
Improving Scheduling by Learning

Andreas Schutt

Submitted in total fulfilment of the requirements

of the degree of Doctor of Philosophy

June 2011

Department of Computer Science and Software Engineering

The University of Melbourne

Produced on archival quality paper

To my parents

Abstract

Scheduling problems appear in many industrial problems with different facets and

requirements of a solution. A solution is a schedule of a set of activities subject to

constraints such as precedence relations and resource restrictions on the maximum

number of concurrent activities. This dissertation presents new deductive techniques

for precedence and cumulative resource constraints in constraint programming to

improve solution processes of combinatorial scheduling problems, in particular, and

combinatorial problems, in general.

Due to their intractability, many schedulers either solve a simplified problem or

are tailored to a specific problem, but are inflexible with respect to changes in the

problem statement. Constraint Programming (Cp) offers a powerful framework

for combinatorial problems which also tackles the demand of flexibility of changes

in the problem statement due to a strict separation of problem modelling, search

algorithms, and high-specialised deduction techniques. Moreover, recent advanced

Cp solvers such as lazy clause generation (Lcg) additionally include sophisticated

conflict learning technologies. Their efficiency depends, amongst other things, on

reusable explanations formulated by deductive algorithms.

Unit two variable per inequality (Utvpi) constraints are one of the largest integer

constraint class that is solvable in polynomial time. These constraints can model

precedence relations between activities. A new theoretical result about reasoning of

Utvpi systems is shown, based on that, new incremental deductive algorithms are

created for manipulating Utvpi constraints including satisfiability, implication, and

explanation. These algorithms are asymptotically faster on sparse Utvpi systems

than current algorithms.

Cumulative constraints enforce resource restrictions in scheduling problems. We

show how, by adding explanation to the cumulative constraint in an Lcg solver,

we can solve resource-constrained project scheduling problems far faster than other

comparable methods. Furthermore, a complete Lcg-based approach including cu-

mulative constraints is developed for an industrial carpet cutting problem. This

approach outperforms the current incomplete method on all industrial instances

provided.

Declaration

This is to certify that

(i) the thesis comprises only my original work,

(ii) due acknowledgement has been made in the text to all other material used,

(iii) the thesis is less than 100,000 words in length, exclusive of table, maps, bibli-

ographies, appendices, and footnotes.

Signature

Date

Preface

The research herein resulted from numerous discussions with my supervisor, Prof.

Peter J. Stuckey, and his replacement, Prof. Mark G. Wallace, during his sabbatical.

Chapters 4 and 5 present work that are based on a lazy clause generation solver which

was implemented by Dr Thibaut Feydy. He helped me to fix bugs that I discovered

in this solver. Dr Andrew R. Verden collaborated on the industrial carpet cutting

problem (Chap. 6) by providing the industrial instances and giving insights into the

current solution method.

The main part of this dissertation has already been published or is under review

in the following papers.

• Incremental Satisfiability and Implication for UTVPI Constraints. INFORMS

Journal on Computing 22(4) 514–527, 2010.

– Joint work with Peter J. Stuckey.

– Part of Chap. 3.

• Why cumulative decomposition is not as bad as it sounds. Ian Gent, ed.,

Proceedings of the 15th International Conference on Principles and Practice

of Constraint Programming , LNCS , vol. 5732, 2009. Springer-Verlag, 746–

761.

– Joint work with Thibaut Feydy, Peter J. Stuckey, and Mark G. Wallace.

– Part of Chap. 4 and 5.

• Explaining the cumulative propagator. Constraints 16(3) 250–282, 2011.

– Joint work with Thibaut Feydy, Peter J. Stuckey, and Mark G. Wallace.

– Part of Chap. 4 and 5.

• Solving Rcpsp/max by Lazy Clause Generation. Submitted to Journal of

Scheduling. Earlier version available at http://arxiv.org/abs/1009.0347.

– Joint work with Thibaut Feydy, Peter J. Stuckey, and Mark G. Wallace.

– Part of Chap. 5.

http://arxiv.org/abs/1009.0347

• Optimal Carpet Cutting. Jimmy Lee, ed., Proceedings of the 17th Inter-

national Conference on Principles and Practice of Constraint Programming ,

LNCS , vol. 6876, 2011. Springer-Verlag, 69–84.

– Joint work with Peter J. Stuckey and Andrew R. Verden.

– Part of Chap. 6.

Acknowledgement

First and foremost, I would like to thank my supervisor Prof. Peter J. Stuckey.

Without his excellent support, patience, and guidance none of this thesis would have

been possible. To him I owe most of my understanding of Boolean satisfiability

and satisfiability modulo theories solving. Thanks are also due to my advisory

committee, Prof. Mark G. Wallace and Dr. Zoltan Somogyi, for their availability

and comments, especially Mark who supervised me during the Peter’s sabbatical.

This dissertation has been funded by The University of Melbourne and National

ICT Australia, Victoria, as a part of an enhanced PhD program. In addition,

I am grateful to National ICT Australia for giving me the opportunity to attend

conferences and visit a leading laboratory in my field at L’École des Mines de Nantes,

France.

I am indebted to IF Computer GmbH and Dr Andrew R. Verden for providing

me not only industrial data for their carpet cutting problem, but also sharing their

knowledge and results with me.

I am very thankful to all members, past and current, of the Victorian G12 team

in National ICT Australia in which I worked: Peter, Mark, Zoltan, Prof. Kim

Marriott, A/Prof. Maria Garcia de la Banda, Dr Sebastian Brand, Mark Brown, Dr

Leslie De Koninck, Dr Thibaut Feydy, Julien S. Fischer, Dr Alexander D. Stivala, Dr

Ralph Becket, Paul Bone, Dr Gregory J. Duck, Dr Nicholas Nethercote, Dr Jakob

Puchinger, and Dr Horst Samulowitz. It has been a wonderful and dynamic group

to work with. I am glad for all their help and the discussions, thesis related or

not, during my doctoral studies, especially Julien, Leslie, Sebastian, and Thibaut.

Furthermore, I am greatly indebted to Alexander and Sebastian who were very

enthusiastic in the proof-reading of this thesis; without them the thesis would look

worse.

I was introduced to the worlds of Constraint Programming and research when

I was working for the group PlanT at Fraunhofer FIRST, Berlin, Germany. This

was a great time and experience for me which influenced my decision to continue

research in this area. I am greatly indebted to Dr Armin Wolf who was my Master

thesis supervisor and introduced me the cumulative resource constraint. A special

thanks are also due to Prof. Ulrich Geske, Dr Hans-Joachim Goltz, and Dr Dirk

Matzke as well as the other members of the former group.

Without my friends and colleagues from the Computer Science and Software En-

gineering Department the PhD life would not be so funny and happy; you were the

spice in my soup. I am especially grateful to Dr Jubaer Arif, Raj K. Gaire, Tanzima

Hashem, Dr Marco A. S. Netto, Dr Hua Jie “Jason” Lee, Dr Zi Zhao “Robert”

Lieu, Adel Nadjaran-Toosi, Dr Lei Ni, Dr Suraj Pandey, Dr Mukaddim Pathan, Dr

Ziyuan Wang, Archana Sathivelu, Dr Christian Vecchiola, Dr Srikumar Venugopal,

William Voorsluys, Guey Yong “Camella” Chee, Châu Tr`ân Tú Anh, and Vũ Thi.

Ánh Tuyê´t also for their help and advice in all matters of life.

I wish to give whole-hearted thanks to my parents and brothers for their amazing

support and dedication over all stages of my life. In particular, I am indebted forever

to my parents for their fight for my timely education. Without their fight and belief

in me I may not have been able to attend any university. Vielen Dank für Eure

selbstlose Unterstützung. Ihr seid großartige Eltern und Brüder.

I thank the examiners for their work and comments which have helped to improve

the content of the thesis.

Finally, I would like to thank my friends in Germany, in particular Nicole, René,

and Sven, and my fiancée Tiên for their strong support, especially Tiên for her

patience and understanding during these years. No-one is happier to see this disser-

tation completed than she is.

Andreas Schutt

Melbourne, Australia

June 2011.

Contents

1 Introduction 1
1.1 Current Approaches . 1
1.2 Constraint-based Solving with Learning 3
1.3 Focus of this Thesis . 4
1.4 Overview . 5

2 Basic Principles 7
2.1 Constraint Programming . 7

2.1.1 Constraint Satisfaction Problem 8
2.1.2 Solving . 10
2.1.3 Optimisation . 19

2.2 Finite Domain Propagation . 20
2.2.1 Common Constraints . 21

2.3 Boolean Satisfiability Solving . 23
2.3.1 Solving . 24
2.3.2 Conflict Learning and Non-Chronological Backtracking 26
2.3.3 Conflict-driven Search and Restarts 29

2.4 Lazy Clause Generation . 30
2.4.1 Variable Representation . 31
2.4.2 Explaining Propagators . 32
2.4.3 Conflict-driven Search and Optimisation 36
2.4.4 Background . 36

2.5 Satisfiability Modulo Theories . 37
2.5.1 Solving . 39
2.5.2 Comparison to Lazy Clause Generation Solving 43

3 Satisfaction and Implication Algorithms for UTVPI 45
3.1 Introduction . 46
3.2 Preliminaries . 48

3.2.1 Difference Constraints . 49
3.2.2 UTVPI Constraints . 49

3.3 Lahiri and Musuvathi’s Approach . 50
3.4 Incremental UTVPI Satisfaction . 53
3.5 Incremental UTVPI Implication . 56
3.6 Experimental Results . 62
3.7 Non-Incremental Implication Checking and Generation 65
3.8 Generation of Minimal Unsatisfiable Subsets and Minimal Implicants 67
3.9 Final Remarks . 72

4 Explaining the Propagation of the Cumulative Constraint 73
4.1 Introduction . 73

4.2 Cumulative Resource Scheduling . 76
4.2.1 Reasoning about the Compulsory Parts 78
4.2.2 Reasoning about the Energies 78

4.3 Related Work on Explanations . 80
4.4 Propagating the Cumulative Constraint by Decomposition 81

4.4.1 Time Decomposition . 82
4.4.2 Activity Decomposition . 85

4.5 Explanations for Cumulative Propagators 86
4.5.1 Consistency Check . 87
4.5.2 Time-Table Filtering . 89
4.5.3 (Extended) Edge-Finding Filtering 92

4.6 Explanation Extensions for Cumulative Propagators 96
4.6.1 Time-Table Consistency Check 97
4.6.2 Time-Table Filtering . 98
4.6.3 Strengthening of Explanations for Time-Table Algorithms . . 99

4.7 Final Remarks . 104

5 Experiments on RCPSPs 107
5.1 Introduction . 107
5.2 Related Work . 109

5.2.1 RCPSP . 109
5.2.2 RCPSP/max . 111
5.2.3 Other Related Works . 112

5.3 Resource-Constrained Project Scheduling Problems 113
5.3.1 Model . 114
5.3.2 Search Strategies . 116
5.3.3 Experiments . 118

5.4 RCPSP with Generalised Precedence Relations 126
5.4.1 Model . 127
5.4.2 Search Strategies . 130
5.4.3 Experiments . 132

5.5 Final Remarks . 145

6 Carpet Cutting — An Application 149
6.1 Introduction . 149
6.2 The Carpet Cutting Problem . 152
6.3 Static Model . 155

6.3.1 Dealing with Orientations . 155
6.3.2 Stair Carpets . 156
6.3.3 The Model . 159

6.4 Dynamic Model . 160
6.4.1 Orientation . 160
6.4.2 Edge Filler Carpets . 161
6.4.3 The Model . 161

6.5 Refining the Models . 162
6.5.1 Variable Views . 162
6.5.2 Disjunction and Better diff2 Decomposition 162

6.5.3 Symmetry Breaking Constraints 167
6.5.4 Forbidden Gaps . 167

6.6 Search Strategies . 168
6.6.1 First Solution Generation . 168
6.6.2 Minimisation . 168

6.7 Experiments . 169
6.8 Final Remarks . 170

7 Conclusion 173
7.1 Summary . 173
7.2 Outlook . 174

References 176

List of Figures

2.1 The corresponding search tree for Ex. 2.9. 16
2.2 The implication graph for Ex. 2.18. 27
2.3 The corresponding search tree for Ex. 2.20. 28
2.4 Framework of the reengineered version of the Lcg generator (adapted

from Feydy 2010). 31
2.5 The corresponding search tree for Ex. 2.26. 34

3.1 (a) Gφ′ for φ′ of Example 3.2 which is Q-satisfiable but not Z satis-
fiable. (b) a zero weight cycle in Gφ′ . (c) Gφ for φ of Example 3.1.
. 52

3.2 The outer cycle is one possible tracked cycle whose corresponding
constraint set is not minimal. The steps of IncConDiff are shown
on the right-hand side. 68

3.3 Two possible patterns of constraint graph of a non-minimal unsatis-
fiable constraint set arising from a simple negative-weight cycle. In
Pattern A PQRS is a negative cycle but PR̄ may represent a nega-
tive cycle derived from a strict subset of the constraints. In Pattern
B PQRS is a negative cycle but either PQRQ̄ or PS̄RS may be
negative cycles derived from a strict subset of the constraints. 69

4.1 A small cumulative resource problem, with 6 activities to place in the
5x20 box, with activity a before b before c, and activity d before e. . 74

4.2 The compulsory part of an activity (on the bottom) deduced from
the earliest start time (on the top) and the latest completion time
(on the bottom). 78

4.3 An example of propagation of the cumulative constraint. 83
4.4 An example of an inconsistent partial schedule for the cumulative

constraint. 89
4.5 The left hand side of the figure illustrates the available energy within

the interval [sΩ .. eΩ] plus the additional energy ojΩ when activity j
starts earlier than sΩ, while the right hand side illustrates the required
energy if j starts earlier than all activities in Ω. For the illustrated
situation we have j = f, lb(s[j]) = 0 and Ω = {b, c, e}. Since there is
unused energy (the shaded area) no propagation occurs. 93

4.6 (a) An example of propagation of the cumulative constraint using
edge-finding. (b) The result of propagating after the first step of
stepwise edge-finding. 95

4.7 (a) shows all possible combinations for the processing time and re-
source usages; (b) shows the resource R with the flexible resource
capacity between 3 and 6; and (c) an optimal schedule with respect
to R = 5. 96

5.1 Left the activity-on-node network, and right a solution to a small
Rcpsp/max problem. 128

6.1 Example of a carpet cutting instance. 150
6.2 The origin of a room carpet and its rectangles in each orientation (a).

