
University of Western Macedonia
Department of Informatics and Telecommunications Engineering

Efficient Algorithms for Strong Local
Consistencies and Adaptive Techniques in

Constraint Satisfaction Problems

Anastasia Paparrizou

Submitted in partial fulfillment of the requirements
of the degree of Doctor of Philosophy

November 2013

Committee:

Principal advisor:
Kostas Stergiou (Assoc. Professor, University of Western Macedonia)

Co-advisor:
Manolis Koubarakis (Professor, National and Kapodistrian University of Athens)

Co-advisor:
Nikolaos Samaras (Assoc. Professor, University of Macedonia)

Members:
Christian Bessiere (CNRS research director)
Ioannis Refanidis (Assoc. Professor, University of Macedonia)
Nick Bassiliades (Assoc. Professor, Aristotle University of Thessaloniki)
Minas Dasygenis (Assoc. Professor, University of Macedonia)

Date approved: 13 November 2013

A dissertation submitted in partial fulfillment of the requirements for the Degree of Doctor
of Philosophy in the Department of Informatics and Telecommunications Engineering at
the University of Western Macedonia

Copyright c© by Anastasia Paparrizou 2013
All rights reserved.

This research has been co-financed by the European Union (European Social Fund -
ESF) and Greek national funds through the Operational Program ”Education and Life-
long Learning” of the National Strategic Reference Framework (NSRF) - Research Fund-
ing Program: Heracleitus II. Investing in knowledge society through the European Social
Fund.

Abstract
Constraint Programming (CP) is a successful technology for solving a wide range of prob-
lems in business and industry which require the satisfaction of a set of complex con-
straints. Examples include product configuration, resource allocation, transportation, and
scheduling. As the simultaneous satisfaction of different constraints is intractable in gen-
eral, problems can become very difficult to solve as their size increases. CP has thus
developed various techniques to tackle this inherent problem. Enforcing a local consis-
tency property is one of the most important such techniques.

Bounds Consistency (BC) and Generalised Arc Consistency (GAC) are the two most
widely studied and used local consistencies in CP solvers. While there exist stronger
local consistency (SLC) properties, their usage is limited due to their prohibitive cost.
Examples are max Restricted Path Consistency (maxRPC) and max Restricted PairWise
Consistency (maxRPWC).

In our research, we propose efficient filtering algorithms for enforcing SLCs. In par-
ticular, we propose new algorithms for maxRPC and maxRPWC that advance the existing
algorithms (theoretically and practically). We also propose algorithms that achieve weaker
consistencies with a lower cost. In addition, we have extended the recent algorithms from
the family of Simple Tabular Reduction (STR) to achieve a higher-order local consistency
property. Experiments demonstrate that these algorithms can significantly outperform
various state-ot the-art (G)AC algorithms, even by orders of magnitude, and thus can be-
come very useful additions to the propagation techniques that CP solvers currently apply.
Additionally, we have introduced and defined a new strong Bounds Consistency, called
PWBC, as well as a polynomial filtering algorithm based on this consistency for the im-
portant class of linear inequalities. Theoretical and experimental results demonstrate the
potential of SLCs that reason on bounds.

Finally, since SLCs may still be too expensive to maintain during search in many
problems, we have suggested ways to interleave them with weaker propagation methods
such as GAC. We have proposed fully automated heuristics that can dynamically select
the most appropriate filtering algorithm. All algorithms are incorporated in an adaptive
filtering scheme to further tackle the inherent difficulty of constraint satisfaction, resulting
in a more robust constraint solver. Overall, this research proposes filtering algorithms and
adaptive techniques that exploit the filtering power offered by SLCs in an efficient way, in
order to increase the efficacy of CP solvers.

Περίληψη

Ο Προγραμματισμός με Περιορισμούς (Constraint Programming - CP) είναι μια επιτυχημένη

τεχνολογία για την επίλυση πολλών προβλημάτων από το χώρο των επιχειρήσεων και της

βιομηχανίας, που απαιτούν την ικανοποίηση μιας σειράς πολύπλοκων περιορισμών.

Παραδείγματα τέτοιων προβλημάτων είναι η διαμόρφωση προϊόντος, η κατανομή πόρων, τα

προβλήματα μεταφοράς και χρονοπρογραμματισμού. Επειδή η ταυτόχρονη ικανοποίηση των

διαφόρων περιορισμών είναι γενικά δυσεπίλυτη, τα προβλήματα μπορεί να γίνουν ακόμη

δυσκολότερα καθώς αυξάνει το μέγεθός τους. Ο Προγραμματισμός με Περιορισμούς έχει

αναπτύξει διάφορες τεχνικές για να αντιμετωπίσει αυτό το εγγενές πρόβλημα. Μια από τις πιο

σημαντικές τέτοιες τεχνικές είναι η εφαρμογή τοπικής συνέπειας.

Οι τοπικές συνέπειες που έχουν ευρέως μελετηθεί και χρησιμοποιηθεί από συστήματα

επίλυσης είναι η συνέπεια ορίων (Bounds Consistency - BC) και η συνέπεια τόξου (Arc

Consistency - AC). Παρότι έχουν προταθεί και ισχυρότερες τοπικές συνέπειες, η χρήση τους είναι

περιορισμένη λόγω του απαγορευτικού κόστους τους. Παραδείγματα αποτελούν οι συνέπειες max

Restricted Path Consistency (maxRPC) και max Restricted PairWise Consistency (maxRPWC).

Στην παρούσα έρευνα προτείνουμε αποδοτικούς αλγόριθμους ελέγχου συνέπειας για την

επιβολή ισχυρών τοπικών συνεπειών. Συγκεκριμένα, προτείνουμε νέους αλγόριθμους για τις

συνέπειες maxRPC και maxRPWC που βελτιώνουν (θεωρητικά και πρακτικά) τους

προηγούμενους. Επίσης, προτείνουμε αλγόριθμους που εφαρμόζουν ασθενέστερες συνέπειες με

χαμηλότερο κόστος, έχουμε επεκτείνει τους πρόσφατους από την οικογένεια των STR (Simple

Tabular Reduction) αλγορίθμων για την επίτευξη υψηλότερης τάξης (higher-order) τοπικής

συνέπειας. Πειράματα δείχνουν ότι αυτοί οι αλγόριθμοι μπορούν να ξεπεράσουν state-ot-the-art

AC αλγόριθμους με σημαντικές διαφορές, ακόμη και κατά τάξεις μεγέθους, και συνεπώς, μπορούν

να αποτελέσουν χρήσιμες προσθήκες στις τεχνικές διάδοσης περιορισμών για τους σύγχρονους

CP επιλυτές. Επιπρόσθετα, εισάγουμε και ορίζουμε μια νέα ισχυρή συνέπεια ορίων, που

ονομάζεται PWBC, καθώς και έναν πολυωνυμικό αλγόριθμο ελέγχου συνέπειας που βασίζεται σε

αυτήν για την σημαντική κατηγορία των γραμμικών ανισοτήτων. Τα θεωρητικά και πειραματικά

αποτελέσματα αναδεικνύουν τις δυνατότητες των ισχυρών συνεπειών που επιβάλλονται στα όρια.

Τέλος, δεδομένου ότι οι ισχυρές συνέπειες μπορεί να εξακολουθούν να είναι ακριβές στην

εφαρμογή τους κατά την αναζήτηση σε πολλά προβλήματα, προτείνουμε τρόπους ώστε να

παρεμβάλλονται μαζί με ασθενέστερες συνέπειες, όπως η συνέπεια τόξου. Προτείνουμε πλήρως

αυτοματοποιημένες ευρετικές μεθόδους, που μπορούν να επιλέξουν δυναμικά τον καταλληλότερο

αλγόριθμο φιλτραρίσματος. Οι προτεινόμενοι αλγόριθμοι ενσωματώνονται σε ένα προσαρμοστικό

σύστημα διάδοσης περιορισμών για να αντιμετωπίσει περαιτέρω την εγγενή δυσκολία

ικανοποίησης περιορισμών, με αποτέλεσμα έναν ισχυρότερο επιλυτή. Συνολικά, η έρευνα

προτείνει αλγόριθμους φιλτραρίσματος και προσαρμοστικές τεχνικές που εκμεταλλεύονται το

μεγάλο φιλτράρισμα των ισχυρών συνεπειών με αποτελεσματικό τρόπο, προκειμένου να αυξηθεί

η αποτελεσματικότητα των CP επιλυτών.

Acknowledgements
This dissertation records the results of an effort that lasted from 2009 to 2013, four years
of research, experiences and emotions. For this beautiful trip I need to express my deepest
acknowledgements towards people with whom I shared this route.

I consider myself extraordinarily fortunate for having the chance to be supervised by
Kostas Stergiou. Kostas is the person who had the patience, the willing and the right
way to introduce me to research. I owe to him almost everything I know about constraint
programming, algorithmic proofs, writing and reviewing papers, expressing my ideas and
undertaking initiatives. I always felt his strong encouragement, his sincere interest for
my development and his silent comprehension. I am grateful for being mentored by a
researcher of his personality and integrity.

I need to express my special thanks to Toby Walsh for his active participation to two
of our papers and his wider support. I also need to thank Christophe Lecoutre for his
collaboration and critical contribution to our paper, as well as Christian Bessiere for our
fruitful discussions on adaptive techniques and bounds consistencies. All of them have
been a great inspiration and influence to continue this research journey.

I also thank my committee members Manolis Koubarakis, Nikos Samaras, Christian
Bessiere, Ioannis Refanidis, Minas Dasygenis and Nikolaos Vasiliadis for their insightful
comments.

Furthermore, I owe a great thanks to Thanasis Balafoutis for his willingness to explain
his implementations and everything I needed on the solver. I am indebted to Chariton
Karamitas for offering his expert knowledge to help me debug my code and his priceless
time to hear me practicing my presentations. It is my pleasure to have my precious friends
Marina, Grigoris, Giannis, Vaso, Makis, Eleni, Chariton, by my side or backing me up.

My personal deep thanks go to my brother for being so concerned, carrying and sup-
portive and to my mother for her endless love, patience and warm company.

Finally, I thank the Greek Ministry of Education for the Heraclitus fellowship, a gen-
erous support for all these years.

This work is dedicated to my father who influenced me to get involved into research and
trusted my capabilities.

Declarations
Part of the material presented in this dissertation has been previously pub-

lished in conference, journal and workshop papers. We list below the papers that
correspond to each chapter.

Parts of Chapter 4 are included in the following papers:

[1] T. Balafoutis, A. Paparrizou, K. Stergiou, T. Walsh. Improving the Per-
formance of maxRPC. In Proceedings of the 16th International Conference
on Principles and Practice of Constraint Programming (CP 2010), LNCS,
Vo 6308, pp. 69-83, 2010.

[2] T. Balafoutis, A. Paparrizou, K. Stergiou, T. Walsh. New Algorithms for
of max Restricted Path Consistency. Constraints, Volume 16, Number 4,
Pages 372-406, Springer, October 2011.

Parts of Chapter 5 are included in the following papers:

[3] A. Paparrizou, K. Stergiou. An Efficient Higher-Order Consistency Al-
gorithm for Table Constraints. In Proceedings of the 26th International
Conference on Artificial Intelligence (AAAI-12), pp. 535-541, 2012

[4] A. Paparrizou, K. Stergiou. Extending Generalized Arc Consistency. In
Proceedings of the 7th Hellenic Conference on Artificial Intelligence (SETN
2012), LNCS (LNAI), Vo. 7297, pp. 174-181, 2012.

[5] A. Paparrizou, K. Stergiou. Strong Local Consistency Algorithms for
Table Constraints. Constraints, (accepted with major revisions).

Parts of Chapter 6 are included in the following papers:

[6] C. Lecoutre, A. Paparrizou, K. Stergiou. Extending STR to a Higher-
Order Consistency. In Proceedings of the 27th International Conference on
Artificial Intelligence (AAAI-13), pp. 576-582, 2013.

We need to mention that Christophe Lecoutre has made significant contributions to
the research work presented in Chapter 6, mainly regarding the theoretical results
and the presentation of the algorithms.

Parts of Chapter 7 can be found in:

[7] A. Paparrizou, K. Stergiou. Evaluating Simple Fully Automated Heuris-
tics for Adaptive Constraint Propagation. In Proceedings the 24th IEEE
International Conference on Tools with Artificial Intelligence (ICTAI-12),
pp. 880-885, 2012.

Other Publications

[8] A. Paparrizou. Efficient Algorithms for Strong Local Consistencies in
Constraint Satisfaction Problems. In Proceedings of AAAI-13, AAAI/SI-
GART Doctoral Consortium, pp. 1674-1675, Bellevue, Washington, USA,
2013.

1. T. Balafoutis, A. Paparrizou, K. Stergiou. Experimental Evaluation of
Branching Schemes for the CSP. In Proceedings of TRICS 2010, 3rd Work-
shop on Techniques foR Implementing Constraint programming Systems (in
conjunction with CP 2010), LNCS, pp. 1-12, St Andrews, Scotland, 2010.

ii

To my father...

Contents

1 Introduction 1
1.1 Definition of the problem . 3
1.2 Contributions . 5
1.3 Structure and content . 7

2 Background 9
2.1 Constraint Satisfaction Problems 9
2.2 Formal Definitions . 11
2.3 Constraint Propagation . 13
2.4 Backtracking search algorithms 14

2.4.1 Maintaining a local consistency during search 17
2.4.2 Variable/Value ordering heuristics 18
2.4.3 Branching schemes . 22

2.5 Constraint Solvers . 24
2.5.1 Our CSP solver . 25

3 Related work 27
3.1 Binary Constraints . 27

3.1.1 Arc Consistency . 27
3.1.2 Strong local consistencies 32

3.2 Non-Binary Constraints . 37
3.2.1 Generalized Arc Consistency 37
3.2.2 Bounds consistency . 39
3.2.3 Strong Local Consistencies 40
3.2.4 Relation Filtering Consistencies 42

3.3 Table Constraints . 43
3.4 Adaptive Propagation . 45

4 New efficient maxRPC algorithms for Binary CSPs 48
4.1 Introduction . 49
4.2 New Algorithms for maxRPC . 51

4.2.1 maxRPC3 . 52
4.2.2 maxRPC3rm . 59

CONTENTS

4.2.3 Light maxRPC . 63
4.2.4 Correctness and Complexities 64

4.3 Further exploitation of residues in maxRPC algorithms 69
4.3.1 maxRPC3-resOpt . 70
4.3.2 maxRPC3-start . 72

4.4 Heuristics for maxRPC Algorithms 73
4.5 Experiments . 76

4.5.1 d-way branching . 81
4.5.2 Heuristics . 83
4.5.3 Interleaving AC and maxRPC 85

4.6 Conclusion . 86

5 Strong Local Consistencies for Non-Binary (Table) Constraints 88
5.1 Introduction . 89
5.2 Algorithm maxRPWC+ . 91

5.2.1 Algorithm description 93
5.2.2 Theoretical Results . 99
5.2.3 A lighter version of maxRPWC+ 100

5.3 Extending STR to a higher-order consistency 102
5.3.1 The HOSTR* algorithm 102
5.3.2 Theoretical Results . 106

5.4 Experiments . 111
5.4.1 Preprocessing . 113
5.4.2 Search . 114

5.5 maxRPWC+ for Intensional Constraints 121
5.6 An extension of GAC2001/3.1 derived from maxRPWC+ 122

5.6.1 Comparing GAC+ to GAC2001/3.1 127
5.7 Conclusion . 130

6 Higher-order Consistencies for Table Constraints using Counters 131
6.1 Introduction . 131
6.2 Extending STR . 132
6.3 Enforcing FPWC . 138
6.4 Experimental Results . 142
6.5 Conclusion . 149

ii

CONTENTS

7 Adaptive Propagation 150
7.1 Introduction . 150
7.2 Adaptive Propagator Selection 152
7.3 Experiments . 154

7.3.1 Evaluating the heuristics 155
7.3.2 Are revisions after DWOs important? 157

7.4 Refining the heuristics . 158
7.4.1 Effects of different Queue ordering and Branching scheme 165

7.5 Conclusion . 167

8 Strong Bounds Consistencies 168
8.1 Introduction . 168
8.2 PairWise Bounds Consistency 170
8.3 Linear constraints . 171

8.3.1 Preliminaries . 172
8.3.2 Theoretical results for linear inequalities 174
8.3.3 A PWBC algorithm for linear inequality constraints 175

8.4 Applications . 179
8.4.1 Case Study 1: Web Services 179
8.4.2 Case Study 2: Constraint-based Graphics 181

8.5 Experiments . 182
8.5.1 Web Services . 182
8.5.2 Random Problems . 184

8.6 Conclusion . 187

9 Conclusions and Future Work 188
9.1 Conclusions . 188
9.2 Future Work . 191

iii

List of Figures

2.1 Visualization of the map coloring problem. 10
2.2 Visualization of the map coloring problem as a constraint graph. . 11
2.3 Search tree for the map coloring problem using backtracking search. 16
2.4 Variable assignments using the lex variable ordering heuristic. . . 19
2.5 Variable assignments using the deg variable ordering heuristic. . . 20
2.6 Variable assignments using the dom variable ordering heuristic. . 20
2.7 Example of search tree under a d-way branching schemes, using

the lex variable and value ordering heuristic. 22
2.8 Example of search tree under a 2-way branching schemes, using

the lex variable and value ordering heuristic. 23

3.1 Relationships between consistencies for binary CSPs. 37
3.2 Relationships between consistencies for non-binary CSPs. 43

5.1 allowed(ck, x1, 1) and allowed(ck, x4, 0). 98
5.2 HOSTR vs. maxRPWC+. 107
5.3 Summary of the relationships between consistencies. 111
5.4 HOSTR2h vs. maxRPWC+r. 118
5.5 GAC-va vs. maxRPWC+r. 119
5.6 STR2 vs. maxRPWC+r. 119
5.7 maxRPWC1 vs. maxRPWC+r. 120
5.8 GAC-va vs. HOSTR2h. 120
5.9 STR2 vs. HOSTR2h. 121

6.1 eSTR structures for the intersection of c1 with c2 on variables x2
and x3. The highlighted values show the first occurrence of the
different subtuples for scp(c1) ∩ scp(c2). 135

6.2 A CN that is maxRPWC but not FPWC. 140
6.3 eSTR2 vs. eSTR2w. 146
6.4 STR2 vs. eSTR2w. 147
6.5 maxRPWC+r vs. eSTR2w. 147
6.6 HOSTR2 vs. eSTR2w. 148

LIST OF FIGURES

7.1 Cpu times of Hv
dwo compared to GAC and maxRPWC, for all eval-

uated instances. 164
7.2 Cpu times of Hv

dwo compared to GAC and maxRPWC when the
dom heuristic is used for the Queue ordering. 165

7.3 Cpu times of Hv
dwo compared to GAC and maxRPWC under the

d-way branching scheme. 166

8.1 Mean CPU times (in secs) of BC, rPWBC and PWBC for the
consistency case. 183

8.2 Mean CPU times (in secs) of BC, rPWBC and PWBC for the
inconsistency case. 183

8.3 Mean cpu time (in msecs) and removed values for BC and rPWBCl

during preprocessing. 185
8.4 BC vs. rPWBCl using lexicographic ordering. 186
8.5 BC vs. rPWBCl using dom variable ordering heuristic during

search. CPU times in logarithmic scale. 186

ii

List of Tables

4.1 Time and space complexities of (l)maxRPC algorithms. 73
4.2 Mean stand-alone performance in all 200 instances grouped by

problem class. Cpu times (t) in secs, removed values (rm) and
constraint checks (cc) are given. 77

4.3 Cpu times (t) in secs, nodes (n) and constraint checks (cc) from
various instances. 78

4.4 Mean search performance in all 200 instances grouped by class. . 81
4.5 Cpu times (t) in secs, nodes (n) and constraint checks (cc) from

various problem instances when d-way branching is used. 82
4.6 Mean search performance in all 200 instances grouped by class,

when d-way branching is used. 83
4.7 Mean search performance in all 200 instances grouped by class,

when different heuristics are used. 84
4.8 Mean hybrid search performance in all 200 instances grouped by

class. 86

5.1 Mean CPU times of the initialization (i) and the preprocessing (p)
phase in miliseconds from various problem classes. 113

5.2 CPU times (t) in secs and nodes (n) from various representative
problem instances. 115

5.3 Mean CPU times (t) in secs and nodes (n) from various problem
clases. 117

5.4 Search tree nodes and cpu times in secs from various representa-
tive problem instances. 129

6.1 Mean cpu times for initialization (i), preprocessing (p), search (s),
and mean numbers of visited nodes (n). 144

6.2 Cpu times (t) in secs and nodes (n). 145

7.1 Mean cpu times (t) in secs, nodes (n), and the percentage of con-
straint revisions (s) carried out using maxRWPC. 156

LIST OF TABLES

7.2 Percentages of revisions that caused value deletions after a pre-
vious DWO to all revisions that caused deletions (Ddwo/D) and
revisions that caused value deletions after a previous DWO to all
revisions executed after a previous DWO (Ddwo/Rdwo) from rep-
resentative instances. 158

7.3 Cpu times (t) in secs, nodes (n) and the percentage of the strong
consistency (s) from various representative problem instances. . . 160

7.4 Average cpu times (t) in secs, nodes (n) and the percentage of the
strong consistency (s) from all classes. 162

iv

1
Introduction

Constraint programming (CP) is a powerful programming paradigm for solv-
ing combinatorial satisfaction and optimization search problems that includes a
wide range of techniques from artificial intelligence, computer science, opera-
tions research, databases etc. Applications of CP include scheduling, planning,
timetabling, routing, product configuration, resource allocation, transportation,
design, matchmaking in web services, verification etc. Following the CP ap-
proach, such problems are first modelled as Constraint Satisfaction (or Optimiza-
tion) Problems (CSPs or COPs) by specifying variables, domains, constraints,
and in the case of COPs, an optimization function. This is typically done using
a high-level language offered by modern CP solvers. The formulated problem
is then solved by the solver used through a combination of heuristically guided
backtracking search and inference methods.

A Constraint Satisfaction Problem (CSP) involves finding solutions by assign-
ing values to a given set of variables that satisfy a given set of constraints. Con-
straints are defined over subsets of variables and specify combinations of values
that these variables are allowed to take. In this thesis, we are only concerned with
CSPs where variables take their values in a finite domain.

CSPs can model a wide range of combinatorial problems and cover a variety
of applications in the areas of Artificial Intelligence, Operations Research, Pro-
gramming Languages, Databases and other areas of Computer Science.

As a simple example of constraint satisfaction, consider the real task of course
scheduling, where we try to build the schedule of courses for a university depart-
ment. Such a problem can be modeled with variables that represent the courses,
where each variable has a domain that expresses the day, time, and room of the

CHAPTER 1. INTRODUCTION

course. Then, various constraints naturally arise: i) All courses of the same year
must be taught in different days and/or hours, ii) No more than one course can take
place in the same day, time and room, iii) In one day, up to four courses of the
same year can be taught. Constraints can become more complex if we consider
the duration of each course and constraints regarding the availability of lecturers
and rooms.

CSP solvers take a real-world problem like this, represented in terms of de-
cision variables and constraints, and try to find a solution. A solution is an as-
signment of a single value to each variable, where the value is taken from the
variable’s domain, such than no constraint is violated. A problem may have one,
many, or no solutions. A problem that has one or more solutions is satisfiable or
consistent. If there is no possible assignment of values to variables that satisfies
all the constraints, then the problem is unsatisfiable or inconsistent.

Inference methods are at the core of CP’s practical success and they are usually
referred to as constraint propagation methods. These encompass numerous filter-
ing algorithms that can detect and prune infeasible values from the domains of
the problem variables, exploiting the semantics of the constraints that are present
in the problem. As a result, the size of the search space is significantly reduced,
making the problem easier to solve. Constraint propagation algorithms typically
enforce some local consistency property on the problem.

Local consistencies, such as Bounds Consistency (BC) and Generalised Arc
Consistency (GAC), are widely studied and used in CP solvers. These local con-
sistencies have proved their practical importance that justifies their wide spread
use and acceptance. From another point of view, since they operate on one con-
straint at a time, there are cases where the pruning they achieve is limited. This
is why stronger local consistency (SLC) properties have been proposed and have
started to receive increasing interest lately. Examples are max Restricted Path
Consistency (maxRPC) and max Restricted PairWise Consistency (maxRPWC)
for binary and non-binary constraints respectively. Even though many SLCs have
been proposed, the prohibitive cost of algorithms that apply them prevents them
from being widely adopted. Therefore, BC and GAC are predominantly used in
CSP solvers.

The aim of this research is to overcome the cost limitations that make SLCs
impractical and thus to demonstate the advantages offered by strong propagation.

2

CHAPTER 1. INTRODUCTION

Our research focuses on strong local consistencies for binary and table constraints;
two of the most widely studied classes of constraints, but it also covers linear con-
straints as well as generic constraints with no particular semantics. Specifically,
we propose new algorithms for maxRPC and maxRPWC that advance theoret-
ically and practically existing state-of-the-art algorithms. We also extend recent
algorithms for table constraints to achieve strong local consistency properties. Our
experimental evaluation demonstrates that these algorithms can significantly out-
perform existing ones, even by orders of magnitude.

Additionally, we introduce and study a new local consistency that extends
BC to achieve stronger domain shrinking by considering constraint intersections.
Based on this new local consistency, we propose a polynomial filtering algorithm
for linear inequality constraints that achieves stronger pruning than BC, the stan-
dard consistency used on such constraints.

Finally, since there are still many problems where SLCs are too expensive
to maintain during search, we suggest ways to combine them with weaker local
consistencies. More precisely, we propose adaptive heuristics that can dynami-
cally select the most appropriate filtering algorithm in a fully automated way. All
algorithms are incorporated in an adaptive filtering scheme to further tackle the
inherent difficulty of constraint satisfaction, resulting in a more robust constraint
solver.

1.1 Definition of the problem

Generalized Arc Consistency (GAC), and Bounds Consistency (BC) are the two
local consistencies that are predominantly used for propagation by finite domain
constraint solvers. Numerous local consistencies that are stronger (i.e. achieve
more filtering) than GAC have been proposed. Some of these have shown promise
(e.g. SAC, maxRPC, maxRPWC) but generally, they are all too expensive to ap-
ply throughout search. So despite the strong pruning that can be achieved, they
are rarely used because existing algorithms for SLCs suffer from overheads and
redundancies. Therefore, an important question is how CSP research to best ex-
ploit the filtering power of SLCs without paying a high cpu time penalty. This
research tries to answer this question by proposing and evaluating techniques that
can boost the performance of algorithms for SLCs by eliminating many of the

3

CHAPTER 1. INTRODUCTION

overheads and redundancies.
Existing algorithms for SLCs are typically generic and do not take the se-

mantics of constraints into account. We address this by proposing specialized
algorithms for very common classes of constraints, such as table and linear con-
straints.

Binary constraints cover a big part of CSPs and, since the early days of CP,
researchers were proposing algorithms to solve them efficiently. Arc Consistency
(AC) is the most widely studied and used consistency for binary constraints. De-
spite the fact that stronger consistencies than AC have been proposed, that display
promising results, like maxRPC, they are rarely used in practice due to their high
computational cost.

Regarding the special case of table constrtains, which are constraints given
in extension by listing the tuples of values allowed by a set of variables, re-
search has mainly focused on the development of fast algorithms to enforce GAC.
Such constraints are widely studied in constraint programming, since they ap-
pear in many real-world applications from areas such as design and configura-
tion, databases, and preferences’ modeling. GAC is a consistency that allows us
to identify only inconsistent values, that are deleted from variable domains, and
achieve the maximum level of filtering when constraints are treated independently.
In this research, we propose specialized filtering algorithms for table constraints
that achieve stronger consistency properties than GAC.

There are also cases where it is beneficial to achieve an approximation of a
SLC, even if it cannot be formally characterized, than the full SLC because the
filtering achieved is almost the same, but with much lower cost. Along this line,
we investigate approximation of SLCs for binary and non-binary constraints.

Even though constraint propagation is at the core of CP’s strength, the decision
on which algorithm to select for the different constraints of the CP model is either
predetermined or placed on the shoulders of the user/modeler. For instance, the
modeler may select to propagate the alldifferent constraints in a problem using
a GAC algorithm. However, during search it may turn out that this consistency
achieves little extra pruning compared to BC. Unfortunately, standard CP solvers
do not allow to change the decisions taken prior to search ”on the fly”. Hence, it
will not be possible to automatically switch to a bounds consistency propagator
during search.

4

CHAPTER 1. INTRODUCTION

The interleaved application of SLCs and standard local consistency methods
can be very beneficial as the advances of both sets of techniques can be exploited.
However, there are very few studies on this topic. We address this by proposing
simple fully automated heuristics that can dynamically adapt propagation during
search.

1.2 Contributions

The conducted research contributes to the field of Constraint Satisfaction Prob-
lems and Artificial Intelligence in general. It proposes new efficient constraint
propagation algorithms for problems expressed both with binary and non-binary
constraints. The new algorithms improve theoretically and practically existing
relevant state-of-the-art algorithms. In more detail:

1. We propose efficient algorithms that achieve strong filtering on binary con-
straints. The proposed algorithms improve the performance of existing
maxRPC algorithms by eliminating many redundancies through the com-
bined use of two sophisticated data structures. Based on these, we propose
a number of algorithms that acheive either maxRPC or approximate this
property. We also propose heuristics that can boost algorithms’ performance
during search. The experimental evaluation shows that our algorithms are
more efficient than existing maxRPC algorithms and constitute a viable al-
ternative of Arc Consistency in many binary CSPs

2. We propose efficient algorithms for non-binary table constraints that ex-
tend existing ones to apply stronger pruning. Specifically, the new algo-
rithms, based on maxRPWC, enforce stronger consistency properties than
GAC by exploiting intersections between constraints. The first algorithm,
called maxRPWC+, extends the GAC algorithm of [72], while the second
one extends the state-of-the-art STR-based GAC algorithms to stronger re-
lation filtering consistencies, i.e., consistencies that can remove tuples from
constraints’ relations. Both algorithms handle efficiently table constraints
that have more than one variable in common, resulting in more value dele-
tions and thus, reducing the search space considerably. These algorithms

5

CHAPTER 1. INTRODUCTION

constantly outperform the algorithms of [19] and are more robust than state-
of-the-art GAC algorithms on many problems with intersecting table con-
straints.

3. We propose a new algorithm for table constraints that achieves both pair-
wise consistency and GAC through the use of counters. Importantly, the
basic filtering procedure at the heart of this algorithm has a worst-case time
complexity very close to that of the state-of-the-art STR algorithms [63] that
it extends. Experiments on problems with table constraints show that our
algorithm is significantly faster than STR algorithm in many cases where
constraint intersections exist.

4. Regarding adaptive propagation, we propose heuristic techniques for the
automated selection between weak and strong propagation methods. The
heuristics, being generic, can be applied in either binary or non-binary
CSPs. The advantages offered by strong propagation algorithms are ex-
ploited by our methods in a fully automated way and significantly, do not
require the users’ involvement (i.e., by setting parameters). Our evaluation
demonstrates that these methods display a stable performance and thus, can
be preferable to a predefined propagator.

5. Finally, we define a new local consistency that extends Bounds Consistency
(BC) in order to achieve stronger filtering on domain bounds. Apart from
the theoretical advantages, we also show the practical importance of such
consistencies by proposing a polynomial filtering algorithm that achieves
stronger pruning than BC. This algorithm handles constraints of linear in-
equalities, an important subclass of linear constraints. Experiments demon-
strate that the proposed algorithm can in many cases replace the standard
weak propagation of BC that CP solvers currently apply on linear con-
straints.

Overall, the presented results demonstrate the potential of strong local con-
sistencies that, until now, are rarely used due to their prohibitive cost. The new
algorithms for SLCs along with the adaptive techinques that control their applica-
tion, exploit the strong filtering they offer by avoiding overheads, resulting thus in
increasing the efficacy of CP solvers.

6

CHAPTER 1. INTRODUCTION

1.3 Structure and content

The thesis consists of nine chapters (including this one). The rest of the chapters
are structured as follows

• The second chapter provides the necessary background information. In de-
tail, we define the Constraint Satisfaction Problem and informally discuss
constraint propagation techniques. We also refer to search algorithms (i.e.,
backtracking search algorithms), branching methods and variable/value or-
dering heuristics. Finally, we describe systems that solve such problems
(CSP solvers) and give the notation in order to describe consistency proper-
ties and algorithms in the rest of the thesis.

• The third chapter includes a review of the literature on local consisten-
cies, for binanry and non-binary CSPs. We describe some propagation
algorithms for binary and non-binary constraints as well as a review on
algorithms specialized for table constraints. Then we survey existing adap-
tive techniques for selecting the appropriate propagation method for solving
CSPs.

• In the fourth chapter we propose a new set of algorithms that apply the
strong local consistency called max Restricted Path Consistency (maxRPC)
for binary constraints. Moreover, we present algorithms that approximate
this property, which are shown to be more efficient in practice. The pro-
posed methods outperform existing maxRPC algorithms while being com-
petitive or better than the most efficient Arc Consistency (AC) algorithm in
many problem classes.

• In the fifth chapter we propose new algorithms for non-binary table con-
straints that are based on and expand the strong local consistency max Re-
stricted PairWise Consistency (maxRPWC). We present theoretical results,
time and space complexities and compare them to other local consistencies.
Experimental results show that the best among our new algorithms is more
stable than the state-of-the-art Generalized Arc Consistency (GAC) algo-
rithms, while in many problem classes it can be orders of magnitude faster.

7

CHAPTER 1. INTRODUCTION

• The sixth chapter also describes new strong local consistency algorithms
for non-binary table constraints. These algorithms belong to the category
of higher-order consistencies, which remove both values from variables’
domains and tuples (combinations of values) from constraints’ relations.
We give some theoretical results, analyze time and space complexities and
compare to other strong local consistencies. The process at the core of our
algorithm, called eSTR, has slightly higher complexity than the state-of-the-
art GAC algorithm for table constraints (STR) and is orders of magnitude
faster in many problem classes.

• In the seventh chapter, we present and study fully automated heuristics that
are applicable to non-binary constraints. The heuristics are based on the
inspection of the propagation impact of constraints during search. The ex-
perimental evaluation shows that the proposed heuristics can outperform a
standard approach that applies a default propagation algorithm on each con-
straint, resulting in a stable and efficient solver.

• In the eighth chapter, we study theoretically and practically a new strong
local consistency that is based on Bounds Consistenciy (BC). Also, we pro-
pose a specialized algorithm for linear constraints with polynomial com-
plexity. This algorithm is stronger that BC, reduces significantly the search
space and thus the time required for solving certain problems of linear in-
equalities.

• The last chapter summarizes the conclusions and the overall contribution of
the doctoral reaserch, and suggests some future research directions.

8

2
Background

In this chapter we describe Constraint Satisfaction Problems and some of the basic
techniques for solving them. These techniques include constraint propagation
methods along with backtracking search algorithms and branching heuristics. We
also give the formal notation that we will follow throughout the thesis. Finally,
we give some details on how CP solvers work and present the components and
architecture of our own solver.

2.1 Constraint Satisfaction Problems

An instance of a Constraint Satisfaction Problem (CSP) is defined by a finite set of
variables, a finite domain (i.e., set of values) for each variable, and by constraints
that restrict the combinations of values that the variables can be assigned to. The
CSP is the problem of seeking an assignment to each variable from a value of its
domain in such a way that all the constraints are satisfied.

Constraints are defined on subsets of variables and can be exploited to reduce
domains by pruning values that cannot participate in any solution. This process
is called constraint propagation and constitutes the core mechanism of most CSP
solvers.

A classical example of a simple CSP is the map coloring problem. For in-
stance, coloring the map of the principal states of Australia, can be viewed as a
constraint satisfaction problem. The goal is to assign a color to each region of the
map, from a given set of colors, so that no adjacent regions have the same color.
Figure 2.1 visualizes the map coloring problem of Australia. The map has seven

CHAPTER 2. BACKGROUND

regions that are to be colored with red, green, or blue.

Figure 2.1: Visualization of the map coloring problem.

More formally, the map coloring example can be defined by a tuple (X ,D, C),
where:

• X : WA, NT , Q, SA, NSW , V , and T are the variables that represent
different regions in the map.

• D: {red, green, blue} is the domain for each variable.

• C: WA 6= NT , WA 6= SA, NT 6= SA, NT 6= Q, SA 6= Q, SA 6= NSW ,
SA 6= V , Q 6= NSW , NSW 6= V are the constraints between any two
adjacent regions.

An indicative solutions is the assignment: {WA = red,NT = green, SA =

blue,Q = red,NSW = green, V = red, T = red}.
A unary constraint is a constraint that involves only one variable (e.g. x > 5),

a binary (resp. ternary) constraint involves two (resp. three) variables. Generally,
non-binary constraints include n variables and are also called n-ary constraints
(e.g. x1 + x2 + x3 + x4 > 0). A unary CSP includes only unary constraints, a
binary CSP is a CSP of only unary and binary constraints. In the general case,
a non-binary or n-ary CSP includes constraints that are defined over at most n
variables. Map coloring problems are binary CSPs.

10

CHAPTER 2. BACKGROUND

Binary CSPs are usually represented by a constraint network (CN) (referred
also as constraint graph), in which each node represents a variable, and each edge
represents a constraint between variables represented by the end points of the edje.
The visualization of the CN of the map coloring problem is shown in Figure 2.2.

Figure 2.2: Visualization of the map coloring problem as a constraint graph.

A solution to a CSP is a complete assignment of values to variables such that
no constraint is violated. It has been shown that the CSP, in its general form,
is NP-hard [78]. This means that it is unlikely that an efficient general-purpose
algorithm for finding a solution in polynomial time exists. Its worst-case time
complexity is exponential in the size of the problem.

2.2 Formal Definitions

A Constraint Satisfaction Problem (CSP) is defined as a tuple (X ,D, C) where:

• X = {x1, . . . , xn} is a set of n variables.

• D = {D(x1), . . . , D(xn)} is a set of finite domains, one for each variable,
with maximum cardinality d.

• C = {c1, . . . , ce} is a set of e constraints.

11

CHAPTER 2. BACKGROUND

We assume that domains are composed of integers. Given a variable xi and its
domain D(xi), minD(xi) will denote the smallest value in D(xi) and maxD(xi)

the greatest one. These two values are called the bounds of D(xi). For example,
given a domain D(x1) = {0, 2, 4, 7}, minD(x1) = 0 and maxD(x1) = 7.

The arity of a constraint is the number of variables in the scope of the con-
straint; k denotes the maximum arity of the constraints. The degree of a variable
xi, is the number of constraints in which xi participates. For instance, given a CSP
that includes c1 : x1 + x2 = 5 and c2 : x1 + x3 > 3, then the degree of x1 is 2,
since it appears in two constraints, while the degrees of both x2 and x3 are equal
to 1.

Each constraint ci is a pair (scp(ci), rel(ci)), where scp(ci) = {x1, . . . , xr} is
an ordered subset ofX referred to as the constraint scope, and rel(ci) is a subset of
the Cartesian productD(x1)×. . .×D(xr) that specifies the allowed combinations
of values (known also as ci’s relation) for the variables in scp(ci). Each tuple
τ ∈ rel(ci) is an ordered list of values of the form < (x1, a1), . . . , (xr, ar) >, s.t.
aj ∈ D(xj), j = 1, . . . ,m.

Constraints can be defined either extensionally by listing the allowed (or disal-
lowed) combinations of values or intensionally through a predicate or arithmetic
function. A positive table constraint is a constraint given in extension (i.e., by
explicitly giving rel(ci)) and defined by a set of allowed tuples. For each table
constraint ci, the size of rel(ci) is denoted by tci . The maximum size of any con-
straint’s relation in the problem is denoted by t.

Given a (table) constraint ci, and a tuple τ ∈ rel(ci), we denote by τ [x] the
projection of τ on a variable x ∈ scp(ci) and by τ [X] the projection of τ on any
subset X ⊆ scp(ci) of variables; τ [X] is called a subtuple of τ . For any constraint
ci we denote by > (resp. ⊥) a dummy tuple s.t. τ < > (resp. τ > ⊥) for any
tuple τ ∈ rel(ci). We assume that for any table constraint its tuples are stored in
lexicographical order.

A tuple τ satisfies constraint ci iff τ ∈ rel(ci). Tuple τ = (a1, . . . , am) is
valid iff aj ∈ D(xj), for j = 1, . . . ,m. In words, a valid tuple is an assignment
of values to the variables involved in the constraint such that none of these values
has been removed from the domain of the corresponding variable. The process
which verifies whether a given tuple is allowed by (i.e. satisfies) a constraint ci is
called a constraint check. In case a domain becomes empty, namely all values are

12

CHAPTER 2. BACKGROUND

deleted, we call it domain wipe-out (DWO).
Given two constraints ci and cj , if |scp(ci) ∩ scp(cj)| > 1 we say that the

constraints intersect non trivially. We denote by fmin the minimum number of
variables that are common to any two constraints that intersect on more than one
variable. Therefore, fmin is at least two. We will denote by g the maximum num-
ber of intersections between any constraint ci and other constraints. For instance,
given a CSP that includes c1 : x1+x2+x3+x4 = 5 and c2 : x1+x2+x3+x5 > 3,
we see that fmin = 3 and g = 1.

2.3 Constraint Propagation

Solving Constraint Satisfaction Problems becomes more complex as their size
increase. However, constraint solving involves various techniques to tackle this
inherent problem. Constraint Propagation is one such technique.

Propagating the information contained in one constraint to the neighboring
constraints, is called constraint propagation since it can reduce the parts of the
search space that need to be visited. Constraint propagation is one of the core
mechanisms for solving CSP problems and constitutes one of the basic reasons
for CP’s success. For instance, in a problem that contains two variables x1 and x2
with D(x1) = D(x2) = [1 : 10], and a constraint specifying that x1 + x2 ≤ 5, by
propagating this constraint we can delete values 6,7,8,9 and 10 from the domains
of both x1 and x2. Removing these ’nogoods’ is a way to reduce the space of
combinations that will be explored by a search mechanism.

Local consistencies are properties that are enforced on the constraints of a
problem so that infeasible values are located and pruned. Algorithms that apply
local consistencies can be even used as complete methods to find a solution to a
problem, but this is never done in practice due their high cost. Typically, local con-
sistency techniques are usually combined with a search algorithm and can be used
to remove some, but usually not all, inconsistent values from variables’ domains,
resulting in a reduced problem size and search space. The process of propagation
is aimed at transforming a CSP into an equivalent problem that is hopefully easier
to solve, while no solutions are excluded.

The simplest consistency that can be enforced on a CSP is called Node Con-
sistency (NC) and concerns only unary constraints. A CSP is node consistent iff

13

CHAPTER 2. BACKGROUND

for all variables all values in its domain satisfy the unary constraints on that vari-
able. If the variable is not node consistent, then it means that the instantiation of
the variable in question to an inconsistent value always results in an immediate
failure. In other words, this value cannot be included in any solution. Hence, it
can be removed. For example, if a CSP that includes the constraint c : x > 5

and the domain of x is D(x) = [1..10], then x is not NC with respect to c. The
propagation of c will remove values [1..5] from D(x).

The most commonly used local consistency is Arc Consistency (AC). This is a
very simple concept that guarantees every value in a domain to be consistent with
respect to every constraint. It considers binary constraints which correspond to
arcs (i.e. directed edges) in the constraint graph. The arc (xi, xj) is arc consistent
if for every value ai in the domain of xi, there is some value aj in the domain of
xj such that xi = ai and xj = aj are permitted by the binary constraint between
xi and xj . A CSP is arc consistent if all the constraints in the problem are arc
consistent. Usually, the constraint is made AC by propagating the domain changes
from one variable to the other variable and vice versa.

For example the map coloring problem shown in Figure 2.1 is arc consistent,
because for any value of any variable there is a value to be assigned to the neigh-
boring variables such that all constraints are satisfied. Consider now the case
where the domain of variable SA is restricted to blue. It is easy to see that if we
enforce AC on this CN, then blue will be inconsistent for WA, NT , Q, NSW ,
V that SA shares a constraint of inequality. As a consequence, this value will be
removed from the respective domains. Interestingly, as soon as a local consistency
is applied, the effects it causes may trigger new revisions, since variables are typ-
ically connected with several constraints. Therefore, the mechanism of constraint
propagation is essential for the efficient solving of CSPs since it reduces notable
the search space. AC as well as othe local consistencies are further discussed in
Chapter 3 where algorithms for AC are also presented.

2.4 Backtracking search algorithms

Once a CSP is identified and modeled there is a variety of techniques that can be
used to solve it [104]. In general, a CSP can be solved either systematically, as
with backtracking (BT) search, or using local search methods that are typically

14

CHAPTER 2. BACKGROUND

incomplete. A backtracking search algorithm performs a depth-first traversal of a
search tree, where each level of the tree corresponds to a decision (e.g., variable
assignment). The search tree is generated progressively; as soon as a node is
visited, branches are built. Branches represent alternative choices that may be
examined in order to find a solution. A node in the search tree is a dead-end if it
provably does not lead to a solution. The method of extending a node in the search
tree is called branching strategy, and several alternatives have been proposed and
examined in the literature (see Section 2.4.3).

More analytically, basic backtrack search builds up a partial solution by choos-
ing values for variables until it reaches a dead-end, where the partial solution
cannot be consistently extended. When it reaches a dead-end it cancels the last
decision and tries another. This is done in a systematic manner that guarantees
that all possible branches will be tried. It improves on simply enumerating and
testing of all candidate solutions step by step, meaning that it checks if the respec-
tive constraints are satisfied each time it makes a new choice, rather than checking
after a complete assignment is generated for all variables.

The backtrack search process is often represented as a search tree, where each
node (below the root) represents an assignment of a value to a variable, and each
branch represents a candidate partial solution. The branches consist of all possi-
ble ways of extending the node of a particular decision on a variable. Discovering
that a partial solution cannot be extended results in pruning the subtree from con-
sideration. Backtracking search algorithms are typically complete. That is, they
guarantee that a solution will be found if one exists, or show that a CSP does not
have a solution. They are also useful in optimizations problems to find the optimal
solution, a task that requires the whole exploration of the tree.

When a node is visited during chronological BT search, only constraints with
instantiated variables (i.e., constraints between the current variable and the past
variables) are checked at a node. If a constraint is violated, the next value of the
current variable is tried. If there are no more values left, BT backtracks to the
most recently instantiated variable. A solution is found if all constraint checks
succeed after the last variable has been instantiated. It should be mentioned that
backtracking search algorithms require a polynomial amount of space.

An example of a search tree built by the backtracking algorithm is shown in
Figure 2.3, using the map coloring problem. Recall that this problem requires

15

CHAPTER 2. BACKGROUND

coloring n regions to d colors in such a way that no adjacent regions have the
same color. In our example of Figure 2.1 this problem has 7 variables, one for
each region, and each variable has domain {reg, green, blue} representing the 3
different colors. The root node at level 0 is the empty set of assignments and a
node at level i is a set of assignments x1 = a1, . . . , xi = ai. For the assignments
that do not satisfy the constraints (i.e., the left branch at level 2) the subtrees
are pruned, and the next value of the current variable is tried. For simplicity, in
Figure 2.3, we have assumed a static order of instantiation, namely variable xi is
always chosen at level i in the search tree and values are assigned to variables in
the order {reg, green, blue}.

Figure 2.3: Search tree for the map coloring problem using backtracking search.

Since backtracking search is not guaranteed to terminate within polynomial
time - in general there is no polynomial algorithm for CSPs - the research com-
munity has spent a considerable amount of effort on maximizing the practical ef-
ficiency of backtracking search. Usually this is done by combining backtracking
search with constraint propagation techniques to filter inconsistent values, and by
making use of effective heuristics to guide search. The techniques are not always
orthogonal and sometimes combining two or more techniques into one algorithm

16

CHAPTER 2. BACKGROUND

can boost the search significantly. The best combinations of these techniques re-
sult in robust backtracking algorithms that can solve large, hard instances that
demonstrate their of practical importance. Backtracking algorithms are typically
guided by variable and value ordering heuristics and make use of a branching
scheme to divide the search tree while the algorithm traverses it.

2.4.1 Maintaining a local consistency during search

A fundamental insight in improving the performance of backtracking search al-
gorithms on CSPs is that filtering techniques, embedded in search, can lead to a
solution with less effort. Backtracking search that incorporates constraint prop-
agation has many significant benefits. First, inference methods remove inconsis-
tencies during search which can dramatically prune the search tree by avoiding
earlier many dead-ends and by simplifying the remaining subproblem. If con-
straint propagation causes an empty domain to a variable, then backtracking can
be initiated as there is no solution along this branch of the search tree. In other
cases, the variables will have their domains reduced, resulting in less branches to
be explored in the future. Therefore, it can be much easier to find a solution to
a CSP after constraint propagation or to show that the CSP does not have a solu-
tion. Second, some of the most important variable ordering heuristics exploit the
information gathered by constraint propagation to make effective variable order-
ing decisions. As a result of these benefits, it is now standard for a backtracking
algorithm to incorporate some form of constraint propagation.

The most widely used local consistency during backtracking is Arc Consis-
tency (AC). However, many local consistencies can be embedded in BT search,
that are either stronger or weaker than AC. There are also cases where the level
of local consistency that is maintained in the nodes of the search tree is not uni-
form. This is the case of adaptive propagation that we examine in Chapter 7. For
simplicity reasons, we describe MAC [91], which is the backtrack search algo-
rithm that maintains AC during search. MAC is currently considered as the most
efficient complete general-purpose approach to solving CSP instances. In Section
2.5 we describe how modern CP solvers operate having abandoned the standard
MAC algorithm towards the application of different filtering algorithms on differ-
ent constraints.

17

CHAPTER 2. BACKGROUND

Within MAC the solution process proceeds by iteratively interleaving search
phases and propagation phases. The description in this section and the in the next
one is based on a standard d-way branching scheme that we describe in Section
2.4.3. During search, a node is visited when a variable is instantiated to a value of
its domain. At each node visit of the search tree, an algorithm for enforcing arc
consistency is applied to the CSP. Since AC is enforced on the parent of a node,
initial constraint propagation needs only be enforced on the constraint that was
followed by the branching strategy (e.g., the constraint x = a, after an instanti-
ation). In turn, this may lead to other constraints becoming arc inconsistent and
constraint propagation continues until no more changes are made to the domains.
If, as a result of constraint propagation, a domain becomes empty, the branch is a
dead-end and is rejected. If no domain is empty, the branch is accepted and the
search continues to the next level.

In short, constraint propagation removes values from the variables’ domains
that are inconsistent with respect to the partial assignment built so far. Every time
a constraint reduces a variable domain, other constraints that include that vari-
able have to propagate again until a fixed point is reached. If a domain wipe out
(DWO) occurs for a variable, then the search fails and backtracks to reconsider
the branching decision. After achieving the fixed point, a new search step is per-
formed. The solution process finishes when a solution is found, that is, a value
is assigned to each variable and all constraints are satisfied, or when one of the
following conditions is achieved: the tree has been fully explored without finding
a solution, a time or a backtrack limit has been reached.

2.4.2 Variable/Value ordering heuristics

When solving a CSP using backtracking search, a sequence of decisions must
be made on which variable to branch on or instantiate next and which value to
give to the variable. These decisions are referred to as the variable and the value
ordering. It has been shown that for many problems, the choice of variable and
value ordering can drastically affect the efficiency of solving a CSP instance.

A variable or value ordering can be either static, where the ordering is fixed
and determined prior to search, and is not altered thereafter, or dynamic, where
the ordering depends on the current state of the search and is determined as the

18

CHAPTER 2. BACKGROUND

search progresses. Given a CSP and a backtracking search algorithm, a variable
or value ordering is said to be optimal if the ordering results in a search that visits
the fewest number of nodes over all possible orderings when finding one solution
or showing that there does not exist a solution.

