
SOFT CONSTRAINTS IN MINIBRASS:
FOUNDATIONS AND APPLICATIONS

Alexander Schiendorfer

Dissertation
zur Erlangung des Doktorgrades
doctor rerum naturalium (Dr. rer. nat.)
der Fakultät für Angewandte Informatik
der Universität Augsburg, 2018

Erstgutachter: Prof. Dr. Wolfgang Reif, Universität Augsburg
Zweitgutachter: Prof. Dr. Alexander Knapp, Universität Augsburg
Drittgutachter: Dr. Guido Tack, Monash University, Melbourne, Australien

Tag der mündlichen Prüfung: 12. November 2018

Abstract

Over-constrained problems are ubiquitous in real-world decision and optimization problems,
in particular, those emerging from self-organizing, autonomous systems where the full problem
specification is only available at runtime. To address over-constrainedness, several theoreti-
cal formalisms to describe soft constraints have been proposed, including weighted, fuzzy, or
probabilistic constraints. All of them were shown to be instances of algebraic structures such
as valuation structures or c-semirings.

In terms of implemented modeling languages and solvers, however, the field of soft con-
straints lags far behind the state of the art in classical constraint optimization. Therefore,
this dissertation describes MiniBrass, a versatile soft constraint modeling language building
on the unifying algebraic framework of partially-ordered valuation structures (PVS). It is im-
plemented as an extension of MiniZinc and MiniSearch. The most important characteristics
of MiniBrass, and the ones that distinguish it from previous work, are that it is extensible and
modular, supports a variety of concrete soft constraint formalisms, works with many solvers
(inherited from MiniZinc), admits a graphical modeling language, and has been applied to
several real-life case studies.

Contributions of this dissertation include the following: (1) The design, implementation,
and performance evaluation of MiniBrass using 28 benchmark problems and six solvers, (2)
A formal foundation that includes the systematic derivation of partially-ordered valuation
structures and c-semirings from partial orders using basic category theory, (3) The qualitative
soft constraint formalism constraint preferences, and (4) concepts for multi-agent optimization
with (possibly) antagonistic preferences, including lexicographic and Cartesian products as
well as voting operators.

iii

Kurzfassung

Zahlreiche Entscheidungs- und Optimierungsprobleme in praktischen Anwendungen sind über-
bestimmt, also unlösbar mit der gegebenen Menge an Nebenbedingungen (Constraints). Im
Besonderen betrifft dies jene Probleme, die dem Umfeld selbstorganisierender oder autono-
mer Systeme entstammen und deren Parameter erst zur Laufzeit vollständig bekannt sind.
Zur Spezifikation und Lösung solcher Probleme wurden mehrere theoretische Formalismen
vorgestellt, wie zum Beispiel gewichtete, unscharfe oder probabilistische Constraints, welche
die Beschreibung weicher Bedingungen ermöglichen, um Probleme lösbar zu machen. All diese
Formalismen lassen sich als Instanzen algebraischer Strukturen wie Bewertungsstrukturen oder
C-Halbringen ausdrücken.

Was tatsächlich implementierte Modellierungssprachen betrifft, hinkt das Gebiet der wei-
chen Bedingungen allerdings weit dem Stand der Technik in klassischer Constraint-Optimierung
hinterher. Zu diesem Zweck stellt diese Dissertation MiniBrass vor, eine vielseitige Modellie-
rungssprache für weiche Bedingungen, die auf dem vereinheitlichenden algebraischen Rahmen
der partiell geordneten Bewertungsstrukturen (eng. PVS) aufsetzt. Sie ist als Erweiterung zu
MiniZinc und MiniSearch implementiert. Die wichtigsten Eigenschaften des MiniBrass-Systems
(und zugleiche jene, die es von vorherigen Ansätzen abgrenzen) sind, dass es erweiterbar und
modular ist, eine Vielzahl von konkreten Formalismen unterstützt, für zahlreiche Solver über-
setzen kann (durch die Übersetzung nach MiniZinc), eine grafische Modellierungsform erlaubt
und auf mehrere Fallstudien angewandt wurde.

Zu den Beiträgen dieser Dissertation zählen: (1) der Entwurf, die Implementierung und die
experimentelle Evaluation der Leistungsfähigkeit von MiniBrass auf 28 Benchmark-Problemen
mit sechs Solvern; (2) eine formale Fundierung, welche die systematische Konstruktion par-
tiell geordneter Bewertungsstrukturen und von C-Halbringen basierend auf partiellen Ord-
nungen mittels elementarer Kategorientheorie umfasst; (3) der qualitative Spezifikationsfor-
malismus Constraint-Präferenzen; sowie (4) Konzepte und Algorithmen zur Optimierung in
Multiagenten-Systemen mit (möglicherweise antagonistischen) Präferenzen unter Verwendung
von lexikographischen und kartesischen Produkten sowie sozialen Auswahlfunktionen.

v

Acknowledgments

First of all, many thanks to my advisor Wolfgang Reif for supporting me and my work, for
giving me enough freedom in research but not too much, and for pushing me in the right
direction when I was about to get lost in theory.

I would like to thank Alexander Knapp for introducing me to the field of formal methods
that proved to be a solid foundation for constraint programming as an interesting area of
research. He supported all my proof endeavors, provided very helpful feedback on a draft of
this dissertation, and acted as a mentor to me.

My external reviewer, Guido Tack from Monash University, provided very helpful and
detailed feedback at the conceptual and even code level of some of the more intricate parts of
the dissertation. Thank you for this invaluable help!

Thanks to the team of researchers and students at the Institute of Software & Systems
Engineering in Augsburg for creating an encouraging and motivating working atmosphere –
and a lot of cold-brewed coffee during the final months of writing. My office mate Oliver
Kosak helped me a lot by patiently enduring fundamental discussions as well as by thoroughly
proofreading chapters of this dissertation. Benedikt Eberhardinger provoked an essential part
of MiniBrass by applying the tool to lunch selection problems at our annual retreat. My
colleagues in the OC-Trust project, in particular, Gerrit Anders and Hella Ponsar often pointed
out interesting viewpoints. Adrian, thank you for many coffees and bouldering sessions to
lighten up the mood.

Thanks to my colleagues in the field soft constraints and constraint programming, especially
to Ugo Montanari for pointing out interesting algebraic constructions and relevant papers, to
Stefano Bistarelli for discussions about c-semirings at ICTAI’14, to Peter Stuckey for intro-
ducing me to MiniSearch at the poster session at CP’15, to Simon de Givry for providing help
with Toulbar2, and to Guido Tack and his MiniZinc development team at Monash University.
I hope to continue and enjoy these forms of cooperation.

I would like to thank my parents for always being supportive, and for advising without
pushing. My mother, Gabriele, taught me the value of enjoying one’s work, curiosity, and
perseverance – indispensable ingredients of this dissertation which would not have been possible
without her support.

Finally, many thanks go to my partner (in crime) Alexandra for her love, patience, and
understanding during both the smooth and challenging times of writing this dissertation. You
are still my favorite person to solve all kinds of everyday decision problems with me.

Alexander Schiendorfer

vii

Contents

1 Introduction 1
1.1 State of the Art and Statement of Purpose . 2
1.2 Scientific Contribution . 5

2 Application Scenarios 7
2.1 Distributed Energy Systems . 7

2.1.1 The Unit Commitment Problem . 8
2.1.2 Complexity of the Problem . 9

2.2 Self-organizing Robotic Systems . 10
2.2.1 Task and Resource Allocation in Reconfigurable Swarms 10
2.2.2 Self-organizing Resource-Flow Systems 11

2.3 Preference-oriented Systems . 12
2.3.1 Exam Appointment Scheduling . 12
2.3.2 Mentor Matching . 12
2.3.3 Multi-User Multi-Display Exhibitions 13

2.4 Related Work . 13
2.5 Challenges for MiniBrass . 14

3 Preliminaries and Related Work 15
3.1 Classical Constraint Satisfaction and Optimization 15
3.2 Over-Constrainedness . 16

3.2.1 Specific Soft Constraint Formalisms . 17
3.2.2 Algebraic Structures for Soft Constraints 18
3.2.3 Soft Constraint Satisfaction Problems 20

3.3 Algorithms to Solve (Soft) Constraint Problems 21
3.3.1 Systematic Search . 22
3.3.2 Constraint Propagation and Global Constraints 23
3.3.3 Local and Large-Neighborhood Search 24
3.3.4 Existing Implementations . 25

3.4 Modeling Languages . 25
3.4.1 MiniZinc and MiniSearch . 26
3.4.2 Essence and Numberjack . 27

viii

CONTENTS ix

3.5 Related Work . 27

4 MiniBrass – A Soft Constraint Modeling Language 31
4.1 A Hello-World Example . 33
4.2 PVS Types and Instantiations . 35
4.3 Examples of Soft Constraint Formalisms as PVS Types 37

4.3.1 Integer-Valued: Weighted CSP or Cost Function Networks 37
4.3.2 Comparative: The Free PVS and Constraint Preferences 40
4.3.3 Real-Valued: Fuzzy CSP and Probabilistic CSP 46

4.4 Morphisms to Switch PVS . 47
4.4.1 Products of PVS . 48
4.4.2 PVS-based Search . 49

4.5 Modeling Case Studies in MiniBrass . 51
4.5.1 Unit Commitment . 51
4.5.2 Mentor Matching . 54

5 Constraint Preferences for Soft Constraints 57
5.1 Qualitative Specification . 59

5.1.1 Semantics of Dominance Properties . 59
5.1.2 Transforming Constraint Preferences to Weighted Constraints 62
5.1.3 Concrete Weight Functions . 62

5.2 Illustrating Constraint Preferences: A Ski-Day Planner 64
5.2.1 Personas & Preferences in the Ski-Day Example 64
5.2.2 Changing Preferences . 66
5.2.3 Changing Constraints . 66

5.3 Constraint Preferences and Related Formalisms 67
5.3.1 Reducing Constraint Hierarchies to Constraint Preferences 67
5.3.2 Relationship with CP-Nets . 69

5.4 Solving “Constraint Preferences” Problems . 69
5.5 Evaluation . 71

5.5.1 Modeling Influence . 71
5.5.2 Algorithmic Efficiency . 72

6 Algebraic Structures for Soft Constraints 73
6.1 Looking for Free Partial Valuation Structures . 74
6.2 The Free Monoid over a Set . 77
6.3 The Free PVS over a Partial Order . 79

6.3.1 The Free PVS as Single-Predecessors-Lifting 79
6.3.2 The TPD-Lifting for Constraint Preferences 82

6.4 The Free C-Semiring over a PVS . 85
6.5 Adequacy of Algebraic Structures . 90

7 Hierarchically Layered Soft Constraints 95
7.1 Towards Lexicographic Products of PVS . 99

7.1.1 Collapsing Elements as an Obstacle . 99
7.1.2 The Lexicographic Product excludes Collapsing Elements 100

7.2 Constraint Hierarchies as Products of PVS . 102

x CONTENTS

7.2.1 Locally Predicate Better . 103
7.2.2 Globally Better – Real-valued PVS . 104

7.3 A Mapping from the Maximum PVS to a p-Norm PVS 105
7.4 Optima-Simulation . 107

7.4.1 Admissible Soft Constraint Problems . 108
7.4.2 Substituting PVS for Optimization: Optima-Simulation and Optima-

Equivalence . 109
7.4.3 Optima-Simulating Max by Large p-Norm PVS 111
7.4.4 Optima-Simulating Max with Finite Multisets 112

7.5 Discussion: Applicability and Consequences . 115

8 Aggregating Soft Constraints by Voting 117
8.1 Computational Social Choice . 118

8.1.1 Aggregating Preferences . 118
8.1.2 Restrictions imposed by Arrow’s Theorem 120
8.1.3 Soft Constraints and Voting – Related Work 122
8.1.4 A Counterexample for Sequential Voting 123

8.2 Voting in MiniBrass . 127
8.2.1 Approval Voting . 127
8.2.2 Condorcet Voting . 130

9 Evaluation 135
9.1 Encoded Weighted CSP versus Native Toulbar2 138
9.2 Smyth-Optimization versus Weighted-Optimization 138
9.3 Most Important First versus Default . 142

10 Conclusion and Outlook 145
10.1 Achieved Contributions . 145
10.2 Outlook and Future Work . 146

Bibliography 147

Chapter 1
Introduction

Summary. This chapter provides the rationale and application scenarios that motivate
and explain why a new modeling language for soft and hard constraints is required.
In particular, this affects the domain of self-organizing or autonomous systems where
most problems faced in practice are over-constrained. Also, this chapter highlights the
contributions that the dissertation offers while providing an outline of its contents.

Autonomous, “intelligent”, and self-organizing systems are beginning to permeate industry
and everyday life alike. Examples range from adaptive production systems (e.g., [Audi, 2018],
where autonomous carts replace conveyor belts and jobs are assigned by the system itself)
to “smart” electricity producers and consumers that schedule operations according to a (re-
newable) energy availability (e.g., [LEW, 2018]) in so-called virtual power plants. Common
motivations are increased efficiency and flexibility, more efficient use of shared resources in
personal settings (e.g., scheduling of car availabilities for a shared car), and reduction of man-
ual labor by designing higher levels of autonomy in those systems – also in terms of resilience
against faults. Such endeavors require expertise from several domains.

To make informed decisions, besides extracting information from data (as witnessed by the
recent uprise of machine learning), these systems have to solve computationally demanding
combinatorial problems – depending on the application at hand: For instance, an adaptive pro-
duction cell needs to find a new task allocation and resource flow in case some tool breaks (see
Section 2.2.2) or a virtual power plant needs to schedule energy productions and consumptions
of its member devices according to demand and weather forecasts (see Section 2.1), which
involves selecting which plants to activate at all. Since there are many discrete choices to be
made under (at least) hard constraints on valid combinations, the problems suffer from a com-
binatorial explosion and are (frequently) NP-complete, i.e., inherently hard to solve [Lenstra
and Kan, 1979]. Still, we expect systems to come up with good allocations, schedules, or
resource flows, in a reasonable amount of time and without considerable human intervention.

Fortunately, nowadays, there is a rich and general algorithmic toolkit implemented in vari-
ous discrete optimization solvers – ranging from constraint solvers based on search and propa-
gation to mathematical programming optimizers based on (non)-linear (integer) programming.
These tools encapsulate decades worth of research and make them available for new problems.
However, expressing a given problem as an instance that a particular solver understands re-
quires considerable expertise and experience with several APIs and languages – a burden

1

2 CHAPTER 1. INTRODUCTION

especially for domain experts that are not well versed in modeling mathematical optimization
problems. In recent years MiniZinc [Nethercote et al., 2007] emerged as a solver-independent,
high-level constraint modeling language. MiniZinc enables its users to state decision vari-
ables, constraints among them, and a numeric objective function. Due to the higher level of
abstraction, modelers are (ideally) not tied to a specific solving technology when formulating
optimization problems. This becomes even more relevant if during the lifetime of a project, new
constraints that change the applicable technology (e.g., nonlinear constraints are introduced
to a problem that used to be solvable by mixed integer linear programming) are introduced.

However, many (perhaps most) industrial combinatorial optimization problems in practice
tend to be over-constrained (see, e.g., [van Hoeve, 2011]). A most common remedy is to
iteratively refine the initial constraint model by manually weakening or dropping constraints
until a solution can be found. However, this approach does not work if the actual problem
instance, i.e., all input parameters, is only available at runtime. But this is precisely the case
when a system is intended to act autonomously as the aforementioned smart factories or smart
grids. For instance, a constraint such as “do not exceed x kWh in consumption” only makes
sense after the available energy production is known. Simply failing with unsatisfiable
is not an option here – instead, a compromise solution is necessary. To accomplish this, a
constraint model should be written with the intention of graceful degradation in the first place.
Some constraints have to be softened if necessary or even ignored such that we can, e.g., at
least maximize the number of satisfied (soft) constraints.

This dissertation presents MiniBrass, the extension of MiniZinc to soft constraints that
precisely addresses modeling such situations. Due to MiniBrass and MiniZinc being high-
level modeling languages instead of low-level constraint solver implementations, they are more
suitable for discussions with the previously mentioned domain experts that may state individual
preferences. Generally speaking, user preferences are a second important driving force for
a soft constraint modeling language. If simply stated as additional hard constraints, they
inevitably lead to over-constrained situations. Due to the rise of technical systems interfering
with personal spaces such as the aforementioned smart energy clients, user preferences have to
be kept in the loop. Otherwise, e.g., switching on a washing machine during a toddler’s nap
time for economic or ecological reasons leads to crises that parents can hardly quantify.

1.1 State of the Art and Statement of Purpose

The motivating problems have attracted the attention of diverse research communities for
decades (see Section 3.5), leading, inter alia, to a unified theory of soft constraints that sub-
sumes over-constrained problems and preferences [Meseguer et al., 2006]. It offers a more
general treatment of satisfaction (or violation) degrees of soft constraints as an ordered set ac-
companied by a combination operation (to combine the valuations of multiple soft constraints
for an assignment) and dedicated top and bottom elements, i.e., an algebraic structure. In-
stead of working with well-known specific orderings, such as (N,≤) or (Q,≤), calculations and
orderings are studied from an abstract algebra perspective to obtain more generality. The lead-
ing frameworks for so-called preference structures are c(onstraint)-semirings [Bistarelli et al.,
1997] and (totally ordered) valuation structures [Schiex et al., 1995], i.e., ordered monoids.
Moreover, by means of product operators such as a direct product (for Pareto-orderings) and
a lexicographic product, complex valuation structures can be formed from elementary ones,
allowing for modular specification and runtime combinations [Schiendorfer et al., 2015c; Gad-

1.1. STATE OF THE ART AND STATEMENT OF PURPOSE 3

ducci et al., 2013] (and subject of Chapter 7). Still, there were substantial theoretical and
practical problems left open that MiniBrass addresses. In particular, ready-to-use implemen-
tations for recent constraint platforms are virtually absent – with Toulbar2 [Allouche et al.,
2010], a solver designed for (integer) cost function networks as a specific valuation structure,
being the exception to the rule. Therefore, the most important goal of this dissertation is to
develop

A modeling language for specifying and solving soft constraint problems in a user-
friendly, yet generic, extensible, and mathematically sound manner.

Up to now, no such system or modeling language has been proposed, despite the theoretical
efforts for unifying soft constraint formalisms. Additionally, some formalisms presented in
this dissertation offer an intuitive visualization, e.g., a graph indicating the priority of soft
constraints. In combination with Pareto and lexicographic combinations that can be arranged
horizontally and vertically, respectively, we can cater to modelers’ and end-users’ needs by
means of an understandable graphical notation – contrary to common objective expressions in
mathematical optimization. To demonstrate the idea, we present a simplified example inspired
by the case study involving virtual power plants (VPP) that we discuss in more detail in
Section 2.1.1 Each preference structure is displayed as a rectangle and represents a distinct goal
in one “currency” where several soft constraints map to the preference structure’s underlying
set such as, e.g., costs in EUR. A preference structure’s type defines how the individual soft
constraints’ valuations are combined (e.g., taking the sum or max, etc.).

Example 1.1 – Unit commitment in a VPP as a soft constraint problem
Consider a virtual power plant that consists of two members, an electric vehicle that primarily
serves as a battery and a small biogas plant supplying power. For the electric vehicle, there
are three boolean desirable properties that can be be partially ordered: there is a preferred
minimal battery level threshold never to fall below (prefBLEV); in the morning, the battery
level should be higher than 70% (BLmorningEV); within one day, the car should not be charged
and discharged more than three times (limitBUEV). Qualitative constraint preferences (see
Chapter 5) are the right type for this preference structure (EV). The two more important ones
can only dominate a single constraint, so “single-predecessor-dominance” (SPD) is the right
choice (see Chapter 5 for a more in-depth explanation). The biogas’ preferences are twofold: the
overall cost, i.e., a cost function mapping to the sum of costsMaintenance and costsFuel are
the first priority, second-tier preferences are boolean properties such that the gas tank should
never exceed 90% in order to maintain strategic market flexibility (gasNotFullbio), the plant
should be set to an economical output value (ecoSweetbio) and it should be switched on/off at
most twice per day (onOffbio). Having space in the gas tank is more important than the two
other wishes combined, so “transitive-predecessors-dominance” (TPD) is used. A preference
structure combining the biogas plant’s economic and technical preferences is formed by taking a
lexicographic product: biogas1nbiogas2. The two members’ structures are Pareto-combined
to treat them equivalently in scheduling. However, both members’ wishes are less important
than the overall goals (vppGoals), reaching minimal deviation between supply and demand.
Here, deviation[1] represents the deviation at time step 1 – it makes thus no sense to sum

1The case study will serve as a source of illustrative examples throughout the dissertation although MiniBrass
is a general purpose soft constraint modeling language.

4 CHAPTER 1. INTRODUCTION

n lex

eZ
Minimize

Max
MaximumvppGoals

deviation[1] deviation[2] deviation[3]

× pareto

SPDEV

limitBUEV

BLmorningEVprefBLEV

n lex

eZ
Minimize

∑
Sumbiogas1

costsMaintenance costsFuel

TPD

gasNotFullbio

ecoSweetbioonOffbio

biogas2

Figure 1.1: A graphical depiction of the overall complex preference structure for a simplified
instance in the unit commit problem, as described in Example 1.1. Algebraically, the overall
goal is vppGoals n (EV× (biogas1 n biogas2)).

these values but rather have a look at the worst value which is why we use the maximum.
Finally, the overall preference structure is given by vppGoals n (EV× (biogas1 n biogas2))

In classical optimization and decision theory, specifying objectives amounts to defining a
numeric function that maps variable assignments to some numeric codomain such as the ra-
tional numbers [Hansson, 1994]. The goal is to minimize or maximize the function’s value.
Multi-objective optimization extends this concept to multiple numeric objectives and most
often optimizes according to a Pareto-front. By contrast, MiniBrass operates on a more ab-
stract level, relying on partial orders and their combinations. This higher level of abstraction
is particularly useful for situations that do not offer a clear-cut numeric objective such as,
e.g., a makespan in scheduling or monetary costs. For example, then optimizing according to
the set of satisfied or violated constraints with an appropriate set-based ordering can be an
alternative. Example 1.1 showed this for he electric vehicle’s preference structure. Inventing a
numeric objective function that represents the modeler’s ordering relation is then a cognitively
demanding task in its own right – if more than just “maximize the number of satisfied soft
constraints” is desired. If users fail to easily assign numeric values, the quantification should
be distinct from the elicitation of preferences. Adequately modeling preferences then results
in an exercise in “objective engineering”. Encapsulating preferences into preference structures
naturally leads to reuse and recombination possibilities (e.g., in case of changing priorities
between structures).

1.2. SCIENTIFIC CONTRIBUTION 5

1.2 Scientific Contribution
We discuss the foundations and applications to implement the vision outlined in Figure 1.1.
More precisely, we reduce the gap between abstract soft constraint frameworks and available
solvers by contributing:
• MiniBrass2, a modeling language for soft constraint problems based on algebraic struc-

tures, that is compiled into MiniZinc [Nethercote et al., 2007] or MiniSearch [Rendl et al.,
2015] code to inherit their support for a broad variety of solvers. Our language comes
with an extensible type system for preference structures including common types in the
literature (weighted constraints [Shapiro and Haralick, 1981], cost function networks [Al-
louche et al., 2012], fuzzy constraints [Ruttkay, 1994], probabilistic constraints [Fargier
and Lang, 1993]) – see Chapter 4. We provide use cases and examples of existing soft
constraint formalisms in MiniBrass, including structured types such as the free PVS or
constraint preferences, combinations of PVS, and morphisms.
• The formalism constraint preferences originally presented by Schiendorfer et al. [2013].
It is a qualitative alternative to quantitative soft constraint formalisms using a numeric
objective and only relies on a partial order over soft constraints. For instance, stating
“c1 → c2” indicates that soft constraint c1 is less important to be satisfied than c2.
Chapter 5 presents several ways to lift such statements to sets of violated soft constraints
based on dominance properties.
• A formal foundation for the semantics of the types implemented in MiniBrass which
includes the systematic derivation of partially-ordered valuation structures from par-
tial orders using category-theoretical arguments (see Chapter 6).3 In the course of the
derivation, we survey the adequacy of abstract frameworks in the literature with respect
to model expressiveness and algorithmic efficiency – with an emphasis on expressive-
ness (see Section 6.5). Our results presented in Section 6.4 show how to extend any
partially-ordered valuation structure to a c-semiring, if needed for a specific algorithm.
• In terms of theory, a completion and analysis of earlier attempts at expressing hierarchical
soft constraints as lexicographic products of preference structures is subject of Chapter 7.
The key observation is that a particular class of such constraint hierarchies give rise to
problematic “collapsing elements” introduced by Gadducci et al. [2013]. These collapsing
elements violate strict monotonicity, i.e., they make ordered, unequal elements equal upon
multiplication. This can, in turn, violate the (weak) monotonicity for a product ordering.
We provide the notion of “optima-simulation” to mitigate this restriction and provide
two constructions along with necessary criteria. Moreover, we identify and implement
suitable voting operators inspired by social choice theory in Chapter 8.
• An empirical evaluation using modified benchmark problems from the MiniZinc bench-
mark library that are supplemented with explicit soft constraints in different formalisms
is offered in Chapter 9. We compare the solving performance of classical constraint
solvers working on encoded soft constraint problems to that of a dedicated soft con-
straint solver (Toulbar2), the influence the used formalism has on solving time, and the
efficiency of generic soft constraint search heuristics.

2MiniBrass pays tribute to the tradition of naming NICTA’s G12 software after elements in the 12th group
of the periodic table. Brass is an alloy containing zinc that is softer than zinc alone.

3In terms of language, the influence of category theory manifests also in the fact that morphisms (structure-
preserving mappings between preference structures) are first-class citizens in MiniBrass.

Chapter 2
Application Scenarios

Summary. This chapter introduces the application scenarios that shaped the Mini-
Brass language. The main application scenario is a distributed energy system where
individual consumers and producers have preferences regarding valid and high-quality
schedules – besides the organizational goals. In addition, we present several other prob-
lems that benefit from a soft constraint modeling language. We conclude by tracing
properties present in MiniBrass back to their origins in the application scenarios.

Constraints used to steer the decision making in autonomous systems—in their most general
form—are found in various kinds. We first begin by motivating how distributed energy systems
affect our considerations and then move on to other application scenarios. For each problem,
we present a verbal specification in terms of decisions, (hard) constraints, objectives, and soft
constraints/preferences.

2.1 Distributed Energy Systems

A fundamental problem of (especially electrical) energy systems is the lack of efficient storage
capabilities. This requires that supply and demand of electrical power in a network are in
balance in order to keep the AC grid’s mains frequency close to a standardized value (50
Hz in continental Europe) [Heuck et al., 2010]. Future energy systems will likely transition
from classical few-suppliers-to-many-consumers settings to distributed systems involving highly
stochastic generation from weather-dependent producers, such as photovoltaics (PV) or wind
power plants. This influx of renewable generation, in particular, PV, puts more strain on a
grid’s capabilities which became apparent in the so-called “50.2 Hz”-problem [von Appen et al.,
2013]: The identical control strategies deployed simultaneously in various PV led to frequency
oscillations as a high number of decentral units used a fixed cutoff-frequency of 50.2 Hz.

Problems like these motivate the vision of a “smart grid”(e.g., [Ramchurn et al., 2012;
Dash et al., 2007; Miller et al., 2012]) that schedules power generation in a more proactive and
coordinated fashion – despite uncertainties and the large scale. Virtual power plants (VPP)
are a tool of paramount importance to accomplish this. But most visions even take a step
further and include end-users into the process by implementing some form of demand-side-
management. For instance, owners of an electric vehicle (EV) can offer their battery’s capacity
as storage to a utility in times of high power generation. This puts end-users and small plant

7

8 CHAPTER 2. APPLICATION SCENARIOS

operators such as farmers in the loop. We use the term “prosumers” to collectively refer to
energy producers and consumers. In most visions of this smart grid, prosumers partially lose
their independence but have to stick to a coordinated and previously negotiated schedule in
order to use resources most efficiently.

Due to the presence of end-users and small plant owners, not only technical properties
matter in such systems. Owners of (small) power plants may know how they would like their
system to be controlled – for instance, they would want to avoid frequent manual switching
actions. Or, a consumer has to align the availability of their EV’s battery with their personal
schedules. Such preferences or wishes have to be submitted and considered in order to i) satisfy
users’ expectations and ii) keep users engaged at all. If they decide to withdraw consent for
controlling their devices, a utility operator is faced with more uncertainties.

To express these wishes systematically, we need a rich variety of formalisms. This enables
us to capture, e.g., rather boolean preferences such as “I never want to experience having a
low battery when I need my car”, rather metric preferences such as “the range of operation
of my plant’s output should be close to an optimal point of energy conversion efficiency”, or
even probabilistic goals such as “Make sure that the probability of me not reaching work is
less than 5%”. Moreover, devices in a VPP do not act in isolation but generate added value
by coordination. Therefore, aggregation of individual and system goals is key.

Designing a scalable and trustworthy system accomplishing these aspects has been a major
challenge in the OC-Trust project [Anders et al., 2016], including algorithms to partition and
organize a system of prosumers hierarchically, predictive models to obtain more accurate sched-
ules, and a decentralized, auction-based scheduling algorithm. For a comprehensive overview,
see [Anders, 2017] and [Siefert, 2017]. For now, we will focus on one specific subproblem – the
unit commitment or plant scheduling problem including individual preferences.

2.1.1 The Unit Commitment Problem

In order to balance supply and demand, the first step is usually to create a (cost/preference)-
efficient schedule based on predictions for the environmental factors intermittent generation
and demand. This problem is referred to as unit commitment since individual units commit
to certain levels of generation beforehand [Padhy, 2004]. At runtime, contributions may be
adjusted to better reflect the actual state of the environment.

Example 2.1 – Scheduling in a VPP
Figure 2.1 shows a simplified instance of the problem for clarity. For ease of presentation,
we consider the (predicted) demand as given and are able to control the output of two power
plants a and b. Our goal is to match the summed output (the orange curve) to the demand (the
blue curve). However, this has to be done under some adverse conditions: While the demand
declines a little bit between the first and second time step, it is at a higher level at the third
time step. Plant a is in the middle of a ramp-up process (e.g., starting another turbine or other
sources of inertia) so plant b has to compensate by reducing its own output. This, in turn,
prohibits that the demand is completely met in time step three since the ramp-up of plant b is
not fast enough after the previous compensation. Similarly, in time step four, the ramp down
of plant b is too slow to reduce the supply to the demand. Moreover, plant a might need to
wait for some time before further ramping-up, etc. These and other restrictions complicate
the scheduling problem, as explained in [Schiendorfer et al., 2015a].

2.1. DISTRIBUTED ENERGY SYSTEMS 9

P (t)

t

Demand

Plant a

Plant b

Supply

Must ramp up
due to inertia

Wait 2 steps for
further ramp-up

Has to compensate

Cannot ramp down further
due to inertia

1 2 3 4 5 6 7 8

Figure 2.1: The problems faced in unit commitment demonstrated with example trajectories.
Demand and supply of power must be aligned at all times t. Here, only plants a and b are
controllable units, the demand is given.

Certainly, if we have controllable consumers at our disposal, their consumption can be
considered as well. In times of low generation, loads can be shifted and vice versa. Then,
personal preferences of the devices’ owners become even more apparent. In conclusion, we can
summarize the following problem aspects for future reference:

Decisions how much energy is produced/consumed at which point in time; when to switch
on/off a power plant or schedule a consumption, i.e., a schedule for each prosumer in a
VPP

Constraints limits on minimal and maximal production/consumption; start-up and cool-
down times; battery capacities; tolerable discrepancies between supply and demand

Objectives minimizing the deviations between supply and demand; reducing operating costs
Soft Constraints and Preferences concerns about personal schedules: Having an electric

vehicle ready at specific times; not having home appliances run at undesirable times; not
having to manually switch on and off a biogas plant frequently.

2.1.2 Complexity of the Problem

The complexity of unit commitment depends on the level of detail that is modeled. In its
simplest form, there are minimal and maximal bounds on scheduled supply and demand, as
well as maximal changes per time step. Moreover, the outputs are modeled as real-valued
decision variables. Since in that case, all constraints and the objective are linear functions of
the decision variables, linear programming can be used to solve unit commitment [Piekutowski
and Rose, 1985].

However, additional constraints stemming from more realistic models make the problem
more complex to solve. Some power plants are not only subject to limited maximal but also

10 CHAPTER 2. APPLICATION SCENARIOS

limited minimal capacities of production due to mostly technical but also economic reasons
(e.g., a minimum generation of 20% of the nameplate capacity for gas turbines or 40% for coal
based thermal plants [Hundt et al., 2009]). Moreover, for a virtual power plant, it is imperative
to be able to switch plants on and off selectively to achieve more favorable aggregate partial load
behavior compared to a single conventional generator [Karl, 2012] that suffers from increased
costs when not operated at optimal energy conversion efficiency.

Consequently, having the binary option of switching on and off power plants changes the
task at hand from a linear to a mixed integer linear program due to the involved 0/1 decision
variables [Arroyo and Conejo, 2004]. Intuitively, now the solvers have to solve a knapsack prob-
lem of deciding which plants to active at all. Moreover, stochastic programming approaches
that consider optimization over uncertain demands make the problem even more difficult to
solve [Anders et al., 2013]. For all these cases, it is beneficial to have the support of a large va-
riety of constraint solvers, including mathematical optimizers capable of solving mixed integer
programs such as CPLEX [2013].

2.2 Self-organizing Robotic Systems

Another set of problems that inspire our research on soft constraints emerge from the class
of self-organizing robotic systems [Hoffmann et al., 2011]. These systems are designed to be
reconfigurable in order to prolong their lifetime of operation in case of hardware faults. Self-
organization can take place on the individual level (i.e., changing components) as well as on
the organizational level (i.e., reorganizing teams that cooperate).

2.2.1 Task and Resource Allocation in Reconfigurable Swarms

Robotics and embedded systems technology have made unmanned aerial vehicles (UAVs) read-
ily applicable for both hobbyists and engineers. It is to be expected that they will serve impor-
tant purposes in application areas that are otherwise hard to cope with. Consider for instance
various inspection tasks such as those in agricultural practice (e.g., surveillance of cattle or
fields) or scientific measurement missions. Many of these problems cannot be effectively solved
by a single robot but require (optimally autonomous) cooperation of various robots to be more
efficient in performing tasks, achieve higher fault-tolerance or even need the cooperation by
the very nature of the problem (e.g., not all needed sensors can be placed on a single UAV due
to weight restrictions, hence, multiple UAVs need to cooperate).

In terms of constraints, the mission plan might require that the estimated time of arrival
(ETA) at a goal station for a UAV be earlier than the estimated time of battery outage (EBO):

∀r ∈ Robots : r.ETA ≤ r.EBO (2.1)

But at the same time, one UAV q might be more stable to control and be better suited for
difficult terrain. It might thus be preferable to send q to a difficult location than another robot,
say p, even if p’s battery level would be higher and thus less likely to suffer an outage. We
might state this preference regarding the mission plan.

Furthermore, Kosak et al. [2016] proposed a concept for reconfigurable ensembles of (e.g.,
flying) robots that are able to change their composition according to task requirements. Sensors
or actuators are encapsulated into modular pieces of hardware that, enriched with semantic

2.2. SELF-ORGANIZING ROBOTIC SYSTEMS 11

information, become “semantic components” that can be attached dynamically to a UAV [Wan-
ninger et al., 2018]. For instance, a task may indicate that it needs the capabilities “flying”
and “measuring temperature” and a suitable reconfiguration makes sure that the semantic
components attached to a UAV still preserve said capabilities, e.g., do not exceed the maximal
take-off weight.
We can summarize the involved aspects as follows [Hanke et al., 2018]:

Decisions which semantic component is mapped to which hardware slot
Constraints maximal payloads; mutual geometric incompatibilities of UAVs and components
Objectives minimizing the number of reconfigurations required; minimizing the number of

involved devices to reduce changeover times
Soft Constraints and Preferences knowledge about unreliable reconfigurations; “experi-

ence” factors such as avoiding sensor-pairings that influence each other

2.2.2 Self-organizing Resource-Flow Systems

Future production cells tend to be more tolerant towards changes in terms of the produced
objects, as opposed to classical mass-production [Bickel and Schuster, 2005; Seebach, 2011].
Autonomous carts could transport workpieces between robot workstations, where tasks are
performed on them. If a robot (or cart) fails, an existing task allocation and resource-flow has
to be redesigned such that all tasks are applied to a workpiece in the correct order. Similar
to the previous problem in reconfigurable swarms, an important requirement is that the tasks
assigned to a robot are an actual subset of their capabilities:

∀r ∈ Robots : r.assignedTasks ⊆ r.capabilities (2.2)

Consider for instance that a robot might not have the right tooling mounted to perform cer-
tain tasks (e.g., drilling) or that tools break, rendering a previously perfectly fine allocation
obsolete. Preferences in this scenario could lead to shorter distances traveled by the carts or
differentiating among feasible allocation tasks based on tool status such that the time to the
next reconfiguration is proactively minimized. Since the constraints and preferences of multiple
robots have to be taken into account, we need mechanisms to combine them according to the
organization structure. In summary:

Decisions what job is done by which robot;
Constraints valid resource flow including connections; tool capabilities for assigned jobs
Objectives maximizing the throughput; minimizing the number of reconfigurations required

within a given time frame; minimizing the number of involved devices
Soft Constraints and Preferences precedence for certain carts; task allocation with re-

spect to tool quality

12 CHAPTER 2. APPLICATION SCENARIOS

2.3 Preference-oriented Systems

Besides these (socio-)technical systems, there are more mundane activities in the daily univer-
sity routine that nevertheless strongly benefit from a soft constraint modeling language. In
many systems, we expect adaptation according to users’ preferences and wishes that are either
learned or explicitly modeled. Often, not only a single user is involved in decision-making but
several users each having their individual set of preferences.

2.3.1 Exam Appointment Scheduling

For oral exams, students are assigned appointments beforehand. In Augsburg (and perhaps
many other universities), this is conventionally done using a first-come-first-served assignment
on paper. Such a mechanism is however inefficient in the sense that conflicts with other exams
or personal preferences are frequent simply due to the order in which students get to the
list. There are, obviously, hard constraints determined by the available examiners and rooms.
Other wishes should be respected as much as possible, in an unbiased way.

Decisions mapping students to appointments
Constraints maximal capacity per appointment; individual absences (e.g., other exams)
Objectives minimizing the number of needed exam days (“clustered” schedules); maximizing

student satisfaction
Soft Constraints and Preferences having an early or late appointment within a week; no

morning appointments; latest-possible, keep Friday free, etc.

2.3.2 Mentor Matching

The study program “software engineering” assigns students to company advisors (and/or pro-
fessors) for mentoring purposes. This should be done for mutual benefit as to maximize the
student’s satisfaction with a possible internship as well as the company’s benefit in terms of
a productive, high-potential future employee. Again, this assignment is subject to hard con-
straints such as a minimal and maximal number of mentees per company in addition to the
pure wishes of students and companies.

Decisions which student is assigned to which company
Constraints minimal and maximal numbers of students supervised by each company
Objectives satisfying students and/or companies; mutual preferences
Soft Constraints and Preferences company-perspective: matching knowledge and goals;

student-perspective: demanding tasks, reputation, salary, etc.

A similar frequent problem is faced when assigning seminar topics or theses to students.

2.4. RELATED WORK 13

2.3.3 Multi-User Multi-Display Exhibitions

The OC-Trust project showed another example application where a set of displays is supposed
to react to users’ passing by showing appropriate contents [Schiendorfer et al., 2015b]. “Ap-
propriate” refers to slides that are of interest to the users (based on a profile learned from
previous contents they watched) and suitable in terms of prerequisite knowledge, i.e., there
are dependencies between contents. The setting is targeted at exhibitions with multiple users
interacting with multiple displays where compromise solutions are inevitable.

Decisions which content is displayed at which display
Constraints age restrictions; correct language; prerequisite knowledge
Objectives minimizing user disruption and discomfort
Soft Constraints and Preferences topical interests, preferred level of detail

2.4 Related Work

For most of the application scenarios, there exist specialized, bespoke algorithms that can
solve a “clean” and well-structured version of the core problem. If we want to add specific side
constraints emerging in practice to the formulations, these solutions often break down. Hence,
we want to provide implementations in a rather high-level modeling language that is capable
of delegating the search for optimal solutions to a variety of solvers.

The unit commit problem and its various facets have received considerable attention in the
past due to its relevance in practice [Ramchurn et al., 2012]. Nieße et al. [2016] considered so-
called local soft constraints for energy unit scheduling in VPPs. They included soft constraints
such as avoiding frequent cold starts of combined heat and power plants into the distributed
optimization heuristic COHDA [Hinrichs et al., 2013]. Their approach allows for a fuzzy-like
specification of soft constraints but is rather domain-specific and tied closely to the overall
COHDA system. Most approaches so far focused on cost-effective (monetary or environmental
costs) scheduling in a distributed way [Dash et al., 2007; Miller et al., 2012] but ignored
individual preferences.

Nafz et al. [2011] and Seebach et al. [2011] introduced the restore invariant approach for
modeling self-organizing resource-flow systems based on a “corridor of correct behavior” which
was described in more detail in [Seebach, 2011] and [Nafz, 2012]. Correct behavior is expressed
by a conjunction of constraints on the system that always have to hold. If one constraint
is violated, the system reconfigures, possibly by reusing the specified constraints for solving
a constraint satisfaction problem [Nafz, 2012]. Steghöfer [2014] then proposed to extend this
idea towards “soft corridors”. MiniBrass has its roots in that line of research [Güdemann et al.,
2006; Seebach et al., 2011].

Problems that involve matching, e.g., students and companies or students and their exam
appointments are studied in matching theory [Lovász and Plummer, 2009]. Seminal results
such as the Gale-Shapley algorithm [Gale and Shapley, 1962] provide solutions to the so-
called stable “marriage” problem where we essentially search for pairings that are stable in
the sense that no assigned couple would “run off”, i.e., mutually prefer each other to their
assigned partner. There are variants for 1:1 as well as for 1:n matchings. Both problems

14 CHAPTER 2. APPLICATION SCENARIOS

can be solved in polynomial time. However, these variants address clean problem formulations
without additional side constraints (such as, e.g., restricting a company’s number of mentees or
enforcing a minimal number of mentees per company). For such constraints, we want to benefit
from a more general formulation that is amenable to constraint technology. Moreover, the
addition of real-world constraints can easily transform the clean, polynomially solvable problem
into an NP-complete one, as is the case with the hospitals/residents problem with couples
where, e.g., couples can indicate that they want to be assigned to the same hospital [Gusfield
and Irving, 1989]. In such cases, the efficient specialized algorithms are not valid anymore and
it pays off to use a generic solution within a soft constraint framework.

2.5 Challenges for MiniBrass
Concluding, these and similar application scenarios pose challenges to conventional constraint
frameworks which we need to consider during the design of MiniBrass:
Heterogeneous Specification Depending on the task at hand, a problem’s objective might

be better specified in terms of costs (or penalties), probabilities (probability of a solution
to be actually useful), or satisfied constraints.

Modularity Since for some case studies, the set of participating agents (devices, etc.) is
subject to change at runtime, individual preference structures have to be formed in a
modular way such that we can form combinations dynamically.

Compositionality Organization structures require different forms of combination, such as a
lexicographic one to give precedence to superiors and a direct one for peers’ decisions in
a Pareto-style.

Extensibility Since it is impossible to anticipate all formalisms needed to conveniently model
a given problem, the framework needs to allow for easy extension within a suitable
algebraic base type.

Besides these requirements, MiniBrass should be user-friendly, i.e., easy to understand and
discuss, as this is one of the main criticisms we have for conventional soft constraint systems.
This includes that the specified order for optimization should semantically be as transparent
as possible, i.e., users should know what they actually optimize for. This idea permeates both
the design of the language as well as our own formalism “constraint preferences” in Chapter 5.

Chapter 3
Preliminaries and Related Work

Summary. This chapter introduces the reader to established concepts in constraint
programming and optimization that are required for the following sessions. It also
serves as a reference for the relevant notation. Although constraint preferences and
partial valuation structures are discussed extensively in subsequent chapters, we already
introduced them for the sake of understanding the MiniBrass language.

Publication. Constraint preferences and the overview on related work have been pub-
lished in [Schiendorfer et al., 2013; Knapp et al., 2014; Schiendorfer et al., 2018].

We review our notation for conventional constraint satisfaction and optimization problems
as well as soft constraint problems and then discuss common algebraic structures used for
soft constraints and those underlying MiniBrass. Our definitions closely follow standards in
the literature [Rossi et al., 2006] except for a functional style of defining constraints instead
of a relational one, not necessarily restricting (mathematical) models to finite domains, and
considering optimization over partial orders. Please be aware that, contrary to mathematical
logic, constraint programming definitions tend to be made entirely in a (relational) semantic
regime without considering the syntax of a formal language first. This can be traced back to
the origins where constraint satisfaction problems were reduced to search problems on so-called
constraint graphs [Dechter, 2003] that do not require any proof calculus.

3.1 Classical Constraint Satisfaction and Optimization

A constraint (satisfaction) problem CSP = (X,D,C) is described by a set of (decision) vari-
ables X, their associated family of domains D = (Dx)x∈X of possible values, and a set of (hard)
constraints C that restrict valid assignments. For a CSP, an assignment θ over scope X is a
mapping from X to D, written as θ ∈ [X → D], such that each variable x maps to a value
in Dx. A (hard) constraint c ∈ C is understood as a map c : [X → D] → B where we write
θ |= c to express that θ satisfies c (i.e., c(θ) = true) and θ 6|= c to express that θ violates c.
Each constraint has a scope sc(c) ⊆ X, i.e., the variables that actually influence its truth
value. An assignment θ is a solution if θ |= c holds for all c ∈ C. In the literature, relational
definitions view a hard constraint simply as a relation over its scope’s variables’ domains, i.e.,
c ⊆

∏
x∈sc(c)Dx. The restriction of an assignment θ to a scope X ′ ⊆ X is written as θ↓X ′.

15

16 CHAPTER 3. PRELIMINARIES AND RELATED WORK

Example 3.1 – A CSP for Robotic Task Assignment
Consider a set of robots R = {r1, r2, r3} that have to solve tasks T = {drill, insert, tighten}
where no robot is allowed to perform more than one task (csingleTask) and robot r1 can do
drill and insert whereas robots r2 and r3 can do insert and tighten. We reduce this to a
CSP by having a variable xt for each task t ∈ T . The respective domains are Ddrill = {r1},
Dinsert = {r1, r2, r3}, and Dtighten = {r2, r3}. The assignment θ1 = {xdrill 7→ r1, xinsert 7→
r2, xtighten 7→ r3} is a solution whereas θ2 = {xdrill 7→ r1, xinsert 7→ r2, xtighten 7→ r2} is not
since θ2 6|= csingleTask. Moreover, sc(csingleTask) = {xt | t ∈ T} and θ2↓{xdrill} = {xdrill 7→ r1}.

We move from satisfaction to constraint optimization problems (COP) by adding an ob-
jective function f : [X → D]→ P where (P,≤P) is a partial order, that is, ≤P is a reflexive,
antisymmetric, and transitive relation over P . Elements of P are interpreted as solution de-
grees, denoting quality. Without loss of generality, we interpret m <P n as solution degree m
being strictly worse than n and restrict our attention to maximization problems regarding P .
Hence, a solution degree m is optimal with respect to a constraint optimization problem COP
if for all solutions θ it holds either that f(θ) ≤P m or f(θ) ‖P m, expressing incomparability
with respect to ≤P . It is reachable if there exists a solution θ such that f(θ) = m. Non-
reachable optimal solution degrees appear, e.g., as upper bounds. Finally, a solution θ∗ is
called optimal if f(θ∗) is optimal.

3.2 Over-Constrainedness – From Correctness to Optimality

Pioneering attempts to generalize hard constraints were discussed in partial constraint satis-
faction [Freuder and Wallace, 1992]: If no solution can be found, i.e., no assignment satisfies
all constraints, a metric measures the distance of an assignment to the solution space of the
original problem. Proposed distance choices include the number of required domain items to
“patch” the assignment, the number of added tuples to a constraint’s defining relation, or the
number of violated constraints. The latter is better known as Max-CSP. We may note that a
Max-CSP can be formulated as a COP by either counting the number of violated constraints,
i.e. f int(θ) = |{c | θ 6|= c}|, or by mapping each assignment directly to its violation set, i.e.,
f set(θ) = {c | θ 6|= c} (cf. [Bistarelli et al., 2004]). The former instantiates the natural ordering
over natural numbers (i.e., (P,≤P) is actually instantiated with (N,≥)) whereas the latter
uses the standard inclusion relation over violation sets (i.e., (P,≤P) becomes (2C ,⊇)). Cer-
tainly, the integer-based variant is conceptually straightforward whereas the set-based variant
leaves more valuations incomparable. For instance, assume that we have C = {c1, c2, c3} and
two assignments θ1 and θ2 with θ1 6|= c1 and θ2 6|= {c2, c3}. Then f int(θ1) < f int(θ2) but
f set(θ1) ‖ f set(θ2) since {c1} 6⊆ {c2, c3}. Using sets is beneficial if we care for strict improve-
ment in terms of violating a strict subset of violated constraints and perhaps get all optimal
solutions instead of merely looking for one with the fewest violations. This line of reasoning
gives also rise to constraint preferences that we explore in more detail in Chapter 5 and briefly
in the following section.

3.2. OVER-CONSTRAINEDNESS 17

x y z

Overall:SCSP with X = {x, y, z} and Dx = Dy = Dz = {0, 1}

x µx
0 1
1 2

y µy
0 2
1 1

z µz
0 3
1 1

x y µxy
0 0 4
0 1 2
1 0 2
1 1 1

y z µyz
0 0 1
0 1 3
1 0 0
1 1 2

x y z
∑

0 0 0 11
0 0 1 11
0 1 0 7
0 1 1 7
1 0 0 10
1 0 1 10
1 1 0 7
1 1 1 7

Figure 3.1: A toy example of a cost function network with soft constraints µ. Note how
cost functions do not classify assignments as “violated” or “satisfied” but map every (partial)
assignment to an integer.

3.2.1 Specific Soft Constraint Formalisms

Partial constraint satisfaction, in particular Max-CSP obviously lacks any form of distinction
between soft constraints regarding their importance. To introduce this distinction, various
formalisms have been proposed. In weighted constraint problems (WCSP), each constraint has
an assigned penalty value, to be “paid” if it is violated. Toulbar2 is a dedicated WCSP solver
using search strategies (e.g., [Allouche et al., 2015; Sánchez et al., 2009]) and soft constraint
propagation and filtering [Cooper et al., 2010], see Section 3.3. The notion of weighted CSP
has been extended to the so-called “cost function networks” which replace constraints by cost
functions that map an assignment to their scope’s variables to some integer. The overall
valuation is the sum of the individual valuations. Figure 3.1 illustrates how a cost function
network is structured and evaluated. While the mathematical model of weighted CSP may use
∞ as a non-reachable maximal violation, existing implementations cap the natural numbers at
some defined maximal value k ∈ N – which can then also be used to emulate hard constraints.
Instead of the conventional summation, we write +k (defined as a +k b = min{a + b, k})
for the capped summation. Cost function networks may also use the maximum operator for
aggregation instead of the sum.

Similar to WCSP, constraints can also be placed qualitatively: either in layers of impor-
tance, such as in constraint hierarchies proposed by Borning et al. [1992] or only comparatively,
as done in constraint preferences [Schiendorfer et al., 2013] using a preference graph over con-
straints. In constraint hierarchies, any constraint on layer i is more important than another on
a layer j > i, i.e., the assignments are ordered lexicographically by their satisfaction degrees of
the individual layers. The values for the layers themselves are found by choosing the desired ag-
gregation function as a parameter: Borning et al. [1992] assumed that each constraint maps to
a numeric value (0 or 1 for boolean soft constraints, or a metric error function). The proposed
aggregation functions are (weighted) sums, (weighted) sum of squares, or taking the maxi-
mum of all constraints’ values – in essence, different p-norms (1, 2, and ∞ in these examples,
see Section 7.2.2). Constraint preferences aim to prioritize constraints in a less rigid fashion.
Figure 3.2 illustrates the idea in a nutshell: Users specify an importance graph over soft con-
straints; we lift this ordering to sets of soft constraints and search for most satisfying solutions.
In that example, not all three constraints can be satisfied simultaneously, e.g., c1 forces that

18 CHAPTER 3. PRELIMINARIES AND RELATED WORK

either n2 or n3 take the night shift which conflicts with c2 or c3. There are solutions satisfying
two out of three constraints. The graph depicts a partial ordering of the constraints with c1
being most important and c2 being incomparable to c3. It is lifted to sets using the so-called
Smyth-ordering which is defined according to the center part of the figure. The Smyth-ordering
is also referred to as “single-predecessor-dominance” (SPD) since a single soft constraint can
be traded for exactly one other. If one soft constraint is more important than a whole set
of less important constraints, this lifting is called “transitive-predecessors-dominance” (TPD).
The difference will be explored in more detail in Chapter 5, in particular in Figure 5.3. Petit
et al. [2000] introduced the notion of meta-constraints to explicitly talk about constraints in
other constraints, such as “B has to hold only if A is violated”. Using meta-constraints which
are now better known as “reified” constraints, constraint hierarchies and constraint preferences
can be implemented, e.g., in MiniZinc. Solvers provide reified variants for several cost values,
MiniBrass relies on that technique.

But there are other semantic variants of softened constraint formalisms in the literature:
Instead of placing weights on constraints themselves, fuzzy constraints [Ruttkay, 1994] consider
a constraint’s defining relation as a fuzzy set with a membership function ranging from 0
to 1 declaring how strongly an assignment satisfies the constraint. The overall valuation is
obtained by taking a fuzzy intersection value, i.e., typically the minimal membership value.
Dually to fuzzy constraints where we maximize the minimal membership degree, possibilistic
constraints [Schiex, 1992] assign a priority value to each constraint and aim at minimizing
the maximal degree of all violated constraints. Another formalism suggested to interpret soft
constraints probabilistically, leading to probabilistic constraints [Fargier and Lang, 1993]: For
every soft constraint, we have a probability pi that the constraint is actually present. An
assignment θ is judged by the probability of it being an “actual solution”. For example, if the
constraint that the energy demand in a virtual power plant exceeds 800 GW is only present
in 10% of all cases, a schedule satisfying 790 GW might be just as fine in 90% of all cases.
Assuming independence, we obtain the validity probability by multiplying 1−pi for all violated
soft constraints (i.e., all violated constraints have to be absent if θ still counts as a solution).

3.2.2 Algebraic Structures for Soft Constraints

This plethora of seemingly different soft constraint and preference formalisms shares many
commonalities. Multiple soft constraints map to a value in an ordered set and their valuations
are combined to an overall valuation which then serves as the ordering criterion. For example
in weighted CSP, each soft constraint maps an assignment to either 0 or to its weight, all
weight valuations are summed, and the sum value is used to rank the assignments in ascending
order. With fuzzy constraints, every soft constraint maps to a real number that is combined by
taking the minimum and assignments are ranked in descending order. These similarities have
been recognized for many years, leading to a unified theory of soft constraints that subsumes
over-constrained problems and preferences [Meseguer et al., 2006].

It offers a more general treatment of satisfaction (or violation) degrees as algebraic struc-
tures: an ordered set accompanied by a binary combination operation over that set and dedi-
cated top and bottom elements. Instead of working with well-known specific orderings, such as
(N,≤), calculations and orderings are studied from an abstract algebra perspective. The leading
frameworks are c(onstraint)-semirings [Bistarelli et al., 1997] and (totally ordered) valuation
structures [Schiex et al., 1995], i.e., ordered monoids. These abstractions serve to both find
general complexity-theoretic results and devise solving algorithms (search and inference) for

3.2. OVER-CONSTRAINEDNESS 19

X = {n1, n2, n3},
D = {day, night, off}
C :
c1 : |{i | ni = night}| = 2
c2 : n2 ∈ {day, off}
c3 : n3 = off

(d→ c means “d is less
important than c”)

(e.g., {c1, c2} ≺ {c1} and
{c1, c2} ≺ {c2, c3} ≺ {c3})

c1

c2 c3

Smyth-ordering ≺ over sets of
violated constraints:

V ∪ {c} ≺ V , if c 6∈ V
V ∪ {c} ≺ V ∪ {d}

if d→ c and
c, d 6∈ V

⊥ = {c1, c2, c3}

{c1, c2} {c1, c3}

{c2, c3}

{c1}

{c2} {c3}

> = ∅

Figure 3.2: Left: A rostering problem involving three nurses ni with (comparative) constraint
preferences. Center: An ordering over sets of violated constraints defined inductively by the
two above rules (called the Smyth-ordering). Right: The Hasse diagram of ≺ over the valuation
space: No violation (∅) is best, and, e.g., {c2, c3} is better than {c1, c2} since it violates the
less important constraint c3 instead of c1.

a broad class of problems. Moreover, product operators such as a direct product (for Pareto-
orderings) and a lexicographic product allow for complex valuation structures composed of
elementary ones. This enables modular specification and runtime combinations [Schiendorfer
et al., 2015c; Gadducci et al., 2013], as we show in Example 1.1. For these purposes, Gadducci
et al. [2013] introduced partial valuation structures (PVS) that relax the totality requirement
and existence of a minimal element from valuation structures (see Definition 3.1). PVS only
require that solution degrees obtained from soft constraints are combined using a binary op-
eration, called multiplication, that there should be a neutral element representing complete
satisfaction, and that combination should be monotone with respect to multiplication to de-
note that additional violation can only harm the quality further (a more elaborate example
justifying monotonicity is presented in Chapter 7). See Definition 3.1 for its formal definition.