Possible partitions for a stair carpet (b) and an edge filler carpet (c). 153
6.3 A solution (split into two parts) for Cc instance with 34 room carpets

(involving 74 rectangles) and 2 stair carpets (involving 7 rectangles).
The roll length is about 93m to a granularity of 1cm. 155

6.4 The room carpet is depicted in one orientation. It is made up by
the rectangles A, B, and C. On the left side the room carpet is
shown with its tightest enclosing rectangle (dotted lines) and the
width maxW of this rectangle. On the right side the minimal ac-
cumulated width minW of the carpet is indicated across the length
of the carpet. 163

6.5 Calculation of the values top and bottom for the green, blue, gold, and
pink rectangle which belong the one room carpet. In each sub-figure
the coloured horizontal lines represent the value top or bottom for the
same coloured rectangle. 166

6.6 A carpet roll is shown where two room carpets are directly placed on
the top and the bottom border of the roll. In the middle of the roll, for
each room carpet a possible compulsory part of the coloured rectangle
is drawn. Each sub-figure shows one example of two rectangles which
satisfy (6.15). 166

List of Tables

3.1 Transformation from Utvpi constraint c to associated difference con-
straints D(c) to edges in the constraint graph E(c). 51

3.2 Average runtime in seconds of the satisfiability algorithms 64
3.3 Average runtime in seconds of the implication algorithms 65

5.1 Results on j30 instances . 119
5.2 Results on BL instances . 120
5.3 Results of the Fd solvers on the j30 instances 121
5.4 Results of the Fd solvers on the BL instances 121
5.5 Results on the modified j30 instances 122
5.6 Results on j60 instances for TimeD and global propagator 123
5.7 Results on j90 instances for TimeD and global propagator 123
5.8 Results on j120 instances for TimeD and global propagator 123
5.9 Comparison between state-of-the-art methods on j60 124
5.10 Comparison between state-of-the-art methods on j90 124
5.11 Comparison between state-of-the-art methods on j120 124
5.12 Closed instances . 126
5.13 New lower bounds on all instances . 127
5.14 Comparison on the test sets CD, UBO, and SM. 134
5.15 Results on the testset CD. 135
5.16 Results on the testset UBO for ubo10, ubo20, ubo50 and ubo100

instances in comparison with FbsF01, DmF01, and GaF01. 137
5.17 Results on the testset UBO for ubo10, ubo20, ubo50 and ubo100

instances in comparison with Eva. 137
5.18 Results on the testset UBO for ubo200 instances. 138
5.19 Results on the j30. 140
5.20 All closed instances from class c. 141
5.21 All closed instances from class d. 142
5.22 All closed instances from class j20. 143
5.23 All closed instances from class j30. 143
5.24 All closed instances from class ubo10. 143
5.25 All closed instances from class ubo20. 144
5.26 All closed instances from class ubo50. 144
5.27 All closed instances from class ubo100. 144
5.28 All closed instances from class ubo200. 145
5.29 All new UB for instances from all classes. 146

6.1 All dominating partitions for various lengths n where the minimal
step length k is 2, and maximal pieces is n (so effectively no limit on
pieces). 158

6.2 Comparison between dynamic and static approach. 170

6.3 Results of different refinements. 170

1
Introduction

S
cheduling is a broad area with many facets and different requirements on

a solution, e.g. robustness, optimality, or fast-to-generate. This dissertation

focuses on the optimal solution generation of combinatorial scheduling prob-

lems involving scarce cumulative resources. The techniques developed herein are

tied to particular constraints that occur in such scheduling problems. Hence, these

techniques are only one part of the generation process. Moreover, their usage is not

restricted to scheduling problems. They can be applied to any combinatorial prob-

lem that involves these constraints, i.e., the techniques are versatile. For instance,

we apply one technique also to an industrial placement problem.

Due to the intractability of these combinatorial problems, no complete method—

methods that find and prove optimal solutions—exists that can solve any problem in

polynomial time, unless P = NP . But this does not mean that all problems are not

solvable in polynomial time or, more importantly, cannot be solved in a reasonable

amount of time. Research focusses on improving solution methods, so that more

and larger problems can be solved in a timely manner.

Although complete methods might not be applicable to solve large-scale problems,

they can be combined with incomplete methods in order to optimally solve smaller

subproblems. Moreover, they can be truncated in time, i.e., aborted after a certain

amount of runtime has elapsed, or used for the evaluation of incomplete methods.

More importantly, only complete methods can prove the infeasibility of a problem.

1.1 Current Approaches

Complete and incomplete methods for combinatorial scheduling problems have most-

ly been proposed from Artificial Intelligence, Constraint Programming (Cp), and

2 Chapter 1. Introduction

Operations Research communities.

Incomplete methods are mainly meta-heuristics, e.g. ant colony optimisation, evo-

lutionary algorithms, simulated annealing. Depending on the meta-heuristic, they

start with one solution or more. These solutions are improved in an iterative pro-

cess that moves from the current solution to another solution in the neighbourhood.

Consequently, the meta-heuristics can converge to a local optimum. Thus, they

cannot be guaranteed to find an optimal or a close-to-optimal solution.

The efficiency of these methods depends on the encoding of solutions and a fine-

tuning of the parameters of the meta-heuristics. Typically, the encoding exploits

problem-specific characteristics and the fine-tuning is made on sample instances

of the problem. Therefore, they may be invalid if the problem changes, i.e., if

constraints are added or removed from the problem.

Overall, these methods are fast algorithms to obtain good solutions, but they are

inflexible for changes in the problem.

In contrast to the incomplete methods, complete methods exhaustively explore

the search space. Thus, they can prove the infeasibility of a problem and find the

optimal solution. But they may not solve the problem in a timely manner, because

of the intractability of the problem.

The search is based on a search algorithm which stepwise builds a solution. Usu-

ally, scheduling solutions enhance the search algorithm with dominance rules in order

to drastically reduce the search space. Dominance rules define a partial order on

the set of solutions. Instead of exploring all solutions the search algorithm only ex-

plores the dominant solutions. These rules are normally deduced from the problem

considered and tightly connected to the search algorithm. Hence, these rules may

not be applicable if the search algorithm changes or invalid if the problem changes.

Generic methods are flexible to changes in the problem statement, but they are

often viewed not to be competitive methods with tailor-made methods. One rea-

son is that they do not deploy learning methods or efficient learning methods. The

techniques developed herein are embedded in solvers that use efficient learning tech-

nologies and follow the Cp paradigm of a strict separation of problem modelling,

search algorithms, and highly-specialised deductive techniques which prune parts

without any solution from the search space.

This strict separation results not only in a flexible framework in which an alter-

nation of the problem statement can be easily accommodated, but also in efficient

optimal solving of a large variety of problems. Furthermore, the separation allows

the application of the developed techniques to any problem that involves the corre-

sponding constraints.

1.2 Constraint-based Solving with Learning 3

1.2 Constraint-based Solving with Learning

A constraint-based solving method assumes a problem consisting of variables, their

respective domains, i.e., values they can take, and constraints over variables. The

goal is to determine if the problem is solvable, or to find an optimal solution if an

objective function is given. A solution is an assignment of values from the domains

to the respective variables, so that the assignment meets all constraints.

The solution process can be seen as a traversal of a search tree (decision tree).

A basic search algorithm determines how to traverse the tree from the root node

to the leaves. In each node, the search algorithm branches over the problem, i.e.,

splits the problem into several subproblems, and decides which branch (subproblem)

to explore next. If the search reaches a leaf then it either found a solution of

the original problem or detected a conflict, i.e., it proved the infeasibility of the

subproblem. In the latter, the search backtracks to the previous node and explores

another unexplored branch from the node. The search continues until a solution is

found or the infeasibility of the original problem is proven by fully exploring the

search tree.

This basic search scheme is enriched with constraint propagation and conflict

learning for some advanced constraint-based solvers.

Constraint propagation is a repeated execution of deduction techniques (called

constraint propagators) for each constraint, which remove inconsistent values from

the domains of variables, until no further deduction can be made. These constraint

propagators are highly-specialised deduction techniques which are independently

run without knowledge of other constraint propagators. These domain reductions

can lead to pruning of some inconsistent subtrees, i.e., trees containing no solutions,

from the tree rooted at the current node. Thus, the search does not have to explore

those subtrees. The constraint propagation is performed in each node before the

search branches.

Conflict learning is another technique to cut inconsistent parts of the search tree,

but it is more complex than constraint propagation. If the search hits a conflict node

then conflict learning is initiated. It deduces a new constraint (called a nogood)

taking account of previous search decisions and/or domain reductions performed

by constraint propagators. Then this nogood is temporarily or permanently added

to the set of constraints of the original problem. Hence, it is propagated during

constraint propagation in the remaining search.

If conflict learning considers domain reductions then each constraint propagator

is required to explain its propagation. But it should be explained in an efficient way,

and in the strongest possible way, otherwise the inferred nogood is weak, i.e., its

4 Chapter 1. Introduction

propagation only causes limited reduction of the remaining search.

In addition, advanced solvers collect information during conflict learning in order

to drive a generic search based on that information (e.g. counters reflecting the

number of appearances of variables in conflicts) and to skip search nodes that are

not related to the conflict, while backtracking. The latter case avoids the exploration

of parts of the tree that are not related to the recent conflict; thus, those parts are

infeasible.

Constraint propagation and conflict learning are very beneficial techniques for

optimising a problem, because they can drastically reduce the search space that

must be fully explored by the search. In addition, conflict-driven search is a generic

search that performs well on average on hard problems.

1.3 Focus of this Thesis

In the previous section, a brief constraint-based solving scheme was given. In order

to improve the solution process it is enough to improve an important part, e.g.

building faster constraint propagators.

Boolean satisfiability (Sat) solvers are one form of heavily engineered constraint-

based solver. They combine the advanced techniques of constraint propagation,

conflict learning, and conflict-driven search with a very efficient implementation

which can handle millions of constraints and hundreds of thousands of variables.

Due to the fact that a problem must be encoded with Boolean variables and clauses,

the limits in terms of a high-level model is much lower.

Recently, lazy clause generation (Lcg) has been proposed, which encodes a prob-

lem on a higher level, but lazily transforms the problem into a Sat problem. This

allows an Lcg solver to use the advanced Sat technologies while efficiently solving

problems that a Sat solver cannot handle directly.

The same approach underlies in modern satisfiability modulo theories (Smt)

solvers. We develop the following techniques and solution approaches applicable

to these solving approaches.

Unit two variables per inequality constraints: These constraints are one of

the largest linear integer constraint classes that is solvable in polynomial time.

They have the form ±x ± y ≤ d where x and y are integer variables and d

an integer constant. Furthermore, they can express precedence constraints

between activities in scheduling problems. Propagation algorithms determine

the satisfaction of a set of these constraints and/or the implication of some

constraints by a set of constraints.

1.4 Overview 5

A faster detection of satisfaction and implication will speed up the constraint

propagation needed in a search node, thus reducing the overall runtime of the

solution process.

We have developed new incremental satisfaction and implication algorithms

that not only have an asymptotically better runtime complexity, but are also

faster on sparse constraint systems. Moreover, we have developed algorithms

for explaining unsatisfiability and implication that are specific for this class.

Cumulative resource constraints: These constraints appear in many scheduling

problems modelling the relationship between scarce resources and activities

that consume resources during their execution. Limited work has been done to

explain their constraint propagation, and no explanations have been proposed

for their constraint propagation in Lcg solvers.

Explaining the propagation in the right way can improve the quality of nogoods

and conflict-driven search. This improves solution processes for combinatorial

problems that include these constraints.

Carpet cutting: It is a two-dimensional placement problem where carpet shapes

must be cut from a carpet roll while minimising the wastage. We have devel-

oped a complete approach that takes account of all domain-specific constraints,

uses cumulative constraints with explanations and improves the currently de-

ployed method on industrial instances. An improvement not only cuts the cost

for the company, but also decreases the required raw material.

1.4 Overview

In the next chapter, we first explain the basic concepts of constraint satisfaction

problems and their solution, and introduce the basic terminology in this work.

Then, we look at four different solving techniques, namely finite domain constraint

propagation, Boolean satisfiability solving, lazy clause generation, and satisfiability

modulo theories, which all are used for tackling combinatorial optimisation prob-

lems. We explain their similarities and their differences, and give the requirements

on constraint propagators.

In the following, we give a brief summary of our contribution of each main chapter

in this work.

