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Doctor Emir Demirović, Delft University of Technology, Holanda
Doctor Maria Margarida da Silva Carvalho, Faculté des arts et
sciences, Université de Montréal, Canadá
Doctor Ricardo Lopes de Saldanha, SISCOD - Sistemas Cog-
nitivos, SA

Funding Institutions -
Fundação para a Ciência e a Tecnologia, Departamento de

Engenharia Informática of IST, Universidade de Lisboa

2021





Resumo
Os problemas de escalonamento são comuns em muitas aplicações desde fábricas a transportes

passando por universidades. Muitas vezes são problemas de otimização onde queremos gerir da

melhor forma recursos escassos. Como a realidade é dinâmica, disrupções inesperadas podem

ocorrer e invalidar a solução original dum problema de escalonamento. Na literatura existem muitos

métodos para lidar com incertezas. Estes podem ser resumidos em duas abordagens principais: (i)

criar soluções robustas que não são afetadas pelas disrupções mais comuns; (ii) voltar a resolver o

problema de raiz com as novas restrições.

O objectivo de criar soluções robustas é garantir que são válidas mesmo depois de ocorrerem as

disrupçoes mais comuns. Por isso, requerem um estudo detalhado para prever os cenários disrupti-

vos mais prováveis. A principal desvantagem é que a solução robusta pode ter menos qualidade (e.g.

custo financeiro, satisfação dos clientes) para suportar uma disrupção que, embora provável, pode

nunca chegar a acontecer. Independentemente da robustez da solução, podemos sempre necessitar

de voltar a resolver o problema.

A maior parte dos métodos desenvolvidos com o objetivo de recuperar soluções após acontece-

rem disrupções limita-se a voltar a resolver o mesmo problema de raiz. Neste caso, utiliza-se uma

função de custo adicional para garantir que temos a solução mais próxima da original, i.e. resolve-se

o Problema das Perturbações Mínimas (MPP). Contudo, estes métodos requerem tempos de execu-

ção superiores para encontrar a nova solução, já que estamos a reolver um problema novo (com mais

um critério de optimização). Isto pode ser mitigado usando parte da árvore de procura anterior. Além

disso, a maior parte das abordagens usam funções de custo genéricas (e.g. distância de Hamming)

que por isso podem não retratar a realidade.

Neste trabalho propomos novos algoritmos para resolver o MPP para dois problemas de escalo-

namento: escalonamento de horários universitários e escalonamento de comboios. No caso univer-

sitário, os algoritmos implementados foram testados com dados provenientes do Instituto Superior

Técnico e da Competição Internacional de Horários de 2019. Um dos algoritmos propostos ficou

no top 5 da competição. No caso dos comboios, os algoritmos foram testados com dados da Swiss

Federal Railways e da PESPLib. A avaliação mostra que os algoritmos propostos são mais eficientes

do que os descritos na literatura.

Resumindo, os algoritmos propostos nesta tese correspondem a um avanço significativo nas

abordagens para resolver problemas de escalonamento, em particular quando sujeito a disrupções.

Palavras Chave
Problema das Perturbações Mínimas; Horários Universitários; Escalonamento de comboios; Sa-

tisfação; Programação Linear Inteira.

i





Abstract
Scheduling problems are common in many applications that range from factories and transports

to universities. Most times, these problems are optimization problems for which we want to find the

best way to manage scarce resources. Reality is dynamic, and thus unexpected disruptions can

make the original solution invalid. There are many methods to deal with disruptions well described in

the literature. These methods can be divided into two main approaches: (i) create robust solutions

for the most common disruptions, and (ii) solve the problem again from scratch extended with new

constraints.

The goal of creating robust solutions is to ensure their validity even after the most common dis-

ruptions occur. For this reason, it requires a detailed study of the most likely disruptive scenarios.

The main disadvantage of creating a robust solution is a possible reduction in the overall quality (e.g.,

financial cost, customer satisfaction) to support the most likely disruptive scenarios that may never

occur. Regardless of the robustness of the solution, we may need to solve the problem again.

Most of the methods developed to recover solutions after disruptions occur consist of re-solving

the problem from scratch with an additional cost function. This cost function ensures that the new

solution is close to the original. In other words, the methods solve the Minimal Perturbation Problem

(MPP). However, all these methods require more execution time than the original problem to find a new

solution. This can be explained by the fact that we solve a different problem (with more optimization

criteria). One can mitigate this problem by re-using the search. Moreover, they use generic cost

functions (e.g., Hamming distance) that may have little significance in practice.

In this work, we propose novel algorithms to solve the MPP applied to two domains: university

course timetabling and train scheduling. We tested our algorithms to solve university timetabling prob-

lems with data sets obtained from Instituto Superior Técnico and the 2019 International Timetabling

Competition. One of these algorithms was ranked in the top 5 of the competition. When considering

the train scheduling case study, we tested our algorithms with data from the Swiss Federal Railways

and from PESPLib. The evaluation shows that the new algorithms are more efficient than the ones

described in the literature.

Summing up, the proposed algorithms show a significant improvement on the state-of-the-art to

re-solve scheduling problems under disruptions.

Keywords
Minimal Perturbation Problem; University course Timetabling; Disruption; Train Scheduling Prob-

lem; Satisfiability; Integer Linear Programming.
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Creating schedules is a decision problem [5] where the goal is to assign events to scarce re-

sources and time slots, subject to a set of constraints and optimization objectives. Notwithstanding

humans have been solving scheduling problems for innumerable years, there is little proof of formal

processes for solving them until the middle of the eighteenth century [6]. Nowadays, these formal

processes are used regularly in many industries. The goal is to create more efficient and profitable

schedules. The resources, events, constraints, and objectives vary from organization to organization.

Scheduling problems are common in many applications that range from factories [7] and transports [8]

to universities [9].

Example 1 (Timetable). Let us consider a simple schedule with one time slot available on each day

of the week (except Sunday). The university has only two rooms with the same capacity r1 and r2

and four courses A, B, C and D. Each course corresponds to a single class with only one time slot

of contact per week. Furthermore, all classes must be taught every week of the semester. For this

reason, we can make a schedule for a single week (and all other weeks have the same schedule).

Moreover, the classes have a set of constraints between them. The classes of the courses of A,

B, and C have the same students, and thus they cannot overlap in time. The courses C and D

share the teacher and thus cannot overlap in time. A possible solution is shown in Table 1.1. The

solution requires allocating the classes of the courses A and D on Monday, B on Tuesday, and C on

Wednesday. The classes of the courses A to C are taught in room r1 and the class of course D in

room r2.

Most times, these problems are optimization problems where we want to find the best way to

manage scarce resources. Therefore, Constraint Optimization Problem (COP) are particularly useful

when modeling and solving this type of real-life problems. COPs have successfully been applied to

problems that range from scheduling problems [9–11] to biological networks [12–14].

Example 2. Let us consider Example 1 again. Let us consider a new bi-objective goal: (i) minimize

the number of rooms used1, and (ii) ensure that there is a two days gap between the classes of course

C and D. Both criteria are equally important. A possible optimal solution is shown in Table 1.2. The

solution consists of teaching the class of the course D on Monday, A on Tuesday, B on Wednesday,

and C on Thursday. Therefore, we can allocate all classes in the same room (r1), and so r2 is

completely available for other aperiodic events. Also, the courses’ classes C and D have a two-day

gap between them.

1We want to have a room available for other aperiodic events.

Table 1.1: A simple schedule with one time slot available in each day of the week (except Sunday). The university
has only two rooms with the same capacity r1 and r2 and four courses of a single class A, B, C and D. The
courses A, B and C cannot overlap in time. The courses C and D cannot overlap in time.

Room Monday Tuesday Wednesday Thursday Friday Saturday
r1 A B C
r2 D

2



Table 1.2: A simple schedule with one time slot available in each day of the week (except Sunday). The university
has only two rooms with the same capacity r1 and r2 and four courses of a single class A, B, C and D. The
courses A, B and C cannot overlap in time. The courses C and D cannot overlap in time. The solution was
designed with a bi-objective goal: (i) minimize the number of rooms used; and (ii) ensure that there is a two days
gap between the classes of courses C and D.

Room Monday Tuesday Wednesday Thursday Friday Saturday
r1 D A B C
r2

1.1 Why Solving Scheduling Problems Under Disruptions

When solving scheduling problems, unexpected disruptions may cause the problem to change,

and thus the original solution may no longer be valid. Solving a new problem is now required, but

solving the problem from scratch is unnecessarily expensive. Furthermore, solving the problem from

scratch may produce a completely different solution, which in many cases is an undesirable nuisance

for all actors involved.

There are two main approaches to tackle this scenario general: (i) solving the problem again from

scratch with new constraints; (ii) create robust solutions for the most common disruptions. When

considering specific domains (like train scheduling problems), many approaches use local search to

explore neighbor solutions. The goal of these approaches is to mitigate the difficulties of solving from

scratch.

The first approach focuses on changing the solution after the disruption occurs in order to generate

a new feasible solution. When considering this approach, in many real-life instances, it is important to

find a solution as similar as possible to the original one. This ensures that the new solution causes the

smallest impact on the already implemented solution, thus solving the so-called Minimal Perturbation

Problem (MPP). There are different methods proposed in the literature to solve MPP. The methods

entail minimizing a distance metric between the new solution and the original one. However, these

methods imply solving the problem from scratch each time a disruption occurs.

The second approach involves predicting the disruptions that may arise to create a robust solution.

Therefore, a robust solution may be sub-optimal (e.g., in terms of cost and customer satisfaction), but

it is still valid if the predicted disruptions occur. For this reason, the solution may have less quality to

support disruptions that may never occur but not be able to cope with unexpected disruptions that may

actually occur. Regardless of the robustness of the solution, we may need to solve the problem again

(re-solve). Therefore, the focus of this thesis is on re-solving the problem after disruptions occur.

Example 3. Recall Example 2. Additionally, consider that room r1 has to be closed for maintenance

(e.g. due to COVID-19 contamination) on Tuesday in a specific week. The solution must change -

in particular, the classes of course A must be taught in a different room. Solving, once again, the

problem from scratch could cause all classes to be taught in the room r2. This solution satisfies all

the constraints but causes unnecessary confusion to the teacher and students of the courses B, C,
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and D. This type of disruptions are unpredictable in nature, and thus hard to mitigate with robust

solutions.

The goal of the proposed algorithms is to reduce the resources required when solving the MPP.

For this reason, the algorithms proposed in this thesis either only re-solve a small part of the problem

(where the disruption occurs) or continue the search performed during the original search process.

These algorithms are able to reduce the search space when solving the new problem and thus require

fewer resources than a straightforward approach to find a new solution.

1.2 Original Contributions

The target of this work is to develop new efficient encodings and algorithms for different scheduling

problems under disruptive scenarios. We evaluate our proposed solution with real-world benchmarks

from University Course Timetabling Problem (UCTTP) and Train Scheduling Optimization Problems

(TSOP). We test our approaches with different solvers of Integer Linear Programming (ILP) and Max-

imum Satisfiability (MaxSAT).

We start by focusing on the university course timetabling before any disruptions occur. The original

objective was to solve the problem at Instituto Superior Técnico (IST). At IST the timetables are still

generated by hand. After a survey of the constraints and optimization objective considered, we define

the following goals: (i) improve the handmade solution in terms of room usage and (ii) solve the

minimal perturbation problem.

In order to improve the handmade solution, we want to optimize the room occupation by determin-

ing the events allocated to each room while ensuring that the rooms have enough capacity to seat all

people participating in those events. With this purpose, we propose three different algorithms [15]:

• A greedy randomized adaptive search procedure that is efficient but does not provide any type

of quality assurance.

• A greedy algorithm that takes advantage of the nature of the monotone, positive, sub-modular

cost function to ensure the solution is within 63% of the optimal.

• An ILP approach that uses decomposition techniques to find the optimal solution.

All these approaches are able to provide significant gains when compared with the handmade

solution. The results of this work were published in the journal Operations Research Perspectives [15].

In addition, we propose and analyze two different integer programming models to encode the

minimal perturbation problem. To validate the proposed models, disruptions are randomly generated

based on the probability distributions obtained from the history of timetables over the last five years in

IST. Overall, our models, combined with an incremental approach, are shown to be able to efficiently

solve all problem instances. This work was published in the Journal of Scheduling [16].
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Moreover, we apply the straightforward extension of these models to the data sets of International

Timetabling Competition (ITC) 2019. However, the integer programming models only solve 1/3 of the

benchmark due to memory constraints. In this context, we develop the UniCorT MaxSAT based tool

for university course timetabling problems. UniCorT has strong pre-processing techniques to reduce

the search space. This tool was ranked in the top 5 of the competition2. These results were published

in the proceedings of the 13th International Conference on the Practice and Theory of Automated

Timetabling [17].

We also propose an iterative version of UniCorT, which increases the domain of the problem (the

number of time slots available to assign a class) in each iteration. This approach allows solving

all instances of the competition and improving the results that lead to the top 5. Furthermore, we

extend UniCorT with the ability to solve the minimal perturbation problem. This work was published in

the proceedings of the 17th International Conference on the Integration of Constraint Programming,

Artificial Intelligence, and Operations Research [18].

Finally, we propose an iterative learning algorithm that uses a MaxSAT solver to solve Train

Scheduling Optimization Problems (TSOP). The proposed algorithm was tested with data sets from

Swiss Federal Railway (SBB), and it is, on average, twice as fast as the best existing approach. The

iterative learning algorithm increases the search space by relaxing the arrival time of the train (delay)

when needed. This way, we can start solving the problem with a small arrival time domain and in-

crease the domain on-demand. The iterative nature of our novel approach reduces the impact of time

discretization on the encoding. We also analyze real schedule data from Switzerland and the Nether-

lands to create a disruption generator based on probability distributions. We use these disruptions to

create an algorithm to solve the minimal perturbation problem. In order to validate our algorithm with

PESPLib benchmark, we propose a novel encoding. This encoding achieves a significant improve-

ment over existing SAT based solutions for solving the PESPLib instances.

1.3 Thesis Outline

The central subject of this thesis is the study of scheduling problems under disruptive scenarios.

The work in this thesis can be divided into two stages: solving scheduling problems without disruptions

and re-solving scheduling problems after disruptions occur. In this work, we consider two scheduling

problems: university course timetabling and train scheduling problems. Even though both case stud-

ies have their own characteristics and constraints, they can be solved by similar high-level algorithms.

Furthermore, the insights learned in the process of designing a solution to tackle one problem can

help define better approaches to solve the other problem. For this reason, the first step was to develop

state-of-the-art methods to solve scheduling problems without disruptions. The second step requires

learning the most common disruptive scenarios in the different scheduling problems considered in

this work. After creating the disruptive scenarios, we were able to define domain dependent metrics

to evaluate the quality of the new solution for the re-solving algorithm.

2https://www.itc2019.org/home
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The work developed in the thesis was motivated by three different cases studies: (i) the university

course timetabling problem at IST; (ii) the university course timetabling problem from ITC; and (iii)

train scheduling at SBB. Even though the first two case studies require solving the university course

timetabling problem, their characteristics and requirements are significantly different. Therefore, dif-

ferent approaches must be considered. For this reason, the dissertation core is composed of three

main parts. Therefore, the dissertation is organized as follows:

• Chapter 2: Preliminaries: This chapter provides the main concepts that will be used throughout

the dissertation. It starts by introducing the notions of Constraint Satisfaction Problem (CSP),

MaxSAT and ILP. Finally, we formally define scheduling problems and the minimal perturbation

problem. These concepts are the basis for the related work chapter.

• Chapter 3: Related Work: This chapter describes the relevant related work on the topic of

university timetabling, train scheduling, and minimal perturbation problems in general. The

state-of-the-art algorithms shown in this chapter are going to be used later on to evaluate the

contributions of the thesis.

• Chapter 4: Instituto Superior Técnico Course Timetabling: This is the first case study of this

dissertation and the first chapter describing our contributions. This chapter presents various ILP

encodings and greedy algorithms to solve the course timetabling problem of IST. The case study

is divided into four parts: (i) profiling and cleaning the IST data set; (ii) automatically optimizing

the room usage of the handmade timetables; (iii) solving the whole course timetabling from

scratch; and (iv) re-solving course timetabling.

• Chapter 5: International Timetabling Competition 2019: This chapter describes the ap-

proach proposed to solve the ITC that was ranked among the five finalists of the ITC 2019

competition. This chapter builds on the case study’s successful results at IST and generalizes

it into UniCorT. UniCorT is a tool to solve and re-solve university course timetabling and stu-

dent sectioning. The algorithms to section students into classes and different pre-processing

techniques used in UniCorT are discussed. This chapter also compares UniCorT with all other

approaches that finished in the top 5 of the competition.

• Chapter 6: Train Scheduling: This is the last case study. In this chapter, we propose three

novel iterative algorithms to solve and re-solve the train scheduling problems. The goal of these

algorithms is to avoid the problems associated with the discretization of time in seconds. This

chapter is motivated by the Swiss Federal Railway (SBB) Crowd Sourcing Challenge. The

proposed solution is compared with the other methods that participated in this challenge. The

Open-data initiative SBB allows creating realistic disruptive scenarios to evaluate our algorithms.

The algorithms proposed in this chapter are able to solve the PESPLib benchmark. However,

the PESPLib benchmark needs to be converted before usage. This procedure allows comparing

our solution with other approaches described in the literature.
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• Chapter 7: Conclusions and Future Work: This is the final chapter of the dissertation. The

goal of this chapter is to present the conclusions and to discuss possible future research direc-

tions.
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This chapter introduces the notations that are used throughout this thesis. We start by introducing

the notions of Constraint Satisfaction Problem (CSP) (Section 2.1), Integer Linear Programming (ILP)

(Section 2.2), Boolean Satisfiability (SAT), and Maximum Satisfiability (MaxSAT) (Section 2.3). Finally,

we formally define scheduling problems (Section 2.4) in general and the Minimal Perturbation Problem

(MPP) (Section 2.5).

2.1 Constraint Satisfaction

Definition 1 (CSP). CSP [19] is defined as a triple Θ = (V,D, C), where:

• V = {V1, .., Vn} is a finite set of n variables;

• D = {DV1
, ..,DVn

} is a finite set of n domains where each domain corresponds to the values a

variable can take;

• C = {C1, .., Cm} is a finite set of constraints that restricts the values the variables can take.

The solution (s) to a CSP is a complete assignment to the variables (V) satisfying all the constraints

in C. A complete assignment to a CSP is an assignment to all the variables of the problem. An

assignment is a partial mapping m : V → D which assigns for each V ∈ V a value for its domain

DVi . �

Example 4 (CSP). Consider, for example, the following CSP:

• V = {A,B,C,D},

• DA = DB = DC = DD = {1, 2, 3, 4, 5, 6},

• C = {alldifferent(A,B,C), C 6= D}.

The constraint alldifferent requires all the variables involved to have different values. A possible

solution to this problem is: {(A, 1), (B, 2), (C, 3), (D, 4)}. This corresponds to the CSP encoding of

Example 1.

A CSP can be generalized into an optimization problem with the addition of a cost function and it

is defined as follows:

Definition 2 (COP). A Constraint Optimization Problem (COP) can be defined as a 4-tuple Θ =

(V,D, C, f), where f is a cost function.

A solution to a COP is an assignment to all variables in such a way that all the constraints (C) are

satisfied and the value of the cost function is minimized. �

Example 5 (COP). Consider, for example, a COP resulting from the extension of Example 4 with the

following cost function: fc = A+B + C +D.
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The solution shown in Example 4 is not the optimal solution to this problem since intuitively D can

be assigned the value 1. The solution that minimizes the cost function is {(A, 1), (B, 2), (C, 3), (D, 1)}.

The problem described in Definition 2 can be further generalized by considering a set of cost

functions transforming the problem into a multi-objective optimization problem [20, 21].

There are different approaches to deal with multi-objective optimization problems. These ap-

proaches range from solving the problem with lexicographic ordering (i.e. ordering the optimization

objectives based on their absolute importance) to computing a Pareto optimal solution.

Considering a lexicographic ordering, a solution will only be optimized using a less important

objective if the solution is already optimal in terms of all other objectives.

When considering multi-objective optimization problems, an optimal solution in terms of a specific

objective may not be optimal when considering another objective. This problem is exemplified later on

(in Example 10). When considering multi-objective, one possible approach is to find a solution that is

called Pareto optimal. A solution is Pareto optimal if and only if it is impossible to improve the solution

in any objective without worsening the solution in a different objective. This concept can be defined

as follows:

Definition 3 (Pareto Optimal Solution). Consider O as a set of cost functions (objective) for which we

want to optimize our solution. A solution s0 is Pareto optimal if and only if there is no other feasible

solution, s1, such that ∃o∈Oo(s1) < o(s0) and ∀o∈Oo(s1) ≤ o(s0). The set of all Pareto optimal solutions

is called Pareto frontier. �

2.2 Integer Linear Programming

In this work, we propose different ILP models to solve university course timetabling. ILP is a

mathematical optimization program [22, 23] for which: (i) all the variables (V) have integers or Boolean

domains (D); and (ii) the constraints (C) and the cost function are linear. For this reason, ILP can be

seen as a specific case of COP [24].

Definition 4 (ILP). Consider n real numbers c1, . . . , cn; m real numbers b1, . . . , bm; m×n real numbers

a1,1, . . . , an,m; and n integer variables x1, . . . , xn ∈ V. An integer linear program, in standard form, is

formalized as follows:

maximize:
n∑
j=1

cjxj (2.1)

subject to:
n∑
j=1

aj,ixj ≤ bi ∀mi=1 (2.2)

xj ≥ 0 ∀nj=1 (2.3)

xj ∈ Z (2.4)

Line (2.1) is the cost function, and lines (2.2) and (2.3) are different types of constraints. �
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Karp [25] proved that the 0–1 integer linear programming variant of ILP is NP-complete. In 0–1

integer linear programming, all variables are binary, and there is no cost function (e.g., a satisfaction

problem). Later, Integer Linear Programming (ILP) has been proved to be NP-hard as well [26].

Example 6. Consider Example 4 with the following constraints:

ϕh = { C 6= D, alldifferent(A,B,C)}, ϕs = {(A = 1), (C = 1)} and a cost function penalizing

the number of unsatisfied ϕs. ILP does not support a not equals constraint (e.g., z 6= y) natively.

However, there is a workaround for discrete integer variables [27]. We introduce two new binary

auxiliary variables (b1v1,v2 , b
2
v1,v2 ) as indicators for v1 ≤ v2 − 1 and v1 ≥ v2 + 1, respectively. Finally, we

only need to guarantee that b1v1,v2 + b2v1,v2 = 1. Therefore, we create two Boolean variables for every

two variables in the not equals constraint. Let us consider (v1, v2) ∈ Ω as the set of two variables that

must have different assignments. In this case, |Ω| = 4. The optimization criteria, in this case, aim

to minimize the value of A and C. As we are writing the statement as maximization, we consider the

inverse (6 minus the value).

maximize: A− C (2.5)

subject to:

(v1 − v2 − 1)× b1v1,v2 ≥ 0 ∀(v1,v2)∈Ω (2.6)

(v1 − v2 + 1)× b2v1,v2 ≤ 0 ∀(v1,v2)∈Ω (2.7)
2∑
i=1

biv1,v2 = 1 ∀(v1,v2)∈Ω (2.8)

A,B,C,D ∈ {1, . . . , 6} (2.9)

b1v1,v2 , b
2
v1,v2 ∈ {1, 0} ∀(v1,v2)∈Ω (2.10)

Please note that the constraints are not linear and thus only integer programming.

2.3 Maximum Satisfiability

The propositional satisfiability (SAT) problem can be seen as a CSP where the domain of the

variables is restricted to Boolean. In this thesis, we propose different SAT encodings for university

course timetabling and train scheduling.

Definition 5 (SAT). The propositional satisfiability (SAT) problem consists of deciding whether there

is a truth assignment to the Boolean variables (V) such that a given CNF formula is satisfied. A

propositional formula in conjunctive normal form (CNF) is defined as a conjunction of clauses, where

a clause is a disjunction of literals and a literal is either a Boolean variable x ∈ V or its complement

¬x. A formula is satisfied iff there is at least one assignment where all the clauses are satisfied. A

clause is satisfied iff there is at least one literal satisfied. �
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Nowadays, most SAT solvers apply conflict-driven clause learning algorithms [28, 29], which are

based on the well-known Davis-Putnam algorithm [30] (see [31] for more details). However, we want

more than just checking the satisfiability of the problem. For this reason, we make use of MaxSAT.

MaxSAT is COP where the domain of the variables is restricted to Boolean. The simplest definition of

MaxSAT is as follows.

Definition 6 (MaxSAT). The MaxSAT problem is an optimization version of SAT, where the objective

is to find an assignment that maximizes the number of satisfied clauses. �

Furthermore, we may need to slit the clauses into hard and soft. Therefore, we need to make use

of partial MaxSAT.

Definition 7 (Partial MaxSAT). A partial MaxSAT formula (ϕ = ϕh ∪ ϕs) consists of a set of hard

clauses (ϕh) and a set of soft clauses (ϕs). The objective in partial MaxSAT is to find an assignment

such that all hard clauses in ϕh are satisfied, while maximizing the number of satisfied soft clauses in

ϕs. �

Example 7. Recall Examples 4 (CSP) and 6 (integer programming). Let us consider the following

Boolean variables Ai to Di with i ∈ {1, . . . , 6}. Each variable corresponds to the assignment of a

class to a time slot i. When solving the same timetabling problem with SAT, the Conjunctive Normal

Form (CNF) encoding for the hard clauses is the following:

∀i∈{1,...,6}¬Ai ∨ ¬Bi (2.11)

∀i∈{1,...,6}¬Ai ∨ ¬Ci (2.12)

∀i∈{1,...,6}¬Bi ∨ ¬Ci (2.13)

∀i∈{1,...,6}¬Ci ∨ ¬Di (2.14)

The CNF encoding for the soft clauses is the a set with two unit clauses ϕs = {A1, C1}.

In addition, we may want to add different weights to the clauses to create a more sophisticated

optimization function (e.g. lexicographic optimization). For this reason, in this thesis, we also consider

the weighted variant of partial MaxSAT, which is defined next.

Definition 8 (Weighted Partial MaxSAT). A weighted variant of partial MaxSAT has a function wϕ :

ϕs → N associating an integer weight to each soft clause. In this case, the objective is to satisfy all

the clauses in ϕh and maximize the total weight of the satisfied clauses in ϕs. �

Most MaxSAT solvers [32, 33] are implemented calling a SAT solver iteratively to improve the

quality of the solution. There are different algorithms to guide the search. In this work, we use the

linear search with clusters algorithm [34]. This algorithm uses a linear search. In order to improve
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performance, the algorithm uses heuristics to cluster the clauses of the objective function by weight.

The weight is used to assign a level of importance while solving. This can be seen as lexicographic

optimization of the terms of the objective function.

In general, we assume that all formulas are encoded into Weighted Conjunctive Normal Form

(WCNF). Nevertheless, in this thesis we will write some constraints in pseudo-Boolean (PB) form

for the sake of readability. PB constraints are nothing more than linear constraints over Boolean

variables, and can be written as follows:
∑
qixi OP K, where K and all qi are integer constants,

all xi are Boolean variables, and OP ∈ {<,≤,=,≥, >}. PB constraints can be easily translated into

CNF [35]. In this work, we tested different CNF encodings for PB constraints.

The weighted MaxSAT problem can be converted to an ILP problem [36] and vice-versa. Lately,

there has been work on merging the best of both worlds [37]: a SAT solver and an ILP [38] solver.

MaxHS [39] one of the competitors of the 2020 MaxSAT evaluation and uses both a SAT solver

and CPLEX (ILP solver). The best tool to solve PESP [40] is also a hybrid between SAT and ILP

(discussed in the next chapter).

The idea behind this is to exploit the advantage of dealing with linear constraints in ILP solvers

and the benefit of clause learning and unit propagation of the SAT solvers. The ILP solvers have more

difficulty with implications and short clauses than SAT solvers. On the other hand, SAT solvers have

more difficulty with pseudo-Boolean constraints. For example, in MaxHS, neither the SAT solver nor

CPLEX has enough information to solve the entire problem. In this case, an overview of the process

is as follows. The SAT solver is used to solving the decision version of the problem. CPLEX receives

the solution from the SAT solver and optimizes it. This is the same method used by Borndörfer et

al. [40]

2.4 Scheduling Problems

There are many scheduling problems in the world [5] that range from transportation (e.g. trains [8],

airlines [41]) and university timetabling [42] to planning [43]. One can informally define a scheduling

problem in general as the mapping of a set of events to a set of resources and time slots, subject to

a set of constraints and optimization objectives. Therefore, one can see the scheduling problem as

a COP. In this work, we consider two different scheduling problems: University Course Timetabling

Problem (UCTTP) and Train Scheduling Optimization Problems (TSOP). The goal of the university

course timetabling problem is to assign all classes to rooms and time slots subject to a set of con-

straints (see Example 1). The goal of train scheduling is to assign all trains to routes and time slots

subject to a set of constraints (see the example below).

Example 8. Figure 2.1 shows a simplified railways. There are two train routes from B to C and

therefore the railway supports two trains at the same time. B train station can receive two trains (from

A and F ). B and C are connection spots since the trains can depart to multiple routes. Consider that

one train has to go from A to C. A possible solution to this routing problem is shown in red. Now, let

us consider that the traveling time from v1 to v3 is 9 minutes, and from v3 to v4 / v5 is 27 minutes.
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Figure 2.1: Part of the railway network where one train has to go from A to C. The bold red arrow represents a
possible solution. Nodes and edges represent stations and sections of railway track, respectively. The square
represents a junction point.

Assume the train cannot leave A before 9AM. Also, it has a connection with another train at C. The

connection requires the train to arrive before 9:42AM to ensure the passengers can interchange with

the train moving to E. Therefore, a feasible solution to this scheduling problem instance is the following

timetable:

• The train departs from A at 9AM.

• To make the connection at C, the train stops in B for only 5 minutes.

• The train leaves at 9:14AM from B station, thus arriving at the destination at 9:41AM.

2.5 Minimal Perturbation Problem

Re-solving an optimization problem, considering the particular case of the Minimal Perturbation

Problem (MPP), has many applications from timetabling [44–47] and train scheduling [48–50] to bio-

logical networks [12–14].

The Minimal Perturbation Problem (MPP) is the task of finding the closest new feasible solution

to the problem based on a previously found solution that is no longer valid. There are two possible

reasons for this to happen: (i) new constraints were added or (ii) the variables of the problem have

changed. The MPP can be described as a COP since it has a cost function (the evaluation between

the old and new solutions).

Definition 9 (MPP). Consider the CSP Θ = (V,D, C), with s0 as a feasible solution. Consider another

CSP ΘN that was created based on Θ such that V ∪ VN 6= ∅ ∧ D ∪ DN 6= ∅ ∧ C ∪ CN 6= ∅. These

changes may cause the solution s0 to be incomplete or even no longer feasible.

MPP is a COP with the cost function F = δ(s0, s1) where s1 is the new solution, subject to the

new sets of constraints and/or variables. The distance δ is a function that evaluates the differences

between the two solutions. �
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Note that adding new variables causes the solution to be incomplete. Adding new constraints or

changing the variable’s domain may cause to solution to be no longer feasible.

The function δ can be domain independent, applied to all problems (e.g. Hamming distance or HD

for short), or specific to the problem’s domain. Observe that there are simplified definitions of MPP in

the literature. The formal definition of the different distance metrics is introduced in the next chapter.

A simplified approach considers that C = CP ∪CN , where CP ∩CN = ∅. In other words, the constraints

cannot change, and only new constraints can be added.

Example 9 (MPP). Consider, for example, the following CSP with s0 as a valid solution:

• V = {A,B,C,D},

• DA = DB = DC = DD = {1, 2, 3, 4, 5, 6},

• Cp = {alldifferent(A,B,C), C 6= D},

• s0 = {(A, 1), (B, 2), (C, 3), (D, 4)}.

The new constraint CN = {D = B} causes the solution s0 to be no longer feasible, thus requiring

the solution to change. A distance function δ measures the difference between the two solutions. In

this example, two possible functions can be considered: the number of variables in which the value

changed (Hamming distance) or the sum of differences between the values of the variables of the

two solutions (Manhattan distance). Note that the HD can be applied to integer domains by only

measuring the number of variables with different values. Considering δ as the Hamming distance, the

optimal solution to the problem is {(A, 1), (B, 2), (C, 3), (D, 2)}.

This is the basic version of the MPP since different levels of importance can be added to the

constraints. Thus, it is possible to extend Definition 9 to consider different types of constraints (hard

and soft). Let us consider the CSP P , subject to the hard constraints CHP and soft constraints CSP ,

which has s0 as solution. s0 is the solution that minimizes the number of unsatisfied soft constraints.

Now, the need for re-solving the problem can arise from the set of hard constraints CHN , the set of

soft constraints CSN or both.

Definition 10 (MPP cont.). Consider the MPP Definition 9. Furthermore, consider that the set of

constraints now can be hard (CH) or soft (CS). Therefore, the goal of the MPP is now a multi-criteria

problem. The cost function f has to take into account the distance, δ, between a new solution and the

original one, and the number of unsatisfied soft constraints CSN . �

Example 10 (MPP cont.). Consider, for example, the following CSP with s0 as a valid solution:

• V = {A,B,C,D},

• DA = DB = DC = DD = {1, 2, 3, 4, 5, 6},
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• CHp = {alldifferent(A,B,C), C 6= D}

• CSp = {(A = 1), (C = 1)},

• s0 = {(A, 3), (B, 2), (C, 1), (D, 4)}.

The new constraint CSN = {(D = 1)} causes the solution s0 to be no longer optimal, thus it

is possible to improve the solution. Consider δH as the Hamming distance (optimization objective

o1). In terms of distance, the optimal solution to the problem is sh = {(A, 3), (B, 2), (C, 1), (D, 4)}

since the distance is 0. However, in terms of the number of unsatisfied soft constraints, (o2) sc =

{(A, 1), (B, 2), (C, 3), (D, 1)} is a better solution (as it satisfies one more soft constraint).

The solution sh is Pareto optimal since it is impossible to find a solution that improves the cost

function o2 without worsening δH . The same explanation is valid for solution sc given that both solu-

tions are in the Pareto frontier.
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This chapter describes the relevant state-of-the-art approaches to solve the different schedul-

ing problems organized as follows. Section 3.1 describes the methods to solve university course

timetabling problems. Section 3.2 describes the methods to solve train scheduling problems.

3.1 University Course Timetabling

University Course Timetabling Problem (UCTTP) is known to be NP-complete [51–53]. University

timetabling can be classified into two major categories: examination timetabling [54–56] and course

timetabling problems [57, 58]. These categories are characterized along these lines:

• Examination timetabling - focuses on creating timetables for the examinations. These timetables

must ensure that a student can attend examinations for which he/she is enrolled in. Further-

more, the timetables must ensure an instructor can attend, and we can assign multiple exams

to the same room1.

• Course timetabling:

– Curriculum-based course timetabling [59] - focuses on creating timetables based on a pre-

defined curriculum that the students must follow.

– Post-enrollments timetabling [60] - deals with creating timetables based on the students

enrollments.

In this thesis, we consider the whole course timetabling as one. The organization of timetabling

competitions in the past has led to important advances in solving University Course Timetabling Prob-

lem (UCTTP) [42, 61]. In the literature, there are several different approaches to solve UCTTP,

namely: constraint programming [54, 62–66], Answer Set Programming (ASP) [67], Boolean Satisfia-

bility (SAT) [68], MaxSAT [69, 70], integer programming [44, 47, 71–79], genetic algorithms [80–82],

multi-agent [83, 84], reinforcement learning [85], and local search [1, 64, 86–92].

Burke et al. [79] proposed an ILP based method to solve curriculum-based timetabling. The opti-

mization objectives used considers, among others, the room capacity and curriculum compactness.

The objective is to minimize the global number of students not seated, and to reduce the number of

time gaps between classes of the same curriculum. Therefore, the focus of the compaction process

lies only on the student’s timetable. The minimization does not ensure a uniform distribution of the

unseated students. The ILP method decomposes the problem into multiple sub-problems where only

a part of the optimization objectives are used. These sub-problems can be used to compute bounds

in their respective optimization objectives. In the end, the solution to the problem is computed based

on the solution of each of the sub-problems. This is an exact method. However, the decomposition

may lead to a sub-optimal solution.

Vermuyten et al. [93] proposed a two-stage approach to optimize student flows using ILP. The

approach was tested using the real data from Katholieke Universiteit Leuven (KUL). The first stage

focuses on assigning classes to time slots and rooms, and the second focuses on re-assigning rooms
1A detailed description of the constraints used can be found at: https://www.unitime.org/exam_description.php.
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to classes with pre-defined time slots from the first stage. The second stage’s main optimization

objective is to assign rooms in such a way that congestions are avoided. The ILP implementation also

adds some constraints regarding the compaction of the timetables from a student’s perspective. The

ILP implementation tries to avoid timetables with two or more hours without classes for the students.