Many variable ordering heuristics have been proposed and evaluated in the
literature. These heuristics can, with some omissions, be classified into two cate-
gories: heuristics that are based on the domain sizes of the variables and heuristics
that are based on the structure of the CSP.

Static, or fixed, variable ordering heuristics (SVOs) keep the same ordering
throughout the search, using only structural information about the initial state of
search. The simplest such heuristic is the lex heuristic, which orders variables
lexicographically. When variables are indexed by integers, lex is usually im-
plemented so as to order the variables according to the value of their index. If
vars(P) = {x1, x2, ..., xn}, then lex will select first x1, then x2,... and finally xn.

Figure 2.4: Variable assignments using the lex variable ordering heuristic.

In the example of Figure 2.4, where the search tree of the map coloring prob-
lem is depicted, the variable ordering heuristic select variables in lexicographic
order1. The same lexicographic ordering is also used for ordering the values. That
is, initially assign to the first region the first color, then to the second region the
first color available in its domain and so on. After a variable assignment, always
the red color is tried for the next region. If a constraint is violated, the second
color (i.e., green) is tried next e.t.c. Using a different variable ordering heuristic,
simply means that at the top of the search tree the first color may paint a region
different than the first. Respectively, using a different value ordering heuristic, a
color different than the first (i.e.red) will be selected.

The heuristic deg, which is also known as max degree, orders variables in
sequence of decreasing degree [32]. So variables with the highest initial size of

1Assume that x1 = WA, x2 = NT , x3 = Q, x4 = SA,x5 = NSW , x6 = V , and x7 = T

19

CHAPTER 2. BACKGROUND

their neighborhood are selected first. In the map coloring problem, SA is the
variable with the highest degree and thus is firstly instantiated as shown in Figure
2.5.

Figure 2.5: Variable assignments using the deg variable ordering heuristic.

Other known static variable ordering heuristics are the min width heuristic
which chooses an ordering that minimizes the width of the constraint network [39]
and the min bandwidth heuristic which minimizes the bandwidth of the constraint
graph [110]. Static variable ordering heuristics are considered weak heuristics,
that miss valuable information and significant changes that occur during search,
and nowadays they rarely used.

The basic idea for specifying dynamic variable ordering heuristics (DVOs),
is based on the ”fail-first” principle [48], which is explained as ”To succeed, try
first where you are most likely to fail”. Many DVOs take into account the size
of the domains in order to choose the next variable to be instantiated. When
we apply filtering algorithms within the search procedure, the domain sizes are
decreased from one branch to another. As a result, heuristics based on the size
of the domains will change the order of variables that will be considered from
one branch to the other. The heuristic introduced by Haralick and Elliott in [48]
is called dom or minimum domain heuristic, and selects as the next variable the
one with the smallest remaining domain. Figure 2.6 shows the search tree of map
coloring example when dom is used.

Figure 2.6: Variable assignments using the dom variable ordering heuristic.

20

CHAPTER 2. BACKGROUND

A drawback of the simple dom heuristic is that in many case it remains in-
active, namely it makes few changes to the order of variables. This is because
variables often have the same size of domains and especially at the beginning of
search, the heuristic dom/deg overcomes this difficulty by preferring the variable
with the highest initial ratio of domain size over degree [40]. A similar approach
called dom/ddeg prefers the variable with highest ratio of domain size over dy-
namic (or future) degree, namely the variable that is constrained with the largest
number of unassigned variables [98].

One of the most efficient modern heuristics for CSPs is the dom/wdeg variable
ordering heuristic [23]. This heuristic assigns a weight to each constraint, initially
set to one. Each variable is associated with a weighted degree (wdeg), which is the
sum of the weights over all constraints involving the variable and at least another
(unassigned) variable. Each time a constraint causes a domain wipeout (DWO)
its weight is incremented by one. The dom/wdeg heuristic chooses the variable
with minimum ratio of current domain size to weighted degree. It is a generic
state-of-the-art variable ordering heuristic and the interesting is that it is adaptive,
with the expectation to focus on the hard part(s) of the problem. Some variants of
dom/wdeg, proposed in [5], are less amenable to changes in the revision ordering
than dom/wdeg and therefore can be more robust. Refalo introduced an impact
measure with the aim of detecting choices which result in the strongest search
space reduction [89].

Once a variable has been selected, the algorithm must decide on the order in
which to examine its values. Heuristics in [40] select the value that maximizes
the summation of the remaining domain sizes after propagation. Geelen [41] pro-
poses to choose a value that is most likely to participate in a solution. Early work
on learning about values focused on nogoods that can guide search away from the
re-exploration of fruitless subtrees [71]. In general, the ”best-first” principle ad-
vocates the selection of a value most likely to be part of a solution. An approach
called survivors-first, gave rise to the family of adaptive value ordering [113].

Value ordering heuristics are trying to leave the maximum flexibility for sub-
sequent variable assignments. Of course, if we are trying to find all the solutions
to a problem, not just the first one, then the ordering does not matter because we
have to consider every value anyway. The same holds if there are no solutions
to the problem. Although, a variety of value ordering heuristics existis, the lex

21

CHAPTER 2. BACKGROUND

heuristic is the one most commonly used because, the proposed heuristics are ei-
ther costly when used dynamically or have not demonstrated significant gains over
a wide variety of problems.

2.4.3 Branching schemes

The search tree is generated as the search progresses and represents alternative
choices that may have to be examined in order to find a solution. The method
of extending a node in the search tree is called branching scheme. Search is typ-
ically guided by variable and value ordering heuristics and makes use of a spe-
cific branching scheme like 2-way or d-way. These are the two most widely used
branching schemes.

In d-way branching, after variable x with domain D(x) = {a1, a2, . . . , ad}
is selected, d branches are built, each one corresponding to one of the d possible
value assignments of x. In the first branch, value a1 is assigned to x and constraint
propagation is triggered. If the branch corresponding to assignment x = ai fails,
the assignment of a2 to x is tried (second branch), and so on. If all d branches fail
then the algorithm backtracks. The branching scheme we used in the map coloring
problem depicted in Figure 2.3 is the d-way branching scheme. A general example
of a search tree explored with d-way branching is shown in Figure 2.7.

Figure 2.7: Example of search tree under a d-way branching schemes, using the
lex variable and value ordering heuristic.

In 2-way branching, after a variable x is chosen and a value ai ∈ D(x) is

22

CHAPTER 2. BACKGROUND

selected, two branches are created [92]. In the left branch ai is assigned to x,
namely the constraint x = ai is added to the problem and is propagated. In the
right branch, the constraint x 6= ai is added to the problem and is propagated.
If the left branch fails and the propagation of x 6= ai succeeds then any variable
can be selected next (not necessarily x). If both branches fail then the algorithm
backtracks. Figure 2.8 shows a search tree explored with 2-way branching.

Figure 2.8: Example of search tree under a 2-way branching schemes, using the
lex variable and value ordering heuristic.

There are two significant differences between these branching strategies. In
2-way branching, if the branch assigning a value ai to a variable x fails, then the
removal of ai from D(x) is propagated. Instead, in d-way the next available value
aj of D(x) is tried. Note that the propagation of aj subsumes the propagation
of ai’s removal. In 2-way, after a failed branch corresponding to an assignment
x = ai, and assuming the removal of ai from D(x) is propagated successfully, the
algorithm can choose to branch on any variable (not necessarily x), according to
the variable ordering heuristic. In d-way branching the algorithm has to branch
again on x after x = ai fails.

Another technique that is not oftenly used is dichotomic domain splitting [33].
This method proceeds by splitting the current domain of the selected variable into
two sets, usually based on the lexicographical ordering of the values. Domain
splitting is mainly used when the domains of the variables are very large. Al-
though domain splitting drastically reduces the branching factor to two, it can

23

CHAPTER 2. BACKGROUND

result in a much deeper search tree. Recently, approaches that investigate adaptive
search strategies have been proposed [3], in order to increase the practical effi-
ciency of backtracking search. These heuristics can be applied at successful right
branches (i.e of 2-way) to branch on another variable rather than trying the next
value of the current (left) one.

Generally, an adaptive strategy uses the results of its own search experience
to modify its subsequent behavior. In other words, a search-guiding strategy is
said to be adaptive when it makes choices that depend on the current state of the
problem instance an well as previous states. Thus, an adaptive strategy learns,
in the sense that it takes account of information concerning the subtrees already
been explored. Such an example of adaptive search is when interleaving 2-way
and d-way in the same tree to solve an instance.

2.5 Constraint Solvers

Most of the CSP solvers are composed of three main components: i) a modeling
language, ii) a set of filtering algorithms for specialized (global) constraints and
iii) search strategies (algorithms and heuristics). Modeling languages are used
by the CSP solvers in order to provide a representation of CP problems. That is,
defining problem variables and their values, expressing the constraints, handling
symmetries, defining viewpoints, e.t.c. Filtering algorithms are based on prop-
erties of constraint networks. The idea is to exploit such properties in order to
identify some nogoods, where a nogood corresponds to a partial assignment (i.e.
a set of variable assignments) that can not lead to any solution. Search is used
to traverse the search space of a CSP in order to find a solution. For most of the
complete CSP solvers, it respectively corresponds to constraint propagation and
depth-first search with backtracking guided by some heuristics. Our thesis is con-
cerned with the second component of CSP solvers, namely constraint propagation
and especially strong local consistencies.

Modern complete CSP solvers like IBM ILog [52], Gecode [94], Minion [43]
and Choco [62] offer a high-level modeling language and rich libraries of filtering
algorithms for specialized global constraints, local search, search heuristics, sym-
metry breaking methods, etc. They are general-purpose constraint solvers, very
fast and scale well as problem size increases. They use an expressive input lan-

24

CHAPTER 2. BACKGROUND

guage and a highly-optimized implementation. They also offer a clear separation
between the model and the solving machinery (providing both modeling tools and
innovative solving tools).

Despite the wealth of research on strong consistencies, they have not been
widely adopted by CP solvers. The above CP solvers predominantly apply GAC,
and lesser forms of consistency such as Bounds Consistency (BC), when propa-
gating constraints. Algorithms for GAC can filter values from anywhere in the
domain of a variable while algorithms for BC can only shrink the bounds of a
variables domain. They mainly use the 2-way branching and do not aplly GAC to
all constraints (i.e., on global constraints they use specialized algorithms).

Even though, general-purpose constraint programming solvers can be effi-
ciently used to solve a wide range of problems in AI and other areas of com-
puter science, the mainstream solvers (like Ilog, Gecode, Minion, Choco, e.t.c.)
do not include adaptive components in their search mechanisms and make no use
of strong local consistencies. The notion of adaptiveness, in these solvers, is re-
stricted only to the usage of certain variable ordering heuristics (like dom/wdeg).

2.5.1 Our CSP solver

The solver we use for the experimental evaluation has been developed from scratch
by our research team. This solver includes a variety of branching methods, vari-
able and value ordering heuristics, propagators for various constraints, many strong
local consistency algorithms for binary and non-binary constraints, and heuristics
for the adaptive control of propagation.

The decision to implement our CSP solving system instead of adapting or ex-
tending an existing one, was taken due to various reasons. Existing solvers do not
offer algorithms for strong local consistencies, so we would have to implement
them all (existing and new) from scratch anyway. The propagation mechanisms
of available solvers are difficult to modify in order to obtain SLCs. Additionally,
there is no publicly available solver that includes the latest algorithms that we use
as base methods to compare against (i.e., STR2, GAC-va and maxRPWC1). In the
experimental part we are interested in directly comparing our techniques against
these base methods under the same implementation. On top of that, implementing
strong local consistencies that consider intersections of constraints within a stan-

25

CHAPTER 2. BACKGROUND

dard solver is not a straightforward task (for most solvers at least). Working out
efficient ways of doing this is certainly interesting, but outside the scope of this
research work.

The architecture

Our solver is implemented as an object-oriented system, with classes represent-
ing the core entities and concepts. Only the indispensable or required methods
for direct interaction with the user are exposed, everything else is kept private to
the class. Where possible, interfaces are implemented to abstract concepts from
particular instantiations of them. The complexity of performing a particular task
is hidden in the implementation of the class performing it.

Our CSP solver, written in the Java programming language, is a generic solver
in the sense that it can handle constraints of any arity. This solver essentially
implements various algorithms that enforce BC, AC, maxRPC, GAC, maxRPWC
and other local consistencies or approximations of them. It also includes search
algorithms that maintain the local consistences mentioned and supports a wide
range of branching schemes, variable and value ordering heuristics, as well as
heuristics for adaptive propagation.

Important to note that the aim of our study is to fairly compare the various al-
gorithms and heuristics within the same solver’s environment rather than building
a state-of-the-art constraint solver. Although our implementation is reasonably
optimized for its purposes, it lacks important aspects of state-of-the-art constraint
solvers such as specialized propagators for global constraints.

26

3
Related work

Local consistencies constitute an important concept in CSPs, since they play a
vital role in the solving process. They are defined over ”local” parts of the CSP,
e.g., properties defined over subsets of the variables and constraints of the CSP.
A consistency technique can remove many inconsistent values from the variables’
domains and, thus, simplify the problem and reduce the search space.

This chapter includes a review of the literature on local consistencies, for bi-
nanry and non-binary CSPs, and algorithms to enforce them. We also review the
special case of table constraints where specialized algorithms have been proposed
to handle them efficiently. Finally, we survey techniques that are used for adaptive
propagation, namely techniques that can be used to select the appropriate propa-
gation methods for solving a CSP instance.

3.1 Binary Constraints

Many local consistency properties on CSPs have been defined over decades of
research (see [10] for a thorough review). In this section we enumerate the basic
local consisties for binary CSPs and the relations among them, regarding their
inference power and complexity. We also refer to algorithms for enforcing such
consistencies.

3.1.1 Arc Consistency

We say that a value ai of a variable xi is arc consistent (AC) if for any constraint
where xi participates, there exists a value for the other variable in the constraint

CHAPTER 3. RELATED WORK

such that this value together with ai satisfy the constraint.

Definition 1 (Arc Consistency [78]) In a binary CSP, a value ai ∈ D(xi) is arc
consistent (AC) iff for every constraint ci,j there exists a value aj ∈ D(xj) s.t. the
pair of values (ai, aj) satisfies ci,j . In this case aj is called an AC-support of ai.
A variable is AC iff all its values are AC. A problem is AC iff there is no empty
domain in D and all the variables in X are AC.

Usually, a constraint is made AC by propagating the effects from a domain
reduction of one variable to the other variable and vice versa (both directions).
This is called revision of the (directed) arc in the graph, where the arc is denoted
as (xi, cij). In general, the revision of a constraint c using a local consistency A is
the process of checking whether the values of each x ∈ scp(c) verify the property
of A. For example, the revision of ci,j using AC verifies if all values in D(xi)

have AC-supports in D(xj). We say that a revision is fruitful if it deletes at least
one value, while it is redundant if it achieves no pruning. The REVISE function
presented below does precisely that. A CSP is made AC by repeated revisions of
the arcs. Note that the deletion of arc inconsistent values does not eliminate any
solution of the original CSP.

REVISE(xi,ci,j)

DELETE← false;
for each ai ∈ D(xi) do

if @ aj ∈ D(xj) s.t. (ai, aj) satisfies cij then
delete ai from D(xi);
DELETE← true;

return DELETE;

The simplest/naive algorithm for achieving arc consistency repeats the revi-
sions until all domains remain unchanged at their last revision. If at least one
domain is changed, all arcs are revised. This is the AC1 algorithm that suffers
from unnecessary repetition of revisions [78].

The AC1 algorithm is not efficient because the succesfull revision of even one
arc in some iteration forces all the arcs to be revised again in the next iteration,
even though only a small number of them are really affected by this revision. In

28

CHAPTER 3. RELATED WORK

AC1

Q← (xi,ci,j), ci,j ∈ C, xi ∈ scp(ci,j);
repeat

CHANGE← false;
for each (xi,xj) in Q do

CHANGE← REVISE(xi,ci,j) or CHANGE;
until !CHANGE

practice, the only arcs affected by the reduction of the domain of xi are the arcs
(xk,xi). The following arc consistency algorithm, called AC3 [78], removes this
drawback of AC1 and performs re-revision only for those arcs that are possibly
affected by a previous revision.

AC3

Q← (xi,ci,j), ci,j ∈ C, xi ∈ scp(ci,j);
while Q 6= ∅ do

select and delete (xi,ci,j) from Q;
if REVISE(xi,ci,j) then

if D(xi) = ∅ then return false;
Q← Q ∪ (xk,ck,i), ck,i ∈ C, xk ∈ scp(ck,i, k 6= j)

The AC3 algorithm uses a queue to keep track of the arcs that need to be
checked for inconsistency. Each arc (xi, ci,j) is in turn removed from the queue
and checked. If any values need to be deleted from the domain of xi, then every
arc (xk, ck,i) pointing to xi must be reinserted in the queue. The complexity of
AC3 can be analyzed as follows: a binary CSP has at most O(n2) arcs; each arc
can be inserted in the queue only d times, because xi has at most d values in its
domain. Checking consistency of an arc can be done in O(d2) time; so the total
worst-case time complexity is O(n2d3).

Since the AC3 algorithm may revise an edge many times it re-tests many pairs
of values which are already known (from the previous iteration) to be consistent
or inconsistent respectively and which are not affected by the reduction of the
domain. As this is a source of potential inefficiency, algorithm AC4 [84] was in-
troduced to refine the handling of edges (constraints), by maintaining a support

29

CHAPTER 3. RELATED WORK

set for each value. In particular, for each value of a variable there is a counter
indicating how many supports this value has in the domain of the other variable
that shares the costraint. It also stores a structure for the pairs (variable, value)
which are supported by the current value. By maintaining these structures, some
constraint checks can be fully avoided. AC4 algorithm has an optimal time com-
plexity of O(ed2) and requires O(ed2) space for its structures. Despite being opti-
mal, it is very expensive during the initialization phase, which can be prohibitive
in terms of time.

AC4 is the first ’fine-grained’ algorithm, because it performs propagation (via
a queue) at the level of values. ’Coarse-grained’ algorithms, such as AC3, prop-
agate at the level of constraints (or arcs), which is less precise and can include
redundancies. On the other hand, coarse-grained algorithms are simpler to imple-
ment and do not require expensive data structures. A compromise between AC3
and AC4 is the AC6 algorithm ([9]), which remains optimal having the worst-case
time complexity of AC4 and stops searching for support for a value on a constraint
as soon as the first support is verified, like AC3 does. In addition, AC6 maintains
a data structure lighter than AC4, which instead of counting all supports of value
on a constraint, it just ensures that it has at least one. Hence, AC6 has an O(ed)

space complexity.
Coarse-grained algorithms do not propagate the consequences of value re-

movals to other values. Instead, they propagate pairs (xi, ci.j) for which D(xj)

has changed. Although coarse-grained algorithms are more abstract in the way
they propagate, they have two advantages. First, CP solvers usually support
arc-oriented propagation instead of value-oriented. Second, all fine-grained al-
gorithms require data structures for supported values, which is more complex to
implement and maintain. AC2001/3.1 [17, 111, 18], is the first (and only)
optimal coarse-grained algorithm. It adopts the AC3 framework, but achieves op-
timality by storing the smallest support for each value on each constraint, like
AC6.

Specifically, when a support of a value has to be detected, AC3 starts the search
for a new support from scratch whereas AC2001/3.1 starts the search from a re-
sumption point which corresponds to the last support found for this value. This
requires the introduction of a data structure, denoted Last, to store the last sup-
port of any triplet (xi, a, xj) delonging to the arc (ci,j, xi) and a value a ∈ D(xi).

30

CHAPTER 3. RELATED WORK

Initially, Last must be initialized to ⊥ (i.e., the lexicographically smallest tuple;
τ > ⊥ for any tuple τ ∈ rel(ci,j)). The revision involves testing for any value the
validity of the last support and in case it is not valid, looking for a new support.
The pointer Last(xi, a, xj) is updated to the most recently found AC-support of
(xi, a) in D(xj). Importantly, optimality is obtained because values in D(xj) that
are smaller than Last(xi, a, xj) are not checked again because they were already
unsuccessfully checked in previous revisions. AC2001/3.1 achieves arc consis-
tency on binary problems in O(ed2) time and O(ed) space.

Constraints are said to be multidirectional because when a tuple τ is found to
support (xi, a) on a constraint c, it is also a support for any (xj, b) that belongs to
τ [64, 76]. The binary version of multidirectionality is called bidirectionality and
it is exploited by the AC3rm algorithm (rm stands for multi-directional residues)
[68]. In more detail, when Last(xi, a, xj) is updated to b, which is the AC-support
of (xi, a) in D(xj), then Last(xj, b, xi) is also set to a (bidirectionality). Addi-
tionally, AC3rm does not maintain Last during seach, namely upon backtracking
the supports of Last are not updated. Last is treated as a residual support, or
residue, which is a support that has been stored during a previous execution of
the procedure which determines if a value is supported by a constraint. In con-
trast tothe use of Last by AC2001/3.1 ,in the AC3rm algorithm a residue is not
guaranteed to represent a lower bound of the smallest current support of a value.
Obviousy, AC3rm is not optimal in the worst case, having O(ed3) time complex-
ity, but in practice it behaves very efficiently. The AC7 [12, 13] algorithm, which
is an extension of AC6, is also exploiting bidirectionality of supports. Its time and
space complexity is O(ed2).

Arc consistency checking can be applied either as a preprocessing step before
the beginning of the search process, or as a propagation step (during backtracking)
after every assignment or value removal made during search. This algorithm that
does this is called MAC [91], for Maintaining Arc Consistency. In either case, the
process must be applied repeatedly until no more inconsistencies remain. This is
because, whenever a value is deleted from some variable’s domain to remove an
inconsistency, a new arc inconsistency could arise in arcs pointing to that variable.

31

CHAPTER 3. RELATED WORK

3.1.2 Strong local consistencies

Arc consistency is a domain filtering (or first-order) consistency, meaning that
it can only identify inconsistent values, thereby filtering variable domains. As
a result, domain filtering consistencies do not alter either the constraint graph
by adding new constraints, or the constraints’ relations by removing inconsistent
tuples [31]. Relation filtering (or higher-order) consistencies allow us to identify
inconsistent tuples of values from constraints’ relations.

Several local consistencies stronger than AC, that are either domain or rela-
tion filtering, have been proposed in the literature. Examples of domain filtering
consistencies for binary constraints include Restricted Path Consistency [8], Path
Inverse Consistency (PIC) [37], max Restricted Path Consistency [29], and Sin-
gleton Arc Consistency (SAC) [31]. The most famous local consistency that is
not cast as domain filtering is Path Consistency [29]. When enforced, path con-
sistency can remove inconsistent 2-tuples from binary relations and/or introduce
new binary constraints. Another recent example of such a local consistency is
dual consistency [66]. We give the formal definitions of these consistencies.

Definition 2 (Path Consistency [29]) A pair of values ((xi, ai), (xj, aj)) is path
consistent (PC) if for all xk ∈ X s.t. xj 6= xk 6= xi 6= xj , this pair of values can be
extended to a consistent instantiation of {xi, xj, xk}. (xj, aj) is a path consistent
support (PC-support) for (xi, ai) if (ai, aj) ∈ rel(ci,j) and ((xi, ai), (xj, aj)) is
path consistent. In every third variable, the pair (xk, ak) is a PC-witness for
(ai, aj) in xk.

Definition 3 (Restricted Path Consistency [8]) A value ai ∈ D(xi) is restricted
path consistent (RPC) iff (xj, aj) is the only AC-support of ai in xj and ((xi, ai),

(xj, aj)) is path consistent. A binary CSP is RPC iff it is AC and for each con-
straint ci,j and each value ai ∈ D(xi),ai is RPC.

Definition 4 (Path Inverse Consistency [37]) A value ai ∈ D(xi) is path inverse
consistent (PIC) iff for all xj, xk ∈ X , s.t. xi 6= xj 6= xk 6= xi, there exist
bj ∈ D(xj) and dk ∈ D(xk), s.t. the assignments (xi, ai), (xj, bj) and (xk, dk)

satisfy the constraints between the three variables.

32

CHAPTER 3. RELATED WORK

max Restricted Path Consistency

Since part of the thesis is about algorithms for max Restricted Path Consistency
(maxRPC) and approximations of maxRPC, we will devote more space to ex-
plain past works on maxRPC. maxRPC is a strong domain filtering consistency
for binary constraints introduced in 1997 by Debruyne and Bessiere [29], as an
extension to Restricted Path Consistency (RPC). The basic idea of maxRPC is to
delete any value a of a variable x that has no arc consistency (AC) or path consis-
tency (PC) support in a variable y that is constrained with x. A value b is an AC
support for a if the two values are compatible, and it is also a PC support for a if
this pair of values is path consistent. We give the formal definition of maxRPC.

Definition 5 (max Restricted Path Consistency [29]) A value ai ∈ D(xi) is
maxRPC iff it is AC and for each constraint ci,j there exists a value aj ∈ D(xj)

that is an AC-support of ai s.t. the pair of values (ai, aj) is path consistent.A vari-
able is maxRPC iff all its values are maxRPC. A problem is maxRPC iff there is
no empty domain in D and all variables in X are maxRPC.

maxRPC achieves a stronger level of local consistency than arc consistency
(AC), and in [31] it was identified, along with singleton AC (SAC), as a promising
alternative to AC. The first algorithm for maxRPC was proposed in [29], and two
more algorithms have been proposed since then [47, 106].

The first maxRPC algorithm, called maxRPC1 [29], is a fine-grained algo-
rithm based on AC6 ([9]) and has optimal O(end3) time complexity and O(end)
space complexity. The second algorithm, called maxRPC2 [47], is a coarse-
grained algorithm that uses ideas similar to those used by AC2001/3.1 to achieve
O(end3) time and O(ed) space complexity at the cost of some redundant checks
compared to maxRPC1. The third algorithm, maxRPCrm [106], is a coarse-
grained algorithm based on AC3rm [68]. The time and space complexities of
maxRPCrm are O(en2d4) and O(end). Note that in [106] the complexities are
given as O(eg + ed3 + csd4) and O(ed+ cd), where c is the number of 3-cliques,
g is the maximum degree of a variable and s is the maximum number of 3-cliques
that share the same single constraint in the constraint graph. Considering that c is
O(en) and s is O(n), we can derive the complexities for maxRPCrm given here.
This algorithm has a higher time complexity than the other two, but it has some

33

CHAPTER 3. RELATED WORK

advantages compared to them because of its lighter use of data structures during
search (this is explained below and in section 3.2). Finally, maxRPCEn1 is a fine-
grained algorithm closely related to maxRPC1 [28]. This algorithm is based on
AC7 ([12]) and achieves maxRPCEn, a local consistency stronger than maxRPC.

Among the three algorithms maxRPC2 seems to be the most promising for
stand-alone use as it has a better time and space complexity than maxRPCrm

without requiring heavy data structures or complex implementation as maxRPC1
does. On the other hand, maxRPCrm can be better suited for use during search as
it avoids the costly maintainance of data structures as explained below.

Central to maxRPC2 is the LastPC data structure, as we call it here. For each
constraint ci,j and each value ai ∈ D(xi), LastPCxi,ai,xj gives the most recently
discovered PC-support of ai in D(xj). maxRPC2 maintains this data structure
incrementally. This means that a copy of LastPC is made when moving for-
ward during search (i.e. after a successfully propagated variable assignment) and
LastPC is restored to its previous state after a failed variable assignment (or
value removal in the case of 2-way branching). Data structures with such a prop-
erty are often referred to as backtrackable. Their use implies an increased space
complexity as copies need to be made while search progresses down a branch.
On a brighter note, since LastPC is backtrackable, maxRPC2 displays the fol-
lowing behavior: When looking for a PC-support for ai in D(xj), it first checks
if LastPCxi,ai,xj is valid. If it is not, it searches for a new PC-support starting
from the value immediately after LastPCxi,ai,xj in D(xj). In this way a good
time complexity bound is achieved.

On the other hand, maxRPCrm uses a data structure similar toLastPC to store
residual supports or simply residues and thus, does not maintain this structure
incrementally (it only needs one copy). Therefore, no additional actions need
to be taken (copying or restoration) when moving forward or after a fail. Such
data structures are often referred to as backtrack-stable. When looking for a PC-
support for ai in D(xj), if the residue LastPCxi,ai,xj is not valid then maxRPCrm

searches for a new PC-support from scratch in D(xj). This results in higher time
complexity, but crucially does not require costly maintainance of LastPC during
search. The algorithm also makes use of residues for the PC-witnesses found in
every third variable for each pair (ai, aj). These are stored in a data structure with
an O(end) space complexity. The initialization of this structure causes an extra

34

CHAPTER 3. RELATED WORK

overhead which can be significant on very large problems.
A major overhead of both maxRPC2 and maxRPCrm is the following. When

searching for a PC-witness for a pair of values (ai, aj) in a third variable xk, they
always start the search from scratch, i.e. from the first available value in D(xk).
As these searches can be repeated many times during search, there can be many
redundant constraint checks. In contrast, maxRPC1 manages to avoid searching
from scratch through the use of an additional data structure. This saves many con-
straint checks, albeit resulting in O(end) space complexity and requiring costly
maintainance of this data structure during search. The algorithms we describe in
Chapter 4 largely eliminate these redundant constraint checks with lower space
complexity, and in the case of maxRPC3rm with only light use of data structures.

A theoretical analysis and experimental results presented in [31] demonstrated
that maxRPC is more efficient compared to RPC and PIC. Hence it was identified
as a promising alternative to AC. This is why we focus on this local consistency.

Singleton Arc Consistency

Singleton arc consistency (SAC) enhances arc consistency by ensuring that the
network cannot become arc inconsistent after the assignment of a value to a vari-
able. Ensuring that a given local consistency does not lead to a failure when we
enforce it after having assigned a variable to a value, is a common idea in con-
straint propagation. The general idea is trying in turn different assignments of a
value to a variable, and performing constraint propagation on the subproblem ob-
tained by this assignment. If the problem is found to be inconsistent, this means
that this value does not belong to any solution and thus can be pruned. This kind
of technique has been applied in constraint problems with numerical domains by
limiting the assignments to bounds in the domains and ensuring that bounds con-
sistency does not fail (3B-consistency in [73]). This idea was formalized as a
class of local consistencies in discrete CSPs under the name singleton consisten-
cies [88, 31]. We give the definition in the case where arc consistency is applied
to each subproblem is arc consistency. Any other local consistency can be used
in a similar way. In the following, the subnetwork obtained from a network N by
reducing the domain of a variable xi to the singleton {a} is denoted by N |xi = a

.

35

CHAPTER 3. RELATED WORK

Definition 6 (Singleton Arc Consistency [30]) A value a ∈ D(xi) is singleton
arc consistent (SAC) iff the problem derived from assigning a to xi (i.e., N |xi =

{a}) is AC [31]. A problem is SAC iff every value of every variable is SAC.

SAC is strictly stronger than maxRPC and obviously, strictly stronger than AC.
SAC1 [30] is a brute-force algorithm that checks SAC of each value by performing
AC on each subproblem N |xi = {a}. After each change in a domain, it rechecks
SAC of every remaining value, meaning that it performs AC nd times on each
subproblem. Because there are nd subproblems, it runs in O(en2d4). SAC2 [7],
avoids unnecessary work in a similar way of AC4, by storing lists of supports. Un-
fortunately, its worst-case time complexity is the same as that of SAC1. A more
recent advancement of SAC, called SAC-Opt [11], has a O(end3) time com-
plexity, but requires O(end2) space to store its large data structures. SAC-SDS
(Sharing Data Structures) uses lighter structures, has lower complexity (O(end4))
than former SAC algorithms, whereas its space complexity is the same as SAC2,
namely O(n2d2). Lecoutre and Cardon proposed SAC3 [65], which incremen-
tally assigns values to variables in the network until arc consistency wipes out a
domain. Despite the fact that SAC3 is not optimal, it works well in practice.

Finally, the implemention of SAC can be simply done on top of any AC al-
gorithm. Many other singleton consistencies can be constructed because any lo-
cal consistency can be used to detect the possible inconsistency of the network
N |xi = {a}.

The following definition characterizes the relationship between two consisten-
cies in terms of their pruning power (strengthness).

Definition 7 Following [31], a local consistency φ is stronger than ψ iff in any
CN in which φ holds then ψ holds, and strictly stronger iff it is stronger and there
is one CN for which ψ holds but φ does not. Accordingly, φ is incomparable to ψ
iff neither is stronger than the other.

In Figure 3.1 we summarize the relationships between the mentioned local
consistencies.

36

CHAPTER 3. RELATED WORK

Figure 3.1: Relationships between consistencies for binary CSPs.

3.2 Non-Binary Constraints

Constraints including more than two variables, belong to the category of non-
binary constraints, and naturally arise in many real-life problems. Many local
consistencies are applicable on both binary and non-binary constraints after small
modifications, whereas there are others that are only defined for binary constraints.
For instance, AC belongs to the former case while maxRPC to the latter. However,
many local consistencies for binary CSPs have been either extended to or have
inspired consistencies for non-binary CSPs.

3.2.1 Generalized Arc Consistency

The notion of arc consistency was the first to be extended to non-binary con-
straints, resulting in the definition of Generalized Arc Consistency (GAC), which
is also known as Domain Consistency [84, 79]. In few words, a constraint c is
GAC if for any value a of any variable x in the constraint’s scope there exist val-
ues for the other variables in the constraint such that, together with a, they satisfy
the constraint. More formally:

Definition 8 (Generalized Arc Consistency) A value ai ∈ D(xi) is GAC iff for
every constraint c s.t. xi ∈ scp(c) there exists a valid tuple τ ∈ rel(c) that
includes the assignment of ai to xi. In this case τ is called a GAC-support of ai
on c. A variable is GAC iff all its values are GAC. A problem is GAC iff there is
no empty domain in D and all the variables in X are GAC.

The AC3 algorithm can be naturally extended to make the constraint network
generalized arc consistent resulting in algorithm GAC3 [79, 78]. Instead of re-
vising the binary arc, this algorithm revises the hyper-arcs, where each hyper-arc

37

CHAPTER 3. RELATED WORK

corresponds to a constraint and linking nodes in the network corresponding to the
variables that are subject to the constraint. GAC3 is the baseline algorithm on
which a variety of algorithms (not necessarily for GAC) are built on, while it is
commonly used during backtracking search. GAC3 utilizes a queue of variables;
variables are inserted to queue when their domains are pruned. Hence, the effects
of this reduction need to be propagated. GAC3 is a variable oriented algorithm.
Correspondingly, algorithms that trace arcs (resp. constraints) are arc (resp. con-
straint) oriented.

Now we describe one iteration of GAC3. Once a variable xi is extracted from
Q, each constraint c that involves xi is examined and all the variables that appear
in c, except xi, are revised. For each value aj ∈ D(xj), such that xj ∈ scp(c),
a GAC-support is seeked. This is done by iterating through the valid tuples of c.
In case a tuple τ that is valid and satisfies c is located, then a support for aj has
been established and GAC3 moves to the next value of D(xj). Values that have
become inconsistent with respect to c, are deleted. If a revision is fruitful (at least
one value has been removed), the queue has to be updated, by adding xj to queue.
The algorithm stops when a domain wipe-out occurs or the queue becomes empty.

GAC3 achieves generalized arc consistency in O(er3dr+1) time and O(er)

space, where r is the greatest arity among all constraints. As with AC3, vari-
ous AC algorithms are modified to handle n-ary CSPs. The extensions of AC4
and AC2001/3.1 resulted in GAC4 and GAC2001/3.1 respectively. The time
complexity of GAC2001/3.1 isO(er2dr), while the fine-grained GAC-Schema
[16], taking advantage of multidirectionality, has an optimal time complexity of
O(erdr). Because of multidirectionality GAC-Schema avoids checking a tuple
r times for each value composing it. The non-binary version GAC4 [86] also has
optimal O(erdr) time complexity, because it computes the dr possible constraint
checks on a constraint once and for all during initialization, storing the informa-
tion in lists of supported values.

Finally, the GAC3rm [68] algorithm originates from the AC3rm [68] algorithm.
Residual supports of the Last structure are used during revisions in order to speed
up the search. As opposed to GAC2001/3.1, if a residue is no longer valid,
the search for a valid tuple starts from scratch, which allows keeping residues
from one call to another, even after a backtrack. Although GAC3rm is not optimal
(O(er3dr+1)), experiments have shown that maintaining GAC3rm during search is

38

CHAPTER 3. RELATED WORK

more efficient than maintaining GAC2001/3.1.

3.2.2 Bounds consistency

Local consistencies weaker than GAC have been proposed in order to overcome
the prohibitive cost of GAC on some non-binary constraints. The idea behind
these consistencies is to use the fact that domains are usually composed of inte-
gers. Integer domains inherit the total ordering of the integers and hence they also
inherit the bounds of D(xi).

As recognized in [10, 27] there is a number of different definitions of bounds
(sometimes called interval) consistency in the literature. The most commonly
used defintion is based on the notion of a bound support.

A tuple τ = (a1, . . . , am) is a Bound-support on a constraint c, with scp(c) =

{x1, . . . , xm}, iff τ satisfies c and for each xi ∈ scp(c), minD(xi) ≤ ai ≤
maxD(xi). Note that in case each ai belongs to D(xi), τ is also a GAC-support.

Definition 9 (Bounds(Z) Consistency) A constraint c is bounds(Z) consistent
(BC(Z)) iff for all xi ∈ scp(c), there exist Bound-supports τmin and τmax on c s.t.
τmin[xi] = minD(xi) and τmax[xi] = maxD(xi) (i.e. both bounds belong to a
Bound-support on c).

Definition 10 (Bounds(D) Consistency) A constraint c is bounds(D) consistent
(BC(D)) iff for all xi ∈ scp(c),minD(xi) andmaxD(xi) belong to a GAC-support
on c. Applying BC(D) ensures GAC-support on a constraint c only for the bounds
of the domain of each variable in scp(c).

Another definition, called BC(R) in [10], is similar to BC(Z) but instead of
looking for a Bound-support consisting of integers, it looks for one consisting of
reals. Finally, another relevant local consistency is range consistency. A constraint
c is range consistent (RC) iff for all xi ∈ scp(c), each vi ∈ D(xi) belongs to a
Bound-support on c.

Although many strong local consistencies based on GAC have been proposed
(see below), similar consistencies that are based on BC have been overlooked.
One exception is Singleton Bounds Consistency [70], which can be seen an ex-
tension of BC(D). This local consistency is an adaptation of 3B Consistency [73]
from numerical to finite domain CSPs.

39

CHAPTER 3. RELATED WORK

3.2.3 Strong Local Consistencies

Examples of domain filtering consistencies for non-binary constraints include Sin-
gleton Generalized Arc Consistency (SGAC) [31], Restricted Pairwise Consis-
tency (RPWC) and max Restricted PairWise Consistency (maxRPWC) [19], and
relational Path Inverse Consistency (rPIC) [101]. Some of the consistencies, are
directly defined on both binary and non-binary constraints (i.e., SAC for binary
and SGAC for non-binary constraints). Others, like maxRPWC and rPIC, are de-
fined on non-binary constraints but are inspired by relevant consistencies for bi-
nary constraints (i.e., maxRPC and PIC). We give the formal definitions of these
consistencies.

Definition 11 (Singleton Generalized Arc Consistency [31]) A non-binary CSP
is singleton arc consistent (SGAC) iff ∀xi ∈ X and ∀ai ∈ D(xi) the problem
derived from assigning a to xi (i.e., N |xi = {a}) is GAC.

Definition 12 (Restricted Pairwise Consistency [19]) A non-binary CSP is re-
stricted pairwise consistent (RPWC) iff ∀xi ∈ X , all values in D(xi) are GAC
and, ∀ai ∈ D(xi), ∀cj ∈ C, s.t. there exists a unique valid τ ∈ rel(cj) with
τ [xi] = ai, ∀ck ∈ C (ck 6= cj), s.t. scp(cj) ∩ scp(ck) 6= ∅, and exists a valid τ ′ on
ck s. t. τ [scp(cj) ∩ scp(ck)] = τ ′[scp(cj) ∩ scp(ck)].

Definition 13 (relational Path Inverse Consistency [101]) A non-binary CSP is
relational rath inverse consistenct (rPIC) iff ∀xi ∈ X and ∀ai ∈ D(xi), ∀cj ∈ C,
where xi ∈ scp(cj), and ∀ck ∈ C, s.t. scp(cj) ∩ scp(ck) 6= ∅, there exists a
GAC-support τ on cj s. t. τ [xi] = ai, and there exists a GAC-support τ ′ on ck
s. t. τ [scp(cj) ∩ scp(ck)] = τ ′[scp(cj) ∩ scp(ck)]. In this case we say that τ ′ is a
PW-support of τ .

max Restricted PairWise Consistency

When GAC or its weaker variants, such as Bounds Consistency, are applied, they
process one constraint at a time. In contrast, some strong local consistencies ex-
ploit the fact that very often constraints have two or more variables in common, to
achieve stronger pruning. One of the most promising consistencies of this type is

40

CHAPTER 3. RELATED WORK

max Restricted PairWise Consistency (maxRPWC) [19]. A theoretical and exper-
imental evaluation presented in [19] demonstrated that maxRPWC is a promising
alternative to GAC.

Definition 14 (max Restricted PairWise Consistency [19]) A value ai ∈ D(xi) is
max restricted pairwise consistenct (maxRPWC) iff ∀cj ∈ C, where xi ∈ scp(cj),
ai has a GAC-support τ ∈ rel(cj) s.t. ∀ck ∈ C (ck 6= cj), s.t. scp(cj)∩ scp(ck) 6=
∅,∃τ ′ ∈ rel(ck), s.t. τ [scp(cj) ∩ scp(ck)] = τ ′[scp(cj) ∩ scp(ck)] and τ ′ is valid.
In this case we say that τ ′ is a PW-support of τ and τ is a maxRPWC-support of
ai. A variable is maxRPWC iff all values in its domain are maxRPWC. A problem
is maxRPWC iff there is no empty domain in D and all variables are maxRPWC.

From the definition of maxRPWC we can see that the value deletions from
some D(xi) may trigger the deletion of a value b ∈ D(xj) in two cases:

1. b may no longer be maxRPWC because its current maxRPWC-support in
some constraint c is no longer valid and it was the last such support in c. We
call this case maxRPWC-support loss.

2. The last maxRPWC-support of b in some constraint c may have lost its last
PW-support in another constraint c′ intersecting with c. We call this case
PW-support loss.

The definition of maxRPWC, and its name, resembles that of the binary local
consistency maxRPC from which it was inspired. However, as proved in [19] the
two are not equivalent when maxRPWC is applied on binary constraints.

Three algorithms for achieving maxRPWC were proposed in [19]. The first
one, maxRPWC1, has O(e2r2dp) worst-case time complexity and O(erd) space
complexity, where p is the maximum number of variables involved in two con-
straints that share at least two variables. The second one has O(e2rdr) time com-
plexity but its space complexity is exponential in p, and this can be prohibitive.
The third one has the same time complexity as maxRPWC1 but O(e2rd) space
complexity. Although maxRPWC1 is less sophisticated than the other two, its per-
formance when maintained during search is on average better than theirs because
it uses lighter data structures. All these algorithms are generic in the sense that
they do not consider any specific semantics that the constraints may have.

41

CHAPTER 3. RELATED WORK

Despite the wealth of research on strong consistencies, they have not been
widely adopted by CP solvers. State-of-the art solvers such as Gecode, ILOG,
Choco, Minion, etc. predominantly apply GAC, and lesser forms of consistency
such as bounds consistency, when propagating constraints.

3.2.4 Relation Filtering Consistencies

Pairwise Consistency is a relational (or higher-order) consistency, namely it prunes
tuples from a constraint’s relation instead of values from a variable’s domain.

Definition 15 (Pairwise Consistency [19]) A non-binary CSP is (PWC) iff ∀cj ∈
C, all τj ∈ rel(cj) are valid and ∀ck ∈ C (ck 6= cj), s.t. scp(cj) ∩ scp(ck) 6= ∅,
exists a valid τ ′ on ck s.t. τ [scp(cj) ∩ scp(ck)] = τ ′[scp(cj) ∩ scp(ck)]. A tuple
τj in the table of a constraint cj is pairwise consistent (PWC) ∀ck ∈ C, ∃τk in
rel(ck) which is a PW-support of τj .

We use the name Full Pairwise Consistency (FPWC) for the consistency that
achieves both PWC and GAC (PWC+GAC).

Definition 16 (Full PairWise Consistency) A non-binary CSP is full pairwise
consistent (FPWC) iff ∀cj ∈ C, all τj ∈ rel(cj) are PWC and ∀xi ∈ D, all
ai ∈ D(xi) are GAC.

Many algorithms that achieve higher-order consistencies exist in the literature,
e.g., see [87, 53, 54, 67] that identify inconsistent tuples of values (nogoods of
size 2 or more). In contrast to GAC algorithms, which consider constraints one
by one when trying to filter values of variable domains, the proposed algorithms
to enforce higher-order consistencies are able to reason from several constraints
simultaneously, as, for example, constraint intersections with pairwise consistency
(PWC) [53].

Relation filtering algorithms take advantage of the intersections between con-
straints in order to identify and remove inconsistent tuples or to add new con-
straints to the problem (e.g., [105, 54]). Moreover, efficient ways to apply re-
lational consistencies were recently proposed and new consistencies of this type
were introduced for binary [66, 55] and non-binary constraints [57, 108]. Specif-
ically, the algorithms of [57, 108] concern the application of various relational

42

CHAPTER 3. RELATED WORK

consistencies on (mainly) table constraints through the exploitation of a problem’s
dual encoding.

In the following, when referring to constraint intersections we will mean non
trivial intersections (containing more than one variable) since higher-order con-
sistencies based on PWC do not offer any extra pruning compared to GAC on
constraints intersecting on one variable [19].

In Figure 3.2 we summarize the relationships between the mentioned local
consistencies for non-binary CSPs.

Figure 3.2: Relationships between consistencies for non-binary CSPs.

3.3 Table Constraints

Table constraints, i.e., constraints given in extension, are ubiquitous in constraint
programming (CP). First, they naturally arise in many real applications from areas
such as configuration and databases. And second, they are a useful modeling tool
that can be called upon to, for instance, easily capture preferences [56]. Given
their importance in CP, it is not surprising that table constraints are among the
most widely studied constraints and as a result numerous specialized algorithms
that achieve GAC on them have been proposed. Since GAC is a property defined
on individual constraints, algorithms for GAC operate on one constraint at a time
trying to filter infeasible values from the variables of the constraint.

Table constraints can be positive (resp. negative), when constraints are defined
by sets of allowed (resp. disallowed) tuples, namely tuples that satisfy (resp. do
not satisfy) the constraints. GAC algorithms for positive table constraints have
received the bulk of the attention. Such algorithms utilize a number of different
techniques to speed-up the check for generalized arc consistency. For example, the
generic GAC-Schema of [16] can be instantiated to either a method that searches
the lists of allowed tuples for suppports, or to one that searches the valid tuples.

43

CHAPTER 3. RELATED WORK

Other approaches build upon GAC-schema by interleaving the exploration of al-
lowed and valid tuples using either intricate data structures [75] or binary search
[72]. Algorithms in [72], based on GAC3 (or GAC3.1/2001 [18]), utilize a data
structure for each constraint variable value triplet (c, x, a), such that x is in the
scope of c. GAC3-valid+allowed, which is the most efficient in [72], im-
proves upon GAC-schema by interleaving the exploration of allowed and valid
tuples using binary search. Such an approach is also found in [75]. However, in
this case it is implemented through the use of an elaborate data structure (Holo-
gram) introduced in [74].

Other methods compile the tables into efficient data structures that allow for
faster support search (e.g., [44] and [25]). These methods are based on the com-
pression of the allowed tuples in order to perform a fast traversal. One such
compression-based method uses, an alternative data structure, called trie, for each
variable [44]. Also, authors in [58] used a compact representation for allowed
and disallowed tuples which can be constructed from a decision tree that repre-
sents the original tuples. Another approach of compression-based techniques uses
a Multi Valued Decision Diagram (MDD) to store and process table constraints
more efficiently [25]. Simple Tabular Reduction (STR) [103] and its refinements,
STR2 [63] and STR3 [69], maintain dynamically the support tables by removing
invalid tuples from them during search. The recent algorithms of [80] are partly
based on similar ideas as the Hologram method. That is, they hold information
about removed values in the propagation queue and utilize it to speed up support
search.

Experimental results show that the most competitive approaches are the ones
based on STR and the MDD approach. The algorithm of [72], is very competitive
with the Trie approach, outperforms the Hologram method and has the advan-
tage of easier implementation and lack of complex data strucures over all other
methods. Albeit, it is clearly slower than the best methods on most problems.

A different line of research has investigated stronger consistencies and algo-
rithms to enforce them. Some of them are domain filtering, meaning that they
only prune values from the domains of variables, e.g. see [31, 19], whereas a few
other ones are higher-order (or relation filtering), e.g. see [53, 54, 105, 57, 67],
indicating that inconsistent tuples of values can be identified. In contrast to GAC
algorithms, the proposed algorithms to enforce these stronger consistencies are

44

CHAPTER 3. RELATED WORK

able to consider several constraints simultaneously. For example, pairwise consis-
tency (PWC) [53] considers intersections between pairs of constraints.

Typically, such local consistencies take advantage of the intersections between
constraints in order to identify and remove inconsistent tuples or to add new con-
straints to the problem (e.g., [105, 54]). Quite recently, strong domain filtering
consistencies have received attention [19, 99]. Moreover, efficient ways to apply
relational consistencies were proposed and new consistencies of this type were
introduced for binary [66, 55] and non-binary constraints [57, 108].

The works of [57, 108] concern the application of various relational consisten-
cies on (mainly) table constraints through the exploitation of a problem’s dual en-
coding. Experimental results show that very high local consistencies (higher than
FPWC) can pay off when they are applied through efficient algorithms. However,
the proposed algorithms were not compared to state-of-the-art GAC methods such
as STR2. Interestingly, the authors of [57] propose the so called index-tree data
structure to locate all tuples in a constraint’s relation that are consistent with a
tuple of another intersecting constaint.

3.4 Adaptive Propagation

Selecting the appropriate propagator for a constraint is a problem that is essen-
tial to CP and therefore has attracted a lot of interest. Standard solvers do not
use adaptive methods to tackle this problem. They either preselect the propaga-
tor or use costs and other measures to order the various propagators. Regarding
the second approach, Schulte and Stuckey describe some state-of-the-art methods
which are used to order propagators by many well known solvers (e.g. Gecode,
Choco) [97]. The fundamental approaches for selecting a propagator are based on
tracking fixpoints using idempotence reasoning of variables’ domains, on track-
ing domain changes, called events, and on a priority-based queues for choosing
the next propagator for a single constraint based on costs.

Automatic CP solver tuning has attracted a lot of interest recently. Several
researchers have approached this problem through the use of ML methods (e.g.
[83, 36]). In this case, the goal of the learning process is to automatically select
or adapt the search strategy, so that the performance of the system is improved.
There are two main approaches that have been studied. In the first case, a specific

45

CHAPTER 3. RELATED WORK

strategy (e.g. a search algorithm or a specific solver) is selected automatically
among an array of available strategies, either for a whole class of problems or
for a specific instance. Such methods have mainly been proposed for SAT and
to a lesser extent for CSPs. In the second case, using ML, a new strategy can be
synthesized (e.g. a combination of search algorithm and heuristics) [36]. Such at-
tempts have mainly focused on learning strategies for combining heuristics, result-
ing for example in new, hybrid variable ordering heuristics. These strategies are
learned before solving particular problems and are applied unchanged throughout
the search. Again the bulk of the existing methods come from the SAT commu-
nity. For example, in the SATenstein system [59] learning allows the synthesis
of novel local search algorithms for specific problems through the composition of
entire solver sub-modules.

