds if pmax is not subscribed
to x3. Thus, all dependencies (x3, e) ֏ pmax can be removed from deps. We model
this as a function cancel(p,d), which returns a set of dependencies (x, e) ֏ p

that can be removed. As mentioned above, this models the boundary between do-
main module and kernel: the domain module determines which subscriptions to
cancel through the cancel function, and the kernel modifies the dependencies ac-
cordingly.

Given an admissible space
〈
d,Q,deps

〉
where d ≠ 0 and a propagator p ∈ Q, a

transition is possible to a space
〈
d′,Q′,deps′

〉
such that

deps′ = deps \ cancel(p,d)

Q′ = Q \ {p}

∪
{
deps′(x)(e)

∣∣ e ∈ events(d(x),d′(x))
}

The system maintains the dependency invariant if cancel only removes dependen-
cies that are in fact no longer required. Note that the scheduling is performed with
respect to the updated dependencies deps′.

Subsumption

If the dependency invariant allows to remove all subscriptions of a propagator p
in a space

〈
d,Q,deps

〉
, then it guarantees that for all stronger domains d′ ⊆ d,

p(d′) = d′. We say that p is subsumed by the domain d. A subsumed propagator
does not contribute to propagation any more, so we can cancel its dependencies and
remove it from the set P .

To enable modifications of the set of propagators P , we include it in the space and
arrive at a 4-tuple

〈
d, P,Q,deps

〉
.

We introduce a function subsumed(p,d) that may return {p} if p is subsumed by d,
and must return 0 otherwise. The function again represents the domain-dependent
part of the reasoning. Then a transition from

〈
d, P,Q,deps

〉
to
〈
d′, P ′,Q′,deps′

〉

additionally computes P ′ as

P ′ = P \ subsumed(p,d)

56

5.3 Dynamic Dependencies and Propagator Sets

Determining subsumption is coNP-complete in general. However, it can usually be
decided easily for special cases. For instance, when all significant variables of a
propagator’s constraint are assigned, the propagator must be subsumed after prop-
agation. A propagator for Jx < yK can report subsumption if the upper bound of x
is already smaller than the lower bound of y . A propagator for all-different is sub-
sumed if no two variable domains overlap. Carlson et al. (1994a) develop a technique
for detecting subsumption of integer constraints implemented by indexicals.

In the implementation as described in the next chapter, detecting subsumption is
vital, because it saves both memory and run-time. In fact, we therefore require
for any propagator p that subsumption is detected eventually. More precisely, if all
significant variables of cp are assigned in a domain d, then subsumed(p,d) = {p}.

Fully dynamic dependencies

Up to now, the dependencies deps were only modified monotonically, by removing
subscriptions that were no longer needed.

Under certain conditions, it can make sense for propagators to also add new sub-
scriptions. The dependency invariant only requires that a propagator has enough
subscriptions so that it is scheduled when needed. It does not have to be subscribed
to all variables that are significant for its induced constraint.

Example 5.13 (Boolean disjunction) Consider a propagator p for a Boolean disjunc-
tion b1 ∨ b2 ∨ · · · ∨ bn = 1, where we assume that the bi are 0/1 integer variables,
0 represents false and 1 stands for true. The propagator can only prune the do-
main when all but one variable are assigned 0: in that case, it can set the remaining
variable to 1 in order to satisfy the constraint.

Without dynamic dependencies, the propagator would have to subscribe to all n
variables with the event asn. With dynamic dependencies, p only has to subscribe to
two variables bi and bj that are not yet assigned to 0: if any of the remaining variable
domains is modified, there are still less than n− 1 variables that are assigned to 0.

Assume that the domain of bi is modified (the reasoning is the same for bj), then
there are two situations: Either it is assigned to 1, in which case the propagator is
subsumed. Or it is assigned to 0, in which case the propagator has to find a new
variable bk, different from bi and bj , which is not yet assigned to 0. The propagator
cancels the subscription to bi and adds a subscription to bk. If no such bk can be
found, the propagator sets bj ≠ 0, possibly resulting in failure if bj was already 0.
This technique was developed in the context of SAT solvers, where the two dynamic
subscriptions are called watched literals (Moskewicz et al., 2001). ∗

To support new subscriptions of propagators, the function subscribe is introduced:
subscribe(p,d) returns the dependencies (x, e) ֏ p that are to be added to the

57

5 Efficient Propagator Scheduling

mapping deps. Only the computation of deps′ has to be adjusted in a transition
from

〈
d, P,Q,deps

〉
to
〈
d′, P ′,Q′,deps′

〉
:

deps′ = (deps \ cancel(p,d))∪ subscribe(p,d)

Propagator rewriting

As a last step, we also make the set of propagators P fully dynamic. Given a space〈
d, P,Q,deps

〉
, a propagator p ∈ P can be replaced by a set of propagators R (and

corresponding dependencies deps′ to fulfill the dependency invariant) if and only if
sol(

〈
d, {p}

〉
) = sol(〈d,R〉). The propagator p is rewritten to the set of propagators

R.

Example 5.14 (Rewriting reified propagators) Propagator rewriting increases code
reuse. It is particularly interesting for reified constraints of the form c = Jc′ ↔ bK,
expressing that constraint c′ holds if and only if the Boolean variable b is true. Given
a propagator pc′ that induces c′, and a propagator p¬c′ that induces ¬c′, a reified
propagator pc can use rewriting as follows:

• If d(b) = {1}, rewrite to pc′ .

• If d(b) = {0}, rewrite to p¬c′ .

• If c′ is entailed by the domain d, return pc(d)(b) = {1} and report subsump-
tion.

• If ¬c′ is entailed by the domain d, return pc(d)(b) = {0} and report subsump-
tion. ∗

Without rewriting, the propagation of c′ and ¬c′ would have to be embedded into
pc , and the check whether b is assigned would have to be performed each time pc
is applied.

We model rewriting as a function rewrite(p,d), which returns the set of propaga-
tors R that p is rewritten to, or 0 if no rewriting is performed. Additionally, if
rewrite(p,d) ≠ 0, then subsumed(p,d) = {p}, cancel(p,d) cancels all subscriptions,
and subscribe(p,d) establishes the subscriptions for the newly added propagators.
Only the computation of the new set of propagators P ′ has to be adjusted to

P ′ = (P \ subsumed(p,d))∪ rewrite(p,d)

58

5.4 Self-Rescheduling Propagators

5.4 Self-Rescheduling Propagators

The refinements of the transition systems presented so far were fairly standard.
This section adds more advanced scheduling strategies, developed only recently by
Schulte and Stuckey (2004, 2008c).

In a prioritized setting, it can be beneficial for a propagator to only perform partial
propagation, and then reschedule itself to perform the remaining propagation later.
That way, propagators at higher priorities can kick in. When the lower-priority prop-
agator is run again, the domain is already stronger and applying the propagator may
be more profitable.

For the techniques we discuss in this section, we assume that priorities model the
estimated cost of propagation. A straightforward way to estimate the cost is to
classify the propagators according to their algorithmic complexity. We will use the
following system of costs and priorities: unary = 7, binary = 6, ternary = 5,
linear = 4, quadratic = 3, cubic = 2, veryslow = 1. The names suggest the arity
of the corresponding propagator (for the highest three priorities), or the asymptotic
run-time for n-ary propagation algorithms. The cost of propagation often changes
dynamically. For instance, a typical algorithm for propagating linear equations has
an asymptotic run-time linear in the number of unassigned variables. Accordingly,
when all but three variables are assigned, the cost should be reported as ternary

instead of linear. We define a function cost(p,d′) that returns the approximated
cost of running the propagation algorithm for p given the current domain d′. As in
the previous section, this function models the boundary between kernel and domain
module.

To make notation simpler, we lift the enq and deq functions to sets of propagators
and priorities.

enq(Q, {
〈
p1, i1

〉
, . . . ,

〈
pn, in

〉
}) =

enq(enq(. . . enq(Q,pn, in), p2, i2), p1, i1)

The deq lifting is analogous. The concrete order of the individual operations is not
specified. In a typical solver, the order will depend on implementation details.

Fixed points

The simplest form of self-rescheduling has already been introduced: When a prop-
agator p itself modifies one of the variables it is subscribed to, it is automatically
rescheduled. If the variable modifications it performed caused the scheduling of any
other propagators at higher priorities, these will be run first, before propagating p
again.

59

5 Efficient Propagator Scheduling

So the transition systems presented so far always reschedule propagators that are
not at a fixed point. But they also reschedule propagators for which it is easy to
determine that they are at a fixed point, either because they are idempotent, or
because it is obvious from the current domain. These propagators should be able to
prevent the self-rescheduling.

We introduce a function fix(p,d′) that may return {p} if d′ is a fixed point of the
propagator p, and must return 0 otherwise.

Given an admissible space
〈
d, P,Q,deps

〉
where d ≠ 0 and a propagator p with

p = head(Q), a transition is possible to a space
〈
d′, P ′,Q′,deps′

〉
such that

Q′ = deq(enq(deq(Q,p),

{
〈
p′, i

〉
| ∃x ∈ X ∃e ∈ events(d(x),d′(x)) :

p′ ∈ deps′(x)(e)∧ i = cost(p′, d′)}),

fix(p,d′))

The propagator p is first removed from the queue, then potentially re-added because
it modified one of its own variables, and then removed again if it is known to be
at a fixed point. Section 6.3 develops an efficient mechanism that ensures that a
propagator is not removed, added, and removed again, but only the operation that
is actually necessary is performed.

Obviously, in a real system, the fixed point status has to be determined without
actually computing p(d′), as otherwise no efficiency is gained compared to just
rescheduling p. For idempotent propagators, fix(p,d′) = {p} independent of the
domain d′. When a propagator is not known to be idempotent, a safe approximation
is always fix(p,d′) = 0.

Staged propagation

For a single constraint, there is often a choice of propagation algorithms, differ-
ing in propagation strength as well as asymptotic run-time (see Chapter 4). Typi-
cally, stronger propagators are also computationally more expensive: the domain-
complete all-different propagation algorithm has an asymptotic run-time of O(n2.5),
while the bounds(Z)-complete version is in O(n logn); a bounds(R) propagation al-
gorithm for linear equations has linear run-time, whereas both bounds(D)-complete
and domain-complete propagation in this case is NP-hard.

Recall the reason for introducing priority-based scheduling in Section 5.1: it is bene-
ficial to compute a fixed point of the cheaper propagators before executing a more
expensive one. This also works with different propagators for the same constraint.
Let two propagators p1 and p2 ⊆ p1 be given that induce the same constraint. Fur-
thermore, assume that the cost for running p2 is higher than the cost for running

60

5.4 Self-Rescheduling Propagators

p1. Then p1 is assigned a higher priority, and will always be run before p2. When
p2 is eventually run, it can take advantage of the propagation already done by p1.

Staged propagators. The two main drawbacks of using multiple propagators per
constraint are that (1) it wastes resources in a concrete implementation, as each
propagator requires memory and run-time for scheduling; and that (2) if one propa-
gator detects subsumption or a fixed point for all the propagators, the other prop-
agators still need to be run. Schulte and Stuckey (2004, 2008c) introduce staged

propagators, which address these shortcomings. A staged propagator combines sev-
eral propagation algorithms in a single propagator. Depending on the events that
caused its scheduling, the propagator is put in a certain stage, determining which of
the available algorithms it is going to use next. When the cheaper, weaker propaga-
tion algorithm is run, the propagator performs only partial propagation: it may have
to be rescheduled with a different stage, at which the more expensive but stronger
propagation algorithm can still prune the domain.

Example 5.15 (A staged all-different) For the all-different constraint, consider the
two propagators pdom, performing domain-complete propagation, and pasn, per-
forming the cheap value propagation when variables are assigned (as in Example 5.4).
We assume the event system from Example 5.7. A staged propagator combines the
two propagation algorithms as follows:

• If the propagator is scheduled because of the event asn, it is put in stage A and
gets priority linear.

• If the propagator is scheduled because of the event dmc, and it is not already
in stage A, it is put in stage B and gets priority quadratic.

• When the propagator is executed in stage A, it uses pasn. If it is not subsumed,
it reschedules itself with priority quadratic and in stage B.

• When the propagator is executed in stage B, it uses pdom, and is not resched-
uled (because pdom is idempotent). ∗

A propagator’s stage can be identified with the priority level it is assigned. We extend
our concept of propagators p ∈ P . Each p ∈ P is now a function Stage → (Dom →

Dom), which, given the current propagation stage (the propagator’s priority), returns
a propagator for that stage.

Several functions now have to be aware of the stage:

• head(Q) returns a pair
〈
p, i

〉
of a propagator and its priority.

• cost(p,d′, e) gets the event as an argument, so that staged propagators can
determine the priority (which corresponds to the stage).

• nextStage(p,d′, i) is a new function that returns either {
〈
p, j

〉
}, scheduling p

for another stage j, or the empty set, if no other stage needs to be run.

61

5 Efficient Propagator Scheduling

• fix(p(i), d′) is given the actual propagator p(i).

The result is called prioritized, event-directed, dynamic, staged transition system

and looks as follows. Given an admissible space
〈
d, P,Q,deps

〉
with d ≠ 0 and〈

p, i
〉
= head(Q), there is a transition to the space

〈
d′, P ′,Q′,deps′

〉
such that

d′ = p(i)(d)

P ′ = (P \ subsumed(p,d))∪ rewrite(p,d)

deps′ = (deps \ cancel(p,d))∪ subscribe(p,d)

Q′ = deq(enq(deq(Q,p), {
〈
p′, i′

〉
| ∃x ∈ X ∃e ∈ events(d(x),d′(x)) :

p′ ∈ deps′(x)(e)

∧ i′ = cost(p′, d′, e)}

∪ nextStage(p,d′, i)),

fix(p(i), d′))

5.5 Propagation Conditions and Modification Events

The preceding sections recapitulated traditional as well as more recent techniques
for computing a mutual fixed point of a set of propagators. An important concept
was the notion of event-based scheduling, where propagators are only scheduled if
certain events occur.

In order to be useful in practice, event-based scheduling relies on two operations
to be efficient: determining the set events(d(x),d′(x)) when a variable domain has
been modified from d(x) to d′(x), and determining the set of propagators that
depend on these events.

In this section, we refine event-based scheduling so that these two operations can
be implemented efficiently. As a first refinement, we introduce the notion of prop-

agation conditions, which will be used to describe the events that propagators sub-
scribe with. The second refinement deals with determining efficiently which events
occurred. For this, we introduce modification events.

Propagation conditions

In the model as presented so far, propagators may be subscribed to a single vari-
able with multiple events, as every propagator has to react to the asn event. This
is because asn is the only event that is guaranteed to happen eventually, and every
propagator has to be applied at least once to an assignment in order to impose its
constraint. For example, it is not sufficient to only subscribe with an lbc event, sig-
naling changes of the lower bound. If the variable is assigned by a change of the

62

5.5 Propagation Conditions and Modification Events

upper bound, the propagator would not get scheduled. Another example is a prop-
agator that can react to both lower and upper bound changes. It has to subscribe
with both lbc and ubc.

In an implementation, it is beneficial to keep every propagator at most once in the
dependency mapping for a variable, as this saves memory and a bookkeeping over-
head. We therefore subscribe propagators with sets of events E, and establish a
mapping deps(x)(E) ⊆ P . Some event sets are equivalent as it comes to propagator
scheduling. In order to use event sets as an efficient index into the deps mapping, we
consider them modulo this equivalence, and call the resulting equivalence classes
propagation conditions.

For example, the event sets {lbc,dmc} and {dmc} are equivalent, as a lbc event
always implies that a dmc event has also happened. We say that an event e implies

an event e′ (written e → e′) if and only if for all variable domains d(x) and d′(x),
e(d(x),d′(x)) implies e′(d(x),d′(x)). Any event system always contains the asn

event, or only a single dmc event (as in Example 5.6), in which case we can simply
add asn. All propagators then depend on the asn event, as they must implement the
decision procedure for their constraint on assignments. Together, this yields the
following definition.

Definition 5.16 A propagation condition π is a set of events such that asn ∈ π

and such that π is closed under the converse of implication: for any two events e
and e′, if e ∈ π and e′ → e, then e′ ∈ π . ∗

If a propagator subscribes to a variable, it can now do that using a unique prop-
agation condition. The dependency mapping is defined in terms of propagation
conditions instead of arbitrary event sets: deps(x)(π) ⊆ P . We have to adapt the
dependency invariant accordingly:

p(d) = d∧ d′ ⊆ d∧p(d′) ≠ d

=⇒

∃x ∈ X ∃π : π ∩ events(d(x),d′(x)) ≠ 0∧ p ∈ deps(x)(π)

The resulting transition systems remain the same. The number of distinct events
is usually small, so the number of propagation conditions is small, too. Therefore,
each propagation condition can be represented by a small integer number, which
yields an efficient implementation of the mapping deps.

The implications between the events for integer variables from the introductory
Example 5.7, together with the corresponding propagation conditions, appear in
Figure 5.1.

63

5 Efficient Propagator Scheduling

asn

dmc

lbc ubc

{asn}

{asn,lbc,ubc,dmc}

{asn,lbc} {asn,lbc,ubc} {asn,ubc}

Figure 5.1: Implications between integer events, and the corresponding propagation
conditions

Modification events

Event-directed scheduling requires determining the set events(d(x),d′(x)) when
the domain changes from d to d′. Instead of computing this set from two given do-
mains, an implementation will maintain a set of events incrementally during prop-
agation. Such a set of events represents the modifications between two variable
domains, and we call it a modification event.

Not all sets of events actually occur as modification events in practice. For instance,
the set {lbc} cannot occur, as an lbc event always implies that a dmc event has
happened, too. Furthermore, the asn event plays a special role, as it is contained in
all propagation conditions. For scheduling, we therefore do not need both the sets
{asn, lbc} and {asn,ubc}—just having {asn} is sufficient.

Definition 5.17 A modification event me is a set of events such that either me =

{asn}, or asn ∉ me and me is closed under implication. ∗

The definition implies that modification events are closed under union. Again, as
there are only few events in typical event systems, we can enumerate all modification
events for a particular event system. An implementation can therefore represent
modification events as small integers.

The last step towards event-based scheduling with propagation conditions and mod-
ification events is to introduce a function modifications(p,d), which returns a set
of pairs 〈x,me〉 of the variables x modified when applying propagator p to do-
main d, and the corresponding modification events me. This function again lies on
the boundary between kernel and domain module. The domain module determines
which variables have been changed, and the kernel performs the required schedul-
ing:

Q′ = Q \ {p} ∪
{
deps(x)(π)

∣∣ 〈x,me〉 ∈modifications(p,d)∧π ∩me ≠ 0
}

We omit the straightforward generalization to prioritized or staged transition sys-
tems. As we will see in the next chapter, encoding both propagation conditions
and modifications events as small integers yields efficient implementations of the
mapping deps and the agenda update.

64

5.6 Related Work

Our event system from Example 5.7 yields the following modification events:

measn := {asn} (the variable is assigned)

melbc := {lbc,dmc} (the lower bound changes, the variable is not assigned)

meubc := {ubc,dmc} (the upper bound changes, the variable is not assigned)

mebbc := {lbc,ubc,dmc} (both bounds change, the variable is not assigned)

meinner := {dmc} (an inner value is removed, no bound changes)

5.6 Related Work

Most constraint solvers are based on propagator-centered, event-directed, priori-
tized propagation as presented in this chapter.

◮ SICStus Prolog (Carlsson et al., 1997) employs a priority queue of propagators, us-
ing two priority levels.

◮ Mozart (2009) maintains a two-level priority queue of propagators, and schedul-
ing is based on events. Mozart offers additional priorities for non-monotonic propa-
gators (as described by Müller, 2001): each non-monotonic propagator gets its own
priority level, effectively fixing the order in which non-monotonic propagators are
run and hence maintaining the guarantee to compute a unique fixed point.

◮ ECLiPSe (Wallace et al., 1997) has a feature called suspension, which attaches a
Prolog goal to finite domain variables. When the variable domain changes, the goal,
which may implement a propagator, is scheduled. The ECLiPSe system features
twelve priority levels, but like SICStus and Mozart, its finite domain solver only
makes use of two levels.

◮ B-Prolog (Zhou, 2006) queues action rules, which correspond to propagator invo-
cations. A particularity of B-Prolog is that the same propagator can appear several
times in the queue, once for each variable that triggered its scheduling.

◮ CHOCO (Laburthe, 2000) provides a sophisticated priority system with seven lev-
els and both FIFO and LIFO scheduling, but is not propagator-centered, as explained
below.

Digression: Variable-centered propagation

In our setup, the agenda holds the propagators that are not necessarily at a fixed
point. Some solvers, notably ILOG Solver (2009), CHOCO (2009), and Minion (2009),
use an alternative approach: an agenda of modified variables instead of an agenda of
propagators. It is straightforward to build transition systems around this different
kind of agenda, using an adjusted agenda invariant: For all variables v ∈ X \Q, all

65

5 Efficient Propagator Scheduling

propagators subscribed to v are at a fixed point. A transition system that bases
scheduling on an agenda of variables performs variable-centered propagation.

Both ILOG Solver and CHOCO actually implement a hybrid approach. When a mod-
ified variable is taken from the queue, its dependent propagators can either be run
immediately, or put into a queue of propagators.

The advantage of variable-centered over propagator-centered propagation is that
whenever a propagator is invoked, the information which variable exactly triggered
the propagation is directly available. The propagator can take this information into
account in order to compute the new domain incrementally, without recomputing
from scratch. For example, a bounds(R)-complete propagator for the linear equa-
tion y =

∑k
i=1xi typically computes the new lower bound of y as the sum of the

lower bounds of the xi. Incremental propagation in this case means that when some
xj is modified, the propagator can adjust the lower bound of y by the difference of
the old and the new lower bound of xj .

Lagerkvist and Schulte (2007) show how advisors can be used to implement incre-
mental propagation in a propagator-centered system.

Other related work

◮ It is folklore knowledge that propagators should be scheduled in a FIFO fash-
ion. Similarly, using events to prevent gratuitous scheduling of propagators has
been used in constraint solvers for a long time—one can argue that it was already
present in the early DPLL algorithm (Davis et al., 1962). Schulte and Stuckey (2008c)
perform detailed experiments with different agenda strategies as well as priority
queues, substantiating this folklore knowledge with empirical evidence. They also
provide a comprehensive study of events, including a detailed experimental evalua-
tion of different event schemes, fixed point reasoning, and staged propagation. Our
formalization builds on their work. We embed their model into our setup of tran-
sition systems, and extend it with exact definitions of propagation conditions and
modification events, to make it more directly suitable for implementation.

◮ The use of dynamic propagation conditions in Example 5.13 is closely related to
the watched literals approach, which is used extensively in SAT solving to improve
unit propagation (Moskewicz et al., 2001). The idea of watched literals has been
transferred to constraint solving for the Minion system (Gent et al., 2006b). Dynamic
dependencies as described here are not fully equivalent to watched literals, in that
the latter are not reset upon backtracking, and, for an efficient implementation, re-
quire information about exactly which variable changed.

66

6 Implementing a Propagation Kernel

This chapter develops an implementation architecture for a propagation kernel based
on the mathematical framework developed in the previous chapters.

A propagation kernel implements the infrastructure for constraint propagation. It
controls the propagators and computes their fixed points, using the scheduling tech-
niques developed in the previous chapter. Furthermore, it provides the facilities for
backtracking search, as we will see in this chapter. These basic services are domain-
independent. On top of the propagation kernel, domain modules implement the
domain-specific parts of the constraint solver, such as variable domain data struc-
tures or propagation algorithms. The kernel provides the necessary abstractions

that the domain-specific parts are built upon.

Constraint programming aims at solving real-world combinatorial problems. It is
therefore essential to validate the presented models using an efficient implementa-
tion. The presented architecture has been implemented in the propagation kernel of
the Gecode (2009) constraint solver, a modular, efficient open-source C++ library.

The contribution of this chapter is to not only present the design of a propagation
kernel, but to make justified design decisions. We identify the performance-criti-
cal operations of the main data structures, the priority queue and the dependency
mapping, and then choose the optimal implementation. An empirical evaluation val-
idates the design decisions. A further contribution is to base the implementation
architecture on strong invariants, established by contracts between propagators, va-
riables, and the kernel. The invariants lead to a streamlined implementation and a
clear separation of concerns between the kernel and the domain modules.

Structure of the chapter. A central decision in the design of a propagation kernel
is whether to use trailing or copying and recomputation for backtracking during
search. The chapter starts by reviewing the two strategies (6.1). Next, we introduce
the basic object-oriented architecture (6.2). We then follow a top-down approach,
first showing how domain modules are implemented on top of the kernel (6.3), and
afterwards presenting the design of the kernel components realizing dependency
management (6.4), the priority queue (6.5), and the overall control (6.6). The final
component of the kernel deals with copying and memory management (6.7). Finally,
we discuss how this kernel architecture is realized in the Gecode library (6.8), and
present an empirical evaluation of some of our design decisions (6.9).

6 Implementing a Propagation Kernel

6.1 Copying Versus Trailing

When designing a propagation kernel, there is one decision that influences the entire
architecture: how the state of the system is represented. The previous chapters
captured the state of a transition system in a space.

For the mathematical model, it is convenient to regard spaces as pure, immutable,
mathematical objects. Operations on spaces are functions, transitions transform
one space into another space, and propagation takes a domain and yields a stronger
domain. The result is a compact model that allows us to prove important properties,
as we have seen.

In order to achieve high performance, the architecture we describe in this chapter
implements all the components of a propagation-based solver as stateful objects.
Spaces, variables, propagators, queues, and all other data structures that comprise
the solver provide operations that destructively update the state. This behavior
suits most parts of the constraint solver well: after applying a propagator, the previ-
ous domain has become dispensable, as the new domain still contains all solutions.
When updating a queue, the old queue can be discarded. A subsumed propagator
can be safely deleted, since it will never contribute to propagation again.

Search, however, is the exception. We have to be able to undo a choice (and all
its consequences due to propagation) and try a different branch instead. Let us re-
consider the main search algorithm from Section 3.3, formulated in terms of spaces
instead of propagation problems:

solve(
〈
d, P,Q,deps

〉
)

1
〈
d′,Q′, P ′,deps′

〉
← propagate(

〈
d, P,Q,deps

〉
)

2 if d′ = 0 then return 0
3 if d′ = {a} then return {a}
4 〈s1, s2〉 ← branch(

〈
d′,Q′, P ′,deps′

〉
)

5 return solve(s1)∪ solve(s2)

Here, the functional formulation makes it easy to create two branches (line 4), which
are then recursively solved. But if spaces are stateful data structures, and propaga-
tion and branching destructively update a space, we need a mechanism that undoes

the destructive updates. This is called backtracking.

Backtracking

Two basic techniques for backtracking exist: trailing, and copying with recomputa-
tion. Trailing records all destructive updates on a stack, the trail. On backtracking,

68

6.1 Copying Versus Trailing

x ≠ 3

x ≠ 2

x ≠ 1

x ∈ {1,2,3}

x ∈ {1,2}

x ∈ {1}

Figure 6.1: Trailing (left) versus copying (right)

the trail provides enough information to restore a previous state. A copying sys-
tem, on the other hand, keeps full copies of the state from time to time, and redoes
(recomputes) the remaining steps.

Figure 6.1 depicts the difference between backtracking using trailing (left) and copy-
ing (right). The picture shows a partial search tree, with the filled circles represent-
ing choice nodes, and the filled square representing a failure. The search has to
backtrack to the last choice, and then take the other branch that leads to the white,
unexplored node.

The trail, appearing on the left of the search tree, records changes made to the
variable domains. Backtracking now undoes all the changes back to the last choice. A
copying system stores complete copies of the space at each choice point, as shown to
the right of the tree. Backtracking can simply discard the current, failed space, and
restart from the copy at the previous choice. With recomputation, we do not place
a copy at each choice node, but only at some choice nodes (always including the
root node). Upon backtracking, the deepest copy is copied again, and the remaining
steps, for which no copy is available, are simply recomputed.

There is in fact more to backtrack than just the variable domains. For example,
spaces as defined in the previous chapter additionally contain the dependencies, the
set of propagators, and the queues. Finally, some propagation algorithms such as for
the all-different constraint (Régin, 1994) maintain complex internal data structures
for incremental propagation.

Both copying with recomputation and trailing have advantages and disadvantages.
For example, a system based on copying and recomputation can easily support arbi-
trary exploration strategies during search, like breadth-first search, as several nodes
of the search tree can be kept “open” at once. Furthermore, copying and recomputa-
tion is naturally well-suited for concurrent (multi-threaded) search, and it supports
fine tuning of required memory versus run-time. Trailing, on the other hand, is
better suited for small variable domains that are not modified often (like Boolean
variables), as in this case it requires very little memory.

As mentioned earlier, the choice how to represent the state of a propagation-based

69

6 Implementing a Propagation Kernel

system has a fundamental influence on the entire architecture. The implementa-
tion architecture described in this chapter, and consequently the architecture imple-
mented in Gecode, is based on copying and recomputation. It is not a goal of this
dissertation to discuss or evaluate this decision. Rather, we develop efficient data
structures and algorithms for a propagation-based system that is based on copying

and recomputation.

The following code implements a simple stateful search. Propagation now updates
the space in place, and backtracking is based on copying. Instead of the branch

procedure, we use commit to implement the branching. Committing to an alterna-
tive (here: 1 or 2) means modifying the domain and/or propagators in the space to
represent that alternative.

solve(
〈
d, P,Q,deps

〉
)

1 propagate(
〈
d, P,Q,deps

〉
)

2 if d = 0 then return 0
3 if d = {a} then return {a}
4 c ← copy(

〈
d,Q, P,deps

〉
)

5 commit(
〈
d, P,Q,deps

〉
,1)

6 commit(c,2)

7 return solve(
〈
d, P,Q,deps

〉
)∪ solve(c)

Recomputation and non-monotonicity

Due to non-monotonicity, the result of recomputation may be a different fixed point
than before. Assume that in Figure 6.1, only a copy of the root node is available when
backtracking from the failed node. Recomputation proceeds by creating a copy of
the root node copy, and redoing the remaining steps, committing twice to the first
alternative.

If now the meaning of first alternative depends on the actual space (for example if
a fail-first heuristic is used), non-monotonic propagators can can result in a com-
pletely different choice being made during recomputation than during the original
exploration of that node. The search would possibly be incomplete.

Mozart (2009) solves this problem by fixing the order of application for non-mono-
tonic propagators, so that fixed points remain unique (Müller, 2001). The alternative
is to make the meaning of n-th alternative independent of the actual space. When
a node is explored for the first time, a branching description is extracted from the
space that describes which constraints have to be added to the space for the individ-
ual branches. This description is used for committing during recomputation.

Thus, during recomputation, the same set of constraints is imposed on a node as
during its original exploration. Soundness of propagation then guarantees that the
result of recomputation represents the same set of solutions, which is sufficient

70

6.2 An Object-Oriented Design

for soundness and completeness of the search. As an additional advantage, only
one fixed point needs to be computed during recomputation. Gecode implements
this technique, which is known as batch recomputation and was first described by
Choi et al. (2001).

Related work

◮ Trailing is a key technique in Warren’s Abstract Machine (Warren, 1983; Ait-Kaci,
1991), the virtual machine model that most Prolog implementations are based on.

◮ A trailing system can deal with open nodes using recomputation, as described by
Perron (1999), and that way implement more elaborate search strategies.

◮ The trail keeps a record of the order in which variables were modified, which can
be useful for techniques like conflict analysis (Marques-Silva and Sakallah, 1996).

◮ As an interesting historical note, already the early DPLL algorithm (Davis et al.,
1962) implemented backtracking by placing a copy of the state on magnetic tape.
Depth first search was the result of organizing the records on tape “in the cafeterial
stack-of-plates scheme: the last record written is the first to be read.”

◮ The first constraint programming system that was based on copying was AKL
(Janson and Haridi, 1991; Carlson et al., 1994b; Janson, 1994). The experiences from
AKL were refined in the Mozart (2009) programming system, which introduced first-
class computation spaces and was based on copying and recomputation, investi-
gated in detail (including a comparison with trailing) by Schulte (1999, 2002).

6.2 An Object-Oriented Design

This section presents the basic object model for a propagation-based constraint
solver. The rest of this chapter develops the details of this model.

Propagators, variables, queues, dependencies

A propagation-based solver, as presented in the previous chapter, deals with the
components of spaces: propagators, variables, priority queues, and dependencies.
In an object-oriented architecture, each of these will be realized by or encapsulated
in a stateful object.

Propagator objects encapsulate references to the variable objects they deal with, and
possibly internal data structures required for the propagation algorithms. Variable
objects encapsulate the variable domain data structure, and store the dependencies
as references to propagators. Furthermore, propagator objects are kept in a data
structure implementing the priority queue.

71

6 Implementing a Propagation Kernel

x1 x2 x3 x4

Q p1 p2

(a) A space

Kernel Domain module

deps(x) d(x)

Q p

(b) The kernel/domain boundary

Figure 6.2: The basic object model

In addition to encapsulating the state, the objects provide methods that implement
the required operations. Variables provide methods for accessing and updating
the domain data structure, as well as for managing the dependencies. Propagators
have a propagate method that uses the domain operations of the variable objects
to implement the actual propagation algorithm. A control logic implements the
main propagation loop, taking propagators from the queue, invoking them, and
scheduling new propagators, until a fixed point has been reached.

This is the standard way of modeling propagators and variables as objects, and
corresponds to the models of Puget and Leconte (1995) as well as Laburthe (2000).

As discussed in Section 6.1, our model will be based on copying. We therefore intro-
duce another type of object, representing spaces, and encapsulating the complete
state of the solver. Spaces thus contain variables, propagators, queues, and de-
pendencies. Figure 6.2(a) shows a diagram of a space. Variables appear as circles,
propagators as boxes, references from propagators to variables as arrows, and de-
pendencies as dotted arrows. The box labeled Q, together with the arrows between
the propagators, stands for the priority queue and will be explained in Section 6.5.