This type of constraint is essential for commuting students. However, the proposed method does

not reduce the number of isolated classes (i.e., days where a student timetable has only one class

assigned). This type of decomposition is common since it reduces the problem complexity without

losing any solutions [94]. Another approach [56] follows the same decomposition for examination

timetabling: it applies a greedy heuristic to the first task (exams assigned to timeslots) and ILP to the

second (exams assigned to rooms).

The multi-agent [83, 84] approach focuses on negotiating the assignment of classes to rooms

and time slots in order to reach a feasible timetable while optimizing the preferences of the teachers.

The agents representing the teacher have different ranks and seek to assign their classes according

to their preference. The higher ranking teachers have priority in terms of having their preferences

satisfied.

Beyrouthy et al. [95] studied the utilization of teaching space in order to improve room-size profiles

when planning to build a campus. The study shows that most rooms have overcapacity (the number

of seats of the rooms is larger than the number of students). Furthermore, it was shown that the

location of the room has a direct effect on room utilization since both students and teachers prefer

certain locations. Beyrouthy et al. [96] proposed methods to split classes in order to improve the room

utilization.

Lindahl et al. [97] studied the impact of the number of time slots allowed on the quality of the

timetable. To this end, linear programming models were developed to solve the timetabling problem

with three optimization objectives: the number of time slots available, room usage (minimize the num-

ber of rooms used), and overall quality. The study of the number of time slots available is particularly

important since it is easier to increment the number of time slots when adding new courses than to

build more rooms. This approach could be seen as the basis for the new ITC 2019 work of Holm

et al. [71]. Holm et al. adapted the approach from Lindahl et al. [97] to consider the existence of

weeks, days, and complex pseudo-Boolean constraints. However, the additional complexity of ITC

2019 would make it impractical to solved as is. More details are given below.

Song et al. [89] proposed an iterative algorithm with three stages: initialization, intensification, and

diversification to solve the course timetabling problem. The first stage finds a partial feasible solution

using a greedy algorithm to allocate the maximum possible number of events. The intensification

stage uses a simulated annealing method to find a local optimum. The final stage uses random

perturbations (swap of classes) to improve the solution. The solution found is used as the new starting

point of the next iteration.

In the context of SAT, Asín Achá et al. [70] proposed a CNF encoding with four types of decision

variables to solve curriculum-based course timetabling with data from the ITC 2007. The authors

proposed variables to describe: the day of the class, the hours of the class, the room of the class,
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and finally, the different times a curriculum is taught. The problem from the ITC 2007 differs from the

problem defined in the ITC 2019 [58]. For example, in the ITC 2019, the classes can be scheduled in

different weeks.

In recent years, a significant improvement in solving course timetabling problems has been

achieved [98]. Behind this progress lies the public data sets from ITC [59], which are a simplified

version of the real timetabling problem at the University of Udine. For this reason, the progress made

still presents a gap between theory and practice [42] since it does not capture the full complexity of

the real-world problem. A new and more complex challenge arose in the form of the ITC 2019 [58], in

order to reduce this gap. The addition of the notions of different weeks, pseudo-Boolean constraints,

and student sectioning problems make all previous approaches outdated and challenging to adapt.

The adapted solution proved to have difficulties in solving all the instances of the competition without

significant changes in the overall tool.

The participants proposed different approaches to solve the ITC 2019 problem. The solutions in

the top 5 ranged from MaxSAT (described in section 5) and mixed-integer programming with heuris-

tics [71, 72, 99] to Simulated Annealing (SA) [1] and local search [86].

Edon Gashi et al. [1]2 proposed a SA approach which placed among the top 5. This approach

starts with a pre-processing technique that removes all time options from the domain of the class that

is incompatible with the set of possible rooms (details in Section 5.2.1).

Muller et al.3 [64] proposed an iterative forward search algorithm [100] based on UniTime. The

algorithm has similarities with local search, but operates over feasible partial solutions. The algorithm

ends when a complete solution is found, and then two techniques are used to optimize the obtained

solution: hill climbing and great deluge. This solution, like the one proposed in this work, splits the

problem into two sub-problems: student sectioning and class assignment. This solver did not enter

the competition since it is authored by the organizers of the ITC 2019.

Holm et al.[71, 99] proposed a mixed integer programming approach based on the work from Lin-

dahl et al. [97]. As mentioned above, the complexity of the novel constraints, the existence of student

sectioning problems, and the notion of weeks/days cause this solution to be impractical. Unfortunately,

not much detail is provided regarding this approach that won the competition. When compared to the

past approaches, the main difference in this approach is the decomposition of the problem. This de-

composition allows the algorithm to solve the problem in parallel with strong heuristics to guide the

search. Moreover, this approach takes up to ten days to optimize the solution.

Between ITC 2007 and ITC 2019, a different timetabling competition was organized. ITC

2011 [101] focused on solving high-school timetabling problems. The problem of high-school

timetabling is similar to the problem of university course timetabling. Naturally, the constraints and

data characteristics are different. Demirović et al. [102] proposed a new algorithm that combines local

search with a novel MaxSAT based large neighborhood search. The goal is to jump-start the neigh-

borhood based MaxSAT solver with an initial solution from the local search. The jump start process
2The code is available at https://github.com/itc2019/edon-gashi.
3The code is available at https://github.com/itc2019/tomas-muller.
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is a common technique in both train scheduling and university course timetabling when solving the

MPP.

This year, a new timetabling competition in sport timetabling took place

(https://www.sportscheduling.ugent.be/ITC2021). This problem is a bit different from the ones

discussed in this thesis. However, some approaches are similar to the ones proposed in this thesis.

3.2 Train Scheduling

The generation of railway timetables is known to be intractable for a single track [103]. Nonethe-

less, different methods have been proposed to effectively solve this problem [8, 104–107]. In the past,

a few challenges have been organized [108, 109]. In the 2014 ROADEF/EURO challenge for the

shutting yard operations, most participants submitted solvers implemented greedy algorithms [108].

The winner used a mix of ILP and greedy heuristics [110].

Recently, the SBB challenge [109] motivated the appearance of new approaches ranging from

ILP and ASP [3] to a greedy algorithm. The proposed ILP solution decomposes the problem into

two sub-problems: routing and scheduling. This decomposition may remove the optimal solution but

drastically reduces the size of the problem at hand. The ASP solution uses a hybrid ASP solver with

difference constraints (e.g. u − v ≤ d where u, v, d ∈ Z). Furthermore, the optimization problem is

solved with an approximation cost function that allows reducing the size of the problem. However,

it may remove the optimal solution. The greedy algorithm, winner of the challenge, solves the most

critical conflicts first. A conflict between two trains occurs when both trains occupy the same resource

at the same time. The flexibility of the time constraints and the density of resources are used to

determine the criticality of a conflict. The density of resources is defined by the number of trains that

require the same resource at the same time.

In the context of SAT, Matos et al. [4, 11] proposed a binary search procedure which uses a SAT

solver to get global minimum solutions concerning travel time and a procedure to compute a better

upper bound for the solution value and speed up the search process. The resulting tool is able to

solve all the instances from the PESPlib benchmark [111] without exceeding the memory limit (64

GB). However, it does not ensure optimality. Even so, this approach was able to improve the best

currently known value in 7 out of 20 of the PESPLib benchmark.

3.3 Scheduling under Disruptions

There are two main lines of thought to coupe with the uncertainty involved in modeling dynamic

real-world problems: (i) solution reformulation [112] and (ii) generating robust solutions [113].

Reformulation is the task of changing a solution in order to return feasibility. In some applications,

changing a solution completely is a nuisance and expensive. Minimizing the changes facilitates the

communication, to all parties involved, of the new solution. Therefore, ensuring the new solution

is known and executed. Therefore, it is important to find a solution as similar as possible to the

original. This task is known as the Minimal Perturbation problem [46]. Finding similar solutions is the
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opposite problem of finding diverse solutions [114, 115]. Solving the MPP requires the use of metrics

to evaluate the similarity of the solutions.

The second approach focuses on avoiding reformulation of the solution by obtaining a solution

that can be valid after the disruption occurs. Therefore, the robust solutions may be sub-optimal but

are valid for the most common future disruptions. The search for a robust solution has its advantages

since it reduces the need for re-formulation of the solution, which can have some additional financial

cost (e.g. overtime hours). Furthermore, customers dislike changes in their lives, and re-formulating

the solution causes a reduction in customer satisfaction.

This section is organized as follows. Section 3.3.1 discusses the different metrics to evaluate

the similarity between solutions. Section 3.3.2 focuses on the different techniques to find similar

solutions. Section 3.3.3 focuses on robustness techniques and metrics. Section 3.3.4 discusses

the application of reformulation techniques to university course timetabling. Finally, section 3.3.5

discusses the application of reformulation techniques to train scheduling.

3.3.1 Metrics

In the worst case, finding similar solutions is NP-complete [116]. One important aspect of finding

similar solutions is evaluating their similarity.

There are two main types of metrics to evaluate the distance between two solutions: domain

dependent and domain independent.

The domain dependent metric of a problem takes into account the specificities of the problem.

However, these types of metrics are normally difficult to apply to different contexts as they require

domain knowledge.

On the other hand, a domain independent metric can be applied to all problems without any

personalization based on knowledge of the problem at hand. However, these metrics do not evaluate

precisely the differences between solutions. One of the most common domain independent metrics

used is Hamming distance [117].

Definition 11 (Hamming Distance). The Hamming distance (HD) is a domain independent metric

which evaluates the similarity of two solutions by comparing the values of different Boolean variables.

Consider the solutions s0 and s1. The HD is given by:

δH(s0, s1) =
∑
v∈V

s0[v] 6= s1[v] (3.1)

where si[v] ∈ {0, 1} is the value assigned to the Boolean variable v in the solution si. The HD is the

sum of Boolean values (s0[v] 6= s1[v]). �

Example 11 (Hamming Distance). Recall the CSP shown in Example 9:

• V = {A,B,C,D},

• DA = DB = DC = DD = {1, 2, 3, 4, 5, 6},
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Table 3.1: Number of students enrolled in each class.

A B C D
289 363 243 236

• Cp = {alldifferent(A,B,C), C 6= D},

• s0 = {(A, 1), (B, 2), (C, 3), (D, 4)},

• CN = {D = B}.

The new constraint CN = {D = B} causes the solution s0 to be no longer feasible. There are

two optimal solutions when considering the Hamming distance: s1 = {(A, 1), (B, 2), (C, 3), (D, 2)}

and s2 = {(A, 1), (B, 4), (C, 3), (D, 4)}. The optimal solutions have the following cost δH(s0, s1) =

δH(s0, s2) = 2, since the two classes change the assignment.

Some logical-based encoding uses auxiliary variables which do not directly influence the model. To

avoid this, usually, the Hamming distance (HD) is only applied to the main variables. The HD was used

as a metric to evaluate the differences between solutions to the examination timetabling [118] and

course timetabling [45]. This distance can be generalized to take into consideration the differences

between the variables domains. This new distance is called Manhattan [119], and the definition is as

follows.

Definition 12 (Manhattan Distance). Manhattan distance can be considered a generalization of the

Hamming since it has the same value when considering only Boolean variables. Consider the solu-

tions s0 and s1. The distance between s0 and s1 is

δM (s0, s1) =
∑
v∈V
|s0[v]− s1[v]|. (3.2)

�

Example 12 (Manhattan Distance). Consider the CSP shown in Example 11, where s0 = {(A, 1),

(B, 2), (C, 3), (D, 4)} is the initial solution and s1 = {(A, 1), (B, 4), (C, 3), (D, 4)} is the new found

solution which minimizes the number of unsatisfied soft constraints. Considering δ as the HD

δH(s0, s1) = 1. However, if one considers δM as the Manhattan distance δM (s0, s1) = 2.

Nevertheless, the HD (and other domain independent metrics) has its problems caused by being

a generalist measure (see Example 13).

Example 13 (Domain Dependence). Consider Example 11. Additionally, the number of students

enrolled in these classes is shown in Table 3.1. Recall that both solutions have the same Hamming

distance: δH(s0, s1) = δH(s0, s2) = 1. However, this value does not take into account the number of

stakeholders (teachers and students) affected by the change. This is a multi-objective optimization
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problem where the objectives are the HD and the number of stakeholders affected. s1 is the optimal

solution since it only affects 236 students. In this case, the solution is in the Pareto frontier.

Moreover, some solutions are different in theory but maybe the same in practice. These solutions

are feasible and have the same cost (thus being considered the same in practice). To avoid generating

and testing this solution, it is important to consider the concept of symmetries [19, 120] which is

defined as follows.

Definition 13 (Symmetry). Consider two different assignments to a variable. A value symmetry [121]

is a bijective mapping m on the values such that if v1 = d1, . . . , Xn = dn is a solution then x1 =

m(d1), . . . , xn = m(dn) is also a solution. �

The definition above can be extended to constraint symmetry and solution symmetry [120]. The

symmetries can be used to cut the problem search space. These types of cuts have already been

applied to timetabling [122]. As Example 14 shows, not cutting these solutions from the search space

can cause errors in the judgment of domain independent metrics.

Example 14 (Symmetry). Consider the solution s0 from Example 11. Let us assign these classes to

two rooms. We can allocate all classes to one room since all time slots are different. For this reason,

choosing to allocate all classes in the first room or choosing to allocate all classes in the second room

are two different solutions. For a domain independent metric, these two solutions would be considered

different. However, the difference between them has no real implications for the stakeholders.

There are different metrics in order to evaluate the proximity of the solutions that can be applied

only to planning [123]. For example, Nguyen et al. [123] proposed a metric to compare two plans

given by the ratio between the number of actions that appear in both plans and the total number of

actions.

Petit et al. [114] proposed a framework to find diverse solutions to COP using domain independent

metrics (Hamming, Manhattan, and Euclidean distances). The implemented solution was designed

to maximize the ratio between the distance between the solutions and the loss in quality. The quality

is evaluated based on the optimization goal expressed in the definition of the original problem.

Example 15 (Petit’s Quality Ratio). Consider again Example 10 where the solution s0 =

{(A, 3), (B, 2),(C, 1), (D, 4)} is optimal when considering only the Hamming distance. Consider also

the solution s1 = {(A, 1), (B, 2), (C, 3), (D, 1)} that is optimal in terms of the number of unsatisfied

soft constraints (only 1 unsatisfied soft constraint). According to the proposed proposed ratio [114],

solution s1 has ratio 3, where solution s0 has ratio 0. In this case, s1 would be chosen since it has a

better diversity over quality.
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Hebrard et al. [124] proposed a different type of distance-based metric where the goal is to find

solutions that have (or avoid) certain details of interest, which are called ideals (non-ideals). Each

ideal or non-ideal corresponds to an assignment. For example, finding a solution where the class A

is taught in the 1 time slot. The proposed metric evaluates the proximity of the solution to the ideals

(non-ideals) by applying the HD for only the variables present in the sets. Furthermore, it is possible

to specify if all or at least one of the elements of the sets should be considered in the solution. The

metric is formally defined as follows:

Definition 14 (Preference Distance). Consider a CSP problem where V is a set of variables and

the respective solution s corresponds to a set of assignments. Consider also the sets of ideals and

non-ideals I and A, respectively. The level of importance of an assignment (v, x) ∈ A ∪ I can be

customised by weight w(v,x).

The distance between a solution s and the sets I and A can be defined by the distance:

⊗(v,x)∈A∪IΘ(s, (v, x)), where ⊗ = {max,min} and

Θ(s, (v, x)) =

{
w(v,x) ∗ (s[v] 6= x) (v, x) ∈ I
w(v,x) ∗ (|V| − (s[v] 6= x)) (v, x) ∈ A

(3.3)

The metric can evaluate the solution quality based on if all (⊗ = max) or at-least one (⊗ = min)

of the elements of the sets should be considered. s[v] 6= x is the HD applied between only two

variables. �

Example 16 (Preference Distance). Consider again the CSP where the variables V = {A,B,C,D}

with the domains DA = DB = DC = DD = {1, 2, 3, 4, 5, 6} are subject to the constraints C =

{alldifferent(A,B,C), C 6= D}. Additionally, consider that we want the solution with the ideal A = 1,

with the non-ideal D = 6 and the weights w(A,1) = w(D,6) = 1. The distance to a solution s is com-

puted by: max(1 ∗ (s[A] 6= 1), 1 ∗ (|V| − (s[D] 6= 6))). One solution that minimizes the distance is

{(A, 1), (B, 2), (C, 3), (D, 1)}.

The HD and the metric described above have the same result if each variable appears exactly

once in the set of ideals I. In addition, this metric provides a comparison of partial solutions and

the possibility of combining the objectives of finding similar (the ideals) and diverse (the non-ideals)

solutions. The ideals and non-ideals can be seen as additional soft constraints that account for the

distance between two solutions.

In the context of SAT, there is also work on solving the Distance-SAT problem [125, 126]. This

problem consists of determining whether a propositional CNF formula admits a model that disagrees

with a given partial interpretation on at most d variables. In other words, the goal is to find a new

model that has an HD of at most d. The proposed algorithms focus on solving the problem from

scratch with a distance metric.
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3.3.2 Similar Solutions

In this section, the current state-of-the-art solutions to find similar or diverse solutions are dis-

cussed. Table 3.2 shows a summary of the distance metrics used in several methods found in the

literature to find similar or diverse solutions and their respective applications. The computational

complexity class for the problem of finding the solution which is the closest to an original solution is

FPNP[logn] − complete [115, 127].

Constraint programming applies filtering algorithms to remove impossible values from the domain

of the variables to speed up the search. These filtering algorithms can be associated with a specific

constraint (e.g. alldifferent) to reduce the domains of the variables involved in the constraint. When

considering the search for similar/diverse solutions, filtering algorithms are proposed to deal with the

new distance constraint. The filtering algorithms proposed for the search for a similar solution can be

easily changed for the search for a diverse solution and vice versa. The filtering algorithms discussed

in this section ensure Generalized Arc Consistency (GAC) [128], i.e., all the values in the domain of

the variables are possible, taking into consideration the constraints in which the variables are involved.

Hebrand et al. [115] proposed a filtering algorithm for the Preference distance constraint. We

can recall that this distance is based on a set of ideals and non-ideals (elements that we want to

have or avoid in a solution). However, the filtering algorithm was designed to deal only with ideals.

Nevertheless, with few changes, one can consider both. The algorithm starts by checking the lower

bound for each ideal (the value for which the δ is minimal). Then, for each value of each variable’s

domain, the algorithm verifies if the corresponding ideal is within an acceptable distance (max). This

is decided based on the lower bound: δH(v, i) − lb[v] > max, where v ∈ V, i ∈ I and lb[v] the lower

bound for variable v. If the value exceeds the pre-defined limit (max), the value from the variable’s

domain is removed. If the sum of all lower bounds is larger than the maximum distance allowed there

is no feasible solution to the problem. Note that the distance metric used to check the proximity of the

ideals is the HD. The algorithm’s time complexity is O(ndk), for each iteration of the search, where

n = |V | (the number of variables), d is the maximum domain size, and k the size of the ideals. In the

worst case, k = n.

Example 17 (Filtering algorithm). Let us consider again Example 16 but this time without the set of

non-ideals. In this new example, the distance to a solution s is computed by: 1 ∗ (s[A] 6= 1) and

therefore one optimal solution is {(A, 1), (B, 2), (C, 3), (D, 1)}. Consider that max = 0. First, the lower

bound of A is computed. The lower bound of variable A is lb[A] = 0 since the assignment (A, 1) would

cause the distance to be 0. The sum of the lower bounds is lower thanmax, and therefore the problem

has a feasible solution. All the values different from 1 are removed from DA as the values would cause

the solution to have a distance greater than max. Nothing happens to all the other domains since this

constraint (distance between a solution and the set of ideals) does not involve them.

Petit et al. [114] proposed a filtering algorithm for the Manhattan distance. The filtering algorithm

is based on two input factors: the minimal acceptable value of diversity (similarity) and the maximally
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acceptable loss of quality. Informally, if a given value in the domain causes the solution to exceed the

two input factors, the value is going to be removed. This algorithm runs in O(k
∑
i∈D |Di|), where k is

the size of the original solution. Note that the original solution may be only a partial solution (i.e. the

solution does not contain an assignment to all variables).

Example 18 (Filtering algorithm cont.). Let us consider again Example 17 but now the Manhattan

distance (δM ) is used instead of the preference distance (δP ). Moreover, instead of the set of ideals

considered in Example 17, we consider so = {(A, 1), (B, 2), (C, 3), (D, 4)} as the original solution.

Additionally, consider that the constraint C 6= D changes to B > C. Regarding the quality, we

consider that it is not acceptable to lose quality while searching for a new solution. In terms of

distance, we consider δM < 4. Note that the search procedure is not the goal of this example. Let us

assume that the search procedure chooses the variables to be assigned in alphabetical order.

The first set removes all values from the domain of variables for which the constraint δM < 4

would be unsatisfied. For example, in DA = {1, 2, 3, 4, 5, 6} the values 5 and 6 would be removed

since the assignments (A,5) and (A,6) would alone make δM < 4 unsatisfied. Considering a heuristic

that sets a preference for the original values, the first variable assigned is (A, 1). Therefore, the value

1 is removed from the domain of B and C. The assignment (B, 2) causes all values larger or equal

than 2 to be removed from DC . Now, the assignment (C, 1) causes the solution to be already at a

distance of δM = 2. Therefore, the values 1, 2 and 6 can be removed from the domain of DD since

the assignments would exceed the distance limit. The last assignment is (D, 4).

Barcelogic [129] approach uses a logic-based tool (SAT solver) to find close solutions. The vari-

ables domain, in this specific case, is Boolean. Therefore, the HD can be applied to evaluate the

distance between two solutions. The constraints may require the use of auxiliary variables, and thus

the HD should not be applied to the complete set of variables. The heuristic to assign values to

variables first tries to assign values from the original solution. When an assignment of a value to a

variable causes the current solution to have a higher cost than a previously found one, a new con-

straint is created, and the backtrack happens since no good solution will appear in this branch of the

search tree. The new constraint ensures that the search in this branch stops. To sum up, this process

modified a logic-based tool in order to find similar solutions. The heuristic guides the assignment of

variables to be as close as possible to the original solution. However, it does not take full advantage

of the initial search. For example, it could use the initial search tree to prune the search space by

knowing which branch to visit.

Eiter et al. [127] proposed an off-line method to find multiple similar and diverse solutions. With

a logic-based tool, a set S of solutions is computed. To find multiple solutions within a distance d

from this set, it is possible to encode this problem as a Clique problem [130]. Consider a graph

G(V,E), where V is a set of vertexes corresponding to solutions, and E is a set of weighted edges

corresponding to the distance between solutions. The objective is to find a clique whose weight is

below d. Solving the clique decision problem is NP-complete.
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Zivan et al. [131] proposed a two-stage method to solve MPP considering the HD as the distance

metric. The first stage consists of a branch and bound scheme with backtracking to find the largest

partial solution for which the HD is 0. The second stage of the algorithm assigns values to the

remainder of the solution.

Independent of finding the complete solution feasible or not, the algorithm restarts to the first stage

to find a new partial solution. If the algorithm finds a feasible solution, this solution is stored only if

the value of the HD for this solution is better than the previously stored one. Note that a solution is

infeasible if any hard constraints are not satisfied. The algorithm ends when the optimal solution (in

terms of distance) is found. This algorithm only considers one soft constraint: the Hamming distance.

All the constraints in the problem’s domain are encoded as hard.

Example 19 (Zivan’s method). Consider the CSP explained in Example 18 with the following con-

straints: Ch = { C 6= D,alldifferent(A,B,C)}. Recall that the domain of the variables is DA = DB =

DC = DD = {1, 2, 3, 4, 5, 6}. As explained above, the optimal solution is: {(A, 1), (B, 2), (C, 3), (D, 4)}.

However, the constraint C 6= D was changed to C > D and thus, the solution is no longer valid. The

final search tree is shown in Figure 3.1, where ub and lb represent the values of the upper and lower

bounds, respectively. The assignments made in the first and second stage are circles and rectangles,

respectively.

The upper bound (i.e. the maximum value that δH can take) is 4. The lower bound is updated only

when the original value is no longer in a variable domain. The first assignment made by the algorithm

is (A, 1). The alldifferent constraint and the first assignment cause the value 1 to be removed from

the DB and DC . In the next step, the algorithm assigns (B, 2). For the same reason, the value 2 is

removed from the domain of the other variables involved in the alldifferent constraint. The next step

consists of assigning (C, 3). Finally, when assigning (D, 4), a conflict arises, and so the second stage

of the algorithm starts. Therefore, the domain is updated: DD = DD\{4}. As the domain of D does

not contain four, the lower bound is 1.

At this stage, the algorithm searches for a different assignment to D. However, no feasible solu-

tion is found, and consequently, the backtracking process unassigns the value of C. The value 3 is

removed from the DC . Therefore, D is the only unassigned variable with a value from the original

solution in its domain. The first stage of the algorithm restarts with the assignment (D, 4). The lower

bound is still 1 since DC cannot be assigned the original value. As there are no more unassigned

variables with an original value in its domain, the second stage returns to the assignment (C, 5). The

upper bound is going to be updated with the value 1, and this solution is stored.

In the next step, the algorithm removes the assignment of C and D. The value assigned to D is

removed from its domain to avoid revising this branch of the tree. As no other assignment is possible,

the backtracking continues removing the assignment of B. The value assigned to B is removed from

its domain, and the value (4) previously assigned in D is added to its domain. The search continues

until it is possible to conclude that there is no solution with a lower distance.
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Figure 3.1: The final search tree for Example 19, where ub and lb represent the values of the upper and lower
bound respectively. The assignments made in the first and second stage of the method proposed by Zivan et al.
are circles and rectangles respectively.

3.3.3 Robustness

Besides the reformulation approach, one can prepare the solution in order to resist disruptions

(changes in the original constraints). These types of techniques have been successfully applied to

railway aperiodic timetabling [137]. However, this subject is not the main goal of this work, and thus

only a general description is given. Finding a robust solution may have two main advantages: reduc-

ing the cost that re-solving brings (e.g. avoiding overtime payments) and improvement in customer

satisfaction. For example, when considering railway aperiodic timetabling problems, the customers do

not want to have their travel plans changed (even if it is the smallest impact). However, it is impossible

to predict everything, and therefore the re-solving process is also needed. More details can be found

elsewhere [138–140]. Robust optimization is a method to deal with the uncertainty present in real-life

optimization problems. This type of solutions is designed from the beginning to be robust, avoiding

the need to re-formulate the problem [112, 139, 141]. More formally, a robust solution for the CSP

problem can be defined as follows.

Definition 15 (Robust Solution). Consider a CSP P and a set Z of possible disruptions. A solution

s is considered to be robust to disruptions in Z if and only if the solution s is still valid after all the

disruptions happen. �

The solution resulting from applying this concept has a trade-off between quality and robustness.

The quality of a solution may be worse in order to avoid the need for reformulation, as shown in

Example 20.

Example 20 (Robust Solution). Consider, for example, the following CSP: V = {A,B,C,D}, DA =

DB = DC = DD = {1, 2, 3, 4, 5, 6}, CHp = {alldifferent(A,B,C)}, CSp = {B = 1, D = 2}. Now con-

sider Z = {D = B} as the single disruption we want to take into account in the solution. Additionally,
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Table 3.2: Summary of the distance metrics used in the methods to find similar or diverse solutions and their
respective applications.

Metric ObjectiveDomain Independent

Ham
ming

Man
ha

tta
n

Euc
lid

ian

Othe
r

Dependent
Domain Sim

ila
r

Dive
rse

App
lic

ati
on

Kingston et al. [132] X X Timetables
Müller et al. [10] X X Timetables
Phillips et al. [44] X X Timetables

Eiter et al. [127] X X X X
Phylogenies

Planning
Hebrand et al. [124] X X X X X Car Configuration

Petit et al. [114] X X X X
Travelling Salesman Problem

Sorting chords
Vadlamudi et al. [133] X X Planning

Abío et al. [129] X X
Scheduling Tournament

Curriculum-based Timetabling
Bailleux et al. [126] X X Planning
Lemos et al. [13] X X Biological Networks
Samaga et al. [134] X X Biological Networks
Merhej et al. [12] X X Biological Networks
Zivan et al. [131] X X Meeting Scheduling Problems
Roos et al. [135] X X Random CSP instances
Perez-Lopez et al. [136] X X Surgery Scheduling
This thesis X X X Timetables

consider a lexicographic order where the disruptions are the first optimization objective.

A possible robust solution is {(A, 3), (B, 2), (C, 1), (D, 2)}. In case of occurring the disruption in

Z, the solution still holds. However, if the disruption does not occur, the solution found is not optimal

since B could be assigned the value 1.

There are different levels of robustness, depending on the number of disruptions and their likeli-

hood, for which the solution remains valid. An example of a robustness metric [113] for a solution s

(for a discrete domain problem) considering the resistance to a disruption of probability p(z) is given

by:

RsF,Z =
∑
z∈Z

p(z) ∗ F (z) (3.4)

where F (z) is a function which evaluates the satisfiability of the solution when a disruption z occurs.

Demirović et al. [142, 143] proposed a novel algorithm to obtain robust and recoverable team

formation4. The team formation problem is known to be NP-hard. Demirović et al. proposed different

algorithms with a detailed complexity analysis. These algorithms are designed to explore the trade-off

notion between robustness and recoverability. The idea of recoverability is to guarantee that a solution

can easily be repaired after disruptions. This notion is closely related to the idea of super-models used

in this thesis.

Another solution can be a compromise between finding similar and robust solutions. One possibil-

ity is the use of the concept of supermodel defined[144] as follows.

4The goal of solving the team formation problem is selecting a team of agents with the minimum cost such that a specific
set of skills is covered.
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Definition 16 (Supermodels). The solution s to a CSP is (m, n)-super solution if and only if the change

of the values of at most m variables can be repaired by assigning other values to these variables, and

modifying the assignment of at most n other variables. �

Finding a supermodel can be seen as a soft version of finding a robust solution. In this case,

the solution does not need to be robust for disruptions but needs to be easily repaired. Similar to

the robust solutions, a supermodel may be worse in terms of the solution quality. However, if the

solution is not robust, one needs to re-formulate the solution. Finding super-models is a NP-complete

task [145], if m and n are constants.

3.3.4 University Course Timetabling

This section focuses on the state-of-the-art approach to solve the MPP in an university timetabling

setting. In the literature, there are several different approaches, namely: constraint programming [131,

146, 147], ASP [67], integer programming [44, 47, 147], and local search [45, 87, 132, 148].

Müller et al. [45] proposed the iterative forward search algorithm to solve the MPP applied to

university course timetabling. Since this method is a local search method, it does not ensure com-

pleteness. Phillips et al. [44] used integer programming to solve MPP on instances from the University

of Auckland. The proposed method tries to solve the problem in the smallest possible neighborhood.

If a feasible solution is not found, then the neighborhood is gradually expanded until either a feasible

solution is found or the neighborhood includes the whole search space.

Banbara et al. [67] proposed an ASP based tool to compute Pareto fronts with two objectives: (i)

minimize the number of soft constraints unsatisfied and (ii) minimize the number of perturbations. The

tool solves the MPP if and only if the disruption changes the course timetabling problem by adding or

removing constraints. Therefore, all disruptions changing the domain of the problem cannot be solved

by this tool.

Recently, Lindahl et al. [47] proposed a bi-objective integer programming model to solve MPP ap-

plied to curriculum-based course timetabling. The goal is to find Pareto-optimal solutions for these two

objectives: (i) minimize the number of perturbations and (ii) minimize the number of soft constraints

unsatisfied. The results show that the MPP solutions often have low quality and that allowing a few

more perturbations can significantly improve the quality. Lindahl et al. [47] approach was evaluated

with data sets from the ITC 2007.

Type of Disruptions

There are different types of disruptions that were already studied in the literature. Furthermore,

we analyzed the disruptions that happened during the last 5 years at IST. Table 3.3 summarizes the

different disruptions that can occur in the university course timetabling from both IST and literature.

The most common disruptions that can occur in university are the following:

• Room stability: disruption forces all classes of a course to be scheduled in the same room.
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Table 3.3: Summary and literature review of the most common disruptions in an university scenario.

Disruption [47] [44] [45] [67] IST
Room Stability X
Overlap/No Overlap X
Invalid Assignment X X
Invalid/Preference Time X X X
Invalid/Preference Room X
Remove Room for a day X X
Remove Room X X
Insert / Delete Curriculum X X
Modify Enrollments X X
Modify # Classes X

• Overlap (no overlap): disruption refers to the addition of a constraint to forbid (force) classes to

be taught simultaneously. For example, no overlap disruption may arise when the number of

teachers assigned to a course reduces to one.

• Invalid assignment: disruption refers to a problem in the assignment of the class to a room or

to a time slot. This disruption abstracts the origin of the problem (time or room assignment).

However, in a real-world scenario, it is more common to find more specific disruptions.

• Invalid time and invalid room: are disruptions that make an assignment of a class to a time slot

and a room invalid, respectively. These two last disruptions are more specific than the invalid

assignment disruption. These disruptions can be further specified when only a time slot or a

room is unavailable to only a specific set of courses. Preference time and room preference are

the opposite disruptions of the invalid time and invalid room.

• Remove room for a day and remove room: cause a room unavailability for an assignment for a

day and forever, respectively.

• Insert / Delete curriculum: adds/removes a set of courses. When a new curriculum is added,

each class of the new courses cannot be overlapped in time. All constraints relating to classes

are applied (e.g., room capacity).

• Modify enrollments: modifies the number of students that are enrolled in a class, since it natu-

rally changes between the execution of consecutive academic terms. This disruption may not

require changes in the original solution since the difference may still be supported.

• Modify the number of classes: adds/removes the number of possible classes that a student can

attend. The number of classes does not change for each student. However, the students have

more/less flexibility in their choice of timetable. This disruption can be a side effect of the modify

enrollments disruption.

Example 21. Let us consider the timetable shown in Figure 3.2a. The weekly timetable shows the

different classes of the different courses a student can attend. Each student having this curricular plan

must attend some classes from the four courses represented (A to D). For each course, a student must
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Time/Weekdays Monday Tuesday Wednesday Thursday Friday

8:00-8:30

8:30-9:00 BPB

9:00-9:30 (R2)

9:30-10:00 AT AT BT

10:00-10:30 (R1) BT (R1) (R1)

10:30-11:00 (R1) CT

11:00-11:30 AL AL DT DPB (R1)

11:30-12:00 (R4) (R3) (R1) (R2) DT

12:00-12:30 CT CT (R1)

12:30-13:00 (R1) (R1) DPB

13:00-13:30 DT CPB (R2) BPB

13:30-14:00 (R1) (R2) (R2)

(a) Before

Time/Weekdays Monday Tuesday Wednesday Thursday Friday

8:00-8:30

8:30-9:00 BPB

9:00-9:30 (R2)

9:30-10:00 AT AT BT

10:00-10:30 (R1) BT (R1) (R1)

10:30-11:00 (R1) CT

11:00-11:30 AL AL DT DPB (R1)

11:30-12:00 (R4) (R4) (R1) (R2) DT

12:00-12:30 CT CT (R1)

12:30-13:00 (R1) (R1) DPB

13:00-13:30 DT CPB (R2) BPB

13:30-14:00 (R1) (R2) (R2)

(b) After

Figure 3.2: Timetable for a class of students (a) before and (b) after occurring two disruptions: (i) an unavailability
constraint over room R3 and (ii) a no overlap constraint w.r.t. the two lab classes of course A. The colors represent
the different rooms the classes are assigned to.

attend all theoretical classes and only one practical / laboratory class. For example, a student must

attend all AT (theoretical) classes in the schedule and only one of the two AL (laboratory) alternative

classes.

Consider the following disruptions applied to the given example: (i) room R3 is closed for renova-

tions for a long period of time, and (ii) the number of teachers available to teach AL is now only one.

The second disruption means that classes AL must be held at different times. Consider that we want

to cause the smallest number of perturbations (δ) to the original solution. Disruption (i) reduces the

domain of the problem. In this small example, one class (AL) is assigned to R3. Therefore, the orig-

inal solution (Figure3.2a) is no longer feasible. If one considers that there are only two laboratories

(R4 and R3) and that R4 is already taken in the required time slot, then we conclude that the optimal

solution requires two perturbations to the original solution (change room and time). Disruption (ii)

adds a new no overlap constraint to the model. However, note that any solution containing the pertur-

bations resulting from the first disruption already works out for this disruption. A possible solution is

shown in Figure 3.2b.

The model proposed by Lindahl et al. [47] only considers the following disruptions: remove room

for a day, invalid time, insert curriculum, and invalid assignment. With this set of disruptions, one

can define an upper bound on the number of satisfied soft constraints since they cannot improve the

quality of the original solution. The disruptions reduce the search space.

Example 22. Let us consider that the class AL, as shown in Figure 3.2a, has 35 students enrolled.

Rooms R4 and R5 have a capacity of 25 and 30 students, respectively. Consider that only these

rooms are equiped with the laboratory requirements of the classes of course A. When generating the

new timetable (based on the last semester), a disruption causes the number of students enrolled in

AL in room R5 to be reduced to only 25. This disruption causes the overall quality of the timetable

to improve. Now all students attending the class AL in room R5 can be seated. However, a small

perturbation would further improve the quality of the timetable. If we switched the rooms of these two
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Table 3.4: Review of the different disruptions and causes of train scheduling problems.