Valuation structures and c-semirings are obviously similar in nature and their relationship is
well explored [Bistarelli et al., 1999]. Being purely algebraic, c-semirings prescribe an additive
operation in addition to the combination operator in order to induce a partial order (i.e.,
a ≤ b ↔ a + b = b) for comparing solutions. The additive operator acts as the supremum of
this induced partial order, i.e., a+ b is the least upper bound of a and b. Having a supremum
operation available is particularly useful for variable elimination approaches, as we discuss in
Section 6.5. However, many relevant partial orders do not admit a least upper bound such as,
e.g., a Pareto-ordering of two orders or the Smyth-ordering presented in Figure 3.2.

Table 3.1 shows how the previously shown formalisms can be cast as partial valuation
structures with appropriate mappings. For constraint preferences, finite multisets have to be
used for a PVS-embedding although we showed the Smyth-ordering over (possibly infinite)
sets in Figure 3.2. We present a detailed technical explanation for this in Section 6.1. For
constraint hierarchies with their lexicographic elements, the situation is a bit more complicated
and remained unclear for some time. Hosobe [2009] presented an encoding of some types of
constraint hierarchies as c-semirings – except for a “worst case” semantics, i.e., the ∞-norm.
Later, Schiendorfer et al. [2015c] provided a mathematical explanation for the impossibility of

20 CHAPTER 3. PRELIMINARIES AND RELATED WORK

Table 3.1: Different soft constraint formalisms presented as PVS. Cs is the set of soft con-
straints, � is the Smyth-ordering on finite multisets over of soft constraints (Mfin(Cs)) analo-
gously to Figure 3.2.

Specific PVS types M ·M ≤M εM ⊥M
Weighted CSP (WCSP) N/{0, . . . , k} +/+k ≥ 0 ∞/k
Cost Function Network (CFN) N/{0, . . . , k} +/+k/max ≥ 0 ∞/k
Fuzzy CSP [0, 1] min ≤ 1 0
Possibilistic CSP [0, 1] max ≥ 0 1
Set-based Max CSP 2Cs ∪ ⊇ ∅ Cs
Constraint Preferences (CP) Mfin(Cs) ∪− � *+ –

directly encoding this missing constraint hierarchies type by noting the presence of so-called
“collapsing elements” (introduced by Gadducci et al. [2013]) that equalize distinct elements
(i.e., a < b but c · a = c · b) and are prohibitive for lexicographic products – as we cover
in Chapter 7. Instead of directly encoding the worst-case semantics, the idea is to pick a
sufficiently high p such that ‖·‖p ≈ ‖·‖∞ for all relevant cases such that the optimization
problem behaves similarly with respect to its optima in the non-collapsing p-norm and the
collapsing ∞-norm. We revisit these constructions in more detail in Chapter 7.

3.2.3 Soft Constraint Satisfaction Problems

Due to their generality in capturing a wide range of specific formalisms as well as their mod-
ularity in terms of direct and lexicographic products, we set PVS as the default algebraic
structure in the following. Moreover, total valuation structures are obviously instances of
PVS, any c-semiring gives rise to a PVS, and, conversely, any PVS can be “augmented” to a
c-semiring via a free construction (see Section 6.4). Consequently, a soft constraint satisfac-
tion problem (SCSP) is defined as a COP where i) the objective is decomposable into multiple
objectives (i.e., soft constraints) defined on their respective scopes and ii) the codomain of the
objective is the underlying set of a partial valuation structure, formally defined below:

Definition 3.1 – PVS
A PVS (M, ·M , εM ,≤M) is a partially-ordered commutative monoid where the multiplication
·M is monotone w.r.t. the partial ordering ≤M and εM ∈M is both the neutral element w.r.t.
·M and the top element w.r.t. ≤M . That is, (M,≤M) is a partial order and the following
axioms hold for all m,n, o ∈ M : (1) m ·M n = n ·M m; (2) m ·M (n ·M o) = (m ·M n) · o;
(3) m ·M εM = m; (4) m ≤M εM ; (5) m ≤M n→ m ·M o ≤M n ·M o.

A PVS M is bounded if there also exists a minimal element ⊥ ∈ M to represent complete
dissatisfaction. Hence, a total valuation structure as used by Schiex et al. [1995] is a bounded
PVS where ≤M is a total ordering. A bounded PVS is further weakly strict if m <M n implies
m ·M o <M n ·M o for all m,n ∈M and ⊥M 6= o ∈M . Boundedness as a requirement does not
reduce the generality of PVS operators since each PVS M can be augmented with a “fresh”
element ⊥ /∈M to a bounded PVSM⊥ = (M ∪{⊥}, ·M⊥ , εM⊥ ,≤M⊥) and setting m ·M⊥⊥ = ⊥,
εM⊥ = εM , and ⊥ ≤M⊥ m for all m ∈M ∪ {⊥}.

3.3. ALGORITHMS TO SOLVE (SOFT) CONSTRAINT PROBLEMS 21

If M and N are PVS, so are M × N , the direct (Cartesian) product, and M n N , the
lexicographic product – as long as some conditions onM hold that will be subject of Chapter 7.
Both products have pairs of elements of the underlying sets of M and N as their elements and
combination is applied component-wise. For two PVSM and N , we can construct the ordering
of the direct product as follows:

(m,n) ≤M×N (m′, n′)↔ m ≤M m′ ∧ n ≤N n′

which is a Pareto-ordering over the underlying orderings of M and N . The Pareto-ordering
leads to a “fair” but not decisive aggregation of several PVS. A satisfaction degree (i.e., a pair
of underlying satisfaction degrees) is only better than another one if both PVS approve of or
prefer it. By contrast, the ordering of the lexicographic product is defined as

(m,n) ≤MnN (m′, n′)↔ (m <M m′) ∨ (m = m′ ∧ n ≤N n′)

It allows us to express hierarchical relationships between PVS to distinguish, e.g., organiza-
tional from individual goals.

Furthermore, to allow for structure-preserving mappings between PVS, we define a PVS-
homomorphism from a PVS (M, ·M , εM ,≤M) to a PVS (N, ·N , εN ,≤N) as a mapping ϕ : M →
N such that ϕ(εM) = εN , ϕ(m ·M n) = ϕ(m) ·N ϕ(n), and m ≤M n→ ϕ(m) ≤N ϕ(n) (order-
preservation). Finally, we define a soft constraint µ over a PVSM as a map µ : [X → D]→M ,
we denote the set of soft constraints by Cs and write an SCSP as (X,D,C, (M, ·M , εM ,≤M), Cs)
which can be seen as a COP (X,D,C, (M,≤M), f) where

f(θ) = ΠM{µ(θ) | µ ∈ Cs} (3.1)

using ·M to aggregate solution degrees of all soft constraints evaluated on an assignment.

Example 3.2 – Rostering
Consider again the rostering problem in Figure 3.2 (Left) and let (X,D) be as depicted and
use U = ({c1, c2, c3},≤U) with ≤U = {(c2, c1), (c3, c1)}∗ as a partial order denoting urgency of
constraints. For C = {c1, c2, c3} as hard constraints, the solution space is empty. Instead, we
can convert each hard constraint ci into a soft constraint µi by choosing a suitable PVS M .
For instance, we could use the PVS (N,+, 0,≥) and interpret each valuation as a penalty
incurred for a violated soft constraint. The sum of penalties ought to be minimized. With
weights ~w = [2, 1, 1], we define µi(θ) = wi if θ 6|= ci and µi(θ) = 0 otherwise. Letting C = ∅
and Cs = {µ1, µ2, µ3}, the solution θ = {n1 7→ night, n2 7→ night, n3 7→ off} is optimal with
f(θ) =

∑
µi∈Cs µi(θ) = 1. The solution degree 0, being top in M , is not reachable.

3.3 Algorithms to Solve (Soft) Constraint Problems
For solving soft constraint problems in particular, many approaches are borrowed from tra-
ditional constraint solving – either the soft constraint (optimization) problem is split into a
sequence of conventional constraint problems with ever-tightening constraints on the objectives
or the search and inference techniques that make classical solvers successful have been general-
ized to the soft constraint case [Meseguer et al., 2006]. Therefore, we briefly survey the existing

22 CHAPTER 3. PRELIMINARIES AND RELATED WORK

techniques to keep the dissertation self-contained but refer to introductory literature [Marriott
and Stuckey, 1998; Rossi et al., 2006].

Algorithms that calculate assignments satisfying all hard constraints are called (constraint)
solvers. A solver is complete if, given enough time, it is guaranteed to find a solution if there
is one. Most problems considered in constraint reasoning are finite such that at least there
exists a naïve, enumerative algorithm which is complete. Since the search space still grows
exponentially in the domain sizes of the involved variables, there are also many incomplete
solvers (heuristics) which tend to find solutions in a reasonable amount of time in practice but
do not offer any guarantees about finding a solution at all.

Both classes of solvers essentially follow a “search-and-inference” paradigm where the search
part leads to exploring possible solutions by trial & error and inference denotes that some facts
(e.g., “y 6= 5”) about the problem are inferred from other, perhaps previously made, decisions
(e.g., “x ← 5”). We begin by exploring systematic search, then go on to describe inference
(called “constraint propagation”), and conclude with hybrid methods.

For soft constraints in particular, generalized variants of branch-and-bound, soft arc con-
sistency [Cooper et al., 2010], and non-serial dynamic programming techniques [Bertele and
Brioschi, 1973] (such as bucket elimination or cluster tree elimination [Dechter, 2003]) use the
algebraic structures presented in the previous section. In addition, some global constraints (in-
cluding alldifferent and gcc) with dedicated propagators have been generalized to a soft
variant by van Hoeve [2011], usually by considering one (integer) cost variable that measures
violation (see Section 3.3.2).

3.3.1 Systematic Search

As mentioned before, due to the typical finiteness of constraint problems, it is, in principle,
always possible to traverse the entire search space in a systematic way. The most elemen-
tary form of this approach is called backtracking [Wells, 1971] where only consistent partial
assignments are extended with values for unassigned variables until either a solution is found
or a previous assignment has to be undone. That way, a so-called search tree is constructed
on the fly (see Figure 3.3) and depth-first-search on the tree leads to full assignments, i.e.,
solutions. Besides backtracking, there are also “backjumping” strategies that do not simply
undo the last operations in chronological order but identify so-called “culprit variables” that
caused the emerging consistency conflict [Dechter and Frost, 2002]. The solvers used for our
implementation and evaluation do rely on conventional, chronological backtracking, however.

For optimization problems, enumerative search is often accompanied by appropriate relax-
ations, leading to algorithms similar to branch-and-bound. The idea is to exploit a bounding
function on the objective f . It estimates the “best possible” value f̂(θ) that can be achieved,
given the current partial assignment θ. If, even in the best case, the search at a given node can-
not improve upon an already found value, we can prune at that point. Figure 3.3 illustrates
branch-and-bound for the one-dimensional knapsack problem. The formulation has {0, 1}-
variables xi to represent that item i should be taken into the knapsack iff xi = 1. As usual, the
objective is to maximize the summed values of all items in the knapsack. A simple bounding
function for any partial assignment assumes that all items (that remain to be decided) can
be placed in the knapsack – in their entirety. The idea of branch-and-and-bound is similar to
branch-and-cut for mixed integer programming (MIP) which are optimization problems over
real-valued decision problems involving only linear constraints, a linear objective function, and
integrality constraints on some (or all) of the decision variables. The integrality constraint on

3.3. ALGORITHMS TO SOLVE (SOFT) CONSTRAINT PROBLEMS 23

maximize
x1,x2,x3

45 · x1 + 48 · x2 + 35 · x3

subject to 5 · x1 + 8 · x2 + 3 · x3 ≤ 10

0
10

128 e

45
5

128 e

93
−3

128 e

45
5

80 e

80
2

80 e

45
5

45 e

0
10

83 e

48
2

83 e

83
−1

48 e

48
2

48 e

0
10

35 e

x1 ← 1 x1 ← 0

x2 ← 1 x2 ← 0

x3 ← 1 x3 ← 0

x2 ← 1 x2 ← 0

x3 ← 1 x3 ← 0

Figure 3.3: Top: A one-dimensional knapsack problem for illustration, taken from the on-
line course described in [van Hentenryck and Coffrin, 2014]. Bottom: A possible search tree
traversing the search space. At every search node, the first line indicates the already achieved
value, the second line contains the remaining weight budget, and the third line has the upper
bounding function f̂ that indicates the optimally achievable summed value of the knapsack.

integer decision variables is relaxed and bounds are obtained by solving the resulting linear
programs (LP) which can be done much more efficiently using, e.g., the simplex algorithm. It
is worth noting that, despite the similarities of branch-and-bound and branch-and-cut, most
solvers are developed for one class of problems or the other. Certainly though, there are
significant efforts to integrate both technologies [Hooker, 2007].

3.3.2 Constraint Propagation and Global Constraints

Search alone is often too expensive for problems of even moderate size. Therefore a key in-
gredient to most constraint programming systems is to view constraints as procedures that
can act upon a so-called domain store that holds possible items for all of the unassigned vari-
ables [Bockmayr and Hooker, 2005]. The goal is domain filtering, i.e., removing all values
from domains that can never lead to feasible solutions. Since domain reductions can trigger
additional domain reductions, this class of algorithms (which is prominent in constraint pro-
gramming) is called constraint propagation [Bessiere, 2006] since information is propagated
through constraints and a shared domain store.

Example 3.3 – Simple Constraint Propagation
Assume a constraint problem with X = {x, y}, Dx = Dy = {1, . . . , 10}, and a single constraint
in C = {“|x − y| > 5”}. We can deduce that x and y cannot take 5 or 6 as their value and
update the domains accordingly: D′x = D′y = {1, . . . , 10} \ {5, 6}.

Constraint propagation algorithms implement deductions such as those in the above ex-
ample systematically. The first filtering algorithms were generic and graph-theoretically moti-

24 CHAPTER 3. PRELIMINARIES AND RELATED WORK

vated, i.e., operated on arbitrary finite relations to achieve node consistency (no domain value
violates a unary constraint), arc consistency (in a binary relation, there is a “partner” for
every remaining domain item), and path consistency (generalizing arc consistency to paths of
length k > 2) [Mohr and Henderson, 1986]. For large domains though, these generic filtering
algorithms suffer from the little information that is conveyed with a purely extensional repre-
sentation. Therefore, so-called global constraints encapsulate more specific filtering algorithms
for frequently recurring patterns in constraint models [van Hoeve and Katriel, 2006]. A ded-
icated filtering algorithm for a (global) constraint is also called a propagator. Exploiting a
constraint’s particular semantics, these propagators can achieve more efficient filtering in less
time. The most prominent example is the alldifferent constraint which states that some
variables x1 . . . xn should each take a different value which happens frequently if we have to
decide some injective function in our models (e.g., assigning a different task to each worker).
Régin [1994] presented the first dedicated filtering algorithm for alldifferent which is based
on matching theory for bipartite graphs. The global constraint catalogue [Beldiceanu et al.,
2007] lists many more global constraints for recurring problems such as cardinality constraints
(for imposing limits such as “only five variables may take value d”), ordering constraints (the
sequence x1 . . . xn must contain values in ascending order), or extensional representations of
relations with a table constraint or a deterministic finite automaton (called regular) – each
with specific propagators that existing solvers provide. The ideas of propagation and arc con-
sistency have been extended to the case of soft constraints where a cost variable takes the
measure of violation. There is, e.g., a soft alldifferent constraint that does not fully
enforce alldifferent but has an additional variable take the number of equally assigned
variables as a measure of violation [van Hoeve, 2011]. For instance, for variables [x1, x2, x3]
and cost variable µ, we have that softalldifferent({x1 ← 1, x2 ← 2, x3 ← 2, µ ← 2}) or
softalldifferent({x1 ← 2, x2 ← 2, x3 ← 2, µ← 3}) holds (see Section 4.3.1).

Most current constraint programming solvers blend search with domain filtering and con-
straint propagation to obtain good performance. For example, the order of propagators ex-
ecuted for constraints can drastically affect the runtime [Schulte and Carlsson, 2006]. Also,
there can be several filtering algorithms for a constraint, each reaching different levels of con-
sistency at different runtimes and a solver has to decide when to schedule which propagator.
Constraint propagation is also imperative in steering the search in such systems since branch-
ing can be interpreted as augmenting an existing problem with a new constraint (e.g., “x = 1”
or “x 6= 1”). Global constraints and efficient propagation are similarly important for optimiza-
tion in constraint programming systems since they enable the fast solution of a sequence of
satisfaction problems. The “getBetter” predicates that are used for search in MiniBrass rely
on this principle (see Section 4.4.2).

3.3.3 Local and Large-Neighborhood Search

For many large-scale problems, despite efficient propagators and search, systematic enumer-
ation can simply be too time and space consuming. In such cases, local search algorithms
constitute incomplete solvers that may still offer a practical benefit, i.e., come up with solu-
tions in less time. In contrast to the systematic search methods such as branch-and-bound
which incrementally build up assignments in a search tree until a solution is found, local search
algorithms start with a random initial assignment and try to improve or repair it until a valid
(or, the best) solution is found [Hoos and Tsang, 2006]. They are called local since there is a
neighborhood function N that maps each assignment θ to its set of neighboring assignments

3.4. MODELING LANGUAGES 25

N (θ) ⊆ [X → D]. For instance, the neighborhood of an assignment θ can be the set of assign-
ments θ′ such that only one variable’s assignment differs or that two variables swap their value.
Local search methods come in different flavors and include hill-climbing, simulated annealing,
or tabu search. A local search algorithm then typically proceeds as follows:

1. Find an initial assignment θ.

2. Explore the neighborhood N (θ).

3. Search for the “best” θ′ ∈ N (θ) (fewer violated constraints, better objective, . . .).

4. Repeat with θ′ and continue these steps until convergence (solution found, (local) opti-
mum found, timeout, . . .).

Local search has proved to be successful for a variety of problems, beginning with the
min-conflicts heuristic that enabled solving very large N -queens instances (up to N = 106

in [Minton et al., 1992]). Most often it is a starting point to tackle constraint optimization
problems without using a constraint solver at all. However, due to the locality, the algorithm
may suffer from getting stuck in local optima. In addition to breakout strategies such as the
aforementioned simulated annealing, more recently, the benefits of systematic, propagation-
powered solving and local search have been combined to create large neighborhood search (LNS,
see [Shaw, 1998; Pisinger and Ropke, 2010]). The idea is to be able to explore a very large
neighborhood of a given assignment by means of constraint propagation and search within a
smaller subproblem than the overall one. During an iteration, the current solution θ is, e.g.,
constrained to have some variables fixed whereas others can take new values. The proportion
of variables that can be reassigned and optimized defines the size of the neighborhood and has
to be tailored to the specific problem instance at hand.

3.3.4 Existing Implementations

As previously stated, for soft constraint systems we noted the lack of solvers for general semir-
ing or valued constraints. Most papers offer closed ad-hoc implementations focusing on one
particular type such as [Rossi and Pilan, 2003] or [Bistarelli et al., 2003] for fuzzy CSP. By
contrast, Leenen et al. [2007] provides a formulation of c-semiring-based soft constraint prob-
lems as “weighted semiring Max-SAT” that uses the semiring values and ordering as “weights”.
The encoded problems are solved with basic implementations of branch-and-bound and GSAT,
outperforming the fuzzy solver CONFLEX (which is not available anymore). However, these
algorithms do not rely on the supremum operator of a c-semiring and could be run as well
with partial valuation structures (see Section 6.5). In addition, the approach remained rather
prototypical (random instances with up to 120 variables and 20 constraints), only supported
strict domination search for partially-ordered search spaces (see Section 4.4.2), and did not
offer a public API to their system – which brings us to modeling languages.

3.4 Modeling Languages

Most existing constraint solvers offer an API to model constraint problems in imperative code.
For higher layers of abstraction, there have been several proposals for domain-specific languages
that allow users to express constraint models more declaratively. We begin by reviewing
MiniZinc, the foundation of MiniBrass, as the most widespread constraint modeling language
which gives rise to the annual MiniZinc challenge and then go on to describe other approaches.

26 CHAPTER 3. PRELIMINARIES AND RELATED WORK

All of these languages and platforms have in common that they strive at facilitating constraint
modeling for domain experts and not necessarily constraint programmers alone.

3.4.1 MiniZinc and MiniSearch

MiniBrass is built on top of MiniZinc which itself is a subset of the Zinc language. MiniZinc is a
high-level constraint modeling language that is compiled to the flat file format FlatZinc [Becket,
2014] which is understood by many constraint, MIP, or SAT solvers1. MiniZinc supports the
primitive data types bool, int, float, and subtypes of those in addition to arrays and sets
of them.
array[1..3] of var 1..3: x; % decision variables
constraint forall (i in 1..2) (x[i] <= x[i+1]); % constraints

solve satisfy; % objectives (satisfy/minimize numExpr/maximize numExpr)

FlatZinc only consists of variable definitions and relational constraints. This process, compiling
MiniZinc to FlatZinc, is also called flattening [Nethercote, 2014]. For instance, the above high-
level model gets flattened to the FlatZinc file
array [1..2] of int: X_INTRODUCED_3 = [1,-1];
var 1..3: X_INTRODUCED_0;
var 1..3: X_INTRODUCED_1;
var 1..3: X_INTRODUCED_2;

5 array [1..3] of var int: x:: output_array([1..3]) = [X_INTRODUCED_0,X_INTRODUCED_1,X_INTRODUCED_2]
constraint int_lin_le(X_INTRODUCED_3,[X_INTRODUCED_0,X_INTRODUCED_1],0);
constraint int_lin_le(X_INTRODUCED_3,[X_INTRODUCED_1,X_INTRODUCED_2],0);
solve satisfy;

where we can see that the forall-loop has been unrolled to state variables[1] ≤ variables[2]
and variables[2] ≤ variables[3] (represented by the low-level binary int_lin_le FlatZinc
constraint) explicitly. MiniZinc strongly supports and encourages global constraints for model-
ing (see Section 3.3.2). On the one hand, this helps to keep models concise and makes modelers’
intentions more obvious. On the other hand, solvers may handle global constraints completely
differently – depending on the backing technology (e.g., constraint programming, SAT, or MIP,
etc.) as well as the supported range of global constraints. We depend on this mechanism in
our definitions of soft global constraints as well as native cost functions for Toulbar2 (see Sec-
tion 4.3.1) which is why we explain the mechanism in more detail. We could rewrite the above
example using the global constraint increasing:
array[1..3] of var 1..3: x;

include "increasing.mzn";
constraint increasing(x);

5 solve satisfy;

For a solver that understands increasing (e.g., Gecode by Schulte et al. [2006]), the FlatZinc
output will be similar to
predicate increasing_int(array [int] of var int: x);
var 1..3: X_INTRODUCED_0;
var 1..3: X_INTRODUCED_1;
var 1..3: X_INTRODUCED_2;

5 array [1..3] of var int: x:: output_array([1..3]) = [X_INTRODUCED_0,X_INTRODUCED_1,X_INTRODUCED_2];
constraint increasing_int(x);
solve satisfy;

1At the time of writing, 18 solvers are listed on the MiniZinc website at www.minizinc.org/software.
html.

www.minizinc.org/software.html
www.minizinc.org/software.html

3.5. RELATED WORK 27

where we see that increasing has merely been replaced by the predicate increasing_int
that MiniZinc expects the FlatZinc parser of Gecode to understand and treat properly. A very
elegant property of MiniZinc is that there are default decompositions for solvers that do not
offer a dedicated implementation of, e.g., increasing. Those solvers, such as e.g. JaCoP by
Kuchcinski and Szymanek [2013], will get a FlatZinc output identical to the above first FlatZinc
output since the MiniZinc standard library defines increasing almost exactly as seen in the
first listing. Similarly, the decompositions for MIP or SAT solvers amount to efficient encodings
in the respective formalisms. The process of substituting solver-specific implementations or
default decompositions of constraints is hidden from users who only specify the constraint
model using MiniZinc’s global constraints library.

There are variations and extensions such as stochastic MiniZinc [Rendl et al., 2014] for
problems involving uncertainties, MiningZinc for constraint-based data mining [Guns et al.,
2017], MiniSearch [Rendl et al., 2015] for customizable search, and extensions for large neigh-
borhood search [Dekker et al., 2018]. MiniSearch provides facilities to access a search tree at
the solution level, making queries such as “fetch the next solution; when found, constrain the
next solution to have to improve” (in terms of, e.g., some partial order) – effectively result-
ing in a form of propagation-based branch-and-bound. For abstract soft constraint models,
we found this to be the right level of granularity – as opposed to a fine-tuned programmable
search since we can only rely on the existence of an ordering predicate and a way to combine
individual valuations. Moreover, with MiniSearch, a search strategy has to be defined just
once and can be used by any FlatZinc solver instead of implementing custom search for each
solver. MiniSearch does so by generating multiple FlatZinc files. Additionally, there is native
search tree interaction for Gecode.

3.4.2 Essence and Numberjack

Other constraint modeling languages include Essence [Frisch et al., 2008] or OPL [van Hen-
tenryck, 1999]. While due to the existence of OPL script, OPL would be suited for a soft
constraint modeling language such as MiniBrass as well, Essence does not offer search com-
binators or programmable search. We could only work with repeated solver calls or numeric
(integer) objectives – effectively recreating the facilities that MiniSearch already offers, albeit
having fewer compatible solvers. OPL, on the other hand, is tied to the CP/MIP solver IBM
ILOG CPLEX whereas MiniZinc supports a broad variety of solvers – a property found useful
in our evaluation in Chapter 9.

Numberjack follows a different path by not being designed as a domain-specific language but
rather an object-oriented API in Python [Hebrard et al., 2010]. The models are then translated
for various backend solvers without the flat file format present in MiniZinc. It is beneficial
that users do not need to learn a new language but rather work with established technologies.
Moreover, their platform also provides a FlatZinc parser such that it can serve as backend to
MiniZinc as well. Supported solvers include Mistral [Hebrard, 2008] and Toulbar2 [Allouche
et al., 2010].

3.5 Related Work

Probably closest to our overall approach of MiniBrass, Ansótegui et al. [2011] proposed the
higher-level language concept “w-MiniZinc” which would extend MiniZinc to weighted CSP

28 CHAPTER 3. PRELIMINARIES AND RELATED WORK

(but only weighted CSP). Also, Ansótegui et al. [2013] offers WSimply, a specification lan-
guage for weighted CSP with a transformation to SMT. However, their approach was never
implemented. MiniBrass, by contrast, is designed to be easily extended with new types (fuzzy,
probabilistic, constraint preferences, etc.) and puts a layer of abstraction on top of MiniZinc,
being its target language of compilation. Moreover, modular specifications such as those offered
by products in MiniBrass are not available in either w-MiniZinc or WSimply. In addition, the
syntactical features offered by w-MiniZinc are also available in MiniBrass (see Section 4.3.1) –
along with more pre-defined types to choose from, the ability to define new types, and complex
preference structures assembled from smaller preference structures.

Clearly, other areas study preferences with different emphases, ranging from game theory,
databases [Kießling and Köstler, 2002], the social sciences [Allen et al., 2015], mechanism
design [Nisan and Ronen, 1999] to multiagent systems, in general [Shoham and Leyton-Brown,
2008]. Often, a preference relation is represented by numeric utilities that can be translated
to weighted or fuzzy constraints. CP-nets [Boutilier et al., 2004] provide the most common
qualitative preference language used in the above domains. Users specify total orders over
the domain of a variable depending on an assignment to other variables. For instance, x1 =
d1, . . . , xn = dn : y = w1 � · · · � y = wk indicates that if variables xi are assigned to di, then
variable y should preferably be assigned wi than wi+1. By applying these rules transitively
under a ceteris paribus assumption (all other things being equal), generally a preorder over
assignments is induced. In terms of solution ordering, it is well-known that soft constraints and
CP-nets are formally incomparable [Meseguer et al., 2006]. Compared to constraint preferences,
CP-nets require users to rank domain values whereas constraint preferences are settled on a
coarser level: solutions satisfying an important constraint A are better than solutions satisfying
a less important constraint B – ceteris paribus. The former is obviously better suited in
problems involving rather small domains whereas the latter aims at ordering a large number of
solutions in equivalence classes of manageable size. We discuss related approaches to constraint
preferences in Section 5.3.

Regarding the specification and aggregation of preferences in multi-agent settings, (compu-
tational) social choice provides formal foundations by means of axiomatizing desirable proper-
ties and postulating appropriate voting rules [Brandt et al., 2013; Shoham and Leyton-Brown,
2008]. Little attention has yet been devoted to the combination of social choice with soft con-
straint problems consisting of n preference structures [Dalla Pozza et al., 2011] even though
the prevalent heterogeneity calls for such approaches (see Section 8.1.3).

At the intersection of constraint programming and multi-agent systems, much effort has
been invested in the so-called distributed constraint optimization problems (DCOP) [Yokoo
and Hirayama, 2000; Fioretto et al., 2016]. A paramount goal in DCOPs is to provide asyn-
chronous and distributed variants of the classical constraint solving algorithms such as, e.g.,
asynchronous branch-and-bound [Modi et al., 2005; Yeoh et al., 2010]. The involved agents each
take responsibility for some variables and communicate assignments and propagation results
via message-passing. By contrast, our approach is concerned with modeling and specification,
in principle, without making any assumptions or restrictions on the underlying solvers’ archi-
tecture or distribution. Before we consider a distributed execution at all, we want to provide
means to adequately specify and aggregate preferences of multiple agents. More technically,
the overall objective in DCOP is usually a sum of local cost functions which amounts to the
special case of a weighted CSP [Fioretto et al., 2016] as opposed to more generic frameworks
such as those supported in MiniBrass. This weighted combination is moreover problematic
in terms of fairness and bias (see Chapter 8). Still, research in DCOP and soft constraints

3.5. RELATED WORK 29

is widely orthogonal such that an integration of a DCOP solver as a backend of MiniBrass is
possible. Among the most sophisticated DCOP solvers are FRODO [Léauté et al., 2009] and
DisChoco 2 [Wahbi et al., 2011], which are strongly tied to JaCoP [Kuchcinski and Szymanek,
2013] and Choco [Jussien et al., 2008], respectively. Both of the latter (non-distributed) solvers
support FlatZinc out of the box. Therefore, a FlatZinc parser for FRODO or DisChoco 2 is
an interesting engineering effort.

Chapter 4
MiniBrass – A Soft Constraint

Modeling Language

Summary. We present the syntactic elements of MiniBrass in both a graphical and
textual form. This includes the definition of new PVS types, the instantiation of new
preference structures, morphisms to transform preference structures, as well as their
combinations. Also, concepts for data validation and usability play an important role.

Publication. The concepts presented in this chapter are published in [Schiendorfer
et al., 2018].

Our considerations up to now have been mostly devoted to the motivating application scenarios
as well as to existing formalisms in the literature and their generalizing algebraic structures.
We now turn to the design of MiniBrass as an extension of MiniZinc and how it includes these
existing formalisms. As already hinted (and explained in detail in Chapter 6), partial valuation
structures are the adequate algebraic structure to encode soft constraint formalisms such that
the theoretical constructions substantiate the MiniBrass language. As such, MiniBrass revolves
around the concept of PVS as the main abstraction of concrete preference structures and
can be either thought of mathematically as partial valuation structures or, closer to a user-
perspective, as “preference (valuation) structures”. They are thus the essential building blocks
to form complex preference models of various types.

But not only are PVS a useful abstraction tool to subsume the specific formalisms ly-
ing beneath them. They are eminently suitable for graphical representations, including their
compositional structure. That way, domain-experts need no background in formal modeling or
optimization to discuss their objectives and preferences systematically. For example, constraint
preferences are most easily represented by their preference graph, lexicographic hierarchies can
be displayed in layers, or Pareto-products lead to equally placed concepts. Figure 1.1 visual-
izes Example 1.1 that summarizes this idea with a scenario taken from unit commitment in
virtual power plants. Besides the graphical representation, MiniBrass also has a clean textual
interface.

MiniZinc in its own right offers a well-balanced compromise between expressive power and
broad support by a variety of solvers including propagation engines such as Gecode or JaCoP
but also other paradigms such as MIP or SAT solvers such as CPLEX. It is the only state-

31

32 CHAPTER 4. MINIBRASS – A SOFT CONSTRAINT MODELING LANGUAGE

include "hello-world_o.mzn"; % output of minibrass
include "soft_constraints/minibrass.mzn"; % for generic branch and bound

% the basic, "classic" CSP
5 set of int: NURSES = 1..3;

int: day = 1; int: night = 2; int: off = 3;
set of int: SHIFTS = {day,night,off};
array[NURSES] of var SHIFTS: n;

10 constraint (exists(i in NURSES) (n[i] = night));

solve
search miniBrass(); % calls to a generic PVS-based branch-and-bound

Listing 4.1: hello-world.mzn: The conventional constraint model contains all
variable definitions and hard constraints. It includes the compiled MiniBrass out-
put (hello-world_o.mzn) which contains generated variables, linking constraints, search
procedures relevant to MiniSearch (miniBrass, defined in minibrass.mzn), and the (op-
tional) search annotation pvsSearchHeuristic.

of-the-art constraint modeling language that offers high-level concepts such as user-defined
functions and predicates for encapsulation of recurring combinatorial substructures [Stuckey
and Tack, 2013]. To smoothen the transition between conventional constraint models and soft
constraint models, MiniBrass follows many MiniZinc conventions such as having a “solve” item,
independence of order of statements and the notation, in general.

MiniBrass is designed to capture such PVS-based soft constraint problems. In MiniBrass, a
model (resp., instance) is divided into a (hard) constraint model (see Listing 4.1) written in con-
ventional MiniZinc, consisting of variable definitions and classical constraints, and a preference
model (see Listing 4.2) which contains PVS type declarations along with instantiations, soft
constraint definitions based on the variables in the constraint model, and combinations (Pareto
and lexicographic) of instances. MiniBrass separates essential constraints of a problem from
its objective for several reasons:
• Previously described soft constraint formalisms in the literature (weighted, fuzzy, con-

straint preferences, possibilistic, etc.) are available for a preference model using the
predefined PVS types.
• Preferences can be elicited and specified using PVS type A (perhaps having a non-trivial
(multi)set-based order such as in constraint preferences) which is then transformed to
another PVS type B that is better supported by existing solvers (cost function networks
or integer objectives) using morphisms (see Section 4.4).
• By exploiting modularity, users can combine several preference structures (e.g., stemming
from different agents) at runtime (Pareto or lexicographic).
• Multiple preference models for the same hard constraint model can co-exist and be se-
lected at runtime depending on other context factors.

Conceptually, the main idea of how to encode a soft constraint problem as a conventional
constraint optimization problem that MiniZinc or MiniSearch can solve has been outlined in
Meseguer et al. [2006] after being first described by Petit et al. [2000]: For a soft constraint prob-
lem SCSP = (X,D,C,M,Cs) with PVS M = (|M |, ·M , εM ,≤M), we define the classical con-
straint model (X,D,C) as usual and for every soft constraint µi ∈ Cs, we have a hard constraint
along the lines of “valuation[i] = mznExpri(X)” where valuation is an array of generated
variables of type |M | and mznExpri(X) stands for the MiniZinc expression of soft constraint

4.1. A HELLO-WORLD EXAMPLE 33

X = {n1, n2, n3},
D = {day, night, off}

C : ∃ni ∈ X : ni 7→ night

Cs : sharedNightShifts : |{i | ni 7→ night}| = 2

nurseTwoNoNight : n2 7→ day ∨ n2 7→ off

nurseThreeOff : n3 7→ off

100
maxWeightnurses

3sharedNightShifts

1nurseTwoNoNight

1nurseThreeOff

Figure 4.1: Left: The formal definition of a rostering problem (initially presented in Fig-
ure 3.2). Right: The PVS for this model, now given as a weighted CSP. Labels in black
indicate associated weights.

include "defs.mbr"; % to get predefined type "WeightedCsp"

PVS: nurses = new WeightedCsp("nurses") {
soft-constraint sharedNightShifts: ’sum(i in NURSES)(bool2int(n[i] = night)) = 2’ :: weights(’3’);

5 soft-constraint nurseTwoNoNight: ’n[2] in {day,off}’ :: weights(’1’);
soft-constraint nurseThreeOff: ’n[3] = off’ :: weights(’1’);

};

output ’["n = \(n)\nValuations: topLevelObjective = \(topLevelObjective)\n"]’;
10

solve nurses;

Listing 4.2: hello-world.mbr: A preference model to accompany the constraint model in
Listing 4.1 with one PVS-instance of type WeightedCSP that also serves as the “solve"-item
analogous to MiniZinc.

µi, based on variables X. Additionally, there is an |M |-variable overall holding the overall
valuation which is constrained such that “overall = valuation[1] ·M . . . ·M valuation[nScs]”
where nScs refers to the number of soft constraints. The partial ordering ≤M is used to
generate constraints on future solutions such as “overall <M overall′” to ask for the next
solution’s value overall′ to be better than the current one’s value overall. MiniSearch-based
branch-and-bound (see Section 4.4.2) is based on this predicate.

4.1 A Hello-World Example
To keep the exposition easily understandable, we turn to the simple rostering problem already
shown in Figure 3.2 for our first MiniBrass example. Figure 4.1 repeats the problem statement
and defines a weighted constraints PVS (in contrast to the earlier used constraint preferences).
Each soft constraint µi maps to wi if violated and 0 otherwise.

Listing 4.1 first presents the conventional constraint model of the problem in standard
MiniZinc. To capture the weighted variant of the problem, we use the predefined PVS type
WeightedCsp from defs.mbr which defines integers as the underlying partial order of so-
lution degrees, summation as the combination operation, and the usual ≥-ordering. Users,
however, do not have to directly map to {0, . . . , k} but rather supply a boolean expression
that is translated as above using a parameter weight (see “specification type” in Section 4.2).
Listing 4.3 shows the part of defs.mbr that contains the mappings to MiniZinc functions and
predicates in the file weighted_type.mzn, i.e., combination maps to weighted_sum and

34 CHAPTER 4. MINIBRASS – A SOFT CONSTRAINT MODELING LANGUAGE

type WeightedCsp = PVSType<bool, int> =
params {
int: k :: default(’1000’);
array[1..nScs] of int: weights :: default(’1’);

5 } in
instantiates with "soft_constraints/mbr_types/weighted_type.mzn" {
times -> weighted_sum;
is_worse -> is_worse_weighted;
top -> 0;

10 };

%%% in "weighted_type.mzn" %%%
predicate is_worse_weighted(var int: x, var int: y,

par int: nScs, par int: k, array[int] of par int: weights) =
15 x > y;

function var int: weighted_sum(array[int] of var bool: b,
par int: nScs, par int: k, array[int] of par int: weights) =

sum(i in index_set(b)) ((1 - bool2int(b[i])) * weights[i]);

Listing 4.3: The type definition used in the hello world example in Listing 4.2 is found in
defs.mbr.

ordering maps to is_worse_weighted. While we show the contents of defs.mbr here, we
note that users do not have to know about this when defining a PVS-based model. They can
rely on the predefined types and only have to supply the model in Listing 4.2.

More systematically, the toolchain needed for MiniBrass adds an additional preceding step
to the conventional MiniZinc/MiniSearch workflow. Figure 4.2 illustrates the involved pro-
cesses: First, the MiniBrass preference model (e.g., Listing 4.2) is compiled into MiniZinc or
MiniSearch code using mbr2mzn. During this process, auxiliary variables taking soft constraint
valuations and their aggregations, improvement and not-worsening constraints for branch-and-
bound, as well as variable orderings for search heuristics and complex order predicates (in case
of Pareto or lexicographic combinations) are generated. Finally, the classical constraint model
(e.g., Listing 4.1) includes the compiled MiniBrass output and is solved by MiniZinc (mzn2fzn)
or MiniSearch (minisearch) and a FlatZinc solver.

Example 4.1 – Executing Rostering
When we run this toolchain with our example from Listings 4.1 and 4.2, we get the following
output:
Intermediate solution:n = [night, day, day]
Valuations: topLevelObjective = 4

Intermediate solution:n = [night, night, day]

5 Valuations: topLevelObjective = 2

Intermediate solution:n = [night, day, night]
Valuations: topLevelObjective = 1

10 ==========

We start with the solution [night, day, day] that violates the soft constraints
sharedNightShifts (since only one nurse is on night shift) and nurseThreeOff since nurse
three has to work the day shift – totaling in a violation sum of 4. The solver provides an im-
proved solution by having nurse two move to the night shift which satisfies sharedNightShifts

4.2. PVS TYPES AND INSTANTIATIONS 35

mbrlibs.mzn defs.mbr

prefs.mbr mbr2mzn

prefs_o.mzn

model.mzn mzn2fzn output

data.dzn

globals.mzn compiled.fzn solve

Implemented functions and predicates PVS type definitions

PVS instances and combinations

Figure 4.2: Toolchain of MiniBrass and its integration with MiniZinc. Blue elements indicate
artifacts that have to be created for every new problem instance whereas orange ones refer to
reusable (MiniBrass) library items that do not need to be modified by end users.

but violates nurseThreeOff and nurseTwoNoNight, leading to a penalty sum of 2. In fact,
this can be seen as “trading” the violation of a less important constraint in favor of satisfying
a more important constraint. Finally, the last found solution [night, day, night] only violates
nurseThreeOff but satisfies the other two soft constraints which results in the optimal value
1. Qualitatively speaking, we got rid of the violation of nurseTwoNoNight. Since there is no
solution satisfying all soft constraints, this is the best we can do.

4.2 PVS Types and Instantiations

As we have seen in the first example, specifying a preference model begins with defining
appropriate PVS types – with most of the literature’s proposals being already implemented in
the MiniBrass standard library. Every PVS type definition has to specify the possible solution
degrees, ordering predicate and combination operation in MiniZinc. The possible solution
degrees are referred to as the element type E of a PVS type. This can be any MiniZinc base
type such as int, float, bool, or subtypes thereof as well as sets or arrays of a base type.

For instance, weighted constraints or cost function networks map to int or some integer
range 0 .. k, fuzzy constraints employ the float range 0.0 .. 1.0, or the inclusion-based
Max-CSP maps to sets of integers representing violated constraints. The element type E corre-
sponds to (a subset) of the carrier set |M | of a resulting PVS instance M = (|M |, ·M , εM ,≤M)

36 CHAPTER 4. MINIBRASS – A SOFT CONSTRAINT MODELING LANGUAGE

and prescribes the signature of the ordering ≤M , i.e., ≤M ⊆ E × E. Canonically, every soft
constraint µi maps to E and the combination operation has to be a function ·M : E ×E → E.
However, there are cases where the essential model information is different from an E-element
– consider our previous toy example where soft constraints map to bool but are wrapped by
an embedding function that converts them to int. This becomes most evident in all PVS that
rely on “violated soft constraints” such as, e.g., weighted constraints, constraint preferences,
probabilistic constraints, or constraint hierarchies. Each soft constraint µc : [X → D] → |M |
(parametrized by some conventional constraint c and associated weight wc) then has the form
µc(θ) = 0 if θ |= c and wc otherwise: The essential information here is whether θ |= c. Wrap-
ping every boolean expression obviously leads to cluttered and less readable constraint and
preference models. For instance, in Listing 4.2, we would have to write
soft-constraint sharedNightShifts: ’(1 - bool2int(sum(i in NURSES)(bool2int(n[i] = night)) = 2)) * 3’;

instead of
soft-constraint sharedNightShifts: ’sum(i in NURSES)(bool2int(n[i] = night)) = 2’ :: weights(’3’);

if we wanted to directly map an assignment to the underlying PVS ({0, . . . , 100},+100,≥, 0).
To avoid this clutter on the syntactic level, PVS types can be augmented with a soft

constraint type S that defines the type of each soft constraint expression (here bool). We
semantically define a mapping gi : S → E that assigns the S-expression of the soft constraint
µi to an E-element. All soft constraints’ mapped E-elements are combined with ·M . However,
there are cases when we do not want or need to have n E-expressions but rather emulate
the above combination using an embedding Sn → E – especially if there are beneficial global
constraints involved (see Section 4.3.2). In both cases, we end up with an overall valuation of
type E that is ordered using ≤M during the search. As a consequence, we have the combination
operation map several S-expressions to one element in E (where S = E is, of course, valid)
and have it mimic the ·M operation on E.

Moreover, PVS types may declare parameters that need to be specified when constructing
an instance in a preference model. Examples thereof are the maximally allowed weight k in
weighted constraints or the preference graph in constraint preferences. The MiniZinc imple-
mentation of the combination function and ordering predicate has to be supplied in a separate
MiniZinc file that will be included by the compiled MiniZinc output. Although all presented
types are included in the MiniBrass standard library, new definitions can likewise be added
since MiniBrass keeps an eye on extensibility.

To sum up, for a PVS type parametrized by soft constraint type S and element type E,
the ordering predicate, combination, and top element have to implement these interfaces in
MiniZinc:
predicate is_worse(var E: x, var E: y, par int: nScs [, 〈PVS type parameters〉]);
function var E: times(array[int] of var S: v, par int: nScs [, 〈PVS type parameters〉]);
par E: top;

The ordering of the PVS type parameters must match the order in the PVS type declaration.
In a similar way, some PVS types offer generic search heuristics that can be provided (see the
keyword pvsSearchHeuristic below). The interface is expected to be:
function ann: searchHeuristic(array[int] of var S: values, var E: overall,

par int: nScs [, 〈PVS type parameters〉]);

It should generally be noted that is_worse always corresponds to a predicate denoting strict
worsening (this is the most common type of predicate used in branch-and-bound). The top
element is beneficial for bounding search and having default soft constraints.

4.3. EXAMPLES OF SOFT CONSTRAINT FORMALISMS AS PVS TYPES 37

Besides the type declarations, there are a few “technical” MiniBrass keywords that are sure
to be found in the compiled MiniZinc output (e.g., prefs_o.mzn in Figure 4.2) and can thus
be accessed from the constraint model (e.g., model.mzn in Figure 4.2):
• topLevelObjective: contains a var E-expression for an atomic top level PVS (the
instance specified in the solve item), with element type E; not applicable if the top level
PVS is complex (e.g., a lexicographic product). It appears in the output in Listing 4.1 and
could also be a MiniZinc objective: solve minimize topLevelObjective (only if
E is scalar).
• pvsSearchHeuristic: contains an annotation object for the top level PVS that holds
a particular variable order (of the generated variables) that depends on the PVS type(s)
involved (see Section 4.3.1). For complex PVS, multiple heuristics are concatenated
sequentially.
• postGetBetter: contains a MiniSearch procedure that is used to post a constraint
requiring the next solution to be better than the current one. The generic branch-and-
bound procedure miniBrass used in Listing 4.1 (defined in pvs_gen_search.mzn
and explained in Section 4.4.2) relies on postGetBetter being written by the compiler.
• postNotGetWorse: dually, this MiniSearch procedure only requires the next solution

not to be dominated (important to find all optima of an instance).
Once PVS types are declared, we can use them to instantiate concrete PVS objects. A PVS

object stores a specific set of parameters and includes the actual soft constraints mapping to E
(or S) as MiniZinc expressions – thereby connecting the constraint and preference model. In
addition, the operators pareto and lex can be used to compose complex preference structures
from elementary ones.

4.3 Examples of Soft Constraint Formalisms as PVS Types

For illustration purposes, we survey the most common soft constraint formalisms (see Sec-
tion 3.2) presented as PVS types. We frequently use variants of the rostering problem as our
running example to show how the concrete PVS types differ.

4.3.1 Integer-Valued: Weighted CSP or Cost Function Networks

We have already seen the PVS type for weighted constraints in the introductory example. Cost
function networks are naturally very similar to weighted CSP. The latter are defined as integer-
valued soft constraints that map any assignment to some value in the range [0 . . . k] for some
parameter k denoting maximal violation and top being 0 (recall Figure 3.1). Consequently,
there is no distinct soft constraint type but just the element type 0..k. Due to this generality,
cost function networks are an excellent match to embed conventional numeric costs into the
PVS-based MiniBrass universe.
type CostFunctionNetwork = PVSType<0..k> =

params {
int: k :: default(’1000’);

} in
5 instantiates with "soft_constraints/mbr_types/cfn_type.mzn" {

times -> k_bounded_sum;
is_worse -> is_worse_weighted;
top -> 0;

};

38 CHAPTER 4. MINIBRASS – A SOFT CONSTRAINT MODELING LANGUAGE

Combination refers to adding individual costs, bounded by k. The the ordering relation is
simply the integer greater-than ordering (consistently with literature, cost minimization is
default):
% Inside soft_constraints/mbr_types/cfn_type.mzn
predicate is_worse_weighted(var int: x, var int: y, int: nScs, int: k) =

x > y;

5 function var int: k_bounded_sum(array[int] of var int: b, int: nScs, int: k) =
if sum(b) > k then k else sum(b) endif;

Example 4.2 – Toy Cost Function Network in MiniBrass
We can model Figure 3.1 using the PVS type CostFunctionNetwork, starting with the
constraint model and omitting includes:
var 0..1: x; var 0..1: y; var 0..1: z;
% useful since we have a numeric objective and can use MiniZinc *or* MiniSearch
solve minimize topLevelObjective;

Based on this simplistic constraint model, we are ready to define the soft constraints which,
recall, map directly to integers and are summed and minimized:
include "defs.mbr";

PVS: cfn1 = new CostFunctionNetwork("cfn1") {
soft-constraint mu_x: ’x+1’;

5 soft-constraint mu_y: ’2-y’;
soft-constraint mu_z: ’if (z == 0) then 3 else 1 endif’;

soft-constraint mu_xy: ’if (x == 0) then
if (y == 0) then 4 else 2 endif

10 else if (y == 0) then 2 else 1 endif
endif’;

soft-constraint mu_yz: ’if (y == 0) then
if (z == 0) then 1 else 3 endif

else if (z == 0) then 0 else 2 endif
15 endif’;

};

output ’["x = \(x); y = \(y); z = \(z)"]’;

20 solve cfn1;

As we can see from this example, the enumerative definition of discrete cost functions can
become rather unwieldy. Besides the core type definition, the MiniBrass library thus offers
additional utility functions and predicates: For better access to native cost function imple-
mentations in Toulbar2, there is a global constraint (along with a default decomposition for
other solvers, see Section 3.4 for how this MiniZinc mechanism operates) that is handled by
Numberjack and properly given to Toulbar2. For instance,
predicate cost_function_binary(var int: x, var int: y,

array[int] of int: costs, var int: costVariable)

ties a cost function’s valuation for variables x and y to a cost variable costVariable, de-
pending on a given cost vector that contains the value for every element in the Cartesian
product of the domains of x and y. In Example 4.2, we could have written
soft-constraint mu_xy: ’cost_function_binary_fn(x, y, [4, 2, 2, 1])’;

The default decomposition for cost_function_binary_fn that all solvers except for Toul-
bar2 use, is implemented using a table constraint, i.e., an extensional representation. In a

4.3. EXAMPLES OF SOFT CONSTRAINT FORMALISMS AS PVS TYPES 39

similar spirit, soft global constraints are implemented in MiniBrass. Since the existing soft
globals map to a numeric variable, they naturally lead to cost function networks. For instance,
a soft variant of alldifferent counts the variables taking the same value as a measure of
violation:
% a default decomposition for solvers that do not provide the soft global constraint "soft_alldifferent"
function var int: soft_alldifferent(array[int] of var int: x) :: promise_total =

let { set of int: seenValues = dom_array (x); }
in (sum(s in seenValues) (max(count(x, s) - 1, 0)));

5

% [...] Used in a MiniBrass preference model
include "soft_constraints/soft_alldifferent.mzn";

% [...] assume we assign students to projects
10 array[STUDENT] of var PROJECT: x;

% ideally, all work on their own project
% but we resort to a soft, optimization variant
soft-constraint studentsSharingAProject: ’soft_alldifferent(x)’;

There are native implementations for soft_alldifferent (e.g., in JaCoP [Kuchcinski and
Szymanek, 2013]) which can make use of dedicated propagation (JaCoP reduces it to a network
flow constraint) instead of this provided decomposition.

In contrast to cost function networks, weighted constraints are binary – a soft constraint
is violated or not, and if so, penalized by a fixed weight. This is reflected by using the soft
constraint type bool that is mapped to the element type 0..k.
type WeightedCsp = PVSType<bool, 0..k> =

params {
int: k :: default(’1000’);
array[1..nScs] of int: weights :: default(’1’);

5 } in
instantiates with "soft_constraints/mbr_types/weighted_type.mzn" {
times -> weighted_k_bounded_sum;
is_worse -> is_worse_weighted;
top -> 0;

10 }
offers {

heuristics -> getSearchHeuristicWeighted;
};

In addition to our previous definition of WeightedCsp, we now also consider the first example
of a generic search heuristic annotation that comes with the PVS type. The MiniZinc function
getSearchHeuristicWeighted (defined in weighted_type.mzn) provides a particular
variable ordering for search: the generated variables containing the highest-weighted possible
violation first (called most important first in Schiendorfer et al. [2014b]). That way, search
can initially set the generated satisfaction variables of all soft constraints to true and let
propagation take over to possibly find high-quality solutions early, optimally an assignment
satisfying all soft constraints:
function ann: getSearchHeuristicWeighted(array[int] of var bool: scSatisfied,

var int: overall,
par int: nScs, % number of soft constraints
int: k, array[int] of int: weights) =

5 let {
set of int: sCs = 1..nScs;
% find the sorted permutation of soft constraint instances
array[sCs] of sCs: sortPerm = arg_sort(weights);
% invert, since arg_sort uses <= and we need decreasing order

10 array[sCs] of sCs: mostImpFirst = [sortPerm[nScs-s+1] | s in sCs];
array[sCs] of var bool: mifSatisfied = [scSatisfied[mostImpFirst[s]] | s in sCs];

} in
int_search(mifSatisfied, input_order, indomain_max, complete);

Section 9.3 provides some insight in the effectiveness of the above search heuristic.

40 CHAPTER 4. MINIBRASS – A SOFT CONSTRAINT MODELING LANGUAGE

There is a double-usage of the PVS type WeightedCsp. As we set the weights’ default value
to 1, we get a Max-CSP instance (counting-based, as explained in Section 3.2) if no weights are
supplied. As seen in the hello world example, we can add weights (more generally, parameter
values tied to every soft constraint) by annotating a soft constraint during instantiation:
PVS: wcsp = new WeightedCsp("wcsp") {

soft-constraint c1: ’x + 1 = y’ :: weights(’2’);
soft-constraint c2: ’z = y + 2’ :: weights(’1’);
soft-constraint c3: ’x + y <= 3’ :: weights(’1’);

5 k : ’20’;
% alternatively, we could also write
% weights : ’[2, 1, 1]’;

};
solve wcsp;

Weighted constraints and cost function networks share the fact that their top level objective
function is, after all, a single integer variable. Therefore maximization or minimization is
supported out of the box in MiniZinc. As we see in the next session, this is not true for other
PVS types.

4.3.2 Comparative: The Free PVS and Constraint Preferences

The benefit of MiniBrass is that users are not bound to using numeric types, as in the previous
examples, but can order their solutions with more abstract types that help to aid understand-
ing. We begin with the most general type, i.e., the free PVS over a partial order (see Chapter 6
or [Schiendorfer et al., 2018] for a thorough presentation and motivation of the concept). Con-
straint preferences constitute a special case that can be formalized using the free PVS. In a
nutshell, the most general way to lift any partial order (P,≤P) to a PVS is by taking finite
multisets of elements of P as the underlying set (written as Mfin(P)), multiset union as com-
bination with *+ as the neutral element, and the Smyth-ordering as the PVS ordering (written
as �P , see Figure 4.3). Intuitively, multisets are required for the case that two soft constraints
map to the same element p. Then p ·M p should be different from p = p ·M εM , i.e., idempotency
is not necessarily fulfilled in a PVS.

A partial order over a finite set of elements is most conveniently represented in MiniZ-
inc as an adjacency list. We assume parameters maxP (denoting the highest index) and
orderingP (the ordering relation as a list of edges). For example,
int: maxP = 3;
set of int: P = 1..maxP;
array[int, 1..2] of 1..maxP: partialOrdering = [| 1, 2 | 1, 3 |];

represents a directed graph ({1, 2, 3}, {(1, 2), (1, 3)}) that we convert to a partial ordering by
taking the reflexive-transitive closure later on.

* 1 I 1 + �P * 2 II +

Figure 4.3: A visual depiction of the Smyth-ordering. Assuming P is defined such that 1 < 2
and I < II, a witness function pairs every element on the right-hand side with a dominated
counterpart on the left-hand side (see Lemma 6.1).

4.3. EXAMPLES OF SOFT CONSTRAINT FORMALISMS AS PVS TYPES 41

The needed multisets are not natively supported by MiniZinc but have to be encoded with
the existing MiniZinc types. The free PVS’ underlying set Mfin(P) itself is clearly infinite as
we can reach any finite multiset over P by applying combination (i.e., multiset union) often
enough. Since existing solvers operate on finitely many decision variables with finite domains,
we never have to use the full range of Mfin(P), though, and always operate on a finite subset
of it. Put differently, the maximal multiplicity of any element of P is necessarily restricted for
every multiset we face in the course of optimization. To put a meaningful upper bound on the
multiplicities, we note that in an SCSP, the overall valuation is given by

∏
M{µi(θ) | µi ∈ Cs}.

