
POLYTECHNIQUE MONTRÉAL
affiliée à l’Université de Montréal

Peel and Bound: Solving Discrete Optimization Problems with Decision
Diagrams and Separation

ISAAC RUDICH
Département de mathématiques et de génie industriel

Thèse présentée en vue de l’obtention du diplôme de Philosophiæ Doctor
Génie informatique

May 2024

© Isaac Rudich, 2024.

POLYTECHNIQUE MONTRÉAL
affiliée à l’Université de Montréal

Cette thèse intitulée :

Peel and Bound: Solving Discrete Optimization Problems with Decision
Diagrams and Separation

présentée par Isaac RUDICH
en vue de l’obtention du diplôme de Philosophiæ Doctor

a été dûment acceptée par le jury d’examen constitué de :

Michel GENDREAU, président
Louis-Martin ROUSSEAU, membre et directeur de recherche
Quentin CAPPART, membre et codirecteur de recherche
Andrea LODI, membre
Laurent MICHEL, membre externe

iii

DEDICATION

“It is exhausting, having to reason all the time
in a universe which wasn’t meant to be reasonable.”

- Breakfast of Champions by Kurt Vonnegut

iv

ACKNOWLEDGEMENTS

Many small interactions got me here, and I wish to express my gratitude to those who
impacted my path, whether through brief encounters or prolonged engagements. In 2018,
I was trying to figure out what to do next on my very unconventional career trajectory. I
had no formal math background, but I found myself drawn to solving scheduling problems
and seeking advice on my next steps. This search led me to the offices of Michael Trick
and Willem-Jan van Hoeve, both of whom generously recommended graduate programs and
helped clarify my goals. I had never even heard the term Operations Research before those
conversations, and I doubt I would have discovered this lovely field without them.

My advisors, Louis-Martin Rousseau and Quentin Cappart, significantly shaped my research
and provided invaluable guidance throughout my journey. Before even arriving in Canada,
Louis-Martin suggested I read Decision Diagrams for Optimization to determine if it aligned
with my research interests. It did. This book not only captivated my attention but also
led me to the 2018 Decision Diagrams Symposium. Although I was merely an observer with
little to contribute at the time, I could not have anticipated how instrumental some of the
attendees would be in influencing the direction of my thesis.

Reflecting on these crucial interactions, I am grateful to a broader community of peers,
colleagues, and mentors who have supported, enlightened, and encouraged me. It is with
deep appreciation that I extend my thanks to each of them for enriching my academic and
personal growth. In particular, notable conversations with Willem-Jan van Hoeve, Michael
Römer, Andre Cire, Laurent Michel, Xavier Gillard, Manuel López-Ibáñez, Moira MacNeil,
and Vianney Coppé sparked significant insights that greatly enriched my research.

I also cherish the deep friendships formed along the way. Augustin Parjadis, thank you for
easing my transition to a French school, and for countless hours spent playing board games.
Anthony Karahalios, you’ve been a dear friend, as well as an excellent sounding board for
my myriad ideas. Dani Ripsman, though our collaboration and friendship are relatively new,
they feel longstanding.

Special thanks to my family members Avi Rudich and Rachel Rue for the weekly Decision
Diagram journal club, which evolved into a Trying to Solve Stochastic Games club, that has
met nearly every week for four years.

Also thanks to Robin for being supportive. None of this would’ve been possible without my
cats: Sir Sqwonk and Countess Pizazz. And finally to Zenith, for being part of the journey.

v

RÉSUMÉ

Cette thèse présente des avancées significatives dans la théorie et l’implémentation des méth-
odes d’optimisation basées sur les diagrammes de décision : tout d’abord le développement
et l’amélioration de l’algorithme Peel-and-Bound (PnB) comme une étude sur la construc-
tion d’un solveur utilisant des diagrammes de décision (DD), et l’introduction de DD relaxés
implicites qui généralise une idée cruciale pour l’implémentation efficace de PnB.

Les DD relaxés sont un outil graphique pour construire des bornes de relaxation combinatoires
pour des problèmes d’optimisation. L’algorithme PnB démontre le potentiel puissant des
solveurs basés sur les DD exploitant la séparation, une méthode de construction de DD relaxés
partant d’un petit DD représentant une relaxation initiale faible qui est ensuite améliorée
par division de nœuds. PnB est un algorithme hautement parallélisable, construit autour de
la production de DD relaxés par séparation, qui peut échanger toute la mémoire disponible
contre de l’efficacité de calcul.

L’implémentation de PnB a été testée sur les 467 instances de référence du problème du
voyageur de commerce avec fenêtre de temps (TSP-TW) utilisées pour tester le solveur
branch-and-bound (BnB) ddo basé sur les DD. Même lorsque ddo utilise le calcul parallèle,
PnB surpasse ddo. De plus, PnB a résolu 15 instances qui, à notre connaissance, étaient
ouvertes dans la littérature. Dans notre test final de PnB, nous avons exécuté la nouvelle
implémentation de PnB sur la variante du makespan des 467 instances du TSP-TW. PnB a
résolu 94 % des instances de makespan, et 3 % supplémentaires lorsqu’il était initialisé avec la
meilleure solution connue. L’implémentation de l’algorithme PnB a montré des performances
de pointe sur les instances de référence du TSP-TW, surpassant le solveur branch-and-bound
basé sur les DD existant.

Cette thèse fait progresser davantage les méthodes d’optimisation basées sur les DD en
généralisant le concept de DD relaxés implicites, une méthode générique de génération de
DD qui ne nécessite pas que les arcs soient étiquetés. Au lieu de cela, cette information est
déplacée vers les nœuds. Les DD relaxés implicites sont une méthode facile à implémenter
pour obtenir des accélérations massives dans les solveurs basés sur les DD. Ce concept a été
crucial pour atteindre des résultats de pointe avec notre implémentation de PnB.

L’utilité de PnB et des DD relaxés implicites a été démontrée par une application au prob-
lème de routage d’astéroïdes (ARP). Ce problème peut être considéré comme une variante
du célèbre problème du voyageur de commerce où toutes les villes (astéroïdes) sont dans
l’espace, et donc en mouvement constant. L’algorithme trouve des solutions réalisables de

vi

haute qualité pour plusieurs instances de l’ARP, dont beaucoup sont optimales sous une
légère hypothèse sur la qualité de l’optimiseur interne. C’est la première méthode dans la
littérature plus efficace que la force brute pour trouver des solutions exactes aux problèmes
d’optimisation de trajectoire globale comme l’ARP. Le cadre définissant l’algorithme est
polyvalent, hautement évolutif et applicable à une large gamme de problèmes de séquençage
exigeants en complexité.

Cette thèse non seulement fait progresser la compréhension et l’application des DD à travers
l’introduction de méthodes innovantes comme le peel-and-bound et les DD relaxés implicites,
mais elle ouvre également la voie à de futures percées dans des défis d’optimisation complexes
qui nécessitent de résoudre un problème d’optimisation combinatoire externe comportant un
problème d’optimisation interne coûteux en calcul.

vii

ABSTRACT

This thesis presents significant advancements in the theory and implementation of Decision-
Diagram-based optimization methods: primarily the development and enhancement of the
Peel-and-Bound (PnB) algorithm as a study in how to construct a solver using Decision
Diagrams (DDs), and the introduction of implicit relaxed DDs which generalizes an idea
critical to efficient implemention of PnB.

Relaxed DDs are a graphical tool for constructing combinatorial relaxed bounds for opti-
mization problems. The PnB algorithm demonstrates the powerful potential of DD-based
solvers that leverage separation, a method of constructing relaxed DDs by starting from a
small DD representing a weak initial relaxation and improving that relaxation by splitting
nodes. PnB is a highly parallelizable algorithm, built around constructing relaxed DDs by
separation, which can trade memory for computational efficiency.

The PnB implementation was tested on the 467 benchmark instances of Traveling Salesman
Problem with Time Windows (TSP-TW) used to test the DD-based branch-and-bound (BnB)
solver (ddo). Even when ddo is using parallel processing, PnB outperforms ddo. Furthermore,
PnB closed 15 instances that, to the best of our knowledge, were open in the literature. In
our final test of PnB, we ran the new implementation of PnB on the makespan variant of the
467 TSP-TW instances. PnB closed 94% of the makespan instances, and an additional 3%
when seeded with the best known solution. The implementation of the PnB algorithm had
a cutting-edge performance on the benchmark instances of the TSP-TW, outperforming the
existing DD-based branch-and-bound (BnB) solver.

This thesis further advances DD-based optimization methods by generalizing the concept of
implicit relaxed DDs, a generic method of generating DDs that does not require the arcs
to be labeled. Instead, information that would have been stored in arc labels is moved to
the nodes. Implicit relaxed DDs are an easy-to-implement method for achieving massive
speed-ups in DD-based solvers. This concept was critical to achieving cutting edge results
with our PnB implementation.

The utility of both PnB and implicit relaxed DDs was demonstrated with an application
to the Asteroid Routing Problem (ARP). This problem can be thought of as a variant of
the well-known Travelling Salesman Problem where all of the cities (asteroids) are in Space,
and thus in constant motion. The ARP has an outer combinatorial problem that requires
finding the optimal permutation to visit the asteroids, and an inner non-linear non-convex
optimization problem that requires computing the optimal trajectory between two asteroids

viii

at specific points in time. The algorithm finds high-quality feasible solutions for several
instances of the ARP, many of which are optimal under a mild assumption about the quality
of the inner optimizer. This is the first method in the literature more efficient than brute
force for finding exact solutions to global trajectory optimization problems like the ARP. The
framework defining the algorithm is versatile, highly scalable, and applicable to a diverse
range of computationally demanding sequencing problems.

This thesis not only advances the understanding and application of DDs through the intro-
duction of innovative methods like peel-and-bound and implicit relaxed DDs, but also sets
the stage for future breakthroughs in complex optimization challenges that require solving
an outer combinatorial optimization problem that has a computationally expensive inner
optimization problem.

ix

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

RÉSUMÉ . v

ABSTRACT . vii

TABLE OF CONTENTS . ix

LIST OF TABLES . xiii

LIST OF FIGURES . xv

LIST OF SYMBOLS AND ACRONYMS . xvi

LIST OF APPENDICES . xviii

CHAPTER 1 INTRODUCTION . 1
1.1 Research Goal . 2
1.2 Contributions . 2
1.3 Publications . 3
1.4 Outline . 3

CHAPTER 2 DECISION DIAGRAMS FOR OPTIMIZATION 5
2.1 Optimization Problems: Notation and Examples 5

2.1.1 Knapsack Example . 6
2.1.2 Sequence Ordering Example . 6

2.2 Exact Decision Diagrams . 7
2.2.1 Merging Equivalent Nodes . 8
2.2.2 Finding a Compact Decision Diagram 9
2.2.3 Reading a Solution . 11
2.2.4 Weighted & Multivalued Decision Diagrams 12
2.2.5 Top-Down Compilation . 14

2.3 Restricted Decision Diagrams . 15
2.4 Relaxed Decision Diagrams . 18

x

2.4.1 Top-Down Relaxed Decision Diagrams 19
2.4.2 Relaxed Decision Diagrams by Separation 23

2.5 Decision Diagrams for Sequencing Problems 27
2.5.1 Encoding the AllDifferent Constraint 28
2.5.2 Encoding a Generalizable Optimality Constraint 29

2.6 Branch-and-Bound with Decision Diagrams 30
2.7 Other Innovations in DD-Based Solvers . 34

2.7.1 ddo . 34
2.7.2 Arc-Flow Formulation . 35
2.7.3 HADDOCK . 35
2.7.4 DIDP . 35
2.7.5 Variable Ordering . 36

CHAPTER 3 PEEL-AND-BOUND . 37
3.1 Motivation . 37
3.2 Algorithm . 38

3.2.1 Complexity Analysis . 40
3.3 Example and Visualization . 41
3.4 Advantages and Implementation Decisions 42

3.4.1 Node Selection . 42
3.4.2 Limitations and Handling Memory 44
3.4.3 Integrating Rough Relaxed Bounds 45
3.4.4 Parallelization . 45

3.5 Experiments on the Sequence Ordering Problem 47
3.5.1 Description of the Heuristics Considered 47
3.5.2 Experimental Results . 48

3.6 Summary . 52

CHAPTER 4 IMPROVED PEEL-AND-BOUND 53
4.1 Motivation . 53
4.2 Improvements to the Theory . 54

4.2.1 Handling Non-Separable Objective Functions 54
4.2.2 Embedded Restricted Decision Diagrams 55
4.2.3 Peel-and-Bound with Top-Down Compilation 56

4.3 Improvements to the Heuristics . 56
4.3.1 Node Selection Heuristic . 56
4.3.2 Search Diversification . 57

xi

4.4 Experiments with our Improved Implementation 57
4.4.1 Node Selection Heuristic . 57
4.4.2 Traveling Salesman Problem with Time Windows 58
4.4.3 Traveling Salesman Problem with Time Windows - Makespan 61

4.5 Summary . 63

CHAPTER 5 IMPLICIT RELAXED DECISION DIAGRAMS 65
5.1 Algorithm . 65

5.1.1 Complexity Analysis . 68
5.2 Ease of Implementation . 68
5.3 The Future of Peel-and-Bound . 69

CHAPTER 6 APPLICATION TO FINDING EXACT SOLUTIONS TO THE SPACE-
TIME DEPENDENT TSP . 70
6.1 Motivation . 70
6.2 Background . 72

6.2.1 The Asteroid Routing Problem . 72
6.2.2 Trajectory Optimization . 73
6.2.3 Relaxed Decision Diagrams for the ARP 76

6.3 The Initial Decision Diagram . 77
6.3.1 Initial Setup . 77
6.3.2 Relaxing the Black-Box . 78
6.3.3 Calculating Valid Arc Bounds . 78

6.4 Heuristic Search with Embedded Restricted Decision Diagrams 84
6.5 Using Peel-and-Bound for the ARP . 85
6.6 Implementation Details . 85

6.6.1 Memoization of B . 86
6.6.2 Heuristic Decisions . 88
6.6.3 Limitations of the Inner Optimizer 89

6.7 Experimental Results . 90
6.7.1 Note on Optimality . 90
6.7.2 Initial Experiment: Determining Best Settings 90
6.7.3 Second Experiment: Test of Smaller Instances 94
6.7.4 Final Experiment: Test of Larger Instances 99

6.8 Opportunities for Parallel Computing . 101
6.9 Conclusions on the Framework for Outer/Inner Optimazation Problems . . . 102
6.10 Acknowledgements . 102

xii

CHAPTER 7 CONCLUSION . 103
7.1 Some Ideas for Future Research . 103

7.1.1 Implicit Relaxed DDs Everywhere . 103
7.1.2 More Decision Diagrams by Separation 103
7.1.3 Exact Solutions to Inner/Outer Optimization Problems 104

7.2 Final Thoughts . 105

REFERENCES . 106

APPENDICES . 114

xiii

LIST OF TABLES

Table 2.1 Knapsack instance values (Psack) . 6
Table 2.2 SOP instance (PSOP) . 7
Table 3.1 Summary Statistics: Percentage Improvement of Peel-and-Bound Over

Branch-and-Bound . 49
Table 3.2 Summary Statistics: Percentage Improvement of Peel-and-Bound at

ω = 2048 over Peel-and-Bound at ω = 256 49
Table 4.1 TSP-TW Results for Newly Closed Problems 61
Table 4.2 Makespan Results for Problems Not Closed by the Unseeded Run . . 62
Table 6.1 ARP instances with n = 15, a 2 day runtime, an embedded search

width of 100, and multi = 1 . 93
Table 6.2 ARP instances with n = 10 . 94
Table 6.3 Best solutions for n ∈ {10, 15, 20} . 97
Table 6.4 ARP instances with n = 15 and a 7 day runtime 98
Table 6.5 ARP instances with n = 20 and a 7 day runtime 99
Table 6.6 ARP instances with n = 25, a relaxed DD-width of 2048, and a 3 day

runtime . 100
Table 6.7 ARP instances with n = 30, a relaxed DD-width of 2048, and a 3 day

runtime . 101
Table 6.8 Best solutions for n ∈ {25, 30} . 101
Table A.1 Comparison Data for ω = 64 Experiments on SOP 114
Table A.2 Comparison Data for ω = 256 Experiments on SOP 115
Table A.3 Comparison of PnB at ω = 2048 over PnB at ω = 256 on SOP 116
Table A.4 (Part 1 of 2) TSP-TW Results of PnB at ω = 2048 on Open Problems:

Seeded and Unseeded . 117
Table A.5 (Part 2 of 2) TSP-TW Results of PnB at ω = 2048 on Open Problems:

Seeded and Unseeded . 118
Table A.6 (Part 1 of 6) TSP-TW Results of PnB at ω = 2048 on Closed Prob-

lems: Seeded and Unseeded . 119
Table A.7 (Part 2 of 6) TSP-TW Results of PnB at ω = 2048 on Closed Prob-

lems: Seeded and Unseeded . 120
Table A.8 (Part 3 of 6) TSP-TW Results of PnB at ω = 2048 on Closed Prob-

lems: Seeded and Unseeded . 121

xiv

Table A.9 (Part 4 of 6) TSP-TW Results of PnB at ω = 2048 on Closed Prob-
lems: Seeded and Unseeded . 122

Table A.10 (Part 5 of 6) TSP-TW Results of PnB at ω = 2048 on Closed Prob-
lems: Seeded and Unseeded . 123

Table A.11 (Part 6 of 6) TSP-TW Results of PnB at ω = 2048 on Closed Prob-
lems: Seeded and Unseeded . 124

Table A.12 (Part 1 of 7) Makespan Results of PnB at ω = 2048 on Closed
Problems: Seeded and Unseeded . 125

Table A.13 (Part 2 of 7) Makespan Results of PnB at ω = 2048 on Closed
Problems: Seeded and Unseeded . 126

Table A.14 (Part 3 of 7) Makespan Results of PnB at ω = 2048 on Closed
Problems: Seeded and Unseeded . 127

Table A.15 (Part 4 of 7) Makespan Results of PnB at ω = 2048 on Closed
Problems: Seeded and Unseeded . 128

Table A.16 (Part 5 of 7) Makespan Results of PnB at ω = 2048 on Closed
Problems: Seeded and Unseeded . 129

Table A.17 (Part 6 of 7) Makespan Results of PnB at ω = 2048 on Closed
Problems: Seeded and Unseeded . 130

Table A.18 (Part 7 of 7) Makespan Results of PnB at ω = 2048 on Closed
Problems: Seeded and Unseeded . 131

xv

LIST OF FIGURES

Figure 2.1 Decision Tree for Psack . 7
Figure 2.2 Shrinking the Decision Diagram for Psack 10
Figure 2.3 Reading the optimal solution for Psack 12
Figure 2.4 Exact Weighted MDD for PSOP . 13
Figure 2.5 Restricted Decision Diagram for Psack 17
Figure 2.6 Restricted Decision Diagram for PSOP 18
Figure 2.7 Top-Down Compilation of Relaxed Decision Diagram for Psack 21
Figure 2.8 Top-Down Compilation of Relaxed Decision Diagram for PSOP . . . 22
Figure 2.9 Compilation of Relaxed Decision Diagram by Separation for Psack . . 26
Figure 2.10 Compilation of Relaxed Decision Diagram by Separation for PSOP . 27
Figure 2.11 DD-Based Branch-and-Bound on Psack 32
Figure 2.12 DD-Based Branch-and-Bound on PSOP 33
Figure 3.1 Example of a Repeated Sub-Graph During Branch-and-Bound 42
Figure 3.2 Example of a Peel Operation . 43
Figure 3.3 Performance Profiles: Peel-and-Bound and Branch-and-Bound 49
Figure 3.4 Dual bounds for ESC25 and ft70.1 51
Figure 4.1 Performance of Improved Peel-and-Bound on SOP 59
Figure 4.2 Performance of Improved Peel-and-Bound on TSP-TW 60
Figure 4.3 Performance of Improved Peel-and-Bound on Makespan 63
Figure 5.1 Implicit Relaxed DD, Before and After Filtering 67
Figure 6.1 Depiction of a transfer from a to a′ 73
Figure 6.2 Visualization of best known solution to instance with n = 10 and seed= 8. 74
Figure 6.3 Relaxed decision diagrams for an ARP with asteroids {A, B, C}. . . . 77
Figure 6.4 ARP instances with n = 15, a 2 day runtime, an embedded search

width of 100, and multi = 1 (Table 6.1) 92
Figure 6.5 ARP instances with n = 10. Lines show mean value over ARP in-

stances (Table 6.2) . 92
Figure 6.6 ARP instances with n = 15 and a 7 day runtime (Table 6.4) 96
Figure 6.7 ARP instances with n = 20 and a 7 day runtime (Table 6.5) 97

xvi

LIST OF SYMBOLS AND ACRONYMS

Acronyms:

ARP Asteroid Routing Problem
BDD Binary Decision Diagram
BnB Branch-and-Bound
CP Constraint Program(ming)
DD Decision Diagram
DP Dynamic Program(ming)
LP Linear Program(ming)
MDD Multivalued Decision Diagram
MIP Mixed Integer Progam(ming)
OR Operations Research
PnB Peel-and-Bound
SAT Boolean Satisfiability
SOP Sequence Ordering Problem
TSP Travelling Salesman Problem
TSP-TW Travelling Salesman Problem with Time Windows
TSP-TD Travelling Salesman Problem with Time Dependent Travel Times

General Symbols:

P a discrete optimization problem
Sol(P) the set of feasible solutions to P
π a solution to an optimization problem
π∗ the optimal solution to an optimization problem
z∗ the value of an optimal solution to an optimization problem
z∗(P) the value of an optimal solution to P
d(x) the domain of variable x

xvii

Decision Diagram Symbols:

r a root node
t a terminal node
⊕ a merge operator for nodes
⊖ a split operator for nodes
auv an arc that goes from node u to node v

l an arc label
l(a) the label on arc a

w(a) the weight of arc a

ℓ a layer index of a Decision Diagram
ℓ(u) the layer index of node u

L a layer of a Decision Diagram (a set of nodes)
d(u) the domain of a node (a set of arc labels)
f(u) the value of the objective function at u

ω the maximum width of a Decision Diagram
M a Decision Diagram
M(u) a partial Decision Diagram rooted at u

M(u, v) a partial Decision Diagram rooted at u with terminal v

Mω a Decision Diagram with width ω

M− a restricted Decision Diagram
M+ a relaxed Decision Diagram
d(M) the set of solutions encoded by Decision Diagram M
All↓

u the set of labels that appear on every path from r to u

Some↓
u the set of labels that appear on at least one path from r to u

All↑
u the set of labels that appear on every path from u to t

Some↑
u the set of labels that appear on at least one path from u to t

z(M) the value of the best path through M
z↓

u the value of the best path from r to u

z↑
u the value of the best path from u to t

xviii

LIST OF APPENDICES

Appendix A Experimental Data . 114

1

CHAPTER 1 INTRODUCTION

Operations Research (OR) is the science of applying mathematical tools to provide a quanti-
tative foundation for decision-making. The use of these tools is widespread: logistics compa-
nies utilize them to schedule deliveries and route vehicles, hospitals employ them to optimize
patient flow, schools apply them to organize course schedules, investment firms leverage them
for risk management, and manufacturers rely on them to minimize resource waste. OR tools
are essential for the functioning of modern society. However, the need for new and improved
tools consistently surpasses their supply. With increasing data availability, access to com-
puting power, and the desire to optimize new domains, there is a growing demand for OR
that exceeds its capabilities.

Traditional techniques often struggle with computational efficiency when faced with intricate
constraints or large data sets. Additionally, evolving challenges have created a need for tools
that can represent and solve problems more flexibly. This environment set the stage for
Multivalued Decision Diagrams (MDDs) to emerge as a new tool capable of addressing gaps
in existing methodologies and offering novel ways to represent optimization problems.

OR provides a range of tools, such as Linear Programming (LP), Mixed Integer Programming
(MIP), Dynamic Programming (DP), Constraint Programming (CP), Boolean Satisfiability
(SAT), and an extensive range of heuristics. Each tool has a dedicated and active research
community working to improve it. This diversity persists because no single tool can out-
perform the others across all problems. Each tool excels in certain areas, but falls short
in others. In 2016, the book Decision Diagrams for Optimization organized and compiled
several papers, supplemented them with examples and data, and made the case that MDDs
could serve as a novel OR tool to bridge gaps left by existing techniques [1]. Decision Dia-
grams (DDs) have long been used in Computer Science, but the framework presented in this
book demonstrated their potential as a tool for optimization as well.

Since 2016, research into leveraging DD-based techniques in other OR tools has surged, along-
side the development of dedicated DD-based solvers. These two approaches are symbiotic:
methods and insights from one often benefit the other, and both have evolved in parallel.
A 2022 survey of DD research, which reviewed over 100 papers, offers just a glimpse of the
ongoing work, and the community of DD researchers continues to expand each year [2].
While most DD research has focused on integrating DD techniques with other tools, a few
groups are making significant efforts to develop state-of-the-art DD-based solvers. This thesis
details one of these initiatives.

2

1.1 Research Goal

The goal of this thesis is to offer insight into how DD-based techniques can be applied to
advanced optimization challenges, emphasizing the crucial decisions involved in implementing
Decision Diagrams. In addition, I aim to provide practical advice for developing a DD-based
solver, offering context for the rationale behind the decisions made during its implementation.

This work delves into the specific challenges faced when adapting DD-based methods to
various applications and highlights best practices for ensuring the efficiency and effectiveness
of a DD-based solver. By exploring the nuances of decision-making and design choices, I
hope to guide researchers and practitioners in leveraging these techniques for cutting-edge
optimization, ultimately expanding the scope and impact of Decision Diagram methodologies.

1.2 Contributions

The main contributions of this work are:

• Peel-and-Bound Framework: Development of a generic framework for a DD-based
solver, known as peel-and-bound (PnB), and its open-source implementation in Julia
[3]. This implementation demonstrates cutting-edge results on the Traveling Salesman
Problem with Time Windows, closing 15 open benchmark instances, and making the
framework a valuable resource for researchers and practitioners.

• Embedded Restricted Decision Diagrams: Introduction of a novel DD-based
search technique for finding feasible solutions to optimization problems called Embed-
ded Restricted Decision Diagrams, which is also referred to as Embedded Search. This
work generalizes the concept of rough bounding [4,5] by demonstrating that Embedded
Search can leverage rough bounding in a problem-agnostic manner.

• Implicit Relaxed Decision Diagrams: A generic algorithm for constructing relaxed
DDs without needing to label the arcs. This construction is easier to implement than
standard relaxed DDs, and substantially more efficient at run-time.

• Framework for Finding Exact Solutions to Outer/Inner Optimization: Es-
tablishment of a framework for using peel-and-bound to identify optimal solutions to
optimization problems with an outer combinatorial problem and a complex or com-
putationally expensive inner problem, under a mild assumption about the quality of
the inner optimizer. The framework is demonstrated through its application to the
Asteroid Routing Problem (ARP), marking the first instance where a global trajectory

3

optimization problem is solved exactly through a method more efficient than brute
force.

1.3 Publications

A large portion of this thesis is based on work that has been previously published in the
following papers. This is noted at the beginning of each relevant chapter.

• Peel-and-Bound: Generating Stronger Relaxed Bounds with Multivalued Decision Dia-
grams by Isaac Rudich, Quentin Cappart, and Louis-Martin Rousseau, was published
at the 28th International Conference on Principles and Practice of Constraint Program-
ming (CP 2022) where it won the Best Paper award [6]. In this paper, we introduced
the peel-and-bound framework for making a DD-based solver, and we implemented a
simple test showing that a naive implementation of PnB outperforms a naive imple-
mentation of the branch-and-bound (BnB) framework for a DD-based solver [7, 8].

• Improved Peel-and-Bound: Methods for Generating Dual Bounds with Multivalued De-
cision Diagrams by Isaac Rudich, Quentin Cappart, and Louis-Martin Rousseau, was
published in the Journal of Artificial Intelligence Research in 2023 [9]. In this paper,
significant effort was devoted to implementing PnB as efficiently as possible, and to
detailing the steps required to achieve cutting-edge results. This paper closed several
open instances of the Traveling Salesman Problem with Time Windows (TSP-TW).

• An Exact Framework for Solving the Space-Time Dependent TSP by Isaac Rudich,
Quentin Cappart, Manuel López-Ibáñez, Michael Römer, and Louis-Martin Rousseau
is currently only available as a preprint. In this paper, PnB was used to close several
open instances of the Asteroid Routing Problem, demonstrating a framework for solving
optimization problems with an outer combinatorial problem, and a computationally
expensive inner optimization problem. This marks the first time a technique more
efficient than brute force was applied to a global trajectory optimization problem.

1.4 Outline

Chapter 2 begins the thesis proper with a decision diagram tutorial. The tutorial includes fig-
ures new for this thesis demonstrating every concept with two different examples. Chapter 3
introduces peel-and-bound, which is the foundation for everything else in this thesis. Chapter
4 builds on the initial concept of peel-and-bound, improving the theory and demonstrating

4

that our PnB solver can achieve cutting edge results. Chapter 5 presents the novel concept
of Implicit Relaxed DDs, which has not been published elsewhere. Chapter 6 explains how
we used PnB to find exact solutions to the ARP under a mild assumption about the quality
of the inner optimizer. Chapter 7 closes the thesis with my parting thoughts.

5

CHAPTER 2 DECISION DIAGRAMS FOR OPTIMIZATION

The standard approach for explaining the use of Decision Diagrams (DDs) serves two main
purposes: (1) to justify their use, and (2) to explain the methodology. A foundational tutorial
is presented in the book Decision Diagrams for Optimization [1], while a more recent example
is available in Discrete optimization with decision diagrams : design of a generic solver,
improved bounding techniques, and discovery of good feasible solutions with large neighborhood
search [5]. There are earlier works as well [10–14], but Decision Diagrams for Optimization
unified and expanded on these earlier works. This standard approach justifies the use of DDs
by illustrating how a DD representing a problem can be built from the Dynamic Programming
(DP) model for that problem. This establishes an intuitive understanding of why DDs are
valuable and provides insight into the origins of DD-based methods. However, this approach
is widely available, and other intuitive methods for explaining DD-based techniques can
provide equally valuable insight. Every DP model can be turned into a DD, but not every
DD can be turned into a DP model [15].

This chapter provides model-agnostic motivation for using DDs for optimization. In other
words, for the purposes of this explanation, a DD will be the problem model, constructed
directly from the problem description. This will be of particular practical use in Chapter 6
where we solve the Asteroid Routing Problem (ARP). Writing out the objective function for
even a small instance of the ARP is intractable. Thus, constructing a DD for the ARP from
a DP model in the traditional way is impossible, and we instead construct the DD directly
from the problem description.

The explanation detailed in this chapter is based almost entirely on ideas compiled in Decision
Diagrams for Optimization, but differs in that it starts from decision trees instead of a
Dynamic Program [1,7, 8]. For further references to key literature, see Section 2.7.

2.1 Optimization Problems: Notation and Examples

Let P be an instance of a discrete minimization problem with n variables {x1, ..., xn}, let
Sol(P) be the set of feasible solutions to P , let π∗(P) be an optimal solution to P , let
z∗(P) be the value of an optimal solution to P , and let d(xi) be the domain of variable
xi, i ∈ {1, ..., n}.

6

2.1.1 Knapsack Example

In this chapter, two examples will be used. The first example is an instance of the knapsack
problem, Psack [16]. In the knapsack problem, there is a bag with a limited weight capacity,
and several items that can be placed into the bag. Each item has a utility and a weight. The
objective is to maximize the utility of items placed in the bag without exceeding the weight
capacity. The instance we will be using is shown below in Table 2.1.

Knapsack Capacity: 10
Item Weight Utility

A 3 6
B 4 8
C 5 7
D 8 9

Table 2.1 Knapsack instance values (Psack)

Let the variables for Psack be {xA, xB, xC , xD} where xi ∈ {0, 1} and i ∈ {A, B, C, D}; a
value of 0 means the item is not included in the sack, and a value of 1 means the item is
included in the sack. For reference, the optimal solution to this instance is [xA = 0, xB =
1, xC = 1, xD = 0] with a value of 15.

2.1.2 Sequence Ordering Example

The second example is an instance of the Sequence Ordering Problem (SOP) (PSOP) [17].
In the SOP, there is a list of tasks (or elements), and the goal is to find the least expensive
ordering of those tasks in which each task is performed exactly once. Additionally, certain
precedence constraints must be respected, meaning that some tasks must appear earlier than
others for a sequence to be feasible. In other words, the SOP is an asymmetric TSP with
precedence constraints.

Defining a SOP instance requires providing the cost cij of following item xi with xj, for
each valid ordered pair {i, j}. The cost matrix in Table 2.2 defines PSOP . The precedence
constraints are that A must come before everything else, and B must come before D; these
are indicated by X in the cost matrix.

Let the variables for PSOP be {x1, x2, x3, x4}. The domain of each variable is in {A, B, C, D},
and xi = A indicates that A is the ith element in the sequence. For reference, the optimal
solution to this instance is [x1 = A, x2 = B, x3 = D, x4 = C] with a cost of 17.

7

From
To A B C D

A - 8 5 0
B X - 5 8
C X 5 - 5
D X X 1 -

Table 2.2 SOP instance (PSOP)

Transition cost of crow,col to go from row to col.

2.2 Exact Decision Diagrams

An exact DD for an optimization problem P , is a directed layered acyclic graph with a root
r and terminal t, such that every path from r to t encodes a feasible solution to P , and every
feasible solution to P is encoded as a path from r to t. So a DD is an exact representation
of P if the set of solutions it encodes is equal to Sol(P).

To build an intuition for what this looks like, we will construct an exact DD for Psack (see
Section 2.1.1). The following method is inefficient, but educational. Begin by drawing the
decision tree that represents every feasible solution to Psack as its own branch. The result is
shown below in Figure 2.1. At each node in the tree K is the remaining capacity, and U is
the utility. Nodes that exceed the total capacity are removed from the tree, because those
solutions are infeasible.

K = 10
U = 0

K = 7
U = 6

K = 3
U = 14

K = -2
U = 21

K = 3
U = 14

K = -5
U = 23

K = 3
U = 14

K = 7
U = 6

K = 2
U = 13

K = -6
U = 22

K = 2
U = 13

K = 7
U = 6

K = -2
U = 15

K = 7
U = 6

K = 10
U = 0

K = 6
U = 8

K = 1
U = 15

K = -7
U = 24

K = 1
U = 15

K = 6
U = 8

K = -2
U = 17

K = 6
U = 8

K = 10
U = 0

K = 5
U = 7

K = -3
U = 16

K = 5
U = 7

K = 10
U = 0

K = 2
U = 9

K = 10
U = 0

xA

xB

xC

xD

Include Item

Skip Item

Figure 2.1 Decision Tree for Psack

K:= remaining capacity, U:= utility.

8

2.2.1 Merging Equivalent Nodes

Making a decision tree to store every feasible solution is possible for small problems, but
quickly becomes intractable. An exact DD can often accomplish the task with substantially
fewer nodes. We will now turn the decision tree into a decision diagram by merging nodes
[18, 19]. For the diagram to remain exact, merges must not add or remove any paths. This
is done using a recursive procedure.

Let a be an arc, and let l(a) be the label on an arc, i.e. the value assigned to a decision
variable by a. Let auv be an arc from u to v. In Psack, every arc has a label l ∈ {0, 1},
indicated by a dashed line or solid line, respectively. Let two nodes u and v be equivalent if,
for every out-arc of u there is an out-arc of v with the same label and destination node, and
similarly for every out-arc of v there is an out-arc of u with the same label and destination
node. So, if u and v are equivalent, then for each out-arc auz of u there is an out-arc avz of
v such that l(auz) = l(avz), and vice versa. In addition, u and v must be on the same layer.

Merging two equivalent nodes requires defining a merge operator. Let u and v be two
equivalent nodes to be merged. In general, when equivalent nodes are merged, the following
happens: (1) a new node muv is created on the same layer as the merging nodes, (2) the
destination of the in-arcs of u and the in-arcs of v is changed to be muv, and (3) chosen
arbitrarily, the out-arcs of either u or v are changed so that their origin is muv. This is
formalized in Algorithm 1.

Algorithm 1: Generic Merge Operation for Equivalent Nodes
1 Input: equivalent nodes u and v

2 Create a new node m
3 foreach in-arc azu of u do
4 Adjust the arc so that its destination is m instead of u, becoming azm

5 end
6 foreach in-arc azv of v do
7 Adjust the arc so that its destination is m instead of v, becoming azm

8 end
9 foreach out-arc auz of u do

10 Adjust the arc so that its origin is m instead of u, becoming amz

11 end
12 Delete u and v
13 return m

When two equivalent nodes are merged, a procedure for merging the information stored
on the nodes must be defined. This definition will be specific to the optimization problem
being solved and the information being stored. In Psack, each node is tracking the remaining

9

capacity of the knapsack K, and the utility U achieved so far. Let K1 and K2 be the merging
K values, U1 and U2 be the merging U values, K ′ be the merged K value, and U ′ be the
merged U value. If a new value for the remaining capacity stored on the merged node is
defined as the smallest of the old values for remaining capacity K ′ = min(K1, K2), then K ′

represents the remaining capacity if the heaviest path to the merged node is taken. Note that
it is equally valid to define the new value as the largest of the old values K ′ = max(K1, K2),
but K ′ will instead represent the remaining capacity if the lightest path to that node is
taken. In this example, we will choose the former definition (min(K1, K2)), because tracking
the heaviest path to each node may provide insight about the domain of the node. When
merging the utility values, we will always keep the largest value U ′ = max(U1, U2), so that
U ′ represents the value of the highest-utility path to that node.

2.2.2 Finding a Compact Decision Diagram

With the merge operator and equivalency defined, we have all of the tools necessary to turn
a decision tree into a much more compact exact DD. All of the nodes in the bottom layer
of a decision tree are trivially equivalent because the set of out-arcs for each such node is
∅. Thus, they can all be merged together without adding or removing any paths from the
diagram. After merging all of the nodes on the bottom layer into a single node, denoted t,
all of the nodes on the previous layer have only one destination. Thus, many of the nodes
on the layer above t may be equivalent, and can be merged together. This process can be
repeated for each layer, from the bottom to the top, until all equivalent nodes have been
merged. This is formalized in Algorithm 2, and demonstrated for Psack in Figure 2.2.

Algorithm 2: Shrink Decision Tree into Decision Diagram
1 Input: A decision tree T with n + 1 layers, where n is the number of decision variables
2 Let Q be the set of nodes on layer n + 1
3 Let ⊕ be the merge operator defined in Algorithm 1
4 foreach index i, from n + 1 to 1 do
5 foreach node u in layer i do
6 foreach node v ̸= u in layer i do
7 if u and v are equivalent then
8 u← u⊕ v
9 end

10 end
11 end
12 end
13 return T

10

Note that the process of shrinking a DD in Algorithm 2 is focused on clarity, not efficiency.
An actual implementation would take care not to repeat checks for pairs of nodes and may
pre-sort the nodes to make identifying equivalency candidates faster. Also note that there is
no need to start from a decision tree; the process can start from any exact DD and will try
to generate a more compact exact DD. All three of the diagrams with a single terminal node
shown in Figure 2.2 are valid exact DDs for Psack.

K = 10
U = 0

K = 7
U = 6

K = 3
U = 14

K = 3
U = 14

K = 3
U = 14

K = 7
U = 6

K = 2
U = 13

K = 2
U = 13

K = 7
U = 6

K = 7
U = 6

K = 10
U = 0

K = 6
U = 8

K = 1
U = 15

K = 1
U = 15

K = 6
U = 8

K = 6
U = 8

K = 10
U = 0

K = 5
U = 7

K = 5
U = 7

K = 10
U = 0

K = 2
U = 9

K = 10
U = 0

K = 10
U = 0

K = 7
U = 6

K = 3
U = 14

K = 3
U = 14

K = 7
U = 6

K = 2
U = 13

K = 7
U = 6

K = 10
U = 0

K = 6
U = 8

K = 1
U = 15

K = 6
U = 8

K = 10
U = 0

K = 5
U = 7

K = 10
U = 0

K = 1
U = 15

K = 10
U = 0

K = 7
U = 6

K = 3
U = 14

K = 10
U = 0

K = 6
U = 8

K = 10
U = 0

K = 1
U = 15

K = 10
U = 0

K = 1
U = 15

K = 10
U = 0

K = 7
U = 6

K = 3
U = 14

K = 7
U = 6

K = 10
U = 0

K = 6
U = 8

K = 10
U = 0

K = 1
U = 15

K = 10
U = 0

K = 1
U = 15

xA

xB

xC

xD

xA

xB

xC

xD

Include Item

Skip Item#1 #2

#3 #4

Figure 2.2 Shrinking the Decision Diagram for Psack

K:= remaining capacity, U:= utility. Nodes in blue are merged.

11

2.2.3 Reading a Solution

Once you have a valid exact DD for an optimization problem P , finding the optimal solution
to P is trivial. It can be done by recursively finding the best node at each layer starting from
the bottom. Best means smallest for minimization problems, and largest for maximization
problems.

Let l(a) be the label of arc a, and let ℓ(u) be the index of the layer of node u. Let f(auv) be
the objective value stored at node u, plus the impact on the objective function of traversing
arc auv. In other words, f(auv) is the impact of setting xℓ(u) = l(auv). Start from the terminal
node t, and find the best f(aut) value, f ∗ = f(a∗

u∗t), where u∗ ∈ {nodes with an arc to t}.
The label l(a∗) is the value of the decision variable represented by that layer; as we are
starting from the bottom, xn = l(a∗). Then the process is repeated, replacing t with u∗. This
repeats layer by layer until the best path from the root to the terminal is identified. This path
encodes the optimal solution. This process is formalized in Algorithm 3, and demonstrated
in Figure 2.3 using Psack.

Algorithm 3: Read Solution from Decision Diagram
1 NOTE: This is normalized for minimization problems. For maximization problems

change ∞ to −∞ on Line 6, and change f ∗ > f(auq) to f ∗ < f(auq) on Line 9.
2 Input: A decision diagram with terminal node t and root node r

3 Initialize π∗ ← ∅
4 q ← t
5 while q ̸= r do
6 f ∗ ←∞
7 foreach node u with an arc to q do
8 foreach arc auq from u to q do
9 if f ∗ > f(auq) then

10 f ∗ ← f(auq)
11 u∗ ← u
12 a∗ ← auq

13 end
14 end
15 end
16 π∗ ← π∗ ∪ {l(a∗)}
17 q ← u∗

18 end
19 Reverse the order of π∗

20 return π∗

12

K = 10
U = 0

K = 7
U = 6

K = 3
U = 14

K = 10
U = 0

K = 6
U = 8

K = 10
U = 0

K = 1
U = 15

K = 10
U = 0

K = 1
U = 15

f=0+0=0

f=6+0=6f=0+8=8

f=14+0=14

f=8+7=15

f=8+0=8
f=0+7=7

f=15+0=15

f=0+9=9

f=0+0=0

xA

xB

xC

xD

Include Item

Skip Item

Figure 2.3 Reading the optimal solution for Psack

K:= remaining capacity, U:= utility.
Nodes and arcs in blue are part of the optimal solution.

Arcs in red are read but not explored.

2.2.4 Weighted & Multivalued Decision Diagrams

Up to this point, we have only considered an example with binary decision variables. Each
item in Psack is either included (1) or excluded (0). A DD that has binary arcs only is
called a Binary Decision Diagram (BDD). So the DDs for Psack in Figure 2.2 are all BDDs.

13

However, the methods described thus far also work when the domains of the decision variables
are larger, as long as they are discrete. The only difference is that each node can have an
out-arc for each element in its domain. Decision Diagrams with non-binary arcs are called
Multivalued Decision Diagrams (MDDs). We are introducing this terminology because it is
common in the literature. In this thesis, we often use DDs to refer to both BDDs and MDDs.

An example of an MDD is shown in Figure 2.4 using the PSOP example from Section 2.1.2.
In the PSOP example, the only difference between the decision tree and the exact DD is that
the nodes on the bottom layer have been merged into a single terminal node. This happens
because the solution space is highly constrained by the precedence constraints. Note that
each arc is storing two pieces of information. The first is the label of the arc, the second is the
impact on the objective function of assigning the label of that arc to the decision variable on
its layer. In this thesis, we will refer to this impact sometimes as the weight of the arc, and
sometimes as the cost of the arc depending on the situation. When the arcs have weights,
the DD is called weighted [20, 21].

cost = 0

cost = 0

cost = 8

cost = 13 cost = 16

cost = 5

cost = 10

cost = 17

(A,0)

(B,8) (C,5)

(C,5) (D,8) (B,5)

(D,5) (C,1) (D,8)

x1

x2

x3

x4

Figure 2.4 Exact Weighted MDD for PSOP

Optimal solution indicated in blue.