Cause Disruption Occurrence Reference
Weather influences Slowdown Before/During [150, 151]
Logistical problems Block train During [151–153]
External influences Block train During [152, 153]

Accidents Block track/train During [107, 150, 151, 153–157]
Engineering work Block track During [107, 153, 158]

Infrastructure problems Block track Before [107, 150, 151, 153, 159]
Staffing problems Partially considered [150]

Rolling stock problems Not considered [150, 156, 157]

Table 3.5: Review of the different cost functions used.

Minimize
Delay [160]
Weighted delay with the number of passengers [160]
Cost of changing track [154, 156, 159]
Miss connections [152]
Cost of compensation [161, 162]
HD [156]
Canceled trains [158]
Additional connections for a passenger [157]

Maximize
Number of Passengers transported [150]

classes, we would reduce the number of students above the ideal capacity from 10 to 5.

3.3.5 Train Scheduling

The generation of robust timetables (or how to recover timetables after a disruption) has been

widely studied in the literature [48–50, 107]. The disruption can have multiple causes, from weather

influences and accidents to staffing problems [149]. Nevertheless, we can summarize all causes into

three kinds of disruptions: blocking a train, blocking a track, and changes in the travel speed of the

train. Blocking a train is a disruption that affects only a single train but not the track. Blocking a track

is a disruption that only affects the railway, and the trains are free to move around the rest of the

track. Finally, the changes in the travel speed of the train (slowdown) are a disruption that affects

a part of the track and forces the train to reduce its speed. A disruption can occur before or after

(real-time [107]) the train departs from the station. Naturally, the mechanism to recover depends on

location of the disruption. We have more flexibility if the train has not yet started its route. The three

types of disruptions have different causes5. A summary of the related work is shown in Table 3.4.

The different causes of block train disruption are the following:

• Logistical problems: something unforeseen occurs in the planned routes. Therefore, logistical

problems are, for example, delays on connecting trains or other services (e.g. buses).
5The real-time update of the disruptions and their causes can be accessed in

https://www.rijdendetreinen.nl/en/statistics/causes.

36

https://www.rijdendetreinen.nl/en/statistics/cause


• External influences: when outside forces impact the normal operation of the railway. External

influences are, for example, police investigations and fire alarms.

• Accidents: the different types of accidents related to trains (e.g. collision, derail, run over).

Accidents with trains arise during the travel of trains. Hence, the trains involved in the accident

are delayed. No re-routing can reduce the delay.

• Staffing problems: strikes and sickness of the crew members may compromise the safe op-

eration of the train. Ergo, staffing problems may cause a change in the crew’s assignment to

a train and cause delays in a train. In this work, we do not solve the crew’s assignment prob-

lem [163, 164]. However, delays on trains due to strikes are considered. This cause is simulated

by blocking a train for a period of time corresponding to the strike. This type of disruption can

be mitigated by having redundant resources to assign in case of necessity.

The different causes of block track disruption are the following:

• Accidents: the different types of accidents related tracks (e.g. falling trees) may arise. The

tracks become blocked and thus may cause a delay. We may solve this delay with the re-routing

of the trains.

• Engineering work : unexpected engineering works on the tracks. Ergo, we need to wait or re-

route the trains to avoid the tracks that cannot be used by any train.

• Infrastructure problems: the different railway infrastructure problems (e.g. signals, overhead

wires) cause the need for engineering work. However, we know beforehand which tracks need

work, and thus we can plan ahead.

The only cause of slowdown disruption is weather influences: the different weather patterns (e.g.

rain, snow) can reduce the visibility and cause slippery tracks. Hence, the weather causes a reduction

in train speed.

In this work, we do not consider the disruptions caused by rolling stock problems: a train may need

replacing during its travel. This may be caused by a defective train. This problem can be mitigated by

having redundant resources on key places on the track. These resources are used to re-supply the

roots when needed.

Different cost functions are used in the literature when recovering timetables after disruptions.

A summary of the different cost functions is shown in Table 3.5. The simplest cost function is the

Hamming distance [156], i.e., the number of variables that change the value between the original

solution and the new feasible solution. However, the HD is domain independent and thus not a realist

cost function. The most common cost function is to minimize the delay [160] or the operational cost

of the delay [160–162]. The cost function can be even more detailed, additionally considering the

impact of train changing the track [154, 156, 159]. A change of track by train has an impact on the

operational cost and train speed.

The cost function can also focus on the impact on the passengers [150]. To reduce the impact of

re-scheduling trains on the passengers, we can avoid the cancellation of trains [158], and reduce the
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number of connections required by the passengers to arrive at their destination [157]. This type of

cost function requires the apriori knowledge of the passenger routes.

As one can see, most papers focus on the optimization criteria that best capture their real-world

problem. However, there is still a gap in the related work that would merge the best of all these

criteria.
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This chapter describes our approaches to solve the University Course Timetabling Problem

(UCTTP) at Instituto Superior Técnico (IST). This work was published in [15, 16]. There is still some

work being prepared for submission [165]. The organization of this chapter is as follows. Section 4.1

describes and discusses the challenges, of course, the timetabling problem of IST, and the current

handmade solutions. Section 4.2 formally describes the problem. Section 4.3 describes three dif-

ferent approaches to solve room usage optimization problems, which is one of the major problems

in IST. Section 4.4 describes two different integer programming models to solve course timetabling

under disruptive scenarios. Section 4.5 discusses the results obtained by the different methods. Fi-

nally, Section 4.6 concludes the chapter. Appendix A describes the data cleaning and transformation

process.

4.1 A case study at Instituto Superior Técnico

This section presents the case study of timetables at Instituto Superior Técnico (IST)1. The current

handmade timetables and their problems are the main motivation for this work.

IST is part of Universidade de Lisboa, which is the major university in Portugal and one of the

largest in Europe. IST is a higher education institution focused on the fields of architecture, engi-

neering, science, and technology and promoting excellence in teaching, research, development, and

innovation activities.

IST offers 86 different higher education degrees with approximately 11 412 students enrolled (in-

cluding graduation and post-graduation students) and 1 200 teachers. The classes are scheduled from

8:00 to 20:00, five days a week, without mandatory lunch breaks. These classes can have different

durations, from one hour to three hours. IST has two main student campi: Alameda and Taguspark

with 94 and 21 rooms, respectively. Each room has a specific capacity. The median capacity of the

rooms in Alameda is 58 and in Taguspark is 48. The standard deviation for the room’s capacity in

Alameda and Taguspark are 31.25 and 64.28, respectively.

Besides offering degrees, IST hosts multiple aperiodic events (e.g. student-organized events,

workshops, and conferences) on campus. Many times, these events are taking place on the same

days as classes from different courses. All these new events must be scheduled, when required, in

suitable rooms.

Presently, the generation of timetables is handmade. The timetables for the current year

(2020/2021) were still generated by hand, based on the previous year’s timetable. This approach

reduces the scope of the problem to solve each year since we must change only a small set of

events.

Solving university timetabling manually makes it particularly difficult to optimize space usage. The

large variety of rooms available makes choosing the most suitable room for a class an even more

important decision.

The main problems at IST, in terms of space usage, are (i) the difficult task of scheduling aperiodic

1https://tecnico.ulisboa.pt
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Table 4.1: Data sets characteristics.

Taguspark Alameda
1st Semester 2nd Semester 1st Semester 2nd Semester

# Courses 108 101 1 022 1 015
# Degrees 8 78
# Classes 290 246 2 111 1 611
# Students 51 523 42 578 283 745 219 217

# Hall Rooms 5 36
# Rooms 21 94

Table 4.2: Characteristics of the rooms: large hall Rlh, hall Rh and other rooms Rr.

Alameda Taguspark
Type Rlh Rh Rr Rlh Rh Rr

Average Capacity 148 130 55.77 252 130 36.41
standart deviation 13.85 0 25.18 0 0 11.43

# of rooms 3 4 113 2 3 48

Table 4.3: Number of students versus number of seated students in the handmade solution.

Campus Alameda Taguspark
Semester 1st 2nd 1st 2nd

Total number of seated Students 268 668 210 958 51 006 42 286
Total number of students 283 745 219 217 51 523 42 578

events and (ii) closing down a room due to unpredictable problems.

When considering these problems, it is important to establish the most compact timetable for

each room beforehand, at the beginning of each semester. Typically these problems arise during the

semester, and thus it is important to be able to re-optimize the timetable without changing the original

time slots.

4.1.1 Current handmade timetables

The data used in this work is divided into four data sets corresponding to the classes at the

Alameda campus and Taguspark campus for both semesters of 2016/2017. The differences between

the data sets are summarised in Table 4.1. Note that the total number of students is the summation

of each enrolment in a class. Therefore, this number includes double-counting of students. The data

sets corresponding to the Alameda campus are larger, in particular for the first semester. The rooms

are grouped by capacity and usage. Rooms are usually divided into three types: hall rooms, rooms

(Rr), and laboratories. Here, only the first two are considered. Hall rooms can be split into two: large

hall rooms (Rlh) and hall rooms (Rh). Table 4.2 shows the summary of the rooms and their average

capacities for each campus. Rr is the most heterogeneous set of rooms.

The timetables at IST are mixed between curriculum-based timetabling and post-enrollment

timetabling. The undergrads normally have to follow a strict curriculum plan, and therefore under-

grads’ timetables are curriculum-based. On the other hand, as students progress in their studies,

they have more flexibility to choose what course to enroll. In this light, the generation of timetables for

these courses can be considered a post-enrollment timetabling problem.
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The handmade timetables for the academic year of 2016/2017 do not seat all the students enrolled

in the classes. The number of students seated and the total number of enrolled students are shown

in Table 4.3. The total number of enrolled students seated may be impossible to achieve due to space

restrictions.

4.2 Problem Definition

These periods are separated into working days D. Each day has a set of consecutive working time

slots of half an hour, T ∈ {0, ..., 23}. Let us consider a set of periods P ∈ {0, ..., 119} corresponding to

all possible time slots of a working week (|P | = |D| × |T |). The university has a set R of rooms where

classes can be scheduled. All university classes C (from different courses) have to be assigned to a

time slot and to a room.

Consider a set of courses Course, with each course course ∈ Course having a set of classes

Ccourse in which a set of students (S) can be enrolled in. Each set Ccourse is composed by n disjoint

subsets of classes (C1,...,n
course ⊆ Ccourse) of different types (e.g. theoretical, practical, laboratory). A

student enrolled in the course course must attend exactly one class of each set Cicourse. Each subset

of classes Cicourse ⊆ Ccourse, where 1 ≤ i ≤ n, has a value overlapCi
course

associated, with 0 <

overlapCi
course

≤ |Cicourse|, where overlapCi
course

represents the number of classes of Cicourse that can

be overlapped. In other words, overlapCi
course

represents the smallest number of teachers2 in charge

of classes in Cicourse.

Furthermore, a class c ∈ C is characterized by: a set of enrolled students (Sc ⊆ S) of size stdc; a

set of suitable rooms (Rc ⊆ R); a set of suitable days (Dc ⊆ D); a set of suitable time slots (Tc ⊆ T );

and its duration (lenc > 1). In this case, we consider that each individual class consists of a single

meeting. Furthermore, we consider that all classes are taught in all weeks of a semester.

Each student s ∈ S has a set of courses Courses ⊆ Course where they are enrolled in. Since all

weeks have basically the same classes, one can generate the timetable for one week and generalize

for the weeks of the whole semester.

Finally, each class has to be assigned to a suitable room (Rc). Each room r, with r ∈ R, has

an ideal capacity, capr > 0. To ensure a fair distribution for students, we add a slack variable of α,

representing the percentage of students enrolled in a class for which it is acceptable to be over the

ideal capacity of the assigned room (i.e. overbooking).

The concepts described in this section can be converted into decision variables. However, the

definition of these variables depends on the model (discussed further on).

Furthermore, the problem is subjected to a set of constraints (constraintc is the set of constraints

relating to class c) that can be divided into hard or soft constraints. The constraints are defined as

follows:

1. Classes to time slots: All classes must be assigned to the corresponding time slots.
2At IST, the assignment of teachers to classes is only performed after the schedule is created. Therefore, this number is

computed based on the timetables from the previous year.
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2. Consecutive time: A class must be taught in consecutive time slots on the same day.

3. Class to rooms: All classes that require room assignment (Rc 6= ∅) must be assigned to exactly

one room.

4. Student’s conflicts: All students must be able to attend the classes for which they are enrolled.

This way, one can avoid some complex curricular rules since the students represent a specific

path in the curricular plan. Otherwise, for each course, it would be required to encode multiple

combinations of classes that a student can attend.

5. Room conflicts: A room can have at most one class scheduled per time slot per day.

6. Teacher conflicts: At most overlapCi
course

classes from the same course can be taught at the

same time.

7. Capacity: Ensures that, in the worst case, only α% of the students enrolled may not be seated.

8. Invalid Room (r, c): The assignment of the class c to the room r is invalid.

9. Invalid Time (d, t, c): The assignment of the class c to the slot t in day d is invalid.

10. Overlap (c1, c2): The classes c1 and c2 have to be assigned to the same time slot of the same

day.

11. Remove room (r): The room r cannot be used. This constraint can be easily generalized to

remove room r for short periods of time.

These constraints were provided by domain experts of the IST academic services. Some of these

constraints have already been studied in the literature [59, 67, 70]. Furthermore, many universities

consider a part of these constraints as soft. For example, Invalid Time has been in the past considered

as a soft constraint [59, 67, 70].

In addition to the different constraints, one needs to define an optimization objective. The opti-

mization objective used should depend on the timing of the disruption. If it occurs before the start of

the semester, one may want to take advantage of this disruption to improve the solution further, even

if it causes more perturbations in the original solution. On the other hand, if the disruption occurs

during the semester, one wants to minimize the possible impact.

Consider four different optimization objectives listed below. The proposed approach assumes a

lexicographic order between the different optimization criteria. This way, one can first optimize the

number of perturbations and then improve the solution’s quality (in tie-break scenarios).:

• HD: The goal is to minimize the number of classes that have different assignments (both room

and time assignments). Domain independent metrics, such as this one, are not fair or equitable

for all actors involved [44].

• Weighted Hamming distance (WHD): WHD [44] is a weighted version of the Hamming dis-

tance. This metric allows us to compute the number of students affected by the perturbations.
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Therefore, the goal is to minimize the impact of the perturbations in the student’s academic per-

formance. This objective is applied at IST to evaluate the new timetable when disruptions occur

during the semester.

• Compact room’s timetable (RCOM): The goal is to optimize room usage by minimizing the num-

ber of gaps in a room’s timetable. There are many different possible metrics that one can

consider (see section 4.3.2).

• Compact student’s timetable (SCOM): The goal is to minimize the number of transitions from

free to occupied (gaps) in a student’s timetable. This objective is applied by hand at IST to

evaluate the new timetable at the beginning of the semester. In the past, a similar metric has

been proposed [79, 93]. However, our metric refers to the student’s timetable and not a pre-

defined curriculum.

Example 23. Let us consider again Example 21 shown in Figure 3.2a, with the disruptions: (i) the

classroom R3 is closed and (ii) the class AL cannot be overlapped. These disruptions cause the

solution to be infeasible. As explained above, the optimal solution to MPP has value 2, if one applies

the Hamming distance. However, this may not be the best approach. When generating the new

timetable at the beginning of the semester, one can use the disruption to improve the overall quality.

At IST, the academic services try to use the disruptions to improve the value of SCOM.

There is more than one optimal solution to this problem when considering the Hamming distance.

The solution shown in Figure 3.2b is one. Another possible solution is to change AL from Tuesday

10:30 to Tuesday 11:00. This allows the schedule for a student to be improved, as it reduces the

number of gaps. This solution is shown in Figure 4.1a.

However, the timetable still has room for improvement. If one assumes that the group of students

that attend DPB and AL is disjoint, one can overlap these classes, which would allow the course of

AL to be always preceded by AT. This would also reduce the time students must spend at university.

On the other hand, this solution reduces the number of choices a student can make. This solution is

shown in Figure 4.1b and requires more perturbations.

4.3 Room Usage Optimization

The well-known phrase “space, like time, is money” shows the importance of optimizing the usage

of rooms. The lack of space is one of the major timetabling challenges in IST. Therefore, we start by

addressing this problem.

Example 24. Let us consider the timetables for two rooms—referred simply as Room 1 and Room 2—

depicted in Figure 4.2. For the sake of simplicity, we assume that both rooms have the same capacity;

the events shown in the timetables correspond to classes of different courses, and their names are
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Time/Weekdays Monday Tuesday Wednesday Thursday Friday

8:00-8:30

8:30-9:00 BPB

9:00-9:30 (R2)

9:30-10:00 AT AT BT

10:00-10:30 (R1) BT (R1) (R1)

10:30-11:00 (R1) CT

11:00-11:30 AL DT DPB (R1)

11:30-12:00 (R4) AL (R1) (R2) DT

12:00-12:30 CT (R4) CT (R1)

12:30-13:00 (R1) (R1) DPB

13:00-13:30 DT CPB (R2) BPB

13:30-14:00 (R1) (R2) (R2)

(a) Optimization Objectives: HD and SCOM.

Time/Weekdays Monday Tuesday Wednesday Thursday Friday

8:00-8:30

8:30-9:00 BPB

9:00-9:30 (R2)

9:30-10:00 AT AT BT

10:00-10:30 (R1) BT (R1) (R1)

10:30-11:00 (R1) CT

11:00-11:30 AL DPB DT DPB AL (R1)

11:30-12:00 (R4) (R2) (R1) (R2) (R4) DT

12:00-12:30 CT CT (R1)

12:30-13:00 (R1) (R1)

13:00-13:30 DT CPB BPB

13:30-14:00 (R1) (R2) (R2)

(b) Optimization Objective: SCOM.

Figure 4.1: Two different timetables for a class of students after occurring two disruptions: (i) an unavailability
constraint over the room R3; (ii) a no overlap constraint relating to the two lab class of A. The colors represent
the different rooms were the classes are assigned.

immaterial for our discussion. The objective is to exchange events between these two rooms to re-

duce the time gaps between events in the same room without changing the existing timetable (i.e., the

time and duration of the existing events). We note that, by maintaining the timetable, any constraints

involving the student’s curriculum (not having overlaps between courses offered to the same students,

for example) are not violated. Suppose a new event requires a room for the whole Wednesday after-

noon; with the current set-up, it is impossible to allocate such a room. However, it is possible to move

some events from Room 2 to Room 1 in order to ensure one free (available) room on Wednesday

afternoon. Figure 4.3 shows one possible tighter timetable.

In this problem, we consider that classes have predefined time slots, and therefore, there is no

need to consider curriculum-based constraints. The goal is to assign all classes to rooms. The

predefined class schedule (day and time slots) is represented with an incidence matrix A. Acdc,t

equals 1 if class c is scheduled in the time slot t ∈ Tc of day dc and 0 otherwise.

The Boolean variable xc,r ∈ {0, 1} is equal to 1 if and only if the class c ∈ C is assigned to the

room r ∈ R, and 0 otherwise. A room is considered to be occupied in a time slot if and only if a class

is assigned to that room in that time slot.

The seatedc,r value corresponds to the number of students seated in case class c is assigned to

room r. Note that seatedc,r is given a value even if this class c is not assigned to room r. Formally:

seatedc,r =

{
studentsc if capr ≥ studentsc
capr otherwise

(4.1)

4.3.1 Constraints

When assigning the class to rooms, the constraints considered are as follows:

• Room Conflicts: A room can have at most one class scheduled per time slot per day. Formally,

for all r ∈ R, d ∈ D and t ∈ T , ∑
c∈C

xc,r ×Acd,t ≤ 1. (4.2)
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Time/Weekdays Monday Tuesday Wednesday Thursday Friday

8:00-8:30

8:30-9:00

9:00-9:30

MD (t)
CDI (t) CDI (t)

9:30-10:00
CDI (t)

10:00-10:30

10:30-11:00

MO (t) FIO (t) Com (t)

11:00-11:30

AMS (t)

ESof (t)

11:30-12:00

12:00-12:30

MD (t) AMS (t) MO (t) AMS (t)

12:30-13:00

13:00-13:30
CDI (t)

13:30-14:00

14:00-14:30

14:30-15:00

15:00-15:30

ASA (t)
TCom (t)

ASA (t)

15:30-16:00

EO (t)

16:00-16:30
TCom (t)

PEst (t)16:30-17:00

EO (t)

17:00-17:30

IPM (t) IPM (t)

PEst (t)

17:30-18:00

18:00-18:30

PEst (t) IPM (t) IPM (t)
ACED (t)

18:30-19:00

19:00-19:30

19:30-20:00

ACED (t) ACED (t)

(a) Room 1.

Time/Weekdays Monday Tuesday Wednesday Thursday Friday

8:00-8:30

8:30-9:00

9:00-9:30

GRS (t) CNVir (t)

9:30-10:00

10:00-10:30

10:30-11:00

IAED (t) MO (t) GRS (t)

11:00-11:30

MO (t)

11:30-12:00

12:00-12:30

Micr (t)

12:30-13:00

Micr (t)

13:00-13:30

13:30-14:00

14:00-14:30
IRC (t)

LD (t) MC (t)

14:30-15:00

15:00-15:30
IRC (t)

SDis (t)

15:30-16:00

EEC (t)

16:00-16:30

16:30-17:00

AL (t) CMU (t)

17:00-17:30

SPO (t)

17:30-18:00

18:00-18:30

ACED (pb)

18:30-19:00

19:00-19:30

19:30-20:00

(b) Room 2.

Figure 4.2: Timetables for two rooms.

Time/Weekdays Monday Tuesday Wednesday Thursday Friday

8:00-8:30

8:30-9:00
CDI (t) CDI (t)

9:00-9:30

MD (t)
CDI (t) CDI (t)

CDI (t)
9:30-10:00

MO (t)

CDI (t)

10:00-10:30

10:30-11:00

MO (t) FIO (t) MO (t) Com (t)

11:00-11:30

MO (t)

ESof (t)

11:30-12:00

12:00-12:30

MD (t) AMS (t) MO (t) AMS (t)

12:30-13:00
CDI (t)

13:00-13:30
CDI (t)

13:30-14:00

14:00-14:30

14:30-15:00
TCom (t)

15:00-15:30

ASA (t)
TCom (t)

SDis (t) ASA (t)

15:30-16:00

EO (t)

16:00-16:30
TCom (t)

16:30-17:00

EO (t) CMU (t)

17:00-17:30

IPM (t)

PEst (t)

17:30-18:00

18:00-18:30

PEst (t) IPM (t) ACED (pb) IPM (t)
ACED (t)

18:30-19:00

19:00-19:30

19:30-20:00

ACED (t) ACED (t)

(a) Room 1.

Time/Weekdays Monday Tuesday Wednesday Thursday Friday

8:00-8:30

CNVir (t)8:30-9:00

9:00-9:30

GRS (t) CNVir (t)

9:30-10:00

10:00-10:30

10:30-11:00

IAED (t) GRS (t)

11:00-11:30

Micr (t)

MO (t)

11:30-12:00

12:00-12:30

Micr (t)

12:30-13:00

Micr (t)

13:00-13:30

13:30-14:00

14:00-14:30
IRC (t)

LD (t) MC (t)

14:30-15:00

15:00-15:30
IRC (t)

15:30-16:00

EEC (t)

16:00-16:30

16:30-17:00

AL (t)

17:00-17:30

SPO (t)

17:30-18:00

18:00-18:30

18:30-19:00

19:00-19:30

19:30-20:00

(b) Room 2.

Figure 4.3: Reorganized timetables for the same two rooms, which now include a free room during Wednesday
afternoon.

• Capacity: The number of attending students must be less than or equal to the ideal capacity of

the room where the class is scheduled. Formally, for all r ∈ R,

studentsc × xc,r ≤ capr∀c∈C,r∈R. (4.3)
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Besides the constraints above, since the goal of this work is to optimize room usage, it is important

to define metrics to correctly evaluate the usage of a room (RCOM), as detailed in the next section.

4.3.2 Compact Timetables: Metrics Definitions

Different metrics can be applied to evaluate the usage of a room, for example, in terms of the

“compactness” of the corresponding occupation timetable. The simplest concept of compactness is,

perhaps, the percentage of free space in a schedule. The percentage of free space can be computed

as

free-space =
1

|R||D||T |
∑
c∈C

∑
t∈T

∑
d∈D

∑
r∈R

xc,r ×Acd,t,

where |X| denotes the cardinality of set X. However, since the average of all free spaces is constant,

as the number of occupied slots is also constant, this metric cannot be used.

One alternative is to calculate the variance in the amount of occupation across rooms. The vari-

ance can be computed by:

Var =

∑
r∈R(xr − µ)2

|R|
,

where, xr is the number of free time slots in room r and µ is the average number of free time slots.

The objective would then be to have high variance, as this would mean that some rooms are

significantly more occupied than others, instead of a uniform occupation of space. However, this

metric fails to grasp the difference between a very sparse timetable and a very compact one. A

sparse timetable has many more transitions between vacancies and occupations than a compact

one.

Such an observation suggests that the number of transitions — i.e., the number of times a room

changes status from vacant to occupied and vice versa — may be a useful metric. To this end, one

can define the auxiliary Boolean variable rcomc,d,t,r ∈ {0, 1} which is equal to 1 if and only if the

occupation of the room changes from occupied to free or vice versa, and 0 otherwise. And the goal

would be to minimize the value of this auxiliary value, i.e.:

minimize
∑
r∈R

∑
t∈T

∑
d∈D

∑
c∈C

rcomc,d,t,r (4.4)

However, this metric considers all holes in a timetable equally bad, which may not be true. For

example, a hole corresponding to exactly one time slot (half an hour) is actually worse than a hole

of four time slots (two hours) since no event can be scheduled in the former. Such an issue can be

addressed by applying a weighted metric: the weight is inversely proportional to the vacancies’ size,

as it is easier to schedule new events in longer vacancies.

While the latter metric maybe, perhaps, the one that best captures our desired notion of “compact-

ness”, none of the metrics is actually perfect since none is better across all problems.

Example 25. Consider three rooms, r1, r2, r3, with the same capacity (capr1 = capr2 = capr3 ) and

four classes (c1 to c4) with different durations. Further consider that we want to minimize the number

of transitions as shown in statement 4.4. According to this metric, the two timetables shown in Fig-
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r1 r2 r3

t1 c2
t2
t3

c1

t4 c3

t5
t6 c4

(a)

r1 r2 r3

t1 c2
t2
t3

c1

t4 c3

t5
t6 c4

(b)

r1 r2 r3

t1 c2
t2
t3

c1

t4 c3

t5
t6 c4

(c)

Figure 4.4: An optimal timetable (a), an optimal timetable with a free day (b) and an optimal timetable after
closing down r1 (c).

ures 4.4a and 4.4b are both optimal (with three transitions each). Apart from these, there are other

optimal timetables that can be obtained. Consider now that a problem arises and the events in r1

(i.e., the event c1) need to be assigned to a different room. One solution for this problem is shown in

Figure 4.4c. If the timetable in Figure 4.4b is the “original” one, it requires fewer modifications to attain

the solution. However, we can equally imagine other cases in which the timetable in Figure 4.4a is

closer to the final configuration than Figure 4.4b. Finally, consider two new aperiodic events l5 and

l6, with sT imel5 = t2, eT imel5 = t5, and sT imel6 = t1, eT imel6 = t2, as the respective starting and

finishing times. If the original timetable is the one shown in Figure 4.4a, then no change to the previ-

ously allocated classes is required. However, if the original timetable is the one shown in Figure 4.4b,

then class c2 must change from room r3 to r2 before adding the new events. As it is impossible to

predict future disruptions, it is not guaranteed that, for example, obtaining an empty day is always the

best solution.

Example 25 shows that it is not possible to have a dominant optimization criterion. Each optimiza-

tion criterion has its own advantages and disadvantages. Therefore, the optimization criterion should

match the specific application. For this reason, we discussed with the stakeholders (IST academic

offices) to choose which criteria to use.

4.3.3 ILP Formulation

An encoding using ILP, which was implemented to solve the problem of assigning classes to

rooms. The ILP implementation is complete, which ensures the eventual discovery of the optimal

solution to the problem. To solve this problem, a two-stage method is used where the goal is to: (i)

maximize the number of seated students and (ii) minimize the number of transitions.

We use this decomposition into a two-stage approach to reduce the formula size and search

space. This type of two-stage approach is common in integer programming approaches to solve

university course timetabling problems [75, 93, 166]. The gains in performance of applying a two-

stage approach versus a monolith approach are well documented. Vermuyten et al. [93] proposed a

two-staged ILP approach to optimize students’ flows in university course timetabling. The two-staged

ILP approach reduced 170 times the execution time of the monolithic algorithm. The results of this

work are no exception. Note that in this case, we are also forcing a lexicographic optimization.
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First Stage: Maximizing the Number of Students Seated

maximize:
∑
c∈C

∑
tc∈Tc

∑
r∈R

seatedc,r × xc,r ×Acdc,tc (4.5)

subject to:
∑
r∈R

xc,r = 1 ∀c∈C (4.6)∑
c∈C

xc,r ×Acd,t ≤ 1 ∀r∈R,d∈D,t∈T (4.7)

capr ≥ xc,r × (studentsc − studentsc × α) ∀r∈R,c∈C (4.8)
xc,r ∈ {0, 1} ∀r∈R,c∈C (4.9)

In this section, we describe our first approach to solve stage (i) of the method.

As previously mentioned, the objective function 4.5 maximizes the number of students seated,

where the value of seatedc,r is defined in 4.1.

The problem needs two constraints to ensure the correct allocation of the classes. First, it is

necessary to ensure that a class is allocated into exactly one room in the predefined time and day

(Constraint 4.6).

Constraint 4.7 is required to ensure that there is no more than one class in each room in a specific

slot. Finally, Constraint 4.8 ensures that, in the worst case, only a percentage α of the students

enrolled cannot be seated. The reason for this constraint is explained further on.

Second Stage: Compactness

The second stage (ii) of the ILP implementation consists of a re-execution of the program with a

different objective and adding a new constraint. Now, the goal is to compact the found timetable.

The old maximization statement is replaced by the Constraint 4.10 where BEST is the value

obtained in the first stage. The new optimization statement 4.11 minimizes the number of time gaps

in a room timetable (independently of the size of the time gap) by counting the number of transitions.

The optimization statement 4.11 is not linear. However, it is easy to convert it to a linear formulation

through the use of auxiliary variables and constraints as shown in [167]. The ILOG CPLEX solver [38]

automatically transforms this type of statements.∑
c∈C

∑
tc∈Tc

∑
r∈R

seatedc,r × xc,r ×Ac
dc,tc

= BEST (4.10)

minimize:
∑
r∈R

∑
d∈D

∑
t∈T

rcomc,d,t,r (4.11)

rcomc,d,t,r =

0 if
∑
c∈C

xc,r ×Acd,t+1 =
∑
c∈C

xc,r ×Acd,t∀c∈C,t∈T,r∈R,d∈D

1 otherwise
(4.12)

rcomc,d,t,r is a Boolean variable that represents the number of transitions of the a room. Therefore,

we check if there is any transition occupied to free (vice-versa) all pairs of two sequential time slots.
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4.3.4 Greedy Approaches

In this section, the proposed two greedy algorithms are described. Greedy heuristics [23], such

as Greedy Randomized Adaptive Search Procedure (GRASP), have successfully been applied to

course timetabling [90–92] and examination timetabling [55, 56]. The greedy algorithm is guided

through a cost function that sums all the constraints violated. This method does not ensure any type

of confidence in terms of finding an optimal solution. Furthermore, the optimization objective of this

algorithm never considers room optimization.

Greedy Algorithm

The algorithm is guided through a cost function. Algorithm 1 shows the general idea behind the

greedy search implemented. The algorithm ends when all classes have been allocated. The algorithm

chooses the class with the smallest cost to allocate at each iteration (lines 7-14). At the end of each

iteration, a class is assigned, and that information is stored in the set allocated (line 17) to ensure that

the same class is not going to be re-assigned in the next iteration (line 8). The cost function originally

considered to evaluate a timetable Q for room r was:

conflict(Qr)× w + transition(Qr) + idealCAP (Qr) (4.13)

where the function conflict returns the number of overlapping classes (Constraint 4.2); the func-

tion transition returns the number of transitions (computed as shown in Constraint 4.12) and the

function idealCAP returns the number of students above the ideal capacity in the allocated class.

The value of the weight w has to satisfy the following constraint:

w ≥ 24× 5 +
∑
c∈C

lenc × studentsc. (4.14)

This constraint ensures leaving a class without a room is worse than the level of compactness

(24 ∗ 5 is the worse case in terms of transitions) and having students exceeding the ideal capacity.

The idea was to guide the search to compact timetables. However, this cost function does not have

any type of optimality guarantees. Furthermore, the complexity causes the solution to be worse in the

most important aspects: the number of conflicts and the number of students exceeding the capacity.

Therefore, the objective of compactness was only used in cases where the number of students seated

in two different classes was the same. This change requires modifying Algorithm 1, by the addition of

a new if for the case where cosT = cost, this way ensuring that the compaction process only happens

when there are two classes with the same cost. The objective is to have a timetable where all students

can have a seat in the classes. Moreover, it is desirable to guarantee the quality of the solution as

discussed further on.

To produce some guarantees in terms of optimality, another cost function was used.

∑
c∈C

∑
t∈Tc

∑
r∈R

(studentsc − seatedc,r)× xc,r ×Acdc,t (4.15)
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Algorithm 1: Greedy Algorithm based on a cost function
Input: A set of rooms R, a set of classes L
Output: A list of assignments to rooms Q

1 B Q is composed by pairs (c, r), c ∈ C and r ∈ R ;
2 alloc← 0 B number of allocated classes;
3 allocated← ∅ B set of allocated;
4 while |C| > alloc do
5 cost← MAX_VALUE;
6 class← −1 B Class ID;
7 room← −1 B Room ID;
8 foreach c ∈ C do
9 if l /∈ allocated then

10 foreach r ∈ R do
11 costT ← cost(Qr, l);
12 if costT < cost then
13 cost← costT ;
14 class← c;
15 room← r;
16 end
17 end
18 end
19 end
20 if class 6= −1 then
21 alloc← alloc+ 1;
22 Q← (c, r);
23 allocated← allocated ∪ {c};
24 end
25 break B unable to allocate all classes
26 end

This cost expression is simply based on the number of students that could not be seated in this

assignment. Algorithm 1 does not allow conflicting assignments, and therefore they are not described

in the cost function. When considering the slack α, the algorithm also does not allow the allocation of

classes to rooms for which Constraint 4.8 is violated.

Theoretical implications It is possible to compute the approximated value of the optimal solution

using a greedy algorithm if the benefit function is sub-modular, positive and monotone. The benefit

function describes the advantages of performing an action.

Let us consider Γ as a finite set of variables. A function f is considered monotone if and only if it

has the following property:

∀Ξ⊆Γf(Ξ) 6 f(Γ) (4.16)

In order to be considered sub-modular [168, 169], the function f must have the following property:

∀Ξ,Υ⊂Γ,γ∈Γ\Υf(Ξ ∪ {γ})− f(Ξ) > f(Υ ∪ {γ})− f(Υ) (4.17)
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Informally, one can think of a sub-modularity benefit function as a function where adding an ele-

ment to the smallest set has a benefit greater than adding it to the biggest set. In order words, the

benefit of adding elements to the same set reduces (or stays the same) every time we add a new

element.

When one considers a greedy algorithm with a monotone, positive, sub-modular function, the

resulting solution is approximated within 1− e−1 to the optimal solution [170].

It is possible to define a benefit function which is sub-modular and monotone. When using the

cost expression 4.15, the implicit benefit function f is basically the number of students seated per

assignment. Formally, the benefit of assigning class c is f(c) = seatedc,rc × xc,rc × Acdc,t, where rc is

the room where the class was assigned. Assigning a class to a room is always positive, as the total

number of students with seats increases. Differently, when using function 4.13, the benefit can be

negative since the number of transitions and conflicts are considered. Not considering conflicts i.e.,

only assigning the class to a room if no conflict exists makes function 4.15 monotone since it has the

property 4.16.

Function 4.15 is sub-modular[168] since in the best case scenario, the benefit will always be the

same (all students of the class can be seated in the room). There is no room large enough in the worst

case so that the benefit will be smaller. Recall property 4.17, where Γ is the set of unassigned classes

and Ξ,Υ ⊂ Γ. The way the search is performed, the smaller set Ξ will always have a larger number of

rooms available than Γ. When adding γ to Ξ, the algorithm will choose the room that maximizes the

number of students seated, which will be at least as good as the assignment to Υ (as Υ has a smaller

number of rooms available but all rooms available in Υ are also available in Ξ). This way, we can see

that property 4.17 is ensured.

To sum up, the function 4.15 was constructed to be a positive, monotone, and sub-modular func-

tion. Therefore, the solution will be within 63% of the optimal, in terms of students seated [170].