If we can determine the maximal occurrence any P -element has in any individual µi(θ), say
k, we simply use nScs · k as the maximal occurrence for the overall valuation. For exam-
ple, in constraint preferences, the maximal occurrence is, in fact, easy to determine since any
soft constraint can only be violated once – we exploit this further below. With these restric-
tions, a multiset composed of P -elements with maximal multiplicity maxOccurrences is just
encoded as an array[1..maxP] of var 0..maxOccurrences. For instance, [1,0,0]
represents the multiset *1+ or [1,0,2] would be *1, 3, 3+. Due to the relevance of multisets for
the free PVS, MiniBrass defines the keyword mset that abbreviates an array of integers repre-
senting a multiset. Consequently, the free PVS’ element type is mset[maxOccurrences] of
1..maxP which is syntactic sugar for an array[1..maxP] of var 0..maxOccurrences
that represents the overall solution degree.
type FreePVS = PVSType<mset[maxOccurrences] of 1..maxP> =

params {
array[int, 1..2] of 1..maxP: partialOrdering ::

wrappedBy(’java’, ’isse.mbr.extensions.preprocessing.TransitiveClosure’);
5 int: maxP;

int: maxPerSc;
int: maxOccurrences :: default(’mbr.nScs * mbr.maxPerSc’);

} in
instantiates with "soft_constraints/mbr_types/free-pvs-type.mzn" {

10 times -> multiset_union;
is_worse -> isSmythWorse;
top -> [0 | i in 1..mbr.maxP]; % the empty multiset

};

For user convenience, we have the reflexive-transitive closure automatically calculated by Mini-
Brass during compilation (turning a DAG into a partial ordering) – as an example of a param-
eter wrapping method. Such parameter wrapping methods could either be MiniZinc functions
for data transformation or Java methods. Ensuring correct user input (i.e., validations by
means of MiniZinc assertions or Java exceptions) can be done here as well. For instance, if a
cycle is supplied to MiniBrass, this error is detected and reported.

Each soft constraint maps to a multiset with bounded multiplicity, as indicated by the
parameter maxPerSc. By default, the overall maximal multiplicity is simply the product of
the number of soft constraints and maxPerSc. While the combination (multiset_union)
is straightforward by just summing the individual soft constraints’ element multiplicities, im-
plementing a MiniZinc predicate for the Smyth-ordering is a bit more involved but showcases
MiniBrass’ abilities.

In essence, to establish T ≺P U , the key idea is to apply Lemma 6.1 and have the witness
function be decided by the solver using local decision variables of the predicate. To make up for
the fact that multisets are used, a witness h is defined as a map h : S(U)→ S(T) where S(U)
refers to a “set of pairs” representation of a multiset, e.g., S(*4, 4, 3+) = {(1, 4), (2, 4), (1, 3)}.
Thus h is defined on pairs, has to be injective, and satisfy the constraints p ≤P q whenever
h(j, q) = (k, p). Injectivity is best modeled by an alldifferent-constraint but there is none
for pairs. We can mitigate this by defining a one-dimensional witness and apply a bijection

42 CHAPTER 4. MINIBRASS – A SOFT CONSTRAINT MODELING LANGUAGE

between the pairs and the one-dimensional array. The resulting one-dimensional array can
then be constrained to be all different, as usual. We chose the bijective Cantor pairing function
π : N2 → N defined by

π(k1, k2) := 1
2(k1 + k2)(k1 + k2 + 1) + k2

predicate isSmythWorse (array[int] of var int: T, array[int] of var int: U, % T < U
int: nScs, array[int, 1..2] of int: edges, % adjacency list
int: maxP, int: maxPerSc, int: maxOccurrences % parameters of free PVS type

) = let {
5 set of int: P = 1..maxP; % multisets draw from the set of elements P

par int: maxOcc = maxPerSc*maxOccurrences; % bounding multiplicities, see Sect. 4
set of int: OCCS = 0..maxOcc;
set of int: PosOCCS = OCCS diff {0};
set of int: P0 = {0} union P; % 0 representing no assignment for the witness

10

set of int: edgeIndices = index_set_1of2(edges);
% for each element in P, we pre-calculate the set of ‘‘smaller’’ items
% according to the adjacency list (edges)
array[P] of set of P: lessThanOrEquals =

15 [{q} union {p | p in P where exists(e in edgeIndices)
(edges[e,1] = p /\ edges[e,2] = q)} | q in P];

% We have to split the witness function h : S(U) \to S(T) into
% two arrays of decision variables.

20 array[OCCS,P] of var P0: witnessElem; % element part of h
array[OCCS,P] of var OCCS: witnessOcc; % occurrence part of h

% First, we make sure all (j,q) tuples for occurrences j greater than the
% actual number of q elements in U map to non-existence.

25 constraint forall(q in P, j in OCCS where j > U[q]) (
witnessElem[j,q] = 0 /\ witnessOcc[j,q] = 0

);

% Now, for all (j,q) tuples in S(U), they have to map
30 % to a (k,p) tuple in S(T) such that p <= q.

constraint forall(q in P, j in PosOCCS where j <= U[q]) (
% p must not be 0 and p must be leq than q (according to "edges")
witnessElem[j,q] != 0 /\ witnessElem[j,q] in lessThanOrEquals[q] /\
% k must be between 1 and the actual number of p-occurrences in T

35 witnessOcc[j,q] >= 1 /\ witnessOcc[j,q] <= T[witnessElem[j,q]]
);

% Lastly, we have to assert injectivity of our witness, using the Cantor pairing
% function to map S(U) to int and constrain the Cantorized witness to be alldifferent.

40 array[OCCS,P] of var 0 .. maxP + (maxOcc) * (maxOcc + maxP + 1) div 2:
cantoredWitness;

constraint forall(i in OCCS, p in P) (
cantoredWitness[i,p] = witnessOcc[i,p] + (witnessElem[i,p]+witnessOcc[i,p])

*(witnessElem[i,p] + witnessOcc[i,p] + 1) div 2);
45

constraint alldifferent_except_0([cantoredWitness[i,p] | i in OCCS, p in P]);
% A bit of symmetry breaking on the exchangeable occurrences
constraint value_precede_chain(OCCS, [witnessOcc[i,p] | i in OCCS, p in P]);

50 % Make sure we have inequality
constraint exists(i in P) (T[i] != U[i]);

} in (true);

At this point, we want to emphasize that end-users (i.e., modelers) do not have to understand
the implementation of the Smyth-ordering in MiniZinc in detail but only its (rather intuitive)
inductive definition to apply it in their models. The above definition is fully encapsulated by
the type freePVS.

Nevertheless, there is one subtle technicality about this definition in MiniZinc. The pred-
icate relies on local free variables (e.g., witnessOcc) which prohibit its usage in a negative
or mixed context such as “it must not be the case that the next solution is Smyth-worse
than the current one” (cf. non-domination search in Section 4.4.2). To see why this is prob-
lematic for constraint solvers, consider that negating a predicate with local variables requires

4.3. EXAMPLES OF SOFT CONSTRAINT FORMALISMS AS PVS TYPES 43

all-quantification:

p(x1, . . . , xn) :⇔ ∃y : q(x1, . . . , xn, y)→
¬p(x1, . . . , xn)⇔ ∀y : ¬q(x1, . . . , xn, y)

Most constraint solvers and mathematical optimizers focus on existential quantification, though,
i.e., they search for one particular assignment.1 For the Smyth-ordering, we would basically
state a higher-level constraint such as “there exists no witness function from S(T) to S(U)” or
“all functions from S(T) to S(U) violate the witness property”. This exceeds the capabilities
of most currently available constraint solvers. Although we cannot access the Smyth-predicate
in a mixed or negated context, Zinc and MiniZinc are the only constraint modeling languages
that support user-defined local free variables at all [Stuckey and Tack, 2013] – and they are
paramount for the Smyth-ordering. A workaround for finite multisets is to use a bijective
mapping f from multisets to integers (perhaps f(*i, . . . , k+) = pi · . . . · pk where pi is the i-th
prime number, e.g., f(*1, 1, 3+) = 2 · 2 · 5 = 20 and model the Smyth-ordering with a table
constraint on the encoded sets which requires us to precalculate the relation beforehand.

Example 4.3 – Nurse Rostering with the free PVS
By construction, freePVS is well-suited to transform any partial order into a PVS. We demon-
strate this by encoding constraint preferences as a free PVS instance. Recall that we have an
ordering over soft constraints and a soft constraint µi maps to *i+ if violated and *+ otherwise.
We revisit the nurse scheduling running example as a free PVS (without soft constraint type
bool for simplicity):
PVS: nurses = new FreePVS("nurses") {

soft-constraint sharedNightShifts:
’if sum(i in NURSES)(bool2int(n[i] = night)) = 2 then [0, 0, 0] else [1, 0, 0] endif’;

soft-constraint nurseTwoNoNight:
5 ’if n[2] in {day,off} then [0, 0, 0] else [0, 1, 0] endif’;

soft-constraint nurseThreeOff:
’if n[3] = off then [0, 0, 0] else [0, 0, 1] endif’;

% indices 1, 2, and 3 are used for the soft constraints
10 partialOrdering : ’[| 2, 1 | 3, 1 |]’;

maxP: ’3’ ;
maxPerSc : ’1’;

};

The assignment [night, day, day] would lead to the overall degree [1,0,1] , *1, 3+
and is inferior to [night, day, night] which leads to [0,0,1] , *3+ in terms of the
Smyth-ordering.

In this PVS type, any soft constraint can map to an arbitrary multiset (respecting the
multiplicity restrictions).2 However, for constraint preferences alone, freePVS might seem
too rich in generality. We only observe the multisets *i+ or *+ for distinct soft constraints µi
which means that in every overall valuation, a P -element (i.e., a soft constraint in constraint
preferences) can only occur at most once. An intermediate step would be to annotate every
soft constraint µi with the multiset *i+ (as in weighted CSP) and use the soft constraint type
bool (effectively defining a new PVS type):

1SMT-solvers constitute a notable exception but there are currently none with a FlatZinc interface
2This would be useful, e.g., when each user can rate a travel itinerary by placing one to five stars for quality

and one to five “euros” for cost preference: µ1(θ) = *?, ?,e,e+ and µ2(θ) = *?, ?, ?,e+

44 CHAPTER 4. MINIBRASS – A SOFT CONSTRAINT MODELING LANGUAGE

soft-constraint sharedNightShifts: ’sum(i in NURSES)(bool2int(n[i] = night)) = 2’ :: msetVal(’[1,0,0]’);
soft-constraint nurseTwoNoNight: ’n[2] in {day,off}’ :: msetVal(’[0,1,0]’);
soft-constraint nurseThreeOff: ’n[3] = off’ :: msetVal(’[0,0,1]’)’;

Still, we can do better in encoding constraint preferences by noting that no element i can
occur more than once in any reachable overall valuation m ∈Mfin(P). Each such m can then
simply be represented by a set of integers – a type that is natively supported with appropriate
global constraints by MiniZinc and several constraint solvers. More specifically, we assume that
each soft constraint is identified by an integer – simply its position in the PVS instantiation.
MiniBrass offers the constant nScs for this purpose, so we can use set of 1..nScs as the
element type of a new dedicated PVS type ConstraintPreferences. Since we want to
specify the soft constraints as boolean expressions (again, not mapping directly to sets), we
use bool as soft constraint type. Of course, an instance of ConstraintPreferences also
needs a directed acyclic graph (the crEdges parameter represents the adjacency list) over
soft constraints. The reflexive-transitive closure is applied, similar to the free PVS:
type ConstraintPreferences = PVSType<bool, set of 1..nScs> =

params {
array[int, 1..2] of 1..nScs: crEdges
:: wrappedBy(’java’, ’isse.mbr.extensions.preprocessing.TransitiveClosure’);

5 bool: useSPD :: default(’true’);
} in
instantiates with "soft_constraints/mbr_types/cr_type.mzn" {
times -> union_violateds;
is_worse -> is_worse_constraint_pref;

10 top -> {};
}
offers {
heuristics -> getSearchHeuristicCR;

};

Combination now has to map n bool elements to the set of violated constraints. We achieve
this by means of the global constraint link_set_to_booleans which is defined over an
array of boolean variables and a set of integers. The constraint states that the set contains
precisely those indices where the array evaluates to true. Since we state soft constraints in
their positive form, this constraint is applied to the negations of the satisfaction variables:
include "link_set_to_booleans.mzn";
function var set of int: union_violateds(array[int] of var bool: b, par int: nScs) =
let {

var set of index_set(b): violatedSet;
5 constraint link_set_to_booleans(violatedSet, [not b[i] | i in index_set(b)]);

} in violatedSet;

The Smyth-ordering is implemented in the predicate (is_worse_constraint_pref) and is
selected by switching useSPD to true, thereby activating single-predecessor-dominance. Alter-
natively, transitive-predecessors-dominance (TPD) is applied which lets a single soft constraint
dominate a whole set of less important ones. The appropriate choice of domination semantics
is obviously a matter of modeling. But perhaps more usefully, the TPD predicate is easier to
decide, i.e., no free local variables are involved since all less important ones can be eliminated
instead of deciding an injective witness. Hence, TPD is suited for mixed and negative contexts
such as non-domination search.

The restriction to set of int also eases the implementation of the Smyth-ordering as we
do not have functions over pairs – as opposed to the multiset case. We shall see, as a corollary
to Lemma 6.1, on two sets T and U , T �P U holds if and only if there exists an injective
witness function f : U → T such that f(p) ≤P p for all p ∈ U . Similar to the multiset case, we
enforce (and propagate) the injectivity of f with alldifferent and make sure the witness

4.3. EXAMPLES OF SOFT CONSTRAINT FORMALISMS AS PVS TYPES 45

property is fulfilled. Moreover, we only have to focus on the symmetric difference of left-hand
side (lhs) and right-hand side (rhs) since the shared violated soft constraints can be ignored.
% -----------------
% Implements single predecessor
% dominance on sets of constraints,
% i.e., the Smyth-ordering

5 % ---------------------------------
include "alldifferent_except_0.mzn";

predicate smyth_worse(var set of int: lhs, var set of int: rhs,
set of int: softConstraints,

10 array[int, 1..2] of int: edges
) = let {

int: le = min(index_set_1of2(edges));
int: ue = max(index_set_1of2(edges));

15 var set of int: lSymDiff = lhs diff rhs;
var set of int: rSymDiff = rhs diff lhs;

% we need 0 as a possible value for "non-assignment" from the right-hand side
set of int: softConstraints0 = {0} union softConstraints;

20

% all the soft constraints that are not on the right-hand side any more need to map to 0
var set of int: rUndefined = softConstraints diff rSymDiff;

% I need to make the dominance explicit by a function
25 array[softConstraints] of var softConstraints0: witness;

% collect all less important soft constraints in an array
array[softConstraints] of set of softConstraints: lessThanOrEquals =
[{succ | succ in softConstraints where exists(e in le..ue)

30 (edges[e,1] = pred /\ edges[e,2] = succ)} | pred in softConstraints];
} in (

lhs != rhs /\
alldifferent_except_0(witness) /\
% be sure to use an over-approximation (upper bound ub) here

35 forall(s in ub(rUndefined)) (s in rUndefined -> witness[s] = 0) /\
forall(s in ub(rSymDiff)) (s in rSymDiff -> (witness[s] in lSymDiff /\

witness[s] in lessThanOrEquals[s]))
);

The PVS type ConstraintPreferences leads to a more intuitive instantiation as we see
when revisiting the rostering example. Note that mbr.softConstraintName can be used as a
shortcut to a soft constraint’s ID.

Example 4.4 – Rostering with ConstraintPreferences
Modelers simply state their soft constraints and provide a DAG of importance.
PVS: nurses = new ConstraintPreferences("nurses") {

soft-constraint sharedNightShifts: ’sum(i in NURSES)(bool2int(n[i] = night)) = 2’;
soft-constraint nurseTwoNoNight: ’n[2] in {day,off}’;
soft-constraint nurseThreeOff: ’n[3] = off’;

5

crEdges : ’[| mbr.nurseTwoNoNight, mbr.sharedNightShifts |
mbr.nurseThreeOff, mbr.sharedNightShifts |]’;

useSPD: ’false’ ;
};

Finally, we consider the set-based Max-CSP definition (see Table 3.1), i.e., {c1} is not
better than {c2, c3} because it is not a subset – although the number of violated constraints
is smaller. This type is very similar to ConstraintPreferences except that it uses the
normal superset relation instead of the Smyth-ordering. Parameters are not required. To
formulate this as a PVS type, we set the element type to set of int although we only need
a small fraction of all sets of int. Combination leads to set union and the ordering is the normal
superset relation – instead of the Smyth-ordering.

46 CHAPTER 4. MINIBRASS – A SOFT CONSTRAINT MODELING LANGUAGE

In MiniBrass:
type SetBasedMaxCsp = PVSType<bool, set of 1..nScs> =

instantiates with "set-max-defs.mzn" {
times -> union_violateds;
is_worse -> super_set;

5 top -> {};
};

4.3.3 Real-Valued: Fuzzy CSP and Probabilistic CSP

A third class of soft constraint formalism is best characterized by the element type being the
reals over [0.0, 1.0]. Starting with fuzzy constraints, each soft constraint maps to [0.0, 1.0]
with the combination being defined as the minimum operator – in this case, soft constraint
type and element type coincide. Admittedly, floating-point decision variables are not among
the strengths of the propagation-based solvers supporting MiniZinc, although interval-based
constraint propagation and search exist [Benhamou and Granvilliers, 2006]. Nevertheless, we
can model fuzzy constraint problems in MiniBrass as follows:
type FuzzyConstraints = PVSType<0.0 .. 1.0> =

instantiates with "soft_constraints/mbr_types/fuzzy_type.mzn" {
times -> min;
is_worse -> is_worse_fuzzy;

5 top -> 1.0;
};

The resulting soft constraints of element type 0.0 .. 1.0 could directly be defined as MiniZ-
inc functions as we showed for cost function networks but MiniBrass provides some support
with a global constraint that is included in fuzzy_type.mzn. For instance, consider a soft
constraint µ1 defined over two boolean variables mainCourse (representing vegetarian or not)
and wine (red or white): µ1 = {(0, 0) 7→ 0.3, (0, 1) 7→ 0.8, (1, 0) 7→ 1.0, (1, 1) 7→ 0.7} (inspired
by Rossi et al. [2008a]). This user is maximally satisfied with the combination “vegetarian”
and “white wine” and least by “non-vegetarian” and “white wine”. In MiniBrass:3

PVS: fz1 = new FuzzyConstraints("fz1") {
soft-constraint mu1: ’fbinary_fuzzy([0.3, 0.8, 1.0, 0.7], mainCourse, wine)’;
soft-constraint mu2: ’fbinary_fuzzy([1.0, 0.8, 0.8, 1.0], mainCourse, wine)’;

};
5 solve fz1;

On the other hand, probabilistic constraints bear similarities to both weighted and fuzzy
constraints. We use bool as soft constraint type to denote violated constraints and again
0.0 .. 1.0 for probabilities as element type. Formally, the objective is

∏
µi:θ 6|=µi

1− pi. The
“constraint presence” probabilities pi are, analogously to weights, supplied as parameters.
type ProbabilisticConstraints = PVSType<bool, 0.0 .. 1.0> =

params {
array[1..nScs] of float: probs :: default(’1.0’);

} in
5 instantiates with "soft_constraints/mbr_types/probabilistic_type.mzn" {

times -> prod;
is_worse -> is_worse_prob;
top -> 1.0;

};
10 [...]

% usage example
soft-constraint c2: ’s1 + s2 >= 10’ :: probs(’0.7’);
% which means "in 70% of all cases we expect that s1 + s2 must be greater than 10
% in 30% of all cases, no such restriction exists

3Note that the encoding employs a table constraint for floats which is not supported well by many solvers.
Therefore a workaround using integers is also provided in the MiniBrass library (fbinary_fuzzy_rational).

4.4. MORPHISMS TO SWITCH PVS 47

Both fuzzy and probabilistic constraints aim at maximization of the solution degree such
that is_worse_prob(x,y) corresponds to x < y. One can anticipate hybrid versions of
weighted and probabilistic such as “minimizing the expected violation degree”, given the “con-
straint presence” probabilities and penalties faced in case of violation. These probabilistic
constraints, however, do not capture dependencies well and are only suited for simple proba-
bilistic models.

4.4 Morphisms to Switch PVS

In addition to defining PVS types and instantiating them, PVS instances can be derived from
existing ones by means of morphisms. There are at least two reasons why users would specify
their SCSP using one PVS type but solve the problem using another: If the original PVS shows
many incomparable optimal solutions, we might want or have to totalize the ordering – if only
for testing and debugging. But perhaps more frequently, solvers that have to be used due to
performance reasons or the target software environment do not support the data types required
to represent a PVS type directly. For instance, set-based types for constraint preferences or
real-valued domains with suitable global constraints for fuzzy constraints are not implemented
equally well by all MiniZinc solvers. In such a case, a modeler would certainly only agree to
transform the SCSP in a structure-preserving way: at least, existing strict “is better than”
decisions in the original ordering are not to be contradicted; at most, incomparable solutions
may become comparable – precisely what PVS-homomorphisms ϕ : M → N offer.

For example, when comparing Figure 3.2 and Figure 4.1, we see that the weighted version of
the constraints (assigning [3, 1, 1] to [sharedNightShifts, nurseTwoNoNight, nurseThreeOff])
is a consistent, monotone mapping. As explained in more detail in Section 5.1.2 and proved
in Lemma 5.1, we can calculate a weight for each constraint (by making use of the instance
parameters such as the supplied graph) to transform a constraint preferences problem into a
weighted CSP instance. The simplest way would be to make sure a constraint has a higher
weight than the highest of its predecessors (which would actually lead to [2, 1, 1] in the above
example). In MiniBrass, we first define a morphism
% defined in the MiniBrass library "defs.mbr"
morph ConstraintPreferences -> WeightedCsp: ToWeighted =

params {
k = ’mbr.nScs * max(i in 1..mbr.nScs) (mbr.weights[i])’;

5 weights = calculate_cr_weights;
} in id;

using a function that is applied to each original soft constraint expression (here just the identity
id) and a parameter transforming function (here calculate_cr_weights in MiniZinc).
The defined morphism can then be applied to a specific PVS instance:
PVS: cr1 = new ConstraintPreferences("cr1") {

soft-constraint c1: ’x + 1 = y’;
soft-constraint c2: ’z = y + 2’;
soft-constraint c3: ’x + y <= 3’;

5

crEdges : ’[| mbr.c2, mbr.c1 | mbr.c3, mbr.c1 |]’;
useSPD: ’true’ ;

};
solve ToWeighted(cr1); % assigns weight 1 to c3 and c2, and 2 to c1

In this particular example of a morphism from constraint preferences to weighted CSP, dele-
gating the calculation of weights directly to the MiniZinc compiler might take some time since
the weight assignment proceeds recursively and cannot make use of precalculated results in a

48 CHAPTER 4. MINIBRASS – A SOFT CONSTRAINT MODELING LANGUAGE

dynamic programming (or memoization) style. Still, the weights are parametric information
that can be determined before any actual solving occurs. Therefore, morphisms can refer to
an external method in Java, similar to parameter processing methods:
morph ConstraintPreferences -> WeightedCsp: ToWeightedExt =

params generatedBy(’isse.mbr.extensions.weighting.SingleWeighting’) {
% k = ’mbr.nScs * max(i in 1..mbr.nScs) (mbr.weights[i]) ’;

k = generated ;
5 weights = generated ;

} in id; % the "generated" keyword indicates that the external method sets those parameters

By devising similar morphisms for other PVS types, we can also integrate the previously
mentioned fact that many soft constraint formalisms can be (monotonically) encoded as cost
function networks in polynomial time [Schiex et al., 1995], the type for which Toulbar2 offers
efficient dedicated algorithms. For example, a probabilistic PVS that has a multiplicative
maximization objective f(θ) =

∏
µi:θ 6|=µi

1−pi can be transformed into an additive minimization
problem by taking the negative logarithm of f : − log f(θ) =

∑
µi:θ 6|=µi

−(1 − log pi) where we
can calculate the 1 − log pi terms as weights. Here again, we benefit from the fact that the
transformation can be done in the more expressive Java language rather than in MiniZinc:
% a morphism converting a probabilistic CSP to weighted CSP using log
morph ProbabilisticConstraints -> WeightedCsp: ProbToWeighted =

params generatedBy(’isse.mbr.extensions.weighting.ProbWeighting’) {
k = ’mbr.nScs * max(i in 1..mbr.nScs) (mbr.weights[i])’;

5 weights = generated;
} in id;

The above-mentioned calculation here takes place in the Java class ProbWeighting. While
this morphism definition is mathematically sound, we have to round the terms to the nearest
integer in the implementation.

There is an interesting technical subtlety in terms of propagation when using morphisms.
Since r ≤P p → ϕ(r) ≤Q ϕ(p) for a PVS-homomorphism ϕ, we can propagate ϕ(r) ≤Q ϕ(p)
in addition to r ≤P p, i.e., as a redundant constraint. This can, in some cases, speed up the
solving process due to increased pruning and propagation (see Section 9.2).

4.4.1 Products of PVS

One particular advantage of using a PVS-based soft constraint language is their inherent
modularity which is agnostic towards concrete types. We can form composite PVS from
elementary ones by means of products. MiniBrass provides the keyword pareto for the direct
(Cartesian) product and the keyword lex for the lexicographic product. We can combine these
two operators and morphisms to form complex PVS. Consider these exemplary use cases:
solve cfn1 pareto cfn2;
solve cfn1 lex cfn2;
solve ToWeighted(cfn1) pareto (cfn2 lex cfn3);

Pareto and lexicographic combinations are an elementary tool to combine preference rela-
tions [Andréka et al., 2002] but especially with partial orders, these product orderings can
become too indecisive for practical situations. For example, assuming a Pareto-combination
of twenty agents’ PVS deciding on a working schedule, an assignment is deemed better if and
only if all agents agree that it is better or equally good. Otherwise, two assignments end
up being incomparable. In reality, it is rarely the case that all agents uniformly agree on an
is-better-relation – at least one agent could spoil things for all others.

4.4. MORPHISMS TO SWITCH PVS 49

Therefore, a very important and interesting application area of MiniBrass relies on voting,
borrowed from the theory of social choice. Chapter 8 is devoted to the underlying principles.
For instance,
solve vote([agent1,agent2,agent3], majorityTops);

searches for an assignment that maximizes the number of preference structures (here PVS
representing individual agents) that map to the respective top value. Other possibilities for
preference aggregation include approval (allowing only boolean PVS and maximizing the
number of approving PVS) or condorcet (applying a pairwise elimination moving from as-
signment to assignment if a majority prefers the new one).

4.4.2 PVS-based Search

With the tools presented so far, we are able to define new PVS types or include them, in-
stantiate PVS, and combine or morph PVS instances to more complex structures. The overall
goal is the PVS passed in the solve-item. This goal is decoupled from the search algorithm
employed to find optima since preference modelers would typically not be concerned with the
“how” but only the “what” should be searched for. Only in a second implementation step,
engineers could switch, e.g., to a local (large-neighborhood) search if branch-and-bound fails
to timely find satisfactory solutions. For solving problems, MiniBrass relies on classical sys-
tematic constraint solving and optimization based on constraint propagation and search, as
outlined at the beginning of Chapter 4. The necessary facilities are provided by MiniZinc (esp.
the MiniSearch extension) and the underlying solvers to actually carry out the optimization.
If the element type is numeric and a standard ordering (≤ or ≥) is used, the problem can be
solved in MiniZinc by minimizing (or maximizing) topLevelObjective. However, the full
strength of abstract soft constraint formalisms shows in the presence of partial and product
orders. MiniSearch offers blueprints for several classical searches that can be customized for
MiniBrass. For example, consider branch-and-bound natural maximization for a numerical
objective in MiniSearch:
% Branch and Bound when maximizing
function ann: bab_max(var int: obj) =

repeat(
if next() then

5 commit() /\
post(obj > sol(obj))

else break endif
);

Intuitively, the algorithm proceeds as follows: “Fetch the next solution (satisfying all hard
constraints). Then impose that the next possible solution has a higher obj value. Repeat this
until you find no solution.” Bounds are implicitly given by the upper and lower bounds on the
possible values the generated overall valuation may take. If the solver deduces that no better
valuation is possible, it can prune the search tree.

In fact, we can abstract from the specific predicate (post(obj > sol(obj))) to any
predicate that indicates how a solution improves:
% Only declare minisearch function; implementation generated during MiniBrass compilation
function ann: postGetBetter();

% PVS-based branch-and-bound
5 function ann: pvs_BAB() = % ask for *strict* improvement

repeat(if next()
then print("Intermediate solution:") /\ print() /\ commit() /\

postGetBetter()

50 CHAPTER 4. MINIBRASS – A SOFT CONSTRAINT MODELING LANGUAGE

else break
10 endif);

% synonym for easier usage
function ann: miniBrass() = pvs_BAB();

MiniBrass is responsible for compiling the top level PVS passed in the solve item to a
definition of the postGetBetter predicate which is only declared for pvs_BAB.

While the procedure pvs_BAB yields optimal solutions in the classical (totally ordered)
sense, it is not ideal for partially ordered objectives since another optimum clearly does not
have to be better than the current solution. Instead, it must not already be dominated by
any solution seen so far [Junker, 2009]. When solving for a PVS M , we thus have a set of
lower bounds (the valuations of previous solutions) L = {l1, . . . , lm} ⊆ |M | and require that it
cannot be that ∃l ∈ L : obj ≤M l where obj is the generated MiniZinc variable that holds the
overall objective. The next solution must be strictly better than any one of the maxima of L
or incomparable to all of them.

function ann: postNotGetWorse();

function ann: pvs_BAB_NonDom() = % ask not to be dominated by any previous solution
repeat(if next()

5 then print("Intermediate solution:") /\ print() /\ commit() /\
postNotGetWorse()

else break
endif);

We can generate a MiniSearch procedure “postNotGetWorse” during compilation as well
from the is_worse predicates that PVS types offer, similar to postGetBetter. Still, there
is a caveat to this solution. We have to negate this predicate, i.e., change its boolean context.
This is problematic if the predicate shows free local variables [Stuckey and Tack, 2013]. We
have seen this in Section 4.3.2 for the witness function necessary to decide the Smyth-ordering
which is not compatible with postNotGetWorse. For constraint preferences, we have to
resort to the TPD-ordering instead. Since we expect future non-trivial PVS types to rely on
local variables, we need modelers to be aware of this restriction.

Example 4.5 – Non-Domination versus Domination Search
Consider the following simplified example to illustrate the difference:
% In the classical constraint model:
var 1..3: x;
solve :: int_search([x], input_order, indomain_max, complete)
% traverses x = 3 then x = 2 then x = 1

5 search pvs_BAB_NonDom();

% In the preference model
PVS: cr1 = new ConstraintPreferences("cr1") {

soft-constraint c1: ’x in {2,3}’; % violated iff x = 1
10 soft-constraint c2: ’x in {1,3}’; % violated iff x = 2

soft-constraint c3: ’x in {1,2}’; % violated iff x = 3

crEdges : ’[| mbr.c2, mbr.c1 | mbr.c3, mbr.c1 |]’;
useSPD: ’false’;

15 };

solve cr1;

It uses the familiar search space for set-based constraint preferences:

4.5. MODELING CASE STUDIES IN MINIBRASS 51

⊥ = {c1, c2, c3}

{c1, c2}

{c2, c3}

{c1, c3}

{c1}

{c2} {c3}

> = ∅

⊥ = {c1, c2, c3}

{c1, c2}

{c2, c3}

{c1, c3}

{c1}

{c2} {c3}

> = ∅

We explore x in a decreasing order. Each assignment to x violates precisely one soft constraint.
This results in the sequence 〈{c3}, {c2}, {c1}〉 of solution degrees. {c3} and {c2} both dominate
{c1} but are incomparable using TPD-ordering (and Smyth, too). The reachable optima of
this problem are clearly {{c2}, {c3}} but pvs_BAB (left, orange) would stop after {c2} since
{c3} is not better. By contrast, pvs_BAB_NonDom (right, blue) returns both optimal solution
degrees.

MiniSearch actually offers much more flexibility in crafting problem-specific searches than
just branch-and-bound. For instance, designing large-neighborhood-search (as described in
Section 3.3.3) for PVS-based models can be done using their concepts of scopes, as described
in Rendl et al. [2015].
% Adapted from lns_max an objective value
function ann: pvs_LNS(array[int] of var int: x,

int: iterations, float: d, int: exploreTime) =
repeat (i in 1..iterations) (

5 print("Starting iteration ... \(i)\n") /\
scope(post(neighbourhoodCts(x,d)) /\

time_limit(exploreTime, pvs_BAB()) /\ commit() /\
print("Intermediate solution\n") /\ print()) /\ postGetBetter()

);

In a similar way, we can anticipate many variants of search algorithms with postGetBetter
or postNotGetWorse. By separating concerns between constraint and preference model, the
preference model in MiniBrass can be tested with various searches.

4.5 Modeling Case Studies in MiniBrass

We conclude this chapter by demonstrating MiniBrass’ abilities in two more involved examples,
unit commitment, and mentor matching.

4.5.1 Unit Commitment

First of all, reconsider the scheduling example faced in (autonomous) virtual power plants
presented in Section 2.1. This example most heavily influenced the idea of modular preference
structures that are linked by lexicographic and Pareto-products, as well as voting operators.

52 CHAPTER 4. MINIBRASS – A SOFT CONSTRAINT MODELING LANGUAGE

n lex

eZ
Minimize

Max
MaximumvppGoals

deviation[1] deviation[2] deviation[3]

× pareto

SPDEV

limitBUEV

BLmorningEVprefBLEV

n lex

eZ
Minimize

∑
Sumbiogas1

costsMaintenance costsFuel

TPD

gasNotFullbio

ecoSweetbioonOffbio

biogas2

Figure 4.4: A graphical depiction of the overall complex preference structure for a simplified
instance in the unit commit problem, as described in Example 1.1. Reprinted from Figure 1.1.

Consequently, it comes as no surprise that MiniBrass is well equipped to model situations such
as those presented in Figure 1.1 which we reprint in Figure 4.4 for better readability.

We present the underlying constraint model, inspired by Figure 2.1. We assume that there
is a finite scheduling horizon and the task is to only adapt the prosumers’ power level as to
match the existing demand (of course, in demand-side management for the EV, the demand
is adjusted by allowing negative power values).
int: T = 5; set of int: WINDOW = 1..T;
array[WINDOW] of int: demand = [20, 21, 25, 30, 29];

int: P = 3; set of int: PROSUMERS = 1..P;
5

% only prosumer 2 (the EV) can consume
array[PROSUMERS] of int: pMin = [12, -5, 7];
array[PROSUMERS] of int: pMax = [15, 11, 9];

10 array[WINDOW, PROSUMERS] of var -5..15: power;
constraint forall(p in PROSUMERS, w in WINDOW)

(power[w,p] in pMin[p]..pMax[p]);

array[WINDOW] of var int: deviation =
15 [abs(sum(p in PROSUMERS) (power[w, p]) - demand[w]) | w in WINDOW];

solve search miniBrass();

This constraint model establishes the elementary decision variables for prosumer scheduling
and defines minimal hard constraints – as it serves as an illustrative example. Real-world
models are certainly more involved. Nevertheless, we are able to express the PVS displayed in
Figure 1.1, beginning with the top-level (collective) objective:
PVS: orga = new CostFunctionNetwork("Orga") {

soft-constraint vio_1: ’deviation[1]’;

4.5. MODELING CASE STUDIES IN MINIBRASS 53

soft-constraint vio_2: ’deviation[2]’;
soft-constraint vio_3: ’deviation[3]’;

5 isWorstCase: ’true’;
};

In MiniBrass cost function networks, cost minimization is default although we could define
a PVS type that makes minimization or maximization parameterizable. Each soft constraint
refers to the deviation between supplied power and demand at a certain point in time. We take
the maximum deviation as aggregation operator since, e.g., a schedule that deviates [0, 0, 9] is
worse than one with deviations [3, 3, 3]. A better deviation at some points in time cannot make
up for a larger deviation at another point in time. Recall that Chapter 7 was mostly concerned
with PVS taking maximum as aggregation. Next, we can define the individual prosumers’
PVS:
PVS: biogas = new ConstraintPreferences("biogas") {

soft-constraint gasFull:
’forall(w in WINDOW) (power[w,biogas] >= 13)’;

soft-constraint ecoSweet:
5 ’forall(w in WINDOW) (power[w,biogas] >= 14)’;

soft-constraint onOff:
’forall(w in 1..T-1) (

abs(power[w,biogas] - power[w+1,biogas]) <= 1)’;

10 crEdges : ’[| mbr.ecoSweet, mbr.gasFull | mbr.onOff, mbr.gasFull |]’;
useSPD: ’true’ ;

};

PVS: ev = new ConstraintPreferences("ev") {
15 soft-constraint prefBL: % never exceed 5 in production

’forall(w in WINDOW) (power[w,ev] <= 5)’;
soft-constraint BLmorning: % no prosumption in the morning
’power[1,ev] = 0)’;

soft-constraint limitBU: % reduce production from EV
20 ’sum(w in WINDOW) (bool2int(power[w,ev] > 0)) < 2’;

crEdges : ’[| mbr.limitBU, mbr.prefBL | mbr.limitBU, mbr.BLmorning |]’;
useSPD: ’false’ ;

};
25

% thermal plant consists of two layers
PVS: therm1 = new CostFunctionNetwork("therm1") {

soft-constraint ecoOpt:
’sum(w in WINDOW) (abs(power[w,thermal] - 8))’;

30 soft-constraint inertia:
’sum(w in 1..T-1) (abs(power[w,thermal] - power[w+1,thermal]))’;

};

PVS: therm2 = new CostFunctionNetwork("therm2") {
35 soft-constraint ecoGood:

’sum(w in WINDOW) (abs(power[w,3] - 9))’;
};

The soft constraints are rather straightforward to define in this small example and we note
two different PVS types. Attentive readers may notice that state and inertia information such
as the battery level of the EV is not adequately represented in this constraint model. Indeed,
there are more aspects involved when it comes to modeling a variety of prosumers such as the
notorious binary on/off setting discussed in Section 2.1.2. Schiendorfer et al. [2015a] presented
supply automate that are automatically translated into constraint models which are able to
capture such system behavior. For the sake of brevity, however, we omit to discuss them here.
Finally, we can tell MiniBrass the overall goal by means of lexicographic and Pareto-products:
solve orga lex (biogas pareto ev pareto (therm1 lex therm2));

We can see that most structural information (including PVS types and parameters) is preserved
in the graphical representation of the preference model in Figure 4.4. Only the (formal)
definition of soft constraints with respect to the underlying constraint model needs to be

54 CHAPTER 4. MINIBRASS – A SOFT CONSTRAINT MODELING LANGUAGE

n lex

SPDstudents

raubholzdelphi waltzcupg

raubholzyouthlabraubholzcupg

SPD
delphirich

delphikill kasokyouth

companies

Figure 4.5: A graphical representation of the mentor matching problem modeled with two PVS
representing students and companies

added. This step can be done independently of (re)-prioritizing the soft constraints and PVS.
Related to models such as this example, we investigated the influence of the selected dominance
property of constraint preferences in [Schiendorfer et al., 2014a]. As can be expected, TPD
semantics had more (unimportant) constraints violated than SPD. In particular, TPD led to an
average dissatisfaction of about 40% of all soft constraints, whereas SPD only dissatisfied 30%.
This shows that a relevant question for preference elicitation and requirements engineering is
to find out whether the problem’s constraints are more hierarchical or egalitarian.

Although MiniBrass is well-suited for the unit commitment problem, it is certainly not a
tool & theory crafted for a single problem. In addition to the subsequent example of men-
tor matching, several practical problems show different aspects of MiniBrass throughout the
dissertation. Chapter 9 also provides a diverse set of standardized benchmark problems.

4.5.2 Mentor Matching

Next, we present a MiniBrass model for mentor matching in a software engineering graduate
program, as described in Section 2.3.2. Our main task is to assign every student to a company
acting as their mentor. To ensure fairness among the participating companies, there are cardi-
nality constraints restricting the minimal and maximal number of mentees per company. The
constraint model reflects this as follows:
int: n; set of int: STUDENT = 1..n;
int: m; set of int: COMPANY = 1..m;

% assign students to companies
5 array[STUDENT] of var COMPANY: worksAt;

int: minPerCompany = 1; int: maxPerCompany = 3;
constraint global_cardinality_low_up (

worksAt, [c | c in COMPANY],
10 [minPerCompany | c in COMPANY],

[maxPerCompany | c in COMPANY]);

4.5. MODELING CASE STUDIES IN MINIBRASS 55

solve search miniBrass();

On top of this model, we can have one PVS for the students and one for the companies.
Students submitted their wishes as a ranked list. Figure 4.5 depicts the overall preference
model, with the soft constraints being specified as follows:
PVS: students = new ConstraintPreferences("students") {

soft-constraint raubholzdelphi: ’worksAt[raubholz] = delphi’;
soft-constraint raubholzyouthlab: ’worksAt[raubholz] = youthlab’;
soft-constraint raubholzcupg: ’worksAt[raubholz] = cupgainini’;

5 soft-constraint waltzcupg: ’worksAt[waltz] = cupgainini’;

% only intra-student preferences are allowed, no inter-student preferences
crEdges : ’[| mbr.raubholzyouthlab, mbr.raubholzdelphi |

mbr.raubholzcupg, mbr.raubholzdelphi |]’;
10 useSPD: ’true’ ;

};

PVS: companies = new ConstraintPreferences("companies") {
soft-constraint delphi_kill: ’worksAt[kill] = delphi’;

15 soft-constraint delphi_rich: ’worksAt[rich] = delphi’;
soft-constraint kasokyouth: ’worksAt[kasok] = airtrain’;

crEdges : ’[| mbr.delphi_kill, mbr.delphi_rich |]’;
useSPD: ’true’ ;

20 };

We can formulate the overall objective with a lexicographic product that either prioritizes the
students or companies. To illustrate the difference, we employ a morphism to convert constraint
preferences to weighted constraints, as described in Section 4.4. For instance, stating
solve ToWeighted(students) lex ToWeighted(companies);

could lead to
Intermediate solution:worksAt = [1, 1, 1, 2, 3]
Valuations: pen_companies = 2; pen_students = 1

==========

which assigns two penalty points to the companies and one to the students whereas
solve ToWeighted(companies) lex ToWeighted(students);

would lead to
Intermediate solution:worksAt = [1, 2, 1, 1, 3]
Valuations: pen_companies = 0; pen_students = 2

==========

which optimally satisfies the companies but yields higher costs for the students. Having inter-
pretable cost values clearly is beneficial, although using a single instance of constraint prefer-
ences for different students is not ideal. We face the problem of introducing bias, as explained
in Chapter 5.

Besides this illustrative toy problem, we experimented with the model for the mentor
assignment in the winter term 2015. There were 16 students to be assigned to seven companies
which leads to a search space of 716 = 3.3233 ·1013 assignments. There were 77 soft constraints
submitted by the 16 students and 37 soft constraints submitted by the seven companies,
totaling 114 soft constraints. The proven optimum (lexicographically favoring students) was
found in six minutes and successfully replaced the manual solution proposed by the graduate
program’s coordinator.

56 CHAPTER 4. MINIBRASS – A SOFT CONSTRAINT MODELING LANGUAGE

Chapter Summary and Outlook
In this chapter, we presented the core elements of the MiniBrass language for soft constraint
programming on top of MiniZinc and MiniSearch. Based on partial valuation structures (PVS)
as its basic building block, it enables modular and concise expression of soft constraints of var-
ious types. New PVS types can be declared with a mapping for the element type, the combina-
tion operation, and the ordering. We presented the most common soft constraint formalisms in
the literature as MiniBrass PVS types and highlighted their strengths and weaknesses. Finally,
we highlighted how to apply MiniBrass concepts in two of our application scenarios.

Chapter 6 explains why we used PVS as the underlying algebraic structure, in the first place.
It can be seen as the discussion of MiniBrass’ semantics. Chapter 8 provides more background
information on the implemented social choice functions to enable voting among several PVS
and Chapter 5 revisits the rationale underlying the PVS type “constraint preferences”.

Chapter 5
Constraint Preferences for Soft

Constraints

Summary. To elicit preferences in a qualitative (as opposed to quantitative) way
first, we devised a novel soft constraint formalism, called constraint preferences, that
relies on a partial order over constraints to denote their relative importance. This
relieves us from making constraints of different agents comparable. If not all soft
constraints can be satisfied, we aim to achieve as many (important ones) as possible.
We present several ways of specifying the dominance semantics as to how much more
important a soft constraint is related to its less important counterparts – which results
in different liftings to orderings in violation sets. Each of them can be transferred to
a weighted representation resulting in a numeric objective function or be optimized
directly according to the chosen lifted ordering in MiniBrass.

Publication. The concepts and results outlined in this chapter have been published in
Schiendorfer et al. [2013]; Knapp et al. [2014].

Most of the conventional preference formalisms discussed in Section 3.2 are quantitative in
nature. In weighted constraints, each soft constraint is assigned a penalty integer, numeric
cost functions are minimized or maximized, or a satisfaction degree ranging from 0 to 1 is
maximized in fuzzy constraints. However, there are good reasons not to start with the numeric
objective in the first place. Consider again the solution trace from Example 4.1 that is obtained
from executing the left, weight-based preference model in Figure 5.1:
Intermediate solution: n = [night, day, day]
Valuations: topLevelObjective = 4

Intermediate solution: n = [night, night, day]
Valuations: topLevelObjective = 2

Intermediate solution: n = [night, day, night]
Valuations: topLevelObjective = 1

==========

While we obviously see the topLevelObjective decreasing in this minimization problem,
the intuition why an assignment dominates another one can become rather obfuscated instead

57

58 CHAPTER 5. CONSTRAINT PREFERENCES FOR SOFT CONSTRAINTS

X = {n1, n2, n3}
D = {day, night, off}
C : ∃ni ∈ X : ni 7→ night

sharedNightShifts
|{i | ni 7→ night}| = 2,

nurseTwoNoNight
n2 7→ day ∨ n2 7→ off

nurseThreeOff
n3 7→ off

100
maxWeightnurses

3sharedNightShifts

1nurseTwoNoNight

1nurseThreeOff

TPDnurses

sharedNightShifts

nurseTwoNoNight

nurseThreeOff

Figure 5.1: Two preference models based on one constraint model (left). Either constraints
are assigned weights (quantitatively) or importance relations are given qualitatively.

of explanatory. Perhaps, a user would be more convinced by the following trace:
Intermediate solution: n = [night, day, day]
Valuations: violatedSoftConstraints = { sharedNightShifts, nurseThreeOff }

Intermediate solution: n = [night, night, day]
Valuations: violatedSoftConstraints = { nurseTwoNoNight, nurseThreeOff }
Better since it only violates ’nurseTwoNight’ instead of ’sharedNightShifts’

Intermediate solution: n = [night, day, night]
Valuations: violatedSoftConstraints = { nurseThreeOff }
Better since it does no longer violate ’nurseTwoNoNight’

==========

We argue that the latter trace can be much easier to understand, in particular, since the
underlying rationale is revealed and preserved. Kaci et al. [2014] point out that comparative
statements may be easier to cognitively process for users. A suitable weighting function,
such as the one used in Figure 5.1, quantifies an inherently qualitative relationship such as
“sharedNightShifts is more important than nurseTwoNight”. Moreover, in Section 4.4
we have discussed that we can automatically convert any constraint preferences instance to
appropriate weights using a morphism, i.e., a monotone function (see Lemma 5.1).

Conversely, from a practical engineering perspective, consider the situation where a modeler
would want to add a number of soft constraints that should be even less important than
nurseTwoNoNight and nurseThreeOff. Had we modeled the preferences directly in weighted
constraints, we would have to increase the weights of all soft constraints to reflect the new
ordering. If the constraint and preference model is automatically compiled at runtime (e.g.,
two graphs are combined below some overall goals), we also benefit from a qualitative ordering
before we generate weights – if necessary.

Moreover, the totalization that follows from weighting partially-ordered soft constraints
makes incomparable elements comparable (such as that nurseTwoNoNight and nurseThreeOff
take the same weight 1) or, even worse, elements from incomparable branches become ordered,
as Figure 5.2 shows: There should not be a preference relationship between bestA and bestB
but the solver would be biased to favor satisfying bestA.

To sum up, we identify the following motivations to specify preferences qualitatively:

5.1. QUALITATIVE SPECIFICATION 59

org14 org2 4

bestB2

goodB1 1 goodB2 1

bestA 3

goodA 2

accA 1

Figure 5.2: A constraint preferences graph with associated valid weights for a set of soft
constraints. Assume that the subgraphs beneath bestA and bestB stem from different sources
and are assembled to the overall graph at runtime.

� Better explanations

� Less cognitive overhead

� No weight-introduced bias

� Less refactoring effort

Although the previous chapters in part relied on some knowledge about constraint pref-
erences as published in [Schiendorfer et al., 2013; Knapp et al., 2014] (then called constraint
relationships), we present their underlying design intentions more explicitly in this chapter.

5.1 Qualitative Specification using Constraint Preferences

The syntactic features of constraint preferences are inherently simple. A set of constraint
preferences over the soft constraints Cs refers to a relation →P ⊆ Cs × Cs that is a directed
acyclic graph. By stating µ1 →P µ2, users express that soft constraint µ1 is less important to
them than µ2. We can immediately augment this graph to a partial ordering over constraints
by taking the reflexive-transitive closure →∗P (also, the transitive closure →+

P appears if we
explicitly need to exclude reflexive edges). Hence, we would describe the constraint prefer-
ences from Figure 5.1 as {nurseTwoNoNight →P sharedNightShifts, nurseThreeOff →P

sharedNightShifts} and add the missing reflexive and transitive edges implicitly. By con-
vention, we refer to µ1 as a “predecessor” of c2, i.e., a less important soft constraint.

5.1.1 Semantics of Dominance Properties

So far, constraint preferences syntactically simply express that a soft constraint is more impor-
tant than another one. Assignments, however, satisfy and violate sets of soft constraints. To
grade them, it is important to address the question of how much more important a single soft
constraint is with respect to its less important predecessors. From an egalitarian standpoint,
a constraint should not be much more important than another one, whereas a hierarchical
setting could judge a single soft constraint to be much more important than even a set of
predecessors. Technically, we need a lifting of the ordering →∗P over soft constraints to an
ordering vP over sets of violated constraints, called a violation set. For an assignment θ in
an SCSP, its violation set is simply V (θ) = {µ ∈ Cs | θ 6|= µ}. We read T vP U as “T is

60 CHAPTER 5. CONSTRAINT PREFERENCES FOR SOFT CONSTRAINTS

worse than U , given P” to be consistent with the PVS-specific notation used throughout other
chapters.1

Example 5.1 – Lifting by Weighting
One possible lifted ordering is obtained by assigning every soft constraint a weight as we have
seen for Figure 5.1 and sum up the violated constraints’ weights: For sets T,U ⊆ Cs and
weighting w : Cs → N that is monotone with respect to P :

T vP U ⇔
∑
t∈T

w(t) ≥
∑
u∈U

w(u)

With respect to Figure 5.2, {bestA, goodA} vP {goodB1} since 5 > 1, for instance.

In the example above, we clearly introduce many “strange” ordering relations between
unrelated sets that are not logically justifiable. We therefore ask for meaningful semantics that
we ascribe to constraint preferences and begin with minimal requirements. We will characterize
the orderings inductively as rule-based specifications. While in this chapter we follow an
“intuitive” path, Chapter 6 approaches this question from a purer, category-theoretical angle.

What are the ordering relations over violation sets that we can assume from a given partial
ordering over soft constraints? The only conclusion we can safely draw from a constraint
preference µ1 →P µ2 is that {µ2} vP {µ1} should hold since it should be worse to violate the
more important soft constraint µ2. Similarly, if both violate the same other soft constraints
T ⊆ Cs with µ1, µ2 6∈ T , we would prefer a solution that violates the less important µ1, i.e.,
T ∪ {µ2} vP T ∪ {µ1}. Hence, the second case reduces to the first one if T is empty.

Moreover, since we define an ordering on violation sets, having a larger set is inherently
worse. If we can choose an assignment that only violates a subset of another one, we should al-
ways choose the first one. Formally, T ∪{µ1} vP T , still assuming µ1 6∈ T . We obtain a partial
ordering over sets if we apply both rules transitively. In fact, these two rules provide the seman-
tics that a soft constraint can dominate a single other soft constraint but no more. With respect
to Figure 5.2, {goodB1, goodB2} vP {bestB} holds since {goodB1, goodB2} vP {goodB1} by
the first rule and {goodB1} vP {bestB} by the second rule. On the other hand, neither
{bestB} vP {bestA} nor {bestA} vP {bestB} is valid, hence these two sets are incompa-
rable. We cannot establish an “is-worse-than” relation between the sets {org1, goodB1} and
{bestB, goodB2} either: While a violation of org1 can be “traded” for either bestB or goodB2,
it cannot make up for both at the same time and goodB1 cannot be exchanged for goodB2 (in-
comparable) or bestB (a more severe violation). This feature is responsible for the dominance
property’s name “single-predecessor-dominance”. The resulting ordering (that we write as �P ,
as before, or �PSPD if we want to make the dominance property explicit) is referred to as the
Smyth-ordering due to the eponymous ordering being used in powerdomain constructions.

T] {µ} ≺PSPD T

T] {µ} ≺PSPD T] {µ′} if µ′ →+
P µ (SPD)

The proof that �PSPD is indeed a partial ordering relation over sets follows from a more general
proof that we present for multiset-based PVS in Section 6.3. Still, we present a shorter proof

1The symbol vP refers to a generic ordering whereas specific orderings will have their dedicated symbols.

5.1. QUALITATIVE SPECIFICATION 61

c7

c4

c5

c6

c1

c2 c3

c7

c4

c5

c6

c1

c2 c3
≺PSPD

c7

c4

c5

c6

c1

c2 c3
≺PTPD

c7

c4

c5

c6

c1

c2 c3

Figure 5.3: Single-predecessor-dominance (SPD) allows trading a single constraint; transitive-
predecessors-dominance (TPD) makes a constraint more important than the set of all its
predecessors. Left and right side represent violation sets of two different solutions. In the
upper situation, the left is worse since the more important c4 is violated, the rest being equal.
In the lower situation, satisfying c4 is even more valuable than both c5 and c6 which would not
be true for SPD.

for the set-based ordering alone. Since we apply these rules inductively to obtain the full
partial ordering �PSPD, transitivity follows immediately. Similarly, reflexivity is obtained by
the reflexive closure. It remains to show antisymmetry: As we will show in Section 5.1.2,
there exists a strictly monotone mapping wPSPD : 2Cs → N such that T ≺PSPD U ⇒ wPSPD(T) >
wPSPD(U). For antisymmetry, assume two sets T , U such that both T �PSPD U and U �PSPD T
hold. We need to show that T = U must hold. If T �PSPD U and U �PSPD T hold with equality,
we are done, hence we focus on the case where T ≺PSPD U and U ≺PSPD T . But then, we would
simultaneously have wPSPD(T) > wPSPD(U) and wPSPD(U) > wPSPD(T) which cannot happen due
to the totality of < in the natural numbers. Hence, �PSPD is indeed a partial ordering relation.

But what about situations where modelers would indeed like the previously seen relation,
{org1, goodB1} is worse than {bestB, goodB2}, to hold, i.e., a single constraint’s violation is
strictly more detrimental than those of several or all of its predecessors? For this purpose, one
may turn to the so-called transitive-predecessors-ordering (TPD), introduced by Schiendorfer
et al. [2013], that defines a more important constraint to dominate a set of less important ones:

T] {µ} ≺PTPD T

T] {µ} ≺PTPD T] {µ1, . . . , µn} if µi →+
P µ for all 1 ≤ i ≤ n (TPD)

Reflexivity, antisymmetry, and transitivity are shown using analogous arguments to SPD.
Clearly, if we can establish T ≺PSPD U , we also have T ≺PTPD U since the SPD rule is a
special case of the TPD rule. That means, TPD only adds ordering relations to the existing
ones in SPD. Section 6.1 actually helps us to formalize this distinction between “necessary”
and “arbitrary” ordering relations. However, for adequately modeling a user’s preferences,

62 CHAPTER 5. CONSTRAINT PREFERENCES FOR SOFT CONSTRAINTS

additional well-defined relations may certainly be offered. Furthermore, since the rule T]
{µ} ≺PxPD T is present in both properties, an obvious consequence follows immediately:

T ⊃ U ⇒ T ≺PxPD U (XPD)

This subsumes a set-based definition of Max-CSP. Figure 5.3 visualizes the difference between
SPD and TPD.

5.1.2 Transforming Constraint Preferences to Weighted Constraints

Once constraint preferences and the desired dominance property are specified, we obtain a
valid partial ordering on violation sets that can be used for optimization, e.g., in MiniBrass.
Still, there are situations where users might prefer a numerical objective function – e.g., if
a solver/system can only optimize according to an integer expression but is otherwise well-
equipped for the problem class at hand (cf. Section 4.4 or Section 9.2). Then, we can derive a
strictly monotonic conversion of constraint preferences to a weighted constraint representation,
i.e., we assign a weight to every soft constraint according to the given relational preferences.

Formally, for an SCSP with soft constraints Cs and preference graph→P , we devise weight-
ing functions wPxPD(U) : Cs → N \ {0} which we prove to be strictly monotonic. That means
for any two violation sets T and U , we have T ≺PxPD U ⇒ WP

xPD(T) > WP
xPD(U) where

WP
xPD(T) =

∑
µ∈T w

P
xPD(µ). If a violation set is judged worse by lifted constraint preferences,

it will get a higher accumulated weight. Clearly though, the total order (N,≥) is not able to
express partiality which necessarily results in incomparable violation sets becoming comparable
– as mentioned in the introduction to this chapter.

5.1.3 Concrete Weight Functions

Each weight function wPxPD will be defined recursively based on the weights of its predecessors
w.r.t. →P . This is well-defined since Cs and thus →P are finite and →P is acyclic. Algorith-
mically, the less important constraints get their weights assigned before more important ones
which can be done in a bottom-up fashion in a depth-first traversal.