Chapter 3 presents new incremental and non-incremental satisfaction and impli-

cation algorithms for unit two variable per inequality constraints which are

6 Chapter 1. Introduction

asymptotically faster than existing algorithms. These algorithms are based on

a new theoretical result about reasoning in systems of these constraints. We

enhanced these algorithms with explanations generating minimal unsatisfiable

subsets and minimal implicants.

Chapter 4 deals with explanations of the propagation of cumulative resource con-

straints. We develop fine-grained strong explanations for the global cumulative

constraint in a lazy clause generation solver, which are inspired by explanations

generated by decomposition of these constraints.

Chapter 5 shows the power of cumulative propagation with explanation. We

consider basic scheduling problems, namely the resource-constrained project

scheduling problem, and its extension with generalised precedence relations.

For these problems, we build a basic model and use a conflict driven search to

minimise the project duration. On challenging standard benchmarks, our com-

plete approach outperforms comparable state-of-the-art methods and closes

many open problems.

Chapter 6 considers a carpet cutting application which can be viewed as a two-

dimensional placement problem. In this problem carpet shapes must be cut

from a carpet roll without overlapping. We develop a complete approach

that minimises the carpet roll wastage while satisfying all domain-specific con-

straints. Then we show on industrial instances that our approach outperforms

the current, incomplete approach.

Finally, we summarise this thesis and point to further research directions in Chap. 7.

2
Basic Principles

T
his chapter introduces the basic principles of constraint programming at

first, then three specialised solving methods (finite domain propagation,

Boolean satisfiability solver, and lazy clause generation) are explained in

more detail. Finally, satisfiability modulo theory solvers, which have similarities to

lazy clause generation, are described.

2.1 Constraint Programming

Constraint Programming (Cp) (see e.g. Marriott and Stuckey 1998, Apt 2003) is one

programming paradigm to solve combinatorial problems. Its roots come from Arti-

ficial Intelligence (Ai) in the 70’s. Early solution methods in Ai can be understood

as the generate-and-test principle: at first, generate a solution and then test if the

solution meets all constraints. During that time, it was (widely) observed that this

principle can lead to a “thrashing” behaviour (see e.g. Mackworth 1977, Gaschnig

1979). Thrashing, in this sense, means that an early “wrong” decision, that does

not lead to a solution, is only detected when all possible remaining decisions are

enumerated, which can be exponential in the size of the problem.

One idea to avoid thrashing is to test the feasibility of partial solutions and re-

move inconsistent values from variables’ domains as the search progresses. This

process is known in Cp as constraint propagation, which is separately performed on

each constraint by constraint propagators. Thus, the generate-and-test principle was

reversed to a kind of test-and-generate principle.

Later, many techniques from operations research (Or) were adapted into Cp.

Mainly these techniques were deduction algorithms which are embedded as con-

straint propagators in Cp.

8 Chapter 2. Basic Principles

In general, a Cp problem is stated as constraint satisfaction problem. Its main

solving principles are well-formulated by Baptiste et al. (2001) as follows.

• Strict separation of deductive methods (constraint propagators) and search

algorithms

• Principle of locality (each constraint must be propagated as much as possible,

independent of the presence or non-presence of other constraints)

• Strict separation between the (logical) representation of constraints and their

propagation agreeing with the Kowalski equation for Logic Programming: Al-

gorithm = Logic + Control (Kowalski 1979).

This section introduces some basic notations on constraint satisfaction problems

and gives a basic understanding of the main components in the solution process:

how each of them works and interacts with the other components. More details

about some components are given in later sections in which solvers are described

that solve particular constraint satisfaction problems.

2.1.1 Constraint Satisfaction Problem

In the following the basic notations for constraint programming are formally intro-

duced. Given a sequence of variables X = x1, x2, . . . , xn the domain, constraints,

and then the constraint satisfaction problem are defined.

Definition 2.1 (Domain). A domain D is a mapping from a sequence of variables X

to a sequence of sets. A set D(xi) contains all elements that the variable xi is allowed

to take, and is called the domain of the variable xi. The initial domain of a problem

is denoted by Dinit. A false domain maps at least one variable to an empty set.

When there is a total order of the elements of the domain D(x) then the minimal

and maximal element, respectively, are denoted by minD(x) and maxD(x).

Definition 2.2 (Constraint). A constraint C(X) is an n-ary relation over a sequence

of variables X = x1, x2, . . . , xn and their respective domains D(x1), D(x2), . . . ,

D(xn). Hence, a constraint describes the solution space by a subset of the Cartesian

product over the domains C(X) ⊆ D(x1)×D(x2)× · · · ×D(xn).

A constraint can be stated intentionally or extensionally.

Example 2.1. Some examples of constraints and their variables are given here:

• C(x, y) = {(1, red), (2, blue), (2, green)) with x ∈ {1, 2}, y ∈ {blue, green, red},

2.1 Constraint Programming 9

• C(x, y, z) = {(x, y, z) ∈ N3 | x+ 2y − z ≤ 10} with x, y, z ∈ N,

• C(b, x, y) = {(b, x, y) ∈ {true, false} × N2 | b ↔ x + 5 ≤ y} with b ∈
{true, false}, and x, y ∈ N,

• C(x, y) = {(x, y) ∈ R2 | x2 + y2 = 1} with x, y ∈ R,

where N is the set of natural numbers and R is the set of real numbers.

For brevity, constraints such as the second constraint in the previous example can

be written as x+ 2y − z ≤ 10.

Definition 2.3 (Constraint Satisfaction Problem). A Constraint Satisfaction Prob-

lem (Csp) consists of a sequence of variables X = x1, x2, . . . , xn with their respective

domains D(x1),D(x2), . . . ,D(xn), and a set of constraints C in which each constraint

C(X) ∈ C is defined over a subsequence of variables X ⊆ X . A Csp is denoted by

the triple (C,X ,D).

Example 2.2. The Csp ({x+ 2y+ 3z ≤ 10, x < y, y+ z ≤ 3},X = x, y, z,D(X) =

[0 .. 10] , [0 .. 10] , [0 .. 10]) involves three constraints on three variables where [0 .. 10]

denotes the set of natural numbers from 0 to 10.

Definition 2.4 (Assignment). An assignment θ is a mapping from a sequence of

variables X = x1, x2, . . . , xn to one element from each domain written asθ = {x1 7→
d1, x2 7→ d2, . . . , xn 7→ dn} where di ∈ D(xi). The assignment θ satisfies a constraint

C(X) on a subsequence of variables X ⊆ X if θ(X) ∈ C(X) where θ(X) = {θ(x) |
x ∈ X}.

Example 2.3. Assignments of the Csp in Ex. 2.2 are amongst others {x 7→ 10, y 7→
0, z 7→ 0}, {x 7→ 1, y 7→ 2, z 7→ 0}, and {x 7→ 0, y 7→ 1, z 7→ 2}. The first assign-

ment satisfies the first and the third constraints, the second assignment satisfies all

constraints, and the third assignment the last two constraints.

Definition 2.5 (Solution). Given a Csp P = (C,X ,D) and an assignment θ over

the set of variables X . The assignment θ is a solution of the problem if and only if

it satisfies all constraints C(X) ∈ C where X ⊆ X , i.e.,

∀C(X) ∈ C : θ(X) ∈ C(X) .

The solution space (set of all solutions) of P is denoted by Sol(P).

A Csp is solvable if and only if the solution space is not empty. In this work, we

also write feasible, satisfiable, or consistent for solvable. If no solution exists then

the Csp is unsolvable.

10 Chapter 2. Basic Principles

Example 2.4. Consider the Csp from Ex. 2.2 and the three assignments from

Ex. 2.3. Just the second assignment is a solution for the Csp. For instance, other

solutions are {x 7→ 0, y 7→ 3, z 7→ 0}, {x 7→ 0, y 7→ 0, z 7→ 3}, or {x 7→ 1, y 7→ 2, z 7→
1}.

2.1.2 Solving

Solving of a Csp means finding a solution from the solution space or proving the

infeasibility. In the last case the solution methods must be complete. In both cases,

the process consists of propagation and search steps which are alternately applied

until the answer is found. The propagation step tries to prune the problem while

preserving all solutions, whereas the search step divides the problem into “simpler”

subproblems and conquers them individually.

Before both steps are formally defined the notation of strength of domains and

equivalence on Csps are introduced.

Definition 2.6. Let D1 and D2 be domains over variables in X, then D1 is called

stronger than D2 if D1(x) ⊆ D2(x) for all x ∈ X. It is written as D1 v D2.

Definition 2.7. Let P and Q1,Q2, . . . ,Qm be Csps on the same variables. The

Csp P is equivalent to the union of Q1,Q2, . . . ,Qm if Sol(P) =
⋃m
i=1 Sol(Qi).

Propagation

The propagation step transforms a Csp to an equivalent Csp with a stronger do-

main. It is based on high-specialised propagators for each constraint or a set of

constraints. These propagators take into account the local or structural information

of the corresponding constraint in order to strengthen the domain.

Definition 2.8 (Propagator). A propagator f is a monotonically decreasing function

from domains to domains, such that f(D1) v f(D2) for all domains D1 and D2 with

D1 v D2, and preserves the solutions for any Csp (C,X ,D), i.e., Sol((C,X ,D)) =

Sol((C,X , f(D))). For ease of explanation, the notion of a propagator is lifted to

Csps, i.e., f((C,X ,D)) = (C,X , f(D)).

In general, a propagator removes inconsistent elements from the variable’s do-

mains and can be defined in term of deduction rules.

2.1 Constraint Programming 11

Example 2.5. Consider the Csp with the sequence of variables X = x, y, z from

Ex. 2.2. A propagator f for the constraint y + z ≤ 3 can be defined as follows.

f(D)(u) =


D(y) ∩ (−∞, 3−minD(z)] if u = y,

D(z) ∩ (−∞, 3−minD(y)] if u = z,

D(u) otherwise.

It reduces the domain of y and z to [0 .. 3], and does not change the domain of other

variables.

Since a propagator only covers the propagation of one constraint, normally, the

propagators are repeatedly applied until no more deduction is achieved, i.e., a fix-

point is reached, or all values from one domain are removed. The resulting Csp is

equivalent to the initial Csp before the application of the propagators. It contains

the strongest domain with respect to the propagators and the domain in the initial

Csp.

Definition 2.9 (Propagation Solver). A propagation solver propagate on a Csp P
repeatedly applies each propagator on the problem until no further change is made,

i.e., propagate(P ′) = P ′, or one propagator deduces a false domain for at least one

variable.

Example 2.6. Consider the Csp from Ex. 2.2, the propagator f from Ex. 2.5, the

following propagator g for the constraint x < y

g(D)(u) =


D(x) ∩ (−∞,maxD(y)− 1] if u = x,

D(y) ∩ [minD(x) + 1,∞) if u = y,

D(u) otherwise,

and the propagator h for the constraint x+ 2y + 3z ≤ 10 with

h(D)(u) =

D(x) ∩ (−∞, 10− 2y − 3z] if u = x and x, y, z are fixed,

D(u) otherwise.

A propagation solver with these propagators f, g, h transforms the Csp with the

domain [0 .. 10] into an equivalent Csp with the domains D(x) = [0 .. 2], D(y) =

[1 .. 3], and D(z) = [0 .. 2].

Local Consistency A propagation solver is often characterised by its propagation

strength, i.e., the resulting Csp. This is measured by the local consistency the

12 Chapter 2. Basic Principles

propagation solver achieves on the domain with respect to the constraints.

The most well-known consistency is arc consistency (Mackworth 1977) for con-

straints with two variables. A binary constraint is arc consistent if and only if each

element in the domain of one variable has a supporting element in the domain of

the other variable with which it forms a solution of the constraint. It is equivalent

for n-ary constraints, called generalised arc consistency (Mohr and Henderson 1986)

or domain consistency (Hentenryck et al. 1998).

Definition 2.10 (Domain Consistency). An n-ary constraint C(X) is called domain

consistent with respect to the domain D if and only if

∀xi ∈ X, ∀di ∈ D(xi),∃θ ∈ D(X) :

θ = {x1 7→ d1, x2 7→ d2, . . . , xi 7→ di, . . . , xn 7→ dn} satisfies C(X) .

In general, propagators running in polynomial time can be built for linear inequal-

ities, that enforces domain consistency on the propagated constraint.

Proposition 2.1. Let C(X) ≡
∑n

i=1 aixi ≤ a0 be linear inequality constraint

over the sequence of variables X ≡ x1, x2, . . . , xn, their respective coefficients

a1, a2, . . . , an, and the constant a0. The following propagator f enforces domain

consistency of C(X) on f(D) given any domain D over X.

f(D)(u) =

D(xi) ∩ (−∞, a0 − b(i)] if u = xi and i ∈ [1 .. n],

D(u) otherwise.

where b(i) =
∑

j∈J(i) min{aj ·minD(xj), aj ·maxD(xj)}, and J(i) = [1 .. n] \ {i}.

These inequalities appear e.g. in scheduling problems involving cumulative re-

source constraints, in a special form where the variables xi express if the activity i

runs at a specific time period, and the constant a0 represent the resource capacity.

Later in this work, we deal with those cumulative resources.

For a propagation solver it is desirable that domain consistency on constraints is

enforced, since it is the strongest form of local consistency that can be achieved,

but it might be too expensive regarding runtime complexity. For instance, for some

n-ary constraints it is NP-hard to decide whether they are feasible or infeasible with

respect to the current domain. Consequently, a domain consistency check can take

non-polynomial time and space for each element in the variable’s domain, unless

P = NP .