4.3.5 Greedy Randomized Adaptive Search Procedure

The GRASP shown in Algorithm 2 has two main stages: (i) a random greedy algorithm (line 3) and

(ii) a local search (line 4). As suggested in [55], we used two stages to optimize different objectives

similar to the process used in our ILP approach. The ending condition of the algorithm is either the

number of iterations (line 2) or the time limit (which ever comes first). At the end of each iteration, the

algorithm stores the new solution if and only if it is better than the one found before (line 5).

The Random Greedy Procedure

The goal of the greedy algorithm is to maximize the number of students seated, and it is guided by

the cost function expressed in 4.15. The degree of randomness can be customized by changing the

size of the Restricted Candidate List (RCL). The Restricted Candidate List (RCL) is filled with classes

which have the best cost at the time. The allocations are chosen randomly from the RCL. The size 0

represents a greedy algorithm in its pure form (without randomness), and 1 represents a completely
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Algorithm 2: GRASP Algorithm
Input: Maximum number of iterations (max_it), size of RCL (size), a set of classes C and a

set of rooms R.
Output: Best solution (best).

1 best← ∅ B current best solution ;
2 for i = 0, . . . ,max_it do
3 solution← greedyRandom(size, C,R);
4 solution← Local(solution);
5 best← UpdateSolution(solution, best);
6 end

random algorithm. The process ends when a complete solution is found, which does not violate any

hard constraints.

Local Search

The goal of the local search is to minimize the number of transitions without deteriorating the qual-

ity of the solution in terms of students seated. This is achieved by swapping classes between rooms

where the number of students seated increases or stays constant. Swapping can never deteriorate

the quality of the current solution. This stage ends when no more possible swaps can take place

without deteriorating the quality of the solution.

4.4 Course Timetabling

In this section, we present two different models to solve the university course timetabling problem

described above. Table 4.4 summarizes the constraints used in the different models and the encoding

for the most common disruptions. Table 4.5 summarizes the optimization statements used in the

different models. An in-depth description of the models is presented below. Note that Gurobi 8.1 does

not support a not equals constraint (e.g. z 6= y). Recall that there is a work around for discrete integer

variables [27]. We introduce two new binary auxiliary variables (b1, b2) as indicators for y ≤ z − 1 and

y ≥ z + 1, respectively. Finally, we only need to guarantee that b1 + b2 = 1. Example 6 shows how

this process can occur in practice.

Let us consider an arbitrary decision variable Y, represented by y in the original problem and by

y in the MPP. The HD optimization objective counts the number of decision variables that changed

value, i.e. y 6= y, independently of their meaning and domain. Auxiliary variables are not considered

in the optimization objective since it would add a bias to the result. The WHD optimization objective

adds a weight (the number of students affected by the change in a decision variable) to HD. Finally,

SCOM counts the number of gaps in a student’s timetable. This value is computed through the usage

of auxiliary variables (described below).

4.4.1 BOOLEAN Model

In the past, different integer programming models have been proposed to solve university course

timetabling problems [47, 171]. These models typically use Boolean variables to indicate the assign-
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Table 4.4: Constraints in the BOOLEAN and MIXED models.

BOOLEAN MIXED

1. ∀c∈C
∑
d∈,Dc

∑
t∈,Tc

acd,t = lenc ∀c∈C ac ≥ 0

2.
∀c∈C,d∈D,t,t1,t2∈T,t<t1<t2 ∀c∈C
acd,t1 = 1 iff acd,t + acd,t2 = 2 ac + lenc ≤ b a

c

|T | + 1c × |T |

3. ∀c∈C
∑
r∈Rc

xc,r = 1

4.
∀s∈S,d∈D,t∈T ∀c1∈cs,c2∈Cs,s∈S∑
c∈Cs

acd,t ≤ 1 vc1,c2 + vc2,c1 ≥ 1

5.
∀r∈R,d∈D,t∈T ∀c1∈C,c2∈C∑

c∈C xc,r × acd,t ≤ 1 sl1,l2 × (vc1,c2 + vc2,c1) ≤ sc1,c2

6.
∀d∈D,t∈T,c∈C ∀c∈C∑

Ci
c∈Cc

∑
c∈Ci

c
acd,t ≤ overlapCi

course

∑
Ci

c∈Cc

∑
c1,c2∈Ci

c
oc1,c2 ≤ overlapCi

course

7. ∀c∈C,r∈R (stdc − stdc × α)× xc,r ≤ capr
8. xc,r = 0

9. acd,t = 0 ac ! = (d× |T |) + t

10. ∀d∈D,t∈T ac1d,t = ac2d,t ac1 = ac2

11. ∀c∈C xc,r = 0

Table 4.5: Minimization objective for the BOOLEAN and MIXED models.

BOOLEAN MIXED

HD
∑
t∈T,d∈D,c∈C a

c
t,d 6= act,d+

∑
c∈C a

c 6= ac +∑
r∈R,c∈C xc,r 6= xc,r

∑
r∈R,c∈C xc,r 6= xc,r

WHD
∑
t∈T,d∈D,c∈C stdc × (act,d 6= act,d)+

∑
c∈C stdc × (ac 6= ac) +∑

r∈R,c∈C stdc × (xc,r 6= xc,r)
∑
r∈R,c∈C stdc × (xc,r 6= xc,r)

SCOM
∑
s∈S

∑
d∈D

∑
t∈T scoms,d,t

∑
s∈S

∑
c∈Sc

scoms,c

ment of classes to rooms and time slots.

This model is an extension of the room usage optimization model proposed above. The main

difference lies in the possibility of changing the time assigned to a class. Therefore, this model has

only one Boolean decision variable representing the assignment of a class to a room. Note that A is

a pre-defined matrix and thus we changed it (from now on) to a which represents a variable.

On the other hand, the models proposed by [171] and applied by [47] use a three-index Boolean

variable to indicate the assignment of classes to rooms and time slots at the same time. However,

the models are considerably simpler in other respects. For example, they consider all classes to have

the same unitary duration. The usage of a three-index model for our case study is inefficient since it

requires a large number of variables (|P | × |L| × |R|) of which most of them are always with the value

0. Our BOOLEAN model separates the room assignment from the time assignment, which reduces

the number of unnecessary variables. This separation also allows us to consider the disruptions only
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for the variables involved (as we will see in section 5.3.3).

Nevertheless, these models can be easily generalized to solve the problem at hand. However, this

model requires quadratic constraints to encode the room conflict constraint. One can try to mitigate

the cost of the quadratic constraints by linearizing these constraints with the use of auxiliary variables

and constraints [27]. This way, we can avoid the multiplication of two decision variables. We denote

this version of the model BOOLEAN’.

Decision Variables

The schedule of a class (day and time slots) is represented by an incidence matrix a, where acd,t
equals 1 if and only if a class c is scheduled in the time slot t ∈ Tc of day d ∈ Dc. The assignment of

a class to a room is represented by the Boolean variable xc,r ∈ {0, 1}; it is equal to 1 if and only if the

class c ∈ C is assigned to room r ∈ R.

Auxiliary Variables

The variable scoms,d,t is equal to 1 if and only if the timetable of student s has a transition from

occupied (attending a class) to free or vice versa.

Constraints

Table 4.4 summarizes the constraints used that can be explained as follows. Constraint 1 ensures

that each class c ∈ C is assigned to lenc time slots in |Dc| days. Therefore, the variable acd,t∀d∈Dc,t∈Tc

is assigned the value 1 exactly |Dc| × lenc times.

Constraint 2 ensures that the assignment of time slots for each class must be consecutive without

gaps. For example, if a class is taught at t1 = 1 and in time slot t2 = 5 all slots in between (2, 3, 4)

must also be occupied by the same class. Note that the previous example is only feasible if and only

if lenc = 5.

Constraint 3 ensures that each class c ∈ C with Rc 6= ∅ must be assigned to exactly one room.

Constraint 4 ensures that at most one class from a student’s timetable in taught in each time slot of a

day. Constraint 5 ensures that all rooms can have at most one class scheduled per time slot per day.

Constraint 6 ensures that at most overlapCi
course

classes from the same course can be taught at the

same time. Constraint 7 ensures that, in the worst case, only α% of the students enrolled may not be

seated.

Finally, to encode disruptions in this model, one needs the following constraints. Constraint 8

ensures that it is impossible to assign class c to the room r. Constraint 9 ensures that class c cannot

be assigned in the slot t of the day d. Constraint 10 ensures that two classes are assigned at the

same time slots in the same days. Constraint 11 ensures that no class is assigned to room r.

4.4.2 MIXED Model

When creating mixed integer programming models for job-shop scheduling [172] it is common

to define an integer variable to define the start time of a job on a machine. One can propose an
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INTEGER model with only one integer variable to define the start period (|P |) of a class in a room. An

INTEGER model would require fewer variables than the BOOLEAN model. However, it would also cause

unnecessary constraints since some constraints do not depend on both class-room and class-time

assignments. Moreover, it makes the application of decomposition techniques impossible [94].

For this reason, we propose the MIXED model that uses a Boolean variable for the assignment of

rooms and an integer variable for the schedule.

The global number of variables of the MIXED model is smaller when compared to the BOOLEAN

model since it only needs an integer variable for each class instead of a Boolean variable for each time

slot. This model removes some constraints from the BOOLEAN model. The implementation ensures

that the constraint of room conflicts is not quadratic through the use of auxiliary variables.

Decision Variables

The starting period of a class c is represented by an integer variable ac ∈ [1, . . . , |P |]. The assign-

ment of a class to a room is described by the Boolean variable xc,r ∈ {0, 1}. It is equal to 1 if and only

if class c ∈ C is assigned to room r ∈ R.

Auxiliary Variables

Additionally, we need the following variables:

• vc1,c2 is equal to 1 if and only if c1 is taught before c2;

• oc1,c2 is equal to 1 if and only if c1 is taught at the same time as c2;

• sc1,c2 is equal to 1 if and only if c1 is taught in the same room than c2;

• scomc,s ∈ {0, 1, 2} represents the number of transitions from free to occupied in the timetable of

student s before/after class c.

Constraints

Table 4.4 summarizes the constraints used that can be explained as follows. First, one needs to

ensure that all classes have a valid start period (Constraint 1).

In the MIXED model, the usage of an integer variable for the schedule ensures the class is taught

in consecutive time slots. However, it is necessary to ensure all slots of the same class are taught on

the same day (Constraint 2). Therefore, the last time slot of the class has to be taught until the last

time slot of the day. The first free time slot after the end of the class c is ac + lenc. The expression

b a
c

|T | + 1c determines the day of the week from the period. Now, if one multiplies the day with the

number of time slots per day (|T |), one obtains the first time slot of the next day.

Constraint 3 ensures that each class has exactly one room assigned (as explained above).

Constraint 4 ensures that all students can attend the classes in which they are enrolled. This

constraint uses the auxiliary variable vc1,c2 to ensure that c1 is taught before or after c2. Therefore, the

classes c1 and c2 can never overlap.
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Constraint 5 deals with Room conflicts. Once again, we use the auxiliary variable vc1,c2 to ensure

order between the classes. In this case, the constraint is only applied when the classes are assigned

to the same room (sc1,c2 ).

For Constraint 6, we use the auxiliary variable oc1,c2 which ensures that the two classes are taught

at the same time. oc1,c2 can be defined by ensuring the result of adding vc1,c2 with vc2,c1 is zero.

Constraint 7 ensures that the room’s capacity is respected (as explained above for the BOOLEAN

model).

Finally, to encode disruptions in this model, one needs the following constraints. Constraint 8

ensures that it is impossible to assign class c to the room r.

For Constraint 9 one needs to convert the time slot t ∈ T to periods by summing t with the result

of multiplying the day d with the number of time slots per day. This way, one can ensure that class c

cannot be assigned in the slot t of the day d.

The two last constraints can be easily modified to encode preference time and room preference

disruptions. Constraint 10 ensures that the two classes have the same start period. Constraint 11

ensures that no class is assigned to room r.

4.5 Experimental Results

4.5.1 Experimental Setup

The solution was tested using the data sets from the courses taught at IST. We also have the

current handmade solution that can be used as a starting point for the search algorithm.

The algorithms for room usage optimization are implemented in Java and are available from

https://github.com/ADDALemos/Compacter. The programs using Pentaho Data Integration (PDI) soft-

ware and Cleenex prototype, which were used to transform and clean the data, are available in

https://github.com/ADDALemos/CleanDataPrograms. The data used to test the system was obtained

through the FenixEdu™system public API3 which is in use at IST.

The data is encoded with ITC-2019 XML format [58]. The code for solving the MPP and data sets

are available at https://github.com/ADDALemos/MPPTimetables/releases/tag/J.Scheduling19.

The program was implemented in C++, using the XML parser RAPIDXML4 to read the timetabling.

The tests were run using the runsolver tool [173] with a time limit of 600 seconds and a limit of 3

GB of memory. The tests were performed on a computer running Ubuntu 14, with a 2.6 GHz CPU and

64 GB of RAM. The GRASP algorithm was executed with a maximum number of iterations of 1000

(the same as in [92]). The GRASP algorithm was tested with different sizes of RCL. The solution

with the best results in terms of quality is the one with a RCL size of 60% of the total number of

classes. This coincides with the value used in [92] for the complete university timetabling problem.

The implementation was executed on a computer running Ubuntu 14, with a 2.6 GHz CPU at 2.6

GHz and 64 Gb of RAM. The ILP model was implemented using the library of ILOG CPLEX (version

3http://fenixedu.org/dev/api/
4RAPIDXML is available from http://rapidxml.sourceforge.net/manual.html
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12.7.1.0) [38] and Gurobi [174]. The Gurobi solver was run with parameters GRB_IntParam_Threads

= 3 and GRB_IntParam_Presolve = 0 for best performance.

4.5.2 Benchmark of IST

In this section, we examine the quality of the proposed models using the real-life instances de-

scribed below. To characterize these data sets, it is important to define room frequency [175] and

room utilization [175]. Room frequency denotes the ratio between the number of time slots used and

the total number of time slots available. Room utilization denotes the ratio between the number of

seats used and the total number of seats available considering all time slots on all days.

Table 4.6: Data sets characteristics.

ITC 2007 KUL Alameda Taguspark
[59] [93] 1st Semester 2en Semester 1st Semester 2en Semester

# Instances 21 1 5 5 5 5
# Days 5 5 5 5 5 5
# Slots per day 5.38 6 26 26 26 26
# Studentsa 5 606.2 19 690 283 745 219 217 51 523 42 578
# Courses 89 UKNb 1022 1015 108 101
# Classes per Week 313.77 396 2111 1611 290 246
AVG Slots per Class 1 1 2.9 2.99 2.9 2.9
STDEV Slots per Class 0 0 0.5 0.52 0.5 0.5
AVG Enrollment per Class 61.67 49.7 77.45 77.22 63.24 58.6
STDEV Enrollment per Class 45.78 37 79.7 79.94 50.6 48.6
# Rooms 16.08 56 43 43 26 26
AVG Capacity by Room 114.71 UKNc 52.74 52.74 49.8 49.8
STDEV Capacity by Room 91.35 UKN 51.56 51.56 64.2 64.2
Frequency 76.42 13.2 49.36 39.56 28.49 27.4
Utilization 41.61 - 64.74 54.63 21.0 20.1

aThis value includes double counting of the students since this number is the sum of all enrollments in all the classes.
bKUL generates the timetables post-enrollment. Therefore, the information about the courses is not necessary.
cIt is considered that the rooms have sufficient capacity for the class.

Table 4.6 shows a comparison between the data sets present in the literature. One can observe

that the data set from IST is considerably larger than the data sets from ITC and KUL. Furthermore,

the data sets from ITC and KUL consider all classes with the same length, which can significantly

simplify the encoding. Note that the data set from KUL does not specify different capacities for each

room. For this reason, the utilization metric cannot be applied.

When analyzing the data set from Alameda campus of IST, one can see that room utilization is

higher than room frequency. This can be easily explained by the need for classes with overbooking

(discussed above).

Recall that at IST, we consider that the rooms are available for use only on working days (|D| = 5)

between 8am and 8pm, corresponding to a total of 12 hours and 24 slots (|T | = 24) of half an hour,

corresponding to 120 periods (|P | = 120).

4.5.3 Generating Disruptions

To test our approach, we first analyzed the timetables from the last 5 years to identify which

disruptions are the most common. These disruptions generally occur at the beginning of the new
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Table 4.7: Average percentage of disruptions in the last 5 years.

Type of Preference/Invalid Preference/Invalid Modify Enrolments Overlap Modify Number of Insert
Disruption Time Assignment Room Assignment Up (Down) Classes Insert (Remove) Curriculum

% 21 25 25 (27) 11 14 (8) <1
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Figure 4.5: Normal distribution that best fits the data sets of fluctuations in the (a) students enrollments (with
mean of -0.3 and standard deviation of 6), and (b) the number of classes (with mean of 0.04 and standard
deviation of 0.45).

semester when a new timetable is generated. To compute the likelihood of a disruption to occur, we

take into account the number of perturbations (Hamming distance) occurring from one year to another

over the total number of variables.

The average percentage of disruptions by type is shown in Table 4.7. Note that time and room

assignment represent the probability of a specific class to have a preference or a constraint in time

or room assignment, respectively. We use these results to generate the number of disruptions of the

same type randomly. We randomly generated the disruptions following a uniform distribution.

The information shown in Table 4.7 is not enough for generating the full set of disruptions. In some

cases, it is also necessary to correctly quantify the perturbations in a given class/course. This is the

case of two specific disruptions: modify enrollments and modify the number of classes.

For example, when modifying enrollments, we need to decide in which class the number of stu-

dents changes (based on the value from Table 4.7) and the actual amount to increase/decrease.

One could analyze the changes and uniformly select one of these values since these values are not

equiprobable. Therefore, we used the Microsoft Excel Solver [176] to estimate the parameters of a

normal distribution that would best fit our data sets. Figure 4.7a shows the comparison between the

closest-fit normal distribution and our data set.

The same process can be applied to find the correct distribution for the disruption modify number

of classes. Figure 4.7b shows the comparison between the closest-fit normal distribution and our data

set.

4.5.4 Room Usage Optimization

In this section, we discuss the results of our different approaches to optimize room usage in IST.
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Table 4.8: Comparison of greedy, ILP, handmade approaches in terms of global seated students. Result repre-
sents the best solution found by the algorithm for each data set. The optimal value was the one obtained by ILP.
The CPU time for the decomposed problems corresponds to the sum of the CPU times of all sub-problems.

ILP

Decomposition Time Result Difference (%) Optimal Total
(sec) (# students seated) # students

Alameda 1st Week days 3 904.59 281 080 0 281 080 283 745
2nd Week days 2 681.26 216 600 0 216 600 219 217

Taguspark 1st No 15 51 427 0 51 427 51 523
2nd No 10 42 512 0 42 512 42 578

Greedy

Alameda 1st No 1 277 422 1.3 281 080 283 745
2nd No 1 213 731 1.32 216 600 219 217

Taguspark 1st No 1 50 698 1.41 51 427 51 523
2nd No 1 42 024 1.14 42 512 42 578

GRASP

Alameda 1st No 3 000 278 596 0.8 281 080 283 745
2nd No 3 000 211 612 2.3 216 600 219 217

Alameda 1st No 6 000 278 596 0.8 281 080 515 23
2nd No 6 000 214 050 1.1 216 600 42 578

Taguspark 1st No 2 387 51 213 0.6 51 427 51 523
2nd No 1 439 42 341 0.4 42 512 42 578

handmade

Alameda 1st N/A N/A 268 668 4.41 281 080 283 745
2nd N/A N/A 210 958 2.6 216 600 219 217

Taguspark 1st N/A N/A 51 006 0.81 51 427 51 523
2nd N/A N/A 42 286 0.53 42 512 42 578

Problem Decomposition

As expected, the application of two-stage integer linear programming allowed to reduce the total

execution time (both stages), on average, by 15%. Thus, in the best case, we are able to remove

almost a day of execution time. However, the results are not as good as some of the values reported

in the literature [93]. This can be explained by the fact that our model does not change that much

between stages. In other words, the constraints and variables are similar between stages in our

approach than in some examples in the literature.

To reduce the size of the problem, one can separate the problem into sub-problems. In this case,

the problem can be decomposed into five sub-problems (one per each day of the week). Decompos-

ing the problem on weekdays does not remove any possible solutions since all classes are already

scheduled. This separation is particularly interesting when the data set is large, and it is difficult to

solve the data set as a whole. In this work, this technique was applied to solve the Alameda data

sets when solving with the ILP approach. In the future, the solution can also be used to benefit from

parallelization.

Number of Attending Students

Another issue to discuss is whether the constraint “the number of attending students must be

smaller or equal to the capacity of the room” should be considered hard or soft.

Ideally, all students should be allowed to have a seat in the class in which they are enrolled. In

practice, not all students will actually attend all the classes. Furthermore, it may be impossible (due to
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space restrictions) to find rooms with sufficient capacity for all classes. In the literature, the constraint

is usually considered hard [60, 83, 84] in particular when solving post-enrollment timetabling [60, 89]

since the students choose the course they really want to attend. However, when solving curriculum-

based timetabling [59, 67] it is common to consider the constraint as soft. At IST, as previously

mentioned, both types of timetables exist. Undergrads usually have a specified curriculum to follow,

but as they progress in the study, the more flexibility they have in the curriculum. Although ideally, this

constraint should be considered as hard, independently of the type of timetable, in practice, this may

be impossible. The ILP implementation shows that no feasible solution exists when considering the

constraint as hard.

Table 4.8 shows the results for the different methods (greedy, ILP, GRASP and handmade) when

maximizing the number of seated students.

The ILP implementation (4)-(9), maximizing the number of students seated, found the optimal

value for all data sets. It is possible to see that it is inevitable to allocate some classes to rooms

that do not have the required capacity. Table 4.8 shows in the column “Optimal”, the optimal value

in terms of the number of students seated for all data sets, and in column “Total # students” the total

number of students that should be seated. With these results and the total number of students, it is

possible to see that around 2% of the global number of students cannot be seated. This means that,

with the current classes and rooms, it is impossible to seat all enrolled students for all classes. Note

that to obtain the optimal values, it was necessary to use the decomposition discussed above (on

weekdays) to avoid exceeding the memory limit for the Alameda data sets. The handmade timetables

for this year leave more students without a seat. Table 4.8 shows the global number of students

seated for the handmade solution (column Result) and distance to the optimal value in percentage

(column Difference). The distance is computed based on the optimal value obtained by the ILP

implementation.

The greedy algorithm using the cost function 4.15 was the only greedy algorithm that obtained

a feasible solution. The CPU time of the algorithm for the complete data set is, on average, only 1

second (even for Alameda), making it unnecessary to apply the decomposition.

The solution obtained by the greedy algorithm has only 10% of the students without seats. The

greedy algorithm is not able to find the optimal value. However, the solutions found are very similar

as they are on average less than 2% from the optimal. The CPU time for the greedy algorithm is

significantly shorter. This fact has particular importance when considering larger data sets. The

greedy algorithm does not require any decomposition into sub-problems as it can solve the complete

problem in less than 1 second. The greedy algorithm is two orders of magnitude faster than the ILP

implementation (with the decomposition). This shows that ILP does not scale in terms of memory and

time.

The GRASP algorithm lies in the middle of the results in terms of quality and CPU time. GRASP

does not provide any type of quality assurance, unlike the greedy and ILP approaches. However,

the quality of the solution does improve over time. The GRASP algorithm improves the quality of the

solution but still falls short of the optimal. The randomness and the local search stage improves the
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Figure 4.6: The evolution of the quality, in terms of students seated, of current best solution found by GRASP,
for Alameda data sets

quality in terms of seating students.

When comparing with the simple greedy approach, GRASP improves only half percent in terms

of the number of students seated. However, this improvement comes with a cost since the GRASP

algorithm is worse in terms of CPU time. Note that both greedy algorithms optimize both objectives

at the same time.

In the GRASP approach, most of the time is spent in the second stage of the algorithm. On

average, the algorithm spends more than 80% of its CPU time on the local search stage. In all the

Alameda instances, the time limit occurred before reaching the final number of iterations. However, in

our case, the quality of the solution converges before the limit. Therefore, one can reduce the number

of iterations without losing quality.

Figure 4.6 shows the evolution of the quality, in terms of students seated, of the current best solu-

tion for Alameda data sets as a function of the number of iterations. The values shown in Figure 4.6

represent the quality of the stored solution in a given iteration. The quality of Alameda 2nd semester

does not improve significantly over time. However, the quality of the original solution is closer to the

optimal than for Alameda 1st semester. This can be explained by the fact that this instance has a

smaller number of courses and classes.

Furthermore, one can see, in Figure 4.6, that after 300 iterations, the solution quality is stable.

Table 4.8 shows the quality of the results after 3 000 seconds and 6 000 seconds (time limit) for the

Alameda data sets.

From these results, we can conclude that the constraint “the number of attending students must

be smaller or equal to the capacity of the room” must be considered a soft constraint.

Slack on the Number of Attending Students

Maximizing the number of students seated may not be the best approach since all students are

considered equally independently of the size and type of class. For example, it is worse not seating

3 students in a practical class with 20 students than not seating 3 students in a theoretical class with
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Table 4.9: Minimal value of slack necessary to find a feasible solution for the Alameda and Taguspark data sets.

Weekday
Monday (%) Tuesday (%) Wednesday (%) Thursday (%) Friday (%)

Alameda 1st 35 27 27 27 27
2nd 35 35 35 35 12

Taguspark 1st 33
2nd 10

100 students enrolled. For this reason, we added the Constraint 4.8 to the formulation to ensure a

more even distribution of students which are above the ideal capacity.

Adding the Constraint 4.8 slack on the number of attending students does not compromise the

CPU time of the first stage of the ILP implementation (number of seated students). Naturally, in some

cases, the global quality of the solution may be worse (i.e. more students without seat). However, the

distribution should be better since the percentage of students above the ideal capacity per room is

smaller. Interestingly, only when solving the sub-problem for Monday on Alameda 1st semester, the

optimal was below the known optimal (only 1% worse).

α can never be below 27% in order to find feasible solutions in Alameda 1st semester. However,

in the 2nd semester the value of α rises to a staggering 35%. For Taguspark, it is possible to impose

a α of 10% in the 1st semester. The results are summarized in Table 4.9. The lowest values of α

were obtained by checking all the possible values until finding a feasible solution (starting with α = 0).

However, these results only show the lower value of α. A single overbooked class may cause the

lower value.

Therefore, more detailed analyses of the results were performed. Figures 4.7a, 4.7b, 4.8a and

4.8b show the cumulative distribution of the number of slots with the number of students enrolled

above the ideal capacity as a function of the percentage of students above the ideal capacity. From

these figures, one can extract the number of time slots with at-most α of overbooking. It can be

observed that as the percentage rises, the number of slots decreases. In other words, it is more

common to have rooms with a small percentage of students above the ideal capacity. For example,

in Figure 4.8a (Taguspark 1st semester) when considering the ILP approach, there are only a small

number of slots with the percentage of students above 30% of the ideal capacity. In fact, there are only

3 time slots (which represent only one class) in this situation. Ignoring this class, the α value could

be lower than 5%. Interestingly, the number of slots with overbooking is higher in the 1st semester in

both campi. This result is expected since in both campi, in the 1st semester, has a larger number of

students enrolled.

To sum up, we have observed that high values of slack are caused by a small number of classes.

Overbooking

The results presented above clearly show that overbooking is a reality in these data sets. As

such, the level of overbooking can be a metric to evaluate the quality of the solution. The comparison

between the ILP and the handmade approaches are shown in Figures 4.7a, 4.7b, 4.8a and 4.8b for

Alameda and Taguspark data sets. The handmade solution forces more rooms to be overbooked. For
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Figure 4.7: The cumulative distribution of slots with the number of students enrolled above the ideal capacity as
a function of the percentage of students above the ideal capacity for: (a) Alameda 1nd semester and (b) Alameda
2nd semester.
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Figure 4.8: The cumulative distribution of slots with the number of students enrolled above the ideal capacity as
a function of the percentage of students above the ideal capacity for: (a) Taguspark 1st semester, (b) Taguspark
2st semester.

example, in Figure 4.8a (Taguspark 1st semester), there are 2 slots with 48% of students above the

ideal capacity in the handmade solution. However, the solution found by the ILP implementation does

not require any room to have these percentages. In the Alameda data sets, the ILP implementation

found a solution with the highest percentage being 35% which is a clear improvement. The handmade

solution has rooms with more than 50% of students above the ideal capacity. Furthermore, in Alameda

1st semester, there are only 112 slots with overbooking in the ILP implementation, versus 852 slots

with overbooking in the handmade solution (Figure 4.7a).

The greedy algorithm is, once again, a bit worse in terms of the quality of the results since it has

rooms with a larger percentage of students above the ideal capacity. It is important to remember that

the algorithm deals with this constraint as it deals with conflicts; it does not allow the assignment of

classes to rooms above a certain threshold α. When comparing the results with the ones found by

the ILP implementation, one can see that the threshold required to find a feasible solution is higher.

However, the number of slots with overbooking is similar. When analyzing Figure 4.8b, corresponding

to Taguspark 2nd semester, one can see that the difference between Greedy and ILP approaches

is small. In fact, the greedy approach has 13 time slots with overbooking versus only 10 in the ILP

approach. This difference, in fact, corresponds to a single class. However, this class has 30% of
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Table 4.10: The maximum number of seated students was obtained using the ILP approach, when pre-assigning
the overbooked classes present in the handmade solution.

Campus Working Day Semester
1st 2nd

(Mon to Fri) Optimal # Students Optimal # Students
Taguspark All 49 038 49 555 40 231 40 511

Alameda

Monday 52 933 55 649 48 808 50 905
Tuesday 55 509 59 228 42 609 44 457

Wednesday 48 465 50 393 31 389 32 293
Thursday 53 638 57 168 27 528 28 530

Friday 40 657 42 957 44 978 47 339

students above the ideal capacity. On the other hand, in the data set of Alameda 2nd semester (Fig-

ure 4.7b) the ILP implementation has 2 more time slots with overbooking than the greedy algorithm.

This fact can be explained by an imposed lower value to α. The value of α for the ILP is 35%, which

is smaller than the 42% used for the greedy algorithm.

When comparing the results of the greedy algorithm with the handmade solution, one can see that

the improvement is significant in both the number of overbooked slots and the percentage of students

who cannot be seated in those slots. For Alameda 1st semester, the greedy algorithm only has 140

slots with overbooking versus 852 slots in the handmade solution. Moreover, the lower value of alpha

of the handmade solution is 60% versus 50% obtained by the greedy algorithm.

Some of the assignments that cause the highest number of students above the ideal capacity in

the handmade solution could eventually be solved by simple reassignment of classes. However, it is

possible that the assignment of certain classes to specific rooms without the proper capacity may be

due to empirical knowledge; some teachers may justifiably prefer specific rooms, even though not all

students can be seated. Furthermore, it could also mean that in practice, not all students will actually

attend the class. Not considering this objective could cause students that actually attend classes not

to be seated in order to seat students who may never attend. It should also be noted that the set of

overbooked classes obtained by the ILP and greedy algorithms are actually a disjoint set of the set of

overbooked classes found in the handmade solution. Thus, assuming there is a reason for assigning

these rooms, we have forced these classes to be assigned to the preferred rooms. The addition of

this objective does not change the CPU time. As expected, the overall number of unseated students

is higher. When forcing these assignments, also as expected, the set of overbooked classes is the

same for all algorithms. Even though they are now equal in terms of students seated, the ILP and

greedy solutions are better in terms of compactness. Table 4.10 summarizes the number of seated

students when allowing the ILP approach to keep the same room for the overbooked classes as in the

handmade solution. These results are optimal, for each instance, and were obtained using the ILP

approach.

Room Compactness Process

In terms of compactness, the greedy algorithm only performs the compaction procedure in tie-

breaking scenarios. In other words, the compaction is only executed when allocating classes with
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Table 4.11: Compaction results in terms of the number of transitions for the greedy algorithm, GRASP, ILP before
and after the compactness optimization. The ILP finds the optimal solution to the Taguspark data sets within the
time limit. The time spent just in compaction routine is also shown. The cells highlighted in gray represent values
found through decomposition.

handmade Greedy ILP GRASP
# Trans. # Trans. # Trans. before comp. # Trans. after comp. Extra Time (sec) # Trans.

Alameda 1st 2 148 1 242 2 068 937 8.4× 105 1 118
2nd 1 945 1 030 2 001 685 4.2× 105 944

Taguspark 1st 383 279 369 217 1.2× 102 238
2nd 330 241 307 193 3.8× 10 210

Table 4.12: ILP compactness results in terms of number of transitions and CPU time (in days), for the Alameda
data sets.

Weekday Monday Tuesday Wednesday Thursday Friday
Results Time (d) # Trans Time (d) # Trans Time (d) # Trans Time (d) # Trans Time (d) # Trans

Alameda 1 0.8 146 1.6 272 3.5 145 3 202 0.7 148
2 0.5 155 0.7 148 2.5 123 1 122 0.4 137

the same gain in terms of seated students. Nevertheless, the results are an improvement when

comparing them with the handmade solutions used in IST, even though the values found by the greedy

algorithm are not optimal. Table 4.11 compares the values obtained by the ILP implementation, the

greedy algorithm, and the handmade solution. The values represent the number of transitions from

free to occupied slots and vice versa.

The ILP implementation finds the optimal solution for the Taguspark data sets although it requires

significantly more CPU time. The number of transitions obtained is higher when using the greedy

algorithm. Nevertheless, the results are close to the optimal found by the ILP implementation. The

greedy algorithm finds a solution that is 1.2x worse than the optimal.

The ILP implementation was not able to compact all the allocations when considering the decom-

posed data sets from Alameda within a pre-defined time-frame. In the worst case, three days worth

of CPU time were spent to find the optimal solution.

Overall, the number of transitions of the greedy implementation is 1.4x and 1.5x higher than the

optimal for the Alameda 1st semester and 2nd semester, respectively. The number of days spent for

each weekday for the Alameda data sets is shown in Table 4.12.

Once again, the quality of the solution found by the GRASP algorithm lies in the middle of the

ILP and greedy approaches. Only the local search stage of GRASP optimizes the quality in terms

of transitions. When comparing GRASP with the simple greedy algorithm, the improvement is more

significant when considering the number of transitions. In this optimization objective, GRASP is able,

on average, to reduce the distance to the optimal value by 12%. The summary of the results is shown

in Table 4.11. Nevertheless, even with fewer iterations, the algorithm is considerably worse in terms

of CPU time.

Figure 4.9 shows the evolution of the quality, in terms of transitions, of the current best solution

for Alameda data sets as a function of the number of transitions. We conclude that the algorithm

converges in more or less the same number of iterations for both optimization objectives (Figure 4.6).

Considering this optimization objective, the first solution for the Alameda 2nd semester has a larger

distance to the optimal than when considering the number of students as an optimization objective.
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Figure 4.9: The evolution of the quality, in terms of transitions seated, of current best solution found by GRASP,
for Alameda data sets
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Figure 4.10: The evolution of the number of transitions over time in seconds (log scale), for the Alameda (a)
1st and (b) 2nd semester. The gray circle and the green triangle symbols mark the finding of an optimal value
and the proving of optimality, respectively. The results were obtained by the execution of CPLEX with the default
configurations.

Nevertheless, the Alameda 2nd semester instance has a smaller number of transitions, which is nor-

mal since it has fewer classes.

Time limit for the ILP Room Compactness Process

The greatest weakness of the ILP implementation is the large CPU time required, in particular in

the second stage. One approach to reducing the CPU time lies on warm-starting the second stage

with the solution from the first stage. However, this process, on average, did not improve the CPU

time. We believe that the improvement really depends on how close the solution found in the 1st stage

is to an optimal solution of the 2nd stage. In this case, the solution, in most instances, for the 1st stage

is not close to an optimal solution for the 2nd stage.

In the second stage, most of the time spent by the ILP solver is not improving the quality of the

solution. The solver is actually proving the optimality. In practice, the trade-off between optimality and

CPU time may sometimes lead to a shorter CPU time.

To this end, a study on the evolution of the quality of the solutions over time for the Alameda data

sets (which are the most complex) was performed. Figures 4.10a and 4.10b show the evolution for

each weekday for the 1st and 2nd semesters, respectively. Both graphs have a logarithmic scale and

show the time in seconds. The large round gray symbols mark the reaching of the optimal solution
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Figure 4.11: The evolution of the number of transitions over time in seconds (log scale), for the Alameda (a)
1st and (b) 2nd semester. The gray circle and the green triangle symbols mark the finding of an optimal value
and the proving of optimality, respectively. The results were obtained by the execution of CPLEX configured to
re-apply presolve with cuts and allow new root cuts.

(without proving it). The large green triangle symbols mark the time for proving the optimal solution.

We conclude that, in most of the cases, the time spent after 6 000 seconds produces small changes

in the quality of the solution. If we consider the 6 000 seconds as the time limit, we can see that for

the 2nd semester, most of the data sets already had their optimal value found, even though it was not

yet proven.