[109] proposed the use of reinforcement learning for the dynamic selection of
a variable ordering heuristic at each point of search for CSPs. Another recent work
uses ML to decide prior to search whether lazy learning will be switched on or off
[42]. There has been little research on learning strategies for constraint propaga-
tion. [35] uses ML methods for the automatic selection of constraint propagation
techniques. In particular, a static method for the pre-selection between Forward
Checking and Arc Consistency is proposed. [60] evaluates ensemble classification
for selecting an appropriate propagator for the alldifferent constraint. Again this
is done in a static way prior to search.

An alternative approach proposes heuristic methods for the automatic tuning
of constraint propagation in [100]. Their advantage is twofold: they are inexpen-
sive to apply, and they are perfectly suited to a dynamic application because they
exploit information concerning the actual effects of propagation during search.
These heuristics are based on the continuous monitoring of propagation events,
such as domain wipeouts (DWOs) and value deletions, caused by individual con-
straints during search. When certain conditions regarding these events are met,
the propagation method applied on any constraint may switch from a weaker and
cheaper to a stronger and more expensive one (and vice versa). Although this
approach displayed quite promising results, it suffered by important limitations.
First, the description as well as the evaluation of the heuristics was limited to
binary constraints. And second, their successful application depended on user
interference for careful parameter tuning. The former limits the applicability of

46

CHAPTER 3. RELATED WORK

the heuristics while the latter severely compromises their autonomicity and puts
burden on the shoulders of the users.

Following a different line of work, but with a similar goal, there are some
works proposing heuristic methods to automatically adapt contraint propagation.
Apart from [100], we can mention the following: El Sakkout et al. proposed
a scheme called adaptive arc propagation for dynamically deciding whether to
process individual constraints using AC or forward checking [34]. Freuder and
Wallace proposed a technique, called selective relaxation which can be used to
restrict AC propagation based on two local criteria; the distance in the constraint
graph of any variable from the currently instantiated one, and the proportion of
values deleted [38]. Probabilistic arc consistency is a scheme that can dynami-
cally adapt the level of local consistency applied avoids some constraint checks
and revisions that are unlikely to cause pruning [82]. Chmeiss and Sais presented
a backtrack search algorithm, MAC (dist k), that also uses a distance parameter k
as a bound to maintain a partial form of AC [26].

Quite recently, the authors of [6] proposed the parameterized local consistency
approach to adjust the level of consistency depending on a stability parameter over
values. Parameterized local consistencies choose to enforce either arc consistency
or a stronger local consistency on a value depending on whether the stability of
the value is above or below a given threshold. Interestingly, they propose ways to
dynamically adapt the parameter, and thus the level of local consistency, during
search. The adaptiveness criterion is based on DWOs (like [100]) to locate the
difficult parts of the instance. Both the approaches of [6] and [100] approach are
only defined and tested on binary CSP’s.

47

4
New efficient maxRPC algorithms for

Binary CSPs

In this chapter we study strong local consistencies for binary constraints that
widely and intensely studied. As discussed in Section 3.1, many strong local
consistencies have been proposed for binary constraints, with maxRPC being one
of the most promising. Therefore, we develop new efficient algorithms for this
local consistency.

We propose and evaluate techniques that can boost the performance of maxRPC
algorithms by eliminating many of these overheads and redundancies. These in-
clude the combined use of two data structures to avoid many redundant constraint
checks, and the exploitation of residues to quickly verify the existence of supports.
Based on these, we propose a number of closely related maxRPC algorithms. The
first one, maxRPC3, has optimal O(end3) time complexity, displays good per-
formance when used stand-alone, but is expensive to apply during search. The
second one, maxRPC3rm, has O(en2d4) time complexity, but a restricted version
with O(end4) complexity can be very efficient when used during search. The other
algorithms are simple modifications of maxRPC3rm. All algorithms have O(ed)

space complexity when used stand-alone. However, maxRPC3 has O(end) space
complexity when used during search, while the others retain the O(ed) complex-
ity. Experimental results demonstrate that the resulting methods constantly out-
perform previous algorithms for maxRPC, often by large margins, and constitute
a viable alternative to arc consistency on some problem classes.

CHAPTER 4. NEW EFFICIENT MAXRPC ALGORITHMS FOR BINARY
CSPS

4.1 Introduction

Max Restricted Path Consistency (maxRPC) is a strong domain filtering consis-
tency for binary constraints introduced in 1997 by Debruyne and Bessiere [29].
maxRPC achieves a stronger level of local consistency than arc consistency (AC),
and in [31] it was identified, along with singleton AC (SAC), as a promising alter-
native to AC. Although SAC has received considerable attention since, maxRPC
has been comparatively overlooked. Fewer new algorithms have been proposed
and their experimental evaluation has been very limited. In this chapter we pro-
pose new algorithms for maxRPC and evaluate them empirically on a wide range
of problems.

The basic idea of maxRPC is to delete any value a of a variable x that has
no arc consistency (AC) or path consistency (PC) support in a variable y that
is constrained with x. A value b is an AC support for a if the two values are
compatible, and it is also a PC support for a if this pair of values is path consistent.
A pair of values (a, b) is path consistent iff for every third variable there exists at
least one value, called a PC witness, that is compatible with both a and b.

In Section 3.1 we have discribed various maxRPC algorithms, focusing on
their operations and structures. Briefly, the first algorithm for maxRPC was pro-
posed in [29] while two more algorithms have been proposed since then [47, 106].
The algorithms of [29] and [106] have been evaluated on random problems only,
while the algorithm of [47] has not been experimentally evaluated at all. Despite
achieving stronger pruning than AC, existing maxRPC algorithms suffer from
overhead and redundancies as they can repeatedly perform many constraint checks
without triggering any value deletions. These constraint checks occur when a
maxRPC algorithm searches for an AC support for a value and when, having lo-
cated one, it checks if it is also a PC support by looking for PC witnesses in other
variables. As a result, the use of maxRPC during search often slows down the
search process considerably compared to AC, despite the savings in search tree
size.

In this chapter we propose techniques to improve the applicability of maxRPC
by eliminating some of these redundancies while keeping a low space complex-
ity. We also investigate approximations of maxRPC that only make slightly fewer
value deletions in practice, while being significantly faster. We first demonstrate

49

CHAPTER 4. NEW EFFICIENT MAXRPC ALGORITHMS FOR BINARY
CSPS

that we can avoid many redundant constraint checks and speed up the search for
AC and PC supports through the careful and combined application of two data
structures already used by maxRPC and AC algorithms [47, 106, 18, 68, 77].
Based on this, we propose a coarse-grained maxRPC algorithm called maxRPC3
with optimal O(end3) time complexity. This algorithm displays good perfor-
mance when used stand-alone (e.g. for preprocessing), but is expensive to apply
during search. We then propose another maxRPC algorithm, called maxRPC3rm.
This algorithm has O(en2d4) time complexity, but a restricted version with O(end4)
complexity can be very efficient when used during search through the use of
residues. Both algorithms have O(ed) space complexity when used stand-alone.
However, maxRPC3 has O(end) space complexity when used during search, while
maxRPC3rm retains the O(ed) complexity.

We further investigate the use of residues to improve the performance of
maxRPC filtering during search. To be precise, we adapt ideas from [77] to ob-
tain two variants of the maxRPC3rm algorithm. The first one achieves a bet-
ter time complexity but is inferior to maxRPC3rm in practice, while the second
one exploits in a simple way information obtained in the initialization phase of
maxRPC3rm to achieve competitive performance.

Similar algorithmic improvements can be applied to light maxRPC (lmaxRPC),
an approximation of maxRPC [106]. This achieves a lesser level of consistency
compared to maxRPC, but still stronger than AC, and is more cost-effective when
used during search. Experiments confirm that lmaxRPC is indeed a considerably
better option than maxRPC when used throughout search. We also propose a
number of heuristics that can be used to order the searches for PC supports and
witnesses during the execution of a coarse-grained maxRPC algorithm, and in this
way potentially save constraint checks.

Finally, we make a detailed experimental evaluation of new and existing al-
gorithms on various problem classes. This is the first wide experimental study of
algorithms for maxRPC and its approximations on benchmark non-random prob-
lems. We ran experiments with maxRPC algorithms under both a 2-way and a
d-branching scheme. Results show that our methods constantly outperform exist-
ing algorithms, often by large margins, especially when 2-way branching is used.
When applied during search our best method offers up to one order of magnitude
reduction in constraint checks, while cpu times are improved up to three times

50

CHAPTER 4. NEW EFFICIENT MAXRPC ALGORITHMS FOR BINARY
CSPS

compared to the best existing algorithm. In addition, these speed-ups enable a
search algorithm that applies lmaxRPC to compete with or outperform MAC on
some problems. Finally, we explore a simple hybrid propagation scheme where
AC and maxRPC are interleaved under 2-way branching. Results demonstrate
that instantiations of this scheme offer an efficient alternative to the application of
a fixed propagation method (either AC or maxRPC) throughout search.

The remainder of this chapter is structured as follows. Section 2 reviews back-
ground information on CSPs and related work on maxRPC algorithms. Section
3 presents two new algorithms, maxRPC3, maxRPC3rm and their corresponding
approximations, and analyzes their complexities. Section 4 discusses the further
exploitation of residues on two variations of the maxRPC3rm algorithm. Sec-
tion 5 discusses heuristics for (l)maxRPC algorithms, and Section 6 presents our
experimental results on benchmark problems. Finally, Section 7 concludes and
discusses possible directions for future work.

4.2 New Algorithms for maxRPC

We first recall the basic ideas of algorithms maxRPC2 and maxRPCrm as de-
scribed in [47] and [106]. Both algorithms use a propagation list Q where vari-
ables whose domain is pruned are added. Once a variable xj is removed from
Q all neighboring variables are revised to delete any values that are no longer
maxRPC. For any value ai of such a variable xi there are three possible reasons
for deletion:

• The first is when ai no longer has an AC-support in D(xj).

• The second, which we call PC-support loss hereafter, is when the unique
PC-support aj ∈ D(xj) for ai has been deleted.

• The third, which we call PC-witness loss hereafter, is when the unique PC-
witness aj ∈ D(xj) for the pair (ai, ak), where ak is the unique PC-support
for ai on some variable xk, has been deleted.

If any of the above cases occurs then value ai is no longer maxRPC.
We now present the pseudocodes for the new maxRPC algorithms, maxRPC3

and maxRPC3rm. Both algorithms utilize data structures LastPC and LastAC

51

CHAPTER 4. NEW EFFICIENT MAXRPC ALGORITHMS FOR BINARY
CSPS

which have the following functionalities: For each constraint ci,j and each value
ai ∈ D(xi), LastPCxi,ai,xj and LastACxi,ai,xj point to the most recently discov-
ered PC and AC supports of ai in D(xj) respectively. Initially, all LastPC and
LastAC pointers are set to a special value ⊥, considered to precede all values
in any domain. As will be explained, algorithm maxRPC3 updates the LastPC
and LastAC structures incrementally like maxRPC2 and AC2001/3.1 respec-
tively do. In contrast, algorithm maxRPC3rm uses these structures as residues like
maxRPCrm and AC3rm do.

4.2.1 maxRPC3

The main part of maxRPC3 is described in Algorithm 1. Since maxRPC3 is
coarse-grained, it uses a propagation list Q (typically implemented as a queue)
where variables that have their domain filtered are inserted. This may happen
during initialization (explained below) or when PC-support or PC-witness loss
is detected. When a variable xj is removed from Q, at line 4, each variable xi
constrained with xj must be checked for possible AC-support, PC-support or PC-
witness loss. We now discuss the overall function of the algorithm before moving
on to explain it in detail.

For each value ai ∈ D(xi), Algorithm 1 first checks whether ai has suffered
AC-support or PC-support loss in D(xj) by calling function checkPCsupLoss,
provided that LastPCxi,ai,xj is not valid anymore (line 7). This function, which
will be explained in detail below, returns false if no new PC-support exists for ai
in D(xj) and as a result ai is deleted (line 8). If ai is not deleted, either because
LastPCxi,ai,xj is still valid or because a new PC-support for ai has been found
in D(xj), then possible PC-witness loss is examined by calling function check-
PCwitLoss (line 11). If this function returns false, then ai is deleted (line 12).
If a value is deleted from D(xi) then xi is inserted to Q (lines 9 and 13). After
deleting values from the domain of a variable, the algorithm checks whether the
domain is empty (line 14). If so, the algorithm returns FAILURE.

An important remark about Algorithm 1 is the following. Assuming a value ai
has been examined in lines 6-13 and has not been deleted, then this does not neces-
sarily mean that ai is maxRPC. Indeed there is the possibility that LastPCxi,ai,xj
is valid but the last PC-witness of the pair (ai, LastPCxi,ai,xj) in some variable xk

52

CHAPTER 4. NEW EFFICIENT MAXRPC ALGORITHMS FOR BINARY
CSPS

has been deleted. Hence, if LastPCxi,ai,xj is the last PC-support of ai in D(xj)

then ai is not maxRPC. Such a situation will be identified at some point during
the execution of the algorithm once xk is removed from Q and its neighboring
variables are examined. This guarantees the algorithm’s completeness as will be
further explained in Section 3.4.

Algorithm 1 maxRPC3
1: if ¬ initialization(Q, LastPC, LastAC) then
2: return FAILURE;
3: while Q 6= ∅ do
4: Q← Q−{xj};
5: for each xi ∈ X s.t. ci,j ∈ C do
6: for each ai ∈ D(xi) do
7: if LastPCxi,ai,xj /∈ D(xj) AND ¬ checkPCsupLoss(xi, ai, xj) then
8: remove ai;
9: Q← Q ∪ {xi};

10: else
11: if ¬ checkPCwitLoss(xi, ai, xj) then
12: remove ai;
13: Q← Q ∪ {xi};
14: if D(xi) = ∅ then
15: return FAILURE;
16: return SUCCESS;

The initialization step of maxRPC3 (Fun. 2) is a brute-force function, where
each value ai of each variable xi is checed for being maxRPC. This is done by
iterating through the variables constrained with xi and looking for a PC-support
for ai in their domains. For each such variable xj and value aj ∈ D(xj), we
first check if the pair (ai, aj) is arc consistent by calling function isConsistent at
line 6. isConsistent returns true if (ai, aj) satisfies the constraint, meaning that aj
AC-supports ai. In this case LastACxi,ai,xj is set to aj (line 7). If aj is verified
as an AC-support of ai, we examine if it is also a PC-support by calling function
searchPCwit. If searchPCwit returns true (detailed analysis follows below), then
LastPCxi,ai,xj is set to aj (line 10), since aj is the most recently found PC-support
for ai. Line 11 will be explained below when algorithm maxRPC3rm is presented.

53

CHAPTER 4. NEW EFFICIENT MAXRPC ALGORITHMS FOR BINARY
CSPS

Then, the next variable constrained with xi will be considered, and so on.

Function 2 initialization(Q, LastPC, LastAC):boolean
1: for each xi ∈ X do
2: for each ai ∈ D(xi) do
3: for each xj ∈ X s.t. ci,j ∈ C do
4: maxRPCsupport← FALSE;
5: for each aj ∈ D(xj) do
6: if isConsistent(ai, aj) then
7: LastACxi,ai,xj ← aj;
8: if searchPCwit(xi, ai, xj, aj) then
9: maxRPCsupport← TRUE;

10: LastPCxi,ai,xj ← aj;
11: if (rm) then LastPCxj ,aj ,xi ← ai;
12: break;
13: if ¬ maxRPCsupport then
14: remove ai;
15: Q← Q ∪ {xi};
16: break;
17: if D(xi) = ∅ then
18: return FALSE;
19: return TRUE;

If there is no AC-support in D(xj) for ai or none of the AC-supports is a
PC-support, then ai will be removed at line 14 and xi will be added to queue
Q. Eventually, ai is established to be maxRPC when a PC-support is found in
each D(xj), where xj has a constraint with xi. Finally, if function initialization
causes an empty domain (line 17), then maxRPC3 returs FAILURE in line 2 of
Algorithm 1. Note that initilization is called only when maxRPC3 is used stand-
alone (e.g. for preprocessing) and not during search, as in this caseQ is initialized
with the variable of the latest decision.

Assuming the initialization phase succeeded, the propagation list Q will in-
clude those variables that have their domain filtered. The main part of maxRPC3
(Alg. 1) starts when a variable xj is extracted from Q (line 4) in order to deter-
mine whether a neighbouring variable (xi) has suffered PC-support or PC-witness

54

CHAPTER 4. NEW EFFICIENT MAXRPC ALGORITHMS FOR BINARY
CSPS

loss due to the filtering of the extracted variable’s domain. These checks are im-
plemented by calling functions checkPCsupLoss and checkPCwitLoss, at lines 7
and 11 of Algorithm 1, for each value ai ∈ D(xi). If value LastPCxi,ai,xj is
still in D(xj) line 7, then a possible PC-support has been immediately located
(the PC-support will be established later as explained in the remark about the al-
gorithm given above) and checkPCsupLoss is not called. In the opposite case
where LastPCxi,ai,xj is not valid, checkPCsupLoss is called to search for a new
PC-support in D(xj).

Checking for PC-support loss

Function checkPCsupLoss (Fun. 3) takes advantage of the LastPC and LastAC
pointers to avoid starting the search for PC-support from scratch. Specifically,
we know that no PC-support can exist before LastPCxi,ai,xj , and also none can
exist before LastACxi,ai,xj , since all values before LastACxi,ai,xj are not AC-
supports of ai. Lines 1-4 in checkPCsupLoss take advantage of these to locate the
appropriate starting value bj . Note that maxRPC2 always starts the search for a
PC-support from the value after LastPCxi,ai,xj and thus may perform redundant
constraint checks.

Function 3 checkPCsupLoss(xi, ai, xj):boolean
1: if LastACxi,ai,xj ∈ D(xj) then
2: bj ← max(LastPCxi,ai,xj+1,LastACxi,ai,xj);
3: else
4: bj ← max(LastPCxi,ai,xj+1,LastACxi,ai,xj + 1);
5: for each aj ∈ D(xj), aj ≥ bj do
6: if isConsistent(ai, aj) then
7: if LastACxi,ai,xj /∈ D(xj) AND LastACxi,ai,xj > LastPCxi,ai,xj then
8: LastACxi,ai,xj ← aj;
9: if searchPCwit(xi, ai, xj, aj) then

10: LastPCxi,ai,xj ← aj;
11: return TRUE;
12: return FALSE;

For every value aj ∈ D(xj), starting with bj , we first check if it is an AC-

55

CHAPTER 4. NEW EFFICIENT MAXRPC ALGORITHMS FOR BINARY
CSPS

support of ai by calling function isConsistent (line 6). If it is, then we can update
LastACxi,ai,xj under a certain condition (lines 7-8). Specifically, ifLastACxi,ai,xj
was deleted fromD(xj), then we can setLastACxi,ai,xj to aj in caseLastACxi,ai,xj
> LastPCxi,ai,xj . If LastACxi,ai,xj ≤ LastPCxi,ai,xj then we cannot do this up-
date, as there may be AC-supports for ai betweenLastACxi,ai,xj andLastPCxi,ai,xj
in the lexicographical ordering. We then move on to verify the path consistency of
(ai, aj) through function searchPCwit (line 9). If no PC-support for ai is found in
D(xj), checkPCsupLoss will return false, ai will be deleted and xi will be added to
Q in Algorithm 1. Otherwise, LastPCxi,ai,xj is set to the discovered PC-support
aj (line 10).

Function 4 searchPCwit(xi, ai, xj, aj):boolean
1: for each xk ∈ X s.t. ci,k and cj,k ∈ C do
2: maxRPCsupport← FALSE;
3: if ((LastACxi,ai,xk ∈ D(xk)) AND (LastACxi,ai,xk=LastACxj ,aj ,xk)) OR

((LastACxi,ai,xk ∈ D(xk)) AND (isConsistent(LastACxi,ai,xk , aj))) OR
((LastACxj ,aj ,xk ∈ D(xk)) AND (isConsistent(LastACxj ,aj ,xk , ai))) then

4: continue;
5: if ¬searchACsup(xi, ai, xk) OR ¬searchACsup(xj, aj, xk) then
6: return FALSE;
7: for each ak ∈ D(xk), ak ≥ max(LastACxi,ai,xk , LastACxj ,aj ,xk) do
8: if isConsistent(ai, ak) AND isConsistent(aj, ak) then
9: maxRPCsupport← TRUE;

10: break;
11: if ¬ maxRPCsupport then
12: return FALSE;
13: return TRUE;

Function searchPCwit (Fun. 4) checks if a pair of values (ai,aj) is PC by
doing the following for each variable xk constrained with xi and xj1. First, tak-
ing advantage of the LastAC pointers, it makes a quick check in constant time
which, if successful, can save searching in the domain of xk. To be precise, it

1Since AC is enforced by the maxRPC algorithm, we only need to consider variables that form
a 3-clique with xi and xj [87].

56

CHAPTER 4. NEW EFFICIENT MAXRPC ALGORITHMS FOR BINARY
CSPS

checks if LastACxi,ai,xk is valid and LastACxi,ai,xk equals LastACxj ,aj ,xk , or if
LastACxi,ai,xk is valid and consistent with aj or if LastACxj ,aj ,xk is valid and
consistent with ai (line 3). The first part of the disjunction is of practical impor-
tance only, since if it is true, then the second part will necessarily also be true and
the condition will be verified. However, including the first part of the condition
saves constraint checks, and this reflects on run times in certain problems.

If one of these conditions holds then we have found a PC-witness for (ai,aj)
without searching in D(xk) and we move on to the next variable constrained with
xi and xj . Note that neither maxRPC2 nor maxRPCrm can do this check as they do
not have the LastAC structure. In contrast, algorithm maxRPCEn1 is able to do
such reasoning. Experimental results in Section 4.5 demonstrate that these simple
conditions of line 3 can eliminate a very large number of redundant constraint
checks.

Function 5 searchACsup(xi, ai, xj):boolean
1: if LastACxi,ai,xj ∈ D(xj) then
2: return TRUE;
3: else
4: for each aj ∈ D(xj), aj > LastACxi,ai,xj do
5: if isConsistent(ai, aj) then
6: LastACxi,ai,xj ← aj;
7: return TRUE;
8: return FALSE;

If none of the conditions in line 3 of Fun. 4 holds, searching for a new PC-
witness in D(xk) is necessary. This is done by first calling function searchACsup
(Fun. 5), first with (ai, xk) and then with (aj, xk) as parameters. This function
locates the lexicographically smallest AC-supports for ai and aj in D(xk). More
precisely, searchACsup checks if the current LastAC value exists in the corre-
sponding domain (line 1 of Fun. 5), and if not it searches for a new AC-support
after that (line 4). If it finds one, it updates LastAC accordingly (line 6).

Then, going back to searchPCwit the search for a PC-witness starts from bk =

max{LastACxi,ai,xk , LastACxj ,aj ,xk} (line 7), exploiting the LastAC structure
to save redundant checks (a similar operation is performed by maxRPCEn1). This
search looks for a value of xk that is compatible with both ai and aj (line 8). If no

57

CHAPTER 4. NEW EFFICIENT MAXRPC ALGORITHMS FOR BINARY
CSPS

AC-support is found for either ai or aj (in which cases searchACsup returns false)
or no PC-witness is located, then subsequently searchPCwit will also return false.

Checking for PC-witness loss

Function 6 checkPCwitLoss(xi, ai, xj):boolean
1: for each xk ∈ X s.t. ci,k and ck,j ∈ C do
2: witness← FALSE;
3: if ak ← LastPCxi,ai,xk ∈ D(xk) then
4: if ((LastACxi,ai,xj ∈ D(xj)) AND (LastACxi,ai,xj=LastACxk,ak,xj))

OR ((LastACxi,ai,xj ∈ D(xj)) AND (isConsistent
(LastACxi,ai,xj , ak))) OR ((LastACxk,ak,xj ∈ D(xj)) AND
(isConsistent(LastACxk,ak,xj , ai))) then

5: witness← TRUE;
6: else
7: if searchACsup(xi, ai, xj) AND searchACsup(xk, ak, xj) then
8: for each aj ∈ D(xj), aj ≥ max(LastACxi,ai,xj , LastACxk,ak,xj)

do
9: if isConsistent(ai, aj) AND isConsistent(ak, aj) then

10: witness← TRUE;
11: break;
12: if ¬ witness AND ¬ checkPCsupLoss(xi, ai, xk) then
13: return FALSE;
14: return TRUE;

In maxRPC3, if value ai is not removed after checking for possible PC-support
loss using checkPCsupLoss, function checkPCwitLoss (Fun. 6) is called to check
for PC-witness loss. This is done by iterating over the variables that are con-
strained with both xi and xj . For each such variable xk, we first check if ak =

LastPCxi,ai,xk is still in D(xk) (line 3). If so then we verify if there is still a PC-
witness in D(xj). As in function searchPCwit, taking advantage of the LastAC
pointers, we first make a quick check in constant time which, if successful, can
save searching in the domain of xj . That is, we check if LastACxi,ai,xj is valid
and LastACxi,ai,xj equals LastACxk,ak,xj or if LastACxi,ai,xj is valid and con-

58

CHAPTER 4. NEW EFFICIENT MAXRPC ALGORITHMS FOR BINARY
CSPS

sistent with ak or if LastACxk,ak,xj is valid and consistent with ai (line 4). If
none of these conditions holds then we search for a PC-witness starting from
bj = max{LastACxi,ai,xj , LastACxk,ak,xj} (line 8), after checking the existence
of AC-supports for ai and ak in D(xj), by calling searchACsup (line 7). Right
here the procedure is quite similar to searchPCwit. If there is no AC-support in
D(xj) for either ai or ak we avoid searching for a PC-witness in D(xj) and move
on to seek a new PC-support for ai in D(xk). Note that maxRPC2 does not do the
check of line 4 and always starts the search for a PC-witness from the first value
in D(xj).

If LastPCxi,ai,xk has been removed or the pair (ai, ak) has no PC-witness
in D(xj), we search for a new PC-support for ai in D(xk) in line 12 by calling
function checkPCsupLoss. Search starts at an appropriate value calculated taking
advantage of LastPCxi,ai,xk and LastACxi,ai,xk (lines 1-4 in Fun. 3). The pro-
cedure was explained above when describing checkPCsupLoss. If the search for
a PC-support fails for any third variable xk then false will be returned, and in the
main algorithm ai will be deleted and xi will be added to Q.

maxRPC3 terminates when Q becomes empty, meaning that all values are
maxRPC, or, when a domain of some variable becomes empty, meaning that the
problem is not consistent.

As observed above, when maxRPC3 is applied during search, the propagation
list Q is initialized with the variable at the current decision (assignment or value
removal). If propagating a decision results in an empty domain, then both the
LastAC and LastPC data structures must be restored to their state prior to the
decision.

4.2.2 maxRPC3rm

maxRPC3rm is a coarse-grained maxRPC algorithm that exploits backtrack-stable
data structures inspired from AC3rm (rm stands for multidirectional residues).
LastAC and LastPC are not maintained incrementally as in maxRPC3, but are
only used to store residues. As explained, a residue is a support which has been
located and stored during the execution of the procedure that proves that a given
value is AC or PC. The algorithm stores the most recently discovered AC (resp.
PC) supports, but does not guarantee that any lexicographically smaller value is

59

CHAPTER 4. NEW EFFICIENT MAXRPC ALGORITHMS FOR BINARY
CSPS

not an AC (resp. PC) support. Consequently, when we search for a new AC or
PC support in a domain, we always start from scratch. LastAC and LastPC

need not be restored after a failure; they can remain unchanged, hence a minimal
overhead on the management of data.

Another difference with maxRPC3 is that since maxRPC3rm handlesLastPC
only as a residue, it can exploit the bidirectionality of support. This means that
when a PC-support aj ∈ D(xj) is located for a value ai ∈ D(xi) then ai is a PC-
support for aj . As a result, we can assign LastPCxi,ai,xj and LastPCxj ,aj ,xi to
aj and to ai respectively. Although the property of bidirectionality obviously also
holds for AC-supports, we do not exploit this since experiments demonstrated that
it does not offer any benefits in most cases. Moreover, LastAC is updated when
a PC-support is found, since it is also the most recent AC-support found. This
assignment may speed up subsequent searches for PC-witness as the conditions
in line 3 of searchPCwitrm and line 4 of checkPCwitLossrm are more likely to be
true.

Function 7 checkPCsupLossrm(xi, ai, xj):boolean
1: for each aj ∈ D(xj) do
2: if isConsistent(ai, aj) then
3: if searchPCwitrm(xi, ai, xj, aj) then
4: LastPCxi,ai,xj ← LastACxi,ai,xj ← aj;
5: LastPCxj ,aj ,xi ← ai;
6: return TRUE;
7: return FALSE;

We omit presenting the main algorithm for maxRPC3rm as it is the same as
Algorithm 1 with the only difference being that we call checkPCsupLossrm and
checkPCwitLossrm instead of checkPCsupLoss and checkPCwitLoss respectively.
When maxRPC3rm is used for preprocessing, the initialization function (Fun.2)
is called to initialize Q and structures LastAC and LastPC. The difference with
maxRPC3 concerns the bidirectionality of PC-supports. If the auxilary boolean
variable rm is true, denoting the use of maxRPC3rm instead of maxRPC3, we
initialize the LastPC residue exploiting bidirectionality. To be precise, when a
PC-support is found for ai in D(xj) we set LastPCxi,ai,xj to aj and additionally
LastPCxj ,aj ,xi to ai (line 11 of Fun. 2).

60

CHAPTER 4. NEW EFFICIENT MAXRPC ALGORITHMS FOR BINARY
CSPS

When a variable is extracted from Q, we first explore the case of PC-support
loss by calling function checkPCsupLossrm, after verifying that value
LastPCxi,ai,xj is not in D(xj) anymore. checkPCsupLossrm (Fun. 7) searches
for a new PC-support starting from scratch (line 1). In contrast, maxRPC3 would
start from bj = max(LastPC(xi, ai, xj), LastAC(xi, ai, xj)) and maxRPC2

from the value after LastPCxi,ai,xj . When an AC-support aj is confirmed from
isConsistent in line 2, function searchPCwitrm is called to determine if aj is also
a PC-support for ai. If searchPCwitrm returns true, we assign LastPCxi,ai,xj
and LastPCxj ,aj ,xi to aj and to ai respectively to exploit bidirectionality, and
LastACxi,ai,xj is set to aj (lines 4-5), since the discovered PC-support is also an
AC-support.

Function 8 searchPCwitrm(xi, ai, xj, aj):boolean
1: for each xk ∈ X s.t. ci,k and cj,k ∈ C do
2: maxRPCsupport← FALSE;
3: if ((LastACxi,ai,xk ∈ D(xk)) AND (LastACxi,ai,xk = LastACxj ,aj ,xk))

OR ((LastACxi,ai,xk ∈ D(xk)) AND (isConsistent(LastACxi,ai,xk , aj)))
OR ((LastACxj ,aj ,xk ∈ D(xk)) AND (isConsistent(LastACxj ,aj ,xk , ai)))
then

4: continue;
5: for each ak ∈ D(xk) do
6: if isConsistent(ai, ak) AND isConsistent(aj, ak) then
7: maxRPCsupport← TRUE;
8: LastACxi,ai,xk ← LastACxj ,aj ,xk ← ak;
9: break;

10: if ¬ maxRPCsupport then
11: return FALSE;
12: return TRUE;

Function searchPCwitrm (Fun. 8) checks if a pair of values (ai,aj) is PC by
iterating over the variables xk constrained with xi and xj . First, it checks the same
conditions in line 3 as searchPCwit to locate, if possible, a PC-witness without
searching. If none of these conditions holds, it searches for a new PC-support
starting from the first value in D(xk) (line 5). If a PC-witness ak is found (line
7) then both residues, LastACxi,ai,xk and LastACxj ,aj ,xk , are set to ak as they are

61

CHAPTER 4. NEW EFFICIENT MAXRPC ALGORITHMS FOR BINARY
CSPS

the most recently discovered AC-supports (line 8). If no PC-witness is found we
have determined that the pair (ai,aj) is not PC and as a result false will be returned
and checkPCsupLossrm will move to check if the next available value in D(xj) is
a PC-support for ai.

Function 9 checkPCwitLossrm(xi, ai, xj):boolean
1: for each xk ∈ X s.t. ci,k and ck,j ∈ C do
2: witness← FALSE;
3: if ak ← LastPCxi,ai,xk ∈ D(xk) then
4: if ((LastACxi,ai,xj ∈ D(xj)) AND (LastACxi,ai,xj =

LastACxk,ak,xj)) OR ((LastACxi,ai,xj ∈ D(xj)) AND
(isConsistent(LastACxi,ai,xj , ak))) OR ((LastACxk,ak,xj ∈ D(xj))
AND (isConsistent(LastACxk,ak,xj , ai))) then

5: witness← TRUE;
6: else
7: for each aj ∈ D(xj) do
8: if isConsistent(ai, aj) AND isConsistent(ak, aj) then
9: LastAC(xi, ai, xj)← LastAC(xk, ak, xj)← aj;

10: witness← TRUE;
11: break;
12: if ¬ witness AND ¬ checkPCsupLossrm(xi, ai, xk) then
13: return FALSE;
14: return TRUE;

In maxRPC3rm, if value ai is not removed after checking for possible PC-
support loss using checkPCsupLossrm, function checkPCwitLossrm (Fun. 9) is
called to check for PC-witness loss. This is done by iterating again, over the
variables that are constrained with both xi and xj . For each such variable xk, we
first check if ak = LastPCxi,ai,xk remains in D(xk) (line 3) and if so, if any of
the three conditions in line 4 is satisfied in order to avoid searching. In case each
of these conditions fails, we search for a new PC-witness in D(xj) starting from
the first value (line 7). For each value aj ∈ D(xj), checkPCwitLossrm checks if
it is compatible with ai and ak and moves the LastAC pointers accordingly (line
9), exploiting the bidirectionality of residues.

If LastPCxi,ai,xk is not valid or the pair (ai, ak) fails to find a PC-witness in

62

CHAPTER 4. NEW EFFICIENT MAXRPC ALGORITHMS FOR BINARY
CSPS

D(xj), we search for a new PC-support for ai in D(xk) in line 12, by calling
checkPCsupLossrm. If the search for a PC-support fails then false will be returned
(line 13), ai will be deleted, and xi will be added to Q in the main algorithm.

4.2.3 Light maxRPC

Light maxRPC (lmaxRPC) is an approximation of maxRPC that only propagates
the loss of AC-supports and not the loss of PC-witnesses [106]. That is, when
removing a variable xj from Q, for each ai ∈ D(xi), where xi is constrained with
xj , lmaxRPC only checks if there is a PC-support of ai inD(xj). This ensures that
the obtained algorithm enforces a consistency property that is at least as strong as
AC.

lmaxRPC is a procedurally defined local consistency, meaning that its de-
scription is tied to a specific maxRPC algorithm. Hence when applying this
consistency a fixed point is dependent on the particularities of the specific al-
gorithm used, like the order in which the algorithm processes revisions of vari-
ables/constraints, and the order in which values are processed and supports as
seeked. Light versions of algorithms maxRPC3 and maxRPC3rm, simply noted
lmaxRPC3 and lmaxRPC3rm respectively, can be obtained by omitting the call
to the checkPCwitLoss (resp. checkPCwitLossrm) function (lines 10-13 of Algo-
rithm 1). In a similar way, we can obtain light versions of algorithms maxRPC2
and maxRPCrm.

As already noted in [106], the light versions of different maxRPC algorithms
may not be equivalent in terms of the pruning they achieve. To give an example, a
brute-force algorithm for lmaxRPC that does not use any of the data structures de-
scribed here can achieve more pruning than algorithms lmaxRPC2, lmaxRPC3,
lmaxRPCrm, and lmaxRPC3rm, albeit being much slower in practice. This is
because when looking for a PC-support for a value ai ∈ D(xi) in a variable xj ,
the brute-force algorithm will always search in D(xj) from scratch. In contrast,
consider that any of the four more sophisticated algorithms will return true in case
LastPCxi,ai,xj is valid. However, although aj = LastPCxi,ai,xj is valid, it may
no longer be a PC-support because the PC-witness for the pair (ai, aj) in some
third variable may have been deleted, and it may be the last one. In a case where
aj was the last PC-support in xj for value ai, the four advanced algorithms will

63

CHAPTER 4. NEW EFFICIENT MAXRPC ALGORITHMS FOR BINARY
CSPS

not delete ai while the brute-force one will. This is because it will exhaustively
check all values of xj for PC-support, concluding that there is none.

The worst-case time and space complexities of algorithm lmaxRPC2 are the
same as maxRPC2 . Algorithm lmaxRPCrm has O(end4) time and O(ed) space
complexities, which are lower than those of maxRPCrm. Experiments with ran-
dom problems using algorithms lmaxRPCrm and maxRPCrm showed that the
pruning power of lmaxRPC is only slightly weaker than that of maxRPC [106].
At the same time, it can offer significant gains in run times when used during
search. These results were also verified by us through a series of experiments on
various problem classes.

4.2.4 Correctness and Complexities

We now prove the correctness of algorithms maxRPC3 and maxRPC3rm and an-
alyze their worst-case time and space complexities.

Proposition 1 Algorithm maxRPC3 is sound and complete.
Proof: Soundness. To prove the soundness of maxRPC3 we must prove

that any value that is deleted by maxRPC3 is not maxRPC. Let ai ∈ D(xi) be
a value that is deleted by maxRPC3. It is either removed from D(xi) during the
initialization phase (line 14 Fun. 2) or in line 8 of Algorithm 1, after checkPC-
supLoss has returned false, or in line 12, after checkPCsupLoss has returned true
and checkPCwitLoss has returned false.

In the first case, since function initilization checks all values in a brute-force
manner, it is clear that any deleted value ai either has no AC-support or none of
its AC-supports is a PC-support in some variable xj . The non-existence of a PC-
support is determined using function searchPCwit whose correctness is discussed
below.

In the second case, since checkPCsupLoss returns false, as long as
LastPCxi,ai,xj is not valid in Alg. 1, a new PC-support in D(xj) is sought (lines
5-11 in Fun. 3). This search starts with the value at max(LastPCxi,ai,xj+1,
LastACxi,ai,xj) or at max(LastPCxi,ai,xj+1, LastACxi,ai,xj+1), depending on
whether LastACxi,ai,xj is valid or not. This is correct since any value before
LastPCxi,ai,xj+1 and any value before LastACxi,ai,xj is definitely not an AC-
support for ai (similarly for the other case). checkPCsupLoss will return false

64

CHAPTER 4. NEW EFFICIENT MAXRPC ALGORITHMS FOR BINARY
CSPS

either because no AC-support for ai can be found in D(xj), or because for any
AC-support found, searchPCwit returned false. In the former case there is no
PC-support for ai in D(xj) since there is no AC-support. In the latter case, for
any AC-support aj found there must be some third variable xk for which no PC-
witness for the pair (ai, aj) exists. For each third variable xk searchPCwit cor-
rectly identifies a PC-witness if one of the conditions in line 3 holds. In none holds
then searchPCwit searches for a PC-witness starting from max(LastACxi,ai,xk ,
LastACxj ,aj ,xk). This is correct since LastACxi,ai,xk and LastACxj ,aj ,xk are up-
dated with the lexicographically smallest support of ai (resp. aj) inD(xk) by call-
ing function searchACsup, meaning that any value smaller than max(LastACxi,ai,xk ,
LastACxj ,aj ,xk) is incompatible with either ai or aj . Therefore, if searchPCwit
returns false then there is no PC-witness for some third variable xk. Hence, if
checkPCsupLoss returns false, it means no PC-support for ai can be found in
D(xj) and it is thus correctly deleted.

Now assume that LastPCxi,ai,xj is valid in Algorithm 1 and ai was removed
after checkPCwitLoss returned false. This means that for some variable xk, con-
strained with both xi and xj , both the first part (lines 3-11) and the second part
(line 12) in Fun. 6 of checkPCwitLoss failed to set the boolean witness to true.
Regarding the first part, the failure means that the pair of values (ai, ak), where
ak is the last PC-support of ai in D(xk) found, has no PC-witness in D(xj). In
more detail, the search for a PC-witness correctly starts from max(LastACxi,ai,xj ,
LastACxj ,aj ,xj), after both LastAC pointers have been updated by searchACsup.
The condition in line 4 is similar to the corresponding condition in searchPCwit
and thus, if it is true, the search for PC-witness is correctly overriden. Regard-
ing the second part, the failure means that no alternative PC-support for ai in
D(xk) was found. In more detail when calling checkPCsupLoss(xi, ai, xk), the
search for a PC-support starts from max(LastPCxi,ai,xk+1, LastACxi,ai,xk) or
max(LastPCxi,ai,xk+1, LastACxi,ai,xk +1), depending on the existence of
LastACxi,ai,xk . This is correct since no earlier value can be a PC-support. If there
is no consistent (ai, ak) pair or searchPCwit returns false for all consistent pairs
found, then ai has no PC-support in D(xk) and is thus correctly deleted.

Completeness. To prove the completeness of maxRPC3 we need to show
that if a value is not maxRPC then the algorithm will delete it. The initialization
function checks all values of all variables one by one in a brute-force manner

65

CHAPTER 4. NEW EFFICIENT MAXRPC ALGORITHMS FOR BINARY
CSPS

and removes any value that is not maxRPC. Values that are maxRPC have their
LastPC pointers set to the discovered PC-supports. Thereafter, the effects of
such removals are propagated by calling Algorithm 1 and as a result new value
deletions may occur. Now consider a value ai ∈ D(xi) that was not removed
by the initialization function but after propagation is no longer maxRPC. This is
either because of PC-support or PC-witness loss.

In the first case assume that xj is the variable in which ai no longer has a PC-
support. Since the previously found PC-support of ai has been deleted, xj must
have been added to Q at some point. When xj is removed from Q all neighboring
variables, including xi will be checked. Since LastPCxi,ai,xj is no longer valid
function checkPCsupLoss will be called to search for a new PC-support conclud-
ing that there is none. Therefore, it will return false and ai will be deleted.

In the second case assume that the pair of values (ai,aj), where aj is the
last PC-support of ai in D(xj), has lost its last PC-witness ak in variable xk.
If LastPCxi,ai,xj is not valid, which means that xj was added to Q, then we have
the same case as above. Therefore, after xj is removed from Q, checkPCsupLoss
will find out that there is no PC-support for ai in D(xj) and will delete it. If
LastPCxi,ai,xj is valid then checkPCsupLoss will be omitted (line 7 of Alg. 1).
Since ak was deleted, xk was added toQ at some point. When xk is removed from
Q all neighboring variables, including xi will be checked. If ai has no longer a
PC-support in D(xk), this will be detected by checkPCsupLoss and ai will be
deleted. Otherwise, function checkPCwitLoss will be called. The for loop in
line 1 will go through every variable constrained with both xi and xk, including
xj . Since LastPCxi,ai,xj is valid, a new PC-witness for (ai,aj) in D(xk) will be
sought (lines 3-11). Since ak was the last PC-witness, none will be found and as a
result a new PC-support for ai in D(xj) will be sought (line 12). Since aj was the
last PC-support for ai in D(xj), none will be found, checkPCwitLoss will return
false, and ai will be deleted.

Proposition 2 Algorithm maxRPC3rm is sound and complete.
Proof: The proof is very similar to the corresponding proof for maxRPC3.

As explained, the main difference between the two algorithms concerns the use
of the LastAC and LastPC structures. As maxRPC3rm does not maintain these
structures incrementally, the searches for PC-supports in checkPCsupLossrm and
checkPCwitLossrm and the searches for PC-witnesses in searchPCwitrm and

66

CHAPTER 4. NEW EFFICIENT MAXRPC ALGORITHMS FOR BINARY
CSPS

checkPCwitLossrm start from scratch. Clearly, this has no effect on the sound-
ness or completeness of the algorithm since it guarantees that all potential PC-
supports and PC-witnesses are checked. Furthermore, the conditions for avoid-
ing redundant searches using residues are the same as in maxRPC3. Finally, an-
other difference between the two algorithms is the exploitation of bidirectionality
by maxRPC3rm. By the definition of path and arc consistency, bidirectionality
holds. That is, when a PC-support (AC-support) aj ∈ D(xj) is located for a value
ai ∈ D(xi) then ai is a PC-support (AC-support) for aj . Since the property of
bidirectionality is exploited only to update residues, it does not affect the correct-
ness of the algorithm.

We now discuss the complexities of algorithms maxRPC3 and maxRPC3rm

and their light versions. To directly compare with existing algorithms for
(l)maxRPC, the time complexities give the asymptotic number of constraint checks2.
Folllowing [77], the node time (resp. space) complexity of a (l)maxRPC algorithm
is the worst-case time (resp. space) complexity of invoking the algorithm after a
decision has been made (e.g. a variable assignment or a value removal). The cor-
responding branch complexities of an (l)maxRPC algorithm are the worst-case
complexities of any incremental sequence of k ≤ n invocations of the algorithm.
That is, the complexities of incrementally running the algorithm down a branch of
the search tree until a fail occurs.

Proposition 3 The node and branch time complexity of (l)maxRPC3 is O(end3).
Proof: The complexity is determined by the total number of calls to func-

tion isConsistent in checkPCsupLoss, checkPCwitLoss, and mainly searchPCwit
where most checks are executed.

Each variable can be inserted and extracted from Q every time a value is
deleted from its domain, giving O(d) times in the worst case. Each time a variable
xj is extracted from Q, checkPCsupLoss will look for a PC-support in D(xj) for
all values ai ∈ D(xi), s.t. ci,j ∈ C. For each variable xi, O(d) values are checked.
Checking if a value aj ∈ D(xj) is a PC-support involves first checking in O(1)

if it is an AC-support (line 6 in checkPCsupLoss) and then calling searchPCwit
(line 9). The cost of searchPCwit is O(n + nd) since there are O(n) variables

2However, constraint checks do not always reflect run times as other operations may have an
equal or even greater effect.

67

CHAPTER 4. NEW EFFICIENT MAXRPC ALGORITHMS FOR BINARY
CSPS

constrained with both xi and xj and, after making the checks in line 3, their do-
mains must be searched for a PC-witness, each time from scratch with cost O(nd).
Through the use of LastPC no value of xj will be checked more than once over
all the O(d) times xj is extracted from Q, meaning that for any value ai ∈ D(xi)

and any variable xj , the overall cost of searchPCwit will be O(dn+nd2) = O(nd2).
Hence, checkPCsupLoss will cost O(nd2) for one value of xi, giving O(nd3) for
d values. Since, in the worst case, this process will be repeated for every pair of
variables xi and xj that are constrained, the total cost of checkPCsupLoss will be
O(end3). This is the node complexity of lmaxRPC3.

In checkPCwitLoss the algorithm iterates over the variables in a triangle with
xj and xi. In the worst case, for each such variable xk, D(xj) will be searched
from scratch for a PC-witness of ai and its current PC-support in xk. As xj can
be extracted from Q O(d) times and each search from scratch costs O(d), the
total cost of checking for a PC-witness in D(xj), including the checks of line 4 in
checkPCwitLoss, will be O(d+ d2). For d values of xi this will be O(d3). As this
process will be repeated for all triangles of variables, whose number is bounded by
en, its total cost will be O(end3). If no PC-witness is found then a new PC-support
for ai in D(xk) is sought through searchPCwit. This costs O(nd2) as explained
above but it is amortized with the cost incurred by the calls to searchPCwit from
checkPCsupLoss. Therefore, the cost of checkPCwitLoss is O(end3). This is also
the node complexity of maxRPC3.

The branch complexity of (l)maxRPC3 is also O(end3). This is because the
use of LastPC ensures that for any constraint ci,j and a value ai ∈ D(xi), each
value of xj will be checked at most once for PC-support while going down the
branch. Therefore, the cost of searchPCwit is amortized.

Proposition 4 The node and branch time complexities of lmaxRPC3rm and
maxRPC3rm are O(end4) and O(en2d4) respectively.

Proof: The proof is similar to that of Proposition 3. The main difference
with lmaxRPC3 is that since lastPC is not updated incrementally, each time we
seek a PC-support for a value ai ∈ D(xi) in xj , D(xj) will be searched from
scratch in the worst case. This incurs an extra O(d) cost to checkPCsupLossrm

and searchPCwitrm. Hence, the node complexity of lmaxRPC3rm is O(end4).
Also, the total cost of searchPCwitrm in one node cannot be amortized. This
means that the cost of searchPCwitrm when called within checkPCwitLossrm is

68

CHAPTER 4. NEW EFFICIENT MAXRPC ALGORITHMS FOR BINARY
CSPS

O(nd2). Hence, the node complexity of maxRPC3rm is O(en2d4). The branch
complexities are the same because the calls to searchPCwitrm are amortized.

The space complexities of the algorithms are determined by the space required
for data structures LastPC and LastAC. Since both require O(ed) space, this is
the node space complexity of (l)maxRPC3 and (l)maxRPC3rm. (l)maxRPC3
has O(end) branch space complexity because of the extra space required for the
incremental update and restoration of the data structures. As (l)maxRPC3rm

avoids this, its branch space complexity is O(ed).

4.3 Further exploitation of residues in maxRPC
algorithms

As detailed above, the use of the LastPC and LastAC data structures by algo-
rithms such as maxRPC2, maxRPC3, and AC2001/3.1 can give optimal time
complexity bounds. However, the overhead for maintaining the required data
structures during search can outweigh the benefit of the optimal theoretical re-
sults. On the other hand, the use the LastPC and LastAC structures as residues
by algorithms such as maxRPCrm, maxRPC3rm, and AC3rm sacrifices the optimal
time complexity to achieve better average performance in practice3.

In this section we investigate variants of maxRPC3rm that offer a compro-
mise between maxRPC3rm and maxRPC3 by exploring ideas presented in [77]
regarding the use of residues in AC algorithms. The first variant of maxRPC3rm,
called maxRPC3-resOpt, uses an extra data structure to record the current PC-
supports before the invocation of the maxRPC algorithm at each node of the search
tree. As explained below, by exploiting this data structure we can achieve an im-
proved node time complexity. The second variant, called maxRPC3-start,
also introduces an additional data structure, but only makes use of information
obtained during the initialization phase of the maxRPC algorithm. This does not
improve the asymptotic time complexity, but results in better average performance
in practice.

3This is verified by experimental results given in [68, 77, 106] and also in Section 4.5 here.

69

CHAPTER 4. NEW EFFICIENT MAXRPC ALGORITHMS FOR BINARY
CSPS

4.3.1 maxRPC3-resOpt

Algorithm maxRPC3-resOpt is inspired from the ACS-resOpt algorithm of
[77]. Adapting the main idea of ACS-resOpt to maxRPC, we use a data struc-
ture, called Stop, to copy and remember the residues in LastPC each time a
node is visited right before the maxRPC algorithm is invoked. Also, we view
each domain as being “circular”. That is, the last value in the initial domain of
a variable is followed by the first value. Once a branching decision is made (e.g.
variable assignment), maxRPC3-resOpt copies all the LastPC residues to the
Stop data structure. Then, as maxRPC3-resOpt is executed at this specific
node, the search for a new PC-support for ai ∈ D(xi) in D(xj) starts from the
value immediately after LastPCxi,ai,xj , continues through the end of the domain,
if no PC-support is found, and back to the start of the domain until it encounters
Stopxi,ai,xj . This may save many checks since, unlike maxRPC3rm, each value in
D(xj) can be checked for PC-support at most once.