Since ≺PxPD is defined inductively by rules, it suffices to demonstrate strict monotonicity for
each rule application. More precisely, if we have T ≺PxPD U then there is actually a sequence
T = T1 ≺PxPD . . . ≺PxPD Tn ≺PxPD U of length n ≥ 1 where each pair (Ti, Ti+1) is obtained by
applying either of the previous rules.

We begin by examining the “superset” rule that is shared by both SPD and TPD which
states that T] {µ} ≺PxPD T ; and indeed, wPxPD(T] {µ}) > wPxPD(T), since all weights are in
N \ {0}. We need to proceed to prove the strict monotonicity of (SPD) and (TPD).

Single predecessor dominance.
Since in SPD, a soft constraint only has to exceed any single predecessor, we propose to use
the maximum weight of its predecessors and add 1 (by convention, max(∅) = 0).

wPSPD(µ) = 1 + max{wPSPD(µ′) | µ′ ∈ Cs : µ′ →P µ} for µ ∈ Cs .

This mapping is indeed strictly monotonic for applications of (SPD): Assume T] {µ} ≺PSPD
T] {µ′} because µ′ →P µ. By the above definition, wPSPD(µ) > wPSPD(µ′) and hence:

WP
SPD(T] {µ}) = WP

SPD(T) + wPSPD(µ) > WP
SPD(T) + wPSPD(µ′) = WP

SPD(T] {µ′})

5.1. QUALITATIVE SPECIFICATION 63

Transitive predecessors dominance. For TPD, the most straightforward choice is to
take the sum of weights of all (transitive) predecessors and add 1. Even if all predecessors are
violated, the violation of the more important constraints is higher than their sum:

wPTPD(µ) = 1 +
∑
µ′→+

Pµ
wPTPD(µ′) for µ ∈ Cs .

Assume that there are sets {µ1, . . . , µn}, {µ′}, and T such that T]{µ′} ≺PTPD T]{µ1, . . . , µn}
holds, i.e., µi →P µ for all 1 ≤ i ≤ n. Then, by the above definition of wPTPD, the weight of µ′
is still strictly higher than WP

TPD({µ1, . . . , µn}) which proves the strict monotonicity since T
contributes equally to both sides.

However, this definition has to visit every transitive predecessor explicitly and repeatedly.
We can exploit the graph structure of the preference specification to reduce the computational
steps by only visiting immediate predecessors (referring to →P instead of →+

P). In essence,
since the weight of each soft constraint encodes the summed weight of all its predecessors, we
can double this value to achieve the necessary growth. This slightly changes the definition:

wPTPD(µ) = 1 +
∑
µ′→Pµ

2 · wPTPD(µ′)− 1 for µ ∈ Cs .

We can establish that wPTPD(µ) >
∑
µ′→+

Pµ
wPTPD(µ′) with this definition by induction over the

number k of transitive predecessors of µ: If k = 0, then wPTPD(µ) = 1 and thus the claim holds.
If k > 0, assume that wPTPD(µ′) ≥ 1 +

∑
µ′′→+

Pµ
′ wPTPD(µ′′) holds for all µ′ ∈ Cs with µ′ →+

P µ.
Then

wPTPD(µ) = 1 +
∑
µ′→Pµ

(2 · wPTPD(µ′)− 1)
= 1 +

∑
µ′→Pµ

(wPTPD(µ′) + (wPTPD(µ′)− 1))
≥ 1 +

∑
µ′→Pµ

(wPTPD(µ′) +
∑
µ′′→+

Pµ
′ wPTPD(µ′′))

≥ 1 +
∑
µ′→+

Pµ
wPTPD(µ′)

where the last inequation holds since every summand of the last line is a summand of the
next-to-last line but could be counted more than once if it is a predecessor of multiple soft
constraints.
For completeness and future reference, we also present a third, intermediate type of semantics
called “direct-predecessors-dominance” (DPD) that has been presented by Schiendorfer et al.
[2013]. It essentially does not rely on transitiveness of →P and assigns smaller weights than
TPD but larger ones than SPD by stating that a soft constraint’s weight should exceed the
sum of its immediate predecessors:

wPDPD(µ) = 1 +
∑
µ′→Pµ

wPDPD(µ′) for µ ∈ Cs .

Obviously, if →P is transitively closed, DPD and TPD are identical. Otherwise it is possible
that a large enough set of (transitively) violated predecessors may outweigh a more important
soft constraint which would be impossible in TPD. This leaves the semantics harder to interpret
than for SPD and TPD which is why we presented no set-based ordering ≺PDPD. Both of
them assume transitivity but address the “egalitarian-hierarchical” conflict from an extremal
perspective. DPD, on the other hand, offers a numeric compromise between the two and can
be seen as a heuristic alternative to SPD and TPD. Figure 5.4 provides numeric examples.

64 CHAPTER 5. CONSTRAINT PREFERENCES FOR SOFT CONSTRAINTS

In summary, we have

Theorem 5.1. If T ≺PxPD U , then WP
xPD(T) > WP

xPD(U) for xPD ∈ {SPD,TPD}.

In the next section, we present a toy example inspired by a ski-day planning application. In
MiniBrass, recall that these weight functions are encapsulated and provided by the morphism
ToWeighted that takes a ConstraintPreferences instance to a WeightedCSP instance.

5.2 Illustrating Constraint Preferences: A Ski-Day Planner
To get a better intuition about how preference specifications with constraint preferences work
in practice, we review a typical simplified real-world scenario – originally presented in [Schien-
dorfer et al., 2013]. First, we show how varying sets of preferences lead to different preferred
assignments. Then we discuss how changing constraints or preferences can be included more
conveniently than with pure weighted constraints.

5.2.1 Personas & Preferences in the Ski-Day Example

Consider an application that provides guidance to travelers exploring a new ski area by offering
a plan for a ski day. The problem might include real-time lift occupancy data as well as weather
forecasts and snow conditions that result in a different set of valid itineraries. Each skier has
different priorities that can be set interactively.

Assume the following soft constraints are defined on the set of possible itineraries (that
need to respect hard constraints such as weather induced blockages, valid lift connections,
timing issues, restaurant opening hours, and daylight time):
• Avoid black slopes (ABS): Beginners might want to avoid difficult (marked “black”)
slopes.
• Variety (VT): Different slopes need to be explored rather than staying on the same
tracks.
• Fun-park (FP): Freestyle fans want to include a fun-park.
• Little Wait (LW): Impatient visitors prefer not to wait too long at a lift.
• Only Easy Slopes (OE): People can restrict their tours to easy (“blue”) slopes only.
• Lunch Included (LI): Whereas some travelers enjoy the comfort of a good mountain dish,
others prefer to spend their day out without longer rest.

For clarity and focus, we abstract from actual constraint models as well as the structure of
the assignments and leave hard constraints aside by assuming the following three assignments
satisfy all hard constraints but differ in their performance on soft constraints.
• θ1 |= {LW,OE, LI,FP} ∧ θ1 6|= {VT,ABS}
• θ2 |= {VT} ∧ θ2 6|= {FP,ABS, LW, LI,OE}
• θ3 |= {OE,FP,ABS, LI} ∧ θ3 6|= {VT, LW}

Assume three personas as prototypical customers.
• Skier A is rather impatient, skilled in skiing, wants to explore a fun-park but is not
particularly afraid of difficult slopes or needs lunch since she perceives skiing primarily
as physical activity.

5.2. ILLUSTRATING CONSTRAINT PREFERENCES: A SKI-DAY PLANNER 65

LW11/8/3

ABS 1

FP 2

VT 2

OE2 LI1

(a) Graph of skier A

VT 23/8/5

FP 8/4/4 ABS 4/3/3

LI4/3/3 LW2 OE

1

(b) Graph for boarder B

ABS

42/15/5

LI

5/4/3
LW

4/3/3

OE

13/7/4

VT 2

FP 1
(c) Graph for rookie C

Figure 5.4: The constraint preferences for each persona. Double borders indicate that this
constraint was violated in the TPD-preferred assignment according to Figure 5.5. Weights
are printed for TPD/DPD/SPD, only one number indicates that the weights are equal for all
dominance semantics.

Skier A Boarder B Rookie C
θ1 3 8 7
θ2 9 13 16
θ3 5 7 5

(a) SPD semantics

Skier A Boarder B Rookie C
θ1 3 27 44
θ2 17 19 65
θ3 13 25 6

(b) TPD semantics

Figure 5.5: Different tours rated by different constraint preferences. As can be seen, DPD
returns intermediately scaled weights compared to SPD and TPD.

• Boarder B is an explorer, she prefers to see a large number of different slopes (not
necessarily black ones) but accepts to wait longer if that is required.

• Rookie C just started skiing and therefore wants to avoid black slopes and appreciates
a tour consisting of easy slopes. He prefers a good meal to extraordinary adventures.

Figure 5.4 depicts corresponding constraint preference graphs extracted from this description
and Figure 5.5 shows how the sample assignments are evaluated using the weight representation
of the example preferences. Every preference graph results in a different winner assignment
and we need to judge whether those decisions fit the preferences. A indicated little interest in
variety, avoiding black slopes or easy tracks and got the only assignment that does not require
waiting. Similarly, we get a match for B’s requirements and do not force C to take difficult
slopes. The calculated assignment winners thus fit the preference specifications and show how
the different graphs influence the decision process. Interestingly for B, the selected dominance
property affects the preferred solution. Since θ2 only satisfies VT and violates the five other
constraints, it is considered worse than θ3 in SPD and DPD semantics. However, as VT is the
most important constraint for B and is only satisfied by θ2, in a TPD semantics this solution
is still preferred over the others satisfying more constraints.

66 CHAPTER 5. CONSTRAINT PREFERENCES FOR SOFT CONSTRAINTS

ABS

35/12/5

LI5/4/3 LW

73/15/6

OE

13/7/4

VT

2

FP 1
(a) Graph for rookie C new

Rookie C new
θ1 7
θ2 19
θ3 8

(b) SPD semantics

Rookie C new
θ1 37
θ2 127
θ3 75

(c) TPD semantics

Figure 5.6: After adaption, rookie C now prefers θ1 instead of his initial favorite assignment
θ3 in Figure 5.5.

5.2.2 Changing Preferences

In multi-agent systems, agents change their goals depending on their perceived environmental
situation [Doyle and McGeachie, 2003]. Similarly, our personas may change their constraint
relationships given new circumstances.

Assume, for instance, rookie C has gotten enough practice such that avoiding black slopes
is not as important as before — but he is not keen on waiting long anymore. Hence, the edge
ABS �R LW gets inverted such that LW �R ABS, making LW the most important constraint.
Assignment θ1 is the only one that has a route without much waiting — we expect this as the
new favored outcome.

Figure 5.6 shows that this is indeed the case. One inverted edge led to a revisited weighting
that influences the solution preference.

5.2.3 Changing Constraints

A similar, frequently arising use case is that of a change in available preferences and constraints.
For instance, stakeholders may impose new desirable properties or others become obsolete.
In our example, assume that slopes and lift endpoints have been evaluated with regards to
beautiful landscapes (BL is true if one of those locations are part of the itinerary). Additionally,
currently foggy slopes (FS) should be avoided.

Assuming A does not care too much for either landscapes or foggy slopes, it is safe to assume
that those constraints would be ranked even less important than LI. Boarder B, however, does
care about BL about as much as variety and marks them more important than FS, FP, and
ABS. Assume further that θ1 |= {BL,FS}, θ2 |= {FS} and θ3 |= {FS}.

It is easy to calculate that A still ranks θ1 before θ3 and that one before θ2 even though
different numeric values are placed. To keep this order while including the new constraints,
six weights would need to be changed while adding two new preference edges is enough. With
larger preference models, these savings in maintenance effort could be more substantial. For
B the situation is different, as BL is only satisfied by θ1 which is why it would then be the
preferred solution in all dominance properties.

5.3. CONSTRAINT PREFERENCES AND RELATED FORMALISMS 67

a

b d

c e
(a) Constraint preferences
not expressible in LPB-
hierarchies.

x1 = 0, x2 = 0

x1 = 1, x2 = 1 x1 = 1, x2 = 0

x1 = 0, x2 = 1
(b) Desired solution order, x1 = 0, x2 = 0 should
be the best.

Figure 5.7: Constraint preferences properly generalize a subclass of constraint hierarchies and
target other application areas than CP-nets.

5.3 Constraint Preferences and Related Formalisms

Constraint preferences are an inherently simplistic formalism that only elicits the actual pref-
erences and the dominance property from the user. Lifting these preferences to violation sets
requires some consideration but can be carried out behind the scenes. Still, there are other
preference formalisms that offer qualitative, i.e., relational specifications such as constraint hi-
erarchies or conditional preference nets (CP-nets). We discuss their relationship to constraint
preferences.

5.3.1 Reducing Constraint Hierarchies to Constraint Preferences

Constraint hierarchies [Borning et al., 1992] offer different comparators that aggregate the soft
constraint valuations of a layer and order them. There, each soft constraint is given by an
error function (most elementary, just a mapping from false to 1 and true to 0) and additional
weights. Comparators are divided into locally better and globally better. Locally-better is
based only on the error functions, whereas globally-better offers different aggregation functions
such as summing valuations, the squared errors, or taking the maximal error. It also takes
constraint-specific weights into account. Both comparator types are applied lexicographically
over multiple layers in the sense that an ordering is found at the first level of the hierarchy
where one solution performs better than the other. Since each layer is ordered totally, the
resulting lexicographic order for the whole hierarchy is also total (Chapter 7 devotes more
space to the formal definition of constraint hierarchies).

Error functions are either predicate functions converted from a conventional constraint
c, i.e., e(c, θ) = 0 if θ |= c, and 1 otherwise; or metric functions that give a continuous
degree of violation (e.g., for c , (x = y), e(c, θ) could simply return |θ(x) − θ(y)|). Since
constraint preferences focus on boolean soft constraints that are ranked by importance rather
than combining metric error functions, we restrict ourselves to comparison with locally predicate
better (LPB) and show that these hierarchies can be encoded in constraint preferences. We
then demonstrate that constraint preferences properly generalize LPB-hierarchies by providing
an example that cannot be expressed in LPB-hierarchies.

First, consider the definition of LPB, given a constraint hierarchy H = {H0, . . . ,Hn} where
each Hi is a set of boolean (soft) constraints. The operator <LPB compares two assignments
θ and θ′ (the constraints in H0 are taken to be the hard constraints) and θ′ <LPB θ should be

68 CHAPTER 5. CONSTRAINT PREFERENCES FOR SOFT CONSTRAINTS

read as “θ′ is worse than θ”; Borning et al. [1992] define it as:

θ′ <LPB θ ↔ ∃k > 0 : (∀i ∈ 1..k − 1 : ∀µ ∈ Hi : e(µ, θ) = e(µ, θ′)) ∧
(∀µ ∈ Hk : e(µ, θ) ≤ e(µ, θ′)) ∧ (∃µ ∈ Hk : e(µ, θ) < e(µ, θ′))

Note that on layers lower than k, the satisfaction/violation values must be exactly the same
for every soft constraint in locally-better (i.e., it does not suffice to satisfy the same number
of constraints on every layer). Our encoding of the constraint hierarchy H in constraint
preferences →P is then defined as follows: C = H0, Cs =

⋃
i∈1..nHi, and

c′ →P c⇔ c ∈ Hi ∧ c′ ∈ Hi+1 .

Hence, we construct a graph that is fully connected between the constraints of adjacent layers
but has no additional edges. We write Ti for all constraints in hierarchy level i that are violated
by an assignment θ, i.e., Ti = V (θ)∩Hi = {c ∈ Hi | θ 6|= c} and, analogously, Ui = V (θ′)∩Hi;
we abbreviate

⋃
k≤i≤l Ti by Tk..l.

Theorem 5.2. If θ′ <LPB θ, then V (θ′) ≺PTPD V (θ).

Proof. Observe that for locally-predicate-better e(c, θ) < e(c, θ′) iff θ |= c ∧ θ′ 6|= c; and
e(c, θ) ≤ e(c, θ′) iff θ′ |= c⇒ θ |= c.

Assume θ′ <LPB θ; we have to show that T = V (θ) is worse than U = V (θ′) by application
of TPD-rules. Let k > 0 be such that (*) ∀i ∈ 1..k − 1 : ∀ci ∈ Hi : θ |= ci ↔ θ′ |= ci,
(**) ∀ck ∈ Hk : θ′ |= ck → θ |= ck, and pick c ∈ Hk such that θ |= c ∧ θ′ 6|= c, hence c ∈ Ui but
c 6∈ Ti. Those all need to exist due to our assumption of θ′ <LPB θ.

By (*) we have that T1..k−1 = U1..k−1. Furthermore, T1..k ⊆ U1..k \ {c} since ∀ck ∈ Hk :
θ 6|= ck ⇒ θ′ 6|= ck by (**), and c /∈ T1..k. In particular, T1..k ⊆ U1..k \ {c} ⊆ U1..n \ {c}. If
T1..k = U1..n \{c}, then U = T1..k]{c} ≺PTPD T1..k]Tk+1..n = T by (TPD), since all constraints
in Tk+1..n are transitively dominated by c ∈ Hk. If on the other hand T1..k (U1..n \ {c}, then
U1..n \ {c} ≺PTPD T1..k by (XPD) and U = (U1..n \ {c})] {c} ≺PTPD T1..k] {c} since c does
not appear in either side. Combining that with rule (TPD) and transitivity of ≺PTPD, we get
U ≺PTPD T1..k] {c} ≺PTPD T1..k] Tk+1..n = T since Tk+1..n are all predecessors of c.

Conversely, Figure 5.7a shows a simple constraint preferences example that is not express-
ible with LPB hierarchies – as we can confirm by quick reasoning: Let H : {a, b, c, d, e} →
N \ {0} be a mapping from the constraints to their respective hierarchy levels. We consider
solutions that only satisfy one constraint and violate all others and write a for “a solution
satisfying only a”. We show that every admissible choice of H introduces too much ordering:
The constraint preferences require a to be better than b which in turn should be better than
c, thus we have to have H(a) < H(b) < H(c). Since we expect a to be more important than
d as well, but require b and d to be incomparable, H(d) has to be equal to H(b). Similarly,
H(e) has to be H(c) as e and c should be incomparable. But then b would be better than e,
a preference relation that is explicitly not modeled in the underlying constraint preferences.

Besides this encoding of a class of constraint hierarchies in constraint preferences, the atten-
tive reader will notice that MiniBrass already offers lexicographic products of PVS to express
lexicographic orders (see Section 4.4.1). Indeed, by having every hierarchy layer mapping to
a PVS (perhaps cost functions) and combining them lexicographically, we can capture every
proposed constraint hierarchy type and many more. Since this construction does not involve
constraint preferences but operates on more abstract PVS types, we present its discussion in
Section 7.1.

5.4. SOLVING “CONSTRAINT PREFERENCES” PROBLEMS 69

5.3.2 Relationship with CP-Nets

Similar to ordering constraints in constraint preferences, CP-nets [Boutilier et al., 1997] specify
total orders over the domain of a variable depending on an assignment to other variables in
a so-called conditional preference table. A CP-net preference statement for a variable y is
written as:

x1 = d1, . . . , xn = dn : y = w1 � · · · � y = wk

where x1, . . . , xn are the parent variables of y and w1, . . . , wk are all domain values of y given in
a total order �. Such an order needs to be specified for all assignments to x1, . . . , xn. The as-
signment to the parent variables frame the “context” in which another variable’s domain should
be ordered. A preference statement should be interpreted as “Given that x1 = d1, . . . , xn = dn,
all other variables being equally assigned, prefer a solution that assigns wi to y over one that
assigns wj to y if i > j” which is the ceteris paribus assumption. The change of value for y
from wi to wj is then called a “worsening flip”. A complete assignment θ to the variables of
a CP-net is preferred to another one, say θ′ , if θ′ can be obtained from θ via a sequence of
worsening flips [Meseguer et al., 2006].

On the one hand, the induced “better-as” relation on assignments needs not be a partial
order since cycles may arise [Boutilier et al., 2004]. By contrast, constraint preferences always
lead to a partial order �PxPD on violation sets of assignments. On the other hand, CP-nets
cannot express all partial orders on assignments [Rossi et al., 2008b]. Consider the minimal
example depicted in Fig. 5.7b: X = {x1, x2}, D1 = D2 = {0, 1}. The proposed solution order
cannot be expressed in CP-nets since {x1 7→ 1, x2 7→ 0} and {x1 7→ 1, x2 7→ 1} differ only
by the assignment of x2 and have to be comparable because of the total order requirement
and ceteris paribus semantics in CP-nets. But this solution ordering is easily expressible in
constraint preferences defining a constraint for each possible assignment.

Thus, the two frameworks are incomparable regarding the solution order. An extension,
however, of the constraint preferences formalism with conditional statements as in CP-nets
might turn out to be fruitful. Apart from the formal viewpoint, CP-nets might be better
suited for smaller, fine-grained decision situations such as configuration tasks where users are
able to lay out their preferences on domain items. Constraint preferences, on the other hand,
work best if a large class of solutions can be characterized by their violation or satisfaction of
a certain soft constraint and these soft constraints can be ranked – especially if the decisions
are combinatorial.

5.4 Solving “Constraint Preferences” Problems
Solving any soft constraint satisfaction problem generally results in a set of several optimal
solutions due to the partiality of the induced order (see Section 3.2.3). This is clearly the
case with constraint preferences – regardless of whether SPD or TPD lift the preferences.
We can apply the well-known branch-and-bound algorithm (see, e.g., Section 3.3) to soft-
constraint problems specified using constraint preferences. This algorithm is similar to the
MiniBrass-based branch-and-bound implementation shown in Section 4.4.2 but does not rely
on an underlying constraint solver or modeling language such as MiniZinc and serves as a
basic implementation of problems specified with constraint preferences. In isolation, we can
investigate the influence of variable ordering heuristics such as “assign the variables involved
in the most important constraints first”.

70 CHAPTER 5. CONSTRAINT PREFERENCES FOR SOFT CONSTRAINTS

1, ?, ?
{c1, c2, c3}

∅

1, 1, ?
{c1, c2}
{c1}

1, 2, ?
{c2}
∅

1, 2, 1
{c2}
{c2}

1, 2, 2
{c2}
{c2}

1, 2, 3
{c2}
{c2}

1, 3, ?
{c1, c2, c3}
{c1, c3}

x 7→ 1

y 7→ 1 y 7→ 2 y 7→ 3

z 7→ 1
z 7→ 2

z 7→ 3

X = {x, y, z}, Dx = Dy = Dz = {1, 2, 3}
c1 : x+ 1 = y; c2 : z = x+ 2; c3 : x+ y ≤ 3;
c2 → c1; c3 → c1

Figure 5.8: An example constraint preferences problem with a search space as traversed by
branch-and-bound. In every node, the first line indicates the partial assignment so far, the
middle line refers to the worst-case estimation (i.e., the upper bound on the violation set), and
the third line contains the best-case estimation (i.e., the lower bound on the violation set).

In essence, the instantiation of branch-and-bound proceeds analogously to Figure 3.3: We
select variables in some order and try to assign each domain value in a systematic way. At
every node in the search degree, we already know the satisfaction/violation of soft constraints
whose scope is fully assigned. Therefore a lower bound on the violation sets is given by the
already assigned and violated soft constraints. All “open” soft constraints, i.e., those that are
not yet fully assigned and have some more variables in their scope downstream the search tree,
give rise to (obvious) lower and upper bounds on the violation sets:

• Lower bound (best case) no additional soft constraints will be violated

• Upper bound (worst case) all additional soft constraints will be violated

Figure 5.8 visualizes branch-and-bound for constraint preferences on a toy problem.
It is well known that the success of systematic tree search methods is greatly influenced by

the variable and value ordering and several heuristics have been devised for classical constraint
problems [Gent et al., 1996]. Successful heuristics typically take into account the domain
cardinality or the effect assignments make [Levasseur et al., 2007]. We propose heuristics for
the investigated soft-constraint problems over constraint preferences:

1. Most important first (MIF) variable ordering: A topological ordering of a constraint rela-
tionship lists most important constraints first and assigns values to their variables first.

2. Local consistency (LC): We improve lower and upper bounds inspired by soft-arc consis-
tency [Cooper et al., 2010]. For each partially-assigned (binary) constraint, we include
constraints that are violated irrespective of the value of the remaining variable into the
best-case estimation and exclude those that are certainly true from the worst-case estima-
tion.

5.5. EVALUATION 71

Table 5.1: Modeling influence: Comparison of mean runtimes in seconds and recursive calls
for SPD vs. TPD and weighted CSP vs. constraint preferences with standard deviations given
in parentheses.

WCSP-RT WCSP-RC CPCSP-RT CPCSP-RC

SPD 0.86 (2.79) 7183.78 (22617.88) 2.08 (5.77) 13323.36
(32050.35)

TPD 0.83 (2.81) 6888.38 (22622.73) 2.00 (5.73) 12721.54
(31996.98)

5.5 Evaluation

In a first test-bed for constraint preferences without MiniZinc/MiniBrass, we implemented a
branch-and-bound algorithm in Java. For replicability of our experiments, the source code is
available online.2 In particular, we wanted to compare our heuristics to a naïve branch-and-
bound implementation that is intractable for a larger number of variables.

We test several parameters regarding algorithmics (variable orderings and local consistency)
and modeling (using SPD or TPD semantics) on randomly generated CSP instances and mea-
sure running time as well as the number of recursive branch-and-bound calls. Constraints are
simple arithmetical expressions including +, −, ∗, /, and <, ≤, =, ≥, > as relational operators.
In each experiment, n random problems were solved by differently parametrized solvers.

5.5.1 Modeling Influence

First, we investigate how the selected dominance property and choice of partial valuation
structure (using constraint preferences directly or weights according to Section 5.1.3) affect
the solver’s efficiency in order to select the formalism for which to evaluate the proposed
heuristics in more detail. We used the bounds as previously described in Section 5.4, the
variable ordering to use MIF (most important first), and the usage of a local consistency
check (LC). We compare weighted CSPs (WCSP) and constraint preference CSPs (CPCSP)
with regard to runtime (RT) and recursive calls (RC). The concrete weights for the constraints
ranked by a set of constraint preferences are computed recursively, as described in Section 5.1.3:

wPSPD(µ) = 1 + max{wPSPD(µ′) | µ′ ∈ Cs : µ′ →P µ} ,
wPTPD(µ) = 1 +

∑
µ′→Pµ

2 · wPTPD(µ′)− 1 .

This experiment consists of 50 runs with 7 variables having domains of 5 to 15 values and 10
constraints arranged in a random set of constraint preferences.

As expected, Table 5.1 shows that weighted CSPs require less runtime and recursive calls
to find the maximum solution degrees. This is mostly due to the presence of incomparable
elements in constraint relationships which reduce the possible pruning and to the more com-
plicated evaluation of the upper (Smyth) ordering. However, the stronger dominance property
TPD only improved the pruning by about 5% in the constraint preferences case and 4% in
the weighted CSP case. This is still a considerable gain but does not completely rule out SPD

2https://github.com/isse-augsburg/constraint-preferences-csemiring

https://github.com/isse-augsburg/constraint-preferences-csemiring

72 CHAPTER 5. CONSTRAINT PREFERENCES FOR SOFT CONSTRAINTS

Table 5.2: Algorithmic efficiency: Comparison of mean number of recursive calls (·103) for
different combinations of using bounding pairs, local consistency and the most-important-first
variable heuristic for a fixed weighted CSP with standard deviations given in parentheses.

¬ WCB + ¬ LC ¬ WCB + LC WCB + ¬ LC WCB + LC

RO 1,914 (1,359) 472 (993) 1,914 (1,359) 472 (993)
MIF 1,264 (1,290) 218 (649) 1,264 (1,289) 217 (649)

in terms of performance. Consequently, we focus on weighted CSP instances to examine the
proposed solver heuristics.

5.5.2 Algorithmic Efficiency

With a weighted CSP based on constraint relationships and TPD semantics, we investigate
how variable ordering using the most-important-first heuristic, bounding pairs, as well as
local consistency affect the performance. The CSPs for this experiment had 6 variables, 10
constraints and domains with 10 to 30 values, and 150 runs were made. We compare values
for random order (RO) versus most-important-first (MIF) with flags for worst-case boundaries
(WCB) and local consistency (LC).

For clarity, we discuss the number of recursive calls to measure the pruning performance
of the algorithm. Table 5.2 clearly shows that using the most-important-first heuristic signifi-
cantly improves the performance. Similar improvements can be achieved using local consistency
checks for improved boundaries. Using a worst-case boundary only does not lead to better re-
sults in our experiments. These results hint that variable ordering heuristics using “important”
variables should be researched further in conjunction with traditional ordering heuristics based
on, e.g., the cardinality of the domains.

While these experiments confirm our intuition about meaningful heuristics and demonstrate
that constraint preferences including the Smyth-ordering can be implemented in a solver, we
replicate this experimental question in our overall evaluation of MiniBrass in Section 9.3.

Chapter Summary and Outlook
In this chapter, we laid out the motivations for specifying importance over soft constraints
(first) in a qualitative way. Users only have to specify a directed acyclic graph over constraints
and can convert the specification to weighted CSP, if needed. We went on to provide two kinds
of dominance properties that lift a given set of constraint preferences to violation sets as re-
ported by solutions. We demonstrated a simplified use case to show the benefits of qualitative
soft constraint specifications. Still, we have not provided a PVS representing constraint pref-
erences, yet. The embedding of constraint preferences into the realm of algebraic structures is
subject of Chapter 6.

Chapter 6
Designing Algebraic Structures for Soft

Constraints

Summary. This chapter raises the question “what is the minimal amount of structure
that has to be added to any given partial order to properly model soft constraint prob-
lems?”. This question is relevant as any required axioms for a soft constraint framework
possibly exclude specific formalisms. We provide a free construction (in categorical/al-
gebraic terms) of a partial valuation structure from a partial order and argue that this
is the natural choice as the underlying formalism for MiniBrass. Many formalisms are
indeed already instances of PVS – without any surrounding construction. Moreover,
we offer another free construction, that of a c-semiring from a partial valuation struc-
ture which creates “artificial suprema”, if needed for a particular algorithm or solving
technology. Throughout the chapter, questions of adequacy are discussed.

Publication. The concepts and results outlined in this chapter have been published in
[Schiendorfer et al., 2015c, 2018; Knapp et al., 2014].

Many soft constraint formalisms are subsumed under algebraic structures that only prescribe
which axioms the involved orderings and combination operations have to satisfy. Based on
those axioms, generic solvers can be developed. However, imposing a certain structure requires
justification – as this decision might exclude important concrete formalisms from a generic
framework. If that is the case, there better be good reasons for doing so.

The previous chapter highlighted constraint preferences as a qualitative alternative to the
otherwise quantitative formalisms frequently used in soft constraints. MiniBrass furthermore
applies the concept of partial valuation structures as the least common denominator for a broad
variety of soft constraint formalisms. While it is convenient that many proposed formalisms
indeed match the specifications of valuation structures or c-semirings, from a theoretical per-
spective, it is interesting to ask for the least amount of structure that has to be added to a
partial order to model soft constraint problems. Once the minimal requirements are known, we
can still propose additional axioms (such as totality for valuation structures or the existence of
suprema for c-semirings) for modeling purposes. Although these sections are rather formal, the
presented constructions and orders are implemented in the MiniBrass library (see Chapter 4).

73

74 CHAPTER 6. ALGEBRAIC STRUCTURES FOR SOFT CONSTRAINTS

6.1 Looking for Free Partial Valuation Structures

Recalling Example 3.2, we had a soft constraint problem with soft constraints c1, c2, and c3
such that c1 was more important than c2 or c3 whereas the latter two were incomparable, from
a user’s perspective (forming the partial order U). Chapter 5 provides constraint preferences
for such situations but left open what the appropriate PVS would be. Without constraint
preferences, the choice of M = (N,+, 0,≥) as the underlying PVS seems rather obvious, given
that the weighting ~w = [2, 1, 1] is consistent with the intuition that c1 should be weighted higher
than c2 and c3. However, interpreting ~w as a function w : Cs → N, we see that w clearly is only
a monotone (not isomorphic) function. It totalizes U by making the incomparable elements c2
and c3 equal. Alternatively, ~w = [3, 1, 1] would be consistent, as would be ~w = [3, 2, 1], although
our intuition tells us that making c2 more important than c3 certainly is a bad idea. We could
try another PVS, say M ′ = (2Cs ,∪, ∅,⊇) to denote solution degrees as sets of violated soft
constraints that are combined by union. Then, however, c1, c2, and c3 would each contribute
equally to a solution’s quality, contrary to our model marking c2 and c3 as less urgent than c1.
Certainly, we want any mapping ϕ into a PVS N to preserve the given order: ϕ(p) ≤N ϕ(q)
whenever p ≤U q; otherwise we invert ordering decisions.

Our point is, there is an infinite number of PVS that represent U to a certain degree – but
the essential question is what are the minimum requirements in terms of comparability any
PVS have to fulfill? Which PVS is, in this sense, the best, i.e., most general, one?

To find an answer, we consider the more general question of how to “convert” any partial
order P into a partial valuation structure. As first presented in [Knapp et al., 2014] and proved
in Section 6.3, we can indeed lift any P to PVS〈P 〉 – i.e., construct a suitable combination op-
eration and neutral element: We take as elements Mfin(P), the set of finite multisets composed
from elements in P . For instance, *+, *c1, c2, c2+, . . . ∈Mfin(U). Two multisets are combined
using multiset-union with *+ being the neutral element. Finally, a compatible ordering (with
*+ being top) is found inductively by applying the Smyth-ordering on sets (see Figure 3.2) to
multisets (then written as �P) 1:

Definition 6.1 – Smyth-ordering over Multisets
The Smyth-ordering on Mfin(P) is the binary relation �P ⊆ Mfin(P) ×Mfin(P), given by
the reflexive-transitive closure of

p <P q ⇒ T ∪− *p+ ≺P T ∪− *q+
T ⊂− U ⇒ T ≺P U

Intuitively, when we compare two multisets according to �P , we have to match every
element q on the right side with a dominated element p = h(q) on the left side such that
p ≤P q and h is injective (see Lemma 6.1 and Figure 6.4). There may be additional elements
on the left. For any elements p, p′ in a partial order P , we have p ≤P p′ ⇔ *p+ �P *p′+.
Note the monotonicity of the Smyth-ordering with respect to multiset union; if T �P U , then
T ∪− V �P U ∪− V , since this holds for both defining clauses of the ordering. Antisymmetry is

1This relation is, in its set version, used to express non-determinism of programs in denotational seman-
tics (set-valued to “collect different program results”), i.e., so-called power domains [Amadio and Curien, 1998,
Ch. 9].

6.1. LOOKING FOR FREE PARTIAL VALUATION STRUCTURES 75

Category : POSet

Category : PVS

U c1

c2 c3

Weighted(U)

(N,+, 0,≥)

c12

c21 c31

⊥ = k

k − 1

k − 2

. . .

1

� = 0

w(c)

⊥ = �c1, c2, c3�

�c1, c2�

�c2, c3�

�c1, c3�

�c1�

�c2� �c3�

� = ��PVS〈U〉

(Mfin(U),∪−, *+,�U)

c1*c1+

c2 *c2+ c3

*c3+

η(c) = *c+

w]

η] ?

Figure 6.1: Encoding preferences given by the partial order U as two different PVS:
Weighted(U) and PVS〈U〉. Highlighted paths show possible improvement steps during op-
timization. There can be no mapping η] since distinct elements c2 and c3 are unified to 1 in
Weighted(U) and would need to be represented by *c2+ and *c3+ in PVS〈U〉, respectively.

proved in Section 6.3. As an example, we have *c1, c1, c2+ ≺U *c1, c2+ or *c1, c3+ ≺U *c2, c3+, if
we read c2 → c1 as c1 <U c2. In conclusion, PVS〈P 〉 = (Mfin(P),∪−, *+,�P).

Since PVS〈P 〉 can be the codomain of any SCSP, soft constraints µi can arbitrarily map to
Mfin(P), e.g., µi(θ) = *c1, c1, c2+. We derive a particularly interesting instance instead (con-
straint preferences), if we convert a boolean soft constraint ci into µi(θ) which maps to *ci+
if θ satisfies ci and *+ otherwise. In the context of constraint preferences, the Smyth-ordering
is called single-predecessor-dominance in Section 5.1.1 since – everything else being equal – a
single predecessor can be dominated by a more important constraint due to the first clause of
the ordering.

Figure 6.1 displays how we can encode a partial order P as either a weighted PVS or
using PVS〈P 〉 by, e.g., representing c1 as w(c1) = 1 or as η(c1) = *c1+, respectively. Notice
that a weighting w : P → N can be “emulated” from Mfin(P) by defining its “lifted” version
w] : Mfin(P) → N on the level of multisets: w](*p1, . . . , pn+) =

∑n
i=1w(pi) (arrow from right

to left in the diagram). The converse, however, does not work: Once, e.g., c2 and c3 are both
mapped to 1, we cannot “extract” information back about the origin to design a mapping η]
that can map from N into Mfin(U) since η](1) would have to simultaneously be equal to *c2+
and *c3+. This tells us (not surprisingly) that c2 and c3 do not necessarily have to be treated
as equal elements, i.e., there exist other, more general, partial valuation structures encoding U
that keep them as distinct elements.

It was not a coincidence that we found a lifted mapping w] from PVS〈P 〉 to Weighted(P)
that is equal to applying w directly from P . Instead, PVS〈P 〉 has the universal mapping
property [Knapp et al., 2014]: Any order-preserving function ϕ from P into the underlying
partial order of a PVS can be decomposed into the form ϕ] ◦η in a unique way. Thus, PVS〈P 〉
is also called the “free PVS over P”. Practically, this means that we can always safely convert
P into the free PVS before mapping to another PVS (e.g., if we need an integer objective for
our implementation, see Section 4.4) without losing any information. Conversely, Weighted(P)

76 CHAPTER 6. ALGEBRAIC STRUCTURES FOR SOFT CONSTRAINTS

is not free as we cannot return to PVS〈P 〉 once P is mapped to Weighted(P). Since free objects
are unique up to isomorphism [Sannella and Tarlecki, 2012, p. 147], PVS〈P 〉 can be seen as
the most general PVS over a partial order. We prove this fact in Lemma 6.2 in Section 6.3.

Our original question, “how to formulate an ordering over constraints as a PVS with the
least overhead”, thus boils down to the search for a free construction. Similar instances are
the free monoid or the free group over a set. We can capture this task formally using the
language of category theory (hinted in Figure 6.1) which studies, inter alia, algebraic structures
along with their structure-preserving mappings. This perspective further enables us to treat
the transformation from a partial order into a PVS and that from a PVS into a c-semiring
uniformly. The subsequent sections hence draw on basic knowledge of category theory when
they offer the derivation of the free PVS and the free c-semiring, respectively. In Section 6.2, we
introduce categorical concepts relevant to free constructions with the well-known free monoid
over a set. Readers familiar with basic category theory may safely skip Section 6.2 and readers
familiar with term algebras may check the categorical presentation. As category theory has not
been used extensively in constraint programming (except for [Diaconescu, 1994]), the interested
reader is referred to excellent introductory material, e.g., [Pierce, 1991; Barr and Wells, 1990;
Awodey, 2010].

Mathematical categories (written as C) are composed of objects (e.g,. algebraic structures)
and morphisms (e.g., structure-preserving mappings) between them. Morphisms generalize
set-valued functions. Each C-morphism f admits a domain A and codomain B, both being
C-objects, and is written as f : A → B. For all morphisms f : A → B and g : B → C there
has to be a composite arrow (g ◦ f) : A→ C. Morphism composition ◦ needs to be associative
and for each object A, there has to be an identity morphism idA : A → A acting as “neutral
element” with respect to composition, i.e., idB ◦f = f ◦ idA = f . For instance, the category Set
has conventional sets as objects and functions as morphisms, whereas the category Mon has
monoids as objects and monoid-homomorphisms as morphisms. Another example is given by
PO, the category of partially-ordered sets, that has partial orders as objects and partial order
homomorphisms (i.e., monotone functions) as morphisms. Note that this definition is proper
since monotone functions are closed under function composition, i.e., if ϕ : |P | → |Q| and
ψ : |Q| → |R| are monotone functions, so is ψ ◦ ϕ. All categories relevant to the discussion of
partial orders, partial valuation structures, and c-semirings are examples of so-called concrete
categories with objects being sets with additional algebraic or ordered structure and morphisms
being set-theoretic (structure-preserving) functions – in general, this need not be the case.

A functor F between categories C and D is a mapping that sends every C-object A to a
D-object F (A) and every C-morphism ϕ : A → B to a D-morphism F (ϕ) : F (A) → F (B).
For example, for every set A there is an associated monoid (A∗, ::, ε) with words over A and
concatenation. We can use this to define a functor F : Set → Mon by F (A) = (A∗, ::, ε)
and F (f : A → B) : A∗ → B∗ with F (f)([a1, . . . , an]) = [f(a1), . . . , f(an)], such that, in
particular, F (f)(w1 :: w2) = F (f)(w1) :: F (f)(w2). Conversely, there is the underlying functor
|−| : Mon→ Set with |(A, ·, ε)| = A and |ϕ : (A1, ·1, ε1)→ (A2, ·2, ε2)| = ϕ : A1 → A2 yielding
the underlying set of a monoid.

This operator |−| is a convention present in category-theoretical arguments. It allows to
distinguish structures and sets and must not be confused with set cardinality. We follow
this convention in the remainder of the dissertation and, e.g., will write a partial order as
P = (|P |,≤P).

Using the above notions, we can now formally state what a free object is:

6.2. THE FREE MONOID OVER A SET 77

Category : Set Category : Mon

|N(A)| N(A)

A |Mon(A)| Mon(A)

|M | M

iA

jA

f
|f] |

|j]A|

f]

j]A

Figure 6.2: A diagram of the free monoid over a set from Example 6.1. Mon(A) and N(A) refer
to (A∗, ::, ε) and (2A,∪, ∅), respectively and M just refers to any monoid. The embeddings
jA(a) = {a} and iA(a) = [a] are defined analogously for any set A. A dashed arrow indicates
that, e.g., there is a unique monoid homomorphism f] that makes the diagram commute, i.e.,
f = |f] | ◦ iA.

Definition 6.2 – Free object [Sannella and Tarlecki, 2012, p. 144]
Given two categories A and B and a functor G : B → A, the free object F (A) in B over an
object A of A is characterized by a unit morphism ηA : A→ G(F (A)) in A such that for every
A-morphism ϕ : A → G(B) with B an object of B, there is a unique lifting B-morphism
ϕ] : F (A)→ B satisfying G(ϕ]) ◦ ηA = ϕ.

A free object F (A) is unique up to isomorphism and the composition of two free construc-
tions yields another free construction [Sannella and Tarlecki, 2012, Ch. 3]. Incidentally, the
monoid (A∗, ·, ε) is the free monoid over a set A (see Section 6.2). A free object does not have
to exist. We need to prove a particular free construction (e.g., free monoid or free PVS) by
choosing the appropriate categories, functors, and, of course, the free object itself.

6.2 Free Objects in Category Theory: The Free Monoid over
a Set

For our purposes, the true strength of category theory unveils when we consider transformations
between different algebraic structures, e.g. between partial orders and PVS or between PVS
and c-semirings. All of these will involve functors. We have already seen an example, |P |
that returns the underlying set of a partial order on objects and the underlying function of a
monotone function (here, just itself) on morphisms. Despite our interest in the free objects,
the behavior of the involved morphisms helps us to properly characterize the free objects. To
see a more interesting example of functors that will provide intuition for Sections 6.3 and 6.4,
consider the task of constructing a plain monoid (a set and one associative binary operation ·
with the neutral element ε) composed of elements taken from a set A. Our presentation closely
follows [Awodey, 2010, p. 20].

78 CHAPTER 6. ALGEBRAIC STRUCTURES FOR SOFT CONSTRAINTS

Example 6.1 – A monoid over a set
Let A = {a1, a2, . . .} be any set, called generators. We want to build a monoid Mon(A) =
(X, ·, ε) composed of the elements in A. A is an object in the category Set, Mon(A) is an
object in the category Mon. Assume that a function iA : A → X maps every a ∈ A to
a different “new” element in our new underlying set X. For simplicity, we represent every
a ∈ A by itself. Next, we add a dedicated neutral element ε and define ε · x = x · ε = x for
every x ∈ X. Now, for every pair of generators a and b, we add a fresh element (denote it
as a · b which is distinct from any other element a′ ∈ A) and do so recursively for products
of products etc. We only have to make sure to equate the elements that have to be equal by
associativity, e.g., (a · b) · c = a · (b · c). This can be easily achieved if we represent every
element “without parentheses”, leading to X being the set of words over A (i.e., A∗ with
ε denoting the empty word) and · being the concatenation (written as ::). Now a functor
Mon : Set→ Mon takes every set A to (A∗, ::, ε) and every function (morphism in the category
Set) f : A → B to a monoid homomorphism Mon(f) : Mon(A) → Mon(B) which is defined
as follows: Mon(f)(ε) = ε, Mon(f)([a1, . . . , an]) = [f(a1), . . . , f(an)]. Elements of A are
represented in A∗ by iA(a) = [a]. Note that for any singleton list [a] ∈ A∗ iff a ∈ A.

With respect to Example 6.1, for constructing a monoid from a set, we could have also tried
another functor N(A) that maps A to (2A,∪, ∅) and represent a ∈ A as jA(a) = {a}. Clearly,
N(A) also satisfies the monoid axioms of associativity and ∅ being neutral. However, it is too
specific: it assumes commutativity since jA(a)·jA(b) = {a}∪{b} = {b}∪{a} = jA(b)·jA(a). But
we have already seen another monoid, Mon(A), where iA(a) · iA(b) = [ab] 6= [ba] = iA(b) · iA(a).
Hence, commutativity is not required for a monoid. Mapping A to N(A) would consequently
unify elements that need not be equal. Once that mapping is done, it should be impossible to
map “back” to a more general structure where the unified elements are distinct. Put differently,
there do exist functions f from A to a monoid M ′ that we cannot factorize as f] ◦ jA = f for
some f] .

Indeed, this is the case. Assume for a particular set A = {a, b} that we have some function
f into |Mon(A)|, for instance f(a) = [aba] and f(b) = [bab]. Now assume that we mapped A to
N(A) via jA, having a and b now represented as {a} and {b}, respectively. Is there a way we can
“still” reconstruct the function f , starting from N(A) and calling it f]? To fulfill f = f] ◦ jA,
we know that f]({a}) = [aba] and f]({b}) = [bab] must hold. But what about f]({a, b})?
To satisfy monoid homomorphism laws, f]({a, b}) must equal f]({a}) :: f]({b}) = [ababab].
But since {a, b} = {b, a}, it must also hold that f]({a, b}) = f]({b, a}) = f]({b}) :: f]({a}) =
[bababa]. Thus, no such function f] can exist – N(A) is too specific.

Exchanging the rôles of N(A) and Mon(A) does not lead to the same problem. For any
function f from a set A to the underlying set of any other monoid M , there indeed exists
precisely one monoid homomorphism f] that emulates f such that f = f] ◦ iA, i.e., ∀a ∈ A :
f(a) = f](iA(a)) (see Figure 6.2 or [Awodey, 2010, p. 21] for a proof). This fact characterizes
that Mon(A) is called the free monoid over A, being the most general monoid a set can be
mapped to. Note that the existence of f] corresponds to a “no confusion” argument since no
elements are equated that should not be whereas the uniqueness of f] relates to a “no junk”
argument: If, for instance, we used Mon′(A) = ((A∪ {w})∗, ::, ε) with w 6∈ A, then we are free
to chose the value of f]([w]) (a “junk element”) as it is not constrained by the requirement
f = f] ◦ iA – in contrast to all elements in A. Generalizing from this example, category theory

6.3. THE FREE PVS OVER A PARTIAL ORDER 79

allows to state this relationship between algebraic structures formally (see Definition 6.2).

6.3 The Free Partial Valuation Structure over a Partial Order
Motivated by the goal of finding the most general PVS to encode constraint preferences, the
search for the free PVS over a partial order P answers a more fundamental problem:

Which ordering decisions always have to hold if we extend any partial order with a
combination operation (multiplication) and neutral top element?

More formally, this is the case if we have several soft constraints µ1, . . . , µn that each grade
an assignment θ in the same partial order P and we take a product µ1(θ) · . . . · µn(θ). Which
�-relations must certainly hold if we compare µ1(θ) · . . . · µn(θ) with µ1(θ′) · . . . · µn(θ′)? How
shall we even represent these products?

A seemingly obvious choice would be to collect all soft constraints’ valuations as a set,
i.e., {p1, . . . , pn}. Each p ∈ P could then individually be represented by the unit morphism
η(p) = {p} and then combined using set union. Since ∅ should be top in a PVS, we aim to
order the sets by size and according to P . That means, we want X � ∅ for any set X and
η(p1) = {p1} � {p2} = η(p2) if p1 ≤P p2. Both cases are covered by the Smyth-ordering over
sets (cf. Section 6.1). However, that approach does not yield a proper PVS if we consider
that we can multiply elements {p1} with themselves: Assuming p1 ≤P p2, also {p1} � {p2}
holds. Combining with {p1} on both sides yields {p1} � {p1, p2}, by monotonicity. But, by
the definition of the Smyth-ordering, we also have {p1, p2} � {p1} and thus antisymmetry is
violated.

It turns out that the idempotency of set union is the culprit, in particular the fact that
η(p1) ∪ η(p1) = η(p1). This fact is not required by PVS axioms. Instead, commutativity and
associativity provide a hint about the underlying set of the free PVS: The free monoid over a
set A uses A∗, finite lists over A, embedded by η′(a) = [a] and combined with concatenation ::
since we only need associativity: η′(a) :: (η′(b) :: η′(c)) = (η′(a) :: η′(b)) :: η′(c) = [a, b, c] (see
Section 6.2). For the free PVS, we additionally need to equate η(a)∪η(b) with η(b)∪η(a), but
again, not necessarily η(a) ∪ η(a) with η(a). This is precisely what we achieve with Mfin(P),
finite multisets over P and η(a) = *a+. Taking plain sets over P would additionally assume
idempotency and is thus too specific.2

6.3.1 The Free PVS as Single-Predecessors-Lifting

Figure 6.3 instantiates Definition 6.2 for the task of proving that PVS〈P 〉 is indeed the free
PVS over a partial order P . We start in the category PO of partial orders as objects and
monotone functions as morphisms and map to PVS, the category of partial valuation structures
as objects and PVS-homomorphisms as morphisms. To switch between partial orders and
partial valuation structures we need appropriate functors. First, the (free) functor PVS〈P 〉:

PVS〈P 〉 = (Mfin(P),∪−, *+,�P) ,
PVS〈ϕ : P → Q〉 = λ*p1, . . . , pn+ . *ϕ(p1), . . . , ϕ(pn)+ .

2Interestingly enough, the fact that partial valuation structures need not be idempotent in general (e.g.,
weighted constraints) disallows a straightforward extension of local consistency to soft constraints [Cooper and
Schiex, 2004].

80 CHAPTER 6. ALGEBRAIC STRUCTURES FOR SOFT CONSTRAINTS

Category : PO Category : PVS

P PO(PVS〈P 〉) PVS〈P 〉

PO(M) M

ηP

ϕ PO(ϕ]) ϕ]

Figure 6.3: Diagram of the free PVS over a partial order. For an arbitrary PVS M that we
map into from a partial order P using ϕ, we can lift this mapping to ϕ] : PVS〈P 〉 →M such
that ϕ = PO(ϕ])◦ηP . Consequently, PVS〈P 〉 only identifies and orders elements as absolutely
required by PVS axioms – it is most general.

In the other direction, the (forgetful) functor PO : PVS→ PO is defined by

PO(M) = (|M |,≤M) ,
PO(ϕ : M → N) = ϕ .

Starting from a partial order P , commutativity and associativity motivate the underlying
set Mfin(P). We can also justify each rule of the Smyth-ordering over multisets by applying
Definition 6.2. First, as each p ∈ |P | is found in Mfin(P) by ηP (p) = *p+ and ηP is a monotone
function, we have that p1 ≤P p2 ⇒ *p1+ �P *p2+. This ensures that P is preserved over
their embedded counterparts. The other rule T ⊆− U ⇒ T �P U stems from the fact that the
neutral element is the top of the ordering in a PVS – which is the most prevalent choice in soft
constraints [Meseguer et al., 2006]. This implies m ·M n ≤M m since n ≤M εM ⇒ m ·n ≤M m,
by monotonicity. Consequently, for the free PVS, *m,n+ �P *m+ needs to hold, as does T �P
*+, both of which are represented by the above rule. Dually, we would have T ⊆− U ⇒ T �P U ,
had we defined the neutral element to be bottom of the ordering.

Next, we have to confirm that PVS〈P 〉 = 〈Mfin(P),∪−, *+,�P 〉 is a partial valuation struc-
ture, to begin with. Associativity and commutativity of ∪− and neutrality of *+ with respect
to Mfin(P) are obvious, we have already discussed reflexivity and transitivity of �P as well
as monotonicity of ∪− with respect to �P in Section 6.1. To show antisymmetry of �P , we
prove a result (visualized in Figure 6.4) that also turns out to be useful later on when we
implement the Smyth-ordering as a MiniZinc predicate to be used in search. To do so, we
introduce a bit of notation to “unfold” a multiset T into a set representation S(T), e.g.,
S(*x, x, y+) = {(1, x), (2, x), (1, y)}. Formally, for a multiset T = *l1x1, . . . , lnxn+ ∈Mfin(X)
with l1, . . . , ln > 0 and xi 6= xj if i 6= j, let S(T) =

⋃
1≤i≤n{(j, xi) | 1 ≤ j ≤ li}.

Lemma 6.1 (Witness for �P). T �P U if, and only if, there is an injective map h : S(U)→
S(T) (called a witness function) with p ≤P q if h(j, q) = (k, p) for all (j, q) ∈ S(U).

Proof. Let first T �P U hold. We restrict our attention w.l.o.g. to the case T 6= U as otherwise
the claim trivially holds. Then there is a sequence of multisets T1, . . . , Tn ∈Mfin(P) with n > 1
such that T1 = T , Tn = U , and for each 1 ≤ i < n, either Ti ⊆− Ti+1 or Ti = T ′i ∪− *p+ and
Ti+1 = T ′i ∪− *q+ with p ≤P q. As required in the claim, for each 1 ≤ i < n there is a witness
hi : S(Ti+1)→ S(Ti) as follows: If Ti ⊆− Ti+1, then we choose hi = idS(Ti). If Ti = T ′i ∪− *p+ and

6.3. THE FREE PVS OVER A PARTIAL ORDER 81

* 1 I 1 + �P * 2 II +

Figure 6.4: An exemplary witness function for the Smyth-ordering that assigns every item on
the right side a unique lower (w.r.t. ≤P) partner on the left side. More elements on the left
side are acceptable, i.e., the witness needs not be surjective. Reprinted from Figure 4.3.

Ti+1 = T ′i ∪− *q+ with p ≤P q, then we choose hi = idS(T ′i) ∪ {(j, p) 7→ (k, q)} where j = max{l |
(l, p) ∈ S(T ′i)}+ 1 and k = max{l | (l, q) ∈ S(T ′i)}+ 1. Then h1 ◦ . . . ◦ hn−1 : S(U)→ S(T) is
a witness function.

For the converse, we prove that if h : S(U) → S(T) is a witness function, then T �P U
by induction on the cardinality of S(U). Let h : S(U) → S(T) be given. If |S(U)| = 0,
then T �P *+ = U . Now let |S(U)| > 0 and let (j, q) ∈ S(U) such that j is maximal. Then
h(j, q) = (k, p) with p ≤P q. Let T ′, U ′ ∈Mfin(P) be defined by T = T ′∪−*p+ and U = U ′∪−*q+.
To construct a witness function between T ′ and U ′ and apply the induction hypothesis, we
define g : S(T) → S(T ′) by g(l, r) = (l, r) if r 6= p or l < k, and g(l, p) = (l − 1, p) if
l > k. Essentially, g closes possible “gaps” in the image of h. Then S(U ′) = S(U) \ {(j, q)}
and h′ : S(U ′) → S(T ′) defined as h′ = g ◦ h is a witness function between T ′ and U ′. By
induction hypothesis, hence, T ′ �P U ′ and thus, by the monotonicity of �P (see Section 6.1),
T = T ′ ∪− *p+ �P U ′ ∪− *p+ �P U ′ ∪− *q+ = U .

The witness function can be interpreted as assigning an “inferior” to every element on the
right-hand side. To see the antisymmetry of the Smyth-ordering3, assume for a contradiction
that there are T and U with both T �P U and U �P T , but T 6= U and choose one T with
minimal cardinality satisfying this property. Then T has to be non-empty. Let f : S(U) →
S(T) and g : S(T) → S(U) be witnessing maps for T �P U and U �P T , respectively.
Choose an element (j, q) ∈ S(U) such that q is minimal w.r.t. ≤P in U . Then there is an
inferior (k, p) = f(j, q) in S(T) with p ≤P q. If p 6= q, as U �P T holds as well, there would
be yet another inferior g(k, p) = (j′, q′) ∈ S(U) such that q′ ≤P p and thus q′ ≤P p <P q,
contradicting the minimality of q in U ; thus f(j, q) = (k, q). Assume, without loss of generality,
that j and k are maximal. Remove the occurrence of p from T and U , obtaining T ′ and U ′,
respectively. Then T ′ �P U ′ and U ′ �P T ′ hold as well, since the reduced-domain functions
f ′ : S(T ′) → S(U ′) with f ′(l, p) = f(l, p) and, similarly, g′ : S(U ′) → S(T ′), are witnessing
maps. This contradicts the assumed minimality of T . Thus, PVS〈P 〉 fulfills all axioms of a
partial valuation structure and we are ready to show that it is indeed free.