As one can see, the evolution shown in Figures 4.10a and 4.10b is not smooth, but rather exhibits

some jumps. These jumps correspond to a restart in the execution of the solver. Every time a jump

occurs, the solution found is significantly improved. Therefore, one can try to produce more jumps.

The ILP implementation was rerun with the RepeatPresolve flag with value 3 (re-presolve with cuts

and allow new root cuts). The results for Alameda data sets are shown in Figures 4.11a and 4.11b.

The optimal solution is always found faster with this configuration. Nevertheless, the solver still spends

most of the CPU time proving the optimality. When solving most of the instances, the solver spends

50% or more time proving the optimality. In the worst case, for the data set of Thursday Alameda 2nd

semester, the CPU time spent on proving optimality is 92% of the total CPU time.

4.5.5 University Course Timetabling Problem

Table 4.13: Results for BOOLEAN, BOOLEAN’ and MIXED models solving the university course timetabling prob-
lem with warm-start, considering general (Gen.) and quadratic (Qua.) constraints.

1stsemester 2ndsemester
BOOLEAN BOOLEAN’ MIXED BOOLEAN BOOLEAN’ MIXED

Time (s) Time Out Time Out 32.17 Time Out Time Out 22.69
Optimal Not Found Not Found Found Not Found Not Found Found
# Variables 5 269 200 5 280 380 8 487 526 5 255 628 5 266 548 1 668 712
# Gen. Constraints 5 200 000 5 213 975 2 111 238 5 187 000 5 187 000 1 810 312
# Qua. Constraints 5 590 0 0 5 460 0 0
SCOM Handmade 2 148 1 945
SCOM 937 685

As one can see, the Taguspark instances are too simple. Therefore, from now on, we are going
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to focus on the Alameda instances only. In the first approach, we compare the performance of the

two different models when solving the original version of the problem, i.e. before disruptions occur.

We considered the SCOM as the optimization objective since it is the one used at IST. Note that it is

a different optimization objective from the ones used in the previous sections, and thus the execution

time is not directly comparable. Furthermore, the solution found may not be optimal with this new

objective. Nonetheless, we apply a warm-start procedure using this feasible solution to improve the

performance of our approach. We obtained this solution with the room usage optimization procedure

(see section 4.3). We also tested using greedy heuristics (the extension from section 4.3.4). However,

they are worse in terms of quality and similar in terms of execution time. Therefore, we do not show

the result.

Table 4.13 shows the results for the different models (BOOLEAN, BOOLEAN’ and MIXED) when

solving the university course timetabling problem with warm-start. Observe that the BOOLEAN model

requires both general and quadratic constraints. The linearized version of the BOOLEAN model only

requires general constraints. However, it adds two new auxiliary variables for each quadratic con-

straint. The BOOLEAN’ model also adds two and half more constraints for each new variable. There is

no clear advantage in the BOOLEAN model versus the BOOLEAN’ model in this time limit. The MIXED

model requires fewer constraints and variables. In terms of execution time, the BOOLEAN model is

not able to find an optimal solution within the 600 seconds limit.

It is possible to reduce the size of the problem by reducing the number of students since not all

students affect the solution. In this case, the students are used to identify the curricular path. It is

natural that groups of students attend the same classes. Therefore, one does not need to generate

constraints for all students. The constraints can be generated only for distinct students. In the data

sets, around 15% of all students attend exactly the same classes. This number is relatively small but

allows us to reduce the total number of constraints by 10% on average for each instance.

To study the impact of the warm-start strategy on the performance, we run the tests with and

without this strategy for the MIXED model. The results from 1stsemester and 2ndsemester improve

from 40 822.57 and 50 726.21 to 32.17 and 22.69, respectively. The version with warm-start is three

orders of magnitude faster. The solution from the room usage optimization procedure is shown to be

a good starting point. Recall that we are optimizing with a different optimization objective. The values

without warm-start are similar to the results obtained with the room usage optimization procedure.

4.5.6 Minimal Perturbation Problem

The models proposed in this chapter were also tested in the presence of disruptions. For each

disruption type, 50 different instances were created. In this chapter, we only show the results for the

most relevant disruptions (i.e. the disruptions that are likely to occur). The instances were generated

based on the data analyses explained above. We tested the models using all the disruptions found

on the original data (see Table 4.7). In this section, we discuss the most relevant disruptions.

We warm-start the algorithm with a partial feasible solution extracted from the solution of the

previous year. Once again and as expected, the MIXED model outperforms the BOOLEAN model. For
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Table 4.14: Results for the most common disruptions using the MIXED model. δHD measures the number of
perturbations, δWHD measures the number of students affected by the perturbations and δSCOM measures the
change in the number of gaps in the student’s timetable.

Modify Enrollments Invalid Room
Opt. 1stsemester 2ndsemester 1stsemester 2ndsemester

SCOM

Avg. Time (s) 46.2 20.65 73.36 60.52
Avg. δSCOM -1 -1.5 0.5 0
% Optimal 100 100 80 90
Avg. δHD 510 399 372 340
Avg. δWHD 27 303.9 27 287.1 27 000 27 602.5

HD

Avg. Time (s) 40.79 42.91 74.45 54.37
Avg. δSCOM 0 0 4.4 0.87
Avg. δHD 489 380 300 309.75
% Optimal 100 100 80 90
Avg. δWHD 26 803.5 26 990.2 26 660.83 27 334.7

WHD

Avg. Time (s) 39.97 43.6 69.17 60.28
Avg. δSCOM 0 0 4.2 0.6
Avg. δHD 508 399 490 489
Avg. δWHD 25 908.5 26 512.9 26 442 27 468.12
% Optimal 100 100 80 90

% of Feasible Solution 100 100 80 90

Table 4.15: Incremental approach to recover after disruptions of the type invalid time while optimizing δSCOM .
δHD measures the number of perturbations, δWHD measures the number of students affected by the perturba-
tions and δSCOM measure the change in the number of gaps in the student’s timetable.

1stsemester 2ndsemester
Stage 1 Stage 2 Stage 1 Stage 2

Avg Time (s) 239.02 68.67 210.68 58.4
Median Time (s) 282 68 231.24 58

Avg δSCOM 2 2 1 1
AVG δHD 416.67 416.67 400.34 400.34

AVG δWHD 26 726.34 26 726.34 27 473.34 27 473.34
% Feasible Solution 85 90

this reason, only the results for the MIXED model are shown in Table 4.14, which shows the results

for the most common disruptions for different optimization objectives. For each objective (SCOM,

HD, WHD) we analyse the quality of the solution considering three objectives (δSCOM , δHD, δWHD).

Each objective - δSCOM , δHD, δWHD - measures the improvement in terms of the number of gaps in

the student’s timetable, the number of perturbations, and the number of students affected by those

perturbations, respectively. Furthermore, the table shows the percentage of optimal solutions found

for each optimization objective. Note that the experiments with invalid time disruption exceeded the

time limit, and therefore, the results are not shown in this table. Naturally, the feasibility of an instance

does not depend on the optimization objective. In order to improve performance, the warm-start

strategy was modified only to add a partial solution (the variables affected by the disruption are not

added). The unfeasible instances are unfeasible due to a subset of hard constraints. In the real world,

these cases happen. The solution ends up by relaxing a few constraints. However, the relaxation is

achieved through negotiation between all parties involved.

The 2ndsemester instance is easier to solve since it has a smaller number of classes to assign.

This fact can be explained by the organization of the curricular plans.
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When analyzing the performance, one can see that the modify enrollment disruption instances are

the easiest to be solved. This can be explained by the fact the disruption adds, in general, only a small

number of students. The use of slack in room capacity also contributes to better performance. This is

the only disruption that is able to improve the value of the SCOM (when optimized for this objective).

This disruption also allows reducing the number of students enrolled. Modify enrollments is the only

disruption to have all instances with a feasible solution. The HD and WHD optimization objectives

reduce the number of perturbations and the number of students affected while not improving the

SCOM. For this disruption, the value of SCOM stays equal to the one found in the original solution.

The disruptions invalid time assignment and invalid room assignment cannot lead to a solution

with an improved optimization value, given that these disruptions only add new constraints to the

problem. The results show that the quality of the solution gets worse with these disruptions. Note

that these disruptions may cause the instance to become infeasible. For all instances with feasible

solutions, our approach finds optimal solutions. The invalid time assignment disruption is the only

one to reach the time limit before finding a solution.

Globally, one can see that optimizing using SCOM causes more perturbations in the solution and

affects more students. This result confirms the results obtained by [47], where it is said that performing

more perturbations can improve the quality of the solution. Optimizing based on the WHD objectives

also causes more perturbations but reduces the number of students affected by the change.

4.5.7 Incremental Approach for Recovery after Disruption

The simple recovery process takes too long for the invalid time assignment disruption. Therefore,

we propose an incremental approach to reduce the search space by splitting the problem into two

stages. A disruption of the type invalid time assignment clearly causes a change in the time slots

of the class. However, it may not be necessary to modify the room assignment. For this reason, we

divide the problem into: (i) the problem of assigning classes to time slots and (ii) the whole problem. In

this case, the original solution for this sub-problem is added to the model as static. The second stage

applies a warm-start with the results of the first stage, possibly improving its quality. This division

does not exclude possible solutions since the second stage includes the whole problem again. This

decomposition can be changed (i.e. start with the problem of assigning classes to rooms) depending

on the disruption since we know beforehand which part of the problem must change.

Naturally, the proposed decomposition does not provide any guarantees about the optimality at

the end of the first stage. Nevertheless, this decomposition ensures that a feasible solution to the first

stage is a feasible solution to the whole problem. Conversely, one cannot conclude anything about

the infeasibility of the instance based on the result from the first stage.

Table 4.15 shows the results for the invalid time assignment disruption, where one can see that

the incremental process is much faster. In this case, the second stage does not improve the quality of

the solution. In other words, the first stage not only found a feasible solution but also found an optimal

solution to the complete problem.
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Table 4.16: Comparison of our ILP approach with different methods from the state-of-the-art, in terms of the
cost. The best values are highlighted in bold. Only 6 instances have no optimal solution found.

MaxSAT [70] ASP [177] ASP - teaspoon [178] Tabu [179] Best known (Dec-19) Ours
comp01 TIMEOUT 5 5 5 5 5
comp02 24 125 24 75 24 24
comp03 TIMEOUT 196 109 93 64 (not optimal) 70
comp04 35 36 35 45 35 35
comp05 TIMEOUT 947 624 326 284 (not optimal) 284
comp06 27 155 27 62 27 27
comp07 6 79 6 38 6 6
comp08 37 39 37 50 37 37
comp09 TIMEOUT 264 169 119 96 96
comp10 4 4 4 27 4 4
comp11 0 0 0 0 0 0
comp12 TIMEOUT 1114 456 358 294 (not optimal) 302
comp13 62 112 59 77 59 59
comp14 51 52 51 59 51 51
comp15 TIMEOUT 196 109 87 62 (not optimal) 70
comp16 18 28 18 47 18 18
comp17 56 171 56 86 56 56
comp18 TIMEOUT 184 81 71 61 61
comp19 58 91 57 74 57 57
comp20 4 80 4 54 4 4
comp21 86 232 124 117 74 74
DDS1 48 87 48 1024 48 48
DDS2 0 0 0 0 0 0
DDS3 0 0 0 0 0 0
DDS4 TIMEOUT 26 33 261 17 17
DDS5 0 0 0 0 0 0
DDS6 0 0 0 11 0 0
DDS7 0 0 0 0 0 0
test1 TIMEOUT 383 404 234 224 224
test2 16 31 16 17 16 16
test3 TIMEOUT 172 113 86 67 (not optimal) 86
test4 TIMEOUT 232 156 132 73 (not optimal) 90

4.5.8 International Timetabling Competition 2007

In order to validate the quality of the proposed approach, we also solve the benchmarks from the

literature that are encoded in the format of ITC 2007 [59]. Table 4.16 shows a comparison of different

state-of-the-art methods and our approach. One can see that our approach finds the optimal solu-

tion for 26 out of 32 instances. Our solution clearly outperforms, in terms of cost, most constraint

programming-based approaches (SAT and ASP). However, it still falls short of the local search-based

methods and the overall best-known results. Note that the best known result was obtained by multiple

approaches. Furthermore, we extracted the best know value from the validation tool that was discon-

tinued in 2019. The instances (6) for which our approach did not find the optimal solution within the

time limit are the same instances for which there is no information about the best value.

4.5.9 Results Overview

In this chapter, we showed that integer programming is a good approach to solve timetabling

problems with different characteristics and optimization functions.

Recall that one of the goals of this thesis is to re-use the search tree to reduce the execution time.
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However, we showed that we could efficiently solve the MPP with ILP using only a good warm start

function. The warm start also has a significant impact when solving the whole problem if we have

a good initial solution. The impact is significant even if the warm-start solution was obtained with

different optimization criteria. The warm start is able to reduce the execution time in three orders of

magnitude.

To further improve the quality and performance of the ILP algorithm, we proposed an incremental

algorithm. This algorithm aimed to decompose the problem and guide the changes to a specific part

of the problem. This can be seen as a set of rules that are able to prune the search space. The

concept of guiding the re-solving process can be improved by learning which courses are affected by

the disruption. This concept is the key to the algorithm proposed in chapter 6 for the train scheduling

problem.

The IST benchmark created in this thesis is considerably larger (e.g., number of classes) and

richer (in terms of the type of constraints). The ITC 2019 benchmark is even larger and richer (con-

straints) than IST. However, the fact that our approach is able to solve both the ITC 2007 and IST

benchmark made us believe this approach could be a good starting point to tackle the International

timetabling competition 2019.

4.6 Concluding Remarks

This chapter discusses the real-world problem of university course timetabling at IST. We propose

different methods to optimize room usage and to recover after disruptions occur.

When focusing on the problem of room usage optimization for university timetables, we propose

methods to optimize the room occupation by determining where to allocate events with pre-defined

time slots. This optimization process must ensure that the rooms have enough capacity to seat all

people participating in those events. First, we propose a two-stage ILP implementation to allocate

classes to rooms while optimizing room usage. The first stage focuses on allocating classes to rooms

in order to maximize the number of students seated. To ensure fairness, we added slack to the

capacity of each room before maximizing the number of students seated. The second stage focuses

on the minimization of the number of transitions from free to occupied (and vice versa) for each room.

The ILP implementation finds the optimal solution for all data sets tested. However, it requires some

decomposition in order to solve all data sets within the time and memory constraints. We have shown

that it is possible to efficiently optimize the room usage and reduce the overbooking problem with

integer programming.

When focusing on the problem of re-solving university course timetables after disruptions, we

proposed two integer programming models that can find the closest new feasible solution. Our ap-

proaches were successfully evaluated with data sets from Instituto Superior Técnico. The models

were tested using different optimization objectives, including the optimization objectives applied by

the academic offices at Instituto Superior Técnico.

To improve the performance, we propose an incremental algorithm that divides the problem into
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two stages: the problem of assignment of classes to rooms and the whole problem. The incremental

algorithm can reduce the size and execution time without losing quality. Moreover, the experimental

results also show that using warm-start techniques in this type of problems provides a significant

advantage. We warm start the algorithm with a partial feasible solution extracted from the solution of

the previous year.
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This chapter describes our different approaches used in the novel tool, UniCorT, to solve the Inter-

national Timetabling Competition (ITC) 2019. The tool is accompanied by a 4-page long explanatory

document, which was not peer reviewed [180]. UniCorT finished in the top 5, and the results were

published in [17, 18].

The organization of this chapter is as follows. First, we formally describe the problem. Next, we

describe the different components of UniCorT. Section 5.2.1 describes the different pre-processing

techniques. Section 5.2.2 the different MaxSAT encodings proposed. Section 5.2.3 describes the

local search method used to improve the quality of the solution. Section 5.3 describes the approach

to solve MPP in UniCorT. Section 5.4 discusses the results obtained by the different configurations of

UniCorT. Furthermore, we compare UniCorT with the state-of-the-art. The differences between IST

case study and ITC are discussed. Finally, Section 4.6 concludes the chapter.

5.1 Problem Definition

In this section, we formally describe the ITC 2019 problem introduced in [58]. Let us consider a

set of courses Course. A course (course ∈ Course) is composed by a set of classes Ccourse. These

courses are characterized by configurations (Configcourse) and organized in parts (Partscourse
config ). A

student must attend the classes in a single configuration. A student enrolled in the course course

and attending the configuration config ∈ Configcourse must attend exactly one class from each part

Partscourse
config . The set of classes belonging to part ∈ Partscourse

config is represented by C course
part .

All classes C (from different courses) must have a schedule assigned to them. Each class c ∈ C

has a set of possible periods (Pc) to be scheduled. Class c has a hard limit on the number of students

that can attend it (limc). A class c may have a set of possible rooms (Rc). Each room r ∈ Rc has

capacity ≥ limc. Each class may also have a parent-child relationship with another class, i.e., a

student enrolled in class c must also be enrolled in the parent parentc.

A time period p corresponds to a 4-tuple (Wp, Dp, hp, lenp) denoting a set of weeks (Wp), a set of

days (Dp), an hour (hp), and its duration (lenp > 1). A set of weeks (days) is a bit-string Wp = {100}

(Dp = {100}) that represents that the period p consists of the first week (day) out of 4. A class can

only be taught once per day. However, a class can be taught multiple times per week and in multiple

weeks. Weeks and Days represent the total number of weeks, days, and hours, respectively. Daysd

(Weeksw) corresponds to a particular weekday with 0 < d ≤ |Days| (0 < w ≤ |Weeks|).

Let us consider a set of rooms R where the classes can be scheduled. The travel time, in slots,

between two rooms r1, r2 ∈ R is represented by travelr1r2 . Each room r ∈ R has a set of unavailable

periods Pr.

Given a set of students S, each student s ∈ S is enrolled in a set of courses Courses. Furthermore,

UCTTP is subject to a set of constraints (constraintc is the set of constraints relating to class c) that

can be divided into hard or soft constraints. The constraints are defined as follows:

• RoomConflicts: Two classes cannot be assigned to the same room when they overlap in time.
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• SameAttendees: The classes cannot overlap in time and must ensure that attendees can travel

between rooms with enough time to attend the classes.

• SameStart : The classes must start at the same time.

• SameTime: The classes must be taught at the same time. For classes with a different duration,

the shorter class can start after the longer class as long as it ends before, the longer class ends.

For classes with the same duration, it is the same as the SameStart constraint.

• DifferentTime: The classes must be taught at a different time of day.

• SameDays: The classes must be taught on the same days. For classes with a different number

of days, the class with fewer meetings must meet on a subset of the days used by the class with

more meetings.

• DifferentDays: The classes must be taught on different days.

• SameWeeks/DifferentWeeks: The same as SameDays/DifferentDays for weeks.

• WorkDay (V): There should not be more than V time slots between the start of the first class and

the end of the last class on any given day.

• Overlap (NotOverlap): The classes must (not) overlap in the time of day, the subset of days, and

in weeks.

• Precedence: The classes must occur one after the other. For classes with multiple meetings in

a week, we only enforce the constraint to the first meeting of the class.

• MinGap(V): Any two classes that are taught on the same day and week must be at least V slots

apart.

• SameRoom (DifferentRoom): The classes must be taught in the same (different) room.

• MaxDays(V): A class cannot spread over more than V days.

• MaxDayLoad(V): Classes must be spread over the days and weeks such that there are no more

than V time slots on every day.

• MaxBreaks(V1,V2): There are at most V1 breaks throughout a day. A break between two classes

is a gap larger than V2 time slots.

• MaxBlock (V1,V2): There are at most V1 consecutive slots throughout a day. Two classes are

considered consecutive if the gap between them is less than V2 time slots.

• StudentConflicts: Two classes cannot overlap in time if the same student is enrolled in both.

There are four optimization objectives: (i) the cost of assigning a class to a room; (ii) the cost of

assigning a class to a time slot; (iii) the number of student conflicts and (iv) a set of soft constraints.

Each objective has its weights. We solve university course timetabling in two sequential MaxSAT runs.
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Figure 5.1: Overall schema of UniCorT.

First, we solve the course timetabling problem, and then we solve the student sectioning problem. The

sequential runs may result in the loss of the global optimum (i.e. it may remove the optimal solution

in terms of student conflicts). Moreover, it reduces the size of the global problem. Furthermore, this

allows us to tackle the MPP using only the first MaxSAT model.

5.2 Introducing UniCorT

In this section, we describe UniCorT. Figure 5.1 describes the overall schema of the tool, which

has three separate components: (i) pre-processing the UCTTP instance, (ii) using a MaxSAT solver

to find a solution iteratively, and (iii) improving the quality of the solution with a local search procedure.

The iterative algorithm is used to incrementally augment the search space by adding new assignment

options (described later on). This novel addition to UniCorT is fundamental to solve all the instances

of the ITC 2019.

5.2.1 Pre-processing

The pre-processing component relies on four techniques: (i) identifying independent sub-

instances; (ii) merging students with exactly the same course enrollment plan; (iii) reducing the

classes domain; and (iv) removing redundant constraints.

Identifying independent sub-instances

The first technique divides the problem instance into self-contained sub-instances. A set of sub-

instances of the problem instance i (SIi) is self-contained if and only if the following four constraints

are upheld:

1. ∀si1,si2∈SIi Coursesi1 ∩ Coursesi2 = ∅;

2. ∀si1,si2∈SIi Rsi1 ∩Rsi2 = ∅;

3. ∀si1,si2∈SIi Ssi1 ∩ Ssi2 = ∅;

4. ∀si1,si2∈SIi ∀c∈Csi1
constraintc ∩ Csi2 = ∅.

If these constraints are upheld then we can split the instances without removing any solutions.

Example 26. Let us consider a problem instance i with five courses Coursei = {co1, . . . , co5} and five

rooms Ri = {r1, . . . , r5}. The classes of the courses co1 and co2 can only be taught in two rooms

r1 and r2. The classes of the courses co3, co4 and co5 can only be taught in rooms r3, r4 and r5,
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respectively. Therefore, we can create four sub-instances SI = {si1, . . . , si4} such that Coursesi1 =

{co1, co2}, Coursesi2 = {co3}, Coursesi3 = {co4} and Coursesi4 = {co5}.

Consider three students Si = {s1, s2, s3} with the following enrollments: s1 is enrolled in courses

co1, co2; s2 is enrolled in courses co3, co4; and finally s3 is enrolled in co5. The student enrollments

reduce the number of sub-instances since sub-instances si2 and si3 violate Constraint 3. Hence,

these two sub-instances must be solved together.

Consider a no overlap constraint between the classes of the courses co4 and co5. As a result, the

sub-instances si3 and si4 violate Constraint 4. For this reason, the instance i can only be split into

two self-contained sub-instances such that Coursesi1 = {co1, co2} and Coursesi2 = {co3, co4, co5}.

Merging students with exactly the same course enrollment plan

The goal of this technique is to reduce the number of variables and constraints by creating groups

of students that share the same curricular plan [181, 182]. The following example illustrates the

identification of groups of students with the same curricular plan.

Example 27. Let us consider three courses Course = {co1, co2, co3} and six students S = {s1, . . . , s6}

that are enrolled in courses as follows: s1, . . . , s4 are enrolled in the courses co1 and co2; and s5, s6 are

enrolled in the courses co2 and co3. In this example, it is possible to generate two perfect clusters: clu1

for all the students enrolled in courses co1 and co2; and clu2 for all the students enrolled in courses

co2 and co3.

However, this process may remove all the feasible solutions since each course’s classes may have

a different limitation on the number of students enrolled. Let us denote the greatest common divisor

(GCD) between the numbers n1 and n2 as GCD(n1, n2). Consider now an expansion of the previous

example.

Example 28. Let us revisit Example 27 and consider that each course has two classes, and so Cco1 =

{c1, c2}, Cco2 = {c3, c4} and Cco3 = {c5, c6}. A student enrolled in the courses co1, co2, co3 must attend

exactly one class of each course. The limit on the number of students that can attend is, for each

class, as follows: limc1 = limc2 = 4; limc3 = limc4 = 3; and limc5 = limc6 = 2. Figure 5.2 shows

the clusters defined in Example 27 and a possible student sectioned to classes. One can see that

the solution is infeasible. For this reason, we computed GCD between the total number of students

enrolled in a course and the smallest capacity of the classes of that course. In this case, we obtain:

GCD(4, 4) = 4 for course co1; GCD(6, 3) = 3 for course co2; and GCD(2, 2) = 2 for course co3. This

indicates that the cluster of students enrolled in co2 needs to be smaller or equal to 3. Therefore, we

need to split the cluster clu1. One possibility is to divide it into two new clusters clu3 and clu4. This

feasible solution is shown in Figure 5.3.
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Figure 5.2: An infeasible assignment of students to classes based on the clusters defined in Example 27.

This process ensures that it is possible to find a feasible solution to a problem instance since it is

possible to combine all groups of students into classes. However, we may remove the optimal solution

by not allowing the assignment of a single student to a given class. The pros and cons of creating

clusters are further discussed in Section 5.2.2. Note that the GCD can also be used to choose the

number of sections of a course in order to reduce the number of conflicts a priori [182].

Reducing the classes domain

The goal is to reduce the domain of the classes by removing possible pairs of room and time

assignments that are incompatible with the availability of the room. This technique was previously

used in the work of Edon Gashi et al. [1].

Example 29. Consider the class c that can be taught in two rooms Rc = {r1, r2}. Furthermore, this

class can be taught in three time periods Pc = {p1, p2, p3} in the same day of the same week. Room

r1 is unavailable in the periods p1 and p2. Room r2 is only unavailable in the period p2. Hence, we

can remove a priori time period p2 from Pc. Furthermore, we can also remove the pair (r1, p1).

Removing redundant constraints

The last technique removes redundant constraints referring to SameAttendees and to Student-

Conflicts. Both constraints ensure that two classes cannot overlap in time. In both cases, we consider

that the two classes overlap in time if they share at least one week, one day of the week, and they

overlap in time of a day or if they are consecutive in rooms that are too far apart. Note that Stu-

dentConflicts are always soft, but the SameAttendees may be hard or soft depending on the problem

instance.
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Figure 5.3: A feasible assignment of students to classes based on the clusters defined in Example 28.

5.2.2 MaxSAT

In this section, we formally describe two MaxSAT encodings for course timetabling. The two

MaxSAT encodings for course timetabling are denoted as Direct and Linked.

The overall clauses needed in both encodings are summarized in Table 5.1. The ITC 2019 opti-

mization objectives are encoded as soft constraints in both encodings. Furthermore, we also describe

a MaxSAT encoding for student sectioning.

Direct Course Timetabling

TheDirect encoding can be seen as an expansion of the Boolean encoding that we have proposed

in the previous chapter. This encoding has only two sets of Boolean variables:

• tslot
c represents the assignment of class c to the period slot,

with c ∈ C and slot ∈ [0, . . . , |Pc|];

• rroomc represents the assignment of class c to the room room,

with c ∈ C and room ∈ Rc.

The existence of two sets of variables allows reducing the number of redundant variables. Using

only one set of variables would increase the amount of memory allocation (|Rc| × |Pc|), and most of

these variables would be set to value 0.

In the Direct encoding, we need two types of exactly one constraints. We need to ensure that

each class is assigned exactly one slot (D1) and when Rc 6= ∅ we need to ensure that each class is

assigned exactly one room (D2).

Example 30. Let us consider two classes, c1 and c2, with the following characteristics: Dc1 = Dc2 =

{0101, 1010}; Wc1 = Wc2 = {11110, 01111}; Hc1 = {10, 11}; Hc2 = {11}; Pc1 = {1, . . . , 12};

Pc2 = {1, . . . , 8}; Rc1 = {1, 2} and Rc2 = ∅. In this example, we generate the following exactly
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Table 5.1: Constraints in the Direct and Linked encodings.

Direct Linked

D1
∑
slot∈[0,...,|Pc|] t

slot
c = 1

∑
hour h

hour
c = 1 L1∑

day d
day
c = 1 L2∑

week w
week
c = 1 L3

D2
∑
room∈Rc

rroomc = 1 L4

D3 ¬tpici ∨ ¬t
pj
cj ∨ ¬rroomci ∨ ¬rroomcj

¬sdcicj ∨ ¬sw
ci
cj ∨ ¬h

hourpi
ci ∨

L5
¬h

hourpj
cj ∨ ¬rroomci ∨ ¬rroomcj

D4 ¬rrc ∨ ¬tpc L6

D5 ¬tpici ∨ ¬t
pj
cj

¬tpici ∨ ¬t
pj
cj L7

¬hhourpici ∨ ¬h
hourpj
cj L8

¬dDaypici ∨ ¬d
Daypj
cj L9

¬w
Weekpi
ci ∨ ¬w

Weekpj
cj L10

D6 ¬rroomi
ci ∨ ¬rroomj

cj L11

D7
∑
c∈C

∑
p∈Pc

∑
d∈[1,...,|Dayp|] dayofweekconst

d ≤ V L12

D8
∀7
d=1

∑
c∈C

∑
p∈Pc,Daydp=1 L13

tpc × lenp ≤ V d
Dayp
c × lenp ≤ V

D9 ¬tp1c1 ∨ . . . ∨ ¬t
pn
cn L14

D10
¬bconsth1

∨ . . . ∨ ¬bconsthn L15
bconst

h ⇐⇒ tp0ci ∨ . . . ∨ t
pn
ci ∨ t

p0
cj ∨ . . . ∨ t

pm
cj

one constraints:
∑12
i=1 t

i
c1 = 1,

∑8
i=1 t

i
c2 = 1 and

∑2
i=1 r

i
c1 = 1.

The additional constraints of the Direct encoding are as follows:

• RoomConflicts: For each two classes, ci and cj , where room ∈ Rci , room ∈ Rcj , and pi ∈ Pci
overlaps in time with pj ∈ Pcj , add Constraint D3.

• SameAttendees: For each two classes, ci and cj , where room ∈ Rci , room ∈ Rcj , and pi ∈ Pci
overlaps in time (or there is not enough time to travel between rooms) with pj ∈ Pcj , add

Constraint D3.

• RoomUnavailability : For each room r ∈ Rc where p ∈ Pc overlaps with unavailability slot of the

room, we add D4.

• SameStart : For each pair of classes, ci and cj , where pi ∈ Pci and pj ∈ Pcj correspond to

different starting times, add Constraint D5.

• DifferentTime(SameTime): For each pair of classes, ci and cj , where pi ∈ Pci and pj ∈ Pcj (not)

overlap in time, add Constraint D5.
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• DifferentDays (SameDays): For each pair of classes, ci and cj , where pi ∈ Pci is a period with

different sub-set (same) days than pj ∈ Pcj , add Constraint D5.

• DifferentWeeks (SameWeeks): For each pair of classes, ci and cj , where pi ∈ Pci is an period

for different (same) weeks than pj ∈ Pcj , add Constraint D5.

• WorkDay (V): For each pair of classes, ci and cj , where more than V time slots occur between

the start time of ci and the end time of cj , add Constraint D5.

• Overlap (NotOverlap): For each two classes, ci and cj , where room ∈ Rci , room ∈ Rcj , and

pi ∈ Pci (not) overlaps in time with pj ∈ Pcj , add Constraint D5.

• Precedence: For each pair of classes, ci and cj , where pj ∈ Pcj precedes pi ∈ Pci , we add

Constraint D5.

• MinGap(V): For each pair of classes, ci and cj , where pj ∈ Pcj and pi ∈ Pci are taught in the

same week and day, and hourpi + lenpi + V ≥ hourpi , we add Constraint D5.

• DifferentRoom (SameRoom): For each pair of rooms, roomi ∈ Rci and roomj ∈ Rcj , where

roomi = roomj (roomi 6= roomj), add Constraint D6.

• MaxDays(V): Consider an auxiliary variable, dayofweekconst
d , where const is the identifier of the

constraint and d ∈ {1 , . . . , |Days|}. This variable corresponds to having at least one class in-

volved in this constraint, assigned to weekday d. Hence, we only need to ensure that D7.

• MaxDayLoad(V): For this constraint, we only need to add the pseudo-Boolean Constraint D8.

This constraint ensures that the sum of the classes’ length taught on the same day does not

exceed V.

• MaxBlock /MaxBreaks(V1, V2) To ensure that there are no more than V1 consecutive slots

(breaks) in a day between a set of classes, we need to generate all blocks. After computing

all blocks, add the Constraint D9 to ensure that at least one class of an invalid block has to be

assigned to a different period. This constraint is added for every class, c1 to cn, assigned to a

period (p1 ∈ Pc1 to pn ∈ Pcn ) where the periods form a block of classes that violates one of

these constraints.

Example 31. Let us consider two classes, c1 and c2, that are taught in the same day and cannot

overlap in time. Furthermore, all classes are involved in the MaxBreaks constraint, which ensures

that there are 0 breaks between them. For simplicity, let us consider that there are only three time

slots per day, t1 < t2 < t3, and all the classes have the same duration of 1 time slot. Figure 5.4 shows

two assignments that violate the MaxBreaks constraint. To ensure that the constraint MaxBreaks

holds, we add clauses ¬tt1c1 ∨ ¬t
t3
c2 and ¬tt1c2 ∨ ¬t

t3
c1 .
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Figure 5.4: Two assignments that violate the MaxBreaks constraint between, c1 and c2, that are taught in the
same day without breaks and cannot overlap in time.

Table 5.2: The relation between variables in Linked encoding.

Variables Relations
h and t hhourc ⇐⇒

∧
n t

slotn
c

d and t ddayc ⇐⇒
∧
n t

slotn
c

w and t wweekc ⇐⇒
∧
n t

slotn
c

sd and d sdcicj ⇐⇒ (dDay0ci ∨ . . . ∨ dDaynci ) ∧ (d
Dayn+1
cj ∨ . . . ∨ dDaymcj )

sw and w swcicj ⇐⇒ (wWeek0
ci ∨ . . . ∨ wWeekn

ci ) ∧ (w
Weekn+1
cj ∨ . . . ∨ wWeekm

cj )

The method discussed above is impractical (Section 5.4.3) as it generates too many clauses.

For this reason, we add an auxiliary variable bconst
h where const is the identifier of the constraint and

h ∈ {0 , . . . , |Hours|}. This variable corresponds to having at least one class involved in this constraint,

assigned to an hour h of a single day. This auxiliary variable allows removing the symmetries present

in the clause D9. As a result, we add the clause D10 for each block.

Example 32. Recall Example 31. To ensure that the constraint MaxBreaks holds, clauses ¬tt1c1 ∨¬t
t3
c2

and ¬tt1c2 ∨ ¬t
t3
c1 are added. However, the second clause is symmetric with respect to the first one.

With the new auxiliary variable, we only need to add the clause ¬bconstt1 ∨ ¬bconstt3 .

Linked Course Timetabling

It is obvious that we do not always need to take into account the complete schedule information.

For some constraints, we only need the information about the week, the day or the hour of a class,

and not all the three. For this reason, the proposed Linked course timetabling encoding has only four

Boolean decision variables:

• w
Weekp
c represents the assignment of class c to the set of weeks Weekp ,

with c ∈ C and p ∈ Pc;

• dDaypc represents the assignment of class c to the set of days Dayp,

with c ∈ C and p ∈ Pc;

• hhourpc represents the assignment of class c to the hour hourp,

with c ∈ C and p ∈ Pc;

• rroomc represents the assignment of class c to the room room,

with c ∈ C and room ∈ Rc.

The possible schedules for a class are usually only a small part of the complete set. For this

reason, we only define these variables for acceptable values in the class domain. Furthermore, the
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Linked encoding reduces the required number of constraints. For example, SameStart constraints

(i.e., forcing a set of classes to start at the same time) do not require information about the day or

week of the class.

In contrast to the Direct encoding, we can reduce the size of each exactly one constraint since we

have separated the variables for the time allocation. Therefore, we have four exactly one constraints

for each class (room, hour, day, and week). The reduction in the size of the exactly one constraint is

important given that it allows avoiding a known bottleneck of timetabling encoding in CNF [68].

Example 33. Recall Example 30. The Linked encoding for the same instance generates a much

smaller number of exactly one constraints. In this example, we generate the following exactly one

constraints:
∑2
i=1 w

i
c1 = 1,

∑2
i=1 w

i
c2 = 1,

∑2
i=1 d

i
c1 = 1,

∑2
i=1 d

i
c2 = 1,

∑2
i=1 h

i
c1 = 1, h11

c2 = 1 and∑2
i=1 r

i
c1 = 1.

The encoding further needs to ensure that each class is assigned exactly one hour (L1), one set

of days (L2), one set of weeks (L3), and in some cases that each class is assigned exactly one room

(L4). The last constraint is the same in both encodings.

The variables representing hours, days, and weeks need to have explicit relations since not all

hours are available within all days and weeks. For this reason, we still use the period variable t . This

variable allows generating binary clauses to encode more complex constraints. To further reduce the

size of the clauses, we define the auxiliary variables sw and sd to represent classes that are taught

on the same week and day, respectively. Table 5.2 summarizes the relation between variables in the

Linked encoding.

For some constraints, the Linked encoding uses the same clauses as the Direct encoding. For this

reason, we only describe the clauses that are different, which are as follows:

• RoomConflicts: For each two classes, ci and cj , where room ∈ Rci and room ∈ Rcj , hourpi +

lenpi > hourpj and hourpj + lenpj > hourpi , with pi ∈ Pci and pj ∈ Pcj , add clause L5.