For this reason weaker forms of consistency were introduced, e.g. bounds con-

sistency (see, e.g. Choi et al. 2006) for integer domains. The most used bounds

2.1 Constraint Programming 13

consistencies are bounds(Z) and bounds(R) consistency. Instead of looking for for

supports for each element in the domain only a support is sought for the minimum

and the maximum.

Definition 2.11 (Bounds(Z) Consistency). An n-ary constraint C(X) is bounds(Z)

consistent with respect to the domain D if and only if

∀xi ∈ X, ∀di ∈ {minD(xi),maxD(xi)},∀xj ∈ X \ {xi},

∃dj ∈ Z with minD(xj) ≤ dj ≤ maxD(xj) :

{x1 7→ d1, x2 7→ d2, . . . , xn 7→ dn} satisfies C(X) .

Example 2.7. Consider the constraint odd(x) on the variable x. This constraint

is satisfied if x is assigned an odd number. The constraint is bounds(Z) consistent

with respect to the domain D(x) = [1 .. 5], but not domain consistent.

The bounds(R) consistency relaxes the bounds(Z) consistency in such a way that

the supporting elements can be real numbers.

Definition 2.12 (Bounds(R) Consistency). An n-ary constraint C(X) is bounds(R)

consistent with respect to the domain D if and only if

∀xi ∈ X, ∀di ∈ {minD(xi),maxD(xi)},∀xj ∈ X \ {xi},

∃dj ∈ R with minD(xj) ≤ dj ≤ maxD(xj) :

{x1 7→ d1, x2 7→ d2, . . . , xn 7→ dn} satisfies CR(X) ,

where CR(X) is the real relaxation of C(X).

Example 2.8. Consider the constraint 3x+2y = z with the domains D(x) = [0 .. 2],

D(y) = [0 .. 2], and D(z) = [1 .. 9]. The domain D is bounds(R) consistent, but

not bounds(Z) consistent.

To enforce bounds(Z) consistency becomes prohibitive for some constraints, due to

the high runtime cost. For instance, a bounds(Z) consistency check is NP -complete

for linear equality constraints, while a linear bounds(R) consistency check exists (see

e.g. Schulte and Stuckey 2005).

Propagation Sequence In general, the propagation solver operates with a pri-

ority queue to which propagators are added for their execution. Propagators are

only queued in two situations: if their corresponding constraint is added to the Csp

or the domain of at least one of its variables was changed by another propagator.

14 Chapter 2. Basic Principles

Algorithm 2.1: solve(P) — Depth-first search with chronological backtrack-
ing

Input: Csp P = (C,X ,D)
Output: true, if P has a solution; otherwise false

1 P ′ := propagate(P);
2 if ∃x ∈ X : D′(x) = ∅ then return false;
3 if ∃x ∈ X : |D′(x)| > 1 then
4 Q1,Q2, . . . ,Qk := divide(P ′);
5 for i = 1, 2, . . . , k do
6 if solve(Qi) = true then return true;

7 return false;

8 return true;

Normally, propagators with low runtime complexity are given a higher priority than

others. For instance, a binary constraint usually has the highest priority, whereas an

n-ary constraint has a low priority. In this way, the solver should be more efficient

than a solver that applies all propagators in a loop until the fixpoint is reached.

Search and Backtracking

While propagation transforms a Csp to one equivalent Csp, search splits a Csp

into two or more Csps, the union of which is equivalent to the initial Csp. Each

split Csp is solved individually. Hence, the search follows the “divide-and-conquer”

principle with an additional propagation step on each Csp.

In general, complete solvers use a tree search algorithm in order to solve these

problems. A node is associated with a propagation step and decision step. Algo-

rithm 2.1 shows an outline of a basic complete solving algorithm. This (recursive)

algorithm solve(P) traverses the search tree in a depth-first manner with chronolog-

ical backtracking. First, it propagates P in order to strengthen the domain (line 1).

If the propagated Csp P ′ contains an empty domain of at least one variable, i.e.,

the local P is unsolvable, then this instance of solve(P) terminates and return false

(line 2). In the other case, the algorithm continues its search (lines 4 to 7) if not

all variables are fixed (line 3). Otherwise, it has proven the feasibility of P ′, conse-

quently of the initial Csp as well, and terminates with true (line 8). If an unfixed

variable in the problem exists then the decision level is incremented and the proce-

dure divide (line 4) splits the problem into k subproblems Q1, Q2, . . . , Qk. After

this, the algorithm iterates over all subproblems (lines 5 and 6). The algorithm

stops at the first subproblem that is proven to be feasible and returns true (line 6).

If all subproblems are infeasible then the algorithm terminates with false (line 7).

2.1 Constraint Programming 15

The procedure divide (line 4) is of particular interest. It splits the Csp into

several problems by adding constraints to the Csp. The union of these problem

are equivalent to the original Csp. Normally, these constraints partition the search

space in which each part corresponds to one subproblem. For instance, suppose

the Csp (C,X ,D) includes the variable x with a domain Dx = [0 .. 3] then the

problem can be equivalently split into (C ∪{x = 0},X ,D), (C ∪{x = 1},X ,D), . . . ,

(C ∪ {x = 3},X ,D) where the added constraints x = 0, x = 1, . . . , x = 3 partition

the search space.

Due to the NP-hardness of Csps, a solving algorithm running in polynomial time

and space for all inputs does not exist, unless P = NP. Consequently, generic (prob-

lem independent) or domain-specific heuristics are used for the divide procedure

which drives the search and shapes the search tree. Their aims are to minimise the

size of the search tree, i.e., to make the important decisions high up in the search

tree, and to order the search tree in such a way that a solution is situated far left

in the search tree. If a heuristic can achieve these both targets then it can quickly

find a solution or prove the infeasibility of an instance.

Many heuristics consist of a variable selection and a branching function. The

variable selection function chooses an unfixed variable by some criteria and the

branching decides how to partition the domain of a variable and creates the corre-

sponding subproblems. A good selection function is for example first fail (Haralick

and Elliott 1980) which chooses the variable with the smallest domain size.

Example 2.9. This example shows a model and the first steps of solving process for

an one-machine scheduling problem. we will use it as a running example of solving

approaches discussed in this chapter.

Suppose an one-machine scheduling problem with four tasks A, B, C, and D is

given, where these tasks have to be executed exclusively on one machine and the

execution of a task cannot be interrupted. This means two tasks cannot be run in

the same time period. The attributes of the tasks A, B, C, and D respectively are

their processing times 5, 3, 2, and 3, their earliest start time 0, 1, 1, 6, and their

latest completion time 14, 12, 12, and 12. The goal is to find a solution that assigns

integer values to the start time variable sA, sB, sC , and sD, so that no task is run

concurrently, all tasks start not before their earliest start time, and end not later

than their latest completion time.

This problem is modelled as a Csp (C, {bAB, bAC , bAD, bBC , bBD, bCD, sA, sB, sC ,

sD}, D) where D(bij) = {true, false} (∀i, j ∈ {A,B,C,D}), D(sA) = [0 .. 9],

16 Chapter 2. Basic Principles

bAB = false

bAC = false

bAD = false

sB = 1

true

bAD = true

fail

bAC = true

fail

bAB = true

bAC = false

fail

bAC = true

bBC = false

fail

bBC = true

fail

Figure 2.1: The corresponding search tree for Ex. 2.9.

D(sB) = [1 .. 9], D(sB) = [1 .. 10], D(sB) = [6 .. 9], and the set of constraints

C = { C1 ≡ bAB ↔ sA + 5 ≤ sB , C2 ≡ ¬bAB ↔ sB + 3 ≤ sA ,

C3 ≡ bAC ↔ sA + 5 ≤ sC , C4 ≡ ¬bAC ↔ sC + 2 ≤ sA ,

C5 ≡ bAD ↔ sA + 5 ≤ sD , C6 ≡ ¬bAD ↔ sD + 3 ≤ sA ,

C7 ≡ bBC ↔ sB + 3 ≤ sC , C8 ≡ ¬bBC ↔ sC + 2 ≤ sB ,

C9 ≡ bBD ↔ sB + 3 ≤ sD , C10 ≡ ¬bBD ↔ sD + 3 ≤ sB ,

C11 ≡ bCD ↔ sC + 2 ≤ sD , C12 ≡ ¬bCD ↔ sD + 3 ≤ sC } .

The Boolean variables bij describe whether the task i runs before or after the task j.

The propagator f for a constraint of the form b↔ x+ d ≤ y is defined as follows:

f(D)(u) =



D(b) ∩ {true} if u = b and maxD(x) + d ≤ minD(y),

D(b) ∩ {false} if u = b and minD(x) + d > maxD(y),

D(x) ∩ (−∞,maxD(y)− d] if u = x and b = true,

D(x) ∩ [minD(y)− d + 1,∞) if u = x and b = false,

D(y) ∩ [minD(x),∞) if u = y and b = true,

D(y) ∩ (−∞,maxD(x) + d− 1] if u = y and b = false,

D(u) otherwise.

The problem is solved by Alg. 2.1 where the divide procedure works as follows: in

each node an unfixed variable is selected in the order stated above, and its current

domain is branched by enumeration of the elements starting with the true element

for Boolean variables and the smallest element for integer variables. The first few

2.1 Constraint Programming 17

steps of the algorithm are outlined in the following, and the search tree is shown in

Fig. 2.1.

1. bAB is assigned true.

→ Propagation on C1: f(D)(sB) = [5 .. 9] and f(D)(sA) = [0 .. 4].

→ Propagation on C6: f(D)(bAD) = {true}.

2. bAC is assigned true.

→ Propagation on C3: f(D)(sC) = [5 .. 10].

3. bBC is assigned true.

→ Propagation on C7: f(D)(sC) = [8 .. 10] andf(D)(sB) = [5 .. 7].

→ Propagation on C11: f(D)(bCD) = {false}.
→ Propagation on C12: f(D)(sD) = [6 .. 7].

→ Propagation on C10: f(D)(bBD) = {true}.
→ Propagation on C9: f(D)(sD) = ∅.
→ Backtracking to the last decision and choosing the next subproblem.

3. bBC assigned false. Propagation leads to an empty domain. Backtracking.

3. No alternative element for bBC . Backtracking.

2. bAC assigned false. Propagation leads to an empty domain. Backtracking.

After five failures and eleven explored nodes Alg. 2.1 proves the satisfiability of the

instance. The generated solution leads to a schedule in that the tasks A, B, C,

and D are started at time period 9, 1, 4, and 6 respectively.

Backtracking An issue with the basic algorithm is the chronological backtrack-

ing (Gaschnig 1979). If a subproblem was proven to be infeasible then the search

backtracks to the previous decision level and selects another unexplored subproblem.

But it might be that the previous decision is not related to the conflict. Hence, all

subproblems also are infeasible. Instead of proving the infeasibility of the remaining

unexplored subproblems (which is what chronological backtracking does) the search

can backtrack further. Different non-chronological backtracking strategies have been

proposed to overcome that kind of thrashing; e.g. backjumping (Gaschnig 1979).

Nogoods and Explanations Normally, the search tree includes redundancies in

different subtrees including infeasible solution states. In order to avoid a repeated

proof of the same or similar infeasibility (in a different subtree) some search algo-

rithms analyse conflicts and, based on that, they generate constraints which are

18 Chapter 2. Basic Principles

called nogoods. These constraints are redundant and are permanently or temporar-

ily added to the initial Csp, hence they also appear in the subproblems that are

created during the search. They are inferred from explanations and/or search deci-

sions where an explanation records the reason for value removals during propagation.

Explanations can also be used to short-circuit propagation.

Beside the pruning of the search space the nogoods can be used to guide a conflict-

driven search. For instance, if a variable often appears in nogoods then it might be

better to branch over it in higher level in the search tree, because it may narrow the

search space more than other variables. Another advantage of nogoods is that they

can reformulate the chronological backtracking. Instead of only backtracking to the

previous decision level, the search can backtrack to the level at which the nogood is

for the first time no longer infeasible.

Restarts A restart abandons the current search and starts the search from the

beginning. The idea is to explore another part of the search tree which may lead

to faster solving of the problem and to escape hard-to-prove infeasible subtrees. A

restart only makes sense if the search from the initial Csp will change, e.g. nogoods

were added, and/or the search decisions depend on dynamic information which is

gathered during the search and propagation, e.g. impact-based searches (Refalo

2004), or are randomised partly or fully.

A problem with restart occurs if a Csp is infeasible. In this case the search must

exhaustively explore the search space for the infeasible proof which then can be

stopped by a restart. Because of that, restart policies increase the time between

restarts in the long run. However, a restart can be either advantageous or disadvan-

tageous in this case.

Summary Solving a Csp is a complex task that consists of carefully modelling

the problem, i.e., choosing the right constraints, and carefully selecting the search

heuristic. The aim is to choose those constraints with a positive trade-off between

pruning the search space most and time to be propagated, and to select a heuris-

tic that minimises the size of the search space. Since Csps typically are NP-hard,

searches can involve a substantial number of backtracking steps and many redun-

dancies in the search tree. For both of these reasons, non-chronological backtracking

strategies, nogood generation, and restart policies can be employed to make a search

algorithm more robust.

2.1 Constraint Programming 19

2.1.3 Optimisation

In comparison to the satisfaction problem, an optimisation problem does not demand

just any solution, but the “best” one. The quality of a solution is measured with

a given objective function obj that assigns an integer number to each assignment.

Here, we concentrate on minimisation problems, since maximisation problems can

be transformed to minimisation problems by using −obj as objective function.

Definition 2.13 (Minimisation Problem). A minimisation problem is denoted by

a tuple (P , obj) where P is a Csp and obj is an objective function or, in short,

objective that is an expression over the variables in P and that assigns an integer

number to each assignment.