All the core functionality is provided as methods on spaces, the most important
one being the method that applies the propagators until they are at a mutual fixed
point and hence the space is stable. Furthermore, a space object provides a method
that produces a copy of itself, so that search can be implemented as shown in the
previous section.

Laburthe (2000) already identified the necessity to distinguish between the domain-
independent parts of the solver, such as scheduling and dependency management,
and the domain-specific parts, such as the actual domain representation and prop-
agation algorithms. This distinction results in a modular system, to which new
propagation algorithms or new types of variable domains can be added. As a side
effect, it also forces us to design a clean architecture with well-defined interfaces.

72

6.2 An Object-Oriented Design

We distinguish between the propagation kernel, implementing the domain-indepen-
dent parts of the solver, and the domain modules, which provide the domain-specific
parts. The priority queue, the dependencies, and the overall control that performs
scheduling and propagator invocation are part of the propagation kernel. The ac-
tual propagation algorithms, the domain data structures, and the event systems are
realized in domain modules. Figure 6.2(b) depicts this boundary. We will now see
how this architecture maps to the implementation level.

Kernel and Domain Modules

The interface between kernel and domain modules is bi-directional. For instance,
the kernel must be able to invoke the propagate methods, and on the other hand
a variable modification in the domain module must trigger the insertion of propa-
gators into the priority queue. To achieve this bi-directionality, the kernel defines
base classes for variables and propagators. The domain modules then implement
concrete variables and propagators on top of these abstractions. The propagator
base class defines virtual methods that the kernel can call, and by dynamic binding,
the concrete implementation in the domain module is used. At the same time, both
base classes as well as the space objects define services, in the form of methods that
the domain module can call to access kernel functionality.

• Variable base classes provide the data structure and methods for the depen-
dencies of the particular variable. The domain module, implementing the event
system, uses this functionality to schedule dependent propagators when the
variable domain is modified.

• Propagator base classes define the virtual propagate method that the kernel
uses to perform the actual propagation. Furthermore, they contain parts of
the priority queue data structure.

• The space objects provide methods for rescheduling propagators. These are
used by propagators for reporting fixed points or subsumption, and for stag-
ing.

For the rest of the chapter, we follow a top-down approach. The next section shows
how domain modules interact with the kernel. Afterwards, we will design and dis-
cuss the kernel functionality in detail. Finally, all objects contain additional func-
tionality for copying, which will be the topic of Section 6.7.

Related work

◮ Implementing a constraint solver in an object-oriented programming language
was pioneered by Puget and Leconte (1995), who describe a C++ architecture for con-
straint solving. Their work is the basis of ILOG Solver (2009), which provides a
feature-rich and efficient solver as a C++ library.

73

6 Implementing a Propagation Kernel

◮ Laburthe (2000) describes the design of the CHOCO constraint kernel, which
introduced the notion of a generic, that is, domain-independent kernel, and an
expressive event system. CHOCO (2009) was originally implemented in CLAIRE
(Caseau and Laburthe, 1996) and later reimplemented as a Java library. Both ILOG
Solver and CHOCO are based on trailing and implement variable-directed propaga-
tion.

◮ The Mozart (2009) constraint kernel (described by Müller, 2001) is built into the
virtual machine of the Mozart programming system, and implemented in C++. The Oz
programming language (which Mozart implements) is a concurrent language, which
made the development of copying and recomputation for backtracking necessary
(Schulte, 2002).

◮ The Minion (2009) constraint solver (Gent et al., 2006a) is implemented in C++

and based on copying for search. It uses a variable-centered scheduling scheme.
Minion does not provide a domain-independent kernel, but it comes with different
implementations for integer variables hard-wired into the system.

◮ While there are highly specialized solvers with a single sort of variables, such as
MiniSat (2009) (described by Eén and Sörensson, 2004) for solving Boolean satisfia-
bility problems, many solvers incorporate different variable domain types such as
Boolean variables, finite domain integers, and sets. There is ongoing work on other
domain types such as real intervals (for an overview see Benhamou and Granvilliers,
2006), multi-sets (Kiziltan and Walsh, 2002), or even graphs (Dooms et al., 2005;
Dooms, 2006). A modular solver based on a domain-independent kernel provides
an ideal test platform for novel types of variable domains.

6.3 Domain Modules

This section designs the interaction between the domain modules and the kernel.

For now, we regard the kernel as a black box, providing the scheduling and the
dependency management. We will explain how propagators use variable domain
operations to perform propagation, and how variable domain operations generate
modification events and pass them to the kernel and back to the propagator. Based
on this architecture, the later sections design the kernel components in detail.

The architecture is based on contracts between propagators, variables, and the ker-
nel, which means that we require them to fulfill certain strong invariants. The invari-
ants ensured by the contracts result in a streamlined and efficient implementation,
and a clear separation of concerns. An example for such a contract is that propaga-
tors must return a status flag to the kernel, signaling whether failure has occurred.

74

6.3 Domain Modules

The result is an efficient test for failure in the kernel. We will see more contracts
throughout this section.

Domain operations

The variable objects provide methods for accessing and updating the variable do-
main. Propagators use these methods to implement the actual propagation algo-
rithm.

We will use a simple implementation of integer variables as an example throughout
this chapter. For accessing the domain of a variable x, the variable object provides
methods x.min() and x.max(), returning the current minimum and maximum of the
domain.

The domain operations for update are more complicated. For integer variables, let
us assume that the two methods x.adjmin(i) and x.adjmax(i) update the minimum
and maximum of the variable domain, respectively. Updating a variable domain has
one of three effects:

1. The update results in no change at all. For the integer variable example, when
the current minimum in the domain of x is 4, then x.adjmin(3) does not
change the domain.

2. The update results in a failed domain.

3. The update prunes the domain.

We now define the contract between the domain update operations, the propagators,
and the kernel. For each of the three cases, the method implementing the update
operation must perform different tasks. In any case, it must inform the propagator
about the new state of the domain. We will see shortly that this information is useful
for determining the propagator’s fixed point status.

1. If no change happens, the method returns the empty set to the propagator.

2. If the update results in failure, the method returns fail to the propagator.

3. If the update results in a domain change, the method determines the corre-
sponding modification event me. It then calls a method notify(me), which
takes care of scheduling the propagators depending on me. This method is
also part of the domain module, and will be described in detail below. Finally,
me is returned to the propagator.

75

6 Implementing a Propagation Kernel

Propagation status and fixed point reasoning

The next contract we have a closer look at controls the interaction between propaga-
tors and the kernel. The kernel invokes a propagator’s propagate method. At the
end of this method, the propagator must notify the kernel of its status: whether it
has detected failure or not, and whether it has reached a fixed point or subsumption.
The following example illustrates this contract.

Example 6.1 (A less-than propagator) The propagate method of a propagator for
the constraint Jx < yK can be implemented as follows.

p.propagate()

1 if x.adjmax(y.max()− 1) = fail then return fail

2 if y.adjmin(x.min()+ 1) = fail then return fail

3 if x.max() < y.min() then subsumed() else fix()

4 return ok ∗

The propagator must pass failure on to the kernel by returning fail (lines 1 and 2).
Otherwise, the propagator must signal success to the kernel by returning ok (line 4).
When the propagator detects failure, it can stop its execution immediately and re-
turn control to the kernel. Failure occurs frequently—assuming a binary search tree,
usually more than half of the nodes are failed, so this optimization is important.

Furthermore, the propagator must notify the kernel of its fixed point status. The
model from Section 5.4 uses a function fix to determine whether a propagator is at
a fixed point. In the implementation model, the propagator itself is responsible for
doing so, by calling one of three methods to notify the kernel:

1. If the propagator can determine that it has computed a fixed point, that is, if
fix(p,d′) = {p} in the model from Section 5.4, it can be removed from the
queue. In this case, the propagator calls the kernel method fix.

2. If the propagator detects subsumption, it calls the kernel method subsumed,
which behaves like fix, but additionally removes the propagator, freeing its
memory and canceling its subscriptions (as we will see in Section 6.4).

3. In all other cases (fix(p,d′) = 0 in the model), the propagator calls the ker-
nel method nofix. This only means that the propagator is possibly not at a
fixed point. When nofix is called, the kernel hence determines whether the
propagator has modified its own variables, in which case it is left in the queue.
Otherwise, it is at a fixed point and removed from the queue.

Note that a propagator stays in the queue until one of the kernel methods subsumed,
fix, or nofix removes it. This implements the efficient scheduling mentioned in
Section 5.4, avoiding to potentially remove, add, and again remove a propagator
from the queue.

76

6.3 Domain Modules

In order to determine its fixed point status, the propagator can use the status re-
turned by the variable domain operations. The following example shows how this
information can be put to use.

Example 6.2 (Iteration to fixed point) A bounds propagator for the equality con-
straint Jx = yK can iterate until fixed point using the domain operation status.

p.propagate()

1 repeat me ← x.adjmin(y.min()) � iterate until . . .
2 if me = fail then return fail

3 me ←me∪y.adjmin(x.min())

4 if me = fail then return fail

5 me ←me∪ x.adjmax(y.max())

6 if me = fail then return fail

7 me ←me∪y.adjmax(x.max())

8 if me = fail then return fail

9 until me = 0 � . . . no more changes, fixed point
10 fix()
11 return ok

Note that without the iteration, the propagator would not be idempotent. For in-
stance, in a domain d with d(x) = {2,3} and d(y) = {1,3}, one iteration of the re-
peat loop would result in a domain d′ where d′(x) = {2,3} and d′(y) = {3}, which
is clearly not a fixed point. The propagator has “fallen into a domain hole”. More
complex propagators can use the concrete modification events to decide whether a
fixed point has been reached, for instance, if no asn event has happened. ∗

The event system

We have just seen how propagation algorithms are implemented in terms of the
domain access and update operations of variable objects. Updating a variable do-
main causes an event, and must consequently result in the scheduling of dependent
propagators. The domain module must implement the event system and schedule
propagators using methods provided by the kernel.

The event system is based on modification events, which are represented as small
integers. Two operations are needed on modification events: computing the union
of two modification events (for maintaining the modification event delta), and de-
termining the propagation conditions that overlap with a certain modification event
(for scheduling).

Section 5.5 already mentioned that modification events are closed under union, and
that they are mapped to integers in the implementation. The first operation, com-
puting me1 ∪me2, can thus be implemented by a simple table lookup. Let us look
at the event system from Example 5.7 again. It has five modification events, measn,

77

6 Implementing a Propagation Kernel

measn measn

melbc measn melbc

meubc measn mebbc meubc

mebbc measn mebbc mebbc mebbc

meinner measn melbc meubc mebbc meinner

measn melbc meubc mebbc meinner

Table 6.1: Table for computing me1 ∪me2

melbc, meubc, mebbc, and meinner. Table 6.1 shows the lookup table for this event
system.

The second operation, determining the propagation conditions that overlap with
a given modification event, is embedded into the method notify we already men-
tioned above. When a domain update method actually modifies the domain, it deter-
mines the corresponding modification event me and calls notify(me).

The task of the notify(me) method is to schedule all propagators that are sub-
scribed to the variable with a propagation condition π where me ∩ π ≠ 0 (see
Section 5.2). The set of propagation conditions {π0, . . . , πk−1} is, like modification
events, fixed and small, so we identify each propagation condition πi with the inte-
ger i. The notify(me) method then uses the kernel method schedule(πi, πj,me),
which is provided by the variable base class. This method schedules all propagators
that are subscribed to the variable with propagation conditions πi, . . . , πj. The third
argument, the modification event me, is needed for staging and will be discussed
shortly.

We explain the notify method using the event system from Example 5.7 again. It
has five propagation conditions:

π1 = {asn}

π2 = {asn, lbc} π3 = {asn, lbc,ubc} π4 = {asn,ubc}

π5 = {asn, lbc,ubc,dmc}

Calling notify(me) schedules the propagators that are subscribed with any propa-
gation condition π that overlaps with the modification event me, me∩π ≠ 0. For the
example event system, the following table shows which modification events overlap
with which propagation conditions.

measn : π1, π2, π3, π4, π5 melbc : π2, π3, π5

meubc : π3, π4, π5 meinner : π5

This mapping yields the following implementation of notify. Note that most sets
of propagation conditions require just a single call to schedule. Only for melbc (line
3), two calls are needed, excluding the propagators subscribed with π4.

78

6.3 Domain Modules

notify(me)

1 case me of
2 measn then schedule(π1, π5,me)

3 melbc then schedule(π2, π3,me); schedule(π5, π5,me)

4 meubc then schedule(π3, π5,me)

5 meinner then schedule(π5, π5,me)

Delaying the scheduling. The notify method as presented above immediately
schedules all dependent propagators when a variable domain is modified. This has
the disadvantage that if a propagation algorithm modifies the same variable several
times during a single run, the same propagators will be scheduled several times, too.
In order to avoid this, one could instead make notify collect all modified variables
in a list, and then let the kernel perform the scheduling after the propagator has
finished. However, this requires additional infrastructure for collecting modified va-
riables, and the potential performance gain in practice is low, as the experiments in
Section 6.9 suggest.

Generating the event system. The event system part of the domain module only
depends on the event system that is used. In order to simplify the implementation
of a domain module, we generate the table for computing the union of two modifi-
cation events, as well as the implementation of the notify method, from a simple
specification of the event system.

Priorities and propagator staging

With the event system in place, a slight extension of the fixed point reasoning mech-
anism yields an implementation of propagator staging.

Staging, as introduced in Section 5.4, combines different propagation algorithms
(stages) in a single propagator. Which stage is executed depends on the events that
caused scheduling of the propagator.

The implementation handles staging slightly differently than the model presented
earlier: instead of determining the stage based on the current priority, we use the
set of events that has happened since the last invocation of the propagator. We
call this set the modification event delta, and collect it for each propagator object
p in a field p.∆me. We will see in Section 6.4 how the modification event delta is
maintained by the kernel.

Before invoking the propagate method of a propagator p, the kernel empties the
set p.∆me. The old set is passed to the propagate method as an argument and is
used to determine the stage to execute. For example, a propagator with a bounds-
complete and a domain-complete stage would execute the bounds-complete stage
whenever there are bounds events in ∆me, and the domain-complete stage otherwise.

79

6 Implementing a Propagation Kernel

This corresponds to the model we saw before, as a bounds event results in the
propagator being scheduled at a different priority than a domain change event.

The domain module is also responsible for determining the priority of a propagator.
For this, the propagator base class provides another virtual method, cost(∆me). A
propagator must implement this method and compute the cost based on the modi-
fication event delta and the current variable domains.

After propagation, the propagate method may have to reschedule the propagator
for the remaining stage. As with fixed point reasoning and subsumption, the kernel
provides two methods that perform the scheduling:

• nofixPartial(∆me′) sets p.∆me← p.∆me ∪ ∆me′ and then reschedules the
propagator.

• fixPartial(∆me′) sets p.∆me← ∆me′ and then reschedules the propagator.

Both methods get the modification event that the propagator did not handle as their
argument. The difference is that nofixPartial keeps the modification event delta
set that was accumulated during propagation, while fixPartial only uses the re-
maining modification event ∆me′. A propagator that invokes fixPartial thus has
computed a partial fixed point for a subset of the events that caused propagation. If
a propagator invokes nofixPartial, it is not sure to have computed such a partial
fixed point.

Example 6.3 (Staged multiplication) Bounds-complete multiplication is algorithmi-
cally much cheaper than domain-complete propagation for the same constraint. It
pays off to implement a domain-complete propagator using staging. Given two
helper methods propBnd and propDom that perform the actual bounds and domain
propagation, respectively, the staging logic is the following:

• If the propagator is scheduled because of the event asn or bnd, it is put in
stage A and gets priority ternary.

• If the propagator is scheduled because of the event dmc (and not asn or bnd),
and it is not already in stage A, it is put in stage B and gets priority veryslow.

• When the propagator is executed in stage A, it uses propBnd, which does not
compute a fixed point of the bounds propagation. The propagator stages itself
using nofixPartial. It has consumed all events except dmc.

• When the propagator is executed in stage B, it uses propDom, and signals a
fixed point using fix.

This is the code for a staged multiplication propagator.

80

6.4 Dependency Management

p.propagate(∆me)

1 if {bnd, asn} ∩∆me ≠ 0

2 then if propBnd() = fail then return fail; � Stage A
3 nofixPartial(∆me \ {bnd})

4 else if propDom() = fail then return fail; � Stage B
5 fix()

6 return ok

p.cost(∆me)

1 if {bnd, asn} ∩∆me ≠ 0 then return ternary else return veryslow ∗

The modification event delta serves two more purposes apart from staging. First,
the nofix method uses it to find out whether the propagator modified its own
variables—if it did, the modification event delta is not empty, and the propagator
must remain in the queue. The second purpose is that propagators can obtain par-
tial information about what kind of domain change caused their scheduling. For
example, if the modification event delta is measn, the propagator knows that at least
one variable has been assigned, and can possibly perform particular propagation
steps in that case. However, the information is not very accurate, as the events
of all the variables are collected in a single set. More accurate information can be
provided in a propagator-centered solver by adding a mechanism called advisors, as
introduced by Lagerkvist and Schulte (2007).

6.4 Dependency Management

This section develops the first of the kernel data structures, the dependency map-
ping. In the mathematical model, we used a function deps(x)(π), which yields the
set of propagators that are subscribed to variable x with propagation condition π .
In the implementation model, the dependencies are encapsulated in the variable
objects, and implemented in the variable base class.

Design rationale

The data structure for the dependencies must provide three operations:

• subscribe(p,π) adds the propagator p to the dependencies at propagation
condition π .

• cancel(p,π) removes the propagator p from the dependencies at propagation
condition π .

• schedule(πi, πj,me) iterates over the propagators between propagation con-
ditions πi and πj , schedules them, and adds me to each scheduled propaga-
tor’s modification event delta.

81

6 Implementing a Propagation Kernel

Propagators p1 p2 p3 p4 p5 p6 p7 p8 p9

Dependency array dep =

Dependency index idx =
π0 π1 π2 π3 πend

Figure 6.3: Dependency data structures

The most important operation is iteration. It is performed whenever an event hap-
pens, so we will design the data structure to be as efficient as possible in this case.
For subscription and canceling, efficiency is not quite as important, as they happen
less frequently.

We enforce a strong contract between propagators and the dependencies. A propa-
gator must not cancel subscriptions that it has not established before, and it must
cancel all its subscriptions when it reports subsumption. We will discuss below why
the invariants enforced by this contract are important.

Indexed dependency arrays

The most efficient data structure for fast iteration is an array. So, in principle, we
could have one array of propagators per propagation condition. However, in practice
a single modification event often triggers several propagation conditions, as can be
seen in the implementation of notify from the previous section.

The dependencies are therefore stored in a single dependency array dep, sorted by
propagation condition. In addition, we maintain the dependency index idx, which
partitions the dependency array by propagation condition. Figure 6.3 shows this
architecture.

For each propagation condition πi, the dependency index points to the first propaga-
tor in the dependency array that is subscribed with πi. For example, the first propa-
gator subscribed with π1 in Figure 6.3 is dep[idx[π1]] = p7. To iterate over all prop-
agators subscribed with a certain propagation condition πi, we start at dep[idx[πi]]
and finish at dep[idx[πi+1] − 1]. There is one additional propagation condition,
πend, so that πi+1 and idx[πi+1] are defined for all propagation conditions πi.

Again for the example in Figure 6.3, scheduling all propagators that are subscribed
with propagation condition π1 would amount to scheduling the propagators p7 and
p8. No propagator is subscribed with π2 (as idx[π2] = idx[π3]). Through this index

82

6.4 Dependency Management

data structure, iterating over all propagators subscribed with a particular propaga-
tion condition is as efficient as possible, taking constant time per propagator, and
with low constants in practice.

We can now define the method schedule(πi, πj ,me), which schedules all propaga-
tors starting at propagation condition πi and finishing at propagation condition πj .
In addition, it adds the modification event me to each propagator’s modification
event delta. For the above example, schedule(π0, π2,me) would thus schedule p1,
p2, p5, p7, and p8. The following code implements schedule, assuming that the
kernel provides a method enqueue that puts a propagator into the right queue:

schedule(πi, πj ,me)

1 for k← idx[πi] to idx[πj+1]− 1

2 do if me ⊈ dep[k].∆me then
3 dep[k].∆me = dep[k].∆me∪me

4 enqueue(dep[k])

Line 2 makes sure that a propagator is only added to the queue if the new modi-
fication event me is not already contained in the propagator’s modification event
delta. This is correct because if me ⊆ dep[k].∆me, then the propagator has already
been put into the queue before. We perform this optimization because enqueue

must determine the propagator’s priority by calling its cost method, which can be
avoided with this simple test. However, the cost will thus only be re-evaluated when
new events occur. From our experience, this does not represent a limitation in prac-
tice.

Subscribing and canceling

The remaining operations to be defined for the dependency data structure are sub-
scribing and canceling. Subscribing a propagator p with propagation condition πi
means adding it at the appropriate position to the dependency array and modifying
the index accordingly. Assuming that the dependency array is resized dynamically,
subscription can be implemented to have amortized run-time O(k − i) as shown in
Figure 6.4(a). First, some space is cleared for the new subscription at dep[idx[πi]]
(lines 1–3). Then the new subscription is entered (line 4).

Canceling a subscription can be implemented to run in O(idx[πi+1]− idx[πi]+ i)

(Figure 6.4(b)). The while loop in line 2 finds the index of p in the dependency array
(note that the loop is only correct if the propagator is actually subscribed to the
variable). After finding the index jp, the position dep[jp] is reused (lines 3–7).

83

6 Implementing a Propagation Kernel

subscribe(p,πi)

1 for j ← k downto i
2 do dep[idx[πj+1]]← dep[idx[πj]]

3 idx[πj+1]← idx[πj+1]+ 1

4 dep[idx[πi]]← p

(a)

cancel(p,πi)

1 jp ← idx[πi]

2 while dep[jp] ≠ p do jp ← jp + 1
3 dep[jp]← dep[idx[πi+1]− 1]

4 for j ← i+ 1 to k
5 do dep[idx[j]− 1]← dep[idx[πj+1]− 1]

6 idx[πj]← idx[πj]− 1

7 idx[πend]← idx[πend]− 1

(b)

Figure 6.4: Subscribing (a) and canceling (b)

Propagator creation and destruction

Most subscriptions are created when the problem is set up. Each propagator has
a constructor that initializes the internal data structures and subscribes to the va-
riables. In addition, the propagator must be scheduled. This ensures that the de-
pendency invariant (see Section 5.2) holds even before the first fixed point is com-
puted. If the propagator subscribes with propagation condition {asn}, it only needs
scheduling if the variable is already assigned.

During the lifetime of the propagator, the propagate method may create and cancel
subscriptions, performing dynamic dependency updates as described in Section 5.3.

When a propagator reports subsumption using the kernel method subsumed, its
lifetime ends. The propagator must implement another virtual method of the prop-
agator base class, dispose, which is called by the kernel before it deallocates the
propagator object. In this method, the propagator must cancel all its subscriptions.
We will now see that this contract is crucial for making subsumption efficient.

Efficient subsumption

The whole point of detecting subsumption is to remove subsumed propagators from
the space. Not only does this save memory in the current space, the propagators also
do not have to be copied, saving run-time during copying and memory in the copies.
Section 6.9 evaluates empirically how subsumption detection influences the perfor-
mance. Another argument for removing subsumed propagators is that the graph
formed by the dependencies between variables and propagators becomes a more
accurate representation of the current state. This graph can be used for analyses
like the ones presented by Schulte and Stuckey (2008a,b) or Mann et al. (2008).

A propagator can only be removed if there are no more references pointing at it,
as otherwise these references would turn into dangling pointers. The scheme we

84

6.5 The Priority Queue

propose, which requires propagators to cancel their subscriptions, is a simple and
efficient solution for this problem.

If the propagators were not responsible for canceling their subscriptions, we would
need a much more complicated mechanism. For example, one could mark propa-
gators as subsumed, and then remove subscriptions when a canceled propagator is
found during scheduling. This would require some form of garbage collection in
order to remove the propagator when the last subscription has been canceled.

We consider subsumption detection so important that we require all propagators
to report subsumption at the latest when all their variables are assigned. Again,
this is a contract between the propagator and the kernel. Alternatively, the kernel
could check this property and remove propagators automatically, possibly making
it slightly easier to implement a propagator. However, this would require domain
knowledge in the kernel, and be less efficient for propagators that can detect sub-
sumption earlier.

There are two situations in which it is not necessary to cancel subscriptions. Sub-
scriptions to assigned variables do not have to be canceled, because on assigned
variables, no further events will occur and thus no scheduling can happen. The
cancel method therefore simply does nothing on assigned variables (and neither
does subscribe). The second situation is when a space is failed. Failed spaces are
simply discarded, including all propagators and their dependencies. This optimiza-
tion will be evaluated in Section 6.9.

6.5 The Priority Queue

This section designs the second important kernel data structure, the priority queue.
For our purposes, the priority queue must provide three operations:

• enqueue(p) adds propagator p, determining its priority using its cost method.
If p is already in the queue, it is re-prioritized according to its current cost.

• head() returns the oldest propagator at the highest priority.

• idle(p) removes propagator p from the queue. This method is used internally
by fix and similar methods.

All three operations are performed extremely often during the fixed point computa-
tion, and are hence crucial for the solver’s performance.

Common algorithms for priority queues are based on variations of the heap data
structure (see for example Mehlhorn and Näher, 1999; Cormen et al., 2001). Heaps
support an arbitrary number of priority levels. For most types of heaps, the run-
time complexity of the enqueue and dequeue operations depends on the number of

85

6 Implementing a Propagation Kernel

Sentinel Propagators

idle p6 p4 p3

prio. 1 p7 p2 p1 p9

prio. k− 1

prio. k p5 p8

Figure 6.5: Propagators in prioritized queues

elements in the queue. For example, using binary heaps, both operations require
time in O(logn) if n is the number of elements in the queue.

In order to make enqueue and dequeue as efficient as possible, we restrict the num-
ber of priority levels to a small, fixed set of integers. Then, a priority queue based
on buckets can be used (see Mehlhorn and Näher, 1999), providing constant-time
enqueue and dequeue operations. We will now see how a bucket-based priority
queue of propagators can be implemented.

The bucket queue

A bucket-based priority queue consists of an array of doubly-linked lists of propa-
gators. The list at array index i represents the queue of propagators at priority i.
Furthermore, a propagator can only be in one queue at a time. We can hence embed
the links for the doubly-linked lists into the propagator objects. In addition to the
lists for each priority, the kernel maintains the list of idle propagators, the so-called
idle queue. The invariant is then that a propagator is always in exactly one queue.

Each list of propagators is cyclic and terminated by a sentinel element. The sentinels
are kept in an array that represents the priority queue and resides in the space.
Figure 6.5 depicts an example of this architecture. An empty queue is depicted as a
sentinel with a simple cycle (as at priority k− 1).

This implementation of a bucket queue yields efficient access. Inserting and remov-
ing a propagator can be done in constant time—unlink it from its current queue, and
link it at the position before the sentinel element of the target queue. Finding the
next propagator to schedule costs at most k tests.

86

6.5 The Priority Queue

Queues are managed as follows:

• The kernel can access the queue with priority i as Q[i].

• p.next() returns the propagator following p in the linked list.

• p.unlink() removes propagator p from its current queue.

• Q[i].tail(p) adds p as the last propagator to the queue with priority i.

A propagator is added to the queue that corresponds to its cost, as described in
Section 5.5. Each propagator reports its cost using the virtual method cost. The fol-
lowing code implements the enqueue, head, and idle methods, as well as a method
stable() that reports whether all queues except the idle queue are empty, indicating
that the space is stable.

enqueue(p)

1 p.unlink() � remove p from current queue
2 Q[p.cost(p.∆me)].tail(p) � put p into new queue

head()

1 for i← k downto 1
2 do if Q[i].next() ≠ Q[i] then return Q[i].next()

idle(p)

1 p.unlink() � remove p from current queue
2 Q[0].tail(p) � put p into idle queue

stable()

1 for i← k downto 1
2 do if Q[i].next() ≠ Q[i] then return false

3 return true

Memory and run-time efficiency. The bucket queue is as efficient as possible, both
in terms of memory requirements and run-time. The asymptotic run-time for all
operations is a small constant if we restrict the priorities to a small, fixed set. Pri-
ority-based scheduling with a fixed number of priorities is the standard in all propa-
gation-based solvers (see Section 5.6), and has proven effective in practice. In terms
of memory, the kernel needs access to the set of all propagators anyway for copy-
ing, as we will see in Section 6.7. Embedding the double links for the queues in the
propagator objects is therefore efficient, as no additional memory management is
needed for the queues.

87

6 Implementing a Propagation Kernel

6.6 Control

With all the data structures in place, this section combines them in the main control
loop, implementing agenda-based, event-directed propagation as a kernel service.

The main propagation loop is straightforward. We implement it as a method status

on spaces, which applies all propagators until reaching a mutual fixed point, and
then returns the overall status. Furthermore, the contract between the kernel and
the propagators specifies that the status method clears the propagators’ modifica-
tion event deltas.

status()

1 while not stable()
2 do p ← head()

3 old∆me← p.∆me; p.∆me← 0

4 if p(old∆me) = fail then return fail

5 return ok

The following invariants are maintained as a consequence of the contracts between
propagators, variables, and the kernel:

• If the propagator modifies any variable domain, the dependent propagators
are scheduled.

• For each propagator p that is scheduled, the events that caused scheduling are
added to its modification event delta.

• If the propagator detects or causes failure (emptying a variable domain), it
returns fail. Otherwise, it returns ok.

• According to the propagator’s fixed point status, it will be in the correct queue
after propagation, or removed completely in case of subsumption.

These invariants correspond to the agenda and dependency invariants developed in
the previous chapter. They guarantee that invoking status on a space results in a
stable space representing a mutual fixed point of all propagators. The space is failed
if and only if status returns fail.

6.7 Copying and Memory Management

This section shows how the propagation kernel manages memory, using spaces as
containers for propagators and variables. Furthermore, spaces provide the infras-
tructure for copying.

88

6.7 Copying and Memory Management

Allocation and deallocation

All propagators and variables reside inside a space. The space acts as a memory
manager, providing allocation and deallocation for different kinds of memory:

Blocks can be allocated for data that usually lives as long as the space lives. Exam-
ples are the arrays that propagators use to hold pointers to their variables, but
also the propagator and variable objects themselves.

Free-lists of small equally-sized blocks can be used to efficiently allocate data struc-
tures that change frequently. For instance, integer variable domains are imple-
mented as lists of ranges, taken from the free-list pool of the space.

Scrap space can be used for temporary storage within a single method.

Memory allocated from spaces does not have to be freed explicitly, as it will be re-
claimed when the space is destroyed. Spaces are destroyed when they are no longer
needed by the search engine, for instance, when the space is failed and the search en-
gine backtracks. If all propagators and variables allocate their entire memory from
the space, destroying a space amounts to nothing more than reclaiming all its mem-
ory. Propagators and variables do not have to be recursively destroyed. This makes
failure efficient, which is important as failure of course occurs extremely often in
real-world searches.

For propagators and variables that do need additional resources, such as externally
allocated memory, a space provides a mechanism for registering these propagators
and variables. That way, only the objects that have external resources are destroyed
recursively.

Copying

The memory management services that spaces provide are closely related to another
important kernel service: copying. For backtracking search, the kernel must be able
to produce a copy of a space that behaves just like the original. A space is a cyclic
graph (recall Figure 6.2(a)). The central idea of copying a graph is to use forwarding

pointers: after creating a copy x′ of an object x, leave a pointer in x that points to
its copy x′. Then copy the children of x recursively. When another object points to
x again, the presence of the forwarding pointer to x′ indicates that x has already
been copied, and one can directly use x′ instead of creating a new copy.

Copying spaces is slightly simpler due to their regular structure: the graph is bi-
partite, the only edges go from variables to propagators and from propagators to
variables, but not between propagators or between variables. The copying function-
ality for both propagators and variables must be implemented partly in the domain
module. In order to keep the overhead low, the space delegates copying of the va-
riables to the propagators: a propagator knows the concrete types of its variables,

89

6 Implementing a Propagation Kernel

and already has virtual methods (propagate, cost, and dispose). We add another
virtual method to all propagators, copy. The space copies the propagators, which in
turn copy the variables.

Let us look at the individual steps for copying a space. We will assume that the
space is stable, as in practice, search engines never need to copy unstable spaces.
The letters in brackets denote who is responsible for the corresponding step, and
therefore explain the boundary between the kernel and the domain module. We
write k for the kernel, p for a propagator, and v for a variable.

1. [k] Create a new, empty space (the target).

2. [k] Iterate over the propagators in the idle queue. Call each propagator’s copy
method, supplying the target space as an argument.

3. [p] The propagator’s copy method creates a new propagator in the target space
and sets the forwarding pointer accordingly.

4. [p] The propagator copies its variables, calling each variable’s copy method.

5. [v] The variable’s copy method checks if the variable has a forwarding pointer,
and if it has, returns it. Otherwise, it creates a copy, sets the forwarding
pointer, and returns it. The dependencies in the target variable are left empty.
The source variable is added to a list of copied variables.

6. [p] After copying a variable, the target propagator’s link to that variable is set
to point to the copy.

7. [k] After copying all the propagators, iterate over all the copied source varia-
bles. For each variable, find the copy using the forwarding pointer.

8. [k] For each copied variable, allocate a new dependency array and recreate
the dependency index. Fill the dependency array by iterating over the source
variable’s dependencies, and for each propagator found there, enter its copy
(accessed through the forwarding pointer) into the target dependency array.