14

2.2.5 Top-Down Compilation

So far, this section has shown how a DD can exactly represent the solution space for an
optimization problem P , but the method described for generating an exact DD is useless
because it requires a brute force exploration of the entire solution space. However, an exact
DD can be constructed top-down without exploring the entire solution space using a technique
inspired by Dynamic Programming [20–22].

This process begins as before; for each feasible initial decision, add a new node u, and add
an arc aru from the root r to u. Let d(u) be the domain of node u. The domain of a node
u is the set of assignments of values to the decision variable xℓ(u) that can be made on paths
that pass through u. Equivalently, the domain of a node u is the set of labels on out-arcs
of u. Let the aggregate domain of a node u be the set of every feasible partial solution that
starts at u and ends at t, i.e., the set of paths from u to t in a complete version of the DD.

If two nodes have the same aggregate domain, they are equivalent and can be merged. In this
way, equivalent nodes can be merged top-down as the DD is created, instead of bottom-up
after the fact. Thus, if P is a problem where the aggregate domain of a node pair can be
proved equivalent without a brute force exploration of the solution space, then P may be a
good candidate for generating an exact DD top-down. Algorithm 4 formalizes this process.

The Psack example is a good example of a problem where an exact DD can be compiled
top-down. The aggregate domain of a node in a knapsack problem is dependent only on
its remaining capacity. Thus, if two nodes have the same remaining capacity, they have
the same aggregate domains, and they are equivalent. Furthermore, there may be ranges of
remaining capacity at each layer with matching aggregate domains that are easy to calculate.
For example, at layer 3, the weights of the remaining items are 5 and 8 for items C and D,
respectively. In order to put both items in the knapsack, the knapsack would have to have
a remaining capacity K of 13, which exceeds the total weight limit of 10. Thus, having
the maximum remaining capacity of 10 will only allow one of those items to be placed into
the knapsack. Also, having a remaining capacity of 4 or less prevents item C from being
added to the knapsack, and having a remaining capacity of 7 or less prevents item D from
being added to the knapsack. Therefore, on layer 3, nodes with K ∈ [0, 4] are equivalent,
as are nodes with K ∈ [5, 7] and nodes with K ∈ [8, 10]. Thus, if you generated an exact
DD for Psack top-down, the two highlighted nodes in DD #3 in Figure 2.2 could be proven
equivalent without a brute force exploration of the solution space, because K = 6 and K = 7
are equivalent on layer 3.

In general, for the SOP, two nodes have the same aggregate domain if their in-arcs all have

15

Algorithm 4: Top-Down Compilation of Exact Decision Diagrams
1 Input: An unfinished Decision Diagram M with exactly one node, the root node r

2 Let ⊕ be the merge operator defined in Algorithm 1
3 Initialize Q← {r}
4 Initialize Qnext ← ∅
5 while Q ̸= ∅ do
6 Qnext ← ∅
7 foreach node u ∈ Q do
8 foreach label l ∈ d(u) do
9 Create a new node v

10 Qnext ← Qnext ∪ {v}
11 Add arc auv from u to v

12 end
13 end
14 foreach pair of nodes {u, v} ∈ Qnext do
15 if u and v have the same aggregate domain then
16 Qnext ← Qnext\{u, v}
17 Qnext ← Qnext ∪ {u⊕ v}
18 end
19 end
20 Q← Qnext

21 end
22 return M

the same label and all incoming paths have visited the same set of elements. For example,
a node with exactly one incoming path [A, B, C] could be merged with a node in the same
layer with exactly one incoming path [B, A, C].

2.3 Restricted Decision Diagrams

In the previous section (2.2), we discussed what an exact DD is, and how one might be con-
structed. However, for most meaningful problems, constructing an exact DD is intractable.
Exact DDs have their uses and remain an active area of research, but they are not a panacea.
Restricted DDs are an alternative method of leveraging DDs [1].

A restricted DD for an optimization problem P encodes only feasible solutions to P , but it
may not encode every feasible solution to P . LetM− be a restricted DD for P , and let d(M)
be the set of solutions encoded by Decision DiagramM. A restricted DD for an optimization
problem P , is one where d(M−) ⊆ Sol(P). Thus, the best path through M−, shortest for
minimization and longest for maximization, is easy to find, feasible, and the best solution

16

encoded in the DD. Methods of generating restricted DDs are methods of generating a primal
bound on P by searching for feasible solutions.

Algorithm 5: Top-Down Compilation of Restricted Decision Diagrams
1 Input: A unfinished Decision Diagram M− with exactly one node, the root node r

2 Recall: ℓ(u) is the layer of node u
3 Let ⊕ be the merge operator defined in Algorithm 1
4 Initialize Q← {r}
5 Initialize Qnext ← ∅
6 while Q ̸= ∅ do
7 Qnext ← ∅
8 foreach node u ∈ Q do
9 foreach label l ∈ d(u) do

10 Create a new node v
11 Qnext ← Qnext ∪ {v}
12 Add arc auv from u to v

13 end
14 end
15 foreach pair of nodes {u, v} ∈ Qnext do
16 if u and v have the same aggregate domain then
17 Qnext ← Qnext\{u, v}
18 Qnext ← Qnext ∪ {u⊕ v}
19 end
20 end
21 if |Qnext| > ω then
22 Sort u ∈ Qnext from best to worst by f(u)
23 Trim Qnext to length ω by removing the last elements
24 end
25 Q← Qnext

26 end
27 return M−

Constructing restricted DDs is a straightforward process. Let f(u) be the value of the
objective function at node u. In other words, f(u) is the sum of the arc weights on the best
path from r to u. First, a maximum width ω is selected. Then, you proceed as if generating a
decision tree, but every time the width of the DD exceeds ω, you remove the least promising
nodes. The definition of least promising is heuristic, but for the sake of simplicity, we will
assume in this section that the nodes with the least optimal objective function values are the
least promising. Essentially, a restricted DD is just a generalized greedy heuristic [4, 23–25].
Note that we can still merge nodes with the same aggregate domains, because doing so will
never remove or add any paths from the DD, just store them more efficiently. This process

17

is formalized in Algorithm 5.

The process of building a restricted DD with ω = 2 is demonstrated for Psack in Figure 2.5
and for PSOP in Figure 2.6. In Section 2.2.5, we defined a method of determining if two
nodes were equivalent for the SOP. However, in our experiments, we observed that the work
of finding equivalent nodes in a restricted DD for a SOP often outweighed the benefit of being
able to merge nodes. Thus, our implementation in Chapter 3 does not leverage equivalent
node merging for the SOP.

In Figure 2.5, observe that the restricted DD contains the optimal solution, but unlike an
exact DD, does not constitute proof that the solution is optimal. By contrast, in Figure 2.6,
the optimal solution is excluded from the DD as it is constructed.

K = 10
U = 0

K = 7
U = 6

K = 3
U = 14

K = 7
U = 6

K = 10
U = 0

K = 6
U = 8

K = 10
U = 0

K = 10
U = 0

K = 7
U = 6

K = 3
U = 14

K = 3
U = 14

K = 10
U = 0

K = 6
U = 8

K = 1
U = 15

K = 6
U = 8

K = 10
U = 0

K = 7
U = 6

K = 3
U = 14

K = 1
U = 15

K = 10
U = 0

K = 6
U = 8

K = 10
U = 0

K = 7
U = 6

K = 3
U = 14

K = 1
U = 15

K = 10
U = 0

K = 6
U = 8

K = 1
U = 15

xA

xB

xC

xA

xB

xC

xD

Include Item

Skip Item#1 #2

#3 #4

Figure 2.5 Restricted Decision Diagram for Psack

K:= remaining capacity, U:= utility. Nodes in blue are merged.

18

cost = 0

cost = 0

cost = 8

cost = 13 cost = 16

cost = 5

cost = 10

(A,0)

(B,8) (C,5)

(C,5) (D,8) (B,5)

cost = 0

cost = 0

cost = 8

cost = 13

cost = 5

cost = 10

cost = 18

(A,0)

(B,8) (C,5)

(C,5) (B,5)

(D,5) (D,8)

x1

x2

x3

x4

#1 #2

Figure 2.6 Restricted Decision Diagram for PSOP

2.4 Relaxed Decision Diagrams

As discussed in Section 2.3, restricted DDs provide a structure for searching for feasible
solutions by encoding a subset of the feasible solutions. Relaxed DDs instead provide a
relaxed (dual) bound on an optimization problem P [10–12,26].

A relaxed DD for P encodes every feasible solution to P , but it might also encode infeasible
solutions to P . LetM+ be a relaxed DD for P . A relaxed DD for P is one where Sol(P) ⊆
d(M+). Thus, the best path throughM+ is easy to find, potentially infeasible, and provides
a dual bound on the best possible solution P .

19

2.4.1 Top-Down Relaxed Decision Diagrams

Constructing a relaxed DD top-down requires more effort than constructing a restricted
DD, but is conceptually similar. The algorithm is almost entirely the same, except that
when the maximum width ω is exceeded, two nodes are merged together, as opposed to a
node being removed. When nodes that are not equivalent are merged, potentially infeasible
solutions are added to the DD, but no feasible solutions are removed. This is how adding
infeasible solutions to the DD allows the DD to store all of the feasible solutions compactly
[1, 10, 12,26,27].

Before we construct a relaxed DD, it is necessary to redefine the merge operator. In Algorithm
1, we detail a method of merging equivalent nodes, but now we will be merging non-equivalent
nodes. The new procedure is almost the same as before, but instead of copying the out-arc
from one of the nodes arbitrarily, we must now copy every out-arc of both nodes onto the
new merged node. DDs are deterministic, so an arc is defined by its label and any repeat
arc labels will be merged into a single arc. The new procedure is detailed in Algorithm 6.
Note that this procedure also works on equivalent nodes, but the if statement on Line 13
will never trigger because d(u) = d(v) by definition for equivalent nodes.

Algorithm 6: Generic Merge Operation for Non-Equivalent Nodes
1 Input: nodes u and v

2 Create a new node m
3 foreach in-arc azu of u do
4 Adjust the arc so that its destination is m instead of u, becoming azm

5 end
6 foreach in-arc azv of v do
7 Adjust the arc so that its destination is m instead of v, becoming azm

8 end
9 foreach out-arc auz of u do

10 Adjust the arc so that its origin is m instead of u, becoming amz

11 end
12 foreach out-arc avz of v do
13 if l(avz) /∈ d(m) then
14 Adjust the arc so that its origin is m instead of v, becoming amz

15 end
16 end
17 Delete u and v
18 return m

Now, we have the tools to build a relaxed DD. Recall that f(u) is the sum of the arc weights
on the best path from r to u. First, a maximum width ω is selected. Then, the algorithm

20

proceeds as if generating a decision tree, but every time the width of the DD exceeds ω, two
nodes are selected and merged. The selection of those nodes is heuristic. Selecting the nodes
strategically may result in a stronger relaxed bound, but the result will still be valid if you
select randomly. In this section, for simplicity, we will use a heuristic that always merges the
least promising nodes. Note that we can still merge nodes with the same aggregate domains,
because doing so will never remove or add any paths from the DD, just store them more
efficiently. The process of constructing a relaxed DD top-down is formalized in Algorithm 7.

Algorithm 7: Top-Down Compilation of Relaxed Decision Diagrams
1 Input: A unfinished Decision Diagram M+ with exactly one node, the root node r

2 Recall: ℓ(u) is the layer of node u
3 Let ⊕ be the merge operator defined in Algorithm 6
4 Initialize Q← {r}
5 Initialize Qnext ← ∅
6 while Q ̸= ∅ do
7 Qnext ← ∅
8 foreach node u ∈ Q do
9 foreach label l ∈ d(u) do

10 Create a new node v
11 Qnext ← Qnext ∪ {v}
12 Add arc auv from u to v

13 end
14 end
15 foreach pair of nodes {u, v} ∈ Qnext do
16 if u and v have the same aggregate domain then
17 Qnext ← Qnext\{u, v}
18 Qnext ← Qnext ∪ {u⊕ v}
19 end
20 end
21 while |Qnext| > ω do
22 Sort u ∈ Qnext from best to worst by f(u) // heuristic
23 Let u and v be the last two elements ∈ Qnext

24 Qnext ← Qnext\{u, v}
25 Qnext ← Qnext ∪ {u⊕ v}
26 end
27 Q← Qnext

28 end
29 return M+

In the Psack example, two pieces of information stored on the nodes need to be merged:
remaining capacity and utility. In order for the relaxed DD to yield a valid dual bound on

21

Psack, the information has to be merged in a way that does not remove any feasible paths from
the aggregate domain of either node. This requires modifying one of the two rules defined in
Section 2.2.1 for restricted DDs. Keeping the larger utility value U when merging still tracks
the best path, thus providing a bound on the longest feasible path to that node. However,
for the K values, we now must keep the larger of the K values being merged. If we keep
the smaller value, we may prevent items from being added to the knapsack even when there
exists a feasible path through the node that includes it. Top-down compilation of a relaxed
DD for Psack is shown in Figure 2.7. The relaxed DD yields an upper (dual) bound of U = 24
on Psack. However, the solution that encodes that bound is [xA = 1, xB = 1, xC = 0, xD = 1],
which would have a remaining capacity of −5 and is infeasible. Thus, this is a dual bound
but not an optimal solution.

K = 10
U = 0

K = 7
U = 6

K = 3
U = 14

K = 7
U = 6

K = 10
U = 0

K = 6
U = 8

K = 10
U = 0

K = 10
U = 0

K = 7
U = 6

K = 3
U = 14

K = 10
U = 0

K = 7
U = 8

K = 10
U = 0

K = 10
U = 0

K = 7
U = 6

K = 3
U = 14

K = 3
U = 14

K = 10
U = 0

K = 10
U = 8

K = 5
U = 15

K = 10
U = 8

K = 10
U = 0

K = 7
U = 6

K = 3
U = 14

K = 10
U = 14

K = 10
U = 0

K = 10
U = 8

K = 5
U = 15

K = 10
U = 24

xA

xB

xA

xB

xC

xD

Include Item

Skip Item#1 #2

#3 #4

Figure 2.7 Top-Down Compilation of Relaxed Decision Diagram for Psack

K:= remaining capacity, U:= utility.
Equivalent node merges shown in blue.

Non-equivalent node merges shown in red.

22

PSOP is a minimization problem instead of a maximization problem. Here, cost takes the
place of utility, and the lower cost is kept when two nodes are merged. This way, the shortest
path to each node is tracked. Another piece of information was being implicitly tracked that
we will now explicitly track. When generating the arcs for a node u, the available arc labels
d(u) are the subset of labels that have not appeared on the path to u, and are not ruled out
by precedence constraints. Therefore, going forward, we will track this information explicitly
on the nodes. When we merge nodes u and v in a relaxed DD for PSOP , the domain of the
new node is d(u) ∪ d(v). As a final step, observe that it is possible for the weight of an arc
to be unclear. If one path to a node ends in A and the other in B, then an out-arc with a C

label could take on either transition cost cAC or cBC . To maintain the property that the DD
is a valid relaxation, we will always use the smaller transition cost. Top-down compilation of
a relaxed DD for Psack is shown in Figure 2.8. The dual bound on PSOP from the relaxed DD,
with cost = 14, is valid but not feasible. It uses the solution [x1 = A, x2 = B, x3 = C, x4 = C]
which repeats C twice.

cost = 0
{A,B,C,D}

cost = 0
{B,C,D}

cost = 8
{C,D}

cost = 13
{D}

cost = 16
{C}

cost = 5
{B,D}

cost = 10
{D}

(A,0)

(B,8) (C,5)

(C,5) (D,8) (B,5)

cost = 0
{A,B,C,D}

cost = 0
{B,C,D}

cost = 8
{C,D}

cost = 13
{C,D}

cost = 5
{B,D}

cost = 10
{D}

cost = 14
∅

(A,0)

(B,8) (C,5)

(C,5) (D,8) (B,5)

(D,8)
(C,1)

(D,5)

x1

x2

x3

x4

#1 #2

Figure 2.8 Top-Down Compilation of Relaxed Decision Diagram for PSOP

Node merges shown in blue.

23

2.4.2 Relaxed Decision Diagrams by Separation

Top-down generation of relaxed DDs is appealing because it is conceptually simple and quite
powerful. However, there is another approach that allows for substantially more structural
manipulation of the DD. A relaxed DD can instead be constructed by separation [12, 26].
The fundamental insight in making the shift from top-down to separation is recognizing that
it is trivial to construct a relaxed DD with ω = 1. If you were to make a ω = 1 DD top-down,
you would merge every layer into a single node. If u is a node in that diagram on layer ℓ,
then d(u) = d(xℓ). Thus, u will have one out-arc for each element ∈ d(xℓ). Figures 2.9 and
2.10 show ω = 1 relaxed DDs for Psack and PSOP respectively.

To construct a relaxed DD top-down, you merge nodes on each layer until they do not exceed
ω. To construct a relaxed DD by separation, you instead split nodes on each layer until you
have reached ω, or there are no valid splits left to make. A split is a merge in reverse. A
merge combines two nodes into a single node, reducing the size of the DD, and introducing
potentially infeasible solutions. A split turns a single node into two nodes, increasing the
size of the DD and removing infeasible solutions in the process. To perform a split, first, a
node u is selected to be split into u and a new node u′. Then, a Boolean function is used to
determine which in-arcs go to u and which go to u′. All of the out-arcs of u are copied onto
u′. Finally, a filtering function is used to remove out-arcs of u and u′ that are now infeasible.

The choice of Boolean function is heuristic, but we use the same one for all of the work in
this thesis [28]. Normally, when a node u is selected to be split, it is because a path being
removed passes through u. Let ϕ be the label of the in-arc of u on that path. In order to
choose a subset of the arcs pointing at the old node u during a split, we need a Boolean
function for the in-arcs of u. Let All↓

v be the set of labels visited by every path from the root
node r to node v. We use the function h(avu, ϕ), defined as follows:

h(avu, ϕ) =

true if ϕ ∈
(
All↓

v ∪ label(avu)
)

false otherwise
(2.1)

The result of using this function when splitting is that we now know that ϕ is on every path
to u′. Using this function, node splitting is formalized in Algorithm 8.

Let an exact node be a node u such that every path from r to u would result in a node
with the same aggregate domain in a decision tree for the problem being solved. In other
words, an exact node is a node that has only ever merged with equivalent nodes, and has
only exact nodes as parents and ancestors. An exact node never needs to be split because the
information encoded by the node is exact and not relaxed. With that in mind, to construct

24

Algorithm 8: Node Splitting [28]
1 Input: a node u on layer L in relaxed DD M+

2 Let in(u) be the the set of arcs that end at u

3 Let out(u) be the set of arcs that originate from u

4 Let avu be an arc going from node v to node u

5 Let h(avu, . . .) be a function that takes in an arc (as well as any other relevant
information) and returns true or false (see Eq. 2.1)

6 Create a new node u′

7 L← L ∪ {u′}
8 foreach avu ∈ in(u) do
9 if h(avu, ...) then

10 Redirect a such that avu′

11 end
12 end
13 foreach auv ∈ out(u) do
14 Create and add arc au′v such that l(auv) = l(au′v)
15 filter(auv), filter(au′v) // filter(a) removes arcs that violate constraints
16 end
17 return M+

a relaxed DD by separation, you split nodes on each layer until you have reached ω, or until
all remaining nodes in the layer are exact nodes. In both the original work [28] and in this
work, we split the nodes in each layer going from the top down. There is no reason that it
must be done in this order, but our efforts to find an alternative order that performs better,
or even as well, have been unsuccessful.

There are two more heuristic choices to be made before finalizing a procedure for constructing
a relaxed DD by separation. Each time a node is split, that node must have been chosen
from its layer. The heuristic we use for node selection is to pick the node containing the best
path through the DD. For the sake of this explanation, let Pmin be a minimization problem.
In a relaxed DD M+ for Pmin, the length z of the shortest path π is a dual bound on the
value of the optimal solution z∗. If π is feasible, then π is the optimal solution, and Pmin

has been solved. If π is infeasible, then removing it from M+ will cause a new path π′ with
length z′ to become the new shortest path through M+. This new path has the property
that z ≤ z′ ≤ z∗. Thus, by selecting the node to split that contains the best path, we are
making an attempt to improve the dual bound generated by M+.

25

The second heuristic decision follows directly from node selection. Once a node u is selected
to be split, a decision must be made about which arc label to split on. The heuristic we just
described for selecting a node to split was premised on a desire to remove the best path from
M+. In order to follow through on that premise, we will simply select the arc label on an
in-arc of u that contains that path. Now all of the heuristic decisions have been addressed,
and Algorithm 9 formalizes this procedure for constructing relaxed DDs by separation.

Algorithm 9: Compilation of Relaxed Decision Diagrams by Separation [28]
1 Input: A ω = 1 relaxed Decision Diagram M+

2 Recall: ℓ(u) is the layer of node u
3 Recall: f(avu) = f(v) plus the impact on the objective function of setting xℓ(u) = l(avu)
4 Let ⊖(u, a) be the split operation defined by Algorithm 8 that splits on node u and

passes arc a to a Boolean function to sort the arcs
5 Let in(u) be the set of arcs that end at u

6 foreach layer L of M+ do
7 while U = {u : u ∈ L, u is not exact} ≠ ∅ AND |L| < ω do
8 Select a node u ∈ U with the best f(u)
9 Select the arc avu ∈ in(u) with the best f(avu)

10 u′ ← ⊖(u, avu)
11 L← L ∪ {u′}
12 end
13 end
14 return M+

Figure 2.9 demonstrates the construction of a relaxed DD by separation for Psack. Note
that this DD is different from the one constructed top-down (Figure 2.7). Despite being
different, both DDs yield a valid dual bound on Psack. The DD constructed by separation
provides a stronger bound in this instance. There is no theoretical guarantee of this, but in
practice, there is often more information available about the impact a split might have during
separation, than about the impact a merge might have during top-down construction. This is
because when constructing a DD top-down, you only have information about the layers you
have already constructed, but when constructing a DD by separation, you have information
about every layer.

Figure 2.10 demonstrates the construction of a relaxed DD by separation for PSOP . This DD
is the same as the one generated top-down (Figure 2.8), but this is merely a coincidence. As
shown by Psack, there is no theoretical guarantee that this will happen.

Note that if you did not pick a maximum width ω when constructing a relaxed DD by
separation, and instead continued to split nodes until every layer contained only exact nodes,

26

then the resulting DD would be exact. This method works well on some problems, but it is
not typically powerful enough on its own to solve problems of a useful size.

K = 10
U = 0

K = 10
U = 6

K = 10
U = 14

K = 10
U = 21

K = 10
U = 30

K = 10
U = 0

K = 7
U = 6

K = 10
U = 14

K = 10
U = 21

K = 10
U = 30

K = 10
U = 0

K = 10
U = 0

K = 7
U = 6

K = 10
U = 8

K = 3
U = 14

K = 10
U = 15

K = 10
U = 24

K = 10
U = 0

K = 10
U = 0

K = 7
U = 6

K = 10
U = 8

K = 3
U = 14

K = 5
U = 15

K = 10
U = 14

K = 10
U = 23

K = 10
U = 0

xA

xB

xC

xD

xA

xB

xC

xD

Include Item

Skip Item#1 #2

#3 #4

Figure 2.9 Compilation of Relaxed Decision Diagram by Separation for Psack

27

cost = 0
{A,B,C,D}

cost = 0
{B,C,D}

cost = 5
{B,C,D}

cost = 10
{C,D}

cost = 11
∅

(A,0)

(B,8) (C,5)

(B,5) (C,5) (D,5)

(D,5)(C,1)

cost = 0
{A,B,C,D}

cost = 0
{B,C,D}

cost = 8
{C,D}

cost = 5
{B,D}

cost = 10
{C,D}

cost = 11
∅

(A,0)

(B,8) (C,5)

(B,5)(C,5)

(D,8)

(D,5)(C,1)

cost = 0
{A,B,C,D}

cost = 0
{B,C,D}

cost = 8
{C,D}

cost = 5
{B,D}

cost = 10
{D}

cost = 13
{C,D}

cost = 14
∅

(A,0)

(B,8) (C,5)

(B,5)(C,5) (D,8)

(D,8)(C,1)

(D,5)

x1

x2

x3

x4

x1

x2

x3

x4

#1 #2 #3

Figure 2.10 Compilation of Relaxed Decision Diagram by Separation for PSOP

2.5 Decision Diagrams for Sequencing Problems

In this section, we will dive into specific methods for using relaxed DDs to solve sequencing
problems. While the content of this section is included in Decision Diagrams for Optimization
[1, 10, 28], it is not typically included in a general explanation of Decision Diagrams. It
is included here because the work in this thesis makes extensive use of these techniques.
Furthermore, understanding these techniques is worthwhile, because they clearly demonstrate
the utility of constructing relaxed DDs by separation.

Sequencing problems have the constraint that each variable must take a different value. For
example, in the well-known Traveling Salesman Problem (TSP), the salesman must visit each
city in a list of n cities exactly once. Let i, j ∈ {1, ..., n} and i ̸= j, and let xi be the ith city

28

visited. In any solution where xi = xj, then there is a city being visited more than once, and
so the solution is infeasible. More concretely, every variable in the TSP must take a different
value. This is often referred to as the AllDifferent constraint by the Constraint Programming
(CP) community [29].

2.5.1 Encoding the AllDifferent Constraint

The presence of an AllDifferent constraint, which includes all of the decision variables, allows
for substantial trimming of nodes and arcs; this is the form constraint propagation takes
when generating relaxed DDs by separation. In Section 2.4.2, we introduced the notation
All↓

u as the set of labels visited by every path from the root node r to node u. We now also
define the symmetric notation All↑

u as the set of labels visited by every path from u to t.
Similarly, we define Some↓

u as the set of labels visited by at least one path from the root
node r to node u, and Some↑

u as the set of labels visited by at least one path from u to t.

When constructing a relaxed DD top-down, you can track All↓
u and Some↓

u, but the sym-
metric information, All↑

u and Some↑
u, about paths to t, is not available. By contrast, when

constructing a relaxed DD by separation, you start from a valid relaxed DD with ω = 1. All
four pieces of information can be recursively stored on each node in this initial DD. All↓

u and
Some↓

u are recursively calculated for each node going top-down, and then All↑
u and Some↑

u

are recursively calculated for each node going bottom-up. When a node is split, the values
of these pieces of information for the new nodes can be recalculated easily from the values
stored in their parents and children. Algorithm 10 explains how to calculate the initial values
for Some↓

u, and can be trivially modified to handle Some↑
u, All↓

u, and All↑
u as well.

Algorithm 10: Calculating Initial Some↓
u Values [28]

1 Input: A relaxed Decision Diagram M+ with root node r

2 foreach layer L ∈M+ do
3 foreach u ∈ L do
4 Some↓

u ← ∅
5 foreach parent v of u do
6 Some↓

u ← Some↓
u ∪ Some↓

v

7 foreach arc avu from v to u do
8 Some↓

u ← Some↓
u ∪ {l(avu)}

9 end
10 end
11 end
12 end
13 return M+

29

Once the four path-based pieces of information are known, they can be used to trim nodes
and arcs. We will not enumerate every method of doing so here, but we will provide two
examples. In a DD with the AllDifferent constraint, a feasible path must contain every label
exactly once. Given a node u, if |Some↓

u ∪ Some↑
u| ≠ n, then there is at least one label that

does not appear on any path passing through u. Thus, there are no feasible paths that pass
through u, and u can be removed from the DD. Alternatively, if |All↓

u ∩All↑
u| ≥ 1, then there

is at least one label on every path from r to u that is also on every path from u to t. Again,
there are no feasible paths that pass through u, and u can be removed from the DD.

As a final note, recall that in Section 2.4.2, we defined an exact node as a node u such that
every path from r to u results in a node with the same aggregate domain. For sequencing
problems with the AllDifferent constraint, a node is exact if, and only if, Some↓

u = All↓
u, and

all in-arcs of u originate from exact nodes. In other words, every label that is on any path
to u must be on every path to u.

2.5.2 Encoding a Generalizable Optimality Constraint

Path-based information is not the only information that can be leveraged. Specific problems
may have other specific information worth storing, but some information is relevant to any
optimization problem P being solved with a relaxed DD constructed by separation. For
example, using the same recursive method that was used to calculate the path-based pieces
of information, you can also calculate values that track the objective function. Let z↓

u be the
length of the best path from r to u, and let z↑

u be the length of the best path from u to t. Let
z be the value of the best known solution to a minimization problem Pmin. If there is a node
u such that z↓

u + z↑
u ≥ z, then there is no path through u with a value lower than the value of

the best known solution. Thus, u can be removed from the DD, because every path through
u is worse than, or equivalent to, the best known solution. The filter function, referred to in
Algorithm 8, leverages all of the constraints encoded using methods like the ones described
in this section.

In general, any constraint that can be encoded using methods like those described in the
preceding paragraphs can be used to trim nodes from the DD. The filter function, referred to
in Algorithm 8, is adapted to each specific optimization problem for the purpose of remov-
ing nodes that violate constraints, both general constraints that apply to any optimization
problem and constraints specific to the individual problem.

30

2.6 Branch-and-Bound with Decision Diagrams

Branch-and-bound (BnB) is a well-known method for solving optimization problems, par-
ticularly Mixed Integer Programs (MIPs). This algorithm divides the problem into smaller
sub-problems (branching) and explores the sub-problems by estimating their bounds. If the
bound of a particular sub-problem proves it cannot possibly contain the optimal solution, that
sub-problem is not further explored (bounding). This approach helps significantly reduce the
number of calculations by eliminating large parts of the search space.

Traditionally, BnB solvers use a linear relaxation in the form of an LP to generate dual
bounds on sub-problems. A DD-based BnB solver, instead, uses a combinatorial relaxation
in the form of a relaxed DD. This idea inspired a new field of research studying the potential
and limitations of such a solver. This thesis is part of that effort, focused on making a
cutting-edge DD-based solver that leverages DDs constructed by separation.

In a typical BnB algorithm, the branching takes place by splitting on the domain of the
variables. With decision diagrams, the branching takes place on the nodes themselves by
selecting a set of exact nodes that represents the problem [1,7,8]. The solver outline from [1]
defines an exact node as a node u for which every path from r to u ends in an equivalent
state. This is the language of Dynamic Programming and is equivalent to the definition given
in Section 2.4.2 that every such path results in an equivalent aggregate domain.

An exact cutset is defined as a set of exact nodes that contain every path from r to t. Let
M+(u) be a relaxed decision diagram with root u, and let M−(u) be a restricted decision
diagram with root u. The branch-and-bound algorithm for DDs proceeds by selecting an
exact cutset of M+, and using each node u in the cutset as the root for a new restricted
decision diagram M−(u), and relaxed decision diagram M+(u). A node can be removed
from the queue if the relaxation of that node is not better than the best known solution to
P , otherwise the exact cutset of the new node is added to the queue, and the process repeats
until the queue is empty. This is detailed by Algorithm 11.

Figure 2.11 demonstrates DD-based BnB with ω = 2 for Psack. The initial restricted DD
is the one from Figure 2.5, and the initial relaxed DD is the one from figure 2.7. In step
#1, the initial restricted DD M− is constructed, but it is not exact, so the best solution in
M− is stored: zopt = z(M−). In step #2, the initial relaxed DD M+ is constructed. The
upper bound on utility provided by M+ of U = 24 > zopt, so there may still be a better
solution. An exact cutset of M+ is identified, and then in steps #3 and #4, restricted DDs
are generated for each node in the cutset. In this case, they are both exact, and no better
solution was found, so zopt = z∗(Psack) = 15. If one of the restricted DDs had not been

31

Algorithm 11: Decision Diagram based Branch-and-Bound (BnB) [8]
1 Note: This is normalized for minimization
2 Let M(uu′) be a partial DD with root u and terminal u′

3 Let z(M) be the length of the best (shortest) path through M
4 Let zopt be the value of the best known solution
5 Q = {r}
6 v(r)← 0
7 zopt ←∞
8 while Q ̸= ∅ do
9 u←selectNode(Q), Q← Q\{u} ; // selects a node to process arbitrarily

10 M− ←M−(u)
11 if z(M−) + v(u) < zopt then
12 zopt ← z(M−) + v(u)
13 end
14 if M− is not an exact DD then
15 M+ ←M+(u)
16 if z(M+) + v(u) < zopt then
17 S ← exactCutset(M+)
18 foreach u′ ∈ S do
19 v(u′)← v(u) + z(M+(uu′))
20 Q← Q ∪ u′

21 end
22 end
23 end
24 end
25 return zopt

exact, a relaxed DD would have been generated for that branch, and the process would have
continued for another iteration.

Figure 2.12 demonstrates DD-based BnB with ω = 2 for PSOP . The initial restricted DD is
the one from Figure 2.6, and the initial relaxed DD is the one from Figure 2.10. The process
unfolds almost exactly as it does with BnB for Psack.

A notable advantage of this procedure is that memory use is kept minimal. At each step, the
previous DD is removed from memory, and the next one takes its place. The only thing that
needs to be stored is the processing queue of exact nodes. Thus, even on large problems,
memory use can be managed by changing ω. However, memory use cannot be strictly defined,
because the size of the processing queue is unpredictable.

32

K = 10
U = 0

K = 7
U = 6

K = 3
U = 14

K = 1
U = 15

K = 10
U = 0

K = 10
U = 0

K = 6
U = 8

K = 1
U = 15

Initial Restricted DD

K = 10
U = 0

K = 7
U = 6

K = 3
U = 14

K = 10
U = 14

K = 10
U = 0

K = 10
U = 8

K = 5
U = 15

K = 10
U = 24

Initial Relaxed DD

Exact Cutset

xA = 0
K = 10
U = 0

K = 10
U = 0

K = 10
U = 0

K = 1
U = 15

K = 6
U = 8

K = 1
U = 15

Branch 1: Restricted DD

xA = 1
K = 7
U = 6

K = 7
U = 6

K = 3
U = 14

K = 2
U = 14

K = 2
U = 14

Branch 2: Restricted DD

restricted DD not exact
zopt ← 15

must make relaxed DD →

both branch 1 and branch 2
restricted DDs are exact

thus: zopt = z∗(Psack) = 15

Include Item

Skip Item#1 #2

#3 #4

Figure 2.11 DD-Based Branch-and-Bound on Psack

33

cost = 0
{A,B,C,D}

cost = 0
{B,C,D}

cost = 8
{C,D}

cost = 13
{D}

cost = 16
{C}

cost = 5
{B,D}

cost = 10
{D}

cost = 18
∅

(A,0)

(B,8) (C,5)

(C,5) (D,8) (B,5)

(D,5) (D,8)

Initial Restricted DD

cost = 0
{A,B,C,D}

cost = 0
{B,C,D}

cost = 8
{C,D}

cost = 5
{B,D}

cost = 10
{D}

cost = 13
{C,D}

cost = 14
{C,D}

Exact Cutset

(A,0)

(B,8) (C,5)

(B,5)(C,5) (D,8)

(D,8)(C,1)

(D,5)

Initial Relaxed DD

x1 = A
x2 = B
cost = 8
{C,D}

cost = 13
{D}

cost = 16
{C}

cost = 17
∅

(C,5) (D,8)

(C,1)(D,5)

Branch 1: Restricted DD

x1 = A
x2 = C
x3 = B
cost = 10

{D}

cost = 18
∅

(D,8)

Branch 2: Restricted DD

#1 #2

#3 #4

restricted DD not exact
zopt ← 18

must make relaxed DD →

from branch 1: zopt ← 17
both branch 1 and branch 2
restricted DDs are exact

thus: zopt = z∗(PSOP) = 17

Figure 2.12 DD-Based Branch-and-Bound on PSOP

34

2.7 Other Innovations in DD-Based Solvers

In recent years, there have been significant advancements in DD-based solvers and related
techniques. This research has proven the utility of DDs, applying them effectively to a variety
of complex problems. This exploration has been symbiotic with other fields, with researchers
continually discovering innovative ways to integrate DDs with other types of solvers. These
novel methods often enhance DD-based solvers as well. As the field is still relatively new,
it holds tremendous opportunity for substantial improvements in solver capabilities. This
section explores some of the major efforts to leverage and enhance DD-based techniques.

2.7.1 ddo

An effort closely aligned with the work in this thesis is the development of the decision-
diagram-based optimization solver (ddo) [5,30]. To the best of our knowledge, ddo currently
represents the only other initiative exploring techniques for implementing the original DD-
based branch-and-bound algorithm (Algorithm 11) in a generic way. The principal difference
between the ddo approach and the one detailed in this thesis is that the work on the ddo
focuses on what can be achieved with relaxed DDs that are constructed top-down, compared
to our emphasis on DDs constructed by separation. Although our implementations have
diverged significantly, some of their ideas have directly inspired aspects of our work. These
influences are discussed in the relevant chapters, but we will briefly touch on the pertinent
techniques here.

In an early paper on this topic, Algorithm 11 is improved by incorporating a local search [4].
The modified algorithm uses a heuristic to quickly compute a rough relaxed bound at each
node. If the sum of the shortest path length to a node with the rough relaxed bound for that
node exceeds the best known solution, the node can be removed. More formally, let Pmin

be a minimization problem, let rrb(u) be a rough relaxed bound on the distance between u

and t, let v(u) be the shortest distance from r to u, and let zopt be the value of best known
solution to Pmin. If v(u) + rrb(u) > zopt, the node can be removed. The authors demonstrate
that if rrb(u) is inexpensive to compute, it can be useful for filtering nodes in M+ and
M−. However, their approach necessitates the creation of problem-specific heuristics. In
Section 4.2.2, we introduce a generalized version of this concept, termed embedded restricted
decision diagrams. This concept was developed independently from, but concurrently with,
their work on dominance-based pruning [25, 31], which also uses rough relaxed bounding
techniques. Thus, embedded restricted decision diagrams share some similarities with this
work.

35

2.7.2 Arc-Flow Formulation

The arc-flow formulation presents a different approach to utilizing DDs. In these algorithms,
each path through the DD encodes a partial solution, and achieving a complete solution
involves iteratively solving a linear programming problem (LP) [32, 33]. For instance, in
graph coloring [34], a DD is constructed where each path represents a single color. Then an
LP is solved, treating the DD as a maximum flow graph where each unit of flow corresponds
to a color. If the resulting flow is non-integer, the DD is refined, and the LP is rerun until
the coloring is feasible.

This technique is quite powerful and also offers an easy way to integrate continuous variables
into a DD-based solver. In a collaboration with Danielle Ripsman that has not been published
yet, we applied the arc-flow formulation to design radiation therapy treatments with limited
apertures. In radiation therapy, a beam is directed through a custom aperture with the
objective of targeting all harmful cells while minimizing damage to healthy ones. First, we
construct a DD, then we solve a MIP flow model where each positive flow on an arc signifies
its use in an aperture, and finally, we refine the DD until a feasible aperture design is achieved
using the MIP.

2.7.3 HADDOCK

The HADDOCK project, short for Handling Automatically Decision Diagrams Over Con-
straint Kernels, introduces a language and framework designed to integrate Decision Dia-
grams (DDs) with Constraint Programming (CP) techniques. This integration aims to guide
and enhance the CP search process [35]. A significant focus of this work has been to fully
embed a DD-based solver within a CP solver [36], leading to the development of numerous
encodings, similar to those detailed in Section 2.5.

These efforts underscore the vast potential of research into blending DD-based methods
with concepts from other disciplines, showcasing the innovative ways these integrations can
advance work in multiple fields. The HADDOCK project also has particularly well-thought
out implementations of DDs for use with other solvers. It provides a strong starting point
for considering how DDs are handled in memory, and how to make DD-based operations
efficient.

2.7.4 DIDP

Domain Independent Dynamic Programming (DIDP) is a new area of research parallel to
work on DD-based solvers [37]. The ideas for DD-based solvers were directly inspired by

36

Dynamic Programming (DP), and DIDP is similarly inspired by DP. There are multiple im-
plementations of the DIDP solver, all using the Dynamic Programming Description Language
(DyPDL), a formalism introduced to define DP models based on a state transition system
inspired by AI planning.

Since DIDP and DDs are both inspired by DP, DIDP solver techniques incorporate ideas
from the DD literature for guiding searches. DIDP also integrates methods from AI planning
with those DD-based techniques. This exploration will undoubtedly yield new methods of
incorporating ideas from other fields alongside DDs.

2.7.5 Variable Ordering

It is also worth mentioning some of the relevant literature on variable ordering. The success
of a DD-based algorithm can vary greatly based on the variable order used to construct
the underlying DDs [21]. The study of how to generate good orderings is an active area of
research.

There is an enormous amount of work on variable ordering for DDs that predates their use for
optimization [38–41]. However, there has also been some research dedicated to variable or-
dering techniques for DD-based optimization. Two notable works include using reinforcement
learning to find better orderings for a given problem [42] and using a portfolio approach to
run multiple orderings in parallel and select the most successful one [43]. Further research on
general improvements to variable ordering may lead to substantially more efficient DD-based
solvers.

37

CHAPTER 3 PEEL-AND-BOUND

Contributions and Publication Information
This chapter is largely based on Peel-and-Bound: Generating Stronger Relaxed Bounds
with Multivalued Decision Diagrams, by Isaac Rudich, Quentin Cappart, and Louis-
Martin Rousseau. It was published at the 28th International Conference on Principles
and Practice of Constraint Programming (CP 2022) [6], where it won the Best Paper
award. The paper introduces a novel paradigm for DD-based solvers and includes a
performance test demonstrating its competitive edge against DD-based branch-and-
bound.

This chapter also includes content from Improved Peel-and-Bound: Methods for Gen-
erating Dual Bounds with Multivalued Decision Diagrams by Isaac Rudich, Quentin
Cappart, and Louis-Martin Rousseau, which was published in the Journal of Artifi-
cial Intelligence Research in 2023 [9]. The content included from this paper is solely
explanatory, and does not contain the paper’s contributions.

Differences: While the content of this chapter is based on the aforementioned papers,
much of it has been rewritten, and the figures demonstrating peel-and-bound have been
changed.

3.1 Motivation

The motivation for peel-and-bound (PnB) stems from an observation about how DD-based
branch-and-bound (BnB) (Algorithm 11) interacts with the generation of relaxed DDs by
separation (Algorithm 9). When a relaxed DD M+ is constructed by separation in a BnB
structure, a large portion of the work done while generating each M+ is repeated at every
iteration. To create the relaxed DDM+

ω (u) rooted at exact node u with width ω, the relaxed
DD M+

1 (u) is constructed and then refined. To refine M+
1 (u), you iterate over each layer

from the top down, splitting nodes until each layer either reaches the maximum width ω, or
has no valid splits remaining.

Consider the usual scenario where the nodes are split in a predetermined order. The static
order of node splits means that for each node v ∈ M+

1 (u), the first split performed on v is
the same in both M+

1 (r) and M+
1 (u). The existing in-arcs of v will be sorted in the same

38

way in bothM+
1 (r) andM+

1 (u). The only difference between the two DDs is the possibility
of filtering arcs in M+

1 (u) that could not be filtered in M+
1 (r) due to the added constraint

that all paths, in every valid construction ofM+(u), pass through u. The extra filtered arcs
are the reason that M+(u) may produce a stronger bound than M+(r). However, because
splits are performed in the same order and manner each time, many arcs that were filtered
while constructing M+(r) will be filtered again while constructing M+(u).

There is a sub-graph of M+(r), induced by node u, that contains all of the paths that will
be encoded inM+(u), but does not contain the arcs that are filtered from both DDs during
construction. Thus, less work needs to be performed at each iteration of BnB by starting
from that sub-graph instead of M+

1 (u).

If the split order is static, the same DD is generated starting from either M+
1 (u), or the

sub-graph induced by u. If the split order changes between BnB iterations, the sub-graph
induced by u is still a valid construction of M+(u), but the generated DD will differ from
the one that was refined from M+

1 (u).

Later in Section 3.3, a repeated sub-graph during BnB is visualized in Figure 3.1.

3.2 Algorithm

The mechanism for starting each relaxed DD after M+(r) from a sub-graph of a previously
generated DD, can be embedded into a slightly modified version of DD-based BnB (Algorithm
11). In PnB, the queue stores DDs instead of nodes. After the initial relaxation M+(r) is
generated, the entire DD is placed into the queue Q such that Q = {M+(r)}. Then, a DD
M+(u) is selected from Q (for the first iteration M+(u) = M+(r)). However, instead of
selecting an exact cutset ofM+(u), only a single exact node e fromM+(u) is selected. Then,
e will be peeled from M+(u). The process of selecting a DD and exact node are heuristic
decisions that are discussed in Section 3.4.

The process of peeling e to constructM+(e) is as follows. Remove e fromM+(u), and then
let e be the root node of a new DDM+(e). Note that e still has out-arcs that end inM+(u).
For each node v in M+(u) with an in-arc that originates in M+(e), a new node v′ is made
and added to M+(e). Each in-arc aov of v that originates in M+(e) is removed, and then
arc aov′ is added toM+(e). Then, a copy of each out-arc of v is made with origin v′ instead
of v, and the out-arcs of v and v′ are filtered using filter functions like the ones described
in Section 2.5. The process of removing and adding arcs is repeated until there are no arcs
ending in M+(u) that originate in M+(e). Notably, this procedure not only accomplishes a
top-down reading of the sub-graph induced by e, it also potentially strengthens M+(u) by

39

removing nodes and arcs in the process. The peel operation is formalized in Algorithm 12.