Lemma 6.2 (Free PVS). PVS〈P 〉 is the free PVS over the partial order P .

Proof. Let P be a partial order (|P |,≤P) and ϕ : P → PO(M) be a PVS-homomorphism into
the underlying partial order of any PVS M . To show the existence of a lifted variant of ϕ, we
define ϕ] : PVS〈P 〉 →M as a PVS-morphism by

ϕ](*p1, . . . , pn+) = ϕ(p1) ·M . . . ·M ϕ(pn)
3Curiously enough, the Smyth-ordering on mere sets is not antisymmetric. It is just a quasi-ordering.

82 CHAPTER 6. ALGEBRAIC STRUCTURES FOR SOFT CONSTRAINTS

for all *p1, . . . , pn+ ∈Mfin(P), where, if n = 0, ϕ](*+) = εM . This is well-defined, i.e., ϕ] is
indeed a PVS-homomorphism, since ϕ](*p1, . . . , pm+∪− *q1, . . . , qn+) = ϕ(p1) ·M . . . ·M ϕ(pm) ·M
ϕ(q1) ·M . . . ·M ϕ(qn) = ϕ](*p1, . . . , pm+) ·M ϕ](*q1, . . . , qn+), ϕ](*+) = εM , and, if T ≤PVS〈P 〉 U ,
then ϕ](T) ≤M ϕ](U): We consider the generating cases for one step of the Smyth-ordering as
it is straightforward to consider the extension to sequences T1, . . . , Tn as done in the proof of
the witness function. Assume T ≤PVS〈P 〉 U . Either T = *p+∪−T ′ and U = *q+∪−T ′ with p ≤P q.
Then ϕ](T) = ϕ(p) ·M ϕ](T ′) and ϕ](U) = ϕ(q) ·M ϕ](T ′). And since ϕ(p) ≤M ϕ(q) due to ϕ
being a PO-morphism, we have ϕ](T) ≤M ϕ](U), by monotonicity of ·M . Or, it is the case that
T ⊆− U . Then T = U ∪− T ′ (T ′ may be empty) and thus ϕ](T) = ϕ](T ′) ·M ϕ](U) ≤M ϕ](U),
by the PVS axiom m · n ≤M m. Consequently ϕ] is a PVS-homomorphism.

Moreover, ϕ = PO(ϕ]) ◦ ηP with ηP (p) = *p+ for all p ∈ |P |, since PO(ϕ])(ηP (p)) =
ϕ](*p+) = ϕ(p); hence the diagram in Figure 6.3 commutes.

Finally, ϕ] is unique with this property: Assume there would be another PVS-homomor-
phism ψ : PVS〈P 〉 → M that satisfies PO(ψ) ◦ ηP = ϕ. Due to this requirement, we have
ψ(*p+) = ϕ(p) for every p ∈ |P |. Thus, for ψ, we have ψ(*+) = εM = ϕ](*+) and

ψ(*p1, . . . , pn+) = ψ(*p1+) ·M . . . ·M ψ(*pn+)
= ϕ(p1) ·M . . . ·M ϕ(pn) = ϕ](*p1+) ·M . . . ·M ϕ](*pn+)
= ϕ](*p1, . . . , pn+)

since ψ is a PVS-homomorphism and by the previous remark. Hence ϕ] = ψ, as claimed, and
PVS〈P 〉 is indeed the free partial valuation structure over a partial order.

This concludes our theoretical considerations of the free partial valuation structure. An
example of an SCSP employing the free PVS is depicted in Figure 6.7 in Section 6.5. It
actually uses soft constraints that directly map to the free PVS (i.e., Mfin(P) rather than P).
For constraint preferences, we only distinguish between *c1+ and *+. Both the free PVS and a
specialized type for constraint preferences are available in MiniBrass (cf. Section 4.3.2).

6.3.2 The Transitive-Predecessors-Lifting for Constraint Preferences

But of course, this encoding using the free PVS results in single-predecessor-dominance, which
is only one of the possible dominance properties in constraint preferences (see Section 5.1.1).
We have not considered a PVS-encoding for transitive-predecessors, yet. Put differently, the
proofs in this section were only valid for SPD and we cannot simply switch the ordering. How-
ever, in Section 5.1.1, we described transitive-predecessor-dominance (TPD) as an alternative
lifting of constraint preferences to violation sets. Yet, we have not presented an adequate PVS
that offers TPD to modelers. Our construction of an appropriate TPD-PVS encompasses an
intermediate ordering vP that will also turn out to be helpful for our encoding of constraint
hierarchies as PVS in Section 7.1.

Definition 6.3 – Sym-Diff-Hoare-ordering over Multisets
Let P be any partial order. The Sym-Diff-Hoare-ordering on Mfin(P) is the binary relation
vP ⊆Mfin(P)×Mfin(P), defined by

W1 = T ∪− V vP U ∪− V = W2 ⇐⇒ ∀p ∈ T .∃q ∈ U . p <P q

where T and U have no common elements, i.e., V is equal to the intersection of W1 and W2.

6.3. THE FREE PVS OVER A PARTIAL ORDER 83

* 1 1 1 I + vP * 2 I +

Figure 6.5: An example of the Sym-Diff-Hoare-ordering. Assume |P | = {I, II, 1, 2} and their
usual ordering (Roman and Arabic numerals are incomparable). To visualize T ∪−V vP U ∪−V ,
gray indicates the shared part V , T is marked blue, and U is green.

Figure 6.5 visualizes an instance of this relation. Clearly, ifW1 vP W2, for every w ∈W1 there
is at least one v ∈W2 with w ≤P v. Also, vP is monotonic w.r.t. ∪−. We proceed to show that
(Mfin(P),vP) is indeed a partial order. By definition, vP is obviously reflexive (T and U are
empty) and antisymmetric: Assume that both T ∪− V vP U ∪− V and U ∪− V vP T ∪− V hold.
If T ∪− V = U ∪− V , we are done since T and U are empty. Otherwise let t ∈ Max≤P (T) then
there is a u ∈ U with t <P u. But conversely, there must also be a t′ ∈ T with t <P u <P t′,
contradicting the maximality of t. In order to show transitivity, assume multisetsW1, W2, and
W3 such thatW1 vP W2 andW2 vP W3 hold. Then there are unique partitionings Tij , Uij , Vij
such that Tij and Uij have no common elements and

W1 = T12 ∪− V12 = T13 ∪− V13 ,
W2 = U12 ∪− V12 = T23 ∪− V23 ,
W3 = U13 ∪− V13 = U23 ∪− V23 .

Without loss of generality, we assume that there is no common element in all three of W1, W2,
and W3: From the definition of vP we can see that W1 vP W2 ⇔W1 ∪− *p+ vP W2 ∪− *p+ since
W1 \W2 = (W1 ∪− *p+) \ (W2 ∪− *p+) and W2 \W1 = (W2 ∪− *p+) \ (W1 ∪− *p+). Hence, if there
were an element g in each Wi, we would remove it to obtain W ′i = Wi \ *g+ and prove that
W ′1 vP W ′3 follows from W ′1 vP W ′2 and W ′2 vP W ′3, and which is equivalent to W1 vP W3.
As a consequence of this assumption, since W ′1 vP W ′2 and W ′2 vP W ′3, it must be that for
every p ∈ W ′1 there is a larger q ∈ W ′3 since it cannot be that p “remains equal” in W1, W2,
and W3 – we would then have a common element of all three of them.

We now have to prove that for every p ∈ T13 there is a q ∈ U13 such that p <P q since that
includes every element in T13. Let thus p13 ∈ T13. Our proof proceeds by two case distinctions
with regards to partition locations. First, we distinguish on what partition of W1 = T12 ∪− V12
the element p13 resides in, either p13 ∈ T12 or p13 ∈ V12 (or in both):

1. p13 ∈ T12: Then there is a q12 ∈ U12 with p13 <P q12. We have again to distinguish
where q12 ∈W2 is w.r.t. T23 ∪− V23.
1.1. q12 ∈ T23: Then there is a q23 ∈ U23 with p13 <P q12 <P q23. With regards to T13

and U13, if q23 ∈ U13, we are done. Otherwise, we know that q23 ∈ V13.
1.2. q12 ∈ V23: If q12 ∈ U13, then we are done, or q12 ∈ V13 cannot be since otherwise

q12 would be in both V12 and V23 and thus in W1, W2, and W3.
2. p13 ∈ V12: Then p13 ∈ T23 or p13 ∈ V23 (or both).

2.1. p13 ∈ T23: Then there is a q23 ∈ U23 with with p13 <P q23. If q23 is also in U13 we
are done. Otherwise q23 ∈ V13.

84 CHAPTER 6. ALGEBRAIC STRUCTURES FOR SOFT CONSTRAINTS

2.2. p13 ∈ V23: This case is impossible since p13 ∈ V12 implies that p13 ∈ W1 and
p13 ∈ W2 whereas p13 ∈ V23 implies p13 ∈ W3. Hence, we would have a common
element of W1, W2, and W3, contradicting our assumption.

In the remaining unsettled cases of (1.1) and (2.1), we always find some q ∈ V13 with p13 <P q.
But since q ∈ W1, and W1 vP W2 vP W3, we can apply the same case distinctions to q that
we did for p13 and find a q′ ∈W3 with q <P q′ that is either in U13 or, again, in V13 (q′ = q is
impossible since then q would be a common element of all W1, W2, and W3). Hence q <P q′

holds and q is either in U13 or in V13. If q ∈ U13, the proof is complete. Finally, if otherwise
q′ ∈ V13 we could find yet another greater item q′′ and so on. This process cannot go on
infinitely often since W3 and thus V13 are finite and we thus cannot build an infinitely strictly
ascending chain in V13. Hence, eventually we must find that q′ ∈ U13.
If P is total, then vP is total, too. Again, we may form the upper counterpart of vP by
defining T vP U if, and only if, U vP−1 T .
With this ordering, we are ready to formalize the TPD-lifting for PVS – equally based on
finite multisets. Since users typically only use a directed acyclic graph (DAG) to specify their
constraint preferences (see Section 4.3.2), we also start with DAGs. Let thus G be a DAG and
consider the transitive-predecessors lifting ≺GTPD ⊆ (Mfin |G|) × (Mfin |G|) of G to the finite
multisets Mfin |G| over the elements of G that we previously defined for sets in (TPD):

T ≺GTPD T ∪− *g+ ,
g1, . . . , gn →+

G h implies T ∪− *g1, . . . , gn+ ≺GTPD T ∪− *h+ .

Then GTPD = (Mfin |G|,≺GTPD) is also a DAG; we write ≤TPD
G for ≥PO〈GTPD〉 = ((≺GTPD)∗)−1,

i.e., we again take the reflexive-transitive closure of ≺GTPD and invert it. Furthermore, ≤TPD
G

is monotonic w.r.t. multiset union and thus (Mfin |G|,∪−, *+,≤TPD
G) is a PVS if we can show

that ≤TPD
G is indeed a partial ordering. This can be done by referring to the Sym-Diff-Hoare-

ordering.

Lemma 6.3. For each DAG G, vPO〈G〉−1 = ≤TPD
G .

Proof. To first show ≤TPD
G ⊆ vPO〈G〉−1 , we only need to consider each of the defining clauses.

Hence, assume first that T ∪− *g+ ≤TPD
G T , with g ∈ |G|. Then T vPO〈G〉 T ∪− *g+ holds as well

since T \T ∪− *g+ = *+ and thus T ∪− *g+ vPO〈G〉−1
T . Similarly, if T ∪− *h+ ≤TPD

G T ∪− *g1, . . . , gn+
with gi →+

G h holds, we have T ∪−*g1, . . . , gn+ vPO〈G〉 T ∪−*h+ since for every gi we have gi →+
G h

and thus gi <PO〈G〉 h. Consequently, T ∪− *h+ vPO〈G〉−1
T ∪− *g1, . . . , gn+.

For proving that vPO〈G〉−1 ⊆ ≤TPD
G , let T ∪− V vPO〈G〉−1

U ∪− V , i.e., U ∪− V vPO〈G〉 T ∪− V ,
hold, such that T and U have no common elements; we have to show that U ∪−V (≺GTPD)∗ T ∪−V
holds as well, i.e., T ∪− V ≤TPD

G U ∪− V . We proceed by induction on the size of U . If U = *+,
then either T is empty and we have equality, or the claim holds by repeated application of the
first defining clause of ≺GTPD, i.e., V (≺GTPD)∗V ∪− T .

Now let U 6= *+ and let g be a maximal element in U w.r.t. ≤PO〈G〉. Then there is an h
in T with g <PO〈G〉 h by definition of vPO〈G〉. Now split U as U = *g1, . . . , gn+ ∪− U ′, where
g1, . . . , gn are all elements in U that are dominated by h w.r.t. <PO〈G〉; in particular, g = gi for
some i. Then we see that *g1, . . . , gn+ ≺GTPD *h+ by the second defining clause of ≺GTPD. Let
also T = *h+ ∪− T ′, i.e., we remove one occurrence of h to get T ′. Then U ′ ∪− V vPO〈G〉 T

′ ∪− V
holds since every element in U ′ not dominated by h still has a dominator in T ′ because we

6.4. THE FREE C-SEMIRING OVER A PVS 85

know U ∪− V vPO〈G〉 T ∪− V . Hence, T ′ ∪− V vPO〈G〉−1
U ′ ∪− V is true, and, by the induction

hypothesis, we obtain T ′ ∪− V ≤TPD
G U ′ ∪− V , or, U ′ ∪− V (≺GTPD)∗ T ′ ∪− V . Combining these facts

leads to:

U ∪− V = *g1, . . . , gn+ ∪− (U ′ ∪− V) (≺GTPD)∗ *g1, . . . , gn+ ∪− (T ′ ∪− V) by ind. hyp.
≺GTPD *h+ ∪− (T ′ ∪− V) = T ∪− V by (TPD)

Hence, finally we have T ∪− V≤TPD
G U ∪− V .

6.4 The Free C-Semiring over a Partial Valuation Structure
As mentioned before, (partial) valuation structures are not the only abstract algebraic frame-
work for soft constraints in the literature. C-semirings constitute a particularly popular choice.
They are purely algebraic by requiring a second “additive” operation instead of a partial order-
ing to form an (upper semi-)lattice. This idempotent, commutative, and associative operation
is then used to induce a partial ordering. Moreover, any c-semiring is bounded above and
below by two designated constants. We will proceed to show that every c-semiring gives rise to
a bounded PVS, and, conversely, every PVS can be extended to a c-semiring by means of an-
other free construction – although not every PVS is a c-semiring since the additive operation,
in fact, returns a supremum which need not exist in a PVS.

This section, therefore, extends previous work that examined the similarities between c-
semirings and (totally ordered bounded) valuation structures [Bistarelli et al., 1999]. The
authors identified a valuation structure with every totally ordered c-semiring only. For branch-
and-bound and similar search algorithms, a partial ordering indeed suffices (see Section 4.4.2
or [Junker, 2009; Meseguer et al., 2006]). The main algorithmic advantage of having a second
algebraic operation instead of the partial ordering lies in the thereby guaranteed existence of
a supremum. This least upper bound can be used for non-serial dynamic programming, i.e.,
variable elimination. These algorithms may, however, return an unreachable optimal solution
degree (e.g., the supremum of all reachable optima). From a practical perspective, this free
construction of a c-semiring from a PVS alleviates the need to model in c-semirings in the
first place. If a fruitful algorithmic technique for c-semirings (relying on the addition) is
discovered, it can also be applied to a PVS when raised to the free c-semiring. We sketch such
an application in Section 6.5 but first actually derive the free c-semiring over a PVS.

Formally, a c-semiring [Bistarelli et al., 1997] A = (|A|,⊕A,⊗A,0A,1A) is given by an
(underlying) set |A|, two binary operations ⊕A,⊗A : |A| × |A| → |A|, and two constants
0A,1A ∈ |A| such that the following axioms are satisfied:

– ⊕A is associative and commutative and has 1A as annihilator and 0A as neutral element
– ⊗A is associative and commutative, has 0A as annihilator and 1A as neutral element
– ⊗A distributes over ⊕A
To preserve this structure, a c-semiring homomorphism ϕ : A→ B from a c-semiring A to

a c-semiring B is given by a map ϕ : |A| → |B| such that for all a1, a2 ∈ |A|:
1. ϕ(a1 ⊕A a2) = ϕ(a1)⊕B ϕ(a2), ϕ(a1 ⊗A a2) = ϕ(a1)⊗B ϕ(a2)
2. ϕ(0A) = 0B, ϕ(1A) = 1B
Consequently, the category cSRng of c-semirings has the c-semirings as objects and the

c-semiring homomorphisms as morphisms. Note that in a c-semiring A the operation ⊕A is

86 CHAPTER 6. ALGEBRAIC STRUCTURES FOR SOFT CONSTRAINTS

idempotent:

a⊕A a = (a⊗A 1A)⊕A (a⊗A 1A) = a⊗A (1A ⊕A 1A) = a⊗A 1A = a .

Hence, ⊕A can be used to induce a partial ordering ≤A by interpreting it as the least upper
bound: a ≤A b ⇔ a⊕A b = b. Clearly, ≤A is reflexive due to the idempotency, transitive due
to associativity, and antisymmetric due to commutativity of ⊕A. With this definition, for all
a, b, c ∈ |A| it holds that

1. 0A ≤A a ≤A 1A;
2. a ≤A a⊕A b and b ≤A a⊕A b;
3. if a ≤A c and b ≤A c, then a⊕A b ≤A c.

In particular, a ⊕A b is the supremum of a and b with respect to ≤A. Also ⊕A is monotone
w.r.t. ≤A in both arguments, i.e., a ≤A a′ and b ≤A b′ implies a⊕A b ≤A a′⊕A b′. Additionally,
the combination operation ⊗A is monotone w.r.t. the induced ordering ≤A, since if a ≤A a′

(i.e., a⊕A a′ = a′) then (a⊗A b)⊕A (a′⊗A b) = (a⊕A a′)⊗A b = a′⊗A b, i.e., a⊗A b ≤A a′⊗ b,
from which it follows that a ≤A a′ and b ≤A b′ implies a⊗A b ≤A a′ ⊗ b′. Furthermore, for all
a, b ∈ |A|, it holds that a⊗Ab ≤A a and a⊗Ab ≤A b, since (a⊗Ab)⊕Aa = (a⊗Ab)⊕A(a⊗A1A) =
a⊗A (b⊕A 1A) = a⊗A 1A = a.

As a consequence, we can easily convert any c-semiring into a PVS by defining the functor
PVS : cSRng→ PVS:

PVS(A) = (|A|,⊗A,1A,≤A) ,
PVS(ϕ : A→ B) = ϕ .

Note that PVS(A) is a bounded PVS with ⊥PVS(A) = 0A. This leaves us with the first part
of a free construction between categories PVS and cSRng (cf. Definition 6.2). The opposite
direction, constructing a c-semiring starting from a PVS, is not as obvious since the partial
order of a PVS need not show suprema that are required to exist for the ⊕ operator (they
clearly exist in total orders, making the conversion from totally ordered c-semirings to valuation
structures more straightforward [Bistarelli et al., 1999]). For instance, in Figure 3.2, we saw
that both *c1+ and *c2, c3+ are upper bounds of *c1, c2+ and *c1, c3+ but they are incomparable.

When allowing partiality, we can always find an “artificial” supremum by collecting all
(incomparable) valuations in a set and ordering these sets appropriately. Consider an arbitrary
PVS M = (|M |, ·M , εM ,≤M). We write Ifin(M) to denote the set of finite sets composed of
incomparable elements from |M | (i.e., if X ∈ Ifin(M) then for any x 6= y ∈ X we have x ‖M y)
and Max≤M (X) to denote the maximal elements of X with respect to ≤M . For instance, if
|M | = {1, 2, III, IV} and 1 <M 2, III <M IV, the sets {2, IV} or {1, III} are in Ifin(M) but
{1, III, IV} is not and Max≤M (|M |) = {2, IV}. We define the binary operations ∪̃M and ·̃M
over Ifin(M) by

I ∪̃M J = Max≤M (I ∪ J) ,
I ·̃M J = Max≤M {m ·M n | m ∈ I, n ∈ J} .

Clearly, ∪̃M inherits commutativity from ∪, and is idempotent since Max≤M (I) = I for any
set I consisting of already incomparable elements. It is easy to check that it is also associative.
Further, {εM} is an annihilator for ∪̃M since εM is the greatest element of |M | with respect
to ≤M , and ∅ is its neutral element.

6.4. THE FREE C-SEMIRING OVER A PVS 87

Similarly, ·̃M is obviously commutative since ·M is commutative. Dually to ∪̃M , it has
{εM} as neutral element (since εM is neutral in M) and ∅ as annihilator. For the associativity
of ·̃M , we have

I ·̃M (J ·̃M K) =
Max≤M {mI ·M mJK | mI ∈ I, mJK ∈ Max≤M {mJ ·M mK | mJ ∈ J, mK ∈ K}} =
Max≤M {mI ·M mJ ·M mK | mI ∈ I, mJ ∈ J, mK ∈ K}} =
Max≤M {mIJ ·M mK | mIJ ∈ Max≤M {mI ·M mJ | mI ∈ I, mJ ∈ J}, mK ∈ K} =
(I ·̃M J) ·̃M K ,

since Max≤M {m ·M n | m ∈ I, n ∈ Max≤M (X)} = Max≤M {m ·M n | m ∈ I, n ∈ X} for all
finite sets X ⊆ |M |. Finally, ·̃M distributes over ∪̃M :

I ·̃M (J ∪̃M K) =
Max≤M {mI ·M mJK | mI ∈ I, mJK ∈ Max≤M (J ∪K)} =
Max≤M {mI ·M mJK | mI ∈ I, mJK ∈ J ∪K} =
Max≤M ({mI ·M mJ | mI ∈ I, mJ ∈ J} ∪ {mI ·M mK | mI ∈ I, mK ∈ K}) =
Max≤M (Max≤M {mI ·M mJ | mI ∈ I, mJ ∈ J} ∪

Max≤M {mI ·M mK | mI ∈ I, mK ∈ K}) =
(I ·̃M J) ∪̃M (I ·̃M K) ,

since Max≤M (I ∪Max≤M (X)) = Max≤M (I ∪X) for all finite X ⊆ |M |. Thus, we conclude

Lemma 6.4. (Ifin(M), ∪̃M , ·̃M , ∅, {εM}) is a c-semiring.

This structure will serve to define the object part of a free functor from PVS to cSRng.
At this point, it is worth noting that a similar construction of c-semiring addition and multi-
plication operations has been introduced by Rollón [2008], although starting from a given c-
semiring instead of a PVS. She proves that when A is a c-semiring, its so-called frontier algebra
A = (I(A) \ {∅}, ⊕̃A, ⊗̃A, {0A}, {1A}) again is a c-semiring, where I(A) are (possibly infinite)
subsets of |A| containing only pairwise incomparable elements w.r.t. ≤A, and,

I ⊕̃A J = Max≤A(I ∪ J) ,
I ⊗̃A J = Max≤A{i⊗A j | i ∈ I, j ∈ J}

for all I, J ∈ I(A) \ {∅}. The underlying set of the frontier algebra thus contains sets of
arbitrary cardinality, not only finite sets as in our approach of the free construction. In fact,
such infinite sets would correspond to “junk elements” (cf. Section 6.2), i.e., they would be
unnecessary to have in the carrier set of the free c-semiring since we only have the finitary
combination and supremum operation.

In [Rollón, 2008], the condition that only non-empty sets have to be considered is missing.
The empty set has to be excluded, however, since otherwise ∅ ⊗̃A {0A} = ∅, although {0A} has
to be the annihilator for ⊗̃A, and ∅ ⊕̃A {0A} = {0A}, i.e., ∅ ≤A {0A} contradicting that {0A}
has to be the smallest element w.r.t. ≤A. By contrast, in our approach, we have to consider
∅ as well in order to obtain a “fresh” bottom element of the free c-semiring over an arbitrary

88 CHAPTER 6. ALGEBRAIC STRUCTURES FOR SOFT CONSTRAINTS

PVS. If we only applied the construction of a free c-semiring to the sub-category of bounded
PVS, we also could exclude ∅ and would obtain {⊥M} as bottom element of the free c-semiring
over the bounded PVS M . However, the free PVS over a partial order – our original mission
– clearly is not bounded.

To verify that we can design the morphism part of a free functor, it is useful to convince
ourselves that the application of the maximum operator in a target structure subsumes the
maximum operator in a source structure.

Lemma 6.5 (Subsumption of Maximum). Let ϕ : M → N be a PVS homomorphism. For
finite sets X ⊆ |M |, we have Max≤N (ϕ(Max≤M (X))) = Max≤N (ϕ(X)).

Proof. First, Max≤N (ϕ(Max≤M (X))) ⊆ Max≤N (ϕ(X)), since Max≤M (X) ⊆ X holds which in
turn implies ϕ(Max≤M (X)) ⊆ ϕ(X).
To conversely show Max≤N (ϕ(X)) ⊆ Max≤N (ϕ(Max≤M (X))), it suffices to show that for
each n ∈ ϕ(X) there is a (weakly dominating) n′ ∈ ϕ(Max≤M (X)) such that n ≤N n′: If
n ∈ ϕ(X) then n = ϕ(m) for some m ∈ X. Either m is maximal, in which case n is obviously
in ϕ(Max≤M (X)) as well. Otherwise, there is an m′ ∈ Max≤M (X) with m ≤M m′, hence
n = ϕ(m) ≤N ϕ(m′), and ϕ(m′) ∈ ϕ(Max≤M (X)).

Finally, we define the functor cSRng〈−〉 : PVS→ cSRng as

cSRng〈M〉 = (Ifin(M), ∪̃M , ·̃M , ∅, {εM}) ,
cSRng〈ϕ : M → N〉 = λ{m1, . . . ,mk} ∈ Ifin(M) . Max≤N {ϕ(m1), . . . , ϕ(mk)} .

We need to check (using Lemma 6.5) that cSRng〈ϕ : M → N〉 is indeed a c-semiring homo-
morphism from cSRng〈M〉 to cSRng〈N〉 for the functor to be well-defined:

cSRng〈ϕ〉(∅) = ∅ , cSRng〈ϕ〉({εM}) = {ϕ(εM)} = {εN} ,
cSRng〈ϕ〉(I1 ∪̃M I2) = cSRng〈ϕ〉(Max≤M (I1 ∪ I2)) =

Max≤N (ϕ(Max≤M (I1 ∪ I2))) = Max≤N (ϕ(I1 ∪ I2)) = Max≤N (ϕ(I1) ∪ ϕ(I2)) =
cSRng〈ϕ〉(I1) ∪̃N cSRng〈ϕ〉(I2) ,

cSRng〈ϕ〉(I1 ·̃M I2) = cSRng〈ϕ〉(Max≤M {m1 ·M m2 | m1 ∈ I1, m2 ∈ I2})) =
Max≤N (ϕ(Max≤M {m1 ·M m2 | m1 ∈ I1, m2 ∈ I2})) =
Max≤N {ϕ(m1 ·M m2) | m1 ∈ I1, m2 ∈ I2} =
Max≤N {ϕ(m1) ·N ϕ(m2) | m1 ∈ I1, m2 ∈ I2} =
Max≤N {n1 ·N n2 | n1 ∈ ϕ(I1), n2 ∈ ϕ(I2)} =
cSRng〈ϕ〉(I1) ·̃N cSRng〈ϕ〉(I2) .

With these functors from PVS to cSRng and vice versa defined, we are ready to apply Defi-
nition 6.2 to the problem of finding the free c-semiring over a PVS, as depicted in Figure 6.6.
As unit morphism, we define ηM : M → PVS(cSRng〈M〉) for every PVS M by ηM (m) = {m}.
Now let M be some PVS, A a c-semiring, and ϕ : M → PVS(A) be a PVS-homomor-
phism. Again, we search a lifting ϕ] that “emulates” (and extends) the PVS-homomorphism
ϕ at the c-semiring level, i.e., makes the diagram in Figure 6.6 commute by asserting that
PVS(ϕ]) ◦ ηM = ϕ. We define ϕ] : cSRng〈M〉 → A as a function ϕ] : Ifin(M)→ |A| and need
to show that it is a c-semiring homomorphism:

ϕ]({m1, . . . ,mn}) = ϕ(m1)⊕A · · · ⊕A ϕ(mn)

6.4. THE FREE C-SEMIRING OVER A PVS 89

Category : PVS Category : cSRng

M PVS(cSRng〈M〉) cSRng〈M〉

PVS(A) A

ηM

ϕ PVS(ϕ]) ϕ]

Figure 6.6: Diagram of the free c-semiring over a PVS. As with previous free constructions,
cSRng〈M〉 only identifies and orders elements as absolutely required by c-semiring axioms –
it is again most general.

for all {m1, . . . ,mn} ∈ Ifin(M), where, if n = 0, ∅ is mapped to 0A; ϕ] is indeed a c-semiring
homomorphism, since for the constants, ϕ](0cSRng〈M〉) = ϕ](∅) = 0A and ϕ](1cSRng〈M〉) =
ϕ]({εM}) = ϕ(εM) = εPVS(A) = 1A. To show that ϕ] preserves the operations ·̃M and ∪̃M ,
we first note that for each finite set {m1, . . . ,mn} ⊆ |M | (not necessarily composed of incom-
parable elements) it holds that ϕ](Max≤M {m1, . . . ,mn}) = ϕ(m1) ⊕A . . . ⊕A ϕ(mn): if some
dominating mi ≤M mj exists, then ϕ(mi) ≤PVS(A) ϕ(mj) (since ϕ is a PVS-homomorphism),
hence, ϕ(mi)⊕A ϕ(mj) = ϕ(mj). We can thus “remove” each occurrence of the dominated mi

in ϕ(m1)⊕A . . .⊕A ϕ(mn) since its dominator mj is included in that term. Therefore,

ϕ]({m1, . . . ,mk} ∪̃M {mk+1, . . . ,mn}) = ϕ](Max≤M {m1, . . . ,mn}) =
ϕ(m1)⊕A . . .⊕A ϕ(mn) =
(ϕ(m1)⊕A . . .⊕A ϕ(mk))⊕A (ϕ(mk+1)⊕A . . .⊕A ϕ(mn)) =
ϕ]({m1, . . . ,mk})⊕A ϕ]({mk+1, . . . ,mn}) .

Similarly, for two sets I, J ∈ Ifin(M)

ϕ](I ·̃M J) = ϕ](Max≤M {m1 ·M m2 | m1 ∈ I, m2 ∈ J})) =⊕
A{ϕ(m1 ·M m2) | m1 ∈ I, m2 ∈ J}

PVS hom.=⊕
A{ϕ(m1) ·PVS(A) ϕ(m2) | m1 ∈ I, m2 ∈ J} =⊕
A{ϕ(m1)⊗A ϕ(m2) | m1 ∈ I, m2 ∈ J}

distr.=⊕
A{ϕ(m1) | m1 ∈ I} ⊗A

⊕
A{ϕ(m2) | m2 ∈ J} = ϕ](I)⊗A ϕ](J) .

Thus, ϕ] is a c-semiring homomorphism and additionally, PVS(ϕ])(ηM (m)) = ϕ(m), i.e., the
diagram in Figure 6.6 commutes, and ϕ] is unique with this property (the proof is analogous
to that of Lemma 6.2). We may thus conclude:

Lemma 6.6. cSRng〈M〉 is the free c-semiring over the partial valuation structure M .

From the fact that the composition of two free constructions is a free construction itself [San-
nella and Tarlecki, 2012, Ch. 3], we further know:

Corollary 6.7. cSRng〈PVS〈P 〉〉 is the free c-semiring over the partial order P .

90 CHAPTER 6. ALGEBRAIC STRUCTURES FOR SOFT CONSTRAINTS

Therefore, we abbreviate cSRng〈PVS〈P 〉〉 as cSRng〈P 〉 and obtain a generic way to embed
any partial order P into a c-semiring in a canonical way. More explicitly, this c-semiring has
finite sets of incomparable (w.r.t. the Smyth-ordering) multisets composed of elements from |P |
as its elements. If, e.g., |P | = ({I, II, 1, 2}), then {*I, 2+} or {*I, I+, *1, I+} are in Ifin(Mfin(P))
but {*I, I+, *II+} is not since *I, I+ �P *II+ (cf. Figure 6.7 for a similar ordering). In the
following section, we revisit this free c-semiring to illustrate the application of ⊕ and the
required distributivity with respect to possible solving algorithms.

6.5 Adequacy of Algebraic Structures for Soft Constraints

The original goal of algebraic abstractions of specific soft constraint formalisms was to provide
a common theoretical ground for questions of computational complexity and, perhaps more
intensely studied, efficient solving algorithms. The latter include search strategies, dynamic
programming techniques, and constraint propagation.

In terms of model expressiveness, we seek a fairly general structure that captures a broad
variety of formalisms. In terms of algorithmic efficiency, however, we are inclined to sacrifice
generality for some additional structure that makes search and propagation more effective.
Most algorithmic efforts can roughly be divided into:
• Classical search algorithms such as branch-and-bound, limited discrepancy search, or
large neighborhood search [Shaw, 1998] with accompanying search heuristics and efficient
bounding techniques such as Russian doll search or mini bucket elimination [Meseguer
et al., 2006].

• Soft local consistency and soft global constraints to enhance a search scheme [Cooper
and Schiex, 2004; Cooper et al., 2010]

• Dynamic programming algorithms (variable elimination, bucket elimination, cluster tree
elimination) [Bertele and Brioschi, 1973; Bistarelli, 2004; Dechter, 1999]

Originally, valued constraints and c-semiring-based soft constraints generalized weighted
constraints and fuzzy constraints, respectively. While c-semirings additionally allowed for
partiality to better represent incomparable decisions, valued constraints put a total ordering
first instead of an operator for the supremum.4 Totality is beneficial for solving as it reduces
the search to better-known scalar optimization tasks with a unique optimal solution degree and
allows for more efficient pruning. Soft local consistency techniques exploit the monotonicity of
valuation structures. If the combination operator is not idempotent, these algorithms further
require so-called “fair” valuation structures that admit a difference operator a 	 b – which is
not mandatory for a PVS.

Similarly, the supremum ⊕ presupposed by a c-semiring is put to use in non-serial dynamic
programming such as bucket elimination whenever we perform a “projection” operation. Pro-
jection means finding the best extension (with a greater variable scope) of a given assignment.
If we are dealing with PVS without a supremum (such as the free PVS), these algorithms
are not directly applicable. However, as a remedy, we can still use this family of algorithms
if we put in place the free c-semiring instead. Example 6.2 demonstrates this procedure for
bucket elimination. This algorithm proceeds by picking a variable elimination order, leading
to “buckets” for each variable x which collect all soft constraints µ that have x as next (not

4Obviously, in a total ordering, the supremum is just min/max.

6.5. ADEQUACY OF ALGEBRAIC STRUCTURES 91

yet eliminated) variable in their scope. Intermediate soft constraints ν are generated by tak-
ing the union of all variables in a bucket, then calculating the intermediate results (i.e., the
combination over all soft constraint valuations in the bucket) for each assignment in the Carte-
sian product of the domains, and projecting out x (see [Dechter, 1999]). One can check that
each elimination step is an application of the distributivity law (see Lemma 6.4). All known
limitations regarding time and space which prohibit widespread usage in practice, of course,
remain [Meseguer et al., 2006].

Example 6.2 – Rating System on the free c-semiring
Consider a decision that is made based on some abstract “rating system” R (as can be seen in
Figure 6.7) that is inspired by, e.g., two executives that make an independent choice, denoted
by {1, 2} and {I, II}, respectively, where a higher number means a better evaluation. Any “two”,
however, is better than any “one”. There is an explicit top element > representing maximal
satisfaction. There is no unique least upper bound for 1 and I, though. We assume that soft
constraints are specified by a map from variable assignments to elements of |R|, as presented
in the figure. To consider combinations of individual soft constraint valuations, i.e., to have a
proper SCSP, we use the free partial valuation structure PVS〈R〉 to obtain a multiplication.
We represent every element r other than > as ηPVS

R (r) = *r+ and let > map to the neutral
element *+. Note how the resulting partial order PO(PVS〈R〉) over Mfin(|R|) is not suprema-
closed (center in Figure 6.7). To still be able to apply bucket elimination, we embed PVS〈R〉
into its associated free c-semiring cSRng〈PVS〈R〉〉 = cSRng〈R〉. Consequently, we embed any
soft constraint µ mapping to |R| into cSRng〈R〉 as follows:

µe(θ) = ηcSRng
PVS〈R〉(η

PVS
R (µ(θ)) =

{
{*+} if µ(θ) = >
{*µ(θ)+} if µ(θ) 6= >

(6.1)

For instance, µe
x({x 7→ 1}) = {*2+} and µe

xy({x 7→ 0, y 7→ 0}) = {*+}. Finally, we invoke bucket
elimination to obtain the optimal solution degree (see [Dechter, 1999] for a similar illustra-
tion). The algorithm terminates with {*1, 1, II, II+, *I, 2, 2, II, II+, *1, 2, 2, 2, II+} that is clearly
not reachable by any individual assignment. However, each of the three components (i.e.,
multiset over |R|) corresponds to one assignment. By appropriate bookkeeping during the
elimination process, we find that θ1 = {x 7→ 0, y 7→ 0, z 7→ 0}, θ2 = {x 7→ 0, y 7→ 1, z 7→ 0},
and θ3 = {x 7→ 1, y 7→ 1, z 7→ 0} map to the respective optimal solution degrees and are thus
optimal solutions. The free c-semiring provides enough information for said bookkeeping –
another c-semiring returning a supremum of all solution degrees need not do this, in general.

Note that in fact, we get a set of all PVS-optima as the unique optimal solution degree
in the free c-semiring. Clearly, however, enforcing totality or a supremum for the only sake
of better algorithms might counteract a modeler’s intentions. Some (in reality incomparable)
solutions are dominated by others. If we do not rely on explicit soft constraint operations but
rather formulate it as a conventional constraint optimization problem that is solved by search
and propagation (as in branch-and-bound or large neighborhood search), the structure a PVS
offers suffices – which makes them the appropriate data structure for designing MiniBrass.

92 CHAPTER 6. ALGEBRAIC STRUCTURES FOR SOFT CONSTRAINTS

>

R

II 2

I 1

PVS〈R〉

*+

*>+

*II+ *2+

*I+ *1+

*1, I+ *1, II+.

.

cSRng〈PVS〈R〉〉

{*+}

{*>+}

{*2+, *II+}

{*II+} {*2+}

{*I+, *1+}

{*I+} {*1+}

{*1, I+} {*1, II+}
.

.

∅

x y z
SCSP

x µx
0 1
1 2

y µy
0 1
1 2

z µz
0 II
1 1

x y µxy
0 0 >
0 1 II
1 0 2
1 1 1

y z µyz
0 0 II
0 1 I
1 0 2
1 1 1

Bucket z:
In: µz, µyz
Out: νy

y z νyz = µyz ⊗ µz
0 0 {*II, II+}
0 1 {*1, I+}
1 0 {*2, II+}
1 1 {*1, 1+}

y νy =
⊕
z′∈{0,1} νyz(y, z′)

0 {*II, II+}
1 {*2, II+}

Bucket y:
In: µy, µxy
In: νy
Out: νx

x y νxy = νy⊗(µxy⊗µy)
0 0 {*1, II, II+}
0 1 {*1, 2, II, II+}
1 0 {1, 2, II, II+}
1 1 {*1, 2, 2, II+}

x νx =
⊕

y′∈{0,1} νxy(x, y′)
0 {*1, II, II+}

1 {*1, 2, II, II+,
*1, 2, 2, II+}

Bucket x:
In: µx, νx
Out: ν

x ν = µx ⊗ νx
0 {*1, 1, II, II+}

1 {*1, 2, 2, II, II+,
*1, 2, 2, 2, II+}

osd = ν(0)⊕ ν(1)
{*1, 1, II, II+,
*1, 2, 2, II, II+,
*1, 2, 2, 2, II+}

Figure 6.7: Upper: The rating system R, its free PVS, and its free c-semiring. Highlighted
elements are introduced by the respective axioms. Center: A SCSP mapping to |R|. Lower:
Finding the optimal solution degrees by bucket elimination on cSRng〈R〉.

6.5. ADEQUACY OF ALGEBRAIC STRUCTURES 93

Chapter Summary and Outlook
In this chapter, we discussed algebraic structures for soft constraints from first principles, i.e.,
without restricting ourselves to the existing literature. Partial valuation structures emerged as
the least common denominator for a variety of formalisms, including the free PVS over a partial
order that can be used to encode constraint preferences as PVS. Moreover, we also presented
a free construction of a c-semiring which is based on sets of PVS-degrees. Chapter 7 offers
foundations for hierarchical (i.e., lexicographic) combinations of PVS that are also present in
MiniBrass.

Chapter 7
Hierarchically Layered Soft Constraints

Summary. Among all conceivable operations over ordering relations and PVS, lexico-
graphic combinations (where one ordering is strictly more important than the other)
play a key rôle – from both a theoretical and practical viewpoint. This chapter explores
and completes Hosobe’s previously undertaken approaches to formalizing constraint
hierarchies as algebraic structures by providing a general treatment of lexicographic
products of PVS. This encompasses the negative result that certain classes of hierar-
chical layers (including a “worst-case-better” semantics) originally proposed by Borning
and left out by Hosobe lead to PVS prohibitive for lexicographic combinations. We
propose the notion of optima-simulation to replace such a PVS by another one which
generally leads to modified and refined soft constraint problems having a subset of
optimal solutions. We show two concrete instances, based on p-norms and real-valued
multisets, respectively.

Publication. Some of the concepts and results outlined in this chapter have been
previously published in [Schiendorfer et al., 2015c; Knapp and Schiendorfer, 2014].

Following the previous chapters’ discussions, it is straightforward to show that many specific
formalisms in the literature are instances of partial valuation structures – from weighted to
fuzzy constraints. However, there is one “stubborn” formalism, constraint hierarchies, that
turned out to be reluctant to an encoding in algebraic structures. Even though Meseguer et al.
[2006] note that the combinations of error functions on a single layer (e.g., sum of errors, sum of
squares of errors, or maximum error) can be cast as valued constraint problems, “the general
definition of combining functions does not forbid the use of functions that would definitely
violate fundamental semiring or valued constraint axioms (such as monotonicity).” Even if we
can encode a single layer as a valuation structure, the essence of constraint hierarchies lies in
the lexicographic solution ordering according to the layers’ satisfaction values. Hosobe [2009]
was the first to provide a partial answer by encoding what he calls “rational constraint hierar-
chies”, including weighted-sum and sum-of-squares comparators as c-semirings. In particular,
“rational c-semirings exclude the worst-case-better (WCB) comparator” which – as we shall
see – still has many practical applications.
Therefore, this chapter follows the important theoretical and practical question:

When is the result of a lexicographic combination of several PVS itself a PVS?

95

96 CHAPTER 7. HIERARCHICALLY LAYERED SOFT CONSTRAINTS

H1
∆2∆1 ∆3

H2
diff12 diff23

H3 . . .

t1 t2 t3
s1 6 9 8
s2 4 0 0
S 10 9 8
D 10 9 11
∆ 0 0 3
diff 1 1

θ1

t1 t2 t3
s1 8 7 9
s2 0 0 0
S 8 7 9
D 10 9 11
∆ 2 2 2
diff 1 2

θ2

>Hsum
1 nHsum

2
<Hmax

1 nHmax
2

00 3

sum
3
max
3

1 1

sum
2
max
1

22 2

sum
6
max
2

1 2

sum
3
max
2

Figure 7.1: A hierarchically specified soft constraint problem with two candidate solutions
θ1, θ2 and their valuations in PVS, as described in Example 7.1. Hsum

i refers to the PVS
(N≥0,+, 0,≥) and Hmax

i refers to (N≥0,max, 0,≥) where i ∈ {1, 2} indicates the layer from
which soft constraints (e.g., ∆1) map into the PVS. Recall that we read, e.g., x <Hsum

1
y as “x

is worse than y in Hsum
1 ” which holds if x > y since violation weights are accumulated.

More technically, we can apply the lexicographic operator introduced by Gadducci et al. [2013]
(written as n) that takes two PVS and returns a PVS. For the example of constraint hier-
archies, individual layers could then be mapped to, e.g., weighted PVS and the layers’ PVS
be combined by said operator. But such an operator has far more application scenarios than
expressing constraint hierarchies: Combining fuzzy CSP with weighted, constraint preferences
with probabilistic, etc. In fact, the lexicographic combination is one of the most mathemati-
cally sound [Andréka et al., 2002] and widely used aggregation strategies [Rentmeesters et al.,
1996]. We have already introduced the lexicographic ordering for products of PVS in Sec-
tion 3.2.3 and made “intuitive” use of it in MiniBrass in Section 4.4.1. Hence, we can simply
attempt to apply this ordering to a product construction of two PVS M and N , i.e., based on
the carrier set |M | × |N |. We briefly revisit the definition of the ordering:

(m,n) ≤MnN (m′, n′)↔ (m <M m′) ∨ (m = m′ ∧ n ≤N n′)

To demonstrate its application in analogy to Example 1.1, we propose a simple example that
Figure 7.1 visualizes:

Example 7.1 – Small Smart Grid
Consider a trivially small soft constraint model inspired by our smart grid case study: Assume

97

7

3
<MnN

3

6

7

3
·∞

7

5
>MnN

3

6
·∞

7

5

Figure 7.2: When considering two layers M and N in a lexicographic ordering, collapsing
elements are invalidating the multiplication of partial valuation structures. Here, M = N =
Nmax = (N≥0,max, 0,≥), <M refers to > in the natural ordering, and we write ·∞ as a
shorthand for “max”. While thus (7, 3) <MnN (3, 6), on the right side (7, 5) >MnN (7, 6) upon
multiplication with the same element (7, 5).

two power plants that can regulate their power supply (s1 and s2) between S = 0 and S = 10
(perhaps kWh) and assume that a certain demand D is given for three time steps (say, hours).
The most important organizational goal could be to schedule the supply such as to minimize
its deviation to the demand. We model this as a weighted PVS H1 with three soft constraints
∆t for every time step that maps to the deviation at said time step. As a second layer that
is again mapped to a weighted PVS H2, assume that we prefer that the power plants do not
change their output heavily – thus we have two soft constraints (“diff”) for the transition from
time step t1 to t2 and one for t2 to t3. Both PVS combine the soft constraints’ valuations
using either the maximum or sum operator as the binary multiplication. Figure 7.1 provides
an example with two sample assignments θ1 and θ2. Depending on whether maximum or sum
is used, either θ1 or θ2 is preferred.

So far, this seems to work out just fine, i.e., from a given assignment θ and PVS M
and N , we can have sets of soft constraints CMs and CNs map to m ∈ |M | and n ∈ |N |,
respectively, build the pairs (m,n) and order the assignments lexicographically by ≤MnN .
But this is obviously an optimization problem different from our “canonical” soft constraint
problem that maps to a single PVS and makes use of its combination operator. To be able to
treat lexicographic combinations within the unifying framework of PVS, we need to make sure
that M nN itself forms a PVS – respecting all required axioms.

But what happens if we simply take pairs of |M | and |N | as elements and try to combine
them using component-wise application of ·M and ·N? An essential property of any PVS M
is that ·M must be monotonic w.r.t. ≤M . Consequently the same must be true for ·MnN and
≤MnN . If we have (m,n) ≤MnN (m′, n′) then multiplying both sides by the same object
(o1, o2) must not change the ordering. Unfortunately, Figure 7.2 provides a counterexample
that invalidates this immediate approach. The problem is evident in the definition of the
lexicographic ordering and the (weak) monotonicity requirement of PVS: If m < m′ then
for any n and n′, (m,n) <MnN (m′, n′). But on the other hand monotonicity only ensures
that m ·M o ≤M m′ ·M o for some o ∈ |M |, in particular m ·M o = m′ ·M o is possible and
acceptable. Then the ordering entirely depends on the ordering in the second component, i.e.,
if n ·N o2 >N n′ ·N o2 holds in our previous example we would get (m ·M o1, n ·N o2) >MnN

98 CHAPTER 7. HIERARCHICALLY LAYERED SOFT CONSTRAINTS

Table 7.1: Approximating the collapsing PVS Nmax by other non-collapsing PVS using p-
norms. The table shows three assignments θi that are graded by soft constraints µj . By ·∞, θ1
and θ3 are equal and strictly better than θ2. For p = 2, the ordering between θ1 and θ2 after
evaluating ·2 is wrong (indicated in red), whereas for p > 2, it is correct (indicated in green).
Also, the embeddings into Mfin(R>0) (introduced in Section 7.4.4) for R are given.

µ1 µ2 µ3 max
∏

2
∏

3
∏

4
∏

R

θ1 0 0 3 3 3 3 3 *3+
θ2 2 2 2 2 3.46 2.88 2.63 *2, 2, 2+
θ3 0 2 3 3 3.6 3.27 3.13 *2, 3+

(m′ ·M o1, n
′ ·N o2), contradicting the required monotonicity. One might be inclined to relax

the monotonicity requirement for arbitrary PVS altogether but this leads to a paradoxical
situation following the example in Figure 7.2: Consider a PVS M where we might have two
assignments θ and θ′, each deemed equal by the product of n soft constraints’ valuations, i.e.,
m = µ1(θ) ·M . . . ·M µn(θ) = µ1(θ′) ·M . . . ·M µn(θ′). Now a new soft constraint µn+1 is added
with µn+1(θ) <M µn+1(θ′), i.e., θ is considered strictly better by µn+1. However, it could be
that m ·M µn+1(θ) >M m ·M µn+1(θ′), i.e., in total, θ would now be worse than θ′.

Gadducci et al. [2013] first identified this problem with lexicographic combinations and
introduced the concept of collapsing elements to make it formally precise. Intuitively, ele-
ments are collapsing precisely if they equalize incomparable elements upon multiplication, as
seen with the max operator in Figure 7.2. In Section 7.1.1, we see that every idempotent
element (i.e., m ·M m = m) is collapsing – this clearly includes every element and the max
operator. Collapsing elements are prohibitive for lexicographic products and thus need to be
removed from the carrier set.

This result of Gadducci et al. [2013] provides insight into why Hosobe [2009] failed to provide
a c-semiring construction (that is even more specialized than that of a PVS) for “worst-case-
better”. That comparator simply is the maximum operator applied to error functions and thus
has every element as collapsing. While this is primarily a negative result, it is the purpose of
this chapter and [Schiendorfer et al., 2015c] to formally define and prove how we can reasonably
“replace” one PVS containing collapsing elements by another one that does not. Clearly, those
PVS cannot be equivalent in terms of optima. But as long as some properties of the search
space ordering are preserved (in particular, the optimal solutions of the replaced problem are
a subset of the originally optimal solutions), we argue that modelers would not mind using a
non-collapsing replacement to remain in the scope of PVS-based soft constraint problems. We
call this criterion “optima-simulation” and explain it in more detail in Section 7.4.2.

We need two vital insights to find a suitable replacement for the collapsing maximum-based
PVS. First, we may note that the max operator corresponds to the ∞-norm which is the limit
of p-norms, taking p to infinity. Formally, for real numbers r and s, limp→∞(rp + sp)1/p =
max{r, s}. Second, any finite p-norm, by contrast, is free of collapsing elements since (rp+sp)1/p

is strictly monotonic in both arguments. Our intuition is that if we pick p large enough, the p-
norm approximates the maximum operator for the relevant part of the search space. Table 7.1
exemplifies this idea: for p = 2, the vector [2, 2, 2] has higher costs than [0, 0, 3] whereas
for p ≥ 3, the ordering relation is equivalent to what max would pick. Section 7.3 presents
“actionable” advice how to reasonably select p. If we are not restricted to a PVS with a
scalar carrier set, Section 7.4.4 offers an alternative collapse-free PVS capable of replacing the

7.1. TOWARDS LEXICOGRAPHIC PRODUCTS OF PVS 99

maximum PVS based on finite multisets over reals that is more general than the purely scalar
p-norm variant.

As a case study throughout this chapter, we consider the PVS that combines violation
degrees by the maximum operator, as used in Figure 7.1. Note that once we have constructed
a lexicographic product of PVS, we can always embed the resulting PVS in a c-semiring
using the free construction presented in Section 6.4. It is however not possible to define a
lexicographic product for c-semirings [Hölzl et al., 2009].

7.1 Towards Lexicographic Products of PVS
To formalize the aforementioned intuitions, we first closely follow the exposition of Gadducci
et al. [2013] to treat lexicographic products of PVS in this section.

7.1.1 Collapsing Elements as an Obstacle

For a PVS M = (|M |, ·M , εM ,≤M), define its set of collapsing elements by

C(M) = {m ∈ |M | | ∃m1,m2 ∈ |M | .m1 <M m2 ∧m1 ·M m = m2 ·M m} .

We abbreviate the regular, non-collapsing elements |M | \ C(M) as R(M) and obviously have
|M | = C(M) ∪R(M).

Example 7.2 – Collapsing Elements
Let P be a partial order.

(1) The set of collapsing elements of the free PVS PVS〈P 〉 = (Mfin |P |,∪−, *+,⊆− P) is empty:
If T ⊂− P U , then T ∪− *p+ = U ∪− *p+ for some p ∈ |P | would imply that T = U .

(2) Consider the PVS of natural numbers that are combined by the maximum operation,
i.e., m ·M n = max{m,n} leads to the the PVS Nmax = (N≥0,max,≥, 0) where ≥ is the usual
ordering. The set of collapsing elements of Nmax is N \ {0}: Let n > 0 ∈ N. Then n > 0 but
max{n, 0} = n = max{n, n}. The situation is analogous in fuzzy PVS (see Section 4.3.3).

Generalizing the first example, ifM is a strict PVS, i.e., m <M n implies m ·M o <M n ·M o
for allm,n, o ∈ |M |, then C(M) = ∅. Generalizing the second example, all idempotent elements
of a PVS M which are different from εM are collapsing: If m ∈ |M | such that m 6= εM and
m ·Mm = m, then m <M εM but m ·Mm = m = εM ·Mm. It is well-known that strictness and
idempotency are mutually exclusive in PVS if |M | > 2 [Schiex et al., 1995]: If m 6= εM then
m <M εM and, by strict monotonicity, also m ·M m <M m but idempotency would require
m ·M m = m.

Collapsing elements are problematic for lexicographic products, as we have seen in Fig-
ure 7.2. On the other hand, all non-collapsing elements form a sub-structure of a PVS that is
again a PVS. To work towards this result, we first show that the multiplication operation is
closed under all non-collapsing elements. Formally:

Lemma 7.1. |M | \ C(M) is closed under ·M .

Proof. Saying that |M | \ C(M) is closed under ·M is equivalent to stating that if, and only if,
m or n are collapsing, their product m ·M n is collapsing.

100 CHAPTER 7. HIERARCHICALLY LAYERED SOFT CONSTRAINTS

If m ∈ C(M) then there are m1,m2 ∈ |M | such that m1 <M m2 but m1 ·Mm = m2 ·Mm which
clearly implies thatm·Mn is also collapsing sincem1 <M m2 but (m1·Mm)·Mn = (m2·Mm)·Mn
– and analogously if n ∈ C(M).
Conversely, if m ·M n ∈ C(M), then there are m1,m2 ∈ |M | with m1 <M m2, and m1 ·M (m ·M
n) = m2 ·M (m ·M n). For a contradiction, assume that neither m nor n are collapsing. Then
m1 <M m2 impliesm1 ·Mm <M m2 ·Mm sincem /∈ C(M), and consequently (m1 ·Mm)·M n <M
(m2 ·M m) ·M n since n /∈ C(M) – contradicting our assumption of m ·M n being collapsing for
m1 and m2.

In particular, the neutral element εM is never collapsing since for any m1 <M m2 it must be
that m1 ·M εM <M m2 ·M εM . Thus, (|M | \ C(M), ·M , εM ,≤M) forms a PVS since all required
PVS-properties are inherited from M .

In a bounded PVS M , the smallest element ⊥M must also be an absorbing element for ·M ,
i.e., it holds that m ·M ⊥M = ⊥M for all m ∈ |M |: Since m ≤M εM , by monotonicity, we get
⊥M ·M m ≤M ⊥M and thus, by antisymmetry of ≤M , we have ⊥M ·M m = ⊥M . Furthermore,
⊥M ∈ C(M) if ⊥M 6= εM since then ⊥M <M εM but ⊥M ·M ⊥M = εM ·M ⊥M = ⊥M .

7.1.2 The Lexicographic Product excludes Collapsing Elements

Let M be a PVS and let N be a bounded PVS (augmented, if it was not already bounded,
as mentioned in Section 3.2.3). As a consequence of the existence of collapsing elements,
we handle these elements differently to obtain a meaningful carrier set for the lexicographic
product. We define L ⊆ |M | × |N | as

L = ((|M | \ C(M))× |N |) ∪ (C(M)× {⊥N}) ,

i.e., the subset of pairs (m,n) ∈ |M | × |N | such that if m ∈ C(M), then n = ⊥N . Define the
binary operation ·L : L× L→ L component-wise (analogously to the direct product) by

(m1, n1) ·L (m2, n2) = (m1 ·M m2, n1 ·N n2) .

This is well-defined, i.e., for all (m1, n1), (m2, n2) ∈ L, (m1 ·M m2, n1 ·N n2) ∈ L: If neither m1
nor m2 are collapsing, neither is m1 ·M m2 as a corollary to Lemma 7.1. Hence m1 ·M m2 ∈
|M | \ C(M) and n1 ·N n2 ∈ |N |, thus (m1 ·M m2, n1 ·N n2) ∈ L.

If either of m1 and m2 are collapsing, say m1 is, then m1 ·M m2 ∈ C(M) by Lemma 7.1.
Since n1 then must be ⊥N due to the definition of L, n1 ·N n2 = ⊥N due to ⊥N being the
absorbing element for ·N . Hence, again, (m1 ·M m2, n1 ·N n2) = (m1 ·M m2,⊥N) ∈ L. The case
for m2 ∈ C(M) is symmetric.