The goal is to find a solutions θ ∈ Sol(P) for that holds obj(θ) ≤ obj(θ′) for all

θ′ ∈ Sol(P). Such a solution θ is called optimal or minimal.

Example 2.10. Consider the one-machine problem from Ex. 2.9 and the objective

function obj = sB + 2 · sC . This problem has two solutions {sA 7→ 9, sB 7→ 1, sC 7→
4, sD 7→ 6} and {sA 7→ 9, sB 7→ 3, sC 7→ 1, sD 7→ 6}, with their respective objective

values 9 and 5. The second solution is the minimal one.

Two main techniques used for solving minimisation problems in Cp are dichotomic

search and branch-and-bound (Land and Doig 1960). Both techniques transform the

initial minimisation problem into a sequence of Csps for which they continuously

narrow the solution space by adding constraints on the objective value. Note that

the objective is modelled as one or more constraints in each Csp.

The basic dichotomic search acts as a binary search on the initial range of the

objective obj: in each step, it transforms the minimisation problem into a Csp by

adding constraints for the lower and upper bound on the objective. First, it splits

the current range [LB .. UB] of the objective into two parts [LB .. p] and (p, UB]

where p is the midpoint (UB−LB)/2. Second, it solves the Csp with the first range

on the objective, and then it continues with the second range if the Csp was proven

infeasible. These steps are applied recursively until the lower and upper bound of

the objective match each other. Hence, at most O(log(UB − LB)) Csp are solved.

Note that an initial (trivial) bound can be assumed on the objective.

Example 2.11. Consider the minimisation problem from Ex. 2.10. Given a trivial

lower bound of 0 and an upper bound of 9 from the first found solution the basic

dichotomic search would produce this sequence of ranges for the objective: [0 .. 4],

[5 .. 7], [5 .. 6], [5 .. 5].

20 Chapter 2. Basic Principles

The advantage of this search is that Csp solvers (that support all constraints of

the problem) can solve the minimisation problem. Beside the described basic search,

many other variants have been developed (see e.g. Sellmann and Kadioglu 2008).

Some of them are problem specific.

Instead of solving a sequence of Csps in individual search trees the branch-and-

bound algorithm (Land and Doig 1960) solves them in one search tree by tracking

the best found objective value best so far and enforcing that each new solution must

be better than the current best. During the search the algorithm (continuously)

checks if the constraint obj < best is satisfied and updates the best value best once a

new solution is found. Note that the best value is a global value that is not relaxed

during backtracking, and a full traversal of the search tree is necessary.

Example 2.12. Consider the minimisation problem from Ex. 2.10. A trivial lower

bound of 0 is given, but no upper bound. The search finds the first solution as

described in Ex. 2.9 with the objective value 9. Hence, the upper bound is updated

to 9. Then it backtracks to the previous decision and explores the next subproblem

in which sB is assigned 2. The following propagation leads to an empty domain

resulting in backtracking. Then the subproblem in which sB is fixed to 3 is explored.

The following propagation fixes the remaining unfixed variable sC to 1 leading to

the new upper bound 5 on the objective value. Backtracking is initiated and the

search terminates with the optimal value 5, since all subproblems were explored for

the previous decision levels.

2.2 Finite Domain Propagation

Finite domain propagation (see, e.g. Schulte and Stuckey 2008) is the branch of

constraint programming in which the domain of a Csp is finite. It is a powerful

generic approach for tackling combinatorial (optimisation) problems due to its high-

level expressiveness (of constraints) and highly-specialised propagators. Because of

the finite domains the domains are normally encoded with integers which in turn

can be an abstraction of any entity as e.g. a colour, geometrical object etc.

Definition 2.14 (Finite Domain Problem). A Csp P = (C,X ,D) is called a finite

domain (Fd) problem if and only if D(x) ⊆ Z and D(x) is finite for each x ∈ X .

The domains of variables can be encoded in different ways. The most common

ones are a set of integers, a range of integers, and a set of ranges of integers (this

corresponds to a range of integers with “holes” in the domain). Note that a Boolean

variable can be encoded by the integers 0 and 1 which respectively represent the

2.2 Finite Domain Propagation 21

false and true value. In this work, the domains of variables are represented as a

range of integers that is denoted by [l .. u] = {i ∈ Z | l ≤ i ≤ u}, and holes are not

allowed. Most Fd solvers provide this representation.

Example 2.13. The one-machine problem (see Ex. 2.9 on page 15) is an Fd prob-

lem. We consider Boolean variables to be integer variables with domains {0, 1}
where 0 and 1 represent false and true respectively.

2.2.1 Common Constraints

In general, an Fd solver provides a large variety of different constraints that make

it easy for an user not only to model a problem, but also to modify the model.

Atomic constraints Atomic constraints are unary constraints, i.e., the constraint

involves one variable, that restricts the bounds on the variables or the values that a

variable can or cannot take.

Definition 2.15 (Atomic constraints). A constraint C(x) on the variable x is called

atomic if it has one of the following forms: x ≤ d, x ≥ d, x = d, or x 6= d, where d

is an integer.

The first inequality in the definition refers to an upper bound restriction on the

variable and the second one to a lower bound restriction. The inequalities x < d

and x > d equate to the respective atomic constraints x ≤ d− 1 and x ≥ d+ 1.

The first three constraints only have to be propagated once. If the domains are

encoded as ranges of integers then the last constraint (x 6= d) can be propagated

if and only if one bound on the variable equals d. Note that the disequality only

has to propagate once, too, if the domain is represented as a range of integers with

holes.

Arithmetic Constraints These constraints describe (amongst other things) in-

equalities (<, >, ≤, or ≥), equalities (=), and disequalities (6=) between at least

two variables. Propagators for these constraints are mainly bounds(R) consistent.

In this work, we use a special case of linear inequalities of the form
∑

i∈[1 .. n] aixi ≤
d where d ∈ Z, ai ∈ N and xi a Boolean variable for all i ∈ [1 .. n], and unit-two-

variables per inequality constraints, i.e., ax+by ≤ d where d ∈ Z, {a, b} ⊆ {−1, 0, 1}
and x, y are integer variables. An important specialisation of the second constraint

is the difference constraint (also called separation constraint) in which a = 1 and

b = −1. For instance, this constraint models the precedence relation between two

activities in scheduling problems.

22 Chapter 2. Basic Principles

Global Constraints Global constraints are complex n-ary constraints and play

an important role for Cp systems in general, since they are a “high-level” abstrac-

tion for complex relations between n variables. They may have a decomposed

version made up of simpler constraints, but usually direct propagators for global

constraints can exploit the structural information in order to prune the domains of

variables more. Furthermore, a decomposition can be prohibitive if too many sim-

ple constraints are introduced or the propagation of these constraints leads to worse

queueing behaviour during the propagation solver. An online catalogue of global

constraints (Beldiceanu et al. 2007a) can be found at http://www.emn.fr/z-info/

sdemasse/gccat/.

Probably, the most well-known global constraint is alldifferent (Régin 1994)

which expresses the restriction that all variables must be assigned a different value.

Its decomposed version is made of (n−1)n/2 disequalities xi 6= xj for all i, j ∈ [1 .. n]

with i 6= j where n is the number of variables. For instance, the (standard) Sudoku

puzzle consists of a 9 × 9 grid in which each field must be filled in with a number

in [1 .. 9]. But each field in each row and column must be filled in with a different

value than the other fields in the row or column. Moreover, the grid is partitioned

into nine 3× 3-squares in which each field must also take a different value than the

other fields in the square. Hence, an alldifferent constraint is used for each row,

each column, and each 3× 3 square.

Example 2.14. The classical example to show that a global propagator can yield a

stronger propagation than propagators of the decomposed version of the constraint

is as follows. Let x, y, and z be variables that must take different values from

the domain {1, 2}. Clearly, this problem is infeasible, since three variables must

share only two values. A global alldifferent propagator immediately detects the

infeasibility, but not the decomposed version consisting of the primitive constraints

x 6= y, y 6= z, z 6= x.

Another important global constraint is the cumulative resource constraint (Ag-

goun and Beldiceanu 1993), especially in areas (amongst others) such as scheduling,

packing and cutting. We denote this constraint by cumulative. The constraint

models the relationship between scarce resources and activities that require some

part of the resource capacity for their execution. It ensures a non-overload of the re-

source capacity at any time period during the planning horizon. Since this constraint

is one focus point in this work, a detailed description is given in Chap. 4.

Normally, different propagators exists for a global constraint. They differ in their

propagation strength and their runtime cost. The choice of which one or ones to

http://www.emn.fr/z-info/sdemasse/gccat/
http://www.emn.fr/z-info/sdemasse/gccat/

2.3 Boolean Satisfiability Solving 23

run depends whether their runtime costs can be compensated by their reductions of

the search space. This can be different from problem to problem.

Reified Constraints A reified constraint for a constraint C(X) relates its truth

value to a Boolean variable b by a (logical) equivalence relation, written as b ↔
C(X). Reified constraints allow logical relations to be expressed between different

constraints rather than simply conjunction of constraints.

Example 2.15. Consider two activities 1 and 2 with their start times s1 and s2

and their durations d1 and d2. The activities are not allowed to overlap at any time,

i.e., one activity must finish before the other can start. The disjunction s1 + d1 ≤ s2

∨s2 + d2 ≤ s1 reflects the non-overlap constraint. It can be encoded with reification

as b1 ↔ s1 + d1 ≤ s2, b2 ↔ s2 + d2 ≤ s1, and b1 ∨ b2. Those reified constraints we

already use in the running example (see Ex. 2.9).

2.3 Boolean Satisfiability Solving

Boolean satisfiability (Sat) solving is a well-understood constraint solving tech-

nique. It has experienced a drastic improvement in the last two decades. Nowadays,

modern Sat solvers (e.g. Moskewicz et al. 2001) can often handle problems with mil-

lions of constraints and hundreds of thousands of variables. But still many problems

are difficult to encode into Sat without breaking these implicit limits.

The Sat problems are Csps that are made of Boolean variables, i.e., the domain

of variables is a subset of {true, false}, and constraints are Boolean formulas. Nor-

mally, these formulas are given in conjunctive normal form (Cnf) where a Cnf is

a conjunction of clauses (C1 ∧ C2 ∧ · · · ∧ Cm). A clause is a disjunction of literals

(l1 ∨ l2 ∨ · · · ∨ ln) where a literal l is a Boolean variable b or its negation ¬b. A Cnf

can be constructed for any Boolean formula by using a linear encoding (Tseitin

1968).

Definition 2.16 (Boolean Satisfiability Problem). A Csp P = (C,B,D) is called a

Boolean satisfiability (Sat) problem if and only if all constraints C ∈ C are clauses

and each variable b ∈ B is a Boolean variable, i.e., D(b) ⊆ {true, false}. The set of

constraints is also called clause database.

The following Sat problem is a running example throughout this subsection.

Example 2.16. Consider the one-machine problem from Ex. 2.9 on page 15 with

the set of four tasks V = {A,B,C,D} and their processing times 5, 3, 2, 3, their

release dates 0, 1, 1, 6, and their deadlines 14, 12, 12, 12, respectively.

24 Chapter 2. Basic Principles

Here, this Csp is transformed to a Sat problem (C,B,D) in which we split the set

of variables and the set of constraints into two parts: B = B1 ∪ B2 and C = C1 ∪ C2.

The Boolean variables in B1 represent the precedence relation between each pair of

tasks and the Boolean variables in B2 are a possible encoding for the start times for

each task. A start time t of task i is reflected by an assignment of false to bt−1
i and

true to bti.

The clauses in C1 describe the relationship between the start times of a task and

the clauses in C2 reflect all possible propagation on the start times with respect to

precedence relation between tasks.

These sets are defined as follows:

B1 = {bij | ∀i, j ∈ V , i 6= j : task i runs before task j}

B2 = {bti | ∀i ∈ V ,∀t ∈ [esti .. lcti − pi] : task i starts before or at time period t}

C1 = {bti → bt+1
i | ∀i ∈ V ,∀t ∈ [esti .. lcti − pi − 1]}

C2 = {bij ∧ ¬bt−1
i → ¬bpi+t−1

j | ∀i, j ∈ V ,∀t ∈ [esti .. lcti − pi]}

∪ {bij ∧ btj → bt−pii | ∀i, j ∈ V ,∀t ∈ [estj .. lctj − pj]}

where si, esti, lcti, and pi are the (possible) start time, the earliest start time, the

latest completion time, and the processing time of i, respectively. The Boolean

variables bij with i < j are names for ¬bji, i.e., bij ≡ ¬bji.

2.3.1 Solving

The Sat propagation is mainly based on resolution, unit propagation (a special case

of resolution), and pure literal elimination which is mainly unused in modern Sat

solvers. The resolution step looks for particular pairs of clauses that have a literal l

in common, but in one clause it appears in the negated form ¬l. Then it deduces a

new clause (called resolvent) consisting of the remaining literals of both clauses.

(l ∨ U) ∧ (¬l ∨ V)

U ∨ V
(2.1)

where U and V are clauses. If U ∨V is empty, i.e., does not contain any literal, then

infeasibility of the problem is proved. The unit propagation propagates clauses in

which only one undecided literal is left and all other literals are false. Those clauses

are called unit. The propagation can be written as the following rule:

(l ∨ l1 ∨ · · · ∨ lk) ∧ ¬l1 ∧ · · · ∧ ¬lk
l

.