• SameAttendees: For each two classes, ci and cj , where hourpi + lenpi + travelroomi
roomj

> hourpj ,

with pi ∈ Pci , pj ∈ Pcj , roomi ∈ Rci and roomj ∈ Rcj , add L5.

The main difference between the two encodings for these two constraints is the use of two auxiliary

variables: the same day and the same week.

• SameStart : For each pair of classes, ci and cj , where hourpi 6= hourpj , add clause L8.

• DifferentTime (SameTime): For each pair of classes, ci and cj , where hourpi and hourpj do

(not) overlap in time, add clause L8.

• DifferentDays (SameDays): For each pair of classes, ci and , cj , where Daypi ∧ Daypj = ∅

(Daypj ⊆ Daypj ), add clause L9.
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• DifferentWeeks (SameWeeks): For each pair of classes, ci and cj where Weekpi ∧Weekpj = ∅

(Weekpj ⊆Weekpj ), add clause L10.

• MaxDayLoad(V): We only need to add the Constraint L13. The only difference here is the

definition of the auxiliar variable. Now, we can use only d.

The remaining constraints are encoded in the same way for both encodings (see the previous

section).

Student Sectioning

The usage of clusters requires defining the set Cluster of clusters of students. The number of

students merged in clu ∈ Cluster is represented by |clu|.

In order to solve student sectioning, our encoding is extended with one decision variable scclu,

where c ∈ C and clu ∈ Cluster . The advantage of the pre-processing step for creating clusters is to

reduce the number of variables and constraints required to model students. Note that the ITC 2019

instances do not require student sectioning to be balanced as in [182]. Moreover, we cannot change

the student choice of courses as in [183].

Example 34. Let us consider again Example 27. Recall that we have three courses Course =

{co1, co2, co3} and six students S = {s1, . . . , s6}. Students s1, . . . , s4 are enrolled in courses co1 and

co2 and students s5, s6 are enrolled in courses co2 and co3. Therefore, it is possible to generate two

perfect clusters: clu1 for all the students enrolled in courses co1 and co2; and clu2 for all the students

enrolled in courses co2 and co3. To sum up, the size of the clusters are as follows: |Cco1 | = |Cco2 | = 1

and |Cco3 | = 6.

The usage of two clusters reduces the number of variables from 22 (the number of students times

the number of classes available for each student) to 9 (the number of clusters times the number of

classes). Note that the reduction in the number of variables by using clusters depends not only on

the number of students merged but also on the course composition. In this case, the smaller cluster

(clu2) achieves the largest reduction in the number of variables (7) since the respective courses have

the largest number of classes.

In order to ensure that a student can only be assigned to a single course configuration, we de-

fine an auxiliary variable for each pair configuration-cluster of students. The variable is denoted as

conf config
clu , where clu ∈ Cluster , config ∈ Configco and co ∈ Course.

We need to add an exactly one constraint to ensure that each cluster of students clu is enrolled in

exactly one configuration of each course.∑
config∈Configco

conf config
clu = 1 . (5.1)

To ensure that the class capacity is not exceeded, we add the following constraint to each class c:∑
clu∈Cluster

|clu| × scclu ≤ limc. (5.2)
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In addition, to ensure that a cluster of students clu enrolled in a class c is also enrolled in its parent

class parentc, we add the following clause:

¬scclu ∨ s
parentc
clu . (5.3)

Furthermore, we need to ensure that a cluster of students clu is enrolled in exactly one class of

each part of a single configuration of the course co. Hence, for each cluster of students clu and for

each pair of two classes, ci and cj , such that ci , cj ∈ C co
part , where part ∈ Partsco

config , we add:

¬conf config
clu ∨ ¬sci

clu ∨ ¬s
cj

clu . (5.4)

In addition, for each cluster of students clu and for each part ∈ Partsco
config we add:

¬conf config
clu ∨ sci

clu ∨ . . . ∨ s
c|Cco

part |

clu . (5.5)

The conflicting schedule of classes attended by the same cluster of students is represented by

a set of weighted soft clauses. For each cluster of students clu enrolled in two classes, ci and cj ,

overlapping in time, we add:

¬sciclu ∨ ¬s
cj
clu ∨ ¬sw

ci
cj ∨ ¬sd

ci
cj ∨ ¬h

hourci
ci ∨ ¬h

hourcj
cj . (5.6)

5.2.3 Local Search

The goal of this procedure is to improve the quality of the solution found without changing the

schedule and room assignments of the courses. Neighborhood structures are the basis of this local

search (LS) procedure. In this work, the neighborhood consists of small changes in the student sec-

tioning. To create a new neighborhood, two operations can be performed: (i) allocating a cluster of stu-

dents to a different class with empty seats and (ii) swapping two clusters of students between classes.

Considering these moves, the procedure does not require the knowledge of course timetabling con-

straints. The LS procedure stops when the neighbors of the best solution cannot reduce the number

of conflicts (i.e. the solution found has the best cost of its neighborhood).

Example 35. Let us consider again Example 28. Additionally, consider that the classes c3 and c5 are

taught at the same time, on the same day, and in the same week. For this reason, the solution shown

in Figure 5.3 has two conflicts (students s5 and s6 are sectioned into two classes that overlap in time).

This solution has two neighbors with a better solution. These two neighbors are shown in Figure 5.5.

The neighbor M1 swaps students s5 and s6 with students s2 and s3 (from class c3 to c4). However,

this move is not possible since the clusters do not allow separating students s2 and s3 from s1. The

neighbor M2 results from just sectioning students s5 and s6 to class c6 instead of c5. This change

does not require breaking any clusters and reduces the number of conflicts to zero.

5.3 Disruptions

Figure 5.6 illustrates the process of solving the university timetabling problem subject to disrup-

tions. The process starts with a problem instance and a timetable, and ends when a new feasible
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cluster.
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Figure 5.6: Algorithm schema to solve university timetabling problems subject to disruptions.

timetable is found. Recall that each problem instance is pre-processed before generating the encod-

ing.

In this case study, we consider the following disruptions: invalid time and invalid room. These dis-

ruptions reduce the domain of a specific class c in terms of available time slots or rooms. Disruptions

in the student enrollments would only cause changes in the student sectioning part. The problem

definition has the underlining the assumption that all the rooms in the domain of class have enough

capacity for the students attending. As our original solutions are sub-optimal we do not consider

disruptions in the enrollments.

Invalid Time: The time slot t is no longer available for class c:

¬ttc. (5.7)

Invalid Room: The room r is no longer available for class c:

¬rrc . (5.8)

When recovering from disruptions, we apply lexicographic optimization with two objectives: (i) the

HD and (ii) the overall quality of the solution (computed based on the four objectives defined above).

This way, we can take advantage of the disruption to improve the quality of the solution.

5.4 Experimental Evaluation

In this section, we discuss the main computational results obtained. This section is organized

as follows. Section 5.4.1 describes the experimental setup used to validate UniCorT is described.

Section 5.4.3 discusses our results for UCTTP. Section 5.4.4 presents a summary of the results.

Finally, Section 5.4.5 shows a comparison between UniCorT and the other solutions proposed in the

context of the ITC 2019.
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5.4.1 Experimental Setup

The experimental evaluation targets the performance of UniCorT on the benchmark from the ITC

2019 [58]. The benchmark is divided into three groups of instances (early, middle, and late). All

results were verified by an online validation tool provided by the organizers 1.

The XML parser used to parse the ITC 2019 input file was RAPIDXML2.

UniCorT was implemented in C++ and is available on github (https://github.com/ADDALemos/

MPPTimetables/). UniCorT uses the MaxSAT solver TT-Open-WBO-Inc [33, 184]3 as a black box. TT-

Open-WBO-Inc is a linked MaxSAT solver [32] that has different algorithms and encodings to solve a

given problem. The results shown in this thesis correspond to the best configuration of the parameters

of the solver. The solver was executed with the following parameters: -algorithm=6 corresponding

to the use of linear search with the clusters algorithm [34]; -pb=2 corresponding to the use of the

adder encoding [185] to convert the PB constraints to CNF; and -amo=0 corresponding to the use of

the ladder encoding [186] to convert exactly one constraints to CNF.

The linear search with the clusters algorithm uses a lexicographic optimization objective [187].

Recall that the ITC 2019 considers four optimization objectives:

• the cost of assigning a class to a room (Room);

• the cost of assigning a class to a time slot (Time);

• the number of student conflicts (Students);

• the weighted sum of violated soft constraints (Distribution).

Each instance has its own weight for each objective. We have computed the worst possible penal-

ization for each objective and used the obtained values to configure the lexicographic optimization.

The experiments were performed on a computer with Fedora 14, with a 2.6 GHz CPU and 128 Gb

of RAM.

All results were obtained when running the solver with a time limit of 6 000 seconds. It was ob-

served that increasing the execution time would lead to spending more time in memory management

than actually solving the problem. For example, no improvements in the solutions to solve the ITC

2007 benchmark were observed when using 10 000 seconds as the time limit as in Asín Achá and

Nieuwenhuis [70].

5.4.2 Data characteristics

Table 5.3 shows the different characteristics of the instances. One can see that the instances are

distinct from each other. Instances from iku* are the largest in terms of classes. However, they do

1https://www.itc2019.org/validator, accessed in August 2020.
2RAPIDXML is available at http://rapidxml.sourceforge.net/, accessed in February 2019.
3TT-Open-WBO-Inc won both the Weighted Incomplete tracks at MaxSAT Evaluation 2019. The results are available at

https://maxsat-evaluations.github.io/2019/.
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Figure 5.7: Distribution of variables for each sub-instance. Each pattern represents a different sub-instance.

not have students or MaxBlock/MaxBreak. They have one order of magnitude more variables than

the next largest instance (despite not having students). The muni-f* instances have a particular small

search space in terms of possible rooms per class (only 4).

5.4.3 Computational Evaluation

In this section, we discuss the results of UniCorT using different configurations.

Pre-processing Techniques

Recall that we discussed four pre-processing techniques: (i) identification of independent sub-

instances; (ii) merging students into clusters; (iii) reducing the classes domain; and (iv) removing

redundant constraints.

Identification of independent sub-instances. The identification of independent sub-instances al-

lows splitting the problem without losing solutions. In the end, it is just a question of combining all the

solutions.

The distribution of variables for each sub-instance created is shown in Figure 5.7. The sub-

instances are identified with different patterns. On average, we can split an instance into 3 sub-

instances. In most cases, the instances have one large sub-instance and two smaller sub-instances

(except for the instances pu-d5-spr17 and yach-fal17 ). All instances have a sub-instance with at-least

50% of the total number of variables. Most sub-instances are small and have less than 15% of the

variables of the original instance.

Figure 5.8 shows the execution time for each sub-instance for the best configuration of the solver.

The best configuration is the same for all instances. The patterns identify the sub-instances. The pat-

terns shown in Figure 5.7 and missing from Figure 5.8 are sub-instances with neglectable execution

times. Note that small instances require a smaller amount of the total execution time of the instance.

On average, 70% of the execution time is spent on the largest instance, and the rest is uniformly
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Table 5.3: Data sets per university (instances sorted by # of variables).

|C| Avg. Avg. |S| (k) #MaxBreak #MaxBlock # Var. (k)|Rc| |Pc|
yach-fal17 417 4 43 1 0 0 19
nbi-spr18 782 4 38 2 0 0 35

tg* Avg. 693 11 24 0 0 0 42
Median 693 11 24 0 0 0 42

mun-f* Avg. 743 4 44 1 0 3 45
Med. 700 4 30 1 0 2.5 38

mary* Avg. 916 14 12 4 0 0 47
Med. 916 14 12 4 0 0 47

lums* Avg. 494 26 43 0 0 0 82
Med. 494 26 43 0 0 0 82

bet* Avg. 1 033 25 23 3 24 19 140
Med. 1 033 25 23 3 24 19 140

pu* Avg. 3 418 12 33 28 16 0 196
Med. 1 929 12 30 31 17 0 125

muni-pdf* Avg. 2 586 15 53 4 0 13 374
Med. 2 526 17 56 3 0 10 373

agh* Avg. 1 955 34 89 3 15 0 380
Med. 1 239 10 75 2 14 0 340

iku* Avg. 2 711 25 34 0 0 0 1 050
Med. 2 711 25 34 0 0 0 1 050

allocated to the smaller instances. However, this technique has a significant impact on the memory

spent.

Globally, this technique allows reducing the execution time by 8% and the memory consumption

by 18%. Note that we considered a sequential execution of all sub-instances. Hence, further gains

could have been achieved with parallel execution.

Merging Students. Merging students with the same curricular plans allows reducing the number

of variables and constraints on the student sectioning part of the problem. Figure 5.9 shows the

percentage of the total number of variables required to model students in different clusters. The

clusters represent the percentage of the total number of variables required to model students with

different curricular plans. However, this type of clusters cannot be applied in practice since they would

remove feasible solutions (see Example 5.3). Alternately, the GCD clusters represent the cluster

divided using the GCD method discussed above. Recall that the number of variables needed to

model students is influenced by the number of classes per enrolled course (see Example 34).

Most instances have a significant bottleneck in the creation of clusters caused by the hard limit

on the number of students enrolled in a class. On average, the GCD clusters are 40 points worse

than a normal cluster. On average, one can reduce the number of variables related to students up

to 23%. Instances nbi-spr18 and yach-fal17 exhibit a larger reduction on the number of variables

(around 50%). On the other hand, instances pu* exhibit the smallest reduction (14%).

Reducing the Class Domain. Reducing the class domain implies reducing the number of possible

time-room assignments for each class. Removing a priori time slots results in removing on average
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Figure 5.9: Number of variables required to model students sectioning with increasing clustering strategy.

10% of the number of possible assignments (i.e., the number of variables).

If our models had only one type of decision variables, we could take full advantage of this pre-

processing technique. However, as our models have multiple different types of decision variables, we

can only remove the options that are unavailable for all rooms. Nevertheless, we can still remove on

average 4% of the options. The possible gains from removing all possible pairs a priori is outweighed

by the number of constraints needed when using only one decision variable.

Removing Redundant Constraints. The goal here is to remove redundant constraints. In our work,

we remove only StudentConflict constraints. These constraints sometimes overlap with SameAtten-

des constraints. On average, we are able to remove 6% of the student conflicts. This step is important

to reduce the memory consumption when the MaxSAT solver is handling student sectioning.

The structure of the local search procedure does not benefit directly from the application of this
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technique. The local search only solves the student sectioning problem and thus never considers

SameAttendes constraints. Nevertheless, the local search is performed in the neighborhood of the

original solution. Therefore, the quality of the solution found by the MaxSAT solver is important.

MaxSAT versus ILP

In the previous chapter, we proposed novel ILP encodings to solve the specific course timetabling

problem in IST. Therefore, our first approach to solve the ITC 2019 problem was a direct expansion

of the MIXED model4 proposed in the previous chapter.

The ILP encoding was able to solve only the smallest 5 instances. This value increased to 10

with the novel pre-processing techniques described in this chapter. These results can be explained

by the combination of a large number of classes and time options. Recall that at IST we solved the

timetables for a single week. This type of decomposition cannot be used here, as the classes have a

diverse set of weeks to be taught. Clustering classes per week would make the problem infeasible.

The MaxSAT encoding is similar to the ILP encodings. The difference in performance can be

explained by the way the solver deals with the different types of constraints in the ITC 2019 instances.

The ITC 2019 constraints are of a different nature and thus create many more binary clauses than

the IST case study. MaxSAT solvers perform better with binary clauses. This can be explained by the

nature of the unit propagation procedure of the solvers [31, 188].

We experiment with different time limits. However, the major limitation of both approaches is

memory. When we relax the time limit, the ILP solver will stop improving and start managing memory.

Nevertheless, mixed-integer linear programming is a good approach to solve the ITC 2019. In fact,

the winner[71] used an encoding similar to the one proposed in this paper. The main difference lies

in the decomposition of the problem. Recall that this decomposition allows the algorithm to solve the

problem in parallel with solid heuristics to guide the search. Furthermore, Holm et al.[71] required ten

days of execution time to find the best solutions5. The impact of the parallelization was essential to

remove the memory issues that we have experienced.

MaxSAT Solving

This section evaluates the MaxSAT part of UniCorT with different Weighted Conjunctive Normal

Form (WCNF) encodings. Recall that we split the course timetabling from the student sectioning

problem. For this reason, the Direct course timetabling encoding described in this thesis can be

seen as an expansion of the work of Asín Achá et al. [70]. However, the addition of the concept of

weeks and the new pseudo-Boolean constraint caused the problem to have worse performance than

expected without string pre-processing and incremental algorithms. Furthermore, the notion of weeks

and days in this competition can be exploited with Linked encoding.

Figure 5.10 compares the total number of hard clauses with the number of soft clauses generated

by our encodings. It is clear that the number of soft clauses is considerably smaller for all instances.

4The model with the best results for the case study at IST.
5The comprehensive overview of their tool is available at: https://www.itc2019.org/papers/itc2019-holm-slides.pdf.
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Figure 5.10: Percentage of soft clauses for each instance.

On average, the number of soft clauses is 2% of the global number of clauses. Most instances that

timed out have a higher percentage of soft clauses, but these instances also have a larger overall

number of soft clauses. With this difference in mind, we focused more on the hard constraints as they

are dominant.

UniCorT is able to find a solution within the time limit for all instances using the best approach (see

Table 5.5). However, the solver was not able to prove optimality for the competition instances, either

due to time or memory limitations. We were only able to prove optimality in the four test instances

of the ITC 2019. As these test instances do not enter in the competition and their characteristics are

completely different (much simpler), the results are not shown in this thesis. Note that the solver used

is incomplete. The solvers submitted to the incomplete track do not have to be complete, although

some of them are if given enough time. The linear search and clustering algorithm do not guarantee

optimality due to the creation of clusters. Nevertheless, in these instances, the algorithm is able to

prove optimality since there is only one cluster created.

Figure 5.11 compares the number of hard clauses generated by the WCNF encoding and the

CPU time needed to find the best solution for each instance considering two approaches to encode

the problem (Direct and Linked). Recall that the number of soft clauses is, on average, 4% of the

global number of clauses. In general, one can see that the instances with a larger number of hard

constraints require more time to be solved. The Linked encoding reduces the number of constraints

needed per instance. In practice, 15 more instances are solved within the time limit.

The Direct encoding requires, on average, 7 × 1010 more constraints than the Linked encoding.

This can be explained by the fact that most constraints are only related either to an hour, day, or week.

There are only a few constraints that involve all weeks, days, and hours simultaneously. Furthermore,

one can reduce the size of the constraints by the usage of auxiliary variables (e.g. sd). For this

reason, the usage of only one variable for the time allocation problems creates redundant constraints.

In the case of the Linked encoding, for most instances, the solver requires only a short amount

of time to produce the best solution. Figure 5.12 shows a comparison between the normalized cost
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Figure 5.12: Normalized cost versus CPU time for each instance with Linked encoding. The yellow square
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of the best solution found and the CPU time in seconds. The figure shows the normalized cost since

each instance has its own weights on the optimization objective and therefore would be impossible

to compare them in the same graph. One can see that the best solution for most instances is found

early on (within 2 000 seconds). In fact, for only 7 out of 30 instances, the quality has been improved

after 2 000 seconds.

MaxBlocks and MaxBreaks. Figure 5.13 shows the percentage of clauses generated from

MaxBlocks and MaxBreaks constraints for each instance. One can see that these constraints gener-

ate a significant number of additional clauses. In the worst case, we need to generate over 35% more

clauses to deal with these constraints, thus making it impossible to solve even small instances.
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Figure 5.14: Percentage of clauses generated with and without removing symmetries for the Linked encoding.

Symmetry breaking. Symmetry breaking procedures have been successfully applied to solve uni-

versity course timetabling problems [146]. Symmetry breaking used in MaxBlock and MaxBreak

constraints is an important step to solve more instances. With symmetry breaking, we are able to

model the MaxBlock and MaxBreak constraints adding less than 1% of the new constraints.

Figure 5.14 shows the number of constraints generated with and without symmetries using the

Linked encoding for the instances with MaxBlock and MaxBreak constraints. As one can see, we

reduce the number of clauses, on average, by 65% (dashed green line). In the best case, we can

reduce the number of clauses from 1010 to 109.

Decomposing UCTTP. Our best approach decomposes the UCTTP into two sub-problems: (i)

course timetabling and (ii) student sectioning. This decomposition may remove the optimal solu-

tion. However, it does not remove any feasible solution. The goal of the decomposition is to reduce

the size of the problem, especially for instances with a large number of clusters of students. The
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Figure 5.15: A comparison of the CPU time, in seconds, when solving the CTT+SS problems separated or the
UCTTP as a whole.

decomposition allows us to solve 6 more instances. Figure 5.15 compares the performance of the

solver before and after decomposing the problem in terms of CPU time.

Iterative approach. The largest instances (e.g. iku*) make the proposed exactly one constraints

to be impractical for the solver to handle. Recall that the encoding of exactly one constraints in CNF

depends on the number of variables (nv) involved in the constraint. The experiments performed by

Bittner et al. [68] showed that most instances with exactly one constraints with nv > 26 result in a

memory overflow. In our case, nv depends on the number of possible time or room assignments for

each class. One of the major bottlenecks relates to exactly one constraints for the time options of

a class. The decomposition into two sub-problems: (i) course timetabling and (ii) student sectioning

does not reduce nv.

Next, we propose an iterative algorithm to solve the aforementioned problem. The algorithm starts

by adding only the time options that have a zero penalty. The algorithm checks in each iteration if a

feasible solution is found. If that is the case, the MaxSAT solver starts optimizing the solution. In each

subsequent iteration, we increase the value of the penalty, thus increasing the search space. A new

iteration occurs every time one of two things happens: (i) the solution is infeasible or (ii) we found

an optimal solution for this sub-problem. The algorithm ends when one of two things occurs: (i) the

optimal solution is found for the whole problem or (ii) the time limit is reached.

Table 5.4 shows the number of iterations required to find a feasible solution and the total number of

iterations performed before the time limit is reached. One can see that, on average, only one iteration

occurs after the first feasible solution is found. This can be explained by the fact that iterations leading

to feasible solutions have larger execution times than iterations leading to the infeasible solution since

they require optimization. All iterations but the last one are only solving a decision problem with no

feasible solution. For example, the first 32 iterations to solve pu-d9-fal19 do not find a feasible solution

and the solver only starts optimizing when a feasible solution is found (iteration 33). No more iterations
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Table 5.4: Comparison between the number of iterations required to find a feasible (#SAT) solution and the
number of iterations performed before the time limit is reached (#Run).

Inst. agh-fis-spr17 agh-ggis-spr17 bet-fal17 iku-fal17 mary-spr17
#SAT 5 6 5 3 5
#Run 6 6 6 3 6
Inst. muni-fi-spr16 muni-fsps-spr17 muni-pdf-spr16c pu-llr-spr17 tg-fal17
#SAT 27 2 22 41 7
#Run 30 2 23 42 9
Inst. agh-ggos-spr17 agh-h-spr17 lums-spr18 muni-fi-spr17 muni-fsps-spr17c
#SAT 5 3 2 2 2
#Run 7 6 4 6 2
Inst. muni-pdf-spr16 nbi-spr18 pu-d5-spr17 pu-pro j-fal19 yach-fal17
#SAT 27 12 55 34 3
#Run 29 14 57 34 4
Inst. agh-fal17 bet-spr18 iku-spr18 lums-fal17 mary-fal18
#SAT 5 3 2 3 5
#Run 5 5 2 4 7
Inst. muni-fi-fal17 muni-fspsx-fal17 muni-pdfx-fal17 pu-d9-fal19 tg-spr18
#SAT 9 3 5 33 4
#Run 11 3 5 33 7

are performed given that in the meantime, the time limit is reached.
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Figure 5.16: A comparison of the cost, in terms of students conflicts, before and after applying the LS procedure.

Local Search

Our straightforward implementation of this method allows improving the quality of the solution

without adding significant overhead. On average, the method requires only 6% of the overall execution

time. Figure 5.16 compares the number of conflicts before and after this procedure. On average, the

procedure reduces the number of conflicts by 22%.
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5.4.4 Final Results

Table 5.5 shows the best cost value found by UniCorT, in its best configuration, per optimization

objectives and instances. Note that the penalties associated with the three optimization objectives

(student conflicts, allocation penalty, and additional soft constraints) vary from instance to instance.

Hence, it is difficult to make a fair comparison. Nevertheless, one can see that the student conflict

objectives, overall, are the most costly, even with the LS method. The muni* instances are on average

the worst in terms of room allocation penalty. This can be explained by the structure of these instances

since they have fewer room options (Rc) and a large penalty associated.

Table 5.5: The cost per optimization objectives and instance.

Instance Cost Students Time Room Distribution
agh-fis-spr17 35 139 3 555 2 248 2 312 404

agh-ggis-spr17 161 118 25 558 2 474 6 692 1 116
bet-fal17 296 015 942 224 8 963 8 932
iku-fal17 29 929 0 22 444 5 805 56

mary-spr17 51 147 1 114 1 376 805 7 290
muni-fi-spr16 19 314 3 286 352 628 120

muni-fsps-spr17 211 142 2 040 58 292 360
muni-pdf-spr16c 567 900 15 678 58 316 27 600 4 361

pu-llr-spr17 68 003 7 642 1 169 2880 30
tg-fal17 6 774 0 1 792 30 158

agh-ggos-spr17 79 745 8 230 6 045 9 045 358
agh-h-spr17 55 887 1 848 1 442 1 039 2 656
lums-spr18 119 0 0 49 14

muni-fi-spr17 18 080 3 212 284 958 21
muni-fsps-spr17c 618 217 6048 411 1 027 141
muni-pdf-spr16 310 994 7 853 38 680 27 094 900

nbi-spr18 49 924 7 196 5 946 9 208 5
pu-d5-spr17 17 513 380 1130 391 712
pu-proj-fal19 126 568 9020 5750 11110 1628
yach-fal17 32 198 4 856 8 1 008 687
agh-fal17 142 687 15 594 3 993 3 880 2 991
bet-spr18 353 920 826 188 8 644 10 968
iku-fal18 45 537 0 36 838 6 299 80

lums-fal17 813 0 60 613 16
mary-fal18 44 097 4 107 596 665 234

muni-fi-fal17 19 683 3 810 86 289 9
muni-fspsx-fal17 401 155 3 878 323 1 215 271
muni-pdfx-fal17 228 560 7 263 13 045 23 045 1 760

pu-d9-fal19 71 903 2 101 3 666 7 453 410
tg-spr18 31900 0 1942 3996 1201

5.4.5 Comparison with the State-of-the-Art

The ITC 2019 continues to keep an active research branch with updated results. In total 23

participants evaluated their instances with ITC 2019 tool. However, only 13 participants submitted a
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Table 5.6: The best results, in terms of points, on the ITC 2019 benchmark as May 30, 2021
(https://www.itc2019.org/score).

Position Author Early Middle Late Total
1. Holm et al. [71] 97 126 226 449
2. UniTime 64 123 195 382
3. Rappos et al. [72] 58 61 123 242
4. Gashi and Sylejmani [1] 21 55 100 176
5. Er-rhaimini [86] 18 45 96 159
6. Alexandre Lemos, Pedro T Monteiro and Inês Lynce 11 30 111 152
7. I Gusti Agung Premananda 5 25 54 84
8. Jason C.H 2 10 45 57
9. Marlúcio Alves Pires 7 17 27 51
10. Georgia Ioanna Makraki 0 3 12 15
11. Eduardo Flores 0 3 2 5
12. Jerry Wang 0 2 0 2
13. Quentin Peña 0 0 1 1

valid solution for at least one benchmark instance (not considering test instances). The results, in

terms of points6, on May 30 of 2021, are shown in Table 5.6. Recall that these results are obtained

without any time and memory limits. Note that solutions with 0 points do not mean the approach did

not solve any instances. The points are assigned F1-style, and thus if your solution has a low quality,

you may have 0 points.

The simulated annealing approach proposed by Gashi and Sylejmani [1] solves only 16 out of 30

instances within 6 000 seconds. For the remaining 14 instances, the provided solutions are infeasible,

violating hard constraints. On average, the provided solutions violate 12 hard constraints. Note that

the simulated annealing approach, without a time limit, can continue to improve its quality. Given

enough time, this approach is able to find solutions to all instances.

Figure 5.17a compares UniCorT with the simulated annealing tool [1] in terms of the execution

time needed to find the first feasible solution. One can see that, for all instances, UniCorT finds

a solution quickly. Note that the cases where simulated annealing takes 6 000 seconds mean no

feasible solutions were found. Figure 5.17b compares the cost of the solution found by simulated

annealing and by UniCorT. Solutions that are not feasible are shown in Figure 5.17b with a cost of

900× 103. One can see that UniCorT finds a solution with better quality for 4 instances. On the other

hand, simulated annealing is able to find 12 solutions with better quality. However, recall that UniCorT

finds a solution on more than 14 instances within the time limit. The reason for the improved quality

found by simulated annealing is the way this approach deals with student conflicts. The 4 instances

for which UniCorT is able to find a better solution have in common the fact that they do not have

students.

Figure 5.18 shows the quality of the solution found by the simulated annealing tool overtime with

the time limit of 6 000 seconds. One can see that it is slowly but continuously improving the quality of

the solution. The regular jumps where the quality of the solution gets significantly worse are justified

by the restart strategy. This process is used to avoid local minima [189]. Figure 5.18 also shows that

6The points are calculated based on the rules described in [58].
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Figure 5.17: Comparison between the Gashi and Sylejmani [1] approach and UniCorT in terms of: (a) the
execution time and (b) the cost of the best solution.
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Figure 5.18: Quality of the solution found by Gashi and Sylejmani [1] approach over time.

the three instances only find their first feasible solution after 4 000 seconds. Note that UniCorT has

only one instance for which the algorithm takes more than 4 000 seconds (see Figure 5.12).

To sum up, UniCorT is very effective at finding a solution that does not violate hard constraints.

For this reason, UniCorT is able to find feasible solutions for all instances within the time limit. Fur-

thermore, our approach is able to find a good solution early on. However, the simulated annealing

tool is able to find solutions with better cost if one considers larger time limits as the solver contin-

ues to improve the quality of the solution with low memory expenditure. Indeed, we have observed

that, given enough time, a feasible solution is found for all the instances. In the worst case, 357.437

seconds are needed to find the first feasible solution.

The organizers of the ITC 2019 made available their solution based on the UniTime solver.

UniTime and UniCorT are both able to find a feasible solution within the time limit. Figure 5.19a

shows the execution time required to find the best solution. One can see that UniCorT finds the best

solution faster than UniTime. As a matter of fact, our solution is 1.4× faster than UniTime. However,

UniTime is able to find a solution with better quality, in particular when considering student conflicts.

Figure 5.19b compares the cost of the best solutions found by UniTime and UniCorT. The solution

with values on or close to the line (i.e. solutions with similar values for both solvers) are solutions to
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Figure 5.19: Comparison between UniTime and UniCorT in terms of (a) the execution time and (b) in terms of
the cost of the best solution.

Table 5.7: Average distance to best-known solutions for the ITC 2019 benchmark organized by universities. Bold
represents a objective where UniCorT finds a solution equal to or better than the best-known solution.

Avg. distance to best know cost
Family of Instances Students Time Room Distribution

agh* 32 951 7 914 3 476 4 509
bet* 5 -7 0 0
iku* 0 -8 9 0

lums* 0 -87 -76 1585
mary* 24 410 666 469 11 877
muni* 173 759 28 371 5 224 7 096

nbi-spr18 26 148 -1 664 95 758 0
pu* 22 640 -4 321 -26 -63
tg* 0 468 -414 4 420

yach-fal17 22 820 40 548 6 720
Benchmark Avg 173 759.1 28 371.7 95 758 11 877.5

instances without students.

Table 5.7 compares the distance between the cost of the solution found by UniCorT and the best-

known values for that instance7. The values are separated by objectives. Note that each instance

has its own weights. To improve readability, the table is organized by the university. One can see

that StudentConflicts is clearly the main difficulty for UniCorT. The time allocation penalty is not that

difficult. This is in part justified by the dynamics of the iterative approach of UniCorT. Note that the

best known values are obtained in uncertain conditions (i.e. without any time and memory limitations).

The muni* instances are the most difficult for UniCorT. This can be explained by the structure of

the instances, namely, the number of time slots and the number of possible rooms. Those instances

are also the ones that have a larger weight regarding the StudentConflicts objective (in the extreme,

they have weight 100).

The mary* instances are the ones with more violations of distribution constraints, even though

they are neither the instances with the largest number of constraints nor with the largest weight in

this objective. The main characteristic of these instances is the number of distribution constraints per

class. In other words, the mary* instances are among the most over-constrained instances.
7Obtained from https://www.itc2019.org/, accessed in August 2020.
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Table 5.8: Results for the Invalid Room disruption. δHD measures the number of perturbations and δcost mea-
sures the change in the global quality of the solution.

Invalid Room
Avg. Time (s) Med. Time (s) Avg. δHD Med. δHD Avg. δcost Med. δcost

E
ar

ly

agh-fis-spr17 1 460.4 1 612.7 22 29 42 39
agh-ggis-spr17 2 321.2 2 210.8 11 8 0 1
mary-spr17 231.5 253 25 29 54 55
muni-fi-spr16 2 133.2 2 317.9 15 18 4 6
muni-fsps-spr17 812 999.1 13 18 0 0
muni-pdf-spr16c 4 114.8 4 101.2 42 38 26 21
pu-llr-spr17 142.5 143 35 36 6 6
tg-fal17 1 208.8 1 247 100 112 18 19

M
id

dl
e

agh-ggos-spr17 3 212.6 3 212.9 40 40 640 639
agh-h-spr17 679.9 699.9 19 20 57 60
lums-spr18 913.9 921.8 18 18 0 0
muni-fi-spr17 80.8 99 9 13 36 37
muni-fsps-spr17c 888.4 977.3 39 44 20 20
muni-pdf-spr16 1 354.5 1 444.1 89 94 1 335 1 336
nbi-spr18 3 701.7 3 781 14 13 33 35
yach-fal17 415.56 420 56 66 84 86

La
te

lums-fal17 999.9 1 000.2 20 20 0 0
mary-fal18 788.9 812.1 20 24 40 42
tg-spr18 813.8 888 5 8 100 100
muni-fi-fal17 248.9 250.1 9 10 36 30

5.4.6 Minimal Perturbation Problem

UniCorT was compared with an integer programming approach shown in the previous chapter.

The ILP approach discussed in the previous section was extended with the constraints (5.7) and

(5.8). The results showed that the integer programming approach is able to find the optimal solution

for the MPP but only for a subset of instances compared to those solved by the MaxSAT approach.

Furthermore, the MaxSAT approach is much faster.

There is no historical data available for the ITC 2019 benchmark. For this reason, we used the

disruption profile obtained from the IST analysis shown in the previous chapter. Therefore, the prob-

ability of a disruption to occur is extracted from the IST case study. This fact, combined with the

constraint format, caused most disruption to have no impact. For example, changing the number of

students enrolled in a class does not make the solution infeasible in ITC 2019.

Our approach is able to find feasible solutions to all the disruptions tested. Moreover, the solver is

able to find an optimal solution for all disrupted instances. Despite the fact that the disruptions only

add new constraints, one can occasionally improve the cost of the solution. This can be explained by

the fact that our original solutions are sub-optimal. Otherwise, the new solution could only, in the best

case scenario, be as good as the original one.

The results for the disrupted instances with invalid room and invalid time are shown in Tables 5.8

and 5.9, respectively. The tables show the average and median required CPU time to find an optimal

solution, as well as the distance between the two solutions (δHD) and the change in the global cost

(δcost). It is important to take into consideration that the value of δHD is directly linked to the size of

the instance due to the process of generating disrupted instances.
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Table 5.9: Results for the Invalid Time disruption. δHD measures the number of perturbations and δcost measures
the change in the global quality of the solution.

Invalid Time
Avg. Time (s) Med. Time (s) Avg. δHD Med. δHD Avg. δcost Med. δcost

E
ar

ly

agh-fis-spr17 1 596.22 1 711.1 5 001 5 003 4 6
agh-ggis-spr17 2 358.2 2 100.4 4 3 0 3
mary-spr17 381.2 380.1 0 4 0 6
muni-fi-spr16 1 784.2 1 794.2 16 18 0 0
muni-fsps-spr17 212.4 218.4 45 46 0 0
muni-pdf-spr16c 2 992.1 3 001.2 6 6 4 4
pu-llr-spr17 342.6 356 122 126 10 10
tg-fal17 1 408.7 1 484 2 021 2 070 25 25

M
id

dl
e

agh-ggos-spr17 5 465.8 5 466.1 92 93 276 139
agh-h-spr17 919.1 920.9 97 98 290 289
lums-spr18 961 978.8 6 446 6 436 0 0
muni-fi-spr17 40.12 39 144 140 433 423
muni-fsps-spr17c 500.3 498.8 137 136 0 0
muni-pdf-spr16 1 035.3 1 030 636 630 6 363 6 364
nbi-spr18 3 803.8 3 991.1 164 186 3 284 3 289
yach-fal17 112.56 111 100 100 0 4

La
te

lums-fal17 1 085.58 1 100.1 6 777 6 787 0 0
mary-fal18 800.12 812.1 269 270 807 900
tg-spr18 933.2 934 568 559 1 704 1 705
muni-fi-fal17 149.2 140.2 101 108 50 51

Figure 5.20 shows the CPU time per university for the instances with and without disruptions. In

most cases, less time is needed to solve a problem instance subject to small disruptions than to solve

the original problem instance. If the disruptions cause no perturbations in the original solution, then

almost no time is needed (only parsing time). However, our disrupted instances were subjected to

significant disruptions. In most cases, the solver is able to find the optimal solution taking around

the same time it took to find the best solution without disruption. The time spent to find a solution

increases with the number of perturbations required.