The binary operation ·L inherits associativity and commutativity from M and N . Further,
to get a neutral element for ·L, we define εL ∈ L as εL = (εM , εN) which is indeed in L since
εM /∈ C(M). Also (m,n) ·L εL = (m,n). As we did before, we define the lexicographic ordering
≤L ⊆ L× L on L by

(m1, n1) ≤L (m2, n2) ⇐⇒ (m1 <M m2) or (m1 = m2 and n1 ≤N n2) ,

and conclude:

Lemma 7.2. (L, ·L, εL,≤L) is a PVS.

7.1. TOWARDS LEXICOGRAPHIC PRODUCTS OF PVS 101

Since (L, ·L, εL) is a commutative monoid by the remarks above, it only remains to show the
monotonicity of ·L w.r.t. ≤L. That is, that (m1, n1) ≤L (m2, n2) implies (m1, n1) ·L (m′, n′) ≤L
(m2, n2)·L(m′, n′) for all (m′, n′) ∈ L. The crucial insight is to note thatm′ might be collapsing
for m1 and m2 which leaves nothing to then force order-preservation in the second component,
as Figure 7.2 illustrated.

Hence, if m′ were indeed collapsing, it can only be paired in L with n′ = ⊥N . Then even
though m1 ·M m′ = m2 ·M m′, we would map both n1 ·N n′ and n2 ·N n′ to ⊥N and assert that
(m1, n1) ·L (m′, n′) ≤L (m2, n2) ·L (m,n) by equality in both components.

Proof. To prove monotonicity formally, let (m1, n1) ≤L (m2, n2) and an (m′, n′) ∈ L be given.
Case m1 <M m2: If m1 ·M m′ <M m2 ·M m′ then obviously (m1 ·M m′, n1 ·M n′) <L (m2 ·M
m′, n2 ·M n′). If otherwise m1 ·M m′ = m2 ·M m′ holds, then m′ ∈ C(M) and thus n′ = ⊥N .
Hence

(m1, n1) ·L (m′, n′) = (m1 ·M m′, n1 ·N n′) = (m1 ·M m′,⊥N) =
(m2 ·M m′,⊥N) = (m2 ·M m′, n2 ·N n′) = (m2, n2) ·L (m′, n′) .

Case m1 = m2 and n1 ≤N n2: Then m1 ·M m′ = m2 ·M m′ and n1 ·N n′ ≤N n2 ·N n′ by
monotonicity which implies (m1, n1) ·L (m′, n′) ≤L (m2, n2) ·L (m′, n′).

We use the operator n for lexicographic products, i.e., we write M nN for (L, ·L, εL,≤L).
If M is also bounded, then M nN is bounded with ⊥MnN = (⊥M ,⊥N).

An important practical consequence of the definition of n is that the first parameter PVSM
better shows no collapsing elements if we want a lossless encoding of a lexicographic relationship
between two PVS. From a soft constraint perspective, no soft constraint is allowed to map an
assignment to any collapsing element. This restriction, however, renders PVS such as, e.g.,
Nmax practically useless since every element other than εNmax = 0 is collapsing and would thus
be removed for n.

Since in general, hierarchically structured soft constraint problems may form deeper hierar-
chies than just two layers, associativity of n is a property of interest, i.e., that M n (N nO) =
(MnN)nO. Our proof is supported by describing the collapsing and non-collapsing elements
of a product M nN in terms of the collapsing and non-collapsing elements of M and N .

Lemma 7.3. Let M and N be PVS such that N is bounded. The set of collapsing elements
for the lexicographic product of M and N is composed of all collapsing elements of M paired
with ⊥N and every non-collapsing element of M paired with any collapsing element of N :

C(M nN) = (C(M)× {⊥N}) ∪ (R(M)× C(N)) .

Proof. Indeed, let (m,n) ∈ C(M n N). Then there are (m1, n1), (m2, n2) ∈ |M n N | with
(m1, n1) <L (m2, n2), i.e., either we have m1 <M m2 or it is the case that m1 = m2 and
n1 <N n2 holds, but (m1, n1) ·MnN (m,n) = (m2, n2) ·MnN (m,n) and thus m1 ·Mm = m2 ·Mm
and n1 ·N n = n2 ·N n.

In the case of m1 <M m2, m is collapsing in M and therefore n must be equal to ⊥N since
(m,n) ∈ |M nN | – consequently (m,n) ∈ C(M)×{⊥N}. If on the other hand m1 = m2, then
n must be in C(N) since n1 <N n2 but n1 ·N n = n2 ·N n. Thus, (m,n) ∈ R(M)× C(N).

Conversely, first assume (m,n) ∈ C(M) × {⊥N}. Then there are m1 <M m2 ∈ |M | with
m1 ·M m = m2 ·M m. With these elements we can construct (m1,⊥N) and (m2,⊥N) where

102 CHAPTER 7. HIERARCHICALLY LAYERED SOFT CONSTRAINTS

(m1,⊥N) <MnN (m2,⊥N) but multiplying with (m,n) yields (m·Mm1,⊥N) = (m·Mm2,⊥N) –
hence (m,n) is collapsing inMnN . Now, for the second case, let (m,n) ∈ (|M |\C(M))×C(N).
Then there are n1 < n2 ∈ |N | with n1 ·N n = n2 ·N n. But then also (m,n1) <MnN (m,n2) and
(m,n1) ·MnN (m,n) = (m ·M m,n1 ·N n) = (m,n2) ·MnN (m,n) which makes (m,n) collapsing
in M nN .

Next, we characterize the non-collapsing elements of a lexicographic product:

R(M nN) = |M nN | \ C(M nN) =([
C(M)× {⊥N}

]
∪
[
R(M)× |N |

])
\
([
C(M)× {⊥N}

]
∪
[
R(M)× C(N)

])
=

R(M)×
(
|N | \ C(N)

)
= R(M)×R(N) .

Applying both of the decompositions for C(M nN) and R(M nN), we examine associativity
for three PVS M , N , and O, where N and O are bounded:

|(M nN) nO| = R((M nN) nO) ∪ C((M nN) nO) =[
R(M nN)×R(O)

]
∪
[
C(M nN)× {⊥O}

]
∪
[
R(M nN)× |O|

]
=[

R(M nN)× |O|
]
∪
[
C(M nN)× {⊥O}

]
=[

R(M)×R(N)× |O|
]
∪
[
(C(M)× {⊥N} ∪ R(M)× C(N))× {⊥O}

]
=[

R(M)×R(N)× |O|
]
∪
[
R(M)× C(N)× {⊥O}

]
∪
[
C(M)× {(⊥N} × {⊥O)}

]
=

R(M)×
[
(R(N)× |O|) ∪ (C(N)× {⊥O})

]
∪
[
C(M)× {⊥NnO}

]
=[

R(M)× |N nO|
]
∪
[
C(M)× {⊥NnO}

]
=

|M n (N nO)| ,

from which it follows that n is associative since the binary operation ·MnNnO is associative and
the ordering ≤Mn(NnO) is equivalent to ≤(MnN)nO. Concluding, there exists an associative
lexicographic product of PVS that results in a PVS itself. The only caveat is that collapsing
elements must necessarily be eliminated and receive special treatment in picking the carrier
set of the product. This answers this chapter’s introductory question “When is the result
of a lexicographic combination of several PVS itself a PVS?”: Precisely if none but the last
layer contain collapsing elements. Otherwise, we may get a severely truncated version of the
lexicographic product we aimed for.

7.2 Constraint Hierarchies as Products of PVS
Equipped with a working lexicographic product of PVS, we revisit constraint hierarchies [Born-
ing et al., 1992] to investigate what kind of comparators layers need to use in order to map to
a PVS suitable for lexicographic products, i.e., one without collapsing elements. Consider Fig-
ure 7.1 as an example although originally constraint hierarchies considered boolean constraints
that were mapped to the reals with (weighted) error functions.

Thus, an n-layered constraint hierarchy CH = (C(k))1≤k≤n over variables X and domains
D, or (X,D)-constraint hierarchy, is given by a family of n sets of constraints. The constraints
in level 1 ≤ k ≤ n are considered as strictly more important than the constraints in level k+ 1.
A constraint hierarchy is finite if

⋃
1≤k≤nC

(k) is finite.
To map a finite constraint hierarchy CH = (C(k))1≤k≤n to PVS-based soft constraint prob-

lems, let L = (Hk)1≤k≤n be a corresponding family of partial valuation structures that serve as

7.2. CONSTRAINT HIERARCHIES AS PRODUCTS OF PVS 103

target structures to be mapped from assignments. Furthermore, every constraint c ∈ C(k) on
layer k is associated to an Hk-soft constraint ηc which is in charge of interpreting c with respect
to Hk. For instance, the boolean soft constraint “x ≤ 5” could likewise be interpreted as a
boolean Hk-soft constraint if |Hk| = {true, false} or it could be interpreted as ηc(θ) = |θ(x)−5|
to obtain an error metric if |Hk| ⊆ N. We call CHs = (C(k)

s)1≤k≤n with C(k)
s = {ηc | c ∈ C(k)}

for 1 ≤ k ≤ n a soft constraint hierarchy.
For a θ ∈ [X → D] the hierarchy solution degree for CHs of θ is defined to be the vector

(C(k)
s (θ))1≤k≤n. We can use the hierarchical solution degrees to induce a binary relation <H ⊆

[X → D]× [X → D] over assignments by

θ <H θ′ ⇐⇒ ∃1 ≤ k ≤ n . (∀1 ≤ i ≤ k − 1 . C(i)
s (θ) = C(i)

s (θ′)) ∧ C(k)
s (θ) <Hk

C(k)
s (θ′) ,

saying that the valuation θ′ is strictly better than the valuation θ, and denote its reflexive closure
on [X → D] by ≤H , which is precisely the lexicographic order on the set {(C(k)

s (θ))1≤k≤n | θ ∈
[X → D]}. To express the same ordering with a lexicographic product of PVS, we have that
in particular,

θ <H θ′ ⇐⇒ (C(k)
s (θ))1≤k≤n <H1n...nHn (C(k)

s (θ′))1≤k≤n

if, on the one hand, every Hk is a bounded PVS for at least all 2 ≤ k ≤ n, and, on the other
hand, C(k)

s (θ), C(k)
s (θ′) /∈ C(Hk) for all 1 ≤ k ≤ n− 1, or, equivalently, if ηc(θ), ηc(θ′) /∈ C(Hk)

for each c ∈ C(k), 1 ≤ k ≤ n − 1. The first requirement, that each Hk is bounded, can be
achieved by moving from Hk to its lifted variant (Hk)⊥. The other requirement, collapse-
free PVS, does not give rise to a canonical solution but rather requires appropriate modeling
endeavors.

7.2.1 Locally Predicate Better

Borning et al. [1992] referred to <H simply as the “better” predicate which is configurable
by various comparator functions that are responsible for aggregating values on a single layer.
Their most elementary suggestion, called locally-predicate-better, consists of interpreting every
constraint as a boolean predicate and ordering individual layers by the strict inclusion of
violation sets. An assignment is considered strictly worse if it violates a strict superset of
another assignment’s violation set (equivalently, if it satisfies a strict subset). On the one hand,
this predicate has been shown to be expressible by constraint preferences in Section 5.3.1. On
the other hand, we can use the local predicate viewpoint to exemplify the previously introduced
construction of a soft constraint hierarchy CHs corresponding to a constraint hierarchy CH .

Formally, let C be a finite set of constraints. The locally-predicate-better (LPB) level
comparator for C corresponds to requiring

θ <LPB
C θ′ ⇐⇒ {c ∈ C | θ′ 6|= c} ⊂ {c ∈ C | θ 6|= c} .

This can be expressed by choosing the PVS M = (2C ,∪, ∅,⊇) and the set of M -soft
constraints CMs = {ηc | c ∈ C} with ηc(θ) = {c} if θ 6|= c and ηc(θ) = ∅ otherwise, for each
c ∈ C. However, all elements of M are idempotent, and thus the collapsing elements of M are
2C \ {∅}. Hence, M is not suitable for a lexicographic product.

This situation is rather obvious to solve. Choosing instead the PVSN = (Mfin(C),∪−, *+, ⊆−)
which has no collapsing elements and the set of N -soft constraints CNs = {νc | c ∈ C} with

104 CHAPTER 7. HIERARCHICALLY LAYERED SOFT CONSTRAINTS

νc(θ) = *c+ if θ 6|= c and νc(θ) = *+ otherwise, for each c ∈ C, deviates this situation, since

CMs (θ) ≤M CMs (θ′) ⇐⇒ CNs (θ) ≤N CNs (θ′)

holds for all θ, θ′ ∈ [X → D]. In terms of optima on a given set of assignments, CMs and CNs
are thus equivalent (cf. Section 7.4.2).

7.2.2 Globally Better – Real-valued PVS

Locally predicate better turned out to be rather restrictive and indecisive (due to the generally
large number of incomparable solution degrees). In addition to it, Borning et al. [1992] proposed
global comparators that take as input numeric values obtained from an assignment for a single
layer and aggregate them to one scalar (cf. Figure 7.1). Due to all proposed comparators
being real-valued, we focus on real PVS in this section as the target PVS for the soft constraint
hierarchies to construct. A real PVS R has 0 ∈ |R| ⊆ R≥0 as its underlying set, 0 as its neutral
element, and the (inverted) usual ordering on the real numbers ≥ as its ordering. Choosing ·R
introduces variety in real PVS.

The choices proposed by Borning et al. [1992] align with common error measures such as the
sum of errors, the sum of squared errors (to punish stronger violations superlinearly), and the
maximum of all errors. The first two metrics are instances of p-norms. More specifically, H. F.
Bohnenblust axiomatically characterized binary operations that give rise to a norm [Bohnen-
blust, 1940] where one theorem is of particular interest for the task at hand: If homogeneity is
to be satisfied, i.e., (t ·r) ·R (t ·s) = t ·(r ·R s) holds in the real meet monoid R for all r, s, t ∈ R≥0
(where · is the usual multiplication and ·R is the binary operation in question) then there are
only two possible choices for ·R:

a) 1 ·R 1 = 1 and r ·R s = max{r, s} for all r, s ∈ R≥0

b) 1 ·R 1 > 1 and r ·R s = (rp + sp)1/p for all r, s ∈ R≥0 for some p > 0.
While nothing actually forces us to chose a norm-inducing binary operation ·R, the theorem
exposed the special position that maximum and p-norms take and their behavior regarding
idempotency which influences the existence of collapsing elements. Combining this with the
well-known fact that limp→∞(rp + sp)1/p = max{r, s} gives priority to p-norms. Thus, the
following are examples of real PVS:

– Weighted sum: R1 = (R≥0, ·1, 0,≥) with r ·1 s = r + s;

– Sum of squares: R2 = (R≥0, ·2, 0,≥) with r ·2 s =
√
r2 + s2;

– p-norm for p > 0: Rp = (R≥0, ·p, 0,≥) with r ·p s = (rp + sp)1/p;

– Worst case: R∞ = (R≥0, ·∞, 0,≥) with r ·∞ s = max{r, s}.
Since, contrary to the max operator, ·p is not closed over an arbitrary set V ⊆ R≥0 and p > 0,
we let 〈V 〉p be the smallest subset of R≥0 such that 0 ∈ 〈V 〉p and r ·p s ∈ 〈V 〉p if r, s ∈ 〈V 〉p.
Then we obtain a real PVS (〈V 〉p, ·p, 0,≥). For a V ⊆ R≥0, let V∞ denote the real PVS
(V ∪ {0}, ·∞, 0,≥), and let Vp denote the PVS (〈V 〉p, ·p, 0,≥) for p > 0.

As hinted by the theorem of Bohnenblust, all real PVS R with ·R = ·p for some p > 0 have
no collapsing elements, since r ·p s = (rp + sp)1/p is strictly monotonic in both arguments. For
real meet PVS with ·R = ·∞, however, C(R) = |R| \ {0}, since ·∞ is idempotent. Hence our

7.3. A MAPPING FROM THE MAXIMUM PVS TO A p-NORM PVS 105

V∞ = (V ∪ {0}, ·∞, 0,≥)

Vp = (〈V 〉p, ·p, 0,≥) M = (|M |, ·M , εM ,≤M) V = (Mfin(V ∩ R>0),∪−, *+,v)

id τ τ

Figure 7.3: Conceptual overview of the PVS that serve as targets for homomorphisms from
V∞. Here, “id” refers to the identity function (id(x) = x for x ∈ R) and not the categorical
identity morphism idV∞ . While M represents a generic PVS, Vp and τ are specific PVS based
on p-norms and real-valued multisets, respectively.

goal is to replace V∞ by Vp (with a sufficiently large p), similar to (yet more involved than)
replacing the set-based PVS by the multiset-based PVS in Section 7.2.1.1

7.3 A Mapping from the Maximum PVS to a p-Norm PVS
Replacing V∞ by Vp with sufficiently large p seems intuitive and promising. But what does
“sufficiently large” mean? When we search for a criterion to choose p such that Vp can order
elements in lieu of V∞, it is helpful to start with specific examples. With regard to Table 7.1,
let ~r = [2, 2, 2] and ~s = [0, 0, 3] be two real-valued vectors. In V∞, the single occurrence of 3 in
~s is more dominant than the three occurrences of 2 in ~r, i.e.,

∏
∞ ~r = 2 < 3 =

∏
∞ ~s whereas

for small values of p, the three occurrences of 2 can “overpower” the single 3. For instance,∏
2 ~s = 3 but

∏
2 ~r = 2√22 + 22 + 22 ≈ 3.46 which is greater. The larger p, the more dominant

the maximal components become. Here, just selecting p = 3 already orders ~r and ~s correctly.
A key idea is that if max ~r =

∏
∞ ~r is strictly less than max~s =

∏
∞ ~s (i.e., ~s is considered

worse than ~r), no matter how small the difference between max ~r and max~s is, it must not be
that even aggregating max ~r for n times can become worse than a single occurrence of ~s. It
turns out that this principle holds generally for any PVS that we can map to from V∞ via a
PVS homomorphism. Figure 7.3 presents the PVS involved in the following derivations.

Formally, let V ⊆ R≥0 with 0 ∈ V , M any PVS, and τ : V∞ →M a PVS homomorphism.
For a ~r = (ri)1≤i≤n ∈ V n, we write τ(~r) for (τ(ri))1≤i≤n. Our goal is to find criteria for M
and τ such that if we have max ~r =

∏
∞ ~r <

∏
∞ ~s = max~s (i.e., ~s is considered worse in V∞),

we also have
∏
M τ(~r) >M

∏
M τ(~s) in M (i.e., τ(~s) is also considered worse in M). For an

m ∈ |M |, we write m(n)M for the n-fold product of m w.r.t. ·M .

Lemma 7.4. Let V ⊆ R≥0 with 0 ∈ V , M any PVS, and τ : V∞ →M a PVS homomorphism.
For each n ≥ 1 we have∏

∞ ~r <
∏
∞ ~s implies

∏
M τ(~r) >M

∏
M τ(~s) for all ~r,~s ∈ V n (∗)

if, and only if,

r < s implies τ(r)(n)M >M τ(s) for all r, s ∈ V. (∗∗)
1Given the recent popularity of neural networks, one might wonder if the “softmax” function could also

be used as a replacement for max. However, softmax is a unary vector function and cannot be reduced to an
associative binary operation.

106 CHAPTER 7. HIERARCHICALLY LAYERED SOFT CONSTRAINTS

Proof. Indeed, we let first (∗) hold and show that (∗∗) holds as well. Hence, we assume
r, s ∈ V ⊆ R≥0 with r < s and need to show τ(r)(n)M >M τ(s). Construct the vectors
~r = [r, . . . , r] and ~s = [0, 0, . . . , s]. Since

∏
∞ ~r = r < s =

∏
∞ ~s, we get

∏
M τ(~r) = τ(r)(n)M >M∏

M τ(~s) = τ(0) ·M τ(0) ·M . . . ·M τ(s) = ε
(n−1)M

M ·M τ(s) = τ(s) by (∗).
Now conversely, assume (∗∗) holds and we show (∗) holds. Hence, let

∏
∞ ~r <

∏
∞ ~s. We call

rm =
∏
∞ ~r and sm =

∏
∞ ~s and define the vector ~r ∗ = [rm, . . . , rm]. Since rm < sm, we also

have τ(r)(n)M =
∏
M τ(~r ∗) >M τ(s). In addition, since for every 1 ≤ i ≤ n we have ~ri ≤ rm and

thus τ(~ri) ≥M τ(rm) by τ being a PVS homomorphism, we also get
∏
M τ(~r) ≥M

∏
M τ(~r ∗) by

the monotonicity of ·M . Hence,
∏
M τ(~r) >M

∏
M τ(~s). Moreover,

∏
M τ(~s) = τ(sm)·

∏
M τ(~s-1)

with ~s-1 being the remainder vector obtained from ~s by removing one instance of sm. Moreover,
since M is a PVS, we have τ(sm) ·

∏
M τ(~s-1) ≤M τ(sm). Combining all facts leads us to the

desired result:
∏
M τ(~r) ≥M

∏
M τ(~r ∗) >M τ(sm) ≥M

∏
M τ(~s).

As a matter of fact, (∗∗) yields some restrictions on useful choices of V , M , and τ when
it comes to lexicographic products. We have τ(r)(n)M ≤M τ(r) since M is a PVS. If τ(r) =
τ(r)(n)M , then τ(r) is idempotent, since τ(r) = τ(r)(n)M ≤M τ(r)(n−1)M ≤M . . . ≤M τ(r) ·M
τ(r) ≤M τ(r). If τ(r)(n)M <M τ(r), then there must be no r′ ∈ V with r < r′ that τ
“sandwiches” between τ(r)(n)M and τ(r), i.e., τ(r)(n)M ≤M τ(r′) ≤M τ(r), since otherwise, by
choosing this r′ for s in (∗∗), τ(r′) <M τ(r)(n)M ≤M τ(r′) would have to hold.

Moreover, plugging in the definitions of p-norm real PVS yields even more insight into
feasible structures and homomorphisms.

Corollary 7.5. As special cases of the equivalence of (∗) and (∗∗) for V ⊆ R≥0 with 0 ∈ V ,
p > 0, and τ : V∞ → Vp with τ(r) = r we obtain for each n ≥ 1:∏

∞ ~r <
∏
∞ ~s implies

∏
p ~r <

∏
p ~s for all ~r,~s ∈ V n (∗p)

if, and only if,

r < s implies n
1
p · r < s for all r, s ∈ V. (∗∗p)

The term n
1
p results from the n-fold application of ·p on r. Our ultimate goal is to find p

such that (∗p) holds for a given SCSP where we assume n, the number of soft constraints to be
given and constant. But (∗p) is certainly not true for any V ⊆ R≥0. To find useful restrictions,
(∗∗p) provides guidance: We have seen this equation in action in our introductory example
with ~r = [2, 2, 2] and ~s = [0, 0, 3]. Here, even n occurrences of 2 must not exceed a single value
of 3 in the respective p-product.

Since (∗∗p) has to hold no matter how small the difference between r and s is, it makes
sense to consider the most extreme case first since then a chosen p will be high enough for
larger differences. If r = 0, (∗∗p) holds for any s > 0. Hence, assume that we can express
the smallest quotient s

r for 0 6= r < s between any values in V by δ, e.g., here δ = 3
2 = 1.5.

Instantiating (∗∗p) yields that r < δr has to imply n
1
p · r < δr. But since n

1
p decreases with

increasing p and δ is constant, we can surely find some p satisfying this. More precisely, for
some r > 0, we get

n
1
p · r < δr ⇐⇒ n

1
p < δ ⇐⇒ 1

p
ln(n) < ln(δ) ⇐⇒ ln(n)

ln(δ) < p .

7.4. OPTIMA-SIMULATION 107

For instance, with δ = 1.5 and n = 3 the desired property holds for all p > ln(3)
ln(1.5) ≈ 2.71 which

confirms our intuition gained from Table 7.1. Therefore, sets V that admit a smallest quotient
δ are amenable to PVS based on p-norms. We call such sets δ-separated. Formally,

Definition 7.1 – δ-Separation
A set V ⊆ R≥0 with 0 ∈ V is δ-separated for some δ > 1 if sr ≥ δ for all 0 6= r < s ∈ V .

Conversely, if this is not the case, i.e., if for each δ > 1 there are r < s ∈ V with s
r < δ,

then (∗∗p) is violated for each p > 0: Let any p > 0 be given and pick r < s ∈ V such that
r 6= 0 and s

r < n
1
p . Then n

1
p · r > s. In particular, this prohibits sets such as R≥0 itself or [0, r]

for some r ∈ R≥0. Still, there are several practical cases that involve δ-separated sets.

Example 7.3 – Examples for δ-separation
(1) The set V = {0, 2.5, π, 5, 8, 9} is δ-separated with δ = 9

8 = 1.125.
(2) More generally, let V ⊆ R≥0 with 0 ∈ V be finite. Then there is an ε > 0 such that
|r1− r2| ≥ ε for all r1 6= r2 ∈ V . Let 0 6= r < s ∈ V . Then s

r ≥
r+ε
r = 1 + ε

r ≥ 1 + ε
max V . Thus

V is (1+ ε
max V)-separated. For the special but frequently occurring case of V = {0, . . . , k} ⊆ N

for some k ∈ N, i.e., we have ε = 1 and max V = k which results in k+1
k -separation. For this

case, we get a tighter δ bound since V is also k
k−1 -separated.

(3) For powers of a given basis c ∈ R with c > 1, we let V c = {cn | n ∈ N} ∪ {0}. If
0 6= r < s ∈ V c, then there are m < n with r = cm and s = cn; then cn

cm = cm−n ≥ c. Thus V c

is c-separated and unbounded.
(4) Alternatively, let d ∈ R with d > 1 and let V

1
d = {d−n | n ∈ N} ∪ {0}. If 0 6= r < s ∈ V

1
d ,

then there are m and n with r = d−n and s = d−m and thus m < n. Then d−m

d−n = dn−m ≥ d

holds. In addition, 0 < d−n ≤ d for all n ∈ N. Hence V
1
d is d-separated and also bounded.

Consequently, if some set V is δ-separated and V∞ was the original target of a PVS-based
soft constraint problem with n soft constraints that map to V and are combined by ·∞, we can
find a p that is large enough to “replace” V∞. Whenever an assignment θ is deemed better in
V∞ than another one θ′, e.g., the maximal violation of θ is smaller than that of θ′, the same
decision would be made in Vp. In the next section, we formalize this principle to obtain a more
general notion of “replacing PVS” in optimization problems.

7.4 Optima-Simulation for PVS-based Constraint Problems
When designing a soft constraint problem, modelers arguably care most about an induced
ordering over solutions to a constraint problem rather than what particular set and ordering
are used in the algebraic structures – or even only about the set of optimal solutions. As a trivial
example for this, consider that in any COP with objective function f : [X → D] → R and
the natural ordering over reals, a solution maximizing f would also maximize any monotonic
function composed to f such as e.g., 2f or f3. In practice, this is often exploited, e.g., by
taking the logarithm of an objective to achieve better numerical stability. In a similar spirit,
we aim to replace a PVS, say V∞, by another one, say Vp, given that certain criteria hold. Yet,

108 CHAPTER 7. HIERARCHICALLY LAYERED SOFT CONSTRAINTS

we argue that the relationship between both partial orders requires more care and restriction
than just using any PVS homomorphism.

A similar effort was made by Bistarelli, Codognet, and Rossi, who discuss abstractions
of c-semiring-based soft constraint problems by means of Galois connections [Bistarelli et al.,
2002] which was later shown to amount to a semiring isomorphism by Li and Ying [2008] –
hence being too restrictive for true abstraction. The problem can also be seen in the context
of viewpoints in model reformulation [Smith, 2006] in the sense that we seek an alternative
PVS that reflects the same underlying user preferences.

Before diving into our proposal of formalizing replacement PVS, we state more precisely
what classes of soft constraint problems are affected by it.

7.4.1 Admissible Soft Constraint Problems

Even though most (soft) constraint problems considered in practice are finite in terms of the
number of soft constraints as well as the search space, for the development of our mathematical
model this restriction not necessarily applies. For the optimization task to be meaningful
though, we seek a sufficiently precise criterion that still allows for infinite domains in the
problem specifications. Intuitively, we consider optimization useful if there is an optimal value
to achieve – as opposed to, e.g., an unreachable upper bound in a continuous problem. We
call this criterion admissibility and now develop it more formally.

Recall that, given a constraint problem CSP = (X,D,C) and a PVS M , an M -soft con-
straint µ over (X,D) is given by a map µ : [X → D] → |M |. The maximum solution degrees
of µ are given by

µ∗ = Max≤M {µ(θ) | θ ∈ [X → D]} ,

and similarly the optimal solutions by

µ̂([X → D]) = {θ ∈ [X → D] | µ(θ) ∈ µ∗} .

An M -soft constraint µ is admissible if for each θ ∈ [X → D] there is an m ∈ µ∗ such that
µ(θ) ≤M m. A finite set CMs of M -soft constraints can be viewed as the M -soft constraint
CMs (θ) =

∏
M*µ(θ) | µ ∈ CMs + for θ ∈ [X → D]. Such a set CMs is admissible if CMs is finite

and every M -soft constraint in CMs is admissible.

Example 7.4 – Admissibility
Let µ be an M -soft constraint over (X,D) for a PVS M .

(1) If (X,D) is finite, then µ is admissible.
(2) If <M has no infinite strictly ascending chains, then µ is admissible.
(3) To see a non-admissible soft constraint, let X = {x}, Dx = [0, 1], i.e., the continuous

closed real-valued interval from 0 to 1, and (|M |,≤M) = ([0, 1],≥). Put more conventionally,
we seek to minimize the objective value in |M |. Assume µ : [X → D] → |M | to be defined
by µ({x 7→ r}) = r if r > 0, and µ({x 7→ 0}) = 1. Then µ∗ = ∅, since the set of solution
degrees is the open interval]0, 1] with 0 the optimum, which, however, cannot be reached by
any assignment. Thus µ is not admissible.

7.4. OPTIMA-SIMULATION 109

Admissibility asserts that a search and propagation algorithm exploring the search space of
a given CSP may at least be guaranteed to find an optimal solution in finite time. The concept
is related to proving unboundedness in linear programming which avoids continuing the solving
process. Admissibility can be seen as a necessary criterion for any optimization procedure
although, in principle, so-called anytime algorithms could optimize indefinitely, terminating
only upon reaching time-outs.

7.4.2 Substituting PVS for Optimization: Optima-Simulation and
Optima-Equivalence

Resuming the mapping presented in Section 7.3, we saw that applying a PVS based on p-norms
to n distinct real values can result in the same judgment as if the maximum operator were
used. It thus constitutes a promising candidate to replace V∞ since it is furthermore free of
collapsing elements. For example,

∏
∞[2, 2, 2] = 2 < 3 =

∏
∞[0, 0, 3] and also

∏
3[2, 2, 2] ≈

2.88 < 3 =
∏

3[0, 0, 3] which is a result that we derived from δ-separation. But what if we
compared [3, 3, 3] to [0, 0, 3]? Then

∏
∞[3, 3, 3] = 3 = 3 =

∏
∞[0, 0, 3] but, e.g.,

∏
3[3, 3, 3] ≈

4.33 > 3 =
∏

3[0, 0, 3]. More generally, for any p > 1,
∏
p[3, 3, 3] > 3 =

∏
p[0, 0, 3] since ·p

is strictly monotonic in both arguments. Should this be acceptable? Arguably, many solvers
would only present either of the two equal solutions in a strict optimization algorithm – most
likely only the first. This “non-determinism” would be replaced by the induced ordering but
the modeler is not supposed to distinguish between both assignments, otherwise they should
have been evaluated differently, in the first place. On the other hand, often users might prefer
to inspect a whole set of equally valued assignments in which case the induced distinction is
more harmful.

This section discusses whether this induced ordering between elements that were originally
mapped to the same value is still acceptable. Aiming for a rational justification, we introduce
an asymmetric notation called optima simulation that regulates the relationship between, e.g.,
V∞ and Vp but is also more widely applicable for homomorphisms involving any PVS.

Formally, for a CSP given by (X,D,C), consider two PVSM and N . Additionally, let CMs
and CNs be finite sets ofM and N -soft constraints, respectively. Each of them induces a quasi-
ordering over assignments (antisymmetry does not necessarily hold since unequal assignments
may of course map to the same element in |M | or |N |). Hence both sets give rise to different
optimization problems.

Most obviously, we say that CMs and CNs are optima equivalent, written as CMs ≈ CNs ,
if assignments from [X → D] are optimal w.r.t. CMs if and only if they are optimal w.r.t.
CNs . A sufficient but stronger notion for optima equivalence is ordering equivalence, i.e., that
CMs (θ′) ≤M CMs (θ) if, and only if, CNs (θ′) ≤N CNs (θ) for all θ, θ′ ∈ [X → D]. We have seen
an instance of optima equivalence in Section 7.2.1 where we replaced a set-based PVS by a
multiset-based variant to avoid collapsing elements.

However, optima equivalence may sometimes be too restrictive for practical purposes.
Therefore, a weaker requirement is to say that we can use PVS N with CNs instead of PVS
M with CMs – as long as every assignment deemed optimal with N is also considered optimal
withM (we are not “making suboptimal assignments optimal”) and some (but not all) optimal
assignments are still optimal with N (we are losing a “tolerable amount of optima”). Figure 7.4
visualizes this idea which is formally presented in the following definition.

110 CHAPTER 7. HIERARCHICALLY LAYERED SOFT CONSTRAINTS

x y z
θ1 0 1 0
θ2 0 0 1
θ3 0 1 1

CMs CNs4

εM

M

m1 m2

⊥M

εN

N

n1 n2

n3

⊥N

Figure 7.4: An example to illustrate optima simulation. A problem specified using a set of soft
constraints CMs mapping to a PVS M can be simulated by the set CNs mapping to N if for
every reachable optimum w.r.t. M there is at least one solution that is still optimal w.r.t. N
(here θ1 is still optimal in CNs but θ2 is not any more). Conversely, any assignment deemed
optimal w.r.t. CNs must also be optimal w.r.t. CMs . It may only happen that equally optimal
solutions are ordered (i.e., distinguished) in N by the mapping of CNs .

Definition 7.2 – Optima simulation
CNs optima simulates CMs , written as CMs 4 CNs , if for each θM ∈ ĈMs ([X → D]) there is a
θN ∈ ĈNs ([X → D]) with CMs (θM) = CMs (θN), and, vice versa, if for each θN ∈ ĈNs ([X → D])
there is a θM ∈ ĈMs ([X → D]) with CMs (θM) = CMs (θN).

Obviously, CMs ≈ CNs if, and only if, CMs 4 CNs and CNs 4 CMs . Intuitively, our definition
of optima simulation allows that assignments in the same equivalence class w.r.t. CMs are
further distinguished in CNs as long as each equivalence class in the M -optimal assignments is
represented in N . This implies that the set of optimal assignments according to CNs is a subset
of the optimal assignments for CMs , i.e,. ĈNs ([X → D]) ⊆ ĈMs ([X → D]). We can furthermore
give sufficient criteria for the relations of assignments evaluated in CMs and CNs to check if
CNs 4 C

M
s holds, provided that both CMs and CNs are admissible:

Lemma 7.6. Let M and N be PVS and let CMs be an admissible set of M -soft constraints
and CNs an admissible set of N -soft constraints such that

CMs (θ) <M CMs (θ′) implies CNs (θ) <N CNs (θ′)
CMs (θ) ‖M CMs (θ′) implies CNs (θ) ‖N CNs (θ′)

for all θ, θ′ ∈ [X → D]. Then CMs 4 CNs .

Proof. To show CMs 4 C
N
s , let first θM ∈ ĈMs ([X → D]) be an optimal assignment according to

CMs that is simultaneously not optimal according to CNs , i.e., θM /∈ ĈNs ([X → D]). Then, since

7.4. OPTIMA-SIMULATION 111

CNs is admissible, there exists a θN ∈ ĈNs ([X → D]) with CNs (θM) <N CNs (θN). Moreover,
there is a θ′M ∈ ĈMs ([X → D]) with CMs (θN) ≤M CMs (θ′M), since CMs is also admissible. But it
cannot be that CMs (θN) <M CMs (θ′M) since then we would also have CNs (θN) <N CNs (θ′M) by
the assumed premise, and thus θN would not be optimal, i.e., contradicting θN ∈ ĈNs ([X →
D]). Hence, CMs (θN) = CMs (θ′M).

Moreover, either CMs (θM) ‖M CMs (θ′M) or CMs (θM) = CMs (θ′M) since both θM and θ′M are
elements of ĈMs ([X → D]). But CMs (θM) ‖M CMs (θ′M) is impossible since then CMs (θM) ‖M
CMs (θ′M) = CMs (θN) and consequently also CNs (θM) ‖N CNs (θN) by the assumed premise. But
we already established CNs (θM) <N CNs (θN), hence CMs (θM) = CMs (θ′M) = CMs (θN). Thus it
must be that θM ∈ ĈNs ([X → D]), contrary to our assumption.

Now let conversely be θN ∈ ĈNs ([X → D]). If θN were not optimal w.r.t. CMs , i.e.,
θN /∈ ĈMs ([X → D]), there would be a θM with CMs (θN) <M CMs (θM) since CMs is admissible.
But then also CNs (θN) <N CNs (θM) which contradicts the optimality of θN w.r.t. CNs . Thus,
any assignment optimal w.r.t. CNs must also be optimal w.r.t. CMs .

Instead of checking for incomparability, we can also state an alternative variant of the
lemma. From the conditions of the lemma it follows that CNs (θ) ≤N CNs (θ′) implies CMs (θ) ≤M
CMs (θ′) for all θ, θ′ ∈ [X → D]: To show this, let the conditions of the lemma hold and for
a contradiction, assume CNs (θ) ≤N CNs (θ′) but CMs (θ) 6≤M CMs (θ′). Then either CMs (θ′) <M
CMs (θ) or CMs (θ) ‖M CMs (θ′), implying CNs (θ′) <N CNs (θ) or CNs (θ) ‖N CNs (θ′) which both
contradict CNs (θ) ≤N CNs (θ′).

In addition, from the requirement that CNs (θ) ≤N CNs (θ′) implies CMs (θ) ≤M CMs (θ′)
for all θ, θ′ ∈ [X → D] it follows that CMs (θ) ‖M CMs (θ′) implies CNs (θ) ‖N CNs (θ′) for
all θ, θ′ ∈ [X → D]: If we had CMs (θ) ‖M CMs (θ′) but CNs (θ) 6‖N CNs (θ′) then for either
CNs (θ) �N CNs (θ′) with � ∈ {<,>,=}, we would also get CMs (θ) �M CMs (θ′), contradicting the
incomparability with CMs . Thus, the conditions of the lemma can be equivalently replaced by

CMs (θ) <M CMs (θ′) implies CNs (θ) <N CNs (θ′)
CNs (θ) ≤N CNs (θ′) implies CMs (θ) ≤M CMs (θ′)

for all θ, θ′ ∈ [X → D].
Intuitively, these conditions state that true domination in CMs must remain true domination

when moving to CNs whereas equality in CMs can lead to refined ordering in CNs . Moreover, in
CNs , we cannot invert rank assignments made differently in CMs . The term optima-simulation
for the relation 4 between sets of soft constraints CMs and CNs is loosely inspired by simulation
relations for transition systems: An ordering decision made by CMs can adequately be simulated
by CNs although it may truly refine the coarser ordering relation induced by CMs . In the next
section, we put the definition of optima simulation into action by formalizing the relation
between V∞ and a Vp for corresponding sets of soft constraints.

7.4.3 Optima-Simulating Max by Large p-Norm PVS

Lemma 7.7. Let (X,D,C) be a CSP, V ⊆ R≥0 with 0 ∈ V be δ-separated, CV∞s a finite
admissible set of V∞-soft constraints with |CV∞s | = n, and p > ln(n)

ln(δ) . Define τp : |V∞| → |Vp|
by τp(r) = r and the finite set of Vp-soft constraints C

Vp
s by CVp

s = {τp ◦ µ | µ ∈ CV∞s }.
If CVp

s is admissible, then CV∞s 4 CVp
s .

112 CHAPTER 7. HIERARCHICALLY LAYERED SOFT CONSTRAINTS

x y z

SCSP with X = {x, y, z} and Dx = Dy = Dz = {0, 1}

x µx
0 1
1 2

y µy
0 2
1 1

z µz
0 3
1 1

x y µxy
0 0 4
0 1 2
1 0 2
1 1 1

y z µyz
0 0 1
0 1 3
1 0 0
1 1 2

x y z ·∞ ·6
0 0 0 4 4.12
0 0 1 4 4.12
0 1 0 3 3.04
0 1 1 2 2.25
1 0 0 3 3.12
1 0 1 3 3.12
1 1 0 3 3.04
1 1 1 2 2.25

Overall:

Figure 7.5: An exemplary SCSP that has V6 optima-simulate V∞. The n = 5 soft constraints
are mapped to 〈V 〉6 instead of V = {0, 1, 2, 3, 4} and for combination, ·6 is in charge instead
of ·∞ (the solution degree is likely to be only in 〈V 〉6 instead of V). Since V is 4

3 -separable,
choosing p > ln(n)

ln(δ) = ln(5)
ln(4/3) ≈ 5.59 is sufficient for optima simulation and we are guaranteed

that at least one of the V∞ optimal solutions is also optimal in V6 (here, even both).

Proof. To show CV∞s 4 C
Vp
s , we may check the conditions developed in Lemma 7.6. Since

incomparability is not relevant in the totally ordered real PVS V∞, we only need to consider
the first condition which holds as a consequence of (∗∗p) and the choice of p.

Figure 7.5 wraps up the concepts that led up to this use case of optima simulation. Since
Vp is a PVS without collapsing elements and optima simulates V∞, we can safely use it instead
for lexicographic products. The guarantees we get are those specified by optima simulation,
i.e., at least one optimal solution from an equivalence class of optimal solution degrees will
remain optimal and no Vp-optimal solution was V∞-suboptimal.

With respect to constraint hierarchies, this means that the class of problems that Hosobe
[2009] excluded from his solution (remember that “worst-case-better” was not part of his
“rational c-semirings”) is now at least partially expressible in lexicographic products of PVS.
We cannot expect to do much better than optima-simulation for V∞ since the max operator
leads to a meaningless PVS in lexicographic products due to its idempotency.

Still, for this construction to work, V needs to be δ-separable and n has to be fixed, but
a scalar PVS type 〈V 〉p ⊆ R is obtained. Also, the required p increases with increasing n and
decreasing δ, fairly quickly for realistic problem sizes (see Section 7.5). If, on the other hand,
structured non-scalar data types are acceptable, it turns out that the p-norm-based solution
is not the only non-collapsing PVS that can optima-simulate V∞.

7.4.4 Optima-Simulating Max with Finite Multisets

Instead of using a scalar real-valued data type as the carrier set of an optima-simulating
PVS, we can equivalently collect all soft constraints’ valuations in a multiset (since gradings
can occur more than once) and compare the resulting multisets of assignments by means of
a suitable multiset ordering which is in fact a variant of the lexicographic ordering. Since
we again assume that any SCSP only maps an assignment to finitely many soft constraint
gradings, the set of finite multisets over reals (written as Mfin(R>0)) is sufficient. In this

7.4. OPTIMA-SIMULATION 113

multiset representation, any positive real value is collected in a multiset whereas zero values
are not included.

Definition 7.3 – Non-Collapsing Max-ordering over multisets
The Non-Collapsing Max-ordering on Mfin(R>0) is the binary relation v ⊆ Mfin(R>0) ×
Mfin(R>0), defined by T v U if, and only if, there is a q > 0 such that

∏
p T ≥

∏
p U for all

p > q, where
∏
p*+ = 0 and

∏
p(T ∪− *r+) = r ·p

∏
p T .

For instance,
∏
p*3+ >

∏
p*2, 2, 2+ for all p ≥ 3. Then v is a partial order, where reflexivity

and transitivity are obvious, and we only have to demonstrate antisymmetry: Let T,U ∈
Mfin(R>0) with T v U and U v T . Then there is a qTU > 0 such that

∏
p T ≥

∏
p U for

all p > qTU , and equivalently a qUT > 0 such that
∏
p U ≥

∏
p T for all p > qUT . Hence∏

p T =
∏
p U for all p > max{qTU , qUT } (which does not guarantee T = U , yet). Since

limp→∞
∏
p T =

∏
∞ T , we either have that T = *+ = U or that there is an r ∈ R>0 with

max T = r = maxU . In the latter case, with T = T ′ ∪− *r+, U = U ′ ∪− *r+, we have r ·p
∏
p T
′ =

r ·p
∏
p U
′ for all p > max{qTU , qUT } and thus

∏
p T
′ =

∏
p U
′ for all p > max{qTU , qUT } since

·p is strictly monotonic in both arguments. Thus, T = U follows by induction on the size of T .
For any V ⊆ R≥0, we consider the structure V = (Mfin(V ∩R>0),∪−, *+,v). If T @ U , then

T ∪− V @ U ∪− V : Let
∏
p T >

∏
p U for all p > q for some q > 0. Then

∏
p(T ∪− V) = (

∏
p T) ·p

(
∏
p V) > (

∏
p U) ·p (

∏
p V) =

∏
p(U ∪− V) for all p > q, since ·p is strictly monotonic in both

arguments. This proves strict monotonicity for V . We thus have that V = (Mfin(V),∪−, *+,v)
is a PVS that has no collapsing elements.

In fact, checking whether T v U does not have to involve evaluating any p-norms other
than the∞-norm: Let T,U ∈Mfin(R>0) be given. If U = *+, then T v U , and if T = *+, then
T w U . Thus we are left with the case that T 6= *+ and U 6= *+; in particular, max T > 0 and
maxU > 0. If max T > maxU , then T @ U , since then limp→∞

∏
p T = max T > maxU =

limp→∞
∏
p U ; conversely, if max T < maxU , then T A U . Hence, we are now left with the case

that max T = maxU . But then we proceed recursively for T ′ and U ′ with T = *max T + ∪− T ′
and U = *maxU+ ∪− U ′. This procedure gives us a simple reduction to checking lexicographic
orderings on ordered vectors of reals: For multisets T and U , we obtain descendingly ordered
vectors (e.g., *2, 1, 4, 2+ 7→ [4, 2, 2, 1]) and proceed to lexicographically order those vectors
starting from the first component until there is a strict difference or one of the vectors has
become empty.

Thus, v is a variant of lexicographically ordering a multiset. Intriguingly, the following
relation with the Sym-Diff-Hoare-ordering of Definition 6.3 holds which also provided a multiset
lifting for the TPD-semantics of constraint preferences.

Lemma 7.8. v = vR for R = (R>0,≥).

Proof. Let first T vR U hold, i.e., U vR−1 T and we can split T = T ′ ∪− V and U = U ′ ∪− V ,
such that T ′ and U ′ have no common elements, and for all r ∈ U ′ there is an s ∈ T ′ such that
r < s. If U ′ = *+, then T ⊆− U and thus for any p > 0:

∏
p T =

∏
p T
′ ·p
∏
p V ≥

∏
p V =

∏
p U ,

confirming T v U . Otherwise U ′ 6= *+ and we get an r as the maximum of U ′. Let s be the
maximum in T ′. By the definition of vR−1 , we have r < s. Additionally,

∏
p T
′ ≥ s > r and∏

pR = |U ′|1/pr ≥
∏
p U
′ for any p > 0 where R is a multiset containing |U ′| copies of r. Since

114 CHAPTER 7. HIERARCHICALLY LAYERED SOFT CONSTRAINTS

s > r and |U ′|1/p decreases with rising p, we can choose a q ∈ R>0 such that s ≥ |U ′|1/qr.
Then

∏
p T
′ ≥ s ≥

∏
pR = |U ′|1/pr ≥

∏
p U
′ for all p > q.

Conversely, now assume
∏
p T ≥

∏
p U for all p > q for some q ∈ R>0. Split again T = T ′∪−V

and U = U ′ ∪− V , such that T ′ and U ′ have no common elements. To prove T vR U , i.e.,
U vR−1 T , we have to show that for all r ∈ U ′ there is an s ∈ T ′ such that r < s. If U ′ is
empty this claim obviously holds. Thus, we consider the case where U ′ is non-empty. Since∏
p T ≥

∏
p U , also

∏
p T
′ ≥

∏
p U
′ for all p > q. Let r be the maximum of U ′. Then T ′ must

be non-empty, since
∏
p T
′ ≥

∏
p U
′ > 0 must hold since U ′ is non-empty and this would be

impossible if
∏
p T
′ =

∏
p*+ = 0. Hence, let s be the maximum of T ′. Since s = limp→∞

∏
p T
′

and r = limp→∞
∏
p U
′, we deduce s ≥ r from

∏
p T
′ ≥

∏
p U
′ for all p > q; and s > r, since

otherwise r would be a common element of T ′ and U ′ – but those are collected in V .

Mapping soft constraint problems to V instead of V∞ (for some V ⊆ R≥0 with 0 ∈ V)
is straightforward, as Table 7.1 shows. As depicted in Figure 7.3, define τ : R≥0 → |V | by
τ(r) = *r+ for r 6= 0 and τ(0) = *+; then τ : V∞ → V is a PVS homomorphism and we can
convert any set of V∞-soft constraints CV∞s into a set of V -soft constraints CVs by defining
CVs = {τ ◦ µ∞ | µ∞ ∈ CV∞s }. As a preparatory step for optima simulation, we instantiate
Lemma 7.4 for this situation. Let r, s ∈ R≥0 with r < s, and let n ≥ 1. If r = 0, then
τ(s) = *s+ @ *+ = τ(r)(n)R . If r 6= 0, then there is a q > 0 such that s > n

1
p · r for all p > q,

and hence τ(s) = *s+ @ *n · r+ = τ(r)(n)
V . Thus (∗∗) holds for all n ≥ 1.

However, a soft constraint problem that is admissible when working in V∞ is not necessarily
admissible when transferring the problem to V . Let X = {x}, D = [0, 1] with two soft
constraints µ and ν mapping to V = [0, 1]. We define µ : [X → D]→ R≥0 with µ({x 7→ r}) = r
if r 6= 0, and µ({x 7→ 0}) = 1; and ν : [X → D] → R≥0 with ν({x 7→ r}) = 1, i.e., in total,
every assignment {x 7→ r} is mapped to max{1, r} = 1 in aggregation. Then CV∞s = {µ, ν}
is a finite set of V∞-soft constraints, which is also admissible, since its set of optimal solution
degrees (CV∞s)∗ = {1} and CV∞s (θ) = 1 for all θ ∈ [X → D]. However, for CVs = {τ ◦ µ, τ ◦ ν},
which is a finite set of V -soft constraints, we get that (CVs)∗ = ∅, since each θr = {x 7→ r} with
CVs (θr) = *r, 1+ can be improved to some θ r

2
= {x 7→ r

2} with C
V
s (θ r

2
) = *r/2, 1+ and there is

no θ ∈ [X → D] with CVs (θ) = *1+.
Hence, to obtain an optima-simulating set of soft constraints, we need to explicitly assume

admissibility. Wrapping up all the definitions for the second instance of optima-simulation, we
get:

Lemma 7.9. Let X be a set of variables with domains D, V ⊆ R≥0 with 0 ∈ V , and CV∞s
a finite admissible set of V∞-soft constraints (from X to D). Define the finite set of V -soft
constraints by CVs by CVs = {τ ◦ µ | µ ∈ CV∞s }. If CVs is admissible, then CV∞s 4 CVs .

Proof. We proceed by the alternate sufficient criterion provided by Lemma 7.6. Hence, we have
to show that CV∞s (θ) <V∞ CV∞s (θ′) implies CVs (θ) @ CVs (θ′) and conversely CVs (θ) v CVs (θ′)
implies CV∞s (θ) ≤V∞ CV∞s (θ′).

Therefore, let CV∞s (θ) <V∞ CV∞s (θ′), i.e., r = max{µ(θ) | µ ∈ CV∞s } > max{µ(θ′) | µ ∈
CV∞s } = s. If s = 0 then CVs (θ′) = *+ and CVs (θ) @ CVs (θ′) holds. Otherwise, CVs (θ) = R =
*r1, . . . , r, . . . , rn+ and CVs (θ′) = S = *s1, . . . , s, . . . , sm+, where ri ≤ r, si ≤ s, and r > s. Then
firstly

∏
pR ≥ r holds for every p > 0 due to the strict monotonicity of ·p. Moreover, for large

p, r is greater than even |CV∞s | copies of s since
∏
p*s | 1 ≤ i ≤ |CV∞s |+ = |CV∞s |1/p · s and the

7.5. DISCUSSION: APPLICABILITY AND CONSEQUENCES 115

term |CV∞s |1/p decreases as we increase p. Still, the p-product of |CV∞s | copies of s is greater
than or equal to the p-product of all valuations in {µ(θ′) | µ ∈ CV∞s }. Therefore, choose a
q > 0 such that r > |CV∞s |1/qs. Then

∏
pC

V
s (θ) ≥ r > |CV∞s |1/ps ≥

∏
pC

V
s (θ′) for all p > q,

i.e., CVs (θ) @ CVs (θ′).
Now let conversely CVs (θ) v CVs (θ′), where we have T = *µ(θ) | µ ∈ CV∞s , µ(θ) 6= 0+ and

T ′ = *µ(θ′) | µ ∈ CV∞s , µ(θ′) 6= 0+. Then
∏
p T ≥

∏
p T
′ for all p > q for some q > 0. Since

limp→∞ T = max T and limp→∞
∏
p T
′ = max T ′, we obtain CV∞s (θ) = max T ≥ max T ′ =

CV∞s (θ′) and consequently CV∞s (θ) ≤V∞ CV∞s (θ′).

In practice, V acts as a PVS collecting all soft constraints’ valuations and then aggregates
them in an ordering that respects the ordering induced by the maximal valuation. In a sense,
the combination operation is deferred to the check for comparability of two solutions since all
information is stored in the multisets.

7.5 Discussion: Applicability and Consequences
The driving theme throughout this chapter was to theoretically investigate the boundaries
of expressing constraint hierarchies as PVS, in particular as lexicographic products of PVS
representing individual layers. We have seen that any PVS directly representing maximal vio-
lation as aggregation strategy leads to collapsing elements that are prohibitive for lexicographic
products. Hence, we defined and motivated optima-simulation as a criterion that formalizes
approximation to a true lexicographic product for that and many other cases.

Finally, we have seen two specific optima-simulating PVS for the maximal violation case
(or “worst-case-better”), one relying on p-norms and one building upon finite multisets of
reals as the element type. These constructions give a straightforward “recipe” to apply in
modeling situations involving lexicographic products (including but not limited to constraint
hierarchies):

1. Define X, D and C for the (hard) constraint model.
2. Model layers of lexicographically ordered preferences using several PVSM1, . . .,Mk with

appropriate soft constraints mapping from [X → D].
3. Look for collapsing elements in M1, . . ., Mk.
4. If there are collapsing elements in PVS Mi, find an optima-simulating M ′i along with a

PVS homomorphism τ : Mi → M ′i that can be used to “forward” soft constraints from
Mi to M ′i .

5. Solve the SCSP for the PVSM1n. . .nM ′in. . .nMk and be safe to find optimal solutions
that are originally optimal, i.e., if Mi took place in the ordering.

These constructions are mathematically sound and we hope that, in particular, the notion
of optima-simulation is useful when it comes to systematically replacing PVS from a mod-
eler’s perspective. For a purely PVS-based soft constraint framework, we argue that such
constructions are essential if one wants to offer lexicographic combinations. Still, questions
of practicality and actual implementations of both of the presented optima-simulating PVS
remain open. The right choice obviously depends on the modeled problem in question.

Choosing the p-norm based Vp instead of V∞ is feasible if V is δ-separable but leads to a
scalar solution degree type and the standard ordering on reals. A caveat is that the required p
can increase drastically with rising n and decreasing δ. Evaluating large p-norms (on the order

116 CHAPTER 7. HIERARCHICALLY LAYERED SOFT CONSTRAINTS

Table 7.2: The magnitude of p needed for Vp to be optima-simulating V∞ is a function of the
number of soft constraints as well as the δ that separates V ⊆ R≥0. Here are some numeric
values to gain some intuition about the growth of p. We compare the influence of n soft
constraints and k as the maximum for sets V = {0, . . . , k} ⊆ N which are k

k−1 -separated.

k = 10 k = 50 k = 100 k = 500 k = 1000

n = 5 16 80 161 804 1609
n = 10 22 114 230 1151 2302
n = 20 29 149 299 1497 2995
n = 50 38 194 390 1955 3911
n = 100 44 228 459 2301 4603

of 1000s or even more, see Table 7.2) may lead to numerical issues due to possible overflows
since intermediate terms xpi need to be calculated. There are numerical algorithms dealing
with well-conditioned solutions even for large p [Higham, 1992; Ge et al., 2011].

Choosing the real-valued multisets V instead of V∞ on the other hand is not restricted to
δ-separable sets V . However, for this method to work, solvers must support more complex
types than just scalars and be able to define custom orderings such that v can be decided. In
contrast to Vp that targets numerical optimizing technology, perhaps constraint-programming-
based solvers are more amenable to this solution if they are able to efficiently encode multisets
(perhaps similar to the way we encoded the free PVS over a partial order in MiniZinc in
Section 4.3.2).

Hence, we recommend using the p-norm variant if a relatively loose (i.e., large) δ-separation
can be assumed. This is the case if the set V contains small but well-separated values. If the
required p gets too large, we recommend the real-valued multiset construction instead. We
conclude by recalling that for the MiniBrass encoding approach described in Chapter 4, no
optima-simulation is yet needed as the underlying branch-and-bound algorithm only has to
map complete assignments to a PVS’ underlying set and use the lexicographic ordering to
search for optima. It does not map assignments to tuples that are then combined using a
lexicographic multiplication which is where the PVS axioms would be violated by collapsing
elements. However, for a “pure” PVS-based soft constraint framework, these constructions are
indispensable tools.