Function 10 checkPCsupLoss-resOpt(xi, ai, xj):boolean
1: aj ← LastPCxi,ai,xj+1;
2: while aj 6= Stopxi,ai,xj do
3: if isConsistent(ai, aj) then
4: if searchPCwitrm(xi, ai, xj, aj) then
5: LastPCxi,ai,xj ← aj;
6: LastACxi,ai,xj ← aj;
7: return TRUE;
8: aj ← next value in D(xj);
9: return FALSE;

We now explain in detail functions checkPCsupLoss-resOpt and
checkPCwitLoss-resOpt, that replace functions checkPCsupLossrm and
checkPCwitLossrm. In function checkPCsupLoss-resOpt (Fun. 10), we set aj to
the next value after LastPCxi,ai,xj , which is the first value to be checked for being
a PC-support in line 1. When the search for PC-support encounters Stopxi,ai,xj
(line 2), all possible PC-supports will have been examined. Note that since we
consider the domains to be circular, once the last available value in D(xj) has
been unsuccessfuly checked, the search for PC-support will continue from the

70

CHAPTER 4. NEW EFFICIENT MAXRPC ALGORITHMS FOR BINARY
CSPS

start of D(xj). That is, in line 8 aj will be set to the first available value in D(xj).
A significant difference from maxRPC3rm is that maxRPC3-resOpt cannot

exploit the bidirectionality of LastPC. When a PC-support aj ∈ D(xj) is found
for ai ∈ D(xi) then only LastPCxi,ai,xj is set to aj . We do not set LastPCxj ,aj ,xi
to ai, as done in maxRPC3rm, because bidirectionality no longer holds. To
demonstrate this, assume that during the application of maxRPC3-resOpt at
some node, we discover the PC-support aj ∈ D(xj) for ai ∈ D(xi) and through
bidirectionality LastPCxj ,aj ,xi is set to ai. Now a later point in search when
maxRPC3rm is invoked we set Stopxj ,aj ,xi to ai and continue propagation. If
during the search for PC-support for value a′i ∈ D(xi), a′i 6= ai, in D(xj) we
discover aj then LastPCxj ,aj ,xi will be set to a′i. Now assume that later we seek
a PC-support for aj in D(xi) and a′i is no longer valid. Then all values located
between ai and a′i will be skipped because the search will start at a′i+1 and will
terminate when ai = Stopxj ,aj ,xi is reached. Consequently, bidirectionality cannot
be exploited. To this end, the auxilary variable rm, used in initialization function
is set to false to skip line 11.

On the other hand, LastAC is used as in maxRPC3rm and thus it is updated
when a PC-support is found, since this is also an AC-support. Furthermore, the
search for a PC-witness for a pair of values is conducted by searchPCwitrm, as
the changes concern LastPC and do not affect LastAC.

Function checkPCwitLoss-resOpt is called when aj is not removed by
checkPCsupLoss-resOpt. The pseudocode is simply described in textual form,
since it is the same as in checkPCwitLossrm (Fun. 9) until line 11. The second
part of the function (line 12) is executed when LastPCxi,ai,xk is not valid (line 3),
or because there is no PC-witness for the pair (ai, ak) in D(xj). In these cases a
new PC-support for ai is sought in D(xk), and this is done essentially in the same
way as in function checkPCsupLoss-resOpt (Fun. 10).

Comparing with previous algorithms, maxRPC3-resOpt is sound and com-
plete, as no supports nor witnesses can be overlooked and thus the proof of cor-
rectness is very similar to the one given for maxRPC3rm. The node time com-
plexity of (l)maxRPC3-resOpt is O(end3), the same as maxRPC3, since the
search for a new PC-support starts from LastPC+1 and not from scratch as in
maxRPC3rm. Before maxRPC3-resOpt is invoked, we setStop=LastPC and
thus for any constraint ci,j and a value ai ∈ D(xi), each value of xj will be

71

CHAPTER 4. NEW EFFICIENT MAXRPC ALGORITHMS FOR BINARY
CSPS

checked at most nd times for PC-support while going down the branch. As a result
the branch complexity is O(en2d4). The node space complexity is determined by
the space required for storing the LastAC, LastPC, and Stop structures, which
is O(ed). The branch space complexity is also O(ed), because the data structures
are not copied/restored.

Although maxRPC3-resOpt achieves a better node complexity than
maxRPC3rm, it carries the additional overhead of having to initialize the Stop
data structure at each node of the search tree. Experiments in section 4.5 show that
this is indeed an important drawback. The copying of LastPC to Stop at each
node (in O(ed) time) results in higher cpu times, despite the savings in constraint
checks.

4.3.2 maxRPC3-start

A simple way to reduce the number of constraint checks, when a value in LastPC
is not valid, is to keep track of the first PC-support found after preprocessing.
The version of maxRPC3rm presented here, called maxRPC3-start, stores
this value in a structure we call LeftMostPC, with O(ed) size. In case of PC-
support loss, instead of searching from scratch, we start from the value stored
in LeftMostPC that contains the first PC-support found in the initialization
function. Thus, we omit values between the first value in a domain and the
LeftMostPC value to save redundant checks. For every value ai ∈ D(xi)

and constraint ci,j , LeftMostPCxi,ai,xj is initialized to ⊥, like the LastPC and
LastAC structures, and it is updated in the initialization function, exactly when
LastPC is updated. To obtain algorithm maxRPC3-start from maxRPC3rm,
we make the following simple changes.

• We insert in line 11 of initialization the assignment:

LeftMostPCxi,ai,xj ← aj;

Note that while we still exploit the bidirectionality ofLastPC, this property
does not hold for LeftMostPC. That is, if the first PC-support for ai in
D(xj) is value aj , this does not necessarily mean that the first PC-support
for aj in D(xi) is ai.

72

CHAPTER 4. NEW EFFICIENT MAXRPC ALGORITHMS FOR BINARY
CSPS

• In order to start the search for a new PC-support from the first PC-support
found, we replace line 1 in checkPCsupLossrm with:

1: for each aj ∈ D(xj), aj ≥ LeftMostPCxi,ai,xj do

This change will affect also the checkPCwitLossrm function which calls
checkPCsupLossrmin line 12.

maxRPC3-start is sound and complete as it is guaranteed than no value
earlier than the corresponding LeftMostPC value can be a potential PC-support
for some value ai ∈ D(xi). The node and branch time complexity
of maxRPC3-start is O(en2d4), the same as maxRPC3rm, as in the worst
case, the LeftMostPC values are the first values in each variable’s domain.
lmaxRPC3-start is the light version that results from removing the corre-
sponding checkPCwitLoss-start function. Its complexity is O(end4), the same as
lmaxRPC3rm.

Table 4.1: Time and space complexities of (l)maxRPC algorithms.

Time Space Maintains
Algorithm complexity complexity structures
maxRPC1 O(end3) O(end) Yes
maxRPC2 O(end3) O(end) Yes
maxRPC3 O(end3) O(end) Yes
maxRPCrm O(en2d4) O(end) No
maxRPC3rm O(en2d4) O(ed) No
maxRPC3-resOpt O(en2d4) O(ed) No
maxRPC3-start O(en2d4) O(ed) No

Time Space Maintains
Algorithms complexity complexity structures

lmaxRPC2 O(end3) O(end) Yes
lmaxRPC3 O(end3) O(end) Yes
lmaxRPCrm O(end4) O(ed) No
lmaxRPC3rm O(end4) O(ed) No
lmaxRPC3-resOpt O(end4) O(ed) No
lmaxRPC3-start O(end4) O(ed) No

Table 4.1 summarises the asymptotic branch time and space complexities of
the available (l)maxRPC algorithms. Under the column “maintains structures” we
indicate whether a given algorithm requires to incrementally maintain some data
structure or not.

4.4 Heuristics for maxRPC Algorithms

Numerous heuristics for ordering constraint or variable revisions have been pro-
posed and used within AC algorithms [107, 45, 22, 4]. Generally, many con-

73

CHAPTER 4. NEW EFFICIENT MAXRPC ALGORITHMS FOR BINARY
CSPS

straint solvers employ heuristics to order the application of propagators or/and
the revision of variables and constraints [97]. Heuristics such as the ones used
by AC algorithms can be also used within a maxRPC algorithm to efficiently se-
lect the next variable to be removed from the propagation list. In addition to
this, maxRPC and lmaxRPC algorithms can benefit from the use of heuristics
elsewhere in their execution. Once a variable xj has been removed from the prop-
agation list, heuristics can be applied in many ways in either a maxRPC or a
lmaxRPC algorithm. In the following we summarize the possibilities of heuristic
using algorithm (l)maxRPC3 for illustration.

H1 A heuristic can be used to select the next variable xj to remove from the
propagation list Q (line 4 of Algorithm 1). Such heuristics are successfully
used within AC algorithms.

H2 After a variable xj is removed from Q all neighboring variables xi are re-
vised. lmaxRPC (resp. maxRPC) will detect a failure if the condition of
PC-support loss (resp. either PC-support or PC-witness loss) occurs for all
values of xi. In such situations, the sooner xi is considered and the fail-
ure is detected, the more constraint checks will be saved. Hence, the order
in which the neighboring variables of xj are considered can be determined
using a fail-first type of heuristic (line 5 of Algorithm 1).

H3 Once an AC-support aj ∈ D(xj) has been found for a value ai ∈ D(xi),
we try to establish if it is a PC-support. If there is no PC-witness for the
pair (ai, aj) in some variable xk then aj is not a PC-support. Therefore,
we can again use fail-first heuristics to determine the order in which the
variables forming a triangle with xi and xj are considered (line 1 of Function
searchPCwit).

The above cases apply to both lmaxRPC and maxRPC algorithms. In addition,
a maxRPC algorithm can employ heuristics as follows:

H4 For each value ai ∈ D(xi) and each variable xk constrained with both xi
and xj , Function checkPCwitLoss checks if the pair (ai, ak) still has a PC-
witness in D(xj). Again heuristics can be used to determine the order in
which the variables constrained with xi and xj are considered (line 1 of
checkPCwitLoss).

74

CHAPTER 4. NEW EFFICIENT MAXRPC ALGORITHMS FOR BINARY
CSPS

H5 In Function checkPCwitLoss, a new PC-support for ai inD(xk) may be seeked.
The order in which variables constrained with both xi and xk are considered
can be determined heuristically as in the case of H3 above (within the call
to searchPCwit).

As explained, the purpose of such ordering heuristics will be to “fail-first”
[48]. That is, to quickly discover potential failures (in the case of H2 above), refute
values that are not PC-supports (H3 and H5) and delete values that have no PC-
support (H3). Such heuristics can be applied within any coarse-grained maxRPC
algorithm to decide the order in which variables are considered. Examples of
heuristics that can be used are the following.

dom Consider the variables in ascending domain size. This heuristic can be ap-
plied in any of the five cases.

del ratio Consider the variables in ascending ratio of the number of remaining
values to the initial domain size. This heuristic can be applied in any of the
five cases.

wdeg For H1 consider the variables in descending weighted degree. For H2 con-
sider the variables xi in descending weight for the constraint ci,j . In the
case of H3 consider the variables xk in descending average weight for the
constraints ci,k and cj,k. Similarly for H4 and H5.

dom/wdeg Consider the variables in ascending value of dom/wdeg. This heuris-
tic can be applied in any of the five cases.

Experiments demonstrated that applying heuristics H1 and H2 can sometimes
be effective, while doing so for H3, H4, and H5 may save constraint checks
but usually penalizes cpu times because of the overhead involved in computat-
ing the heuristics. Although the primal purpose of the heuristics is to save con-
straint checks, it is interesting to note that some of the heuristics can also divert
search to different areas of the search space when a variable ordering heuristic
like dom/wdeg is used, resulting in fewer node visits. For example, two differ-
ent orderings of the variables in the case of H2 may result in different constraints
causing a failure. As dom/wdeg increases the weight of a constraint each time
it causes a failure and uses the weights to select the next variable, this may later
result in different branching choices. This is explained for the case of AC in [4].

75

CHAPTER 4. NEW EFFICIENT MAXRPC ALGORITHMS FOR BINARY
CSPS

4.5 Experiments

To evaluate the various maxRPC algorithms, we experimented with several classes
of structured and random binary CSPs taken from C.Lecoutre’s XCSP repository.
Excluding instances that were very hard for all algorithms, our evaluation was
done on 200 instances in total from various problem classes (see Table 4.2). More
details about these instances can be found in C.Lecoutre’s homepage4.

All algorithms used the dom/wdeg heuristic for variable ordering [23] and lex-
icographic value ordering. As explained in Section 2.4.2, dom/wdeg increases the
weight of a constraint when this constraint causes a value removal. This process
is rather straightforward when AC is used for constraint propagation, but perhaps
not so when stronger local consistencies are used. For the case of maxRPC we
chose to increase constraint weights in the following way. When a failure occurs,
the weight of constraint ci,j is updated, right after line 7 and 11 of Algorithm 1
and after line 13 in the initialization function.

In all following tables, the results of the best algorithm, with respect to run-
time, are highlighted with bold. If not explicitly mentioned, the propagation list
Q was implemented as a FIFO queue and no heuristic from Section 5 was used.

Table 4.2 compares the performance of stand-alone algorithms used for pre-
processing. We give average results for all the instances, grouped into specific
problem classes. We include results from coarse-grained maxRPC algorithms,
maxRPC2, maxRPC3, maxRPCrm, maxRPC3rm and from their corresponding
light versions.

Regarding existing algorithms, results demonstrate that maxRPCrm is partic-
ularly costly on large instances because of the penalties associated in initializing
its data structures. Specifically, this algorithm timed out on some large instances
of the Queens problem class, which explains the empty data entries in the table.
In comparison, maxRPC2 displays a better average performance which is not sur-
prising given its lower complexity. The new algorithm maxRPC3 is very close
to maxRPC2 in run times, apart from the first and last classes where it is notably
faster. The same holds for maxRPC3rm with the exception of the geometric class
where it is clearly worse than the rest of the algorithms. Any gain in performance
displayed by the new algorithms is due to the elimination of many redundant con-

4http://www.cril.univ-artois.fr/˜lecoutre/benchmarks.html

76

http://www.cril.univ-artois.fr/~lecoutre/benchmarks.html

CHAPTER 4. NEW EFFICIENT MAXRPC ALGORITHMS FOR BINARY
CSPS

straint checks as the corresponding numbers show.

Table 4.2: Mean stand-alone performance in all 200 instances grouped by problem
class. Cpu times (t) in secs, removed values (rm) and constraint checks (cc) are
given.

Problem class maxRPC2 maxRPC3 maxRPCrm maxRPC3rm lmaxRPC2 lmaxRPC3 lmaxRPCrm lmaxRPC3rm

RLFAP t 1.581 1.125 5.754 1.064 0.942 0.928 0.929 0.931
(scen,graph) rm 3,458 3,458 3,456 3,458 3,458 3,458 3,458 3,458

cc 15.2M 8.9M 14.9M 8.2M 7.2M 7.1M 6.6M 7.2M
Random t 0.149 0.153 0.121 0.146 0.148 0.151 0.156 0.149
(modelB, rm 20 20 21 21 25 25 25 31
forced) cc 0.181M 0.179M 0.181M 0.179M 0.178M 0.177M 0.178M 0.178M
Graph Coloring t 1.076 1.001 1.146 1.009 0.981 0.987 0.988 0.980

rm 255 255 255 255 255 255 255 255
cc 17M 16.1M 16.9M 16M 15.8M 15.8M 15.8M 15.8M

Quasigroup t 0.211 0.201 0.276 0.215 0.173 0.166 0.173 0.174
(qcp,qwh rm 1,167 1,167 1,167 1,167 1,167 1,167 1,167 1,167
bqwh) cc 0.67M 0.43M 0.62M 0.42M 0.43M 0.38M 0.41M 0.38M
Geometric t 0.217 0.214 0.163 0.336 0.222 0.213 0.214 0.218

rm 0 0 0 0 0 0 0 0
cc 0.33M 0.33M 0.33M 0.33M 0.33M 0.33M 0.33M 0.33M

QueensKnights t 30.705 29.724 - 29.310 27.827 28.073 27.791 27.732
Queens, rm 96 96 - 96 96 96 96 96
QueenAttack cc 426M 390M - 389M 366M 366M 366M 366M
driver,haystacks t 1.449 1.107 1.781 1.086 0.996 0.931 0.979 1.002
blackHole rm 247 247 247 247 247 247 247 247
job-shop cc 14.4M 10M 13.5M 9.9M 9.3M 8.9M 9.3M 8.9M

Comparing light to full maxRPC algorithms it is perhaps surprising that the
light versions typically achieve the same number of value deletions as their full
counterparts. This means that approximation algorithms for maxRPC are quite ef-
fective. Any differences in value deletions among maxRPC algorithms are caused
by the different order of operations in which inconsistency is discovered for some
instances. In classes where the constraints checks for a maxRPC and a corre-
sponding lmaxRPC algorithm are the same or very close, there are very few, if
any, value deletions.

77

CHAPTER 4. NEW EFFICIENT MAXRPC ALGORITHMS FOR BINARY
CSPS

Table 4.3: Cpu times (t) in secs, nodes (n) and constraint checks (cc) from various
instances.

Instance AC3rm lmaxRPCrm lmaxRPC3rm lmaxRPC3-resOpt lmaxRPC3-start
scen11-f7 t 109.3 482.6 186.6 214 159.4

n 353,901 76,954 76,954 57,037 76,954
cc 467M 5,184M 1,596M 1,011M 1,323M

graph9-f9 t 8.7 54.5 21 45.6 17.5
n 46,705 16,839 16,839 14,838 16,839
cc 25M 458M 184M 145M 153M

rand-2-40-11 t 14.1 17.6 11.6 8.9 11.5
-414-200-30 n 164,958 28,655 28,655 21,105 28,655

cc 61M 249M 98M 70M 97M
will199GPIA-6 t 1.6 5.9 2.5 7.9 2.7

n 6,996 3,316 3,316 4,300 3,316
cc 6M 53M 21M 22M 20M

qcp150-120-5 t 22.9 29.3 15.5 73.8 15.7
n 525,629 130,384 130,384 237,644 130,384
cc 37M 265M 43M 69M 42M

qcp150-120-9 t 95.2 120.6 57.7 157.4 59
n 2,437,173 627,679 627,679 617,662 627,679
cc 157M 1,060M 163M 151M 162M

qwh20-166-1 t 15.3 21.7 12.2 42.7 12.8
n 234,095 54,286 54,286 31,346 54,286
cc 19M 156M 18M 10M 18M

qwh20-166-6 t 758.3 462.5 245.9 3,342.5 256.2
n 10,691,633 984,555 984,555 2,364,104 984,555
cc 911M 3,381M 377M 921M 372M

qwh20-166-7 t 64.5 46.2 24.7 319.3 26.3
n 1,050,144 124,212 124,212 241,184 124,212
cc 85M 342M 40M 75M 39M

geo50-20-d4-75-1 t 54.4 248.2 140.5 143.7 145.7
n 260,996 122,750 122,750 124,535 122,750
cc 6M 1,454M 377M 1,376M 375M

queenAttacking6 t 32.9 60.8 23.9 94 24.3
n 234,759 18,488 18,488 137,731 18,488
cc 104M 888M 242M 860M 238M

queensKnights t 3.1 27.6 16.5 13.4 11.6
-15-5-mul n 5,819 3,5862 3,586 2,924 3,586

cc 23M 462M 233M 174M 183M
haystacks-05 t 4.5 2.6 2 2.8 1.8

n 1,182,023 167,629 167,629 223,547 167,629
cc 13M 13M 7M 10M 6M

Table 4.3 compares the performance of search algorithms that apply lmaxRPC
throughout search on several problem classes including instances from RLFAPs,
random, Quasigroup, geometric, and Queen problems. These instances have been

78

CHAPTER 4. NEW EFFICIENT MAXRPC ALGORITHMS FOR BINARY
CSPS

selected to demonstrate cases where either the new algorithms achieve a clear im-
provement making the best algorithm among them outperform or compete with
MAC, or cases where, despite the improvement, the maxRPC-based algorithms
are still significantly inferior to MAC. Hence, we present some extreme behaviors
for both situations. The algorithms compared are lmaxRPCrm, lmaxRPC3rm,
lmaxRPC3-resOpt and lmaxRPC3-start. We do not present results from
maxRPCrm and maxRPC3rm, since these two algorithms, and especially
maxRPCrm, are inferior to the light versions when used during search. To be
precise, maxRPC3rm is competitive on some instances but clearly worse on av-
erage. On the other hand, maxRPCrm is substantially slower on all the tested
instances and exceeds the time limit of two hours on the hardest among them. Al-
gorithms (l)maxRPC2 and (l)maxRPC3 are even less competitive when used
during search, because of the overheads for the copying and restoration of the
LastPC and LastAC data structures. (l)maxRPC3 is typically more efficient
than (l)maxRPC2.

In general, any maxRPC algorithm is clearly inferior to the corresponding
light version when applied during search. The reduction in visited nodes achieved
by the former is relatively small and does not compensate for the higher run times
of enforcing maxRPC. To put the performance of the lmaxRPC algorithms in
perspective, we include results from MAC3rm which is considered one of the most
efficient versions of MAC [68, 77]. All of the algorithms used a 2-way branching
scheme.

Experiments showed that lmaxRPCrm is the most efficient among existing al-
gorithms when applied during search, which confirms the results given in [106].
Accordingly, lmaxRPC3rm is the most efficient among our algorithms. It is over
two times faster than lmaxRPCrm on hard instances, while algorithms
lmaxRPC3-resOpt and lmaxRPC3-start are also competitive in many in-
stances. The overhead of copying LastPC to Stop causes lmaxRPC3-resOpt
to slow down search in many cases, despite the reduction in the number of con-
straint checks.

Instance qwh20-166-6 is a pathological case for lmaxRPC3-resOpt as this
algorithm requires considerable effort compared to the other algorithms. Recall
that this algorithm does not exploit the bidirectionality of support, as explained in
section 4.1, meaning that variable revisions, constraint checks, and failures may

79

CHAPTER 4. NEW EFFICIENT MAXRPC ALGORITHMS FOR BINARY
CSPS

occur in different orders compared to other algorithms. Through the interaction
with the dom/wdeg variable ordering heuristic this may cause a different search
direction (see discussion at the end of Section 5), explaining the pathological case.

lmaxRPC3-start and lmaxRPC3rm have similar performance when the
numbers of constraint checks are similar. More precisely, lmaxRPC3-start
is better only when the PC-support found in preprocessing is lexicographically
bigger from the first value in any domain. Since this case does not occur very
often, there are no significant benefits when compared to lmaxRPC3rm that starts
searching from scratch.

Importantly, the speed-ups obtained can make a search algorithm that effi-
ciently applies lmaxRPC competitive with MAC on many instances. For instance,
in qwh20-166-6 lmaxRPC3rm achieves a better run time than MAC by a factor
of three while lmaxRPCrm is 2 times slower compared to lmaxRPC3rm.

We can see that our methods can reduce the numbers of constraint checks by as
much as one order of magnitude (e.g. in quasigroup problems qcp and qwh). This
is mainly due to the elimination of redundant checks inside function searchPCwit.
Cpu times are not cut down by as much, but a speed-up of more than 2 times can
be obtained (e.g. qcp150-120-9 and qwh20-166-6). However, there are still many
instances where MAC remains considerably faster despite the improvements (e.g.
graph9-f9, geo50-20-d4-75-1).

In Table 4.4 we summarize the results of our experiments by giving aver-
ages over different problem classes. These results demonstrate that lmaxRPC3rm

outperforms lmaxRPCrm in all problem classes, often considerably. This was
the case in all 200 instances tried. Algorithms lmaxRPC3-resOpt and espe-
cially lmaxRPC3-start display similar performance to lmaxRPC3rm.
lmaxRPC3-resOpt displays its worst performance in quasigroup problems
where it performs twice as much constraint checks on average. Taking also into
account that lmaxRPC3-resOpt copies LastPC to Stop explains the variance
in the results given in Tables 4.3 and 4.4. In general, lmaxRPC3rm is competitive
with MAC on RLFAP and random instances and outperforms it on the Quasi-
group classes. In contrast, lmaxRPC3rm is clearly inferior to AC3rm on Queens
class and in the last category that includes instances from various other structured
problem classes.

80

CHAPTER 4. NEW EFFICIENT MAXRPC ALGORITHMS FOR BINARY
CSPS

Table 4.4: Mean search performance in all 200 instances grouped by class.
Problem class AC3rm lmaxRPCrm lmaxRPC3rm lmaxRPC3-resOpt lmaxRPC3-start
RLFAP t 13.5 61.7 21.7 26.7 18.8
(scen,graph) n 42,250 8,727 8,727 7,326 8,727

cc 56M 625M 201M 139M 166M
Random t 2.7 5.8 3.6 3.9 3.6
(modelB,forced) n 29,538 7,385 7,385 7,835 7,385

cc 11M 82M 30M 31M 30M
Graph Coloring t 4.8 61 25 45.9 29.7

n 3,910 2,225 2,225 2,866 2,225
cc 12M 984M 284M 303M 283M

Quasigroup t 55.6 47.8 22 231.7 22.8
(qcp,qwh,bqwh) n 866,099 117,974 117,974 204,407 117,974

cc 70M 315M 39M 71M 38M
Geometric t 11.3 50.6 29.1 30.3 30.1

n 55,825 26,687 26,687 27,656 26,687
cc 55M 721M 314M 314M 313M

QueensKnights, t 7.1 133.6 42.7 56.3 42.5
Queens,QueenAttack n 38,663 4,829 4,829 22,321 4,829

cc 27M 1,583M 563M 655M 552M
driver,blackHole t 1.6 14.7 5.6 15.5 5.7
haystacks,job-shop n 115,717 28,750 28,750 34,001 28,750

cc 3M 141M 33M 35M 32M

4.5.1 d-way branching

We have also experimented with the above search algorithms under the d-way
branching scheme using again the dom/wdeg heuristic for variable ordering. Ta-
ble 4.5 reports results from the same instances as Table 4.3, in order to directly
compare our algorithms on the two different branching schemes. We exclude
lmaxRPC3-resOpt which is the less competitive among the algorithms of Ta-
ble 4.3. We can observe that lmaxRPC3rm is faster by a factor of two on the
RLFAP instance graph9-f9, while with 2-way branching AC3rm was superior.
Differences in the relative performance of AC and maxRPC occur in other prob-
lems as well (e.g. random, quasigroup and queensAttacking). For example, in
qwh instances lmaxRPC3rm has better run-time results against AC3rm but not
by as large margins as under 2-way branching. In comparison to lmaxRPCrm,
lmaxRPC3rm remains advantageous in all instances.

81

CHAPTER 4. NEW EFFICIENT MAXRPC ALGORITHMS FOR BINARY
CSPS

Table 4.5: Cpu times (t) in secs, nodes (n) and constraint checks (cc) from various
problem instances when d-way branching is used.

Instance AC3rm lmaxRPCrm lmaxRPC3rm lmaxRPC3-start
scen11-f7 t 981.9 3,338 1,128 870

n 3,696,154 552,907 552,907 552,907
cc 4,287M 31,098M 9,675M 8,193M

graph9-f9 t 57.1 85.3 33.3 30.9
n 273,766 26,276 26,276 26,276
cc 158M 729M 290M 242M

rand-2-40-11 t 11.3 33.4 26.9 21.5
-414-200-30 n 110,091 49,100 49,100 49,100

cc 51M 484M 189M 187M
will199GPIA-6 t 3 11.7 4.8 5.1

n 13,243 4,971 4,971 4,971
cc 13M 108M 42M 41M

qcp150-120-5 t 15.9 34.8 17.8 18.6
n 233,311 100,781 100,781 100,781
cc 27M 330M 54M 53M

qcp150-120-9 t 66.5 162.9 78.4 81.2
n 2,437,173 627,679 627,679 627,679
cc 157M 1,060M 163M 162M

qwh20-166-1 t 14.6 28.2 15.7 16.4
n 234,095 54,286 54,286 54,286
cc 19M 156M 18M 18M

qwh20-166-6 t 462.7 674.3 346.2 367
n 4,651,632 919,861 919,861 919,861
cc 633M 5,089M 566M 558M

qwh20-166-7 t 30 51.9 27.8 29.1
n 263,713 76,624 76,624 76,624
cc 42M 392M 45M 44M

geo50-20-d4-75-1 t 38.7 144.8 81.9 82.3
n 181,560 79,691 79,691 79,691
cc 192M 2,045M 880M 876M

queenAttacking6 t 54.7 406.8 153.9 146.6
n 262,087 103,058 103,058 103,058
cc 211M 6,035M 1,640M 1,623M

queensKnights t 18.2 82.6 40.4 23.5
-15-5-mul n 35,445 13,462 13,462 13,462

cc 154M 963M 387M 282M
haystacks-05 t 0.7 0.7 0.8 0.7

n 110,638 20,278 20,278 20,278
cc 1.4M 1.9M 1.1M 1.0M

Table 4.6 summarizes results from the application of lmaxRPC during search
using d-way branching. We give average results for all the tested instances, grouped
into specific problem classes, as in Table 4.4. As can be seen, lmaxRPC3rm and
lmaxRPC3-start improve on the existing best algorithm considerably, mak-

82

CHAPTER 4. NEW EFFICIENT MAXRPC ALGORITHMS FOR BINARY
CSPS

ing lmaxRPC outperform MAC on the quasigroup problem classes and be quite
competitive on the RLFAP class. As expected, when comparing the same (AC or
maxRPC) algorithm under the two different branching schemes, 2-way branching
is typically superior.

Table 4.6: Mean search performance in all 200 instances grouped by class, when
d-way branching is used.

Problem class AC3rm lmaxRPCrm lmaxRPC3rm lmaxRPC3-start
RLFAP t 124 157.3 157.3 123.2
(scen,graph) n 424,128 74,083 73,083 73,083

cc 559M 4,394M 1,387M 1,092M
Random t 2.2 7.7 5.3 4.8
(modelB,forced) n 19,809 9,270 9,270 9,270

cc 9M 110M 40M 40M
Graph Coloring t 8.9 110.3 46.9 43.4

n 5,919 2,983 2,983 2,983
cc 23M 1,735M 455M 454M

Quasigroup t 35.5 57.4 29.6 31.2
(qcp,qwh,bqwh) n 387,495 103,994 103,994 103,994

cc 51M 458M 56M 55M
Geometric t 8.2 29.7 17.2 17.3

n 39,879 17,273 17,273 17.273
cc 39M 418M 180M 179M

QueensKnights, t 14.7 206.1 73.6 67.6
Queens,QueenAttack n 67,019 24,859 24,859 24,859

cc 73M 2,796M 839M 807M
driver,blackHole t 0.8 13.2 5.2 5.3
haystacks,job-shop n 13,075 11,349 11,349 11,349

cc 1M 121M 25M 25M

Overall, our results demonstrate that the efficient application of a maxRPC
approximation throughout search can give an algorithm that is quite competitive
with MAC on some classes of binary CSPs with either of the two standard branch-
ing schemes. This confirms the conjecture of [31] about the potential of maxRPC
as an alternative to AC. In addition, our results, along with ones in [106], show
that approximating strong and complex local consistencies can be very beneficial.

4.5.2 Heuristics

We have also run experiments to evaluate several of the heuristics described in
Section 4.4. In these experiments we have mainly used the best algo-
rithm, lmaxRPC3rm, under 2-way braching. Intuitively, the use of heuristics

83

CHAPTER 4. NEW EFFICIENT MAXRPC ALGORITHMS FOR BINARY
CSPS

may improve the algorithm’s performance as explained in Section 4.4. Since only
light versions of maxRPC are practical for use during search, we have only tested
heuristics H1, H2 and H3. Recall that heuristics H4 and H5 are not applicable for
light maxRPC algorithms.

Table 4.7: Mean search performance in all 200 instances grouped by class, when
different heuristics are used.

Problem class AC3rm lmaxRPC3rm H1 H2 H1+H2 H1+H2+H3 H1+H2(del ratio) lmaxRPC3-start+H1+H2
RLFAP t 13.5 21.7 18.8 18.5 18 22.6 22.5 13.9
(scen,graph) n 42,250 8,727 7,993 9,059 7,940 7,940 8,624 7,940

cc 56M 201M 157M 143M 152M 163M 200M 130M
Random t 2.7 3.6 3.3 7.1 5.4 9.7 5.1 5.4
(modelB,forced) n 29,538 7,385 7,508 15,431 11,452 11,452 10,369 11,452

cc 11M 30M 25M 55M 38M 37M 39M 38M
Graph Coloring t 4.8 25 24.7 25.9 28.5 259.9 25 27.7

n 3,910 2,225 2,163 2,175 2,043 2,043 2,079 2,043
cc 12M 284M 248M 254M 236M 236M 218M 258M

Quasigroup t 55.6 22 20.6 37.2 34.9 101.1 26.8 35.9
(qcp,qwh,bqwh) n 866,099 117,974 109,945 159,440 143,206 143,206 122,291 143,206

cc 70M 39M 35M 54M 47M 47M 38M 46M
Geometric t 11.3 29.1 21.8 18.2 17.5 30.9 31.1 17.5

n 55,825 26,687 24,938 17,184 18,295 18,295 26,580 18,295
cc 55M 314M 224M 178M 164M 159M 310M 164M

QueensKnights, t 7.1 42.7 50.7 46.8 53.1 154.3 44.1 51
Queens,QueenAttack n 38,663 4,829 13,452 8,469 10,034 10,034 4,849 10,034

cc 27M 563M 624M 588M 649M 640M 563M 616M
driver,blackHole t 1.6 5.6 6.7 7 6.4 27.3 7.3 5.9
haystacks,job-shop n 115,717 28,750 51,511 53,685 56,148 56,148 29,761 56,148

cc 3M 33M 30M 31M 31M 32M 33M 31M

With respect to the specific strategy for ordering variables under the differ-
ent heuristics, we have tried all the ”fail-first” methods analyzed in Section 4.4
(i.e. dom, del ratio, wdeg, dom/wdeg). dom and wdeg were not as efficient as
the other methods and are thus ommitted from Table 4.7. The algorithm used
is lmaxRPC3rm, except from the last column where we report results
from lmaxRPC3-start. Apart from column H1 + H2(del ratio), where the
heuristic is mentioned explicitly, in the rest of the columns we use dom/wdeg.

Considering the results in Table 4.7 compared to results in Table 4.4 it seems
that the application of heuristics does not offer any benefits as the algorithm’s
performance is marginally improved, if at all. In some problem classes using no
heuristic at all is the best choice.

84

CHAPTER 4. NEW EFFICIENT MAXRPC ALGORITHMS FOR BINARY
CSPS

The most promising is the application of both H1 and H2 (H1+H2), where xj
extracted from Q and xi, which is the neighbouring variable of xj , are ordered
in ascending order of the dom/wdeg value. The less efficient combination is the
H1+H2+H3 because of the run-time overhead caused by the often computation of
all three heuristics. Comparing del ratio and dom/wdeg on H1+H2 we conclude
that the former is preferable on Quasigroup and Queen problems while the latter
is better on RLFAP and Geometric problems. On the rest of the problem classes
they display similar performance.

4.5.3 Interleaving AC and maxRPC

Since there are problem classes where either an algorithm that maintains AC or
one that maintains lmaxRPC is preferable, we have experimented with hybrid
propagation schemes that interleave lmaxRPC3rm and AC3rm. Specifically, we
have considered the following simple ways to interleave the two algorithms under
2-way branching: At any left branch we run lmaxRPC3rm (respectively AC3rm)
after a value assigment, while at any right branch we run AC3rm (respectively
lmaxRPC3rm) after a value removal. Table 4.8 summarizes the results of our
experiments with these methods.

Given the results in Table 4.8, the first observation we can make is that none of
the two hybrid propagation schemes is substantially worse than both lmaxRPC3rm

and AC3rm on any problem class. In contrast, there are problem classes where
the hybrids outperform either maxRPC (e.g. geometric) or AC (quasigroups) by
substantial margins. This means that, as expected, the hybrid methods achieve a
compromise between maxRPC and AC, which is evident by looking at both cpu
times and node visits. Applying maxRPC at left branches results in performance
closer to maintaining maxRPC, while when AC is applied at left branches the per-
formance is closer to MAC. This is not surprising since the effects of constraint
propagation are stronger after variable assignments compared to value removals.
Therefore, the local consistency applied at left branches is the “dominant” one
that determines the behaviour of the algorithm. As a result, the former hybrid
method is better on quasigroup problems but worse on graph coloring and queens
instances, while the two are close on the rest of the problem classes.

85

CHAPTER 4. NEW EFFICIENT MAXRPC ALGORITHMS FOR BINARY
CSPS

Table 4.8: Mean hybrid search performance in all 200 instances grouped by class.

(x = a)
∧

(x 6= a) (x = a)
∧

(x 6= a)

Problem class AC3rm lmaxRPC3rm lmaxRPC3rm
∧

AC3rm AC3rm
∧

lmaxRPC3rm

RLFAP t 13.5 21.7 21.9 19.5
(scen,graph) n 42,250 8,727 17,231 25,748

cc 56M 201M 193M 103M
Random t 2.7 3.6 3.2 4.1
(modelB,forced) n 29,538 7,385 11,488 16,668

cc 11M 30M 24M 30M
Graph Coloring t 4.8 25 21.6 5.9

n 3,910 2,225 2,745 2,654
cc 12M 284M 240M 58M

Quasigroup t 55.6 22 30.2 40.9
(qcp,qwh,bqwh) n 866,099 117,974 233,919 324,373

cc 70M 39M 43M 60M
Geometric t 11.3 29.1 16.6 15.3

n 55,825 26,687 25,042 28,785
cc 55M 314M 164M 140M

QueensKnights, t 7.1 42.7 42.2 9.9
Queens,QueenAttack n 38,663 4,829 9,645 11,648

cc 27M 563M 535M 211M
driver,blackHole t 1.6 5.6 2.1 1.8
haystacks,job-shop n 115,717 28,750 64,891 86,446

cc 3M 33M 30M 31M

The preliminary results presented here give a strong indication that interleav-
ing AC and stronger local consistencies, such as maxRPC, during search can be
quite beneficial. Further research is certainly required to develop more informed
and efficient ways of interleaving different local consistencies.

4.6 Conclusion

Although maxRPC has been identified as a promising strong local consistency for
binary constraints, it has received rather narrow attention since it was introduced.
Only two new algortihms have been proposed since the introduction of maxRPC1,
the first algorithm for maxRPC, and they have only been evaluated on random
problems, if at all.

In this chapter we have identified sources of redundancies in the existing
maxRPC algorithms which largely contribute to the high cost of maintaining
maxRPC during search. Based on this, we presented new algorithms for maxRPC,

86

CHAPTER 4. NEW EFFICIENT MAXRPC ALGORITHMS FOR BINARY
CSPS

and their light versions that approximate maxRPC. These algorithms build on and
improve existing maxRPC algorithms, achieving the elimination of many redun-
dant constraint checks. We also investigated heuristics that can be used to order
certain operations within maxRPC algorithms.

Experimental results from various problem classes demonstrate that our best
method, lmaxRPC3rm, constantly outperforms existing algorithms, often by large
margins. Significantly, the speed-ups obtained allow lmaxRPC3rm to compete
with and outperform MAC on some problems, justifying the conjecture of [31]
about the potential of maxRPC as an alternative to AC.

87

5
Strong Local Consistencies for

Non-Binary (Table) Constraints

In this chapter, we are concerned with strong local consistencies for non-binary
and especially table constaints. Many strong local consistencies have been pro-
posed in the literature (Section 3.2). Among domain filtering consistencies, maxR-
WPC displays promising performance. Based on maxRPWC and two state-of-the-
art GAC algorithms for table constraints (Section 3.3), we develop new efficient
domain, as well as, relation filtering algorithms that achieve stronger pruning than
GAC.

Scecifically, we propose new filtering algorithms for positive table constraints
that achieve stronger local consistency properties than GAC by exploiting inter-
sections between constraints. The first algorithm, called maxRPWC+, is a domain
filtering algorithm that is based on the local consistency maxRPWC and extends
the GAC algorithm of [72]. The second algorithm extends the state-of-the-art
STR-based GAC algorithms to stronger relation filtering consistencies, i.e., con-
sistencies that can remove tuples from constraints’ relations. Experimental results
from benchmark problems demonstrate that the proposed algorithms are more ro-
bust than the algorithm of [72] in classes of problems with intersecting table con-
straints, being orders of magnitude faster in some cases. Also, the most competi-
tive among the proposed algorithms can outperform STR2 by significant margins
in some classes, but it can also be drastically outperformed in other classes.

CHAPTER 5. STRONG LOCAL CONSISTENCIES FOR NON-BINARY
(TABLE) CONSTRAINTS

5.1 Introduction

Table constraints are ubiquitous in constraint programming (CP). First, they natu-
rally arise in many real applications from areas such as configuration and databases.
And second, they are a useful modeling tool that can be called upon to, for in-
stance, easily capture preferences [56]. Given their importance in CP, it is not
surprising that table constraints are among the most widely studied constraints
and as a result numerous specialized algorithms that achieve GAC (i.e., domain
consistency) on them have been proposed.

Since GAC is a property defined on individual constraints, algorithms for
GAC operate on one constraint at a time trying to filter infeasible values from
the variables of the constraint. Recently, many algorithms have been proposed
that achieve GAC and are specialized for table constraints [72, 63, 69]. A dif-
ferent line of research has investigated stronger consistencies and algorithms to
enforce them. Some of them are domain filtering, meaning that they only prune
values from the domains of variables, e.g. see [31, 19], whereas a few other ones
are higher-order (see Section 3.2.4). In contrast to GAC algorithms, the proposed
algorithms to enforce these stronger consistencies are able to consider several con-
straints simultaneously. For example, pairwise consistency (PWC) [53] considers
intersections between pairs of constraints.

As we discussed in Section 3.2, one of the most promising such consistencies
is Max Restricted Pairwise Consistency (maxRPWC) [19] which is the domain
filtering counterpart of pairwise consistency. In practice, strong consistencies are
mainly applicable on constraints that are extensionally defined since intentionally
defined constraints usually have specific semantics and are provided with efficient
specialized filtering algorithms. However, a significant shortcoming of existing
works on maxRPWC and other strong local consistencies is that the proposed al-
gorithms for them are generic. That is, they are designed to operate on intensional
and extensional constraints indistinguishably, failing to recognize that strong con-
sistencies are predominantly applicable on extensional constraints and should thus
be specialized for such constraints.

Despite the wealth of research on strong consistencies, they have not been
widely adopted by CP solvers. State-of-the art solvers such as Gecode, ILOG,
Choco, Minion, etc. predominantly apply GAC, and lesser forms of consistency

89

CHAPTER 5. STRONG LOCAL CONSISTENCIES FOR NON-BINARY
(TABLE) CONSTRAINTS

such as bounds consistency, when propagating constraints. Regarding table con-
straints, CP solvers typically offer one or more of the above mentioned GAC meth-
ods for propagation.

In this chapter, we propose specialized filtering algorithms for table constraints
that achieve stronger consistency properties than GAC. We contribute to both di-
rections of domain and relation filtering methods by extending existing GAC algo-
rithms for table constraints. The proposed methods are a step towards the efficient
handling of intersecting table constraints and also provide specialization of strong
local consistencies that can be useful in practice.

The first algorithm, called maxRPWC+, extends the GAC algorithm for ta-
ble constraints given in [72] and specializes the generic maxRWPC algorithm
maxRPWC1. The proposed domain filtering algorithm incorporates several tech-
niques that help alleviate redundancies (i.e., redundant constraint checks and other
operations on data structures) displayed by existing maxRPWC algorithms. We
also describe a variant of maxRPWC+ which is more efficient when applied during
search due to the lighter use of data structures.

The second algorithm, called HOSTR*, extends the state-of-the-art GAC al-
gorithm STR to a higher-order local consistency that can delete tuples from con-
straint relations as well as values from domains. HOSTR* is actually a family
of algorithms that combines the operation of STR (or a refinement of STR such
as STR2) when establishing GAC on individual constraints and the operation of
maxRPWC+ when trying to extend GAC supports to intersecting constraints. We
describe several instantiations of HOSTR* which differ in their implementation
details.

We theoretically study the pruning power of the proposed algorithms and place
them in a partial hierarchy which includes GAC, maxRPWC, and FPWC (namely
PWC+GAC). We show that the level of local consistency achieved by HOSTR* is
incomparable to that achieved by maxRPWC+ and to maxRPWC, but weaker than
FPWC. Interestingly, a simple variant of HOSTR* ahieves FPWC, albeit with a
high cost. maxRPWC+ achieves a consistency that is incomparable to maxRPWC
but still stronger than GAC.

Experimental results from benchmark problems used in the evaluation of filter-
ing algorithms for table constraints demonstrate that the best among the proposed
algorithms are clearly more robust than the GAC algorithm of [72], namely, their

90

CHAPTER 5. STRONG LOCAL CONSISTENCIES FOR NON-BINARY
(TABLE) CONSTRAINTS

performance is stable over different problem classes and when they are less effi-
cient than GAC they are never exponentially worse. Significantly, in some classes
of problems with intersecting table constraints, our methods can be orders of mag-
nitude faster. In addition, our specialized algorithms are considerably faster than
generic maxRPWC algorithms, showing that specialized algorithms for strong
consistencies can be useful in practice. Finally, the best among the proposed al-
gorithms outperforms the state-of-the-art GAC algorithm STR2 on some problem
classes, sometimes by large margins. However, it is also outperformed by STR2
on other problem classes with the differences being quite large in some cases.

The rest of this chapter is structured as follows. Section 5.2 presents algorithm
maxRPWC+ and a variant of this algorithm that is more efficient when used during
search. Section 5.3 extends STR-based algorithms to achieve stronger consisten-
cies than GAC. In Section 5.4 we give experimental results. Finally, in Section
5.7 we conclude.

5.2 Algorithm maxRPWC+

In this section we will first describe a specialized algorithm for table constraints
that is based on maxRPWC and then present an efficient variant of it that makes
a lighter use of its data structures. The presented algorithm, called maxRPWC+,
builds upon the generic maxRPWC algorithm maxRPWC1 and the specialized
GAC algorithm of [72] (called GAC-va hereafter). maxRPWC+ not only special-
izes maxRPWC to table constraints but also introduces several techniques that
help eliminate redundancies displayed by existing algorithms, such as unneces-
sary constraint checks and other operations on data structures. As in GAC-va, the
main idea behind maxRPWC+ is to interleave support and validity checks.

The approach of GAC-va involves visiting both lists of valid and allowed
tuples in an alternating fashion when looking for a support (i.e., a tuple that is
both allowed and valid). Its principle is to avoid considering irrelevant tuples
by jumping over sequences of valid tuples containing no allowed tuple and over
sequences of allowed tuples containing no valid tuple. This is made possible
because of the lexicographic ordering of tuples. The core operation of GAC-va,
that is also exploited by our algorithm, is the construction of a valid tuple that is
verified for being a GAC-support by searching for it in the list of allowed tuples

91

CHAPTER 5. STRONG LOCAL CONSISTENCIES FOR NON-BINARY
(TABLE) CONSTRAINTS

using binary search. If it is not found, then the smallest allowed tuple that is
greater than the aforementioned valid one is considered and its validity is checked.
If it is not valid, then next valid tuple is constructed and so on.

Algorithm maxRPWC+ uses the following data structures:

• For each variable-value pair (xi, ai) and each constraint c involving xi,
allowed(c, xi, ai) is the list of allowed tuples in c that include the assign-
ment (xi, ai).

• For each constraint c and each value ai ∈ D(xi), where xi ∈ scp(c),
Lastc,xi,ai gives the most recently discovered (and thus lexicographically
smallest) maxRPWC-support of ai in c. The same data structure is used
by maxRPWC1 but it is exploited in a less sophisticated way as will be ex-
plained.

Before going into the details of the algorithm we describe a simple modifica-
tion that can be incorporated into any maxRPWC algorithm to boost its perfor-
mance.

Restricted maxRPWC From the definition of maxRPWC we can see that the
value deletions from some D(xi) may trigger the deletion of a value b ∈ D(xj) in
two cases:

1. b may no longer be maxRPWC because its current maxRPWC-support in
some constraint c is no longer valid and it was the last such support in c. We
call this case maxRPWC-support loss.

2. The last maxRPWC-support of b in some constraint c may have lost its last
PW-support in another constraint c′ intersecting with c. We call this case
PW-support loss.

Although detecting PW-support loss is necessary for an algorithm to achieve
maxRPWC, our experiments have shown that the pruning it achieves rarely justi-
fies its cost. Hence, maxRPWC+ applies maxRPWC in a restricted way by only
detecting maxRPWC-support loss. However, the resulting method is still strictly
stronger than GAC. This is clear if we consider that the “stronger” relationship

92

CHAPTER 5. STRONG LOCAL CONSISTENCIES FOR NON-BINARY
(TABLE) CONSTRAINTS

is immediately derived by the definitions. Now consider a problem with con-
straints alldiff(x1, x2, x3) and x1 = x2, and domains {0, 1, 2} for all variables.
This problem is GAC but the application of restricted maxRPWC will detect its
inconsistency. Although a restricted version of maxRPWC is stronger than GAC,
it obviously is only achieves an approximation of maxRPWC. A similar approxi-
mation of the related binary local consistency maxRPC has also been shown to be
efficient compared to full maxRPC (see [106] and Chapter 4).

5.2.1 Algorithm description

Given a table constraint ci, we now describe how algorithm maxRPWC+ can be
used to filter the domain of any variable xj ∈ scp(ci). We assume that the domain
of some variable in scp(ci) (different than xj) has been modified and as a result
the propagation engine will revise all other variables in scp(ci). Initially, Function
11 is called.

Function 11 revisePW+ (ci, xj)

1: for each aj ∈ D(xj) do
2: τ ←seekSupport-va(ci, xj, aj);
3: while τ 6= > do
4: if isPWconsistent+(ci, τ) then break;
5: τ ←seekSupport-va(ci, xj, aj);
6: if τ = > then remove aj from D(xj);

For each value aj ∈ D(xj) Function 11 first searches for a GAC-support. This
is done by calling function seekSupport-va which is an adaptation of Algorithm
12 of GAC-va in [72]. This function makes an additional first check to verify if
Lastci,xj ,aj , which is the most recently found maxRPWC-support, and thus also
GAC-support, is still valid. Note that as in [72] the search starts from the first
valid tuple. If Lastci,xj ,aj is valid, τ = Lastci,xj ,aj is returned, else the valid and
allowed tuples of ci are visited in an alternating fashion. This is done by applying
a dichotomic search in the list allowed(ci, xj, aj) to locate the lexicographically
smallest valid and allowed tuple τ of ci, such that τ > Lastci,xj ,aj and τ [xj] = aj .
More precisely, τ can be either a valid tuple found in the list of allowed tuples of
ci or >, in case of validity or support check failure. If such a tuple τ is found, we

93

CHAPTER 5. STRONG LOCAL CONSISTENCIES FOR NON-BINARY
(TABLE) CONSTRAINTS

then check it for PW consistency through Function isPWconsistent+ (Function
12). If aj does not have a GAC-support (i.e., seekSupport-va returns >) or none
of its GAC-supports is a PW-support, then it will be removed from D(xj).

Function 12 isPWconsistent+ (ci, τ): boolean
1: for each ck 6= ci s.t. |scp(ck) ∩ scp(ci)| > 1 do
2: PW=FALSE;
3: max τ ′ ← ⊥;
4: for each xk ∈ scp(ck) ∩ scp(ci) do
5: τ ′ ← Lastck,xk,τ [xk];
6: if isValid(ck, τ ′) AND τ ′[scp(ck) ∩ scp(ci)] = τ [scp(ck) ∩ scp(ci)] then
7: PW=TRUE; break;
8: if τ ′ > max τ ′ then max τ ′ ← τ ′;
9: if ¬PW then

10: if seekPWSupport(ci, τ, ck,max τ ′) = > then
11: return FALSE;
12: return TRUE;

The process of checking if a tuple τ of a constraint ci is PW consistent involves
iterating over each constraint ck that intersects with ci on at least two variables and
searching for a PW-support for τ (Function 12 line 1). For each such constraint ck
maxRPWC+ first tries to quickly verify if a PW-support for τ exists by exploiting
the Last data structure as we now explain.