2.3 Boolean Satisfiability Solving 25

Algorithm 2.2: dpll solve(P) — Dpll algorithm with chronological back-
tracking

Input: Sat P = (C,B,D)
Output: true, if P has a solution; otherwise false

1 P ′ := unit propagate(P);
2 P ′ := pure literal elimination(P ′);
3 if ∃x ∈ X ′ : D′(x) = ∅ then return false;
4 if ∀b ∈ B′ : |D′(b)| = 1 then return true;
5 l := propose literal(P ′);
6 return dpll solve(P ′ + l) or dpll solve(P ′ + ¬l);

The pure literal elimination looks for literals, that only appear either in the positive

or in the negative form in all not (yet) satisfied clauses, and assigns true to them.

∀C ∈ C : ¬l /∈ C
l

,

where C is a set of clauses that are not satisfied yet. Note that the rule is not

a necessary condition for the feasibility of a Sat problem, i.e., there can exist a

solution in which the literal l is assigned false.

Typically, complete Sat solvers are based on the Davis-Putnam-Logemann-Love-

land (Dpll) algorithm (Davis and Putnam 1960, Davis et al. 1962). An outline of

this algorithm is given in Alg. 2.2, which is a special case of the solving scheme solve

on page 14, although the algorithm only applies unit propagation and pure literal

elimination. The procedure propose literal returns an undecided literal over which

the search is branched. Different heuristics have been proposed for this procedure.

Example 2.17. Consider the Sat problem from Ex. 2.16. Now, we solve the prob-

lem by the Dpll algorithm (Alg. 2.2), but without the pure literal elimination. The

procedure propose literal only proposes unfixed literals in the following order bAB,

bAC , bAD, bBC , bBD, bCD, b0
A, b1

A, . . . , b1
B, b2

B, . . . , b1
C , b2

C , . . . , b6
D, b7

D, At first

the search branches over bi = true and then bi = false after backtracking.

This search is the same search for the precedence Boolean variables as in Ex. 2.9

for solving the same problem, but modelled as a Csp. It is slightly different in the

start times of tasks.

However, the Dpll algorithm with this search spans the same search tree as in

Ex. 2.9 for proving the satisfiability. The first steps of the algorithm are as follows

in which the propagation is only shown for constraints in C2 (see Ex. 2.16):

1. bAB is assigned true.

→ Unit propagation on ¬bAB ∨ ¬b4
B: s4

B = false, i.e., sB ≥ 5.

26 Chapter 2. Basic Principles

→ Unit propagation on ¬bAB ∨ b4
A: b4

A = true, i.e., sA ≤ 4.

→ Unit propagation on bAD ∨ ¬b4
A: bAD = true.

2. bAC is assigned true.

→ Unit propagation on ¬bAB ∨ ¬b4
C : b4

C = false, i.e., sC ≥ 5.

3. bBC is assigned true.

→ Unit propagation on ¬bBC ∨ b4
B ∨ ¬b7

C : b7
C = false, i.e., sC ≥ 8.

→ Unit propagation on ¬bBC ∨ b7
B: b7

B = true, i.e., sB ≤ 7.

→ Unit propagation on ¬bCD ∨ b7
C : bCD = false.

→ Unit propagation on bCD ∨ b7
D: b7

D = true, i.e., sD ≤ 7.

→ Unit propagation on bBD ∨ ¬b7
B: bBD = true.

→ Conflict clause ¬bBD ∨ b4
B ∨ ¬b7

D.

→ Backtracking to the last decision and choosing the next subproblem.

3. bBC assigned false. Propagation leads to a conflict. Backtracking.

3. No alternative element for bBC . Backtracking.

2. bAC assigned false. Propagation leads to a conflict. Backtracking.

Modern Sat solvers enhance the Dpll algorithm with conflict learning (conflict

analysis), non-chronological backtracking, conflict-driven search and restart policies.

The conflict analysis starts once unit propagation hits an unsatisfiable clause. It

infers a new clause (a nogood) from the clauses and/or decision that lead to the

infeasibility, and adds the nogood permanently or temporarily to the set of clauses.

Then it backjumps to that decision level in which the nogood is unit, i.e., non-

chronological backtracking. Since nogoods are added to the original problem, the

Dpll algorithm may be restarted once in a while.

2.3.2 Conflict Learning and Non-Chronological

Backtracking

Most conflict learning strategies are based on an implication graph which is built

during the progress of propagation and search. It records the responsible clause for

each assignment of a literal performed by the unit propagation or the literals which

are fixed by the search. Once an unsatisfiable clause, i.e., all literals in this clause

are false, is encountered, the conflict learning starts from this clause. It applies

the resolution rule on the propagated clauses in reverse and terminates when a

pre-defined condition holds.

In more detail, the implication graph is a digraph in which nodes represent fixed

true literals, i.e., literals assigned true. For brevity, no distinction is made between

2.3 Boolean Satisfiability Solving 27

level 1 level 2 level 3 //
fixed literal stack //

bAB

((

//

bAC

,,

bBC

##

00¬b4
B

3300

¬b4
C b7

B
// bBD

��
b4
A

**

¬b7
C 44 ¬bCD

--

fail

bAD b7
D

AA

Figure 2.2: The implication graph for Ex. 2.18.

literals and nodes in the remainder of this chapter. All incoming edges to a literal

represent the clause responsible for the unit propagation of the literal. Moreover,

the true literals are kept in a stack that shows the chronological order of their

assignment, and are marked by the decision level in which they were assigned.

Example 2.18. Consider the Sat problem from Ex. 2.16 and the search from

Ex. 2.17. At first, the search assigns true to bAB and then to bAC . After bBC

is assigned true the propagation detects the conflict in the clause ¬bBD ∨ JsB ≤
4K ∨ ¬JsD ≤ 7K.

Figure 2.2 shows a part of the implication graph that was built until the conflict

was detected. The doubly boxed literals, e.g. bAB, were fixed by the search and the

the single boxed literals, e.g. bAD, by the unit propagation. Solid (incoming) edges

show the reason why the literal was fixed to true, e.g. the literal ¬b7
C was fixed

because of the true value of ¬b4
B and bBC due to the corresponding clause ¬bBC ∨

b4
B ∨ b7

C . The dotted lines to the fail node indicate the reason of the unsatisfiability

of the conflicting clause. Moreover, the line above the implication graph indicates

the direction of the fixed literal stack from the left to the right.

Conflict learning starts with the conflicting clause that defines a first tentative

nogood. Then, in general, literals in the tentative nogood are replaced one by one

by the (negated) literals from the incoming edges of their (negated) literals, in the

reverse order that these literals were added to the implication graph. This process

continues until the termination criteria is reached.

While most Sat solvers perform the resolution as described in the previous para-

graph, they differ on the termination criteria. The first unique implication point

(1-Uip) criterion (Zhang et al. 2001) which is used in this work is one of the most

popular ones. The resolution stops when the tentative nogood only contains one lit-

28 Chapter 2. Basic Principles

bBC = true

true

bAD = true

fail

bAC = true

fail

bAB = true

failbAC = true

fail

bAC = true

bBC = true

fail

Figure 2.3: The corresponding search tree for Ex. 2.20.

eral from the current decision level. This tentative nogood becomes the final nogood

which is (permanently or temporarily) asserted in the set of constraints.

Example 2.19. Consider the running example and the implication graph (Fig. 2.2)

that was built until the conflicting clause ¬bBD ∨ b4
B ∨ ¬b7

D was detected. This is

the first tentative nogood. Literal ¬bBD was assigned last. Hence, ¬bBD is replaced

by the negated predecessor node ¬b7
B from the node bBD, or in other words, a

resolution step is performed on the tentative nogood and the clause ¬bBD ∨ ¬b7
B

which was responsible for the true assignment to bBD. The new tentative nogood is

¬b7
B ∨ b4

B ∨¬b7
D. Then ¬b7

D is substituted with bCD which leads to the next tentative

nogood ¬b7
B ∨ b4

B ∨ ¬bCD. Next bCD is replaced by b7
C , ¬b7

B by bBC , and b7
C by s4

B

which leads to the tentative nogood s4
B ∨¬bBC . This tentative nogood is the 1-Uip,

since bBC is associated with the current decision level, but not s4
B.

Once a nogood is generated and added to the set of constraints, it is used for

non-chronological backtracking. In the case of 1-Uip nogoods, it works as follows:

the nogood contains exactly one literal from the current decision level and it is not

satisfied in this level. The search backjumps to that level (called the assertion level)

in which the nogood is unit, i.e., the level of the literal from the second highest

decision level in the nogood.

In the assertion level, the propagation is reinitiated, but this time the set of

constraints includes the added nogood. Since the nogood is unit, the literal from

the previous conflict level is assigned to the opposite value. In this way, the search

tree is pruned and avoids a re-exploration of inconsistent subtrees.

Example 2.20. Consider the running example. The conflict learning deduced the

nogood s4
B ∨ ¬bBC . The conflict level of the nogood is 3 (because of ¬bBC) and

the assertion level 1 (because of s4
B). Thus, the search backjumps to the decision

2.3 Boolean Satisfiability Solving 29

level 1 and undoes all propagation and decisions made in the decision levels 2 and

3. Reaching the decision level, it reinitiates the propagation including the nogood.

The propagation and the search steps after the backjump are as follows:

1. Backjumping to decision level 1 and resuming propagation.

→ Unit propagation on the nogood b4
B ∨ ¬bBC : bBC = false.

→ Unit propagation on bBC ∨ b7
C : b7

C = true, i.e., sC ≤ 7.

→ Unit propagation on bCD ∨ ¬b7
C : bCD = true.

2. b2 is assigned true.

→ Unit propagation leads to the conflict clause: bBD ∨ ¬b6
D.

→ Conflict learning (1-Uip nogood): ¬bCD ∨ bBC ∨ b4
C

→ Backjumping to the decision level 1.

1. Resuming propagation.

→ Unit propagation leads to the conflict clause: bBD ∨ ¬b7
D.

→ Conflict learning (1-Uip nogood): ¬bAB
→ Backjumping to the root level and resuming propagation.

Figure 2.3 depicts the search tree when the Sat solver uses 1-Uip conflict learning

and backjumping. After five failures and seven explored nodes the Sat solver proves

the satisfiability of the instance. Thus, it needs four explored nodes less than the

Fd solver (cf. Ex. 2.9).

2.3.3 Conflict-driven Search and Restarts

Conflict driven searches are generic heuristics. Their idea is to exploit the infor-

mation retrieved from a conflict in order to guide search and avoid exploration of

infeasible parts of the search space. Moreover, their aim is to perform well on aver-

age on any input. In this work, an activity-based search is used as a conflict-driven

search. It is a variant of the variable state independent, decaying sum (Vsids).

Benchmark results by Moskewicz et al. (2001) show that Vsids performs better on

average on hard problems than other heuristics.

Vsids or variants of it are used in many modern Sat solvers implementing the

Dpll algorithm. It is based on dynamic activity counters for each variable and

branches on the variable with the highest activity counter value. These counters

are increased when a variable is involved in a conflict, i.e., occurs in the nogood or

is eliminated during conflict learning. Periodically, all counters are reduced (thus

decaying) not only to avoid overflow, but also to give variables involved in recent

30 Chapter 2. Basic Principles

conflicts more weight. Consequently, Vsids branches over variables involved in lots

of recent conflicts. In this work, the Vsids considered initialises all variable counters

with the same value and breaks ties during the variable selection by their input order.

Example 2.21. Consider the running example. After the first failure was detected

the first tentative nogood was ¬bBD ∨ b4
B ∨ ¬b7

D. Until the 1-Uip nogood was

learned b4
B∨¬bBC , the literals bCD, ¬b7

B, b7
C were involved in other tentative nogoods.

Therefore, the activity counters for the variables bBC , bBD, bCD, b4
B, b7

B, b7
C and b7

D

will be increased.

As written earlier, Vsids performs better on average on hard problems than other

heuristics. However, its performance can significantly differ for a single problem

when the input order of variables or constraints changes. For instance, a change in

the input order of variables can yield a different branching at the beginning, or a

different input order of constraints can change the order of propagation leading to

different nogoods. Not only because of that, but also for robustness issues, Vsids

is usually combined with restarts and occasional random branching.

A restart abandons the current search, but all activity counters are kept and

some or all nogoods as well. In general, this leads to a different branching in which

variables that were often involved in recent conflicts are more likely to be selected

earlier in the search. Therefore, a restart also acts as an escape strategy from hard-

to-prove infeasible parts of the search tree.

2.4 Lazy Clause Generation

Lazy clause generation (Lcg) is a recently developed technology that is a hybrid of

Fd solving and Sat solving. It was introduced by Ohrimenko et al. (2007) (see, also

Ohrimenko and Stuckey 2008, Ohrimenko et al. 2009) and reengineered by Feydy and

Stuckey (2009) (see also Feydy 2010). The key idea in Lcg is to run an Fd solver,

but to build an explanation of the propagations made by the solver by recording

them as clauses on a Boolean variable representation of the problem. Hence, as the

Fd search progresses we lazily create a clausal representation of the problem. The

hybrid has the advantages of Fd solving, but inherits the Sat solver’s ability to

create nogoods to drastically reduce search and use a conflict-driven search.

In this work, the reengineered version (Feydy and Stuckey 2009) of Lcg solver

is used. Its framework is depicted in Fig. 2.4. The figure shows that the Fd solver

acts as the master solver and the Sat solver as slave in the Lcg solver. The model

is passed to the Fd solver which generates the variable representations, creates the

2.4 Lazy Clause Generation 31

Fd Solver

Sat Solver

Search

Domains

Propagators

Trail

Clause Database

Figure 2.4: Framework of the reengineered version of the Lcg generator (adapted
from Feydy 2010).