9. [k] Finally, reset all forwarding pointers so that they can be reused when the
space is copied again.

Copying a space is illustrated in Figure 6.6. The dashed arrows between the original
space and the copy are the forwarding pointers. The figure also shows an important
side-effect of copying spaces. The copy may be more compact than the original. In
the concrete example, variable x2 was not referenced by any propagator any more
and hence does not have to be copied. In the same way, propagators may create
more compact versions of internal data structures in the copy. The memory used
by subsumed propagators may not have been reclaimed in the original space, but as
subsumed propagators are not copied (they are not in the idle queue), they do not
occupy memory in the copied space.

90

6.7 Copying and Memory Management

O
r

ig
in

a
l

s
p
a

c
e

c
o

p
ie

d
s
p
a

c
ex1 x2 x3 x4 x1 x3 x4

p1 p2 p1 p2

Figure 6.6: Spaces are copied using forwarding pointers

The dependencies can be treated specially during copying. The kernel keeps a record
of the overall size of all dependency arrays, and then pre-allocates space for the
dependencies in one block in the copy. This is more efficient than allocating new
dependency arrays for each individual variable.

Reusing memory

As described above, copying requires some additional memory per variable and prop-
agator: both have to accommodate for the forwarding pointers, and in addition, the
variables have to be put into a list for later restoration of the dependency data struc-
tures. However, it turns out that we can reuse some of the data structures that are
already present in variables and propagators.

The propagators store their forwarding pointer in the field that normally contains
the pointer to the previous queue element (as shown in Figure 6.6). This pointer is
not needed during copying (it suffices to iterate forwards through the idle queue),
and can easily be restored afterwards. Additionally, the pointer is tagged so that it
can be distinguished from the regular pointer to the previous queue element.

Variables reuse parts of the dependency index. When copying a variable, the con-
tents of the original dependency index are saved in the copy. Then idx[0] is used
for the (again tagged) forwarding pointer, and idx[1] points to the previously copied
variable, establishing the list of copied variables. When updating the dependency
data structures in step 8, the original dependency index is restored from the val-
ues saved in the copy. Note that independent of the concrete event system, the
dependency index always has at least two slots, as there is at least one propagation
condition plus πend.

By superimposing the data structures needed for copying with those needed for
propagation, we can implement copying without any memory overhead.

91

6 Implementing a Propagation Kernel

Related work

◮ Producing copies of graphs has received a lot of attention in the context of copy-

ing garbage collection (see Cheney, 1970 and Jones and Lins, 1996). The similarity to
copying garbage collection goes even further. As we have seen, the copy of a space
can be more compact, as variables and propagators that are no longer needed can
be removed. Copying a space thus performs garbage collection.

◮ Search in the Mozart (2009) programming system is based on copying. According
to Schulte (2002), the Mozart virtual machine uses the same copying routines for
garbage collection and for spaces.

6.8 Gecode

The architecture presented in this chapter has been implemented in the Gecode
constraint solver. This section gives an overview of Gecode.

The library

Gecode (2009) stands for Generic Constraint Development Environment, and is a
state-of-the-art constraint solver, implemented as a C++ library. The core of the li-
brary is the propagation kernel, providing the basic services and abstractions we
just saw. Gecode comes with several domain modules that are built on top of the
kernel, implementing integer and Boolean variables, set variables using the set inter-
val approximation (see Section 4.5), and set variables that represent the complete set
domain using ROBDDs (see Section 4.6). The domain modules provide a comprehen-
sive set of propagation algorithms, implementing constraints such as all-different,
regular , the global cardinality constraint, linear equations and inequations, Boolean
constraints, reified versions of many constraints, and many more.

Also built on top of the kernel, and orthogonal to the domain modules, are Gecode’s
search engines, providing standard search strategies such as depth first search or
branch-and-bound search, as well as a graphical interactive search tool called Gist.

The library is available under the open-source MIT license, and written in standards-
compliant C++, making it portable to most current platforms. The free availability
of the library makes experiments conducted using Gecode reproducible, and hence
makes Gecode suitable for research.

92

6.9 Performance Analysis

Implications of the architecture

Implementing the presented architecture in Gecode has the following practical im-
plications.

1. The kernel is compact, the core functionality comprises less than 2 000 lines
of C++ code. A small kernel is amenable to thorough code review as well as
systematic testing. We are therefore confident that the code is correct.

2. The modularity and clean architecture enable experimentation, as most archi-
tectural changes require only local code modifications. Experimenting with
different implementations for the main data structures enabled us to make
informed design decisions.

3. The library approach enables integration. Interfaces that integrate Gecode into
different programming systems, such as Java, Alice ML, Ruby, Common Lisp,
and Mozart/Oz, as well as a parser for FlatZinc (Nethercote et al., 2007) are
available.

4. The abstractions provided by the kernel make implementing a new domain
module easy. The tedious bits involving the event system are generated from
simple specifications. In addition to the modules provided by Gecode itself, we
received external contributions, implementing graph variables (Dooms et al.,
2005; Dooms, 2006) and variables over real-valued intervals.

5. The contracts that propagators have to comply with can be enforced by abstrac-
tions or tested systematically. Thus, implementing a propagator in Gecode is
not more complicated than in systems that do not require strict contracts.

Performance

In terms of performance, Gecode is competitive with and in many cases exceeds the
performance of commercial systems like ILOG Solver (2009) or SICStus Prolog (2009)
(see Appendix A for a performance comparison with these systems). Competitive
performance is a key requirement for the next section, which evaluates some of the
design decisions presented in this chapter empirically, using Gecode. The results of
such experiments are only practically relevant if the base system is efficient.

6.9 Performance Analysis

This section empirically evaluates some of the design decisions presented in this
chapter.

93

6 Implementing a Propagation Kernel

Benchmark Without subsumption

time % mem. % prop. %

BIBD 137.40 163.23 105.40

Alpha (smart) 115.96 100.00 100.00

Alpha (naive) 122.52 100.00 100.00

Knights (18) 183.11 194.18 117.99

Golomb R. (10) 105.38 100.00 113.25

Queens (N, 10) 158.68 100.00 204.37

Queens (S, 10) 128.16 100.00 101.29

Queens (N, 100) 225.03 209.39 356.89

Queens (S, 100) 165.25 100.00 100.00

Eq-20 107.45 100.00 100.00

Graph Coloring 116.38 100.00 129.94

M. Seq. (S, 500) 111.28 100.00 112.47

M. Seq. (N, 500) 1340.81 200.95 100.00

M. Seq. (GCC, 500) 102.05 100.00 100.00

Photo Alignment 131.80 100.00 122.75

Partition (32) 133.97 100.00 110.61

Perfect Square 117.03 116.93 108.55

Benchmark Without subsumption

time % mem. % prop. %

S. Golfers (8-4-9) 103.46 104.99 100.00

S. Golfers (5-3-7) 119.43 145.35 116.88

Crew Scheduling 115.59 100.00 111.01

Steiner T. (9) 157.90 100.00 109.53

Sudoku (Set, 1) 104.23 100.00 100.00

Sudoku (Set, 4) 99.83 100.00 100.00

Sudoku (Set, 5) 100.33 100.00 100.00

Queen Armies 134.98 100.00 163.88

Hamming 154.95 130.36 108.16

Table 6.2: Keeping subsumed propagators alive

Experimental platform

For the experiments, we used the upcoming version 3.0.0 of Gecode, and replaced
or modified parts of its architecture to evaluate the impact of different design deci-
sions. The concrete setup for the experiments, such as the used platform, operating
system, and compiler, is explained in Appendix A. Most of the numbers we present
here are relative numbers, given as percentages of the absolute results of the un-
modified Gecode system reported in Appendix A. For example, a relative run-time
of 200% means that the experiment needs twice the time of the unmodified Gecode,
and a memory requirement of 50% means that it only needs half the memory. The
experiments are partitioned into two groups. Models in the first group involve only
integer and Boolean variables and propagators, and the second group deals mainly
with set variables (and additional integer and Boolean variables).

Subsumption

The first experiment evaluates how important it is to detect subsumption and re-
move subsumed propagators. For the experiment, we simply changed the meaning
of the subsumed method to be equal to fix. Thus, subsumed propagators are kept
alive, and their subscriptions are kept active. Table 6.2 shows that the performance
degrades for nearly all examples. This is due to two effects. First, the subsumed
propagators will be scheduled and executed, although they cannot prune any more.
This effect seems to be strong in examples where the number of propagation steps
increases significantly, such as Graph Coloring, Photo Alignment, Naive Queens, or

94

6.9 Performance Analysis

Benchmark Sub. A. sub. Cancel A. cancel F. cancel

BIBD 48754 0 52926 8080 133829

Alpha (smart) 119 0 0 0 2672

Alpha (naive) 119 0 0 0 472339

Knights (18) 30593 185 14929 13723 66877

Golomb Rulers (10) 171 0 48906 18636 461808

Queens (Naive, 10) 270 0 213987 315667 38933

Queens (Smart, 10) 30 0 1562 0 9361

Queens (Naive, 100) 29700 0 16495 17103 607

Queens (Smart, 100) 300 0 0 0 135

Eq-20 140 0 0 0 3440

Graph Coloring 21529 135 29806 5242 417008

Magic Sequence (Smart, 500) 282628 0 313692 94652 4396

Magic Sequence (Naive, 500) 751499 0 288913 332619 59791

Magic Sequence (GCC, 500) 1999 0 0 997 1508

Photo Alignment 8592 7854 52905 349095 496682

Partition (32) 578 0 507460 1379602 7002413

Perfect Square 25457 162 44339 61957 1968875

Social Golfers (8-4-9) 6984 9 0 7125 200151

Social Golfers (5-3-7) 13087 27 37021 136503 1952445

Crew Scheduling 234 0 134 354 5754

Steiner Triples (9) 2178 0 24532 89626 642435

Sudoku (Set, 1) 495 1 0 487 0

Sudoku (Set, 4) 495 1 0 649 209

Sudoku (Set, 5) 495 1 0 3015 6552

Queen Armies 25381 1070 78867 169277 350544

Hamming Codes (20-3-32) 6016 0 33500 315988 5105731

Table 6.3: Subscription statistics

Queen Armies. The second effect is that subsumed propagators have to be copied
in the modified system, which costs run-time and increases memory usage. The
biggest performance loss due to this effect can be observed for Knights, Naive Magic
Sequence, and probably Hamming Codes.

Another experiment that is related to subsumption evaluates the decision to ignore
subscribe and cancel operations on assigned variables (Section 6.4). Its results
are reported in Table 6.3.

The number of subscribe operations that actually create a new subscription (col-
umn Sub.) is consistently far bigger than the number of subscribe operations on
assigned variables (column A. sub.). Thus, optimizing subscription for assigned vari-
ables is not particularly important. The reason is that the majority of subscriptions
happens when the problem is first set up and not many variables are assigned yet,
and only few subscriptions are created later during search.

The numbers are very different for cancel operations. The number of cancel op-
erations that actually remove a subscription (column Cancel) is often lower than

95

6 Implementing a Propagation Kernel

Benchmark O(n) susp. lists O(1) susp. lists

time % mem. % prop. % time % mem. % prop. %

Alpha (smart) 110.61 185.71 91.52 114.48 185.71 84.68

Alpha (naive) 125.32 186.96 93.63 139.29 186.96 92.46

Queens (Naive, 10) 327.45 194.12 100.01 373.98 194.12 99.23

Queens (Smart, 10) 106.46 100.00 97.88 115.49 100.00 100.35

Queens (Naive, 100) 110.71 130.11 99.73 127.17 164.98 99.74

Queens (Smart, 100) 104.79 110.04 99.78 181.74 140.17 101.10

Eq-20 110.60 185.71 94.74 120.25 185.71 87.57

Graph Coloring 104.07 100.00 100.31 114.20 100.00 101.23

Magic Sequence (Smart, 500) 70.23 71.23 94.24 86.14 142.39 85.08

Magic Sequence (Naive, 500) 101.85 103.87 108.89 120.08 158.06 91.54

Magic Sequence (GCC, 500) 102.96 196.97 97.26 111.49 196.97 94.86

Partition (32) 106.24 105.78 98.97 118.46 123.10 97.44

Social Golfers (8-4-9) 109.58 133.70 100.00 124.28 161.79 99.96

Social Golfers (5-3-7) 107.25 130.23 99.89 116.76 163.49 99.51

Crew Scheduling 111.15 194.31 100.88 121.20 197.56 103.31

Steiner Triples (9) 118.74 199.45 108.65 141.90 199.45 111.99

Sudoku (Set, 1) 98.98 100.00 99.34 99.98 119.28 99.34

Sudoku (Set, 4) 101.77 100.00 102.53 102.21 100.00 100.27

Sudoku (Set, 5) 100.96 159.63 99.87 102.26 159.63 100.26

Queen Armies 106.90 100.00 100.46 117.10 196.39 101.49

Hamming Codes (20-3-32) 116.47 121.06 95.63 138.63 150.05 92.82

Table 6.4: Relative performance of suspension lists

the cancel operations on assigned variables (column A. cancel). The reason is that
propagators cancel their subscriptions when they are subsumed, and they are of-
ten subsumed when some or all of their variables are assigned. The last column, F.

cancel, reports the number of subscriptions still left when a space failed. These num-
bers are often orders of magnitude bigger than the number of cancel operations that
are actually performed. The results make clear that performing cancel operations
on assigned variables and in particular on failed spaces would incur a significant
overhead.

Suspension lists versus dependency arrays

An alternative to the dependency and index arrays from Section 6.4 is a linked list
of propagators for each propagation condition, a so-called suspension list. This list
can be singly-linked, so that canceling a subscription takes O(n) time if n is the
number of entries in the list, or it can be doubly-linked, with a constant-time cancel

operation.

The reason for choosing an array data structure over a list was that lists require
more memory, and copying lists costs more run-time. On the other hand, lists enable
constant time subscription and cancel operations. We thus experimented with both
alternative designs in Gecode, and the results appear in Table 6.4. We could not run

96

6.9 Performance Analysis

Benchmark O(n) O(1)

time %

Alpha (smart) 120.86 135.18

Alpha (naive) 133.84 150.65

Queens (Naive, 10) 327.43 376.90

Queens (Smart, 10) 108.76 115.09

Queens (Naive, 100) 111.01 127.50

Queens (Smart, 100) 105.02 179.77

Eq-20 116.74 137.31

Graph Coloring 103.75 112.80

M. Seq. (Smart, 500) 74.53 101.24

M. Seq. (Naive, 500) 93.53 131.19

M. Seq. (GCC, 500) 105.86 117.53

Partition (32) 107.35 121.57

Benchmark O(n) O(1)

time %

Social Golfers (8-4-9) 109.58 124.33

Social Golfers (5-3-7) 107.37 117.33

Crew Scheduling 110.18 117.32

Steiner Triples (9) 109.29 126.71

Sudoku (Set, 1) 99.64 100.65

Sudoku (Set, 4) 99.25 101.94

Sudoku (Set, 5) 101.09 101.99

Queen Armies 106.41 115.38

Hamming Codes (20-3-32) 121.79 149.35

Table 6.5: Normalized run-time performance of suspension lists

all the benchmarks, as the changes to Gecode are rather involved and would require
modifying some propagators substantially. The singly-linked suspension lists do
not perform much worse for most examples (columns O(n) susp. lists), and the
increase in memory consumption is expected. Interestingly, the doubly-linked lists
with constant-time cancel incur a significantly higher overhead. This is due to the
additional back-link and the fact that each propagator needs to keep references of
the subscriptions it made, resulting in even higher memory usage and increased cost
during copying.

In many cases, fewer propagators are invoked than in the unmodified system (see
columns prop. %). This is due to slightly different scheduling of the propagators,
because subscribe and cancel on dependency arrays reorder the subscriptions
(see Figure 6.4), whereas the order is preserved with suspension lists. The real over-
head is therefore slightly higher. Table 6.5 presents the same run-time results, but
normalized to the number of propagator invocations, which should give an upper
bound of the actual overhead.

One should note that the run-time overhead of suspension lists is mostly due to the
fact that the dependencies have to be copied. Suspension lists may hence be a viable
alternative for trailing systems, where the overhead should be significantly lower.

Dependencies indexed by modification event

The dependency arrays are indexed by propagation condition. A single modification
typically triggers more than one propagation condition, so scheduling may require
iterating over different parts of the dependency array. For example, Section 6.3 de-
fines notify for the modification event melbc to schedule the propagators between
propagation conditions π2 and π3, and in addition the propagators for π5.

97

6 Implementing a Propagation Kernel

Benchmark time % mem. %

BIBD 107.91 105.75

Alpha (smart) 105.99 157.14

Alpha (naive) 104.06 169.57

Knights (18) 107.88 110.78

Golomb Rulers (10) 100.91 100.00

Queens (Naive, 10) 100.74 100.00

Queens (Smart, 10) 101.92 100.00

Queens (Naive, 100) 99.57 100.00

Queens (Smart, 100) 101.05 100.00

Eq-20 107.69 100.00

Graph Coloring 105.61 100.00

M. Seq. (Smart, 500) 244.25 292.29

M. Seq. (Naive, 500) 108.55 130.32

M. Seq. (GCC, 500) 99.33 100.00

Photo Alignment 103.99 106.35

Partition (32) 102.90 100.00

Benchmark time % mem. %

Social Golfers (8-4-9) 120.98 160.54

Social Golfers (5-3-7) 112.68 154.42

Crew Scheduling 116.76 197.56

Steiner Triples (9) 113.24 199.45

Sudoku (Set, 1) 114.67 157.83

Sudoku (Set, 4) 109.70 100.77

Sudoku (Set, 5) 104.60 159.63

Queen Armies 111.60 100.00

Hamming Codes (20-3-32) 119.80 133.36

Table 6.6: Relative performance of dependencies indexed by modification event

Alternatively, one could index the dependency array by modification event, and keep
a single propagator multiple times in the array. Then notify(melbc) would just have
to iterate once over the propagators indexed by melbc. A propagator that subscribes
for the propagation condition π3 = {asn, lbc,ubc} would end up three times in the
dependency array, once in the part indexed as measn, once in the part indexed as
melbc, and once in the part indexed as meubc.

Table 6.6 lists the results of our experiments. Keeping propagators multiple times
in the dependency arrays clearly increases the memory usage, but the performance
also suffers because of increased copying costs. The overhead is highest for ex-
amples where many propagators subscribe with propagation conditions other than
{asn}, such as the smart magic sequence, or the set constraint examples appearing
in the right table.

Delaying the scheduling

As mentioned in Section 6.3, the notify method immediately schedules all depen-
dent propagators when a variable domain is modified. Thus, propagators get sched-
uled several times if the same variable is modified several times during the same run
of a propagate method. The experimental results shown in Table 6.7 suggest that
this occurs only moderately often in practice. The column Mod. lists the number of
variable modifications, and the column Double mod. % the relative number of these
modifications that were double modifications during the same run of a propagate

method.

98

6.9 Performance Analysis

Benchmark Mod. Double

mod. %

BIBD 59852 0.00

Alpha (smart) 2853 17.88

Alpha (naive) 211905 8.44

Knights (18) 54336 28.85

Golomb Rulers (10) 1335772 16.10

Queens (Naive, 10) 117163 1.13

Queens (Smart, 10) 119055 15.52

Queens (Naive, 100) 7331 0.10

Queens (Smart, 100) 7332 2.22

Eq-20 1133 8.56

Graph Coloring 83970 8.89

M. Seq. (Smart, 500) 58873 1.25

M. Seq. (Naive, 500) 723190 0.07

M. Seq. (GCC, 500) 49826 1.00

Photo Alignment 343368 1.59

Partition (32) 10300108 5.10

Perfect Square 98059 0.96

Benchmark Mod. Double

mod. %

Social Golfers (8-4-9) 69417 0.00

Social Golfers (5-3-7) 326664 1.25

Crew Scheduling 1792 15.46

Steiner Triples (9) 141262 1.50

Sudoku (Set, 1) 890 4.38

Sudoku (Set, 4) 1223 3.27

Sudoku (Set, 5) 5795 2.09

Queen Armies 114070 0.00

Hamming (20-3-32) 566624 6.05

Table 6.7: Number of modifications and double modifications

The examples that have a high count of doubly modified variables use propagators
that achieve idempotency by iteration, such as the propagator for linear equations
(in Alpha and Eq-20) or the all-different propagators (in Knights, Smart Queens and
Graph Scheduling). Note that the only overhead that arises from scheduling propaga-
tors twice in these cases is the check whether the new modification event is already
contained in the propagator’s modification event delta, as discussed in Section 6.3.

Copied versus shared propagators

One of our fundamental design decisions was to base our architecture on copying.
More precisely, we decided to copy both variables and propagators. That way, we
can backtrack the complete state during search, including the dependencies and the
propagators’ internal data structures. This enables techniques such as removing
subsumed propagators or rewriting propagators (Section 5.3), and lets propagator
implementations deal with complicated data structures easily (as long as they can
be copied).

However, some propagators do not use these techniques and do not require any
backtrackable state (for example, propagators for x < y or x = max(y, z)). Prop-
agators for other constraints, such as Boolean clauses, have a backtrack-safe state:
they adapt their dependencies dynamically (recall Example 5.13), but the state is still
globally valid, at least in a DFS search.

To assess the overhead of copying for these propagators, we implemented a Boolean

99

6 Implementing a Propagation Kernel

Benchmark time % mem. % propagations %

Dubois (20) 30.79 26.53 149.32

Towers of Hanoi (4) 70.37 86.69 147.52

Flat (200-1) 63.58 50.11 149.83

Pigeon Hole (7) 117.91 52.00 192.22

Pigeon Hole (8) 39.20 50.82 209.39

Ramsey (4-4-10) 36.49 25.70 94.60

Ramsey (4-4-13) 31.16 25.18 65.56

Table 6.8: Relative performance of non-copied propagators

clause propagator that is never copied. Every Boolean variable gets additional global

dependencies, which point to the non-copied propagators and are shared between
all copies of the variable. Table 6.8 reports the results for a number of SAT problems.
Not copying the propagators clearly boosts performance, both in terms of run-time
and memory consumption. Due to different scheduling, the number of propagation
steps (column prop.) is even significantly higher, and still the solver is faster.

These experiments show the extreme case—a great number of essentially stateless
propagators. For typical propagation problems, the benefits of copying outweigh the
costs. One should also note that general-purpose constraint solvers do not handle
SAT problems very well. Dedicated SAT solvers like MiniSat (Eén and Sörensson,
2004) solve any problem from Table 6.8 in a fraction of a second, due to elaborate
techniques such as conflict clause learning and special branching heuristics.

100

Contributions of Part I

This first part of the dissertation established a mathematical model of constraint
propagation, and developed an implementation architecture for a constraint solver
based on the mathematical model. The main original contributions of these four
chapters are as follows.

1. The mathematical model identifies contraction and soundness as the minimal
properties that are required of propagators. Propagators are therefore more
general than in previous models, which usually define them to be monotonic
and often idempotent in addition. This work provides the first thorough discus-
sion of idempotency and monotonicity of propagators. Non-monotonic propa-
gators have no influence on soundness and completeness of a solver.

2. Previous models of constraint propagation typically defined conditions under
which a propagator is correct for a particular constraint. Our definition of
propagators is independent of constraints. Rather, it is a consequence of the
definition that each propagator induces a unique constraint.

3. Based on existing models of domain approximations, this dissertation uses do-

main systems in a novel way as a tool for characterizing propagation strength

generically. Propagation strength is defined as a property of propagators, in
contrast to the traditional notions of consistency, which are defined as prop-
erties of domains. All classic notions such as bounds, range, or set interval
consistency have corresponding notions in the general model.

4. While the scheduling techniques presented in Chapter 5 are no original contri-
bution of this work, we consider the uniform presentation in our mathemat-
ical framework enlightening and valuable. We introduce the novel concepts
of propagation conditions and modification events, which capture exactly the
sets of events that are necessary for scheduling propagators and describing
variable modifications, respectively. The model based on propagation condi-
tions and modification events yields a straightforward implementation.

5. For the first time, this dissertation presents a complete implementation archi-
tecture for a constraint solver based on principled models. The architecture
separates the domain-independent kernel of the solver from the domain mod-

ules, consisting of the domain-specific parts. Contracts between propagators,

6 Implementing a Propagation Kernel

variables, and the kernel dictate how these components interact, and establish
strong invariants in the implementation architecture.

6. This dissertation contains the first systematic discussion and evaluation of the
two central data structures in a propagation-based solver, the dependencies
and the priority queue. We design dependency and index arrays for the depen-
dencies, as well as a bucket queue with links embedded into the propagator
objects for the priority queue.

7. An important and novel aspect is the detailed discussion of detecting propaga-
tor subsumption. In a copying solver, removing subsumed propagators saves
not only memory, but also run-time during copying. Furthermore, subsump-
tion is the basis for propagator rewriting, which simplifies the implementation
of propagation algorithms.

8. The whole architecture presented here has been implemented in the Gecode
constraint solver. Gecode provides a production-quality, efficient solver as
a C++ library. The high performance as well as the modularity and clean ar-
chitecture of Gecode result directly from the principled models and powerful
techniques developed here.

102

Part II

Techniques for Deriving

Propagators

7 Views

This chapter introduces views, which are used to derive propagators from existing
propagators. A derived propagator induces a variant of the constraint that its orig-
inal propagator induces. The goal is to reuse implementations of propagation algo-
rithms, making it simpler to provide a comprehensive library of correct and efficient
propagators.

Using the mathematical model of propagation from Chapter 3, we define views for-
mally. We prove that derived propagators are perfect, in that they preserve all im-
portant properties like correctness, domain completeness, and completeness with
respect to approximations.

Structure of the chapter. After an informal motivation of views and derived prop-
agators (7.1), we present the basic mathematical model of views (7.2). Within this
model, we can prove several results concerning correctness (7.3) and completeness
(7.4) of derived propagators, and investigate properties such as compositionality,
idempotency, subsumption, and events (7.5).

7.1 Motivation

When implementing a propagator for a constraint, one typically needs to decide
whether to also implement some of its variants. Let us look at three examples of
such constraint variants.

Example 7.1 (Minimum/maximum) When implementing a propagator for the con-
straint Jmax{x1, . . . , xn} = yK, should one also implement Jmin{x1, . . . , xn} = yK?
These two constraints are related by the equivalence

Jmin{x1, . . . , xn} = yK = Jmax{−x1, . . . ,−xn} = −yK ∗

Example 7.2 (Linear constraints) When implementing a propagator for the linear
equation J

∑n
i=1aixi = kK for integer variables xi and integers ai and k, should one

also implement the special case J
∑n
i=1xi = kK for better performance? ∗

7 Views

Example 7.3 (Reified constraints) When implementing a propagator for the reified
linear equation J

(∑n
i=1xi = c

)
↔ bK, should one also implement J

(∑n
i=1 xi ≠ c

)
↔

bK? These two constraints only differ by the sign of the variable b:

r(n∑

i=1

xi ≠ c
)
↔ b

z
=

r(n∑

i=1

xi = c
)
↔ ¬b

z
∗

The two straightforward approaches for implementing variants of constraints are
to either implement dedicated propagators for the variants, or to decompose the
constraints. In the last example, for instance, one could decompose the reified con-
straint using two propagators, one for J

(∑n
i=1xi = c

)
↔ b′K, and one for Jb ↔ ¬b′K,

introducing an additional variable b′.

Implementing the variants inflates code and documentation. Given the potential
code explosion, one may be able to only implement some variants (say, minimum
and maximum). Other variants important for performance (say, minimum and max-
imum for two variables) may be infeasible due to excessive programming and main-
tenance effort. Decomposing, on the other hand, increases memory consumption
and run-time, as we will see in the empirical evaluation in Chapter 9.

In this chapter, we follow a third approach: we derive propagators from already ex-
isting propagators using views on variables. This approach combines the efficiency
of dedicated propagator implementations with the simplicity of decomposition.

Example 7.4 (Deriving a minimum propagator) Consider a propagator for the con-
straint Jmax(x,y) = zK. Given three more propagators for Jx′ = −xK, Jy ′ = −yK,
and Jz′ = −zK, we could propagate the constraint Jmin(x′, y ′) = z′K using the prop-
agator for Jmax(x,y) = zK. In contrast to this decomposition, we propose to derive
a propagator using views that perform simple transformations.

Views transform the input and the output of a propagator. For example, a minus
view on a variable x transforms the variable domain of x by negating each element,
then passes the transformed domain to the propagator, and performs the inverse
transformation on the domain that the propagator returns. With views, the imple-
mentation of the maximum propagator can be reused: we derive a propagator for
the minimum constraint from a propagator for the maximum constraint and three
minus views. ∗

This chapter defines views formally, and reasons about the properties of the propa-
gators we derive using views. The next chapter presents several generic techniques
that one can use to derive propagators using views, and Chapter 9 and Chapter 10

present implementation approaches for views and derived propagators. We will see
that views as introduced here have many applications, can be implemented easily,
and result in a large number of useful and efficient derived propagators.

106

7.2 Views and Derived Propagators

7.2 Views and Derived Propagators

After the informal introduction, let us now define views and derived propagators in
the context of the mathematical model from Chapter 3. Given a propagator p, a view
is represented by two functions, ϕ and ϕ

−, that can be composed with p such that
ϕ
− ◦ p ◦ ϕ is the desired derived propagator. The function ϕ transforms the input

domain, and ϕ− applies the inverse transformation to the propagator’s output.

Definition 7.5 A variable view ϕx ∈ V → V ′ for a variable x is an injective func-
tion mapping values to values. The set V ′ may be different from V , and the cor-
responding sets of assignments, domains, constraints, and propagators are called
Asn′, Dom′, Con′, and Prop′, respectively.

Given a family of variable views ϕx for all x ∈ X, we lift them point-wise to assign-
ments: ϕAsn(a) := λx.ϕx(a(x)).

A view ϕ ∈ Con → Con′ is a family of variable views, lifted to sets of assign-
ments (constraints): ϕ(c) :=

{
ϕAsn(a)

∣∣ a ∈ c}. The inverse of a view is ϕ−(c) :={
a ∈ Asn

∣∣ ϕAsn(a) ∈ c
}
. ∗

Definition 7.6 Given a propagator p ∈ Prop′ and a view ϕ, the derived propagator
ϕ̂(p) ∈ Prop is defined as ϕ̂(p) := ϕ−◦p◦ϕ. Similarly, we define a derived constraint

to be ϕ−(c) ∈ Con for a given constraint c ∈ Con′. ∗

Example 7.7 Given a propagator p for the constraint c = Jx = yK, we want to derive
a propagator for c′ = Jx = 2yK using a view ϕ such that ϕ−(c) = c′.

Intuitively, the function ϕ leaves x as it is and scales y by 2, while ϕ− does the
inverse transformation. We thus define ϕx(v) = v and ϕy(v) = 2v. Now it becomes
clear why we need different sets V and V ′, as the latter must contain all elements of
V multiplied by 2.

The derived propagator is ϕ̂(p) = ϕ− ◦ p ◦ ϕ. We say that ϕ̂(p) “uses a scale view
on” y , meaning that ϕy is the function defined as ϕy(v) = 2v. Similarly, using an
identity view on x amounts to ϕx being the identity function on V .

Given the assignment a = (x ֏ 2, y ֏ 1), we first apply ϕ and get ϕ({a}) = {(x ֏
2, y ֏ 2)}. This is accepted by p and returned unchanged, so ϕ− transforms it back
to {a}. Another assignment, a′ = (x ֏ 1, y ֏ 2), is transformed to ϕ({a′}) =

{(x ֏ 1, y ֏ 4)}, rejected (p(ϕ({a′})) = 0), and the empty domain is mapped to
the empty domain by ϕ−. The propagator ϕ̂(p) induces ϕ−(c). ∗

Many-sorted views. Views directly generalize to the many-sorted model of con-
straint propagation introduced in Section 3.5. Only the definition of variable views
changes to ϕx ∈ Vx → V ′x, with a suitable family of sets V ′x , one for each variable

107

7 Views

x. We will stick to the single-sorted model in the rest of the chapter, but implic-
itly use the many-sorted case in some examples (for instance when talking about
propagators that involve both integer and Boolean variables).

7.3 Correctness of Derived Propagators

This section shows that derived propagators are well-defined and correct:

• A derived propagator ϕ̂(p) is in fact a propagator.

• The derived propagator induces the desired constraint: cϕ̂(p) = ϕ
−(cp).

• A view ϕ preserves contraction of a propagator p: If p(ϕ(d)) ⊂ ϕ(d), then
ϕ̂(p)(d) ⊂ d. This property makes sure that if p prunes the domain, then this
pruning will not be lost after transforming the domain back using ϕ−.

We will now prove these three statements. For the proofs, we employ the following
properties of views, which are direct consequences of the definitions:

P1. ϕ and ϕ− are monotonic by construction (as ϕ and ϕ− are defined point-wise)

P2. ϕ− ◦ ϕ = id (the identity function)

P3. |ϕ({a})| = 1, ϕ(0) = 0

P4. For any view ϕ and domain d, we have ϕ(d) ∈ Dom and ϕ−(d) ∈ Dom (as
views are defined point-wise)

Proposition 7.8 For all propagators p and views ϕ, ϕ̂(p) is a propagator. If p is
monotonic, then ϕ̂(p) is also monotonic. ∗

Proof. The derived propagator is well-defined because both ϕ(d) and ϕ
−(d) are do-

mains (see P4 above). We have to show that ϕ− ◦p ◦ ϕ is contracting and sound.

For contraction, we have p(ϕ(d)) ⊆ ϕ(d) as p is contracting. From monotonicity of
ϕ
− (with P1), it follows that ϕ−(p(ϕ(d))) ⊆ ϕ

−(ϕ(d)). As ϕ− ◦ ϕ = id (with P2), we
have ϕ−(p(ϕ(d))) ⊆ d, which proves that ϕ̂(p) is contracting.