As one can see in Figure 5.20, the invalid room disruptions are, in most cases, easier to sort out
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Figure 5.20: A comparison of the CPU time per disruption scenario and university.
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Figure 5.21: (a) Room domain size (Rc) versus the normalized number of perturbations (δNHD) for the room
disruptions. (b) Number of classes involved on constraints of type same (log scale) versus the number of per-
turbations (HD) for the time disruptions (log scale). Data points represent the results and the line the best fit
function.

than invalid time disruptions. The CPU time is shorter since fewer perturbations are needed. The

reduction in time can also be explained by the fact that a smaller number of hard constraints are,

in fact, related to rooms. The solutions found are usually closer to the original one. This can be

explained by the fact that most instances have fewer rooms than the time slots available.

The muni-f* instances are, in most cases, the most difficult instances to solve after invalid room

disruptions. This can be explained by the fact that these instances are very tight in terms of room

space. On average, these instances only have 4 possible rooms by class versus an average of 14 in

the other instances.

In the previous chapter, we used a warm-start to guide the search when solving the MPP. The

execution time did not require the use of more advanced methods. However, for the instances of the

ITC 2019, the execution time is significant, and one can improve it.

As we are only adding new constraints, all discarded paths in the search tree continue to be

discarded. For this reason, we can store the search tree and its decisions. When disruption occurs,

we only need to add the new constraints, correct the bounds/ partial solution and continue the search.

This method has a significant advantage in execution time. On average, we reduce the execution

time by 10%. We continue to spend more time when the original solution is far from the new optimal

solution. This can be explained by the fact that we are taking less advantage of the original search

(implying more backtracks).

The incremental method could be further improved using a core guided algorithm (similar to the

one discussed in the next chapter). The application of the algorithm is too straightforward, and it has

some disadvantages. This problem is discussed in the future work section.

To evaluate the quality of the fittings, the following metrics were defined. Root mean square

error (RMSE) has a range from 0 to∞, where the best fit model has a value closer to zero. Coefficient

of determination (CD) has a range between 0 and 1, where the best fit model has a value closer to 1.

To perform the fitting, we used the Microsoft Excel Solver [176].

Figure 5.21a shows the relation between the room domain size on δHD. The RMSE of the fit

function is 0.04. The CD is 0.95. Note that, for fairness, we normalized the value of δHD. The
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normalization simply takes into account the number of disruptions generated to the instance (δNHD).

The lums* instances are the ones that have the largest δHD when tested subject to invalid time

disruptions (see Table 5.9). This fact can be explained by the large number of constraints forcing the

classes to be in the same allocation slot (SameWeek, SameTime, SameDay and SameStart). These

constraints force a chain of perturbations for a single disruption. Figure 5.21b shows the relation

between the number of classes involved in constraints of type Same and the δHD. The RMSE of the

fit function is 131.8. The CD is 0.11.

We consider the HD as the distance metric for the ITC 2019 benchmark. All our variables are

Boolean, and thus the Manhattan distance would have the same result as applying the HD. In the

IST case study, we use a metric weighted on the number of students affected (WHD). Recall that this

type of metric is essential when solving the mid-semester changes. In the ITC 2019 benchmark, the

course timetabling is split from the student sectioning. Our approach solves this problem separately,

making the weighted metric harder as we may not know the actual number of students enrolled.

Furthermore, it adds a high cost. The quality of the solution decreases by 15%. Table 5.10 shows

the comparison of results when considering WHD and HD as optimization criteria. Note that negative

values represent results that are better when optimizing WHD. Naturally, optimizing WHD reduces the

number of students affected in the instances with students. Optimizing the students involved has a

negative impact on the execution time and on the cost. The only instances that are not affected are

the ones that do not have students.

Table 5.10: Comparison of results when optimizing WHD or HD.

Avg. Time Optimizing δWHD Avg. δWHD Optimizing δWHD Avg. δcost Optimizing δWHD

- Time Optimizing δHD (s) - δWHD Optimizing δHD - δcost Optimizing δHD

E
ar

ly

agh-fis-spr17 201 -8206641 800
agh-ggis-spr17 348.1 -8.464 220
mary-spr17 10 0 100
muni-fi-spr16 312 0 4312
muni-fsps-spr17 33 -164.97 1221
muni-pdf-spr16c 421.5 -17628 40
pu-llr-spr17 45 -3296196 5234
tg-fal17 87 0 0

M
id

dl
e

agh-ggos-spr17 431 -207.368 1260
agh-h-spr17 200 -184.3 2910
lums-spr18 0 0 0
muni-fi-spr17 20 -216 8121
muni-fsps-spr17c 121 -41100 12000
muni-pdf-spr16 222 -1908000 5213
nbi-spr18 50 -328000 123
yach-fal17 0 -5000 100

La
te

lums-fal17 0 0 0
mary-fal18 12 -1076269 1230
tg-spr18 78 0 0
muni-fi-fal17 12 -2010 2001

5.5 Concluding Remarks

This chapter describes a solution tailored to solve ITC 2019 problem instances. The resulting tool

UniCorT solves all benchmark instances from the ITC 2019 within the time limit of 6 000 seconds. A
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simpler version of this tool was placed among the five finalists. UniCorT takes advantage of four pre-

processing techniques that are built upon: (i) self-contained sub-instances; (ii) clusters of students;

(iii) reducing the classes domain; and (iv) removing the redundant constraints. The first method

splits, on average, an instance into 3 sub-instances. Clustering of students reduces the number of

variables used, on average, by 23%. The techniques for reducing the class domain reduce in 10% or

4% depending on the number of domain options. Moreover, UniCorT is able to remove up to 5% of

redundant StudentConflict constraints. Finally, the LS method reduces the number of conflicts by 22%

without adding significant overhead. In addition, the proposed SAT encoding identifies symmetries

when encoding the MaxBlocks and MaxBreaks constraints, thus reducing the search space.

In order to reduce the size of the problem, and consequently the execution time, UniCorT solves

the course timetabling and the student sectioning problems separately. This decomposition does not

remove any feasible solution. However, it may discard the optimal solution. Still, it allows solving more

instances within the time limit. UniCorT solves the course timetabling problem iteratively, incremen-

tally adding new time slots for each class, thus reducing the search space. This reduction does not

affect the optimal solution.

The experimental evaluation compares UniCorT with existing state-of-the-art solutions to solve the

ITC 2019. UniCorT is, in general, faster than other approaches to obtain a feasible solution. However,

the quality of the feasible solution found by UniCorT is worse for instances where StudentConflicts

are strongly penalized.

Moreover, the proposed solution is able to efficiently solve them after the occurrence of the most

common disruptions reported in the literature.
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This chapter describes our different approaches used to solve Train Scheduling Optimization Prob-

lems (TSOP) [8]. The TSOP problem can be informally described as the combination of two com-

plementary problems: (i) a routing problem and (ii) a scheduling problem. The goal of the routing

problem is to find the least cost route for all trains passing through pre-defined stations. The goal

of the scheduling problem is to assign departure times for each train from each station while mini-

mizing the delay, subject to time and route constraints. To find the optimal solution, one must solve

these two problems together. This work was motivated by the 2019 Swiss Federal Railway (SBB)

challenge [190].

This chapter is organized as follows. Section 6.1 formally describes TSOP and explains how it

relates to PESP. Section 6.2 describes the proposed MaxSAT encoding, and Section 6.3 describes

the proposed iterative algorithms. Section 6.4 analyses the evaluation of the different iterative algo-

rithms for both benchmarks. Furthermore, we compare our approach with the current state-of-the-art

solutions. Finally, Section 6.5 concludes the chapter.

6.1 Problem Definition

The transport sector is expected to continue to grow over the next three decades [191]. Moreover,

the reduction in CO2 emissions conceded in the Paris Agreement is expected to promote a shift

towards the use of collective transport, notably railways. According to the UNIFE World Rail Market

Study [192], the railway market growth worldwide will be on average 2.7% between 2021-2023. In

particular, the European Union will invest in energy-efficient railways and will continue transforming

the railway into a seamless European network1. Hence, the size of the railways and the number of

trains are expected to grow in the coming years significantly. Now, more than ever, it is important to

optimize the schedules of trains efficiently.

Here, we formally define Train Scheduling Optimization Problems (TSOP) and Periodic Event

Scheduling Problems (PESP). The definition of the different train based scheduling problems and

their relations have been addressed in the past [104, 105]. Therefore, we also address the differ-

ences between both problems and propose a mapping from PESP to TSOP. Such mapping allows for

PESP and TSOP to be solved using the same approach.

6.1.1 Train Scheduling Optimization Problems

Next, we formalize TSOP based on the description provided by the SBB challenge [109]. A railway

networkR is characterized by a graph (V, E) where V is the set of nodes (representing stations, junc-

tions) and E is the set of edges (representing sections of railway tracks with the same characteristics);

the marker of a node marv, v ∈ V ; the minimum travel time of any train in an edge me, e ∈ E (an

integer value in seconds); the cost of traveling in an edge pene, e ∈ E.

Example 36. Let us consider, the railway network shown in Figure 6.1. The set of nodes is V =

{v1, v3, v4, v5} and the set of edges is E = {(v1, v3), (v3, v4), (v3, v5)}. The markers are marv1=A,

1More information about the European Railway Traffic Management System project is available at http://www.ertms.net/.
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v1 v3

A B C

v5

v4

Figure 6.1: Part of the railway shown in Example 2.1, where one train has to go from A to C. Nodes and edges
represent stations and sections of railway track, respectively. The squares represent a junction point.

marv3=B, and marv4=marv5=C.

Consider a set of train lines T . Each train line t ∈ T corresponds to the route a train must take.

Each train line must be scheduled on the global railway R. Hence, a train line t is characterized by:

an acyclic subgraph (Vt, Et) of (V, E) with all possible routes the train can take; a set of markers Mt

representing the stops the train must do; the earliest (latest) time evt (lvt ) the train may arrive at node

v ∈ Vt (an integer value in seconds); the minimum stopping time of the train on node v is msvt (an

integer value in seconds); and the set of connections Ct between train t and other trains.

Considering the earliest/latest arrival time we can define, for each train and node, the entry time

domain γtv = [evt , l
v
t ]. Not all nodes have limits on entry time. Furthermore, the entry time limits are

only guidelines and not mandatory (soft constraints). In the worst case, γtv = [evit , l
vf
t ] where vi and

vf are the first and last nodes of the train line, respectively.

A route for a train in a train line t is a sequence of connected nodes that pass through all the

required nodes (Mt). Pt is the set of all the possible routes a train can take in the train line t. Each

route is denoted by P it , with i ∈ [1, . . . , |Pt|] and P it ∈ Pt.

Example 37. Recall the train lines shown in Example 36. Let us consider a train line t ∈ T with Vt = V

and Et = E. A train must stop in A, B, and C as they belong to Mt. Hence, there are two possible

routes the train can take: {(v1, v3),(v3, v4)} or {(v1, v3),(v3, v5)}.

A connection c ∈ Ct can be of two types: collision-free or transfer of passengers/cargo. Let us

consider the subset of collision-free (CFt ⊂ Ct) connections. The usage of an acyclic subgraph for

the train route removes the possibility of using the same train in the return trip (e.g. from Sanshui

S. to Bijiang). For this reason, we define the concept of collision-free connection. In a collision-free

connection, a train may share an edge/node. Furthermore, we can use these connections to encode

the merge/split of trains. The second type is the subset of transfer CTt ⊂ Ct connections. Each

transfer is characterized by: two train lines t1 and t2; two nodes v1 ∈ Vt1 and v2 ∈ Vt2 where the

transfer will occur; and the minimum connection time is mct(v1,v2)
t1,t2 .

A solution to the TSOP has two components: (i) the assignment of all trains to the route they take

through the railway ensuring that the train passes through a set of nodes (routing problem); and (ii) an

assignment of entry times to each train at each node on the respective route (scheduling problem). In

this work, we consider a complete discretization of time in seconds.
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Figure 6.2: On the left a PESP network with 4 events, 3 constraints and ω = 40 [2]. On the right, the PESP
network converted into TSOP.

6.1.2 Periodic Event Scheduling Problems

Periodic Event Scheduling Problems (PESP) [40, 193, 194] can be formally defined as follows.

Consider a directed graph (V ′, E′). Each v ∈ V ′ corresponds to a periodic event. All events occur

with periodicity ω. Each e ∈ E′ corresponds to a relation between events and is characterized by

a feasible interval [Le, Ue], where Le(Ue) corresponds to a lower (upper) bound. Consider πv with

v ∈ V ′ as the starting time of event v. The goal is to find πvi , πvj ∈ [0, ω) for every e = (vi, vj) ∈

E such that πvj − πvimodulo ω ∈ [Le, Ue]. Furthermore, we want to minimize the cost given by∑
(vi,vj)∈E′ πvj − πvi − Le.

Example 38. Figure 6.2 shows an example of a graph for a PESP instance. An optimal solution to

this instance is: πva = 0, πvb = 1, πvc = 4 and πvd = 5. This solution has a cost of 0, given by

(πvb − πva − L(va,vb)) + (πvd − πva − L(va,vd)) + (πvd − πvc − L(vc,vd)).

6.1.3 Converting PESP into TSOP

There are many possible approaches to encode PESP as TSOP. We propose a novel approach,

which is described as follows. Different from TSOP, PESP is a cyclic problem. Ergo, we need to break

the cycles. For example, the route {(a, b), (b, a)} is split into two train lines for the same train, and thus

we add a collision-free connection. The first train line is a to b and the second is b to a. The train in

the second train line must only depart after the train arrives in the first train line. Furthermore, the two

trains can be simultaneously in b (the same train).

The constraints of PESP can be divided into two types: (i) the traveling time of a train between

two nodes, and (ii) the connection time between two trains. Yet, a PESP instance does not distin-

guish them (they are all edges). Hence, we must separate the edges in different train routes and

connections. To keep all constraints of the original problem, we must ensure all nodes belong to a

route. However, there are still multiple possible routes. Hence, we define that a route is the longest

set of edges possible while ensuring that all nodes belong to exactly one route. The edges that finish

outside the routes correspond to connections between routes.

Consider n trains in the PESP network. The route of a train tr is represented by E′tr with 1 ≤ tr ≤

n. V ′tr represents all the nodes in the route of the train tr. Furthermore, consider E′con ⊂ E′ as the
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set of connections in the network. Let us convert a PESP network (V ′, E′) into a TSOP network (V ,

E). Recall that each train tr in the TSOP network has a corresponding sub-graph (Vtr, Etr). After the

conversion, the nodes remain the same (Vtr = V ′tr). The conversion of the edges takes into account

the respective interval. Therefore, for each edge e ∈ E′tr we add e to Etr for each value of t ∈ [Le, Ue].

The edges are characterized by the minimal traveling time (me = t) and penalty (pene = t− Le).

Now, the only part missing in the TSOP network are the connections. For each edge (vi, vj) ∈ E′con
we add a new connection c to the set CTtr where vj ∈ Vtr. The connection c is characterized by two

trains tr and tr′ such that vj ∈ Vtr and vi ∈ Vtr′ . The lower bound of the interval corresponds to the

minimum connection time (mct). The upper bound corresponds to the earliest arrival time in the next

node for the first train depart.

Example 39. Let us consider once again the PESP graph shown in Figure 6.2. This graph represents

two trains t1 and t2 that have a connection. Train t1 departs from va and reaches vb within the time

interval [1,3]. Train t2 departs from vc and reaches vd within the time interval [1,2]. Hence, we can

encode the travel time of the trains as two railway graphs as shown in Figure 6.2. Each value of

the time interval corresponds to a new edge with a different minimal traveling time (me). Finally, we

must enforce the arrival of t2 and the departure of t1 are within the time interval [5,10]. We encode

this constraint as a connection between the train on the node va and the train on the node vd. The

mct
(va,vd)
t1,t2 is 5. As vd is the final destination of t2 we do not need to enforce the earliest arrival time

for the next node. This is the only acceptable conversion from PESP into TSOP given that all others

would leave independent nodes. The entry time intervals are γt1a = [0] (as they have no constraints),

γt1b = [1, 3] (due to the traveling time), γt2d = [5, 6] (due to the connection and the traveling time), and

γt2c = [3, 5] (due to the traveling time). These are the smallest entry time intervals one can compute

without solving the problem.

6.1.4 Disruptions and Recovery

Example 40. Consider the railway shown in Figure 6.3. The traveling time of the train from v1 to v3

is 9 minutes, and from v3 to v4 / v5 is 27 minutes. Assume the train cannot leave B before 9AM and

it has a connection with another train at C. This connection requires the train to arrive before 9:42AM

to ensure the passengers can switch to another train. Additionally, constraints require the train to

stop 5 min in C and the minimal traveling time to Z is 14 min. The expected time of arrival in Z is

10AM. Finally, a disruption causes the edge (v5, v8) to be blocked for 4 min. There are three possible

solutions to recover from this disruption: (i) wait for the edge to be free; (ii) change path from (v5, v8)

to (v4, v7); and (iii) change path from (v3, v5), (v5, v8) to (v3, v4), (v4, v7). The simplest solution is the

first one, i.e. to wait. However, it causes a delay of 4 min. The second solution requires one change

to the train path. This change reduces the delay to 2 min. In this case, the delay is caused by the

change of the track. The third solution causes no delay. However, it does require more changes to

the train path. These changes can only occur if the train does not have to reach station C before the
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Figure 6.3: Schedule for a train on a railway network after a disruption occurs in the edge (v5, v8). The bold
red arrows represent the possible solutions. The dashed gray lines represent the time. The size of the rectangle
depends on the duration of the train stop in the corresponding station.

disruption is discovered.

Consider s0 as the original solution to a TSOP problem instance, i.e. the route of each train and

its schedule. s0 is characterized by: the scheduled entry time (sen) of each train (t) in each node (v),

and the scheduled passage (sp) of each train (t) by an edge (e).

In this work, a disruption can be of three types: slowdown, block track, and block train. Recall their

definition in chapter 3.3.5. Each disruption ϛ, independently of its type, occurs at a specific time timeϛ

and has a duration durϛ. If timeϛ + durϛ ≤ minv∈Vt,t∈T sen
t
v then we have the freedom to change

the whole schedule (we call these types of disruptions before). Otherwise, we can only change the

schedule of trains for nodes with entry times after timeϛ (during).

The slowdown disruptions are additionally characterized by the coefficient of velocity speede
ϛ

for a

set of edges e ∈ Eϛ. The coefficient represents the reduction of the train velocity in edge e.

Example 41. Consider a train line (a, b) and (b, c). The train departs from a at 9AM and it is expected

to arrive in c at 3PM. The traveling time m(a,b) = m(b,c) = 3hours. The train is in station b when

the weather conditions cause m(b,c) to change to 6 (speed(b,c)
ϛ = 2). Therefore, the train will arrive 3

hours late. However, there is another track from b to c that is longer but not affected by the weather.

Assuming the traveling time is smaller we can re-route the train and reduce the delay.
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The block track disruptions are additionally characterized by a set of edges e ∈ Eϛ where no train

can pass.

Example 42. Consider a train line (a, b) and (b, c). Furthermore, consider that there are two parallel

edges between (b, c) referenced here as (b1, c1). The traveling time of a train on the track m(b,c) = 3

is shorter than on the track m(b1,c1) = 4. A fallen tree causes track (b, c) to be blocked for 3 hours.

Re-routing the train to track (b1, c1) reduces the delay of the train.

The block train disruptions are additionally characterized by a set of trains t ∈ Tϛ that cannot travel.

Finally, each e ∈ E now has a cost taxie associated with it. This cost represents the financial

implication of subsidizing a taxi for passengers traveling on edge e. This value is only considered

when a threshold δ of delay is exceeded.

Example 43. Consider a train line (a, b) and (b, c). The train departs from a at 9AM and it is expected

to arrive in c at 3PM. The traveling time m(a,b) = m(b,c) = 3hours. A strike causes the train to stop

for 6 hours. In this thesis, we do not consider the rolling stock problem, and thus we cannot assign

a new train. We have neither the data for train capacity (number of passengers) nor the number of

trains available (stock) and their location while not working. The only solution is to wait. The train is

delayed by 6 hours.

In order to recover from the disruption, we cannot create unplanned stops outside the train path,

cancel trains, and miss connections. Hence, the disruption on a train is propagated to all connected

trains. We allow the train two stop in any stop along its train path for as long as it is needed. Adding

stops outside the path would require a knowledge of the global railway that is not available in the

SBB benchmark. The problem with canceling trips is choosing the correct weight. Otherwise, the

algorithm will always choose to cancel trips. Nevertheless, in the real world, these are options that

traffic controllers use.

6.2 MaxSAT Encoding

Our MaxSAT encoding to solve TSOP, has only two sets of Boolean decision variables:

• r t
e represents the passage of train t in an edge e, with t ∈ T and e ∈ Et;

• ent,tiv represents the entry of train t in the node v at time ti, with t ∈ T , v ∈ Vt and ti ∈ γtv.

The usage of two types of decision variables can be seen as redundant. However, it causes a

reduction in the number and in the size of the clauses. Particularly, they allow us to define routes with

fewer clauses. The penalization of routes using only ent,tiv variables would require an unnecessarily

high number of soft constraints. Finally, not all routes need ent,tiv variables (discussed further on), but

most of them need rte variables to identify routes. All possible routes are precomputed along with the

constraints used to propagate the train schedule.
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6.2.1 Routing Constraints

In this section, we describe the routing constraints of TSOP, establishing that each train must pass

through a set of nodes. To ensure that, we add the following exactly one constraint:∑
(vi,vj)∈Et,mar

vj =m

rt(vi,vj) = 1 ∀t∈T,m∈Mt
(6.1)

Now, we only need to connect the dots, i.e. create a full route with edges obtained from the last

constraint. For this purpose, we add the following clause:

¬rt(vi,vj) ∨
∨

vk∈Vt,(vk,vi)∈Et

rt(vk,vi)∀t∈T, (vi,vj)∈Et
(6.2)

The only soft constraint in this part is the penalization of the chosen route. For each t ∈ T, (vi, vj) ∈

Et with pen(vi,vj) 6= 0 we add the unit clause rt(vi,vj) with weight equal to pen(vi,vj).

6.2.2 Time Constraints

In this section we describe the scheduling constraints of TSOP, establishing that each train must

have exactly one entry time associated with each of the nodes it passes through. To ensure this, we

need to define the set O. O is the set of nodes that overlap and thus cannot be visited by the same

train (e.g. if (vi, vj), (vi, vk) ∈ Et then vj , vk ∈ O). O is a set of Os for the railway (Vt, Et). Ergo for

each t ∈ T and O ∈ O we add: ∑
vi∈O

∑
ti∈γvi

t

ent,tivi = 1 (6.3)

In fact, we do not need to have the entry time for all nodes a train passes through. We can

reduce the number of variables by only considering the nodes for which time constraints exist. This

change does not remove any solution. Furthermore, the value ti can be restricted to a subset of γvt

by checking the time constraints of the train. We can propagate the time constraints and minimal

traveling times to reduce the subset (see Example 39). However, the time constraints are soft, and

therefore, this method may cause the solution to be infeasible. For this reason, we use an iterative

algorithm. At each step, γvt is extended (discussed in the next section).

The relation between two consecutive entry times depends on the traveling time and thus on the

route taken by the train. So, we define an auxiliary variable pi
t that represents the passage of train t

on the route i. The relation of this variable to the decision variables is given by:

pit ↔
∧

(vi,vj)∈P i
t

rt(vi,vj) ∀t∈T,i∈[1..|Pt|] (6.4)

One could use this variable to reduce the number of clauses necessary to encode the route

penalty. However, using the decision variable rte directly, even with a larger number of clauses, al-

lows the solver to perform better. This can be explained by the nature of the unit propagation proce-

dure [31, 188] of the solvers.

We still need to ensure that the entry time for two consecutive nodes is consistent. In other words,

we need to ensure that the entry time of the second node is equal to the entry time of the first node
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plus the travel time on the edge between these nodes and the minimal stopping time of the train. As

a result, the following equivalence is added:

pit ∧ ent,tivi ↔
∨

ti′∈[ti+m(vi,vj)+ms
vj
t ...γ

vj
t ]

ent,ti
′

vj ∀t∈T, ti∈γvi
t , i∈[1...|Pt|], (vi,vj)∈P i

t
(6.5)

Additionally, another constraint is added to ensure that the two trains, t1 and t2, do not collide.

Hence, clause 6.6 is added when ∀t1, t2 ∈ T, v1 = v2, v1 ∈ Vt1 ∩ Vt2 , (v1, vn) ∈ Et1 , tit1 ∈ γ
v1
t1 , ti

′
t1 ∈

γvnt1 , tit2 ∈ γ
v1
t2 , ti

′
t1 −m

(v1,vn) > tit2 > tit1
2.

¬ent1,ti1v1 ∨ ¬ent2,ti2v2 (6.6)

A conflict-free connection3 does not require additional constraints. In this case, conflict constraints

(two trains in the same place at the same time) are not added for trains with CF 6= ∅ on the nodes

where the connection occurs. The transfer of passengers/cargo between two trains requires the

addition of clause 6.6. In this case, we add a clause for every entry time for which the minimum

connection time is not guaranteed. In this case, v1 6= v2.

The earliest/latest entry time constraints for a node are all considered hard and are ensured by

the previous constraints. These constraints are relaxed when needed. When the need arises, we add

the following unit clause: ent,tiv for all trains and nodes for which ti violates the earliest/latest entry

constraints. The weight of this constraint is proportional to the delay.

6.2.3 Encoding Disruptions

There are three types of disruptions considered in this work. Next, we describe how these disrup-

tions are encoded into WCNF.

The train slowdown disruption ϛ is encoded adding the equivalence 6.5 with a modified minimal

traveling time for an edge (speede
ϛ
×me).

The block train disruption ϛ is encoded adding a clause :

¬ent,tiv ∀t∈Tϛ,ti∈[timeϛ...timeϛ+durϛ],v∈Vϛ (6.7)

Finally, the block track disruption ϛ is encoded adding a clause:

¬ent,tiv2 ∨ ¬r
t
(v1,v2) ∀t∈Tϛ,ti∈[timeϛ...timeϛ+durϛ],(v1,v2)∈Eϛ (6.8)

For readability, we write the cost function using pseudo-Boolean constraints. This constraints are

easily encoded into SAT [35]. The cost function is as follows:∑
t∈T

[
α×

∑
v∈Vt,ti∈γv

t

[
(|ti− sentv|)× ent,tiv

]
(6.9)

+β ×
∑
e∈Et

[
|rte − spte|

]
+

∑
(vi,vj)∈Et

γ(vi,vj)

]

γ(vi,vj) =

{
0 if(|ti− sentvj |) < δ

taxi(vi,vj) otherwise
(6.10)

2ti′t1 −m(v1,vn) is the exit time of train t1 at node v1.
3Recall, that this type of connection allows split/merger of trains and changes in direction.
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Algorithm 3: learn Algorithm
Input: An UNSAT core
Output: A relaxed problem instance

1 for clause ∈ UNSAT do
2 for ent1,ti1v1 ∈ clause do
3 for ent2,ti2v2 ∈ clause, ti2 ≤ ti1 do
4 if isConnectionConstraint(clause) then
5 γv2

t2 ∪ ti1 +mct
(v1,v2)
t1,t2 ;

6 else
7 if (v1, v2) ∈ Et1 then
8 γv2

t2 ∪ ti1 +m
(v1,v2)
t1,t2 ;

9 else
10 γv2

t2 ∪ ti1−m
(v1,v2)
t1,t2 ;

11 end
12 end
13 end
14 end
15 end

Note that α, β are weights for the delay and changes of tracks and δ is the value the passenger is

compensated for. We consider the values obtained from the Ministry of Land, Infrastructure, Transport

and Tourism [195]. This cost function penalizes the delay locally (by station) and not globally since

we know the schedule the train should take. Furthermore, we penalize the change of track by a train

and the compensation of the passenger for delays larger than δ.

6.3 Iterative Learning

This section describes the novel iterative algorithms. We use a MaxSAT solver to solve routing

and scheduling problems together. In the beginning, the only soft constraints in the problem are

the penalization of the route. Observe that the only possible cause of the unsatisfiability are the

earliest/latest entry time constraints since they are considered hard, although they may be soft. They

are only considered soft after the first UNSAT call.

The most straightforward approach is to relax all time constraints. In other words, we expand the

domain of the entry time variables in the instance. In the worst case, we end up with the full domain

in all entry time variables. In each iteration, we add 30 new entry time variables (30 seconds) to each

node. The number of iterations required in this approach is low, but we may have to deal with a large

domain in each iteration. This approach is called iterative.

The performance of the algorithm can be improved by only expanding the domain of the variables

that are the cause of unsatisfiability. This new approach is called learn.

6.3.1 Learning Algorithm

Given an unsatisfiable formula, a SAT solver provides a subset of still unsatisfiable clauses, named

the unsatisfiable (UNSAT) core. The UNSAT core may be used to implement a relaxing scheme to
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make the formula satisfiable. The different MaxSAT solvers tested use a SAT solver incrementally

with assumptions [31]. For this reason, we can extract the UNSAT core from the underline SAT solver.

Learning algorithms have been successfully applied in the past to scheduling problems [4, 11,

196, 197]. In the area of train optimization, Matos et al. [11] followed a similar approach to relax the

constraints and improve the lower bound estimation in binary search. Here, we are relaxing a problem

instance by adding new variables (with an associated penalty) and constraints.

Algorithm 1 shows the pseudocode of the learn algorithm, where we start with an UNSAT core.

The result is a relaxed instance that is the base for the next iteration. For each clause in the UNSAT

core (line 1), we extract the entry time variables. For each two variables (lines 2-3), we compute the

number of new variables needed for each node. This computation depends on the type of clause:

connection (clause 6.6) or propagation (clause 6.5). If the clause relates to a connection, we update

γ with the entry time of the following node plus the minimum connection time. If the clause relates to

propagation, both variables relate to the same train, and the update of γ depends on the direction of

the edge. We update γ with entry time of the following (previous) node plus (minus) the minimal travel

time between them (lines 7-11). In the end, the new domain of the entry time variables in the affected

nodes is enough to solve the cause of unsatisfiability. In addition, soft clauses are added to penalize

the delay in the train departure time.

Example 44. Consider a train that must travel through two nodes that are connected by one edge

(v1, v2). The earliest possible entry for the train on v1 is 1PM. The latest entry time on v2 is 3PM. The

minimal traveling time in (v1, v2) is 1 hour. We only need two entry time variables for each node since

the possible values for v1 and v2 are 1PM/2PM and 2PM/3PM, respectively.

Consider that v1 is the spot for a connection and that the train must depart after 3PM to ensure the

minimum connection time. The problem becomes unsatisfiable. The UNSAT core contains the clause

for the connection. The first iteration extends the domain of the entry time for v1 to accommodate 3PM

as possible time (line 5). However, the answer is still unsatisfiable. The new core contains the clauses

for connection and the time propagation constraint (v1, v2). The next iteration will grow the domain of

entry time for v2 (line 8).

This approach requires more iterations, but each iteration implies fewer changes to the domain.

An alternative approach is to predict the next UNSAT core by propagating delays caused by the domain

changes. This new approach is called Learn+Propagation.

6.3.2 Learning and Propagation Algorithm

The goal is to reduce the number of iterations by propagating the delay through the railway. This

algorithm is similar to Algorithm 1, and thus, we are not going to show the pseudocode. At the end

of Algorithm 1, we add a new cycle to propagate the changes. For each new variable created, we

need to check the impact on the train possible routes. In other words, we need to propagate the

delay through the railway. Therefore, new variables are created such that the train may continue to
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be delayed on the next nodes. Whenever a new variable is added (corresponding to expanding the

entry time domain in a node), the possible delay is propagated. Note that some nodes may already

support the delay caused by this procedure.

Example 45. Recall Example 44. The Learn+Propagation approach solves the problem instance in

just one iteration. The UNSAT core is the same. However, in this case, all delays are propagated. For

this reason, we add 4PM as the domain value of the entry time for v2 at the same time as we add 3PM

to the domain of v1. The solution has a delay of 1 hour since the train enters v2 at, 4PM.

6.4 Experimental Evaluation

In this section, we discuss the computational results. First, the experimental setup is described.

Next, the results of our approaches are discussed and compared with related work.

6.4.1 Experimental Setup

The evaluation was performed on a computer with Fedora 14, with a 2.6 GHz CPU and 128 Gb of

RAM. The solver was executed with a time limit of 900 seconds.

Two benchmarks are considered: SBB [3, 109] and PESPlib [111]. The SBB contains 23 real-

world instances divided into two data sets: the data set from CrowdAI challenge [109] and the data

set from [3]. The main difference is that the first data set does not contain conflict-free connections,

and therefore not all encodings from the challenge support it. The results were verified by external

programs provided by SBB [198] and PESPlib [199].

6.4.2 Generating Disruptions

In the past, the impact of large disruptions on the overall public transportation network has been

studied [200–202]. Marra et al. [201] used machine learning to identify patterns that impact the

number and size of disruptions on the passenger’s path. The machine learning method analyzed

the real public transportation networks of Zurich. Anagnostopoulos et al. [200] studied the systemic

influence and fragility of all Swiss train stations to disruptions. The goal was to restructure routes and

stations in order to reduce the fragility of the schedule. Anagnostopoulos et al. [200] showed that the

most influential stations (the ones used by more train routes) are less fragile than remote stations. In

this work, we focus on finding the most common disruptions, their characteristics, and their causes,

with the goal of creating a realistic benchmark to test our re-solving algorithm.

Figure 6.4 shows the percentage of disruptions per category during 2019 in the Dutch railway

network. The disruptions in the Dutch railway network [203] have a direct impact on all railways

across Europe. We can see that our model is able to encode 68% of all disruptions that occur in

railway networks.
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Figure 6.4: Percentage of disruptions per category during 2019 in Dutch railway network. The data was obtained
from rijdendetreinen.nl (accessed November 2020).

Our data sets and disruption scenarios were obtained from the SBB open data 4. Figure 6.5

shows the percentage of trains on-time (green), delayed (orange), and canceled (red) for the SBB

trains in Switzerland during one year. Furthermore, Figure 6.5 shows the average cumulative delay

(in minutes).

We can see that canceled trains are rare and thus were not considered in our solution. The largest

delay in the network that occurred in 2019 was 153 minutes. However, we must bear in mind the fact

that this delay is cumulative and thus depends on the path of the train. Moreover, the largest delay

may be present in the section where the disruption did not occur. In this case, the largest value

corresponds to the section where more trains end up (propagated delayed). For this reason, the goal

is to find the cause of disruption to generate disruptions correctly.

We analyzed the schedule of all trains in Switzerland during 2019 to find the cause of the delay.

Hence, we define the following Bayesian probabilities: Pstation is the probability of the train t getting

delayed on the station v2 knowing that the train t was on time at v1 where (v1, v2) form an edge; and

Ptime is the probability of the train t getting delayed on the time ti knowing that the train t was on time

at ti − 1.

Figures 6.6 and 6.7a show the values of Pstation for each station and Ptime for each time of the day,

respectively. The value of Pstation does not have a large variance for different stations. Nevertheless,

we use these values to generate the place where the disruption occurs. On the other hand, one can

see that there is a strong relationship between the time of the day and disruptions. Furthermore, we

can see three peaks corresponding to the rush hours of early morning, lunch time, and late evening.

These are times where most trains get delayed. The closest fit is a multimodal normal distribution, and

4The data was extracted from https://data.sbb.ch/pages/home/. (accessed November 2020)
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Figure 6.5: The percentage of trains on time (green), delayed (orange) and canceled (red) for the SBB train in
Switzerland during 2019. For each section, we show the average cumulative delay (in minutes).

Figure 6.6: The probability of a train getting delayed at each station, knowing that the train was on time at the
previous station.
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Figure 6.7: (a) The probability of a train getting delayed at each time of day, knowing that the train was on time
at the previous hour. Line corresponds to the multimodal normal distribution that best fits the data sets. (b)
Distribution of the duration of the delay disruption at 3PM, knowing that the train is delayed. Line corresponds
to the Poisson distribution with the expected rate of occurrences of 1.4 that best fits the data sets of fluctuations
delays in minutes.

the coefficient of determination is above 0.99. We used the Microsoft Excel Solver [176] to estimate

the parameters.