Fast check for PW-support

For each variable xk belonging to the intersection of ci and ck, we check if τ ′ =

Lastck,xk,τ [xk] is valid and if it includes the same values for the rest of the variables
in the intersection as τ (line 6 in Function 12). Function isValid simply checks
if all values in the tuple are still in the domains of the corresponding variables.
If these conditions hold for some variable xk in the intersection then τ is PW-
supported by τ ′. Hence, we move on to the next constraint intersecting ci.

Else, we find max τ ′ the lexicographically greatest Lastck,xk,τ [xk] among the
variables that belong to the intersection of ci and ck and we search for a new PW-
support in Function seekPWSupport (line 10). In case seekPWSupport returns >

94

CHAPTER 5. STRONG LOCAL CONSISTENCIES FOR NON-BINARY
(TABLE) CONSTRAINTS

for some ck then isPWconsistent+ returns FALSE and a new GAC-support must
be found and checked for PW consistency.

Fast check for lack of PW-support

Function 13 seeks a PW-support for τ in rel[ck]. Before commencing with this
search, it performs a fast check aiming at detecting a possible inconsistency (and
thus avoiding the search). In a few words, this check can sometimes establish that
there cannnot exist a PW-support for τ . This is accomplished by exploiting the
lexicographical ordering of the tuples in the constraints’ relations.

Function 13 seekPWsupport (ci, τ, ck, max τ ′)
1: if ¬ isValid(ck,max τ ′) then max τ ′ ← setNextTuple(ci, τ, ck,max τ

′);
2: if max τ ′ 6= > then τ ′ ← checkPWtuple(ci, τ, ck,max τ

′);
3: else return >;
4: xch ← select a variable ∈ scp(ci) ∩ scp(ck)
5: while τ ′ 6= > do
6: τ ′′ ← binarySearch(allowed(ck, xch, τ

′[xch]),τ ′);
7: if τ ′′ = τ ′ OR isValid(ck, τ ′′) then return τ ′′;
8: if τ ′′ = > then return >;
9: τ ′ ← setNextTuple(ci, τ, ck, τ

′′);
10: return >;

In detail, the validity of max τ ′ is first checked in line 1. If isValid returns
FALSE, then function setNextTuple is called to find the lexicographically smallest
valid tuple in ck that is greater than max τ ′ and is such that max τ ′[scp(ck) ∩
scp(ci)] = τ [scp(ck) ∩ scp(ci)]. If no such tuple exists, setNextTuple returns >,
and the search terminates since no PW-support for τ exists in ck. If a tuplemax τ ′

is located then Function checkPWtuple is called to essentially perform a lexico-
graphical comparison between max τ ′ and τ taking into account the intersection
of the two constraints (line 2). According to the result we may conclude that there
can be no PW-support of τ in ck and thus Function 13 will return>. Consequently,
lines 2-3 of Function 13 perform the fast check for lack of PW-support.

The addition of this simple check enables maxRPWC+ to perform extra prun-
ing compared to a typical maxRPWC algorithm. Before explaining how check-

95

CHAPTER 5. STRONG LOCAL CONSISTENCIES FOR NON-BINARY
(TABLE) CONSTRAINTS

PWtuple works, we demonstrate this with an example.

Example 1 Consider a problem that includes two constraints c1 and c2 with scp(c1) =

{x1, x2, x3, x4} and scp(c2) = {x3, x4, x5, x6}. Assume that the GAC-support
τ = (0, 2, 2, 1) has been located for value 0 of x1 and that there exists a valid PW-
support for τ in c2 (e.g., {2, 1, 2, 2}). Also, assume that Lastc2,x3,2 and Lastc2,x4,1
are tuples τ ′ = (2, 2, 0, 1) and τ ′′ = (1, 1, 2, 3), meaning that max τ ′ = τ ′. Since
τ has a PW-support, a maxRPWC algorithm will discover this and will continue
to check the next constraint intersecting c1. However, since τ ′[x4] is greater than
τ [x4], it is clear that there is no PW consistent tuple in c2 that includes values 2
and 1 for x3 and x4 respectively. If we assume that τ is the last GAC-support
of (x1, 0) then maxRPWC+ will detect this and will delete 0 from D(x1), while a
maxRPWC algorithm will not.

Function 14 checkPWtuple (ci, τ, ck,max τ
′)

1: for each xk ∈ scp(ck) do
2: if xk /∈ scp(ck) ∩ scp(ci) then
3: if max τ ′[xk] is last value in D(xk) then continue;
4: else break;
5: else
6: if max τ ′[xk] < τ [xk] then break;
7: if max τ ′[xk] > τ [xk] then return >;
8: return max τ ′;

Function checkPWtuple (Function 14) checks if there can exist a tuple greater
or equal to max τ ′ that has the same values for the variables of the intersec-
tion as τ . Crucially, this check is done in linear time as follows: Assuming
max τ ′ =< (x1, a1), ..., (xm, am) > then this tuple is scanned from left to right.
If the currently examined variable xk belongs to scp(ck)∩scp(ci) and ak > τ [xk],
where ak is the value of xk in max τ ′, then we conclude that there can be no
PW-support for τ in ck (line 7). If xk does not belong to scp(ck) ∩ scp(ci) then if
the value it takes in max τ ′ is the last value in its domain, we continue scanning
(line 3). Otherwise, the scan is stopped because there may exist a tuple larger or
equal to max τ ′ that potentially is a PW-support of τ . However, max τ ′ can still

96

CHAPTER 5. STRONG LOCAL CONSISTENCIES FOR NON-BINARY
(TABLE) CONSTRAINTS

be used to avoid searching for a PW-support from scratch. Hence it is returned to
seekPWsupport.

The soundness of the described process is guaranteed by the assumption that
tuples in relations are stored in lexicographical order, which is typically the case.
Given this assumption, it is certain that if a tuple τ which we try to extend to a
PW-support is lexicographically smaller than max τ ′, with respect to the values
of the shared variables, then there can be no PW-support for τ . Otherwise, the
lexicographical order would be violated.

Searching for PW-support

In case no inconsistency is detected through the fast check, then the search for
a PW-support for τ begins, starting with the tuple τ ′ returned from checkPW-
tuple. We first check if τ ′ is an allowed tuple using binary search in a similar
way to GAC-va. However, since there are more than one variables in the in-
tersection of ci and ck, the question is which list of allowed tuples to consider
when searching. Let us assume that the search will be performed on the list
allowed(ck, xch, τ

′[xch]) of variable xch. After describing the process, we will
discuss possible criteria for choosing this variable.

Binary search will either return τ ′ if it is indeed allowed, or the lexicograph-
ically smallest allowed tuple τ ′′ that is greater than τ ′, or > if no such tuple ex-
ists. In the first case a PW-support for τ has been located and it is returned.
In the third case, no PW-support exists. In the second case, we check if τ ′′ is
valid, by using function isValid and if so, then it constitutes a PW-support for
τ . Otherwise, function setNextTuple is called taking τ ′′ and returning the small-
est valid tuple for scp(ck) that is lexicographically greater than τ ′′, such that
τ ′[scp(ck)∩ scp(ci)] = τ [scp(ck)∩ scp(ci)] (line 9). If setNextTuple returns> the
search terminates, otherwise, we continue to check if the returned tuple is allowed
as explained above, and so on.

Selecting the list of allowed tuples

Since there are |scp(ck) ∩ scp(ci)| variables in the intersection of ci and ck, there
is the same number of choices for the list of allowed tuples to be searched. Ob-
viously, the size of the lists is a factor that needs to be taken into account. The

97

CHAPTER 5. STRONG LOCAL CONSISTENCIES FOR NON-BINARY
(TABLE) CONSTRAINTS

selection of xch (line 4 of Function 13) can be based on any of the following (and
possibly other) criteria:

1. Select the variable xch having minimum size of allowed(ck, xch, τ
′[xch]).

2. Select the variable xch having the minimum number of tuples in
allowed(ck, xch, τ

′[xch]) between τ ′ and >.

3. Select the leftmost variable in scp(ck) ∩ scp(ci).

4. Select the rightmost variable in scp(ck) ∩ scp(ci).

The first heuristic considers a static measure of the size of the lists. The second
considers a more dynamic and accurate measure. In the experiments, presented
below, we have used the fourth selection criterion. Although this seems simplistic,
as Example 2 demonstrates, there are potentially significant benefits in choosing
the rightmost variable.

Example 2 Consider a constraint ck on variables x1, . . . , x4 with domainsD(x1) =

D(x4) = {0, . . . , 9} and D(x2) = D(x3) = {0, 1}. Assume that we are seeking a
PW-support for tuple τ of constraint ci in ck. Also, scp(ck) ∩ scp(ci) = {x1, x4},
τ [x1] = 1, τ [x4] = 0, and |allowed(ck, x1, 1)| = |allowed(ck, x4, 0)|. Figure 5.1
(partly) shows the lists allowed(ck, x1, 1) and allowed(ck, x4, 0). If we choose to
search for a PW-support in allowed(ck, x1, 1) then in the worst case binary search
will traverse the whole list since tuples with value 0 for x4 are scattered throughout
the list. In contrast, if we choose allowed(ck, x4, 0) then search can focus in the
highlighted part of the list since tuples with value 1 for x1 are grouped together.

Figure 5.1: allowed(ck, x1, 1) and allowed(ck, x4, 0).

98

CHAPTER 5. STRONG LOCAL CONSISTENCIES FOR NON-BINARY
(TABLE) CONSTRAINTS

5.2.2 Theoretical Results

We now analyze the worst-case complexity of the revisePW+ function of maxRPWC+.
The symbols M , N , S are explained in the proof.

Proposition 5 The worst-case time complexity of revisePW+(ci, xj) is
O(d.e.N.M(d+ r.log(S))).

Proof: Let us first consider the complexities of the individual functions called
by seekPWsupport. The cost of setNextTuple to construct a valid tuple for the
variables that do not belong to the intersection is O(d + (r − fmin)). The cost
of checkPWtuple is linear, since it requires at most O(r) checks to determine if
any of xk ∈ ck is inconsistent with τ [xk]. The worst-case time complexity of
binarySearch is O(r.log(S)) with S = |allowed(ck, xch, τ

′[xch])|. The worst-case
time complexity for one execution of the loop body is then O(d + (r − fmin) +

r.log(S))=O(d + r.log(S)). Let us assume that M is the number of sequences
of valid tuples that contain no allowed tuple, and for each tuple τ ′′ belonging to
such a sequence τ ′′[scp(ck) ∩ scp(ci)] = τ [scp(ck) ∩ scp(ci)]. Then M bounds
the number of iterations of the while loop in seekPWsupport. Therefore the worst
time complexity of seekPWsupport is O(M(d+ r.log(S))).

The cost of isPWconsistent+ is O(e.M(d + r.log(S))), since in the worst
case seekPWsupport is called once for each of the at most e intersecting con-
straints. The maximun number of iterations for the while loop in revisePW+ is N ,
where N is the number of sequences of valid tuples in ci containing no allowed
tuple. The cost of one call to seekSupport-va is O(d + r.log(S)) [72]. Therefore,
for d values the complexity of revisePW+ is O(d.N(e.M(d + r.log(S)) + (d +

r.log(S))))=O(d.e.N.M(d+ r.log(S))).

Note that M and N are at most tck + 1 and tci + 1 respectively, since in the
worst case there is a sequence of valid tuples in between every pair of consecutive
allowed tuples in a constraint’s relation.

The complexity given by Proposition 5 concerns one call to revisePW+ for
one constraint. If revisePW+ is embedded within an AC3-like algorithm (as
maxRPWC1 is) to achieve the propagation of all constraints in the problem then the
worst-case time complexity of maxRPWC+will be O(e2.r.d2.N.M(d+r.log(S))))

since there are e constraints and each one is enqueued dr times in the worst case

99

CHAPTER 5. STRONG LOCAL CONSISTENCIES FOR NON-BINARY
(TABLE) CONSTRAINTS

(i.e. once for each value deletion from a variable in its scope). Assuming the im-
plementation of [72], the space complexity of maxRPWC+ is O(e.r.|allowed(c, x, a)|+
e.r.d), where |allowed(c, x, a)| is the maximum size of any constraint’s relation
and ekd is the space required for the Last structure.

Regarding the pruning power of maxRPWC+, it is easy to show that it is strictly
stronger than GAC (the arguments in the discussion on the pruning power of re-
stricted maxRPWC are directlty applicable). Also, the local consistency achieved
by maxRPWC+ is incomparable to maxRPWC. This is because a maxRPWC al-
gorithm may achieve stronger pruning than maxRPWC+ due to the detection of
PW-support loss in addition to maxRPWC-support loss. On the other hand, the
fast check for lack of PW-support enables maxRPWC+ to prune extra values com-
pared to maxRPWC.

Proposition 6 maxRPWC+ achieves a local consistency that is incomparable to
maxRPWC.

Proof: For an example where maxRPWC+ achieves more puning than maxR-
PWC consider Example 1. For the opposite consider a problem with 0-1 do-
mains that includes two constraints c1 and c2 with scp(c1) = {x1, x2, x3} and
scp(c2) = {x2, x3, x4} having the allowed tuples {(0, 0, 0), (1, 0, 1), (1, 1, 0)} and
{(0, 0, 0), (0, 1, 1), (1, 0, 1)} respectively. Now assume that value 0 is deleted from
D(x4) which means that tuple (0, 0, 0) of c2 will be invalidated. maxRPWC+ will
revise all other variables involved in c2 and only check for maxRPWC-support
loss. Both values for x2 and x3 have maxRPWC-supports on c2 so no deletion
will be made. On the other hand, maxRPWC will also check for PW-support
loss by looking at constraint c1. It will discover that value 0 of x1 is no longer
maxRPWC (its GAC-support has no PW-support on c2) and will therefore delete
it.

5.2.3 A lighter version of maxRPWC+

Although maxRPWC+ removes many redundancies that are inherent to generic al-
gorithms through the exploitation of the Last data structure, it suffers from an im-
portant drawback: the overhead required for the restoration of Last after a failed
instantiation. One way around this problem is to use Last as a residue. That is,

100

CHAPTER 5. STRONG LOCAL CONSISTENCIES FOR NON-BINARY
(TABLE) CONSTRAINTS

as a list of supports that have been most recently discovered but are not main-
tained/restored during search. The resulting algorithm does not remove all the re-
dundancies that maxRPWC+ does, but it is much cheaper to apply during search.
This is similar to the relation between the optimal AC algorithm AC2001/3.1

[18] and the residue-based AC3rm [68], as well as, the optimal maxRPC algorithm
maxRPC3 and its corresponding residue-based version maxRPC3rm (Chapter 4).

The residue-based version of maxRPWC+, which hereafter is called
maxRPWC+r, is an algorithm that exploits backtrack-stable data structures in-
spired from AC3rm and maxRPC3rm (rm stands for multidirectional residues).
The Last structure is not maintained incrementally as by maxRPWC+, but it is
only used to store residues. As explained, a residue is a support which has been lo-
cated and stored during the execution of the procedure that proves that a given tu-
ple is maxRPWC. The algorithm stores the most recently discovered support, but
does not guarantee that any lexicographically smaller value is not a maxRPWC-
support. Consequently, when we search for a new maxRPWC-support in a table,
we always start from scratch. Last need not be restored after a failure; it can
remain unchanged, hence a minimal overhead on the management of data.

To obtain the residue-based maxRPWC+r algorithm, we need to make the fol-
lowing simple modifications. In Function 12 we omit line 8, since Lastck,xk,τ [xk]
may not be the lexicographically smallest tuple in ck and thus, we cannot lo-
cate the max τ ′ tuple. Subsequently, in Function 13 max τ ′ is set to setNext-
Tuple(ci, τ, ck,⊥) (namely the search for a PW-support in ck starts from scratch).
Additionally, the fast check for lack of PW-support, handled in checkPWtuple
(line 2) is not feasible. Lines 1-3 of Function 13 are replaced with the following
two:

1: max τ ′ ← setNextTuple(ci, τ, ck,⊥);
2: if max τ ′ = > then return >;
Regarding the time complexity of maxRPWC+r, the cost of calling Function

revisePW+ once is the same as in maxRPWC+. However, if we consider that
repeated calls may be required due to the effects of constraint propagation then
the complexity of maxRPWC+r for the whole problem is O(e2.r.d3.N.M(d +

r.log(S)))).
Finally, regarding the pruning power of maxRPWC+r it is easy to see that

this algorithm achieves a local consistency that is stronger than GAC (again the

101

CHAPTER 5. STRONG LOCAL CONSISTENCIES FOR NON-BINARY
(TABLE) CONSTRAINTS

arguments in the discussion on the pruning power of restricted maxRPWC are di-
rectlty applicable). Also, it achieves a local consistency weaker than maxRPWC+
since the two algorithms are essentially the same, minus the fast check for lack of
PW-support.

5.3 Extending STR to a higher-order consistency

Algorithms based on STR, especially STR2 and STR3, have been shown to be
the most efficient GAC algorithms for table constraints, along with the MDD ap-
proach of [25]. The idea of STR algorithms is to dynamically maintain the tables
of supports while enforcing GAC, based on an optimization of simple tabular re-
duction (STR), a technique proposed by J. Ullmann [103].

5.3.1 The HOSTR* algorithm

In this section we present ways to extent STR algorithms in order to achieve more
pruning than GAC. From now on we call these algorithms HOSTR*, which is
derived from higher-order STR. The ’*’ stands for a particular STR algorithm
(i.e., when extending STR2 we name the algorithm HOSTR2).

Algorithm 15 presents the main framework for HOSTR by extending the basic
STR algorithm, as proposed in [103], to achieve a stronger consistency. We choose
to present an extension of STR as opposed to STR2 and STR3 because of STR’s
simplicity. STR2 and STR3 can be extended in a very similar way.

We now present the data structures used by STR and HOSTR.

• rel[c] : is the set of allowed tuples associated with a positive table con-
straint c. This set is represented by an array of tuples indexed from 1 to
rel[c].length which denotes the size of the table (i.e., the number of al-
lowed tuples).

• position[c]: is an array of size rel[c].length that provides indirect access to
the tuples of c. At any given time the values in position[c] are a permutation
of {1, 2, . . . , tc}. The ith tuple of c is rel[c][position[c][i]]. The use of this
data structures enables restoration of deleted tuples in constant time.

102

CHAPTER 5. STRONG LOCAL CONSISTENCIES FOR NON-BINARY
(TABLE) CONSTRAINTS

• currentLimit[c]: is the position of the last current tuple in rel[c]. The cur-
rent table of c is composed of exactly currentLimit[c] tuples. The values
in position[c] at indices ranging from 1 to currentLimit[c] are positions of
the current tuples of c.

• pwV alues[x]: is a set for each variable x, that contains all values in D(x)

which are proved to have a PW-support when HOSTR is applied on a con-
straint c. STR uses a similar data structure to store the values that are GAC-
supported.

• Xevt is a set of variables. After HOSTR has finished processing a constraint
c, Xevt will contain each variable x ∈ scp(c) s.t. at least one value was
removed from D(x).

Structures position[c] and currentLimit[c], which basically implement the
structure called sparse set [24], allow restoration of deleted tuples in constant
time (during backtrack search); for more information, see [103].

Propagation in STR based algorithms can be implemented by means of a queue
that handles constraints. Once a constraint is removed from the queue, STR iter-
ates over the valid tuples in the constraint until currentLimit[c] is reached. STR
removes any tuple that has become invalid through the deletion of one of its values
(justi like the while loop in Algorithm 15). Importantly, when a tuple is removed
it still remains in rel[c]; it’s index is swaped in position[c] with the index pointed
by currentLimit[c] (i.e., the index of the last valid tuple of rel[c]) in constant
time. Additionally, the only information that is restored upon backtracking is
currentLimit[c] instead of the removed tuples. Thus, after finishing the while
loop iteration, only valid and allowed tuples are kept in tables. Any values that
are no longer supported, are deleted (the for loop in Algorithm 15).

HOSTR is identical to STR, except for the extra PW-check it applies when a
tuple is verified as valid. To be precise, if an allowed tuple τ is proved valid by
function isValid then HOSTR checks if it is also PW-consistent. This is done by
calling the isPWConsistent-STR function (line 7).

We omit the detailed desctiption of functions isValid and removeTuple, which
can be found in [63]. Briefly, isValid takes a tuple τ and returns true iff none of
the values in τ has been removed from the domain of the corresponding variable.
removeTuple again takes a tuple τ and removes it in constant time by replacing

103

CHAPTER 5. STRONG LOCAL CONSISTENCIES FOR NON-BINARY
(TABLE) CONSTRAINTS

position[c][i], where i is the position of τ in rel[c], with position[c][currentLimit[c]]

(namely by swaping indexes and not tuples) and then decrementing currentLimit[c]
by one. As a result this procedure violates the lexicographic ordering of the re-
maing tuples in position[c].

Algorithm 15 HOSTR* (c: constraint): set of variables
1: for each unassigned variable x ∈ scp(c) do
2: pwV alues[x]← ∅;
3: i← 1;
4: while i ≤ currentLimit[c] do
5: index← position[c][i];
6: τ ← rel[c][index];
7: if isValid(c, τ) AND isPWconsistent-STR(c,τ) then
8: for each unassigned variable x ∈ scp(c) do
9: if τ [x] /∈ pwValues[x] then

10: pwValues[x]← pwValues[x] ∪{τ [x]};
11: i← i + 1;
12: else
13: removeTuple(c, i); // currentLimit[c] decremented

// domains are now updated and Xevt computed

14: Xevt ← ∅;
15: for each unassigned variable x ∈ scp(c) do
16: if pwValues[x] ⊂ D(x) then
17: D(x)← pwValues[x];
18: if D(x) = ∅ then
19: throw INCONSISTENCY;
20: Xevt ← Xevt ∪ {x};
21: return Xevt;

Once a tuple τ of constraint c has been verified as valid, Function isPWconsistent-
STR of HOSTR is called. This function iterates over each constraint ck that inter-
sects with c on at least two variables and searches for a PW-support for τ . If τ has
no PW-support on some ck then it will be removed in line 13 of Algorithm 15.

Once the traversal of the valid tuples has terminated, HOSTR (and STR) up-
dates the Xevt set to include any variable that belongs to scp(c) and has had its

104

CHAPTER 5. STRONG LOCAL CONSISTENCIES FOR NON-BINARY
(TABLE) CONSTRAINTS

domain reduced (lines 14-21). Thereafter, all constraints that involve at least one
variable in Xevt will be added to the propagation queue.

Concerning the implementation of isPWconsistent-STR, there are several op-
tions, with each one resulting in a different variant of HOSTR. The following vari-
ants differ in the way search for a PW-support is implemented.

1. Linear: For each constraint ck isPWconsistent-STRl iterates in a linear fash-
ion over each τ ′ that currently belongs to rel[ck] to locate a valid tuple such
that τ ′[scp(ck) ∩ scp(c)] = τ [scp(ck) ∩ scp(c)], until currentLimit[ck] is
reached. This version does not require the use of any additional data struc-
tures.

2. Binary: For each constraint ck isPWconsistent-STRb locates a τ ′ by apply-
ing a binary search on the initial rel[ck]. Then it checks its validity and
whether it satisfies the condition τ ′[scp(ck)∩ scp(c)] = τ [scp(ck)∩ scp(c)].
A requirement of this version is that the original table is stored. Note that
binary search on the current tables as they are stored by STR is not possible
since the lexicographic ordering of the tuples is violated.

3. STR/maxRPWC+ Hybrid: In addition to the data strucutes of STR, this
version keeps the allowed(c, x, a) lists of maxRPWC+ (see Section 5.2).
Then, following maxRPWC+, for each constraint ck isPWconsistent-STRh

visits the lists of valid and allowed tuples in an alternating fashion, using
binary search, to locate a valid tuple τ ′ such that τ ′[scp(ck) ∩ scp(c)] =

τ [scp(ck) ∩ scp(c)].

In practice, the STR/maxRPWC+ hybrid approach is by far the most efficient
among the above methods. isPWconsistent-STRh which implements this method
closely follows the operation of maxRPWC+ when looking for a PW-support, mi-
nus the usage of the Last structure. This is displayed in Function 16. For each
ck isPWconsistent-STRh calls function setNextTuple to find the lexicographically
smallest valid tuple in ck, such that τ ′[scp(ck) ∩ scp(c)] = τ [scp(ck) ∩ scp(c)].
The search in ck (line 2) starts from scratch (i.e., ⊥), since HOSTR does not store
information about recently found maxRPWC-supports. If no such tuple exists,
setNextTuple returns >, and the search terminates since no PW-support for τ ex-
ists in ck. Else, we check if τ ′ is an allowed tuple using binary search as explained
in Function 13.

105

CHAPTER 5. STRONG LOCAL CONSISTENCIES FOR NON-BINARY
(TABLE) CONSTRAINTS

Function 16 isPWconsistent-STRh(c, τ): boolean
1: for each ck 6= c s.t. |scp(ck) ∩ scp(c)| > 1 do
2: τ ′ ← setNextTuple(c, τ, ck,⊥);
3: xch ← select a variable ∈ scp(c) ∩ scp(ck);
4: while τ ′ 6= > do
5: τ ′′ ← binarySearch(allowed(ck, xch, τ

′[xch]),τ ′);
6: if τ ′′ = τ ′ OR isValid(ck, τ ′′) then return TRUE;
7: if τ ′′ = > then return FALSE;
8: τ ′ ← setNextTuple(c, τ, ck, τ

′′);
9: return TRUE;

5.3.2 Theoretical Results

For a given constraint c, the worst-case time complexity of STR is O(r′d + rt′),
where r′ denotes the number of uninstantiated variables in scp(c) and t′ denotes
the size of the current table of c [63]. The worst-case space complexity of STR
is O(ert). We now give the worst-case time complexity of HOSTR when imple-
mented using the STR/maxRPWC+ Hybrid approach.

Proposition 7 The worst-case time complexity of HOSTR for the processing of
one constraint is O(r′.d+ r.t′(e.M(d+ r.log(S)))).

Proof: HOSTR is identical to STR with the addition of the call to functions
isPWconsistent-STRh each time a valid tuple is verified. The time complexity
of Function isPWconsistent-STRh is O(e.M(d + k.log(S))) (see the proof of
Proposition 5 for details). Thefefore, the worst-case time complexity of HOSTR is
O(r′.d+ r.t′(e.M(d+ r.log(S)))).

If HOSTR is embedded within an AC-3 like algorithm to propagate all con-
straints then the time complexity will be O(e.d.r.(r′.d+r.t′(e.M(d+r.log(S)))))

since there are e constraints and each one is enqueued dr times in the worst case
(i.e. once for each value deletion from a variable in its scope). The space complex-
ity of HOSTR is O(e(rt + r.|allowed(c, x, a)|)) since in addition to the original
tables we need the allowed(c, x, a) lists.

Now we prove that HOSTR, implemented in any of the above ways, is in-
comparable to maxRPWC+ and maxRPWC, in terms of pruning, and weaker than

106

CHAPTER 5. STRONG LOCAL CONSISTENCIES FOR NON-BINARY
(TABLE) CONSTRAINTS

FPWC.

Proposition 8 The local consistency achieved by HOSTR is incomparable to that
achieved by maxRPWC+.

Proof: First, consider the problem in Example 1. Since max τ ′ is lexico-
graphically greater than the PW-support of τ on c2 (let us assume that this is the
only PW-support for τ), this tuple must be PW inconsistent. This means that when
HOSTR processes c2 it will delete this tuple. If, however, this does not cause any
value deletions then it will not be propagated any further and c1 will not be pro-
cessed. Hence, HOSTR will not be able to delete 0 from D(x1). As explained in
Example 1, maxRPWC+ will be able to make this deletion.

To show that HOSTR can delete values that maxRPWC+ cannot delete, con-
sider the problem depicted in Figure 5.2. There are five variables x1, . . . , x5

with {0, 1} domains and one variable (x6) with domain 0. There are three table
constraints with their allowed tuples shown in Figure 5.2. Value 0 of x1 has tu-
ple (0,0,0) as GAC-support in rel[c1]. This tuple has the PW-support (0,0,0,0)
in rel[c2], and therefore if maxRPWC+ is applied it will not delete it (as it will
not delete any other value). Now assume that HOSTR processes c2 first. Tu-
ple (0,0,0,0) does not have a PW-support in c3, and therefore it will be removed.
When c1 is processed, HOSTRwill determine that tuple (0,0,0) has no PW-support
in c2, since (0,0,0,0) has been deleted, and will therefore be removed. As a result,
value 0 of x1 will loose its only GAC-support in c1 and will be deleted.

Figure 5.2: HOSTR vs. maxRPWC+.

The extra pruning achieved by HOSTR compared to maxRPWC+ in the above
example is a direct consequence of the fact that HOSTR, like STR, removes tuples

107

CHAPTER 5. STRONG LOCAL CONSISTENCIES FOR NON-BINARY
(TABLE) CONSTRAINTS

from constraint relations. Now note that if constraint c1 is processed first in the
example then no value deletion will be made. This is because when c1 is processed
tuple (0,0,0) in rel[c1] will have the PW-support (0,0,0,0) in rel[c2] and therefore
value 0 of x1 will not be deleted. When c2 is later processed, tuple (0,0,0,0)
will indeed be removed but no value from any of the variables in scp(c2) will be
deleted. This means that Xevt will be empty and as a result no constraint will be
added to the propagation queue. Therefore, c1 will not be processed again. Hence,
the pruning power of HOSTR cannot be characterized precisely because it depends
on the ordering of the propagation queue.

Proposition 9 The local consistency achieved by HOSTR is incomparable to maxR-
PWC.

Proof: First, consider the example of Figure 5.2. If maxRPWC is applied on
this problem it will achieve no pruning. But as explained in the proof of Propo-
sition 8, HOSTR will delete value 0 of x1 if c2 is processed before c1. Therefore,
HOSTR can achieve stronger pruning than maxRPWC.

Now consider the example in the proof of Proposition 6. After the deletion of
value 0 from D(x4), HOSTR will add x4 to Xevt and enqueue c2. When c2 is then
processed no value deletion will be made and therefore propagation will stop. On
the other hand, as explained, maxRPWC will delete value 0 from D(x1).

Proposition 10 HOSTR achieves a local consistency that is strictly weaker than
FPWC.

Proof: We first show that any deletion made by HOSTR will also be made
by FPWC. HOSTR will delete a tuple τ ∈ rel[c] if τ is invalid or if Function
isPWconsistent-STRh cannot find a PW-support for τ on some constraint c′. By
definition, PWC deletes any value that is invalid or not PWC. Hence, it will also
delete τ . Correspondingly, HOSTR will delete a value a ∈ D(x) if it does not
participate in any valid and PW consistent tuple on some constraint c that involves
x. Considering an algorithm that applies FPWC, PWC will delete all invalid and
PW inconsistent tuples from rel[c]. Hence, the application of GAC that follows
will delete a.

Finally, consider the example in Figure 5.2. As explained, if c1 is processed
before c2, HOSTR will achieve no pruning. In contrast, and independent of the
order in which constraints are processed, PWC will remove tuple (0,0,0,0) from

108

CHAPTER 5. STRONG LOCAL CONSISTENCIES FOR NON-BINARY
(TABLE) CONSTRAINTS

rel[c2] and because of this tuple (0,0,0) will be removed from rel[c1]. Then when
GAC is applied value 0 will be removed from D(x1) because it will have no
support in c1. Hence, FPWC is strictly stronger than HOSTR.

A stronger version of HOSTR Motivated by the inability to precisely character-
ize the pruning power of HOSTR due to its dependance on the propagation order,
we propose a simple modification to HOSTR which achieves a stronger consis-
tency property that can be precisely characterized. This algorithm, which we call
full HOSTR (fHOSTR) differs from HOSTR in the following: If after traversing the
tuples of a constraint c, at least one tuple has been removed then all variables that
belong to scp(c) are added to Xevt. This means that all constraints that involve
any of these variables will be then added to the propagation queue. Recall that
HOSTR adds a variable to Xevt only if a value has been deleted from the domain
of this variable.

It is easy to see that in the example in Figure 5.2 fHOSTR will make the same
value and tuple deletions as FPWC. Generalizing this, we now prove that fHOSTR
achieves the same pruning as FPWC.

Proposition 11 Algorithm fHOSTR achieves FPWC.
Proof: We show that any deletion made by FPWC will also be made by

fHOSTR. Consider any value a that is removed from a domain after FPWC is
applied. This is because all supports for this value on some constraint c have been
deleted. These tuples were deleted because they are not valid or not PWC. In the
former case, since fHOSTR fully includes the operation of STR, it will delete any
invalid tuple when processing constraint c and therefore will also delete value a.
In the latter case, consider the deletion of any tuple τ because it is not PWC. This
means that all of τ ’s PW-supports on some constraint c′ have been deleted. When
processing c′, once the last PW-support of τ is deleted, fHOSTR will enqueues all
constraints that intersect with c′, including c. Then when c is processed, fHOSTR
will not be able to find a PW-support for τ on c′ and will thus delete it. Hence, all
support of a will be deleted and as a result a will be deleted.

To complete the theoretical analysis of the algorithms’ pruning power, we now
show that fHOSTR is strictly stronger than maxRPWC+.

109

CHAPTER 5. STRONG LOCAL CONSISTENCIES FOR NON-BINARY
(TABLE) CONSTRAINTS

Proposition 12 The local consistency achieved by fHOSTR is strictly stronger
than that achieved by maxRPWC+.

Proof: First we show that any deletion made by maxRPWC+will be also made
by fHOSTR. Consider a value a that is removed from D(x) after maxRPWC+ is
applied. This is because either:

1. a is not GAC,

2. no GAC-support of a on a constraint c has a PW-support on some constraint
ck,

3. the deletion is triggered by the “fast check for lack of PW-support”.

In the first case, the STR step of fHOSTR will obviously discover that a is not
GAC. In the second case, the lack of PW-support for a tuple τ that includes a
on some constraint ck means that no potential PW-support for τ is valid. When
fHOSTR processes tuple τ of c it will try to extend it to a PW-support in all
intersecting constraints. Hence, it will consider ck and recognize that τ has no
valid PW-support in ck. The same argument holds for all the GAC-supports of a
in c.

Finally, if a is deleted by the “fast check for lack of PW-support” then the fol-
lowing must hold for each PW-consistent GAC-support τ for a in some constraint
c. Any PW-support τ ′ of τ in some ck is lexicographically smaller than Lastck,xi,b,
where xi ∈ scp(ck) is a variable that belongs to the intersection of c and ck and b
is its value in τ ′. maxRPWC+ must have moved the pointer Lastck,xi,b to some tu-
ple τ ′′ beyond the PW-supports of τ because when trying to find a PW consistent
GAC-support for b in ck, all tuples lexicographically smaller than τ ′′, including all
the PW-supports of τ , were determined as PW inconsistent. Now when fHOSTR
processes ck it will determine that all the PW-supports of τ are not themselves
PW consistent and will thus delete them. Therefore, all constraints that involve
variables in scp(ck), including c, will be enqueued. When c is later processed, no
PW-support for τ (or any of a’s GAC-supports in general) will be found, and thus
a will be deleted.

For an example where fHOSTR achieves stronger pruning than maxRPWC+

consider the second example in the proof of Proposition 8.

110

CHAPTER 5. STRONG LOCAL CONSISTENCIES FOR NON-BINARY
(TABLE) CONSTRAINTS

Algorithm fHOSTR achieves a stronger local consistency than HOSTR and
maxRPWC+ but has a serious drawback: Its time complexity, when embedded
within an AC-3 like algorithm to propagate all constraints, is O(e2.t.(r′.d+r.t′(e.M(d+

r.log(S))))) since there are e constraints and each constraint c is enqueued O(et)

times in the worst case (i.e. once for each tuple deletion from a constraint inter-
secting c). This complexity is prohibitive for large table constraints.

Figure 5.3 summarizes the relationships between the local consistencies dis-
cussed throughout this chapter with respect to their pruning power.

Figure 5.3: Summary of the relationships between consistencies.

5.4 Experiments

We ran experiments on benchmark non-binary problems with table constraints
from the CSP Solver Competition1. The arities of the constraints in these prob-
lems range from 3 to 18. We tried the following classes: forced random prob-
lems, random problems, positive table constraints, BDD, Dubois, and Aim. These
classes represent a large spectrum of instances with positive table constraints that
are very commonly used for the evaluation of GAC algorithms and additionally,
non-trivial intersections exist between their constraints. The first two classes only
include constraints of arity 3, while the others include constraints of large arity
(up to 18). Note that there exist classes of problems with table constraints where
maxRPWC and similar methods do not offer any advantage compared to GAC
because of the structure of the constraints. For example, on crossword puzzles
constraints intersect on at most one variable. Our algorithms cannot achieve extra
filtering compared to GAC in such problems.

1http://www.cril.univ-artois.fr/CPAI08/

111

http://www.cril.univ-artois.fr/CPAI08/

CHAPTER 5. STRONG LOCAL CONSISTENCIES FOR NON-BINARY
(TABLE) CONSTRAINTS

In more detail, the 150 tried instances belong to classes that have the following
attributes:

• The first two series Random-fcd and Random involve 20 variables and 60
ternary relations of almost 3,000 tuples each.

• The series BDD involves 21 Boolean variables and 133 constraints gener-
ated from binary decision diagrams of arity 18 that include 58,000 tuples.

• The two series Positive table-8 and Positive table-10 contain istances that in-
volve 20 variables. Each instance of the series Positive table-8 (resp.,Positive
table-10) involves domains containing 5 (resp. 10) values and 18 (resp. 5)
constraints of arity 8 (resp. 10). The constraint tables contain about 78,000
and 10,000 tuples, respectively.

• The Dubois class contains instances involving 80 boolean variables and qua-
ternary constraints.

• The Aim-100 and Aim-200 series involve 100 and 200 Boolean variables
respectively, with constraints of small arities (mainly ternary and a few bi-
nary).

The algorithms were implemented within a CP solver, written in Java, and
tested on an Intel Core i5 of 2.40GHz processor and 4GB RAM. A CPU time
limit of 6 hours was set for all algorithms and all instances. Search used the
dom/ddeg heuristic for variable ordering and lexicographical value ordering. We
have chosen dom/ddeg [15] as opposed to the generally more efficient dom/wdeg
[23] because the decisions made by the latter are influenced by the ordering of
the propagation queue making it harder to objectively compare the pruning effi-
ciency of the algorithms [4]. Having said this, experiments with dom/wdeg did
not give significantly different results compared to dom/ddeg as far as the relative
efficiency of the algorithms is concerned.

We present results from STR2, GAC-va and maxRPWC1 compared to the pro-
posed algorithms, HOSTR2h, maxRPWC+ and maxRPWC+r. We include maxRPWC1
in the comparison since this is the most efficient domain filtering maxRPWC al-
gorithm. For GAC-va and maxRPWC1 we used their residual versions, in order
to avoid the maintainance of the LastGAC structure during search. This resulted
in faster run times.

112

CHAPTER 5. STRONG LOCAL CONSISTENCIES FOR NON-BINARY
(TABLE) CONSTRAINTS

5.4.1 Preprocessing

Table 5.1 shows the mean CPU times (in miliseconds) obtained by the tested al-
gorithms on each problem class for the initialization (i) and the preprocessing (p)
phase. During initialization, the data structures of a specific algorithm are initial-
ized, while preprocessing includes one run of a specific filtering algorithm before
the search commences. Therefore, initialization time is the time required for each
algorithm to construct all its structures, while preprocessing time is the time for a
stand alone use of a specific algorithm.

Table 5.1: Mean CPU times of the initialization (i) and the preprocessing (p) phase
in miliseconds from various problem classes.

Problem Class STR2 GAC-va maxRPWC1 HOSTR2h maxRPWC+r maxRPWC+
Random-fcd i 31 208 115 345 202 263

p 111 44 696 399 154 250
Random i 19 216 10 249 249 272

p 87 54 738 291 186 247
Positive table-8 i 83 1,357 5 1,305 1,510 1,628

p 271 26 2,891 36,621 343 359
Positive table-10 i 2 156 0 236 263 304

p 47 9 4,997,817 363,000 620,210 772,193
BDD i 237 7,065 123 10,017 8,530 8,334

p 1,415 270 477,497 2,218 6,159 16,875
Dubois i 10 4 12 13 10 12

p 0 0 5 0 2 2
Aim-100 i 108 40 126 244 111 195

p 2 14 160 19 19 38
Aim-200 i 397 56 303 465 270 280

p 4 27 174 30 53 97

Algorithms that obtain GAC are routinely faster in both phases in all tested
classes. As expected, strong local consistencies, spend extra time to record the
intersections of the constraints during the initialization, while they are more ex-
pensive when they are applied stand-alone (i.e., during preprocessing). Interest-
ingly, maxRPWC1 has low initialization times, since it does not use the allowed
data structure that all proposed strong local consistencies use. On the contrary,
maxRPWC1 is by far inferior compared to all other algorithms during preprocess-
ing. Particularly, on Positive table-8 and Positive table-10 it is more than two
orders of magnitude worse than all proposed algorithms. STR2 uses lighter data

113

CHAPTER 5. STRONG LOCAL CONSISTENCIES FOR NON-BINARY
(TABLE) CONSTRAINTS

structures compared to GAC-va, resulting in being faster during initialization in
the majority of the classes. On the other hand, GAC-va is usually faster during
preprocessing, since STR2 traverses the whole table of tuples for each constraint.

Regarding the initialization times of the three proposed strong consistency al-
gorithms, maxRPWC+r appears to be the fastest. HOSTR2h needs more time for
the initialization since it uses the structures of both STR2 and maxRPWC+. Con-
cerning the preprocessing, results are more varied since there are classes where
maxRPWC+r dominates HOSTR2h and vice versa. This is due to the different
approaches of STR-like and GAC-va-like algorithms, as the former iterate over
tuples and the latter over values and tuples, thus it is not clear which one is prefer-
able for stand-alone use. On the other hand, it is clear that maxRPWC+r, being
lighter, is faster than maxRPWC+.

Finally, the high preprocessing times for all proposed methods on the Positive
table-10 class are due to the high memory consumption on these large instances.
However, as we show below, preprocessing by these algortithms is able to deter-
mine the unsatisfiability of the instances without requiring search. This makes
them much more efficient than GAC-va, albeit STR2, which has a lower mem-
ory consumption, solves the instances in under one second on average. However,
on Positive table-8 both maxRPWC+ and maxRPWC+r are very close to STR2

and two (resp. one) orders of magnitude faster compared to HOSTR2h (resp.
maxRPWC1) preprocessing times.

5.4.2 Search

In Table 5.2 we present selected results from search algorithms that apply the
tested filtering algorithms throughout search, while in Table 5.3 we give the aver-
age performance of the search algorithms in each problem class2. Note that results
from class Aim-200 were obtained using the dom/wdeg variable ordering heuristic.
This is because none of the algorithms was able to solve these problems within
the time limit using dom/ddeg.

2These results include initialization and preprocessing times.

114

CHAPTER 5. STRONG LOCAL CONSISTENCIES FOR NON-BINARY
(TABLE) CONSTRAINTS

Table 5.2: CPU times (t) in secs and nodes (n) from various representative problem
instances.

Instance STR2 GAC-va maxRPWC1 HOSTR2h maxRPWC+r maxRPWC+
rand-3-20-20 60-632-fcd-5 t 242 408 308 291 237 195

n 160,852 160,852 66,335 66,601 66,469 66,585
rand-3-20-20 60-632-fcd-7 t 90 132 174 131 78 82

n 73,536 73,536 19,680 19,791 19,988 18,668
rand-3-20-20-60-632-5 t 472 1,061 867 879 567 564

n 501,583 501,583 152,712 152,763 153,138 152,892
rand-3-20-20-60-632-14 t 16 33 32 38 18 17

n 19,996 19,996 3,976 3,986 4,002 3,898
rand-8-20-5-18-800-7 t 17 1,145 1,616 1,860 494 754

n 17,257 17,257 3,424 3,444 3,447 3,430
rand-8-20-5-18-800-12 t 19 10,914 - 12,625 2,823 3,654

n 105,521 105,521 - 28,830 28,752 28,662
rand-10-20-10-5-10000-1 t 0.4 - 3,811 174 203 208

n 1,110 - 0 0 0 0
rand-10-20-10-5-10000-4 t 0.3 - 6,438 1,283 1,212 1,298

n 1,110 - 0 0 0 0
bdd-21-133-18-78-6 t 30 7,653 2.4 0.6 1.5 2

n 20,582 20,582 0 0 0 0
bdd-21-133-18-78-11 t 39 8,310 1,714 1.2 11.6 16.8

n 19,364 19,364 21 21 21 21
dubois-21 t 110 109 56 40 53 314

n 58,447,186 58,447,186 19,704,488 23,237,970 23,237,970 23,237,970
dubois-26 t 4,044 3,456 3,427 1,463 1,830 12,174

n 1,823,036,754 1,823,036,754 808,626,856 744,052,050 744,052,050 744,052,050
aim-100-1-6-sat-2 t 6,423 232 0.4 0.15 0.18 0.25

n 29,181,742 29,181,742 100 100 100 100
aim-100-2-0-sat-3 t 2,448 1,812 0.23 0.39 0.4

n 177,832,989 177,832,989 100 100 111 111
aim-200-2-0-sat-1 t 57 19 0.5 0.4 0.5 0.6

n 2,272,993 1,326,708 257 2,210 2,210 1,782
aim-200-2-0-sat-4 t 30 21 0.7 0.8 0.4 0.7

n 987,160 1,196,073 611 2,887 1,965 1,965

Among the three proposed algorithms, maxRPWC+r is the most efficient with
HOSTR2h being a close second. maxRPWC+r is faster than HOSTR2h on Ran-
dom, Random-fcd and especially on Positive table-8 (e.g., on the rand-8-20-5-
18-800-12 instance it is over 6 times faster), while it is slower on Positive table-
10. On the rest of the classes HOSTR2h is better than maxRPWC+r, but with-
out considerable differences. maxRPWC+r is also constantly faster compared

115

CHAPTER 5. STRONG LOCAL CONSISTENCIES FOR NON-BINARY
(TABLE) CONSTRAINTS

to maxRPWC+, with the differences being considerable in the Dubois and Aim
classes.

Comparing our algorithms against maxRPWC1we observe that they are partic-
ularly more efficient on instances of large arities. These are the instances of Pos-
itive Table and BDD classes, whose arities vary from 8 to 18. Both maxRPWC+r
and maxRPWC+ are notably faster, especially on Positive table-10 and BDD they
are superior by over one order of magnitude. There are also cases (i.e., Positive
table-8), where maxRPWC1 was not able to solve the majority of the instances
within the cutoff limit.

Now comparing GAC to strong local consistencies, all of the proposed algo-
rithms typically outperform GAC-va, even by orders of magnitude in some cases.
maxRPWC+r outperforms GAC-va on all tested classes, achieving significant dif-
ferences in some cases (i.e., Positive table-10, BDD, Aim). Specifically, GAC-va
reached the cutoff limit on all instances of Positive table-10 class and could not
detect unsatisfiability (neither could STR2). Importantly, as shown in Table 5.2,
there are instances where maxRPWC+r significantly outperforms the state-of-the-
art STR2 (e.g., the Aim instances), albeit it is also significantly outperformed on
other instances.

All of tried algorithms completed all instances within the cutoff limit except
from maxRPWC1, which did not solve 13 instances out of 20 from the Positive
table-8 class. Also, GAC-va reached the cutoff limit on all instances of the Posi-
tive table-10 class.

Looking at the average performances in Table 5.3, maxRPWC+r (and HOSTR2h)
is faster than STR2 in the BDD, Dubois and Aim classes with the differences be-
ing considerable in the two Aim classes. On the other hand, STR2 dominates in
the Random and Positive table classes, with the differences being very significant
in the latter.

Regarding the pruning power of the strong local consistency algorithms, which
is to some extent reflected on node visits, it is worth noticing that the differences
are negligible in the majority of the classes. Though in both Aim classes the
pruning of maxRPWC1 results in competitive CPU times. Speciffically, on Aim,
maxRPWC1 visits significantly less nodes compared to our domain filtering algo-
rithms. Additionally, on Aim-200 maxRPWC1 benefits from the dom/wdeg vari-
able ordering heuristic and along with the different queue handling of HOSTR2h

116

CHAPTER 5. STRONG LOCAL CONSISTENCIES FOR NON-BINARY
(TABLE) CONSTRAINTS

(i.e., queue of constraints), results in significant node differences. Note that both
variable ordering heuristics used are dynamic and may result in different variable
orderings and thus, in a different search trees. This is why node visits relfect the
pruning power of propagation only to some extent.

Table 5.3: Mean CPU times (t) in secs and nodes (n) from various problem clases.

Problem Class STR2 GAC-va maxRPWC1 HOSTR2h maxRPWC+r maxRPWC+
Random-fcd t 152 232 310 305 176 171

n 132,492 132,492 49,009 49,317 49,420 48,608
Random t 154 382 461 504 298 288

n 211,456 211,456 79,928 77,955 80,316 78,802
Positive table-8 t 15 4,152 - 5,002 1,168 1,576

n 52,313 52,313 - 10,087 9,787 10,039
Positive table-10 t 0.3 - 4,998 363 620 773

n 1,110 - 0 0 0 0
BDD t 30 8,513 924 3 18 24

n 19,139 19,139 11 11 11 11
Dubois t 2,026 1,956 1,413 807 1,005 6,751

n 1,008,184,658 1,008,184,658 419,586,728 401,069,394 401,069,394 401,069,394
Aim-100 t 6,390 7,156 748 1,019 863 3,899

n 643,784,411 643,784,411 10,095,756 34,062,528 34,062,529 34,062,529
Aim-200 t 13 6 3 4 3 15

n 479,073 432,930 14,937 97,529 104,748 88,541

The dominance of STR2 in the Positive Table classes is due to the structure
of these problems which include constraints of large arity (8 and 10) resulting
in many constraint intersections with a large number of shared variables in each
intersection (up to 8). In addition, the tables of the constraints are quite large.
Consequently, in Positive table-8 the benefits of the extra pruning achieved by a
stronger consistency do not reflect on CPU times because of the extra cost in-
curred. And as discussed previously, all algorithms apart from STR2 suffer from
memory exhaustion on Positive table-10 instances.

CPU times from all tested instances comparing maxRPWC+r to HOSTR2h,
GAC-va, STR2 and maxRPWC1 are presented in Figures 5.4, 5.5, 5.6 and 5.7 re-
spectively, in a logarithmic scale. Different signs display instances from different
problem classes and are calculated by CPU time ratios of the compared algo-
rithms. Those signs placed above the diagonal correspond to instances that were
solved faster by maxRPWC+r. In Figure 5.4 most instances are gathered around

117

CHAPTER 5. STRONG LOCAL CONSISTENCIES FOR NON-BINARY
(TABLE) CONSTRAINTS

the diagonal indicating closely matched performance of the proposed algorithms.
As detailed above, maxRPWC+r is superior to HOSTR2h on Positive table-8 and
inferior on BDD and Aim-100, but without singificant differences.

Figure 5.4: HOSTR2h vs. maxRPWC+r.

Comparing maxRPWC+r to GAC-va, STR2 and maxRPWC1 in Figures 5.5,
5.6 and 5.7 respectively, we can see the benefits of our approach: In Figure 5.5
only a few instances are below the diagonal indicating that maxRPWC+r is clearly
superior to GAC-va. Also, there are many instances where GAC-va thrashes
while maxRPWC+r does not. A similar picture is noticed in Figure 5.7, where the
majority of the instances are gathered above the diagonal. Only a few instances
from BDD and Aim are solved faster by maxRPWC1.