Algorithm 12: Peeling Procedure
1 Input: A relaxed DD M+ with root r and terminal t, and a node u in M+

2 Output: a relaxed DD M+(u) peeled from M+, and what remains of M+

3 Notation Reference:
4 in(u) is the set of arcs that end at node u
5 out(u) is the set of arcs that originate from node u
6 in(M+) is the set of arcs that end in DD M+

7 out(M+) is the set of arcs that originate in DD M+

8 Let M+(u) be an empty DD
9 in(u)← ∅ // remove the in-arcs of u

10 M+ ←M+\u
11 M+(u)← u // initialize M+(u) to be just u

12 while in(M+) ∩ out
(
M+(u)

)
̸= ∅ do

13 foreach node m ∈M+ with an in arc that originates in M+(u) do
14 Create a new node m′, and add it to M+(u)
15 foreach arc amd ∈ out(m) do
16 Add arc am′d

17 end
18 foreach arc a ∈ in(m) that originates in M+(u) do
19 Change the destination of a to m′

20 filter(a)
21 end
22 foreach arc a ∈ out(m) do
23 filter(a)
24 end
25 end
26 end
27 while ∃m ∈M+ with in(m) = ∅ ∨ out(m) = ∅ (excluding r and t) do
28 in(m)← ∅
29 out(m)← ∅
30 M+ ←M+\{m}
31 end
32 return (M+(u), M+)

PnB simply performs peels and refinements until optimality can be proven. If the shortest
path through the modified M+(u) is more optimal than the best known solution, M+(u)
is put back into Q. Then M+(m) is refined using Algorithm 9, and, if the shortest path
through the refinedM+(m) is more optimal than the best known solution,M+(m) is added
to Q. The whole procedure is repeated until there are no nodes left in the queue (Q = ∅).
PnB is formalized in Algorithm 13.

40

Algorithm 13: Peel-and-Bound (PnB) Algorithm
1 Input: The initial relaxed DD M+(r)
2 Notation Reference:
3 z(M) is the length of the best (shortest) path through M
4 Q← {M+(r)}
5 zopt ←∞ // Value of the best known solution.
6 while Q ̸= ∅ do
7 D ←selectDiagram(Q), Q← Q\{D}
8 u←selectExactNode(D)
9 M+(u),D∗ ← peel(D, u) // See Algorithm 12

10 if z(D∗) < zopt then
11 Q← Q ∪ {D∗}
12 end
13 M− ←M−(u). // See Algorithm 5
14 if z(M−) < zopt then
15 zopt ← z(M−)
16 end
17 if M− is not exact then
18 M+ ←M+(u) // See Algorithm 9
19 if z(M+) < zopt then
20 Q← Q ∪ {M+}
21 end
22 end
23 end
24 return zopt

3.2.1 Complexity Analysis

Separating each node u during a peel requires creating a new node u′, moving the in-arcs of
u that originate in the peeled DD u to u′, copying the out-arcs of u to u′, and then filtering
the out-arcs of u and u′. Creating a new node in our implementation has a time in O(n),
where n is the number of possible decisions, due to storing state information that has a size
in O(n) (such as All↓

u). However, it is possible that, in other applications, the size of a node
is in O(1). The number of in-arcs of u is at most ω, although this worst case is unlikely in
practice because it requiresM+ to have width ω, and for each node inM+ on layer ℓ(u)− 1
to have an arc ending at u. Thus, moving the in-arcs of u has a time in O(ω). The number
of out-arcs of u is at most n, and each arc has a size in O(1), so copying the out-arcs has a
time in O(n). Each individual filtering process has a time in O(1) as it uses only existing
state information from u and u′, and it is performed on the (at most 2n) out-arcs of u and
u′. Thus, filtering the out-arcs has a time in O(n). Therefore, separating one node during

41

the peel process has a time in O(n + ω). Separations during a standard relaxation procedure
require selecting a node (O(ω)), making a new node (O(n)), partitioning the in-arcs (O(nω)),
copying the out-arcs (O(n)), and filtering the out-arcs (O(n)). The reason that there can be
more in-arcs during a standard relaxation procedure is because the nodes in a ω = 1 DD can
have in-arcs with different labels coming from the same node, whereas the structure of the
DD during a peel guarantees that each node u can have only one in-arc from each node on
the layer ℓ(u)−1. Thus, the total time for a separation in a standard relaxation is in O(nω).

The maximum number of separations during a peel is the maximum number of nodes in the
peeled DD. A peeled DD can have at most (n−3)×ω+2 nodes, and thus the number of nodes
is in O(nω). Therefore, the entire peel process has a time in O(n2w + nω2). The maximum
number of separations during a standard relaxation is the exact same as during a peel, since
the resulting DD will be the same size. Thus, the standard relaxation has a total time in
O(n2ω2). However, PnB uses a peel to generate some fraction of the nodes, then a standard
relaxation to generate the rest. Let α be the percent of nodes that are peeled during the peel.
It follows that the total time for an iteration of PnB is in O(α(n2ω + nω2) + (1− α)(n2ω2)).
Therefore, the larger that α grows, the more time PnB saves over BnB.

3.3 Example and Visualization

To visualize a peel operation, we use a SOP instance, but not the one described in Section
2.1.2, because it has too few arcs to yield an informative visualization. Consider a new
SOP instance where the goal is to order the elements [A, B, C, D], subject to the precedence
constraint that A must precede D, an alphabetical ordering heuristic, and ω = 3. For the
sake of simplicity, we ignore arc costs.

First, we motivate PnB by identifying where BnB is repeating computations. Figure 3.1
shows M+(r), and identifies an exact node e. Then, it shows M+(e) in three stages. The
first stage is the initial ω = 1 DD. The second stage is after one split on each layer, and the
third stage is the complete DD. The sub-graph shared by M+(r) and M+(e) is highlighted
in blue, indicating that, in this case, the first two splits could have been read from M+(r)
instead of being re-created from scratch.

Figure 3.2 demonstrates a peel operation. Observe that the subgraph from Figure 3.1 is
identified and peeled from the graph, without the need to redo work. Additionally, note that
the DD the peel was initiated from was refined during the peel process. There is now less
remaining work needed for PnB to process the DD than there was before the peel.

42

r

{B,C,D} {A,C,D} {A,B,D}

{B,C,D} {A,C,D} {A,B,C,D}

{B,C,D} {C,D} {B,C,D}

t

A B C

B

C

D
A

CA

B

B

C

D
A C

D

A

B

C D

B
C

D
C D

D
C

B

M+(r)

exact node e

r

{B,C,D}

{B,C,D}

{B,C,D}

t

A

CB D

CB D

CB D

M+(e) Stage 1

r

{B,C,D}

{C,D} {B,C,D}

{C,D} {B,C,D}

t

A

B
C

D

C

D

B C D

D
C

D

B
C

M+(e) Stage 2

r

{B,C,D}

{C,D} {B,D} {B,C}

{C,D} {B,D} {B,C}

t

A

B C D

C

DB DB

C

D
C

DB
B

C

M+(e) Stage 3

Figure 3.1 Example of a Repeated Sub-Graph During Branch-and-Bound

A sub-graph (shown in blue), and the associated relaxed DD with the same root, for a SOP
instance. The objective is to order the elements [A, B, C, D], subject to the precedence

constraint that A must precede D, an alphabetical ordering heuristic, and ω = 3.

3.4 Advantages and Implementation Decisions

3.4.1 Node Selection

The original DD-based BnB algorithm [8] requires selecting an exact cutset of M+. PnB
requires selecting a DD from the queue and an exact node to start the peel process. The
choice of node has a substantial impact on how quickly the process converges to an optimal
solution, because it serves two purposes simultaneously. As discussed earlier, the first purpose
of peeling is to avoid recreating a portion of the DD at each iteration. The second purpose
is to strengthen the overall relaxation.

43

r

{B,C,D}{A,C,D} {A,B,D}

{B,C,D} {A,C,D} {A,B,C,D}

{B,C,D} {C,D} {B,C,D}

t

AB C

B C
DA C

A

B

B
C

D
A C

D

A

B
C D

B
C

D
C D

D
C

B

exact node e

#1 r

{B,C,D}{A,C,D} {A,B,D}

{B,C,D} {A,D} {A,D} {C,D} {B,C,D}

{D} {C,D} {B,C,D}

t

AB C

B C DA

C

A
B

B C
D

A
C D

A
B

C

D

D
C D

D
C

B

#2

r

{B,C,D}{A,C,D} {A,B,D}

{B,C,D} {A,D} {A,D} {C,D} {B,C,D}

{D} {C,D} {B,C,D} {C,D} {B,C,D}

t

AB C

B C
DA

C

A

B

B

C
DA C

D
A B

C
D

D C

D

C D

D

C

B

B
C

D

#3 r

{B,C,D}{A,C,D} {A,B,D}

{B,C,D} {A,D} {A,D} {C,D} {B,C,D}

{D} {C,D} {B,C,D} {C,D} {B,C,D}

t t

AB C

B C
DA

C

A

B

B

C
DA

C

D
A

B C D

D C
D

C D

DCBB

C
D

#4

Figure 3.2 Example of a Peel Operation

In (1), e is selected to induce the peel process and removed from the the original DD
(M+(r) from Figure 3.1). In (2) the arcs that connect e to the original DD are moved to
copies of the nodes they originally ended at, and infeasible arcs are filtered. In (3) and (4)

the process is repeated until the DDs are disconnected.

44

Let M+(u) be a DD peeled from M+, and let M+
∗ be M+ after the peel operation. If

Sol(P) ⊆ Sol(M+) then Sol(P) ⊆ Sol(M+
∗) ∪ Sol(M+(u)). The only step of PnB that

removes paths is the filter step, which only removes an arc if no feasible solutions can pass
through that arc. If the node the peel is induced from contains the shortest path throughM+,
then there will be a new shortest path through M+

∗ with z(M+
∗) ≥ z(M+). Similarly after

peeling, the peeled DD is going to be strengthened and z(M+
ω (u)) ≥ z(M+(u)). Therefore,

when implementing the selectDiagram and selectExactNode functions from Algorithm 13, we
propose selecting the DD D with the weakest bound, and an exact node from D that contains
z∗(D) at each iteration. Using these parameters, the peel step of PnB strengthens the relaxed
bound of P , in addition to providing a stronger initial DD to use when generating M+(u).

We originally proposed two heuristics for selecting a node from D that contains z(D). The
first heuristic picks the first node in the shortest path through the DD with at least one child
that is not exact, we call this the last exact node. The second heuristic picks the frontier
node, the highest-index exact node that contains z(D). Taking the last exact node is more
of a breadth-first search that peels a large set of nodes where all of the paths to the nodes
in the set share a beginning with z∗(D). In contrast, taking the frontier node is more of a
depth-first search, taking fewer nodes and exploring those nodes at greater depth.

3.4.2 Limitations and Handling Memory

The experiments we performed are on sequencing problems, but PnB can be easily applied to
other optimization problems. However, some existing DD-based methods conflict with PnB.
For example, some DD algorithms use a dynamic variable order [43], such that the variables
the layers on M− are mapped to in one iteration of BnB, are different in the next. PnB as
it is presented in this work cannot be paired with a dynamic variable order. Furthermore,
the method in this work is specific to DDs generated using separation. We explain how to
extend the framework to DDs that use a merge operator in Section 4.2.3.

Memory limitations present a problem for PnB in theory, but not in practice. Each open DD
remains in the queue, and thus must be stored in memory. However, this problem can be
handled in many ways; two are given here. A dynamic method of handling the problem is to
start targeting large DDs with bounds close to zopt as memory limitations start to become a
problem. Such DDs can usually be closed quickly, and subsequently removed from memory,
freeing up space for the algorithm to continue. Alternatively, the DDs with bounds closest
to zopt can be deleted in favor of storing just the root node, then when they need to be
processed, initial DDs are generated for those once again. This method essentially falls back
to BnB until memory limitations cease to be a problem. Additional approaches for working

45

with memory limitations, and evidence that the problem can be handled efficiently have also
explored [44].

3.4.3 Integrating Rough Relaxed Bounds

This implementation incorporates the rough relaxed bounding method (Section 2.7.1) [4].
Rough relaxed bounding was used to trim the domain of each node during construction of
the restricted DDs, and was also added as a check to the filter function in Algorithm 9. When
the initial model is created, a map is also created from each node u, to a list of the other
nodes sorted by their distance from u. For the SOP (Section 2.1.2), the rough relaxed bound
rrb(a) of an arc afg was calculated as follows. For each node u that has not necessarily been
visited (u /∈ All↓

g), look up the shortest distance from that node to a different node that has
also not been visited. Then, sort the resulting list, and repeatedly remove the largest value
until the list has a length equal to the number of remaining decisions. The sum of the values
in the list, plus the value of the shortest path from r to the end of a, is the rough relaxed
bound of a. If rrb(a) is worse than the best known solution, the arc is removed.

3.4.4 Parallelization

The DD-based BnB shown in Algorithm 11 is particularly amenable to parallelization [5, 7].
Algorithms seeking to parallelize must overcome the data-race problem. In other words, if
multiple processors are working on a problem simultaneously, then there must be a process in
place to stop them from trying to write to the same place in memory at the same time. For
many algorithms, this poses a substantial challenge or creates substantial overhead. However,
for both DD-based BnB, and PnB, the solution is simple. As a problem is being solved, nodes
(or DDs in the case of PnB) are placed into a processing queue. Each node/DD represents
a discrete problem that needs to be solved, and can be processed separately. Given access
to a sufficiently large number of processors, each node/DD added to the queue could be
immediately dispatched to an available processor for processing. The only communication
required between the processors is the current value of the best known solution.

In theory, this method of parallel processing could result in a linear improvement in time spent
solving a problem when increasing the number of processors available, because k processors
may be able to process k nodes, in the time it takes 1 processor to process 1 node. This
process could also result in a superlinear speedup due to the non-deterministic processing
order of elements in the queue. In the parallel implementation, one processor may find an
improved bound which can then be utilized by the other processors. Therefore, elements
from the queue could be processed using bounds that are better than the bounds used by

46

the single-thread deterministic implementation. The ability to identify better bounds earlier
while parallel processing could yield less elements that need to be processed overall. In
practice, however, there are heuristic decisions that must be made that can have a large
impact on solve time.

The dilemma one encounters in implementation is the existence of a critical path in the
solution finding process. To demonstrate this with an extreme example, consider a problem
that does the following when solved using PnB on a single processor. Each time a node is
peeled, one of the two resulting DDs is solved and closed without requiring any additional
peel operations. Then, the single remaining DD is processed again, a node is peeled, and the
whole process repeats itself m times. In this example, there are roughly 2m DDs that need
to be processed, but only 2 are ever available at the same time. So in this case, k processors
would take exactly as long as 2 processors to solve the problem. We propose two methods of
handling this dilemma. The first is simple; reduce the maximum width of the DDs. When
solving a problem that is encountering this critical path problem, the work can be divided
more equitably among the available processors by reducing the amount of work done at each
iteration. When using a single processor, a higher maximum width is almost always more
desirable as long as the DDs can still be generated quickly, because the extra space makes it
more likely that the DD will be solved instead of producing more DDs to add to the queue.
Reducing the maximum width will increase the number of DDs that need to be processed to
solve the problem, but also produces those DDs more quickly. A width too low can generate
an enormous number of DDs without closing any of them. The optimal width to use is one
that generates enough DDs for all available processors to have consistent work, but does not
generate a large backlog of work.

The second method of handling the critical path issue is to use the peel process to redistribute
work as needed. Each time a processor is available and not being used, the peel procedure can
peel off a sub-graph for that processor to work on. The downside of this is that often, a lot of
the work that only needed to be performed once will occur on both DDs. The first method
of simply lowering the maximum width accomplishes the same goal, but each DD reaches its
assigned maximum width before it is further processed, so arcs that can be processed out
only need to be processed out of one DD. Any implementation of this second method would
likely require more heuristic decisions to ensure the task scheduler distributes the work in a
useful way.

47

3.5 Experiments on the Sequence Ordering Problem

The goal of this section is to assess the performances of PnB (Algorithm 13) as it com-
pares to the standard DD-based BnB algorithm (BnB, Algorithm 11). Both algorithms were
implemented in Julia and are open-source1.

To ensure a fair comparison, both algorithms resort to the same function for generating
relaxed DDs (Algorithm 9), and the same function for generating restricted DDs (Algorithm
5). While the functions being called are the same, there are two differences at run-time.
At the end of line 11 in Algorithm 9, an additional operation runs during BnB where the
values of the arcs leaving layer j are updated. The second difference is that BnB starts each
relaxation from a ω = 1 DD, while PnB passes a partially completed DD to the relaxation
function as a starting point.

The testing environment was built from scratch to ensure a fair comparison, so it lacks the
many propagators used by cutting-edge solvers like CPO to remove nodes from the PnB/BnB
queue [28, 45]. However, it provides a clean comparison of the two algorithms by requiring
that every function used by both BnB and PnB is exactly the same between the two, with
the only differences arising due to PnB’s ability to ensure that all arcs are exact from the
beginning. All of the heuristic decisions that were made are identical for both algorithms.

3.5.1 Description of the Heuristics Considered

The SOP can be considered an asymmetric TSP with precedence constraints (Section 2.1.2).
The objective is to find a minimum cost path that visits each of the n elements exactly
once, and respects the precedence constraints. The method used for generating relaxed DDs
requires creating a heuristic ordering of all possible arc assignments by importance. The arc
values in this case are representative of the n elements in the path. The ordering used was
generated by sorting the n elements, first by their average distance from the other elements,
and then by the number of elements each element must precede. The resulting order places
a higher importance on elements that are far away from other elements and must precede
many other elements.

The BnB algorithm processes nodes in an order designed to try and improve the existing
relaxed bound at each iteration. When a node u is added to the BnB queue, it is assigned a
value equal to the value of the shortest path from the root r to the terminal t, that passes
through u. The best known relaxed bound on the problem is the smallest value of a node
in the queue, and that node is always chosen to be processed. PnB is implemented with the

1https://github.com/IsaacRudich/ImprovedPnB

48

same goal of improving bounds at each iteration. However, PnB stores DDs, not nodes. Let
the value of a DD be the value of the shortest path to the terminal. At each iteration of PnB,
the DD with the lowest value is selected, and then a node is chosen from that DD to induce
the peel process. All of the experiments in this chapter used a process where the selected
node is the first node in the shortest path from r to t with a child node that is not exact
(the last exact node). Testing was done to determine whether using the last exact node or
the frontier node would perform better for the problem being considered, but there was not
a significant difference between the two during any of the tests. Several of the benchmark
problems were run using various DD widths, and the last exact node was chosen because it
sometimes showed a very slight improvement over the frontier node. While it is likely that
this choice makes a difference on some problems, it does not matter for the SOP.

3.5.2 Experimental Results

The experiments were performed on a computer equipped with an AMD Rome 7532 at 2.40
GHz with 64Gb RAM. The solver was tested using DD widths of 64, 128, and 256 on the
41 SOP problems available in TSPLIB [46]. For comparisons between PnB and BnB, a
timestamp, new bounds, and the length of the remaining queue were recorded each time
the bounds on a problem were improved. Another experiment was performed to test the
scalability of PnB at width 2048, for which only the final bounds were recorded. Execution
time was limited to 3, 600 seconds.

The smallest DD width tested for both methods was 64, and the largest DD width tested
was 256. Table 3.1 has summary statistics for those widths as the percentage improvement
demonstrated by PnB. A positive percentage always indicates that PnB performed better
than BnB in that category, while a negative percentage indicates that BnB performed better.
Figure 3.3 shows performance profiles for all of the experiments. Table 3.2 contains summary
statistics comparing PnB at width 256 to PnB at width 2048, where a positive percentage
always indicates that the width of 2048 performed better.

49

Width: 64 Width: 256
RB BS OG QL RB BS OG QL

Average % Improvement 114% 0.5% 22.8% 1, 647% 545% 3.3% 181% 308%
Median % Improvement 26% 0.05% 17.4% 734% 80% 1.7% 35% 141%

Table 3.1 Summary Statistics: Percentage Improvement of Peel-and-Bound Over Branch-
and-Bound

RB = Relaxed Bound, BS = Best Solution, OG = Optimality Gap, QL = Queue Length.
Tables A.1 and A.2 in Appendix A show the comprehensive results.

PnB: 2048 vs PnB: 256
Relaxed Bound Best Solution Optimality Gap

Average % Improvement 19.5% 0.8% 18.6%
Median % Improvement 16.3% 0.5% 13.7%

Table 3.2 Summary Statistics: Percentage Improvement of Peel-and-Bound at ω = 2048 over
Peel-and-Bound at ω = 256

Table A.3 in Appendix A shows the comprehensive results.

Figure 3.3 Performance Profiles: Peel-and-Bound and Branch-and-Bound

optimality gap = upper_bound−lower_bound
upper_bound

50

As shown in Table 3.1, PnB vastly outperforms BnB in these experiments. The average
and median improvements from using PnB at both widths are significant in terms of the
relaxed bound, the remaining optimality gap, and the number of nodes that still need to be
processed. The best solution found by the end of the runtime also tends to be slightly better
with PnB, but the found solutions are often so close to the real optimal solutions that there
is little room for improvement. At both widths, six of the problems were solved to optimality.
BnB was faster in only one of those cases, and, in that case, the difference was .04 seconds.
The median time for PnB to close in these cases was 191% faster at a width of 64, and 580%
faster at a width of 256. The relaxed bound produced by PnB at a width of 64 was better
for 28 of the remaining 35 problems, and at a width of 256 was better for 34 of the remaining
35 problems. The optimality gap was similarly better for PnB on every problem except the
ones where BnB found a better relaxed bound. However, of the problems where BnB had a
better optimality gap, the improvement was less than 1% for all but one problem.

Figure 3.3 reinforces that even though there are some instances where a specific BnB setting
slightly outperforms a specific PnB setting, the gap in those cases is small relative to the gen-
eral gap between all PnB settings and all BnB settings. As shown in Table 3.2, increasing the
width to 2048 from 256 led to an 19.5% average improvement (16.3% median improvement)
in the relaxed bound. Figure 3.3 also shows that the performance of PnB nearly uniformly
increases with the maximum allowable width. Similar to the difference between BnB and
PnB, some specific instances see a small out-performance of the PnB running at a smaller
width, but the gap is small relative to the usual gap between the 2048-width experiment and
the rest of the experiments. Finally, Figure 3.3 shows that peel_2048 solved 50% of instances
to within a 42% optimality gap, peel_64 solved 50% of instances to within a 67% optimality
gap, and the best performing branch and bound (bnb_64) solved 50% of instances to within
only a 79% optimality gap. The overall performance of PnB improves as more problems are
considered, especially as the maximum allowable width for the DDs is increased.

The selected graphs shown in Figure 3.4 are representative of the two main types of behavior
observed over the problem set. On problems where the underlying relaxation method works
well, the relaxed bound moves quickly towards convergence with the best found solution. On
problems where the underlying relaxation does not work well, both algorithms slowly improve
the relaxed bound, but PnB starts stronger as it can use exact arc values, and it maintains
the advantage throughout. It is clear from the time-series data that to be competitive with
cutting-edge solvers, PnB must be combined with other constraint programming propagators.
However, it is also clear that PnB can have a significant edge over a propagator that generates
the required DDs from scratch at each iteration.

51

Figure 3.4 Dual bounds for ESC25 and ft70.1

ESC25 was solved within the time limit, and ft70.1 was not solved within the time limit.
Both use ω = 256.

52

3.6 Summary

In this chapter, we introduced the PnB algorithm as a novel alternative to DD-based BnB. In
PnB, constructed DDs are repeatedly reused to avoid unnecessary computation. We discussed
various heuristic strategies that can optimize PnB, and explored its potential applications to
other problems.

We compared the performance of a PnB scheme to a BnB scheme using the same DD-based
propagator. We tested both algorithms on the 41 instances of the SOP from TSPLIB. The
results demonstrated that PnB significantly outperforms BnB on the SOP by generating sub-
stantially stronger relaxed bounds on instances that were not closed during the experiment,
and reaching optimality faster when the instances were closed. This research underscores the
advantages of re-using work in DD-based solvers. Additionally, PnB benefits from scaling
the maximum allowable width. Thus, relaxed DDs that yield strong bounds at scale, but are
too costly to generate iteratively, only need to be constructed once.

In the following chapter, we will delve into the transition from this initial implementation of
PnB, to an implementation that has achieved cutting-edge results. We will outline the en-
hancements and optimizations that were integral to evolving the algorithm from a theoretical
model into an efficient tool.

53

CHAPTER 4 IMPROVED PEEL-AND-BOUND

Contributions and Publication Information
This chapter is largely based on Improved Peel-and-Bound: Methods for Generating
Dual Bounds with Multivalued Decision Diagrams by Isaac Rudich, Quentin Cappart,
and Louis-Martin Rousseau, which was published in the Journal of Artificial Intelligence
Research in 2023 [9]. It discusses methods of implementing DD-based solvers efficiently,
and includes experiments where PnB achieved cutting-edge performance on TSP-TW
and Makespan problems, closing 15 open benchmark instances of TSP-TW.

This chapter also includes a very small amount of text from An Exact Framework for
Solving the Space-Time Dependent TSP. The only content that is included is from the
section explaining embedded restricted DDs.

Differences: While the content of this chapter is based on the aforementioned paper,
parts of it have been rewritten.

4.1 Motivation

The initial inspiration for implementing PnB was that DD-based BnB repeats numerous
computations while constructing DDs. PnB aims to avoid re-computations. However, the
goal of the initial implementation was to simply make a clean comparison between a naive
PnB implementation and a naive DD-based BnB implementation. That test (Section 3.5.2)
showed that PnB was worth pursuing. We then built a new implementation from scratch,
carefully considering how to make the algorithm efficient and scalable, so we could test it
against other solvers.

Our primary target for improvement involved identifying and addressing bottlenecks in the
algorithm. The slowest part of the first implementation is handling arcs. Benchmarking the
code made it clear that having the computer perform read and write operations for every
arc in the DD was consuming most of the runtime. In Section 4.2.1, we discuss a method
of making all of the arc values implicit for sequencing problems. This change represents the
most significant component of the speed-up we achieved. The second major improvement
arose from our new search procedure detailed in Section 4.2.2, which reads a restricted DD
from an existing relaxed DD, instead of generating it from scratch.

54

4.2 Improvements to the Theory

4.2.1 Handling Non-Separable Objective Functions

When a problem is represented with an Integer Program, the value or cost of making a deci-
sion is separate for each variable; in other words the objective function is separable. However,
when using DDs to represent a problem, the objective function can be non-separable. In the
example SOP used in Section 2.1.2, the cost of an arc leaving a node u is dependent on
the labels of the arcs that end at u. If the arcs have conflicting labels, then arcs leaving u

may not have an exact cost. The algorithm for using DDs to solve sequencing problems [28]
proposed that each iteration of Algorithm 9 starts from a ω = 1 DD. However, for PnB with
a non-separable objective function, starting from a ω = 1 DD poses a problem. The arcs in
such a DD do not have exact values, because they are dependent on the state of the node
they originate from. As nodes are peeled, the values of those arcs must be updated, and the
operation becomes computationally expensive at scale.

When solving sequencing problems where the non-separability of transition costs arises from
their dependency on the previous element in the sequence, this problem can be avoided by
creating the initial DD using a structure where all of the arcs ending at a given node have
the same label. The resulting initial DD has a width of n, and each node on the layer is
assigned to one state s ∈ {1, ..., n}. Then every possible feasible arc between consecutive
layers is added. Thus, the nodes of M+ do not have relaxed states, and each arc can only
take one possible value. Starting from such a DD not only removes the need to update arc
values, it ensures that every arc generated during PnB is an exact copy of an arc that exists
in the initial DD, since arcs are only copied or removed, never updated or added. Using
this structure makes implementation easier by removing the need to store any information
on the arcs at all. As each node will only have one state, the label and weight of an arc is
implied by the state of the node it originates from, and the node it points to. This allows all
information in a DD to be stored on the nodes, and thus only the information on the nodes
ever needs to be read or updated.

When transition costs are dependent on factors other than the previous element in a sequence,
such as the Time-Dependent TSP (TSP-TD), modifications to the described method become
necessary. In general an exact cost may not be computable, but a relaxed bound on cost
can be made computable by storing the relevant values as a range at each node. Consider a
DD for the TSP-TD where nodes u and v are connected by an arc. Let [au, bu] be the range
of possible times one can arrive at u. While an exact cost for the arc from u to v is not
available, a relaxed bound can be found by varying the time from au to bu, and then using

55

the best value found as the cost. As the DD is peeled, the gap between au and bu may grow
smaller, but it will never grow larger. When the gap decreases, the previously calculated
cost is still a valid relaxed bound. Thus, the cost can be updated to retrieve an improved
bound, but it is not necessary to do so with every peel operation. Many problems will require
modifying this concept to fit their particular constraints, but this method is easy to adapt
in most cases. An alternative method of handling non-separable objective functions has also
been explored [15,47,48].

4.2.2 Embedded Restricted Decision Diagrams

In both DD-based BnB (Algorithm 11), and PnB (Algorithm 13), at each branch a restricted
DD is created before the relaxed DD. This is useful not just for solution finding, but also
because the process of creating a restricted DD is often several orders of magnitude faster than
the process of refining a relaxed DD. When the restricted DD is exact, the relaxed DD can be
closed without any additional processing. PnB provides an opportunity to leverage relaxed
DDs to improve the associated restricted DDs. As dicussed in Section 2.7.1, this concept was
developed independently from, but concurrently with, work on dominance-based pruning,
which was also inspired by rough relaxed bounding techniques [25, 31]. Thus, embedded
restricted DDs share some similarities with this work.

A path in both a restricted DD and a relaxed DD represents a sequence of decisions. In
a restricted DD, each path from the root to a node in the DD represents a feasible partial
solution to the problem being solved. A relaxed DD contains every feasible solution, partial
or otherwise. Thus, each path in a restricted DD will also exist in the associated relaxed DD.
Furthermore, DDs are deterministic, so each path in a DD maps to exactly one node. This
means that any possible path (sequence of decisions) in a restricted DD, will map to exactly
one node in the associated relaxed DD. In other words, every possible restricted DD for an
optimization problem will be embedded in a relaxed DD for that problem.

Formally, each path to a node u− in a restricted DD M− can be mapped to exactly one
node u+ in a relaxed DD M+. Recall that the domain of a node u is the set of feasible arc
labels on out-arcs of u. When generating M−, each node in M− creates a child node on
the next layer for every element in its domain, and then the new layer is trimmed down to a
pre-chosen maximum width ω.

The mapping from restricted DDs to relaxed DDs can be leveraged to improve the restricted
DD as it is being generated. Let d(u−) be the domain of u−. Set d(u−) ← d(u−) ∩ d(u+)
before generating the child nodes of u−. This way, if an arc has been proven to be sub-optimal
in M+, it will not be created when generating M−.

56

This also allows for easy intensification of the search when combined with peel operations.
If a node u has been peeled from M+ into M+(u), then M− will not include any solutions
that pass through u. Similarly, if a restricted DD M−(u) is generated that is embedded in
M+(u), it will only explore solutions that pass through u.

Without using this intersection operation as a way to trim the domain, M− will search the
entire solution space that starts from the same root as M+, even if the peeled DDs have
already been fully explored and are known to be sub-optimal. Using this method, each
restricted DD will only search the solutions encoded within the matching relaxed DD. This
means that each restricted DD has a significantly improved chance of finding the best solution
embedded in the relaxed DD it maps to, because the solution space it must explore becomes
smaller with each peeled node.

4.2.3 Peel-and-Bound with Top-Down Compilation

The structure of PnB is designed to take advantage of relaxed DDs that are compiled by
separation. Here we propose a method for applying PnB to relaxed DDs that are compiled
top-down. However, we have not tested this method, and it remains a topic of future research
to determine if it would be useful in practice. The goal of PnB is to re-use work already
done by reusing DDs. When performing top-down compilation, nodes are merged instead of
separated. The peel procedure can be used exactly as before, but after a node is peeled, the
remaining DDs must be altered so that new nodes can be added top-down using a merge
procedure. However, there are no nodes to add, the DDs already represent feasible bounds
on the problem, and so some nodes must be removed. Begin by selecting a relaxed node u (in
other words some node u that is not exact), and removing it from the DD. Then remove any
arcs in the DD that are sub-optimal or no longer feasible due to the removed node. For each
arc avu that used to point to u, create a new arc avu′ that points to a new node u′ created by
following the top-down compilation rules being used. Finally, proceed to perform top-down
compilation using the set of new nodes as root nodes for the procedure.

4.3 Improvements to the Heuristics

4.3.1 Node Selection Heuristic

Recall from Section 3.4.1 that we initially only discussed, and experimented with, two heuris-
tics for selecting which node to peel from a DD. After our initial experiments we have added
a third node selection heuristic. We pick what we call the maximal node. The maximal node
is simply the node on the second layer that contains z(D). This peels as many nodes as

57

possible while still picking a node that contains z(D).

4.3.2 Search Diversification

The structure of PnB yields another method of searching for solutions that forces increased
diversification. The embedded restricted DDs described in Section 4.2.2 take advantage of the
reduced search space embedded in the relaxed DD, but make no effort to explore substantially
different regions, and thus are at risk of getting stuck in a local optimum. Here we propose
a simple method of diversifying the solutions explored. Starting from the root, and moving
down layer by layer, map each node u in the relaxed DD to the best feasible path that ends
at u, and is a continuation of a path a parent of u maps to. The obvious drawback is that
many paths will becomes infeasible or sub-optimal, and many of the relaxed nodes might not
map to a feasible path using this method, simply because the paths that were being explored
in their parents were bad paths. To fix this, the number of paths stored can be expanded.
Let k be any positive integer; if each node maps to the k best paths to that node, then as
the value of k increases there is a much higher likelihood of new, and better, solutions being
found. However, as the number of nodes in the DD can be quite large, even small values of k

can be computationally expensive. So this method can be a powerful tool for diversification,
but it comes with a significant drawback in terms of compute time. It has the potential to be
valuable if used just once at the beginning of the PnB process to search for initial solutions,
but is unlikely to be useful if repeated often. This idea may also benefit from being combined
with the large neighborhood search using restricted DDs [23].

4.4 Experiments with our Improved Implementation

The first implementation of PnB, which was used to generate the results in Section 3.5.2,
was designed to create a fair comparison of PnB and BnB; it was also limited to the SOP.
The re-implementation of PnB is generic, and the new version is similarly open-source1. All
of the raw data from the following experiments can be found with the code. In this section,
we further explore the performance of the algorithm. The experiments were performed on a
computer equipped with an AMD Rome 7532 at 2.40 GHz with 186Gb RAM.

4.4.1 Node Selection Heuristic

In Sections 3.4.1 & 4.3.1, we propose three heuristics for selecting a node to be peeled:
frontier, last exact node, and maximal. Here we compare the performance of those three

1https://github.com/IsaacRudich/ImprovedPnB

58

different settings on the same set of SOP instances we tested in Section 3.5.2; we similarly
limit the runtime of the solver to 3600 seconds. We include the results from the most
successful run performed by the original implementation of PnB to show how much the new
implementation has improved in general. The results are shown in Figure 4.1. The first graph
is a scatter-plot displaying the solve time of each problem that was solved to optimality, for
each of the three node selection settings. The second graph shows performance profiles for the
same tests, and includes data from the best run of the first implementation of PnB to show
the overall improvement of the solver. All of the new tests were performed using ω = 2048,
and included a diversified search with k = 5 using the procedure described in Section 4.3.2.

Figure 4.1 makes it clear that choosing between the node selection heuristics has little effect
on solving the SOP. The number of instances solved to optimality is identical, with maximal
having a slight lag on the final two problems, and the performance profiles are nearly identi-
cal. The performance profiles also serve to demonstrate the progress of the solver, with the
percentage of instances closed to any given optimality gap being about 10% higher.

4.4.2 Traveling Salesman Problem with Time Windows

The Traveling Salesman Problem with Time Windows (TSP-TW) is a variation of the TSP
where a salesman must find the shortest cycle that visits each customer once, but each
customer may have an added constraint requiring they be visited within a specific time
window. It provides a useful metric for benchmarking the performance of the implementation
of PnB, as DD focused algorithms are more likely to outperform traditional methods on highly
constrained problems than highly unconstrained problems, and the TSP-TW instances are
highly constrained. For the following tests we include both a standard and seeded run
of the solver, where seeded means that the solver started out knowing the value of the
best known solution, and skipped the initial diversified search. The seeded version is of
interest because the solver can leverage heuristically generated solutions to reach proof of
optimally faster. The difference between the standard and seeded run may help to determine
if taking that step is worthwhile when solving a specific problem. We test our solver on
the same set of 467 benchmark instances used by ddo [4] to test their implementation of
DD-based BnB. These instances are available online [49], and include the following sets:
AFG [50], Dumas [51], GendreauDumas [52], Langevin [53], Ohlmann-Thomas [54], Solomon-
Pesant [55], and Solomon-Potvin-Bengio [56]. Figure 4.2 shows a time to solve graph for the
closed instances, once with PnB on a single thread, once with seeded PnB on a single thread,
once with ddo on a single thread, and once with ddo using 24 threads. The experiments were
limited to 3600 seconds. Figure 4.2 also shows the performance profiles of PnB using the

59

SOP Instances Solved over Time: ω = 2048

Performance Profiles on the SOP: ω = 2048

Figure 4.1 Performance of Improved Peel-and-Bound on SOP

same data. Since the solution space of TSP-TW tends to be drastically more constrained
than SOP, at least for the benchmark instances, it is more difficult to find feasible solutions,
and we use a width of 100 for the initial diversified search.

It is clear from Figure 4.2, that PnB outperforms ddo on the TSP-TW benchmark set. Al-

60

TSP-TW Instances Solved over Time: DDO vs. Peel-and-Bound

TSP-TW Performance Profiles

Figure 4.2 Performance of Improved Peel-and-Bound on TSP-TW

though ddo is faster to start, PnB on a single thread solves about 60 more instances than ddo
on a single thread, and about 20 more instances than ddo using 24 threads. This experiment
plainly demonstrates the advantages of trading memory for speed when using DDs. The
performance profiles show that PnB solved about 65% of the instances to optimality. The

61

seeded version of the solver performed only slightly better. Looking at the raw data (available
in the repository), it is also clear that performance degrades when PnB has trouble finding
good solutions, and when the size of the time windows is large (causing the problem to be
more unconstrained than others in the benchmark set).

To the best of our knowledge, the last paper to report relaxed bounds on the instances in
these benchmark sets is from 2012 [57]. We use those results as a reference for comparison.
The standard run closes 14 open instances, and the seeded run closes 1 additional instance.
The results for these instances, and the previously known relaxed bounds, are reported in
Table 4.1. A table with every problem from the benchmark set that remains open to the
best of our knowledge (in other words, those unsolved by both the reference paper and PnB),
is available in Appendix A: Table A.4. The full data is available in Appendix A: Tables
A.6-A.11. The raw data is also available in the repository with the solver.

Problem Information Baldacci et al. (2012) Single Thread: 2048 Seeded Single Thread: 2048
Set Name Best Known Solution LB LB UB Time OG LB UB Time OG

AFG rbg086a.tw 8400 8399 8400 8400 254.47 - 8400 8400 132.49 -
rbg092a.tw 7158 7156.6 7158 7158 1917.74 - 7158 7158 288.02 -

GendreauDumas
n20w200.004.txt 293 289.484 293 293 27.97 - 293 293 15.47 -
n40w200.002.txt 303 302.091 303 303 1388.47 - 303 303 417.75 -
n80w100.004.txt 649 645.408 649 649 2372.02 - 649 649 904.33 -

SolomonPesant rc203.1 726.99 726.66 726.99 726.99 299.58 - 726.99 726.99 200.01 -

SolomonPotvinBengio

rc_202.3.txt 837.72 835.87 837.72 837.72 9.66 - 837.72 837.72 8.67 -
rc_202.4.txt 793.03 791.54 793.03 793.03 108.08 - 793.03 793.03 73.79 -
rc_205.4.txt 760.47 756.95 760.47 760.47 13.65 - 760.47 760.47 9.74 -
rc_206.2.txt 828.06 826.66 828.06 828.06 102.63 - 828.06 828.06 68.91 -
rc_206.4.txt 831.67 827.54 831.67 831.67 107.39 - 831.67 831.67 84.51 -
rc_207.1.txt 732.68 731.57 732.68 732.68 195.9 - 732.68 732.68 157.17 -
rc_207.2.txt 701.25 694.22 701.25 701.25 1690.43 - 701.25 701.25 92.84 -
rc_207.3.txt 682.40 677.23 682.40 682.40 1054.62 - 682.40 682.40 596.7 -
rc_208.1.txt 789.25 785.69 751.20 794.17 - 5.41 789.25 789.25 2511.58 -

Table 4.1 TSP-TW Results for Newly Closed Problems

LB = Lower Bound, UB = Upper Bound, OG = Optimality Gap. In all cases the existing
best known solution was proven optimal by Peel and Bound.

4.4.3 Traveling Salesman Problem with Time Windows - Makespan

Makespan adjusts the objective function of TSP-TW so the total time includes any idle time
spent waiting for a customer to be available when the salesman arrives early, as opposed to
just the distance traveled. To test this problem, we use the same benchmark instances that
we did in Section 4.4.2, and simply adjust the objective function. The tests all use the same
settings as the test for TSP-TW, and the results are presented in the same way in Figure
4.3.

While we were unable to find a a benchmark comparison in the literature with relaxed
bounds for the makespan variant of these benchmark sets, the results from testing PnB on
makespan speak for themselves. Just over 94% of the instances were closed to optimality by

62

the unseeded run of the solver, and just over 97% were closed by the seeded run. For the
unseeded run, just over 97.5% were closed to 1% optimality gap, and 99% for the seeded run.
In total, 26 instances were not closed by the unseeded run, and 12 of those were not closed
by the seeded run. The results and bounds for those 26 instances are shown in Table 4.2.
We are unsure if any of the makespan problems are considered to be open, but we can say
that the only ones that aren’t definitively closed are the 12 not in bold that were not solved
during the seeded run of the solver. Of those, only 2 have an optimality gap larger than 2%.
For the 455 closed instances, the best existing solution was reported [49]. A table with full
results for the benchmark sets, and time to solve for all of the closed problems, is shown in
Appendix A: Tables A.12-A.18. The raw data is also available in the repository with the
solver.

Problem Information Single Thread: 2048 Seeded Single Thread: 2048
Set Name Best Known Solution LB UB OG LB UB OG

AFG rbg050b.tw 11957 11748 11957 1.75 11748 11957 1.75
rbg172a.tw 17783 17766 17784 0.10 17766 17783 0.10

Dumas n150w60.002.txt 940 940 941 0.11 940 940 -
n200w40.002.txt 1137 1137 - 100 1137 1137 -

GendreauDumas

n100w100.003.txt 819 818 819 0.12 818 819 0.12
n100w80.003.txt 829 829 839 1.19 829 829 -
n60w200.003.txt 560 560 561 0.18 560 560 -
n80w140.005.txt 739 725 739 1.89 725 739 1.89

n80w160.002.txt 654 652 665 1.95 654 654 -
n80w180.002.txt 633 631 639 1.25 631 633 0.32
n80w180.005.txt 632 444 632 29.75 444 632 29.75
n80w200.004.txt 667 660 671 1.64 660 667 1.05

OhlmannThomas

n150w120.004.txt 925 925 929 0.43 925 925 -
n150w140.002.txt 1020 1020 1021 0.10 1020 1020 -
n150w140.004.txt 898 898 919 2.29 898 898 -
n150w140.005.txt 926 826 926 10.8 926 926 -
n150w160.002.txt 890 861 912 5.59 890 890 -
n150w160.004.txt 912 912 943 3.29 912 912 -
n200w120.001.txt 1089 1086 1089 0.28 1086 1089 0.28
n200w120.002.txt 1072 1065 1072 0.65 1065 1072 0.65

n200w140.001.txt 1138 929 1146 18.94 1138 1138 -
n200w140.003.txt 1083 979 1083 9.60 1082 1083 0.09

n200w140.005.txt 1121 961 1121 14.27 1121 1121 -
SolomonPesant rc204.2 870.52 728.94 914.89 20.33 870.52 870.52 -

SolomonPotvinBengio rc_204.1.txt 917.83 915.22 918.01 0.30 915.22 917.83 0.28
rc_208.3.txt 686.80 606.15 686.80 11.74 610.58 686.80 11.10

Table 4.2 Makespan Results for Problems Not Closed by the Unseeded Run

LB = Lower Bound, UB = Upper Bound, OG = Optimality Gap. The bolded instances
were closed by the seeded run.