Chapter Summary and Outlook
In this chapter, we presented underlying theoretical foundations for hierarchically layered soft
constraints that play a pivotal rôle in MiniBrass. Motivated by the problem of expressing Born-
ing’s classical “constraint hierarchies” as algebraic structures (in particular PVS) we showed
that the “worst-case-better” semantics inevitably leads to so-called collapsing elements that
were identified by Gadducci et al. [2013] and hindered Hosobe [2009] in his c-semiring construc-
tion. To still be able to use that semantics, we introduced the concept of optima-simulation
to reasonably replace PVS in soft constraint problems and offered two concrete instances for
“worst-case-better”. We hope that optima-simulation stipulates further research for translating
other classes of well-explored soft constraint formalisms into PVS.

Chapter 8
Aggregating Soft Constraints by Voting

Summary. This chapter motivates voting operators for multi-agent optimization prob-
lems based on PVS in MiniBrass. We briefly survey the known restrictions on such
endeavors imposed by social choice theory, offer first preliminary voting operators for
MiniBrass, and conclude with an outlook on promising future directions. Compared
to previous chapters, this one is more “speculative” in the sense that it does not yet
provide definite answers but highlights the relevance of the task.

Pareto and lexicographic combinations, as presented in Section 4.4.1, are an elementary tool
to combine preference relations [Andréka et al., 2002]. Yet, the lexicographic product appeals
to a strict form of preference aggregation that is unsuitable for “democratic” situations where
several participants’ preferences should be considered to a similar extent. Hitherto, the Pareto-
product is the only established concept for such situations in MiniBrass. Especially with partial
orders, this can become too indecisive for practical situations. For example, assume a Pareto-
ordering of twenty agents’ PVS deciding on some form of schedule, e.g., a shift plan or a
resource allocation. An assignment θ is deemed better if and only if all agents agree that it
is better or at least equally good. Otherwise, two assignments end up being incomparable.
In reality, it is rarely the case that all agents uniformly agree on an “is-better-relation” – at
least one agent could spoil things for all others. With a rising number of agents, the number
of Pareto-optimal solutions is thus likely to grow uncontrollably. Being the top choice of at
least one agent already makes an option a Pareto-optimal solution. Consequently, if a small
number of options opposes a larger number of participating agents, most options may tend to
be Pareto-optimal. Even though computing the Pareto-front, i.e., the set of Pareto-optimal
solutions, is a major goal in multi-objective optimization [Ehrgott, 2005], it is arguably not
decisive enough for the above-mentioned situations.

Conversely, consider the other extreme in terms of decisiveness – reducing complex multi-
agent preference information to a single numeric utility function. Assume, for instance, that
students rank several seminar topics according to their desirability. Unless we force every
student to rank every topic, we are almost doomed to introduce some kind of bias: consider
a student A stating, say, six preferences whereas another one, B, only specifies three. How
should we rate a violation of A’s top preference in comparison with one of B’s top preference?
If we naïvely model both students’ preferences as weighted PVS instances, A’s top choice
will get a weight of six whereas B’s top choice will get a weight of three. Summing them

117

118 CHAPTER 8. AGGREGATING SOFT CONSTRAINTS BY VOTING

4 voters: hiking � biking � relaxing
3 voters: relaxing � biking � hiking
2 voters: biking � relaxing � hiking

Figure 8.1: A preference profile representing the orders submitted by voters. Assume that we
have to pick one choice of activity, given the respective total orders over options.

up clearly leads to a bias unfairly favoring solutions that please A since the solver otherwise
risks higher penalties. Alternatively, we could allocate a fixed budget q to every involved
agent, that proportionally distributes q according to its preferences, e.g., A would have to
split 21 points as 〈6, 5, 4, 3, 2, 1〉 whereas B could split the same 21 weight points as follows
〈10, 9, 2〉. In that case, the solver would rather cater to B since A has more options that need
to share the fixed budget. Either way – without more complex orderings, we introduce possibly
unwanted bias. This kind of bias is, however, present in DCOPs which focus on summed scalar
utilities [Fioretto et al., 2018] which calls for extensions to the generally accepted view.

Both cases (Pareto-combinations and scalar utility) highlight the need for other tools to
make social decisions. We can take inspiration from the field of social choice theory [Pacuit,
2012; Arrow et al., 2010] which provides mathematical means to aggregate several preference
relations into one representative for the group [van der Bellen, 1976].

8.1 Computational Social Choice
To get a sense for the flavor of problems that are treated in social choice theory, consider a
situation where nine people decide on a common weekend activity (the example is strongly
inspired by Brandt et al. [2013]). The available options are hiking, biking, or just relaxing in
a nearby park. Figure 8.1 illustrates how the involved people voted by giving a full ordering
of all activities. Which activity should be picked?

First, we might argue that hiking should be the way to go since it is the top priority of
four agents and no other option has more top-level support. This rule, called plurality or
majority(-tops), is by far the most common decision rule in practical situations [Shoham and
Leyton-Brown, 2008], in part because we often only elicit one pick per candidate and do not ask
for the full ordering (e.g., political elections). But hiking is also the least preferred option for a
majority of (five) people. On the other hand, we may compare activities in a pairwise, exclusive
fashion. Then biking wins against hiking with 5:4 votes and it wins against relaxing with 6:3
votes – hence, we should pick biking. Finally, if we remove the option with the least top-level
support iteratively until only one remains, we first eliminate biking (which puts relaxing at the
top of the last two voters) and then hiking which leaves relaxing as the option of choice. To
sum up, three individually reasonable voting procedures yield three different outcomes – which
shows that social choice is non-trivial and requires great care in implementing it for MiniBrass.

8.1.1 Aggregating Preferences

Formally, the field of social choice theory is concerned with aggregating preference relations.
For a set of outcomes O, we call Q(O), P (O), and T (O) the sets of quasi, partial, and total
orders over O, respectively. We denote a set of agents (or voters) as N = {1, . . . , n}. Then, a
preference profile [�] = (�i)i∈N ∈ P (O)n (or Q(O)n, etc.) is a vector containing a preference

8.1. COMPUTATIONAL SOCIAL CHOICE 119

Voter 1: A � C � B � D � E
Voter 2: B � D � E � A � C
Voter 3: A � B � E � C � D
Voter 4: E � B � C � D � A

Figure 8.2: Another exemplary preference profile representing the total orders submitted by
four voters.

relation �i for every agent i ∈ N where, as usual in this dissertation, o �i o′ indicates
that outcome o is considered worse than o′. The task of voting procedures is then to map
a preference profile either to a winning option, as we did in Figure 8.1, or to another full
preference relation. Both outcomes should reflect the society’s joint wishes as well as possible.

Definition 8.1 – Social Choice Function [Shoham and Leyton-Brown, 2008]
A social choice function C maps a preference profile [�] of n agents to a single winning output:
C : P (O)n → O.

Definition 8.2 – Social Welfare Function [Shoham and Leyton-Brown, 2008]
A social welfare function W maps a preference profile [�] of n agents to a preference relation:
W : P (O)n → P (O).

We also write o1 �W ([�]) o2 (or simply o1 �W o2 if the profile is clear) if (o1, o2) ∈W ([�]), i.e.,
o1 is collectively preferred to o2. The problems are intimately related (e.g., evidenced by the
famous Gibbard-Satterthwaite theorem [Reny, 2001]) since we can use a social welfare function
as a social choice function by picking a top option, or conversely, repeatedly call a social choice
function to obtain a full ordering as a social welfare function. For the sake of presentation, we
now restrict our attention to totally ordered social welfare functions, i.e., W : T (O)n → T (O).

To keep the chapter self-contained, we briefly survey some of the most common social
welfare functions (see [Brandt et al., 2016]) with an exemplary preference profile shown in
Figure 8.2. For all welfare functions, we assume that ties are broken alphabetically (otherwise
we would have to sacrifice antisymmetry) or some other tie-breaking rule is imposed.

Example 8.1 – Specific Welfare Functions
Consider the (abstract) set of options O = {A,B,C,D} with the voters N = {1, 2, 3, 4}
submitting [�] as shown in Figure 8.2. With majority-tops, i.e., ranking outcomes by most
top-level positions, we get Wmajority-tops([�]) = A � B � E � C � D. Alternatively, we
could apply Borda-ranking, i.e., assigning 4 points to the best option, 3 to the second best,
etc. for every candidate first and rank the outcomes by the highest score second. Then, we
get Wborda([�]) = B(12) � A(9) � E(8) � C(6) � D(5). Finally, by picking an order of
the outcomes, say [A,B,C,D,E], we can perform pairwise elimination, i.e., only keeping the
option that wins with a pairwise majority. This procedure is called Condorcet voting. For
instance A wins against B by 2 : 2 votes and alphabetic tie-breaking, it then wins against C by

120 CHAPTER 8. AGGREGATING SOFT CONSTRAINTS BY VOTING

3 : 1, and against D and E, again by tie-breaking. Completing the ordering with [B,C,D,E],
we obtain Wcondorcet([�]) = A � B � C � E � D.

Again, we see that the choice of welfare function has a significant effect on the resulting
welfare ordering. Even worse, for Condorcet voting it is well-known that no proper ordering
has to emerge, i.e., cycles are possible. There are many more paradoxical outcomes such as
that Condorcet voting is not necessarily Pareto-efficient (an option is preferred to another one
by all agents but it is ranked worse in the welfare ordering), or that the absence or presence
of an additional option influences the welfare ranking of the other options. These and other
phenomena are explained in detail by Shoham and Leyton-Brown [2008]. Hence, we see that
there are a plethora of possible social welfare functions (see, e.g., [Pacuit, 2012; Arrow et al.,
2010]) and a natural question to ask is “which one is the best?”.

8.1.2 Restrictions imposed by Arrow’s Theorem

To classify welfare functions, it is common in social choice theory to state the desirable proper-
ties of an unknown social welfare functionW as axioms and reduce the set of possible functions
that fulfill all axioms. This methodology is similar to specifying algorithms using contracts and
relying on the abstract type’s asserted post-conditions instead of the concrete implementation.
// CONTRACT: Sorts a given array and returns int[] sorted
// POST: returnVal is the sorted permutation of values
int[] sort(int[] values);

5 // now use *any* implementation that adheres to this specification
// PRE: values.length > 0
int getMinimum(int[] values) {

int[] sorted = sort(values);
return sorted[0];

10 }

Each valid implementation of sort would result in getMinimum([5,2,36,8]) = 2. Sim-
ilarly, we can state desirable postconditions that W has to satisfy for a given preference profile
[�]. Two very natural requirements are Pareto-efficiency (PE) and independence of irrelevant
alternatives (IIA). PE is a formalization of “uniformity”:

Definition 8.3 – Pareto-efficiency (PE)
W is Pareto-efficient if for arbitrary o1, o2 ∈ O, ∀i o1 �i o2 implies that o1 �W o2.

If all agents agree on the ranking of two outcomes, it should also be placed in the same order
in the welfare ordering. Put into our optimization context, this means that if every voter’s
PVS prefers some assignment θ, say a schedule, to another one θ′, we should also prefer θ in
the collective optimization. Unsurprisingly, a Pareto-product exactly leads to that conclusion.

A second, seemingly innocent property is that the ranking of two outcomes o1 and o2 should
not be affected by the presence or absence of a third choice o3 6= o1 6= o2. It is best illustrated
by a little anecdote that is attributed to Sidney Morgenbesser [Rothe et al., 2011]:

Morgenbesser, ordering dessert, is told by the waitress that he can choose between
apple pie and blueberry pie. He orders the apple pie. Shortly thereafter, the
waitress comes back and says that cherry pie is also an option; Morgenbesser says:
“In that case, I’ll have the blueberry pie.”

8.1. COMPUTATIONAL SOCIAL CHOICE 121

�′1

A

B

C

�′2

B
A

C

�′3

A

C

B

→W

W ([�′])

A

C

B

[�′]

�′′1

B

A

C

�′′2

A

B

C

�′′3

C

A

B
→W

W ([�′′])

C

B

[�′′]

Figure 8.3: Independence of irrelevant alternatives forces some decisions in preference profiles
based on similarities to other preference profiles. Here, the positions of B and C relative
to each other are identical in [�′] and [�′′] for all agents in N = {1, 2, 3}. Therefore, since
C �W ([�′]) B, it must also be that C �W ([�′′]) B, regardless of A’s position in [�′] and [�′′]

As intuitive as this idea is, the formal definition is a bit more involved (see Figure 8.3 for an
illustration):

Definition 8.4 – Independence of irrelevant alternatives (IIA)
W is independent of irrelevant alternatives if for arbitrary o1, o2 ∈ O and arbitrary preference
profiles [�′], [�′′] ∈ T (O)n, it holds that ∀i (o1 �′i o2 ⇔ o1 �′′i o2) implies that (o1 �W ([�′])
o2 ⇔ o1 �W ([�′′]) o2) holds.

Hence, relations such as C �W ([�′′]) B in Figure 8.3 are enforced whenever the precondition
holds in any two preference profiles – which indicates that IIA is a rather strong assumption
despite its natural appeal.

Certainly, as a third requirement, we would never want a “social” welfare function to have
a single agent forcing their preference relation as the output for every profile:

Definition 8.5 – Dictatorship
W is dictatorial if there is an i ∈ N such that for every preference profile [�] it holds that
∀o1, o2(o1 �i o2 ⇒ o1 �W ([�]) o2).

Now, Arrow [1951] proved his seminal result that we cannot have a social welfare function W
simultaneously satisfying PE, IIA, and non-dictatorship.

Theorem 8.1 ([Arrow, 1951]). Assume a set of options O with |O| ≥ 3 and a set of voters
N with |N | ≥ 2. A social welfare function W that is both Pareto-efficient and independent of
irrelevant alternatives must be dictatorial.

Shoham and Leyton-Brown [2008] provide an accessible constructive proof of the theorem.
With respect to our contracts analogy,

122 CHAPTER 8. AGGREGATING SOFT CONSTRAINTS BY VOTING

// CONTRACT: Aggregates n preferences over some options from 0 to m-1 into one, respecting PE and IIA
// PRE: profile.size() = n, for each i in 0..n-1: profile.get(i).size() = m
// POST: returnVal is picked such that PE holds on all inputs (profile)
// POST: returnVal is picked such that IIA holds on all inputs (profile)

5 List<Integer> welfare(List<List<Integer>> profile);

we come to the sobering conclusion that the only possible implementation can be:
int dictator = ...; // one between 0 and n-1
List<Integer> welfare(List<List<Integer>> profile) {

return profile.get(dictator);
}

A truly practical consequence of the theorem for our work is that, unless we indeed restrict
ourselves to choosing according to a single PVS (which is quite the contrary of a social choice),
we have to sacrifice either PE or IIA for our optimization to avoid dictatorship. Depending
on the application at hand, either property is not enforced – most often though, PE should be
kept. In multi-criteria optimization, by comparison, we are at least interested in Pareto-optimal
solutions, not to mention deciding which solution of the Pareto-front we should eventually pick.

It is therefore disputable if IIA is truly as compelling as it seems [Brandt et al., 2016], or if
it is simply too restrictive. There are many more weaker requirements in the body of literature
on social choice, although here, we restrict ourselves to the presented ones.

8.1.3 Soft Constraints and Voting – Related Work

Soft constraints and social choice theory are a natural match since soft constraints are con-
cerned with expressing a partial order over solutions and social choice theory offers means
to aggregate multiple orderings into one. For the single-agent case in soft constraints, we
extended a CSP (X,D,C) to an SCSP by adding a PVS M along with a set of soft con-
straints CMs mapping from assignments [X → D] to |M | and aggregating the soft constraints’
valuations by ·M to obtain an overall solution degree. For every assignment, θ, its overall
valuation is then CMs (θ) =

∏
M*µ(θ) | µ ∈ CMs + and the ordering ≤M is used to distinguish

the assignments. In the multi-agent case, it is natural to assume that n agents submit n
PVS (Mi)i∈{1,...,n} with accompanying sets of soft constraints CMis . But instead of, say, the
Pareto-ordering ≤M1×...×Mn , we want to use a voting procedure to aggregate the orderings on
solutions by each of the n agents. Hence, in terms of voting theory, the set of outcomes O maps
to [X → D], we have a preference profile [�] consisting of n quasi-orderings ≺i over [X → D]
by defining θ ≺i θ′ ⇔ CMis (θ) ≤M CMis (θ′), and a social welfare functionW now mapping from
Q([X → D])n to Q([X → D]). The goal is to find optima according to W ([�]). We can also
frame the multi-agent case as a social choice function problem where we are only interested
in a “winning” assignment C([�]). It is not clear yet if there are social welfare functions that
give rise to another PVS (cf. Chapter 7 for lexicographic combinations).

The idea of combining soft constraints and voting is not entirely new. Dalla Pozza et al.
[2010] presented the first algorithm to solve a problem specified with n c-semirings (specifically,
fuzzy constraints) using sequential voting, i.e., defining a voting ordering over the variables of
the SCSP and assigning each variable a value from its domain by means of a voting procedure.
They propose to use sequential voting in order to avoid having to enumerate all assignments
along with the preference degree as a ballot. The same authors went on to improve on the
theoretical results they received in [Dalla Pozza et al., 2011]. Specifically, the relationship
between voting axioms assumed for local voting rules (i.e., voting over a single variable’s
assignment) to the global level (i.e., the set of all assignments) were investigated. For instance,

8.1. COMPUTATIONAL SOCIAL CHOICE 123

it is a necessary but not sufficient condition that all local rules be IIA in order for the global
rule to be IIA as well. It also suffices for a single local rule to be non-dictatorial for the
global rule to be non-dictatorial. Although their approach is promising in terms of satisfied
axioms, it suffers from the fine granularity that agents have to vote on: domain items for a
single variable. This neglects the combinatorial nature of many optimization problems and
leads to overly optimistic estimations on behalf of the agents when voting, as we describe in
Section 8.1.4. For example, assuming that the combinations “(fish, white wine)” and “(meat,
red wine)” are deemed desirable with a slight preference for fish, an agent would place their
bet on “white wine” although they might end up with the least desirable option “(meat, white
wine)”. For sequential voting with weighted or fuzzy constraints, Pini et al. [2013] furthermore
proved that strategic bribing is NP-complete. Rossi [2014] then provided a strategic overview
of collective decision making using constraint technology. She brings forward the argument
that

“First, we need to allow for very general and flexible frameworks to model con-
straints, optimization criteria, and preferences. In this respect, we should allow
for both constraint optimization as well as quantitative and qualitative preference
modeling and reasoning frameworks.”

This, we believe, ideally fits the description of MiniBrass in its generality. The line of re-
search initiated by Dalla Pozza et al. [2010] is, however, the only attempt at combining soft
constraints based on algebraic structures and voting, so far. We believe that, although their
proposal provides a good starting point, there are important questions of practicality left out
(in particular their approach is not Pareto-efficient) and a more general treatment on the level
of PVS instead of specific soft constraint formalisms (weighted and fuzzy) is desirable. Since
MiniBrass is currently the only modeling language capable of supporting a variety of soft
constraint formalisms, it should also offer voting operators to aggregate multiple agents’ PVS.

In the area of distributed constraint optimization (DCOP) the standard model is to as-
sume a number of numeric cost functions distributed across agents (perhaps representing their
individual utility) which is summed as the global “social welfare” utility [Fioretto et al., 2018].
Netzer and Meisels [2011] extended this model to “distributed social constraint optimization
problems” where social welfare functions take precedence over the summation. They illus-
trated their hill-climbing approach with a pickup-and-delivery case study. Still, their approach
calculates a single score for each assignment based on the agents’ individual (numeric) valua-
tions and is thus likely to suffer from the bias problems mentioned in the introduction to this
chapter. Moreover, they assume some form of commensurability of utilities in the sense that
an operator such as “maximize the unhappiest agent’s value” is meaningful – if agents operate
on distinct (esp. non-numeric) partial orders, this is not the case.

8.1.4 A Counterexample for Sequential Voting

Given the uniqueness of the sequential voting approach presented by Dalla Pozza et al. [2010] in
terms of preference aggregation for multi-agent soft constraint problems, we present it in more
detail. In particular, we provide a counterexample to Pareto-efficiency which arguably reduces
its relevance to settings where at least Pareto-optimal solutions are sought. The sequential
voting algorithm for soft CSPs is applied in two phases:1 First, directional arc-consistency is

1Moreover, the authors assume that the soft constraint problem contains only binary and unary soft con-
straints which can be enforced by means of Cartesian products on the original variables and domains.

124 CHAPTER 8. AGGREGATING SOFT CONSTRAINTS BY VOTING

applied to obtain more informed unary soft constraints: Assume µx to be a unary and µxy to be
a binary constraint with scopes {x} and {x, y}, respectively. Both map to some PVSM . Then
µ′x(θ) = max≤M {µx(θy 7→d) ·M µxy(θy 7→d) | d ∈ Dy} where for now, we assume a total ordering
≤M that makes this operator well-defined.2 This process is repeated until a fixed point in
terms of the involved soft constraints is reached, i.e., µ′ = µ for all soft constraints µ. The idea
is that for conventional single-agent soft constraint problems, if the problem’s constraint graph
has a tree-shape, we can use directional arc consistency to perform backtrack-free search for an
optimal assignment [Meseguer et al., 2006]. If, e.g., we have X = {x, y} with Dx = Dy = {1, 2}
and a cost function PVS with soft constraints µx and µxy such that µx(1) = 2 and µx(2) = 4,
as well as µxy = {(1, 1) 7→ 4, (1, 2) 7→ 3, (2, 1) 7→ 2, (2, 2) 7→ 4} (cf. Figure 8.4, Agent 1). Then
we get µ′x(1) = 5 and µ′x(2) = 6 (where µx(d) is shorthand for µ({x 7→ d, y 7→ d′, . . .})).

The second phase of the sequential voting procedures consists in picking a fixed variable
ordering that determines the sequence of votings of a variable’s assignment. For variable x, the
available options are Dx and agents vote according to the directed arc-consistent value they
obtain for a given domain value. In our previous example, we would vote for “x 7→ 1” instead
of “x 7→ 2” since we would prefer costs of 5 to those of 6. The agents submit their preference
orderings over domain items for the variable to be decided and a (local) social choice function
outputs a winning domain item for the assignment. Taking, for example, majority-tops, if
three of five agents prefer “x 7→ 1” to “x 7→ 2”, they win and x is indeed assigned to one.
The sequential voting approach is parameterizable in the used c-semirings as well as the social
choice function (e.g., majority-tops, Borda, or Condorcet, see Example 8.1).

Example 8.2 – Sequential voting [Dalla Pozza et al., 2010] is not Pareto-efficient
on the solution level
Figure 8.4 presents an exemplary problem instance where we have a shared constraint problem
definition and three sets of soft constraints each mapping to PVS (here, cost function networks
with summation as aggregation and minimization as ordering) representing three agents. As
the social choice function, we use majority-tops (i.e., the domain item with most top-placements
wins). The agents use the directional arc-consistent version of their problems depicted in
Figure 8.5 to cast votes. Assume furthermore, they agreed on the sequence [x, y, z] for the
sequential voting. Following the voting decisions depicted on the right side of Figure 8.5,
we end up with the assignment θ∗ = {x 7→ 1, y 7→ 1, z 7→ 2} which is Pareto-dominated by
θ′ = {x 7→ 2, y 7→ 1, z 7→ 1}.

In the previous example, all agents basically agreed that they would rather accept θ′ than
θ∗ but this is not what the voting procedure (deterministically!) provided. In reality, it would
be hard to justify why the (complete) solver would not propose the uniformly accepted better
solution.3 The algorithm suffers from greedy phenomena in the sense that, e.g., agent 1 places
their bets on “x 7→ 1” which is influenced by the prospects “y 7→ 2” and “z 7→ 2” for an agent-
locally optimal assignment with costs of 12. Retrospectively, had agent 1 been aware of, e.g.,
the strong preference for “y 7→ 1” issued by both other agents, agent 1 would have been more
inclined to vote for “x 7→ 2”. But in the strict sequential approach, no choices can be reverted

2If necessary, we could resort to the free c-semiring presented in Section 6.4 which collects all incomparable
optima in a set.

3If the solver were incomplete, we could at least blame the suboptimal decision on reduced search effort and
capabilities.

8.1. COMPUTATIONAL SOCIAL CHOICE 125

Shared CSP with X = {x, y, z} and Dx = Dy = Dz = {1, 2}

x y z

Agent 1 with the (weighted) PVS M1 and CM1
s

x µx
1 2
2 4

y µy
1 5
2 2

z µz
1 6
2 2

x y µxy
1 1 4
1 2 3
2 1 2
2 2 4

y z µyz
1 1 0
1 2 6
2 1 1
2 2 3

x y z

Agent 2 with the (weighted) PVS M2 and CM2
s

x µx
1 3
2 5

y µy
1 0
2 10

z µz
1 2
2 1

x y µxy
1 1 7
1 2 5
2 1 1
2 2 3

y z µyz
1 1 4
1 2 2
2 1 0
2 2 0

x y z

Agent 3 with the (weighted) PVS M3 and CM3
s

x µx
1 5
2 0

y µy
1 1
2 6

z µz
1 3
2 4

x y µxy
1 1 2
1 2 4
2 1 9
2 2 7

y z µyz
1 1 2
1 2 5
2 1 1
2 2 0

Figure 8.4: An exemplary CSP with three PVS representing three agents’ preferences (here,
cost function networks) over the shared variables {x, y, z} and domain {1, 2}. No hard con-
straints are involved in this illustration.

126 CHAPTER 8. AGGREGATING SOFT CONSTRAINTS BY VOTING

Shared CSP with X = {x, y, z} and Dx = Dy = Dz = {1, 2}

x y z

Agent 1 with the (weighted) PVS M1 and CM1
s

x µx
1 12
2 15

y µy
1 11
2 7

z µz
1 6
2 2

x y z

Agent 2 with the (weighted) PVS M2 and CM2
s

x µx
1 13
2 9

y µy
1 3
2 11

z µz
1 2
2 1

x y z

Agent 3 with the (weighted) PVS M3 and CM3
s

x µx
1 13
2 15

y µy
1 6
2 10

z µz
1 3
2 4

Voting the value of x:

Agent 1 1 (12 vs 15)
Agent 2 2 (9 vs 13)
Agent 3 1 (13 vs 15)
Winner 1

Voting the value of y:

Agent 1 2 (7 vs 11)
Agent 2 1 (3 vs 11)
Agent 3 1 (6 vs 10)
Winner 1

Voting the value of z:

Agent 1 2 (2 vs 6)
Agent 2 2 (1 vs 2)
Agent 3 1 (3 vs 4)
Winner 2

x y z Overall agent 1 Overall agent 2 Overall agent 3
θ∗ 1 1 2 19 13 17
θ′ 2 1 1 17 12 15

Figure 8.5: To cast votes, directed soft arc consistency is calculated for every agent with respect
to the original problems shown in Figure 8.4. Then, a winning assignment θ∗ is formed by
voting on variables’ assignments in the order [x, y, z]. For instance, for the variable x, agents
one and three prefer x 7→ 1 to x 7→ 2 and agent two would rather assign x 7→ 2. Hence x 7→ 1
is picked due to the majority rule. Finally, the algorithm selects θ∗ = {x 7→ 1, y 7→ 1, z 7→ 2}
which is Pareto-dominated by θ′ = {x 7→ 2, y 7→ 1, z 7→ 1}, i.e., each agent prefers θ′ to θ∗ due
to lower individual costs. Overall costs are given with respect to the problem in Figure 8.4.

8.2. VOTING IN MINIBRASS 127

which makes the algorithm rather inflexible and unintuitive for practical situations. As a
consequence of this result, we believe that voting algorithms for multi-agent soft constraint
problems should rather operate on the level of assignments θ ∈ [X → D] or, alternatively,
solution degrees in |M | instead of domain items on isolated variables.

8.2 Voting in MiniBrass
Following the relationship between voting and soft constraint problems presented in Sec-
tion 8.1.3, we are able to implement some aspects directly in MiniBrass by using MiniSearch
and generating appropriate search predicates – as we did in Section 4.4.2 for Pareto and lexico-
graphic products. Indeed, some social welfare functions are better suited for the combination
with constraint optimization than others. For example, Borda voting would require us to
enumerate all, say, k solutions, rank the best solution with k − 1, the next best with k − 2
and so forth, for every agent. Clearly though, for discrete optimization problems, this is likely
to involve an exponential number of assignments and is rather impractical as the full search
space has to be enumerated before any voting can even start. On the other hand, Arrow’s
theorem proves relevant for any approach that exhibits some form of local search such as
large-neighborhood search (see Section 3.3.3). More specifically, a social welfare function W
violating IIA can lead to unexpected results: If n voters are confronted with a subset of the
available options O ⊂ [X → D], e.g., a neighborhood N (o) ⊆ [X → D] of an option o, the
local ordering obtained by applying W to the profile over O can be different from the ordering
over O when the whole search space [X → D] is present. In practice, this means that even
though the agents agree to switch from o1 ∈ O to o2 ∈ N (o2) when voting over the neighbor-
hood’s options, they would rank o1 better than o2 if all options were up for election. This fact
should be considered during the design of voting procedures for MiniBrass. In summary, we
ideally need welfare functions that i) do not require a full ranking on all options and ii) are
independent of irrelevant alternatives (at least for local search). We propose several voting
functions that offer such a useful restriction to be exploited for practical implementations.

8.2.1 Approval Voting

A first attempt at voting for PVS-based soft constraint problems can be achieved if we restrict
the type of preference structures to “escape” Arrow’s theorem. Instead of ordering solutions
arbitrarily, we can allow agents to partition the search space into “acceptable” and “unaccept-
able” solutions, generalizing Max-CSP to multi-agent settings. Then, a solution with maximal
support is picked as the winner. This procedure is known in voting theory as “approval voting”
and turns out to have very beneficial theoretical properties: Approval voting is a non-dictatorial
social welfare function that satisfies PE and IIA – due to the restriction to only two options,
approved or disapproved; Arrow’s theorem applies for votings with |O| ≥ 3 [Shoham and
Leyton-Brown, 2008].

Formally, we assume that every agent i ∈ N declares an “approved” set with Ii ⊆ O
and we let Ii,1 = Ii be the first level and Ii,2 = O \ Ii,1 be the second level. Interpreted
order-theoretically, we have a total quasi-ordering �i with ∀o1 ∈ Ii,1, o2 ∈ Ii,2 : o1 �i o2 and
∀o1, o2 ∈ Ii,k : o1 � o2 ∧ o2 � o1 for k ∈ {1, 2}. A preference profile [�] in the approval setting
may only consist of such approval-derived orderings. The social welfare function Wapp maps
[�] to a total quasi-ordering by counting the number of approvals any option gets. For an
option o and preference profile [�], its score is denoted by s[�](o) = |{i | o ∈ Ii,1, i ∈ N}|. We

128 CHAPTER 8. AGGREGATING SOFT CONSTRAINTS BY VOTING

At least 3 options have to be selected

 Approve Absolutely not

12 February 2016 Morning

12 February 2016 Afternoon

18 February 2016 Morning

18 February 2016 Afternoon

… …

 Name

Figure 8.6: The voting “ballots” used for exam appointment scheduling presented in Exam-
ple 8.3. Each ballot is translated into a boolean PVS in MiniBrass and aggregated by the
vote operator using approval.

obtain the welfare ordering �Wapp by ranking the options according to the scores o1 �Wapp

o2 ↔ s(o1) > s(o2).

Lemma 8.2. Approval voting satisfies PE, IIA, and is not dictatorial.

Proof. First, we begin with Pareto-efficiency: Assume there are outcomes o1 and o2 such that
o1 �i o2 for all agents i ∈ N . In the approval setting, this can only be if o1 ∈ Ii and o2 6∈ Ii
for all i ∈ N . Therefore, s(o1) = n > s(o2) = 0 and thus o1 �Wapp o2.

For IIA, assume two profiles [�] and [�′] such that for two outcomes o1, o2, we have o1 �i o2
if and only if o1 �′i o2. With respect to the approval sets, this means that o1 ∈ Ii if and only
if o1 ∈ I ′i. Consequently, s(o1) = s′(o1) and s(o2) = s′(o2) which leaves us with Wapp([�]) =
Wapp([�]′) – which obviously respects IIA.

Finally, we show that Wapp is not dictatorial: Assume j ∈ N were a dictator with approval
set Ij in a profile [�] and therefore �Wapp([�]) = �j ; we can construct the preference profile
[�′] where each other agent i ∈ N \ {j} votes (opposite to the dictator) for Ii,1 = O \ Ij,1.
If |N | = 2 then we get equality for each option since ∀o ∈ O : s′(o) = 1 (the “dictator” j is
not able to strictly enforce their preferences anymore). For |N | > 2, the agents in N \ {j}
are able to outvote j since for all o1 ∈ Ij,1, we have s′(o1) = 1 and for all o2 ∈ Ij,2, we have
s′(o2) = |N | − 1 > 1.

Again, the caveat is that the orderings degenerate to two levels of satisfaction which impedes
the generality but preserves good voting-theoretic properties since Arrow is only relevant for
three or more options. Moreover, the generation of an optimization predicate (or even numeric
objective in this case) is straightforward. For a given assignment θ, we simply count the number
of approving agents. There are many use cases that can be formulated in terms of approval
voting: Either agents get their preferred situation or they do not.

Example 8.3 – Exam appointment scheduling
A frequently occurring problem in a university is that of assigning oral exam appointments to
students (see Section 2.3.1). There is a limited number of students that can take their exam
on any given date. Usually, the problem is solved by using the first-come-first-served principle

8.2. VOTING IN MINIBRASS 129

on a written sheet of paper. Clearly though, students may have preferences regarding their
schedules – some like to take an exam in the morning, others want to avoid collisions with
other exams, some want to take it early, or some at the latest possible date. To improve upon
first-come-first-served, we can have students declare preferred dates and attempt to assign each
student one of those dates while respecting capacity constraints regarding maximal students per
date. In addition to the mere approval set, we could allow students to also state a (reasonably
small) “impossible” set – a benefit from having a constraint model underneath the voting (not
depicted here):
% Exam scheduling example with restricted capacities
int: d; % maximum number of dates
set of int: DATE = 1..d;

5 int: minPerDate;
int: maxPerDate;

int: s; % number of students
set of int: STUDENT = 1..s;

10

% the actual decisions
array[STUDENT] of var DATE: scheduled;

constraint global_cardinality_low_up (scheduled, [d | d in DATE],
15 [minPerDate | d in DATE],

[maxPerDate | d in DATE]);

var DATE: scheduledDates;
constraint nvalue(scheduledDates, scheduled);

20

% redundant constraint
int: lowerBound = (s div maxPerDate) + (s mod maxPerDate > 0) * 1 ;
constraint scheduledDates >= lowerBound;

25 solve search miniBrass();

On top of the constraint model, we can collect several PVS representing the students’ prefer-
ences and aggregate them using a vote statement in MiniBrass:
PVS: marc = new BooleanPvs("marc") {

soft-constraint c1: ’scheduled[marc] = tueMorning’;
};

5 PVS: andre = new BooleanPvs("andre") {
soft-constraint c1: ’scheduled[andre] = monMorning’;

};

PVS: tom = new BooleanPvs("tom") {
10 soft-constraint c1: ’scheduled[tom] in {monEvening, tueMorning}’;

};

solve vote([marc,andre,tom], approval);

In practice, this model has been used for a lecture in self-organizing systems in two terms,
assigning 30 – 35 students to at most twelve dates with four students each. Fortunately, we
were able to find solutions satisfying all students’ wishes in under a second of runtime – despite
the (theoretical) search space consisting of 3512 ≈ 1.66 · 1018 elements which is substantially
reduced by propagating the students-per-date constraint that is formulated using the global
cardinality constraint [Régin, 1996].

The MiniBrass implementation for the PVS-based search for a model involving a vote
statement relies on generating an appropriate postGetBetter predicate (see Section 4.4.2).
Comparatively speaking, once we see a solution, we must enforce (by constraint) that more
agents approve of the next one. Since for approval voting, we know that the type of every

130 CHAPTER 8. AGGREGATING SOFT CONSTRAINTS BY VOTING

35 voters: A � C � B
33 voters: B � A � C
32 voters: C � B � A

Figure 8.7: A preference profile that leads to different outcomes in Condorcet voting depending
on the elimination ordering. Example taken from [Shoham and Leyton-Brown, 2008].

agents’ PVS must be boolean, this is straightforward, as the following code shows:
predicate postGetBetterApproval(array[1..N] of var bool: overallAgents) =

post(
sum(i in 1..N) (bool2int(overallAgents[i])) >

sum(i in 1..N) (bool2int(sol(overallAgents[i])))
5);

where sol(MZN) represents the value of the MiniZinc expression MZN at the current solu-
tion and bool2int converts true to 1 and false to 0. This generated MiniZinc predicate is
analogous to those generated for other MiniBrass concepts and can be used with the MiniBrass
library “PVS-based search”. Here, we can even formulate a numeric objective
var int: topLevelObjective = sum(i in 1..nScs) (bool2int(overallAgents[i]));

to use approval voting with MiniZinc only (instead of MiniSearch).
Compared to conventional PVS-based models, approval voting loses its generality due to the

focus on boolean PVS. A simple extension to arbitrary PVSM is majority-tops where we count
a solution as approved if and only if it achieves the top grading εM and mark it disapproved
otherwise. We then optimize according to the number of agents that get their best possible
outcome. At first, this seems too restrictive for, e.g., cost function networks or fuzzy constraints
where we would count the number of 0 costs and 1.0 satisfaction degrees, respectively. However,
for violation-based formalisms such as Max-CSP or constraint preferences, we would then
simply count the number of agents that get all their wishes satisfied, i.e., obtain a violation
set of ∅. In MiniBrass, we write, e.g.:
solve vote([marc,andre,tom], majorityTops);

Still, we search for social welfare functions that support more general orderings.

8.2.2 Condorcet Voting

It turns out that Condorcet-voting, also known as pairwise elimination, can be easily inte-
grated into a constraint-based search and optimization algorithm. Recall from Example 8.1
that Condorcet-voting proceeds by fixing an ordering of the outcomes O, compares two adja-
cent options with respect to the pairwise majority, keeps the winning outcome, and returns the
last remaining outcome. Figure 8.7 provides an example. Assuming, we fix the order [A,B,C].
Then B wins against A with 65 : 35 votes and goes on to compete against C where now C wins
with 67 : 33 votes. Note, however, that C would lose again in a direct competition against A
– which already highlights one of the major weaknesses of Condorcet-voting: the possibility
of Condorcet-cycles. Conversely, if one option fulfills the Condorcet-criterion (winning a pair-
wise competition against every other option), it is called the Condorcet-winner. This voting
procedure is guaranteed to find the Condorcet-winner.

8.2. VOTING IN MINIBRASS 131

Moreover, Condorcet-voting lends itself towards a useful implementation in MiniBrass on
top of MiniSearch since only two options (i.e., solutions) need to be compared. Expressed in
terms of constraint-based search we can proceed as follows:

1. Find the next solution (call it θ).
2. Once you have θ, impose a constraint that enforces that the next solution θ′ must be

preferred by a majority of voters and search for the next solution.
3. Repeat until no such solution can be found (or a cycle is detected).

This procedure can again be implemented using the generic PVS-based search in MiniBrass
and an appropriate postGetBetter MiniZinc procedure. As long as the individual agents’
is_worse predicates can be reified (i.e., have a boolean variable take its truth value which
requires the predicate not to have free variables, see Section 4.4.2), this is possible, as the
following pseudocode shows (Mi refers to the specific PVS element type of PVS i).
predicate postGetBetterCondorcet(array[1..N] of var Mi : overall) =

% M_i represents the PVS of agent i
post(
% the number of agents that find the current solution worse than the next

5 sum(i in 1..N) (bool2int(is_worse_i(sol(overall[i]), overall[i]))
>
% the number of agents that find the next solution worse than the current one
sum(i in 1..N) (bool2int(is_worse_i(overall[i], sol(overall[i])))

);

If a solution is indeed a Condorcet-winner, the generic MiniSearch procedure instantiated with
the above predicate will find it. If there is a Condorcet-cycle, there is no guarantee with
respect to the winning outcome since the moment of termination depends on the ordering of
the solutions resulting from the solver’s output stream. However, such a cycle is easily detected
by inspecting the trace of solutions.

Example 8.4 – Lunch Deselection
Establishing a meal plan is obviously “a matter of taste”. Assume the participants of an
annual retreat are rather pleased with the overall plan but want to change only one or two
meals – at most. They can decide by Condorcet-voting which meal should be deselected using
whatever specific PVS formalism they feel most comfortable with since the result is based only
on individual “isBetter/isWorse” decisions.
% Lunch deselection problem with hard constraints regulating how many
% dishes be kept etc.
int: f;
set of int: FOOD = 1..f;

5 %[...]

% the actual decisions
var set of FOOD: selected;
array[FOOD] of var bool: selectedBool;

10 var FOOD: deselected;

constraint not(deselected in selected);
constraint link_set_to_booleans(selected, selectedBool);
constraint sum(s in FOOD)(bool2int(selectedBool[s])) == f-1;

15

solve search miniBrass();

On top of that constraint model, we again collect several PVS representing the voters’ nutri-
tional preferences and aggregate them using a vote statement parameterized by Condorcet:
PVS: a = new ConstraintPreferences("a") {

soft-constraint keepGoulash: ’goulash in selected’;

132 CHAPTER 8. AGGREGATING SOFT CONSTRAINTS BY VOTING

goulash pork roast bolognese BBQ w. salad burger

goulash – 5 / 5 / 4 2 / 6 / 6 4 / 4 / 6 6 / 5 / 3 4 / 5 / 5

pork roast 4 / 5 / 5 – 3 / 6 / 5 1 / 7 / 6 8 / 4 / 2 4 / 4 / 6

bolognese 6 / 6 / 2 5 / 6 / 3 – 3 / 6 / 5 8 / 2 / 4 4 / 5 / 5

BBQ 6 / 4 / 4 6 / 7 / 1 5 / 6 / 3 – 7 / 4 / 3 5 / 6 / 3

w. salad 3 / 5 / 6 2 / 4 / 8 4 / 2 / 8 3 / 4 / 7 – 3 / 4 / 7

burger 5 / 5 / 4 6 / 4 / 4 5 / 5 / 4 3 / 6 / 5 7 / 4 / 3 –

Figure 8.8: A matrix visualizing the pairwise comparisons between solutions to the lunch
deselection problem introduced in Example 8.4. Solutions refer to the value of deselected
and a label “x / y / z” indicates that the row solution won x times, there were y indifferences,
and the column solution won z times. For instance, when choosing between “deselect pork
roast” and “deselect goulash”, four people voted to deselect pork roast, five were indifferent,
and five would rather deselect goulash.

soft-constraint keepPorkRoast: ’porkRoast in selected’;
soft-constraint keepBBQ: ’bbq in selected’;

5

crEdges : ’[| mbr.keepBBQ, mbr.keepPorkRoast | mbr.keepGoulash, mbr.keepPorkRoast |]’;
useSPD: ’false’ ;

};
PVS: b = new MaxCsp("b") {

10 soft-constraint c1: ’deselected = bolognese’;
};
solve vote([a,b], condorcet);

Note how the PVS type (ConstraintPreferences or MaxCsp) is not relevant for
Condorcet-voting. In practice, this problem has been used for the 2018 retreat involving 14
voters with the result depicted in Figure 8.8. Interestingly, there was a clear Condorcet-winner
in terms of being deselected, “BBQ”, and a Condorcet-loser in terms of being deselected (i.e.,
an option that all agents basically agreed to keep), “wurst salad” (sausage salad). Due to
interventions outside the voting procedure, BBQ was eventually saved from being eliminated.

Results of Condorcet-voting can be visualized in an appealing way by drawing a voting
“heatmap”, i.e., a Matrix that shows the results of a duel between two options (here, solu-
tions). This can provide additional insight into decision making without hiding details behind
a numeric utility function. Figure 8.8 provides an instance for the aforementioned lunch de-
selection example. MiniBrass offers a fully automated Condorcet-analysis. Clearly, such an
analysis only makes sense if the sets of solutions are manageable but for small problems it
offers more insight into informed group decision making.

It is well known that Condorcet-voting is not Pareto-efficient if there is no Condorcet-

8.2. VOTING IN MINIBRASS 133

winner [Shoham and Leyton-Brown, 2008] – just as the sequential voting by Dalla Pozza et al.
[2010] is not. However, in MiniBrass we can always enforce Pareto-efficiency by completing
the voting procedure with a search for a Pareto-dominating solution, i.e., one that is weakly
preferred by all agents and strictly preferred by at least one agent. The relevant search predicate
is simply that obtained by a Pareto-product of the involved voting PVS (see Section 4.4.1).

Chapter Summary and Outlook
In this chapter, we motivated the need to augment a soft constraint framework with voting
algorithms for unbiased preference aggregation. This is, in particular, relevant for collaborative
settings where collective decisions need to be made that (in the best case) agree with most par-
ticipants’ wishes – possibly without monetary transactions involved. While reviewing existing
approaches at the intersection of voting theory and soft constraints, we analyzed shortcomings
of the state of the art in terms of applicability and provided a counterexample to Pareto-
efficiency for a sequential voting procedure. Still, the exponential nature of the outcome space
proves to be a significant challenge for voting approaches. Our preliminary results address this
problem by either restricting the voters’ preference relations to the approval setting or turning
to a very local voting rule – that of Condorcet, with all its known issues.

We expect to deepen these preliminary investigations in the future by looking for practical,
yet voting-theoretically appealing procedures. For instance, a hierarchical decision-making
process could move from voting over coarse directions (e.g., “restaurant”, “home-cooking”, or
“beer garden”) to more fine-grained ones (“Sushi place A” or “Sushi place B”) in an iterative
fashion. Alternatively, agents could propose candidate solutions for voting independently of
each other to reduce the search space (and henceforth the set of possible outcomes) and then
vote over the union of the proposed solutions with social welfare functions.

Chapter 9
Evaluation

Summary. To show the general applicability and relationship of MiniBrass with related
work, we present empirical evaluation results on a set of standardized benchmark
problems. Aspects of interest include comparing the MiniBrass encoding approach to
a native WCSP solver, the influence of the selected PVS type on the performance, and
the effect of a PVS-specific search heuristic.

Publication. The main results of this chapter are published in [Schiendorfer et al.,
2018]. Moreover, some of the case studies were published in [Schiendorfer et al.,
2015b], [Schiendorfer et al., 2014a], and [Kosak et al., 2016].

We begin with a general evaluation of MiniBrass on a set of benchmark problems to show
the generality of the approach which is not coupled tightly to any of the motivating applica-
tion scenarios. Besides the feasibility check confirming that MiniBrass is well-suited for our
application scenarios, we want to evaluate the performance of solvers operating on MiniBrass
models versus a dedicated soft constraint solver found in the literature. We decided to model
soft constraint problems using the PVS type constraint preferences (see Chapter 5) and used
MiniZinc benchmark problems1 as the underlying constraint models. These are taken from
several editions of the MiniZinc challenge [Stuckey et al., 2014] and represent typical appli-
cation scenarios of constraint solvers such as scheduling, rostering, and planning. Moreover,
the models are not hand-crafted by ourselves but are public domain – to avoid unfair bias.
Optimizing according to constraint preferences requires set-based variables and compatibility
with MiniSearch (see Table 9.3 for a detailed compatibility matrix). By applying morphisms to
the constraint preference models, as described in Section 4.4, we obtain weighted CSP versions
that are compatible with a much wider range of solvers including those that are able to take
an integer variable or expression as their objective.

Alternatively, we could have resorted to the existing cost function networks benchmark
library that also offers MiniZinc models for a tabularized encoding.2 However, conventional
constraint solvers have already been shown to be dominated on these problems by Toulbar2.
Moreover, these problems only address one particular PVS. Optimizing according to the Smyth-
ordering has not been addressed before. In particular, this ordering introduces some partiality

1https://github.com/MiniZinc/minizinc-benchmarks
2https://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/BenchmarkS and https://github.

com/MiniZinc/minizinc-benchmarks/blob/master/proteindesign12/wcsp.mzn

135

https://github.com/MiniZinc/minizinc-benchmarks
https://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/BenchmarkS
https://github.com/MiniZinc/minizinc-benchmarks/blob/master/proteindesign12/wcsp.mzn
https://github.com/MiniZinc/minizinc-benchmarks/blob/master/proteindesign12/wcsp.mzn

136 CHAPTER 9. EVALUATION

in the models which generally makes the task of finding optima more demanding due to reduced
pruning.

The problems were selected according to features that justify an encoding approach (i.e.,
efficient conventional propagation), the feasibility of decompositions for many solvers, and
meaningful soft constraint addition. Certainly, there are cost function network problems (e.g.,
in bioinformatics) that are out of reach for conventional solvers, as [Hurley et al., 2016] demon-
strated for Toulbar2. However, we argue that there are many practical cases with relatively few
soft constraints and many conventional constraints. Among those, we investigate the following
problems:
Soft N-Queens is a toy SCSP that adds three artificial soft constraints with a preference

relation over them to a classical N -queens problem (such as, e.g., having a queen in the
center of the grid), not to be mistaken with the M -queens optimization problem.

Photo Placement asks to place people close to their friends – in its original version it was
already designed to handle preferences but we (morally questionably) allowed for some
friends to be more important to stand close to than others.

Talent Scheduling aims at scheduling movie scenes including various actors cost-effectively.
We augmented the conventional problem with preferences to avoid being simultaneously
on set with a rival actor and early/late times for specific scenes.

On-call Rostering requires to assign staff members to days in a rostering period, respecting
work constraints and unavailabilities. The original formulation already contained pref-
erences for not being on-call for more than two days in a row or not being on-call for a
weekend and a consecutive day. We modeled these existing preferences in MiniBrass and
added additional ones regarding preferred co-workers.

Multi-Skilled Project Scheduling (MSPSP) is a variant of resource-constrained project
scheduling and asks to assign a set of tasks to workers such that the required set of skills
for a task is provided by its assigned worker. To add soft constraints, we again allowed
workers to state with whom they would like to work and which tasks they would like to
work on or which ones they would rather avoid.

More detailed information about the changed and added aspects can be found online.3
Each problem is tested with three to six instances, totaling 28 benchmark instances (Table 9.1
summarizes the key data in terms of experiment size). Since most of these problems already
were formulated as constraint optimization problems we had to deal with two objectives: the
original one and the soft constraint objective. First, we converted the problems to constraint
satisfaction problems by imposing the original objective value to lie within a 10%–15% bound-
ary around the (previously determined) optimal value, and eventually used the soft constraint
objective. In MiniBrass, we write this as
solve search presolveMin(origObj, 0.15) /\ miniBrass();

We solved the resulting models (including parameters that will be subject to the respective
experiment questions) using branch-and-bound4 (cf. Section 4.4.2) with the classical constraint
solvers Gecode 5.0.0 [Schulte et al., 2006], JaCoP 4.4.0 [Kuchcinski and Szymanek, 2013],
Google OR-Tools 5.1.0 (CP solver) [Google, 2017], Choco 4.0.3 [Jussien et al., 2008], and

3https://github.com/isse-augsburg/minibrass/tree/master/evaluation/problems
4We experimented with large neighborhood search as well but did not find it to be effective enough for the

selected evaluation problems.

https://github.com/isse-augsburg/minibrass/tree/master/evaluation/problems

137

Table 9.1: Key data that shows how many actual experiments, i.e., attempted MiniZinc runs
have been pursued with various parameter/solver configurations.

Configurations 16
Problems 5
Instances 28
Solvers 7

Attempted problems 1793
Solved problems 1289 (71.9%)
Optimally solved problems 1250 (69.7%)

Table 9.2: Compatibility matrix of the solvers used in the evaluation based on their expressivity
and tool support. The symbol X indicates full compatibility, (X) refers to partial support by
morphisms to weighted CSP, x means no support at all. The dedicated soft constraint solver
Toulbar2 is marked by an asterisk.

Gecode JaCoP OR-Tools Choco G12 Toulbar2 *

Free PVS X X x x x x
Constraint Preferences X X x x x x
Fuzzy CSP X X (X) (X) (X) (X)
Probabilistic CSP X X (X) (X) (X) (X)
Max CSP X X X X X X
Weighted CSP X X X X X X
Cost Function Networks X X X X X X

G12 1.6.0 [Stuckey et al., 2005], as well as with the only competitive cost function network
solver Toulbar2 0.9.8 [Allouche et al., 2010], accessed via Numberjack 1.1.0 [Hebrard et al.,
2010]. Each presented experiment was run on a machine having 4 Intel Xeon CPU 3.20 GHz
cores and 14.7 GB RAM on a 64 bit Ubuntu 15.04 with a timeout set to 10 minutes per
instance. Whenever we average relative values (such as a speedup for runtimes) that are
normalized to one solver/heuristic, we use the geometric mean as the only valid choice for such
data [Fleming and Wallace, 1986]. Concerning statistical tests for runtime comparisons, we
used the Wilcoxon signed-rank test (alpha level α = 0.05) since the measured runtimes showed
a heavy-tailed distribution instead of a normal one.

Our primary goal is to demonstrate the feasibility of implementing soft constraint for-
malisms more generally than a numeric objective at low runtime overheads – a capability that
is not shared by any state-of-the-art soft constraint solver. Besides, even in the realm of cost
function networks and weighted constraints, it can pay off to use an encoding approach with a
conventional constraint solver as opposed to a dedicated soft constraint solver. Furthermore,
we examine the effects of our proposed search heuristics for weighted constraints.

138 CHAPTER 9. EVALUATION

9.1 Comparing Performance: Encoded Weighted CSP versus
Native Toulbar2

If we want to obtain a comparative view on the performance of MiniBrass models, we have to
use cost function networks. For one thing, they are the native formalism Toulbar2 supports,
for another thing, the task boils down to minimizing a numeric value in conventional models
which is directly supported by MiniZinc. On the one hand, Toulbar2 can be seen as the only
true state-of-the-art alternative to MiniBrass (given that WSimply [Ansótegui et al., 2013]
has no MiniZinc or Numberjack interface, only runs on a 32 bit Linux distribution, and is no
longer maintained) – on the other hand it serves as a well-supported backend. Therefore, this
evaluation cannot be truly seen in a competitive light as MiniBrass is a modeling language.
Here, the central question is:

How fast and effectively (in terms of finding optima) can WCSP instances be solved by
encoding them as COPs versus using a dedicated solver?

Table 9.3 presents the results for this first question with times and objectives being averaged
across all instances for the respective problem, ranked by runtimes.5 Values in parentheses
denote averaged relative values with respect to the minimum (geometric mean of ratios for
time or arithmetic mean for excess penalty violation, resp.) for each instance – as opposed
to relative average values. Therefore, the relative overhead does not necessarily correlate with
the absolute values (e.g., Toulbar2 versus Gecode on Talent Scheduling). The number of wins
indicates how many instances a solver won (i.e., being fastest) within the respective problem.
If an instance was not solved at all within the specified time limit, the maximally possible
violation for it was assumed.

We observed a fairly even distribution of solvers performing well with OR-Tools being
among the top three on all problems, showing the most reliable contribution of all conventional
constraint solvers. In addition to the table, we noted that across all problems, OR-Tools had
the lowest average runtime (97.39 secs) and the lowest average objective value (6.18), whereas
Gecode achieved the most wins (12). Interestingly, Toulbar2 managed to achieve the best (or
second best) average runtimes for three problems, excelling in On-call Rostering. However, the
memory-intensive decompositions required for MSPSP and Talent Scheduling had Toulbar2
fail during model creation without returning a solution. To conclude, even though Toulbar2
is a strong choice when dealing with cost function networks, there are cases where only an
encoding approach succeeded at all (MSPSP) – or substantially faster (Talent Scheduling).
With problems modeled in MiniBrass, both options remain.

9.2 Comparing Models: Smyth-Optimization versus
Weighted-Optimization

Upon learning that weighted instances can be solved efficiently by conventional constraint
solvers, we turn to optimization according to the Smyth-ordering. MiniBrass was explicitly
designed for more general orderings than numeric objectives – in particular, Smyth as the
ordering of the free PVS. We want to quantify how expensive the partiality of an original

5The fact that Choco shows a higher average objective on Photo Placement albeit claiming to have proved
optimality results from a bug in the solver induced by the problem-specific search heuristics.

9.2. SMYTH-OPTIMIZATION VERSUS WEIGHTED-OPTIMIZATION 139

Table 9.3: Comparison of solvers’ performance on the weighted CSP representations. Values
in parentheses denote averaged relative values with respect to the minimum (ratio for time or
excess penalty violation).