This information is not enough for generating the full set of disruptions. We still need to generate

the duration of the disruption. For this reason, we analyzed the duration of the disruptions that occur

at a specific hour of the day. The closest fit is a Poisson distribution for each time of day and the

coefficient of determination, on average, is above 0.99. Figure 6.7b shows the distribution of the

duration of the delay disruption at 3PM, knowing that the train is delayed. Similar fits can be obtained

for other times of the day.

To sum up, we use the probabilities described above to generate 50 different disrupted instances

for each type of disruption. The disrupted instance is based on the instances from the SBB data set

(23 instances). Therefore, our benchmark with disruptions is composed of two data sets depending

on their type (before, during): the disruptions that occur before the train departure (2 300 instances)

and the disruptions that occur after the train departure (3450 instances). Each data set is composed

of block track disruptions (1150 instances), and slowdown disruptions (1150 instances). Additionally,

the data set corresponding to disruptions that occur after the train departure has a set of instances

with block train disruptions (1150 instances).

6.4.3 Computational Evaluation

This section discusses the results of our approach, including a comparison with related work.

Swiss Federal Railway (SBB) benchmark

The characteristics of each instance of the SBB benchmark are shown in Table 6.1. The bench-

mark with the conflict-free connection has more trains and a larger railway. However, we can see that

in both data sets, the percentage of edges with time constraints (TE) is small (around 9%). Therefore,

there is a clear advantage of only considering the entry time variables in those nodes.
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Table 6.1: #T, #N, #TN stands for the number of trains, nodes, and nodes with time constraints.

SBB Benchmark without collision-free connections
P1 P2 P3 P4 P5 P6 P7 P8 P9

# T 4 58 143 148 149 365 467 133 287
# N 318 4 357 8 631 9 323 9 327 38 742 51 807 22 169 34 917
# TN 49 368 932 963 965 2 887 3 700 1 061 2 009

SBB Benchmark with collision-free connections
TS TSE TL1 TL1E TL1EI TL2 TL3 TL4 TL5

# T 131 132 447 448 448 448 448 448 448
# N 12 765 12 870 39 657 39 762 39 762 56 201 56 201 51 207 51 207
# TN 1 124 1 128 3 872 3 876 3 876 3 843 3 843 3 843 3 843

TL6 TL7 TL8 TL9 TL10
# T 448 448 448 448 451
# N 41 156 41 156 64 983 64 983 57 068
# TN 3 843 3 843 3 843 3 843 3 882

Comparing MaxSAT solvers

All our iterative approaches rely on a MaxSAT solver. For this reason, the proposed solution is

implemented with the top 5 MaxSAT solvers of both complete and incomplete weighted tracks of

the 2020 competition [204]. The results show that there are no significant differences between the

performance of these MaxSAT solvers. The difference between the worst and the best solver is only

3% more time. The best performing solver is TT-Open-WBO-Inc-20 [205], which is also the winner of

the incomplete weight track of the 2020 MaxSAT competition.

TT-Open-WBO-Inc-20 is based on Open-WBO-Inc-complete [206], and actually, these are the two

best solvers for these benchmarks.

SATLike-cw [207] uses SATLike [208] until it fails to improve the current solution in a given time

limit. After that, uses TT-Open-WBO-inc-20 solver to improve the solutions further. In most instances,

the TT-Open-WBO-inc-20 solver is called, and thus takes more time than the TT-Open-WBO-inc-20

natively. The difference between solvers is particularly noticeable for the largest instances (or if we

do not reduce the size of the domain of entry time variables). We tried different values for the time

limit for the local search procedure with no luck. In the future, we could try parameter tuning using

dedicated tools [209].

MaxHS [39] extends the capabilities of SAT and MIP solvers by exploiting both technologies in a

hybrid manner. The solver uses CPLEX [38] as a MIP solver and Glucose [210] as a SAT solver.

Note that we do not show the results for the RC2 [211] solver. RC2 is implemented in Python, and

thus we implemented a wrapper to use the solver within our C++ implementation. This wrapper makes

the comparison unfair as it adds unnecessary overhead to convert the object from one language to

the other. Nevertheless, if one compares only the solver time in each iteration, RC2 is still slower than

TT-Open-WBO-Inc-20.

There is no particular difference between the solvers of the complete and incomplete tracks. Note

that solvers submitted to the incomplete track do not have to be complete, although some of them are

if given enough time.
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Inst. TT-Open- Loandra [212–214] Open-WBO-Inc- Open-WBO-Inc- SATLike-cw [207] UWrMaxSat [215] MaxHS [39]WBO-Inc-20 [205] complete [206] satlike [216]
P1 0.14 0.14 0.14 0.14 0.15 0.12 0.13
P2 1.5 1.8 1.5 1.3 1.4 1.7 1.6
P3 3 4 3 3 3 3.8 4
P4 10 11 10 16 16 14 12
P5 28 28 28 36 36 28 28
P6 42 43 42 42 42 44 46
P7 70 78 70 69 70 71 70
P8 32 34 32 32 31 31 33
P9 190 205 194 190 190 200 190
TS 29 29 29 29 29 29 29

TSE 36 36 37 43 43 37 40
TL1 72 73 72 70 70 72 74

TL1E 86 86 86 99 99 92 95
TL1EI 68 66 68 74 74 67 65
TL2 150 158 152 158 162 156 153
TL3 149 152 149 145 155 149 148
TL4 99 102 101 109 110 105 110
TL5 90 92 91 89 91 90 89
TL6 71 71 71 75 75 75 77
TL7 68 68 68 68 69 68 68
TL8 244 269 245 243 239 248 245
TL9 230 260 233 228 225 250 255

TL10 260 295 262 288 299 262 275
Sum 2 028.64 2 161.94 2 039.64 2 107.44 2 129.55 2 093.62 2 107.73

 0

 5

P1 P2 P3 P4 P5 P6 P7 P8 P9 TS TSE
TL1

TL1E
TL1EI

TL2
TL3

TL4
TL5

TL6
TL7

TL8
TL9

TL10

 

Nodes

Nodes with time constraints

 85

 90

 95

 100

%
 o
f 
to
ta
l 
#

 N
o
d
e
s

Figure 6.8: The percentage of edges with time constraints for each instance in the SBB benchmark.

Train Scheduling

Figure 6.8 shows the percentage of the total number of nodes that have time constraints. We can

see that, on average, only 9% of the total number of nodes deal with time constraints. In the extreme

case, concerning the smallest instance, 16% of the nodes have time constraints.

Hence, it is not surprising that the results are better when we only have entry time variables for

nodes with time constraints. If we consider the variables in all nodes, we can only solve the instance

P1. Still, this is not enough if we do not restrict the domain of the entry variables. Without restricting

the domain of the entry variables, there are still 15 timeouts out of 23. The size of the instance causes

the timeouts. A similar problem occurred with the MaxBreak and MaxBlocks constraints in the original

version of UniCorT (as discussed in the previous chapter).

Restricting the domain of the entry variables allows for solving all instances. However, we need
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Table 6.2: The running time in seconds for the different iterative approaches for the instances with optimal cost
different from 0. The number of iterations is shown in parentheses.

Iterative Learn Learning and Propagation
P5 116 (3) 56 (16) 28 (4)

TSE 56 (2) 42 (5) 36 (3)
TL1E 224 (3) 158 (17) 86 (5)
TL1EI 171 (2) 96 (6) 68 (2)
TL10 Time out (2) 380 (14) 260 (7)
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Figure 6.9: Comparison of (a) the running time (in seconds) and (b) the memory consumption (in Gb), between
our best solution and the best ASP approach [3] for all SBB data sets. The same symbols/colors symbolize
instances with the same overall characteristics. The only exception is the red triangles that represent the P
instances and not characteristics.

to iterate to solve instances that have an optimal cost different from 0 (there are only 5). The running

time can be improved.

Table 6.2 shows the results of the different iterative algorithms for the 5 instances. The iterative

algorithm is the one with fewer iterations needed but expands the domain unnecessarily, which causes

a time out in TL10. With the addition of the learning process, we can see clear progress in terms of

running time. The best algorithm is the Learn and Propagation. The main reason is the fact that

we avoid doing unnecessary iterations. Each call to the solver has an overhead, which may not be

necessary if one can predict the problem. On average, the first call is really fast since it is easy to

prove the unsatisfiability of the instance. However, the calls get slower each time the domains are

increased.

Table 6.3 compares the performance of the proposed solution with the related work on the SBB

Crowd Sourcing Challenge benchmark. As mentioned above, the ASP solution uses an approximation

cost function to deal with the size of the problem. However, this process may remove the optimal

solution. To make a fair comparison, we changed the ASP solution [3] to use an exact cost function.

To this solution we call ExactASP. Table 6.4 compares the performance of the proposed solution with

the related work on the SBB benchmark with collision-free connections. Recall that not all approaches

allow collision-free connections.

ExactASP is slower than the approximated version but can prove the optimal solution for all in-

stances but P9. The main difference is in memory consumption. The approximated version can solve

all instances and find the optimal solution for most of them. The difference between the approximated
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Table 6.3: The results for the SBB benchmark without conflict-free connections. T, M, C stand for running time in
seconds (s), memory in gigabytes (Gb), and cost. ExactASP was adapted from [3] to have an exact cost function.

ExactASP ASP [3] Greedy [217] MaxSAT ILP [218]

T(s) M(Gb) C T(s) M(Gb) C T(s) M(Gb) C T(s) M(Gb) C T(s) M(Gb) C
P1 1 0.2 0 1 0.06 0 1 0.1 0 0.14 0.06 0 0.7 0.06 0
P2 8 0.2 0 5 0.08 0 4 0.15 0 1.5 0.07 0 43 0.5 0
P3 18 0.7 0 8 0.3 0 8 0.72 0 3 0.2 0 94 2.2 0
P4 38 1 0.1 18 0.5 0.1 13 0.8 0.1 10 0.5 0.1 141 3 0.8
P5 64 1 33 32 0.5 33 501 1.75 37.3 28 0.5 33 671 5.1 237.6
P6 317 5.1 0 137 3.2 0 44 1.56 0 42 1.2 0 661 7.4 0
P7 580 14 0 290 6.31 0 91 1.8 0 70 1.5 0 899 9.24 0
P8 142 4.9 0 86 3.1 0 31 1.3 0 32 0.8 0 250 6.8 1.7
P9 TO TO TO 400 7.6 0 360 2 0 190 2 0 TO TO TO

and the real optimal is a few seconds of delay for most instances. However, this approach cannot

solve the 4 largest instances of the SBB benchmark with collision-free connections.

The greedy [109, 217] approach is one of the fastest (the winner of the challenge). It is character-

ized by keeping the memory low (despite being implemented in Java) and yet finding a solution with

a good cost. The shortcoming lies in the backtracking procedure. Instances P5 and P9 are the only

instances that require backtracking and, therefore, more time.

ILP [109, 218] can prove optimality for all instances but P9. However, the decomposition removes

the actual optimal solution. The choice of routes in the first stage reduces the search space but it also

removes the actual optimal. Choosing the route has a direct impact on the overall cost of the solution.

Our approach can solve faster and with less memory than any other solution. The main difference

lies in the iterative approach with the smallest domain at the beginning. Furthermore, it is the only

approach that solves the exact problem.

Figure 6.9a compares the running time (in seconds) of our best solution and the best ASP ap-

proach [3] for the SBB benchmark. We can see that the MaxSAT approach is faster than the ASP

counterpart for all instances. The MaxSAT approach is on average twice as fast as the ASP approach

even with the approximation.

Figure 6.9b compares the memory consumption between our best solution and the best ASP

approach [3] for SBB data sets. We can see that the great advantage obtained from the iterative

nature of MaxSAT is memory handling. Notice that the line on 2Gb is full of instances with the same

number of nodes, resources, and trains. The only difference lies on the size of the domain of the entry

time variables. The conclusion is that the iterative approach enables memory reduction.

Periodic Event Scheduling

The characteristics of each instance of the PESP benchmark are shown in Table 6.5. Further-

more, we compare the number of variables and constraints of our approach with and without the

pre-processing step with Matos et al. [4]. One can clearly see that our approach requires fewer

variables and constraints (discussed later on).

To the best of our knowledge, there is no state-of-the-art tool publicly available able to solve PESP.

Even though there are many SAT approaches in the literature, we choose to compare Matos et al. [4]

for the following reasons. First, the proposed approach is self-contained. In other words, the approach
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Table 6.4: The results for the SBB benchmark with conflict-free connections. The execution time is in seconds
(s), and the memory consumption is in gigabytes (Gb). ExactASP is adapted to have an exact cost function.

ExactASP ASP MaxSAT
T (s) M (Gb) C T (s) M (Gb) C T (s) M (Gb) C

TS 108 2,2 0 43 1.1 0 29 0.6 0
TSE 113 2,2 6 45 1.5 6 36 1 6
TL1 225 6,6 0 90 3.3 0 72 2.1 0

TL1E 260 6,6 11 104 3.45 11 86 2.1 11
TL1EI 200 6,6 11 80 3.6 11 68 2.1 11
TL2 468 10 0.1 187 4.9 0.1 150 2.2 0.1
TL3 443 10 0 177 5.2 0 149 2.2 0
TL4 275 10 0.5 110 4.3 1 99 2 0.5
TL5 278 10 0 111 3.8 0 90 1.9 0
TL6 193 10 0.2 77 4.2 0.2 71 2.3 0.2
TL7 - 80 4.1 0 68 2.3 0
TL8 - 298 4.7 0 244 2.35 0
TL9 - 290 6.2 0 230 2.35 0

TL10 - 350 7.6 10.75 260 2.9 10.13

does not require the implementation of customizing heuristics and pre-processing methods. Second,

the approach only uses SAT and does combine multiple tools. Third, the description of the SAT

encoding is precise enough to be replicated and implemented.

We solve the PESP benchmark after converting it to the TSOP format. Furthermore, the size of

the network is reduced by removing unnecessary nodes a priori. A similar approach was proposed

by Borndörfer et al. [40]. The proposed approach is able to reduce, in 35% and 12%, the size of the

networks of the R and the BL instances, respectively. This pre-processing step improves the quality

of the solution by 9% for the R instances.

Figure 6.10 compares the cost of the solution found by both MaxSAT approaches and the current

best-known values for each instance. None of these values are known to be optimal. Note that we do

not know the time and memory limits for which these values were found. Furthermore, not all values

were found by the same tool. The best solution thus far is produced by a concurrent tool specifically

designed to solve PESP [40]. They reduce the problem with pre-processing. The solving process is

split into three phases: a SAT solver, ILP solver and specific heuristics to guide the overall search.

The SAT solver is only used to warm-start the ILP solver. We are not able to find the optimal solution

within the time limit. Our solution matched the current best-known cost for BL instances, which have

specific characteristics. Regarding the rest of the benchmark, we are within 30% of the current best

value.

The best SAT-based approach was proposed by Matos et al. [4, 11]. The characteristics of this

approach were already discussed. Figure 6.11 compares the running time required to find the best

solution using our MaxSAT approach with Matos et al. approach.

We are able to improve the quality of the solution by 22% and still reduce the running time, on

average, by 214 seconds. This can be explained by the smaller size of our encoding. Matos et al. [4]

encoding requires, on average, 1.4× more variables and 1.2× more constraints. This is due to the

way Matos et al. [4] encodes cycles and constraints. They use qx,i variables meaning that event x
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Figure 6.10: Comparison of the cost found by both MaxSAT approaches and the current best-known values for
each instance.

starts no later than the time i. However, the usage of this decision variable requires the clauses

to have a larger arity. The arity of the clauses is known to have a significant impact on SAT solver

performance [188].

Recovering from Disruptions

In this section, we discuss the performance of our algorithm to recover from three different dis-

ruptions. Our algorithms can solve all disrupted instances with an optimal solution in less than 400

seconds. Recall that the disruption cannot lead to a solution with a better cost than the original one.

Slowdown When considering the disruption (e.g. bad weather) that causes a train to slow down, it

is difficult to recover from the delay as the disruptions normally affect most edges. The only way to

recover is to route through a faster path after or before the affected edges. However, this is rare since

the original timetable is already fine-tuned and not robust. Recall that most nodes had an interval

where the delay was acceptable. The goal was to reduce the entry time ti ensuring ti ∈ γtv (i.e.,

without arriving too early) for each train t in each node n. Recall that the maximum entry time of the

node in normal conditions is lvt . We can recover from this disruption without exceeding the maximum

delay (lvt ) in 90% instances. When considering the during disruptions, we can recover by spending, on

average, only more 16 seconds to solve the original problem. When considering the before disruption,

the algorithm takes an additional 120 seconds, on average. This can be explained by the fact that

there is no need to solve the whole problem when solving the disruption while the train is traveling.

On average, the number of variables is reduced by 30%.

Block track This is the only disruption that we can really improve by re-routing since there are other

options. Naturally, the capacity of re-routing depends on the number of parallel routes. Figure 6.12
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Table 6.5: #Nodes, #Edges, #Var, #Const stands for the number of nodes, edges, variables, and constraints.
The direct and compact encodings are versions of the same model without and without the pre-processing step.

Instance Matos et al. [4] This Paper
Direct Compact

Name # Nodes # Edges # Var (k) # Const. (k) # Var (k) # Const. (k) # Var (k) # Const. (k)
R1L1 3 664 6 386 508 17 268 366 12 700 366 11 557
R1L2 3 668 6 544 530 18 163 385 12 607 385 11 346
R1L3 4 184 7 032 539 18 202 387 13 618 387 12 256
R1L4 4 760 8 529 688 23 749 504 19 440 504 17 496
R2L1 4 156 7 362 585 20 203 429 15 825 429 14 242
R2L2 4 204 7 564 606 21 096 449 15 892 449 14 303
R2L3 5 048 8 287 615 20 795 444 16 987 444 15 288
R2L4 7 660 13 174 990 34 762 744 29 868 744 26 881
R3L1 4 516 9 146 785 28 410 605 24 032 605 21 629
R3L2 4 452 9 252 808 29 356 625 24 978 625 21 481
R3L3 5 724 11 170 933 33 646 717 29 267 717 23 999
R3L4 8 180 15 658 1 284 46 172 986 41 793 986 37 614
R4L1 4 932 10 263 888 32 663 696 28 284 696 22 627
R4L2 5 048 10 755 940 34 763 741 30 384 741 24 307
R4L3 6 368 13 239 1 135 42 079 898 37 700 898 30 160
R4L4 8 384 17 755 1 534 57 005 1 218 52 627 1 218 45 259
BL1 2 688 7 988 536 10 702 329 6 323 329 6 260
BL2 2 606 7 488 504 10 201 304 5 822 304 5 764
BL3 3 044 9 311 603 11 855 389 7 477 389 7 402
BL4 3 816 13 502 764 13 807 595 9 429 595 9 335

shows the execution time (in seconds) for the best algorithm to solve original instances and to recover

from disruptions of the block track type that occur before and during the travel of train. For the smaller

instances, there is no difference between solving the original instances or the disrupted instances. In

general, we need more iterations than in the original search to recover since there will always be a

larger delay. This is the main reason for the execution time of disrupted instances to be worse. When

considering the during disruptions, the number of iterations is compensated by the reduction in the

size of the instance. This can be explained by the fact that we significantly reduce the size of the

problem since we cannot change it anymore. Naturally, this depends on the location of the train when

the disruption occurs. This explains the size of the error bars for the during disruption.

Block train This disruption can be used to partially model crew problems, as we can block the train

due to insufficient staff. This disruption causes a delay, which is quite difficult to recover from. Similar

to the train slowdown disruption, re-routing the train does not improve the delay in most cases. This is

the disruption that requires more iterations of the learning and propagation algorithm to recover. For

this reason, this is also the disruption that takes longer to solve. Figure 6.13 shows the time spent

to recover after different types of disruptions occur. Block track is the fastest disruption to recover as

fewer iterations are needed and there is more freedom to change the path of the train. These changes

allow reducing the number of iterations.

In the worst case, the recovery procedure takes more than 62% of the total execution time. How-

ever, we can reduce this value solving the problem incrementally.
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Figure 6.11: Comparison of the running time to find the best solution between our MaxSAT approach and Matos
et al. [4].

Incremental versus "from scratch" The recovery algorithm spends most of its time solving the

original problem again. For this reason, we can reduce this time with two techniques: (i) setting the

polarity of the variables; and (ii) solving the problem incrementally.

Setting the polarity [219] of the variables is similar to the warm-start technique used in ILP. Its

impact depends on the similarity of the original solution and the new optimal solution. This technique

has a larger impact when no re-routing is needed.

Solving the problem incrementally requires saving the state of the search and then restarting the

search when the disruption occurs. We only add new constraints, and therefore all the constraints

learned are still valid. However, we need to change the cost function and update all the lower and

upper bounds used in the search. Consequently, the algorithm may have explored a path in the

search tree that is no longer relevant. This per se is not a problem but may have a small impact in the

incremental search.

Figure 6.14 shows the number of instances solved with the respective execution time (in seconds)

for each method. We can see that setting the polarity of the variables has a small impact. This impact

is only effective for smaller instances with a shorter execution time. Also, the incremental solving

has more impact than setting the polarity of the variables. Nevertheless, the impact is almost null for

instances that require more iterations in the learning and propagation algorithm and more changes to

the path. On average, the gain of using incremental solving is of 25%.

The performance improvements do not affect the quality of the found solution. The solution found

has exactly the same cost as before. The procedure stops only when the optimal solution is found.

6.4.4 Results Overview

Our incremental algorithm is able to solve all data sets optimally for SBB. The algorithm allows

solving the exact problem with no approximation. Furthermore, it will avoid memory problems by only
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Table 6.6: Overall comparison of the best approaches to solve TSOP.

ASP This thesis
Proves Optimiality NO YES

Average Distance to Optimal Solution 1.12 0
Average Time (sec) 145.8 118

Max Time (sec) 350 260
Average Memory (Gb) 45 1.9

Max Memory (Gb) 7.3 2

using the smallest domain.

The algorithm also re-solves the most common disruption that occurs in train schedules. Note that

we could easily add the disruptions missing if enough data were available (e.g. rolling stock). The

incremental version of the algorithm, on average, reduces the execution time by 25%.

The novel conversion process allows solving PESP instances efficiently, in particular to the subset

instances of BL. For these instances, we are able to match the best-known value. However, we cannot

prove optimality. For all other PESP instances, we are within 30% of the current best value.

6.5 Concluding Remarks

This paper proposes a novel iterative MaxSAT encoding to solve the train scheduling optimiza-

tion problem that takes advantage of the relaxing of the problem. We also propose a conversion

between PESP and TSOP. The proposed approach was validated using the SBB and the PESPLib

benchmarks.

The experiments show that the optimal solution is found for all SBB instances within 260 seconds,

being on average twice as fast as the ASP counterpart, while avoiding the exponential growth of

the memory requirements. Moreover, all PESPLib instances are solved within 786 seconds. These

results are a considerable improvement when compared with current MaxSAT solutions. The quality
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of the solution is improved by 22%, and the running time is reduced, on average, by 32%. Still, the

quality of the solution is, on average, 30% away from the current best-known solution for the instance.

Furthermore, our algorithm is able to recover from disruptive scenarios. We encode into CNF

68% for all different disruptions that occur in railways. The algorithm was tested using randomly

based disruptions generated based on the real-life disruptions of 2019 that occur in SBB.

134



7
Conclusions

Contents
7.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

135



Solving scheduling problems under disruptions [46, 131, 135, 136] has real-world applications that

range from universities [44, 45, 47, 87, 132] to transport [49, 111, 151, 154, 157, 161]. There are two

main approaches to solve scheduling problems under disruptions: (i) creating robust solutions; and (ii)

solving the MPP. Robust solutions are usually imperfect as they are sub-optimal because they have

to support disruptions that may never occur. Regardless of the solution’s robustness, we may need to

solve a MPP. This can guide us to the second approach. However, in the literature, the approaches

to solve the MPP perform worse than when solving the original problem. The algorithms proposed in

this thesis can be easily adapted to different scheduling problems.

This work advances the state-of-the-art on solving scheduling problems, in particular on solv-

ing MPP in the context of university course timetabling and train scheduling. The proposed work was

evaluated and compared with state-of-the-art approaches. The evaluation was performed with bench-

marks from different competitions of university timetabling and train scheduling. In order to validate

the application of the proposed methods, in a real setting, we used real-world data sets and disrup-

tive scenarios. The results show that we can improve the performance of the re-solving procedure

by either solving the problem incrementally or only re-solving a small part of the problem (where the

disruption occurs). Furthermore, we compare the impact of different encodings and pre-processing

techniques on the quality and performance of exact methods. This chapter is organized as follows.

In this thesis, we used different types of distance metrics. When considering university course

timetabling it is common to consider only the Hamming distance. This distance metric has the distinct

advantage of being easy to encode and it has small impact on the performance of the tool.

After talks with the academic offices of IST, we defined metrics of real-world usage (number of

students and compactness). With these metrics, the proposed algorithm can solve problem instances

to optimality. However, these type of metrics (particularly Hamming distance weighted with the number

of students) do not result well for the ITC 2019 benchmark. Note that, at IST, we already know the

students enrolled before generating the timetable. In ITC 2019, we have to section students at the

same time. This detail causes the WHD metric to have a significant impact on the performance.

Furthermore, reducing the the value of WHD has a considerable impact on the overall quality of the

solution. For this reason, the solution found could end up being worse for the students/teacher rather

than optimizing only the HD.

When considering the train scheduling state of the art, the type of distance metrics is richer. We

proposed a distance metric that is a composition of all these metrics. The overall metric is complex

and adds a significant overhead to the encoding. Nevertheless, our incremental algorithm is able to

efficiently solve the problem and to reduce the overhead caused by the distance metric being used.

We showed the importance of decomposition and pre-processing methods to solve large prob-

lem instances using exact methods such as SAT and ILP. Unfortunately, these methods are domain-

dependent and therefore difficult to extrapolate to different scenarios.

We showed considerable advantages when considering the MPP by using warm start methods in

both ILP and MaxSAT (variable polarity). The application of ILP and MaxSAT depends on the structure

of the problem. Even though, in this thesis, SAT proved more efficiently in practice, this cannot be
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generalized. Empirical evidence shows that a SAT solver is stronger when we have binary clauses

and implications, while ILP is stronger when solving Pseudo-Boolean and linear constraints. It would

be interesting to see if the new hybrid solver could exploit this.

Finally, we showed that solving incrementally the MPP is quite efficient. The storage of the search

tree, variable order, and the previous decision are important to reduce the execution time. Naturally,

this process is less efficient when the solution is further away from the initial solution. Not only the

distances affect the performance, but also the type of changes affects the performance. For example,

it is easier to solve when we only add new constraints, as we do not need to revisit previous UNSAT

branches. In the context of the train scheduling problem, we showed that we could further improve

the performance by guiding this incremental process as a result of learning from the inconsistencies

in the solution.

Section 7.1 summarizes the principal contributions of this thesis. Section 7.2 describes the possi-

ble directions for future work.

7.1 Contributions

First, we focused on solving the university course timetabling problem at our university, IST. In

order to tackle the problem, we started by profiling and cleaning the data. The result of this process

was supplied to IST services to improve the data quality of the stored data [165]. As we suspected,

one of the major problems in IST is the lack of room space and as the saying goes “space, like

time, is money”. Therefore, we started by implementing three different algorithms to improve the cur-

rent handmade timetable. The ILP formulation and the greedy algorithms with provable performance

guarantees were published in [15].

Next, this work proposed to change the formulation to solve the whole timetabling problem of IST.

Afterward, we also considered disruptions. To validate our approach, we studied the disruptions that

occurred in the last 5 years in IST. With these results, we developed an algorithm to solve MPP

efficiently. This algorithm divided the re-solving problem into two sub-problems: the assignment of

classes to rooms and the assignment of classes to time slots. Depending on the type of disruption,

we started by considering only one of these problems. In the end, we could find the optimal solution

faster than conventional methods. This work was published in [16].

The next step was to generalize this approach to all universities. For this reason, we proposed

a new tool, UniCorT, to solve the International Timetabling Competition (ITC) 2019. The solution

finished in the top 5. UniCorT used different pre-processing techniques to improve quality and per-

formance. The early results of UniCorT, at the time the competition ended, were published in [17].

Afterward, UniCorT continued to improve due to new incremental algorithms, and those results are

currently under submission. Finally, the application of UniCorT to the MPP was published in [18].

The last contribution was a MaxSAT based encoding to solve and re-solve train scheduling prob-

lems after disruptions occur. To improve the performance on the SBB data sets, we employed an

iterative learning algorithm that only relaxes the arrival time of the train when needed. Furthermore,
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we created an incremental algorithm to re-solve the problem after disruptions occur. This incremental

algorithm resulted in a better performance than traditional algorithms.

7.2 Future Work

This section describes possible future research work directions. The goal is to improve the per-

formance of the re-solving methods by new pre-processing techniques and incremental algorithms.

The idea of solving the problem covered in this thesis as a multi-criteria optimization problem would

be interesting as it could bring a more balanced and fair result. In order to further detail the future

work avenues, we need to consider the context of each application studied in this thesis. Therefore,

this section is organized as follows. Sections 7.2.1 and 7.2.2 discuss possible avenues of research in

terms of solving university course timetabling problems and train scheduling problems, respectively.

7.2.1 University Course Timetabling

UniCorT can be improved by creating a new encoding to represent student conflicts with the goal

of reducing the memory consumption and thus improving the performance. This can be achieved

through graph representation, for example. Besides, one can try to exploit symmetries to reduce the

search space for the student sectioning problem.

The iterative algorithm used to solve the instances of ITC 2019 can also be improved. We can

apply a similar procedure to the one used for train scheduling (core guided). However, this problem

is harder to learn with the UNSAT core. There is no precise mapping between the constraint and the

root of the problem (room assignment or time assignment). Nevertheless, we could learn from the

cores to guide the search. We would only know which classes actually need to have new time slots.

However, it would add a significant overhead to predict how many time slots would be required. Note

that the available time slots for each class are not sequential and have different weights.

The algorithm to solve MPP in UniCorT can also be improved. We can improve the incremental

algorithm with the benefits from the core-guide approach. When solving the MPP we could tune

to take advantage of the decomposition already applied. The decomposition allows solving only a

portion of the problem where the disruption occurred. We can guide the search of the incremental

solver only to change a part of the problem.

7.2.2 Train Scheduling

The algorithms used to solve train scheduling can also be improved. For example, we can add

new pre-processing techniques to improve the performance of the iterative algorithms. Indeed, the

pre-processing techniques are the base of the success of UniCorT. Exploring more pre-processing

techniques would be particularly interesting to improve the quality of results obtained in the PESP

benchmark. In addition, we could relax the number of possible parallel routes and add them on

demand. In other words, in each iteration, we would consider longer routes.

138



The algorithms to solve train scheduling problems under disruptions can also be improved. We

can try to decompose the problem and only solve the portion of the problem where the disruption

occurs.

Furthermore, our approach only considers 68% of the possible disruptions. We can extend the

encoding and the algorithm in order to solve staffing [164] and rolling stock problems.
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This appendix presents the data profiling, transformation, and cleaning process that needs to be

applied to the data extracted from the FénixEdu™ system. The steps performed in the context of this

work are organized according to the workflow represented in Figure A.1. The first step, (a) Converting

JSON to relational, is the step where the data extracted from the FénixEdu™ system is converted

from JSON to relational format. This step is essential since one of the data profiling tools and the

data cleaning prototype do not support the JSON format as input. Step (b) Data Profiling focuses

on assessing the data output quality by data conversion in step (a). This step produces a report

containing all the data quality problems found. Step (c) Data Cleaning is the step where the data

converted in step (a) is cleaned based on the findings in step (b). The last step (d) Data Transformation

transforms the output of step (c) in order to obtain data in the format required for automating the

production of timetables (ITC 2019).

Figure A.1: Data profiling, transformation and cleaning process.

To address the first step (a) converting JSON to relational format, we first used Open-Refine [220].

However, the program built could not finish loading in a reasonable amount of time when opening mul-

tiple JSON files. Therefore, we decided to use the Pentaho Data Integration (PDI)1 tools to perform

the data conversion. Converting data from JSON to a relational schema is purely a data transfor-

mation without adding any type of constraints or pre-defined structure. The idea was to represent,

as faithfully as possible, in a relational format, the JSON data obtained from FénixEdu™. Using con-

straints in the initial relational schema would impose a certain level of quality on the data imported

from FénixEdu™. For this reason, we only considered the constraints for the relational model used to

store the final cleaned data.

The data profiling step (b) was handled by the Arrahtec’s Open Source Data Quality and Profiling

(OSQD)2 and PDI (without plug-ins). OSQD provides a wide range of functionalities, and it is easy

to use. However, OSQD does not provide all the functionality needed. For example, the task of

verifying if the room capacity is enough for the scheduled class is impossible to perform with OSQD.

It only enables us to check for inclusion dependencies between fields. To fill this gap, we used PDI.

PDI provides more expressiveness than OSQD since its base functionalities can be combined in

order to obtain more complex functionalities, for example, checking if the values resulting from the

concatenation of columns A and B are equal to the values of column C.
1PDI: Pentaho Data Integration documentation is available at http://community.pentaho.com/.
2Arrahtec’s Open Source Data Quality and Profiling (OSQD) is available at http://www.arrahtec.com/.
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The data profiling task identified the following data quality problems: exact duplicates; approxi-

mate duplicates, redundant data, heterogeneous date representations, domain violation, and integrity

constraint violation. A detailed list of data quality problems is available at [165].

The last two steps, (c) Data Cleaning and (d) Data Transformation, are performed using the data

cleaning prototype named Cleenex [221]. The prototype successfully solved all the data quality prob-

lems found. The programs are available at https://github.com/ADDALemos/CleanDataPrograms.

A-3

https://github.com/ADDALemos/CleanDataPrograms



	Title
	Title
	Resumo
	Resumo

	Abstract
	Abstract

	Acknowledgments
	Acknowledgments

	Index
	Contents
	List of Figures
	List of Figures
	List of Tables
	List of Tables
	Acronyms
	Acronyms
	Notation

	1 Introduction
	1.1 Why Solving Scheduling Problems Under Disruptions
	1.2 Original Contributions
	1.3 Thesis Outline

	2 Preliminaries
	2.1 Constraint Satisfaction
	2.2 Integer Linear Programming
	2.3 Maximum Satisfiability
	2.4 Scheduling Problems
	2.5 Minimal Perturbation Problem

	3 Related Work
	3.1 University Course Timetabling
	3.2 Train Scheduling
	3.3 Scheduling under Disruptions
	3.3.1 Metrics
	3.3.2 Similar Solutions
	3.3.3 Robustness
	3.3.4 University Course Timetabling
	3.3.5 Train Scheduling


	4 Instituto Superior Técnico Course Timetabling
	4.1 A case study at Instituto Superior Técnico
	4.1.1 Current handmade timetables

	4.2 Problem Definition
	4.3 Room Usage Optimization
	4.3.1 Constraints
	4.3.2 Compact Timetables: Metrics Definitions
	4.3.3 ILP Formulation
	4.3.4 Greedy Approaches
	4.3.5 Greedy Randomized Adaptive Search Procedure

	4.4 Course Timetabling
	4.4.1 Boolean Model
	4.4.2 Mixed Model

	4.5 Experimental Results
	4.5.1 Experimental Setup
	4.5.2 Benchmark of IST
	4.5.3 Generating Disruptions
	4.5.4 Room Usage Optimization
	4.5.5 University Course Timetabling Problem
	4.5.6 Minimal Perturbation Problem
	4.5.7 Incremental Approach for Recovery after Disruption
	4.5.8 International Timetabling Competition 2007
	4.5.9 Results Overview

	4.6 Concluding Remarks

	5 International Timetabling Competition 2019
	5.1 Problem Definition
	5.2 Introducing UniCorT
	5.2.1 Pre-processing
	5.2.2 MaxSAT
	5.2.3 Local Search

	5.3 Disruptions
	5.4 Experimental Evaluation
	5.4.1 Experimental Setup
	5.4.2 Data characteristics
	5.4.3 Computational Evaluation
	5.4.4 Final Results
	5.4.5 Comparison with the State-of-the-Art
	5.4.6 Minimal Perturbation Problem

	5.5 Concluding Remarks

	6 Train Scheduling
	6.1 Problem Definition
	6.1.1 Train Scheduling Optimization Problems
	6.1.2 Periodic Event Scheduling Problems
	6.1.3 Converting PESP into TSOP
	6.1.4 Disruptions and Recovery

	6.2 MaxSAT Encoding
	6.2.1 Routing Constraints
	6.2.2 Time Constraints
	6.2.3 Encoding Disruptions

	6.3 Iterative Learning
	6.3.1 Learning Algorithm
	6.3.2 Learning and Propagation Algorithm

	6.4 Experimental Evaluation
	6.4.1 Experimental Setup
	6.4.2 Generating Disruptions
	6.4.3 Computational Evaluation
	6.4.4 Results Overview

	6.5 Concluding Remarks

	7 Conclusions
	7.1 Contributions
	7.2 Future Work
	7.2.1 University Course Timetabling
	7.2.2 Train Scheduling


	Bibliography
	Appendix A Data Cleaning