63

Makespan Instances Solved over Time

Makespan Performance Profiles

Figure 4.3 Performance of Improved Peel-and-Bound on Makespan

4.5 Summary

This work improved on the previous implementation of peel-and-bound, but it also improved
the theory behind the algorithm. We introduced a method of generating the initial DD where
nodes are labeled instead of arcs. This not only allows for efficient handling of problems with

64

non-separable objective functions, it also provides a method for implementing DDs without
needing to store or update arcs. We will expand on this in Chapter 5. We also introduced
embedded restricted DDs, a method of reading restricted DDs from existing relaxed DDs
instead of generating them separately.

This chapter also presented PnB as an algorithm capable of achieving cutting edge results.
We re-implemented the algorithm to be both more efficient and generic. We tested the new
implementation on the 467 benchmark instances of TSP-TW used to test the DD-based BnB
solver (ddo) [4]. The results show that PnB outperforms ddo on TSP-TW, even when ddo
is using parallel processing. Furthermore, PnB closed 15 instances that, to the best of our
knowledge, are open in the literature. In our final test, we ran the new implementation
of PnB on the makespan variant of the 467 TSP-TW instances. PnB closed 94% of the
makespan instances, and an additional 3% when seeded with the best known solution. We
provide best known bounds for all TSP-TW and makespan instances that we believe to be
open.

The next chapter generalizes the idea for creating a relaxed DD with exact arcs to any
discrete optimization problem. It also discusses how this impacts our implementation of a
PnB solver, and what the next steps are in a path to making the implementation capable of
taking in a generic model without requiring specific knowledge of the solver.

65

CHAPTER 5 IMPLICIT RELAXED DECISION DIAGRAMS

Contributions and Publication Information
This chapter only contains content that has not been published elsewhere.

This chapter explores how one of the techniques presented in this thesis offer insights appli-
cable to other implementations of DDs, not just PnB. It aims to equip researchers pursuing
other DD-based solving methods with an essential insight from my experience that can be
readily integrated into their own implementations.

5.1 Algorithm

In Section 4.2.1, we discussed a method of handling non-separable objective functions for
sequencing problems by constructing an initial relaxed DD with a width equal to the number
of variables. However, the method described works for any discrete optimization problem, is
remarkably efficient, and has a straightforward implementation. This section will formalize
the generalized procedure, then discuss its theoretical and practical benefits.

Let P be a discrete optimization problem with variables X = {x1, ..., xn}, and let d(xi) be
the domain of variable xi. Create a root node r, and then for each value l in the domain of
x1, add a node u with label l. Then, repeat this in a new layer for each subsequent variable,
adding a terminal node t at the end. Let a pointer be a reference to the memory location
of another object. Let the phrase add an implicit arc from u to v mean: add a pointer at u

to v indicating v is a child of u, and add a pointer at v to u indicating u is a parent. Then,
add an implicit arc from every node on a layer i to every node on layer i + 1. Note that t

is a dummy node, and all of the implicit arcs to t will have a weight of 0, because there is
no associated decision variable. This construction is a valid relaxed DD for any P . Once
it is constructed, the arcs can be filtered using problem specific constraint propagation (See
Section 2.5 for examples). Algorithm 14 formalizes this procedure.

The result of using this data structure is a DD where the arc labels are stored on the nodes
instead of the arcs. In optimization problems with separable objective functions, the weight
of an arc is usually dependent on the state information of the parent node and the label
of the arc. Now the weight of an arc is dependent on the state information of the parent
node and the label of the child node. In optimization problems with non-separable objective
functions, the weight of an arc is now dependent on the state information of the parent node,

66

the label of the parent node, and the label of the child node. In either case, the weight of an
arc can be retrieved using only information stored at its origin and destination. The arc itself
does not need to be stored, it just needs to be known that it exists. Hence, these decision
diagrams are implicit, because they are arc-less.

Algorithm 14: Generating Implicit Relaxed Decision Diagrams
1 Input: An optimization problem P with variables X = {x1, ..., xn}
2 Notation Reference:
3 d(xi) is the domain of variable xi

4 Let a pointer be a reference to the memory location of another object
5 Let ptr(u) be a pointer to node u
6 Redefine in(u) to be a set of pointers containing the implicit parents of u
7 Redefine out(u) to be a set of pointers containing the implicit children of u

8 Create a root node r
9 out(r)← ∅

10 M+ ← {r} // Initialize the DD to be just r
11 foreach xi ∈ X from 1 to n do
12 α← the set of nodes on layer i− 1
13 foreach l ∈ d(xi) do
14 Create a node u with layer index i and label l
15 M+ ←M+ ∪ {u}
16 in(u)← ∅
17 out(u)← ∅
18 foreach v ∈ α do
19 in(u)← ptr(v)
20 out(v)← ptr(u)
21 end
22 end
23 end
24 Create a terminal node t
25 M+ ←M+ ∪ {t}
26 in(t)← ∅
27 foreach node u on layer n do
28 in(t)← ptr(u)
29 out(u)← ptr(t)
30 end
31 foreach implicit arc a ∈M+ do
32 filter(a) // problem-specific constraint propagation
33 end
34 return M+

67

r

A
{B,C,D}

B
{A,C,D}

C
{A,B,D}

D
{A,B,C}

A
{B,C,D}

B
{A,C,D}

C
{A,B,D}

D
{A,B,C}

A
{B,C,D}

B
{A,C,D}

C
{A,B,D}

D
{A,B,C}

A
{B,C,D}

B
{A,C,D}

C
{A,B,D}

D
{A,B,C}

t

M+ Before Filtering

r

A
{B,C,D}

B
{A,C,D}

C
{A,B,D}

D
∅

A
{B,C,D}

B
{A,C,D}

C
{A,B,D}

D
{B,C}

A
{B,C,D}

B
{C,D}

C
{B,D}

D
{A,B,C}

A
∅

B
{A,C,D}

C
{A,B,D}

D
{A,B,C}

t

M+ After Filtering

Figure 5.1 Implicit Relaxed DD, Before and After Filtering

SOP example with elements [A, B, C, D], and the constraint that A must precede D.
Implicit arcs are drawn, but not labeled or weighted.

68

In the SOP example from Section 3.3, the goal is to order the elements [A, B, C, D], subject
to the precedence constraint that A must precede D. For the sake of simplicity, we ignore arc
costs. Figure 3.1 showed a ω = 3 construction of M+(r) for this example. Figure 5.1 shows
the implicit initial relaxed DD for this example, both before and after filtering the arcs.

5.1.1 Complexity Analysis

Assume you are generating a relaxed DD by separation starting from a ω = 1 diagram. Let
ω∗ be the maximum allotted width. Every time a node u is split, its out-arcs are copied
onto the new node u′. Recall that the layer index of u is ℓ(u). The maximum number of
possible out-arcs to be copied during a split of u is |d(xℓ(u)|. Let |d(X)| be ∑n

i=1 |d(xi)|. The
maximum number of splits is n(ω∗ − 1). So the maximum number of arcs copied is at most
n(ω∗ − 1) · |d(X)|

|X| .

Now, assume you are generating a relaxed DD by separation starting from the initial implicit
DD. The number of arcs copied during each split is the same, but the number of splits is
slightly smaller at n(ω∗− |d(X)|

|X|). However, this difference is clearly negligible. The maximum
number of arcs copied in either case is at most O(n · ω∗ · |d(X)|

|X|). In the case of problems like
the SOP, where the average domain size is n− 1, this simplifies to O(n2 · ω∗).

In general, reading and writing to memory are among the most expensive operations when
implementing anything with a standard CPU. Whether or not an implicit DD is being used,
pointers connecting the parents and children are required. However, when using an implicit
DD, arc labels do not need to be read or written, saving O(n · ω∗ · |d(X)|

|X|) reads and writes.

5.2 Ease of Implementation

A hidden benefit of structuring relaxed DDs this way is that they are much easier to imple-
ment. When a node u is split into u and a new node u′, the state information of both u

and u′ needs to be updated. If the arcs are explicit and weighted, this can require iterating
over the in-arcs of both nodes and updating their weights. If the arcs are implicit, all of the
information is available on the nodes. You do not need to write code to handle updating arc
information, you do not need to write code defining a data structure for your arcs, and you do
not need to consider the trade-offs and implications of where you store your arcs in memory.
Implicit relaxed DDs are not just more efficient, they require less work to implement and
maintain in a solver.

69

5.3 The Future of Peel-and-Bound

At the time I am writing this thesis, the PnB solver is not capable of taking inputs that
are restricted to a transition function and a split function. Using the solver requires writing
several custom functions. Almost all of those functions fall into the category of being tedious
to automate, but conceptually straightforward. The challenges involved with those functions
are software engineering challenges, not mathematical challenges. However, a challenge I had
viewed as a more significant hurdle was automating the generation of the initial relaxed DD.
Now with Algorithm 14 worked out, that challenge has been solved. The next time I have a
project that the PnB solver is a good tool for, I intend to generalize the initial relaxed DD
generation using Algorithm 14. This will take the solver one enormous step closer to being
as easy to use as any other general purpose DD-based solver.

70

CHAPTER 6 APPLICATION TO FINDING EXACT SOLUTIONS TO
THE SPACE-TIME DEPENDENT TSP

Contributions and Publication Information
This chapter is largely based on An Exact Framework for Solving the Space-Time De-
pendent TSP by Isaac Rudich, Manuel López-Ibáñez, Michael Römer, Quentin Cappart,
and Louis-Martin Rousseau, which is available as a preprint on arXiv.

Differences: The original paper intertwines an explanation of DDs with how each
component applies to the Asteroid Routing Problem. That explanation contains a lot
of content that is redundant with Chapter 2, and the redundant content is not included
here.

6.1 Motivation

In various real-world scenarios, we must determine the optimal sequence for visiting a number
of locations, or scheduling jobs, where the travel cost between two locations is defined by an
expensive black-box function without a closed form. These scenarios include a class of bi-level
optimization problems. The outer problem involves finding an optimal permutation, while
evaluating the cost of a given, possibly partial, permutation requires solving a different inner
optimization problem that depends on the permutation. When the inner problem is com-
putationally expensive and/or black-box, finding exact solutions to the bi-level optimization
problem is difficult in practice.

Examples of this problem are time-dependent routing problems [58], especially variants where
the travel costs must be computed on-demand [59] or are given by solving an inner opti-
mization problem that, for example, determines vehicle speed [60]. This problem class also
arises when planning missions in Space [61], such as finding a tour of the Jupiter Galilean
moons [62], global optimization for multiple gravity assist trajectories [63–66], active space
debris removal [58] and spacecraft formation control [67]. These problems are often solved by
means of bi-level heuristics that combine numerical optimization methods with tree search
methods such as Beam-Search [68], Lazy Race Tree Search [62], Monte-Carlo Tree Search [69]
and Beam-ACO [70]. Other approaches treat the inner problem as a black-box function whose
evaluation is expensive [71–74]. To the best of our knowledge, no exact method has ever been
proposed to find optimal solutions for such problems. In the context of Space exploration,

71

solutions to global trajectory optimization problems represent huge economic costs, hundreds
of millions of dollars, and long mission horizons, from years to decades. Thus, optimality is
highly desirable.

We propose a framework for finding exact solutions by representing the outer problem using
decision diagrams (DDs) [1,28] and then solving that model using PnB (Algorithm 13) with
DD-based search techniques [5]. Our proposed approach treats the inner problem as an
expensive black-box function evaluated on-demand, but it uses problem-specific knowledge
about this black-box function to speed-up the search, and reduce the number of black-box
evaluations needed to solve the problem.

As a case study, we consider the Asteroid Routing Problem (ARP) [75], which is a benchmark
problem inspired by the 11th Global Trajectory Optimization Competition (https://gtoc11.
nudt.edu.cn). The ARP can be thought of as a Space-time dependent variant of the TSP. In
the ARP, a spacecraft launched from Earth is tasked with visiting a specific set of asteroids.
The goal is to find the permutation of asteroids that minimizes both fuel consumption and
total travel time, which are aggregated into a single objective function. Travelling from one
asteroid to another requires identifying optimal departure and travel times, which constitutes
the inner problem. The ARP treats this inner problem as a black-box function that is
solved by a pre-defined deterministic optimizer. Thus, in the ARP, the evaluation of a
given permutation of the asteroids always yields the same objective function value. These
characteristics make the ARP a simplified benchmark for the class of problems described
above, and allow researchers to focus on the outer problem of optimizing the permutation of
asteroids. As in the problems mentioned above, a brute force search is the only known method
for identifying an optimal solution to the ARP, which is only computationally tractable for
a very small number of asteroids. All approaches proposed so far are heuristic and time-
consuming [74,75].

In this chapter, we propose the first exact approach for solving the ARP. Our framework
proves optimality of the outer problem under the assumption that the inner problem is
optimized with sufficient quality. We address the quality of the inner optimizer in our exper-
imental results (Section 6.7). We also discuss how this technique can be made scalable, and
how it can be used to quickly generate strong heuristic solutions to the ARP. We provide
exact solutions, and new best known solutions for several ARP instances.

https://gtoc11.nudt.edu.cn
https://gtoc11.nudt.edu.cn

72

6.2 Background

In this section we detail the ARP and how DDs can be applied to the ARP.

6.2.1 The Asteroid Routing Problem

In the ARP [75], we are given a set of n asteroids A = {a1, . . . , an} orbiting around the Sun
that a spacecraft launched from Earth (a0) must visit. The spacecraft does not need to return
to Earth. For simplicity, the ARP treats the transfer of the spacecraft from Earth to the
first-visited asteroid as any other transfer between asteroids, i.e., there is no escape velocity
of Earth.

A transfer of the spacecraft between two asteroids a and a′ that starts no earlier than time
(epoch) η is computed with the following black-box function:

B(a, a′, η) : A× A× R+ → [0, τmax]× [1, tmax]× R+ (6.1)

which returns three values (τ, t, z), where τ is how long the spacecraft waits at a before
departing, t is how long the spacecraft travels until it arrives at a′, such that arrival time is
η + τ + t, and z is the cost of this transfer. A transfer is depicted in Figure 6.1.

As shown above, the wait time τ and travel time t are bounded by [0, τmax] and [1, tmax],
respectively. The wait time τ has a lower bound of 0 because it is possible to depart imme-
diately without waiting. The travel time t has a lower bound of 1 because a transfer will
always require a nonzero time (at least 1 day in the ARP). The upper bounds τmax and tmax

are set to 730 days in the original definition of the ARP [75].

Given a solution π = (π0 = a0, π1, . . . , πn), where the subsequence (π1, . . . , πn) is a permuta-
tion of the asteroids in A that indicates the order in which they will be visited, the objective
function of the ARP is:

Minimize f(π) =
n∑

i=1
zi where (τi, ti, zi) = B(πi−1, πi, ηi) (6.2)

Besides, ηi = ηi−1 + τi−1 + ti−1 is the arrival time at πi−1 and η1 is a given mission start time,
which can be simplified to be zero. A solution is visualized in Figure 6.2.

The black-box function B depends not only on the two asteroids being visited, but also on
the arrival time ηi. Thus the ARP is an example of the class of time-dependent problems
discussed in the introduction.

73

(a) At time η, the spaceship in in a’s orbit.
(b) After τ days, at time η + τ , the space-
ship initiates a transfer to a′.

(c) After t days, at time η + τ + t, the
spaceship intersects a′ and performs a ma-
neuver to align itself with a′ ’s orbit.

(d) Still at time η + τ + t, the spaceship
is now in the same orbit as a′.

Figure 6.1 Depiction of a transfer from a to a′

6.2.2 Trajectory Optimization

In the ARP, and in many trajectory optimization problems, the spacecraft only uses impulsive
maneuvers. An impulsive maneuver changes the spacecraft velocity in a negligible amount of
time, thereby simplifying the calculation of the maneuver’s effect on the spacecraft’s orbit. As
a result, the effect of the maneuver can be modeled as an instant change in the spacecraft’s
velocity vector ∆v⃗, without accounting for the dynamics of the propulsion system, or the
influence of external forces during the thrust application.

74

4 2 0 2 4
x (km) 1e8

4

3

2

1

0

1

2

3

y
(k

m
)

1e8
2121-01-01 00:00 (Earth)
2121-02-18 08:42 (Transfer 1)
2121-09-01 09:33 (Asteroid 5)
2121-09-01 09:33 (Transfer 2)
2121-12-22 05:36 (Asteroid 3)
2121-12-22 05:36 (Transfer 3)
2122-10-25 23:03 (Asteroid 2)
2122-10-25 23:03 (Transfer 4)
2123-05-09 12:21 (Asteroid 8)
2123-05-09 12:21 (Transfer 5)
2124-02-27 10:42 (Asteroid 1)
2124-02-27 10:42 (Transfer 6)
2125-01-01 23:12 (Asteroid 9)
2125-01-01 23:12 (Transfer 7)
2125-07-17 22:29 (Asteroid 6)
2125-07-17 22:29 (Transfer 8)
2126-08-20 20:01 (Asteroid 7)
2126-08-20 20:01 (Transfer 9)
2127-02-18 14:35 (Asteroid 0)
2127-02-18 14:35 (Transfer 10)
2128-02-15 04:43 (Asteroid 4)

Figure 6.2 Visualization of best known solution to instance with n = 10 and seed= 8.

Lambert’s Problem [76] calculates an orbit that connects two points in space-time departing
at time η + τ and arriving at time η + τ + t. Using the solution to Lambert’s Problem, a
transfer between the orbits of two asteroids a and a′ can be achieved with just two impulsive
maneuvers. Initially, at time (epoch) η, the spacecraft follows the same orbit around the Sun
as asteroid a. Waiting in this orbit does not consume any fuel, but does change its relative
distance to other asteroids. The first impulse ∆v⃗1 happens τ days after the current time η

(epoch), and moves the spacecraft from its current orbit to an orbit that will intercept the
target asteroid a′ after traveling for t days. When the spacecraft intercepts a′, the second
impulse ∆v⃗2 modifies its orbit to match the orbit of a′, so that the spacecraft follows the same
orbit as a′ without consuming any additional fuel. Usually the total magnitude of velocity
change (the Euclidean L2 norm) is used as a surrogate for fuel consumption/energy costs:

∆V = ∥∆v⃗1∥2 + ∥∆v⃗2∥2 where (∆v⃗1, ∆v⃗2) = Lambert(a, a′, η + τ, t) (6.3)

75

We still need to decide τ , how long should the spacecraft wait at a, and t, how long the
transfer should take until arriving at a′. Waiting changes the relative distance to other
asteroids, which may reduce the fuel or total time needed to reach the next asteroid. The
optimal values of τ and t depend on which objectives are being optimized.

In trajectory optimization there are many possible objectives. Two typical objectives are the
minimization of fuel (energy) consumption and of the total mission time (τ + t). These two
objectives are often in conflict. The ARP aggregates the two objectives as shown below:

z = finner(a, a′, η, τ, t) = ∆V + 2 km/s
30 days · (τ + t)

s.t. τ ∈ [0, τmax], t ∈ [1, τmax]

where ∆V = ∥∆v⃗1∥2 + ∥∆v⃗2∥2 and (∆v⃗1, ∆v⃗2) = Lambert(a, a′, η + τ, t)
(6.4)

where the trade-off constant 2 km/s
30 days was chosen by [75].

The above becomes an inner optimization problem whose solution gives the values τ , t and
z returned by B (Eq. 6.2).

In the ARP, this inner problem is solved by using Sequential Least Squares Programming
(SLSQP) [77], which is a deterministic optimizer. In this way, each permutation of the
asteroids corresponds to a unique solution. SLSQP iteratively calculates the position and
velocity of the asteroids, and then solves Lambert’s Problem in order to evaluate the above
objective. Even if time is discretized into days, this inner optimization would be too slow to
allow us to calculate the cost of every optimal trajectory for every pair of asteroids at every
point in time.

A mission with n asteroids may have up to n(τmax + tmax) possible values of η. In a mission
where n = 10, calculating every possible trajectory from just one asteroid to one other
asteroid for every possible departure time when time is discretized into days would take
about 10 minutes using the inner optimizer in our implementation. Thus, calculating the full
cost matrix for every ordered pair of asteroids (n(n − 1) pairs) at every possible departure
day would take about 15 hours. Furthermore, departure time is continuous, not discrete,
so this cost matrix would not even fully represent the problem, although it would certainly
provide information that is useful for solving it.

76

6.2.3 Relaxed Decision Diagrams for the ARP

To initialize a relaxed DD for the ARP we are going to denote the root as Earth and the
terminal as done. We use the implicit DD construction explained in Chapter 5. This means
that in our implementation, we do no store arcs. However, in our figures here we include the
implied arc labels for the sake of clarity. Note that we temporarily assume we have valid arc
weights; we explain how to compute these in Section 6.3.3.

Figure 6.3a displays a valid relaxed DD for an ARP with asteroids {A, B, C}. Each arc
is labeled with the decision about which asteroid is the next destination, and each node
is labeled with the current asteroid. Every feasible permutation of asteroids is trivially
encoded as a path from the root to the terminal, but so are several infeasible solutions, such
as A → B → A. Figure 6.3b displays a weighted version of Figure 6.3a. Each arc still
assigns the same decision, but the arc weights now display the lower bounds on the cost of
transferring between those two asteroids at that point in the sequence. Each node is now also
labeled with the length of the shortest path to that node. Thus, the length of the shortest
path (A→ B → C, which is highlighted), is a bound on this ARP. In other words, no matter
what permutation of asteroids you use, and no matter how well you optimize the trajectories
between them, there is no route for the spacecraft that admits a cost less than 10 for this
example.

In the well-known Travelling Salesman Problem (TSP), the weights on the arcs would be the
transition costs of going from one city to the next. However, in the TSP the arc weights are
not dependent on all of the preceding cities, and the transition costs are easy to calculate. In
this paper, we are handling a problem where calculating arc weights requires calling a black-
box function B with non-negligible computation time. Furthermore, the exact arc weight for
arc a is dependent on the path taken to reach a. In principle, this dependency requires the
evaluation of all possible paths from r to a, in order to find the optimal one. However, if we
can find, via relaxation of the B function, a globally valid bound on the arc weights, that
bound can be used to prune sub-optimal paths.

In the case of the ARP, this relaxation is given by a no-wait variant of B where the cost of
waiting is removed from the objective function; this is defined in Section 6.3.2. This no-wait
variant can be used to find a globally valid bound on the cost of any transition between two
asteroids. Thus for the ARP, the arcs will be weighted with valid lower bounds on their
transition costs instead of exact values. This idea is explored and formalized in Section 6.3.
To refine the diagram we will be using the methods for solving sequencing problems with
DDs discussed in Section 2.5 [28] together with PnB (Algorithm 11).

77

Earth

A B C

A B C

A B C

done

A B C

B C
A

CA

B

B C
A

C

A

B

; ; ;

11

(a) Unweighted

Earth

A,3 B,10 C,5

A,6 B,9 C,13

A,12 B,11 C,10

done,10

3 10 5

6 10
9

41

9

5 9
3

1

9

1

0 0 0

12

(b) Weighted

Figure 6.3 Relaxed decision diagrams for an ARP with asteroids {A, B, C}.

6.3 The Initial Decision Diagram

This section details a technique for constructing a relaxed DD for the ARP that yields a
valid relaxed bound.

6.3.1 Initial Setup

We begin by constructing a relaxed DDM exactly as shown in Figure 6.3a. We start with a
root node at layer 0, a terminal node at layer n + 1, and n nodes on each layer with index i,
where 1 ≤ i ≤ n. Each node u in a layer i is given a label l unique to that layer. Remember
that node labels are conceptually the same as arc labels. Each node and each arc has exactly
one label, always representing either Earth or an asteroid.

An arc represents the transition from one node to another, and so in the ARP, an arc
represents a transfer of the spacecraft. The arc label is the asteroid being transferred to. A
node represents a state, and in the ARP, part of that state is the location of the spacecraft
(either Earth or an asteroid). Thus, the node label is either Earth for the root, or an asteroid

78

for the other non-terminal nodes. The terminal node is a dummy node. Then, each node v

in layer i − 1 is the origin for an arc ending at u, as long as v has a different label. An arc
with a null label is added from each node in layer n to the terminal. The result is a relaxed
DD that encodes every feasible sequence of asteroids as a path from the root to the terminal.

6.3.2 Relaxing the Black-Box

In real-world problems that depend on a black-box function or an inner problem, it is often
possible to define relaxed versions of such functions that provide useful bounds or heuristic
values [59,60].

In the ARP, we can define a relaxed version of Eq. 6.4 that removes the cost of waiting as
follows:

f ′
inner(a, a′, η, τ, t) = ∆V + 2 km/s

30 days · t

s.t. τ ∈ [0, τf], t ∈ [1, τmax]

where ∆V = ∥∆v⃗1∥2 + ∥∆v⃗2∥2 and (∆v⃗1, ∆v⃗2) = Lambert(a, a′, η + τ, t)
(6.5)

Since f ′
inner removes the cost of waiting, we also relax the upper bound of τ to a parameter

τf. We can now define the following relaxed variant of B:

B′(a, a′, η, τf) : A× A× R+ → [0, τf]× [1, tmax]× R+ (6.6)

which returns three values (τ, t, z), where τ and t are the values that minimize f ′
inner given a,

a′, η and τf, and z is its minimal value. Note that this is only a relaxation in the sense that
it removes part of the cost from the objective function, it does not change the method used
to solve it. The procedure for solving B′ is exactly the same as the procedure for solving B.

Note that we will only ever use B′ to compute bounds on costs, we will never use it to evaluate
the cost of a permutation of asteroids. We always use B to evaluate the cost of solutions
and partial solutions, so that the values we report can be compared with the values reported
by [75].

6.3.3 Calculating Valid Arc Bounds

The examples in Section 6.2 assumed the availability of bounds on the arc weights. In this
section, we will explain how they can be calculated. We also mentioned that calculating arc

79

bounds is expensive because it requires calculating the black-box function B. In the ARP,
this means that the inner problem must be solved using SLSQP. The algorithm we propose
is designed to minimize the number of times we need to calculate the value of B.

When using constraint propagation, arcs are filtered and removed, but never added. When
splits and peels are performed, the number of arcs in the DD may grow, but only when the
out-arcs of a node are copied. When this occurs, the asteroid that an arc is traveling from,
and the asteroid that the arc is traveling to, remain unchanged. Therefore, when splitting or
peeling, a valid bound on the cost of an arc is also a valid bound on its copy. While it may
be desirable to recalculate the bound on an arc after a split to get a tighter bound, peels
and splits can be carried out as many times as memory limitations allow, without the need
to re-evaluate B. We propose a two-phase algorithm for creating an initial relaxed DD. This
initial construction is intentionally computationally expensive, because we will make enough
evaluations of B, that B does not need to be evaluated again after the initial relaxed DD is
constructed, except when evaluating feasible solutions.

Phase One

Now we weight the DD. The arcs going from layer 0 to layer 1 are straightforward. A valid
weight for an arc must be a valid lower bound on the cost of making the transfer represented
by that arc. So a valid weight on arc auv going from node u to v with labels l(u) = Earth
and l(v) is given by the z value returned by B(Earth, l(v), η = 0). There is no possibility for
η other than 0, so that z value will be the smallest possible cost of going from Earth to l(v).

In the ARP, these costs from layer 0 to layer 1 are exact, because the inner problem is only
solved for one pair of asteroids at a time for simplicity [75]. In other words, B does not
depend on the path from node v to the terminal. Thus, we can assume that the value of B
for an arc only depends on the earliest start time at the starting node, which only depends
on the path from the root node to that starting node. In the general trajectory optimization
problem, it is possible to globally optimize the inner problem for a whole sequence of asteroids
by optimizing all waiting and transfer times simultaneously. This simultaneous optimization
may further reduce the cost of the sequence; for example, it may be that increasing the waiting
time between early transfers leads to a reduction in the transfer cost of later transfers. In
that case, the value of B at a given arc may also depend on the path from the destination
node to the terminal.

Our proposed method works for either type of problem because the sum of the arc weights
on a path is still a globally valid bound on the cost of the sequence represented by that
path. A dependence on the path from a node to the terminal simply makes the evaluation

80

of feasible solutions more expensive because we need to re-optimize all waiting and transfer
times simultaneously every time we weight an arc. In the ARP, if there is only one path
from the root to a node u, and we know both the cost of the path from the root to u and the
earliest start time at the previous node, then the exact cost of that path can be calculated
with a single evaluation of B that only optimizes the wait and transfer times of the arc that
ends at u. In our implementation, we leverage this property by updating the weights of arcs
on such a path with their exact cost, and track the earliest start time for each node. This is
not necessary to find an optimal solution, but it is a useful heuristic.

The arcs going from layers i to i + 1 for i ∈ {1, n− 1} remain to be weighted. We begin by
finding a valid bound on the transfer between each ordered pair of asteroids a, a′ ∈ A, with
a ̸= a′. We can use the no-wait B′ (Eq. 6.6) for that purpose by noticing that the maximum
time that any solution requires is trivially bounded by the sum of the upper bounds on the
waiting times and travel times of the trajectories, i.e., n(τmax + tmax). Therefore, the latest
start time for the final transfer is bounded by n(τmax + tmax) − tmax. That means that the
transfer from an asteroid a to an asteroid a′ can wait τ ∈ [est(a), n(τmax +tmax)−tmax], where
est(a) is the earliest start time at a. Initially, est(a) = τ ∗ + t∗, where τ ∗ and t∗ are the values
returned by B(Earth, a, η = 0) as described above. We can now define:

zmin(a, a′) := z where (τ, t, z) = B′(a, a′, η = est(a), τf = n(τmax + tmax)− tmax) (6.7)

Because B′ does not penalize waiting time, the waiting time τ returned by B′ above gives an
optimal η for minimizing the actual cost of the transfer using B (Eq. 6.1). In other words,
the cost zmin(a, a′) is the smallest possible cost of the transfer from a to a′, and thus a lower
bound of the z value returned by B(a, a′, η = est(a) + τ). Computing zmin(ai, aj) for all pairs
ai, aj, where i, j ∈ {1, ..., n} and i ̸= j requires n2 − n calls to B′.

We add the pre-calculated zmin(a, a′) values as arc weights. A valid weight for an arc auv

going from node u with label l(u) to v with label l(v), is simply zmin(l(u), l(v)), which is
the best possible transfer between l(u) and l(v) when ignoring waiting time at l(u). The
resulting relaxed DD contains valid weights such that the sum of the costs of the arcs on any
path from the root to the terminal provide a lower bound on the true cost of the permutation
represented by the labels of the nodes on that path. However, this lower bound is quite weak,
so we perform a second phase to strengthen the arc weights.

81

Phase Two

In this phase, we will use a heuristic solution z− to strengthen the arc weights. There are
many methods available in the literature for finding a strong heuristic solution in trajectory
optimization problems such as the ARP [78, 79]. In the ARP, any valid permutation of the
asteroids is a feasible solution. For simplicity, our implementation uses a Euclidean distance
heuristic to find the initial z−. It picks asteroids one by one, always moving to the closest
unvisited asteroid as measured by Euclidean distance at the time of arrival to the last visited
asteroid. This simple heuristic is exceptionally effective and our proposed algorithm has no
trouble rapidly finding strong feasible solutions. In Section 6.4, we will describe the method
we use for finding feasible solutions in more detail.

Before we can make use of z−, we need to store some information on the nodes. We begin
by recursively updating each node u with the length of the shortest path from the root to u,
denoted by z↓(u), as well as the length of the shortest path from u to the terminal, denoted
by z↑(u) [28]. Recall that the length of a path from the root to the terminal is a valid lower
bound on the cost of the associated permutation. It follows that z↓(u)+z↑(u) is a valid lower
bound on the cost of any path that passes through u, because the shortest path that passes
through u is trivially the shortest path from the root to u merged with the shortest path
from u to the terminal. Note that this implies that if z↓(u) + z↑(u) > z−, then the optimal
solution cannot pass through u, and we can remove u from the DD because the shortest path
that passes through u has a higher cost than a known feasible solution.

Now consider an arc auv connecting nodes u to node v with weight w(auv). Similarly, z↓(u)+
w(auv) + z↑(v) is a valid lower bound on the cost of any path that can pass through auv.
This is because the shortest path passing through an arc is the shortest path to the origin
of that arc, then the arc itself, then the shortest path from the destination of the arc to the
terminal. As before, we know that if z↓(u) + w(auv) + z↑(v) > z−, then the optimal solution
cannot pass through auv, and thus auv can be removed from the graph. We will leverage this
constraint to calculate new stronger arc weights.

Let us consider arc auv, and let the layer of u be 1 ≤ i ≤ n−1. The latest possible start time
η for arcs going from layer i to i + 1 is i · (τmax + tmax). Thus, a naive approach to improving
the quality of the weight of auv is B′(l(u), l(v), η = est(u), τf = i · (τmax + tmax) + τmax), which
returns the optimal transfer (τ, t, z) between two asteroids when waiting is free.

This z value is a valid weight for each such arc auv, and greatly improves the weights on arcs
on higher indexed layers over the weights calculated in phase one. However, this will do very
little to improve the weights of arcs at lower indexed layers. This method is valid, but as

82

we will see next, it is extremely inefficient. Consequently, we will now use the concepts we
covered in this section so far to motivate a method that scales better with the layer index.

Recall the constraint that for arc auv, it must be that z↓(u) + w(auv) + z↑(v) ≤ z−, or we
can remove the arc. In the previous method, we used i · (τmax + tmax) as a bound on the free
waiting time an arc can leverage. A better bound can be retrieved by recognizing that the
true cost of w(auv) includes the cost of wait time as a component. Let τa be the wait time
used by auv, and recall that the cost of time in the inner objective function (Eq. 6.4) is 2

30 .
It must also be the case that z↓(u) + 2

30τa + z↑(v) ≤ z−. This is because if τa is large enough
to cause that constraint to be violated, then w(auv) will also be large enough to cause its
constraint to be violated, because w(auv) is a sum of components that include 2

30τa. This
yields the constraint that:

τa ≤
30
2 (z− − z↓(u)− z↑(v)) (6.8)

where the right-hand-side of Eq. (6.8) is a constant because z↓(u) and z↑(v) are known. This
means that we can use this bound for τa to define a stronger bound per layer:

zmin(u, v, i) := z where (τ, t, z) = B′(l(u), l(v), η = est(u), τf) and τf = 30
2 (z−− z↓(u)− z↑(v))

(6.9)

Starting with i = 1, we calculate a new bound for every arc on a layer (zmin(u, v, i)), then we
update the values of z↓(v) for each v (in other words, each node on layer i + 1), then we set
i← i + 1, and repeat until i = n + 1. Therefore, we do not update the arcs with a weight of
0 that go to the terminal. After this process is done, the z↑ values of the nodes need to be
updated as they are dependent on the weights of the arcs.

Phase two requires performing a total of n3− 2n2 + n evaluations of B′, but results in strong
enough initial bounds that, after this initial setup, our algorithm for the ARP only needs to
call the black-box function B to evaluate the true cost of partial feasible solutions; it does
not need to evaluate B or B′ for the purposes of bounding.

The weights are improved based on the z↓ and z↑ values, but the values of z↓ and z↑ are
updated based on the new arc weight. It is possible to run phase two repeatedly until the
values converge. However, each additional update requires a huge amount of computation,
and in practice yields minuscule changes. So the decision of how many repetitions to perform
while constructing the initial DD is heuristic. In our implementation, we found that this
process almost never improves the bound enough to be useful, so we did not include it.

83

Earliest Start and Arrival Times

So far we have assumed that the black-box function, and thus the inner optimization, only
depends on the transfer locations and the arrival time at the origin location (Eq. 6.1). In
practice, this is often not the case, and it is in fact possible to optimize the all of the inner
problem variables for a given permutation at once to find a better solution. More generally,
the objective function f(π) may be completely black-box and not linearly separable as in Eq.
6.2. Even in such cases, it may still be possible to apply our proposed method.

In the case of the ARP, and many global trajectory optimization problems, given a permu-
tation of the asteroids or celestial bodies to be visited, it is possible in principle to globally
optimize all times τi and ti for all i = 1, ..., n in Eq. 6.2, and further improve the objective
function value. The original definition of the ARP [75] does not perform this global inner
optimization because it does not guarantee finding a better objective function value, and
it makes evaluating each permutation significantly more time-consuming. Nevertheless, in
practical global trajectory optimization problems, performing such global inner optimization
may be beneficial if enough computation time is available. Thus, we explain here how to
adapt our proposed method to handle such cases.

For the ARP as originally defined, calculating earliest start times is an unnecessary but useful
heuristic. As explained in Section 6.3.3, B(Earth, l(u), η = 0) returns the z value for an arc
going from Earth to a node u in layer 1 as well as the exact τ + t value that the transfer
requires, which is the exact earliest start time at u for any valid sequence. However, if we
optimize all of the inner problem decision variables for a valid sequence at the same time,
the earliest start time may be different. We describe next a valid alternative.

First, we define a variant of B that limits the maximum total time θ for the transfer:

B̃(a, a′, η, θ) = (τ ∗, t∗, z∗)

where z∗ = finner(a, a′, τ ∗, t∗) and (τ ∗, t∗) = arg min finner(a, a′, τ, t)

s.t. τ + t ≤ θ, τ ∈ [0, τmax], t ∈ [1, tmax]

(6.10)

The above function B̃ also returns three values (τ, t, z) with the same meaning as they have
for B, but the inner problem has the additional constraint that τ + t ≤ θ.

Given a relaxed DD where the nodes store z↓(u) and z↑(u), we can use the above function
to find the earliest start time (est) for any node u in layer 1. In other words, we can use B̃
to find the est for visiting an asteroid l(u) from Earth. This is accomplished by performing

84

a binary search with a starting range of [0, τmax + tmax] to find the value θ such that:

z− − z↑(u) = z̃ where (τ, t, z̃) = B̃(Earth, a, η = 0, θ) (6.11)

However, the z values returned by B, and thus B̃, are not necessarily smooth, so the equality
may not be strictly satisfiable because the target value may not be in the range of B̃. When
this is the case, the goal of the binary search should be modified to find the value of θ that
produces the largest value of z̃ ≤ z− − z↑(u).

The earliest arrival time (eat) to reach the end of an arc auv can be similarly found by
performing a binary search to find the value of θ such that:

z̃ = z− − z↓(u)− z↑(v) where (τ, t, z̃) = B̃(l(u), l(v), η = est(u), θ) (6.12)

The est of a node v is the minimum eat of arcs ending at v, which allows us to repeat the
search for the nodes in the next layer. However, performing this search on a node v requires
running a binary search on every single arc ending at v, which is significantly time-consuming.
If using this method, we recommend only using it on nodes with one parent.

6.4 Heuristic Search with Embedded Restricted Decision Diagrams

A benefit of leveraging embedded restricted DDs, and a critical benefit for solving ARPs, is
that each node u in a relaxed DD can also be labeled with the length of the shortest path
from u to the terminal, which we have already denoted as z↑(u) in this paper. This provides
a simple but powerful heuristic for deciding which nodes to explore. This heuristic is directly
inspired by, but substantially different from, the rough bounding proposed in [30].

Let ωs be the maximum width allotted to the search. Given a node to be processed u− in a
partially constructed restricted DD M−, the typical method for figuring out which of u−’s
children to explore would be to generate all of them and then repeatedly throw away the
node v− in the layer being constructed with the highest z↓(v) until the width of the layer is
ωs. However, for the ARP, each creation of a child requires a transfer from the last asteroid
visited to an unvisited one, which requires a call to B, causing such a search to become
rapidly intractable.

In order for the embedded restricted DDs to be generated quickly, it is critical to limit the
number of calls to B. Evaluating a single feasible solution to the ARP requires n− 1 calls to
B. Our goal is to perform a heuristic search that requires at most ωs(n− 1) calls to B.

85

Let V − be the set of potential child nodes that could be created during the procedure. Instead
of generating every possible child node v− ∈ V −, we calculate a bound on the true cost of
a solution passing through each v−. Then, we generate the ωs child nodes in v− with the
lowest bounds. For a potential node v− with parent u−, associated nodes in the relaxed DD
v+ and u+ respectively, and arc au+v+ with weight w(au+v+), the bound b(v−) is calculated
as:

b(v−) = z↓(u−) + w(au+v+) + z↑(v+) (6.13)

For any node u− in a restricted DDM−, let u+ be the associated node inM+. Let r+ be the
root of an existing relaxed DD M+. The procedure begins by creating r−, without creating
it’s children. Then it iterates over the nodes inM+ associated with the potential children of
r−, and creates the ωs best candidate children of r−, where candidacy is determined by the
value returned by Eq. 6.13. Then this is repeated for each layer of the restricted DD. This
procedure is formalized in Algorithm 15.

6.5 Using Peel-and-Bound for the ARP

In many problems, such as the TSP, the arc weights are exact, thus if the shortest path
through the relaxed diagram is feasible, then it is also optimal. However, if the arc weights
are just lower bounds, as in the ARP, the length of the shortest path might be a relaxed
bound on the true cost, even if the path is feasible.

The only change required to use PnB for the ARP is in the decision of when to add a DD to
the queue. In the original presentation of PnB, when the shortest path through a relaxed DD
is a feasible solution, that DD is not placed back into the processing queue because the best
known feasible solution encoded in that DD is known. However, the shortest path through a
relaxed DD for the ARP being a feasible solution does not prove that path to be the optimal
path in that DD because the arc weights are not exact. Thus, in order to refrain from adding
a DD back into the queue for the ARP, there must be a known feasible solution with a cost
that is not larger than the length of the shortest path in that DD.

6.6 Implementation Details

This section details the data structures and heuristic decisions that we used to design an
efficient implementation of the algorithms in this paper.

86

Algorithm 15: Heuristic Search Procedure
1 Input: maximum width ωs; relaxed DD M+ with root r on layer 0
2 Let w(axy) be the weight of the arc connecting x to y.
3 Let M− be a restricted DD with the same number of layers as M+, where each layer is

initialized to ∅ except layer 0 which is initialized to {r}.
4 For any node u− ∈M−, let u+ be the associated node in M+.
5 foreach layer of nodes L in M− do
6 q ← ∅ // q: empty list of nodes.
7 b← ∅ // b: empty mapping of nodes to values.
8 foreach node u− ∈ L do
9 Let the domain of u− be d(u−), initialized to be the set of node labels on the

path from r (Earth) to u−

10 Let d(u+) be the set of node labels used by children of u+

11 d(u−)← d(u−) ∩ d(u+)
12 foreach label l ∈ d(u−) do
13 Create a new node v− as a child of u− with label l, but don’t weight arc au−v−

14 b(v−)← z↓(u−) + wau+v+ + z↑(v+)
15 q ← q ∪ {v−}
16 end
17 end
18 Sort the elements v− ∈ q from least to greatest by their bounds b(v−)
19 while |q| > ωs do
20 Remove the last element of q (the largest bound) from both q and M−

21 end
22 foreach node v− ∈ q do
23 τ ∗, t∗, z∗ ← B(l(u−), l(v−), est(u−))
24 w(au−v−)← z∗

25 est(v−)← est(u−) + τ ∗ + t∗

26 end
27 end
28 return M−

6.6.1 Memoization of B

The number of arcs stored in the processing queue during PnB can grow extremely rapidly.
A core optimization when implementing PnB is refraining from performing unneeded writes
to memory. As mentioned before, when new arcs are generated during PnB, they are copies
of existing arcs, and have the same cost. Therefore, we only want to store the cost once.
Instead of storing costs on the arcs, we need a single location in memory where all such
costs are stored. Storing feasible solutions can be accomplished in a straightforward way, but
storing arc bounds efficiently requires a more complex data structure.

87

Storing Feasible Solutions

The arc costs for feasible solutions are stored in a basic decision tree to avoid redundant
evaluations of B. The tree is initialized with a root node r having cost c(r) = 0 and a label of
Earth. When evaluating the cost of a partial (or complete) solution, the root node is queried
for the first element (asteroid) a in the sequence after Earth. If the root node has a child v

whose label is also a, then the cost of going from Earth to a is c(v), and the next element in
the sequence is compared with the labels of the children of v. This process is repeated for
each element of the given sequence, adding each individual node cost to a sum total, until
either the whole sequence is found in the tree and the total cost is returned, or the next
element a in the sequence is not among the labels of the children of the corresponding tree
node u. If u does not have a child with the same label as a, then node v is added to the tree
and its fields are set as follows:

τ ∗, t∗, z∗ ← B(l(u)), l(v), est(u))

c(v)← z∗

est(v)← est(u) + τ ∗ + t∗

(6.14)

The above process ensures that the cost of any feasible solution, partial or complete, is only
computed once. Although a complete tree for an instance of size n has 1 + ∑n

i=1
∏i−1

j=0(n− j)
nodes, in practice only a very small part of the tree is generated. Even with a complete tree
where the children of each node are kept sorted, it would take at most O(k log n) comparisons
to retrieve the cost of a sequence of length k ≤ n, which is much faster than evaluating the
sequence.