Soundness is shown as follows for all assignments a and domains d with {a} ⊆ d:

ϕ({a}) ⊆ ϕ(d) (ϕ monotonic, P1)

=⇒ p(ϕ({a})) ⊆ p(ϕ(d)) (|ϕ({a})| = 1, p sound, P3)

=⇒ ϕ
−(p(ϕ({a}))) ⊆ ϕ−(p(ϕ(d))) (ϕ− monotonic, P1)

In summary, for any propagator p, ϕ̂(p) = ϕ− ◦ p ◦ ϕ is a propagator.

If p is monotonic, monotonicity of ϕ̂(p) can be shown just like soundness, replacing
each {a} with a domain d′.

108

7.4 Completeness of Derived Propagators

Proposition 7.9 Let p be a propagator, and let ϕ be a view. Then ϕ̂(p) induces the
constraint ϕ−(cp). ∗

Proof. As p induces cp, we know p({a}) = cp ∩ {a} for all assignments a. With
|ϕ({a})| = 1 (P3), we have p(ϕ({a})) = cp ∩ ϕ({a}). Furthermore, we know that
cp ∩ ϕ({a}) is either 0 or ϕ({a}).

• Case 0: We have ϕ−(p(ϕ({a}))) = 0 =
{
a′ ∈ Asn

∣∣∣ a = a′ ∧ ϕAsn(a) ∈ cp
}
=

ϕ−(cp)∩ {a}.
• Case ϕ({a}): With P2, we have ϕ− ◦ ϕ = id and hence ϕ−(p(ϕ({a}))) = {a}.

Furthermore, ϕ−(cp)∩ {a} =
{
a′ ∈ Asn

∣∣∣ a = a′ ∧ ϕAsn(a) ∈ cp
}
= {a}.

Together, this shows that ϕ− ◦ p ◦ ϕ({a}) = {a} ∩ ϕ−(cp).

Proposition 7.10 Views preserve contraction. Let p be a propagator, let ϕ be a view,
and let d be a domain such that p(ϕ(d)) ⊂ ϕ(d). Then ϕ̂(p)(d) ⊂ d. ∗

Proof. The definition of ϕ−(c) is
{
a ∈ Asn

∣∣ ϕAsn(a) ∈ c
}
. It clearly follows that

|ϕ−(c)| ≤ |c|. Similarly, we know that |ϕ(c)| = |c|. From p(ϕ(d)) ⊂ ϕ(d), it follows
that |p(ϕ(d))| < |ϕ(d)|. Together, this yields |ϕ̂(p)(d)| < |ϕ(d)| = |d|. We have
seen in Proposition 7.8 that ϕ̂(p)(d) ⊆ d, so we can conclude that ϕ̂(p)(d) ⊂ d.

7.4 Completeness of Derived Propagators

Given a domain system D and a D -complete propagator p, ideally all propagators
derived from p using a view ϕ would also be D -complete. It turns out that this is not
true in general, but depends on whether ϕ and ϕ− commute with the D -relaxation
operator.

Definition 7.11 A constraint c is a ϕ-constraint for a view ϕ if and only if for all
a ∈ c, there is a b ∈ Asn such that a = ϕAsn(b). A view ϕ is D -injective if and
only if ϕ−(VcWD) = Vϕ−(c)WD for all ϕ-constraints c. It is D -surjective if and only if
ϕ(VdWD) = Vϕ(d)WD for all domains d. It is D -bijective if and only if it is D -injective
and D -surjective. ∗

For the completeness proofs, we need the additional fact that views commute with
set intersection.

Lemma 7.12 For any view ϕ, the equation ϕ−(c1 ∩ c2) = ϕ−(c1)∩ ϕ−(c2) holds. ∗

Proof. By definition of ϕ−, we have

ϕ
−(c1 ∩ c2) =

{
a ∈ Asn

∣∣ ϕAsn(a) ∈ c1 ∧ ϕAsn(a) ∈ c2
}

109

7 Views

As ϕAsn is a function, this is equal to

{
a ∈ Asn

∣∣ ϕAsn(a) ∈ c1
}
∩
{
a ∈ Asn

∣∣ ϕAsn(a) ∈ c2
}
= ϕ−(c1)∩ ϕ

−(c2)

Theorem 7.13 Let D be a domain system and let p be a D -complete propagator. For
any D -bijective view ϕ, the propagator ϕ̂(p) is D -complete. ∗

Proof. From Proposition 7.9, we know that ϕ̂(p) induces the constraint ϕ−(cp). By
monotonicity of ϕ− (with P1) and D completeness of p, we know that

ϕ
− ◦ p ◦ ϕ(d) ⊆ ϕ−(Vcp ∩ Vϕ(d)WDWD)

We now use the fact that both ϕ
− and ϕ commute with V·WD and set intersection:

ϕ
−(Vcp ∩ Vϕ(d)WDWD) = ϕ

−(Vcp ∩ ϕ(VdWD)WD) D -surjective

= Vϕ−(cp ∩ ϕ(VdWD))WD D -injective

= Vϕ−(cp)∩ ϕ−(ϕ(VdWD))WD commute with ∩

= Vϕ−(cp)∩ VdWDWD definition of ϕ

The second step uses D injectivity, so it requires cp ∩ ϕ(VdWD) to be a ϕ-constraint.
All assignments in a ϕ-constraint have to be the image of some assignment under
ϕAsn. This is the case here, as the intersection with ϕ(VdWD) can only contain such
assignments. So in summary, we get

ϕ
− ◦ p ◦ ϕ(d) ⊆ Vϕ−(cp)∩ VdWDWD

which is the definition of ϕ̂(p) being D -complete.

Stronger notions of completeness

We can formulate similar theorems for domain completeness, D -Dom completeness,
and Dom-D completeness. The theorems directly follow from the fact that any view
ϕ is compatible with the domain relaxation, which means that ϕ is both Dom-injec-
tive and Dom-surjective. In order to prove this, we first need a lemma that lets us
write the domain relaxation of a constraint in a slightly different way.

Lemma 7.14 Let d be the domain relaxation of a constraint c, d = VcW. Then for all
x ∈ X, we have v ∈ d(x)⇔ ∃a ∈ c : a(x) = v. ∗

Proof. We prove both directions of the equivalence:

⇒ There must be such an assignment a because otherwise we could construct a
strictly stronger d′ ⊂ d with v ∉ d′(x) such that still c ⊆ d′.

⇐ Each domain d′ in the intersection
⋂
{d′ ∈ Dom | c ⊆ con(d′)} must contain the

value v ∈ d′(x) as c ⊆ d′. So for the result of the intersection d, v ∈ d(x).

110

7.5 More Properties of Derived Propagators

Using this lemma, we can now prove that any view is compatible with the domain
relaxation.

Lemma 7.15 Any view ϕ is Dom-injective and Dom-surjective. ∗

Proof. The Dom surjectivity follows directly from the definitions, as VdWDom = d

for any domain d (with P4). For Dom injectivity, we have to show that the equa-
tion ϕ

−(VcW) = Vϕ−(c)W holds for any constraint c and any view ϕ. For clarity,
we write the equation including the implicit con(·) operations: ϕ−(con(VcW)) =
con(Vϕ−(c)W). By definition of ϕ− and con(·), we have

ϕ
−(con(VcW)) =

{
a ∈ Asn

∣∣ ∀x ∈ X : ϕAsn(a)(x) ∈ VcW(x)
}

Using Lemma 7.14 for V·W, this is equal to

{
a ∈ Asn

∣∣ ∀x ∈ X ∃b ∈ c : ϕAsn(a)(x) = b(x)
}

As ϕAsn is an injective function, we can find such a b that is in the range of ϕAsn, if
and only if there is also a b′ ∈ ϕ−(c) such that ϕAsn(b

′) = b. Therefore, we get

{
a ∈ Asn

∣∣ ∀x ∈ X ∃b′ ∈ ϕ−(c) : a(x) = b′(x)
}

=
{
a ∈ Asn

∣∣ ∀x ∈ X : a(x) ∈ Vϕ−(c)W(x)
}

= con(Vϕ−(c)WDom)

The following three theorems express under which conditions D -Dom completeness,
Dom-D completeness, and domain completeness are preserved when deriving prop-
agators. We omit the proofs of these theorems, as they are analogous to the proof
of Theorem 7.13, using Lemma 7.15.

Theorem 7.16 Let D be a domain system and let p be a D -Dom-complete propaga-
tor. For any D -injective view ϕ, the propagator ϕ̂(p) is D -Dom-complete. ∗

Theorem 7.17 Let D be a domain system and let p be a Dom-D -complete propaga-
tor. For any D -surjective view ϕ, the propagator ϕ̂(p) is Dom-D -complete. ∗

Theorem 7.18 Let p be a domain-complete propagator, and let ϕ be a view. Then
ϕ̂(p) is domain-complete. ∗

7.5 More Properties of Derived Propagators

This section discusses how views can be composed, how derived propagators be-
have with respect to idempotency and subsumption, and how events can be used to
schedule derived propagators.

111

7 Views

Composing views

A derived propagator permits further derivation. Consider a propagator p and two
views ϕ,ϕ′. Then ϕ̂′(ϕ̂(p)) is a perfectly acceptable derived propagator, and proper-
ties like correctness and completeness carry over transitively. For instance, we can
derive a propagator for Jx − y = cK from a propagator for Jx + y = 0K, combining
an offset view (ϕy(v) = v + c) and a minus view (ϕ′y(v) = −v) on y . This yields a
propagator for Jx + (−(y + c)) = 0K = Jx −y = cK.

Fixed points

Section 5.4 showed how to optimize the scheduling of propagators that are known
to be at a fixed point. Views preserve fixed points of propagators, so the same
optimizations apply to derived propagators.

Proposition 7.19 Let p be a propagator, let ϕ be a view, and let d be a domain. If
ϕ(d) is a fixed point of p, then d is a fixed point of ϕ̂(p). ∗

Proof. Assume p(p(ϕ(d))) = p(ϕ(d)). We have to show ϕ̂(p)(d) = ϕ̂(p)(ϕ̂(p)(d)).
With the assumption, we can write ϕ̂(p)(d) = (ϕ− ◦ p ◦ p ◦ ϕ)(d). We know that
ϕ ◦ ϕ−(c) = c if |ϕ−(c)| = |c|. As we first apply ϕ, this is the case here, so we
can add ϕ ◦ ϕ− in the middle, yielding (ϕ− ◦ p ◦ (ϕ ◦ ϕ−) ◦ p ◦ ϕ)(d). With function
composition being associative, this is equal to ϕ̂(p)(ϕ̂(p)(d)).

Subsumption

A propagator is subsumed by a domain d if and only if for all stronger domains
d′ ⊆ d, p(d′) = d′. Subsumed propagators cannot do any pruning in the remain-
ing subtree of the search, and can therefore be removed (see Section 5.3). Deciding
subsumption is coNP-complete in general, but for many practically relevant propa-
gators an approximation can be decided easily. The following theorem states that
the approximation is also valid for the derived propagator.

Proposition 7.20 Let p be a propagator and let ϕ be a view. The propagator ϕ̂(p)
is subsumed by a domain d if and only if p is subsumed by ϕ(d). ∗

Proof. The definition of ϕ implies that ∀d′ ⊆ d : ϕ−(p(ϕ(d′))) = d′ is equivalent to
∀d′ ⊆ d : ϕ−(p(ϕ(d′))) = ϕ−(ϕ(d′)). As ϕ− is a function, and because it preserves
contraction (see Proposition 7.10), this is equivalent to ∀d′ ⊆ d : p(ϕ(d′)) = ϕ(d′).
This can be rewritten to ∀d′′ ⊆ ϕ(d) : p(d′′) = d′′ because all ϕ(d′) are subsets of
ϕ(d).

112

7.6 Related Work

Events and propagation conditions

Section 5.5 introduced propagation conditions for efficient scheduling of propaga-
tors. If a propagator p depends on a variable x with propagation condition π , what
propagation condition does a propagator derived from p depend on?

Let us assume that we are dealing with an event system that provides at least the
events asn (signaling assignment) and dmc (signaling arbitrary domain changes), and
possibly others. Given a propagator p and a view ϕ, for each variable x that p is
subscribed to with propagation condition πx , we construct a set of events ex as
a safe approximation as follows. If asn ∈ πx, put asn ∈ ex . For any other event
e ∈ πx , put dmc ∈ ex . Finally, subscribe ϕ̂(p) to x with the smallest propagation
condition π ′ such that for all e ∈ ex, we have e ∈ π ′.

We can use asn events because ϕx is injective, and injectivity implies that |d(x)| =
1⇔ |ϕx(d(x))| = 1. If and only if a variable is assigned, it also appears as assigned
under the view.

Concerning events for integer variables, if ϕx is monotonic with respect to the order
on V (meaning that a < b implies ϕx(a) < ϕx(b)), we can also use bounds events.
If ϕx is anti-monotonic with respect to that order, we have to switch lbc with ubc.

Example 7.21 (Deriving propagation conditions) Consider the following propaga-
tor for the constraint Jx ≤max(y1, y2)K:

p(d)(z) =

d(x)∩ {−∞, . . . ,max{max(d(y1)),max(d(y2))}} if z = x

d(z) otherwise

Given the event system from Example 5.7 in Section 5.2, we subscribe the propagator
to y1 and y2 with the propagation condition {ubc}, as it can only contribute when
an upper bound change happens.

Using minus views, we can derive a propagator ϕ̂(p) for Jx ≥ min(y1, y2)K (which
is equivalent to J−x ≤max(−y1,−y2)K, see Section 8.1). Minus views are anti-mono-
tonic with respect to the natural order on integers: when the upper bound is de-
creased for a variable x, the lower bound of −x increases. Hence, we have to sub-
scribe ϕ̂(p) to y1 and y2 with the propagation condition {lbc}. ∗

7.6 Related Work

While the idea to systematically derive propagators using views is novel, there are a
few related approaches we can point out.

113

7 Views

◮ Reusing functionality (like a propagator) by wrapping it in an adaptor (like a view)
is of course a much more general technique—think of higher-order functions like
fold or map in functional programming languages; or chaining command-line tools
in Unix operating systems using pipes.

◮ Views that perform arithmetic transformations are related to the concept of in-
dexicals (see Carlsson et al., 1997; Van Hentenryck et al., 1998). An indexical is a
propagator that prunes a single variable and is defined in terms of range expres-
sions. We will see a similar approach in the context of set constraints in Chapter 11.
In contrast to views, range expressions can involve multiple variables, but on the
other hand only operate in one direction. For instance, in an indexical for the con-
straint Jx = y + zK, the range expression y + z would be used to prune the domain
of x, but not for pruning the domains of y or z. Views must support reasoning in
both directions, which is why they are limited in expressivity.

◮ Instead of regarding a view ϕ as transforming a constraint c, we can regard ϕ as
additional constraints, implementing the decomposition. Assuming the significant
variables of c are x1, . . . , xn, we use additional variables x′

1
, . . . , x′n. Instead of c,

we use c′ = c[x1/x
′
1
, . . . , xn/x

′
n], which enforces the same relation as c, but on

x′
1
, . . . , x′n. Finally, we have n view constraints cϕ,i, each equivalent to the relation

x′i = ϕi(xi). The solutions of the decomposition model, restricted to the x1, . . . , xn,
are exactly the solutions of the original view-based model.

Every view constraint cϕ,i shares exactly one variable with c and no variable with any
other cϕ,i. Thus, the constraint graph is Berge-acyclic (Beeri et al., 1983), and we get
a fixed point by first propagating all the cϕ,i, then propagating c[x1/x

′
1
, . . . , xn/x

′n],
and then again propagating the cϕ,i. This is exactly what ϕ− ◦p ◦ϕ does. Constraint
solvers typically do not provide any means of specifying the propagator schedul-
ing in such a fine-grained way. Thus, deriving propagators using views is also a
technique for specifying perfect propagator scheduling.

On a more historical level, we can relate a derived propagator to the notion of path

consistency. A domain is path-consistent for a set of constraints, if for any subset
{x,y, z} of its variables, v1 ∈ d(x) and v2 ∈ d(y) implies that there is a value
v3 ∈ d(z) such that the pair (v1, v2) satisfies all the (binary) constraints between x
and y , the pair (v1, v3) satisfies all the (binary) constraints between x and z, and
the pair (v3, v2) satisfies all the (binary) constraints between z and y (Mackworth,
1977). If ϕ̂(p) is domain-complete for ϕ−(c), then it achieves path consistency for
the constraint c[x1/x

′
1
, . . . , xn/x

′
n] and all the cϕ,i in the decomposition model.

114

8 Deriving Propagators Using Views

This chapter explores a number of different techniques for deriving propagators
using views, and thus reveals the broad scope of applications for views and derived
propagators.

Structure of the chapter. We employ views for algebraic transformations such as
Boolean negation or set complement (8.1), for generalization, a technique that de-
rives more complex propagators from simpler propagators (8.2), for specialization

of propagators using constant views (8.3), and for converting between different types
of variable domains (8.4). We finally discuss limitations of views (8.5).

8.1 Transformation

This section discusses views and derived propagators for Boolean variables where
V = {0,1}. Not surprisingly, the only view apart from identity for Boolean variables
captures negation. That is, using a negation view on x defines ϕx(v) = 1 − v for
x ∈ X and v ∈ V .

Negation views are more widely applicable than one would initially believe. They
demonstrate how views can be used systematically to obtain implementations of
constraint variants by transformation.

Boolean connectives

The immediate application of negation views is to derive propagators for all Boolean
connectives from just three propagators: A negation view for x in x = y yields a
propagator for ¬x = y . From disjunction x ∨ y = z one can derive conjunction
x∧y = z with negation views on x, y , z, and implication x → y = z with a negation
view on x. From equivalence x ↔ y = z one can derive exclusive or x ⊕y = z with
a negation view on z.

As Boolean constraints are widespread in models, it pays off to optimize frequently
occurring cases. One important propagator is disjunction

∨n
i=1xi = y for arbitrarily

many variables; again conjunction can be derived with negation views on the xi and
on y . Another important propagator implements the constraint

∨n
i=1 xi = 1, stating

8 Deriving Propagators Using Views

that the disjunction must be true. A propagator for this constraint is essential as the
constraint occurs frequently and as it can be implemented efficiently using watched
literals, see for example Gent et al. (2006b). With views and derived propagators
all implementation work is readily reused for conjunction. This shows a general
advantage of views: effort put into optimizing a single propagator implementation
directly pays off for all other propagators derived from it.

Boolean cardinality

Like the constraint
∨n
i=1xi = 1, the Boolean cardinality constraint

∑n
i=1 xi ≥ c occurs

frequently and can be implemented efficiently using watched literals (requiring c+1
watched literals, Boolean disjunction corresponds to the case where c = 1). But also
a propagator for

∑n
i=1xi ≤ c can be derived using negation views with the following

transformation:
∑n
i=1xi ≤ c ⇐⇒ −

∑n
i=1xi ≥ −c ⇐⇒ n−

∑n
i=1xi ≥ n− c

⇐⇒
∑n
i=1 1− xi ≥ n− c ⇐⇒

∑n
i=1¬xi ≥ n− c

Reification

Many reified constraints (such as
(∑n

x=1 xi = c
)
↔ b) also exist in a negated version

(such as
(∑n

x=1 xi ≠ c
)
↔ b). Deriving the negated version is trivial by using a nega-

tion view on the Boolean control variable b. This contrasts nicely with the effort
without views: either the entire code must be duplicated or the parts that perform
checking whether the constraint or its negation is entailed must be factorized out
and combined differently for the two variants.

Transformation using integer views

The integer equivalent to negation views for Boolean variables are minus views: a
minus view on an integer variable x is defined as ϕx(v) = −v. Minus views help to
derive propagators following simple transformations: for example, min(x,y) = z
can be derived from max(x,y) = z by using minus views for x, y , and z.

Transformations through minus views can improve performance in subtle ways.
Consider a bounds(Z)-complete propagation algorithm for multiplication x×y = z.
Propagation depends on whether zero is still included in the domains of x, y , or
z. Testing for inclusion of zero each time the algorithm is executed is inefficient.
Instead, one would like to rewrite the propagator to special variants where x, y ,
and z are either strictly positive or negative. These variants can propagate more ef-
ficiently, in particular because propagation can easily be made idempotent. Instead
of implementing three different propagators (all variables strictly positive, x or y
strictly positive, only z strictly positive), a single propagator assuming that all views
are positive is sufficient. The other propagators can be derived using minus views.

116

8.2 Generalization

Transformation using set views

Set constraints deal with variables whose domains are sets of finite sets. This
power set lattice is a Boolean algebra, so typical constraints are constructed from
the Boolean primitives disjunction (union), conjunction (intersection), and negation
(complement), and the relations equality and implication (subset).

As for Boolean and integer variables, views on set variables enable transformation.
Using complement views (analogous to Boolean negation) on x,y, z with a propaga-
tor for x ∩y = z yields a propagator for x ∪y = z. A complement view on y gives
us x \y = z.

As Chapter 9 will show, views on integer variables can be implemented without any
overhead compared to a specialized implementation. For set variables, this is often
not the case, as the experiments we will see in Section 10.7 suggest. Chapter 11

will present an alternative technique for deriving propagators for constraints on set
variables.

8.2 Generalization

Common views for integer variables capture linear transformations of the integer
values: an offset view for o ∈ Z on x is defined as ϕx(v) = v + o, and a scale view

for a ∈ Z on x is defined as ϕx(v) = a× v.

Generalization using arithmetic views

Offset and scale views are useful for generalizing propagators. Generalization has
two key advantages: simplicity and efficiency. A more specialized propagator is
often simpler to implement than a generalized version. The possibility to use the
specialized version when the full power of the general version is not required may
save memory and run-time during execution.

We can devise an efficient propagation algorithm for a linear equality constraint∑n
i=1xi = c for the common case that the linear equation has only unit coefficients.

The more general case
∑n
i=1 aixi = c can be derived by using scale views for ai on xi

(the same technique of course applies to linear inequality and disequality rather than
equality). Similarly, a propagator for all-different(x1, . . . , xn) can be generalized to
all-different(c1 + x1, . . . , cn + xn) by using offset views for ci ∈ Z on xi. Likewise,
from a propagator for the element constraint ax = y for integers a1, . . . , an and
integer variables x and y , we can derive the generalized version ax+o = y with an
offset view, where o ∈ Z provides a useful offset for the index variable x.

117

8 Deriving Propagators Using Views

The presented generalizations can be applied to domain- as well as bounds-complete
propagators.

Derived bounds propagators

While most Boolean propagators are domain-complete, completeness with respect to
approximations plays an important role for integer propagators. Section 4.2 intro-
duced the interval approximation for integer variables, and the according notions
of bounds(Z), bounds(R), bounds(D), and range completeness. Furthermore we
have seen in Section 7.4 that, given appropriate D[Z]-surjective and/or D[Z]-injec-
tive views, the different notions of bounds consistency are preserved when deriving
propagators.

The views for integer variables presented in this section have the following proper-
ties: minus and offset views are D[Z]-bijective, whereas a scale view for a ∈ Z on x
is always D[Z]-injective and only D[Z]-bijective if a = 1 or a = −1 (in which cases it
coincides with the identity view or a minus view, respectively).

In Section 7.4, we have not looked at bounds(R)-complete propagators yet. It turns
out that a propagator derived from a bounds(Z)-complete propagator and a D[Z]-
injective but not D[Z]-surjective view is only bounds(R)-complete. This is exactly
what we would expect from a propagator for linear equations, as the next example
demonstrates.

Example 8.1 (Linear constraints) We have seen above how to derive a propagator
for the constraint

∑n
i=1aixi = c from a propagator for

∑n
i=1xi = c using scale views.

For the original constraint
∑n
i=1 xi = c, we can implement an efficient bounds(Z)-

complete propagator. Using scale views, we turn it into a bounds(R)-complete prop-
agator for

∑n
i=1aixi = c. As already mentioned in Section 4.4, Choi et al. (2004)

showed that bounds(Z)-complete propagation is NP-hard, so the derived propaga-
tor has exactly the same propagation strength as a propagator that one would im-
plement by hand. ∗

8.3 Specialization

We employ constant views to specialize propagators. A constant view behaves like
an assigned variable. In practice, specialization has two advantages: Fewer variables
are needed, which means less memory consumption. And specialized propagators
can be compiled to more efficient code, if constants are known at compile time.

118

8.4 Type Conversion

Examples for specialization are

• a propagator for binary linear inequality x + y ≤ c derived from a propagator
for x +y + z ≤ c by using a constant 0 for z;

• a Boolean propagator for x ∧y ↔ 1 from x ∧y ↔ z and constant 1 for z;

• a propagator for the element constraint ax = y for a sequence of integer
constants a1, . . . , an and variables x and y derived from a propagator for zx =
y for a sequence of integer variables z1, . . . , zn;

• a reified propagator for (x = c)↔ b from (x = y)↔ b and a constant c for y ;

• a propagator for the counting constraint |
{
i
∣∣ xi = y

}
| = c from a propagator

for |
{
i
∣∣ xi = y

}
| = z;

• a propagator for set disjointness from a propagator for x ∩ y = z and a con-
stant empty set for z; and many more.

We have to extend our model to support constant views. Propagators may now be
defined with respect to a superset of the variables, X′ ⊇ X. A constant view for
the value k on a variable z ∈ X′ \ X translates between the two sets of variables as
follows:

ϕ(c) = {a[k/z] | a ∈ c}

ϕ
−(c) =

{
a|X

∣∣ a ∈ c}

Here, a[k/z] means augmenting the assignment a so that it maps z to k, and a|X is
the functional restriction of a to the set X.

It is important to see that this definition preserves failure. If a propagator returns
a failed domain d that maps z to the empty set, then ϕ

−(d) is the empty set, too
(recall that this is really ϕ−(con(d)), and con(d) = 0 if d(z) = 0).

8.4 Type Conversion

A type conversion view lets propagators for one type of variable work with a differ-
ent type, by translating the underlying representation. Our model already accommo-
dates for this, as a view ϕx maps elements between different sets V and V ′.

Converting between different variable types

Boolean variables are essentially integer variables with an implementation that is
optimized for the special domain {0,1}. It is thus straightforward to wrap a Boolean
variable in an integer view. That way, all propagators for integer constraints can be
directly reused with Boolean variables.

119

8 Deriving Propagators Using Views

Another type conversion view is a singleton view on an integer variable x, defined
as ϕx(v) = {v}. It presents an integer variable as a singleton set variable. Many
useful constraints involve both integer and set variables, and some of them can be
expressed with singleton views. The simplest constraint is x ∈ y , where x is an
integer variable and y a set variable. Singleton views let us implement it as {x} ⊆ y ,
and just as easily give us the negated and reified variants. Obviously, this extends
to {x} ⋄y for all other set relations ⋄.

Singleton views can also be used to derive pure integer constraints from set prop-
agators. For example, the constraint same([x1, . . . , xn], [y1, . . . , ym]) states that
the two sequences of integer variables take the same values. With singleton views,⋃n
i=1{xi} =

⋃m
j=1{yj} implements this constraint.

Converting between different domain implementations

Most systems approximate set variable domains as set intervals defined by a lower
and an upper bound (see Section 4.5). However, Hawkins et al. (2005) introduced
a representation for the complete domains of set variables, using ROBDDs. Type
conversion views can translate between set interval and ROBDD-based implementa-
tions. We can derive a propagator on ROBDD-based variables from a set interval
propagator, and thus reuse set interval propagators for which no efficient ROBDD
representation exists.

8.5 Limitations

Although views are widely applicable, they are no silver bullet. This section explores
some limitations of the presented architecture.

Beyond injective views

Views as defined in the previous chapter are required to be injective. This excludes
some interesting views, such as a view for the absolute value of a variable, or a view
of a variable modulo some constant. None of the basic proofs makes use of injectiv-
ity, so non-injective views can be used to derive complete, correct propagators.

However, event handling changes when views are not injective:

• A domain change event dmc on a variable does not necessarily translate to a
dmc event on the view. For instance, given a domain d with d(x) = {−1,0,1},
removing the value −1 from x produces a dmc event on x, but not on abs(x).

• A dmc event on a variable may result in a asn event on the view. For instance,
removing 0 instead of −1 in the above example results in d(x) = {−1,1}, but
in abs(x) there is only a single value left.

120

8.5 Limitations

These effects may lead to unnecessary propagator invocations, or even to incorrect
behavior if a propagator relies on the accuracy of the reported event. We want events
to be reliable in this sense, so we decided to not allow non-injective views.

Multi-variable views

Some multi-variable views that seem interesting for practical applications do not
preserve contraction, for instance a view on the sum or product of two variables.
The reason is that removing a value through the view would have to result in remov-
ing a tuple of values from the domain. As domains can only represent Cartesian
products, this is not possible in general. For views that do not preserve contraction,
Proposition 7.20 does not hold. That means that a propagator p cannot easily detect
subsumption any longer, as it would have to detect it for ϕ̂(p) instead of just for
itself, p. We consider optimizing subsumption vital for performance, so we only
allow contraction-preserving views.

For contraction-preserving views on multiple variables, all our theorems still hold.
Some views we could identify are

• A set view of Boolean variables [b1, . . . , bn], behaving like {i | bi = 1}.

• An integer view of Boolean variables [b1, . . . , bn], where bi is 1 if and only if
the integer has value i.

• The inverse views of the two views above.

These views are of limited use, and the decomposition approach will probably work
just as well in these cases.

Propagator invariants

Propagators typically rely on certain invariants of a variable domain implementation.
If idempotency or completeness of a propagator depend on these invariants, type
conversion views lead to problems, as the actual variable implementation behind
the view may not respect the same invariants.

For example, a propagator for set variables based on the set interval approximation
can assume that adjusting the lower bound of a variable does not affect its upper
bound. If this propagator is instantiated with a type conversion view for an ROBDD-
based set variable, this invariant is violated: if, for instance, the current domain is
{{1,2}, {3}}, and 1 is added to the lower bound, then 3 is removed from the upper
bound (in addition to 2 being added to the lower bound). If a propagator reports
that it has computed a fixed point based on the assumption that the upper bound
cannot have changed, it may actually not be at a fixed point. This potentially results
in incorrect propagation, for instance if the propagator could detect failure if it were
run again.

121

9 Implementing Views

This chapter presents an implementation architecture for views and derived propa-
gators. The implementation is based on making propagators parametric, and is an
orthogonal layer of abstraction on top of the actual solver implementation.

While Chapter 7 proved that derived propagators are perfect with respect to the
mathematical model, this chapter shows that one can also obtain perfect implemen-
tations of derived propagators: in many cases, an implementation based on C++

templates incurs no performance penalties, as modern optimizing compilers per-
form aggressive inlining and constant folding. Furthermore, this chapter analyzes
the massive impact views have on the amount of code that needs to be written: for
Gecode, views save around 120 000 lines of code and documentation. Finally, we
evaluate the performance of derived propagators empirically, using Gecode.

Structure of the chapter. This chapter first develops the implementation architec-
ture for parametric propagators (9.1), and then presents implementation techniques
for parametric and constant views (9.2). Next, we discuss how the implementation
of views handles events (9.3). Finally, we empirically evaluate the applicability of the
presented techniques, as well as the performance of derived propagators (9.4).

9.1 Parametric Propagators

Chapter 7 introduced a mathematical model for views. A view is a function that
transforms the input and output of a propagator, which maps domains to domains.
In the object-oriented implementation model from Section 6.3, a propagator is no
longer a function, but an object with a propagate method that modifies the current
domain, accessing and updating the domain through variable objects that provide
methods for domain operations.

This section shows how to derive propagators in the implementation model. The
main idea is to replace the propagators’ references to variable objects by references
to view objects. A view object has the same interface, the same domain operations,
as a variable object, but performs the additional transformations like negation or
scaling. The mechanism that we use for replacing a propagator’s variables with
different views is parametricity.

9 Implementing Views

Parametricity

Abstraction through types (as defined by Reynolds, 1983) is one of the most pow-
erful mechanisms of abstraction in typed programming languages. Essentially, the
same code can be instantiated with different parameters of compatible types (in the
case considered here, the same propagator will be instantiated with different views).
Modern programming languages provide three forms of parametricity:

Functional parametricity means that in programming languages with higher-order
functions such as Standard ML (Milner et al., 1997) or Haskell (Peyton Jones,
2003), a higher-order function is parametric over its arguments.

Dynamic binding is typically coupled with inheritance in object-oriented languages,
and realized for instance as virtual function calls in C++ or method calls in Java.

Parametric polymorphism comes, for example, in the form of templates in C++, Java
generics (Gosling et al., 2005), or Standard ML functors.

The following three examples show how to derive propagators using different kinds
of parametricity. All three examples derive a propagator for x = y + 2 from a
propagator for x = y and an offset view. The code is simplified for presentation, it
does not show a full implementation but conveys the general idea. In particular, we
omit handling failure to keep the code more compact.