Looking at Figure 5.6 we see a much more varied picture. Although on most
instances maxRPWC+r and STR2 are closely matched, there are numerous in-
stances where one of the two methods thrashes and vice versa. This demonstrates
that efficient algorithms for strong local consistencies on table constraints con-
stitute a viable alternative to the standard GAC approach, but at the same time
further research is required to develop methods that can be more robust than state-
of-the-art GAC algorithms such as STR2 on a wider range of problems.

118

CHAPTER 5. STRONG LOCAL CONSISTENCIES FOR NON-BINARY
(TABLE) CONSTRAINTS

Figure 5.5: GAC-va vs. maxRPWC+r.

Figure 5.6: STR2 vs. maxRPWC+r.

119

CHAPTER 5. STRONG LOCAL CONSISTENCIES FOR NON-BINARY
(TABLE) CONSTRAINTS

Figure 5.7: maxRPWC1 vs. maxRPWC+r.

Figure 5.8: GAC-va vs. HOSTR2h.

A similar pattern emerges when comparing HOSTR2h to GAC-va and STR2.
This is shown in Figures 5.8 and 5.9 respectively. Again HOSTR2h is clearly bet-
ter than GAC-va on instances of large arity (i.e., BDD, Positive table-10), while

120

CHAPTER 5. STRONG LOCAL CONSISTENCIES FOR NON-BINARY
(TABLE) CONSTRAINTS

when compared to STR2 it gives mixed results. Specifically, it is superior on in-
stances with constraints of small arity, like Dubois and Aim. On the other hand,
despite that it is inferior on many instances from both Positive table classes, it is
faster by an order of magnitude on BDD instances. On this class, although the
arity of the constraints is very high (18) and the relation tables are large, the in-
tersections between constraints include up to 16 variables. This allows HOSTR2h

to quickly find a solution (or prove unsatisfiability). This is a general observa-
tion that demonstrates the practical usefulness of all strong local consistencies
proposed: They can efficiently exploit constraint intersections.

Figure 5.9: STR2 vs. HOSTR2h.

5.5 maxRPWC+ for Intensional Constraints

Although maxRPWC+ is specialized for table constraints, it can be applied on
intensional constraints after some modifications. This may be useful in cases
of constraints without specialized filtering algorithms, or to simply explore the
potential of a strong local consistency on any given constraint without having to
invent specialized algorithms.

Function seekSupport-v for intensional constraints is similar to the correspond-

121

CHAPTER 5. STRONG LOCAL CONSISTENCIES FOR NON-BINARY
(TABLE) CONSTRAINTS

ing function (seekSupport) for extensional ones. The difference is that the search
for GAC-support is a linear scan of the tuples after Lastci,xj ,aj in lexicographical
order. That is, only the list of valid tuples is traversed.

Function 17 seekPWsupport-v (ci, τ, ck,max τ ′)
1: if ¬ isValid(ck,max τ ′) then max τ ′ ← setNextTuple(ci, τ, ck,max τ

′);
2: if max τ ′ 6= > then τ ′ ← checkPWtuple(ci, τ, ck,max τ

′);
3: else return >;
4: while τ ′ 6= > do
5: if isConsistent(ck, τ ′) then return τ ′;
6: τ ′ ← setNextTuple(ci, τ, ck, τ

′);
7: return >;

The corresponding function that searches for a PW-support is Function
seekPWsupport-v (Function 17). Lines 5-6 show the different approach we use
on intensional constaints. Instead of interchangeably visiting valid and allowed
tuples, we just check if the valid tuple τ ′ satisfies the constraint ck by calling
function isConsistent. If τ ′ is inconsistent then a new tuple τ ′ is constructed by
setNextTuple (line 6), such that τ ′[scp(ck) ∩ scp(ci)] = τ [scp(ck) ∩ scp(ci)]. If
setNextTuple returns > the search terminates, otherwise, we continue to check if
the returned tuple is consistent as explained above, and so on.

The worst-case time complexity of maxRPWC+ for intensional constraints is
O(e2r2d2r−fmin), which is the same as that of maxRPWC1 if we consider that in
the worst case p = 2r − fmin. The space complexity of maxRPWC+ is O(erd)

which is the space required for Last and is the same as maxRPWC1 but lower than
both maxRPWC2 and maxRPWC3.

5.6 An extension of GAC2001/3.1 derived from
maxRPWC+

Inspired from maxRPWC+, we propose an extension to the standard GAC algo-
rithm GAC2001/3.1 [18] that achieves a stronger local consistency than GAC
by considering intersections of constraints. Importantly, this algorithm is also
applicable on intensional constraints as opposed to GAC-va, maxRPWC+ and

122

CHAPTER 5. STRONG LOCAL CONSISTENCIES FOR NON-BINARY
(TABLE) CONSTRAINTS

HOSTR* that are applicable only on positive table constraints. The worst-case
time complexity of the proposed algorithm, called GAC+, is higher than that of
GAC2001/3.1 only by a factor e, where e is the number of constraints in the
problem. Experimental results demonstrate that in many cases GAC+ can reduce
the size of the search tree compared to GAC, resulting in improved cpu times.
Also, in cases where there is no gain in search tree size, there is only a negligible
overhead in cpu time.

GAC+ extends the generic GAC algorithm GAC2001/3.1 through the intelli-
gent exploitation of simple data structure used by GAC2001/3.1. In Section 5.2
we presented maxRPWC+, an algorithm that extends GAC-supports to intersect-
ing constraints. As described there, for each intersecting constraint, maxRPWC+
quickly verifies the lack of PW-support by exploiting the Last data structure. We
adopted the fast check for the lack of PW-supports to build on GAC2001/3.1.
We incorporated this check in GAC+ to achieve extra prunning in cases where
constraint intersections exist. Significantly, the new algorithm remains generic,
meaning that it is applicable on any kind of constraints (i.e., both on extensional
and intensional constraints).

Algorithm 18 Algorithm GAC+
1: if PREPROCESSING then L=L ∪ {xi},∀xi ∈ V ;
2: else L={ currently assigned variable };
3: while L 6= ∅ do
4: L=L−{xi};
5: for each ck ∈ C s.t. xi ∈ scp(ck) do
6: for each xj ∈ V s.t. xj ∈ scp(ck) AND xj 6= xi do
7: if revise GAC+(ck, xj) > 0 then
8: if DWO(xj) then return FAILURE;
9: L=L ∪ {xj};

10: return SUCCESS;

In more detail, when GAC+ is applied it deletes all values that are not GAC and
in addition it can delete some extra values that are GAC but are not maxRPWC.
To achieve this it utilizes the LastGAC data structure of GAC2001/3.1. To
recall the use of this data structure, for each constraint c and each value ai ∈
D(xi), where xi ∈ scp(c), LastGACc,xi,ai gives (i.e. points to) the most recently

123

CHAPTER 5. STRONG LOCAL CONSISTENCIES FOR NON-BINARY
(TABLE) CONSTRAINTS

discovered support of ai in c.
Algorithm GAC+ utilizes a list L where variables that have their domains

pruned are inserted. Once a variable xi is extracted from L, each constraint ck
that involves xi is examined (line 5 in Algorithm 18) and all the variables that
appear in ck, except xi, are revised. This is done by calling Function reviseGAC+.

Function 19 reviseGAC+(ci, xj)

1: removedValues = 0;
2: for each aj ∈ D(xj) do
3: SUPPORT FOUND=FALSE;
4: if ¬isValid(LastGACci,xj ,aj) then
5: for each τ of ci > LastGACci,xj ,aj , s.t. τ [xj] = aj do
6: if isValid(τ) AND isConsistent(ci, τ) then
7: LastGACci,xj ,aj = τ ;
8: PW CONSISTENCY=TRUE;
9: for each ck 6= ci s.t. |scp(ck) ∩ scp(ci)| > 1 do

10: if checkPWtuple2(ci, τ, ck) then
11: PW CONSISTENCY=FALSE; break;
12: if PW CONSISTENCY then
13: SUPPORT FOUND=TRUE; break;
14: if ¬ SUPPORT FOUND then
15: remove aj from D(xj);
16: removedValues = removedValues + 1;
17: return removedValues;

This function takes a constraint ci and a variable xj , s.t. xj ∈ scp(ci), and for
each value aj ∈ D(xj) first checks if aj has a support in ci. In caseLastGACci,xj ,aj
is valid then this tuple is a support for aj . If LastGACci,xj ,aj is not valid anymore,
a new support is seeked. This is done by iterating through the tuples of ci in lexi-
cographical order starting from the one immediatelly after LastGACci,xj ,aj (line 5
in Function 19). In case a tuple τ that is valid and consistent is located, then a sup-
port for aj has been established and LastGACci,xj ,aj is set to τ . Up to this point
GAC+ operates just like a typical GAC algorithm. However, once a support τ is
located, GAC+ performs an additional operation which can sometimes determine
that τ has no PW-support in some intersecting constraint. Namely, the algorithm

124

CHAPTER 5. STRONG LOCAL CONSISTENCIES FOR NON-BINARY
(TABLE) CONSTRAINTS

iterates over the constraints intersecting with ci on more than one variable and for
each such constraint ck calls Function checkPWtuple23.

Function 20 checkPWtuple2(ci, τ, ck)

1: Lex Max=NULL;
2: for each xk ∈ scp(ck) ∩ scp(ci) do
3: if τ ′ = LastGACck,xk,τ [xk] > Lex Max then
4: Lex Max=τ ′;
5: for each xk ∈ scp(ck) do
6: if xk /∈ scp(ck) ∩ scp(ci) then
7: if Lex Max[xk] is last value in D(xk) then continue;
8: else break;
9: else

10: if Lex Max[xk] < τ [xk] then break;
11: if Lex Max[xk] > τ [xk] then return FALSE;
12: return TRUE;

Function checkPWtuple2 is similar to Function checkPWtuple and Lex Max

locates the lexicographically largest LastGACck,xk,τ [xk] for all variables xk that
belong to the intersection of ci and ck (lines 1-4). Then it checks if there can exist
a tuple greater or equal to this one that has the same values for the variables of the
intersection as τ . Crucially, this check is done in linear time as explained in 5.2.

As implied by its description, checkPWtuple2 can verify the lack of PW-
support mainly in cases where the variables in the intersection appear consecu-
tively at the start of constraint’s ck scope. Hence, this function performs a limited,
and cheap, check for PW consistency. That is, it can sometimes determine that a
verified support τ is not PW consistent (i.e. it has no PW-support on some con-
straint). In such a case, the search for a support for aj is resumed in reviseGAC+.

The following example illustrates the basic idea behind GAC+, which is also
exploited by maxRPWC+. Therefore, we rephrase Example 1 by replacing Last
structure with LastGAC in order to show the extra prunnig offered by GAC+.

Example 3 Consider two constraints c1 and c2 with scp(c1) = {x1, x2, x3, x4}
3Constraints that intersect on exactly one variable are not considered because after making the

problem GAC they cannot possibly contribute to any extra pruning [19].

125

CHAPTER 5. STRONG LOCAL CONSISTENCIES FOR NON-BINARY
(TABLE) CONSTRAINTS

and scp(c2) = {x3, x4, x5, x6}. Assume that the support τ = {0, 2, 2, 1} has been
located for value 0 of x1, and that LastGACc2,x3,2 is tuple τ ′ = {2, 2, 0, 1}. Since
τ ′[x4] is greater than τ [x4], it is clear that there is no valid and consistent tuple in
c2 that includes values 2 and 1 for x3 and x4 respectively. That is, no PW-support
for τ exists in c2 and hence value 0 of x1 is not maxRPWC. If we assume that τ is
the last support of (x1, 0) in c1 then GAC+ will determine (simply by comparing τ
to τ ′) that 0 should be deleted from D(x1). In contrast, a GAC algorithm cannot
infer this since it does not consider constraint intersections at all.

The following proposition is a direct consequence of the limited check for PW
consistency that GAC+ performs.

Proposition 13 GAC+ achieves a level of local consistency that is strictly stronger
than GAC and strictly weaker than maxRPWC.

Proof: We first show that any deletion made by a GAC algorithm will also
be made by GAC+. The proof is straightforward if we consider that GAC+ is
identical to GAC2001/3.1 plus the calls to Function checkPWtuple2, which can
only result in extra pruning. Then, we need to show that there exist values that
are pruned by GAC+ and not by a GAC algorithm. Example 3 displays a case
where value 0 of x1 is GAC but GAC+ detects that it is not PW consistent and
thus, removes it. Hence, GAC+ is strictly stronger than GAC.

Every value that is pruned by GAC+ is also pruned by a maxRPWC algorithm.
Both algorithms delete values that are not GAC. Now, consider the case of the
extra prunning described in the example 3. maxRPWC will find that τ is a GAC
support of value 0 of x1 and then will search for its PW-support in c2. It will detect
that there is no tuple in c2 that includes values 2 and 1 for x3 and x4 respectively.
Since τ is the last support of (x1, 0) in c1 maxRPWC will also delete it from
D(x1). Now, assume the case where τ ′[x4] is not greater than τ [x4], i.e., τ ′ =

{2, 0, 0, 1}, which means that GAC+ will not make any pruning. Also, assume
that the lexicographically greater tuple in c2 is the {2, 2, 0, 1} tuple. maxRPWC
will detect that τ = {0, 2, 2, 1} has no PW-support and thus, will delete 0 from
D(x1). Hence, GAC+ is strictly weaker than maxRPWC.

As mentioned, the ability of GAC+ to delete extra values compared to a GAC
algorithm depends on the ordering of the variables in the scope of the constraints.

126

CHAPTER 5. STRONG LOCAL CONSISTENCIES FOR NON-BINARY
(TABLE) CONSTRAINTS

For instance, if the scope of constraint c2 in Example 3 is scp(c2) = {x3, x5, x4, x6}
with LastGACc2,x3,2 being τ ′ = {2, 0, 2, 1} then we cannot deduce that no PW-
support for τ exists in c2 unless 0 is the last value inD(x5). This is because a tuple
that is lexicographically greater than τ ′, e.g. {2, 1, 1, 1} may be a PW-support of
τ . However, the ordering of the constraints’ scope can be altered if necessary. For
example, if a subset of the variables in a constraint appears in many intersections
with other constraints then these variables can be moved to the front of the con-
straint’s scope to facilitate pruning by GAC+. This can be done for all constraints
in a preprocessing step.

Finally, we discuss the worst-case complexity of GAC+. Since GAC+ uses the
same LastGAC data structure as GAC2001/3.1, it has the same O(erd) space
complexity.

Proposition 14 The worst-case time complexity of GAC+ is O(e2r2dr).
Proof: GAC+ is identical to GAC2001/3.1 with the addition of lines 8-13

to reviseGAC+. In reviseGAC+, for each variable xj and each of its d values, dr−1

tuples are first checked for GAC consistency with O(r) cost for each check. Then,
for each tuple and each constraint ck interecting ci checkPWtuple2 is called.

Let us now consider the cost of checkPWtuple2. Finding the lexicographi-
cally largest LastGAC among the at most fmax variables in scp(ck) ∩ scp(ci)
costs O(fmax), assuming that the lexicographic comparison of two tuples is im-
plemented efficiently. The for loop of line 5 costs O(r) since in the worst case
all values in the tuple must be examined. Hence, the cost of checkPWtuple2 is
O(fmax + r)=O(r).

Hence, reviseGAC+ costs O(ddr−1(r + er)) = O(erdr). This function can be
called at most rd times for each constraint ci and variable xj ∈ scp(ci). However,
the cost of reviseGAC+ for each xj and each ci is amortized over all the kd calls
because of the use of LastGAC (see [18] for details). Since there are at most e
constraints and r variables per constraint, the worst-case time complexity of GAC+
is O(e2r2dr).

5.6.1 Comparing GAC+ to GAC2001/3.1

We ran experiments to show the potential of GAC+, with benchmark non-binary
problems taken from C. Lecoutre’s repository and used in the CSP Solver Com-

127

CHAPTER 5. STRONG LOCAL CONSISTENCIES FOR NON-BINARY
(TABLE) CONSTRAINTS

petitions.We tried the following classes: Golomb rulers, random problems, forced
random problems, chessboard coloration, Schurr’s lemma, modified Renault, pos-
itive table constraints and BDD. The first five classes only include constraints of
arity up to 4, while the other three include constraints of large arity (up to 18).

The algorithms were implemented within a CP solver written in Java from
scratch. Search used a binary branching scheme, the dom/wdeg heuristic for vari-
able ordering [23], and lexicographical value ordering. The searches for GAC on
extensional constraints of large arity were performed using the efficient algorithm
of [72]. The ordering of variables in the constraint scopes was not altered to fa-
cilitate propagation for GAC+, although this is an interesting direction for future
work.

In Table 5.4 we present indicative results from search algorithms that maintain
a certain local consistency throughout search. We compare GAC+ to GAC (imple-
mented using algorithm GAC2001/3.1). The results demonstrate that GAC+
improves uppon the performance of GAC2001/3.1 in the majority of instances.

Specifically, GAC+ is clearly better than GAC2001/3.1 on Golomb rulers
instances as well as random and forced random problems. Often there are large
margins between the performances of the two algorithms. For example on rand-3-
20-20-60-632-fcd-15 GAC+ is 3 times faster than GAC2001/3.1. These results
are due to the stronger pruning achieved by GAC+ which results in significant
reduction in the number of nodes.

GAC+ does not achieve notable additional pruning on positive table constraints.
Albeit, it is still faster than GAC2001/3.1. Results are somewhat mixed on the
modified Renault and BDD classes. However, GAC+ is faster than GAC2001/3.1
in the majority of the instances.

GAC+ is not successful, in terms of pruning, on the chessboard coloration
and Schurr’s lemma classes. This is due to the structure of the instances in these
classes. In chessboard coloration constraints have relatively small arity (4) and
they are very loose (disjunctions of 6= constraints). This minimizes the extra prun-
ing that can be achieved by GAC+. Note that in some cases GAC+ results in more
node visits than GAC2001/3.1, meaning that its few extra value deletions ac-
tually mislead the variable ordering heuristic. In Schurr’s lemma problems there
are only a few constraint intersections on more than one variable. As a result, our
method cannot exploit the problems’ structure for additional pruning. However,

128

CHAPTER 5. STRONG LOCAL CONSISTENCIES FOR NON-BINARY
(TABLE) CONSTRAINTS

despite the lack of additional pruning in these two classes, the overheads of GAC+
do not slow down search notably compared to GAC2001/3.1.

Table 5.4: Search tree nodes and cpu times in secs from various representative
problem instances.

Instance
Node visits CPU time

GAC2001/3.1 GAC+ GAC2001/3.1 GAC+
renault-mod-5 1,070 1,038 326 332
renault-mod-10 1,532 1,514 48 47
renault-mod-24 753 674 217 206
renault-mod-25 1,273 545 510 365
renault-mod-31 863 796 76 69
bdd-21-133-18-78-6 41,199 39,002 3,521 2,777
bdd-21-133-18-78-7 36,383 31,713 4,312 4,462
ruler-25-8-a4 2,697 2,316 96 67
ruler-34-9-a4 8,495 9,430 1,264 934
rand-3-20-20-60-632-fcd-4 223,155 113,814 275 154
rand-3-20-20-60-632-fcd-8 136,912 110,585 171 145
rand-3-20-20-60-632-fcd-15 85,940 25,858 109 35
rand-3-20-20-60-632-4 124,450 37,612 165 51
rand-3-20-20-60-632-7 114,375 112,592 150 155
rand-3-20-20-60-632-9 73,408 48,956 102 67
pt-8-20-5-18-800-4 37,466 37,416 1,301 1,181
pt-8-20-5-18-800-7 15,845 15,757 505 464
cc-8-8-2 13,278 13,762 7.2 7.8
cc-9-9-2 12,945 12,828 12 13
lemma-20-9 370,992 370,992 101 102
lemma-30-9 367,664 367,664 249 253

To sum up, we presented GAC+, an extension to the standard GAC algo-
rithm that achieves a stronger local consistency level than GAC. This is accom-
plished through the exploitation of two things: the data structure already used by
GAC2001/3.1 (i.e., LastGAC) and the technique for fast check for PW-support
of maxRPWC+. The worst-case time complexity of GAC+ is very close to that of
GAC algorithms, which is also reflected on the practical performance of the algo-
rithm as it does not slow down search in a significant way even in cases where no

129

CHAPTER 5. STRONG LOCAL CONSISTENCIES FOR NON-BINARY
(TABLE) CONSTRAINTS

additional pruning compared to GAC is achieved. On the other hand, there exist
cases where the additional pruning of GAC+ results in important cpu time gains.

5.7 Conclusion

In this chapter, we presented specialized algorithms for table constraints that
achieve local consistencies stronger than the standard GAC. These algorithms
build on and extend existing algorithms for GAC and maxRWPC and contribute to
both directions of domain and relation filtering local consistencies. Experimental
results demonstrated the usefulness of the proposed algorithms in the presence of
intersecting table constraints, showing that the best among them are clearly more
robust than a standard GAC algorithm for table constraints (GAC-va), and can be
competitive with a state-of-the art GAC algorithm (STR2).

Such ideas can be exploited and adopted by other even generic algorithms,
like GAC2001/3.1, to further improve their performance. We believe that the
presented work can pave the way for the design and implementation of even more
efficient strong consistency methods for table constraints. Also, it can perhaps
help initiate a wider study on specialized strong consistency algorithms for spe-
cialized (global) constraints.

130

6
Higher-order Consistencies for Table

Constraints using Counters

Among the most successful GAC algorithms for table constraints we discussed in
Section 3.3, we find variants of simple tabular reduction (STR), like STR2 and
STR3. In this chapter, we propose an extension of STR-based algorithms that
achieves Full PairWise Consistency (FPWC), a consistency stronger than GAC
and max Restricted PairWise Consistency (maxRPWC). This approach involves
counting the number of occurrences of specific combinations of values in con-
straint intersections. Importantly, the worst-case time complexity of one call to
the basic filtering procedure at the heart of this algorithm is quite close to that
of STR algorithms. Experiments demonstrate that methods of this chapter can
outperform STR2 in many classes of problems, being significantly faster in some
cases. Also, it is clearly superior to maxRPWC+ and HOSTR*, algorithms that
have been proposed in Chapter 5 and achieve a strong local consistency on table
constraints.

6.1 Introduction

GAC algorithms for table constraints have attracted considerable interest, dating
back to GAC-Schema [16]. Classical algorithms iterate over lists of tuples in
different ways; e.g., see [16, 75, 72]. Recent developments, however, suggested
maintaining dynamically the list of supports in constraint tables: these are the
variants of simple tabular reduction (STR) [103, 63, 69]. Alternatively, specially-

CHAPTER 6. HIGHER-ORDER CONSISTENCIES FOR TABLE
CONSTRAINTS USING COUNTERS

constructed intermediate structures such as tries [44] or multi-valued decision di-
agrams (MDDs) [25] have been proposed. Among these algorithms and those of
Section 3.3, STR2 along with the MDD approach are considered to be the most
efficient ones (especially, for large arity constraints).

The majority of the algorithms prosed for higher-order local consistencies
(Section 3.2.4) are generic, since they are applicable on constraints of any type,
which typically results in a high computation cost. Specialized algorithms for ta-
ble constraints that achieves a consistency stronger than GAC were proposed in
Chapter 5. These algorithms, called maxRPWC+ and HOSTR*, extend the GAC
algorithms of [72] and [63] respectively. They approximate a domain-filtering re-
striction of PWC, called max restricted pairwise consistency (maxRPWC) [19].
Interestingly, they achieve good performance compared to state-of-the-art GAC
algorithms on several classes of problems, that include intersecting table con-
straints.

In this chapter, we propose a new higher-order consistency algorithm for table
constraints, called FPWC-STR, based on STR. Actually, we show that all STR-
based algorithms can be easily extended to achieve stronger pruning by introduc-
ing a set of counters for each intersection between any two constraints ci and cj . At
any time each counter in this set holds the number of valid tuples in ci’s table that
include a specific combination of values for the set of variables that are common
to both ci and cj . We show that FPWC-STR enforces full pairwise consistency,
i.e., both PWC and GAC, and we prove that it also guarantees maxRPWC. Impor-
tantly, the worst-case time complexity of one call to the basic filtering procedure at
the heart of FPWC-STR is quite close to that of STR algorithms. Our experiments
demonstrate that FPWC-STR can outperform STR2 on many classes of problems
with intersecting table constraints (being significantly faster in some cases), and
is also typically considerably faster than maxRPWC+ and HOSTR2, often by very
large margins.

6.2 Extending STR

In this section, we present a simple way to filter domains and constraints by using
the technique of simple tabular reduction (STR), together with a few additional
data structures related to (sub)tuple counting. We explain how the update/restora-

132

CHAPTER 6. HIGHER-ORDER CONSISTENCIES FOR TABLE
CONSTRAINTS USING COUNTERS

tion and the exploitation of introduced counters is interleaved with STR in a seam-
less way to obtain specialized and efficient higher-order consistency algorithms
for table constraints. The new algorithms we propose will be called eSTR*, de-
rived from extended STR. The ’*’ stands for a particular STR algorithm (e.g.,
when extending STR2 we name the algorithm eSTR2).

The central idea of eSTR* is to store the number of times that each subtuple
appears in the intersection of any two constraints. Specifically, for each constraint
ci, we introduce a set of counters for each (non trivial) intersection between ci and
another constraint cj . Assuming that Y is the set of variables that are common
to both ci and cj , at any time each counter in this set holds the number of valid
tuples in ci’s table that include a specific combination of values for Y . In this
way, once a tuple τ ∈ rel[cj] has been verified as valid, we can check if it has a
PW-support in rel[ci] simply by observing the value of the corresponding counter
(i.e., the counter for subtuple τ [scp(cj) ∩ scp(ci)]). If this counter is greater than
0 then τ has a PW-support in rel[ci]. Importantly, this check is done in constant
time.

Note that this approach is related to that in [93], where arc consistency is
enforced on the dual representation of non-binary problems using counters that
record information about constraint intersections. However, for any two con-
straints that intersect, the space complexity of that approach is exponential in
the size of the subset of variables belonging to the intersection. Counters have
also been exploited in algorithms AC4/GAC4 [85, 86]. Finally, there exist some
connections with both the MDD-based propagation approach [50], because in-
valid tuples are aimed at being removed, and the intersection encoding of sliding
constraints [14].

Algorithm 21 presents the main framework for eSTR* by extending the ba-
sic STR algorithm, as proposed in [103]. We choose to present an extension of
STR, simply called eSTR, because of its simplicity compared to STR2 and STR3,
which can be extended in a very similar way. Here, we consider a constraint-based
vision1 of STR, meaning that the propagation queue, denoted by Q, handles con-
straints, because it is quite adapted to our filtering operations. The level of local
consistency achieved by means of the process of propagation will be discussed in

1Constraint-based and variable-based propagation schemes are those that are classically imple-
mented in constraint solvers.

133

CHAPTER 6. HIGHER-ORDER CONSISTENCIES FOR TABLE
CONSTRAINTS USING COUNTERS

the next section. Whenever a constraint is removed from the queue, STR iterates
over the valid tuples in the constraint and removes any tuple that has become in-
valid through the deletion of one of its values (the while loop in Algorithm 21 ;
see lines 4–14). Thus, only valid tuples are kept in tables. After finishing the itera-
tion, all values that are no longer supported are deleted (the for loop in Algorithm
21 ; see lines 15–21) and for each variable x whose domain has been reduced,
all constraints involving x are added to the propagation queue Q, excluding the
currently processed constraint (lines 20-21).

For each (positive table) constraint c of the CN, we have the STR data struc-
tures, described in Section 5.3.

We now describe, for each non trivial intersection of a constraint c with a
constraint ci, the additional structures used in eSTR:

• ctr[c][ci] is an array that stores the counters associated with the intersection
of c with ci. For each subtuple for variables in scp(c)∩ scp(ci) that appears
in at least one tuple of rel[c], there is a counter ctr[c][ci][j] that holds the
number of valid tuples in rel[c] that include that subtuple. The value of the
index j can be found from any tuple in rel[c] using the next structure.

• ctrIndexes[c][ci] is a set of indexes for the tuples of rel[c]. For each tuple τ ,
this data structure holds the index of the counter in ctr[c][ci] that is associ-
ated with the subtuple τ [scp(c)∩scp(ci)]. ctrIndexes[c][ci] is implemented
as an array of size rel[c].length.

• ctrLink[c][ci] is an array of size ctr[c][ci].length that links ctr[c][ci] with
ctr[ci][c]. For each counter ctr[c][ci][j] corresponding to a subtuple for vari-
ables in scp(c) ∩ scp(ci), ctrLink[c][ci][j] holds the index of the counter in
ctr[ci][c] that is associated with that subtuple. If the subtuple is not included
in any tuple of rel[ci] then ctrLink[c][ci][j] is set to NULL.

Figure 6.1 illustrates eSTR’s data structures. There are two constraints c1 and
c2 intersecting on variables x2 and x3. Three different subtuples for variables x2
and x3 of the intersection are present in rel[c1]: (0, 0), (0, 1) and (1, 0). Hence,
there are three counters in ctr[c1][c2]. Each counts the number of times a spe-
cific subtuple appears in rel[c1]. For each tuple in rel[c1], the corresponding entry
in ctrIndexes[c1][c2] gives the index of the counter in ctr[c1][c2] associated with

134

CHAPTER 6. HIGHER-ORDER CONSISTENCIES FOR TABLE
CONSTRAINTS USING COUNTERS

the underlying subtuple. For each counter in ctr[c1][c2], the corresponding en-
try in ctrLink[c1][c2] gives the index of the counter in ctr[c2][c1] associated with
the same subtuple. Since subtuple (0, 1) does not appear in rel[c2], the entry in
ctrLink[c1][c2] for this subtuple is NULL.

Figure 6.1: eSTR structures for the intersection of c1 with c2 on variables x2 and
x3. The highlighted values show the first occurrence of the different subtuples for
scp(c1) ∩ scp(c2).

The behaviour of eSTR is identical to that of STR, except: 1) it applies an
extra check for PWC when a tuple is verified as valid, and 2) it decrements (resp.
increments) the corresponding counters when a tuple is removed (resp. restored).
Also, eSTR needs to build its data structures in an initialization step. This is done
by traversing each rel[c] exactly once. At the end of this step all counters are set
to their proper values.

We omit the detailed description of functions isValidTuple and removeTuple,
which can be found in [63]. Briefly, we describe the auxiliary functions used by
the main algorithm, with a special emphasis on those that are specific to eSTR.
Function isValidTuple takes a tuple τ and returns true iff τ is valid. Func-
tion removeTuple takes a tuple τ and removes it in constant time by replacing
position[c][i], where i is the position of τ in rel[c], with position[c][currentLimit[c]]

(namely by swapping indexes and not tuples) and then decrementing currentLimit[c]
by one. As a result this procedure violates the lexicographic ordering of the re-
maing tuples in position[c]. Function 22, isPWconsistent, specific to eSTR

135

CHAPTER 6. HIGHER-ORDER CONSISTENCIES FOR TABLE
CONSTRAINTS USING COUNTERS

is called at line 7 of Algorithm 21 whenever a tuple τ ∈ rel[c] has been verified
as valid.

Algorithm 21 eSTR(c: constraint)
1: for each unassigned variable x ∈ scp(c) do
2: pwValues[x]← ∅
3: i← 1

4: while i ≤ currentLimit[c] do
5: index← position[c][i]

6: τ ← table[c][index]

7: if isValidTuple(c, τ) AND isPWconsistent(c, index) then
8: for each unassigned variable x ∈ scp(c) do
9: if τ [x] /∈ pwValues[x] then

10: pwValues[x]← pwValues[x] ∪ {τ [x]}
11: i← i+ 1

12: else
13: removeTuple(c, i) // currentLimit[c] decremented
14: updateCtr(c, index) // Counters in ctr[c] decremented

// domains are updated and constraints are enqueued
15: for each unassigned variable x ∈ scp(c) do
16: if pwValues[x] ⊂ D(x) then
17: D(x)← pwValues[x]

18: if D(x) = ∅ then
19: return FAIL
20: for each constraint c′ such that c′ 6= c ∧ x ∈ scp(c′) do
21: add c′ to Q
22: return SUCCESS

This function iterates over each constraint ci that intersects with c and verifies
if τ has a PW-support in rel[ci] or not. This is done through a look-up in the ap-
propriate counter in constant time. Specifically, using structures ctrIndexes[c][ci]
and ctrLink[c][ci] we locate the appropriate counter in ctr[ci][c] and check its
value. If it is neither NULL nor 0, then τ is PW-supported. Otherwise, FALSE is
returned in order to get τ removed.

136

CHAPTER 6. HIGHER-ORDER CONSISTENCIES FOR TABLE
CONSTRAINTS USING COUNTERS

Function 22 isPWconsistent(c, index): Boolean
1: for each ci 6= c s.t. |scp(ci) ∩ scp(c)| > 1 do
2: j ← ctrIndexes[c][ci][index]

3: k ← ctrLink[c][ci][j]

4: if k = NULL OR ctr[ci][c][k] = 0 then
5: return FALSE
6: return TRUE

Function 23, updateCtr, specific to eSTR is called at line 14 of Algorithm
21 in order to update some counters just after a tuple has been removed. For
each constraint ci that intersects with c, j ← ctrIndexes[c][ci][index] is located.
The variable j represents the index for the subtuple of the removed tuple τ in the
array of counters concerning the intersection of c with ci. Then the corresponding
counter in ctr[c][ci] can be decremented. If the value of this counter becomes 0
then this means that some tuples in rel[ci] have lost their last PW-support in rel[c].
Since this may cause value deletions for the variables in scp(ci), constraint ci is
added to Q so that it can be processed again.

Function 23 updateCtr(c, index)
1: for each ci 6= c s.t. |scp(ci) ∩ scp(c)| > 1 do
2: j ← ctrIndexes[c][ci][index];
3: ctr[c][ci][j]← ctr[c][ci][j]− 1

4: if ctr[c][ci][j] = 0 then
5: add ci to Q

Finally, when a failure occurs in the context of a backtrack search, certain
values must be restored to domains. Consequently, tuples that were invalid may
now become valid and thus must be restored. For each constraint c this is achieved
in constant time by STR by just updating currentLimit[c]. In addition, eSTR
updates all the affected counters by iterating through all tuples being restored
and incrementing the corresponding counters for every ci that intersects with c
(i.e. ctr[c][ci]). This costs O(gt) in the worst case, where t the size of c and
g the number of constraints intersecting with c. However, it is much faster in
practice since usually only a few tuples are restored after each failure. Note that
currentLimit[c] allows us to easily locate restored tuples.

137

CHAPTER 6. HIGHER-ORDER CONSISTENCIES FOR TABLE
CONSTRAINTS USING COUNTERS

6.3 Enforcing FPWC

Assuming a CN P only involving positive table constraints, Algorithm 24,
FPWC-STR, shows the full process of propagating constraints of P by calling
procedure eSTR iteratively through the use of a propagation queue Q. Recall
that Q may be updated when calling eSTR on a constraint c at lines 20–21 of
Algorithm 21 and also at line 5 of Function 23. A weak version of FPWC-STR,
denoted by FPWC-STRw can be obtained by discarding lines 4–5 of Function 23
(i.e., the update of Q is ignored when a PW-support is lost).

Algorithm 24 FPWC-STR(P = (X ,D, C) : CN)
1: Q← C
2: while Q 6= ∅ do
3: pick and delete c from Q

4: if eSTR(c) = FAIL then
5: return FAIL
6: return SUCCESS

Proposition 15 Algorithm FPWC-STR applied to a CN P enforces full pairwise
consistency on P .

Proof: Clearly FPWC-STR enforces GAC because each call of the form
eSTR(c) guarantees that c is made GAC and everytime a value is deleted for a
variable x, all constraints involving x are enqueued (and also, all constraints are
enqueued initially). Now, let us consider a tuple τ , in the table of a constraint c,
which is not PWC. This means (by definition of PWC) that there exists a con-
straint ci non trivially intersecting c such that no PW-support of τ in rel[ci] exists.
Because everytime a tuple is deleted, the counters of underlying subtuples corre-
sponding to constraint intersections are updated (decremented), and also consid-
ering the way these counters are initialized, during the execution of the algorithm
FPWC-STR, we will necessarily have ctr[ci][c][k] set to value NULL or 0 where
k is the index for the subtuple τ [scp(c) ∩ scp(ci)] in this array of counters. Be-
sides, the constraint c will necessarily be processed after ctr[ci][c][k] reaches 0
(resp., after it is initialized to NULL) because of the execution of lines 4-5 of
function updateCtr that adds c to Q (resp., because c is put in Q initially).

138

CHAPTER 6. HIGHER-ORDER CONSISTENCIES FOR TABLE
CONSTRAINTS USING COUNTERS

When c is processed, the tuple τ will be deleted because isPWconsistent

will return FALSE. Consequently, any tuple that is not PWC is deleted by our
algorithm FPWC-STR. We can conclude that FPWC-STR enforces full pairwise
consistency.

It is interesting to note that FPWC guarantees maxRPWC as shown by the follow-
ing proposition.

Proposition 16 PWC+GAC (or FPWC) and PWC+maxRPWC are equivalent
Proof: On the one hand, clearly PWC+maxRPWC is stronger than PWC+GAC

since maxRPWC is stronger than GAC. On the other hand, let us assume a CN
P which is PWC and a value (x, a) of P which is not maxRPWC. This means
(by definition) that there exists a constraint c involving x such that either (x, a)

has no support on c, or (x, a) has no maxRPWC-support on c. However, be-
cause P is PWC, the reason why (x, a) is not maxRPWC is necessarily that
(x, a) has no support on c. In other words, (x, a) is not GAC. We deduce that
PWC+GAC is stronger than PWC+maxRPWC, and finally that PWC+GAC and
PWC+maxRPWC are equivalent.

We now analyze the worst-case time and space complexities of eSTR, the
basic filtering procedure associated with each table constraint in FPWC-STR.

Proposition 17 The worst-case time complexity2 of one call to eSTR is O(rd +

max(r, g)t) where r denotes the arity of the constraint, t the size of its table and
g the number of intersecting constraints.

Proof: Recall that the worst-case time complexity of STR is O(rd+ rt) [63].
The application of eSTR on a constraint c is identical to that of STR except for the
calls to isPWconsistent and updateCtr in lines 7 and 14 of Algorithm 21,
respectively. In both functions, the algorithm iterates over the set of g constraints
intersecting with c, and for each one performs a constant time operation. Hence,
the complexity of eSTR is O(rd+max(r, g)t)).

One may be surprised by the fact that the worst-case time complexity of eSTR
is close to that of STR, although a stronger filtering is achieved. However, the

2We omit to consider lines 20-21 because they concern propagation (and were hidden in the
description of STR).

139

CHAPTER 6. HIGHER-ORDER CONSISTENCIES FOR TABLE
CONSTRAINTS USING COUNTERS

difference can be emphasized when we consider the maximum number of repeated
calls to the function eSTR for a given constraint c. For STR, this isO(rd) because
after each removal of a value (for a variable in the scope of c), one call eSTR(c)
is possible. For eSTR, this is O(max(rd, t)) because one call is possible after
each value deletion but also after each loss of a PW-support for a tuple in rel[c].
Note that when we consider FPWC-STRw, for eSTR we have O(rd) as for STR:
this is the reason why we introduce this variant. Overall, our intuition is that for
many problems, the number of repeated calls to the filtering procedure of the same
constraint is limited.

Proposition 18 The worst-case space complexity of eSTR for handling one con-
straint is O(n+max(r, g)t).

Proof: Recall that the worst-case space complexity of STR is O(n + rt) per
constraint [63]. Each additional eSTR structure isO(t) per intersecting constraint,
giving O(gt).

It is possible to reduce the memory requirements in two ways. First, by replac-
ing the at most eg sets of counters with e sets, one for each constraint, in order to
reduce the size of ctr and ctrLink. Second, by using a hash function to map each
tuple τ ∈ rel[c] to its associated counters in ctr[c]. This would make the use of
ctrIndexes obsolete.

Figure 6.2: A CN that is maxRPWC but not FPWC.

To emphasize the difference between FPWC-STR and FPWC-STRw, let us
consider the CN P depicted in Figure 6.2. There are five variables {x1, . . . , x5}
with domain {0, 1}, one variable x6 with domain {0}, and three positive ta-
ble constraints c1, c2 and c3 (with their allowed tuples shown). One can check

140

CHAPTER 6. HIGHER-ORDER CONSISTENCIES FOR TABLE
CONSTRAINTS USING COUNTERS

that P is maxRPWC. For example, the value (x1, 0) admits (0, 0, 0) as support
on c1 and (0, 0, 0, 0) as PW-support of (0, 0, 0) in rel[c2]. However P is not
PWC. Indeed, the tuple (0, 0, 0, 0) in rel[c2] has no PW-support in rel[c3]. Con-
sequently, FPWC-STR deletes this tuple, and (x1, 0) when c1 is processed. Now,
with FPWC-STRw, if constraint c1 is processed first in our example then no value
deletion can be made. This is because when c1 is processed, the tuple (0, 0, 0) in
rel[c1] admits (0, 0, 0, 0) as PW-support in rel[c2]. When c2 is later processed, the
tuple (0, 0, 0, 0) is removed but no value for variables in scp(c2) can be deleted.
This means that the propagation queue is left unchanged. Therefore, c1 will not
be processed again, and value (x1, 0) will not be deleted. Hence, the pruning
power of FPWC-STRw cannot be characterized precisely because it depends on
the ordering of the propagation queue.

Proposition 19 The consistency level achieved by Algorithm FPWC-STRw is in-
comparable to maxRPWC.

Proof: If maxRPWC is applied on the example of Figure 6.2, it will achieve
no pruning. We will show that FPWC-STRw can delete values that maxRPWC
cannot delete. Assume that FPWC-STRw processes c2 first. Tuple (0,0,0,0) does
not have a PW-support in c3, and therefore it will be removed. When c1 is pro-
cessed, FPWC-STRw will determine that tuple (0,0,0) has no PW-support in c2,
since (0,0,0,0) has been deleted, and will therefore be removed. As a result, value
0 of x1 will loose its only GAC-support in c1 and will be deleted. Therefore,
FPWC-STRw can achieve stronger pruning than maxRPWC.

For the opposite consider a problem with 0-1 domains that includes two con-
straints c1 and c2 with scp(c1) = {x1, x2, x3} and scp(c2) = {x2, x3, x4} having
the allowed tuples {(0, 0, 0), (1, 0, 1), (1, 1, 0)} and {(0, 0, 0), (0, 1, 1), (1, 0, 1)}
respectively. Now assume that value 0 is deleted from D(x4) which means that
tuple (0, 0, 0) of c2 will be invalidated. maxRPWC will revise all other variables
involved in c2 and only check for maxRPWC-support loss. Both values for x2
and x3 have maxRPWC-supports on c2 so no deletion will be made. On the other
hand, it will also check for PW-support loss by looking at constraint c1. It will
discover that value 0 of x1 is no longer maxRPWC (its GAC-support has no PW-
support on c2) and will therefore delete it. On the other hand, FPWC-STRw after
the deletion of value 0 from D(x4) will enqueue c2. When c2 is then processed no
value deletion will be made and therefore propagation will stop.

141

CHAPTER 6. HIGHER-ORDER CONSISTENCIES FOR TABLE
CONSTRAINTS USING COUNTERS

Proposition 20 FPWC-STRw achieves a local consistency that is strictly weaker
than FPWC.

Proof: We first show that any deletion made by FPWC-STRw will also be
made by FPWC. FPWC-STRw will delete a tuple τ ∈ rel[c] if τ is invalid or if
Function isPWconsistent cannot find a PW-support for τ on some constraint c′.
By definition, PWC deletes any value that is invalid or not PWC. Hence, it will
also delete τ . Correspondingly, FPWC-STRw will delete a value a ∈ D(x) if it
does not participate in any valid and PW consistent tuple on some constraint c
that involves x. Considering an algorithm that applies FPWC, PWC will delete
all invalid and PW inconsistent tuples from rel[c]. Hence, the application of GAC
that follows will delete a.

Finally, consider the example in Figure 6.2. As explained, if c1 is processed
before c2, FPWC-STRw will achieve no pruning. In contrast, and independent
of the order in which constraints are processed, PWC will remove tuple (0,0,0,0)
from rel[c2] and, because of this, tuple (0,0,0) will be removed from rel[c1]. Then
when GAC is applied value 0 will be removed from D(x1) because it will have no
support in c1. Hence, FPWC is strictly stronger than FPWC-STRw.

6.4 Experimental Results

We ran experiments on benchmark problems from the CSP Solver Competition3.
The arities of the constraints in these problems range from 3 to 18. We tried
the following classes that include table constraints with non-trivial intersections:
random problems, forced random problems, aim-100 and aim-200, Dubois, posi-
tive table constraints, and BDD. The first four classes only include constraints of
arity up to 4, while the other three include constraints of large arity (from 8 up
to 18). We compared algorithms STR2, maxRPWC+, HOSTR2h, FPWC-STR2,
FPWC-STR2w (for abbreviation the latter two will be called eSTR2 and eSTR2w

hereafter). All four were implemented within a CP solver written in Java and
tested on an Intel Core i5 of 2.40GHz processor and 4GB RAM. A cpu time limit
of 6 hours was set for all algorithms and all instances. Search used the dom/d-
deg heuristic for variable ordering and lexicographical value ordering. We chose

3http://www.cril.univ-artois.fr/CPAI08/

142

http://www.cril.univ-artois.fr/CPAI08/

CHAPTER 6. HIGHER-ORDER CONSISTENCIES FOR TABLE
CONSTRAINTS USING COUNTERS

dom/ddeg as opposed to the generally more efficient dom/wdeg because the deci-
sions made by the latter are influenced by the ordering of the propagation queue
making it harder to objectively compare the pruning efficiency of the algorithms.

Table 6.1 shows the mean cpu times (in secs) obtained by the tested algorithms
on each problem class for initialization and preprocessing. Also, it shows the
mean cpu times and numbers of nodes obtained by backtracking algorithms that
apply the propagation methods throughout search. During initialization, the data
structures of an algorithm are initialized, while preprocessing includes one run
of a propagation algorithm before search commences. In Table 6.2 we present
results from selected instances focusing on the search effort. Search results from
Aim-200 were obtained using dom/wdeg for variable ordering because this class
is hard for dom/ddeg.

As expected, eSTR2 and its weak version typically have much higher ini-
tialization times than STR2 and are usually slower during preprocessing. They
are particularly expensive on classes of problems which include intersections on
large sets of variables, as is the case with the BDD and Positive-table classes.
BDD instances consist of constraints with arity 18 that intersect on as many as
16 variables. In addition, the constraints are very loose. As a result, eSTR2
(and eSTR2w) exhausts all of the available memory when trying to build its data
structures.

Regarding the cost of eSTR2w and eSTR2 during initialization and prepro-
cessing compared to maxRPWC+ and HOSTR2h, results vary. For example, on
the Positive table classes both maxRPWC+ and HOSTR2h are much faster during
initialization. However, both eSTR2w and eSTR2 are many orders of magnitude
faster during the preprocessing of Positive table-10 instances which are usually
proven unsatisfiable by these algorithms without search.

Comparing eSTR2 to eSTR2w with respect to search effort, we can make
two observations: First, the extra filtering of eSTR2 does pay off on some classes
as node counts are significantly reduced (Aim-100) while on other classes it does
not (Random). Second, the much higher time complexity bound of eSTR2 is
not really visible in practice. eSTR2w is faster than eSTR2 on average, but the
differences are not very significant.

143

CHAPTER 6. HIGHER-ORDER CONSISTENCIES FOR TABLE
CONSTRAINTS USING COUNTERS

Table 6.1: Mean cpu times for initialization (i), preprocessing (p), search (s), and
mean numbers of visited nodes (n).

Problem Class STR2 maxRPWC+ eSTR2w eSTR2 HOSTR2h

Random-fcd i 0.02 0.3 0.67 0.69 0.35
p 0.1 0.2 0.09 0.13 0.4
s 150 182 81 127 305

#Inst=50 n 147,483 45,634 42,134 41,181 46,169
Random i 0.02 0.3 0.63 0.62 0.31

p 0.09 0.2 0.08 0.14 0.37
s 226 327 143 214 568

#Inst=50 n 257,600 85,913 80,057 79,789 85,901
Positive table-8 i 0.08 1.8 76 85 1.5

p 0.3 0.4 0.9 1.7 40
s 15 1,575 47 51 5,000

#Inst=20 n 52,313 10,039 4,818 2,571 10,087
Positive table-10 i 0.006 0.3 12.2 16.2 0.3

p 0.07 1,847 0.03 0.04 1,035
s 0.4 1,699 0.03 0.04 1,035

#Inst=20 n 1,110 0 0 0 0
BDD i 0.24 9.3 mem mem 10

p 1.4 6.2 - - 2.2
s 30 8.5 - - 2.5

#Inst=10 n 19,139 11 - - 11
Dubois i 0.01 0.04 0.01 0.02 0.01

p 0 0.002 0.002 0 0
s 2,026 6,750 1,084 1,972 807

#Inst=8 n 1,008,184,658 401,069,394 401,069,394 419,586,728 401,069,394
Aim-100 i 0.11 0.29 0.20 0.21 0.24

p 0.002 0.04 0.012 0.003 0.02
s 6,390 3,899 674 186 1,019

#Inst=10 n 643,784,411 34,062,529 32,918,683 4,530,698 34,062,528
Aim-200 i 0.39 0.58 0.32 0.33 0.47

p 0.004 0.1 0.01 0.02 0.03
s 14.5 13 3.4 1.5 3,4

#Inst=10 n 479,073 88,541 75,209 16,034 97,529

Comparing eSTR2w and eSTR2 to STR2 it seems that there are problem
classes where they can be considerably more efficient. This is definitely the case
with the Aim classes where eSTR2w and eSTR2 can outperform STR2 by several
orders of magnitude on some instances, being one order of magnitude faster on
average in the Aim-100 class. Also, there can be significant differences in favor
of eSTR2w on instances of other classes, such as Random, Random-forced, and
Dubois. On the other hand, if we consider the performance of the algorithms
during both initialization and search, STR2 is better than the proposed methods

144

CHAPTER 6. HIGHER-ORDER CONSISTENCIES FOR TABLE
CONSTRAINTS USING COUNTERS

on Positive table problems and of course BDD.
Now, comparing eSTR2w and eSTR2 to the other strong local consistencies,

namely, to maxRPWC+ and HOSTR2h, it is clear that they are superior as they are
faster on all the tested classes. The only cases where there are outperformed are
on BDD and, marginally from HOSTR2h, on Dubois. The differences in favor of
eSTR2 and eSTR2w can be very large. For example in the Positive table classes
they are faster by orders of magnitude.

Table 6.2: Cpu times (t) in secs and nodes (n).