Memoizing Arc Bounds

During PnB, we need to calculate arc weights every time we peel a DD (Algorithm 12), and
every time we need to compute the shortest path through a DD. However, we would like
to reuse the values already computed by the zmin functions of phase one and two (Eqs. 6.7
and 6.9, respectively). Thus, we wish to look-up a pre-computed value of zmin that would be
valid for the new arc.

Both definitions of zmin only depend on the evaluation of B′(a, a′, η, τf). Moreover, by the
definition of the inner optimization problem (Eq. 6.5), we also know that B′(a, a′, η′, τ ′

f)
cannot return a cost z better than B′(a, a′, η, τf) if [η′, η′ + τ ′

f] ⊆ [η, η + τf], because the inner
optimization problem is the same but with tighter bounds on τ for the former.

During a run of PnB, the time intervals [η, η + τf] implied by the arcs can only decrease in

88

the above manner. Let u be a node that is split into u′
1 and u′

2, and let c(u) be the cost of
node u. The bounds on the new nodes must be at least as tight as the bounds on the old
nodes so c(u) ≤ c(u′

1), c(u) ≤ c(u′
2). The earliest starting time of the nodes can increase but

not decrease, so est(u) ≤ est(u′
1), est(u) ≤ est(u′

2). This means that the interval start can
get larger but not smaller. Let τu be the wait time associated with u, the wait time of the
peeled nodes can decrease but not increase, τu ≥ τu′

1
, τu ≥ τu′

2
, which means that the interval

end can get smaller but not larger. Thus, the time interval [η, η + τf] used to compute the
arc weight associated with a node u, must contain the time intervals that would be required
to compute the arc weights associated with u′

1 and u′
2.

Let us store in an interval tree the zmin values resulting from any evaluation of B′ with origin
a and destination a′ together with the time intervals used in the evaluation. Given an arc
that has an associated time interval and whose origin and destination correspond to a and
a′, every stored zmin value with a time interval that contains the time interval of the arc is a
valid bound for the arc. The highest value among those stored, provides the strongest bound.

Interval trees are a standard data structure designed for efficiently finding all intervals that
overlap with any given interval or point. They have a lookup time for finding overlapping
intervals in O(n + m) where n is the number of intervals in the tree, and m is the number of
intervals that satisfy the query. A standard interval tree is optimized for finding overlapping
intervals; each tree-node stores the maximum value of its descendants. In our case, we only
ever need to find containing intervals, thus we also store the minimum value (interval start)
of its descendants in each tree-node. This prevents wasted time from looking for containing
intervals on a branch of the tree when the lower bound on that branch is higher than the
start time of our interval. We also adjusted the lookup function to only return containing
intervals, instead of all overlapping intervals.

6.6.2 Heuristic Decisions

In our implementation, we test two different methods for selecting a DD from Q (line 7 in
Algorithm 13): worst bound, and largest index. Selecting the DD with the worst bound is
similar to performing a breadth-first-search; it is making a decision to try to always improve
the current lower bound on the problem, but can lead to a very large Q. Selecting the
DD with a root node whose index in the initial DD was highest is similar to performing a
depth-first search; it prioritizes keeping Q small over improving the lower bound as quickly
as possible.

We also test two different methods for selecting a node to peel from DD Q (line 7 in Algorithm
13). The first method is to pick the last exact node, which is the highest indexed exact node

89

on the shortest path through Q. The second method is to pick the maximal node, which is
the lowest indexed node on the shortest path through Q. These methods are discussed in
detail in [9].

6.6.3 Limitations of the Inner Optimizer

The inner problem is non-convex and non-linear, making it impossible in general to prove that
a local optimum is also a global optimum. In B, the search space is small enough that local
optima are likely to be global optima as well. Even if this is not the case, the inner optimizer
is deterministic, meaning that the same permutation will yield the same local optima for the
inner optimization problems. The goal is to find the globally optimal permutation. When
using B′, the inner optimizer searches within a superset of the search space induced by B,
potentially finding a local optimum that is worse than the one returned by B. In such cases,
the outer optimization might be misled about which permutation is optimal. However, the
permutation found is still a solution (possibly suboptimal) to the original ARP, because
feasible solutions are always evaluated using B, not B′.

More concretely, the inner optimization that computes B in [75] consists of a single deter-
ministic run of SLSQP, as explained in Section 6.2.1. A single run of SLSQP almost always
returns a global optimum when τf ≤ τmax as set in the original paper. However, SLSQP
may return a locally optimal solution when τf ≫ τmax, as we set it here when computing B′

(Eq. 6.6). That is, B′(a, a′, η = 0, τf) may return (τ ′, t′, z′) as optimal yet B′(a, a′, η = τ ′, τf)
may return a better solution even though the time interval [τ ′, τf] is contained within [0, τf].
This problem can be alleviated by performing multiple restarts of SLSQP for each evaluation
of B′. In other words, when optimizing the relaxed inner problem (Eq. 6.5), we can partition
the range [η, η + τf] into disjoint intervals, run SLSQP for each interval, and keep the best
solution. We report experiments with different number of restarts that show their effect on
runtime and solution quality.

SLSQP could be replaced with a more effective optimizer, such L-BFGS-B [80] or CMA-
ES [81]. For other inner problems, it may be possible to ensure that the inner optimizer
returns a global optimum. In this paper, we decided to keep SLSQP as the inner optimizer
in order to compare our results on the ARP with those reported by [75]. The following
experiments (Section 6.7) show that increasing the quality of the inner optimizer does lead
to better solutions, but not always, and not by much, so it is likely that we are already
finding the optimal solutions for several of the ARP instances.

90

6.7 Experimental Results

An ARP instance with n asteroids is constructed by randomly selecting n asteroids from a
database containing 83, 453 asteroids. The selection process is controlled by a seed value, en-
suring that specific instances can be consistently replicated. In [75], they test their algorithms
with n ∈ {10, 15, 20, 25, 30} and seed ∈ {42, 73}. We ran experiments with the same n values,
but added three randomly chosen seeds: 8, 22, and 59. The experiments were performed on a
computer equipped with an AMD Rome 7532 at 2.40 GHz with 64Gb RAM. Our code and raw
experimental data are available at https://zenodo.org/doi/10.5281/zenodo.12675217.
Several of the results tables in this section have a queue column. This value is the number
of DDs remaining in the processing queue when the solver ran out of time.

6.7.1 Note on Optimality

As discussed in Section 6.6.3, changing the quality of the inner optimizer may impact the
quality of solutions returned by our framework. For several of the problems in this section,
we report different optimal solutions using different settings. These different solutions are
the result of the inner optimizer not being of sufficient quality for some settings, and thus
are intentional, and do not represent a mistake in the implementation.

6.7.2 Initial Experiment: Determining Best Settings

In our first test, shown in Table 6.1, we sought to determine which peel setting would be
the most effective, which DD-widths ω would be the most effective, and the effect of using
depth-first search (dfs, see Section 6.6.2). The value of ω used can have a large impact on
the solve time because relaxed DDs with larger widths generally yield better bounds, but
also take longer to compute. The best value for ω is the one that balances this quality/time
trade-off.

We tested n = 15 with all 5 seeds, 2 days of runtime, and no SLSQP restarts (multi = 1
means one SLSQP run for solving the inner optimization problem). Figure 6.4 summarizes
these results; the lines show the mean gap (or mean time) over the ARP instances.

We tested two peel settings: maximal and last exact node. Although there is no clear
winner, maximal generally performs better and performs only slightly worse when it does not.
Consequently, we will use the maximal setting in all future experiments. The effectiveness
of the depth-first-search (dfs) queue ordering appears random based on summary data. The
raw data, which is also available in the repository, contains a timestamp and bounds for
each improvement to the bounds made during a run of PnB. The raw data suggests the

https://zenodo.org/doi/10.5281/zenodo.12675217

91

success of dfs mainly depends on whether the best solution is found in an early branch. It
also suggests that dfs is slightly worse for the maximal peel setting and both ω = 512 and
ω = 2048, as also shown in the left plot of Fig. 6.4. We disabled dfs ordering in the remaining
experiments, opting for the default ordering that processes the DD with the weakest bound,
likely reducing the optimality gap in unresolved problems. Regarding relaxed DD-width,
we tested 512, 1024, and 2048. While 2048 showed the greatest success in closing problems
and narrowing the optimality gap, 512 resolved specific settings significantly faster. Moving
forward, we will retest 512 and 2048, and introduce a new width of 256. We do not include
tests with widths larger than 2048 because in our experience with DDs, the slowdown in
construction time from increasing the width starts to become substantial around 2048. This
happens because the number of arcs at each layer is at most O(ω2n), and small increases in
the width beyond 2048 can lead to enormous increases in the construction time.

92

0

10

20

30

512 1024 2048
DD width

G
ap

 (
%

)

10

20

30

40

50

512 1024 2048
DD width

T
im

e
(h

r)

Peel setting

last exact node

maximal

DFS

false

true

ARP seed

8

22

42

59

73

Figure 6.4 ARP instances with n = 15, a 2 day runtime, an embedded search width of 100,
and multi = 1 (Table 6.1)

ARP seed 8 22 42 59 73 Search width 40 100 400

multi: 1 multi: 3 multi: 5

256 512 2048 256 512 2048 256 512 2048

340

360

380

S
ol

ut
io

n

256 512 2048 256 512 2048 256 512 2048

25

50

75

100

125

DD width

T
im

e
(m

in
)

Figure 6.5 ARP instances with n = 10. Lines show mean value over ARP instances (Table 6.2)

93

Table 6.1 ARP instances with n = 15, a 2 day runtime, an embedded search width of 100,
and multi = 1

seed peel setting dfs DD width lb ub gap (%) time (hr)

8

last exact node true
512 406.0 528.9 23.3 -
1024 433.3 500.4 13.4 -
2048 499.5 499.5 0.0 17.0

maximal true
512 499.5 499.5 0.0 28.3
1024 500.1 500.1 0.0 18.3
2048 504.5 504.5 0.0 32.0

last exact node false
512 411.3 550.0 25.2 -
1024 412.6 536.5 23.1 -
2048 500.9 500.9 0.0 24.2

maximal false
512 499.5 499.5 0.0 22.3
1024 499.5 499.5 0.0 33.8
2048 503.8 503.8 0.0 40.0

22

last exact node true
512 472.4 472.4 0.0 40.4
1024 400.9 500.0 19.8 -
2048 501.7 501.7 0.0 27.2

maximal true
512 472.4 472.4 0.0 33.5
1024 501.7 501.7 0.0 45.6
2048 481.9 481.9 0.0 9.8

last exact node false
512 472.4 472.4 0.0 35.6
1024 406.6 498.5 18.4 -
2048 482.3 482.3 0.0 6.0

maximal false
512 472.4 472.4 0.0 19.2
1024 438.9 504.0 12.9 -
2048 501.7 501.7 0.0 27.2

42

last exact node true
512 351.2 508.2 30.9 -
1024 382.3 500.1 23.6 -
2048 393.4 507.5 22.5 -

maximal true
512 346.0 508.2 31.9 -
1024 376.7 508.2 25.9 -
2048 379.6 508.2 25.3 -

last exact node false
512 379.3 508.2 25.4 -
1024 8.1 508.2 23.6 -
2048 394.5 507.5 22.3 -

maximal false
512 395.3 506.9 22.0 -
1024 402.2 506.9 20.7 -
2048 406.0 506.9 19.9 -

59

last exact node true
512 416.6 523.2 20.4 -
1024 523.2 523.2 0.0 46.9
2048 530.4 530.4 0.0 17.0

maximal true
512 403.7 545.8 26.0 -
1024 523.2 523.2 0.0 28.5
2048 530.4 530.4 0.0 12.2

last exact node false
512 420.9 548.9 23.3 -
1024 426.3 542.7 21.4 -
2048 530.4 530.4 0.0 15.7

maximal false
512 440.3 543.9 19.1 -
1024 446.7 523.2 14.6 -
2048 530.4 530.4 0.0 12.1

73

last exact node true
512 333.9 495.2 32.6 -
1024 389.2 498.0 21.9 -
2048 419.5 495.2 15.3 -

maximal true
512 326.3 502.5 35.1 -
1024 351.7 495.2 29.0 -
2048 402.3 500.8 19.7 -

last exact node false
512 373.8 502.5 25.6 -
1024 396.3 502.5 21.1 -
2048 407.6 502.5 18.9 -

maximal false
512 398.7 498.1 19.9 -
1024 408.1 502.5 18.8 -
2048 416.3 502.1 17.1 -

dfs = depth first search (queue processing order), DD width = width of relaxed DD,
lb = lower bound, ub = upper bound, gap = optimality gap, time = time to solve

94

Table 6.2 ARP instances with n = 10

seed search DD width multi = 1 multi = 3 multi = 5
solution time(min) solution time(min) solution time(min)

8

40
256 357.5 13.1 357.5 60.7 357.5 89.5
512 357.5 20.1 357.5 49.6 357.5 69.3

2048 360.4 52.8 360.4 71.3 360.4 70.2

100
256 357.5 12.8 357.5 59.6 357.5 91.9
512 357.5 20.1 357.5 45.0 357.5 70.5

2048 360.4 56.1 360.4 60.0 360.4 67.8

400
256 357.5 16.1 357.5 68.6 357.5 102.9
512 357.5 23.4 357.5 50.8 357.5 76.9

2048 360.4 56.8 360.4 62.2 360.4 67.1

22

40
256 379.5 25.2 364.5 99.0 364.5 120.6
512 379.5 24.5 364.5 58.5 364.5 79.7

2048 364.5 50.2 364.5 57.7 364.5 63.0

100
256 365.7 16.2 364.5 106.5 365.7 122.6
512 365.7 21.2 364.5 60.5 364.5 76.6

2048 364.5 51.4 364.5 58.5 364.5 64.1

400
256 365.7 18.9 364.5 89.1 364.5 114.0
512 365.7 23.8 364.5 62.9 364.5 76.5

2048 364.5 51.2 364.5 58.8 364.5 64.0

42

40
256 346.7 30.3 346.7 51.9 346.7 57.5
512 346.7 23.7 346.7 36.0 346.7 40.9

2048 346.7 50.1 346.7 59.3 346.7 63.9

100
256 346.7 30.9 346.7 49.5 346.7 54.9
512 346.7 24.8 346.7 38.6 346.7 43.3

2048 346.7 49.3 346.7 58.0 346.7 62.4

400
256 346.7 27.2 346.7 52.9 346.7 59.3
512 346.7 25.1 346.7 40.4 346.7 46.3

2048 346.7 49.1 346.7 57.7 346.7 63.3

59

40
256 388.5 22.6 376.1 91.0 371.1 94.9
512 383.4 25.1 371.1 53.5 371.1 72.3

2048 371.1 57.0 371.1 60.8 371.1 63.8

100
256 388.5 21.3 371.1 74.5 371.1 97.0
512 388.5 24.1 371.1 49.7 371.1 69.5

2048 371.1 53.9 371.1 61.5 371.1 66.0

400
256 389.5 18.1 371.1 73.3 371.1 95.1
512 382.0 24.8 371.1 54.8 371.1 71.7

2048 371.1 55.6 371.1 62.4 371.1 67.6

73

40
256 338.7 16.4 327.0 52.0 327.0 61.9
512 342.4 23.9 327.0 47.8 327.0 58.4

2048 324.7 51.5 324.7 59.2 324.7 65.3

100
256 338.7 16.3 328.5 48.8 328.5 58.2
512 342.4 24.0 328.5 36.3 328.5 43.3

2048 324.7 55.3 324.7 57.8 324.7 62.7

400
256 338.7 18.7 328.5 42.8 328.5 52.2
512 338.7 25.0 328.5 35.9 328.5 47.3

2048 324.7 50.2 324.7 57.8 324.7 62.9

search = width of embedded search, DD width = width of relaxed dd
time = time to solve

6.7.3 Second Experiment: Test of Smaller Instances

Our first round of experiments gave us a rough idea of what settings might be successful. Our
second round of experiments makes up the bulk of our tests. As discussed in the previous
paragraph we test relaxed DD-widths of 256, 512, and 2048. For the embedded search widths
(ωs from Algorithm 15) we tested 40, 100, and 400, where previously we just used 100. In
typical DD literature [1], the size of the search for feasible solutions would be as big or bigger
than the size of the relaxed DD, because it is relatively computationally cheap. However, for

95

the ARP, the search for feasible solutions is computationally expensive because of the inner-
optimization that requires evaluating the black-box function B. This suggested to us that
larger embedded search widths are unlikely to be worth it. However, the following results
indicate that might not be true. We also tested multi ∈ {1, 3, 5}. Table 6.2 (Fig. 6.5) show
the results of the second round of experiments for n = 10, Table 6.4 (Fig. 6.6) for n = 15,
and Table 6.5 (Fig. 6.7) for n = 20. In Table 6.2, every solution is optimal, so it does not
include the gap columns.

The largest search settings, i.e., an embedded search width of 400 and a relaxed DD-width of
2048, clearly dominate the results, with tighter optimality gaps and more problems solved.
For the remainder of the discussion, we will be referring primarily to those results. Recall
from Section 6.6.3 that different multi values can have different optimal solutions because the
inner optimizer may return a local optimum instead of the global optimum. When n = 10
(Table 6.2 and Fig. 6.5) and multi = 1, all of the problems are solved to optimality in under
1 hour, and when multi = 5, they are solved to optimality in under 2 hours. In some cases
the largest search settings alleviates some of the negative effects of multi = 1 (in Table 6.2,
seed 22, DD width 512, compare search width 40 to search width 100). This is likely because
a larger search provides more opportunities to stumble on improved solutions that will later
be trimmed as a result of using a low multi. For the the largest search settings, the effect
of multi is only to increase the runtime, however settings with smaller DD widths make it
clear that multi can have a strong impact on the underlying arc calculations. For example,
seed 59, with search width 40, and relaxed DD-width 256, has a different exact solution with
multi = 1 than it does with multi = 5; the cost drops from 388.5 to 371.1. Recall that
because the inner problem in the ARP is nonlinear and nonconvex, it is not possible to prove
optimality in general. In lieu of that, multi can be increased arbitrarily to increase confidence
in the solutions. If multi is increased, and the algorithm returns the same permutation as it
did for a lower multi value, that provides evidence that the optimal solution is stable. The
larger the increase in multi, the stronger the evidence.

We now focus on the results obtained with an embedded search width of 400 and a relaxed
DD-width of 2048 on instances of size n ∈ {15, 20} (Tables 6.4 and 6.5) with a maximum
runtime of 7 days. With multi = 1, three of the problems were solved in under a day, with
the other two taking around two days. However, many of the solutions are improved with a
higher multi (see the top row of Figures 6.6 and 6.7). For n = 15, the setting multi = 1 is
unlikely to yield optimal solutions. With multi = 5, only seeds 8 and 22 were solved exactly,
but they yielded much better solutions. In seed 22 for example, the best solution drops from
501.7 to 466.3. With n = 20, none of the problems were solved to optimality within the 7
day limit.

96

The only available comparison we can make is with [75]. However, because they assume that
the inner problem is a total black box, and we take advantage of the structure of the black
box, any time/computation comparison is meaningless. So we will merely be comparing our
solutions to theirs, to show that our method yields high quality solutions. They only used
seeds 42 and 73, so for the other problems we can only report our solutions. These results
are shown in Table 6.3. Notably the solution reported by Peel-and-Bound’s preferred setting
(ωs = 400, ω = 2048, multi= 5) is the same as the best previously found for n = 10, and
better than those previously reported for n = 15 and n = 20. In some cases, the gap is quite
large, for example with n = 20, seed= 42, our solution is 12.0% better. We also report the
best observed solution from any setting, and for 13 of the 15 instances the preferred setting
found the same solution as the best solution found by any setting. All of theses results use
B to evaluate the cost of a permutation, and thus they are directly comparable. In other
words, the values listed are not dependent on the optimality of the inner problem.

ARP seed 8 22 42 59 73 Search width 40 100 400

multi: 1 multi: 3 multi: 5

256 512 2048 256 512 2048 256 512 2048

480

500

520

S
ol

ut
io

n
(U

B
)

256 512 2048 256 512 2048 256 512 2048

0

5

10

15

20

G
ap

 (
%

)

256 512 2048 256 512 2048 256 512 2048
0

50

100

150

DD width

T
im

e
(m

in
)

Figure 6.6 ARP instances with n = 15 and a 7 day runtime (Table 6.4)

97

ARP seed 8 22 42 59 73 Search width 40 100 400

multi: 1 multi: 3 multi: 5

256 512 2048 256 512 2048 256 512 2048

600

625

650

675
S

ol
ut

io
n

(U
B

)

256 512 2048 256 512 2048 256 512 2048
10

20

30

40

50

DD width

G
ap

 (
%

)

Figure 6.7 ARP instances with n = 20 and a 7 day runtime (Table 6.5)

Table 6.3 Best solutions for n ∈ {10, 15, 20}

n seed [75]∗ Peel-and-Bound: Preferred Settings∗∗ Peel-and-Bound: Best Found∗∗∗

Average Value Best Value Value Optimality Gap (%) Value Optimality Gap (%)

10

8 - - 360.4 0.0 357.5 0.0
22 - - 364.5 0.0 364.5 0.0
42 374.9 346.7 346.7 0.0 346.7 0.0
59 - - 371.1 0.0 371.1 0.0
73 355.9 324.7 324.7 0.0 324.7 0.0

15

8 - - 469.7 0.0 469.7 0.0
22 - - 466.3 0.0 466.3 0.0
42 497.2 490.9 489.7 18.1 489.7 0.0
59 - - 525.6 20.6 508.5 0.0
73 525.6 519.9 488.6 20.7 488.6 16.1

20

8 - - 597.7 16.8 597.7 20.3
22 - - 601.1 31.5 601.1 31.5
42 737.0 707.2 622.2 35.2 622.2 30.1
59 - - 637.7 38.3 619.9 41.7
73 661.8 652.5 628.9 32.8 628.9 32.8

∗ The results from [75] in the Average Found column are the average solution cost over several
runs of the same stochastic algorithm. Best Found reports the best solution found in any run of

the algorithm.
∗∗ The preferred settings for Peel-and-Bound are: ωs = 400, ω = 2048, multi= 5.

∗∗∗ The bold values are the only instances where the best found solution by any setting is better
than the solution found using the preferred setting.

98

Table 6.4 ARP instances with n = 15 and a 7 day runtime

seed search DD width multi = 1 multi = 3 multi = 5
lb ub gap (%) time(hr) queue lb ub gap (%) time(hr) queue lb ub gap (%) time(hr) queue

8

40
256 499.8 499.8 0.0 47.6 0 478.8 478.8 0.0 138.3 0 408.1 478.1 14.6 - 1172
512 494.9 494.9 0.0 36.3 0 478.4 478.4 0.0 146.4 0 409.3 472.8 13.4 - 579
2048 500.1 500.1 0.0 28.2 0 469.7 469.7 0.0 22.8 0 469.7 469.7 0.0 121.2 0

100
256 497.2 497.2 0.0 29.3 0 478.8 478.8 0.0 132.5 0 428.4 469.7 8.8 - 311
512 501.3 501.3 0.0 20.7 0 478.8 478.8 0.0 137.1 0 469.7 469.7 0.0 115.1 0
2048 505.9 505.9 0.0 18.8 0 469.7 469.7 0.0 32.7 0 469.9 469.9 0.0 110.6 0

400
256 499.5 499.5 0.0 32.8 0 469.7 469.7 0.0 116.4 0 409.2 478.4 14.5 - 1011
512 499.5 499.5 0.0 16.0 0 478.8 478.8 0.0 143.3 0 469.7 469.7 0.0 122.7 0
2048 499.5 499.5 0.0 8.8 0 469.7 469.7 0.0 20.7 0 469.7 469.7 0.0 54.6 0

22

40
256 466.3 466.3 0.0 12.8 0 466.3 466.3 0.0 155.6 0 404.6 466.3 13.2 - 1152
512 494.7 494.7 0.0 26.5 0 466.9 466.9 0.0 69.7 0 415.0 466.3 11.0 - 179
2048 500.1 500.1 0.0 11.9 0 466.9 466.9 0.0 62.7 0 466.3 466.3 0.0 86.9 0

100
256 466.3 466.3 0.0 13.0 0 468.3 468.3 0.0 108.8 0 404.7 466.3 13.2 - 1099
512 471.4 471.4 0.0 5.1 0 466.3 466.3 0.0 48.5 0 415.6 466.3 10.9 - 167
2048 503.6 503.6 0.0 18.8 0 467.6 467.6 0.0 51.7 0 466.3 466.3 0.0 98.2 0

400
256 466.3 466.3 0.0 13.7 0 466.3 466.3 0.0 101.6 0 401.2 466.3 14.0 - 1058
512 470.6 470.6 0.0 6.1 0 466.3 466.3 0.0 53.2 0 412.9 466.3 11.5 - 206
2048 501.7 501.7 0.0 16.2 0 467.6 467.6 0.0 36.5 0 466.3 466.3 0.0 86.2 0

42

40
256 428.0 500.1 14.4 - 1259 396.5 495.4 20.0 - 1672 392.6 490.9 20.0 - 1634
512 436.7 500.1 12.7 - 316 398.2 498.0 20.0 - 747 394.6 493.5 20.0 - 712
2048 489.7 489.7 0.0 59.7 0 401.4 492.9 18.6 - 141 396.4 497.9 20.4 - 147

100
256 428.9 500.1 14.2 - 1203 396.6 490.9 19.2 - 1643 391.4 489.7 20.1 - 1537
512 434.8 505.6 14.0 - 414 399.8 490.9 18.6 - 752 395.2 490.9 19.5 - 709
2048 489.7 489.7 0.0 57.7 0 406.0 490.9 17.3 - 105 399.6 489.7 18.4 - 127

400
256 489.7 489.7 0.0 132.3 0 392.9 490.9 19.9 - 1312 388.0 489.7 20.8 - 1232
512 431.7 505.6 14.6 - 397 398.3 489.7 18.7 - 671 393.1 489.7 19.7 - 646
2048 489.7 489.7 0.0 48.5 0 404.4 490.9 17.6 - 109 400.8 489.7 18.1 - 126

59

40
256 523.2 523.2 0.0 132.5 0 423.4 526.1 19.5 - 1617 412.0 521.1 20.9 - 1490
512 523.2 523.2 0.0 124.9 0 427.8 523.2 18.2 - 721 412.9 512.5 19.4 - 661
2048 523.2 523.2 0.0 26.0 0 508.5 508.5 0.0 141.7 0 417.1 530.1 21.3 - 156

100
256 523.2 523.2 0.0 115.4 0 423.1 521.1 18.8 - 1517 411.0 521.1 21.1 - 1386
512 523.2 523.2 0.0 68.4 0 428.1 508.5 15.8 - 655 411.7 512.5 19.7 - 591
2048 523.2 523.2 0.0 18.8 0 508.5 508.5 0.0 138.9 0 417.4 512.5 18.6 - 144

400
256 523.2 523.2 0.0 89.0 0 421.5 508.5 17.1 - 1330 409.5 512.5 20.1 - 1208
512 523.2 523.2 0.0 84.2 0 423.6 520.3 18.6 - 543 412.6 512.5 19.5 - 613
2048 530.4 530.4 0.0 10.0 0 508.5 508.5 0.0 137.2 0 417.6 525.6 20.6 - 147

73

40
256 418.2 500.8 16.5 - 1,253 390.9 491.5 20.5 - 1,653 375.7 491.5 23.6 - 1,557
512 495.2 495.2 0.0 155.2 0 394.5 491.5 19.7 - 737 378.4 491.5 23.0 - 689
2048 495.2 495.2 0.0 38.1 0 399.3 505.1 21.0 - 152 382.9 502.6 23.8 - 149

100
256 415.5 495.2 16.1 - 1,010 391.2 488.6 19.9 - 1,672 375.1 491.5 23.7 - 1,509
512 495.2 495.2 0.0 120.7 0 396.3 488.6 18.9 - 741 378.0 491.5 23.1 - 671
2048 498.0 498.0 0.0 37.9 0 403.0 491.2 18.0 - 134 383.2 501.3 23.6 - 144

400
256 422.7 495.2 14.6 - 1,098 387.7 488.6 20.6 - 1,361 372.9 488.6 23.7 - 1,284
512 495.2 495.2 0.0 118.7 0 393.9 488.6 19.4 - 658 377.6 488.6 22.7 - 641
2048 495.2 495.2 0.0 27.5 0 410.1 488.6 16.1 - 77 387.5 488.6 20.7 - 135

search = width of embedded search, DD width = width of relaxed dd
lb = lower bound, ub = upper bound, gap = optimality gap,

time = time to solve if solved, queue = nodes in the processing queue

99

Table 6.5 ARP instances with n = 20 and a 7 day runtime

seed search DD width multi = 1 multi = 3 multi = 5
lb ub gap (%) queue lb ub gap (%) queue lb ub gap (%) queue

8

40
256 512.7 629.4 18.5 1,012 493.5 626.6 21.2 708 477.4 619.6 22.9 639
512 524.0 635.9 17.6 557 501.4 626.6 20.0 360 483.2 622.1 22.3 332
2048 533.2 667.9 20.2 90 509.7 653.0 22.0 70 495.0 637.0 22.3 70

100
256 513.3 626.6 18.1 1,101 492.9 626.6 21.3 679 478.2 599.7 20.3 678
512 524.2 629.4 16.7 598 500.4 626.6 20.1 353 484.7 600.4 19.3 369
2048 535.2 653.9 18.2 102 510.3 642.4 20.6 76 494.7 622.1 20.5 75

400
256 512.7 629.0 18.5 948 492.1 602.8 18.4 626 476.7 597.7 20.2 581
512 524.3 629.4 16.7 509 499.3 622.9 19.9 328 483.4 597.7 19.1 344
2048 552.9 621.4 11.0 84 514.1 621.4 17.3 94 497.5 597.7 16.8 91

22

40
256 442.3 609.7 27.5 710 408.8 611.6 33.1 644 305.6 623.7 51.0 629
512 447.5 614.5 27.2 380 415.6 611.6 32.1 331 310.9 620.1 49.9 320
2048 451.8 661.6 31.7 69 423.9 611.6 30.7 69 410.6 630.4 34.9 66

100
256 441.2 609.7 27.6 649 407.7 611.6 33.3 590 303.5 611.6 50.4 578
512 447.5 609.7 26.6 389 415.4 611.6 32.1 319 310.3 619.1 49.9 314
2048 453.8 614.5 26.2 80 425.4 611.6 30.5 69 411.5 629.3 34.6 66

400
256 439.8 609.7 27.9 582 405.6 611.6 33.7 515 301.3 611.6 50.8 496
512 446.2 609.7 26.8 357 414.2 611.6 32.3 297 308.8 614.2 49.7 284
2048 451.8 638.4 29.2 69 425.4 611.6 30.5 68 412.1 601.1 31.5 67

42

40
256 445.6 661.9 32.7 616 409.0 650.6 37.1 613 387.8 638.8 39.3 598
512 448.7 665.8 32.6 321 412.3 661.5 37.7 331 391.0 638.8 38.8 331
2048 457.6 666.5 31.3 66 430.6 673.5 36.1 65 404.3 642.3 37.1 65

100
256 444.4 658.2 32.5 591 409.2 623.7 34.4 597 386.9 632.2 38.8 575
512 448.8 656.5 31.6 327 411.3 623.7 34.1 301 389.1 638.0 39.0 297
2048 459.3 665.8 31.0 67 429.8 664.2 35.3 63 404.8 642.3 37.0 63

400
256 443.1 641.2 30.9 548 408.6 623.7 34.5 522 384.9 626.7 38.6 499
512 448.4 641.2 30.1 290 411.0 623.7 34.1 276 388.1 623.7 37.8 273
2048 458.3 659.6 30.5 66 435.0 622.2 30.1 65 403.2 622.2 35.2 63

59

40
256 439.0 668.1 34.3 612 406.4 639.0 36.4 594 361.9 621.7 41.8 589
512 468.4 671.0 30.2 331 422.1 657.0 35.8 316 352.4 642.6 45.2 311
2048 489.6 681.3 28.1 68 429.9 647.4 33.6 70 392.7 647.3 39.3 67

100
256 438.5 666.4 34.2 592 405.8 639.0 36.5 568 359.7 621.6 42.1 560
512 468.2 670.1 30.1 325 421.9 637.3 33.8 308 377.4 623.9 39.5 301
2048 492.6 678.9 27.5 71 430.7 646.5 33.4 68 393.3 637.7 38.3 69

400
256 438.9 637.9 31.2 595 404.8 620.4 34.7 514 361.7 619.9 41.7 469
512 469.2 625.6 25.0 351 420.9 624.3 32.6 293 381.1 621.6 38.7 283
2048 489.3 669.2 26.9 72 428.4 642.4 33.3 67 393.4 637.7 38.3 66

73

40
256 429.0 670.5 36.0 630 420.8 653.5 35.6 614 414.0 638.2 35.1 559
512 434.1 687.4 36.8 312 424.6 654.1 35.1 314 419.5 652.6 35.7 313
2048 462.0 691.6 33.2 74 431.6 651.3 33.7 68 423.9 653.7 35.2 66

100
256 427.8 665.0 35.7 562 420.3 638.2 34.1 571 415.0 638.2 35.0 558
512 434.6 655.1 33.7 321 424.6 652.6 34.9 316 419.4 650.6 35.6 309
2048 462.2 665.9 30.6 69 430.7 645.2 33.2 66 423.9 637.6 33.5 68

400
256 427.5 644.3 33.6 543 418.9 638.2 34.4 485 412.9 638.2 35.3 507
512 434.1 654.1 33.6 300 423.8 642.9 34.1 291 418.2 642.5 34.9 288
2048 462.2 657.2 29.7 70 431.1 635.5 32.2 63 422.7 628.9 32.8 65

search = width of embedded search, DD width = width of relaxed dd
lb = lower bound, ub = upper bound, gap = optimality gap,

queue = nodes in the processing queue

6.7.4 Final Experiment: Test of Larger Instances

In our final round of experiments we run the larger instances with n ∈ {25, 30}. Due to
limited resource availability we had to use a slightly less powerful computer equipped with
an Intel E5-2650 v4 Broadwell 2.2GHz CPU with 64Gb RAM. We use a relaxed DD-width of
2048, and we test larger embedded search sizes than before: 400, 1024, and 2048. We limit
the runtime to 3 days, again due to resource availability, but this has the added benefit of
showing that the algorithm works well within a smaller time-frame than the 7 days used in

100

Section 6.7.3.

The results, shown in Tables 6.6 and 6.7, suggest that increasing the width of the embedded
search may be worth the extra computational cost of constructing the additional solutions,
but the results are not enough to be conclusive. ωs = 2048 finds the best solutions more
often than the other settings, so as before we will choose the largest search setting to be
the preferred setting. More experiments would be needed to make a strong recommendation
between the search settings, but it is clear that all of the settings used in this section are
effective.

We again compare our results with [75] where possible, and record the best solution found
using our preferred setting as well as the best solutions found by any setting. This is shown
in Table 6.8. As before, the solutions from our preferred setting are better than the best
solutions found by [75] for all of the problems. The preferred solution only matches the
best found solution for 5 of the 10 problems. However, the gap between the two solutions is
quite small for the other 5 instances. The largest difference, which occurs with n = 25 and
seed= 42, is only 2.4%.

Table 6.6 ARP instances with n = 25, a relaxed DD-width of 2048, and a 3 day runtime

Seed Search multi = 1 multi = 3 multi = 5
lb ub gap (%) queue lb ub gap (%) queue lb ub gap (%) queue

8
400 538.1 781.5 31.2 4 510.3 778.7 34.5 10 503.2 760.6 33.8 9
1024 538.1 778.9 30.9 2 510.1 780.1 34.6 9 503.2 760.6 33.8 9
2048 538.1 778.9 30.9 2 510.3 774.0 34.1 9 499.7 763.3 34.5 7

22
400 506.8 842.9 39.9 10 475.4 774.4 38.6 10 463.8 791.2 41.4 11
1024 506.8 787.0 35.6 11 475.4 774.0 38.6 10 463.7 785.3 41.0 7
2048 506.8 784.6 35.4 10 475.4 774.0 38.6 9 463.7 784.6 40.9 7

42
400 513.9 783.5 34.4 2 497.5 761.1 34.6 9 467.2 733.3 36.3 9
1024 513.9 776.3 33.8 2 497.5 755.0 34.1 9 467.2 751.3 37.8 9
2048 513.9 778.7 34.0 2 497.5 755.0 34.1 9 467.2 751.3 37.8 9

59
400 508.6 794.6 36.0 6 486.0 747.6 35.0 10 466.8 725.2 35.6 9
1024 508.8 795.6 36.1 11 486.0 751.5 35.3 10 466.1 724.5 35.7 7
2048 508.6 781.3 34.9 6 481.3 738.2 34.8 7 466.8 718.2 35.0 9

73
400 494.7 797.3 38.0 9 461.2 793.8 41.9 11 447.4 743.4 39.8 7
1024 493.6 790.3 37.5 7 459.4 784.9 41.5 8 447.4 743.4 39.8 7
2048 493.6 782.0 36.9 7 459.1 768.0 40.2 7 447.4 743.4 39.8 7

search = width of embedded search, lb = lower bound, ub = upper bound,
gap = optimality gap, queue = nodes in the processing queue

101

Table 6.7 ARP instances with n = 30, a relaxed DD-width of 2048, and a 3 day runtime

Seed Search multi = 1 multi = 3 multi = 5
lb ub gap (%) queue lb ub gap (%) queue lb ub gap (%) queue

8
400 523.5 955.5 45.2 4 486.9 906.9 46.3 7 471.8 904.2 47.8 7
1024 523.5 935.7 44.1 4 486.9 894.8 45.6 7 464.1 898.7 48.4 6
2048 523.5 935.7 44.1 4 486.9 892.2 45.4 7 464.1 898.7 48.4 6

22
400 608.8 901.8 32.5 5 597.5 896.2 33.3 8 503.7 908.5 44.6 7
1024 608.8 896.7 32.1 5 593.5 889.6 33.3 7 503.7 905.6 44.4 7
2048 608.8 897.9 32.2 5 597.5 900.6 33.6 6 503.5 892.8 43.6 5

42
400 515.9 906.6 43.1 9 486.7 880.1 44.7 7 465.7 858.6 45.8 6
1024 513.7 911.8 43.7 8 486.7 873.1 44.3 7 465.7 854.8 45.5 6
2048 512.9 861.1 40.4 7 486.7 871.3 44.1 7 465.7 835.1 44.2 6

59
400 552.0 923.7 40.2 6 537.4 906.2 40.7 7 449.1 872.7 48.5 3
1024 552.0 910.6 39.4 6 535.7 858.1 37.6 6 449.1 864.5 48.1 3
2048 552.0 894.8 38.3 6 534.6 868.3 38.4 2 449.1 864.1 48.0 3

73
400 504.1 896.6 43.8 5 495.1 903.9 45.2 4 480.2 904.3 46.9 5
1024 504.1 975.2 48.3 5 495.1 932.8 46.9 3 480.2 906.3 47.0 5
2048 504.1 945.1 46.7 5 495.1 908.5 45.5 2 478.5 882.9 45.8 2

search = width of embedded search, lb = lower bound, ub = upper bound,
gap = optimality gap, queue = nodes in the processing queue

Table 6.8 Best solutions for n ∈ {25, 30}

n seed [75]∗ Peel-and-Bound: Preferred Settings∗∗ Peel-and-Bound: Best Found∗∗∗

Average Value Best Value Value Optimality Gap (%) Value Optimality Gap (%)

25

8 - - 763.3 34.5 760.6 33.8
22 - - 784.6 40.9 774.0 38.6
42 881.5 865.7 751.3 37.8 733.3 36.3
59 - - 718.2 35 718.2 35.0
73 873.6 863.7 743.4 39.8 743.4 39.8

30

8 - - 898.7 48.4 892.2 45.4
22 - - 892.8 43.6 892.8 43.6
42 1084.6 1065.2 835.1 44.2 835.1 44.2
59 - - 864.1 48.0 858.1 37.6
73 967.7 952.1 882.9 45.8 882.9 45.8

∗ The results from [75] in the Average Found column are the average solution cost over several
runs of the same stochastic algorithm. Best Found reports the best solution found in any run of

the algorithm.
∗∗ The preferred settings for Peel-and-Bound are: ωs = 2048, ω = 2048, multi= 5.

∗∗∗ The bold values are the instances where the best found solution by any setting is better than
the solution found using the preferred setting.

6.8 Opportunities for Parallel Computing

Consider the number of diagrams left in the queues from the results tables. Large values indi-
cate that: (1) a significant amount of work remains to be done before closing those instances,
and (2) that work is extremely parallelizable because each DD in the queue represents a
sub-problem to be solved that is totally independent from the rest.

102

We ran all of our experiments on a single thread, but as long as there are unused threads
available, each of those DDs could be assigned to a different thread without the need for
them to communicate [7, 9, 44]. Thus, an implementation that included parallel processing
could handle problems at a much larger scale if many CPUs were available. Additionally,
setting multi > 1 is parallelizable, as it represents multi independent restarts of SQSLP at
disjoint areas of the search space.

6.9 Conclusions on the Framework for Outer/Inner Optimazation Problems

In this chapter, we study outer-inner optimization problems, where the outer problem is
combinatorial and the inner problem is numerical and black-box. We introduce the first
optimization framework designed to find exact solutions for such problems under mild as-
sumptions about the inner problem. Global trajectory optimization is one real-world example
of such problems, and we use the Asteroid Routing Problem (ARP) as a case study. Although
the inner optimizer in the ARP returns a local optimum, we show how to control the like-
lihood that this local optimum is also global. From the perspective of the outer problem,
our proposed method successfully solves instances of up to 15 celestial bodies, and finds
high-quality solutions for larger problems. Notably, we find new best-known solutions for
several instances, many of them likely to be optimal. Additionally, we have made our im-
plementation, data, and a detailed guide on how to use the solver, available in a public
repository.

In the domain of global trajectory optimization, our methods represent a pioneering ap-
proach not only for finding optimal solutions but also for discovering high-quality feasible
solutions. This work opens the door to future research that could adapt our solver to tackle
other complex challenges, such as those involving multiple gravity assists. More broadly,
we provide a robust framework for addressing sequencing problems where the cost function
is computationally demanding. The proposed approach is highly scalable and future work
should explore how to set its parameters according to the number of CPUs available and
problem size. The principles underlying our approach are versatile, promising applicability
to a diverse range of problems in the future.

6.10 Acknowledgements

We received advice about global trajectory optimization from the Advanced Concepts Team
at the European Space Agency. We would like to specifically thank Dario Izzo and Emmanuel
Blazquez for their input on this project.

103

CHAPTER 7 CONCLUSION

When I began the work in this thesis, I had just familiarized myself with DD-based BnB, and
I was entranced by the idea. However, it left me wondering: Why do they throw away the
DDs at every iteration? That is the question that led to PnB, an algorithm that can trade
memory for efficiency. The goal when I started implementing my ideas was to build on the
BnB work to prove that a DD-based solver could compete with a traditional cutting edge
solver. Around the same time, ddo and Haddock were in pursuit of the same goal. There has
since been an enormous increase in the number of researchers using DDs, applying them to
a variety of topics, and improving the theory underlying them. However, DD-based solvers
are still in their infancy compared to modern MIP and CP solvers which have had decades
of refinement. There are so many unanswered questions, and so many simple ideas that have
not been explored yet with DD-solvers.

7.1 Some Ideas for Future Research

7.1.1 Implicit Relaxed DDs Everywhere

The largest single performance boost that I encountered while improving the PnB imple-
mentation was the switch to implicit relaxed DDs (Chapter 5). Following that, I gleefully
deleted all of the code responsible for managing arc labeling, arc storage, and arc weighting.
This is an idea that is easy to test in other applications. It merely requires making the shift
from thinking about labeled arcs to thinking about labeled nodes. This combination of being
both easy to implement and highly efficient makes it a great target for incorporation with
other solvers and applications. There are also unexplored questions about what constraint
propagation techniques become available, or worthwhile, when all the nodes in a relaxed DD
have an exact label.

7.1.2 More Decision Diagrams by Separation

Constructing relaxed DDs by separation has some huge advantages over using top-down
compilation. Aside from the advantages laid out in this thesis pertaining to PnB, using
separation allows you to mirror your constraint propagators, one working top-down, the
other bottom-up. Separation also allows you to start from a state where all equivalent nodes
have already been merged, making it easier to generate compact representations. However,
there has been significantly less work leveraging separation, apparently due to its perceived

104

complexity.

Some notable directions for future research:

1. There seems to be a competition among DD researchers to define a modeling language
for using DDs, and then get everyone else to use it. However, to the best of my
knowledge, all of them account for node merging, and none of them account for node
splitting. Work on generic modeling for DDs that incorporates node splitting would be
worthwhile.