Example 9.1 (ML functions) Figure 9.1 sketches how integer variables, a propaga-
tor for equality, and offset views could be implemented in Standard ML. The propa-
gator takes two variables as arguments, where the type of variables is only defined
by the record of operations: min, max, adjmin, and adjmax. The function mkOffsetView

turns a variable into an offset view. The original variable and the offset are bound
in the scope of the view. In order to propagate x = y + 2, one can simply call the
equality propagator with an offset view instead of a variable for y:
equal(x,mkOffsetView(y,2)) ∗

Example 9.2 (Java methods) When using dynamic binding in Java, an offset view
class implements the same interface as integer variables, see Figure 9.2. The view
uses a mechanism known as delegation: it encapsulates an integer variable and dele-
gates the operations to the encapsulated variable, applying the transformations. The
propagator calls the view operations via dynamic binding. Given integer variables x

and y, a derived propagator for x = y + 2 is instantiated as follows:
new Eq(x, new OffsetView(y, 2)); ∗

Example 9.3 (C++ templates) Figure 9.3 shows an interface for integer variables, an
implementation of offset views, and a parametric equality propagator in C++. The
example still uses delegation as in Java. The difference is that the offset views do not
inherit from the integer variables, they just have the same signature of operations.
The propagator is parametric over the types of the two views it uses, and can be

124

9.1 Parametric Propagators

type variable = { min : unit -> int, max : unit -> int,

adjmin : int -> unit, adjmax : int -> unit }

fun equal (x : variable, y : variable) =

(#adjmin x (#min y ());

#adjmax x (#max y ());

#adjmin y (#min x ());

#adjmax y (#max x ()))

fun mkOffsetView (x : variable, offset) =

{ min = fn () => offset + #min x (),

max = fn () => offset + #max x (),

adjmin = fn newMin => #adjmin x (newMin - offset),

adjmax = fn newMax => #adjmax x (newMax - offset) }

Figure 9.1: Offset views and an equality propagator in ML

instantiated with any view that provides the necessary operations. This is how to
instantiate the parametric equality propagator so that it implements x = y+2, given
two pointers to integer variables x and y:
new Eq<IntVar,OffsetView>(x,new OffsetView(y,2)); ∗

Views are orthogonal. The examples make clear that views are independent of
the concrete solver implementation. They form an orthogonal layer of abstraction
on top of any propagation-based constraint solver. As long as the implementation
language provides some kind of parametricity, and variable domains are accessed
through some form of variable objects, propagators can be derived using views.

Which kind of parametricity to choose

Most object oriented programming languages provide the choice between dynamic
binding and parametric polymorphism. In particular in C++, the implementation lan-
guage we chose for Gecode, both dynamic binding and parametric polymorphism
have advantages and disadvantages as it comes to deriving propagators.

Parametric polymorphism is compiled by monomorphization: the code is replicated
and specialized for each instance and then compiled individually. The compiler
can generate optimized code for each instance, for example by inlining the transfor-
mations that a view implements. That way, a parametric propagator does not pay
for additional function invocations when using views. All C++ compilers and some
implementations of SML (such as MLTon, 2009) employ monomorphization.

Achieving high efficiency in C++ with templates sacrifices expressiveness. Instantia-
tion can only happen at compile-time. Hence, either C++ must be used for modeling,

125

9 Implementing Views

interface IntVar {

public int min(void); public int max(void);

public void adjmin(int); public void adjmax(int);

}

class OffsetView implements IntVar {

protected IntVar v; protected int offset;

public OffsetView(IntVar v0, int o0) { v = v0; offset = o0; }

public int min() { return v.min()+offset; }

public int max() { return v.max()+offset; }

public void adjmin(int newMin) { v.adjmin(newMin-offset); }

public void adjmax(int newMax) { v.adjmax(newMax-offset); }

}

class Eq extends Propagator {

protected IntVar x; protected IntVar y;

public Eq(IntVar x0, IntVar y0) { x = x0; y = y0; }

public void propagate() {

x.adjmin(y.min()); x.adjmax(y.max());

y.adjmin(x.min()); y.adjmax(x.max());

}

}

Figure 9.2: Offset views and an equality propagator in Java

or all potentially required propagator variants must be provided by explicit instan-
tiation. The choice which propagator to use can however be made at run-time: for
linear equations, for instance, if all coefficients are units, or all are positive, the
respective optimized derived propagators can be posted.

For n-ary constraints, compile-time instantiation can be a real limitation, as all ar-
rays must be monomorphic (only a single kind of view per array is allowed). For
example, one cannot mix scale and minus views in linear constraints, or use con-
stant views in n-ary set constraints. For some propagators, we can work around this
restriction using more than a single array of views. For example, a propagator for
a linear constraint can employ two arrays of different view types, one of which may
then be instantiated with identity views and the other with minus views.

The advantage of dynamic binding is its greater flexibility, because instantiation
happens at run-time. Thus arbitrary combinations of views can be used, and arrays
can hold different types of views at the same time. This flexibility comes at the
cost of reduced efficiency, as the transformations done by view operations typically
cannot be inlined and optimized, but require additional virtual method calls.

In Java, parametric polymorphism is not implemented by monomorphization, but
by type erasure and virtual method calls. The potential for optimization is thus not
fully utilized. However, modern Java virtual machines employ just-in-time compila-

126

9.2 Parametric and Constant Views

class IntVar {

private: int _min, _max;

public: int min(void); int max(void);

void adjmin(int); void adjmax(int);

};

class OffsetView {

protected: IntVar* v; int offset;

public: OffsetView(IntVar* v0, int offset0) : v(v0), offset(offset0) {}

int min(void) { return v->min()+offset; }

int max(void) { return v->max()+offset; }

void adjmin(int newMin) { v->adjmin(newMin-offset); }

void adjmax(int newMax) { v->adjmax(newMax-offset); }

};

template <class View0, class View1>

class Eq : public Propagator {

protected: View0* x; View1* y;

public: Eq(View0* x0, View1* y0) : x(x0), y(y0) {}

virtual void propagate(void) {

x->adjmin(y->min()); x->adjmax(y->max());

y->adjmin(x->min()); y->adjmax(x->max());

}

};

Figure 9.3: Offset views and a parametric equality propagator in C++

tion, optimizing the code at run-time, which may make up for missed optimization
opportunities at (static) compile time.

In Gecode, polymorphic propagators are based on parametric polymorphism using
C++ templates. Section 9.4 presents empirical evidence that this choice results in a
highly efficient implementation. The examples in the rest of this chapter are pre-
sented as C++ code.

9.2 Parametric and Constant Views

Views do not have to be defined with respect to variables, but can themselves be
parametric. This corresponds to the observation in Section 7.5 that views ϕ and ϕ

′

can be composed so that ϕ̂(ϕ̂′(p)) is again a derived propagator.

The following code snippet implements a parametric minus view.

127

9 Implementing Views

template <class View>

class MinusView {

protected: View* v;

public: MinusView(View* v0) : v(v0) {}

int min(void) { return -v->max(); }

int max(void) { return -v->min(); }

void adjmin(int newMin) { v->adjmax(-newMin); }

void adjmax(int newMax) { v->adjmin(-newMax); }

};

Section 8.3 introduced constant views for specializing propagators. A constant inte-
ger view looks as follows.

class ConstantIntView {

protected: int k;

public: ConstantIntView(int k0) : k(k0) {}

int min(void) { return k; }

int max(void) { return k; }

void adjmin(int newMin) { if (newMin>k) fail(); }

void adjmax(int newMax) { if (newMax<k) fail(); }

};

Recall that a constant view was defined as ϕ−(c) =
{
a|X

∣∣ a ∈ c}, it reports failure
when a propagator returns an empty domain (see Section 8.3). The methods adjmin

and adjmax implement the test for emptiness and report failure accordingly (assum-
ing a library function fail).

Compile-time versus run-time constants. Some of the views presented earlier in-
volve a parameter, such as the coefficient of a scale view, the offset of an offset view,
or the constant of a constant view. These parameters can again be instantiated at
compile-time or at run-time. For instance, one can regard a minus view as a com-
pile-time specialization of a scale view with coefficient −1. In the same way, a zero
view or a one view may specialize a constant view. The advantage is again that the
compiler can apply more aggressive optimizations, as the constants are now known
at compile time. And again, the increased potential for optimization is paid for by a
decrease in flexibility.

9.3 Event Handling

This section shows how views implement event handling. It combines the results
from Section 7.5 with the implementation architecture from Section 6.3.

128

9.4 Applicability and Performance Analysis

Subscribing and canceling

Events (and hence modification events) have to be adapted when working with views.
For instance, Section 7.5 argued that for minus views on integer variables, the lower
and upper bound events have to be swapped. Views therefore provide subscribe

and cancel methods that perform the required transformations. Here is an example
subscribe method for minus views (cancel works analogously).

void subscribe(Propagator& p, PropagationCondition pc) {

switch (pc) { case {asn, lbc}: v->subscribe(p, {asn,ubc}); break;

case {asn,ubc}: v->subscribe(p, {asn, lbc}); break;

default: v->subscribe(p, pc); }

}

Domain operations and the modification event delta

As seen in Section 6.3, variable domain operations return status messages to the
propagators. While the basic messages, 0, fail, and even the modification event
measn, are invariant under any view, the other modification events may require trans-
formation. The domain operations on a minus view, for example, swap the melbc and
meubc modification events before returning to the propagator.

In order to enable staging, Section 6.3 introduced the modification event delta. It
represents the set of events that happened since the last invocation of the propaga-
tor. When using views, this set must be interpreted under the particular view. For
example, the propagator must interpret an lbc event on a variable as an ubc event if
it sees the variable under a minus view. Views therefore provide conversion methods
that the propagators must use when dealing with the modification event delta.

9.4 Applicability and Performance Analysis

To conclude this chapter, we now argue that views have proven crucial for imple-
menting Gecode, and that derived propagators are efficient in practice.

Applicability. Gecode makes heavy use of views. Table 9.1 shows the number
of parametric propagators implemented in Gecode, and the number of derived in-
stances. On average, every parametric propagator results in four instances. Prop-
agators in Gecode account for more than 40 000 lines of code and documentation.
As a rough estimate, deriving propagators using views thus saves around 120 000

lines of code and documentation to be written, tested, and maintained. On the other
hand, the views are implemented in less than 8 000 lines of code, yielding a 1500%
return on investment.

129

9 Implementing Views

Variable type Parametric propagators Derived propagators Ratio

Integer 78 304 3.90

Boolean 25 84 3.36

Set 24 126 5.25

Overall 127 514 4.05

Table 9.1: Applicability of views: number of parametric vs. derived propagators

Code inspection. A thorough inspection of the code generated by the GNU C++ com-
piler and the Microsoft Visual C++ compiler shows that they produce optimal code
for derived propagators, actually performing the optimizations we consider essen-
tial. Operations on views are inlined entirely and thus implemented in the most
efficient way. The abstractions do not impose a run-time penalty (compared to a
system without views).

Example 9.4 Figure 9.4 shows a simplified implementation of an integer variable
and a polymorphic propagator. When instantiated with an IntVar for x and an
OffsetView for y (as defined previously in Figure 9.3), the GNU C++ compiler for In-
tel x86 translates the propagate function to the following assembly code:

P<IntVar,OffsetView>::propagate:

1 pushl %ebp

2 movl %esp, %ebp

3 movl 8(%ebp), %eax

4 movl 8(%eax), %edx

5 movl 4(%eax), %eax

6 movl (%eax), %eax

7 subl 4(%edx), %eax

8 movl (%edx), %edx

9 cmpl (%edx), %eax

10 jle L4

11 movl %eax, (%edx)

L4:

12 leave

13 ret

The pointer to the propagator object (the this pointer) is passed on the stack and
loaded into register eax in line 3. Then the address of y is loaded into edx in line
4, and the address of x into eax in line 5. Line 6 loads x->_min into eax, and line 7

subtracts the offset (stored at the location pointed to by edx+4) from x->_min. Line 8

loads y->_min, which is compared to the result of the subtraction in line 9. In line 11,
y->_min is set to the result of the subtraction if the latter is greater than the previous
minimum. This example shows that neither the operations on the integer variable,
nor the transformation of the offset view require any function call, but are compiled
inline into the propagation function. ∗

130

9.4 Applicability and Performance Analysis

class IntVar {

private:

int _min, _max;

public:

int min(void) { return _min; }

int max(void) { return _max; }

void adjmin(int m) {

if (m>_min) _min = m;

}

void adjmax(int m) {

if (m<_max) _max = m;

}

};

template <class View0, class View1>

class P : public Propagator {

private:

View0& x; View1& y;

public:

P(View0& x0, View1& y0)

: x(x0), y(y0) {}

virtual void propagate(void) {

y.adjmin(x.min());

}

};

Figure 9.4: An integer variable and a simple propagator

Benchmarks

We now analyze the practical impact that views have on efficiency. Two aspects
are evaluated: derived propagators versus decomposition, and compile-time poly-
morphism versus run-time polymorphism. The experiments use the same setup as
described in Section 6.9 and Appendix A. All numbers are given as relative numbers
compared to the standard Gecode system.

Views versus decomposition. Table 9.2 presents the overhead that results from re-
placing some view-based propagators by the respective decompositions. Both Alpha

and Eq-20 use mainly linear equations with coefficients, which we replaced by a de-
composition. For Queens 100, we replaced the special all-different-with-offsets by its
decomposition into an all-different propagator and binary equality-with-offset prop-
agators. In BIBD and Perfect Square, we decomposed ternary Boolean propagators,
implementing x∧y ↔ z as ¬x∨¬y ↔ ¬z in BIBD, and x∨y ↔ z as ¬x∧¬y ↔ ¬z
in Perfect Square. The remaining seven examples involve set constraints, and we
decomposed an intersection propagator into complement and union propagators.

Benchmark time % mem. % prop. %

Alpha (smart) 457.24 357.14 478.91

Alpha (naive) 682.81 360.87 673.83

Eq-20 655.62 700.00 704.57

Queens (S, Dom, 10) 147.28 100.00 483.87

Queens (S, Dom, 100) 141.31 100.00 2342.02

Partition (32) 105.66 100.00 117.48

BIBD 291.97 213.54 256.19

Perfect Square 110.49 108.47 104.42

Benchmark time % mem. % prop. %

Steiner Triples (9) 118.45 100.00 85.41

Hamming (20-3-32) 113.37 104.92 100.10

Social G. (8-4-9) 319.58 234.82 160.83

Social G. (5-3-7) 212.65 178.60 149.56

Sudoku (Set, 1) 137.60 100.00 103.57

Sudoku (Set, 4) 132.97 100.00 103.70

Sudoku (Set, 5) 129.82 159.63 103.72

Table 9.2: Relative performance of decomposition, compared to views

131

9 Implementing Views

Benchmark time %

Alpha (smart) 178.36

Alpha (naive) 157.23

BIBD 143.55

Eq-20 222.92

Golomb Rulers (10) 135.53

Graph Coloring 103.36

Knights (18) 126.58

Magic Sequence (Smart, 500) 122.53

Magic Sequence (GCC, 500) 176.36

Partition (32) 137.74

Perfect Square 129.35

Photo Alignment 140.40

Queens (Smart, 10) 124.89

Queens (Smart, 100) 148.37

Benchmark time %

Crew Scheduling 119.17

Hamming Codes (20-3-32) 120.16

Social Golfers (8-4-9) 130.97

Social Golfers (5-3-7) 120.90

Steiner Triples (9) 127.62

Sudoku (Set, 1) 113.44

Sudoku (Set, 4) 112.41

Sudoku (Set, 5) 111.58

Queen Armies 114.12

Table 9.3: Relative performance of virtual method calls

Some of the integer examples show a significant overhead when decomposed, re-
quiring up to seven times the run-time and memory than using views. The overhead
of most set examples as well as Perfect Square appears to be more moderate, which
is partly due to the fact that no additional variable was introduced if the comple-
ment or negation of a variable was already present in the model. Interestingly, the
number of propagation steps is in many cases significantly higher for the decompo-
sition model, but as the additional steps are performed by cheap propagators (like
x = y + i or x = ¬y), the effect on the run-time is less drastic. The 100 Queens
benchmark is an extreme example, where we see 23 times the propagation steps but
only 41% more run-time. The benchmark Partition 32 only contains a single linear
equation with coefficients, all other constraints are simple linear equations and an
all-different. Replacing the linear equation with coefficients by its decomposition
has only little effect on the run-time (6% overhead).

Templates versus virtual methods. As suggested in Section 9.1, in C++, compile-
time polymorphism using templates is far more efficient than virtual method calls.
To evaluate this, we changed the basic operations of integer variables to be virtual
methods, such that view operations need one virtual method call. This is a conser-
vative approximation of the actual cost of fully virtual views. Set-valued operations
(which will be discussed in the next chapter) cannot be made virtual, as they are
based on templates. We therefore approximated the effect of virtual methods by
preventing inlining of set-valued operations. An implementation based completely
on virtual methods will typically exhibit an even higher overhead. The results of
these experiments appear in Table 9.3. Virtual method calls cause a run-time over-
head between 3% and 123% for the integer examples (left table), and 11% to 31% for
the set examples (right table).

132

10 Range Iterators

This chapter proposes to implement set-valued domain operations using range iter-

ators. The operations are shown to be simple, expressive, and efficient.

Domain operations in the preceding chapters only involved a single integer value,
for instance adjusting the minimum or maximum of an integer variable. For propa-
gators that perform domain reasoning on integer variables, and for propagators for
set-valued variables, single-integer operations are not efficient. Instead, one would
like to be able to update a whole integer variable domain to a new set, or exclude
a set of elements from a set variable domain. When deriving propagators using
views, these set-valued operations must be provided by the views, too, performing
the necessary transformations on the given sets.

Range iterators are perfectly suited to act as the interface for set-valued domain op-
erations. Instead of providing a set data structure for passing set-valued arguments
around, we pass operations for sequentially accessing a set data structure instead,
in the form of a range iterator. This additional abstraction yields compact and ef-
ficient implementations of views. As a further benefit, range iterators simplify the
implementation of many propagation algorithms.

Iterators are a well-known implementation technique in object-oriented program-
ming languages. However, we are not aware of any previous work that identifies
iterators as a fundamental and powerful abstraction for implementing constraint
solvers.

Structure of the chapter. After introducing range iterators (10.1), we use them to de-
fine set-valued operations on integer variables (10.2). Set operations such as union or
intersection can be performed directly on range iterators (10.3), and yield set-valued
operations on integer views (10.4) and set variables and views (10.5). Implementing
propagation algorithms is simplified by using iterators as adaptors (10.6). At the
end of the chapter, we analyze the performance of range iterators in practice (10.7).

10.1 Range Iterators

Object-oriented programming has introduced a useful abstraction for representing
collections, a design pattern called iterator. An iterator provides access to the ele-

10 Range Iterators

ments of a collection in sequential order, one at a time.

A set-valued domain operation supports simultaneous access or update of multiple
values of a variable domain. For example, a propagation algorithm may compute
with the whole domain of an integer variable, or the upper bound of a set variable.
This section shows how range iterators can provide such operations efficiently.

Range sequences. A range [m .. n] denotes the set of integers {l ∈ Z |m ≤ l ≤ n}.
A range sequence ranges(S) for a finite set of integers S ⊆ Z is the shortest sequence
s = 〈[m1 .. n1] , . . . , [mk .. nk]〉 such that S =

⋃k
i=1 [mi .. ni] and the ranges are

ordered by their smallest elements (mi ≤mi+1 for 1 ≤ i < k). We thus define the set
covered by a range sequence as set(s) =

⋃k
i=1 [mi .. ni]. The above range sequence

is also written as 〈[mi .. ni]〉
k
i=1. Clearly, the range sequence of a set is unique, none

of its ranges is empty, and ni + 1 <mi+1 for 1 ≤ i < k.

A range iterator for a range sequence s = 〈[ni .. mi]〉
k
i=1 is an object that pro-

vides iteration over s: each of the [mi .. ni] can be obtained in sequential order but
only one at a time. A range iterator r provides the following operations: r.done()

tests whether all ranges have been iterated, r.next() moves to the next range, and
r.min() and r.max() return the minimum and maximum value for the current range.
By set(r) we refer to the set defined by an iterator r (which must coincide with
set(s)).

A possible implementation of a range iterator for s maintains an index i which is
initially i = 1, the operations can then be defined as:

class RangeIterator {

public:

bool done(void) { return i > k; }

int min(void) { return mi; }

int max(void) { return ni; }

void next(void) { i++; }

};

Iterators are consumed by iteration. Hence, if the same sequence needs to be it-
erated twice, a fresh iterator is needed. If iteration is cheap, a reset operation for
an iterator can be provided so that multiple iterations are supported by the same
iterator. A solution for more expensive iterators is discussed later.

A range iterator hides its implementation. It can iterate a sequence (for instance an
array) directly by position as above, but it could just as well traverse a linked list
or the leaves of a balanced tree. This abstractness of range iterators makes them
perfectly suited as an interface for set-valued domain operations of variables and
views.

134

10.2 Set-Valued Operations for Integer Variables

Related work

◮ The standard template library (STL) of C++ uses iterators as a universal interface
for collection types (Stroustrup, 1997). Here, an iterator does not by itself encode a
sequence, but a pair of two iterators represents the sequence of elements between

them. The Boost iterator library (Abrahams et al., 2009) extends and improves the
STL iterators, and provides adaptors such as filters or reversion iterators.

◮ The Java collection libraries (Horstmann and Cornell, 2004) also use iterators as
a fundamental abstraction. Java even provides special iteration syntax in the form
of a foreach loop.

◮ Many constraint programming systems provide an abstract set-datatype for ac-
cessing and updating variable domains, as for example in CHOCO (2009), ECLiPSe

(2009), SICStus Prolog (2009), and Mozart (2009). ILOG Solver (2009) only allows
access by iterating over the values of a variable domain.

10.2 Set-Valued Operations for Integer Variables

The two basic set-valued operations on integer variables are domain access and
domain update. For an integer variable x, the operation x.getdom() returns a range
iterator for ranges(d(x)). For a range iterator r the operation x.setdom(r) updates
the variable domain of x to set(r) provided that set(r) ⊆ d(x). The responsibility
for ensuring that set(r) ⊆ d(x) is left to the programmer and hence requires careful
consideration. The next section introduces richer (and safe) set-valued operations.

The operation x.setdom(r) is parametric with respect to r : any range iterator can
be used. As for views, an implementor has to decide on the kind of parametricity to
use. Gecode uses template-based parametric polymorphism, with the performance
benefits due to monomorphization and consequent code optimization mentioned in
Section 9.1.

Set-valued operations can offer a substantial improvement over single-value op-
erations, if many values need to be removed from a variable domain simultane-
ously. Assume a typical implementation of a variable domain d(x) which organizes
ranges(d(x)) = 〈[mi .. ni]〉

k
i=1 as a linked list. Removing a single element from d(x)

takes O(k) time and might increase the length of the linked list by one (introducing
an additional hole). Hence, in the worst case, removing l elements takes O(l(k+ l))
time. With set-valued operations based on iterators, removal takes O(k+ l) time, as
the update can be implemented as one linear pass over the linked list.

Range iterators serve as a simplistic abstract datatype to describe finite sets of in-
tegers. However, they provide some essential advantages over an explicit set repre-
sentation. First, any range iterator regardless of its implementation can be used to

135

10 Range Iterators

update the domain of a variable. This turns out to result in simple, efficient, and
expressive updates of variable domains. Second, no costly memory management is
required to maintain a range iterator as it provides access to only one range at a time.
Third, iterators are abstract enough to be compatible with set-valued operations on
views, as will be discussed in Section 10.4.

10.3 Computing with Iterators

This section shows that in addition to simple domain access and update, range iter-
ators can also perform computations on sets directly. Iterator computations yield
simple yet efficient propagation algorithms.

Propagation algorithms often have to operate with sets. For example, the following
propagator induces an equality constraint on two integer variables x and y :

p(d)(z) =

d(x)∩ d(y) if z = x or z = y

d(z) otherwise

Given that both domain access and domain update are provided as iterators, the
propagation algorithm must compute the intersection of the sets represented by two
iterators, and provide the result as an iterator. An important feature that makes iter-
ators so useful is that many such operations can be implemented directly, without
computing intermediate results.

Let us consider intersection as an example for computing with range iterators. In-
tersection is computed by an intersection iterator r = iinter(a, b), taking two range
iterators a and b as input where set(r) = set(a) ∩ set(b). The intersection iterator
maintains integers m and n for storing the smallest and largest value of its current
range. When initialized, the operation r.next() is executed once. The operations
appear in Figure 10.1.

The do-while-loop iterates a and b until their ranges overlap. The tests whether a
or b are done ensure that no operation is performed on an iterator that is already
done. The remainder computes the resulting range and prepares for computing the
next range.

The iterators a and b can be arbitrary iterators (again, the intersection iterator is
parametric), so it is easy to obtain an iterator that computes the intersection of three
iterators by using two intersection iterators. Intersection is but one example for a
parametric iterator, other useful iterators are for instance: iunion(a, b) for iterating
the union of a and b, iminus(a, b) for iterating the set difference of a and b, and
icompl(a) for iterating the complement of a with respect to some fixed universe.

136

10.3 Computing with Iterators

template <class A, class B>

class IntersectionIterator {

private:

int m, n; A a; B b;

public:

IntersectionIterator(A a, B b) : a(a), b(b) { next(); }

bool done(void) { return a.done() || b.done(); }

int min(void) { return m; }

int max(void) { return n;}

void next(void) {

if (a.done() || b.done()) return;

do { while (!a.done() && (a.max() < b.min())) a.next();

if (a.done()) return;

while (!b.done() && (b.max() < a.min())) b.next();

if (b.done()) return;

} while (a.max() < b.min());

m = max(a.min(), b.min()); n = min(a.max(), b.max());

if (a.max() < b.max()) { a.next(); } else { b.next(); }

}

};

Figure 10.1: An intersection iterator

Example 10.1 (Propagating equality) Consider a domain-complete propagator that
induces equality x = y (assuming that x and y are variables, views are discussed
later). The propagator can be implemented as follows: get range iterators for x
and y by rx = x.getdom() and ry = y.getdom(), create an intersection iterator
ri = iinter(rx, ry), update one of the variable domains by x.setdom(ri), and copy
the domain from x to y by y.setdom(x.getdom()). ∗

Cache iterators. The above example suggests that for some propagators it is better
to create an intermediate representation of the range sequence computed by an
iterator. The intermediate representation can be reused as often as needed. This
is achieved by a cache iterator: it takes an arbitrary range iterator as input, iterates
it completely, and stores the obtained ranges in an array. Its operations then use
the array. The cache iterator also implements a reset operation, so that the possibly
costly input iterator is used only once, while the cache iterator can be used as often
as needed.

Richer set-valued operations. With the help of iterator computations, richer set-
valued operations are effortless. For an integer variable x and a range iterator r , the
operation x.adjdom(r) adjusts the domain d(x) by set(r), yielding d(x) ∩ set(r),

137

10 Range Iterators

whereas x.excdom(r) excludes set(r) from d(x), yielding d(x) \ set(r):

x.adjdom(r) := x.setdom(iinter(x.getdom(), r))

x.excdom(r) := x.setdom(iminus(x.getdom(), r))

In contrast to the x.setdom(·) operation, the richer set-valued operations are inher-
ently contracting, and thus safer to use when implementing a propagator.

Value versus range iterators. Set-valued operations could be based on value itera-

tors, iterating individual values of a set, instead of range iterators. This is not effi-
cient: a value sequence is considerably longer than a range sequence (in particular
for the common case of a singleton range sequence). For implementing propagators,
however, it can sometimes be simpler to iterate values. A value iterator v has the
operations v.done(), v.next(), and v.val() to access the current value. Two straight-
forward adaptors mediate between the value iterators that the propagator uses and
the range iterators of the domain operations. A range-to-value iterator takes a range
iterator as input and returns a value iterator iterating the values of the range se-
quence. The inverse is a value-to-range iterator: it takes as input a value iterator
and returns the corresponding range iterator.

10.4 Integer Views with Set-Valued Operations

We have seen how range iterators can serve as an interface for set-valued variable
operations. This section shows that the abstraction provided by range iterators is
powerful enough to support set-valued operations for views.

Set-valued operations for constant integer views are straightforward. For a constant
view v on constant k, the operation v.getdom() returns an iterator for the singleton
range sequence 〈[k .. k]〉. The operation v.setdom(r) just checks whether the range
sequence of r is empty (in order to detect failure).

Set-valued operations for an offset view are provided by an offset iterator. The
operations of an offset iterator o for a range iterator r and an integer c (created by
ioffset(r , c)) are as follows:

o.min() := r.min()+ c o.max() := r.max()+ c

o.done() := r.done() o.next() := r.next()

An offset view v on a variable x with offset c uses an offset iterator:

v.getdom() := ioffset(x.getdom(), c)

v.setdom(r) := x.setdom(ioffset(r ,−c))

138

10.5 Set Variables and Views

For minus views we just give the range sequence, iteration is obvious. For a given
range sequence 〈[mi .. ni]〉

k
i=1, the negative sequence is obtained by reversal and

sign change as 〈[−nk−i+1 .. −mk−i+1]〉
k
i=1. The same iterator for this sequence

can be used both for setdom and getdom operations. Note that implementing the
iterator is quite complicated as it changes direction of the range sequence.

A scale iterator provides the necessary transformation for scale views. Assume a
scale view on a variable x with a coefficient a > 0, and let 〈[mi .. ni]〉

k
i=1 be a

range sequence for d(x). If a = 1, the scale iterator does not change the range
sequence. Otherwise, the corresponding scaled range sequence is 〈{a ×m1}, {a ×

(m1 + 1)}, . . . , {a × n1}, . . . , {a ×mk}, {a × (mk + 1)}, . . . , {a × nk}〉. For the other
direction, assume we want to update the domain using a set S through a scale view.
Assume that 〈[mi .. ni]〉

k
i=1 is a range sequence for S. Then for 1 ≤ i ≤ k the ranges

[⌈mi/a⌉ .. ⌊ni/a⌋] correspond to the required variable domain for x, however they
do not necessarily form a range sequence as the ranges might be empty, overlapping,
or adjacent. Iterating the range sequence is however simple by skipping empty
ranges and merging overlapping or adjacent ranges.

10.5 Set Variables and Views

In this section, set variables and views are equipped with domain operations based
on range iterators.

Section 4.5 introduced a domain system for approximating set variable domains by a
set interval defined by the greatest lower and least upper bound. The domain of a set
variable x under this approximation is an interval d(x) = [glb(d(x)), lub(d(x))].

The fundamental operations for variables and views based on this approximation are
similar to set-valued operations on integer variables, and take iterators as arguments
or return them. x.glb() returns a range iterator for ranges(glb(d(x))), x.lub()
returns a range iterator for ranges(lub(d(x))), x.adjglb(r) updates the domain of
x to [glb(d(x)) ∪ set(r), lub(d(x))], and x.adjlub(r) updates the domain of x to
[glb(d(x)), lub(d(x))∩ set(r)].

Range iterators are not only perfectly suited for operations on set variables, but
also provide exactly the operations that set propagators need: union, intersection,
difference, and complement. Most propagators can thus be implemented directly
using iterators and do not require any temporary data structures for storing set-
valued intermediate results.

Constant set views. A set view v of a constant set S, used for specialization (see
Section 8.3), can be implemented using a constant iterator rS (with set(rS) = S):

139

10 Range Iterators

v.glb() := rS v.adjglb(r) := if set(r) ⊈ set(rS) then fail()
v.lub() := rS v.adjlub(r) := if set(rS) ⊈ set(r) then fail()

Complement views. A complement view v of a set variable x uses a complement
iterator:

v.glb() := icompl(x.lub()) v.adjglb(r) := x.adjlub(icompl(r))
v.lub() := icompl(x.glb()) v.adjlub(r) := x.adjglb(icompl(r))

Type conversion views. A singleton view v that provides a type conversion between
an integer variable x and a set propagator (see Section 8.4) reuses the range iterators
and set-valued operations of the integer variable, where r0 stands for a range iterator
r with set(r) = 0:

v.glb() := if |x.getdom()| = 1 then x.getdom() else r0
v.lub() := x.getdom()
v.adjglb(r) := if | set(r)| = 1 then x.adjdom(r) else if set(r) ≠ 0 then fail()
v.adjlub(r) := x.adjdom(r)

10.6 Iterators as Adaptors

Section 10.3 already provided examples where iterators were constructed on the fly,
for instance as the intersection of two other iterators. Here, we extend this idea and
construct iterators over internal data structures of the propagation algorithms.

Propagation algorithms for global constraints typically use some advanced data
structures, such as a variable-value graph for domain-complete all-different (Régin,
1994). After propagation, the new domains must be transferred from the data struc-
ture to the variables. Similar to iterators that compute with iterators, an iterator can
now be used to compute with the propagator’s data structure, and then be passed to
the variable’s set-valued domain update operation. The iterator serves as an adaptor

between the data structure and the variable domain.

An adaptor for all-different

Régin’s (1994) domain-complete propagator for the all-different constraint employs
a variable-value graph, a bipartite graph with one set of nodes for the variables,
and one set of nodes for the values in the variables’ domains. The graph contains
an edge from a variable node to a value node if the value is in the domain of the
variable. Propagation removes edges that correspond to inconsistent variable-value
pairs. The adaptor iterator for a variable x iterates the values whose nodes are
adjacent to the variable node for x. A value-to-range iterator is used to update the
variable domain of x.

140

10.7 Performance Analysis

An adaptor for the regular constraint

The regular constraint states that the sequence of values taken by a sequence of
integer variables x0, . . . , xk−1 is an element of a given regular language L. The prop-
agator proposed by Pesant (2004) works on an unfolding of a finite automaton ac-
cepting L, called the layered graph. Each node in layer i in the graph represents a
possible value for the variable xi. If the node does not lie on a path from a node
in layer 0 to a node in layer k − 1, it can be pruned from the domain of xi. The
propagation algorithm records which nodes are still on such a path. The adaptor
iterator then iterates the values for a certain layer i that are still on such paths, and
transfers this information through a value-to-range iterator to the domain of xi.

An adaptor for the element constraint

The element constraint states that ax = y , given a sequence a0, . . . , ak−1 of integers
and two integer variables x and y . An efficient way of implementing a propagation
algorithm for this constraint is to maintain the ai in two doubly-linked lists: one of
the lists is sorted by the index, the other is sorted by the ai. During propagation,
first all elements are removed whose indexes are no longer in the domain of x,
then all elements are removed that are no longer in the domain of y . Finally, two
adaptor iterators transfer the information in the data structure back to the variable
domains: one iterator for the indexes, used to prune x, and one for the elements,
used to prune y .