Fd propagators for Fd constraints, and passes Sat constraints to the internal Sat

solver. The Lcg search and propagation is controlled by the Fd solver in which

conflict-driven searches from the Sat solver can be used. The Sat solver acts as an

independent propagator with the highest priority. Note that the current version of

the Lcg solver only supports backtracking, but not backjumping (Feydy 2010).

The communication between the Fd and Sat solver works as follows: If an Fd

propagator updates a variable’s domain or infers an empty domain then it explains

the reason as clauses. Then, these clauses are passed to the Sat solver which adds

them to its clause database and performs unit propagation on them.

2.4.1 Variable Representation

An Lcg problem is stated as an Fd problem (C,X ,D), but each variable has a

clausal representation in the Sat solver. In the remainder of this work, we use

J.K as the names of Boolean variables. An integer variable x ∈ X with the initial

domain Dinit(x) = [l .. u] is represented by 2(u − l) + 1 Boolean variables Jx = lK,
Jx = l+ 1K, . . . , Jx = uK and Jx ≤ lK, Jx ≤ l+ 1K, . . . , Jx ≤ u− 1K where the former

is lazily generated (Feydy 2010). The variable Jx = dK is true if x takes the value d,

and false for a different value of d. Similarly, the variable Jx ≤ dK is true if x takes

a value less than or equal to d, and false for a value greater than d. Sometimes

notations Jd ≤ xK, Jd < xK, Jx < dK are used for the literals ¬Jx ≤ d− 1K, ¬Jx ≤ dK,
Jx ≤ d− 1K, respectively.

Not every assignment of Boolean variables is consistent with the integer variable x,

for example {Jx = 3K, Jx ≤ 2K}, i.e., both Boolean variables are true, requires that x

is both 3 and ≤ 2. In order to ensure that assignments represent a consistent set of

32 Chapter 2. Basic Principles

possibilities for the integer variable x we add to the Sat solver the clauses DOM (x)

that encode

Jx = dK↔ Jx ≤ dK d = l,

Jx = dK↔ ¬Jx ≤ d− 1K ∧ Jx ≤ dK l < d < u,

Jx = dK↔ ¬Jx ≤ d− 1K d = u,

Jx ≤ dK→ Jx ≤ d+ 1K l ≤ d < u− 1,

where Dinit(x) = [l .. u]. Thus, 4(u − l) + 1 clauses are created or just u − l − 1 if

just Jx ≤ dK are used. We let DOM = ∪{DOM (x) | x ∈ X}.
Any assignment A on these Boolean variables can be converted to a domain:

domain(A)(x) = {d ∈ Dinit(x) | ∀JcK ∈ A, vars(JcK) = {x} : x = d |= c},

that is, the domain includes all values for x that are consistent with all the Boolean

variables related to x. It should be noted that the domain may assign no values to

some variable.

Example 2.22. Consider the one-machine problem discussed in Ex. 2.9 and assume

an initial domain Dinit = {sA ∈ [0 .. 9] , sB ∈ [1 .. 9] , sC ∈ [1 .. 10] , sD ∈ [6 .. 9]}.
The assignment θ = {¬JsA ≤ 1K,¬JsA = 3K,¬JsA = 4K, JsA ≤ 6K,¬JsB ≤ 2K, JsB ≤
5K,¬JsC ≤ 4K, JsC ≤ 7K} is consistent with x1 = 2, x2 = 5, and x1 = 6. Hence

domain(A)(sA) = {2, 5, 6}. For the remaining variables domain(A)(sB) = [3 .. 5],

domain(A)(sC) = [5 .. 7], and domain(A)(sD) = [6 .. 9]. Note that for brevity θ is

not a fixpoint of unit propagation for DOM (sA) since we are missing many implied

literals such as ¬JsA = 0K, ¬JsA = 8K etc.

2.4.2 Explaining Propagators

In Lcg a propagator is extended from a mapping from domains to domains to

a generator of clauses describing propagation. When f(D) 6= D we assume the

propagator f can determine a clause C to explain each domain change. Similarly,

when f(D) is a false domain the propagator must create a clause C that explains

the failure.

Example 2.23. Consider the propagator f for the precedence constraint bAB ↔
sA + 5 ≤ sB from Ex. 2.9. When applied to the domains D(bAB) = true, D(sA) =

[0 .. 9] and D(sB) = [1 .. 9] it obtains f(D)(sA) = [0 .. 4], and f(D)(sB) = [5 .. 9].

The clausal explanation of the change in domain of sA is bAB∧JsB ≤ 9K→ JsA ≤ 4K,

2.4 Lazy Clause Generation 33

similarly the change in domain of sB is bAB ∧ ¬JsA ≤ −1K → ¬JsB ≤ 4K i.e.,

bAB ∧ JsA ≥ 0K→ JsB ≥ 5K. These become the clauses ¬bAB ∨¬JsB ≤ 9K∨ JsA ≤ 4K
and ¬bAB ∨ JsA ≤ −1K ∨ ¬JsB ≤ 4K.

The explaining clauses of the propagation are passed to the Sat solver on which

unit propagation is performed. Because the clauses will always have the form C → l

where C is a conjunction of literals true in the current assignment, and l is a literal

not true in the current assignment, the newly added clause will always cause unit

propagation, adding l to the current assignment.

Example 2.24. Consider the propagation from Example 2.23. The clauses ¬bAB ∨
¬JsB ≤ 9K ∨ JsA ≤ 4K and ¬bAB ∨ JsA ≤ −1K ∨ ¬JsB ≤ 4K are added to the Sat

theory. Unit propagation infers that JsA ≤ 4K = true and ¬JsB ≤ 4K = true since

¬bAB, ¬JsB ≤ 9K and Jsa ≤ −1K are false, and adds these literals to the assignment.

Note that the unit propagation is not finished, since for example the implied literal

JsA ≤ 8K, can be detected true as well.

The unit propagation on the added clauses C is guaranteed to be as strong as the

propagator f on the original domains, i.e., if domain(A) ⊆ D then domain(A′) ⊆
f(D) where A′ is the resulting assignment after addition of C and unit propagation

(see Ohrimenko et al. 2009).

Note that a single new propagation may be explainable using different set of

clauses. In order to get maximum benefit from the explanation we desire a “stron-

gest” explanation as much as possible. A set of clauses C1 is stronger than a set of

clauses C2 if C2 implies C1. In other words, C1 restricts the search space at least as

much as C2.

Example 2.25. Consider the propagator f for the precedence constraint ¬bAD ↔
sD + 3 ≤ sA from Ex. 2.9. When applied to the domains D(bAD) = {true, false},
D(sA) = [0 .. 4] and D(sD) = [6 .. 9] it removes false from the domain of bAD. A

näıve explanation would only consider the current bounds of sA and sD leading to the

explanation JsA ≤ 4K ∧ J6 ≤ sDK→ bAD. We can observe that the same conclusion

also holds for an upper bound in [5 .. 8] of sA. Therefore, a stronger explanation is

obtained by replacing the literal JsA ≤ 4K by JsA ≤ 8K. This results to the stronger

explanation JsA ≤ 8K ∧ J6 ≤ sDK → bAD. Note that the literal J6 ≤ sDK is always

true, thus it can be omitted.

Solving an Example

As explained in the introduction an Lcg solver can access search algorithms from the

Fd solver and Sat solver. This makes an Lcg solver versatile in tackling different

34 Chapter 2. Basic Principles

bBC = true

true

bAD = true

fail

bAC = true

fail

bAB = true

failbAC = true

failbBC = true

fail

Figure 2.5: The corresponding search tree for Ex. 2.26.

kinds of problem. Here, we show the solving of Ex. 2.9 in order to demonstrate the

difference between an Fd solver and an Lcg solver.

Example 2.26. Consider the one-machine scheduling problem with four tasks A,

B, C, and D from Ex. 2.9 on page 15. The goal is to prove the satisfiability of

the problem given the variables bAB, bAC , bAD, bBC , bBD, bCD, sA, sB, sC , and sD with

their initial domains D(bij) = {true, false} (∀i, j ∈ {A,B,C,D}, i < j), D(sA) =

[0 .. 9], D(sB) = [1 .. 9], D(sB) = [1 .. 10], D(sB) = [6 .. 9].

The problem is solved by Alg. 2.1 with the same branching procedure: in each

node an unfixed variable is selected in the order as stated above and its current

domain is branched by enumeration of the elements starting with the true element

for Boolean variables and the smallest element for integer variables. The first few

steps of the algorithm is outlined in the following and the search tree is shown in

Fig. 2.5.

1. bAB is assigned true.

→ Propagation on C1: f(D)(sB) = [5 .. 9] with bAB ∧ J0 ≤ sAK→ J5 ≤ sBK
and f(D)(sA) = [0 .. 4] with bAB ∧ JsB ≤ 9K→ JsA ≤ 4K.

→ Propagation on C6: f(D)(bAD) = {true} with JsA ≤ 4K∧J6 ≤ sDK→ bAD.

2. bAC is assigned true.

→ Propagation on C3: f(D)(sC) = [5 .. 10] with bAC∧J0 ≤ sAK→ J5 ≤ sCK.

3. bBC is assigned true.

→ Propagation on C7: f(D)(sC) = [8 .. 10] with bBC∧J5 ≤ sBK→ J8 ≤ sCK
and f(D)(sB) = [5 .. 7] with bBC → JsB ≤ 7K.

→ Propagation on C11: f(D)(bCD) = {false} with J8 ≤ sCK→ ¬bCD.

→ Propagation on C12: f(D)(sD) = [6 .. 7] with ¬bCD → JsD ≤ 7K.

2.4 Lazy Clause Generation 35

→ Propagation on C10: f(D)(bBD) = {true} with JsB ≤ 7K→ bBD.

→ Propagation on C9: f(D)(sD) = ∅ with J5 ≤ sBK ∧ bBD → J8 ≤ sDK.

→ Conflict clause: ¬J5 ≤ sBK ∨ ¬bBD ∨ J8 ≤ sDK.

→ Conflict learning (1-Uip nogood): ¬J5 ≤ sBK ∨ ¬bBC .

→ Backtracking.

2. Resuming propagation.

→ Propagation on latest nogood: f(D)(bBC) = {false} with J5 ≤ sBK →
¬bBC .

→ Propagation on C8: f(D)(sC) = [1 .. 7] with ¬bBC → JsC ≤ 7K.

→ Propagation on C12: f(D)(bBC) = {true} with JsC ≤ 7K→ bCD.

→ Propagation on C8: f(D)(sB) = [7 .. 9] with ¬bBC ∧ J5 ≤ sCK → J7 6=
sBK.

→ Propagation on C11: f(D)(sD) = [7 .. 9] with ¬bCD ∧ J5 ≤ sCK → J7 6=
sDK.

→ Propagation on C9: f(D)(bBD) = {false} with J7 ≤ sBK→ ¬bBD.

→ Propagation on C10: f(D)(sD) = ∅ with ¬bBD → sD ≤ 6.

→ Conflict clause: bBD → sD ≤ 6.

→ Conflict learning (1-Uip): ¬J5 ≤ sBK ∨ ¬J5 ≤ sCK.

→ Backtracking.

1. Resuming propagation.

→ Propagation leads to a conflict.

→ Conflict learning (1-Uip nogood): ¬bAB.

→ Backtracking to the root level.

0. Resumption of the initial propagation.

1. bAC is assigned true.

→ Propagation leads to a conflict.

→ Conflict learning (1-Uip nogood): ¬J4 ≤ sAK ∨ ¬bAC .

→ Backtracking to the root level and resumption of the initial propagation.

After five failures and six explored nodes the Lcg solver proves the satisfiability

of the instance. Thus, it needs five explored nodes less than the Fd solver (cf.

Ex. 2.9).

36 Chapter 2. Basic Principles

2.4.3 Conflict-driven Search and Optimisation

In order to use a conflict-driven search, in our case a variant of Vsids, in an Lcg

solver, we ask the Sat solver what its preferred literal is for branching on. This

corresponds to an atomic constraint x ≤ d or x = d and we branch on x ≤ d∨x > d

or x = d∨x 6= d. Note that the search is still controlled by the Fd search engine, so

that we use its standard approach for the branch-and-bound algorithm to implement

the optimisation search.

Normally Sat solvers use dichotomic restart search for optimisation as the Sat

solver itself does not have optimisation search built in. This leads to a situation when

a satisfaction search fails, but the inferred nogoods are not valid for subsequent

searches. The reason for this it that they assume a wrong upper bound on the

objective.

The combination of branch-and-bound algorithm and Vsids is much stronger,

since in the continuation of the search with a better bound, the activity counts at

the time of finding a new better solution are used in the same part of the search

tree, and all inferred nogoods remain valid. Note that if the distance of the lower

and upper bound on the objective is large, a dichotomic search may find quicker a

solution than a branch-and-bound algorithm.

2.4.4 Background

As indicated earlier in this section, Lcg was developed to combine the strengths

of Fd and Sat solvers. For Fd solvers it is their high-level view of problems and

their flexible framework whereas for Sat solvers it is their nogood technologies

and conflict-driven searches. One important aspect in which Lcg differs from Sat

solvers or nogood technologies in Fd solvers, is the representation of domains with

inequalities. These inequalities allow an efficient way for bound propagators to

explain their propagation.