2. Is there a dynamic method of splitting nodes in a relaxed DD that is more efficient than
top-down or bottom-up? I have been unable to find one thus far, but it seems likely
that such a method exists. The challenge to overcome is that if you begin with the
first layer and proceed top-down, then it is computationally inexpensive to keep all of
the state information on the nodes in the layers above and below the splits up to date.
However, if instead the nodes are split dynamically, with a new layer being selected
for each node split, then many nodes have to be updated to leverage the information
gained by the split.

3. Can separation and merging be combined into something better than the sum of its
parts? In Section 4.2.3, we explored the idea of a version of PnB that uses top-down
compilation at each iteration. This would split at some parts of the algorithm, and
merge at others. Whether or not that specific idea is useful, an exploration of techniques
that leverage both separation and top down compilation could yield new algorithms
that benefit both compilation techniques.

4. Separation provides such a perfect template for rewriting CP constraints as DD-based
constraints. There has been work in this area [2,82,83], but there is room for substan-
tially more.

7.1.3 Exact Solutions to Inner/Outer Optimization Problems

In Chapter 6, we provided a method of finding exact solutions to a problem that was gen-
erally thought not to admit them. This is part of a broader class of problems that have an
outer combinatorial optimization problem combined with an inner computationally expensive
black-box problem. We showed that for the Asteroid Routing Problem, the black-box could
be modified to create a version of the black-box capable of generating valid bounds on the
weights of arcs in a relaxed DD. This opens up a huge opportunity to apply this concept to
other optimization problems with expensive black-box functions.

105

7.2 Final Thoughts

This thesis includes a tutorial to get up to speed with decision diagrams, followed by a
thorough discussion of peel-and-bound. In the papers I drew from, we demonstrated that
peel-and-bound can achieve cutting edge results even though, like the other DD-based solvers,
it is still in its infancy. This thesis serves as a demonstration of how powerful a DD-based
solver that leverages separation can be, and calls for more work in this area. It also introduced
implicit relaxed DDs, which are not only highly efficient, but will also help make separation
easier to implement, which will hopefully broaden their appeal.

The final demonstration in this thesis is the application of peel-and-bound to find exact solu-
tions to global trajectory optimization problems. The framework described has the potential
to make an impact not just on trajectory-related research, but also on other areas where the
outer combinatorial optimization problem requires solving an expensive inner optimization
problem.

This thesis not only advances the understanding and application of decision diagrams through
the introduction of innovative methods like peel-and-bound and implicit relaxed DDs, but
also sets the stage for future breakthroughs in complex optimization challenges across various
fields.

106

REFERENCES

[1] D. Bergman, A. Cire, W.-J. van Hoeve, and J. Hooker, Decision Diagrams for Opti-
mization. Springer International Publishing, 01 2016.

[2] M. P. Castro, A. A. Cire, and J. C. Beck, “Decision diagrams for discrete optimization:
A survey of recent advances,” INFORMS Journal on Computing, vol. 34, no. 4, pp.
2271–2295, 2022.

[3] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh approach to
numerical computing,” SIAM review, vol. 59, no. 1, pp. 65–98, 2017. [Online]. Available:
https://doi.org/10.1137/141000671

[4] X. Gillard, V. Coppé, P. Schaus, and A. A. Cire, “Improving the filtering of branch-and-
bound mdd solver,” in Integration of Constraint Programming, Artificial Intelligence,
and Operations Research, 18th International Conference, CPAIOR 2021, ser. Lecture
Notes in Computer Science. Springer International Publishing, 2021.

[5] X. Gillard, “Discrete optimization with decision diagrams: design of a generic solver,
improved bounding techniques, and discovery of good feasible solutions with large neigh-
borhood search,” Ph.D. dissertation, UCL-Université Catholique de Louvain, 2022.

[6] I. Rudich, Q. Cappart, and L.-M. Rousseau, “Peel-and-bound: Generating stronger
relaxed bounds with multivalued decision diagrams,” in International Conference on
Principles and Practice of Constraint Programming, 2022.

[7] D. Bergman, A. A. Cire, A. Sabharwal, H. Samulowitz, V. Saraswat, and W.-J. van
Hoeve, “Parallel combinatorial optimization with decision diagrams,” in Proceedings of
the International Conference on AI and OR Techniques in Constraint Programming for
Combinatorial Optimization Problems, 2014, pp. 351–367.

[8] D. Bergman, A. Cire, W.-J. van Hoeve, and J. Hooker, “Discrete optimization with
decision diagrams,” INFORMS Journal on Computing, vol. 28, pp. 47–66, 02 2016.

[9] I. Rudich, Q. Cappart, and L.-M. Rousseau, “Improved peel-and-bound: Methods for
generating dual bounds with multivalued decision diagrams,” Journal of Artificial In-
telligence Research, vol. 77, pp. 1489–1538, 2023.

https://doi.org/10.1137/141000671

107

[10] H. Andersen, T. Hadzic, J. Hooker, and P. Tiedemann, “A constraint store based on
multivalued decision diagrams,” in Bessière, C. (eds) Principles and Practice of Con-
straint Programming – CP 2007, ser. Lecture Notes in Computer Science, vol. 4741, 09
2007, pp. 118–132.

[11] T. Hadzic, J. Hooker, B. O’Sullivan, and P. Tiedemann, “Approximate compilation of
constraints into multivalued decision diagrams,” in Stuckey, P.J. (eds) Principles and
Practice of Constraint Programming. CP 2008, ser. Lecture Notes in Computer Science,
09 2008, pp. 448–462.

[12] S. Hoda, W.-J. van Hoeve, and J. Hooker, “A systematic approach to mdd-based con-
straint programming,” in Cohen, D. (eds) Principles and Practice of Constraint Pro-
gramming – CP 2010. CP 2010, ser. Lecture Notes in Computer Science, vol. 6308, 09
2010, pp. 266–280.

[13] T. Hadzic and J. Hooker, “Discrete global optimization with binary decision diagrams,”
in Workshop on Global Optimization: Integrating Convexity, Optimization, Logic Pro-
gramming, and Computational Algebraic Geometry (GICOLAG). Vienna, 2006.

[14] T. Hadzic and J. Hooker, “Postoptimality analysis for integer programming using binary
decision diagrams,” in GICOLAG Workshop (Global Optimization: Integrating Convex-
ity, Optimization, Logic Programming, and Computational Algebraic Geometry), Vi-
enna. Technical report, Carnegie Mellon University, 2006.

[15] J. Hooker, “Decision diagrams and dynamic programming,” in Gomes, C., Sellmann,
M. (eds) Integration of AI and OR Techniques in Constraint Programming for Combina-
torial Optimization Problems. CPAIOR 2013, ser. Lecture Notes in Computer Science,
vol. 7874, 05 2013.

[16] H. M. Salkin and C. A. De Kluyver, “The knapsack problem: a survey,” Naval Research
Logistics Quarterly, vol. 22, no. 1, pp. 127–144, 1975.

[17] L. F. Escudero, “An inexact algorithm for the sequential ordering problem,” European
Journal of Operational Research, vol. 37, no. 2, pp. 236–249, 1988.

[18] Bryant, “Graph-based algorithms for boolean function manipulation,” IEEE Transac-
tions on Computers, vol. C-35, no. 8, pp. 677–691, 1986.

[19] I. Wegener, Branching programs and binary decision diagrams: theory and applications.
SIAM, 2000.

108

[20] D. Bergman, W.-J. van Hoeve, and J. Hooker, “Manipulating mdd relaxations for com-
binatorial optimization,” in Lecture Notes in Computer Science, vol. 6697, 05 2011, pp.
20–35.

[21] D. Bergman, A. A. Cire, W.-J. Van Hoeve, and J. N. Hooker, “Variable ordering for the
application of bdds to the maximum independent set problem,” in Integration of AI and
OR Techniques in Contraint Programming for Combinatorial Optimzation Problems:
9th International Conference, CPAIOR 2012, Nantes, France, May 28–June1, 2012.
Proceedings 9. Springer, 2012, pp. 34–49.

[22] D. Bergman, A. A. Cire, W.-J. van Hoeve, and J. N. Hooker, “Optimization bounds
from binary decision diagrams,” INFORMS Journal on Computing, vol. 26, no. 2, pp.
253–268, 2014.

[23] X. Gillard and P. Schaus, “Large neighborhood search with decision diagrams,” in In-
ternational Joint Conference on Artificial Intelligence, 2022.

[24] V. Coppé, X. Gillard, and P. Schaus, “Decision diagram-based branch-and-bound with
caching for dominance and suboptimality detection,” INFORMS Journal on Computing,
2024.

[25] V. Coppé, “Advances in discrete optimization with decision diagrams: Dominance,
caching and aggregation-based heuristics,” Ph.D. dissertation, Carnegie Mellon Uni-
versity, USA, 2024.

[26] T. Hadzic, J. Hooker, B. O’Sullivan, and P. Tiedemann, “Approximate compilation of
constraints into multivalued decision diagrams,” in International Conference on Princi-
ples and Practice of Constraint Programming. Springer, 2008, pp. 448–462.

[27] T. Hadzic, J. N. Hooker, and P. Tiedemann, “Propagating separable equalities in an
mdd store,” in International Conference on Integration of Artificial Intelligence (AI)
and Operations Research (OR) Techniques in Constraint Programming. Springer, 2008,
pp. 318–322.

[28] A. A. Cire and W.-J. van Hoeve, “Multivalued decision diagrams for sequencing prob-
lems,” Operations Research, vol. 61, no. 6, pp. 1259, 1462, 2013.

[29] J.-C. Régin, “A filtering algorithm for constraints of difference in csps,” in AAAI, vol. 94,
1994, pp. 362–367.

109

[30] X. Gillard, P. Schaus, and V. Coppé, “Ddo, a generic and efficient framework for mdd-
based optimization,” in Proceedings of the Twenty-Ninth International Conference on
International Joint Conferences on Artificial Intelligence, 2021, pp. 5243–5245.

[31] V. Copp’e, X. Gillard, and P. Schaus, “Branch-and-bound with barrier: Dominance and
suboptimality detection for dd-based branch-and-bound,” ArXiv, vol. abs/2211.13118,
2022.

[32] Z. Tang and W.-J. van Hoeve, “Dual bounds from decision diagram-based route relax-
ations: An application to truck-drone routing,” Transportation Science, vol. 58, no. 1,
pp. 257–278, 2024.

[33] A. Karahalios and W.-J. van Hoeve, “Column elimination for capacitated vehicle rout-
ing problems,” in International Conference on Integration of Constraint Programming,
Artificial Intelligence, and Operations Research. Springer, 2023, pp. 35–51.

[34] W.-J. Hoeve, “Graph coloring with decision diagrams,” Mathematical Programming, vol.
192, pp. 631–674, 05 2021.

[35] R. Gentzel, L. Michel, and W.-J. v. Hoeve, “Haddock: A language and architecture for
decision diagram compilation,” in International Conference on Principles and Practice
of Constraint Programming. Springer, 2020, pp. 531–547.

[36] R. Gentzel, L. Michel, and W.-J. van Hoeve, “Optimization bounds from decision dia-
grams in haddock,” in International Conference on Integration of Constraint Program-
ming, Artificial Intelligence, and Operations Research. Springer, 2023, pp. 150–166.

[37] R. Kuroiwa and J. C. Beck, “Domain-independent dynamic programming: Generic state
space search for combinatorial optimization,” in Proceedings of the International Con-
ference on Automated Planning and Scheduling, vol. 33, 2023, pp. 236–244.

[38] F. A. Aloul, I. L. Markov, and K. A. Sakallah, “Force: a fast and easy-to-implement
variable-ordering heuristic,” in Proceedings of the 13th ACM Great Lakes symposium on
VLSI, 2003, pp. 116–119.

[39] B. Bollig and I. Wegener, “Improving the variable ordering of obdds is np-complete,”
IEEE Transactions on computers, vol. 45, no. 9, pp. 993–1002, 1996.

[40] M. Rice and S. Kulhari, “A survey of static variable ordering heuristics for efficient
bdd/mdd construction,” University of California, Tech. Rep, p. 130, 2008.

110

[41] R. Rudell, “Dynamic variable ordering for ordered binary decision diagrams,” in Pro-
ceedings of 1993 International Conference on Computer Aided Design (ICCAD). IEEE,
1993, pp. 42–47.

[42] A. Parjadis, Q. Cappart, L.-M. Rousseau, and D. Bergman, “Improving branch-and-
bound using decision diagrams and reinforcement learning,” in International Confer-
ence on Integration of Constraint Programming, Artificial Intelligence, and Operations
Research. Springer, 2021, pp. 446–455.

[43] A. Karahalios and W.-J. Hoeve, “Variable ordering for decision diagrams: A portfolio
approach,” Constraints, vol. 27, no. 1-2, pp. 1–18, 01 2022.

[44] G. Perez and J.-C. Régin, “Parallel algorithms for operations on multi-valued decision
diagrams,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, no. 1,
Apr. 2018.

[45] P. Baptiste, C. Le Pape, and W. Nuijten, Constraint-Based Scheduling: Applying Con-
straint Programming to Scheduling Problems, ser. International Series in Operations
Research and Management Science, Kluwer. Springer International Publishing, 2001.

[46] G. Reinelt, “Tsplib. a traveling salesman problem library,” INFORMS Journal on Com-
puting, vol. 3, pp. 376–384, 11 1991.

[47] J. N. Hooker, “Job sequencing bounds from decision diagrams,” in Beck, J. (eds) Princi-
ples and Practice of Constraint Programming. CP 2017, ser. Lecture Notes in Computer
Science, 08 2017, pp. 565–578.

[48] J. Hooker, “Improved job sequencing bounds from decision diagrams,” in Schiex, T.,
de Givry, S. (eds) Principles and Practice of Constraint Programming. CP 2019, ser.
Lecture Notes in Computer Science, vol. 11802, 09 2019, pp. 268–283.

[49] M. López-Ibáñez and C. Blum, “Benchmark instances for the travelling salesman
problem with time windows (tsptw),” https://lopez-ibanez.eu/tsptw-instances, Nov
2022, accessed: 2022-01-22. [Online]. Available: https://lopez-ibanez.eu/tsptw-instances

[50] N. Ascheuer, “Hamiltonian path problems in the on-line optimization of flexible manu-
facturing systems,” Ph.D. dissertation, Konrad–Zuse–Zentrum für Informationstechnik
Berlin, 1996.

[51] Y. Dumas, J. Desrosiers, E. Gelinas, and M. M. Solomon, “An optimal algorithm for
the traveling salesman problem with time windows,” Operations research, vol. 43, no. 2,
pp. 367–371, 1995.

https://lopez-ibanez.eu/tsptw-instances

111

[52] M. Gendreau, A. Hertz, G. Laporte, and M. Stan, “A generalized insertion heuristic for
the traveling salesman problem with time windows,” Operations Research, vol. 46, no. 3,
pp. 330–335, 1998.

[53] A. Langevin, M. Desrochers, J. Desrosiers, S. Gélinas, and F. Soumis, “A two-commodity
flow formulation for the traveling salesman and the makespan problems with time win-
dows,” Networks, vol. 23, no. 7, pp. 631–640, 1993.

[54] J. W. Ohlmann and B. W. Thomas, “A compressed-annealing heuristic for the traveling
salesman problem with time windows,” INFORMS Journal on Computing, vol. 19, no. 1,
pp. 80–90, 2007.

[55] G. Pesant, M. Gendreau, J.-Y. Potvin, and J.-M. Rousseau, “An exact constraint logic
programming algorithm for the traveling salesman problem with time windows,” Trans-
portation Science, vol. 32, no. 1, pp. 12–29, 1998.

[56] J.-Y. Potvin and S. Bengio, “The vehicle routing problem with time windows part ii:
genetic search,” INFORMS journal on Computing, vol. 8, no. 2, pp. 165–172, 1996.

[57] R. Baldacci, A. Mingozzi, and R. Roberti, “New state-space relaxations for solving the
traveling salesman problem with time windows,” INFORMS Journal on Computing,
vol. 24, no. 3, pp. 356–371, 2012.

[58] D. Izzo, I. Getzner, D. Hennes, and L. F. Simões, “Evolving solutions to tsp variants for
active space debris removal,” in Proceedings of the 2015 Annual Conference on Genetic
and Evolutionary Computation, 2015, pp. 1207–1214.

[59] J. F. Ehmke, A. M. Campbell, and B. W. Thomas, “Vehicle routing to minimize time-
dependent emissions in urban areas,” European Journal of Operational Research, vol.
251, no. 2, pp. 478–494, 2016.

[60] H. Andersson, K. Fagerholt, and K. Hobbesland, “Integrated maritime fleet deployment
and speed optimization: Case study from roro shipping,” Computers & Operations Re-
search, vol. 55, pp. 233–240, 2015.

[61] A. Shirazi, J. Ceberio, and J. A. Lozano, “Spacecraft trajectory optimization: A review
of models, objectives, approaches and solutions,” Progress in Aerospace Sciences, vol.
102, pp. 76–98, 2018.

[62] D. Izzo, L. F. Simões, M. Märtens, G. C. de Croon, A. Heritier, and C. H. Yam, “Search
for a grand tour of the jupiter galilean moons,” in Proceedings of the 15th annual con-
ference on Genetic and evolutionary computation, 2013, pp. 1301–1308.

112

[63] O. Abdelkhalik and A. Gad, “Dynamic-size multiple populations genetic algorithm for
multigravity-assist trajectory optimization,” Journal of Guidance, Control, and Dynam-
ics, vol. 35, no. 2, pp. 520–529, 2012.

[64] M. Ceriotti and M. Vasile, “Automated multigravity assist trajectory planning with
a modified ant colony algorithm,” Journal of Aerospace Computing, Information, and
Communication, vol. 7, no. 9, pp. 261–293, 2010.

[65] D. Izzo, V. Becerra, D. Myatt, S. Nasuto, and J. Bishop, “Search space pruning and
global optimisation of multiple gravity assist spacecraft trajectories,” Journal of Global
Optimization, vol. 38, pp. 283–296, 2007.

[66] M. Vasile and P. De Pascale, “Preliminary design of multiple gravity-assist trajectories,”
Journal of Spacecraft and Rockets, vol. 43, no. 4, pp. 794–805, 2006.

[67] T. Lee, M. Leok, and N. H. McClamroch, “A combinatorial optimal control problem for
spacecraft formation reconfiguration,” in 2007 46th IEEE Conference on Decision and
Control. IEEE, 2007, pp. 5370–5375.

[68] A. E. Petropoulos, E. P. Bonfiglio, D. J. Grebow, T. Lam, J. S. Parker, J. Arrieta, D. F.
Landau, R. L. Anderson, E. D. Gustafson, G. J. Whiffen et al., “Gtoc5: results from
the jet propulsion laboratory,” Acta Futura, vol. 8, no. 1, pp. 21–27, 2014.

[69] D. Hennes and D. Izzo, “Interplanetary trajectory planning with monte carlo tree
search,” in Twenty-Fourth International Joint Conference on Artificial Intelligence,
2015.

[70] L. F. Simões, D. Izzo, E. Haasdijk, and A. Eiben, “Multi-rendezvous spacecraft tra-
jectory optimization with beam p-aco,” in Evolutionary Computation in Combinatorial
Optimization: 17th European Conference, EvoCOP 2017, Amsterdam, The Netherlands,
April 19-21, 2017, Proceedings 17. Springer, 2017, pp. 141–156.

[71] M. Zaefferer, J. Stork, M. Friese, A. Fischbach, B. Naujoks, and T. Bartz-Beielstein,
“Efficient global optimization for combinatorial problems,” in Proceedings of the 2014
annual conference on genetic and evolutionary computation, 2014, pp. 871–878.

[72] E. Irurozki and M. López-Ibáñez, “Unbalanced mallows models for optimizing expen-
sive black-box permutation problems,” in Proceedings of the genetic and evolutionary
computation conference, 2021, pp. 225–233.

113

[73] V. Santucci and M. Baioletti, “A fast randomized local search for low budget opti-
mization in black-box permutation problems,” in 2022 IEEE Congress on Evolutionary
Computation (CEC). IEEE, 2022, pp. 1–8.

[74] F. Chicano, B. Derbel, and S. Verel, “Fourier transform-based surrogates for permutation
problems,” in Proceedings of the Genetic and Evolutionary Computation Conference,
2023, pp. 275–283.

[75] M. López-Ibáñez, F. Chicano, and R. Gil-Merino, “The asteroid routing problem: A
benchmark for expensive black-box permutation optimization,” in International Con-
ference on the Applications of Evolutionary Computation (Part of EvoStar). Springer,
2022, pp. 124–140.

[76] D. Izzo, “Revisiting Lambert’s problem,” Celestial Mechanics and Dynamical Astron-
omy, vol. 121, pp. 1–15, 2015.

[77] D. Kraft, “A software package for sequential quadratic programming,”
Forschungsbericht- Deutsche Forschungs- und Versuchsanstalt fur Luft- und Raumfahrt,
1988.

[78] L. F. Simões, D. Izzo, E. Haasdijk, and A. Eiben, “Multi-rendezvous spacecraft tra-
jectory optimization with beam p-aco,” in Evolutionary Computation in Combinatorial
Optimization: 17th European Conference, EvoCOP 2017, Amsterdam, The Netherlands,
April 19-21, 2017, Proceedings 17. Springer, 2017, pp. 141–156.

[79] D. Hennes, D. Izzo, and D. Landau, “Fast approximators for optimal low-thrust hops
between main belt asteroids,” in 2016 IEEE Symposium Series on Computational Intel-
ligence (SSCI). IEEE, 2016, pp. 1–7.

[80] J. Nocedal and S. Wright, “Numerical optimization. 2nd edn springer,” New York, 2006.

[81] N. Hansen and A. Ostermeier, “Completely derandomized self-adaptation in evolution
strategies,” Evolutionary computation, vol. 9, no. 2, pp. 159–195, 2001.

[82] J. Kinable, A. A. Cire, and W.-J. van Hoeve, “Hybrid optimization methods for time-
dependent sequencing problems,” European Journal of Operational Research, vol. 259,
no. 3, pp. 887–897, 2017.

[83] L. C. Riascos-Álvarez, M. Bodur, and D. M. Aleman, “A branch-and-price algorithm
enhanced by decision diagrams for the kidney exchange problem,” Manufacturing &
Service Operations Management, vol. 26, no. 2, pp. 485–499, 2024.

114

APPENDIX A EXPERIMENTAL DATA

Problem Info BnB: width 64 PnB: width 64 Percent Improvements
Name n RB BS T OG QL RB BS T OG QL RB BS T OG QL
ESC07 9 2,125 2,125 0.03 0% - 2,125 2,125 0.07 0% - -57%
ESC11 13 2,075 2,075 0.65 0% - 2,075 2,075 0.42 0% - 55%
ESC12 14 1,675 1,675 1.99 0% - 1,675 1,675 0.64 0% - 211%
ESC25 27 1,681 1,681 956 0% - 1,681 1,681 353 0% - 171%
ESC47 49 334 1,542 78% 8,842 368 1,676 78% 1,295 10.2% -8.0% 0.4% 583%
ESC63 65 8 62 87% 2,756 44 62 29% 15 450.0% 0.0% 200.0% 18273%
ESC78 80 2,230 19,800 89% 1,040 5,000 20,045 75% 316 124.2% -1.2% 18.2% 229%
br17.10 18 55 55 260 0% - 55 55 5 0% - 4652%
br17.12 18 55 55 138 0% - 55 55 21 0% - 546%
ft53.1 54 1,785 8,478 79% 8,841 3,324 8,244 60% 917 86.2% 2.8% 32.3% 864%
ft53.2 54 1,946 8,927 78% 7,356 3,450 8,633 60% 938 77.3% 3.4% 30.3% 684%
ft53.3 54 2,546 12,179 79% 5,594 4,234 12,327 66% 1,147 66.3% -1.2% 20.5% 388%
ft53.4 54 3,780 14,811 74% 11,907 6,500 14,753 56% 2,372 72.0% 0.4% 33.1% 402%
ft70.1 71 25,444 41,926 39% 4,781 31,123 41,607 25% 412 22.3% 0.8% 56.0% 1060%
ft70.2 71 25,239 42,805 41% 3,998 31,195 42,623 27% 427 23.6% 0.4% 53.1% 836%
ft70.3 71 25,810 48,073 46% 4,036 31,872 47,491 33% 475 23.5% 1.2% 40.8% 750%
ft70.4 71 28,593 56,644 50% 8,642 35,974 56,552 36% 1,087 25.8% 0.2% 36.1% 695%

kro124p.1 101 10,773 46,158 77% 2,173 17,579 46,158 62% 105 63.2% 0.0% 23.8% 1970%
kro124p.2 101 11,061 46,930 76% 1,898 17,633 46,930 62% 109 59.4% 0.0% 22.4% 1641%
kro124p.3 101 12,110 55,991 78% 1,055 18,586 55,991 67% 117 53.5% 0.0% 17.3% 802%
kro124p.4 101 13,838 85,533 84% 2,990 24,388 85,316 71% 244 76.2% 0.3% 17.4% 1125%

p43.1 44 630 29,450 98% 12,945 380 29,380 99% 1,022 -39.7% 0.2% -0.9% 1167%
p43.2 44 440 29,000 98% 8,519 420 29,080 99% 1,125 -4.5% -0.3% -0.1% 657%
p43.3 44 595 29,530 98% 12,802 490 29,530 98% 1,122 -17.6% 0.0% -0.4% 1041%
p43.4 44 1,370 83,855 98% 21,105 1,050 83,890 99% 4,694 -23.4% 0.0% -0.4% 350%

prob.42 42 99 289 66% 16,742 97 286 66% 2,613 -2.0% 1.0% -0.5% 541%
prob.100 100 170 1,841 91% 1,731 182 1,760 90% 117 7.1% 4.6% 1.2% 1379%
rbg048a 50 76 379 80% 12,938 47 380 88% 1,551 -38.2% -0.3% -8.8% 734%
rbg050c 52 63 566 89% 11,480 154 512 70% 1,481 144.4% 10.5% 27.1% 675%
rbg109a 111 91 1,196 92% 2,773 379 1,196 68% 612 316.5% 0.0% 35.3% 353%
rbg150a 152 63 1,874 97% 241 565 1,865 70% 222 796.8% 0.5% 38.6% 9%
rbg174a 176 119 2,157 94% 809 626 2,156 71% 117 426.1% 0.0% 33.1% 591%
rbg253a 255 113 3,181 96% 403 708 3,180 78% 39 526.5% 0.0% 24.1% 933%
rbg323a 325 89 3,519 97% 437 289 3,529 92% 17 224.7% -0.3% 6.2% 2471%
rbg341a 343 68 3,038 98% 366 321 3,064 90% 8 372.1% -0.8% 9.2% 4475%
rbg358a 360 69 3,359 98% 289 73 3,373 98% 6 5.8% -0.4% 0.1% 4717%
rbg378a 380 52 3,429 98% 266 50 3,429 99% 5 -3.8% 0.0% -0.1% 5220%
ry48p.1 49 5,201 17,555 70% 10,480 6,171 17,454 65% 1,395 18.7% 0.6% 8.9% 651%
ry48p.2 49 5,291 18,046 71% 9,286 6,577 17,840 63% 1,445 24.3% 1.2% 12.0% 543%
ry48p.3 49 6,207 21,161 71% 9,039 6,985 20,962 67% 1,707 12.5% 0.9% 6.0% 430%
ry48p.4 49 13,610 34,517 61% 15,819 14,293 33,804 58% 3,217 5.0% 2.1% 4.9% 392%

Table A.1 Comparison Data for ω = 64 Experiments on SOP

RB = Relaxed Bound, BS = Best Solution, T = Time in Seconds, OG = Optimality Gap,
QL = Queue Length. Full time series data is available in the GitHub repository.

115

Problem Info BnB: width 256 PnB: width 256 Percent Improvements
Name n RB BS T OG QL RB BS T OG QL RB BS T OG QL
ESC07 9 2,125 2,125 0.04 0% - 2,125 2,125 0.04 0% - 0%
ESC11 13 2,075 2,075 0.48 0% - 2,075 2,075 0.41 0% - 17%
ESC12 14 1,675 1,675 1.66 0% - 1,675 1,675 0.34 0% - 388%
ESC25 27 1,681 1,681 2,643 0% - 1,681 1,681 303 0% - 771%
ESC47 49 312 1,590 80% 720 658 1,339 51% 740 110.9% 18.7% 58.0% -3%
ESC63 65 9 62 85% 53 44 62 29% 3 388.9% 0.0% 194.4% 1667%
ESC78 80 2,230 20,345 89% 59 5,600 20,135 72% 109 151.1% 1.0% 23.3% -46%
br17.10 18 55 55 275 0% - 55 55 3 0% - 9468%
br17.12 18 55 55 105 0% - 55 55 5 0% - 2146%
ft53.1 54 1,708 8,424 80% 760 4,603 8,244 44% 271 169.5% 2.2% 80.5% 180%
ft53.2 54 1,856 9,059 80% 632 3,555 8,648 59% 272 91.5% 4.8% 35.0% 132%
ft53.3 54 2,493 12,598 80% 477 4,852 11,095 56% 390 94.6% 13.5% 42.6% 22%
ft53.4 54 3,619 14,867 76% 1,240 7,560 14,611 48% 797 108.9% 1.8% 56.8% 56%
ft70.1 71 25,507 41,686 39% 373 31,122 41,235 25% 108 22.0% 1.1% 58.3% 245%
ft70.2 71 25,261 42,901 41% 297 31,630 42,182 25% 123 25.2% 1.7% 64.4% 141%
ft70.3 71 25,891 47,806 46% 377 32,539 46,488 30% 151 25.7% 2.8% 52.8% 150%
ft70.4 71 31,186 56,366 45% 958 37,984 56,366 33% 356 21.8% 0.0% 37.0% 169%

kro124p.1 101 10,683 48,866 78% 152 19,224 45,643 58% 43 79.9% 7.1% 35.0% 253%
kro124p.2 101 10,706 52,038 79% 125 19,299 48,102 60% 43 80.3% 8.2% 32.6% 191%
kro124p.3 101 12,078 58,562 79% 64 20,145 57,358 65% 45 66.8% 2.1% 22.3% 42%
kro124p.4 101 14,511 82,672 82% 281 25,002 82,364 70% 102 72.3% 0.4% 18.4% 175%

p43.1 44 610 29,460 98% 1,033 27,255 28,635 5% 146 4368% 2.9% 1932% 608%
p43.2 44 460 29,020 98% 547 27,455 29,020 5% 391 5868% 0.0% 1725% 40%
p43.3 44 750 29,530 97% 1,016 27,780 29,530 6% 764 3604% 0.0% 1545% 33%
p43.4 44 1,425 83,880 98% 1,365 28,195 83,435 66% 1,380 1879% 0.5% 48.5% -1%

prob.42 42 90 289 69% 1,166 103 275 63% 617 14.4% 5.1% 10.1% 89%
prob.100 100 157 1,886 92% 113 178 1,721 90% 45 13.4% 9.6% 2.3% 151%
rbg048a 50 80 389 79% 794 80 373 79% 534 0.0% 4.3% 1.1% 49%
rbg050c 52 62 583 89% 810 175 503 65% 442 182.3% 15.9% 37.0% 83%
rbg109a 111 89 1,181 92% 394 406 1,106 63% 204 356.2% 6.8% 46.1% 93%
rbg150a 152 115 1,845 94% 406 571 1,845 69% 100 396.5% 0.0% 35.8% 306%
rbg174a 176 362 2,172 83% 337 646 2,171 70% 57 78.5% 0.0% 18.6% 491%
rbg253a 255 359 3,177 89% 139 727 3,176 77% 22 102.5% 0.0% 15.0% 532%
rbg323a 325 99 3,476 97% 114 346 3,480 90% 14 249.5% -0.1% 7.9% 714%
rbg341a 343 84 3,016 97% 120 340 3,016 89% 7 304.8% 0.0% 9.6% 1614%
rbg358a 360 88 3,280 97% 92 88 3,382 97% 5 0.0% -3.0% -0.1% 1740%
rbg378a 380 44 3,385 99% 35 53 3,385 98% 6 20.5% 0.0% 0.3% 483%
ry48p.1 49 5,470 17,464 69% 897 9,432 17,071 45% 377 72.4% 2.3% 53.5% 138%
ry48p.2 49 5,606 18,060 69% 834 6,615 17,627 62% 383 18.0% 2.5% 10.4% 118%
ry48p.3 49 6,558 21,142 69% 859 8,723 20,850 58% 513 33.0% 1.4% 18.6% 67%
ry48p.4 49 17,359 34,074 49% 1,557 17,322 33,773 49% 990 -0.2% 0.9% 0.7% 57%

Table A.2 Comparison Data for ω = 256 Experiments on SOP

RB = Relaxed Bound, BS = Best Solution, T = Time in Seconds, OG = Optimality Gap,
QL = Queue Length. Full time series data is available in the GitHub repository.

116

Problem Info PnB: width 256 PnB: width 2048 Percent Improvements
Name n RB BS OG RB BS OG RB BS OG
ESC47 49 658 1,339 51% 882 1,304 32% 34.0% 2.7% 57.2%
ESC63 65 44 62 29% 44 62 29% 0.0% 0.0% 0%
ESC78 80 5,600 20,135 72% 6,025 20,505 71% 7.6% -1.8% 2.2%
ft53.1 54 4,603 8,244 44% 5,167 8,237 37% 12.3% 0.1% 18.5%
ft53.2 54 3,555 8,648 59% 4,910 8,598 43% 38.1% 0.6% 37.3%
ft53.3 54 4,852 11,095 56% 7,722 11,092 30% 59.2% 0.0% 85.2%
ft53.4 54 7,560 14,611 48% 7,466 14,618 49% -1.2% 0.0% -1.4%
ft70.1 71 31,122 41,235 25% 33,382 41,476 20% 7.3% -0.6% 25.7%
ft70.2 71 31,630 42,182 25% 32,964 41,833 21% 4.2% 0.8% 18.0%
ft70.3 71 32,539 46,488 30% 34,366 46,001 25% 5.6% 1.1% 18.6%
ft70.4 71 37,984 56,366 33% 40,919 56,310 27% 7.7% 0.1% 19.3%

kro124p.1 101 19,224 45,643 58% 21,954 47,425 54% 14.2% -3.8% 7.8%
kro124p.2 101 19,299 48,102 60% 22,746 49,571 54% 17.9% -3.0% 10.7%
kro124p.3 101 20,145 57,358 65% 25,566 54,633 53% 26.9% 5.0% 21.9%
kro124p.4 101 25,002 82,364 70% 29,377 81,050 64% 17.5% 1.6% 9.2%

p43.1 44 27,255 28,635 5% 27,755 28,960 4% 1.8% -1.1% 16%
p43.2 44 27,455 29,020 5% 27,725 29,000 4% 1.0% 0.1% 23%
p43.3 44 27,780 29,530 6% 27,755 29,530 6% -0.1% 0.0% -1%
p43.4 44 28,195 83,435 66% 28,680 83,020 65% 1.7% 0.5% 1.2%

prob.42 42 103 275 63% 152 261 42% 47.6% 5.4% 49.8%
prob.100 100 178 1,721 90% 220 1,735 87% 23.6% -0.8% 2.7%
rbg048a 50 80 373 79% 93 367 75% 16.3% 1.6% 5.2%
rbg050c 52 175 503 65% 184 501 63% 5.1% 0.4% 3.1%
rbg109a 111 406 1,106 63% 453 1,126 60% 11.6% -1.8% 5.9%
rbg150a 152 571 1,845 69% 672 1,841 63% 17.7% 0.2% 8.7%
rbg174a 176 646 2,171 70% 1,104 2,121 48% 70.9% 2.4% 46.5%
rbg253a 255 727 3,176 77% 1,186 3,101 62% 63.1% 2.4% 24.9%
rbg323a 325 346 3,480 90% 421 3,449 88% 21.7% 0.9% 2.6%
rbg341a 343 340 3,016 89% 329 2,965 89% -3.2% 1.7% -0.2%
rbg358a 360 88 3,382 97% 107 3,131 97% 21.6% 8.0% 0.8%
rbg378a 380 53 3,385 98% 74 3,338 98% 39.6% 1.4% 0.7%
ry48p.1 49 9,432 17,071 45% 10,386 17,124 39% 10.1% -0.3% 13.7%
ry48p.2 49 6,615 17,627 62% 7,896 17,461 55% 19.4% 1.0% 14.0%
ry48p.3 49 8,723 20,850 58% 10,558 20,686 49% 21.0% 0.8% 18.8%
ry48p.4 49 17,322 33,773 49% 24,248 32,953 26% 40.0% 2.5% 84.4%

Table A.3 Comparison of PnB at ω = 2048 over PnB at ω = 256 on SOP

RB = Relaxed Bound, BS = Best Solution, OG = Optimality Gap.

117

Problem Information Baldacci et. al. (2012) Single Thread: 2048 Seeded Single Thread: 2048
Set Name Best Known Solution LB LB UB OG LB UB OG

Dumas n100w60.001.txt 655 NA 602 659 8.65 602 655 8.09
Dumas n100w60.003.txt 744 NA 619 749 17.36 620 744 16.67
Dumas n100w60.004.txt 764 NA 657 - 100.00 656 764 14.14
Dumas n150w40.001.txt 918 NA 810 919 11.86 812 918 11.55
Dumas n150w40.002.txt 941 NA 804 945 14.92 803 941 14.67
Dumas n150w40.003.txt 727 NA 528 737 28.36 525 727 27.79
Dumas n150w40.004.txt 764 NA 678 782 13.30 678 764 11.26
Dumas n150w40.005.txt 824 NA 585 - 100.00 566 824 31.31
Dumas n150w60.001.txt 859 NA 645 906 28.81 635 859 26.08
Dumas n150w60.002.txt 782 NA 530 829 36.07 529 782 32.35
Dumas n150w60.003.txt 793 NA 541 825 34.42 540 793 31.90
Dumas n150w60.004.txt 819 NA 578 - 100.00 574 819 29.91
Dumas n150w60.005.txt 840 NA 581 849 31.57 570 840 32.14
Dumas n200w40.001.txt 1023 NA 643 1038 38.05 638 1023 37.63
Dumas n200w40.002.txt 948 NA 605 983 38.45 605 948 36.18
Dumas n200w40.003.txt 933 NA 645 - 100.00 568 933 39.12
Dumas n200w40.004.txt 980 NA 731 1030 29.03 714 980 27.14
Dumas n200w40.005.txt 1037 NA 659 1056 37.59 607 1037 41.47
Dumas n60w100.005.txt 451 NA 390 460 15.22 391 451 13.3
Dumas n80w80.002.txt 592 NA 508 605 16.03 506 592 14.53
Dumas n80w80.003.txt 589 NA 500 598 16.39 500 589 15.11
Dumas n80w80.004.txt 594 NA 506 620 18.39 505 594 14.98

OhlmannThomas n150w120.001.txt 734 725.50 324 809 59.95 324 734 55.86
OhlmannThomas n150w120.002.txt 677 668.40 209 717 70.85 209 677 69.13
OhlmannThomas n150w120.003.txt 747 746.40 416 807 48.45 416 747 44.31
OhlmannThomas n150w120.004.txt 763 761.60 381 835 54.37 381 763 50.07
OhlmannThomas n150w120.005.txt 689 684.70 266 754 64.72 274 689 60.23
OhlmannThomas n150w140.001.txt 762 754.00 394 893 55.88 394 762 48.29
OhlmannThomas n150w140.002.txt 755 752.00 407 855 52.40 416 755 44.90
OhlmannThomas n150w140.003.txt 613 608.50 215 738 70.87 215 613 64.93
OhlmannThomas n150w140.005.txt 663 662.00 197 750 73.73 197 663 70.29
OhlmannThomas n150w160.001.txt 706 701.40 293 777 62.29 293 706 58.50
OhlmannThomas n150w160.002.txt 711 709.70 286 826 65.38 286 711 59.77
OhlmannThomas n150w160.003.txt 608 603.20 170 772 77.98 170 608 72.04
OhlmannThomas n150w160.004.txt 672 672.00 336 749 55.14 344 672 48.81
OhlmannThomas n150w160.005.txt 658 655.00 320 736 56.52 320 658 51.37
OhlmannThomas n200w120.001.txt 799 793.30 312 910 65.71 312 799 60.95
OhlmannThomas n200w120.002.txt 721 713.90 184 822 77.62 184 721 74.48
OhlmannThomas n200w120.003.txt 880 868.60 336 983 65.82 336 880 61.82
OhlmannThomas n200w120.004.txt 777 775.80 291 887 67.19 291 777 62.55
OhlmannThomas n200w120.005.txt 841 833.20 258 960 73.12 371 841 55.89
OhlmannThomas n200w140.001.txt 834 826.20 177 1053 83.19 177 834 78.78
OhlmannThomas n200w140.002.txt 760 756.20 180 895 79.89 180 760 76.32
OhlmannThomas n200w140.003.txt 758 756.00 241 897 73.13 252 758 66.75
OhlmannThomas n200w140.004.txt 816 807.10 284 932 69.53 284 816 65.20
OhlmannThomas n200w140.005.txt 822 819.60 148 927 84.03 148 822 82.00
SolomonPesant rc203.0 727.45 726.22 608.28 734.00 17.13 608.24 727.45 16.39
SolomonPesant rc204.2 778.40 774.77 667.18 905.93 26.35 685.22 778.40 11.97

Table A.4 (Part 1 of 2) TSP-TW Results of PnB at ω = 2048 on Open Problems: Seeded
and Unseeded

LB = Lower Bound, UB = Upper Bound, OG = Optimality Gap.

118

Problem Information Baldacci et. al. (2012) Single Thread: 2048 Seeded Single Thread: 2048
Set Name Best Known Solution LB LB UB OG LB UB OG

AFG rbg049a.tw 10018 10006.10 9877 10034 1.56 9877 10018 1.41
AFG rbg050b.tw 9863 9855.80 9711 9876 1.67 9713 9863 1.52
AFG rbg050c.tw 10024 10020.40 9745 10074 3.27 9746 10024 2.77
AFG rbg132.2.tw 8192 8188.20 6701 8316 19.42 6695 8192 18.27
AFG rbg152.3.tw 9788 9785.20 7240 9982 27.47 7240 9788 26.03
AFG rbg193.2.tw 12142 12136.30 9755 12441 21.59 9755 12142 19.66

GendreauDumas n100w100.004.txt 684 680.58 484 738 34.42 485 684 29.09
GendreauDumas n100w120.002.txt 540 535.68 279 581 51.98 279 540 48.33
GendreauDumas n100w120.004.txt 663 660.01 383 713 46.28 383 663 42.23
GendreauDumas n100w140.005.txt 509 504.42 346 571 39.40 346 509 32.02
GendreauDumas n100w160.002.txt 532 528.94 287 601 52.25 286 532 46.24
GendreauDumas n100w160.005.txt 586 585.41 327 642 49.07 327 586 44.20
GendreauDumas n100w80.002.txt 668 666.00 542 681 20.41 549 668 17.81
GendreauDumas n40w180.004.txt 354 352.58 280 359 22.01 283 354 20.06
GendreauDumas n40w200.003.txt 339 322.05 305 340 10.29 305 339 10.03
GendreauDumas n40w200.004.txt 301 300.10 232 301 22.92 229 301 23.92
GendreauDumas n60w140.001.txt 423 421.31 331 425 22.12 332 423 21.51
GendreauDumas n60w140.002.txt 462 461.08 394 469 15.99 400 462 13.42
GendreauDumas n60w140.005.txt 460 455.40 334 462 27.71 335 460 27.17
GendreauDumas n60w160.001.txt 560 556.08 457 572 20.10 457 560 18.39
GendreauDumas n60w160.003.txt 434 432.70 212 464 54.31 212 434 51.15
GendreauDumas n60w180.001.txt 411 407.30 234 460 49.13 234 411 43.07
GendreauDumas n60w180.003.txt 445 440.00 314 458 31.44 314 445 29.44
GendreauDumas n60w180.004.txt 456 455.54 272 490 44.49 272 456 40.35
GendreauDumas n60w180.005.txt 395 388.68 274 409 33.01 274 395 30.63
GendreauDumas n60w200.003.txt 455 444.08 319 471 32.27 321 455 29.45
GendreauDumas n60w200.004.txt 431 429.71 343 441 22.22 347 431 19.49
GendreauDumas n60w200.005.txt 427 425.29 292 449 34.97 292 427 31.62
GendreauDumas n80w120.001.txt 498 497.50 362 514 29.57 362 498 27.31
GendreauDumas n80w120.002.txt 577 576.42 415 587 29.30 416 577 27.90
GendreauDumas n80w120.004.txt 501 491.48 301 509 40.86 301 501 39.92
GendreauDumas n80w120.005.txt 591 586.86 415 594 30.13 415 591 29.78
GendreauDumas n80w140.002.txt 470 469.06 346 528 34.47 347 470 26.17
GendreauDumas n80w140.003.txt 580 574.78 297 636 53.30 295 580 49.14
GendreauDumas n80w140.004.txt 423 420.31 262 449 41.65 262 423 38.06
GendreauDumas n80w160.002.txt 549 547.45 197 638 69.12 197 549 64.12
GendreauDumas n80w180.001.txt 551 550.45 373 560 33.39 373 551 32.30
GendreauDumas n80w200.001.txt 490 486.57 150 555 72.97 150 490 69.39
GendreauDumas n80w200.002.txt 488 487.51 270 572 52.80 271 488 44.47
GendreauDumas n80w200.003.txt 464 462.14 194 495 60.81 194 464 58.19
GendreauDumas n80w200.004.txt 526 521.27 291 565 48.50 292 526 44.49
GendreauDumas n80w200.005.txt 439 438.12 235 484 51.45 235 439 46.47

SolomonPotvinBengio rc_203.2.txt 784.16 781.64 659.63 784.16 15.88 658.22 784.16 16.06
SolomonPotvinBengio rc_203.3.txt 817.53 810.46 735.91 823.44 10.63 756.34 817.53 7.48
SolomonPotvinBengio rc_204.1.txt 878.64 872.62 791.45 889.53 11.03 794.15 878.64 9.62
SolomonPotvinBengio rc_204.2.txt 662.16 650.94 525.69 664.52 20.89 526.72 662.16 20.45
SolomonPotvinBengio rc_208.3.txt 634.44 622.48 549.17 670.56 18.10 550.15 634.44 13.29

Table A.5 (Part 2 of 2) TSP-TW Results of PnB at ω = 2048 on Open Problems: Seeded
and Unseeded

LB = Lower Bound, UB = Upper Bound, OG = Optimality Gap.