Solver Time (secs) # Wins Objective % Solved % Optimal

MSPSP (8 instances)

Gecode 0.32 (1.00) 8 2.50 (0.00) 100.00 100.00
G12 0.32 (1.01) 0 2.50 (0.00) 100.00 100.00
OR-Tools 0.33 (1.04) 0 2.50 (0.00) 100.00 100.00
JaCoP 0.52 (1.71) 0 2.50 (0.00) 100.00 100.00
Choco 0.70 (2.40) 0 2.50 (0.00) 100.00 100.00
Toulbar2 312.56 (654.69) 0 29.13 (26.63) 0.00 0.00

On-call Rostering (7 instances)

Toulbar2 40.73 (1.28) 3 1.57 (0.00) 100.00 100.00
OR-Tools 275.23 (2.66) 2 3.71 (2.14) 100.00 57.14
Gecode 275.23 (2.64) 1 4.57 (3.00) 100.00 57.14
G12 276.36 (2.84) 1 5.57 (4.00) 100.00 57.14
JaCoP 276.63 (3.27) 0 5.14 (3.57) 100.00 57.14
Choco 276.72 (3.82) 0 5.14 (3.57) 100.00 57.14

Photo Placement (3 instances)

Toulbar2 0.80 (1.11) 0 13.33 (0.00) 100.00 100.00
Choco 0.83 (1.18) 2 25.00 (11.67) 100.00 100.00
OR-Tools 1.49 (1.51) 1 13.33 (0.00) 100.00 100.00
JaCoP 3.18 (3.08) 0 13.33 (0.00) 100.00 100.00
Gecode 22.24 (5.11) 0 13.33 (0.00) 100.00 100.00
G12 27.40 (23.06) 0 13.33 (0.00) 100.00 100.00

Soft N-Queens (3 instances)

OR-Tools 0.03 (1.00) 3 0.33 (0.00) 100.00 100.00
Toulbar2 0.30 (9.96) 0 0.33 (0.00) 100.00 100.00
Choco 0.35 (12.51) 0 0.33 (0.00) 100.00 100.00
JaCoP 57.22 (56.00) 0 0.33 (0.00) 100.00 100.00
Gecode 210.02 (29.31) 0 1.67 (1.33) 100.00 66.67
G12 210.02 (32.26) 0 1.67 (1.33) 100.00 66.67

Talent Scheduling (7 instances)

OR-Tools 113.29 (1.01) 3 12.29 (0.00) 100.00 85.71
JaCoP 117.71 (1.61) 0 12.29 (0.00) 100.00 85.71
Choco 129.12 (2.55) 1 12.29 (0.00) 100.00 85.71
Toulbar2 158.27 (9.29) 0 28.43 (16.14) 28.57 28.57
Gecode 183.29 (2.22) 3 12.29 (0.00) 100.00 85.71
G12 194.91 (2.36) 0 12.29 (0.00) 100.00 85.71

140 CHAPTER 9. EVALUATION

Table 9.4: Comparing the solvers’ performance on a Smyth-based model and the weighted
CSP representations. Times and objectives are averaged over all instances for a given problem
and can be compared. We only considered solved instances in this evaluation. Bold-face
highlighting indicates the faster model per solver. Runtimes of Toulbar2 on the weighted
instances are given “out of competition” where applicable – i.e., if the decomposition succeeded
on all competing instances. Times are given in seconds.

Solver Time Smyth Time Weighted Time Toulbar2 Obj. Smyth Obj. Weighted

MSPSP (6 instances)

Gecode 12.74 0.34 - 5.50 2.67
Native Gecode 7.82 0.26 - 5.80 2.80
JaCoP 4.18 0.45 - 6.00 2.00

On-call Rostering (5 instances)

Gecode 220.46 133.32 14.52 7.20 3.20
Native Gecode 192.50 133.32 14.52 25.20 3.20
JaCoP 194.06 135.28 14.52 26.80 3.20

Photo Placement (3 instances)

Gecode 6.69 1.03 0.68 13.00 13.00
Native Gecode 9.96 22.22 0.80 13.33 13.33
JaCoP 15.73 3.18 0.80 13.33 13.33

Soft N-Queens (3 instances)

Gecode 3.45 210.02 0.30 2.00 1.67
Native Gecode 3.49 210.02 0.30 1.33 1.67
JaCoP 3.94 57.22 0.30 1.00 0.33

Talent Scheduling (6 instances)

Gecode 7.78 158.94 - 14.25 12.50
Native Gecode 13.50 141.09 - 14.67 12.33
JaCoP 15.63 120.42 - 14.17 12.33

model is with respect to the totalization obtained by weighting constraints. To solve these
models, only Gecode and JaCoP are applicable, as they are both compatible with MiniSearch
and support set-based variables to the necessary extent. For these solvers, we compare the
running times and objective values6 for the original Smyth-based model and the (morphed)
weighted CSP. Gecode is provided in a native version directly accessed by MiniSearch (see
Section 3.5) and a FlatZinc-based version – with the latter being more recent than the native
one. JaCoP is only available using FlatZinc. Where applicable, i.e., if Toulbar2 solved the
instances, we additionally provide its reference values (Toulbar2 is restricted to the weighted
version). Here, the central question is:

Is optimizing according to the Smyth-ordering much more expensive than solving a weighted
counterpart obtained by a morphism?

Table 9.4 presents our results answering this question. Note that, for this evaluation, the
Smyth-based models have been solved with strict domination BaB since this is the only way the
totalized weighted version can operate. We expected the weighted problems to be much easier
to solve since there is possibly stronger pruning and propagation involved. To our surprise, we
noticed that, whereas for most instances (87.8%), the weighted counterpart was indeed easier

6Note that the “objective values” for the Smyth-model are provided only for comparative reasons. Opti-
mization was done purely according to the Smyth-ordering on the set of violated soft constraints.

9.2. SMYTH-OPTIMIZATION VERSUS WEIGHTED-OPTIMIZATION 141

Table 9.5: Comparison of runtimes between searching for all optima instead of a strict domina-
tion improvement. We only considered solved instances in this evaluation. Bold-face highlight-
ing indicates the faster search type. Values are averaged over instances and solvers. Times are
given in seconds. An asterisk (*) indicates statistical significance as reported by a Wilcoxon
signed-pair test at α = 0.05.

Problem Time Non-Dominated BaB Time Strict BaB Absolute Overhead Relative Overhead

MSPSP 7.31 8.89 −1.58 0.78
On-call Rostering* 329.44 199.21 130.23 1.70
Photo Placement* 55.09 7.51 47.58 5.32
Soft N-Queens 2.24 3.65 −1.41 0.56
Talent Scheduling* 33.44 12.24 21.21 1.81

Overall 102.00 57.20 44.80 1.47

to solve, there were instances where the constraint preferences version took substantially less
time – as in Talent Scheduling and Soft N-Queens. A possible explanation is that optimality
can be easier proved using propagation of the witness function of the Smyth-ordering. Put
differently, there could be better solutions in terms of weights but not Smyth, therefore search
can be pruned earlier. We may also notice that, on these instances, Toulbar2 can provide
much better performance than the constraint solvers on the weighted counterparts – when
applicable. This is mostly due to the fact that Choco and OR-Tools are left out (as opposed
to Section 9.1) since they currently do not support set variables. In terms of objective values,
even though optimality is proven in most cases, the Smyth and weighted versions yield different
values, which is not surprising as, again, a “weight-better” solution need not be “Smyth-better”.
Thus, there are generally lower values to be expected using the weighted version. The attentive
reader will notice that the average objective for the Smyth-model is, in fact, lower than for the
weighted model in Soft N-queens solved by the native Gecode solver. In fact, the solver timed
out on one weighted instance at the sub-optimal objective value 4 whereas the Smyth-based
variant happened to yield a Smyth-optimal solution that is also weight-optimal with objective
value 2.

With strict BaB only, we only get one optimal solution – at best. The advantage of
using partial orders clearly is having multiple incomparable optima at the modeling stage of
the process and not having to totalize the ordering by weighting. However, searching for a
whole set of optima (as done in non-domination BaB) obviously leads to longer runtimes than
stopping at the first found optimum (as done in strict BaB). We investigate the differences
in Table 9.5 (recall that TPD has to be used for non-domination search, see Section 4.3.2).
On the examined benchmark problems, we observe a slowdown factor between one and five
when non-domination leads to longer runtimes. However, in some cases the difference between
non-domination and strict BaB was negligible (i.e., MSPSP and Soft N-Queens), even showing
a small (not statistically significant) speedup for non-domination search – mostly due to the
set of optima actually being small where strict and non-domination BaB converge to similar
search trees.

142 CHAPTER 9. EVALUATION

Table 9.6: Runtime difference between models with MIF activated and deactivated. Negative
values indicate that MIF led to faster solving times. Winning ratios are given with respect to
the number of instances. Relative runtime differences normalize MIF to default (aggregated by
the geometric mean). Solved configurations include Smyth-based and weighted models. For
the actual runtimes, see Figure 9.1. Times are given in seconds. An asterisk (*) indicates
statistical significance as reported by a Wilcoxon signed-pair test at α = 0.05.

Grouped by solvers

Choco* G12 Gecode Native Gecode JaCoP Toulbar2 OR-Tools

Instances 28 28 28 28 28 28 28
Runtime difference −73.14 −17.57 −18.42 −18.53 16.15 36.63 19.05
Rel. runtime diff. 0.65 0.72 0.79 0.80 1.04 1.11 1.50
Ratio MIF wins 0.64 0.32 0.29 0.18 0.46 0.57 0.32

Grouped by problems

MSPSP* On-call Rostering* Photo Placement* Soft N-Queens* Talent Scheduling

Instances 56 49 21 21 49
Runtime difference −0.68 −26.63 145.93 −98.15 −24.96
Rel. runtime diff. 1.04 0.87 8.64 0.16 0.66
Ratio MIF wins 0.36 0.51 0.05 0.52 0.43

9.3 Comparing Search Heuristics: Most Important First
versus Default

Lastly, with abstract higher level preference models, we can use generic search heuristics that
align with the optimization goals – dependent on the PVS type in use. Here, our simple
strategy (shown in Section 4.3.1) is to try and assign true to the boolean variables reifying7
the satisfaction of soft constraints in the order of decreasing weight (i.e., importance). We
refer to this heuristic as most important first (MIF). Some of the benchmark problems already
shipped with a problem-specific variable ordering heuristic. In such cases, activated MIF
prepends the reified satisfaction variables to the existing heuristic. We compare the effects of
MIF on various types of searches (strict, non-domination, weighted), problems, and solvers.
The central question is:

Can a generic heuristic (MIF) for soft constraint problems speed up the search for optima?

Over all 168 runs across solvers, problem instances, and search types, the MIF heuristic led to
a faster runtime in 73 cases (43 %) with the average runtime reduced by 6.22 seconds. Yet,
MIF is not uniformly beneficial but affects some solvers more than others. Similarly, some
problems are more likely to be improved. Table 9.6 presents results in a more fine-grained
fashion, grouping the evaluated data by problems and solvers, respectively. We find that MIF
seems to negatively influence the performance compared to the built-in default search strategies
in particular for OR-Tools, JaCoP, and Toulbar2 but can lead to tremendous improvements
for Choco (cf. Figure 9.1a) – which showed the only statistically significant difference when
grouped by solvers – due to instances of all problems being compared.

On the other hand, when grouping by problem, On-call Rostering and Talent Scheduling
benefited the most from MIF (cf. Figure 9.1b), both showing a speedup on average (relative

7Certainly, some global constraints cannot be reified directly yet, only support half-reification or need a
decomposition but we expect them to increasingly do so [Beldiceanu et al., 2013].

9.3. MOST IMPORTANT FIRST VERSUS DEFAULT 143

Choco G12 Gecode Gecode Nat. JaCoP Toulbar2 OR-Tools

Solver

0

50

100

150

200

250

A
vg

. R
un

ti
m

es
 (

se
cs

)

MIF

No-MIF

(a) Runtimes grouped by solver for MIF on/off.

MSPSP On-call Rostering Photo Soft Queens Talent Scheduling

Problem

0

50

100

150

200

250

A
vg

. R
un

ti
m

es
 (

se
cs

)

MIF

No-MIF

(b) Runtimes grouped by problem for MIF on/off.

Figure 9.1: Average runtimes for instances solved with and without MIF activated for several
models (Smyth or weighted). Figures correspond to the data showing differences in Table 9.6.

differences) – although the difference was not significant for Talent Scheduling: over all in-
stances, MIF produced faster but also slower runtimes about the same number of times while
the average still favors MIF. Contrary to that, for On-call Rostering, the runtime difference –
albeit small on average – was statistically significant since MIF improved the performance in
about half of the instances – and in the others, it did no harm. We suspect that for the other
problems, either the built-in heuristics were effective enough or MIF led to thrashing behavior
if the best solutions still violated many soft constraints. Then, MIF initiates many “pointless”
searches by setting all soft constraints to be satisfied and propagation fails to prove infeasi-
bility fast enough. For problems such as Photo Placement or MSPSP, we admittedly better
use the default search strategy. MIF clearly is no silver bullet. However, since activating a
search heuristic in MiniBrass only amounts to placing pvsSearchHeuristic in front of the
search procedure (cf. Listing 4.1), this still is an easy first step in tweaking the performance.
Interestingly, our experiments also reveal that the effectiveness of the heuristic depends more
strongly on the problem at hand than it does on the particular solver.

Chapter Summary and Outlook
This chapter provided an empirical evaluation of constraint preferences within the scope of
MiniBrass. For this purpose, we converted standard constraint models in MiniZinc into soft
constraint models for MiniBrass by adding suitable soft constraints and integrating the orig-
inal objective. We showed that optimizing according to the Smyth-ordering is feasible and
comparable to classical weighted CSP optimization. Classical constraint solvers outperform a
dedicated soft constraint solver if the models contain sufficiently many hard, global constraints
with efficient propagators. Nevertheless, MiniBrass offers both options as backends to choose
at runtime. For constraint preferences, we also demonstrated that the most-important-first
heuristic often leads to improved runtime and can be easily activated in MiniBrass.

Chapter 10
Conclusion and Outlook

Over-constrained optimization problems are ubiquitous not only but especially in self-organizing
and autonomous systems. Despite significant theoretical advances in solid algebraic frame-
works, the widespread usage of soft constraints is hindered by the lack of available imple-
mentations. This dissertation ameliorates this status by offering several contributions – most
importantly, an extensible, high-level soft-constraint modeling language that can be used in
combination with a variety of state-of-the-art solvers. Nonetheless, en route towards the imple-
mentation of MiniBrass, we identified several open theoretical problems and provided solutions
for them.

10.1 Achieved Contributions
Motivated by a diverse set of application scenarios, we identified the need for a soft constraint
modeling language. By introducing a qualitative formalism to specify preferences over con-
straints, we found that partial valuation structures are suitable as a generalizing algebraic
structure for many preference formalisms proposed in the literature.

In the practical part of the dissertation, we presented and implemented MiniBrass, a soft
constraint modeling language building on MiniZinc that closes the gap between algebraic soft
constraint frameworks and state-of-the-art solvers. MiniBrass allows designing complex pref-
erence structures using product operators (for lexicographic and Pareto combinations) and
morphisms (for type conversions) separately from conventional constraints. It is extensible by
design but already incorporates many existing formalisms.

In the theoretical part, we motivated why the concept of free constructions is an appropri-
ate tool to facilitate the transition from partial orders to PVS and from PVS to c-semirings
with the least structural overhead and provided proofs. Since these constructions involve
several sorts of algebraic structures, we employ the unifying language of category theory for
the mathematical underpinning. Collapsing elements of PVS equalize unequal elements upon
multiplication and render lexicographic products invalid. For such cases, we introduced the
concept of optima-simulation. We exemplified this methodology with a p-norm-based PVS
that can optima-simulate a PVS using the maximum operator for its aggregation. To combine
the goals specified by multiple PVS in a more practically suitable way than what direct or
lexicographic products offer, we suggested using social welfare functions, i.e., voting methods
introduced by social choice theory. Preliminary results indicate that, despite mathematical
restrictions imposed by the very nature of social choice, some welfare functions are well-suited

145

146 CHAPTER 10. CONCLUSION AND OUTLOOK

for implementation in constraint-based optimization tools. This “democratic” perspective is,
in particular, relevant in optimization problems stemming from autonomous systems composed
of multiple self-interested agents.

Finally, in the empirical part of the dissertation, we evaluated MiniBrass on a set of “soft-
ened” benchmark problems originating from the MiniZinc challenge and found that on these
problems an encoding-approach is competitive with dedicated soft constraint solving, optimiz-
ing with the Smyth-ordering is only slightly more expensive than weighted problems, and our
proposed most-important-first heuristic can lead to significant runtime savings. The results
demonstrate that MiniBrass is not only a tool of theoretical interest but also leads to compact
modeling and efficient solving, in practice.

10.2 Outlook and Future Work
For future work, we consider applying MiniBrass in multi-agent settings the most important
direction. The more human societies are permeated by “intelligent” devices taking over deci-
sions for people, the more important it becomes that fair and socially acceptable aggregation
strategies are applied. We expect to achieve positive results in at least some classes of multi-
agent optimization problems such as repeated task or resource allocation where techniques
from fair scheduling in concurrent systems could be borrowed and applied.

Besides smart energy systems, the field of reconfigurable mobile robot systems provides
manifold applications for soft constraint optimization. For instance, task and resource alloca-
tion problems for unmanned aerial vehicles (UAV) with reconfigurable sensors promise to be
a rich source of challenging optimization problems under soft constraints such as task quality,
frequency of reconfigurations, aptitude for tasks, etc. Kosak et al. [2016] already demonstrated
that the hardware commonly installed in modern UAVs is capable of reliably solving task
allocation problems specified in MiniZinc. Hanke et al. [2018] proposed a reconfiguration al-
gorithm that equips UAVs with appropriate sensors in a decentralized fashion, based on local
MiniZinc models. Soft constraints have not been considered, yet, but the more aspects we
model, the more likely it is that task and resource allocation becomes over-constrained. We
expect synergy effects from research conducted in that area.

On a technical note, we should be aware that there is a subtlety in the way MiniBrass
commonly addresses Pareto-combinations or voting operators. The order in which the solutions
are found is heavily influenced by the involved variable and value orderings shaping the search
tree. Consequently, when searching a whole Pareto-front or even several incomparable optima,
it certainly should not be the case that important real-life decisions depend on a solver’s specific
implementation. Particular care should be taken for Condorcet-voting or similar algorithms
that depend strongly on the solution ordering. Related to this issue, randomization can also
be a vital part of a voting method, especially in so-called lottery-based voting.

To further disseminate MiniBrass, we plan to investigate more practical case studies and
develop tools for more efficient constraint and preference modeling – suitable for both MiniZinc
and MiniBrass. A web and mobile interface should help everyday decision-making with multiple
users expressing their individual preferences. We expect that profound and interdisciplinary
research has to be conducted in this emerging topic, as it addresses the core foundations of
how we, as a society, want to agree on common decision-making with autonomous devices.

Bibliography

Allen, T. E., Chen, M., Goldsmith, J., Mattei, N., Popova, A., Regenwetter, M., Rossi, F., and
Zwilling, C. (2015). Beyond Theory and Data in Preference Modeling: Bringing Humans
into the Loop. In Proc. 4th Intl. Conf. Algorithmic Decision Theory (ADT’15), volume 9346
of Lect. Notes Comp. Sci., pages 3–18. Springer.

Allouche, D., de Givry, S., Katsirelos, G., Schiex, T., and Zytnicki, M. (2015). Anytime
Hybrid Best-first Search with Tree Decomposition for Weighted CSP. In Proc. 21st Intl.
Conf. Principles and Practice of Constraint Programming (CP’15), volume 9255 of Lect.
Notes Comp. Sci., pages 12–29. Springer.

Allouche, D., de Givry, S., and Schiex, T. (2010). Toulbar2, an Open-source Exact Cost
Function Network Solver. Technical report, INRIA.

Allouche, D., Traoré, S., André, I., De Givry, S., Katsirelos, G., Barbe, S., and Schiex, T.
(2012). Computational Protein Design as a Cost Function Network Optimization Problem.
In Proc. 18th Intl. Conf. Principles and Practice of Constraint Programming (CP’12), pages
840–849. Springer.

Amadio, R. M. and Curien, P.-L. (1998). Domains and Lambda-Calculi. Cambridge Tracts in
Theoretical Computer Science 46. Cambridge University Press.

Anders, G. (2017). Self-Organized Robust Optimization in Open Technical Systems: Self-
Organization and Computational Trust for Scalable and Robust Resource Allocation under
Uncertainty. Dissertation, Universität Augsburg.

Anders, G., Siefert, F., Schiendorfer, A., Seebach, H., Steghöfer, J.-P., Eberhardinger, B.,
Kosak, O., and Reif, W. (2016). Specification and Design of Trust-Based Open Self-
Organising Systems. In Reif, W., Anders, G., Seebach, H., Steghöfer, J.-P., André, E.,
Hähner, J., Müller-Schloer, C., and Ungerer, T., editors, Trustworthy Open Self-Organising
Systems, volume 7 of Autonomic Systems, pages 17–53. Springer.

Anders, G., Siefert, F., Steghöfer, J.-P., and Reif, W. (2013). Trust-Based Scenarios – Predict-
ing Future Agent Behavior in Open Self-Organizing Systems. In Proc. 7th Intl. Workshop
on Self Organizing Systems (IWSOS) 2013. Springer.

147

148 BIBLIOGRAPHY

Andréka, H., Ryan, M., and Schobbens, P.-Y. (2002). Operators and Laws for Combining
Preference Relations. Journal of Logic and Computation, 12(1):13–53.

Ansótegui, C., Bofill, M., Palahí, M., Suy, J., and Villaret, M. (2011). W-MiniZinc: A Proposal
for Modeling Weighted CSPs with MiniZinc. In Proc. 1st Intl. Ws. MiniZinc (MZN’11).

Ansótegui, C., Bofill, M., Palahí, M., Suy, J., and Villaret, M. (2013). Solving Weighted CSPs
with Meta-Constraints by Reformulation into Satisfiability Modulo Theories. Constraints,
18(2):236–268.

von Appen, J., Braun, M., Stetz, T., Diwold, K., and Geibel, D. (2013). Time in the Sun:
The Challenge of High PV Penetration in the German Electric Grid. Power and Energy
Magazine, 11(2):55–64.

Arrow, K. J. (1951). Social Choice and Individual Values. Yale University Press.

Arrow, K. J., Sen, A., and Suzumura, K. (2010). Handbook of Social Choice and Welfare,
volume 2. Elsevier.

Arroyo, J. M. and Conejo, A. J. (2004). Modeling of Start-up and Shut-down Power Trajectories
of Thermal Units. Transactions on Power Systems, 19(3):1562–1568.

Audi (2018). Audi TechDay Smart Factory. [Online at https://www.audi-mediacenter.
com/en/presskits/audi-techday-smart-factory-7008; accessed 08-March-
2018].

Awodey, S. (2010). Category Theory. Oxford University Press.

Barr, M. and Wells, C. (1990). Category Theory for Computing Science. Prentice Hall.

Becket, R. (2014). Specification of FlatZinc-Version 1.6. [Online at http://www.minizinc.
org/downloads/doc-1.6/flatzinc-spec.pdf; accessed 08-March-2018].

Beldiceanu, N., Carlsson, M., Demassey, S., and Petit, T. (2007). Global Constraint Catalogue:
Past, Present and Future. Constraints, 12(1):21–62.

Beldiceanu, N., Carlsson, M., Flener, P., and Pearson, J. (2013). On the Reification of Global
Constraints. Constraints, 18(1):1–6.

van der Bellen, A. (1976). Mathematische Auswahlfunktionen und gesellschaftliche Entschei-
dungen. Interdisciplinary Systems Research. Birkhäuser. in German.

Benhamou, F. and Granvilliers, L. (2006). Continuous and Interval Constraints. In Rossi,
F., van Beek, P., and Walsh, T., editors, Handbook of Constraint Programming, chapter 16.
Elsevier.

Bertele, U. and Brioschi, F. (1973). On Non-serial Dynamic Programming. Journal on Com-
binatorial Theory, Series A, 14(2):137–148.

Bessiere, C. (2006). Constraint Propagation. In Rossi, F., van Beek, P., and Walsh, T., editors,
Handbook of Constraint Programming, chapter 3. Elsevier.

https://www.audi-mediacenter.com/en/presskits/audi-techday-smart-factory-7008
https://www.audi-mediacenter.com/en/presskits/audi-techday-smart-factory-7008
http://www.minizinc.org/downloads/doc-1.6/flatzinc-spec.pdf
http://www.minizinc.org/downloads/doc-1.6/flatzinc-spec.pdf

BIBLIOGRAPHY 149

Bickel, B. and Schuster, M. (2005). Trends, Methoden und Grundsätze moderner Fabrik- und
Produktionsplanung. Hochschule Pforzheim. in German.

Bistarelli, S. (2004). Semirings for Soft Constraint Solving and Programming, volume 2962 of
Lect. Notes Comp. Sci. Springer.

Bistarelli, S., Codognet, P., and Rossi, F. (2002). Abstracting Soft Constraints: Framework,
Properties, Examples. Artificial Intelligence, 139:175–211.

Bistarelli, S., Frühwirth, T., Marte, M., and Rossi, F. (2004). Soft Constraint Propagation
and Solving in Constraint Handling Rules. Computational Intelligence, 20(2):287–307.

Bistarelli, S., Fung, S. K. L., Lee, J. H. M., and Leung, H. (2003). A Local Search Framework for
Semiring-based Constraint Satisfaction Problems. In Proc. Ws. Soft Constraints (Soft’03).

Bistarelli, S., Montanari, U., and Rossi, F. (1997). Semiring-based Constraint Satisfaction and
Optimization. Journal of the ACM, 44(2):201–236.

Bistarelli, S., Montanari, U., Rossi, F., Schiex, T., Verfaillie, G., and Fargier, H. (1999).
Semiring-Based CSPs and Valued CSPs: Frameworks, Properties, and Comparison. Con-
straints, 4(3):199–240.

Bockmayr, A. and Hooker, J. N. (2005). Constraint Programming. Handbooks in Operations
Research and Management Science, 12:559–600.

Bohnenblust, H. F. (1940). An Axiomatic Characterization of Lp-spaces. Duke Math. J.,
6:627–640.

Borning, A., Freeman-Benson, B., and Wilson, M. (1992). Constraint Hierarchies. LISP and
Symbolic Computation, 5:223–270.

Boutilier, C., Brafman, R. I., Domshlak, C., Hoos, H. H., and Poole, D. (2004). CP-nets:
A Tool for Representing and Reasoning with Conditional Ceteris Paribus Preference State-
ments. Journal on Artificial Intelligence Research, 21:135–191.

Boutilier, C., Brafman, R. I., Geib, C., and Poole, D. (1997). A Constraint-based Approach
to Preference Elicitation and Decision Making. In AAAI Spring Symp. Qualitative Decision
Theory, pages 19–28.

Brandt, F., Conitzer, V., and Endriss, U. (2013). Computational Social Choice. In Weiß, G.,
editor, Multiagent Systems, chapter 6, pages 213–283. MIT Press, 2nd edition.

Brandt, F., Conitzer, V., Endriss, U., Lang, J., and Procaccia, A. D. (2016). Handbook of
computational social choice. Cambridge University Press.

Cooper, M. C., de Givry, S., Sánchez, M., Schiex, T., Zytnicki, M., and Werner, T. (2010).
Soft Arc Consistency Revisited. Artificial Intelligence, 174(7):449–478.

Cooper, M. C. and Schiex, T. (2004). Arc Consistency for Soft Constraints. Artificial Intelli-
gence, 154(1):199–227.

150 BIBLIOGRAPHY

CPLEX (2013). IBM ILOG CPLEX Optimizer. Online at http://www-01.ibm.com/
software/commerce/\optimization/cplex-optimizer/, last accessed December
2013:.

Dalla Pozza, G., Pini, M. S., Rossi, F., and Venable, K. B. (2011). Multi-agent Soft Constraint
Aggregation via Sequential Voting. In Proc. 22nd Intl. Joint Conf. Artificial Intelligence
(IJCAI’11), pages 172–177.

Dalla Pozza, G., Rossi, F., and Venable, K. B. (2010). Multi-agent Soft Constraint Aggre-
gation: A Sequential Approach. In Proc. 3rd Intl. Conf. Agents and Artificial Intelligence
(ICAART’11, volume 11.

Dash, R. K., Vytelingum, P., Rogers, A., David, E., and Jennings, N. R. (2007). Market-based
Task Allocation Mechanisms for Limited-capacity Suppliers. Transactions on Systems, Man
and Cybernetics, 37(3):391–405.

Dechter, R. (1999). Bucket Elimination: A Unifying Framework for Reasoning. Artificial
Intelligence, 113(1):41–85.

Dechter, R. (2003). Constraint Processing. Morgan Kaufmann.

Dechter, R. and Frost, D. (2002). Backjump-based Backtracking for Constraint Satisfaction
Problems. Artificial Intelligence, 136(2):147–188.

Dekker, J. J., de la Banda, M. G., Schutt, A., Stuckey, P. J., and Tack, G. (2018). Solver-
Independent Large Neighbourhood Search. In Proc. 24th Intl. Conf. Constraint Programming
(CP’18), volume 11008 of Lect. Notes Comp. Sci., pages 81–98.

Diaconescu, R. (1994). Category-based Semantics for Equational and Constraint Logic Pro-
gramming. PhD thesis, Oxford University, Oxford.

Doyle, J. and McGeachie, M. (2003). Exercising Qualitative Control in Autonomous Adap-
tive Survivable Systems. In Proc. 2nd Intl. Conf. Self-adaptive Software: Applications
(IWSAS’01), Lect. Notes Comp. Sci., pages 158–170. Springer.

Ehrgott, M. (2005). Multicriteria Optimization, volume 491. Springer Science & Business
Media.

Fargier, H. and Lang, J. (1993). Uncertainty in Constraint Satisfaction Problems: A Probabilis-
tic Approach. In Proc. Europ. Conf. Symbolic and Quantitative Approaches to Reasoning and
Uncertainty (ECSQARU’93), volume 747 of Lect. Notes Comp. Sci., pages 97–104. Springer.

Fioretto, F., Pontelli, E., and Yeoh, W. (2016). Distributed constraint optimization problems
and applications: A survey. CoRR abs/1602.06347.

Fioretto, F., Pontelli, E., and Yeoh, W. (2018). Distributed constraint optimization problems
and applications: A survey. Journal of Artificial Intelligence Research, 61:623–698.

Fleming, P. J. and Wallace, J. J. (1986). How Not to Lie with Statistics: The Correct Way to
Summarize Benchmark Results. Communications of the ACM, 29(3):218–221.

http://www-01.ibm.com/software/commerce/\optimization/cplex-optimizer/
http://www-01.ibm.com/software/commerce/\optimization/cplex-optimizer/

BIBLIOGRAPHY 151

Freuder, E. C. and Wallace, R. J. (1992). Partial constraint satisfaction. Artificial Intelligence,
58(1–3):21–70.

Frisch, A. M., Harvey, W., Jefferson, C., Martínez-Hernández, B., and Miguel, I. (2008).
Essence: A Constraint Language for Specifying Combinatorial Problems. Constraints,
13(3):268–306.

Gadducci, F., Hölzl, M., Monreale, G. V., and Wirsing, M. (2013). Soft Constraints for
Lexicographic Orders. In Proc. 12th Mexican Intl. Conf. Artificial Intelligence (MICAI’13),
volume 8265 of Lect. Notes Comp. Sci., pages 68–79. Springer.

Gale, D. and Shapley, L. S. (1962). College Admissions and the Stability of Marriage. The
American Mathematical Monthly, 69(1):9–15.

Ge, D., Jiang, X., and Ye, Y. (2011). A Note on the Complexity of Lp Minimization. Mathe-
matical programming, 129(2):285–299.

Gent, I. P., MacIntyre, E., Presser, P., Smith, B. M., and Walsh, T. (1996). An Empirical
Study of Dynamic Variable Ordering Heuristics for the Constraint Satisfaction Problem. In
Proc. 2nd Intl. Conf. Principles and Practice of Constraint Programming (CP’96), volume
1118 of Lect. Notes Comp. Sci., pages 179–193. Springer.

Google (2017). Google Optimization Tools. [Online at https://developers.google.
com/optimization, accessed 2017/06/29].

Güdemann, M., Ortmeier, F., and Reif, W. (2006). Formal Modeling and Verification of
Systems with Self-x Properties. In International Conference on Autonomic and Trusted
Computing, pages 38–47. Springer.

Guns, T., Dries, A., Nijssen, S., Tack, G., and De Raedt, L. (2017). MiningZinc: A Declarative
Framework for Constraint-based Mining. Artificial Intelligence, 244:6–29.

Gusfield, D. and Irving, R. W. (1989). The Stable Marriage Problem: Structure and Algorithms.
MIT press.

Hanke, J., Kosak, O., and Schiendorfer, A. (2018). Self-organized Resource Allocation for Re-
configurable Robot Ensembles. In Proc. 12th Intl. Conf. “Self-Adaptive and Self-Organizing
Systems” (SASO18). IEEE. to appear.

Hansson, S. O. (1994). Decision Theory – A Brief Introduction.

Hebrard, E. (2008). Mistral, a Constraint Satisfaction Library. Proc. 3rd Intl. CSP Solver
Competition, 3:3.

Hebrard, E., O’Mahony, E., and O’Sullivan, B. (2010). Constraint Programming and Combina-
torial Optimisation in Numberjack. In Proc. 7th Intl. Conf. Integration of AI and OR Tech-
niques in Constraint Programming for Combinatorial Optimization Problems (CPAIOR’10),
volume 6140 of Lect. Notes Comp. Sci., pages 181–185. Springer.

van Hentenryck, P. (1999). The OPL Optimization Programming Language. MIT Press.

https://developers.google.com/optimization
https://developers.google.com/optimization

152 BIBLIOGRAPHY

van Hentenryck, P. and Coffrin, C. (2014). Teaching Creative Problem Solving in a MOOC.
In Proc. 45th ACM Technical Symposium on Computer Science Education, pages 677–682.
ACM.

Heuck, K., Dettmann, K.-D., and Schulz, D. (2010). Elektrische Energieversorgung.
Vieweg+Teubner. in German.

Higham, N. J. (1992). Estimating the Matrixp-Norm. Numerische Mathematik, 62(1):539–555.

Hinrichs, C., Lehnhoff, S., and Sonnenschein, M. (2013). COHDA: A Combinatorial Opti-
mization Heuristic for Distributed Agents. In Proc. 5th Intl. Conf. Agents and Artificial
Intelligence (ICAART’13), pages 23–39. Springer.

van Hoeve, W.-J. (2011). Over-constrained Problems. In Milano, M. and van Hentenryck, P.,
editors, Hybrid Optimization, volume 45 of Optimization and its Applications, pages 191–225.
Springer.

van Hoeve, W.-J. and Katriel, I. (2006). Global Constraints. In Rossi, F., van Beek, P., and
Walsh, T., editors, Handbook of Constraint Programming, chapter 7. Elsevier.

Hoffmann, A., Nafz, F., Schierl, A., Seebach, H., and Reif, W. (2011). Developing self-
organizing robotic cells using organic computing principles. In Bio-Inspired Self-Organizing
Robotic Systems, pages 253–273. Springer.

Hooker, J. N. (2007). Integrated Methods for Optimization, volume 100. Springer Science &
Business Media.

Hoos, H. H. and Tsang, E. (2006). Local Search Methods. In Rossi, F., van Beek, P., and
Walsh, T., editors, Handbook of Constraint Programming, chapter 8. Elsevier.

Hosobe, H. (2009). Constraint Hierarchies as Semiring-based CSPs. In Proc. 21st Intl. Conf.
Tools with Artificial Intelligence (ICTAI’09), pages 176–183. IEEE.

Hundt, M., Barth, R., Sun, N., Wissel, S., and Voß, A. (2009). Verträglichkeit von erneuerbaren
Energien und Kernenergie im Erzeugungsportfolio. Technisch-ökonomische Aspekte. Studie
des Instituts für Energiewirtschaft und rationelle Energieanwendung (IER) im Auftrag der
E. ON Energie AG. Stuttgart. in German.

Hurley, B., O’Sullivan, B., Allouche, D., Katsirelos, G., Schiex, T., Zytnicki, M., and de Givry,
S. (2016). Multi-language Evaluation of Exact Solvers in Graphical Model Discrete Opti-
mization. Constraints, 21(3):413–434.

Hölzl, M., Meier, M., and Wirsing, M. (2009). Which Soft Constraints do you Prefer? In Proc.
7th Intl. Ws. Rewriting Logic and its Applications (WRLA’08), volume 238(3) of Electronic
Notes in Theoretical Computer Science, pages 189–205.

Junker, U. (2009). Outer Branching: How to Optimize under Partial Orders? In Proc. 7th

Intl. Conf. Multiobjective Programming and Goal Programming (MOPGP’06), volume 618
of Lect. Notes Econom. Math. Syst., pages 99–109. Springer.

BIBLIOGRAPHY 153

Jussien, N., Rochart, G., and Lorca, X. (2008). Choco: An Open-source Java Constraint
Programming Library. In Proc. Ws. Open-source Software for Integer and Constraint Pro-
gramming (OSSICP’08), pages 1–10.

Kaci, S., Patel, N., and Prince, V. (2014). From NL preference expressions to comparative
preference statements: A preliminary study in eliciting preferences for customised decision
support. In Proc. 26st Intl. Conf. Tools with Artificial Intelligence (ICTAI’14), pages 591–
598. IEEE.

Karl, J. (2012). Dezentrale Energiesysteme: Neue Technologien im liberalisierten Energiemarkt.
Oldenbourg. in German.

Kießling, W. and Köstler, G. (2002). Preference SQL: Design, Implementation, Experiences.
In Proc. 28th Intl. Conf. Very Large Data Bases (VLDB’02), pages 990–1001. Morgan Kauf-
mann.

Knapp, A. and Schiendorfer, A. (2014). Embedding Constraint Relationships into C-Semirings.
Technical Report 2014-03, Institut für Software & Systems Engineering, Universität Augs-
burg.

Knapp, A., Schiendorfer, A., and Reif, W. (2014). Quality over Quantity in Soft Constraints.
In Proc. 26th Intl. Conf. Tools with Artificial Intelligence (ICTAI’14), pages 453–460.

Kosak, O., Wanninger, C., Angerer, A., Hoffmann, A., Schiendorfer, A., and Seebach, H.
(2016). Towards Self-organizing Swarms of Reconfigurable Self-aware Robots. In Proc. 1st

Intl. Ws. Engineering Collective Adaptive Systems (ECAS’16), pages 204–209. IEEE.

Kuchcinski, K. and Szymanek, R. (2013). JaCoP — Java constraint programming solver. In
Proc. Ws. CP Solvers: Modeling, Applications, Integration, and Standardization.

Léauté, T., Ottens, B., and Szymanek, R. (2009). FRODO 2.0: An Open-source Framework for
Distributed Constraint Optimization. In Proc. Intl. Ws. Distributed Constraint Reasoning
(DCR’09), pages 160–164.

Leenen, L., Anbulagan, Meyer, T., and Ghose, A. K. (2007). Modeling and Solving Semiring
Constraint Satisfaction Problems by Transformation to Weighted Semiring Max-SAT. In
Proc. 20th Australian Joint Conf. Artificial Intelligence (ACAI’07), volume 4830 of Lect.
Notes Comp. Sci., pages 202–212. Springer.

Lenstra, J. K. and Kan, A. R. (1979). Computational Complexity of Discrete Optimization
Problems. In Annals of Discrete Mathematics, volume 4, pages 121–140. Elsevier.

Levasseur, N., Boizumault, P., and Loudni, S. (2007). A Value Ordering Heuristic for Weighted
CSP. In Proc. 19th IEEE Intl. Conf. Tools with Artificial Intelligence (ICTAI’07), volume 1,
pages 259–262. IEEE.

LEW (2018). Smart operator. [Online (in German) at https://www.lew.de/
energiezukunft/smart-operator; accessed 08-March-2018].

Li, S. and Ying, M. (2008). Soft Constraint Abstraction based on Semiring Homomorphism.
Theoretical Computer Science, 403(2-3):192–201.

https://www.lew.de/energiezukunft/smart-operator
https://www.lew.de/energiezukunft/smart-operator

154 BIBLIOGRAPHY

Lovász, L. and Plummer, M. D. (2009). Matching Theory, volume 367. American Mathematical
Society.

Marriott, K. and Stuckey, P. J. (1998). Programming with Constraints: An Introduction. MIT
press.

Meseguer, P., Rossi, F., and Schiex, T. (2006). Soft Constraints. In Rossi, F., van Beek, P.,
and Walsh, T., editors, Handbook of Constraint Programming, chapter 9. Elsevier.

Miller, S., Ramchurn, S. D., and Rogers, A. (2012). Optimal Decentralised Dispatch of Em-
bedded Generation in the Smart Grid. In Proc. 11th Intl. Conf. Autonomous Agents and
Multiagent Systems (AAMAS’12), volume 1, pages 281–288. International Foundation for
Autonomous Agents and Multiagent Systems.

Minton, S., Johnston, M. D., Philips, A. B., and Laird, P. (1992). Minimizing Conflicts: A
Heuristic Repair Method for Constraint Satisfaction and Scheduling Problems. Artificial
Intelligence, 58(1-3):161–205.

Modi, P. J., Shen, W.-M., Tambe, M., and Yokoo, M. (2005). ADOPT: Asynchronous Dis-
tributed Constraint Optimization with Quality Guarantees. Artificial Intelligence, 161(1-
2):149–180.

Mohr, R. and Henderson, T. C. (1986). Arc and Path Consistency Revisited. Artificial Intel-
ligence, 28(2):225–233.

Nafz, F. (2012). Verhaltensgarantien in Selbst-Organisierenden Systemen. Logos Verlag. in
German.

Nafz, F., Seebach, H., Steghöfer, J.-P., Anders, G., and Reif, W. (2011). Constraining Self-
organisation Through Corridors of Correct Behaviour: The Restore Invariant Approach.
In Müller-Schloer, C., Schmeck, H., and Ungerer, T., editors, Organic Computing — A
Paradigm Shift for Complex Systems, volume 1 of Autonomic Systems, pages 79–93. Springer.

Nethercote, N. (2014). Converting minizinc to flatzinc. [Online at http://www.minizinc.
org/downloads/doc-1.6/mzn2fzn.pdf; accessed 08-March-2018].

Nethercote, N., Stuckey, P. J., Becket, R., Brand, S., Duck, G. J., and Tack, G. (2007).
MiniZinc: Towards a standard CP modelling language. In Proc. 13th Intl. Conf. Principles
and Practice of Constraint Programming (CP’07), volume 4741 of Lect. Notes Comp. Sci.,
pages 529–543. Springer.

Netzer, A. and Meisels, A. (2011). SOCIAL DCOP – Social Choice in Distributed Constraints
Optimization. In Proc. 5th Intl. Symp. Intelligent Distributed Computing (IDC’11), pages
35–47. Springer.

Nieße, A., Sonnenschein, M., Hinrichs, C., and Bremer, J. (2016). Local Soft Constraints in
Distributed Energy Scheduling. In Proc. 5th Intl. Ws. Smart Energy Networks & Multi-Agent
Systems (SEN-MAS’16), pages 1517–1525. IEEE.

Nisan, N. and Ronen, A. (1999). Algorithmic Mechanism Design. In Proc. 31st Ann. ACM
Symp. Theory of Computing (STACS’99), pages 129–140. ACM.

http://www.minizinc.org/downloads/doc-1.6/mzn2fzn.pdf
http://www.minizinc.org/downloads/doc-1.6/mzn2fzn.pdf

BIBLIOGRAPHY 155

Pacuit, E. (2012). Voting Methods. http://plato.stanford.edu/archives/
win2012/entries/voting-methods/.

Padhy, N. P. (2004). Unit Commitment- A Bibliographical Survey. Transactions on Power
Systems, 19(2):1196–1205.

Petit, T., Régin, J.-C., and Bessière, C. (2000). Meta-Constraints on Violations for Over
Constrained Problems. In Proc. 12th Intl. Conf. Tools with Artificial Intelligence (ICTAI’00),
pages 358–365.

Piekutowski, M. and Rose, I. (1985). A Linear Programming Method for Unit Commitment
Incorporating Generator Configurations, Reserve and Plow Constraints. Transactions on
Power Apparatus and Systems, PAS-104(12):3510–3516.

Pierce, B. C. (1991). Basic Category Theory for Computer Scientists. MIT Press.

Pini, M. S., Rossi, F., and Venable, K. B. (2013). Bribery in Voting with Soft Constraints. In
Proc. 27th Nat. Conf. Artificial Intelligence (AAAI’13), pages 803–809. AAAI Press.

Pisinger, D. and Ropke, S. (2010). Large Neighborhood Search. In Handbook of Metaheuristics,
pages 399–419. Springer.

Ramchurn, S. D., Vytelingum, P., Rogers, A., and Jennings, N. R. (2012). Putting the ’Smarts’
into the Smart Grid: A Grand Challenge for Artificial Intelligence. Communications of the
ACM, 55(4):86–97.

Régin, J.-C. (1994). A Filtering Algorithm for Constraints of Difference in CSPs. In Proc. 12th

Nat. Conf. Artificial Intelligence (AAAI’94), volume 94, pages 362–367. AAAI Press.

Régin, J.-C. (1996). Generalized Arc Consistency for Global Cardinality Constraint. In Proc.
13th Nat. Conf. Artificial Intelligence (AAAI’96), volume 1, pages 209–215.

Rendl, A., Guns, T., Stuckey, P. J., and Tack, G. (2015). MiniSearch: A Solver-independent
Meta-search Language for MiniZinc. In Proc. 21st Intl. Conf. Constraint Programming
(CP’15), volume 9255 of Lect. Notes Comp. Sci., pages 376–392.

Rendl, A., Tack, G., and Stuckey, P. J. (2014). Stochastic MiniZinc. In Proc. 20th Intl. Conf.
Principles and Practice of Constraint Programming (CP’14), volume 8656 of Lect. Notes
Comp. Sci., pages 636–645. Springer.

Rentmeesters, M. J., Tsai, W. K., and Lin, K.-J. (1996). A Theory of Lexicographic Multi-
criteria Optimization. In Proc. 2nd Intl. Conf. Engineering of Complex Computer Systems
(ICECCS’96), pages 76–79. IEEE.

Reny, P. J. (2001). Arrow’s theorem and the Gibbard-Satterthwaite theorem: a unified ap-
proach. Economics Letters, 70(1):99–105.

Rollón, E. (2008). Multi-objective Optimization in Graphical Models. Dissertation, Universitat
Politècnica de Catalunya, Barcelona.

Rossi, F. (2014). Collective decision making: a great opportunity for constraint reasoning.
Constraints, 19(2):186–194.

http://plato.stanford.edu/archives/win2012/entries/voting-methods/
http://plato.stanford.edu/archives/win2012/entries/voting-methods/

156 BIBLIOGRAPHY

Rossi, F. and Pilan, I. (2003). Abstracting Soft Constraints: Some Experimental Results
on Fuzzy CSPs. In Apt, K. R., Fages, F., Rossi, F., Szeredi, P., and Váncza, J., editors,
Sel. Papers Joint ERCIM/CologNET Intl. Ws. Constraint Solving and Constraint Logic
Programming (CSCLP’03), volume 3010 of Lect. Notes Comp. Sci., pages 107–123. Springer.

Rossi, F., Van Beek, P., and Walsh, T. (2006). Handbook of Constraint Programming. Elsevier.

Rossi, F., Venable, K. B., and Walsh, T. (2008a). Preferences in Constraint Satisfaction and
Optimization. AI Magazine, 29(4):58.

Rossi, F., Venable, K. B., and Walsh, T. (2008b). Preferences in Constraint Satisfaction and
Optimization. AI Magazine, 29(4):58–68.

Rothe, J., Baumeister, D., Lindner, C., and Rothe, I. (2011). Einführung in Computational
Social Choice. in German.

Ruttkay, Z. (1994). Fuzzy Constraint Satisfaction. In Proc. 3rd Intl. Fuzzy Systems Conf.,
pages 1263–1268. IEEE.

Sannella, D. and Tarlecki, A. (2012). Foundations of Algebraic Specification and Formal Soft-
ware Development. EATCS Monographs in Theoretical Computer Science. Springer.

Schiendorfer, A., Anders, G., Steghöfer, J.-P., and Reif, W. (2015a). Abstraction of Heteroge-
neous Supplier Models in Hierarchical Resource Allocation. Transactions on Computational
Collective Intelligence XX, 9420:23–53.

Schiendorfer, A., Eberhardinger, B., Reif, W., and André, E. (2015b). Back-to-Back Testing
a Soft Constraint Model for a Smart Exhibition Space. In Proc. 14th Intl. Ws. “Constraint
Modelling and Reformulation” (ModRef’15).

Schiendorfer, A., Knapp, A., Anders, G., and Reif, W. (2018). MiniBrass: Soft Constraints
for MiniZinc. Constraints.

Schiendorfer, A., Knapp, A., Steghöfer, J.-P., Anders, G., Siefert, F., and Reif, W. (2015c).
Partial Valuation Structures for Qualitative Soft Constraints. In Nicola, R. D. and Hen-
nicker, R., editors, Software, Services and Systems — Essays Dedicated to Martin Wirsing
on the Occasion of His Emeritation, volume 8950 of Lect. Notes Comp. Sci., pages 115–133.
Springer.

Schiendorfer, A., Steghöfer, J.-P., and Reif, W. (2014a). Synthesised Constraint Models for
Distributed Energy Management. In Proc. 3rd Intl. Ws. Smart Energy Networks & Multi-
Agent Systems (SEN-MAS’14), pages 1529–1538.

Schiendorfer, A., Steghöfer, J.-P., Knapp, A., Nafz, F., and Reif, W. (2013). Constraint
Relationships for Soft Constraints. In Proc. 33rd SGAI Intl. Conf. Innovative Techniques
and Applications of Artificial Intelligence (AI’13), pages 241–255. Springer.

Schiendorfer, A., Steghöfer, J.-P., and Reif, W. (2014b). Synthesis and Abstraction of Con-
straint Models for Hierarchical Resource Allocation Problems. In Proc. 6th Intl. Conf. Agents
and Artificial Intelligence (ICAART’14), volume 2, pages 15–27. SciTePress.

BIBLIOGRAPHY 157

Schiex, T. (1992). Possibilistic Constraint Satisfaction Problems or “How to handle Soft Con-
straints?”. In Proc. 8th Conf. Uncertainty in Artificial Intelligence (UAI’92), pages 268–275.
Elsevier.

Schiex, T., Fargier, H., and Verfaillie, G. (1995). Valued Constraint Satisfaction Problems:
Hard and Easy Problems. In Proc. 14th Intl. Joint Conf. Artificial Intelligence (IJCAI’95),
volume 1, pages 631–639. Morgan Kaufmann.

Schulte, C. and Carlsson, M. (2006). Finite Domain Constraint Programming Systems. In
Rossi, F., van Beek, P., and Walsh, T., editors, Handbook of Constraint Programming,
chapter 14. Elsevier.

Schulte, C., Lagerkvist, M. Z., and Tack, G. (2006). Gecode: Generic Constraint Development
Environment. In INFORMS Ann. Meeting.

Seebach, H. (2011). Konstruktion Selbst-Organisierender Softwaresysteme. Logos Verlag. in
German.

Seebach, H., Nafz, F., Steghöfer, J.-P., and Reif, W. (2011). How to Design and Implement Self-
organising Resource-flow Systems. In Organic Computing—A Paradigm Shift for Complex
Systems, pages 145–161. Springer.

Shapiro, L. G. and Haralick, R. M. (1981). Structural Descriptions and Inexact Matching.
Transactions on Pattern Analysis and Machine Intelligence, 3(5):504–519.

Shaw, P. (1998). Using Constraint Programming and Local Search Methods to Solve Vehicle
Routing Problems. In Proc. 4th Intl. Conf. Principles and Practice of Constraint Program-
ming (CP’98), volume 1520 of Lect. Notes Comp. Sci., pages 417–431. Springer.

Shoham, Y. and Leyton-Brown, K. (2008). Multiagent Systems: Algorithmic, Game-theoretic,
and Logical Foundations. Cambridge University Press.

Siefert, F. (2017). Selbst-organisiertes, trust-bewusstes Supply Demand Management in Smart
Grids. Dissertation, Universität Augsburg. in German.

Smith, B. M. (2006). Modelling. In Rossi, F., van Beek, P., and Walsh, T., editors, Handbook
of Constraint Programming, chapter 11. Elsevier.

Steghöfer, J.-P. (2014). Large-Scale Open Self-Organising Systems: Managing Complexity
with Hierarchies, Monitoring, Adaptation, and Principled Design. Dissertation, Universität
Augsburg.

Stuckey, P. J., de la Banda, M. G., Maher, M., Marriott, K., Slaney, J., Somogyi, Z., Wallace,
M., and Walsh, T. (2005). The G12 Project: Mapping Solver Independent Models to Efficient
Solutions. In Proc. 11th Intl. Conf. Principles and Practice of Constraint Programming
(CP’05), volume 3709 of Lect. Notes Comp. Sci., pages 13–16. Springer.

Stuckey, P. J., Feydy, T., Schutt, A., Tack, G., and Fischer, J. (2014). The MiniZinc Challenge
2008–2013. AI Magazine, 35(2):55–60.

158 BIBLIOGRAPHY

Stuckey, P. J. and Tack, G. (2013). MiniZinc with Functions. In Proc. 10th Intl. Conf. Integra-
tion of Artificial Intelligence and Operations Research Techniques in Constraint Program-
ming (CPAIOR’13), volume 7874 of Lect. Notes Comp. Sci., pages 268–283. Springer.

Sánchez, M., Allouche, D., de Givry, S., and Schiex, T. (2009). Russian Doll Search with
Tree Decomposition. In Proc. 21st Intl. Joint Conf. Artificial Intelligence (IJCAI’09), pages
603–608.

Wahbi, M., Ezzahir, R., Bessiere, C., and Bouyakhf, E.-H. (2011). DisChoco 2: A Platform
for Distributed Constraint Reasoning. In Proc. Intl. Ws. Distributed Constraint Reasoning
(DCR’11), volume 11, pages 112–121.

Wanninger, C., Eymüller, C., Hoffmann, A., Kosak, O., and Reif, W. (2018). Synthesis-
ing Capabilities for Collective Adaptive Systems from Self-Descriptive Hardware Devices
– Bridging the Reality Gap. In Proc. 8th Intl. Symp. Leveraging Applications of Formal
Methods, Verification and Validation (ISOLA’18).

Wells, M. B. (1971). Elements of Combinatorial Computing. Pergamon.

Yeoh, W., Felner, A., and Koenig, S. (2010). BnB-ADOPT: An Asynchronous Branch-and-
bound DCOP Algorithm. Journal of Artificial Intelligence Research, 38:85–133.

Yokoo, M. and Hirayama, K. (2000). Algorithms for Distributed Constraint Satisfaction: A
Review. Autonomous Agents and Multi-Agent Systems, 3(2):185–207.

	Introduction
	State of the Art and Statement of Purpose
	Scientific Contribution

	Application Scenarios
	Distributed Energy Systems
	The Unit Commitment Problem
	Complexity of the Problem

	Self-organizing Robotic Systems
	Task and Resource Allocation in Reconfigurable Swarms
	Self-organizing Resource-Flow Systems

	Preference-oriented Systems
	Exam Appointment Scheduling
	Mentor Matching
	Multi-User Multi-Display Exhibitions

	Related Work
	Challenges for MiniBrass

	Preliminaries and Related Work
	Classical Constraint Satisfaction and Optimization
	Over-Constrainedness
	Specific Soft Constraint Formalisms
	Algebraic Structures for Soft Constraints
	Soft Constraint Satisfaction Problems

	Algorithms to Solve (Soft) Constraint Problems
	Systematic Search
	Constraint Propagation and Global Constraints
	Local and Large-Neighborhood Search
	Existing Implementations

	Modeling Languages
	MiniZinc and MiniSearch
	Essence and Numberjack

	Related Work

	MiniBrass – A Soft Constraint Modeling Language
	A Hello-World Example
	PVS Types and Instantiations
	Examples of Soft Constraint Formalisms as PVS Types
	Integer-Valued: Weighted CSP or Cost Function Networks
	Comparative: The Free PVS and Constraint Preferences
	Real-Valued: Fuzzy CSP and Probabilistic CSP

	Morphisms to Switch PVS
	Products of PVS
	PVS-based Search

	Modeling Case Studies in MiniBrass
	Unit Commitment
	Mentor Matching

	Constraint Preferences for Soft Constraints
	Qualitative Specification
	Semantics of Dominance Properties
	Transforming Constraint Preferences to Weighted Constraints
	Concrete Weight Functions

	Illustrating Constraint Preferences: A Ski-Day Planner
	Personas & Preferences in the Ski-Day Example
	Changing Preferences
	Changing Constraints

	Constraint Preferences and Related Formalisms
	Reducing Constraint Hierarchies to Constraint Preferences
	Relationship with CP-Nets

	Solving ``Constraint Preferences'' Problems
	Evaluation
	Modeling Influence
	Algorithmic Efficiency

	Algebraic Structures for Soft Constraints
	Looking for Free Partial Valuation Structures
	The Free Monoid over a Set
	The Free PVS over a Partial Order
	The Free PVS as Single-Predecessors-Lifting
	The TPD-Lifting for Constraint Preferences

	The Free ChardSemiring over a PVS
	Adequacy of Algebraic Structures

	Hierarchically Layered Soft Constraints
	Towards Lexicographic Products of PVS
	Collapsing Elements as an Obstacle
	The Lexicographic Product excludes Collapsing Elements

	Constraint Hierarchies as Products of PVS
	Locally Predicate Better
	Globally Better – Real-valued PVS

	A Mapping from the Maximum PVS to a p-Norm PVS
	Optima-Simulation
	Admissible Soft Constraint Problems
	Substituting PVS for Optimization: Optima-Simulation and Optima-Equivalence
	Optima-Simulating Max by Large p-Norm PVS
	Optima-Simulating Max with Finite Multisets

	Discussion: Applicability and Consequences

	Aggregating Soft Constraints by Voting
	Computational Social Choice
	Aggregating Preferences
	Restrictions imposed by Arrow's Theorem
	Soft Constraints and Voting – Related Work
	A Counterexample for Sequential Voting

	Voting in MiniBrass
	Approval Voting
	Condorcet Voting

	Evaluation
	Encoded Weighted CSP versus Native Toulbar2
	SmythhardOptimization versus WeightedhardOptimization
	Most Important First versus Default

	Conclusion and Outlook
	Achieved Contributions
	Outlook and Future Work

	Bibliography