Instance STR2 maxRPWC+ eSTR2w eSTR2 HOSTR2h

rand-3-20-20 60 t 130 102 37 66 200
-632-fcd-8 n 128,221 33,924 27,490 27,272 34,414
rand-3-20-20 60 t 430 183 43 80 303
-632-fcd-26 n 534,012 38,556 26,531 26,489 38,809
rand-3-20-20-60 t 450 536 187 220 1,002
-632-19 n 462,920 129,618 121,199 120,795 131,051
rand-3-20-20-60 t 670 295 74 137 433
-632-26 n 827,513 64,665 45,268 45,426 64,857
rand-8-20-5-18 t 17 753 30 26 1,860
-800-7 n 17,257 3,430 1,001 626 3,444
rand-8-20-5-18 t 19 1,568 52 55 6,191
-800-11 n 67,803 7,920 3,299 1,279 7,876
rand-10-20-10-5 t 0.4 208 0.02 0.02 174
-10000-1 n 1,110 0 0 0 0
rand-10-20-10-5 t 0.4 1,687 0.03 0.02 334
-10000-6 n 1,110 0 0 0 0
bdd-21-133-18-78-6 t 30 1.5 - - 0.5

n 20,582 0 - - 0
bdd-21-133-18-78-11 t 39 11.6 - - 1.1

n 19,364 21 - - 21
dubois-22 t 315 734 96 182 76

n 129,062,226 41,538,898 41,538,898 40,037,032 41,538,898
dubois-27 t 8,404 28,358 4,448 8,492 3,457

n 4,206,712,146 1,651,070,290 1,651,070,290 1.808,444,072 1,651,070,290
aim-100-1-6-sat-2 t 423 0.16 0.02 0.02 0.05

n 29,181,742 100 100 100 100
aim-100-2-0-sat-3 t 2,447 0.3 0.14 0.05 0.03

n 177,832,989 111 111 100 100
aim-200-2-0-sat-1 t 57 0.7 0.6 0.1 0.2

n 2,272,993 1,782 9,847 200 2,210
aim-200-2-0-sat-4 t 30 0.7 0.4 0.2 0.6

n 987,160 1,965 4,276 499 2,887

CPU times from all tested instances comparing eSTR2w, which displays the

145

CHAPTER 6. HIGHER-ORDER CONSISTENCIES FOR TABLE
CONSTRAINTS USING COUNTERS

best performance, to eSTR2, STR2, maxRPWC+r, HOSTR2h, are presented in
Figures 6.3, 6.4, 6.5 and 6.6 respectively, in a logarithmic scale. Different signs
display instances from different problem classes and are calculated by CPU time
ratios of the compared algorithms. Signs that are placed above the diagonal cor-
respond to instances that were solved faster by eSTR2w. We omitt presenting
results from BDD instances where eSTR2w axhausted the available memory.

Figure 6.3: eSTR2 vs. eSTR2w.

In Figure 6.3, we compare the two new algorithms of this chapter. Most in-
stances are gathered around the diagonal indicating closely matched performance
of eSTR2w and eSTR2. As descussed above, eSTR2w is superior to eSTR2

on random problems and forced random problems and inferior on Aim-100 and
Aim-200, but the differences are marginal.

Looking at Figure 6.4 we see a much more varied picture. Evethough eSTR2w

is faster than STR2 in the majoriry of the instances, there are classes of problems
where it thrashes (i.e, on Positive-table) while there are cases (i.e., Aim classes)
where it is orders of magnitude faster. As also observed in Chapter 5, efficient
algorithms for strong local consistencies on table constraints constitute a viable
alternative to the standard GAC approach, but at the same time further research
is required to develop methods that can be more robust than state-of-the-art GAC

146

CHAPTER 6. HIGHER-ORDER CONSISTENCIES FOR TABLE
CONSTRAINTS USING COUNTERS

algorithms, such as STR2, on a wider range of problems, especially regarding
large arities.

Figure 6.4: STR2 vs. eSTR2w.

Figure 6.5: maxRPWC+r vs. eSTR2w.

147

CHAPTER 6. HIGHER-ORDER CONSISTENCIES FOR TABLE
CONSTRAINTS USING COUNTERS

Comparing eSTR2w to maxRPWC+r and HOSTR2h in Figures 6.5 and 6.6
respectively, we can see the benefits of the former’s approach: In Figure 6.5 only
a few instances of Aim-200 are below the diagonal indicating that eSTR2w is
clearly superior to maxRPWC+r. Also, there are many instances of Positive-table
where maxRPWC+r thrashes while eSTR2w does not.

Figure 6.6: HOSTR2 vs. eSTR2w.

A similar picture is noticed in Figure 6.6, where the majority of the instances
are gathered above the diagonal. Only a few instances from Dubois are solved
faster by HOSTR2h but the differences are negligible. Again, eSTR2w is clearly
better than HOSTR2h on instances of large arity (i.e., Positive table-8, Positive
table-10), except from BDD instances. If we contrast Figure 6.5 to 6.6 we observe
that in the latter the differences are more significant in favor of eSTR2w. Finally,
although the algorithms of Chapter 6 are faster than those of Chapter 5, they have
lower memory requirements, meaning that in very large problems (of large arities
and intersections on many variables) they are preferable, as indicated by BDD
instances.

148

CHAPTER 6. HIGHER-ORDER CONSISTENCIES FOR TABLE
CONSTRAINTS USING COUNTERS

6.5 Conclusion

In this chapter, we have introduced a new higher-order consistency algorithm for
table constraints, FPWC-STR, that enforces full pairwise consistency. It is based
on an original combination of two techniques that have proved their worth: simple
tabular reduction and tuple counting. The basic filtering procedure of this algo-
rithm, and its weak variant, is close to that of STR algorithms. These algorithms
have been shown to be highly competitive on many problems with intersecting
constraints.

149

7
Adaptive Propagation

Despite the advancements in constraint propagation methods, most CP solvers
still apply fixed predetermined propagators on each constraint of the problem.
However, selecting the appropriate propagator for a constraint can be a difficult
task that requires expertise. Ways to overcome this include approaches that use
machine learning or heuristics methods (see Section 3.4). We focus on the heuris-
tic approach, which is uses to dynamically adapt the propagation method during
search. The heuristics of this category proposed in [100] displayed promising re-
sults, but their evaluation and application suffered from two important drawbacks:
They were only defined and tested on binary constraints and they required cali-
bration of their input parameters. We follow this line of work by describing and
evaluating simple, fully automated heuristics that are applicable on constraints of
any arity. Experimental results from various problems show that the proposed
heuristics can outperform a standard approach that applies a preselected propaga-
tor on each constraint resulting in an efficient and robust solver.

7.1 Introduction

Despite the advances in Constraint Programming (CP), there are still some impor-
tant obstacles that prevent it from becoming even more widely known and applied.
One significant such obstacle is the rigidness of CP solvers, in the sense that de-
cisions about algorithms and heuristics to be used on a specific problem are taken
prior to search during the modeling process and cannot change during search.

Concerning constraint propagation in particular, which is at the core of CP’s

CHAPTER 7. ADAPTIVE PROPAGATION

strength and the focus of this chapter, the decision on which algorithm to select for
the different constraints of the CP model is either predetermined or placed on the
shoulders of the user/modeler. For instance, the modeler may select to propagate
the alldifferent constraints in a problem using a domain consistency algorithm.
However, during search it may turn out that domain consistency achieves little ex-
tra pruning compared to bounds consistency. Unfortunately, standard CP solvers
do not allow to change the decisions taken prior to search “on the fly”. Hence, it
will not be possible to automatically switch to a bounds consistency propagator
during search.

Among the various adaptive approaches in Section 3.4, heuristic methods
for the automatic tuning of constraint propagation have shown interesting results
[100]. Their advantage is twofold: they are inexpensive to apply, and they are per-
fectly suited to a dynamic application because they exploit information concerning
the actual effects of propagation during search. In this chapter we are concerned
with the heuristics proposed in [100] for dynamically adapting the propagation
method used on the constraints of the given problem. Although this approach
displayed quite promising results, it suffered by important limitations. First, the
description as well as the evaluation of the heuristics was limited to binary con-
straints. And second, their successful application depended on user interference
for careful parameter tuning. The former limits the applicability of the heuristics
while the latter severely compromises their autonomicity and puts burden on the
shoulders of the users.

In this chapter we confront and remedy both these problems. First, we eval-
uate two simple heuristics for constraints of any arity that allow to dynamically
switch between two different propagators on individual constraints in a fully au-
tomated way. The first (resp. second) heuristic applies a standard propagator on a
constraint (e.g. domain consistency) until the constraint causes a domain wipeout
- DWO (resp. at least one value deletion). Then, in the immediately following re-
vision of the constraint, a stronger local consistency (e.g. SAC) is applied. For the
following revision we revert back to the standard propagator and this is repeated
throughout search. These heuristics allow to exploit the filtering power offered
by strong propagation methods without incurring severe cpu time penalties since
they invoke the strong propagator very sparsely. And importantly, this is achieved
without requiring any user involvement.

151

CHAPTER 7. ADAPTIVE PROPAGATION

An experimental analysis demonstrates that a significant increase in value
deletions is achieved by this limited use of a strong propagator. This is because
it is more likely to obtain extra pruning after applying a strong propagator on a
constraint that suffered from a DWO (or value pruning) in its last revision, as op-
posed to applying a strong propagator on any, say randomly selected, revision of
the constraint.

We also propose and evaluate refinements of the above heuristics that, while
still being fully automated, achieve better performance by targetting the use of the
strong propagator on variables that are more likely to be filtered. Also, we eval-
uate the heuristics using different methods as the strong propagator. Overall, our
experimental results demonstrate that the simple heuristics we employ outperform
the rigid method that applies a standard propagator throughout search, resulting
in most robust solvers.

7.2 Adaptive Propagator Selection

Modern CP solvers offer an impressive array of specialized constraint propagation
algorithms that typically achieve GAC or BC on specific types of constraints.
However, typically solvers follow one of the following patterns:

1. The choice of propagation algorithm for a specific constraint is made during
the modeling process and cannot change during search.

2. All the available propagators for a constraint are used, in increasing order of
cost, unless there is a theoretical guarantee that a propagator cannot achieve
extra pruning (as discussed in [96, 95]).

A drawback of the second approach, which is more sophisticated, is that even
if a propagator’s cost can be accurately predicted (which is not always true), the
prediction of a propagator’s impact is not nearly as straightforward. Schulte and
Stuckey concluded that an obvious way to further speed up constraint propagation
is to consider the estimated impact for a propagator and not only its cost [97].

Exploring ways to achieve this, [100] proposed heuristics for dynamically
switching between a weak (W) and a strong (S) propagator for individual con-
straints during search. The motivation for these heuristics was based on the obser-
vation that in structured problems propagation events (DWOs and value deletions)

152

CHAPTER 7. ADAPTIVE PROPAGATION

caused by individual constraints are often highly clustered. That is, they occur
during consecutive or very close revisions of the constraints. Hence, the intuition
behind the proposed heuristics is twofold. First to target the application of the
strong consistency on areas in the search space where a constraint is highly active
so that domain pruning is maximized and dead-ends are encountered faster. And
second, to avoid using an expensive propagation method when pruning is unlikely.

We briefly present the most successful heuristics introduced in [100], on which
our heuristics are based on. The work of [100] is presented in detail in Section
3.4.

• Heuristic H1(l) monitors and counts the revisions and DWOs of the con-
straints in the problem. A constraint c is made S if the number of times it
was revised since the last time it caused a DWO is less or equal to a (user
defined) threshold l. Otherwise, it is made W .

• Heuristic H2(l) monitors revisions and value deletions. A constraint c is
made S if its last revision caused at least one value deletion. Otherwise, it
is made W . H2 can be semi automated in a similar way to H1 by allowing
for a (user defined) number l of redundant revisions after the last fruitful
revision. If l i-s set to 0, H2 becomes fully automated.

As reported in [100], heuristic HV
12, i.e. the disjunctive combination of H1 and

H2, achieves particularly good performance being more robust than individual
heuristics.

Some significant drawbacks of this appoach are that heuristics need the tuning
of their parameters, which sometimes varies from one class of problems to an-
other. Also, they cannot be used indepentantly to achieve their best performance
(i.e., they are used in disjuction with an other heuristic) and have been only tried
on binary constraints.

The following two heuristics generalize these heuristics, namely H1(l) and
H2(l), to non-binary constraints in a straightforward and fully automated way.

• Heuristic Hdwo monitors the revisions and DWOs caused by the constraints
in the problem. For any constraint c and any variable xi ∈ scp(c), each vi ∈
D(xi) is made W unless the immediately preceding revision of c resulted in
the DWO of a variable in scp(c). In this case the values of D(xi) are made
S.

153

CHAPTER 7. ADAPTIVE PROPAGATION

• Heuristic Hdel monitors revisions and value deletions. For any constraint
c and any variable xi ∈ scp(c), each vi ∈ D(xi) is made W unless the
immediately preceding revision of c resulted in at least one value deletion
from the domain of a variable in scp(c). In this case the values of D(xi) are
made S.

A significant difference between Hdwo and Hdel and their corresponding ver-
sions for binary constraints, called H1 and H2 in [100], is that the latter required
the manual setting of a parameter l to optimize their performance. For any con-
straint c this parameter determined the number of revisions after the latest revision
of c that caused a DWO (resp. value deletion) during which S will be applied. In
contrast, Hdwo and Hdel do not use this parameter and as a result they are fully
automated.

As reported in [100], the disjunctive combination of the two basic heuristics
that applies S whenever the conditions of either of the heuristics is met, achieves
particularly good performance being more robust than individual heuristics. How-
ever, given the definitions of Hdwo and Hdel here, their disjunctive combination is
pointless since it is equivalent to applying Hdel. Hence, we do not consider it.

7.3 Experiments

In our experimental evaluation of the heuristics we have considered GAC as the
standard propagator W , given that it is the most commonly used local consisteny.
Since we are interested in non-binary problems, we have considered two strong
local consistencies as the S propagators. Namely, maxRPWC and SAC. All meth-
ods used the dom/wdeg heuristic for variable ordering and lexicographic value
ordering under a binary branching scheme. The propagation queue was variable-
oriented (i.e. the elements of the queue are variables) and was ordered in a FIFO
manner. A cpu time limit of 6 hours was set for all instances. All the evaluated
heuristic methods used the S propagator on all constraints for preprocessing.

The classes of problems we have considered include both structured and ran-
dom problems, some of which are specified extensionally and others intension-
ally. These classes, which are taken from C.Lecoutre’s XCSP repository and are
commonly used in the CSP Solver Competition, are: random and forced random,

154

CHAPTER 7. ADAPTIVE PROPAGATION

positive table, BDD, aim, pret, dubois, chessboard coloration, Schurr’s lemma,
modified Renault.

In the case of extensionally specified constraints we have used the efficient
algorithm of [72] for the implementation of GAC. This is also the basis for the
implementation of SAC and maxRPWC. For the former, the implementation is
straightforward. For the latter, we have used a simplified version of the algo-
rithm presented in Section . In the case of intensionally specified constraints
we have used the generic algorithms GAC2001/3.1 [18] and maxRPWC1 [19].
GAC2001/3.1 was also the basis for the implementation of SAC.

In the following, we first evaluate Hdwo and Hdel using maxRPWC as the
strong propagator. Then we analyze the performance of the heuristics (Hdwo in
particular) to explain their success. Finally, we propose and evaluate refinements
of the heuristics and give results from the use of SAC as the strong propagator.

7.3.1 Evaluating the heuristics

In Table 7.1 we show the mean performance of Hdwo and Hdel on all tested classes,
measured in cpu time and nodes explored.To put these results into perspective, we
also give results from: 1) an algorithm that propagates all constraints using GAC
throughout search, 2) an algorithm that propagates all constraints using maxR-
PWC throughout search, and 3) the Hdel heuristic implemented as in [100], with
parameter l set to 10 (i.e. maxRWPC is applied for the 10 revisions following a re-
vision that deleted at least one value). We also report the mean percentage (%) of
constraint revisions where the strong consistency (maxRPWC) was applied. Cpu
times in bold demonstrate the fastest method. A dash (-) indicates that the method
was unable to solve all instances within the time limit.

The results given in Table 7.1 demonstrate the efficacy of the studied fully
automated heuristics. Although they do not achieve the best mean results on any
class (with the exception of BDD), one or both of the heuristics achieve the best
performance on several individual instances. But more importantly, the heuristics
succeed in striking a balance between the performance of GAC and maxRPWC.
Specifically, in problems where GAC thrases (positive table-10 and BDD), the
heuristics follow maxRPWC in solving the problems with little or no search. In
problems where GAC is clearly better than maxRPWC (chessboard coloration,

155

CHAPTER 7. ADAPTIVE PROPAGATION

positive table-8, and random) the performance of the heuristics is closer to GAC
making them clearly superior to maxRPWC. In a case where the opposite occurs,
i.e. maxRWPC is better than GAC (aim), the heuristics follow maxRPWC making
them superior to GAC. In other cases, where GAC and maxRWPC are closely
matched, the performance of the heuristics typically lies in between GAC and
maxRPWC.

Table 7.1: Mean cpu times (t) in secs, nodes (n), and the percentage of constraint
revisions (s) carried out using maxRWPC.

Class GAC maxRPWC Hdwo Hdel Hdel 10
t 182 233 229 202 195

Rand-fcd n 131,745 59,245 161,247 95,576 54,316
s 0 100 1.1 24.8 73.3
t 220 333 221 236 270

Random n 151,039 79,771 154,657 105,944 72,353
s 0 100 1.1 24.9 73
t 1,629 3,947 2,233 1,984 3,109

Positive n 47,073 15,142 45,108 26,425 14,747
table-8 s 0 100 3 26.5 77.5

t - 643 647 667 691
Positive n - 0 0 0 0
table-10 s - 100 100 100 100

t 9.5 2.4 3.9 2.8 1.6
Aim n 1,324,118 217,459 468,262 302,870 127,723

s 0 100 2.6 20.3 53.2
t 7,771 6.4 3.9 4.2 5.1

BDD n 36,804 10 10 10 10
s 0 100 24.5 56.9 69.2
t 4.6 37.7 5.5 8.2 12.8

Chess- n 57,024 43,644 66,177 65,609 59,826
board s 0 100 2.7 6 26.2

t 63 100 62 73 87.2
Schurr’s n 559,971 524,909 549,868 552,197 562,221
lemma s 0 100 1.4 17.1 59.8

t 934 878 925 1,282 912
Dubois n 175,325,461 144,632,439 161,619,009 225,836,708 163,285,042

s 0 100 1.9 41.7 98.35
t 46 46 48 50 47

Pret n 37,017,710 37,017,710 37,017,710 37,017,710 37,017,710
s 0 100 3.2 42.4 98.7
t 118 181 126 143 167

Renault n 801 334 521 413 328
s 0 100 12 25.5 83

156

CHAPTER 7. ADAPTIVE PROPAGATION

Comparing Hdwo to Hdel we can note that there are no significant differences in
their performance. This occured not only with respect to their mean performance
but, largely, with respect to individual instances as well. What is interesting is that
Hdwo, which is slightly better overall, achieves its results with only few invocations
of the strong propagator as the percentages s show, with positive table-10 and
BDD being exceptions to this.

Finally, comparing Hdel to its parameterized version with l set to 10, we can
note that the fully automated version is generally preferable. It achieves better
mean performance on 7 out of the 11 classes and it is not significantly outper-
formed in the other 4. This hints at a particular importance of the revisions that
immediately follow a propagation event in terms of the likelihood of another prop-
agation event occuring.

7.3.2 Are revisions after DWOs important?

In this section we investigate the reason for the success of Hdwo. In Table 7.2 we
record ratios concerning value deletions to demonstrate the effects of the calls to S
in revisions immediately following a revision that caused a DWO. We have picked
an indicative instance from each class. Ddwo is the number of revisions that caused
value deletions and immediately follow a revision that caused a DWO. D is the
number of all revisions that caused deletions. Rdwo is the number of revisions
that immediately follow a revision that caused a DWO. Table 7.2 gives the ratios
Ddwo/D and Ddwo/Rdwo for GAC, maxRPWC, and Hdwo.

Hdwo has the highest percentages, compared to GAC and maxRPWC, for both
ratios shown in Table 7.2. Especially on Random, Random-fcd and Positive table
we observe that the numbers for Hdwo are more than two times higher, showing
that applying a strong consistency after a DWO can increase the likelihood
of value pruning. For the rest of the classes the advantage is less obvious for
two reasons: either because the strong consistency cannot offer extra pruning (i.e.
pret) or because it is applied very few times (i.e. Chessboard coloration). Note
that no instance from the BDD class is included. This is because in these prob-
lems very few constraints give non-zero results for D when maxRPWC or Hdwo

is applied (in contrast to GAC). That is, very few constraints are active during the
(very short) search process with these methods.

157

CHAPTER 7. ADAPTIVE PROPAGATION

Table 7.2: Percentages of revisions that caused value deletions after a previous
DWO to all revisions that caused deletions (Ddwo/D) and revisions that caused
value deletions after a previous DWO to all revisions executed after a previous
DWO (Ddwo/Rdwo) from representative instances.

Class Instance GAC maxRPWC Hdwo

Ddwo/D 0.55 0.59 1.01
Rand-fcd Ddwo/Rdwo 9.8 12.15 17.98

Ddwo/D 0.5 0.58 1.01
Random Ddwo/Rdwo 8.95 11.7 19.01

Ddwo/D 1.48 2.95 4.92
Positive table-8 Ddwo/Rdwo 3.54 6.24 12.88

Ddwo/D 1.73 1.08 2.01
Aim Ddwo/Rdwo 14.61 2.27 10.24

Ddwo/D 1.37 2.49 2.75
Chessboard Ddwo/Rdwo 3.46 5.85 7.53

Ddwo/D 0.02 0.92 0.01
Schurr’s lemma Ddwo/Rdwo 0.28 6.3 0.21

Ddwo/D 0.22 0.62 0.11
Dubois Ddwo/Rdwo 6.65 8.93 7.28

Ddwo/D 0.77 0.77 0.77
Pret Ddwo/Rdwo 13.58 13.58 13.58

Ddwo/D 2.26 2.31 2.31
Renault Ddwo/Rdwo 3.58 4.18 4.14

7.4 Refining the heuristics

Heuristics Hdwo and Hdel apply the strong propagator S on all variables involved
in a constraint if one of these variables suffered a DWO (resp. value deletion) in
the previous revision of the constraint. This may incur unnecessary invocations
of S that only increase the cpu time overhead without offering any filtering. The
following heuristics are refinements of Hdwo and Hdel that try to improve on this
by targetting the use of the strong propagator on variables that are more likely to
be filtered.

• Heuristic Hv
dwo monitors the revisions of constraints and the DWOs of the

variables’ domains. For any constraint c and any variable xi ∈ scp(c),
each vi ∈ D(xi) is made W unless the immediately preceding revision of c
resulted in the DWO of D(xi). In this case the values of D(xi) are made S.

158

CHAPTER 7. ADAPTIVE PROPAGATION

• Heuristic Hv
del monitors the revisions of constraints and the value dele-

tions from the variables’ domains. For any constraint c and any variable
xi ∈ scp(c), each vi ∈ D(xi) is made W unless the immediately preceding
revision of c resulted in at least one value deletion from D(xi). In this case
the values of D(xi) are made S.

Hv
dwo and Hv

del restrict the application of the strong propagator on variables that
suffered a propagation event (DWO or value deletion) in the immediately preced-
ing constraint revision as opposed to all variables in the constraint’s scope. The
intuition behind this is that such variables are more likely to suffer a DWO or value
deletion(s) again, especially in hard parts of the search space. The experimental
results given below indicate that this is true since the effects of restricting the
invocations of S on the search effort are not significant while cpu times improve.

Table 7.3 presents results from representative individual instances and from
all tested classes. Columns Hv

del and Hv
dwo give results from the use of maxRPWC

as the strong propagator, while column S-Hv
dwo gives results from the use of SAC.

The last column, called Hybrid, gives results from a simple heuristic method that
applies SAC and maxRPWC alternatively. Specifically, maxRPWC is selected as
the S propagator when a constraint intersects with another constraint on more than
one variable and SAC otherwise. Note that maxRPWC cannot achieve any extra
filtering compared to GAC when constraints intersect on exactly one variable [19],
while SAC can.

All adaptive methods significantly outperform non-adaptive (i.e., GAC) on
many instances, while there are few cases where they are outperformed. However,
in most of the latter cases the differences are negligible. On random and forced
random instances Hv

del is usually better than GAC, namely on rand-3-20-20-60-
632-fcd-3 it is almost 10 times and on rand-3-20-20-60-632-4 and it can be 2 times
faster. Also, on rand-3-20-20-60-632-fcd-1 and rand-3-20-20-60-632-14 Hybrid
and Hv

dwo respectively outperform GAC in notably less time only with 0.3% ap-
plications of maxRPWC. These results are due to the stronger pruning achieved
by maxRPWC that results in significant reduction in the number of nodes, even
though the percentage of its application is that low. On positive table problems,
differences between Hv

del and Hv
dwo are marginal. Note that, both S-Hv

dwo and GAC
reach the cutoff limit on Positive table-10 instances.

159

CHAPTER 7. ADAPTIVE PROPAGATION

Table 7.3: Cpu times (t) in secs, nodes (n) and the percentage of the strong con-
sistency (s) from various representative problem instances.

Instance GAC Hv
del Hv

dwo S-Hv
dwo Hybrid

rand-3-20-20- t 521 447 435 199 105
60-632-fcd-3 n 395,247 218,679 369,644 42,833 89,654

s 0 10.7 0.3 0.4 0.3
rand-3-20-20- t 120 15 50 141 31
60-632-fcd-15 n 85,940 7,550 33,522 35,985 27,793

s 0 11.1 0.3 0.3 0.2
rand-3-20-20 t 197 194 51 223 149
-60-632-4 n 124,450 93,568 38,062 55,978 119,677

s 0 11.1 0.3 0.4 0.1
rand-3-20-20 t 98 48 69 73 53
-60-632-14 n 69,599 21,774 47,489 15,152 47,617

s 0 10.2 0.3 0.4 0.2
pt-8-20-5- t 1,333 977 1,389 1,084 1,351
18-80-4 n 37,466 18,592 36,888 28,058 36,888

s 0 4.8 0.3 0.3 0.3
pt-8-20-5- t 5,317 4,594 5,504 5,013 5,292
18-80-12 n 156,707 83,057 155,950 155,829 155,950

s 0 4.6 0.3 0.4 0.3
pt-10-20-10- t - 1,767 1,683 - 1,802
5-10000-0 n - 0 0 - 0

s - 100 100 - 100
pt-10-20-10- t - 1,533 1,519 - 1,646
5-10000-6 n - 0 0 - 0

s - 100 100 - 100
bdd-21-133- t 7,899 4.6 3.5 11,258 9.2
18-78-11 n 35,731 22 22 35,413 22

s 0 5.6 2.9 4.9 5.6
bdd-21-133- t 9,579 2.6 1.9 10,082 2.5
18-78-15 n 37,463 0 0 38,971 22

s 0 100 100 0.5 100
t 1.4 1.9 1.6 2.8 1.7

cc-9-9-2 n 12,945 14,652 13,256 7,556 13,256
s 0 0.7 0.4 0.5 0.4
t 131 148 130 144 133

lemma-30-9 n 367,664 357,705 367,746 313,661 358,181
s 0 6.3 0.2 0.2 0.2
t 292 328 272 338 368

dubois-23 n 233,952,261 253,527,792 223,084,005 228,337,001 261,150,057
s 0 17.7 1.9 1.6 0.8
t 46 48 48 57 53

pret-60-75 n 37,012,466 37,012,466 37,012,466 35,113,273 35,754,658
s 0 18 1.7 1.8 0.6

aim-200-1- t 8.4 4.8 8 6.8 4.7
6-unsat-3 n 1,314,067 680,737 1,282,603 745,153 563,198

s 0 10.4 1.4 1.7 2.1
aim-200-2- t 29 1 1.5 1.3 4.6
0-sat-4 n 4,180,497 51,133 320,364 168,007 481,501

s 0 8.4 0.7 1.1 0.5
t 521 39 39 - 607

renault-25 n 1,273 0 0 - 525
s 0 24.3 23.6 - 0.7
t 169 49 113 - 685

renault-33 n 667 8 317 - 236
s 0 10.1 2.5 - 1.9

160

CHAPTER 7. ADAPTIVE PROPAGATION

Both Hv
del and Hv

dwo are highly successful on the BDD instances, where they
outperform GAC by up to three orders of magnitude. Except from S-Hv

dwo, adap-
tive algorithms detect an early inconsistency on bdd-21-133-18-78-15 and on bdd-
21-133-18-78-11 they reduce dramatically the search space and thus, find a solu-
tion in few seconds, while GAC requires few thousands of seconds. This is due to
the structure of BDD instances which consist of large-arity constraints (up to 18)
that appear in many intersections. Consequently, maxRPWC is by far superior to
GAC on these problems. It is impressive that this advantage is not lost despite
the very low percentage of calls to maxRPWC (less than 6%). On the chessboard
coloration, Schurr’s lemma, pret and dubois, they all have close performance. In
these problems maxRPWC cannot exploit the problems’ structure for additional
pruning, as the visited nodes declare.

In addition, refined heuristics are faster than GAC on the aim and modified
Renault instances and can be over ten times faster on some of them, i.e., on aim-
200-2-0-sat-4 and renault-mod-25 and quite faster in renault-mod-33. In these
classes, maxRPWC is more effective than GAC because there are many constraint
intersections and our methods can take advantage of this. On modified Renault the
Hybrid method is very expensive, even though it reduced the search space, while
S-Hv

dwo again could not reach a solution in reasonable time.
Table 7.4 presents mean results from all tested instances. Results from Table

7.4 are similar to those from Table 7.1 in the sense that again the heuristic methods
Hv
dwo and Hv

del achieve a balance between GAC and maxRWPC. Considering these
two methods, as Table 7.3 demonstrates, there are several instances where they
achieve better performance than GAC. This happens not only in classes such as
BDD where maxRPWC dominates GAC, but also in classes such as the random
ones and modified Renault where GAC is better than maxRWPC.

On the other hand, heuristic S-Hv
dwo is not as successful. Although it often

manages to cut down the number of node visits considerably (the two random
classes and aim), this is not reflected to cpu times (with the exception of aim)
meaning that singleton checks are quite expensive. In addition, there are many
classes where S-Hv

dwo does not manage to save search effort compared to GAC.
However, the performance of S-Hv

dwo is still close to that of GAC, being sometimes
better, and it is by far superior to the performance of an algorithm that applies SAC

161

CHAPTER 7. ADAPTIVE PROPAGATION

on all variables throughout search1.

Table 7.4: Average cpu times (t) in secs, nodes (n) and the percentage of the strong
consistency (s) from all classes.

Class GAC Hv
del Hv

dwo S-Hv
dwo Hybrid

t 182 179 165 192 133
Rand-fcd n 131,745 87,271 125,447 44,346 113,984

s 0 10.7 0.3 0.4 0.2
t 220 237 195 325 176

Random n 151,039 111,768 138,985 67,690 150,706
s 0 12 0.3 0.4 0.2
t 1,629 1,609 1,746 1,594 1,693

Positive n 47,073 27,740 45,108 42,330 47,101
table-8 s 0 4.5 0.3 0.3 0.3

t - 640 625 - 664
Positive n - 0 0 - 0
table-10 s - 100 100 - 100

t 9.5 3.5 4.3 2.2 2.5
Aim n 1,324,118 391,493 547,469 186,262 250,618

s 0 8.6 1.4 2.2 0.5
t 7,771 3.9 3.2 10,768 4

BDD n 36,804 10 10 36,896 10
s 0 56.8 56.8 0.4 56.8
t 4.6 6.2 5.3 5.1 5.4

Chess- n 57,024 61,374 59,390 58,491 65,640
board s 0 2.4 1.4 3.5 1.4

t 63 73 63 67 65
Schurr’s n 559,971 571,976 549,335 492,630 482,396
lemma s 0 8.5 0.6 0.2 0.2

t 934 1,282 936 1,287 1,357
Dubois n 175,325,461 225,836,708 172,724,047 189,160,406 215,484,904

s 0 41.7 1.9 1.7 0.8
t 46 49 48 53 50

Pret n 37,017,710 37,017,710 37,017,710 33,190,315 34,392,941
s 0 18.1 1.7 1.7 0.6
t 118 122 122 - 430

Renault n 801 417 544 - 580
s 0 12.4 7.3 - 8.8

Comparing heuristics Hv
dwo and Hv

del to Hdwo and Hdel on mean performance,
we can note that the former are more efficient. Although they restrict the applica-
tion of the strong consistency by 50% up to more than 80%, as the percentages s

1Results of this algorithm are not given because it is not competitive in cpu times in most cases.

162

CHAPTER 7. ADAPTIVE PROPAGATION

show, this does not incur any significant increase in node visits while at the same
time cpu effort is saved. In contrast, there are many cases where the number of
node visits is cut down (e.g. random class). These results show that Hv

dwo and Hv
del

achieve a better focus in the application of the strong consistency.
Finally, the Hybrid method is very competitive on all classes, except modi-

fied Renault, being faster than all other methods on the random-fcd and random
classes. Again it is interesting that this method ahieves a good performance with
very few invocations of the strong propagator.

Figure 7.1 summarizes our results by presenting pairwise comparisons on all
tested instances. Figure 7.1(a) compares the cpu times of GAC to those of maxR-
PWC in a logarithmic scale. Points above (resp. below) the diagonal correspond to
instances that were solved faster by maxRPWC (resp. GAC). This figure clearly
demostrates the performance gap between GAC and maxRPWC. GAC is faster
on the majority of the instances, often by large margins, but since it is a weaker
consistency level, it sometimes thrashes, while the stronger maxRPWC does not.
These results justify the need for a robust method that can achieve a balance be-
tween the two.

Figure 7.1(b) (resp. Figure 7.1(c)) compares the cpu times of Hv
dwo to those

of GAC (resp. maxRPWC). These figures clearly demonstrate the benefits of the
adaptive heuristics. Although the majority of the instances is still below the di-
agonal in Figure 7.1(b), they are much closer to it, indicating small differences
between the two methods on those instances. These are instances where the ap-
plication of maxRPWC does not offer any notable reductions in search tree size.
By keeping the number of calls to the maxRPWC propagator low, the adaptive
heuristic manages to avoid slowing down search considerably. On the other hand,
there are still instances where GAC thrashes while Hv

dwo, following maxRPWC,
does not.

In Figure 7.1(c) most instances are above the diagonal demonstrating that
Hv
dwo, following GAC, is faster than maxRPWC. On the other hand, there are

no instances where Hv
dwo thrashes.

163

CHAPTER 7. ADAPTIVE PROPAGATION

Figure 7.1: Cpu times of Hv
dwo compared to GAC and maxRPWC, for all evaluated

instances.

164

CHAPTER 7. ADAPTIVE PROPAGATION

7.4.1 Effects of different Queue ordering and Branching scheme

Figure 7.2: Cpu times of Hv
dwo compared to GAC and maxRPWC when the dom

heuristic is used for the Queue ordering.

Standard solvers either use the FIFO ordering scheme for the elements of the
propagation queue, or a cost-based ordering as discussed in the Introduction. Al-
ternatively, some generic and easy to apply heuristics have been proposed for this

165

CHAPTER 7. ADAPTIVE PROPAGATION

task, and evaluated mainly on arc consistency algorithms [107, 22, 4]. Since the
ordering of the queue and the adaptive propagation heuristics we evaluate are re-
lated, in the sense that they collectively determine exactly which propagators will
be applied and the order of their application, we conducted experiments to assess
whether different approaches to queue orderding affect the performance of the
heuristics.

Figure 7.3: Cpu times of Hv
dwo compared to GAC and maxRPWC under the d-way

branching scheme.

We conducted experiments to compare Hv
dwo against both GAC and maxR-

166

CHAPTER 7. ADAPTIVE PROPAGATION

PWC while changing the conditions of the search process. That is to prove the
stability of Hv

dwo when either the propagation or the look-ahead algorithm alters.
Figure 7.2 presents results from all instances when the dom heuristic is used

to order variables in the propagation queue. This heuristic simply orders the vari-
ables in increasing domain size [107, 22]. The queue orderning, regardless of the
heuristic used, results in different searching paths and thus, different node visits
when a heuristic like dom/wdeg is used for variable ordering [4]. Despite this,
Hv
dwo is still more efficient than GAC in the same problem classes as in Figure

7.1(b). The same observation can be inferred when Hv
dwo is compared to maxR-

PWC. Therefore, it seems that the performance of the heuristic is not affected by
the way in which the queue is ordered.

Finally, Figure 7.3 presents results from all instances when d-way branching is
applied during search. Hv

dwo is faster than GAC and maxRPWC in the same prob-
lem classes as in Figure 7.1(b) and (c) respectively. Hence, the adaptive heuristic’s
performace is not dependent on the branching scheme used.

7.5 Conclusion

In this chapter we described and evaluated simple heuristics for the dynamic adap-
tation of constraint propagation methods. These are based on the heuristics pro-
posed in [100], but overcoming the limitations of that work, they are applicable
on constraints of any arity and, importantly, they are fully automated. Exper-
imental results show that refinements of the basic heuristics that target the use
of strong propagators on variables that are more likely to be filtered achieve the
best results and outperform the standard method that applies a fixed propagator
throughout search, resulting in most robust solvers. We believe that this work is
a step towards the efficient exploitation of the filtering power offered by strong
propagators in a fully automated way.

167

8
Strong Bounds Consistencies

Although many strong local consistencies that extend GAC have been proposed
(see Sections 3.1 and 3.2), similar consistencies based on BC have been over-
looked. In this chapter, we study PairWise Bounds Consistency (PWBC), a new
local consistency that extends BC by simultaneously considering combinations of
constraints as opposed to single constraints. Naturally, this results in stronger fil-
tering compared to BC. We show that some theoretical results regarding a related
domain filtering consistency carry over to PWBC, while others do not. We then
turn our attention to the important case of linear constraints. We describe a poly-
nomial filtering algorithm for linear constraints that can achieve stronger pruning
than BC. Interestingly, this yields a polynomial algorithm for linear inequalities
which achieves stronger filtering than BC.We experiment with randomly gener-
ated problems as well as problems used for the evaluation of matchmakers in Web
Services, an interesting recent application of CP. Results comparing BC propa-
gation to PWBC reveal large differences in favour of PWBC in some cases, and
thus demonstrate the potential of strong local consistencies that reason on domain
bounds.

8.1 Introduction

Generalized Arc Consistency (GAC), and Bounds Consistency (BC) are the two
local consistencies that are predominantly used for propagation by finite domain
constraint solvers. Many stronger local consistencies based on GAC have been
proposed, both for binary (see Section 3.1) and non-binary constraints (see Sec-

CHAPTER 8. STRONG BOUNDS CONSISTENCIES

tion 3.2). However, similar consistencies that are based on BC have been compar-
atively overlooked. One exception is Singleton Bounds Consistency [70] which
can be seen as an adaptation of 3B Consistency [73] from numerical to finite do-
main CSPs.

In this chapter we introduce and study Pairwise Bounds Consistency (PWBC),
a strong local consistency for non-binary constraints that extends BC. As the name
suggests, PWBC is related to pairwise consistency [53], a local consistency that
can filter tuples from constraint relations, and also to its domain filtering counter-
part maxRPWC [19]. The application of PWBC results in the shrinking of domain
bounds just like BC, but unlike BC it simultaneously considers combinations (in-
tersections) of constraints as opposed to single constraints. Naturally, this results
in stronger filtering.

We present some general theoretical results that investigate the pruning power
of the new local consistency. We show that some results regarding the related
domain filtering consistency maxRPWC carry over to PWBC, while others do not.
For example, BC is strictly weaker than PWBC just as GAC is strictly weaker than
maxRPWC. But unlike the case of domain filtering consistencies, this result holds
even when constraints intersect on one variable only1.

We then turn our attention to the class of linear constraints. This is perhaps
the most widely studied class of constraints as it has been rigorously investigated
for many years by researchers in OR, discrete mathematics, logic programming,
and CP. Although linear constraints are ubiquitus, it is well known that CP solvers
only apply a weak form of propagation on them. For example given the constraints
x1 + x2 + x3 > 5 and x1 + x2 + x3 < 5, and assuming that each variable has the
domain {0, . . . , 4}, a CP solver applying BC propagation will be unable to detect
the inconsistency without search.

We first show that, although GAC is equivalent to BC on linear inequalities
[112], PWBC remains strictly stronger than BC and strictly weaker than maxR-
PWC. However, it collapses to BC when constraints intersect on at most one vari-
able. Then, and most importantly, we propose a polynomial filtering algorithm for
linear constraints of inequalities. This algorithm achieves at least the same prun-
ing as BC, and depending on characteristics of the constraints (e.g. the coefficients
of the variables), it can achieve stronger pruning. For instance, it is quite suitable

1maxRPWC collapses to GAC when constraints intersect on only one variable.

169

CHAPTER 8. STRONG BOUNDS CONSISTENCIES

for linear constraints with unit coefficients. The proposed method can be easily
crafted in CP solvers to enhance their pruning power on inequality constraints.
For example, and in contrast to BC, it would be able to detect the inconsistency
on the simple problem described above without search.

We discuss practical applications of the proposed method in areas such as
constraint-based graphics [51, 81] and Quality of Service (QoS) based match-
making for Web Services [90, 61]. The former is among the earliest applications
of CP technology while the latter is a very interesting recent application.

Finally, experimental results from benchmark problems used for the evaluation
of matchmaking methods in Web Services as well as from random problems reveal
large differences in favour of our algorithm and thus demonstrate the potential of
strong consistencies that reason on domain bounds.

8.2 PairWise Bounds Consistency

We now define a new strong bounds consistency, which is a relaxed version of
maxRPWC, and theoretically compare it to BC as well as to the related domain
consistencies.

Definition 17 A CSP is Pairwise Bounds Consistent (PWBC) iff for each xi ∈
X and for each value vi ∈ {minD(xi),maxD(xi)}, for each cj ∈ C, where xi ∈
scp(cj), there exists a Bound-support τ on cj s. t. τ [xi] = vi, and for all cl ∈ C
(cl 6= cj), s.t. scp(cj) ∩ scp(cl) 6= ∅, there exists a Bound-support τ ′ on cl s.t.
τ [scp(cj) ∩ scp(cl)] = τ ′[scp(cj) ∩ scp(cl)].

Proposition 21 PWBC is strictly stronger than BC.
Proof: The ”stronger” relationship is straightforward from the definitions of

the two consistencies. Now consider a problem with variables x1, . . . , x4, domains
D(x1) = D(x2) = {0, 1}, D(x3) = {1, 2}, D(x4) = {1}, and constraints c1 :

x1 + x2 < x3 and c2 : x4 − x1 < x3. The problem is BC. However, value 1 of x3
is not PWBC since its only Bound-support (0,0,1) on c1 cannot be extended to a
Bound-support on c2. Hence, PWBC is strictly stronger than BC.

In contrast to the case of the corresponding domain consistencies, PWBC does
not collapse to BC when constraints intersect on at most one variable.

170

CHAPTER 8. STRONG BOUNDS CONSISTENCIES

Lemma 1 Proposition 21 holds even when constraints intersect on at most one
variable.

Proof: It suffices to find a problem where PWBC achieves more pruning
than BC. Consider a problem with five variables, all having domain {0, . . . , 4},
and two constraints: c1 on variables x1, x2, x3, and c2 on variables x3, x4, x5.
Assume that the constraints are defined in extension by their allowed tuples. Also
assume that the problem is BC and that the only allowed tuple of c1 (and therefore
the only Bound-support) that includes value 0 of x1 is tuple (0,2,2). Now assume
that value 2 of x3 is not included in any allowed tuple on c2. PWBC will not be
able to extend the Bound-support (0,2,2) to c2 and therefore will determine that
value 0 of x1 is not PWBC.

Trivially, PWBC is strictly weaker than maxRPWC. For an illustration con-
sider a problem with variables x1, . . . , x4, domains D(x1) = D(x2) = D(x3) =
D(x4) = {1, 3}, and constraints c1 : alldifferent(x1, x2, x3), c2 : alldifferent

(x1, x2, x4). This problem is BC and PWBC but it is not GAC, and therefore it
is not maxRPWC. Considering this example and the first example in the proof of
Proposition 21, it is obvious that GAC is incomparable to PWBC.

8.3 Linear constraints

An important class of non-binary constraints is the class of linear arithmetic con-
straints. Such a constraint c with scp(c) = {x1, ..., xn} is of the form

a1x1 + a2x2 + ...+ anxn3b (8.1)

ai, b ∈ Z 3 ∈ {<,>,≤,≥,=}

Zhang and Yap proposed a polynomial BC algorithm for linear constraints
[112]. They also proved that BC and GAC are equivalent on problems consisting
of linear inequality constraints. There is a considerable body of work dedicated
to the study of propagation methods for linear constraints, e.g. [49, 102, 2, 20].
However, and at least as far as finite domain CSPs are concerned, all these works
focus almost exclusively on BC propagation. One exception is [102] where the
idea of considering many linear constraints simultaneously to strengthen propaga-
tion was investigated in the context of knapsack constraints. The method proposed

171

CHAPTER 8. STRONG BOUNDS CONSISTENCIES

was based on dynamic programming and it was used as basis for one of the CSP
solution counting techniques proposed in [46].

In this section we study the application of PWBC to linear constraints. Af-
ter some preliminary definitions we prove theoretical results concerning linear
inequalities, and we describe a new polynomial filtering algorithm for such con-
straints.

Essentially, the problem of enforcing n-ary consistency level is related to that
of finding all solutions satisfying the given linear constraint. This may be quite
expensive as observed by Zhang and Yap in [112].

8.3.1 Preliminaries

Following [112], we first introduce some basic interval arithmetic operations to
simplify our presentation. Since we consider variables with integer domains, these
domains can be relaxed so that they form continuous real intervals bounded by the
maximum and minimum values of the corresponding domains. Based on this we
assume that each variable x is associated with an interval [l, u]. , where l =

minD(xi) and u = maxD(xi). We use [x] to denote an interval operation on x.
So we use the following notation [x] = [l, u].

Given [x] = [l1, u1] and [y] = [l2, u2], the interval operations are defined as
follows:

[x] + [y] = [l1 + l2, u1 + u2],

[x]− [y] = [l1 − u2, u1 − l2],

[x]− a = [l1 − a, u1 − a],

a[x] =

{
[al1, au1], a > 0

[au1, al1], a < 0

[x] ∩ [y] = [max(l1, l2),min(u1, u2)]

The following example demonstrates that interval reasoning can be used to
filter inconsistent values through BC but also through stronger reasoning.

Example 4 Consider a problem with variables x1, . . . , x4, domains D(x1) =
{0, . . . , 4},D(x2) = {0, . . . , 3},D(x3) = {0, 1, 2},D(x4) = {−1}, and constraints
c1 : x1 ≤ x2 − x3 and c2 : x3 − x2 ≥ x4. Following the interval representation of

172

CHAPTER 8. STRONG BOUNDS CONSISTENCIES

domains, we write [x1] = [0,4], [x2] = [0,3], [x3] = [0,2], [x4] = [-1,-1]. Clearly,
x1 cannot take the value 4 no matter what values x2 and x3 take. If we enforce BC
this will be detected and [x1] will become [0,3]. Value 4 of x1 is the only value
that will be deleted by BC. However, x1 cannot take values 3 or 2 either. This
is because due to the second constraint the difference x3-x2 cannot be less than
-1. Consequently, x2-x3 cannot be more than 1. Therefore, because of the first
constraint [x1] should become [0,1]. In other words, values 3 and 2 for x1 have no
Bound-support on c1 that can be extended to a Bound-support on c2. If we enforce
PWBC this will be detected and values 3 and 2 of x1 will be deleted.

Using the definitions and notation of [112], we formalize the filtering process
highlighted in the above example in the following way.

Definition 18 [112] The projection πxi of a constraint c on variable xi ∈ scp(c)
is

πxi(c) =
−1

ai
(a1x1 + · · ·+ ai−1xi−1 + ai+1xi+1 + · · ·+ anxn − b)

Given intervals on all the variables, we can define the interval version of the pro-
jection of c on xi as:

Πxi(c) =
−1

ai
[a1[x1] + · · ·+ ai−1[xi−1] + ai+1[xi+1] + · · ·+ an[xn]− b]

We call Πxi(c) the natural interval extension of πxi(c).

We now define the function Projxi(c) as follows:

Projxi(c) =

Πxi(c), if3′is =

[−∞, Ub[Πxi(c)]], if3′is ≤
[Lb[Πxi(c)],+∞], if3′is ≥

where 3′is ≥ if ai is negative and 3 is ≤, and 3 otherwise, and Ub([l, u]) = u,
Lb([l, u]) = l.

Given a subset {xi, . . . , xj} of scp(c) where s = aixi + . . . ajxj is the part of
c that involves variables {xi, . . . , xj}, we can extend Definition 2 as follows:

Definition 19 The projection πs of a constraint c on s is

πs(c) = a1x1 + · · ·+ ai−1xi−1 + aj+1xj+1 + · · ·+ anxn − b

173

CHAPTER 8. STRONG BOUNDS CONSISTENCIES

Given intervals on all the variables, we can define the interval version of the pro-
jection of c on s as:

Πs(c) = [a1[x1] + · · ·+ ai−1[xi−1] + aj+1[xj+1] + · · ·+ an[xn]− b]

The projection function Projs(c) can be defined in a way similar to Projxi(c).
Zhang and Yap defined BC using the interval representation of domains and

the projection function. For this purpose, instead of using the real interval rep-
resentation of domains, it is sufficient to consider intervals with integer bounds.
Given a real interval Di=[l,u], its Z-interval representation is the interval 2Di =

[dle,buc].

Definition 20 [112] A constraint c is BC with respect to (2D(x1) , . . . , 2D(xn))

iff ∀xi ∈ vars(c) 2D(x1) ⊆ Projxi(ci). A linear constraint system (N,D,C) is
BC with respect to (2D(x1), . . . , 2D(xn)) iff every ci ∈ C is BC.

8.3.2 Theoretical results for linear inequalities

Trivially, PWBC is strictly stronger than GAC on linear inequalities, since GAC is
equivalent to BC. But the relationship between BC and GAC does not carry over
to PWBC and its corresponding domain consistency.

Proposition 22 On linear inequality constraints maxRPWC is strictly stronger
than PWBC.

Proof: By definition, the ”stronger” relationship holds. Now consider a prob-
lem with variables x1, . . . , x4, domains D(x1) = {0, 1, 2}, D(x2) = {0, 1, 3},
D(x3) = {0, 2}, D(x4) = {−2}, and constraints c1 : x1 ≤ x2 − x3 and c2 :
x3 − x2 ≥ x4. The problem is BC and PWBC. For instance, value 2 of x1 is
PWBC since tuples (2, 2, 0) and (2, 3, 1) are Bound-supports on c1 that include
this value and can also be extended to Bound-supports on c2 (e.g. the first one
can be extended to Bound-support (0, 2,−2) on c2). On the other hand, the only
support for value 2 of x1 on c1 (tuple (2,3,0)) cannot be extended to c2. Thus, if we
apply maxRPWC value 2 of x1 will be deleted. Note that the two Bound-supports
that include value 2 of x1 mentioned above are not supports since value 2 of x2
and value 1 of x3 do not belong to D(x2) and D(x3) respectively.

174

CHAPTER 8. STRONG BOUNDS CONSISTENCIES

In contrast to the general case (Lemma 1), when constraints intersect on at
most one variable in a problem with linear inequalities then PWBC collapses to
BC.

Lemma 2 In a problem with linear inequality constraints where constraints inter-
sect on at most one variable, PWBC is equivalent to BC.

Proof: Assume that a problem consisting of linear inequality constraints that
intersect on at most one variable is BC. Consider any variable xi and any con-
straint c s.t. xi ∈ scp(c) and scp(c) = {x1, . . . , xk}. Without loss of generality
assume that ai > 0 and that the inequality is of the form xi ≤ πxi(c). Since the
problem is BC from Definition 20 we have [minD(xi),maxD(xi)]⊆ 2Projxi(c).
This means that minD(xi) ≤ maxD(xi) ≤ Ub(Projxi(c)), where Ub(Projxi(c))
is obtained by assigning each variable xj in scp(c), except xi, to its lower or up-
per bound vj depending on the interval operation on xj in the inequality. There-
fore, tuple τ = (v1, . . . ,maxD(xi), . . . vk) is a Bound-support on c. Now take
any constraint c′ intersecting with c on variable xl. Since c′ is BC, value vl be-
longs to a Bound-support on c′. Hence, the Bound-support τ on c that includes
value maxD(xi) can be extended to a Bound-support on c′, which means that
maxD(xi) is PWBC. It directly follows that minD(xi) is also PWBC. Therefore,
xi is PWBC.