An adaptor for channeling

The constraint
∧n
i=1 (x = i)↔ bi for n Boolean variables bi and an integer variable x

is useful for channeling between an integer and a Boolean part of a model. Although
not strictly an adaptor, the propagator for this constraint can use a value iterator
that lists all the i such that bi can still be 1. Through a value-to-range iterator, this
iterator is then used to prune the domain of x.

10.7 Performance Analysis

In this section, we first show that using range iterators improves the efficiency of
propagators, compared to the use of explicit set data structures for temporary re-
sults. We then explore the limitations of views based on iterators.

141

10 Range Iterators

Benchmark time %

Alpha (smart) 99.78

Alpha (naive) 99.14

BIBD 98.39

Eq-20 102.45

Golomb Rulers (10) 98.82

Graph Coloring 99.31

Knights (18) 100.13

Magic Sequence (Smart, 500) 99.60

Magic Sequence (Naive, 500) 99.88

Magic Sequence (GCC, 500) 99.26

Partition (32) 98.40

Perfect Square 99.94

Photo Alignment 99.17

Queens (Naive, 10) 99.38

Queens (Smart, 10) 100.44

Queens (Naive, 100) 99.21

Queens (Smart, 100) 99.36

Benchmark time %

Crew Scheduling 380.33

Hamming Codes (20-3-32) 388.36

Social Golfers (8-4-9) 766.41

Social Golfers (5-3-7) 552.78

Steiner Triples (9) 332.23

Sudoku (Set, 1) 538.44

Sudoku (Set, 4) 494.67

Sudoku (Set, 5) 456.70

Queen Armies 293.46

Table 10.1: Relative performance of cached iterators

Explicit set data structures

One important claim is that iterators are advantageous because they avoid tempo-
rary data structures. Table 10.1 presents experiments where temporary data struc-
tures have been emulated by wrapping all iterators in a cache iterator as described
in Section 10.3. The experiments again use the setup as described in Section 6.9 and
Appendix A. The results show that computing with temporary data structures has
hardly any impact on integer variables. For set constraints, however, the overhead
is considerable (up to seven times the run-time). The obvious explanation is that
propagators for set constraints heavily rely on set-valued operations, much more
so than integer propagators. The memory consumption does not increase, because
iterators are not stored, and only few iterators are active at a time.

Limits of compiler optimization

The efficiency of derived propagators relies on compiler optimizations like inlining
and constant folding. For instance, a double-negation on integers or Booleans can
be detected and removed easily.

For set-valued operations, the compiler will sometimes fail to produce optimal code.
For example, a propagator for ternary intersection, x = y ∩ z, will include an infer-
ence x.adjglb(y.glb()∩ z.glb()). To derive a propagator for x = y ∪ z, we instan-
tiate the intersection propagator with complement views for x, y , and z, yielding

142

10.7 Performance Analysis

Benchmark time %

Social Golfers (8-4-9) 146.80

Social Golfers (5-3-7) 126.90

Steiner Triples (9) 116.17

Hamming Codes (20-3-32) 121.22

Sudoku (Set, 1) 140.32

Sudoku (Set, 4) 135.01

Sudoku (Set, 5) 130.19

Table 10.2: Relative performance of views compared to dedicated set propagators

the following inference:
x.adjglb(glb(y)∩ glb(z))

which amounts to computing

x.adjlub(lub(y)∩ lub(z))

It would be more efficient to implement the equivalent x.adjlub(lub(y) ∪ lub(z))
because this requires three set operations less. Unfortunately, no compiler will find
this equivalence automatically, as it requires knowledge about the semantics of the
set operations. Table 10.2 compares a dedicated propagator for the constraint x ∩
y = z with a version using complement views and a propagator for x ∪ y = z. The
overhead of 16% to 47% does not render views completely useless for set variables,
but it is nevertheless significant.

The next chapter solves this problem by generating set propagators directly from
specifications of the constraints.

143

11 Deriving Propagators for Boolean Set

Constraints

The previous chapters were concerned with deriving propagators (and their imple-
mentations) from existing propagators using views. In this chapter, we shift the
focus, as the goal is to derive propagators for set constraints and their implementa-
tions from specifications of the constraints.

Most of the literature on set constraints (discussed in detail in Section 11.6) presents
propagation algorithms as ad hoc rules for a few basic constraints such as intersec-
tion Jx = y∩zK or union Jx = y ∪zK. We follow a systematic approach instead, gen-

erating propagator implementations from declarative constraint specifications.

We design a specification language for a particular class of set constraints called
Boolean set constraints, and then translate a specification into a propagation algo-
rithm. More specifically, a constraint specification is translated into a specification
of a propagator that is set-interval-complete. The propagator specification directly
yields an efficient algorithm. This chapter thus provides deeper insights into the
structure of set constraints, and yields principled implementation strategies.

Structure of the chapter. We define a specification language for Boolean set con-
straints (11.1) and show how to derive a set-interval-complete propagation algorithm
from a specification of a Boolean set constraint (11.2). We extend our specification
language with negated Boolean set constraints, and again show how to propagate
them (11.3). For certain n-ary set constraints, we can improve the run-time com-
plexity by a factor of n using common subexpression elimination (11.4). Finally, we
present and evaluate implementation techniques for Boolean set propagators (11.5).

11.1 Boolean Set Constraints

This section formalizes a specification language for the class of set constraints that
the rest of this chapter is based on.

It is well-known that the algebra of sets with union, intersection, and complement
operations is a Boolean algebra—union corresponds to disjunction, intersection to

11 Deriving Propagators for Boolean Set Constraints

conjunction, and complement to negation. The set constraints this chapter deals
with are thus the Boolean set constraints, specified by the following grammar:

C ::= S = S | S ⊆ S | C ∧ C

S ::= x | 0 | U | S ∩ S | S ∪ S | S

An expression C corresponds to a constraint, the set of assignments that satisfy C ,
with the usual interpretation of the relation and function symbols. Let us define
this formally. Set variables take their values from the set V = P(U) for a given
finite universe U . Assignments therefore map variables to subsets of U . We can
lift assignments to expressions S as follows.

Definition 11.1 The value of an expression S under an assignment a is defined by
lifting assignments to expressions in the straightforward way:

a(S1 ∩ S2) := a(S1)∩ a(S2) a(0) := 0

a(S1 ∪ S2) := a(S1)∪ a(S2) a(U) := U

a(S) := a(S)

We define that an assignment a satisfies an expression C , written a ⊨ C , as follows.

a ⊨ C1 ∧ C2 :⇔ a ⊨ C1 and a ⊨ C2

a ⊨ S1 = S2 :⇔ a(S1) = a(S2)

a ⊨ S1 ⊆ S2 :⇔ a(S1) ⊆ a(S2)

We use the notation JCK to denote the constraint {a ∈ Asn | a ⊨ C}. ∗

We say that two expressions C1 and C2 are equivalent, written C1 ≡ C2, if and only
if they represent the same constraint, JC1K = JC2K.

The goal of this chapter is to generate D[P(U)]-complete propagation algorithms
that induce a constraint specified by an expression C . Recall (from Section 4.5) that
the D[P(U)] approximation represents the domain of each set variable x as an in-
terval [l,u], where l and u are subsets of the universe U . A D[P(U)]-complete
propagator has to enlarge the lower bound l and shrink the upper bound u for each
of its variables as far as its constraint permits for a given domain.

Our approach to propagating a set constraint JCK is to transform C into an equiva-
lent form S1 ⊆ x ∧ x ⊆ S2 for every variable x that appears in C , such that x does
not appear in S1 or S2. The two set expressions S1 and S2 then describe a lower and
an upper bound for the variable x. This section develops the theoretical background
we need for the transformation. The next section shows how S1 and S2 can be used
to specify a propagator, that the specified propagator is D[P(U)]-complete for the
constraint JCK, and how it corresponds directly to a propagation algorithm that can
be implemented.

146

11.1 Boolean Set Constraints

While we can express many set constraints using conjunctions of equations and
subset relations, some important constraints are missing, such as disequality of two
sets S1 ≠ S2. This is a fundamental restriction, in that for any non-trivial constraint
JCK, its complement is not expressible as JC′K for any C′. We will prove this in
Section 11.3, and show how these negated Boolean constraints can be propagated.

The Boolean algebra of sets

As we are dealing with a Boolean algebra, we can use all the equivalence transforma-
tions that are well-known from manipulating Boolean functions: if and only if two
expressions S1 and S2 are equivalent in the two-valued Boolean algebra, they are
equivalent in any Boolean algebra, and accordingly S1 = U ≡ S2 = U .

As a first step towards an expression S1 ⊆ x ∧ x ⊆ S2, we can transform any con-
junction of set relations C into a single equation S = U . This is a fundamental
result from Boolean algebra (see for instance Whitesitt, 1995). We say that an expres-
sion S = U is in equation normal form (ENF). The transformation to ENF uses the
following identities:

S1 = S2 ≡ S1 ⊆ S2 ∧ S2 ⊆ S1

S1 ⊆ S2 ≡ S1 ∪ S2 = U

S1 = U ∧ S2 = U ≡ S1 ∩ S2 = U

If S = U is the ENF of C , then JS = U K = JCK. From now on, we will only consider
constraints specified in ENF.

The following table lists some relations over set variables and the corresponding
equation normal forms.

relation ENF

x ⊆ y x ∪y = U subset

x = y (x ∪y)∩ (x ∪y) = U equality

x = y ∪ z (x ∪y ∪ z)∩ (x ∪y ∪ z) = U union

x = y ∩ z (x ∪y ∩ z)∩ (x ∪y ∩ z) = U intersection

x ‖ y x ∩y = U disjointness

x = y ⊎ z (x ∪y ∪ z)∩ (x ∪y ∪ z)∩y ∩ z = U partition

Isolating variables

The machinery of Boolean algebras also yields a way to isolate any variable x in
an equation normal form S = U . Isolating x means to transform S = U into an
equivalent expression S1 ⊆ x ∧ x ⊆ S2 such that x does not appear in S1 or S2.

147

11 Deriving Propagators for Boolean Set Constraints

The identity we make use of is an instance of Shannon’s expansion. Let S[a/x]
denote the expression S where any occurrence of x has been substituted by a. For
any expression S, the following holds:

S = (x ∪ S[0/x])∩ (x ∪ S[U /x])

Consider an ENF S = U . Then S = U is equivalent to (S[0/x]∪x)∩(x∪S[U /x]) =

U , which, by translating from ENF backwards, is the same as S[0/x] ⊆ x ∧ x ⊆

S[U /x].

As the two expressions S[0/x] and S[U /x] denote a set interval that encloses x,
we call S[0/x] ⊆ x ∧ x ⊆ S[U /x] an x-interval normal form (INFx) of S = U . For
notational convenience, we will usually write it as

S[0/x] ⊆ x ⊆ S[U /x]

Example 11.2 (Intersection) Let us derive the interval normal forms for x, y , and
z of the expression x = y ∩ z. First, we transform the expression into equation
normal form, and then isolate each of the three variables in turn:

x = y ∩ z ≡ (x ∪ (y ∩ z))∩ (x ∪y ∩ z) = U ENF

≡ y ∩ z ⊆ x ⊆ y ∩ z INFx
≡ x ⊆ y ⊆ (x ∪ z)∩ (x ∪ z) INFy
≡ x ⊆ z ⊆ (x ∪y)∩ (x ∪y) INFz ∗

Example 11.3 (Partition) The partition x = y ⊎ z can be represented as the two
equations x = y∪z∧y∩z = 0. The interval normal forms for partition are derived
as follows:

x = y ∪ z ∧y ∩ z = 0 ≡ (x ∪y ∪ z)∩ (x ∪y ∪ z)∩y ∩ z = U ENF

≡ (y ∪ z)∪ (y ∩ z) ⊆ x ⊆ (y ∪ z)∩y ∩ z INFx
≡ (x ∩ z)∪ (x ∩ z) ⊆ y ⊆ x ∩ z INFy
≡ (x ∩y)∪ (x ∩y) ⊆ z ⊆ x ∩y INFz

Note how every single interval normal form forces y and z to be disjoint. For in-
stance, INFx requires by transitivity that y ∪ z (on the left of x) is a subset of
(y ∪ z)∩y ∩ z. ∗

148

11.2 Propagators for Boolean Set Constraints

11.2 Propagators for Boolean Set Constraints

This section shows how to derive a D[P(U)]-complete propagator from a Boolean
set constraint JCK, and how the derived propagator yields an efficient propagation
algorithm.

We have seen in the previous section how we can transform any expression C into
an equivalent equation normal form S = U , and from there into an equivalent x-
interval normal form, for any variable x that appears in C . We will now use these
normal forms to define a propagator for the constraint JCK. In the rest of this section,
we assume that S = U is the ENF of C .

To simplify presentation, we will from now on assume that any domain d is a
D[P(U)]-domain. This assumption is realistic for practical systems, which actually
represent domains of set variables using lower and upper bounds. Section 4.3 de-
fined the D[P(U)]-canonical propagator for JS = U K as pmax

S (d) = VJS = U K ∩
VdWD[P(U)]WD[P(U)] ∩d. With the assumption that all domains are D[P(U)]-domains,
this can be simplified to pmax

S (d) = VJS = U K ∩ dWD[P(U)] . The definition of the
D[P(U)]-relaxation yields the equivalent

pmax
S (d)(x) =

[⋂

a∈d

a⊨S=U

a(x),
⋃

a∈d

a⊨S=U

a(x)
]

All results in this section generalize to the case of arbitrary domains by adding the
inner D[P(U)]-relaxation and the outer intersection with d.

The above definition determines the propagation strength we want to achieve, but
it does not give us an efficient algorithm for pmax

S , as computing the intersections
and unions over all assignments is not tractable. We will now give an alternative,
equivalent definition in terms of interval normal forms, and see that this definition
leads to an efficient algorithm.

The propagator we develop prunes the lower and upper bound of each of its varia-
bles x using an x-interval normal form of S. More precisely, given a domain d, the
propagator determines the greatest lower and least upper bound of x with respect
to S that all the assignments a ∈ d license, defined as follows.

glb(S,x,d) :=
⋂

a∈d

a(S[0/x]) lub(S,x,d) :=
⋃

a∈d

a(S[U /x])

We will now prove that the following defines a D[P(U)]-complete propagator for
JS = U K. For all variables x that appear in S and any domain d, we define pS as
follows:

pS(d)(x) :=
[
glb(d(x))∪ glb(S,x,d), lub(d(x))∩ lub(S,x,d)

]

149

11 Deriving Propagators for Boolean Set Constraints

For the proof, we need several lemmas. Some of these lemmas exist in correspond-
ing dual versions, which we omit to improve readability, but which will be used in
the proof. The first lemma states that the evaluation of an expression S under an
assignment a is continuous, in the sense that modifying a at any variable by a single
value v changes the value of a(S) at most by v.

Lemma 11.4 Let a be an assignment, x ∈ X a variable, v ∈ U a value, and S an
expression. Then changing a at variable x by adding or removing v can only add or
remove v from a(S):

a(S) \ {v}

=a[a(x) \ {v} / x](S) \ {v}

=a[a(x)∪ {v} / x](S) \ {v} ∗

Proof. For any set W , adding (removing) an element to (from) W will only remove
(add) that element from (to) W . Similarly, for sets W and W ′, adding (removing) an
element to (from)W and/or W ′ will only add (remove) that element to (from)W ∪W ′

or W ∩W ′. Thus, by induction over the structure of the expression S, the statement
holds.

The next lemma is a fact about set interval domains, and will help us to construct
assignments from given assignments by merging them.

Lemma 11.5 Let S be an expression, let d be a domain, and let a,a′ ∈ d be as-
signments licensed by d. If there is a value v ∈ a′(S) \ a(S), then there exists an
assignment a′′ ∈ d such that a′′(S) = a(S)∪ {v}. ∗

Proof. Without loss of generality, assume that S is in disjunctive normal form, S =⋃n
i=1

⋂mj

j=1 Li,j. Then v must have been contributed to a′(S) by at least one disjunct
⋂mj

j=1 Li,j, and hence by all the literals Li,j in that disjunct: v ∈ a′(Li,j). We construct
a′′ such that

a′′(x) =

a(x)∪ {v} if x = Li,j for some j

a(x) \ {v} if x = Li,j for some j

a(x) otherwise

Then for all j, v ∈ a′′(Li,j), and hence v ∈ a′′(S). But with Lemma 11.4, a′′ behaves
like a for any value except v, as we have only changed a with respect to v. Fur-
thermore, a′′ ∈ d, because we only added v to variables y where v ∈ a′(y), and
we only removed it from variables y where v ∉ a′(y). In summary, a′′ ∈ d and
a′′(S) = a(S)∪ {v}, concluding the proof.

Using this lemma, we can show that for an expression S and a domain d, there is an
assignment that maps x to its upper bound with respect to S.

150

11.2 Propagators for Boolean Set Constraints

Lemma 11.6 Let d be a domain, S an expression, and x a variable. If there is an
assignment a ∈ d such that a ⊨ x ⊆ S[U /x], then there is an assignment a′ ∈ d
such that a′ ⊨ x ⊆ S[U /x] and

a′(x) =
⋃

a∈d

a⊨x⊆S[U /x]

a(x) ∗

Proof. Lemma 11.5 allows us to construct a′ by merging all assignments a that sat-
isfy x ⊆ S[U /x]. This is possible because x does not occur in S[U /x].

The next lemma takes a major step in the desired direction. It states that instead
of the intersection and union over all assignments that satisfy S = U , it suffices to
take the intersection over the assignments that satisfy the lower bound S[0/x] ⊆ x,
and the union over the assignments that satisfy the upper bound x ⊆ S[U /x].

Lemma 11.7 Let S = U be given. Then the following equation holds:
[⋂

a∈d

a⊨S=U

a(x),
⋃

a∈d

a⊨S=U

a(x)
]
=
[⋂

a∈d

a⊨S[0/x]⊆x

a(x),
⋃

a∈d

a⊨x⊆S[U /x]

a(x)
]

∗

Proof. We show the two subset relations.

⊆ This direction is easy to show. The set of assignments that satisfy S = U is a
subset of the set of assignments that satisfy either bound, S[0/x] ⊆ x or x ⊆
S[U /x]. The left interval is hence smaller than the right interval, because its
lower bound is an intersection over a subset of assignments and thus bigger, and
its upper bound is a union over a subset of assignments and thus smaller.

⊇ If the interval is empty, the relation holds. If there is no a that satisfies x ⊆
S[U /x], the union is empty. But then also the interval must be empty, as oth-
erwise we could find an a that satisfies S[0/x] ⊆ x with a(x) = 0, which would
have to satisfy x ⊆ S[U /x], too. The dual reasoning holds for the lower bound.
Hence assume the interval is not empty. Then, with Lemma 11.6 and its dual, we
can find assignments a1 ∈ d and a2 ∈ d such that

a1 ⊨ S[0/x] ⊆ x and a1(x) =
⋂

a∈d

a⊨S[0/x]⊆x

a(x)

a2 ⊨ x ⊆ S[U /x] and a2(x) =
⋃

a∈d

a⊨x⊆S[U /x]

a(x)

Then a1(x) ⊆ a2(x) ⊆ a2(S[U /x]). Using Lemma 11.5, we can construct an
assignment a3 by merging all values values v ∈ a2(x) \ a1(S[U /x]) into the

151

11 Deriving Propagators for Boolean Set Constraints

assignment a1, and letting a3(x) = a2(x). That way, a3 ⊨ x ⊆ S[U /x]. But at
the same time, a3 ⊨ S[0/x] ⊆ x, as we only added or removed values that are
elements of a3(x). Together, a3 ⊨ S = U , and thus

⋃

a∈d

a⊨x⊆S[U /x]

a(x) ⊆
⋃

a∈d

a⊨S=U

a(x)

A dual reasoning yields the lower bound.

As a last step before proving our main theorem, we prove that we can further decom-
pose the bounds. The upper bound of a variable x with respect to an expression S
can be decomposed into the current upper bound of x and the bound of S[U /x].

Lemma 11.8 Let S be an expression, d a domain, and x a variable. If there exists no
assignment a ∈ d such that a ⊨ x ⊆ S[U /x], then

glb(d(x)) ⊃
⋃

a∈d

a(x)∩
⋃

a∈d

a(S[U /x])

If otherwise there exists an a ∈ d such that a ⊨ x ⊆ S[U /x], then
⋃

a∈d

a⊨x⊆S[U /x]

a(x) =
⋃

a∈d

a(x)∩
⋃

a∈d

a(S[U /x]) ∗

Proof. We prove the first half by contradiction. Assume that there exists no assign-
ment a ∈ d that satisfies x ⊆ S[U /x], but

glb(d(x)) ⊆
⋃

a∈d

a(x)∩
⋃

a∈d

a(S[U /x])

Then, with Lemma 11.5, we start from an assignment that assigns x its greatest
lower bound, and construct an assignment a ∈ d such that a(x) =

⋃
a∈d a(x) ∩⋃

a∈d a(S[U /x]), and all other variables are chosen such that a(x) ⊆ a(S[U /x]).
Thus there is an assignment satisfying x ⊆ S[U /x], contradicting our assumption.

For the second half, let a′ be an assignment that satisfies x ⊆ S[U /x]. We prove
the two subset relations.

⊆ For any value v ∈ a′(x), we know v ∈
⋃
a∈d a(x) (as a′ ∈ d), and at the same

time v ∈
⋃
a∈d a(S[U /x]) (as a′(x) ⊆ a′(S[U /x])).

⊇ Let W =
⋃
a∈d a(x) ∩

⋃
a∈d a(S[U /x]). Then for each v ∈ W , we find an assign-

ment a ∈ d such that v ∈ a(x), and at the same time v ∈
⋃
a∈d a(S[U /x]).

This is possible because x does not appear in S[U /x]. Then we can construct an
assignment a′′ by merging all v ∈ W into a′ with Lemma 11.5. Hence

W ⊆
⋃

a∈d

a⊨x⊆S[U /x]

a(x)

152

11.2 Propagators for Boolean Set Constraints

We can now attack the central theorem of this chapter.

Theorem 11.9 The function pS is equal to the function pmax
S , and hence defines a

D[P(U)]-complete propagator for the constraint JS = U K. ∗

Proof. Combining the above lemmas and their respective dual versions, we get

pmax
S (d)(x) =

[⋂

a∈d

a⊨S=U

a(x),
⋃

a∈d

a⊨S=U

a(x)
]

(Def.)

=
[⋂

a∈d

a⊨S[0/x]⊆x

a(x),
⋃

a∈d

a⊨x⊆S[U /x]

a(x)
]

(L. 11.7)

=
[⋂

a∈d

a(x)∪
⋂

a∈d

a(S[0/x]),
⋃

a∈d

a(x)∩
⋃

a∈d

a(S[U /x])
]

(L. 11.8)

=
[

glb(d(x))∪ glb(S,x,d), lub(d(x))∩ lub(S,x,d)
]

(Def.)

= pS(d)(x) (Def.)

Except for the third line, all steps should be clear. When applying Lemma 11.8, we
have to distinguish two cases. If one of the bounds in the second line cannot be
satisfied by any a ∈ d, then the third line will detect failure because of the first half
of Lemma 11.8. Otherwise, the resulting interval is equal.

Evaluating set expressions

The definition of pS still does not yield an algorithm for computing pS(d) in a
straightforward way. The problem is that the naive evaluation of glb(S,x,d) and
lub(S,x,d) amounts to computing the union or intersection over all assignments
a ∈ d. The number of assignments is not only exponential in the number of va-
riables, but also in the size of their upper bounds, so this is clearly intractable in
practice.

An efficient algorithm has to determine the values of glb(S,x,d) and lub(S,x,d)
by only computing with the lower and upper bounds of individual variables in the
domain d. We will now see how to achieve that for lub(S,x,d); the lower bound
case is dual.

The upper bound, lub(S,x,d), is defined as
⋃
a∈d a(S[U /x]). Let us first look at a

special case, when S[U /x] is just a single variable y or its complement y . Then we
can compute the upper bound efficiently from the domain d:

⋃

a∈d

a(y) = lub(d(y)) and
⋃

a∈d

a(y) = glb(d(y))

153

11 Deriving Propagators for Boolean Set Constraints

We can reduce the general case to this special case by looking at a disjunctive normal
form of S[U /x]. Assume that S′ is a disjunctive normal form that is equivalent to
S[U /x], which means that S′ =

⋃n
i=1

⋂mi

j=1 Li,j. Now the following equations hold:

lub(S,x,d) =
⋃

a∈d

a(S′) =
⋃

a∈d

a(

n⋃

i=1

mi⋂

j=1

Li,j)

=
⋃

a∈d

n⋃

i=1

mi⋂

j=1

a(Li,j)

=

n⋃

i=1

⋃

a∈d

mi⋂

j=1

a(Li,j)

The problem has become significantly simpler: we only have to compute the union
over all a ∈ d of individual clauses of the form

⋂mi

j=1a(Li,j). There are two cases. In
the first case, the clause contains two complementary literals, that is, x and x. Then⋂mi

j=1 a(Li,j) = 0. Otherwise, take the assignment amax ∈ d that maximizes each
literal. For a literal x, this means amax(x) = lub(d(x)), and for a literal x, it means
amax(x) = glb(d(x)). As the domain only represents set intervals, we know that for
any other a ∈ d, a(L) ⊆ amax(L) for any literal L in the clause. So the following
equation holds:

n⋃

i=1

⋃

a∈d

mi⋂

j=1

a(Li,j) =

n⋃

i=1

mi⋂

j=1

⋃

a∈d

a(Li,j)

We now have reduced the problem to the initial special case, where the union over
all assignments only considers literals Li,j, which are variables or their negations.

In summary, given a disjunctive normal form of the upper bound S[U /x], we can
compute lub(S,x,d) efficiently. And dually, a conjunctive normal form for S[0/x]
yields an efficient algorithm for computing glb(S,x,d). The transformation to dis-
junctive and conjunctive normal forms can cause an exponential blow-up, but only
in the number of variables, not in the sizes of the variables’ upper bounds. The
blow-up is expected, since a complete propagator for Boolean set constraints natu-
rally decides the NP-complete problem of satisfiability of Boolean formulas.

Example 11.10 (Propagating partition) Let S = U be an equation normal form for
the partition constraint x = y ⊎ z as seen in Example 11.3. We want to look at
how the propagator pS for this constraint prunes the lower bound of the variable
y . The definition of pS states that we have to compute the set

⋂
a∈d a(S[0/x]). The

y-interval normal form for S yields the lower bound S[0/y] = (x ∩ z) ∪ (x ∩ z).
First of all, we have to transform this into conjunctive normal form, which yields
(x ∪ z) ∩ (x ∪ z). Now we have to compute

⋂
a∈d a((x ∪ z) ∩ (x ∪ z)). As set

154

11.3 Negation of Boolean Set Constraints

intersection is commutative, this is equal to

⋂

a∈d

a(x ∪ z)

∩

⋂

a∈d

a(x ∪ z)

None of the conjuncts is trivial (containing a variable and its negation), so we can
push the intersection further in and replace it with the lower and upper bound of
the variable domains:

⋂

a∈d

a(x)∪
⋂

a∈d

a(z)

∩

⋂

a∈d

a(x)∪
⋂

a∈d

a(z)

= (glb(d(x))∪ glb(d(z)))∩ (lub(d(x))∪ lub(d(z)))

This last expression can be implemented efficiently, for example using range itera-
tors as introduced in the previous chapter. Section 11.5 will discuss implementation
issues in more detail. ∗

11.3 Negation of Boolean Set Constraints

The Boolean constraints we examined so far were all positive, expressed as conjunc-
tions of equations and subset relations. In this section, we investigate their comple-
ments, the negative Boolean constraints.

We have seen that any constraint JCK can be represented in equation normal form
JS = U K = {a ∈ Asn | a ⊨ S = U }. Its negation is the complement of JS = U K and
can thus be written as

{
a ∈ Asn

∣∣∣ a ⊨ S ≠ 0
}
=: JS ≠ 0K

Additional expressivity

Adding negation increases the expressivity of our constraint language significantly.
The following theorem states that given a universe with more than one element,
a negative constraint cannot be expressed as a positive constraint unless the con-
straint is trivial.

Theorem 11.11 Let |U | > 1. For any two expressions S and T , if JS = U K = JT ≠ 0K,
then JS = U K = 0 or JS = U K = Asn. ∗

155

11 Deriving Propagators for Boolean Set Constraints

Proof. We prove the contrapositive statement. Assume that JS = U K ≠ 0 and JS =
U K ≠ Asn. Moreover, assume JT ≠ 0K ≠ 0, as otherwise trivially JS = U K ≠ JT ≠ 0K.

Without loss of generality, we can assume that S is in conjunctive normal form
S =

⋂n
i=1

⋃mi

j=1 Li,j, and that there is a conjunct
⋃mi

j=1 Li,j that does not contain com-
plementary literals, as otherwise the constraint would be trivial.

Consider an assignment a ∈ JT ≠ 0K. We know a ⊨ T ≠ 0, and there is a value
v ∈ a(T) that is a witness for that. Let v′ ∈ U \ {v}. Construct a new assignment
a′ as follows:

a′(x) =

{v} if Li,j = x for some j, and v ∈ a(x)

0 if Li,j = x for some j, and v ∉ a(x)

{v,v′} if Li,j = x for some j, and v ∈ a(x)

{v′} if Li,j = x for some j, and v ∉ a(x)

a(x) otherwise

Then a′ ∈ JT ≠ 0K, as for each x ∈ X, the new assignment a′ behaves in exactly the
same way as a with respect to the witness v. But a ∉ JS = U K, because none of the
disjuncts Li,j contributes v′. So JS = U K ≠ JT ≠ 0K.

Propagating negative Boolean constraints

A negative Boolean set constraint JS ≠ 0K can prune the domain of a variable x
under one single condition: if there is only one element v left that can serve as a
witness of the set S not being empty, that is, if only including v in the lower bound
of x or excluding it from the upper bound of x can satisfy the constraint.

Let us look at the constraint in more detail. We again use Shannon’s expansion:

JS ≠ 0K
=J(S[0/x]∩ x)∪ (S[U /x]∩ x) ≠ 0K

Thus propagation can only happen if one of the two disjuncts is already empty, and
only a single v is left that can be used to make the other disjunct non-empty:

⋃

a∈d

a(S[0/x])∩ glb(d(x)) = 0 and lub(d(x))∩
⋃

a∈d

a(S[U /x]) = {v}

in which case v must belong to the lower bound of x, or

⋃

a∈d

a(S[0/x])∩ glb(d(x)) = {v} and lub(d(x))∩
⋃

a∈d

a(S[U /x]) = 0

156

11.3 Negation of Boolean Set Constraints

which means that v cannot belong to the upper bound of x. If both disjuncts are
empty, that is, if

⋃

a∈d

a(S[0/x])∩ glb(d(x)) = 0 and lub(d(x))∩
⋃

a∈d

a(S[U /x]) = 0

then propagation has detected failure. The unions and intersections over all a ∈ d
can be computed algorithmically using the technique from the previous section. A
propagation algorithm based on these rules for all variables x is complete for the
constraint JS ≠ 0K.

Subsumption and reification

Recall that a propagator p is subsumed by a domain d if and only if for all domains
d′ ⊆ d we have p(d′) = d′. Another interpretation is that a propagator can be
regarded as subsumed as soon as the constraint it induces is entailed. A constraint
c is entailed by a domain d if c ∩ d = d, or equivalently, if c ∩d = 0.

For Boolean set constraints, this means that the constraint JS = U K is entailed by a
domain d if and only if JS ≠ 0K is failed in d. We have just seen how to detect failure
when propagating a negated Boolean set constraint, so we can detect entailment of
JS = U K as

⋃

a∈d

a(S[0/x])∩ glb(d(x)) = 0 and lub(d(x))∩
⋃

a∈d

a(S[U /x]) = 0

which is equivalent to

⋃

a∈d

a(S[0/x]) ⊆ glb(d(x)) and lub(d(x)) ⊆
⋂

a∈d

a(S[U /x])

Note the similarity to propagating JS = U K: if the biggest possibly interpretation of
the lower bound expression is a subset of the lower bound of x, and the smallest
possible interpretation of the upper bound expression is a superset of the upper
bound of x, then the propagator is subsumed.

Checking subsumption is essential for reified constraints. A reified Boolean set con-
straint can be thought of as defined by an expression C ↔ b, for a Boolean 0/1

variable b. We can detect subsumption of and propagate JCK and its complement.
Thus, we can derive a propagation algorithm for any reified Boolean set constraint.

As discussed in Section 5.3, a subsumption check can be used to improve propagator
scheduling. However, the run-time costs of checking subsumption as presented here
probably outweigh the gain from the improved scheduling.

157

11 Deriving Propagators for Boolean Set Constraints

Conjunctions of negative and positive constraints

Although negation adds significant expressivity, there are still many useful con-
straints that cannot be represented in this language. For example, the constraint
x ⊂ y would correspond to x ⊆ y ∧ x ≠ y , a conjunction of a positive and a nega-
tive constraint. In our setup, we can only use two distinct propagators for this class
of constraints, possibly giving up D[P(U)] completeness. It is a promising direction
of future work to investigate which more general classes of set constraints can be
translated to efficient and D[P(U)]-complete propagators.

11.4 Techniques for n-ary Boolean Set Propagators

With the techniques introduced in this chapter, the asymptotic run-time of an algo-
rithm for an n-ary Boolean set propagator is at least quadratic. In this section, we
show how to get linear-time algorithms for a class of important n-ary constraints.