119

Problem Information Baldacci et. al. (2012) Single Thread: 2048 Seeded Single Thread: 2048
Set Name Best Known Solution LB LB UB OG Time LB UB OG Time

AFG rbg010a.tw 671 O 671 671 0 0.08 671 671 0 0.26
AFG rbg016a.tw 938 O 938 938 0 0.22 938 938 0 0.28
AFG rbg016b.tw 1304 O 1304 1304 0 5.62 1304 1304 0 4.43
AFG rbg017.2.tw 852 O 852 852 0 9.08 852 852 0 4.71
AFG rbg017.tw 893 O 893 893 0 3.92 893 893 0 2.96
AFG rbg017a.tw 4296 O 4296 4296 0 0.28 4296 4296 0 0.22
AFG rbg019a.tw 1262 O 1262 1262 0 0.21 1262 1262 0 0.19
AFG rbg019b.tw 1866 O 1866 1866 0 12.96 1866 1866 0 5.67
AFG rbg019c.tw 4536 O 4536 4536 0 2.91 4536 4536 0 3.64
AFG rbg019d.tw 1356 O 1356 1356 0 3.66 1356 1356 0 0.37
AFG rbg020a.tw 4689 O 4689 4689 0 0.22 4689 4689 0 0.23
AFG rbg021.2.tw 4528 O 4528 4528 0 10.08 4528 4528 0 5.45
AFG rbg021.3.tw 4528 O 4528 4528 0 15.74 4528 4528 0 7.80
AFG rbg021.4.tw 4525 O 4525 4525 0 25.67 4525 4525 0 9.71
AFG rbg021.5.tw 4515 O 4515 4515 0 25.13 4515 4515 0 12.88
AFG rbg021.6.tw 4480 O 4480 4480 0 2458.01 4480 4480 0 2501.88
AFG rbg021.7.tw 4479 O 1050 4480 76.56 - 1050 4479 76.56 -
AFG rbg021.8.tw 4478 O 1042 4480 76.74 - 1041 4478 76.75 -
AFG rbg021.9.tw 4478 O 1037 4480 76.85 - 1039 4478 76.8 -
AFG rbg021.tw 4536 O 4536 4536 0 3.11 4536 4536 0 2.81
AFG rbg027a.tw 5091 O 5091 5091 0 10.69 5091 5091 0 8.34
AFG rbg031a.tw 1863 O 1863 1863 0 28.16 1863 1863 0 13.51
AFG rbg033a.tw 2069 O 2069 2069 0 33.44 2069 2069 0 18.26
AFG rbg034a.tw 2222 O 2222 2222 0 83.72 2222 2222 0 34.02
AFG rbg035a.2.tw 2056 O 1837 2088 12.02 - 1838 2056 10.6 -
AFG rbg035a.tw 2144 O 2144 2144 0 44.80 2144 2144 0 28.45
AFG rbg038a.tw 2480 O 2480 2480 0 75.79 2480 2480 0 17.41
AFG rbg040a.tw 2378 2376.9 2378 2378 0 57.1 2378 2378 0 36.71
AFG rbg041a.tw 2598 O 2598 2598 0 109.23 2598 2598 0 81.37
AFG rbg042a.tw 2772 O 2772 2772 0 154.46 2772 2772 0 88.88
AFG rbg048a.tw 9383 O 9011 9419 4.33 - 9013 9383 3.94 -
AFG rbg050a.tw 2953 O 2361 2990 21.04 - 2362 2953 20.01 -
AFG rbg055a.tw 3761 O 3761 3761 0 405.98 3761 3761 0 121.22
AFG rbg067a.tw 4625 O 4625 4625 0 634.69 4625 4625 0 158.26
AFG rbg125a.tw 7936 O 7918 8051 1.65 - 7936 7936 0 2479.97
AFG rbg132.tw 8468 O 8449 8530 0.95 - 8468 8468 0 549.16
AFG rbg152.tw 10032 O 10024 10086 0.61 - 10032 10032 0 1011.24
AFG rbg172a.tw 10950 O 10082 11172 9.76 - 10082 10950 7.93 -
AFG rbg193.tw 12535 O 11994 12781 6.16 - 11958 12535 4.6 -
AFG rbg201a.tw 12948 O 11528 13240 12.93 - 11753 12948 9.23 -
AFG rbg233.2.tw 14495 O 11634 14827 21.54 - 11634 14495 19.74 -
AFG rbg233.tw 14992 O 13355 15330 12.88 - 12988 14992 13.37 -

Dumas n100w20.001.txt 738 NA 738 738 0 32.87 738 738 0 5.06
Dumas n100w20.002.txt 715 NA 715 715 0 64.56 715 715 0 30.67
Dumas n100w20.003.txt 762 NA 762 762 0 49.73 762 762 0 42.79
Dumas n100w20.004.txt 799 NA 799 799 0 51.93 799 799 0 28.00
Dumas n100w20.005.txt 774 NA 774 774 0 45.66 774 774 0 35.66
Dumas n100w40.001.txt 770 NA 770 770 0 178.71 770 770 0 129.09
Dumas n100w40.002.txt 653 NA 653 653 0 573.14 653 653 0 455.42
Dumas n100w40.003.txt 736 NA 736 736 0 390.53 736 736 0 341.37
Dumas n100w40.004.txt 651 NA 651 651 0 500.63 651 651 0 406.68
Dumas n100w40.005.txt 699 NA 699 699 0 518.71 699 699 0 455.31
Dumas n100w60.002.txt 659 NA 659 659 0 1348.85 659 659 0 1503.28
Dumas n100w60.005.txt 661 NA 661 661 0 1027.05 661 661 0 1054.34
Dumas n150w20.001.txt 925 NA 925 925 0 380.14 925 925 0 248.27
Dumas n150w20.002.txt 864 NA 864 864 0 234.78 864 864 0 126.45
Dumas n150w20.003.txt 834 NA 834 834 0 410.38 834 834 0 305.72
Dumas n150w20.004.txt 873 NA 873 873 0 343.26 873 873 0 304.33
Dumas n150w20.005.txt 846 NA 846 846 0 423.04 846 846 0 452.06
Dumas n200w20.001.txt 1019 NA 1019 1019 0 2739.07 1019 1019 0 2898.58
Dumas n200w20.002.txt 972 NA 971 1000 2.9 - 972 972 0 614.20
Dumas n200w20.003.txt 1050 NA 1050 1050 0 1330.33 1050 1050 0 1523.48
Dumas n200w20.004.txt 984 NA 984 984 0 2360.97 984 984 0 3345.67
Dumas n200w20.005.txt 1020 NA 1020 1020 0 445.04 1020 1020 0 1059.73
Dumas n20w100.001.txt 237 NA 237 237 0 7.62 237 237 0 4.32
Dumas n20w100.002.txt 222 NA 222 222 0 10.21 222 222 0 4.97
Dumas n20w100.003.txt 310 NA 310 310 0 8.85 310 310 0 4.35
Dumas n20w100.004.txt 349 NA 349 349 0 2.56 349 349 0 0.70
Dumas n20w100.005.txt 258 NA 258 258 0 10.40 258 258 0 6.06

Table A.6 (Part 1 of 6) TSP-TW Results of PnB at ω = 2048 on Closed Problems: Seeded
and Unseeded

LB = Lower Bound, UB = Upper Bound, OG = Optimality Gap, O = Optimality Proved.

120

Problem Information Baldacci et. al. (2012) Single Thread: 2048 Seeded Single Thread: 2048
Set Name Best Known Solution LB LB UB OG Time LB UB OG Time

Dumas n20w20.001.txt 378 NA 378 378 0 0.06 378 378 0 0.18
Dumas n20w20.002.txt 286 NA 286 286 0 0.08 286 286 0 0.18
Dumas n20w20.003.txt 394 NA 394 394 0 0.07 394 394 0 0.18
Dumas n20w20.004.txt 396 NA 396 396 0 0.06 396 396 0 0.18
Dumas n20w20.005.txt 352 NA 352 352 0 0.07 352 352 0 0.26
Dumas n20w40.001.txt 254 NA 254 254 0 0.12 254 254 0 0.31
Dumas n20w40.002.txt 333 NA 333 333 0 0.07 333 333 0 0.24
Dumas n20w40.003.txt 317 NA 317 317 0 0.07 317 317 0 0.19
Dumas n20w40.004.txt 388 NA 388 388 0 0.07 388 388 0 0.20
Dumas n20w40.005.txt 288 NA 288 288 0 0.08 288 288 0 0.20
Dumas n20w60.001.txt 335 NA 335 335 0 2.22 335 335 0 1.48
Dumas n20w60.002.txt 244 NA 244 244 0 0.56 244 244 0 0.21
Dumas n20w60.003.txt 352 NA 352 352 0 0.10 352 352 0 0.22
Dumas n20w60.004.txt 280 NA 280 280 0 7.50 280 280 0 3.67
Dumas n20w60.005.txt 338 NA 338 338 0 0.62 338 338 0 0.22
Dumas n20w80.001.txt 329 NA 329 329 0 2.00 329 329 0 1.37
Dumas n20w80.002.txt 338 NA 338 338 0 1.27 338 338 0 1.34
Dumas n20w80.003.txt 320 NA 320 320 0 0.74 320 320 0 0.41
Dumas n20w80.004.txt 304 NA 304 304 0 1.99 304 304 0 0.90
Dumas n20w80.005.txt 264 NA 264 264 0 8.19 264 264 0 4.24
Dumas n40w100.001.txt 429 NA 429 429 0 67.70 429 429 0 68.84
Dumas n40w100.002.txt 358 NA 358 358 0 84.97 358 358 0 73.49
Dumas n40w100.003.txt 364 NA 364 364 0 71.79 364 364 0 50.69
Dumas n40w100.004.txt 357 NA 357 357 0 66.54 357 357 0 58.87
Dumas n40w100.005.txt 377 NA 377 377 0 82.67 377 377 0 52.66
Dumas n40w20.001.txt 500 NA 500 500 0 0.51 500 500 0 0.41
Dumas n40w20.002.txt 552 NA 552 552 0 2.08 552 552 0 0.54
Dumas n40w20.003.txt 478 NA 478 478 0 1.11 478 478 0 0.34
Dumas n40w20.004.txt 404 NA 404 404 0 1.19 404 404 0 0.34
Dumas n40w20.005.txt 499 NA 499 499 0 0.09 499 499 0 0.29
Dumas n40w40.001.txt 465 NA 465 465 0 2.41 465 465 0 0.61
Dumas n40w40.002.txt 461 NA 461 461 0 18.31 461 461 0 10.02
Dumas n40w40.003.txt 474 NA 474 474 0 4.11 474 474 0 1.86
Dumas n40w40.004.txt 452 NA 452 452 0 13.72 452 452 0 9.67
Dumas n40w40.005.txt 453 NA 453 453 0 20.16 453 453 0 8.88
Dumas n40w60.001.txt 494 NA 494 494 0 15.85 494 494 0 16.40
Dumas n40w60.002.txt 470 NA 470 470 0 24.24 470 470 0 15.00
Dumas n40w60.003.txt 408 NA 408 408 0 21.72 408 408 0 13.27
Dumas n40w60.004.txt 382 NA 382 382 0 64.78 382 382 0 51.30
Dumas n40w60.005.txt 328 NA 328 328 0 32.39 328 328 0 11.37
Dumas n40w80.001.txt 395 NA 395 395 0 31.40 395 395 0 21.92
Dumas n40w80.002.txt 431 NA 431 431 0 59.08 431 431 0 52.11
Dumas n40w80.003.txt 412 NA 412 412 0 28.76 412 412 0 20.84
Dumas n40w80.004.txt 417 NA 417 417 0 33.35 417 417 0 28.22
Dumas n40w80.005.txt 344 NA 344 344 0 58.02 344 344 0 47.72
Dumas n60w100.001.txt 515 NA 515 515 0 1063.65 515 515 0 970.51
Dumas n60w100.002.txt 538 NA 538 538 0 456.89 538 538 0 453.45
Dumas n60w100.003.txt 560 NA 560 560 0 361.90 560 560 0 397.47
Dumas n60w100.004.txt 510 NA 510 510 0 264.85 510 510 0 313.67
Dumas n60w20.001.txt 551 NA 551 551 0 6.33 551 551 0 2.46
Dumas n60w20.002.txt 605 NA 605 605 0 4.83 605 605 0 1.78
Dumas n60w20.003.txt 533 NA 533 533 0 6.45 533 533 0 1.23
Dumas n60w20.004.txt 616 NA 616 616 0 7.34 616 616 0 1.77
Dumas n60w20.005.txt 603 NA 603 603 0 4.11 603 603 0 0.64
Dumas n60w40.001.txt 591 NA 591 591 0 45.45 591 591 0 35.15
Dumas n60w40.002.txt 621 NA 621 621 0 72.70 621 621 0 63.07
Dumas n60w40.003.txt 603 NA 603 603 0 51.21 603 603 0 41.32
Dumas n60w40.004.txt 597 NA 597 597 0 22.87 597 597 0 11.06
Dumas n60w40.005.txt 539 NA 539 539 0 28.22 539 539 0 15.14
Dumas n60w60.001.txt 609 NA 609 609 0 77.16 609 609 0 71.60
Dumas n60w60.002.txt 566 NA 566 566 0 96.04 566 566 0 91.61
Dumas n60w60.003.txt 485 NA 485 485 0 130.48 485 485 0 124.08
Dumas n60w60.004.txt 571 NA 571 571 0 106.17 571 571 0 84.95
Dumas n60w60.005.txt 569 NA 569 569 0 76.37 569 569 0 71.14
Dumas n60w80.001.txt 458 NA 458 458 0 546.14 458 458 0 444.94
Dumas n60w80.002.txt 498 NA 498 498 0 147.40 498 498 0 146.75
Dumas n60w80.003.txt 550 NA 550 550 0 133.79 550 550 0 129.27
Dumas n60w80.004.txt 566 NA 566 566 0 207.43 566 566 0 178.19

Table A.7 (Part 2 of 6) TSP-TW Results of PnB at ω = 2048 on Closed Problems: Seeded
and Unseeded

LB = Lower Bound, UB = Upper Bound, OG = Optimality Gap, O = Optimality Proved.

121

Problem Information Baldacci et. al. (2012) Single Thread: 2048 Seeded Single Thread: 2048
Set Name Best Known Solution LB LB UB OG Time LB UB OG Time

Dumas n60w80.005.txt 468 NA 468 468 0 363.20 468 468 0 363.03
Dumas n80w20.001.txt 616 NA 616 616 0 58.66 616 616 0 31.87
Dumas n80w20.002.txt 737 NA 737 737 0 30.47 737 737 0 20.49
Dumas n80w20.003.txt 667 NA 667 667 0 14.48 667 667 0 5.52
Dumas n80w20.004.txt 615 NA 615 615 0 41.62 615 615 0 32.25
Dumas n80w20.005.txt 748 NA 748 748 0 23.05 748 748 0 10.52
Dumas n80w40.001.txt 606 NA 606 606 0 313.45 606 606 0 245.90
Dumas n80w40.002.txt 618 NA 618 618 0 135.46 618 618 0 132.07
Dumas n80w40.003.txt 674 NA 674 674 0 109.76 674 674 0 131.28
Dumas n80w40.004.txt 557 NA 557 557 0 115.15 557 557 0 112.15
Dumas n80w40.005.txt 695 NA 695 695 0 130.12 695 695 0 126.17
Dumas n80w60.001.txt 554 NA 554 554 0 237.93 554 554 0 239.36
Dumas n80w60.002.txt 633 NA 633 633 0 488.91 633 633 0 562.44
Dumas n80w60.003.txt 651 NA 651 651 0 421.10 651 651 0 404.65
Dumas n80w60.004.txt 619 NA 619 619 0 319.16 619 619 0 220.47
Dumas n80w60.005.txt 575 NA 575 575 0 765.78 575 575 0 918.69
Dumas n80w80.001.txt 624 NA 624 624 0 995.03 624 624 0 919.20
Dumas n80w80.005.txt 570 NA 570 570 0 285.37 570 570 0 348.52

GendreauDumas n100w100.001.txt 643 O 467 670 30.3 - 467 643 27.37 -
GendreauDumas n100w100.002.txt 619 O 480 629 23.69 - 477 619 22.94 -
GendreauDumas n100w100.003.txt 685 O 474 703 32.57 - 474 685 30.8 -
GendreauDumas n100w100.005.txt 572 O 365 617 40.84 - 367 572 35.84 -
GendreauDumas n100w120.001.txt 629 O 405 639 36.62 - 405 629 35.61 -
GendreauDumas n100w120.003.txt 617 O 451 634 28.86 - 451 617 26.9 -
GendreauDumas n100w120.005.txt 537 O 306 592 48.31 - 306 537 43.02 -
GendreauDumas n100w140.001.txt 604 O 393 704 44.18 - 393 604 34.93 -
GendreauDumas n100w140.002.txt 615 O 403 650 38 - 403 615 34.47 -
GendreauDumas n100w140.003.txt 481 O 229 494 53.64 - 229 481 52.39 -
GendreauDumas n100w140.004.txt 533 O 342 570 40 - 343 533 35.65 -
GendreauDumas n100w160.001.txt 582 O 415 614 32.41 - 416 582 28.52 -
GendreauDumas n100w160.003.txt 495 O 301 551 45.37 - 302 495 38.99 -
GendreauDumas n100w160.004.txt 580 O 391 627 37.64 - 392 580 32.41 -
GendreauDumas n100w80.001.txt 670 O 591 683 13.47 - 591 670 11.79 -
GendreauDumas n100w80.003.txt 691 O 480 691 30.54 - 480 691 30.54 -
GendreauDumas n100w80.004.txt 700 O 574 - 100 - 573 700 18.14 -
GendreauDumas n100w80.005.txt 603 O 416 648 35.8 - 427 603 29.19 -
GendreauDumas n20w120.001.txt 267 O 267 267 0 14.18 267 267 0 7.09
GendreauDumas n20w120.002.txt 218 O 218 218 0 13.27 218 218 0 8.66
GendreauDumas n20w120.003.txt 303 O 303 303 0 11.09 303 303 0 5.49
GendreauDumas n20w120.004.txt 300 O 300 300 0 9.41 300 300 0 5.67
GendreauDumas n20w120.005.txt 240 O 240 240 0 12.67 240 240 0 8.52
GendreauDumas n20w140.001.txt 176 O 176 176 0 11.91 176 176 0 6.26
GendreauDumas n20w140.002.txt 272 O 272 272 0 11.35 272 272 0 7.76
GendreauDumas n20w140.003.txt 236 O 236 236 0 13.22 236 236 0 6.43
GendreauDumas n20w140.004.txt 255 O 255 255 0 12.99 255 255 0 6.01
GendreauDumas n20w140.005.txt 225 O 225 225 0 10.73 225 225 0 6.15
GendreauDumas n20w160.001.txt 241 O 241 241 0 14.81 241 241 0 5.58
GendreauDumas n20w160.002.txt 201 O 201 201 0 11.25 201 201 0 7.81
GendreauDumas n20w160.003.txt 201 O 201 201 0 10.86 201 201 0 5.00
GendreauDumas n20w160.004.txt 203 O 203 203 0 19.55 203 203 0 8.33
GendreauDumas n20w160.005.txt 245 O 245 245 0 13.27 245 245 0 8.35
GendreauDumas n20w180.001.txt 253 O 253 253 0 11.97 253 253 0 5.78
GendreauDumas n20w180.002.txt 265 O 265 265 0 16.99 265 265 0 7.46
GendreauDumas n20w180.003.txt 271 O 271 271 0 18.30 271 271 0 9.70
GendreauDumas n20w180.004.txt 201 O 201 201 0 17.58 201 201 0 7.11
GendreauDumas n20w180.005.txt 193 O 193 193 0 32.53 193 193 0 8.59
GendreauDumas n20w200.001.txt 233 O 233 233 0 20.03 233 233 0 10.08
GendreauDumas n20w200.002.txt 203 O 203 203 0 25.27 203 203 0 9.63
GendreauDumas n20w200.003.txt 249 O 249 249 0 21.51 249 249 0 9.40
GendreauDumas n20w200.005.txt 227 O 227 227 0 21.91 227 227 0 7.87
GendreauDumas n40w120.001.txt 434 O 434 434 0 91.00 434 434 0 83.12
GendreauDumas n40w120.002.txt 445 O 445 445 0 141.74 445 445 0 97.37
GendreauDumas n40w120.003.txt 357 O 357 357 0 881.45 357 357 0 1338.21
GendreauDumas n40w120.004.txt 303 O 303 303 0 105.54 303 303 0 96.98
GendreauDumas n40w120.005.txt 350 O 350 350 0 80.86 350 350 0 62.93
GendreauDumas n40w140.001.txt 328 O 328 328 0 196.16 328 328 0 148.20
GendreauDumas n40w140.002.txt 383 O 383 383 0 2768.09 383 383 0 2677.04
GendreauDumas n40w140.003.txt 398 O 398 398 0 125.13 398 398 0 72.96

Table A.8 (Part 3 of 6) TSP-TW Results of PnB at ω = 2048 on Closed Problems: Seeded
and Unseeded

LB = Lower Bound, UB = Upper Bound, OG = Optimality Gap, O = Optimality Proved.

122

Problem Information Baldacci et. al. (2012) Single Thread: 2048 Seeded Single Thread: 2048
Set Name Best Known Solution LB LB UB OG Time LB UB OG Time

GendreauDumas n40w140.004.txt 342 O 246 342 28.07 - 246 342 28.07 -
GendreauDumas n40w140.005.txt 371 O 371 371 0 471.26 371 371 0 289.28
GendreauDumas n40w160.001.txt 348 O 348 348 0 179.81 348 348 0 159.90
GendreauDumas n40w160.002.txt 337 O 337 337 0 127.84 337 337 0 115.75
GendreauDumas n40w160.003.txt 346 O 346 346 0 301.12 346 346 0 156.85
GendreauDumas n40w160.004.txt 288 O 288 288 0 313.23 288 288 0 292.72
GendreauDumas n40w160.005.txt 315 O 315 315 0 1389.91 315 315 0 704.93
GendreauDumas n40w180.001.txt 337 O 274 352 22.16 - 337 337 0 2852.42
GendreauDumas n40w180.002.txt 347 O 347 347 0 689.55 347 347 0 652.55
GendreauDumas n40w180.003.txt 279 O 196 279 29.75 - 192 279 31.18 -
GendreauDumas n40w180.005.txt 335 O 237 340 30.29 - 238 335 28.96 -
GendreauDumas n40w200.001.txt 330 O 208 343 39.36 - 208 330 36.97 -
GendreauDumas n40w200.005.txt 296 O 239 302 20.86 - 251 296 15.2 -
GendreauDumas n60w120.001.txt 384 O 274 396 30.81 - 274 384 28.65 -
GendreauDumas n60w120.002.txt 427 O 371 435 14.71 - 370 427 13.35 -
GendreauDumas n60w120.003.txt 407 O 304 438 30.59 - 306 407 24.82 -
GendreauDumas n60w120.004.txt 490 O 425 490 13.27 - 425 490 13.27 -
GendreauDumas n60w120.005.txt 547 O 498 549 9.29 - 501 547 8.41 -
GendreauDumas n60w140.003.txt 427 O 364 448 18.75 - 369 427 13.58 -
GendreauDumas n60w140.004.txt 488 O 394 498 20.88 - 394 488 19.26 -
GendreauDumas n60w160.002.txt 423 O 325 431 24.59 - 326 423 22.93 -
GendreauDumas n60w160.004.txt 401 O 288 409 29.58 - 289 401 27.93 -
GendreauDumas n60w160.005.txt 502 O 368 512 28.12 - 368 502 26.69 -
GendreauDumas n60w180.002.txt 399 O 305 412 25.97 - 305 399 23.56 -
GendreauDumas n60w200.001.txt 410 O 297 437 32.04 - 298 410 27.32 -
GendreauDumas n60w200.002.txt 414 O 251 431 41.76 - 253 414 38.89 -
GendreauDumas n80w100.001.txt 565 O 433 580 25.34 - 432 565 23.54 -
GendreauDumas n80w100.002.txt 567 O 439 - 100 - 436 567 23.1 -
GendreauDumas n80w100.003.txt 580 O 422 605 30.25 - 423 580 27.07 -
GendreauDumas n80w100.005.txt 532 O 396 560 29.29 - 396 532 25.56 -
GendreauDumas n80w120.003.txt 540 O 361 558 35.3 - 368 540 31.85 -
GendreauDumas n80w140.001.txt 512 O 346 560 38.21 - 347 512 32.23 -
GendreauDumas n80w140.005.txt 545 O 332 555 40.18 - 332 545 39.08 -
GendreauDumas n80w160.001.txt 506 O 340 530 35.85 - 340 506 32.81 -
GendreauDumas n80w160.003.txt 521 O 305 574 46.86 - 307 521 41.07 -
GendreauDumas n80w160.004.txt 509 O 252 575 56.17 - 252 509 50.49 -
GendreauDumas n80w160.005.txt 439 O 246 519 52.6 - 246 439 43.96 -
GendreauDumas n80w180.002.txt 479 O 239 532 55.08 - 239 479 50.1 -
GendreauDumas n80w180.003.txt 524 O 368 575 36 - 368 524 29.77 -
GendreauDumas n80w180.004.txt 479 O 277 504 45.04 - 277 479 42.17 -
GendreauDumas n80w180.005.txt 470 O 263 486 45.88 - 264 470 43.83 -

Langevin N20ft301.dat 661.6 O 661.6 661.6 0 0.06 661.6 661.6 0 0.18
Langevin N20ft302.dat 684.2 O 684.2 684.2 0 0.06 684.2 684.2 0 0.18
Langevin N20ft303.dat 746.4 O 746.4 746.4 0 0.06 746.4 746.4 0 0.18
Langevin N20ft304.dat 817 O 817 817 0 0.06 817 817 0 0.18
Langevin N20ft305.dat 716.5 O 716.5 716.5 0 0.06 716.5 716.5 0 0.20
Langevin N20ft306.dat 727.8 O 727.8 727.8 0 0.06 727.8 727.8 0 0.18
Langevin N20ft307.dat 691.8 O 691.8 691.8 0 0.08 691.8 691.8 0 0.20
Langevin N20ft308.dat 788.2 O 788.2 788.2 0 0.06 788.2 788.2 0 0.20
Langevin N20ft309.dat 730.7 O 730.7 730.7 0 0.06 730.7 730.7 0 0.18
Langevin N20ft310.dat 683 O 683 683 0 0.06 683 683 0 0.18
Langevin N20ft401.dat 660.8 O 660.8 660.8 0 0.06 660.8 660.8 0 0.20
Langevin N20ft402.dat 684.2 O 684.2 684.2 0 0.07 684.2 684.2 0 0.20
Langevin N20ft403.dat 746.4 O 746.4 746.4 0 0.07 746.4 746.4 0 0.18
Langevin N20ft404.dat 817 O 817 817 0 0.07 817 817 0 0.18
Langevin N20ft405.dat 716.5 O 716.5 716.5 0 0.07 716.5 716.5 0 0.20
Langevin N20ft406.dat 727.8 O 727.8 727.8 0 0.06 727.8 727.8 0 0.19
Langevin N20ft407.dat 691.8 O 691.8 691.8 0 0.08 691.8 691.8 0 0.19
Langevin N20ft408.dat 757.3 O 757.3 757.3 0 0.09 757.3 757.3 0 0.19
Langevin N20ft409.dat 730.7 O 730.7 730.7 0 0.07 730.7 730.7 0 0.18
Langevin N20ft410.dat 683 O 683 683 0 0.07 683 683 0 0.19
Langevin N40ft201.dat 1100.6 O 1100.6 1100.6 0 0.07 1100.6 1100.6 0 0.31
Langevin N40ft202.dat 1010.4 O 1010.4 1010.4 0 0.08 1010.4 1010.4 0 0.24
Langevin N40ft203.dat 876.8 O 876.8 876.8 0 0.07 876.8 876.8 0 0.24
Langevin N40ft204.dat 885.8 O 885.8 885.8 0 0.07 885.8 885.8 0 0.27
Langevin N40ft205.dat 940.9 O 940.9 940.9 0 0.08 940.9 940.9 0 0.28
Langevin N40ft206.dat 1054.2 O 1054.2 1054.2 0 0.07 1054.2 1054.2 0 0.27
Langevin N40ft207.dat 867.5 O 867.5 867.5 0 0.09 867.5 867.5 0 0.27

Table A.9 (Part 4 of 6) TSP-TW Results of PnB at ω = 2048 on Closed Problems: Seeded
and Unseeded

LB = Lower Bound, UB = Upper Bound, OG = Optimality Gap, O = Optimality Proved.

123

Problem Information Baldacci et. al. (2012) Single Thread: 2048 Seeded Single Thread: 2048
Set Name Best Known Solution LB LB UB OG Time LB UB OG Time

Langevin N40ft208.dat 1050.7 O 1050.7 1050.7 0 0.08 1050.7 1050.7 0 0.24
Langevin N40ft209.dat 1013.9 O 1013.9 1013.9 0 0.07 1013.9 1013.9 0 0.29
Langevin N40ft210.dat 1026.3 O 1026.3 1026.3 0 0.08 1026.3 1026.3 0 0.28
Langevin N40ft401.dat 1085 O 1085 1085 0 0.11 1085 1085 0 0.79
Langevin N40ft402.dat 995.6 O 995.6 995.6 0 0.07 995.6 995.6 0 0.34
Langevin N40ft403.dat 845.8 O 845.8 845.8 0 2.03 845.8 845.8 0 0.41
Langevin N40ft404.dat 868 O 868 868 0 0.22 868 868 0 0.32
Langevin N40ft405.dat 936.5 O 936.5 936.5 0 1.50 936.5 936.5 0 0.38
Langevin N40ft406.dat 969.1 O 969.1 969.1 0 0.86 969.1 969.1 0 0.32
Langevin N40ft407.dat 831.2 O 831.2 831.2 0 0.54 831.2 831.2 0 1.57
Langevin N40ft408.dat 1002.7 O 1002.7 1002.7 0 0.32 1002.7 1002.7 0 0.36
Langevin N40ft409.dat 1000.5 O 1000.5 1000.5 0 0.10 1000.5 1000.5 0 0.32
Langevin N40ft410.dat 983.8 O 983.8 983.8 0 0.08 983.8 983.8 0 0.29
Langevin N60ft201.dat 1353.5 O 1353.5 1353.5 0 0.11 1353.5 1353.5 0 0.48
Langevin N60ft202.dat 1161.6 O 1161.6 1161.6 0 0.08 1161.6 1161.6 0 1.13
Langevin N60ft203.dat 1182.9 O 1182.9 1182.9 0 0.10 1182.9 1182.9 0 0.49
Langevin N60ft204.dat 1257.5 O 1257.5 1257.5 0 0.08 1257.5 1257.5 0 0.52
Langevin N60ft205.dat 1184.1 O 1184.1 1184.1 0 0.07 1184.1 1184.1 0 0.50
Langevin N60ft206.dat 1199.6 O 1199.6 1199.6 0 0.34 1199.6 1199.6 0 0.54
Langevin N60ft207.dat 1299 O 1299 1299 0 0.07 1299 1299 0 0.43
Langevin N60ft208.dat 1113 O 1113 1113 0 1.19 1113 1113 0 0.54
Langevin N60ft209.dat 1171.3 O 1171.3 1171.3 0 0.18 1171.3 1171.3 0 0.56
Langevin N60ft210.dat 1234.3 O 1234.3 1234.3 0 2.35 1234.3 1234.3 0 0.62
Langevin N60ft301.dat 1337 O 1337 1337 0 0.67 1337 1337 0 1.46
Langevin N60ft302.dat 1089.5 O 1089.5 1089.5 0 4.40 1089.5 1089.5 0 1.03
Langevin N60ft303.dat 1179 O 1179 1179 0 0.20 1179 1179 0 0.59
Langevin N60ft304.dat 1230 O 1230 1230 0 6.64 1230 1230 0 3.07
Langevin N60ft305.dat 1151.6 O 1151.6 1151.6 0 2.32 1151.6 1151.6 0 0.73
Langevin N60ft306.dat 1167.9 O 1167.9 1167.9 0 4.87 1167.9 1167.9 0 0.76
Langevin N60ft307.dat 1220.1 O 1220.1 1220.1 0 0.28 1220.1 1220.1 0 1.24
Langevin N60ft308.dat 1097.6 O 1097.6 1097.6 0 4.88 1097.6 1097.6 0 0.72
Langevin N60ft309.dat 1140.6 O 1140.6 1140.6 0 3.22 1140.6 1140.6 0 0.74
Langevin N60ft310.dat 1219.2 O 1219.2 1219.2 0 12.93 1219.2 1219.2 0 5.55
Langevin N60ft401.dat 1335 O 1335 1335 0 10.41 1335 1335 0 3.18
Langevin N60ft402.dat 1088.1 O 1088.1 1088.1 0 9.70 1088.1 1088.1 0 3.29
Langevin N60ft403.dat 1173.7 O 1173.7 1173.7 0 4.23 1173.7 1173.7 0 1.71
Langevin N60ft404.dat 1184.7 O 1184.7 1184.7 0 4.59 1184.7 1184.7 0 0.80
Langevin N60ft405.dat 1146.2 O 1146.2 1146.2 0 3.30 1146.2 1146.2 0 0.90
Langevin N60ft406.dat 1140.2 O 1140.2 1140.2 0 17.09 1140.2 1140.2 0 7.23
Langevin N60ft407.dat 1198.9 O 1198.9 1198.9 0 9.75 1198.9 1198.9 0 3.11
Langevin N60ft408.dat 1029.4 O 1029.4 1029.4 0 7.47 1029.4 1029.4 0 1.23
Langevin N60ft409.dat 1121.4 O 1121.4 1121.4 0 8.25 1121.4 1121.4 0 1.07
Langevin N60ft410.dat 1189.6 O 1189.6 1189.6 0 19.56 1189.6 1189.6 0 7.72

OhlmannThomas n150w120.001.txt 734 725.5 324 809 59.95 - 324 734 55.86 -
OhlmannThomas n150w120.002.txt 677 668.4 209 717 70.85 - 209 677 69.13 -
OhlmannThomas n150w120.003.txt 747 746.4 416 807 48.45 - 416 747 44.31 -
OhlmannThomas n150w120.004.txt 763 761.6 381 835 54.37 - 381 763 50.07 -
OhlmannThomas n150w120.005.txt 689 684.7 266 754 64.72 - 274 689 60.23 -
OhlmannThomas n150w140.001.txt 762 754 394 893 55.88 - 394 762 48.29 -
OhlmannThomas n150w140.002.txt 755 752 407 855 52.4 - 416 755 44.9 -
OhlmannThomas n150w140.003.txt 613 608.5 215 738 70.87 - 215 613 64.93 -
OhlmannThomas n150w140.004.txt 676 O 391 834 53.12 - 391 676 42.16 -
OhlmannThomas n150w140.005.txt 663 662 197 750 73.73 - 197 663 70.29 -
OhlmannThomas n150w160.001.txt 706 701.4 293 777 62.29 - 293 706 58.5 -
OhlmannThomas n150w160.002.txt 711 709.7 286 826 65.38 - 286 711 59.77 -
OhlmannThomas n150w160.003.txt 608 603.2 170 772 77.98 - 170 608 72.04 -
OhlmannThomas n150w160.004.txt 672 672 336 749 55.14 - 344 672 48.81 -
OhlmannThomas n150w160.005.txt 658 655 320 736 56.52 - 320 658 51.37 -
OhlmannThomas n200w120.001.txt 799 793.3 312 910 65.71 - 312 799 60.95 -
OhlmannThomas n200w120.002.txt 721 713.9 184 822 77.62 - 184 721 74.48 -
OhlmannThomas n200w120.003.txt 880 868.6 336 983 65.82 - 336 880 61.82 -
OhlmannThomas n200w120.004.txt 777 775.8 291 887 67.19 - 291 777 62.55 -
OhlmannThomas n200w120.005.txt 841 833.2 258 960 73.12 - 371 841 55.89 -
OhlmannThomas n200w140.001.txt 834 826.2 177 1053 83.19 - 177 834 78.78 -
OhlmannThomas n200w140.002.txt 760 756.2 180 895 79.89 - 180 760 76.32 -
OhlmannThomas n200w140.003.txt 758 756 241 897 73.13 - 252 758 66.75 -
OhlmannThomas n200w140.004.txt 816 807.1 284 932 69.53 - 284 816 65.2 -
OhlmannThomas n200w140.005.txt 822 819.6 148 927 84.03 - 148 822 82 -

Table A.10 (Part 5 of 6) TSP-TW Results of PnB at ω = 2048 on Closed Problems: Seeded
and Unseeded

LB = Lower Bound, UB = Upper Bound, OG = Optimality Gap, O = Optimality Proved.

124

Problem Information Baldacci et. al. (2012) Single Thread: 2048 Seeded Single Thread: 2048
Set Name Best Known Solution LB LB UB OG Time LB UB OG Time

SolomonPesant rc201.0 628.62 O 628.62 628.62 0 3.36 628.62 628.62 0 2.13
SolomonPesant rc201.1 654.7 O 654.70 654.70 0 3.97 654.70 654.70 0 2.56
SolomonPesant rc201.2 707.65 O 707.65 707.65 0 3.34 707.65 707.65 0 1.63
SolomonPesant rc201.3 422.54 O 422.54 422.54 0 0.52 422.54 422.54 0 0.73
SolomonPesant rc202.0 496.22 O 496.22 496.22 0 19.91 496.22 496.22 0 12.48
SolomonPesant rc202.1 426.53 O 426.53 426.53 0 14.76 426.53 426.53 0 10.34
SolomonPesant rc202.2 611.77 O 611.77 611.77 0 19.53 611.77 611.77 0 9.32
SolomonPesant rc202.3 627.85 O 627.85 627.85 0 27.07 627.85 627.85 0 13.18
SolomonPesant rc203.2 617.46 O 617.46 617.46 0 42.21 617.46 617.46 0 20.88
SolomonPesant rc204.0 541.45 O 495.85 551.56 10.1 - 541.45 541.45 0 1560.34
SolomonPesant rc204.1 485.37 O 485.37 485.37 0 184.27 485.37 485.37 0 101.42
SolomonPesant rc205.0 511.65 O 511.65 511.65 0 17.52 511.65 511.65 0 9.86
SolomonPesant rc205.1 491.22 O 491.22 491.22 0 13.18 491.22 491.22 0 9.71
SolomonPesant rc205.2 714.69 O 714.69 714.69 0 17.80 714.69 714.69 0 11.57
SolomonPesant rc205.3 601.24 O 601.24 601.24 0 10.30 601.24 601.24 0 10.06
SolomonPesant rc206.0 835.23 O 835.23 835.23 0 49.27 835.23 835.23 0 30.81
SolomonPesant rc206.1 664.73 O 664.73 664.73 0 54.26 664.73 664.73 0 25.98
SolomonPesant rc206.2 655.37 O 655.37 655.37 0 89.91 655.37 655.37 0 29.53
SolomonPesant rc207.0 806.69 O 806.69 806.69 0 116.56 806.69 806.69 0 62.17
SolomonPesant rc207.1 726.36 O 726.36 726.36 0 93.50 726.36 726.36 0 61.84
SolomonPesant rc207.2 546.41 O 546.41 546.41 0 159.83 546.41 546.41 0 33.82
SolomonPesant rc208.0 820.56 O 728.35 837.66 13.05 - 757.44 820.56 7.69 -
SolomonPesant rc208.1 509.04 O 509.04 509.04 0 309.35 509.04 509.04 0 50.02
SolomonPesant rc208.2 503.92 O 503.92 503.92 0 280.49 503.92 503.92 0 19.23

SolomonPotvinBengio rc_201.1.txt 444.54 O 444.54 444.54 0 0.74 444.54 444.54 0 1.31
SolomonPotvinBengio rc_201.2.txt 711.54 O 711.54 711.54 0 0.63 711.54 711.54 0 1.07
SolomonPotvinBengio rc_201.3.txt 790.61 O 790.61 790.61 0 7.28 790.61 790.61 0 3.12
SolomonPotvinBengio rc_201.4.txt 793.64 O 793.64 793.64 0 0.27 793.64 793.64 0 0.27
SolomonPotvinBengio rc_202.1.txt 771.78 O 771.78 771.78 0 577.89 771.78 771.78 0 556.81
SolomonPotvinBengio rc_202.2.txt 304.14 O 304.14 304.14 0 1.57 304.14 304.14 0 0.61
SolomonPotvinBengio rc_203.1.txt 453.48 O 453.48 453.48 0 10.84 453.48 453.48 0 6.52
SolomonPotvinBengio rc_203.4.txt 314.29 O 314.29 314.29 0 9.24 314.29 314.29 0 1.69
SolomonPotvinBengio rc_204.3.txt 455.03 O 455.03 455.03 0 682.03 455.03 455.03 0 139.37
SolomonPotvinBengio rc_205.1.txt 343.21 O 343.21 343.21 0 0.35 343.21 343.21 0 0.32
SolomonPotvinBengio rc_205.2.txt 755.93 O 755.93 755.93 0 9.24 755.93 755.93 0 8.16
SolomonPotvinBengio rc_205.3.txt 825.06 O 825.06 825.06 0 59.00 825.06 825.06 0 36.06
SolomonPotvinBengio rc_206.1.txt 117.85 O 117.85 117.85 0 0.06 117.85 117.85 0 0.20
SolomonPotvinBengio rc_206.3.txt 574.42 O 574.42 574.42 0 21.92 574.42 574.42 0 12.96
SolomonPotvinBengio rc_207.4.txt 119.64 O 119.64 119.64 0 0.06 119.64 119.64 0 0.20
SolomonPotvinBengio rc_208.2.txt 533.78 O 533.78 533.78 0 835.29 533.78 533.78 0 37.47

Table A.11 (Part 6 of 6) TSP-TW Results of PnB at ω = 2048 on Closed Problems: Seeded
and Unseeded

LB = Lower Bound, UB = Upper Bound, OG = Optimality Gap, O = Optimality Proved.