8.3.3 A PWBC algorithm for linear inequality constraints

We now present a filtering algorithm for linear inequality constraints extending
the BC algorithm presented in [112]. This algorithm, which we call PWBCl (from
PWBC linear), achieves at least the same filtering as the algorithm of [112]. And
as will be explained, depending on the problem, it can achieve stronger filtering.

As in [112] we use an AC-3 like description (see Algorithm 25), with the dif-
ference being that PWBCl is variable-based. We use a data structure Q (typically
a queue) that handles variables. If PWBCl is used for preprocessing, all variables
are inserted inQ and then processed. The revision process, which is explained be-
low, may result in the shrinking of a variable’s domain. In this case, the variable
whose domain is filtered, is inserted in Q unless its domain is wiped out.

175

CHAPTER 8. STRONG BOUNDS CONSISTENCIES

Algorithm 25 PWBCl

1: if (Preprocessing) then Q← V ;
2: else Q← {currently assigned variable};
3: while Q 6= ∅ do
4: select and remove xi from Q;
5: for each cj ∈ C, s.t. xi ∈ scp(cj) do
6: for each xk ∈ scp(cj) s.t. xk 6= xi do
7: if [xk] * 2Projxk(cj) then
8: [xk]← [xk] ∩2Projxk(cj);
9: interCheck1(xk, cj);

10: if D(xk) = ∅ then return FAILURE;
11: if D(xk) has been filtered then Q← Q ∪ {xk};
12: for each cl ∈ C, s.t. |scp(cl) ∩ scp(cj)| > 1 do
13: for each xk ∈ scp(cl) do
14: interCheck2(xk, cl, cj);
15: if D(xk) = ∅ then return FAILURE;
16: if D(xk) has been filtered then Q← ∪{xk};
17: return SUCCESS;

procedure interCheck1(xk, c)

1: for each cms.t. cm 6= c and |scp(cm) ∩ scp(c)| > 1 do
2: Y ← maximal subset of scp(cm)∩ scp(c), s.t. |Y | > 1 AND xk /∈ Y AND

the coefficients for Y in c and cm match
3: if Y 6= ∅ then
4: if [Y] * 2ProjY (cm) then
5: [Y]← [Y] ∩2ProjY (cm);
6: if [xk] * 2Projxk(c) then
7: [xk]← [xk] ∩2Projxk(c);

Once a variable xi is extracted from Q, all constraints that include xi are pro-
cessed. This involves two steps. First, each variable other than xi in such a
constraint cj is revised. The revision of a variable xk with respect to constraint
cj is done in two steps. The first one (lines 7-8) performs the basic actions of the
BC algorithm of [112]. That is, it narrows the interval [xk] by intersecting it with
Projxk(cj). This operation is performed only if [xk] is not a subset of Projxk(cj)

176

CHAPTER 8. STRONG BOUNDS CONSISTENCIES

(otherwise the intersection operation will have no effect on [xk]). Independent of
whether [xk] is a subset of Projxk(cj) or not, PWBCl then tries to further nar-
row [xk] by considering the intersections of cj with other constraints by calling
procedure interCheck1 with xk and cj as arguments.

Procedure interCheck1 iterates over all the constraints that intersect with the
processed constraint c (i.e. cj) on more than one variable. For each such constraint
cm the algorithm seeks the maximal subset Y of scp(cm) ∩ scp(c) such that it
includes more than one variable, it does not include xk, and the coefficients that
the variables in this subset have in c and cm match (line 2). The objective is to
narrow the aggregated interval of Y through constraint cm, if possible, and then
use this to further narrow [xk] through constraint c.

Regarding the first condition in line 2 of interCheck1, if the subset Y contains
only one variable then it cannot trigger any extra pruning on [xk] compared to BC
(Lemma 2). Regarding the second condition, we require that Y does not contain
xk so that [Y] is part of Πxk(cj) and therefore by narrowing it we can further
narrow [xk]. Regarding the third condition we say that two sets of coefficients
S1 = a1, . . . , an and S2 = a′1, . . . , a

′
n match if there exists a k s.t. S1 = k ∗ S2.

For instance, this occurs in the quite frequent case of unit coefficients.
If a subset Y that satisfies the conditions of line 2 is located then its interval

projection on cm and function ProjY (cm) are computed. If [Y] is not a subset of
ProjY (cm) then it is narrowed by intersecting it with ProjY (cm) (line 5). Next
the interval pojection of xk on cj and function Projxk(cj) are recomputed using
the updated interval [Y]. Finally, if [xk] is not a subset of Projxk(cj) it is further
narrowed (line 7).

The second step in processing constraint cj iterates over all constraints that
intersect with cj and for each variable xk involved in such a constraint cl, in-
terCheck2 is called (lines 12-14). This procedure, is very similar to interCheck1
with the differences being that it takes 3 parameters and line 1 (the for loop)
is missing. After the call, inside interCheck2 c is set to cl and cm is set to cj .
The calls to interCheck2 are necessary to achieve PWBC because by filtering xi
some Bound-supports on cj may have been lost and as a result existing Bound-
supports in cl may no longer be extendable to cj . Having said this, experiments
have showed that a restricted version of the algorithm which does perform the sec-
ond step (i.e. does not include lines 12-16) is far more competitive in cpu times.

177

CHAPTER 8. STRONG BOUNDS CONSISTENCIES

We call this algorithm restricted PWBCl (rPWBCl).
We now revisit Example 4 to demonstrate the algorithm.

Example 5 The interval representation of the variables’ domains is as follows:
[x1] = [0,4], [x2] = [0,3], [x3] = [0,2], [x4] = [-1,-1]. In the initialization phase
the algorithm processes the constraints in turn and revises each variable involved
in them. First the interval projection of c1 on x1 is computed: Πx1(c1) = [[x2] −
[x3]] = [−2, 3], which means that Projx1(c1) = [−∞, 3]. [x1] is not a sub-
set of Projx1(c1) and therefore it will be narrowed in line 4. The new interval
will be [x1] = [x1] ∩ Projx1(c1) = [0,3]. Now the algorithm calls procedure in-
terCheck1. The for loop in line 1 will verify that constraint c2 intersects with
c1 on more than one variable. Next a maximal subset of scp(c1) ∩ scp(c2) with
matching coefficients will be sought. Such a subset exists and it is Y = {x2, x3}.
The interval projection of c2 on Y is: ΠY (c2) = [x4] = [−1,−1], which means
that ProjY (c2) = [−1,∞]. [Y] is [[0,2]-[0,3]] = [-3,2] and it is not a subset
of ProjY (c2). Therefore in line 5 [Y] will be narrowed to [Y] ∩ ProjY (c2) =
[-1,2]. The next step will be to recompute the interval of x1 using the updated
interval for Y . The interval projection of c1 on x1 now is: Πx1(c1) = [[x2] − [x3]]

= [−Y] = [−2, 1], which means that Projx1(c1) = [−∞, 1]. Hence, in line 7 we
get [x1] = [x1] ∩ Projx1(c1) = [0,3] ∩ [−∞, 1] = [0,1].

The conditions in line 2 of procedure interCheck1 need not be evaluated during
the algorithm’s execution. They can easily be precomputed in a preprocessing step
that considers all pairs of constraints that intersect on two or more variables.

Algorithm rPWBCl only achieves an approximation of PWBC, that is still
stronger than BC, and as mentioned it is faster in practice than PWBCl.

Proposition 23 The worst-case time complexity of algorithm PWBCl is O(e2n3d).
Proof: Each time a variable xi is extracted from Q, all of the at most e

constraints where xi participates are processed. In the first step (lines 6-11) all
of the at most n − 1 neighbors of xi are revised. Thus, the maximum number of
revisions is O(ne). The cost of computing Projxk(cj) in line 8 is O(n), because
the maximum arity of any constraint is n. Considering the cost of interCheck1,
each constraint cj intersects with at most e − 1 other constraints, meaning that
the complexity of interCheck1 is O(en). Thus the first step costs O(e2n2). In

178

CHAPTER 8. STRONG BOUNDS CONSISTENCIES

the second step (lines 12-16), interCheck2 which has O(n) cost is called for each
variable involved in a constraint intersecting with cj . Thus we have O(en2) cost
for this step. The worst case complexity of PWBCl depends on the number of
variables ever enteringQ. A variable xi entersQ every time its domain is reduced.
Considering that each reduction results in at least one deletion, xi may enter the
queue at most d times. Consequently, the complexity of PWBCl is O(nd(n +

e2n2 + en2)) = O(e2n3d). This is also the complexity of rPWBCl.

In practice we expect the algorithm to have lower cost since usually a con-
straint neither includes the entire set of variables nor does it intersect with all
other constraints. Also, a variable rarely belongs to all constraints.

8.4 Applications

In this section we discuss potential practical applications of the proposed method.
Since linear constraints are at the core of linear and mixed integer programming,
they are ubiquitous in combinatorial optimization (and not only). Here we fo-
cus on problems where CP is applicable and naturally include intersecting linear
constraints that can benefit from the extra pruning achieved by our method.

8.4.1 Case Study 1: Web Services

According to W3C, Web Services (WSs) are software systems designed to sup-
port interoperable machine-to-machine interaction over a network [1]. In the early
days of WS development, the features of the services provided (i.e. the offers)
were simply expressed as (parameter,value) pairs. For instance, (PRICE,100).
On the other hand, user requirements (i.e. demands) were typically specified as
Boolean expressions. For instance, (PRICE<100 AND CAPACITY>10). How-
ever, due to practical requirements, recent WS proposals exploit far richer lan-
guages to express offers and demands. Assuming that the providers advertise
their offers on some repository then, once a demand is posted, the process of
matchmaking takes place. This involves searching for a set of offers that meet the
requirements of the demand.

In order to select among multiple services that appear to provide the same
function, the notion of Quality of Service (QoS) has been proposed. QoS de-

179

CHAPTER 8. STRONG BOUNDS CONSISTENCIES

notes all possible non-functional properties of a WS, related with the performance
of the WS as well as with other features and characteristics of a WS that bear
on its ability to satisfy stated or implied needs. A QoS offer (or demand) of a
WS is a set of constraints/restrictions on some QoS attributes that restrict them
to have certain values (for unary constraints) or certain combinations of values
(for n-ary constraints). Hence, in addition to standard matchmaking based on the
functional requirements, WS discovery algorithms can also perform QoS-based
filtering (matchmaking) and ranking (selection) on WS advertisements in order to
produce fewer ranked results.

Major challenges that WS technology is faced with include the following:

• Prior to avertising an offer or issuing a demand, they both should be checked
for consistency. This is not a trivial task as offers and demands may include
quite complex constraints that in some cases are contradictory.

• Checking for conformance, i.e. checking whether an offer meets a given de-
mand, can be a quite challenging problem that cannot be efficiently handled
by the simplistic solutions that most WS proposals offer.

• Finding the optimal offer out of a set of offers that conform to a given de-
mand may involve solving a complex optimization problem.

To meet these challenges, [90] proposed the use of CP as a tool for the mod-
eling of offers and demands as well as for solving the consistency, conformance,
and optimal selection problems. Among the types of constraints that can be used
for modeling functional and non-functional requirements, linear constraints play
a key role [90, 61]. Moreover, the problems used for the experimental evluation
of consistency and conformance checking in [90, 61] include numerous constraint
intersections (see Section 8.5 for details).

Example 6 Assume that a WS provider offers daily excursion packages. Assume
that the minimum cost of such a package for a given destination, including travel,
meal, and souvenirs, is greater than 50$. This can be captured by a constraint
of the form xt + xm + xs > 50, where variables xt, xm, xs denote the cost of
travel, meal, and souvenirs, and they range over [0, 100]. Also assume that a
relevant demand is posted, describing the requirements of some family for a daily

180

CHAPTER 8. STRONG BOUNDS CONSISTENCIES

excursion. Such a demand may include the constraint xt + xm + xs < 50 as well
as other functional and non-functional constraints. The matchmaker should be
able to quickly verify that the offer does not conform to the demand. Note that
applying BC on these two constraints will reduce the domains to [0..49] and will
achieve no further pruning. On the other hand, a solver that applies PWBC will
determine that the constraints are inconsistent, and therefore prove that the offer
does not conform to the demand without requiring to search in a possibly large
search space (given that numerous extra variables and constraints may exist).

8.4.2 Case Study 2: Constraint-based Graphics

Constraint-based interactive graphical applications (e.g. diagram editors) consti-
tute one of the earliest applications of constraints [51]. Constraint solving allows
the editor to preserve design decisions, such as alignment and distribution, and
structural constraints, such as non-overlap or minimum/maximum distance be-
tween objects, during manipulation of the graphic objects. It is well-known that
linear constraints play a very significant role in such applications [21]. Given the
requirement for real-time user interaction, propagation methods are also impor-
tant. We believe that in many cases intersecting constraints will appear in such
applications, as the following example demonstrates.

Example 7 Assume that in a graphical design environment two objects need to
be placed on a cartesian system, one next to the other without overlapping. As-
suming that the objects are orthogonal polygons, they can be represented by the
coordinates of their corners. Suppose that x1 is the coordinate of the top right
corner of the first object and x2 is the coordinate of the top left corner of the
second one. We require that the second object is placed to the right of the first
one within a maximum distance of x3 (which may be a free variable in case
its specific value will be specified later). This requirement can be captured by
the constraint c1: x2 − x1 ≤ x3. Now assume that a third orthogonal polygon,
with left and right coordinates y1 and y2 respectively, must be placed between
the other two. If y denotes its length then this can be captured by constraints
c2: y = y2 − y1 and c3: y ≤ x2 − x1. Given the domains D(x1) = {0, 1, 2},
D(x2) = D(y1) = {0, 1, 2, 3}, D(y2) = D(y) = {1, 2, 3, 4} and D(x3) = {1}

181

CHAPTER 8. STRONG BOUNDS CONSISTENCIES

then if BC is used for propagation value 4 of y will be the only value to be re-
moved, while PWBC will also remove values 2, 3 from D(y).

8.5 Experiments

To evaluate the practical potential of PWBC we experimented with problems used
in the evaluation of matchmakers in WSs and with randomly generated problems.

8.5.1 Web Services

The performance of the CP-based approach to matchmaking in WSs was evaluated
in [90] and later in [61]. Specifically, the performance of CP solvers on the three
problems of consistency, conformance, and optimal selection were evaluated us-
ing sets of linear constraints. The solvers used in the evaluation were ILOG OPL
in [90] and Choco, as well as XPress-Kalis, in [61]. The results of the evaluations
demonstrated that CP solvers were unable to handle certain cases, displaying an
expontential increase in execution time as the number of variables or/and arity of
the constraints rises.

For the purposes of this work, we reproduced the experiments of [90, 61] fo-
cusing on the consistency and conformance checking problems. In both problems
domains range from 0 to 255 and constraints are of the type: x1+x2+...+xk > 10.
We tested the performance of PWBCl and rPWBCl against BC on a series of
instances where variables (n) ranged from 100 to 1500 and arities (k) from 3
to 20. For a given number of variables and arity (say 100 and 4 respectively)
the corresponding instance includes the constraints x1 + x2 + x3 + x4 > 10,
x2 + x3 + x4 + x5 > 10,..., x97 + x98 + x99 + x100 > 10. Hence, in any instance
there are n−k+1 constraints. Instances created in this way are consistent. To test
the solvers in the case of inconsistency, [90, 61] added one extra constraint of the
type: x1 + x2 + ... + xk < 10. For the conformance checking problem the tested
istances were very similar. Constraints are again of the type x1+x2+...+xk > 10,
but in this case one constraint of the form ¬(x1 + x2 + ... + xk > 10) (or
¬(x1 + x2 + ...+ xk < 10)) was added (see [90] for details).

Figures 8.1 and 8.2 display the mean performance of PWBCl and rPWBCl

compared to BC on the consistency problem, as n and k increase. In the left (resp.

182

CHAPTER 8. STRONG BOUNDS CONSISTENCIES

right) figures each data point gives the mean cpu time for all the tested arities
(resp. variable numbers). Figure 8.1 gives results from consistent instances and
Figure 8.2 from inconsistent ones.

Figure 8.1: Mean CPU times (in secs) of BC, rPWBC and PWBC for the consis-
tency case.

Figure 8.2: Mean CPU times (in secs) of BC, rPWBC and PWBC for the incon-
sistency case.

BC is the superior method on consistent instances. rPWBCl is close to BC for
small values of n and k while it progressively gets worse as n and k increase. On
the other hand, the cost of PWBCl displays an exponential increase, especially
as the arity rises. Note that on these problems none of the algorithms prune any
values; they all find a solution without backtracking. As a consequence, PWBCl

and rPWBCl suffer from many redundant calls to functions interCheck1 and/or
interCheck2. This is more obvious for PWBCl whose performance deteriorates
significantly for large n and k.

In the case of inconsistent problems PWBCl and rPWBCl quickly find the
inconsistency during preprocessing, while BC has to search in order to prove un-
satisfiability. As a result, in Figure 8.2 the CPU times of both PWBCl and rPWBCl

183

CHAPTER 8. STRONG BOUNDS CONSISTENCIES

are close to zero for all instances regardless of their size. In contrast, BC requires
more and more time as the size of the problem increases and gets exponentially
worse for large n and k.

Due to space limitations, we omit the corresponding figures for the confor-
mance checking problems since they are very similar to the ones for consistency
checking. Finally, we note that our results completely agree with the results of
[90] and [61] regarding the performance of BC. These results display the short-
comings of CP solvers with respect to the propagation of linear constraints. Given
the results obtained, we believe that our methods, and rPWBCl in particular, con-
stitute a step towards dealing with these shortcomings.

8.5.2 Random Problems

We also experimented with randomly generated problems. The random generator
produces problems by setting the number of variables, the arity of the constraints
and the density which specifies the number of constraints. The constraints are of
the form a1x1 + ...+ anxn3b, where 3 ∈ {≤,≥} and b = 0. The coefficients are
unit and domain values range from -5 to 5. In the experiments reported below we
tried 50 instances for each density. A cutoff limit of 90 minutes was imposed. We
compare BC to rPWBCl. We do not consider PWBCl since it is always inferior to
rPWBCl, as the experiments with problems from WSs demonstrated.

Results from the stand-alone use of BC and rPWBCl (e.g. for preprocessing)
are presented in Figure 8.3. In these experiments the minimum domain value was
randomly set to a value in the interval [-5..0] with probability 99.5%, while it was
set to a value in the interval [1..5] with probability 0.5%. Consequently, some
instances may be unsatisfiable. The maximum domain value was randomly set
to a value in [0..5]. The generated instances have 350 variables and constraints
of arity 6. The number of constraints ranges from 155 (0.01% density) to 7,761
(0.5% density).

Figure 8.3 presents results from rPWBCl and BC on problems with inequality
constraints. The left graph shows the mean cpu time and the right one the average
number of removed values for various densities. What is not shown in Figure 8.3
is that rPWBCl detects more inconsistent instances than BC. Specifically, for the
densities given in Figure 8.3 the % percentages of instances that were verified as

184

CHAPTER 8. STRONG BOUNDS CONSISTENCIES

inconsistent by rPWBCl were (0 2 8 42 86 96) and the corresponding numbers for
BC were (0 2 8 34 72 92).

Figure 8.3: Mean cpu time (in msecs) and removed values for BC and rPWBCl

during preprocessing.

As Figure 8.3 demonstrates, on problems that were not found to be inconsis-
tent, rPWBCl typically removed twice or more values than BC did. The difference
is more notable for densities 0.02% and 0.05%. On the other hand, rPWBCl needs
more time than BC to achieve the extra pruning. This is due to the cost of func-
tions interCheck1 and interCheck2. As the number of constraints rises rPWBCl

becomes costlier compared to BC. This is more evident on instances of higher
density, where rPWBCl achieves little, if any, extra pruning.

In Figure 8.4 we compare search algorithms that maintain rPWBCl and BC
throughout search on problems with inequalities. We used a lexicographic vari-
able ordering to obtain a fairer comparison of the algorithms’ pruning power. Re-
call that this heuristic selects the variable to assign a value at, in an ascending
index order. Therefore, the sequence of variables visited remains the same regard-
less of the pruning of their domain or the degree of the constraints they participates
in. The generated instances have 30 variables and constraints of arity 6. The num-
ber of constraints ranges from 296 (0.05% density) to 5,937 (1% density). We
observe that rPWBCl can be orders of magnitudes faster than BC on instances of
densities less than 0.5%. As the density rises, BC becomes more competitive and
it outperforms rPWBCl when the density is 1%. Regarding nodes, the algorithm
that maintains rPWBCl visits significantly fewer nodes than the one that main-

185

CHAPTER 8. STRONG BOUNDS CONSISTENCIES

tains BC (up to three orders of magnitude fewer) for the whole range of densities
considered.

Figure 8.4: BC vs. rPWBCl using lexicographic ordering.

Figure 8.5: BC vs. rPWBCl using dom variable ordering heuristic during search.
CPU times in logarithmic scale.

Additionally, we solved larger problems using the standard dynamic variable
ordering heuristic minimum domain (dom). Representative results are shown in

186

CHAPTER 8. STRONG BOUNDS CONSISTENCIES

Figure 8.5. In this graph we directly compare the cpu times of rPWBCl to BC. We
accumulate all instances generated with the following parameters: 63 variables
and 31 constraints of arity 9 for problems with inequalities.The majority of the
instaces in the gaph are above the diagonal, corresponding to instances that were
solved faster by rPWBCl. BC reached the cutoff limit on many instances while
rPWBCl solved all of them within the limit.

8.6 Conclusion

Although many strong local consistencies based on GAC have been proposed,
there is gap in the literature concerning similar consistencies based on BC. We
defined and studied PWBC, a new strong local consistency that extends BC taking
into account combinations of constraints. We proposed a polynomial filtering
algorithm for the important class of linear constraints that is based on PWBC.
This algorithm can achieve stronger pruning than BC on inequalities.The proposed
algorithm can be easily crafted into CP solvers to offer a viable alternative to the
weak propagation of linear constraints that they currently offer. Experimental
results demonstrated the potential of strong consistencies that reason on domain
bounds.

187

9
Conclusions and Future Work

In this chapter we summarize our main contributions and discuss perspectives for
extending and exploiting the derived results in the near future.

9.1 Conclusions

The conducted doctoral research contributes to the field of Constraint Satisfaction
Problems (CSPs) and Artificial Intelligence in general. Specifically, it contributes
to the development of efficient constraint propagation algorithms that apply strong
local consistencies on problems of binary as well as non-binary constraints. The
proposed algorithms improve, theoretically and practically, existing relevant and
state-of-the-art algorithms. Moreover, it presents adaptive algorithms and heuris-
tic methods that can automatically select the appropriate propagation method dur-
ing search, without requiring the user’s involvement.

We now list in more detail the major contributions of this doctoral research.

• We have proposed efficient algorithms to apply strong local consistencies
(i.e., maxRPC and it’s approximations) on binary constraints. The proposed
algorithms exploit the use of two simple data structures that exist in AC and
maxRPC algorithms in order to avoid redundant iterations. On top of the
variants of algorithms that achieve maxRPC and it’s approximations, we
have proposed heuristic techniques that can improve the algorithms’ per-
formance during search. The experimental evaluation shows that approx-
imating strong consistencies and complex algorithms can be efficient and

CHAPTER 9. CONCLUSIONS AND FUTURE WORK

can thus constitute a viable alternative to AC (e.g. on certain structured
problems).

• We have proposed an efficient algorithm for table constraints that extends
existing ones (i.e., algorithms for GAC and maxRPWC) to achieve a stronger
consistenciy. More precisely, our new algorithm, called maxRPWC+, han-
dles intersections of table constraints, that have more than one variable in
common, and builds on the GAC algorithm of [72]. We have also proposed
a family of algorithms, which we call HOSTR*, that extend the state-of-the-
art STR-based GAC algorithms and achieve a strong relation filtering con-
sistency. Moreover, based on maxRPWC+, we have proposed a variant that
is applicable on intensional constraints as well as a weaker algorithm, but
still stronger than GAC, called GAC+. Our new algorithms, constantly out-
perform the maxRPWC1 algorithm [19] and are more robust than GAC-va
[72] on problems with intersecting table constraints, while they are orders
of magnitude faster in some cases.

• We have also proposed an efficient higher-order consistency algorithm that
uses different reasoning than maxRPWC+.This algorithm makes use of coun-
ters that hold the number of occurrences of specific combinations of values
in constraint intersections in order to avoid searching in tables for support
tuples. Interestingly, the worst-case time complexity of one call to the basic
filtering procedure of new algorithm, called eSTR, is quite close to that of
STR algorithms [63]). The proposed methods, which are orders of magni-
tude faster in many classes of problems, pave the way for even more efficient
handling of intersecting table constraints.

• We have shown that adaptive propagation schemes can efficiently exploit
the advantages offered by strong propagators in a fully automated way.
Specifically, we have proposed heuristic techniques for the automated se-
lection between weak and strong propagation methods for non-binary con-
straints. Our experimental evaluation demonstrates that the choice of the
appropriate technique for each constraint, by monitoring the internal op-
eration and performance of the algorithms, has resulted in a robust solver
and noticeable increase of performance. Namely, we have shown that adap-

189

CHAPTER 9. CONCLUSIONS AND FUTURE WORK

tive methods display a stable performance and thus, are preferable than a
predefined propagator.

Aditionally, The design and implementation of adaptive and autonomous
constraint solvers offer the ability to advantageously modify modeler’s de-
cisions, that typically, in mainstream CP solvers, are taken prior to search.
As a result, the fully-automated heuristics of Chapter 7 exempt users from
the need to know the internal operation of solvers or to acquire knowledge
on constraint propagation algorithms.

• We have introduced and defined a new strong Bounds Consistency, which
we call PWBC. Based on PWBC, we have also proposed a polynomial filter-
ing algorithm for the important class of linear inequalities that can achieve
stronger pruning than BC. The results of its application demonstrate the po-
tential of strong consistencies that reason on bounds. We have experimen-
tally shown that the proposed algorithm constitutes a viable alternative to
the weak propagation of linear constraints that CSP solvers currently apply.

• Although many algorithms for SLCs already exist in the literature, CP solvers
apply almost exclusively algorithms that achieve (G)AC and BC. This is
justified since existing algorithms for SLCs are, in their majority, impracti-
cal due to their high computational cost. The presented results have shown
that the new efficient propagation techniques can exploit the filtering power
of SLCs by overcoming cpu penalties. Therefore, the integration of our
methods into a CSP solver contributes to increasing their efficiency and ro-
bustness and thus, to the overall usability of Constraint Programming.

In conclusion, the theoretical and experimental research work, which consti-
tutes this doctoral dissertation, features scientific originality by proposing and de-
veloping new algorithms and adaptive methods for solving CSPs. The proposed
algorithms described in Chapters 4, 5, 6 and 8 proved to be very efficient for
solving certain classes of Constraint Satisfaction Problems, being much faster
in terms of performance than existing respective algorithms. Moreover, the ex-
ported results demonstrate the potential benefit for CP solvers when they make
use of strong local consistencies instead of applind standard methods, like GAC
or BC. This research has shown that weak propagation methods are is many cases

190

CHAPTER 9. CONCLUSIONS AND FUTURE WORK

of binary and non-binary problems, inefficient. Finally, the adaptive methods of
Chapter 7, that integrate the new algorithms, constitute an important step towards
building autonomous intelligent systems for solving difficult practical problems,
which is the ultimate goal of Artificial Intelligence.

9.2 Future Work

Below we enumerate four major directions that we intent to focus in thenear future
in order to exploit the results of this research.

1. The most straightforward direction is towards extending our study on adap-
tive methods, by initially incorporating all our algorithms (eSTR, PWBC)
into our adaptive solver. Then, we will turn our attention to the design and
development of adaptive heuristics that select the appropriate algorithm to
apply when specific conditions hold for a value or tuple of a variable or a
constraint respectively. In other words, the study of ’fine-grained’ dynamic
heuristics.

2. In the near future, we will investigate the applicability of methods, similar
to those in Chapter 4, to efficiently achieve or approximate other local con-
sistencies related to maxRPC, such as PIC, for binary constraints. Also, a
very interesting direction is the efficient interleaved application of stronger
consistencies, like maxRPC, and weaker but cheaper ones, like AC. We have
presented some initial results towards this, but further research is certainly
required.

3. We also intent to disseminate the practical value of the new algorithms
to the CP community. A way to achieve this is by embedding them in a
well-known CP solver that will allow the further use and spread of our al-
gorithms. Such examples of established CP solvers are Minion, Gecode,
Choco etc. (see Section 2.5). We believe that this research perspective will
build strong foundations for the integration of Strong Local Consistencies
(SLCs) into modern CP solvers, enhancing their efficacy and robustness.

4. In addition, we will carry out a wider study on specialized strong consis-
tency algorithms for global constraints, which play a key role in the success

191

CHAPTER 9. CONCLUSIONS AND FUTURE WORK

of CP, since they encapsulate patterns that occur frequently in constraint
models. In Chapter 8, we have presented new SLCs that extend BC, by
considering combinations of constraints. We expect to further exploit these
results to build specialized algorithms that achieve stronger filtering than
BC for global constraints, since the research on such constraints has mailnly
focused on specialized algorithms that apply GAC or BC.

5. A quite different and new research direction that we are interested to fol-
low is the integration of our new strong propagation algorithms in parallel
computing/systems. More precisely, a parallelization of our algorithms (i.e.,
when looking for PW-supports in tables or by splitting the search for each
intersecting constraint to a different PC-unit) along with the advancements
in hardware technology (i.e., by using the Graphical processing Unit (GPU)
instead of the conventional Central Processing Unit (CPU)) will speed-up
even more the computationally intensive steps of the algorithms.

192

Bibliography

[1] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services: Concepts,
Architecture and Applications. Springer-Verlag, 2004.

[2] K. Apt and P. Zoeteweij. An analysis of arithmetic constraints on integer
intervals. Constraints, 12(4):429–468, 2007.

[3] T. Balafoutis. Adaptive Strategies for Solving ConstraintSatisfaction Prob-
lems. PhD thesis, University of the Aegean, 2011.

[4] T Balafoutis and K. Stergiou. Exploiting constraint weights for revision or-
dering in Arc Consistency Algorithms. In ECAI-08 Workshop on Modeling
and Solving Problems with Constraints, 2008.

[5] T. Balafoutis and K. Stergiou. Evaluating and improving modern variable
and revision ordering strategies in csps. Fundamenta Informaticae, 102(3-
4):229–261, 2010.

[6] A. Balafrej, C. Bessiere, R. Coletta, and E. Bouyakhf. Adaptive parameter-
ized consistency. In Proceedings of CP’13, pages 143–158, 2013.

[7] R. Bartak and R. Erben. A new algorithm for Singleton Arc Consistency.
In Proceedings of FLAIRS Conference-2004, 2004.

[8] P. Berlandier. Improving Domain Filtering Using Restricted Path Consis-
tency. In Proceedings of IEEE CAIA’95, pages 32–37, 1995.

[9] C. Bessiere. Arc-Consistency and Arc-Consistency Again. Artificial Intel-
ligence, 65:179–190, 1994.

[10] C. Bessiere. Chapter 3 Constraint Propagation. In Peter van Beek
Francesca Rossi and Toby Walsh, editors, Handbook of Constraint Pro-
gramming, volume 2 of Foundations of Artificial Intelligence, pages 29 –
83. Elsevier, 2006.

[11] C. Bessiere and R. Debruyne. Optimal and suboptimal Singleton Arc Con-
sistency Algorithms. In Proceedings of IJCAI-2005, pages 54–59, 2005.

BIBLIOGRAPHY

[12] C. Bessiere, E.C. Freuder, and J.C. Régin. Using Inference to Reduce Arc
Consistency Computation. In Proceedings of IJCAI’95, pages 592–599,
1995.

[13] C. Bessiere, E.C. Freuder, and J.C. Régin. Using constraint metaknowledge
to reduce arc consistency computation. Artificial Intelligence, 107:125–
148, 1999.

[14] C. Bessiere, E. Hebrard, B. Hnich, Z. Kiziltan, and T. Walsh. SLIDE:
A useful special case of the CARDPATH constraint. In Proceedings of
ECAI’08, pages 475–479, 2008.

[15] C. Bessiere and J.C. Régin. MAC and combined heuristics: two reasons
to forsake FC (and CBJ?) on hard problems. In Proceedings of CP-1996,
pages 61–75, Cambridge MA, 1996.

[16] C. Bessiere and J.C. Régin. Arc Consistency for General Constraint Net-
works: Preliminary Results. In Proceedings of IJCAI’97, pages 398–404,
1997.

[17] C. Bessiere and J.C. Régin. Refining the basic constraint propagation algo-
rithm. In Proceedings of IJCAI-2001, pages 309–315, 2001.

[18] C. Bessiere, J.C. Régin, R. Yap, and Y. Zhang. An Optimal Coarse-grained
Arc Consistency Algorithm. Artificial Intelligence, 165(2):165–185, 2005.

[19] C. Bessiere, K. Stergiou, and T. Walsh. Domain filtering consistencies for
non-binary constraints. Artificial Intelligence, 172(6-7):800–822, 2008.

[20] L. Bordeaux, G. Katsirelos, N. Narodytska, and M. Vardi. The Ccomplexity
of Integer Bound Propagation. JAIR, 40:657–676, 2011.

[21] A. Borning, K. Marriott, P. Stuckey, and Y. Xiao. Solving linear arithmetic
constraints for user interface applications. In Proceedings of the of the 10th
annual ACM symposium on User Interface Software and Technology, pages
87–96, 1997.

194

BIBLIOGRAPHY

[22] F. Boussemart, F. Hemery, and C. Lecoutre. Revision ordering heuristics
for the Constraint Satisfaction Problem. In CP-2004 Workshop on Con-
straint Propagation and Implementation, Toronto, Canada, 2004.

[23] F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais. Boosting systematic
search by weighting constraints. In Proceedings of ECAI-2004, pages 482–
486, Valencia, Spain, 2004.

[24] P. Briggs and L. Torczon. An efficient representation for sparse sets. ACM
Letters on Programming Languages and Systems, 2(1-4):59–69, 1993.

[25] K. Cheng and R. Yap. An MDD-based generalized arc consistency al-
gorithm for positive and negative table constraints and some global con-
straints. Constraints, 15(2):265–304, 2010.

[26] A. Chmeiss and L. Sais. Constraint Satisfaction Problems: Backtrack
Search Revisited. In Proceedings of ICTAI’04, pages 252–257, 2004.

[27] C.W. Choi, W. Harvey, J.H.M. Lee, and P. Stuckey. Finite Domain Bounds
Consistency Revisited. In Proceedings of the Australian Conference on AI,
pages 49–58, 2006.

[28] R. Debruyne. A strong local consistency for constraint satisfaction. In
Proceedings of ICTAI’99, pages 202–209, 1999.

[29] R. Debruyne and C. Bessiere. From restricted path consistency to max-
restricted path consistency. In Proceedings of CP’97, pages 312–326, 1997.

[30] R. Debruyne and C. Bessiere. Some practical filtering techniques for the
constraint satisfaction problem. In Proceedings of IJCAI-1997, pages 412–
417, 1997.

[31] R. Debruyne and C. Bessiere. Domain Filtering Consistencies. Journal of
Artificial Intelligence Research, 14:205–230, 2001.

[32] R. Dechter and I. Meiri. Experimental evaluation of preprocessing tech-
niques in constraint satisfaction problems. In Proceedings of IJCAI’89,
pages 271–277, 1989.

195

BIBLIOGRAPHY

[33] W. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and
A. Berthier. The constraint logic programming language chip. In Pro-
ceedings of FGCS’88, pages 693–702, 2013.

[34] H. El Sakkout, M. Wallace, and B. Richards. An Instance of Adaptive
Constraint Propagation. In Proceedings of CP’96, pages 164–178, 1996.

[35] S. Epstein, E. Freuder, R. Wallace, and X. Li. Learning propagation poli-
cies. In Proceedings of the 2nd International Workshop on Constraint Prop-
agation and Implementation, pages 1–15, 2005.

[36] S. Epstein and S. Petrovic. Learning to Solve Constraint Problems. In
ICAPS-07 Workshop on Planning and Learning, 2007.

[37] E. Freuder and C. Elfe. Neighborhood Inverse Consistency Preprocessing.
In Proceedings of AAAI’96, pages 202–208, 1996.

[38] E. Freuder and R.J. Wallace. Selective relaxation for constraint satisfaction
problems. In Proceedings of ICTAI’96, 1996.

[39] E.C. Freuder. A sufficient condition for backtrack-free search. Journal of
the ACM, 29(1):24–32, 1982.

[40] D. Frost and R. Dechter. Look-ahead value ordering for constraint satisfac-
tion problems. In Proceedings of IJCAI’95, pages 572–578, 1995.

[41] P. A. Geelen. Dual viewpoint heuristics for binary constraint satisfaction
problems. In Proceedings of ECAI-92, pages 31–35, 1992.

[42] I. P. Gent, C. Jefferson, L. Kotthoff, I. Miguel, N. C. A. Moore, P. Nightin-
gale, and K. E. Petrie. Learning when to use lazy learning in constraint
solving. In Proceedings of ECAI-2010, pages 873–878, 2010.

[43] I. P. Gent, C. Jefferson, and I. Miguel. Minion: A fast, scalable constraint
solver. In Proceedings of ECAI’06, pages 98–102, 2006.

[44] I. P. Gent, C. Jefferson, I. Miguel, and Nightingale P. Data structures for
generalised arc consistency for extensional constraints. In Proceedings of
AAAI’07, pages 191–197, 2007.

196

BIBLIOGRAPHY

[45] I.P. Gent, E. MacIntyre, P. Prosser, P. Shaw, and T. Walsh. The constraind-
edness of arc consistency. In Proceedings of CP-97, pages 327–340, 1997.

[46] C. Gomes, J. van Hoeve, A. Sabharwal, and B. Selman. Counting CSP
Solutions Using Generalized XOR Constraints. In AAAI, pages 204–209,
2007.

[47] F. Grandoni and G. Italiano. Improved Algorithms for Max-Restricted Path
Consistency. In Proceedings of CP’03, pages 858–862, 2003.

[48] R.M. Haralick and Elliott. Increasing tree search efficiency for constraint
satisfaction problems. Artificial Intelligence, 14:263–314, 1980.

[49] W. Harvey and P. Stuckey. Improving linear constraint propagation by
changing constraint representation. Constraints, 8(2):173–207, 2003.

[50] S. Hoda, W. van Hoeve, and J.N. Hooker. A systematic approach to MDD-
based constraint programming. In Proceedings of CP’10, pages 266–280,
2010.

[51] W. Hower and W.H. Graf. A bibliographical survey of constraint-based
approaches to cad, graphics, layout, visualization, and related topics.
Knowledge-Based Systems, 9:449–464, 1996.

[52] S.A. ILOG. Ilog solver 6.0 user’s manual, 2003.

[53] P. Janssen, P. Jégou, B. Nouguier, and M.C. Vilarem. A filtering process
for general constraint satisfaction problems: Achieving pairwise consis-
tency using an associated binary representation. In Proceedings of IEEE
Workshop on Tools for Artificial Intelligence, pages 420–427, 1989.

[54] P. Jégou. On the Consistency of General Constraint Satisfaction Problems.
In Proceedings of AAAI’93, pages 114–119, 1993.

[55] P. Jégou and C. Terrioux. A new filtering based on decomposition of con-
straint sub-networks. In Tools with Artificial Intelligence (ICTAI), 2010
22nd IEEE International Conference on, volume 1, pages 263–270, 2010.

197

BIBLIOGRAPHY

[56] U. Junker. Preference-Based Problem Solving for Constraint Programming.
In CSCLP, pages 109–126, 2007.

[57] S. Karakashian, R. Woodward, C. Reeson, B. Choueiry, and C. Bessiere.
A first practical algorithm for high levels of relational consistency. In Pro-
ceedings of AAAI’10, pages 101–107, 2010.

[58] G. Katsirelos and T. Walsh. A compression algorithm for large arity ex-
tensional constraints. In Proceedings of CP’07, pages 379–393. Springer-
Verlag, 2007.

[59] A. R. KhudaBukhsh, L. Xu, H. H. Hoos, and K. Leyton-Brown. SATen-
stein: Automatically building local search SAT solvers from components.
In Proceedings of IJCAI-2009, pages 517–524, 2009.

[60] L. Kotthoff, I. Miguel, and P. Nightingale. Ensemble Classification for
Constraint Solver Configuration. In Proceedings of CP’2010, pages 321–
329, 2010.

[61] K. Kritikos and D. Plexousakis. Mixed-Integer Programming for QoS-
Based Web Service Matchmaking. IEEE T. Services Computing, 2(2):122–
139, 2009.

[62] F. Laburthe and N. Jussien. Choco constraint programming system. Avail-
able at http://choco.sourceforge.net, 2003–2011.

[63] C. Lecoutre. Str2: optimized simple tabular reduction for table constraints.
Constraints, 16(4):341–371, 2011.

[64] C. Lecoutre, F. Boussemart, and F. Hemery. Exploiting multidirectionality
in coarse-grained arc consistency algorithms. In Proceedings of the 9th In-
ternational Conference on Principles and Practice of Constraint Program-
ming (CP-2003), pages 480–494, 2003.

[65] C. Lecoutre and S. Cardon. A greedy approach to establish Singleton Arc
Consistency. In Proceedings of IJCAI-2005, pages 199–204, 2005.

[66] C. Lecoutre, S. Cardon, and J. Vion. Conservative Dual Consistency. In
Proceedings of AAAI’07, pages 237–242, 2007.

198

BIBLIOGRAPHY

[67] C. Lecoutre, S. Cardon, and J. Vion. Second-order consistencies. J. Artif.
Int. Res., 40(1):175–219, 2011.

[68] C. Lecoutre and F. Hemery. A study of residual supports in arc consistency.
In Proceedings of IJCAI-2007, pages 125–130, 2007.

[69] C. Lecoutre, C. Likitvivatanavong, and R. H. C. Yap. A path-optimal gac
algorithm for table constraints. In ECAI, pages 510–515, 2012.

[70] C. Lecoutre and P. Prosser. Maintaining Singleton Arc Consistency. In
3rd International Workshop on Constraint Propagation And Implementa-
tion (CPAI’06), pages 47–61, 2006.

[71] C. Lecoutre, L. Sais, S. Tabary, and V. Vidal. Nogood recording from
restarts. In Proceedings of IJCAI’07, pages 131–136, 2007.

[72] C. Lecoutre and R. Szymanek. Generalized arc consistency for positive
table constraints. In Proceedings of CP’06, pages 284–298, 2006.

[73] O. Lhomme. Consistency techniques for numeric csps. In Proceedings of
IJCAI-93, pages 232–238, 1993.

[74] O. Lhomme. Arc-consistency filtering algorithms for logical combinations
of constraints. In Proceedings of CPAIOR’04, pages 209–224, 2004.

[75] O. Lhomme and J.C. Régin. A fast arc consistency algorithm for n-ary
constraints. In Proceedings of AAAI’05, pages 405–410, 2005.

[76] C. Likitvivatanavong, Y. Zhang, J. Bowen, and Freuder E.C. Arc consis-
tency in mac: A new perspective. In Proceedings of CPAI04, pages 93–107,
2004.

[77] C. Likitvivatanavong, Y. Zhang, J. Bowen, S. Shannon, and E. Freuder. Arc
Consistency during Search. In Proceedings of IJCAI-2007, pages 137–142,
2007.

[78] A. Mackworth. Consistency in Networks of Relations. Artificial Intelli-
gence, pages 99–118, 1977.

199

BIBLIOGRAPHY

[79] A.K. Mackworth. On reading sketch maps. In Proceedings IJCAI’77, pages
598–606, 1977.

[80] J.B. Mairy, P. Hentenryck, and Y. Deville. An Optimal Filtering Algorithm
for Table Constraints. In CP, pages 496–511, 2012.

[81] K. Marriott and S.S. Chok. Qoca: A constraint solving toolkit for interac-
tive graphical applications. Constraints, 7(3-4):229–254, 2002.

[82] D. Mehta and M.R.C. van Dongen. Probabilistic Consistency Boosts MAC
and SAC. In Proceedings of IJCAI’07, pages 143–148, 2007.

[83] S. Minton. Automatically Configuring Constraint Satisfaction Programs:
A Case Study. Constraints, 1(1/2):7–43, 1996.

[84] R. Mohr and T.C. Henderson. Arc and path consistency revisited. Artificial
Intelligence, 28:225–233, 1986.

[85] R. Mohr and T.C. Henderson. Arc and path consistency revisited. Artificial
Intelligence, 28:225–233, 1986.

[86] R. Mohr and G. Masini. Good Old Discrete Relaxation. In Proceedings of
ECAI’88, pages 651–656, 1988.

[87] U. Montanari. Network of constraints: Fundamental properties and appli-
cations to picture processing. Information Science, 7:95–132, 1974.

[88] P. Prosser, K. Stergiou, and T. Walsh. Singleton consistencies. In Proceed-
ings of CP’00, pages 353–368, 2000.

[89] P. Refalo. Impact-based search strategies for constraint programming. In
Proceedings of CP 2004, pages 556–571, 2004.

[90] A. Ruiz Cortés, O. Martı́n-Dı́az, A. Durán, and M. Toro. Improving the
Automatic Procurement of Web Services Using Constraint Programming.
International Journal of Cooperative Information Systems, 14(4):439–468,
2005.

200

BIBLIOGRAPHY

[91] D. Sabin and E.C. Freuder. Contradicting conventional wisdom in con-
straint satisfaction. In Proceedings of CP ’94, pages 10–20, 1994.

[92] D. Sabin and E.C. Freuder. Understanding and Improving the MAC Algo-
rithm. In Proceedings of CP-1997, pages 167–181, 1997.

[93] N. Samaras and K. Stergiou. Binary Encodings of Non-binary CSPs: Al-
gorithms and Experimental Results. JAIR, 24:641–684, 2005.

[94] C. Schulte, M. Lagerkvist, and G. Tack. Gecode solver. Available at
http://www.gecode.org, 2011.

[95] C. Schulte and P. Stuckey. Dynamic analysis of bounds versus domain
propagation. In Proceedings of ICLP ’08, pages 332–346, 2008.

[96] C. Schulte and P. J. Stuckey. When do bounds and domain propagation lead
to the same search space? ACM Trans. Program. Lang. Syst., 27(3):388–
425, 2005.

[97] C. Schulte and P.J. Stuckey. Efficient Constraint Propagation Engines. ACM
Trans. Program. Lang. Syst., 31(1):1–43, 2008.

[98] B.M. Smith. The brelaz heuristic and optimal static orderings. In Proceed-
ings of CP’99, pages 405–418, 1999.

[99] K. Stergiou. Strong inverse Consistencies for Non-Binary CSPs. In Pro-
ceedings of ICTAI’07, pages 215–222, 2007.

[100] K. Stergiou. Heuristics for Dynamically Adapting Propagation. In Pro-
ceedings of ECAI’08, pages 485–489, 2008.

[101] K. Stergiou and T. Walsh. Inverse Consistencies for Non-Binary Con-
straints. In Proceedings of ECAI’06, pages 153–157, 2006.

[102] M. Trick. A Dynamic Programming Approach for Consistency and Propa-
gation for Knapsack Constraints. Anals OR, 118:73–84, 2003.

[103] J. R. Ullmann. Partition search for non-binary constraint satisfaction. Inf.
Sci., 177(18):3639–3678, 2007.

201

BIBLIOGRAPHY

[104] P. van Beek. Backtracking Search Algorithms. In F. Rossi, P. van Beek,
and T. Walsh, editors, Handbook of Constraint Programming, chapter 4.
Elsevier, 2006.

[105] P. van Beek and R. Dechter. On the Minimality and Global Consistency of
Row-convex Constraint Networks. JACM, 42(3):543–561, 1995.

[106] J. Vion and R. Debruyne. Light Algorithms for Maintaining Max-RPC
During Search. In Proceedings of SARA-2009, 2009.

[107] R. Wallace and E. Freuder. Ordering heuristics for arc consistency algo-
rithms. In AI/GI/VI, pages 163–169, Vancouver, British Columbia, Canada,
1992.

[108] R. J. Woodward, S. Karakashian, B. Y. Choueiry, and C. Bessiere. Solving
difficult csps with relational neighborhood inverse consistency. In AAAI,
pages 112–119, 2011.

[109] Y. Xu, D. Stern, and H. Samulowitz. Learning Adaptation to solve Con-
straint Satisfaction Problems. In Proceedings of Learning and Intelligent
Optimization (LION), 2009.

[110] R. Zabih. Some applications of graph bandwith to constraint satisfaction
problems. In Proceedings of AAAI’90, pages 46–51, 1990.

[111] Y. Zhang and R. Yap. Making AC-3 an optimal algorithm. In Proceedings
of IJCAI-2001, pages 316–321, 2001.

[112] Y. Zhang and R. H. C. Yap. Arc consistency on n-ary monotonic and linear
constraints. In Proceedings of CP’00, pages 470–483, 2000.

[113] Z. Zhang and S. L. Epstein. Learned Value-Ordering Heuristics for Con-
straint Satisfaction. In Proceedings of STAIR-08 Workshop at AAAI-2008,
2008.

202

	Introduction
	Definition of the problem
	Contributions
	Structure and content

	Background
	Constraint Satisfaction Problems
	Formal Definitions
	Constraint Propagation
	Backtracking search algorithms
	Maintaining a local consistency during search
	Variable/Value ordering heuristics
	Branching schemes

	Constraint Solvers
	Our CSP solver

	Related work
	Binary Constraints
	Arc Consistency
	Strong local consistencies

	Non-Binary Constraints
	Generalized Arc Consistency
	Bounds consistency
	Strong Local Consistencies
	Relation Filtering Consistencies

	Table Constraints
	Adaptive Propagation

	New efficient maxRPC algorithms for Binary CSPs
	Introduction
	New Algorithms for maxRPC
	maxRPC3
	maxRPC3rm
	Light maxRPC
	Correctness and Complexities

	Further exploitation of residues in maxRPC algorithms
	maxRPC3-resOpt
	maxRPC3-start

	Heuristics for maxRPC Algorithms
	Experiments
	d-way branching
	Heuristics
	Interleaving AC and maxRPC

	Conclusion

	Strong Local Consistencies for Non-Binary (Table) Constraints
	Introduction
	Algorithm maxRPWC+
	Algorithm description
	Theoretical Results
	A lighter version of maxRPWC+

	Extending STR to a higher-order consistency
	The HOSTR* algorithm
	Theoretical Results

	Experiments
	Preprocessing
	Search

	maxRPWC+ for Intensional Constraints
	An extension of GAC2001/3.1 derived from maxRPWC+
	Comparing GAC+ to GAC2001/3.1

	Conclusion

	Higher-order Consistencies for Table Constraints using Counters
	Introduction
	Extending STR
	Enforcing FPWC
	Experimental Results
	Conclusion

	Adaptive Propagation
	Introduction
	Adaptive Propagator Selection
	Experiments
	Evaluating the heuristics
	Are revisions after DWOs important?

	Refining the heuristics
	Effects of different Queue ordering and Branching scheme

	Conclusion

	Strong Bounds Consistencies
	Introduction
	PairWise Bounds Consistency
	Linear constraints
	Preliminaries
	Theoretical results for linear inequalities
	A PWBC algorithm for linear inequality constraints

	Applications
	Case Study 1: Web Services
	Case Study 2: Constraint-based Graphics

	Experiments
	Web Services
	Random Problems

	Conclusion

	Conclusions and Future Work
	Conclusions
	Future Work