The run-time of an algorithm for a propagator pS for a constraint JS = U K depends
on the size of the interval normal forms. We define the size of an expression S as the
number of set operations (union, intersection, complement) S contains, and write it
|S|. For each variable x that appears in S, let Slx = S[0/x] and Sux = S[U /x] such
that Slx is in conjunctive normal form, and Sux is in disjunctive normal form. Then
an algorithm for pS has to perform

∑
x |S

l
x| + |S

u
x | set operations. Abstracting from

the cost of individual operations (as it depends on how sets are implemented), the
run-time of an algorithm for pS is therefore in O(

∑
x |S

l
x| + |S

u
x |).

Example 11.12 (An n-ary propagator) The set constraint Jy =
⋃
1≤i≤n xiK yields

n+ 1 interval normal forms:

n⋃

i=1

xi ⊆ y ⊆

n⋃

i=1

xi INFy

y ∩
⋂

j≠i

xj ⊆ xi ⊆ y INFxi

The size of the set expressions in each INF is in O(n). The overall run-time of the
propagation algorithm is therefore in O(n2). ∗

A generalized form of common subexpression elimination can be used in order to
propagate in linear time. We now sketch this technique using the above example.

The lower bound expressions for the variables xi are in conjunctive normal form.
Thus, we know that glb(S,xi, d) = glb(d(y)) ∩

⋂
j≠i lub(xj). Assume we propa-

gate in the order x1 . . . xn. Then at step i, we know that for all j > i, we have not
yet changed the domain of xj . Thus, we can use a pre-computed table right[i] =

158

11.5 Implementing Boolean Set Propagators

⋂
j>i lub(xj). The other half of the intersection, lefti =

⋂
j<i lub(xj), can be main-

tained incrementally while moving from step i−1 to step i. This yields the following
propagation algorithm (we only show the pruning of the xi lower bounds):

propagate(d)

1 right[n]← U

2 for i← n− 1 downto 1

3 do right[i] ← right[i+ 1]∩ lub(d(xi+1))
4 left ← U

5 for i← 1 to n

6 do xi.adjglb(glb(d(y))∩ right[i]∩ left)

7 left ← left ∩ lub(d(xi))

Computing the complete table right[i] requires time O(n). The set left is main-
tained incrementally in constant time in line 7. Thus, glb(S,xi, d) is computed in
line 6 in constant time. This yields a run-time of O(n) for the whole propagator.

Generalizing this technique, for any constraint S = U , we look for subexpressions
of the form

⋂
i≠j S

′
i in the conjunctive normal forms of S[0/x], and

⋃
i≠j S

′
i in the

disjunctive normal forms of S[U /x]. These subexpressions can then be evaluated
as presented above, improving the run-time by a factor of n.

11.5 Implementing Boolean Set Propagators

We have seen in this chapter how to derive propagators for Boolean set constraints
from high-level specifications. This section develops and evaluates implementation
strategies for both the translation from specification to propagator, as well as for
the propagators themselves.

Translation using Binary Decision Diagrams

Generating a D[P(U)]-complete propagator from a specification of a Boolean set
constraint involves complex symbolic manipulations of set expressions. We have
to transform the specification into conjunctive and disjunctive normal forms of the
two parts of its interval normal forms for each variable. Fortunately, we do not
have to implement these manipulations from scratch, as binary decision diagrams

provide all the necessary operations.

A Binary Decision Diagram (BDD) represents a Boolean function f ∈ Bn → B as a
rooted, directed, acyclic graph. Each node corresponds to a variable, or to one of
the constants 0 and 1. Edges are labeled with either 0 or 1. Each path from the
root node ends either in the 0 or the 1 node. A path from the root node to the 1

159

11 Deriving Propagators for Boolean Set Constraints

x

y y

z

0 1

Figure 11.1: Binary decision diagram for the formula (x ∧ (¬y ∨ z))∨ (y ∧ z)

node represents an assignment a such that f(a) = 1. Figure 11.1 shows a BDD for
the Boolean function given by the formula (x ∧ (¬y ∨ z)) ∨ (y ∧ z). Dotted lines
represent edges labeled with 0, solid lines correspond to edges with label 1.

BDDs are algorithmically interesting if they are reduced and ordered, meaning that
no two distinct subgraphs are the same, and that variables on each path respect a
global variable ordering. The BDD in Figure 11.1 is reduced and ordered. Reduced,
ordered BDDs (ROBDDs) were introduced by Bryant (1986). An ROBDD is canonical:
for every Boolean function f , and given a fixed variable ordering, there is exactly
one ROBDD that encodes f . There are efficient algorithms that, given two ROBDDs,
compute an ROBDD that represents the conjunction, disjunction, or implication of
the two arguments. Another available operation, which will be especially useful for
our purposes, is existential quantification.

Let JS = U K be the Boolean constraint we want to propagate. In order to propagate
JS = U K, we determine the x-interval normal form S[0/x] ⊆ x ⊆ S[U /x] for each
variable x that appears in S.

As the expression S is a Boolean formula, we can represent it as an ROBDD. We will
continue to use set notation. The two components of the INFx that we need are then
easily acquired using existential quantification:

S[0/x] = ∃x : x ∩ S

S[U /x] = ∃x : x ∩ S

A suitable package for ROBDD computations can thus be used to implement variable
isolation.

An implementation of a propagator pS for a Boolean set constraint JS = U K has to
compute the values of the functions glb(S,x,d) and lub(S,x,d) for each variable
x. In Section 11.2, we saw that glb(S,x,d) and lub(S,x,d) can be implemented
efficiently on conjunctive normal forms of S[0/x] and disjunctive normal forms of
S[U /x], respectively. Both normal forms can be obtained directly from the ROBDD.
The disjunctive normal form is a disjunction of all paths that lead to the 1 node,
where each path represents a conjunction of the literals on the path. For the example

160

11.5 Implementing Boolean Set Propagators

in Figure 11.1, a disjunctive normal form would hence be (x ∩ y ∩ z) ∪ (x ∩ y) ∪
(x ∩ y ∩ z). A conjunctive normal form is obtained dually, by following the paths
to the 0 node and negating the literals. Again for the above example, this yields
(x ∪y)∩ (x ∪y ∪ z)∩ (x ∪y ∪ z).

Interpretation versus compilation

Given the disjunctive and conjunctive normal forms that allow us to compute the
sets glb(S,x,d) and lub(S,x,d) for each variable x, there are two strategies for
implementing the corresponding propagator. We can implement an interpreter for
the set expressions of the normal forms, or we can compile the expressions directly
to the implementation language of the constraint solver, in our case to C++ code. An
interpreter has the advantage of being flexible: new propagators can be created at
run-time, without recompiling the program. The compilation approach on the other
hand is less flexible, but potentially yields better performance.

Both approaches have to compute the values of glb(S,x,d) and lub(S,x,d) for each
variable x. Let us take the partition constraint Jx = y⊎zK from Example 11.10 again
and discuss its implementation. In the example, we saw how to compute glb(S,y,d)
from the lower and upper bounds of the current variable domains. The propagator
has to determine the new lower bound of y as

glb(d(y))∪
(
(glb(d(x))∪ glb(d(z)))∩ (lub(d(x))∪ lub(d(z)))

)

Section 10.5 developed set variable domain operations based on range iterators. The
partition propagator constructs an iterator that represents the set glb(S,y,d), and
then prunes the domain using the y.adjglb(·) domain operation.

The interpreter constructs the iterators at run-time, so it cannot use iterators based
on templates in C++ (see Section 9.1). In Gecode, we therefore provide a second set
of iterator implementations with dynamic binding using virtual methods.

The compilation approach simply emits C++ code that constructs the iterators di-
rectly and then prunes the variable bounds. The generated propagator implementa-
tion can therefore use parametric polymorphism through templates. The generated
C++ code for the above example appears in Figure 11.2.

For the above example, binary union and intersection range iterators are sufficient.
In general, the conjunctive or disjunctive normal forms of course require n-ary op-
erations. Gecode provides n-ary union and intersection iterators, which are more
efficient than a decomposition into binary iterators would be.

161

11 Deriving Propagators for Boolean Set Constraints

void propagate(void) {

GlbRanges i1 = x.glb();

GlbRanges i2 = z.glb();

Union<GlbRanges,GlbRanges> i3(i1,i2);

LubRanges i4 = x.lub();

LubRanges i5 = z.lub();

Complement<LubRanges> i6(i4);

Complement<LubRanges> i7(i5);

Union<Complement<LubRanges>,Complement<LubRanges> > i8(i6,i7);

Intersection<Union<GlbRanges,GlbRanges>,

Union<Complement<LubRanges>,Complement<LubRanges> > > i9(i3,i8);

y.adjglb(i9);

}

Figure 11.2: Generated propagator implementation for the partition constraint

Performance analysis

We have implemented both a compiler and an interpreter for Boolean set propaga-
tors in Gecode. Table 11.1 shows how the two approaches compare as far as run-time
and memory consumption are concerned. The setup for the experiments is the same
as in Section 6.9 and Appendix A, but we replaced the hand-implemented ternary in-
tersection propagator that comes with Gecode with a compiled and an interpreted
version that were both generated from the simple specification x = y ∩ z. Both
types of propagators perform exactly the same pruning, so the number of propaga-
tor invocations is the same (and does not appear in the table). Unsurprisingly, the
compiled propagators are much faster.

The set propagator implementations that come with Gecode perform additional car-
dinality reasoning, so their run-times are not directly comparable to the times re-
ported in Table 11.1. Any implementation of D[P(U)]-complete Boolean set propa-
gators however has to perform the same inferences as the generated propagators.
Hand-optimized implementations therefore only have a limited potential for out-
performing generated propagators. For the ternary intersection propagator in the
benchmark examples, the generated code is exactly what would have been written by
hand. We believe that using standard compiler techniques such as common subex-
pression elimination, as well as minimization of the generated disjunctive and con-
junctive normal forms, we can always generate propagators that are equivalent to
hand-implemented versions in terms of performance.

162

11.6 Related Work

Benchmark Compiled Interpreted

time (ms) mem. (KByte) time % mem. %

Social Golfers (8-4-9) 182.90 10254 1134.62 120.60

Steiner Triples (9) 142.22 901 343.98 100.00

Hamming Codes (20-3-32) 1195.78 23402 486.40 104.92

Sudoku (Set, 1) 2.61 83 803.95 100.00

Sudoku (Set, 4) 6.10 130 675.88 100.00

Sudoku (Set, 5) 46.38 322 597.87 100.00

Table 11.1: Relative performance of interpreted set intersection propagators, com-
pared to compiled versions

11.6 Related Work

◮ Set constraints have been investigated for a long time. While the term set con-

straint was coined as late as 1990 (Heintze and Jaffar, 1990), already the early ALICE
constraint system (Laurière, 1978) provided set constraints as one of its fundamen-
tal constructs. In propagation-based solvers, set constraints only appeared after the
set interval approximation (see Section 4.2) had been developed by Puget (1992) and
later Gervet (1994, 1995, 1997).

◮ Concerning variable isolation for set constraints, Gervet (2006) states that “Since
there is no inverse operation for ∪,∩,\ there is no way to move all the operation
symbols on one side of the constraint relation.” While this is certainly true in general,
our results show that one can isolate variables if the set interval approximation
D[P(U)] is used. This is in fact what makes the set interval approximation so useful:
its structure coincides with how variables can be isolated in Boolean set constraints.

◮ The approach that is closest to ours was developed by Hawkins et al. (2005). They
propose to represent set variable domains and propagators as ROBDDs. Both the
variable domains and the constraints can be encoded as Boolean functions and thus
represented using ROBDDs. In this encoding, not only the set interval approxima-
tion can be realized, but even complete domains become tractable. Although this
representation may still be exponential in size, it works well for many practical ex-
amples. Similar to our approach, propagation using ROBDDs isolates variables using
existential quantification. However, each set variable x is represented as its charac-
teristic function using 0/1 variables xv for each v ∈ U . That way, the propagators
do not compute new lower and upper bounds, but determine the value of each of the
xv directly. It is straightforward to derive ROBDD-based propagators from Boolean
set constraint specifications. Consider an equation normal form S = U . It can be
turned into the 0/1 Boolean function

∨
v∈U S[x1,v/x1, . . . , xn,v/xn], which is then

represented as an ROBDD. Even though ROBDDs can be used to implement the set
interval approximation, our approach still has significant advantages: (1) It can be
used for existing systems that do not have a BDD-based set constraint solver. (2) A

163

11 Deriving Propagators for Boolean Set Constraints

direct implementation of the set interval approximation is more memory efficient.
(3) Our propagators can be compiled statically, and independent of the size of U .
Still, they offer the same compositionality as ROBDD-based propagators.

◮ Müller (2001) develops set propagators in the context of the Mozart system. He
defines projectors, propagators that only prune the domain of a single variable. Pro-
jectors are defined in terms of set expressions, and are therefore closely related
to the Boolean set propagators we derive: the propagator pS can be regarded as a
collection of projectors, one for each variable x. Projectors as defined by Müller
transfer the idea of indexicals (which is discussed below) from integer to set con-
straints. While Müller uses an implementation language based on set expressions,
he does not present a general method for deriving projectors from constraint specifi-
cations, but just gives some examples for common constraints. As Mozart requires
propagators to be idempotent, Müller describes methods for determining an effi-
cient propagation order for projectors. Several projectors are then grouped into a
single, idempotent propagator. The same techniques can be applied to the Boolean
set propagators we derive, determining in which order a concrete implementation
should prune the individual variable domains.

◮ Defining the pruning of a single variable domain using expressions that involve
the remaining variables is exactly what indexicals do. The main idea of indexicals
goes back to cc(FD) (Van Hentenryck et al., 1991, 1998) and was later elaborated
in the context of clp(FD), AKL, and SICStus Prolog (see Codognet and Diaz, 1996;
Carlson, 1995; Carlsson et al., 1997). Indexicals build on range expressions as a lan-
guage for defining the projection of a constraint over integer variables. Range ex-
pressions are a more complicated language than our set expressions, as they pro-
vide arithmetic operations and can be evaluated both on integer intervals and on
full integer domains. In contrast to the propagators we derive, indexicals are not
contracting and monotonic by construction. Instead, the range expressions have
to be designed carefully to yield a correct propagator. Carlson (1995) develops a
compilation approach that generates indexicals from specifications of arithmetic
constraints. He isolates every variable of the arithmetic expression and generates
an indexical for it. However, variable isolation for arithmetic expressions is easier
than for set constraints, as every arithmetic operation he considers has an inverse.

◮ We check entailment of a Boolean set constraint by computing the largest possible
sets for the lower bound set expressions, and the smallest possible sets for the
upper bound set expressions. In the indexical scheme, this technique corresponds
to checking entailment using anti-monotonic indexicals (Carlson et al., 1994a).

◮ We saw in Section 2.2 that models with set constraints often involve the cardi-
nalities of the sets. Azevedo (2007) defines ad-hoc propagation rules that perform
cardinality reasoning for a number of Boolean set constraints. Bessière et al. (2004)
present propagation algorithms that reason about cardinality for several Boolean set
constraints, and show that for other Boolean set constraints, cardinality reasoning

164

11.6 Related Work

is NP-hard. It is not clear how our systematic approach to propagation of Boolean
set constraints can be extended with cardinality reasoning.

◮ Ågren et al. (2007) specify set constraints in the context of constraint-based local
search using monadic second-order logic (MSO). The purely Boolean expressions we
use can be regarded as the fragment of MSO that has only a single first-order uni-
versal or existential quantifier. Ågren et al. thus have a richer language, it supports
existential second-order quantification as well as arbitrarily nested first-order quan-
tifiers. They can deal with the additional expressivity because instead of performing
constraint propagation for the specified constraints on full domains, they compute
a penalty that describes how much a single given assignment violates a constraint.

165

Contributions of Part II

This second part of the dissertation developed novel techniques for deriving prop-
agators and their implementations. We derived propagators from existing propaga-
tors, as well as from specifications of Boolean set constraints. The contributions of
this part can be summarized as follows.

1. Deriving propagators using views is a novel technique, introduced, discussed
thoroughly, and evaluated empirically in this dissertation. We provide formal
definitions of views and derived propagators, show that derived propagators
induce the desired constraints, and identify the conditions under which they
preserve completeness of the original propagators. We develop an efficient im-
plementation architecture based on parametric propagators. The experiments
suggest that an implementation using parametric polymorphism in the form
of C++ templates incurs no run-time or memory overhead. Views are widely
applicable, as demonstrated by the four general techniques we present for de-
riving propagators: transformation, generalization, specialization, and type
conversion. Using these techniques, views save the tremendous amount of
120 000 lines of code in the implementation of Gecode, which underlines their
relevance in practice.

2. For an efficient implementation of propagation algorithms, this dissertation
develops the notion of range iterators, which provide set-valued operations
on variable domains. Using range iterators, set-valued operations on views
can be implemented in a completely modular way, and without requiring addi-
tional memory for temporary set data structures. Furthermore, range iterators
simplify propagator implementation, they serve as adaptors between internal
propagator data structures and the variable domain operations during propa-
gation.

3. This work is the first to present a systematic technique for propagating Boolean

set constraints. While previous work on set constraints was confined to stat-
ing propagation algorithms as ad-hoc propagation rules, we derive set-interval-
complete propagators and their implementations from specifications of the
constraints. The key insights are that Boolean set constraints permit a limited
form of variable isolation, yielding interval normal forms for each variable; and
that in the set-interval approximation, one can derive efficient algorithms for
computing the bounds resulting from the interval normal forms.

12 Conclusions

This dissertation aimed at developing a well-understood, modular, correct, compre-
hensive and efficient propagation-based constraint solver, based on a solid mathe-
matical model of constraint propagation as well as a carefully designed implemen-
tation architecture. This chapter presents a summary of the contributions towards
this goal, and an outlook on some further research questions that we did not answer
in this dissertation.

12.1 Summary and Main Contributions

The first part of this dissertation developed a propagation kernel, the part of a con-
straint solver that provides the infrastructure for propagation.

As a solid foundation, we defined a mathematical framework that describes con-
cisely how constraint propagation works. We defined Constraint Satisfaction Prob-

lems as a denotational model that captures what problems we want to solve, and
Propagation Problems as a more operational model that explains how to solve these
problems, on an abstract level. A propagation problem realizes the constraints of
a CSP using propagators, which we defined as contracting and sound functions that
transform a domain into a stronger domain. Each propagator realizes a decision
procedure for one particular constraint, and additionally it can prune non-solutions
from the domain, reducing the search space.

In order to solve real-world propagation problems, the propagators typically have
to be strong, that is, they have to be able to prune as much of the non-solutions
of their constraints as possible. We showed that there is a unique strongest and a
unique weakest propagator for each constraint. We then characterized propagation
strength using domain approximations, identifying propagators whose strength lies
between the strongest and the weakest propagators. Completeness with respect to
domain approximations generalizes the well-known notions of bounds and domain
as well as set-interval consistency.

The mathematical model we presented is inspired by many sources. It combines
the ideas from these sources in a compact model that completely describes a con-
straint solver. We went beyond previous models, making the induced constraint of

12 Conclusions

a propagator explicit, discussing monotonicity and idempotency in detail, and estab-
lishing the connection between consistency notions and propagator completeness
with respect to approximations.

After laying the foundation with the mathematical framework, we turned to the ar-
chitecture and implementation of a propagation kernel. The mathematical model de-
scribes the process of constraint propagation as transition system that chooses non-
deterministically which propagator to apply next. A constraint solver must make
this choice deterministically, so we applied several well-known techniques such as
agenda-based propagation using a priority queue of propagators, and event-directed

propagation, which only schedules propagators if the variables they are subscribed
to change in certain ways. We also discussed how more advanced techniques such
as dynamic fixed point reasoning and propagator staging fit into this framework.
Finally, we refined the model with the novel concepts of propagation conditions and
modification events, which are the basis for an efficient implementation of event-di-
rected propagation.

Based on the mathematical model, we developed an object-oriented implementa-
tion architecture for a constraint solver. An important point is the clear distinction
between the domain-independent propagation kernel, which provides services like
propagator scheduling and copying, and the domain module, which contributes the
domain-specific parts like the actual variable domains or propagation algorithms.
Contracts between propagators, variables, and the kernel establish strong invari-
ants that lead to a streamlined, efficient implementation. We carefully designed
and evaluated the main data structures of the kernel, implementing the dependency
mapping and the priority queue, and gave a detailed description of the copying
mechanism that is used for backtracking during search. The implementation archi-
tecture is the basis of the Gecode C++ constraint solving library. Benchmarks showed
that Gecode outperforms even state-of-the-art commercial constraint solvers. Based
on Gecode, we empirically evaluated different design decisions for the kernel data
structures and algorithms. The implementation thus validates the viability of the
models and the success of the approach.

In the second part of this dissertation, we developed two new techniques for deriving

propagators. Both techniques address the problem of implementing a comprehen-
sive number of propagators.

The first technique reuses propagators by combining them with views, thereby real-
izing slight variations of constraints. We modeled views as functions that can be
composed with a propagator, transforming its input and output domain. This com-
position is again a propagator, the derived propagator. By modeling views in our
mathematical framework, we were able to prove several important properties. First,
the derived propagator induces the intended constraint. Second, if the original prop-
agator is domain-complete, then the derived propagator is also domain-complete.

170

12.1 Summary and Main Contributions

Third, if the original propagator is complete with respect to a domain approxima-
tion, and the views are compatible with that approximation, then the derived propa-
gator is also complete with respect to the approximation. We can therefore say that
derived propagators are perfect, in that they inherit all the essential properties.

We presented four general techniques for deriving propagators using views. Alge-
braic transformations derive propagators using Boolean negation, integer negation,
or set complement views. The generalization technique uses views such as scale or
offset views to derive more complex propagators from simpler ones. Constant views
allow us to specialize propagators, and type conversion views mediate between dif-
ferent types of variables.

The implementation architecture of views again followed the mathematical model.
In the implementation, propagators are derived by instantiating parametric propaga-

tors. Parametric polymorphism in the form of C++ templates leads to a perfect imple-

mentation of derived propagators, as monomorphization and subsequent compiler
optimizations make sure that deriving a propagator incurs no overhead compared
to implementing a dedicated propagator by hand. Range iterators complemented
the architecture by providing efficient set-valued domain operations for both varia-
bles and views, and by simplifying the implementation of propagation algorithms.
Experiments showed that views provide superior performance compared to simple
decompositions into smaller constraints, and that the compiler optimizations en-
abled by parametric polymorphism in C++ yield a significantly improved performance
compared to an implementation based on dynamic binding. Furthermore, we saw
that deriving propagators is an indispensable technique for the implementation of
Gecode, as it saves more than 120 000 lines of code and documentation.

As a second technique for deriving propagators, we defined a specification language
for Boolean set constraints, and, for the first time, showed how constraints specified
this way can be automatically translated to propagation algorithms. Boolean set con-
straints elegantly describe a large class of useful constraints over set variables. At
the same time, we can use all the equivalence transformations known from Boolean
algebra. Boolean set constraints are transformed into x-interval normal forms for
each of their variables x, and these normal forms provide pruning of the lower and
upper bound of x. The main result is that one can automatically generate set-in-
terval-complete propagation algorithms from Boolean constraint specifications. We
extended the approach to support negated and reified constraints. For the imple-
mentation of Boolean set propagators, we employed ROBDDs, which provide an effi-
cient implementation of the symbolic manipulations required to acquire the interval
normal forms. The resulting set expressions are then evaluated using range itera-
tors, which can be either constructed dynamically at run-time, or compiled to C++

code. Both approaches are available in Gecode.

171

12 Conclusions

12.2 Future Research

The work presented in this dissertation can be extended in a number of interesting
directions.

Concurrent propagation. The architecture of personal computers has been chang-
ing for a number of years now. Instead of increased clock frequencies, modern com-
puters have an increased number of processors (be it CPUs or GPUs). The challenge
for all software development in the coming years is therefore parallelization. Con-
straint solvers, especially those based on copying, are in a good position, as search
can be made parallel relatively easily. An equally interesting, yet largely unexplored
approach is to parallelize constraint propagation. We should take advantage of the
strong properties of propagators compared to arbitrary computations, like contrac-
tion and possibly monotonicity, and research implementation strategies that yield
low synchronization overhead between several concurrently running propagators.

Monotonicity. We have seen that propagators do not have to be monotonic for
the constraint solver to be correct. This opens up the development of approxima-
tive, randomized, or heuristic propagation algorithms. These would yield stronger
pruning for constraints for which a complete propagator is computationally too ex-
pensive.

Copying versus trailing. With Gecode, we have evidence that a constraint solver
based on copying and recomputation provides competitive performance compared
to all trailing solvers on the market. However, for special problem classes such
as SAT, trailing has its advantages. It should be enlightening to investigate how
a hybrid approach can bridge the gap between copying and trailing solvers, and
between general constraint solvers and dedicated SAT solvers. A first step in this
direction has been taken by Reischuk (2008).

Set propagators. The approach presented in this dissertation yields set interval
complete propagators only for positive and negative Boolean set constraints. It will
be interesting to investigate which larger classes of Boolean set constraints still
permit the generation of efficient and complete propagation algorithms.

Cardinality reasoning. Many problem formulations that use set variables constrain
the cardinality of the sets. However, reasoning about the cardinality during propa-
gation is extremely difficult. Already for simple constraints such as ∀1 ≤ i < j ≤
n, |xi ∩ xj| ≤ k for set variables x1, . . . , xn and an integer k, complete propagation
taking into account the cardinality of the sets xi is NP-hard (Bessière et al., 2004). It
is a challenging task to develop techniques for deriving propagators from Boolean
set constraint specifications that perform a limited, but effective form of cardinality
reasoning.

172

A Benchmarks

This appendix presents a list of all the models that were used as benchmarks in
this dissertation. Implementations for all problems are available as part of Gecode.
Pointers to the corresponding entries in the CSPLib (Gent and Walsh, 1999) are pro-
vided where appropriate. Section A.5 gives an overview of the performance, search
and propagation characteristics of the examples’ Gecode implementations.

A.1 Models with Integer and Boolean Variables

Alpha
A well-known cryptoarithmetic puzzle of unknown origin. It consists
of 20 linear equations over 26 variables (the letters of the alphabet).
The smart version uses a first-fail branching heuristic, whereas the
naive version enumerates the variables in the given order.

BIBD(v,k,λ)
Balanced incomplete block design, problem 28 in the CSPLib. We use
one fixed instance with v = 7, k = 3, λ = 60.

Eq-20

A standard benchmark for solving a system of 20 linear equations.

Golomb Rulers(n)

Find a ruler of minimal size that has n markers, such that the dis-
tances between any two markers is different from the distance be-
tween any two other markers (problem 6 in the CSPLib).

Graph Coloring

Given an undirected graph, find the minimum number of colors such
that you can assign each node of the graph a color and no two adjacent
nodes have the same color. The description of the graph lists cliques
of nodes explicitly, so that the all-different constraint can be used.

A Benchmarks

Knights(n)
Fill an n × n chessboard with knights such that the knights do a full
tour by knights move (last knight reaches first knight again). The
formulation is due to Gert Smolka.

Magic Sequence(n)

Find a sequence [x0, . . . , xn−1] of integers such that for each i ∈

{0, . . . , n − 1}, the number i occurs exactly xi times in the sequence.
Three different models are used in the benchmarks: using reified con-

straints (called naive in the tables), using counting constraints (called
smart), and using a global cardinality constraint (called GCC).

Partition(n)

Partition n numbers into two groups, so that the sum of the first
group equals the sum of the second, and the sum of the squares of
the first group equals the sum of the squares of the second.

Perfect square packing
Packing squares into a rectangle without overlap. Problem 9 in the
CSPLib.

Photo Alignment
A group of people wants to take a group photo. Each person can give
preferences next to whom he or she wants to be placed on the photo.
The problem to be solved is to find a placement that satisfies as many
preferences as possible.

Queens(n)

Place n queens on an n ×n chessboard so that no two queens attack
each other. The naive version uses binary disequality propagators, the
smart version uses special all-different propagators with offsets. The
default propagation strength of the all-different is the simple value
propagation; if domain propagation is used, this is noted in the exam-
ple as Dom.

A.2 Models with Set Variables

Crew Allocation

Assign 20 flight attendants to 10 flights. Each flight needs a certain
number of cabin crew, and they have to speak certain languages. Every
cabin crew member has two flights off after an attended flight.

174

A.3 SAT Problems

Hamming Codes(b,d,n)

Generate a Hamming code that fits in b-bit words to code n symbols
where the Hamming distance between every two symbol codes is at
least d. The Hamming distance between to words is the number of bit
positions where they differ. This instance fixes b to 20, d to 3, and n
to 32.

Social Golfers(g,s,w)
In a tournament of w weeks, schedule g × s golfers in g groups per
week, each of size s, such that no two golfers play against each other
in a group more than once. This is the problem from Example 2.1, and
problem 10 in the CSPLib.

Steiner Triples(n)

Find a set of n×(n−1)/6 triples of distinct integers in {1, . . . , n} such
that no two triples share more than one element. This is problem 44

in the CSPLib.

Sudoku
The logic puzzle explained in Section 2.1, but using a model based
on set variables. All instances are “classical” 9 × 9 Sudokus with a
unique solution that cannot be solved by propagation alone. In order
to make the problem slightly harder, an all-solution search (proving
uniqueness of the solution) is performed.

Queen Armies
The goal of this problem is to place as many white and black queens
on a chess-board without any two queens of different color attacking
each other. The number of black queens should be greater than or
equal to the number of white queens. The model is based on the one
presented by Smith et al. (2004).

A.3 SAT Problems

The SAT (Boolean satisfiability) problems are all given in DIMACS clause format as
used by SATLIB (Hoos and Stützle, 2000), and run through the DIMACS parser that
comes with Gecode. All problems except for the Ramsey problem are from SATLIB.

Dubois (20)
An unsatisfiable, generated instance, DIMACS generated by Olivier
Dubois.

175

A Benchmarks

Towers of Hanoi (4)
A towers of Hanoi problem with four blocks, DIMACS generated by
Bart Selman.

Ramsey (n)
This problem determines whether n is a lower or upper bound for the
Ramsey number R(4,4), that is, whether there is a K(4,4) subgraph
in graphs with n vertices. DIMACS generated by Raphael Reischuk.

Pigeon Hole (n)

Place n + 1 pigeons in n holes without placing two pigeons in the
same hole. Classic unsatisfiable problem, DIMACS generated by John
Hooker.

Flat (200− 1)

A generated, quasi-random graph coloring, DIMACS generated by Joseph
Culberson.

A.4 Stress Tests

Domain Stress

Cut holes into variable domains and then contract the domains again,
until one domain is empty. This test measures the performance of
domain operations on integer variables.

Propagation Stress

Prove unsatisfiability of the problem x < y∧y < x, where the domain
size of both x and y is 1000000. This test measures mainly how fast
the scheduling and execution of propagators is in a system.

Search Stress
Explore the complete search space of a problem with n variables of
domain size n each and no constraints.

A.5 Gecode Performance

Table A.1 lists the run-time, memory requirements, number of failures in the search
tree, and number of propagation steps for the individual benchmark examples. The
experiments were run using the upcoming Gecode 3.0.0 on an Intel Core 2 Duo
processor at 1.83 GHz, equipped with 2GB of RAM, running Mac OS 10.5.5. The
programs were compiled using the GNU C++ compiler, version 4.2.1. All run-time

176

A.5 Gecode Performance

results are wall time, taken as the arithmetic mean of 20 runs, with a coefficient
of deviation below 2% for all benchmarks, except for the SAT examples, where the
run-time results are the arithmetic mean of five runs.

Figure A.1 and Table A.2 compare Gecode’s run-time performance with ILOG Solver
6.5 and SICStus Prolog 4.0.2. Due to licensing issues, the experiments were not run
on the same machine as all other experiments in this dissertation, but on an Intel
Pentium 4 processor at 2.8 GHz, 1GB of RAM, running Linux. Both the Gecode and
the ILOG examples were compiled using the GNU C++ compiler, version 4.3.2. All
run-time results are the average of 20 runs, with a coefficient of deviation below 2%
for all benchmarks. We only ran a subset of the benchmarks presented in Table A.1.
For the other examples, we could not find models that lead to the same search
space with all three solvers. This turned out to be particularly difficult for problems
involving set constraints, because the propagation strength of set propagators that
perform cardinality reasoning is not specified for ILOG Solver. SICStus Prolog does
not provide set constraints.