125

Problem Information Single Thread: 2048 Seeded Single Thread: 2048
Set Name Best Known Solution LB UB Time LB UB Time

AFG rbg010a.tw 3840 3840 3840 0.10 3840 3840 0.27
AFG rbg016a.tw 2596 2596 2596 0.59 2596 2596 0.23
AFG rbg016b.tw 2094 2094 2094 1.79 2094 2094 0.74
AFG rbg017.2.tw 2351 2351 2351 4.68 2351 2351 2.93
AFG rbg017.tw 2351 2351 2351 1.55 2351 2351 0.97
AFG rbg017a.tw 4296 4296 4296 0.29 4296 4296 0.25
AFG rbg019a.tw 2694 2694 2694 0.55 2694 2694 0.20
AFG rbg019b.tw 3840 3840 3840 5.79 3840 3840 4.11
AFG rbg019c.tw 4536 4536 4536 2.56 4536 4536 2.72
AFG rbg019d.tw 3479 3479 3479 1.71 3479 3479 0.25
AFG rbg020a.tw 4689 4689 4689 0.28 4689 4689 0.24
AFG rbg021.2.tw 4528 4528 4528 9.20 4528 4528 4.82
AFG rbg021.3.tw 4528 4528 4528 14.33 4528 4528 6.57
AFG rbg021.4.tw 4525 4525 4525 19.95 4525 4525 6.64
AFG rbg021.5.tw 4516 4516 4516 18.36 4516 4516 6.19
AFG rbg021.6.tw 4492 4492 4492 116.12 4492 4492 15.35
AFG rbg021.7.tw 4481 4481 4481 330.28 4481 4481 89.87
AFG rbg021.8.tw 4481 4481 4481 397.88 4481 4481 136.81
AFG rbg021.9.tw 4481 4481 4481 387.29 4481 4481 104.94
AFG rbg021.tw 4536 4536 4536 2.56 4536 4536 2.91
AFG rbg027a.tw 5093 5093 5093 9.35 5093 5093 8.87
AFG rbg031a.tw 3498 3498 3498 12.87 3498 3498 5.94
AFG rbg033a.tw 3757 3757 3757 26.84 3757 3757 11.43
AFG rbg034a.tw 3314 3314 3314 18.78 3314 3314 10.52
AFG rbg035a.2.tw 3325 3325 3325 31.96 3325 3325 18.98
AFG rbg035a.tw 3388 3388 3388 17.85 3388 3388 9.03
AFG rbg038a.tw 5699 5699 5699 22.98 5699 5699 9.84
AFG rbg040a.tw 5679 5679 5679 20.86 5679 5679 10.07
AFG rbg041a.tw 3793 3793 3793 23.72 3793 3793 11.82
AFG rbg042a.tw 3260 3260 3260 133.16 3260 3260 55.62
AFG rbg048a.tw 9799 9799 9799 47.50 9799 9799 32.45
AFG rbg049a.tw 13257 13257 13257 43.08 13257 13257 24.53
AFG rbg050a.tw 12050 12050 12050 76.87 12050 12050 42.58
AFG rbg050c.tw 10985 10985 10985 608.13 10985 10985 41.37
AFG rbg055a.tw 6929 6929 6929 37.86 6929 6929 19.52
AFG rbg067a.tw 10331 10331 10331 50.47 10331 10331 26.74
AFG rbg086a.tw 16899 16899 16899 55.93 16899 16899 23.52
AFG rbg092a.tw 12501 12501 12501 105.84 12501 12501 57.06
AFG rbg125a.tw 14214 14214 14214 240.51 14214 14214 159.05
AFG rbg132.2.tw 18524 18524 18524 383.13 18524 18524 256.79
AFG rbg132.tw 18524 18524 18524 166.49 18524 18524 109.79
AFG rbg152.3.tw 17455 17455 17455 708.13 17455 17455 449.59
AFG rbg152.tw 17455 17455 17455 293.16 17455 17455 214.97
AFG rbg193.2.tw 21401 21401 21401 1072.79 21401 21401 890.64
AFG rbg193.tw 21401 21401 21401 408.75 21401 21401 397.71
AFG rbg201a.tw 21380 21380 21380 690.22 21380 21380 516.17
AFG rbg233.2.tw 26143 26143 26143 1386.83 26143 26143 880.14
AFG rbg233.tw 26143 26143 26143 310.61 26143 26143 543.33

Dumas n100w20.001.txt 827 827 827 22.60 827 827 4.66
Dumas n100w20.002.txt 801 801 801 27.68 801 801 20.23
Dumas n100w20.003.txt 834 834 834 29.63 834 834 29.75
Dumas n100w20.004.txt 828 828 828 40.49 828 828 19.34
Dumas n100w20.005.txt 825 825 825 43.67 825 825 29.66
Dumas n100w40.001.txt 841 841 841 81.21 841 841 49.35
Dumas n100w40.002.txt 786 786 786 233.56 786 786 179.21
Dumas n100w40.003.txt 835 835 835 164.55 835 835 162.40
Dumas n100w40.004.txt 809 809 809 110.67 809 809 48.29
Dumas n100w40.005.txt 834 834 834 242.46 834 834 117.29
Dumas n100w60.001.txt 824 824 824 128.02 824 824 162.88
Dumas n100w60.002.txt 782 782 782 148.01 782 782 104.97
Dumas n100w60.003.txt 856 856 856 393.23 856 856 124.66
Dumas n100w60.004.txt 834 834 834 86.16 834 834 95.44
Dumas n100w60.005.txt 790 790 790 330.56 790 790 87.49
Dumas n150w20.001.txt 1034 1034 1034 95.90 1034 1034 82.38
Dumas n150w20.002.txt 967 967 967 95.51 967 967 58.82
Dumas n150w20.003.txt 959 959 959 184.01 959 959 101.22
Dumas n150w20.004.txt 975 975 975 113.70 975 975 83.60
Dumas n150w20.005.txt 957 957 957 172.32 957 957 174.31

Table A.12 (Part 1 of 7) Makespan Results of PnB at ω = 2048 on Closed Problems: Seeded
and Unseeded

LB = Lower Bound, UB = Upper Bound.

126

Problem Information Single Thread: 2048 Seeded Single Thread: 2048
Set Name Best Known Solution LB UB Time LB UB Time

Dumas n150w40.001.txt 1058 1058 1058 1189.38 1058 1058 183.42
Dumas n150w40.002.txt 1072 1072 1072 302.80 1072 1072 227.35
Dumas n150w40.003.txt 894 894 894 202.91 894 894 495.32
Dumas n150w40.004.txt 948 948 948 261.44 948 948 162.54
Dumas n150w40.005.txt 980 980 980 3533.27 980 980 194.03
Dumas n150w60.001.txt 1024 1024 1024 1306.06 1024 1024 1361.14
Dumas n150w60.003.txt 984 984 984 1541.55 984 984 493.46
Dumas n150w60.004.txt 998 998 998 604.28 998 998 316.13
Dumas n150w60.005.txt 997 997 997 537.80 997 997 506.47
Dumas n200w20.001.txt 1139 1139 1139 236.02 1139 1139 591.72
Dumas n200w20.002.txt 1124 1124 1124 477.22 1124 1124 178.85
Dumas n200w20.003.txt 1178 1178 1178 382.11 1178 1178 252.84
Dumas n200w20.004.txt 1125 1125 1125 889.15 1125 1125 815.18
Dumas n200w20.005.txt 1123 1123 1123 569.79 1123 1123 403.14
Dumas n200w40.001.txt 1188 1188 1188 272.29 1188 1188 561.61
Dumas n200w40.003.txt 1134 1134 1134 383.87 1134 1134 1001.46
Dumas n200w40.004.txt 1150 1150 1150 1004.33 1150 1150 854.40
Dumas n200w40.005.txt 1171 1171 1171 494.15 1171 1171 675.02
Dumas n20w100.001.txt 309 309 309 4.80 309 309 2.83
Dumas n20w100.002.txt 285 285 285 7.64 285 285 3.10
Dumas n20w100.003.txt 358 358 358 9.12 358 358 4.41
Dumas n20w100.004.txt 379 379 379 2.14 379 379 1.05
Dumas n20w100.005.txt 327 327 327 5.79 327 327 2.96
Dumas n20w20.001.txt 387 387 387 0.08 387 387 0.19
Dumas n20w20.002.txt 296 296 296 0.09 296 296 0.19
Dumas n20w20.003.txt 403 403 403 0.11 403 403 0.19
Dumas n20w20.004.txt 401 401 401 0.07 401 401 0.19
Dumas n20w20.005.txt 365 365 365 0.07 365 365 0.19
Dumas n20w40.001.txt 280 280 280 0.12 280 280 0.24
Dumas n20w40.002.txt 357 357 357 0.07 357 357 0.19
Dumas n20w40.003.txt 355 355 355 0.08 355 355 0.21
Dumas n20w40.004.txt 397 397 397 0.10 397 397 0.21
Dumas n20w40.005.txt 325 325 325 0.09 325 325 0.24
Dumas n20w60.001.txt 400 400 400 2.10 400 400 1.03
Dumas n20w60.002.txt 300 300 300 0.68 300 300 0.22
Dumas n20w60.003.txt 381 381 381 0.08 381 381 0.23
Dumas n20w60.004.txt 337 337 337 3.11 337 337 2.13
Dumas n20w60.005.txt 392 392 392 0.59 392 392 0.24
Dumas n20w80.001.txt 403 403 403 2.12 403 403 1.70
Dumas n20w80.002.txt 397 397 397 1.24 397 397 0.88
Dumas n20w80.003.txt 365 365 365 0.75 365 365 0.31
Dumas n20w80.004.txt 345 345 345 1.84 345 345 1.00
Dumas n20w80.005.txt 307 307 307 5.82 307 307 2.75
Dumas n40w100.001.txt 471 471 471 78.64 471 471 65.33
Dumas n40w100.002.txt 452 452 452 55.80 452 452 25.75
Dumas n40w100.003.txt 458 458 458 44.81 458 458 29.04
Dumas n40w100.004.txt 476 476 476 25.18 476 476 16.11
Dumas n40w100.005.txt 458 458 458 26.47 458 458 13.81
Dumas n40w20.001.txt 523 523 523 0.54 523 523 0.36
Dumas n40w20.002.txt 607 607 607 2.21 607 607 0.56
Dumas n40w20.003.txt 514 514 514 1.37 514 514 0.35
Dumas n40w20.004.txt 442 442 442 1.04 442 442 0.30
Dumas n40w20.005.txt 520 520 520 0.11 520 520 0.31
Dumas n40w40.001.txt 510 510 510 2.45 510 510 0.52
Dumas n40w40.002.txt 519 519 519 16.34 519 519 9.47
Dumas n40w40.003.txt 536 536 536 4.86 536 536 1.98
Dumas n40w40.004.txt 508 508 508 9.24 508 508 5.51
Dumas n40w40.005.txt 488 488 488 17.23 488 488 6.18
Dumas n40w60.001.txt 535 535 535 13.88 535 535 11.12
Dumas n40w60.002.txt 509 509 509 13.42 509 509 10.98
Dumas n40w60.003.txt 465 465 465 23.80 465 465 14.94
Dumas n40w60.004.txt 475 475 475 20.68 475 475 12.92
Dumas n40w60.005.txt 423 423 423 25.15 423 423 8.20
Dumas n40w80.001.txt 497 497 497 31.58 497 497 20.59
Dumas n40w80.002.txt 498 498 498 37.16 498 498 19.14
Dumas n40w80.003.txt 488 488 488 24.64 488 488 8.43
Dumas n40w80.004.txt 462 462 462 31.94 462 462 21.09
Dumas n40w80.005.txt 488 488 488 50.14 488 488 25.29

Table A.13 (Part 2 of 7) Makespan Results of PnB at ω = 2048 on Closed Problems: Seeded
and Unseeded

LB = Lower Bound, UB = Upper Bound.

127

Problem Information Single Thread: 2048 Seeded Single Thread: 2048
Set Name Best Known Solution LB UB Time LB UB Time

Dumas n60w100.001.txt 576 576 576 47.90 576 576 41.17
Dumas n60w100.002.txt 622 622 622 49.11 622 622 31.61
Dumas n60w100.003.txt 610 610 610 51.91 610 610 28.48
Dumas n60w100.004.txt 625 625 625 56.84 625 625 55.01
Dumas n60w100.005.txt 668 668 668 85.20 668 668 42.20
Dumas n60w20.001.txt 586 586 586 6.05 586 586 2.00
Dumas n60w20.002.txt 656 656 656 4.56 656 656 1.72
Dumas n60w20.003.txt 593 593 593 6.96 593 593 1.26
Dumas n60w20.004.txt 670 670 670 7.91 670 670 1.76
Dumas n60w20.005.txt 629 629 629 4.24 629 629 0.60
Dumas n60w40.001.txt 664 664 664 22.66 664 664 14.66
Dumas n60w40.002.txt 697 697 697 32.01 697 697 26.93
Dumas n60w40.003.txt 675 675 675 29.48 675 675 19.28
Dumas n60w40.004.txt 628 628 628 15.52 628 628 7.76
Dumas n60w40.005.txt 608 608 608 27.57 608 608 12.15
Dumas n60w60.001.txt 722 722 722 24.45 722 722 30.56
Dumas n60w60.002.txt 715 715 715 36.76 715 715 23.87
Dumas n60w60.003.txt 619 619 619 123.67 619 619 49.79
Dumas n60w60.004.txt 639 639 639 101.05 639 639 97.53
Dumas n60w60.005.txt 669 669 669 39.90 669 669 20.10
Dumas n60w80.001.txt 606 606 606 70.71 606 606 48.23
Dumas n60w80.002.txt 611 611 611 45.52 611 611 34.00
Dumas n60w80.003.txt 656 656 656 116.60 656 656 33.02
Dumas n60w80.004.txt 679 679 679 59.47 679 679 42.62
Dumas n60w80.005.txt 589 589 589 86.38 589 589 44.11
Dumas n80w20.001.txt 729 729 729 40.45 729 729 29.10
Dumas n80w20.002.txt 798 798 798 23.83 798 798 13.71
Dumas n80w20.003.txt 727 727 727 16.35 727 727 5.47
Dumas n80w20.004.txt 694 694 694 29.54 694 694 13.28
Dumas n80w20.005.txt 793 793 793 16.04 793 793 7.97
Dumas n80w40.001.txt 743 743 743 76.57 743 743 64.60
Dumas n80w40.002.txt 701 701 701 34.24 701 701 32.70
Dumas n80w40.003.txt 731 731 731 49.56 731 731 59.81
Dumas n80w40.004.txt 662 662 662 38.17 662 662 47.81
Dumas n80w40.005.txt 791 791 791 69.94 791 791 28.40
Dumas n80w60.001.txt 674 674 674 123.69 674 674 46.05
Dumas n80w60.002.txt 733 733 733 141.75 733 733 88.40
Dumas n80w60.003.txt 743 743 743 127.93 743 743 165.29
Dumas n80w60.004.txt 718 718 718 98.69 718 718 64.72
Dumas n80w60.005.txt 695 695 695 71.97 695 695 48.39
Dumas n80w80.001.txt 728 728 728 85.54 728 728 61.20
Dumas n80w80.002.txt 690 690 690 314.50 690 690 290.70
Dumas n80w80.003.txt 730 730 730 110.76 730 730 68.74
Dumas n80w80.004.txt 743 743 743 206.81 743 743 108.65
Dumas n80w80.005.txt 682 682 682 166.66 682 682 127.21

GendreauDumas n100w100.001.txt 787 787 787 182.66 787 787 211.74
GendreauDumas n100w100.002.txt 780 780 780 123.94 780 780 80.68
GendreauDumas n100w100.004.txt 844 844 844 159.35 844 844 138.09
GendreauDumas n100w100.005.txt 749 749 749 429.20 749 749 235.80
GendreauDumas n100w120.001.txt 882 882 882 304.59 882 882 251.81
GendreauDumas n100w120.002.txt 893 893 893 214.04 893 893 133.62
GendreauDumas n100w120.003.txt 909 909 909 193.51 909 909 115.35
GendreauDumas n100w120.004.txt 923 923 923 262.32 923 923 189.78
GendreauDumas n100w120.005.txt 870 870 870 342.28 870 870 294.69
GendreauDumas n100w140.001.txt 1008 1008 1008 275.39 1008 1008 200.57
GendreauDumas n100w140.002.txt 1021 1021 1021 249.58 1021 1021 158.90
GendreauDumas n100w140.003.txt 844 844 844 245.12 844 844 177.10
GendreauDumas n100w140.004.txt 854 854 854 264.06 854 854 157.21
GendreauDumas n100w140.005.txt 805 805 805 477.20 805 805 177.25
GendreauDumas n100w160.001.txt 868 868 868 1258.25 868 868 887.56
GendreauDumas n100w160.002.txt 791 791 791 861.44 791 791 513.75
GendreauDumas n100w160.003.txt 935 935 935 232.75 935 935 129.39
GendreauDumas n100w160.004.txt 814 814 814 569.60 814 814 307.28
GendreauDumas n100w160.005.txt 917 917 917 622.96 917 917 331.31
GendreauDumas n100w80.001.txt 797 797 797 2557.77 797 797 167.87
GendreauDumas n100w80.002.txt 790 790 790 83.34 790 790 74.09
GendreauDumas n100w80.004.txt 854 854 854 119.96 854 854 131.93
GendreauDumas n100w80.005.txt 759 759 759 262.46 759 759 252.80

Table A.14 (Part 3 of 7) Makespan Results of PnB at ω = 2048 on Closed Problems: Seeded
and Unseeded

LB = Lower Bound, UB = Upper Bound.

128

Problem Information Single Thread: 2048 Seeded Single Thread: 2048
Set Name Best Known Solution LB UB Time LB UB Time

GendreauDumas n20w120.001.txt 337 337 337 5.13 337 337 4.10
GendreauDumas n20w120.002.txt 246 246 246 6.13 246 246 5.79
GendreauDumas n20w120.003.txt 347 347 347 8.12 347 347 3.19
GendreauDumas n20w120.004.txt 353 353 353 9.36 353 353 5.69
GendreauDumas n20w120.005.txt 315 315 315 11.88 315 315 7.86
GendreauDumas n20w140.001.txt 230 230 230 7.33 230 230 5.63
GendreauDumas n20w140.002.txt 307 307 307 5.99 307 307 3.57
GendreauDumas n20w140.003.txt 301 301 301 12.81 301 301 7.32
GendreauDumas n20w140.004.txt 318 318 318 6.35 318 318 5.07
GendreauDumas n20w140.005.txt 275 275 275 8.33 275 275 3.07
GendreauDumas n20w160.001.txt 347 347 347 16.31 347 347 9.73
GendreauDumas n20w160.002.txt 250 250 250 12.65 250 250 9.72
GendreauDumas n20w160.003.txt 331 331 331 5.24 331 331 3.20
GendreauDumas n20w160.004.txt 287 287 287 7.85 287 287 4.51
GendreauDumas n20w160.005.txt 342 342 342 14.35 342 342 8.68
GendreauDumas n20w180.001.txt 353 353 353 6.90 353 353 5.81
GendreauDumas n20w180.002.txt 347 347 347 7.44 347 347 5.66
GendreauDumas n20w180.003.txt 315 315 315 17.43 315 315 4.43
GendreauDumas n20w180.004.txt 284 284 284 30.96 284 284 16.48
GendreauDumas n20w180.005.txt 257 257 257 9.46 257 257 7.35
GendreauDumas n20w200.001.txt 259 259 259 9.02 259 259 8.05
GendreauDumas n20w200.002.txt 242 242 242 32.44 242 242 10.46
GendreauDumas n20w200.003.txt 305 305 305 8.32 305 305 4.56
GendreauDumas n20w200.004.txt 326 326 326 26.12 326 326 14.22
GendreauDumas n20w200.005.txt 277 277 277 9.29 277 277 6.64
GendreauDumas n40w120.001.txt 470 470 470 42.95 470 470 24.57
GendreauDumas n40w120.002.txt 557 557 557 26.93 557 557 16.01
GendreauDumas n40w120.003.txt 464 464 464 37.06 464 464 13.26
GendreauDumas n40w120.004.txt 392 392 392 59.60 392 392 30.90
GendreauDumas n40w120.005.txt 470 470 470 24.70 470 470 16.39
GendreauDumas n40w140.001.txt 460 460 460 77.30 460 460 53.39
GendreauDumas n40w140.002.txt 459 459 459 30.01 459 459 20.75
GendreauDumas n40w140.003.txt 476 476 476 23.65 476 476 11.08
GendreauDumas n40w140.004.txt 458 458 458 103.45 458 458 41.30
GendreauDumas n40w140.005.txt 438 438 438 79.34 438 438 35.90
GendreauDumas n40w160.001.txt 470 470 470 93.24 470 470 61.27
GendreauDumas n40w160.002.txt 451 451 451 131.65 451 451 50.20
GendreauDumas n40w160.003.txt 415 415 415 73.22 415 415 36.75
GendreauDumas n40w160.004.txt 425 425 425 34.02 425 425 19.69
GendreauDumas n40w160.005.txt 373 373 373 77.57 373 373 36.81
GendreauDumas n40w180.001.txt 444 444 444 134.27 444 444 99.12
GendreauDumas n40w180.002.txt 448 448 448 137.02 448 448 83.30
GendreauDumas n40w180.003.txt 398 398 398 69.47 398 398 26.74
GendreauDumas n40w180.004.txt 409 409 409 59.34 409 409 22.53
GendreauDumas n40w180.005.txt 438 438 438 168.31 438 438 89.39
GendreauDumas n40w200.001.txt 416 416 416 44.65 416 416 32.94
GendreauDumas n40w200.002.txt 402 402 402 90.46 402 402 51.80
GendreauDumas n40w200.003.txt 408 408 408 107.36 408 408 48.11
GendreauDumas n40w200.004.txt 426 426 426 37.55 426 426 24.35
GendreauDumas n40w200.005.txt 408 408 408 182.99 408 408 50.26
GendreauDumas n60w120.001.txt 536 536 536 101.97 536 536 68.94
GendreauDumas n60w120.002.txt 606 606 606 160.15 606 606 96.68
GendreauDumas n60w120.003.txt 541 541 541 215.21 541 541 40.41
GendreauDumas n60w120.004.txt 607 607 607 72.17 607 607 29.59
GendreauDumas n60w120.005.txt 579 579 579 167.99 579 579 70.92
GendreauDumas n60w140.001.txt 596 596 596 136.02 596 596 54.80
GendreauDumas n60w140.002.txt 647 647 647 69.59 647 647 40.44
GendreauDumas n60w140.003.txt 625 625 625 89.37 625 625 63.29
GendreauDumas n60w140.004.txt 578 578 578 72.23 578 578 48.45
GendreauDumas n60w140.005.txt 554 554 554 96.83 554 554 39.83
GendreauDumas n60w160.001.txt 672 672 672 148.81 672 672 57.99
GendreauDumas n60w160.002.txt 665 665 665 65.43 665 665 36.21
GendreauDumas n60w160.003.txt 569 569 569 115.57 569 569 78.76
GendreauDumas n60w160.004.txt 573 573 573 280.64 573 573 214.91
GendreauDumas n60w160.005.txt 619 619 619 162.69 619 619 72.59
GendreauDumas n60w180.001.txt 556 556 556 120.08 556 556 85.01
GendreauDumas n60w180.002.txt 561 561 561 206.83 561 561 59.32
GendreauDumas n60w180.003.txt 606 606 606 100.03 606 606 64.04

Table A.15 (Part 4 of 7) Makespan Results of PnB at ω = 2048 on Closed Problems: Seeded
and Unseeded

LB = Lower Bound, UB = Upper Bound.

129

Problem Information Single Thread: 2048 Seeded Single Thread: 2048
Set Name Best Known Solution LB UB Time LB UB Time

GendreauDumas n60w180.004.txt 629 629 629 264.17 629 629 110.83
GendreauDumas n60w180.005.txt 528 528 528 219.24 528 528 102.20
GendreauDumas n60w200.001.txt 526 526 526 846.26 526 526 645.07
GendreauDumas n60w200.002.txt 572 572 572 235.71 572 572 68.66
GendreauDumas n60w200.004.txt 575 575 575 286.27 575 575 53.71
GendreauDumas n60w200.005.txt 618 618 618 292.92 618 618 159.49
GendreauDumas n80w100.001.txt 676 676 676 966.52 676 676 43.50
GendreauDumas n80w100.002.txt 721 721 721 1071.28 721 721 232.78
GendreauDumas n80w100.003.txt 729 729 729 99.03 729 729 110.61
GendreauDumas n80w100.004.txt 759 759 759 435.13 759 759 351.61
GendreauDumas n80w100.005.txt 671 671 671 423.50 671 671 244.70
GendreauDumas n80w120.001.txt 675 675 675 260.17 675 675 136.39
GendreauDumas n80w120.002.txt 748 748 748 102.10 748 748 50.59
GendreauDumas n80w120.003.txt 677 677 677 681.72 677 677 280.42
GendreauDumas n80w120.004.txt 644 644 644 247.44 644 644 108.18
GendreauDumas n80w120.005.txt 743 743 743 315.00 743 743 140.92
GendreauDumas n80w140.001.txt 689 689 689 185.95 689 689 123.68
GendreauDumas n80w140.002.txt 651 651 651 155.80 651 651 101.24
GendreauDumas n80w140.003.txt 673 673 673 1408.64 673 673 303.24
GendreauDumas n80w140.004.txt 612 612 612 326.50 612 612 122.16
GendreauDumas n80w160.001.txt 624 624 624 217.47 624 624 91.49
GendreauDumas n80w160.003.txt 690 690 690 2930.56 690 690 1014.22
GendreauDumas n80w160.004.txt 655 655 655 944.97 655 655 389.99
GendreauDumas n80w160.005.txt 645 645 645 488.20 645 645 325.87
GendreauDumas n80w180.001.txt 678 678 678 349.91 678 678 98.66
GendreauDumas n80w180.003.txt 680 680 680 148.69 680 680 98.86
GendreauDumas n80w180.004.txt 659 659 659 689.71 659 659 554.48
GendreauDumas n80w200.001.txt 626 626 626 271.52 626 626 79.82
GendreauDumas n80w200.002.txt 638 638 638 916.82 638 638 637.81
GendreauDumas n80w200.003.txt 679 679 679 548.18 679 679 164.24
GendreauDumas n80w200.005.txt 621 621 621 2143.38 621 621 1627.26

Langevin N20ft301.dat 661.6 661.6 661.6 0.06 661.6 661.6 0.19
Langevin N20ft302.dat 703 703 703 0.06 703 703 0.19
Langevin N20ft303.dat 746.4 746.4 746.4 0.06 746.4 746.4 0.19
Langevin N20ft304.dat 817 817 817 0.06 817 817 0.19
Langevin N20ft305.dat 724.7 724.7 724.7 0.06 724.7 724.7 0.19
Langevin N20ft306.dat 729.5 729.5 729.5 0.06 729.5 729.5 0.19
Langevin N20ft307.dat 691.8 691.8 691.8 0.06 691.8 691.8 0.20
Langevin N20ft308.dat 788.2 788.2 788.2 0.06 788.2 788.2 0.24
Langevin N20ft309.dat 751.8 751.8 751.8 0.06 751.8 751.8 0.19
Langevin N20ft310.dat 693.8 693.8 693.8 0.06 693.8 693.8 0.21
Langevin N20ft401.dat 660.9 660.9 660.9 0.07 660.9 660.9 0.20
Langevin N20ft402.dat 701 701 701 0.07 701 701 0.23
Langevin N20ft403.dat 746.4 746.4 746.4 0.08 746.4 746.4 0.19
Langevin N20ft404.dat 817 817 817 0.08 817 817 0.21
Langevin N20ft405.dat 724.7 724.7 724.7 0.08 724.7 724.7 0.20
Langevin N20ft406.dat 728.5 728.5 728.5 0.06 728.5 728.5 0.22
Langevin N20ft407.dat 691.8 691.8 691.8 0.06 691.8 691.8 0.20
Langevin N20ft408.dat 786.1 786.1 786.1 0.06 786.1 786.1 0.19
Langevin N20ft409.dat 749.8 749.8 749.8 0.06 749.8 749.8 0.21
Langevin N20ft410.dat 693.8 693.8 693.8 0.06 693.8 693.8 0.21
Langevin N40ft201.dat 1109.3 1109.3 1109.3 0.06 1109.3 1109.3 0.26
Langevin N40ft202.dat 1017.4 1017.4 1017.4 0.06 1017.4 1017.4 0.25
Langevin N40ft203.dat 903.1 903.1 903.1 0.09 903.1 903.1 0.25
Langevin N40ft204.dat 897.4 897.4 897.4 0.06 897.4 897.4 0.27
Langevin N40ft205.dat 983.6 983.6 983.6 0.07 983.6 983.6 0.27
Langevin N40ft206.dat 1081.9 1081.9 1081.9 0.06 1081.9 1081.9 0.26
Langevin N40ft207.dat 884.9 884.9 884.9 0.07 884.9 884.9 0.27
Langevin N40ft208.dat 1051.6 1051.6 1051.6 0.08 1051.6 1051.6 0.24
Langevin N40ft209.dat 1027.5 1027.5 1027.5 0.06 1027.5 1027.5 0.29
Langevin N40ft210.dat 1035.3 1035.3 1035.3 0.06 1035.3 1035.3 0.27
Langevin N40ft401.dat 1105.2 1105.2 1105.2 0.11 1105.2 1105.2 0.29
Langevin N40ft402.dat 1016.4 1016.4 1016.4 0.06 1016.4 1016.4 0.29
Langevin N40ft403.dat 903.1 903.1 903.1 2.57 903.1 903.1 0.41
Langevin N40ft404.dat 897.4 897.4 897.4 0.16 897.4 897.4 0.34
Langevin N40ft405.dat 982.6 982.6 982.6 1.10 982.6 982.6 0.37
Langevin N40ft406.dat 1081.9 1081.9 1081.9 0.88 1081.9 1081.9 0.30
Langevin N40ft407.dat 872.2 872.2 872.2 0.60 872.2 872.2 0.34

Table A.16 (Part 5 of 7) Makespan Results of PnB at ω = 2048 on Closed Problems: Seeded
and Unseeded

LB = Lower Bound, UB = Upper Bound.

130

Problem Information Single Thread: 2048 Seeded Single Thread: 2048
Set Name Best Known Solution LB UB Time LB UB Time

Langevin N40ft408.dat 1043.5 1043.5 1043.5 0.25 1043.5 1043.5 0.33
Langevin N40ft409.dat 1025.5 1025.5 1025.5 0.12 1025.5 1025.5 0.35
Langevin N40ft410.dat 1034.3 1034.3 1034.3 0.07 1034.3 1034.3 0.30
Langevin N60ft201.dat 1375.4 1375.4 1375.4 0.13 1375.4 1375.4 0.46
Langevin N60ft202.dat 1186.4 1186.4 1186.4 0.09 1186.4 1186.4 0.44
Langevin N60ft203.dat 1194.2 1194.2 1194.2 0.08 1194.2 1194.2 0.45
Langevin N60ft204.dat 1283.6 1283.6 1283.6 0.09 1283.6 1283.6 0.53
Langevin N60ft205.dat 1215.5 1215.5 1215.5 0.07 1215.5 1215.5 0.47
Langevin N60ft206.dat 1238.8 1238.8 1238.8 0.34 1238.8 1238.8 0.57
Langevin N60ft207.dat 1305.3 1305.3 1305.3 0.07 1305.3 1305.3 0.42
Langevin N60ft208.dat 1172.6 1172.6 1172.6 1.17 1172.6 1172.6 0.47
Langevin N60ft209.dat 1243.8 1243.8 1243.8 0.23 1243.8 1243.8 0.60
Langevin N60ft210.dat 1273.2 1273.2 1273.2 2.22 1273.2 1273.2 0.51
Langevin N60ft301.dat 1375.4 1375.4 1375.4 0.72 1375.4 1375.4 0.53
Langevin N60ft302.dat 1184.4 1184.4 1184.4 2.10 1184.4 1184.4 0.57
Langevin N60ft303.dat 1194.2 1194.2 1194.2 0.23 1194.2 1194.2 0.53
Langevin N60ft304.dat 1283.6 1283.6 1283.6 3.33 1283.6 1283.6 0.63
Langevin N60ft305.dat 1214.5 1214.5 1214.5 2.24 1214.5 1214.5 0.59
Langevin N60ft306.dat 1237.8 1237.8 1237.8 4.87 1237.8 1237.8 0.65
Langevin N60ft307.dat 1298.4 1298.4 1298.4 0.30 1298.4 1298.4 0.55
Langevin N60ft308.dat 1168.8 1168.8 1168.8 3.93 1168.8 1168.8 0.56
Langevin N60ft309.dat 1242.8 1242.8 1242.8 3.51 1242.8 1242.8 0.68
Langevin N60ft310.dat 1273.2 1273.2 1273.2 2.91 1273.2 1273.2 1.98
Langevin N60ft401.dat 1375.4 1375.4 1375.4 6.22 1375.4 1375.4 0.74
Langevin N60ft402.dat 1183.4 1183.4 1183.4 4.65 1183.4 1183.4 1.46
Langevin N60ft403.dat 1194.2 1194.2 1194.2 3.74 1194.2 1194.2 1.81
Langevin N60ft404.dat 1283.6 1283.6 1283.6 5.46 1283.6 1283.6 0.77
Langevin N60ft405.dat 1212.5 1212.5 1212.5 4.10 1212.5 1212.5 0.85
Langevin N60ft406.dat 1236.8 1236.8 1236.8 10.36 1236.8 1236.8 4.25
Langevin N60ft407.dat 1296.4 1296.4 1296.4 4.46 1296.4 1296.4 0.66
Langevin N60ft408.dat 1150 1150 1150 5.79 1150 1150 1.41
Langevin N60ft409.dat 1241.8 1241.8 1241.8 6.75 1241.8 1241.8 1.18
Langevin N60ft410.dat 1273.2 1273.2 1273.2 10.13 1273.2 1273.2 3.92

OhlmannThomas n150w120.001.txt 972 972 972 1164.11 972 972 825.73
OhlmannThomas n150w120.002.txt 917 917 917 654.04 917 917 561.33
OhlmannThomas n150w120.003.txt 909 909 909 1189.99 909 909 1001.17
OhlmannThomas n150w120.005.txt 907 907 907 1591.25 907 907 876.81
OhlmannThomas n150w140.001.txt 1008 1008 1008 462.98 1008 1008 342.39
OhlmannThomas n150w140.003.txt 844 844 844 3630.57 844 844 519.89
OhlmannThomas n150w160.001.txt 959 959 959 1907.07 959 959 553.85
OhlmannThomas n150w160.003.txt 934 934 934 2623.29 934 934 581.80
OhlmannThomas n150w160.005.txt 920 920 920 2762.04 920 920 1329.53
OhlmannThomas n200w120.003.txt 1128 1128 1128 1855.39 1128 1128 696.30
OhlmannThomas n200w120.004.txt 1072 1072 1072 1564.66 1072 1072 1445.56
OhlmannThomas n200w120.005.txt 1073 1073 1073 1665.78 1073 1073 599.20
OhlmannThomas n200w140.002.txt 1087 1087 1087 3097.33 1087 1087 1927.46
OhlmannThomas n200w140.004.txt 1100 1100 1100 2265.02 1100 1100 791.76
SolomonPesant rc201.0 853.71 853.71 853.71 3.17 853.71 853.71 1.84
SolomonPesant rc201.1 850.48 850.48 850.48 5.02 850.48 850.48 2.08
SolomonPesant rc201.2 883.97 883.97 883.97 4.70 883.97 883.97 1.31
SolomonPesant rc201.3 722.43 722.43 722.43 1.62 722.43 722.43 0.31
SolomonPesant rc202.0 850.48 850.48 850.48 10.65 850.48 850.48 7.31
SolomonPesant rc202.1 702.28 702.28 702.28 19.59 702.28 702.28 7.96
SolomonPesant rc202.2 853.71 853.71 853.71 11.40 853.71 853.71 7.55
SolomonPesant rc202.3 883.97 883.97 883.97 42.31 883.97 883.97 27.06
SolomonPesant rc203.0 870.52 870.52 870.52 247.92 870.52 870.52 48.78
SolomonPesant rc203.1 850.48 850.48 850.48 41.22 850.48 850.48 24.01
SolomonPesant rc203.2 853.71 853.71 853.71 53.03 853.71 853.71 9.52
SolomonPesant rc204.0 839.24 839.24 839.24 36.25 839.24 839.24 24.46
SolomonPesant rc204.1 492.60 492.60 492.60 254.83 492.60 492.60 62.26
SolomonPesant rc205.0 834.62 834.62 834.62 11.58 834.62 834.62 9.49
SolomonPesant rc205.1 899.24 899.24 899.24 6.65 899.24 899.24 6.72
SolomonPesant rc205.2 908.79 908.79 908.79 12.72 908.79 908.79 10.47
SolomonPesant rc205.3 684.21 684.21 684.21 10.51 684.21 684.21 8.72
SolomonPesant rc206.0 893.21 893.21 893.21 40.68 893.21 893.21 22.23
SolomonPesant rc206.1 756.45 756.45 756.45 61.77 756.45 756.45 19.49
SolomonPesant rc206.2 776.19 776.19 776.19 115.81 776.19 776.19 32.61
SolomonPesant rc207.0 847.63 847.63 847.63 224.89 847.63 847.63 102.04

Table A.17 (Part 6 of 7) Makespan Results of PnB at ω = 2048 on Closed Problems: Seeded
and Unseeded

LB = Lower Bound, UB = Upper Bound.

131

Problem Information Single Thread: 2048 Seeded Single Thread: 2048
Set Name Best Known Solution LB UB Time LB UB Time

SolomonPesant rc207.1 785.37 785.37 785.37 132.40 785.37 785.37 39.23
SolomonPesant rc207.2 650.8 650.80 650.80 252.09 650.80 650.80 35.39
SolomonPesant rc208.0 836.04 836.04 836.04 2256.13 836.04 836.04 1484.62
SolomonPesant rc208.1 615.51 615.51 615.51 417.09 615.51 615.51 160.41
SolomonPesant rc208.2 596.21 596.21 596.21 276.60 596.21 596.21 46.52

SolomonPotvinBengio rc_201.1.txt 592.06 592.06 592.06 1.75 592.06 592.06 0.53
SolomonPotvinBengio rc_201.2.txt 860.17 860.17 860.17 1.06 860.17 860.17 0.49
SolomonPotvinBengio rc_201.3.txt 853.71 853.71 853.71 4.57 853.71 853.71 1.32
SolomonPotvinBengio rc_201.4.txt 889.18 889.18 889.18 0.32 889.18 889.18 0.28
SolomonPotvinBengio rc_202.1.txt 850.48 850.48 850.48 29.56 850.48 850.48 18.33
SolomonPotvinBengio rc_202.2.txt 338.52 338.52 338.52 1.54 338.52 338.52 0.56
SolomonPotvinBengio rc_202.3.txt 894.1 894.10 894.10 9.24 894.10 894.10 6.64
SolomonPotvinBengio rc_202.4.txt 853.71 853.71 853.71 11.17 853.71 853.71 10.08
SolomonPotvinBengio rc_203.1.txt 488.42 488.42 488.42 5.00 488.42 488.42 3.19
SolomonPotvinBengio rc_203.2.txt 853.71 853.71 853.71 24.89 853.71 853.71 19.70
SolomonPotvinBengio rc_203.3.txt 921.44 921.44 921.44 229.75 921.44 921.44 144.62
SolomonPotvinBengio rc_203.4.txt 338.52 338.52 338.52 2.70 338.52 338.52 1.18
SolomonPotvinBengio rc_204.2.txt 690.06 690.06 690.06 445.91 690.06 690.06 21.80
SolomonPotvinBengio rc_204.3.txt 455.03 455.03 455.03 571.24 455.03 455.03 20.02
SolomonPotvinBengio rc_205.1.txt 417.81 417.81 417.81 0.26 417.81 417.81 0.24
SolomonPotvinBengio rc_205.2.txt 820.19 820.19 820.19 11.47 820.19 820.19 9.12
SolomonPotvinBengio rc_205.3.txt 950.05 950.05 950.05 20.15 950.05 950.05 12.70
SolomonPotvinBengio rc_205.4.txt 837.71 837.71 837.71 13.12 837.71 837.71 7.29
SolomonPotvinBengio rc_206.1.txt 117.85 117.85 117.85 0.06 117.85 117.85 0.20
SolomonPotvinBengio rc_206.2.txt 870.49 870.49 870.49 95.97 870.49 870.49 74.81
SolomonPotvinBengio rc_206.3.txt 650.59 650.59 650.59 22.40 650.59 650.59 12.57
SolomonPotvinBengio rc_206.4.txt 911.98 911.98 911.98 249.85 911.98 911.98 107.78
SolomonPotvinBengio rc_207.1.txt 804.67 804.67 804.67 289.99 804.67 804.67 171.01
SolomonPotvinBengio rc_207.2.txt 713.9 713.90 713.90 110.75 713.90 713.90 43.02
SolomonPotvinBengio rc_207.3.txt 745.77 745.77 745.77 664.62 745.77 745.77 499.02
SolomonPotvinBengio rc_207.4.txt 133.14 133.14 133.14 0.09 133.14 133.14 0.22
SolomonPotvinBengio rc_208.1.txt 810.7 810.70 810.70 1870.15 810.70 810.70 560.76
SolomonPotvinBengio rc_208.2.txt 579.51 579.51 579.51 496.96 579.51 579.51 91.32

Table A.18 (Part 7 of 7) Makespan Results of PnB at ω = 2048 on Closed Problems: Seeded
and Unseeded

LB = Lower Bound, UB = Upper Bound.

	DEDICATION
	ACKNOWLEDGEMENTS
	RÉSUMÉ
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS AND ACRONYMS
	LIST OF APPENDICES
	1 INTRODUCTION
	1.1 Research Goal
	1.2 Contributions
	1.3 Publications
	1.4 Outline

	2 DECISION DIAGRAMS FOR OPTIMIZATION
	2.1 Optimization Problems: Notation and Examples
	2.1.1 Knapsack Example
	2.1.2 Sequence Ordering Example

	2.2 Exact Decision Diagrams
	2.2.1 Merging Equivalent Nodes
	2.2.2 Finding a Compact Decision Diagram
	2.2.3 Reading a Solution
	2.2.4 Weighted & Multivalued Decision Diagrams
	2.2.5 Top-Down Compilation

	2.3 Restricted Decision Diagrams
	2.4 Relaxed Decision Diagrams
	2.4.1 Top-Down Relaxed Decision Diagrams
	2.4.2 Relaxed Decision Diagrams by Separation

	2.5 Decision Diagrams for Sequencing Problems
	2.5.1 Encoding the AllDifferent Constraint
	2.5.2 Encoding a Generalizable Optimality Constraint

	2.6 Branch-and-Bound with Decision Diagrams
	2.7 Other Innovations in DD-Based Solvers
	2.7.1 ddo
	2.7.2 Arc-Flow Formulation
	2.7.3 HADDOCK
	2.7.4 DIDP
	2.7.5 Variable Ordering

	3 PEEL-AND-BOUND
	3.1 Motivation
	3.2 Algorithm
	3.2.1 Complexity Analysis

	3.3 Example and Visualization
	3.4 Advantages and Implementation Decisions
	3.4.1 Node Selection
	3.4.2 Limitations and Handling Memory
	3.4.3 Integrating Rough Relaxed Bounds
	3.4.4 Parallelization

	3.5 Experiments on the Sequence Ordering Problem
	3.5.1 Description of the Heuristics Considered
	3.5.2 Experimental Results

	3.6 Summary

	4 IMPROVED PEEL-AND-BOUND
	4.1 Motivation
	4.2 Improvements to the Theory
	4.2.1 Handling Non-Separable Objective Functions
	4.2.2 Embedded Restricted Decision Diagrams
	4.2.3 Peel-and-Bound with Top-Down Compilation

	4.3 Improvements to the Heuristics
	4.3.1 Node Selection Heuristic
	4.3.2 Search Diversification

	4.4 Experiments with our Improved Implementation
	4.4.1 Node Selection Heuristic
	4.4.2 Traveling Salesman Problem with Time Windows
	4.4.3 Traveling Salesman Problem with Time Windows - Makespan

	4.5 Summary

	5 IMPLICIT RELAXED DECISION DIAGRAMS
	5.1 Algorithm
	5.1.1 Complexity Analysis

	5.2 Ease of Implementation
	5.3 The Future of Peel-and-Bound

	6 APPLICATION TO FINDING EXACT SOLUTIONS TO THE SPACE-TIME DEPENDENT TSP
	6.1 Motivation
	6.2 Background
	6.2.1 The Asteroid Routing Problem
	6.2.2 Trajectory Optimization
	6.2.3 Relaxed Decision Diagrams for the ARP

	6.3 The Initial Decision Diagram
	6.3.1 Initial Setup
	6.3.2 Relaxing the Black-Box
	6.3.3 Calculating Valid Arc Bounds

	6.4 Heuristic Search with Embedded Restricted Decision Diagrams
	6.5 Using Peel-and-Bound for the ARP
	6.6 Implementation Details
	6.6.1 Memoization of B
	6.6.2 Heuristic Decisions
	6.6.3 Limitations of the Inner Optimizer

	6.7 Experimental Results
	6.7.1 Note on Optimality
	6.7.2 Initial Experiment: Determining Best Settings
	6.7.3 Second Experiment: Test of Smaller Instances
	6.7.4 Final Experiment: Test of Larger Instances

	6.8 Opportunities for Parallel Computing
	6.9 Conclusions on the Framework for Outer/Inner Optimazation Problems
	6.10 Acknowledgements

	7 CONCLUSION
	7.1 Some Ideas for Future Research
	7.1.1 Implicit Relaxed DDs Everywhere
	7.1.2 More Decision Diagrams by Separation
	7.1.3 Exact Solutions to Inner/Outer Optimization Problems

	7.2 Final Thoughts

	REFERENCES
	APPENDICES