177

A Benchmarks

Benchmark time (ms) mem. (KByte) failures propagations

Alpha (smart) 0.92 14 33 2063

Alpha (naive) 81.57 23 7435 136179

BIBD 1814.52 4452 1306 921554

Eq-20 1.31 14 54 3460

Golomb Rulers (10) 806.17 419 8890 1181770

Graph Coloring 352.99 3140 1078 128120

Knights (18) 65.81 11281 15 102259

Magic Sequence (Smart, 500) 172.50 4227 251 84302

Magic Sequence (Naive, 500) 681.87 19843 251 1254911

Magic Sequence (GCC, 500) 327.43 330 251 3908

Partition (32) 9173.41 277 160258 12107504

Perfect Square 179.01 3780 150 305391

Photo Alignment 130.94 63 10345 468610

Queens (Naive, 10) 55.26 51 4992 269819

Queens (Smart, 10) 33.27 27 4992 43448

Queens (Naive, 100) 34.56 4038 22 16821

Queens (Smart, 100) 1.17 239 22 455

Crew Scheduling 3.94 246 34 2389

Hamming Codes (20-3-32) 1377.77 23402 2296 903217

Social Golfers (8-4-9) 175.50 10254 32 181343

Social Golfers (5-3-7) 1323.41 2117 1174 891423

Steiner Triples (9) 143.38 901 1067 241788

Sudoku (Set, 1) 3.46 83 0 1821

Sudoku (Set, 4) 7.56 130 1 3752

Sudoku (Set, 5) 57.93 322 25 28038

Queen Armies 318.40 83 5602 513615

Dubois (20) 100882.27 196 3145728 127222546

Towers of Hanoi (4) 156613.64 1924 888424 289149334

Ramsey (4-4-13) 2099643.62 2053 14546227 2566529591

Ramsey (4-4-10) 1140.24 323 19575 2389124

Pigeon Hole (7) 258.21 100 32781 1099849

Pigeon Hole (8) 10394.45 244 378344 13894407

Flat (200-1) 35083.11 2181 167618 74244397

Domain Stress 16.90 131 1 0

Failure Stress 43.14 5 1 499999

Search Stress 151.37 27 0 0

Table A.1: Benchmarks for the standard Gecode distribution

178

A.5 Gecode Performance

Figure A.1: Gecode versus ILOG Solver versus SICStus Prolog

179

A Benchmarks

Benchmark Gecode ILOG Solver 6.5 SICStus Prolog 4.0.2

time (ms) time % time %

BIBD 1726.00 60.34 —
Alpha (smart) 0.98 285.51 373.80

Alpha (naive) 99.00 247.78 562.20

Knights (18) 69.72 2402.51 2474.44

Golomb Rulers (10) 570.00 169.65 248.30

Queens (Naive, 10) 63.45 168.12 124.55

Queens (Naive, 100) 27.77 616.92 92.40

Eq-20 1.43 238.56 —
Graph Coloring 256.00 225.45 160.98

Magic Sequence (Naive, 500) 599.50 7622.69 —
Magic Sequence (GCC, 500) 305.38 234.75 263.70

Photo Alignment 171.60 340.12 —
Partition (32) 6487.50 216.99 —
Steiner Triples (9) 120.78 67.81 —
Search Stress 178.85 119.37 205.50

Failure Stress 67.05 227.03 327.32

Domain Stress 17.39 694.19 —

Table A.2: Gecode versus ILOG Solver versus SICStus Prolog

180

Bibliography

Abrahams, David, Jeremy Siek, and Thomas Witt. 2009.
The Boost.Iterator library.
url: http://www.boost.org/doc/libs/1_37_0/libs/iterator/doc/.
Cited on page 135.

Ågren, Magnus, Pierre Flener, and Justin Pearson. 2007.
Generic incremental algorithms for local search. Constraints, 12(3):293–324.
Cited on page 165.

Ait-Kaci, Hassan. 1991.
Warren’s Abstract Machine: A Tutorial Reconstruction. MIT Press, Cambridge, MA,
USA.
Cited on page 71.

Andersen, Henrik Reif, Tarik Hadzic, John N. Hooker, and Peter Tiedemann. 2007.
A constraint store based on multivalued decision diagrams. In Bessière (2007),
pages 118–132.
Cited on page 46.

Apt, Krzysztof R. 2003.
Principles of Constraint Programming. Cambridge University Press.
Cited on pages 2 and 45.

Apt, Krzysztof R., and Mark Wallace. 2007.
Constraint Logic Programming using Eclipse. Cambridge University Press.
Cited on page 2.

Azevedo, Francisco. 2007.
Cardinal: A finite sets constraint solver. Constraints, 12(1):93–129.
Cited on pages 46 and 164.

B-Prolog. 2009.
url: http://www.probp.com/.
Cited on page 65.

Baptiste, Philippe. 1994.
Constraint-based scheduling: Two extensions. Master’s thesis, University of Strath-
clyde, Glasgow, UK.
Cited on page 30.

http://www.boost.org/doc/libs/1_37_0/libs/iterator/doc/
http://www.probp.com/

Bibliography

Beeri, Catriel, Ronald Fagin, David Maier, and Mihalis Yannakakis. 1983.
On the desirability of acyclic database schemes. Journal of the ACM, 30(3):479–
513.
Cited on page 114.

Benhamou, Frédéric. 1996.
Heterogeneous Constraint Solving. In Michael Hanus and Mario Rodríguez-
Artalejo, ALP, volume 1139 of LNCS, pages 62–76. Springer.
Cited on pages 32, 33, and 45.

Benhamou, Frédéric, and Laurent Granvilliers. 2006.
Continuous and interval constraints. In Rossi et al. (2006), chapter 16, pages 571–
604.
Cited on page 74.

Benhamou, Frédéric, David A. McAllester, and Pascal Van Hentenryck. 1994.
CLP(intervals) revisited. In ILPS ’94: Proceedings of the 1994 International Sympo-

sium on Logic programming, pages 124–138, Cambridge, MA, USA. MIT Press.
Cited on pages 23 and 32.

Bessière, Christian, editor. 2007.
Principles and Practice of Constraint Programming - 13th International Conference,

CP 2007, Providence, RI, USA, September 23-27, 2007, Proceedings, volume 4741 of
LNCS. Springer.
Cited on pages 181, 188, and 190.

Bessière, Christian, Emmanuel Hebrard, Brahim Hnich, and Toby Walsh. 2004.
Disjoint, partition and intersection constraints for set and multiset variables. In
Wallace (2004), pages 138–152.
Cited on pages 164 and 172.

Bryant, Randal E. 1986.
Graph-based algorithms for boolean function manipulation. IEEE Transactions on

Computers, 35(8):677–691.
Cited on page 160.

Carlson, Björn. 1995.
Compiling and Executing Finite Domain Constraints. PhD thesis, Uppsala Univer-
sity, Uppsala, Sweden.
Cited on pages 32 and 164.

Carlson, Björn, Mats Carlsson, and Daniel Diaz. 1994a.
Entailment of finite domain constraints. In Van Hentenryck (1994), pages 339–353.
Cited on pages 57 and 164.

182

Bibliography

Carlson, Björn, Seif Haridi, and Sverker Janson. 1994b.
AKL(FD) - a concurrent language for FD programming. In Maurice Bruynooghe,
Logic Programming, Proceedings of the 1994 International Symposium, November

13-17, 1994, Ithaca, NY, USA, pages 521–535. MIT Press.
Cited on page 71.

Carlsson, Mats, Greger Ottosson, and Björn Carlson. 1997.
An open-ended finite domain constraint solver. In Hugh Glaser, Pieter H. Har-
tel, and Herbert Kuchen, Programming Languages: Implementations, Logics, and

Programs, 9th International Symposium, PLILP’97, Including a Special Track on

Declarative Programming Languages in Education, Southampton, UK, September

3-5, 1997, Proceedings, volume 1292 of LNCS, pages 191–206. Springer.
Cited on pages 65, 114, and 164.

Caseau, Yves, and François Laburthe. 1994.
Improved CLP scheduling with task intervals. In Van Hentenryck (1994), pages
369–383.
Cited on page 30.

Caseau, Yves, and François Laburthe. 1996.
Introduction to the CLAIRE programming language. Technical Report LIENS 96–9,
École Normale Supérieure.
Cited on page 74.

Cheney, C. J. 1970.
A nonrecursive list compacting algorithm. Communications of the ACM, 13(11):
677–678.
Cited on page 92.

CHOCO. 2009.
url: http://choco-solver.net.
Cited on pages 65, 74, and 135.

Choi, Chiu Wo, Martin Henz, and Ka Boon Ng. 2001.
Components for state restoration in tree search. In Walsh (2001).
Cited on page 71.

Choi, Chiu Wo, Warwick Harvey, Jimmy Ho-Man Lee, and Peter J. Stuckey. 2004.
Finite domain bounds consistency revisited.
url: http://arxiv.org/abs/cs/0412021.
Cited on pages 35, 43, and 118.

Choi, Chiu Wo, Warwick Harvey, Jimmy Ho-Man Lee, and Peter J. Stuckey. 2006.
Finite domain bounds consistency revisited. In Abdul Sattar and Byeong-Ho Kang,
AI 2006: Advances in Artificial Intelligence, volume 4304 of LNCS, pages 49–58.
Springer.
Cited on pages 41 and 42.

183

http://choco-solver.net
http://arxiv.org/abs/cs/0412021

Bibliography

Codognet, Philippe, and Daniel Diaz. 1996.
Compiling constraints in clp(FD). Journal of Logic Programming, 27(3):185–226.
Cited on page 164.

Cormen, Thomas M., Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2001.
Introduction to Algorithms. MIT Press, 2nd ed. edition.
Cited on page 85.

Davis, Martin, and Hilary Putnam. 1960.
A computing procedure for quantification theory. Journal of the ACM, 7(3):201–
215.
Cited on page 27.

Davis, Martin, George Logemann, and Donald Loveland. 1962.
A machine program for theorem-proving. Communications of the ACM, 5(7):394–
397.
Cited on pages 27, 66, and 71.

Dechter, Rina. 2003.
Constraint Processing. Morgan Kaufmann.
Cited on page 2.

Dechter, Rina, and Judea Pearl. 1987.
Network-based heuristics for constraint-satisfaction problems. Artificial Intelli-

gence, 34(1):1–38.
Cited on page 22.

Dincbas, Mehmet, Pascal Van Hentenryck, Helmut Simonis, Abderrahmane Aggoun,
Thomas Graf, and Françoise Berthier. 1988.
The constraint logic programming language CHIP. In Institute for New Genera-
tion Computer Technology (ICOT), Fifth Generation Computer Systems, Proceed-

ings of the International Conference on Fifth Generation Computer Systems, Tokyo,

Japan, November 28-December 2, 1988, pages 693–702. OHMSHA Ltd. Tokyo and
Springer.
Cited on page 22.

Dooms, Grégoire. 2006.
The CP(Graph) computation domain for constraint programming. PhD thesis, Uni-
versité catholique de Louvain, Belgium.
Cited on pages 74 and 93.

Dooms, Grégoire, Yves Deville, and Pierre Dupont. 2005.
CP(Graph): Introducing a graph computation domain in constraint programming.
In Peter van Beek, Principles and Practice of Constraint Programming - 11th Interna-

tional Conference, CP 2005, Sitges, Spain, October 1-5, 2005, Proceedings, volume
3709 of LNCS, pages 211–225. Springer.
Cited on pages 74 and 93.

184

Bibliography

Duchier, Denys. 1999.
Set constraints in computational linguistics – solving tree descriptions. In Work-

shop on Declarative Programming with Sets (DPS’99), pages 91–98.
Cited on page 1.

ECLiPSe. 2009.
url: http://www.eclipse-clp.org/.
Cited on pages 65 and 135.

Eén, Niklas, and Niklas Sörensson. 2004.
An extensible SAT-solver. In Enrico Giunchiglia and Armando Tacchella, Theory

and Applications of Satisfiability Testing, 6th International Conference, SAT 2003.

Santa Margherita Ligure, Italy, May 5-8, 2003 Selected Revised Papers, volume 2919

of LNCS, pages 502–518. Springer.
Cited on pages 74 and 100.

Euler, Leonhard. 1849.
De quadratis magicis. Commentationes arithmeticae, 2:593–602.
Cited on page 8.

Freuder, Eugene C. 1982.
A sufficient condition for backtrack-free search. Journal of the ACM, 29(1):24–32.
Cited on page 22.

Frühwirth, Thom W. 1998.
Theory and practice of constraint handling rules. Journal of Logic Programming,
37(1-3):95–138.
Cited on page 32.

Frühwirth, Thom W., and Slim Abdennadher. 2003.
Essentials of Constraint Programming. Springer.
Cited on page 2.

Gaschnig, John. 1974.
A constraint satisfaction method for inference learning. In Proceedings of the

Twelfth Annual Allerton Conference on Circuit and System Theory, pages 866–874.
University of Illinois.
Cited on page 27.

Gecode. 2009.
Generic constraint development environment.
url: http://www.gecode.org.
Cited on pages 4, 67, and 92.

Gent, Ian P., and Toby Walsh. 1999.
CSPLib: a benchmark library for constraints. Technical report, APES-09-1999.
url: http://www.dcs.st-and.ac.uk/~apes/apesreports.html.
Cited on page 173.

185

http://www.eclipse-clp.org/
http://www.gecode.org
http://www.dcs.st-and.ac.uk/~apes/apesreports.html

Bibliography

Gent, Ian P., Christopher Jefferson, and Ian Miguel. 2006a.
Minion: A fast scalable constraint solver. In Gerhard Brewka, Silvia Coradeschi,
Anna Perini, and Paolo Traverso, ECAI 2006, 17th European Conference on Artifi-

cial Intelligence, August 29 - September 1, 2006, Riva del Garda, Italy, Including

Prestigious Applications of Intelligent Systems (PAIS 2006), Proceedings, pages 98–
102. IOS Press.
Cited on page 74.

Gent, Ian P., Christopher Jefferson, and Ian Miguel. 2006b.
Watched literals for constraint propagation in Minion. In Frédéric Benhamou, Prin-

ciples and Practice of Constraint Programming - CP 2006, 12th International Con-

ference, CP 2006, Nantes, France, September 25-29, 2006, Proceedings, volume
4204 of LNCS, pages 182–197. Springer.
Cited on pages 66 and 116.

Gent, Ian P., Karen E. Petrie, and Jean-Fraņcois Puget. 2006c.
Symmetry in constraint programming. In Rossi et al. (2006), chapter 10.
Cited on page 12.

Gervet, Carmen. 1994.
Conjunto: Constraint logic programming with finite set domains. In ILPS ’94:

Proceedings of the 1994 International Symposium on Logic programming, pages
339–358. MIT Press.
Cited on pages 12 and 163.

Gervet, Carmen. 1995.
Finite Set Constraints. PhD thesis, L’Université de Franche-Comté, Besançon,
France.
Cited on pages 12, 36, and 163.

Gervet, Carmen. 1997.
Interval propagation to reason about sets: Definition and implementation of a
practical language. Constraints, 1(3):191–244.
Cited on pages 36 and 163.

Gervet, Carmen. 2006.
Constraints over structured domains. In Rossi et al. (2006), chapter 17, pages 605–
638.
Cited on page 163.

Gervet, Carmen, and Pascal Van Hentenryck. 2006.
Length-lex ordering for set CSPs. In Proceedings, The Twenty-First National Con-

ference on Artificial Intelligence and the Eighteenth Innovative Applications of Arti-

ficial Intelligence Conference, July 16-20, 2006, Boston, Massachusetts, USA. AAAI
Press.
Cited on page 46.

186

Bibliography

Golomb, Solomon W., and Leonard D. Baumert. 1965.
Backtrack programming. Journal of the ACM, 12(4):516–524.
Cited on pages 27 and 52.

Gosling, James, Bill Joy, Guy Steele, and Gilad Bracha. 2005.
The Java Language Specification. Addison-Wesley Professional, 3rd edition.
Cited on page 124.

Graham, Ronald L., Martin Grötschel, and László Lovász, editors. 1995.
Handbook of combinatorics, volume 2. MIT Press, Cambridge, MA, USA.
Cited on page 10.

Haralick, Robert M., and Gordon L. Elliott. 1980.
Increasing tree search efficiency for constraint satisfaction problems. Artificial

Intelligence, 14(3):263–313.
Cited on pages 27 and 52.

Hawkins, Peter, Vitaly Lagoon, and Peter J. Stuckey. 2005.
Solving set constraint satisfaction problems using ROBDDs. Journal of Artificial

Intelligence Research, 24:109–156.
Cited on pages 46, 120, and 163.

Heintze, Nevin, and Joxan Jaffar. 1990.
A decision procedure for a class of set constraints (extended abstract). In Proceed-

ings, Fifth Annual IEEE Symposium on Logic in Computer Science, 4-7 June 1990,

Philadelphia, Pennsylvania, USA, pages 42–51.
Cited on page 163.

Hooker, John N. 2007.
Integrated Methods for Optimization. Springer.
Cited on page 43.

Hoos, Holger H., and Thomas Stützle. 2000.
SATLIB: An online resource for research on SAT. In Ian P. Gent, Hans van Maaren,
and Toby Walsh, SAT 2000, Highlights of Satisfiability Research in the Year 2000,
pages 283–292. IOS Press.
url: http://www.satlib.org/.
Cited on page 175.

Horstmann, Cay S., and Gary Cornell. 2004.
Core Java 2, volume 2 – Advanced Features. Prentice Hall, 7 edition.
Cited on page 135.

ILOG Solver. 2009.
ILOG Solver, part of ILOG CP.
url: http://www.ilog.com/products/cp.
Cited on pages 65, 73, 93, and 135.

187

http://www.satlib.org/
http://www.ilog.com/products/cp

Bibliography

Janson, Sverker. 1994.
AKL—A Multiparadigm Programming Language. PhD thesis, Uppsala Theses in
Computing Science 19, Uppsala, Sweden.
Cited on page 71.

Janson, Sverker, and Seif Haridi. 1991.
Programming paradigms of the Andorra Kernel Language. In Vijay A. Saraswat
and Kazunori Ueda, Logic Programming: Proceedings of the 1991 International

Symposium, San Diego, CA, USA, October 1991, pages 167–186. MIT Press.
Cited on page 71.

Jones, Richard, and Rafael D. Lins. 1996.
Garbage Collection : Algorithms for Automatic Dynamic Memory Management.
John Wiley & Sons.
Cited on page 92.

Kiziltan, Zeynep, and Toby Walsh. 2002.
Constraint programming with multisets. In Proceedings of the 2nd International

Workshop on Symmetry in Constraint Satisfaction Problems (SymCon-02).
Cited on page 74.

Laburthe, François. 2000.
Choco: Implementing a CP kernel. In Nicolas Beldiceanu, Warwick Harvey, Mar-
tin Henz, François Laburthe, Eric Monfroy, Tobias Müller, Laurent Perron, and
Christian Schulte, Proceedings of TRICS: Techniques foR Implementing Constraint

programming Systems, a post-conference workshop of CP 2000, pages 71–85.
Cited on pages 65, 72, and 74.

Lagerkvist, Mikael Z., and Christian Schulte. 2007.
Advisors for incremental propagation. In Bessière (2007), pages 409–422.
Cited on pages 66 and 81.

Laurière, Jean-Louis. 1978.
A language and a program for stating and solving combinatorial problems. Artifi-

cial Intelligence, 10(1):29–127.
Cited on page 163.

Leconte, Michel. 1996.
A bounds-based reduction scheme for constraints of difference. In Constraint-96,

Second International Workshop on Constraint-Based Reasoning, pages 19–28.
Cited on page 42.

Mackworth, Alan. 1977.
Consistency in networks of relations. Artificial Intelligence, 8(1):99–118.
Cited on pages 22, 45, and 114.

188

Bibliography

Maher, Michael J. 2002.
Propagation completeness of reactive constraints. In Peter J. Stuckey, Logic Pro-

gramming, 18th International Conference, ICLP 2002, Copenhagen, Denmark, July

29 - August 1, 2002, Proceedings, volume 2401 of LNCS, pages 148–162. Springer.
Cited on pages 23 and 45.

Mann, Martin, Guido Tack, and Sebastian Will. 2008.
Decomposition during search for propagation-based constraint solvers. Technical
report.
url: http://arxiv.org/abs/0712.2389.
Cited on page 84.

Marques-Silva, João P., and Karem A. Sakallah. 1996.
Grasp – a new search algorithm for satisfiability. In ICCAD ’96: Proceedings of the

1996 IEEE/ACM international conference on Computer-aided design, pages 220–227,
Washington, DC, USA. IEEE Computer Society.
Cited on page 71.

Marriott, Kim, and Peter J. Stuckey. 1998.
Programming with Constraints, An Introduction. MIT Press.
Cited on page 2.

Mehlhorn, Kurt, and Stefan Näher. 1999.
LEDA - A platform for combinatorial and geometric computing. Cambridge Univer-
sity Press.
Cited on pages 85 and 86.

Milner, Robin, Mads Tofte, and David MacQueen. 1997.
The Definition of Standard ML. MIT Press, Cambridge, MA, USA.
Cited on page 124.

Minion. 2009.
url: http://minion.sourceforge.net/.
Cited on pages 65 and 74.

MiniSat. 2009.
url: http://minisat.se/.
Cited on pages 74 and 100.

MLTon. 2009.
MLton, a whole program optimizing compiler for Standard ML.
url: http://mlton.org/.
Cited on page 125.

Montanari, Ugo. 1974.
Networks of constraints: Fundamental properties and applications to picture pro-
cessing. Information Sciences, 7:95 – 132. ISSN 0020-0255.
Cited on page 22.

189

http://arxiv.org/abs/0712.2389
http://minion.sourceforge.net/
http://minisat.se/
http://mlton.org/

Bibliography

Moskewicz, Matthew W., Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. 2001.
Chaff: engineering an efficient SAT solver. In DAC ’01: Proceedings of the 38th

conference on Design automation, pages 530–535, New York, NY, USA. ACM Press.
Cited on pages 57 and 66.

Mozart. 2009.
The Mozart programming system.
url: http://www.mozart-oz.org.
Cited on pages 32, 65, 70, 71, 74, 92, and 135.

Müller, Tobias. 2001.
Constraint Propagation in Mozart. Doctoral dissertation, Universität des Saarlan-
des, Naturwissenschaftlich-Technische Fakultät I, Fachrichtung Informatik, Saar-
brücken, Germany.
Cited on pages 32, 65, 70, 74, and 164.

Nethercote, Nicholas, Peter J. Stuckey, Ralph Becket, Sebastian Brand, Gregory J.
Duck, and Guido Tack. 2007.
Minizinc: Towards a standard CP modelling language. In Bessière (2007), pages
529–543.
Cited on page 93.

Perron, Laurent. 1999.
Search procedures and parallelism in constraint programming. In Joxan Jaffar,
Principles and Practice of Constraint Programming - CP’99, 5th International Con-

ference, Alexandria, Virginia, USA, October 11-14, 1999, Proceedings, volume 1713

of LNCS, pages 346–360. Springer.
Cited on page 71.

Pesant, Gilles. 2004.
A regular language membership constraint for finite sequences of variables. In
Wallace (2004), pages 482–495.
Cited on page 141.

Peyton Jones, Simon L. 2003.
Haskell 98. Journal of Functional Programming, 13(1).
Cited on page 124.

Prawitz, Dag. 1960.
An improved proof procedure. Theoria, 26:102–139.
Cited on page 26.

Puget, Jean-Fraņcois. 1992.
PECOS: A high level constraint programming language. In Proceedings of the first

Singapore international conference on Intelligent Systems (SPICIS), pages 137–142.
Cited on pages 12, 36, 46, and 163.

190

http://www.mozart-oz.org

Bibliography

Puget, Jean-Francois. 1998.
A fast algorithm for the bound consistency of alldiff constraints. In AAAI ’98/I-

AAI ’98: Proceedings of the fifteenth national/tenth conference on Artificial intelli-

gence/Innovative applications of artificial intelligence, pages 359–366, Menlo Park,
CA, USA. American Association for Artificial Intelligence.
Cited on pages 36 and 39.

Puget, Jean-François, and Michel Leconte. 1995.
Beyond the glass box: Constraints as objects. In John Lloyd, Proceedings of the

International Symposium on Logic Programming, pages 513–527. MIT Press.
Cited on pages 72 and 73.

Quimper, Claude-Guy. 2006.
Efficient Propagators for Global Constraints. PhD thesis, University of Waterloo,
Canada.
Cited on pages 41 and 42.

Quimper, Claude-Guy, Alejandro López-Ortiz, Peter van Beek, and Alexander Golyn-
ski. 2004.
Improved algorithms for the global cardinality constraint. In Wallace (2004), pages
542–556.
Cited on page 42.

Régin, Jean-Charles. 1994.
A filtering algorithm for constraints of difference in CSPs. In AAAI ’94: Proceedings

of the twelfth national conference on Artificial intelligence (vol. 1), pages 362–367,
Menlo Park, CA, USA. American Association for Artificial Intelligence.
Cited on pages 36, 51, 69, and 140.

Reischuk, Raphael. 2008.
Reconciling copying and trailing for constraint solvers. Bachelor’s thesis, Saarland
University, Saarbrücken.
Cited on page 172.

Reynolds, John C. 1983.
Types, abstraction and parametric polymorphism. In R. E. A. Mason, Information

Processing 83, Proceedings of the IFIP 9th World Computer Congress, Paris, France,

September 19-23, 1983, pages 513–523. North-Holland/IFIP.
Cited on page 124.

Rossi, Francesca, Peter van Beek, and Toby Walsh, editors. 2006.
Handbook of Constraint Programming. Foundations of Artificial Intelligence. Else-
vier.
Cited on pages 1, 2, 182, and 186.

191

Bibliography

Sabin, Daniel, and Eugene C. Freuder. 1994.
Contradicting conventional wisdom in constraint satisfaction. In Alan Borning,
Principles and Practice of Constraint Programming, Second International Workshop,

PPCP’94, Rosario, Orcas Island, Washington, USA, May 2-4, 1994, Proceedings, vol-
ume 874 of LNCS, pages 10–20. Springer.
Cited on page 27.

Sadler, Andrew, and Carmen Gervet. 2004.
Hybrid set domains to strengthen constraint propagation and reduce symmetries.
In Wallace (2004), pages 604–618.
Cited on page 46.

Saraswat, Vijay A., Martin C. Rinard, and Prakash Panangaden. 1991.
Semantic foundations of concurrent constraint programming. In POPL, Conference

Record of the Eighteenth Annual ACM Symposium on Principles of Programming

Languages, Orlando, Florida, January 1991, pages 333–352. ACM Press.
Cited on pages 23 and 31.

Schulte, Christian. 1999.
Comparing trailing and copying for constraint programming. In Danny De Schr-
eye, Proceedings of the Sixteenth International Conference on Logic Programming,
pages 275–289, Las Cruces, NM, USA. MIT Press.
Cited on page 71.

Schulte, Christian. 2002.
Programming Constraint Services, volume 2302 of LNCS (LNAI). Springer.
Cited on pages 32, 71, 74, and 92.

Schulte, Christian, and Peter J. Stuckey. 2004.
Speeding up constraint propagation. In Wallace (2004), pages 619–633.
Cited on pages 59 and 61.

Schulte, Christian, and Peter J. Stuckey. 2005.
When do bounds and domain propagation lead to the same search space? Trans-

actions on Programming Languages and Systems, 27(3):388–425.
Cited on page 46.

Schulte, Christian, and Peter J. Stuckey. 2008a.
Dynamic analysis of bounds versus domain propagation. In Maria Garcia de la
Banda and Enrico Pontelli, Logic Programming, Proceedings of the Twenty Fourth

International Conference on Logic Programming, December 9-13, 2008, Udine, Italy,
volume 5366 of LNCS, pages 332–346. Springer.
Cited on pages 46 and 84.

192

Bibliography

Schulte, Christian, and Peter J. Stuckey. 2008b.
Dynamic variable elimination during propagation solving. In Sergio Antoy and
Elvira Alberts, Proceedings of the 10th International ACM SIGPLAN Conference

on Principles and Practice of Declarative Programming, July 15-17, 2008, Valen-

cia, Spain, pages 247–257. ACM.
Cited on page 84.

Schulte, Christian, and Peter J. Stuckey. 2008c.
Efficient constraint propagation engines. Transactions on Programming Lan-

guages and Systems, 31(1):2:1–2:43.
Cited on pages 52, 59, 61, and 66.

SICStus Prolog. 2009.
url: http://www.sics.se/sicstus/.
Cited on pages 65, 93, and 135.

Smith, Barbara M., Karen E. Petrie, and Ian P. Gent. 2004.
Models and symmetry breaking for ’peaceable armies of queens’. In Jean-Charles
Régin and Michel Rueher, Integration of AI and OR Techniques in Constraint Pro-

gramming for Combinatorial Optimization Problems, First International Confer-

ence, CPAIOR 2004, Nice, France, April 20-22, 2004, Proceedings, volume 3011

of LNCS, pages 271–286. Springer.
Cited on page 175.

Smolka, Gert. 1995.
The Oz programming model. In Jan van Leeuwen, Computer Science Today, volume
1000 of LNCS, pages 324–343. Springer.
Cited on page 23.

Stroustrup, Bjarne. 1997.
The C++ Programming Language. Addison-Wesley, 3rd edition.
Cited on page 135.

Tarski, Alfred. 1930.
Fundamentale Begriffe der Methodologie der deduktiven Wissenschaften. I. Mo-

natshefte für Mathematik, 37(1):361–404.
Cited on page 31.

Tarski, Alfred. 1983.
Logic, semantics, metamathematics, chapter V, pages 60–109. Hackett Publishing
Company, 2nd ed. edition.
Cited on page 31.

van Beek, Peter, and Kent D. Wilken. 2001.
Fast optimal instruction scheduling for single-issue processors with arbitrary la-
tencies. In Walsh (2001), pages 625–639.
Cited on page 1.

193

http://www.sics.se/sicstus/

Bibliography

Van Hentenryck, Pascal. 1989.
Constraint satisfaction in logic programming. MIT Press, Cambridge, MA, USA.
Cited on page 22.

Van Hentenryck, Pascal, editor. 1994.
Logic Programming, Proceedings of the Eleventh International Conference on Logic

Programming, June 13-18, 1994, Santa Margherita Ligure, Italy, Cambridge, MA,
USA. MIT Press.
Cited on pages 182 and 183.

Van Hentenryck, Pascal, Vijay A. Saraswat, and Yves Deville. 1991.
Constraint processing in cc(FD). Technical report, Brown University.
Cited on pages 32 and 164.

Van Hentenryck, Pascal, Vijay A. Saraswat, and Yves Deville. 1998.
Design, implementation, and evaluation of the constraint language cc(FD). Journal

of Logic Programming, 37(1-3):293–316.
Cited on pages 114 and 164.

Wallace, Mark, editor. 2004.
Principles and Practice of Constraint Programming - 10th International Conference,

CP 2004, Toronto, Canada, September 27 - October 1, 2004, Proceedings, volume
3258 of LNCS. Springer.
Cited on pages 182, 190, 191, and 192.

Wallace, Mark, Stefano Novello, and Joachim Schimpf. 1997.
Eclipse: A platform for constraint logic programming. Technical report, IC Parc,
Imperial College, London.
Cited on page 65.

Walsh, Toby, editor. 2001.
Principles and Practice of Constraint Programming - 7th International Conference,

CP 2001, Paphos, Cyprus, November 26 - December 1, 2001, Proceedings, volume
2239 of LNCS. Springer.
Cited on pages 183 and 193.

Ward, Morgan. 1942.
The closure operators of a lattice. Annals of Mathematics, 43(2):191–196.
Cited on page 31.

Warren, David H. D. 1983.
An abstract Prolog instruction set. Technical Report 309, SRI International, Menlo
Park, CA, USA.
Cited on page 71.

Whitesitt, J. Eldon. 1995.
Boolean Algebra and its Applications. Dover Publications.
Cited on page 147.

194

Bibliography

Yuan, Jun, Carl Pixley, and Adnan Aziz. 2006.
Constraint-Based Verification. Springer.
Cited on page 1.

Zhou, Neng-Fa. 2006.
Programming finite-domain constraint propagators in action rules. Theory and

Practice of Logic Programming, 6:483–507.
Cited on page 65.

195

	1 Introduction
	1.1 Constraint Programming
	1.2 The Thesis
	1.3 Overview

	2 Constraint Programming
	2.1 Modeling Constraint Problems: Sudoku
	2.2 Constraint Propagation and Search
	2.3 Set Constraints

	I A Propagation Kernel
	3 A Model of Constraint Propagation
	3.1 A Denotational Model of Constraint Problems
	3.2 An Operational Model of Constraint Propagation
	3.3 Propagation as a Transition System
	3.4 Idempotency, Monotonicity, and Confluence
	3.5 A Many-Sorted Model

	4 Propagation Strength
	4.1 Weakest and Strongest Propagators
	4.2 Domain Approximations
	4.3 Strength with Respect to a Domain System
	4.4 The Integer Interval Approximation
	4.5 The Interval Approximation for Set Variables
	4.6 Related Work

	5 Efficient Propagator Scheduling
	5.1 Propagator-Centered Propagation
	5.2 Event-Directed Scheduling
	5.3 Dynamic Dependencies and Propagator Sets
	5.4 Self-Rescheduling Propagators
	5.5 Propagation Conditions and Modification Events
	5.6 Related Work

	6 Implementing a Propagation Kernel
	6.1 Copying Versus Trailing
	6.2 An Object-Oriented Design
	6.3 Domain Modules
	6.4 Dependency Management
	6.5 The Priority Queue
	6.6 Control
	6.7 Copying and Memory Management
	6.8 Gecode
	6.9 Performance Analysis

	Contributions of Part I

	II Techniques for Deriving Propagators
	7 Views
	7.1 Motivation
	7.2 Views and Derived Propagators
	7.3 Correctness of Derived Propagators
	7.4 Completeness of Derived Propagators
	7.5 More Properties of Derived Propagators
	7.6 Related Work

	8 Deriving Propagators Using Views
	8.1 Transformation
	8.2 Generalization
	8.3 Specialization
	8.4 Type Conversion
	8.5 Limitations

	9 Implementing Views
	9.1 Parametric Propagators
	9.2 Parametric and Constant Views
	9.3 Event Handling
	9.4 Applicability and Performance Analysis

	10 Range Iterators
	10.1 Range Iterators
	10.2 Set-Valued Operations for Integer Variables
	10.3 Computing with Iterators
	10.4 Integer Views with Set-Valued Operations
	10.5 Set Variables and Views
	10.6 Iterators as Adaptors
	10.7 Performance Analysis

	11 Deriving Propagators for Boolean Set Constraints
	11.1 Boolean Set Constraints
	11.2 Propagators for Boolean Set Constraints
	11.3 Negation of Boolean Set Constraints
	11.4 Techniques for n-ary Boolean Set Propagators
	11.5 Implementing Boolean Set Propagators
	11.6 Related Work

	Contributions of Part II
	12 Conclusions
	12.1 Summary and Main Contributions
	12.2 Future Research

	A Benchmarks
	A.1 Models with Integer and Boolean Variables
	A.2 Models with Set Variables
	A.3 SAT Problems
	A.4 Stress Tests
	A.5 Gecode Performance

	Bibliography