The first version of Lcg (Ohrimenko et al. 2007) was the predecessor of the

reengineered version used in this thesis. In this first version, the Sat solver is the

master whereas the Fd solver the slave. Consequently, no Fd search could be used

to drive the search. Moreover, the integration of Fd propagators was not simple.

The reengineered version (Feydy and Stuckey 2009) turned the master-slave prin-

ciple around which enabled not only the use of customisable Fd searches, but also

made the integration of Fd propagators easier, as they only had to be extended

with explanations. But still this version has limitations.

The main limitation is the eager generation of the inequalities’ literals which can

2.5 Satisfiability Modulo Theories 37

lead to inefficiency in the Sat solver due to the large size of the clausal representation

of the domains. A solution would be not only to create those literals on demand,

but also to delete them when they are not needed anymore.

Another limitation is the eager explanation of constraint propagation which rapidly

increases the size of the clause database. These explanations are used in the conflict

analysis and for short circuiting propagation in subsequent search. If we concen-

trate on the first purpose then delaying the production of the explanation to the

time of the conflict analysis avoids the necessity of adding explanations to the clause

database and the building of explanations that are not related to the conflict.

Future versions of Lcg will tackle these and other weaknesses as described to

make Lcg an even more efficient solver than it already is.

2.5 Satisfiability Modulo Theories

Satisfiability modulo theories solving (Sebastiani 2007, Nieuwenhuis et al. 2006,

Kroening and Strichman 2008, Barrett et al. 2009) is an extension of Sat solving.

Instead of checking the satisfiability of a formula in propositional logic as in Sat

solving, a formula in first-order logic is checked with respect to some given back-

ground theories T . First-order logic formulas are enriched by quantifiable variables

and non-logical symbols as predicates (e.g. x < y), functions (e.g. x + y), and

constants (e.g. 0 and 87).

Definition 2.17 (Satisfiability Modulo Theory Problem). A satisfiability modulo

theory (Smt) problem is a pair (Φ, T) where Φ is a formula in first-order logic and

T a background theory that determines how to interpret atomic predicates appearing

in Φ.

An atomic predicate is a formula in Φ that contains no logical symbol such as

∨, ∧, →, ↔ and ¬. Note that a function can be transformed to a predicate and a

Boolean variable can be seen as a predicate with an arity of 0.

An Smt problem (Φ, T) is satisfiable modulo the theory T if an assignment θ

exists for the atomic predicates in Φ that satisfies Φ modulo T .

The following example is a running example throughout this section.

Example 2.27. Consider the one-machine scheduling problem with four tasks A,

B, C, and D from Ex. 2.9 on page 15.

This problem can be formulated as an Smt problem (Φ, T) where T is the theory

38 Chapter 2. Basic Principles

of difference constraints and Φ is defined as follows:

C1 ≡ (sA + 5 ≤ sB ∨ ¬(sA − 2 ≤ sB)) ∧ C2 ≡ (sA + 5 ≤ sC ∨ ¬(sA − 1 ≤ sC))

∧ C3 ≡ (sA + 5 ≤ sD ∨ ¬(sA − 2 ≤ sD)) ∧ C4 ≡ (sB + 3 ≤ sC ∨ ¬(sB − 1 ≤ sC))

∧ C5 ≡ (sB + 3 ≤ sD ∨ ¬(sB − 2 ≤ sD)) ∧ C6 ≡ (sC + 2 ≤ sD ∨ ¬(sC − 2 ≤ sD))

∧ C7 ≡ 0 ≤ sA ∧ C8 ≡ sA ≤ 9

∧ C9 ≡ 1 ≤ sB ∧ C10 ≡ sB ≤ 9

∧ C11 ≡ 1 ≤ sC ∧ C12 ≡ sC ≤ 10

∧ C13 ≡ 6 ≤ sD ∧ C14 ≡ sD ≤ 9

Atomic predicates have the form of constraints x1 + d ≤ x2 where x1, x2 are

variables and d an integer constant, e.g. 0 ≤ sA and sA + 5 ≤ sB. These predicates

are written in the canonical form in which the variable of a task with the smallest

name appears on the left-hand side. Such canonical form can be achieved easily

and is important for deduction of implied constraints for some Smt solvers (see

Nieuwenhuis and Oliveras 2005).

Note that the constraints C1, C2, . . . , C6 refer to the constraints in a Csp model

and the domains of the start times are implicitly modelled by the remaining con-

straints rather than explicitly as in a Csp model.

Applications for Smt can be found in software and hardware verification, schedul-

ing, model checking, equivalence checking, test generation, and predicate abstrac-

tion amongst others (see, e.g., Bofill et al. 2008a, Tillmann and de Halleux 2008,

Armando et al. 2009, Lahiri et al. 2006).

The Smt community has implemented theory solvers for many theories. Some

of them are of particular interest such as integer and real arithmetic (e.g. dif-

ference logic (Nieuwenhuis and Oliveras 2005, Cotton and Maler 2006), unit-two-

variable per inequality (Lahiri and Musuvathi 2005, Seshia et al. 2007), linear arith-

metic (Dutertre and de Moura 2006), non-linear arithmetic (Fränzle et al. 2007,

Borralleras et al. 2009)) and uninterpreted functions with equality, arrays, and fixed-

width bit vectors (see, e.g., Pnueli et al. 1999, Meir and Strichman 2005, Ganesh

and Dill 2007, Bofill et al. 2008b, Brummayer and Biere 2009, Bryant et al. 2009).

Normally, an Smt problem contains a combination of theories, although such a

combination may not be straightforward (see, e.g., Manna and Zarba 2003, Bozzano

et al. 2005).

2.5 Satisfiability Modulo Theories 39

2.5.1 Solving

Different kinds of Smt solver exist which are grouped as eager and lazy solvers. The

latter solvers are further refined into online and offline solvers. Most modern solvers

are lazy online Smt solvers.

An eager Smt solver transforms the first-order formula Φ modulo the theory T

into an equisatisfiable propositional formula Φ′ where equisatisfiable means Φ ↔
Φ′. Then a Sat solver (see Sec. 2.3) solves the transformed formula Φ′. This has

the advantage that the best available Sat solver can be taken and the Sat solver

can exploit the full knowledge about the problem from the beginning. However, a

sophisticated encoding is needed for each theory which does not break the implicit

size bounds of the Sat solver.

Definition 2.18 (Propositional Abstraction). Consider the Smt problem (Φ, T).

The propositional abstraction ΦP of Φ is a formula where a new Boolean variable

denoted by JpK is substituted for each interpreted atomic predicate p in Φ.

Then a formula Φ can be rewritten as ΦP ∧ ΦT where ΦT =
∧
p∈Pr p ↔ JpK and

Pr is the set of interpreted atomic predicates involved in the theory T . This means

that the formula can be equisatisfiably transformed into a formula with propositional

logic part ΦP and first-order logic part ΦT modulo the background theory T where

the atomic predicates in ΦT appear in a reified context. A solution for ΦP ∧ ΦT is

an assignment of the Boolean variables in ΦP that satisfied ΦP as well as ΦT .

Example 2.28. Consider the running example Ex. 2.27. The propositional abstrac-

tion of Φ is

(bAB ∨ ¬b∗BA) ∧ (bAC ∨ ¬b∗CA) ∧ (bAD ∨ ¬b∗DA) ∧ (bBC ∨ ¬b∗CB)

∧ (bBD ∨ ¬b∗DB) ∧ (bCD ∨ ¬b∗DC) ∧ J0 ≤ sAK ∧ JsA ≤ 9K ∧ J1 ≤ sBK

∧ JsB ≤ 9K ∧ J1 ≤ sCK ∧ JsC ≤ 10K ∧ J6 ≤ sDK ∧ JsD ≤ 9K

where

bAB ≡ JsA + 5 ≤ sBK b∗BA ≡ JsA − 2 ≤ sBK bAC ≡ JsA + 5 ≤ sCK

b∗CA ≡ JsA − 1 ≤ sCK bAD ≡ JsA + 5 ≤ sDK b∗DA ≡ JsA − 2 ≤ sDK

bBC ≡ JsB + 3 ≤ sCK b∗CB ≡ JsB − 1 ≤ sCK bBD ≡ JsB + 3 ≤ sDK

b∗DB ≡ JsB − 2 ≤ sDK bCD ≡ JsC + 2 ≤ sDK b∗DC ≡ JsC − 2 ≤ sDK.

Instead of fully transforming the Smt problem into an equisatisfiable Sat prob-

lem, the lazy Smt solver builds a propositional abstraction of the problem and

40 Chapter 2. Basic Principles

Algorithm 2.3: offline solve(Φ, T) — scheme of offline Smt solver

Input: Smt (ΦP ∧ ΦT , T)
Output: true, if ΦP ∧ ΦT is satisfiable modulo theory T ; otherwise false

1 repeat
2 α := sat solver(ΦP);
3 if α = unsat then return false;
4 M := theory consistency check(ΦT , T, α);
5 if M 6= sat then
6 add ¬(M) permanently to ΦP ;

7 until M = sat;
8 return true;

passes it to the Sat solver. The Sat solver proposes partial or full assignments to

the Smt solver which are checked for consistency modulo the theory T by a theory

solver, T -solver, for short. Furthermore, the T -solver tries to extend the assignment

regarding the theory T . In both cases the T -solver generates explanations for its

decision, which are added the Sat solver.

The interaction between the Sat solver and T -solver differs in the offline and

online cases. In first case, the Sat solver is used as a black-box solver and in the

second case, both are tightly connected.

In general, offline solvers (see Alg. 2.3) work as follows: the Sat solver finds a

solution for ΦP (line 2) and then the theory T -solver validates the assignment if it

also is a solution for ΦT (line 4). If so then the Smt problem is satisfiable; otherwise

the T -solver adds (conflict) clauses to the Sat solver (line 6) and restarts the Sat

solver. This process is repeatedly applied until a solution is found or the Sat solver

proves the unsatisfiability.

Example 2.29. Consider the running Ex. 2.27 with the propositional abstraction

in Ex. 2.28. Assume the Sat solver assigns true or false to the Boolean variables

in this order: bAB, b∗BA, bAC , b∗CA, bAD, b∗DA, bBC , b∗CB, bBD, bDB∗ , bCD, and b∗DC . All

remaining Boolean variables appear in unit clauses, for this reason the Sat solver

always assigns true to them. The first three steps of Alg. 2.3 are shown below in

which the assignment of the “always” true Boolean variables are omitted:

1. Sat solver proposes {bAB 7→ true, b∗BA 7→ true, bAC 7→ true, b∗CA 7→ true,

bAD 7→ true, b∗DA 7→ true, bBC 7→ true, b∗CB 7→ true, bBD 7→ true, b∗DB 7→
true, bCD 7→ true, b∗DC 7→ true}.

→ T -solver detects conflict and returns ¬J0 ≤ sAK ∨ ¬bAB ∨ ¬bBC ∨ ¬bCD ∨
JsD ≤ 9K.

2.5 Satisfiability Modulo Theories 41

→ Clause ¬J0 ≤ sAK ∨ ¬bAB ∨ ¬bBC ∨ ¬bCD ∨ JsD ≤ 9K is added to ΦP .

2. Sat solver proposes an assignment that differs from the previous one in:

bCD 7→ false.

→ T -solver detects conflict and returns bCD ∨ ¬b∗BC .

→ Clause bCD ∨ ¬b∗DC is added to ΦP .

3. Sat solver proposes an assignment that differs from the previous one in:

b∗DC 7→ false.

→ T -solver detects conflict and returns ¬J0 ≤ sAK∨¬bAB∨¬bBD∨b∗DC∨JsC ≤
10K.

→ Clause ¬J0 ≤ sAK ∨ ¬bAB ∨ ¬bBC ∨ ¬bCD ∨ JsD ≤ 9K is added to ΦP .

In the second step the Smt solver learns about the relationship between bCD and

b∗DC whereas in the first and third step, it learns about an invalid ordering of the

tasks regarding their earliest start times and latest completion time.

The advantage of offline solvers are their modularity and flexibility, but the Sat

search is not driven by information from the theory.

The interaction between the Sat solver and T -solver is more fine grained in online

solvers: instead of waiting for a solution for ΦP from the Sat solver, the T -solver

checks if partial assignments are consistent modulo theory T . Additional, theory

propagators are used in order to infer Boolean variables implied by the current

(partial) assignment.

Nowadays, state-of-the-art Smt solvers are online lazy Smt solvers that imple-

ment an extension of the Sat Dpll algorithm (see Alg. 2.2) referred to as the

Dpll(T) algorithm (Nieuwenhuis et al. 2005, 2006). A basic scheme with chrono-

logical backtracking is given in Alg. 2.4 and works as follows: at first, the algorithm

enters a propagation loop (lines 1 to 11) which consists of Sat unit propagation

on ΦP (line 2), theory consistency check (line 4), and theory propagation (line 4).

The unit propagation returns either a partial assignment or unsat if a conflicting

clause was detected. In the latter case, the algorithm returns false and backtracks

to the previous decision level. In the former case, the T -solver checks if the partial

assignment is still consistent modulo theory T . If the assignment is inconsistent then

the consistency check returns a minimal conflict set M from the partial assignment

which is added to the clause database of the Sat solver. Then the backtracking is

initiated (lines 5 to 7). If the assignment is consistent and a solution of the propo-

sitional formula ΦP then the original Smt problem is satisfiable modulo T (line 8).

If it is not a solution then the T -solver tries to infer implied literals JpK where p is

42 Chapter 2. Basic Principles

Algorithm 2.4: dpll solve(Φ, T, α) — scheme of Dpll(T) algorithm with
chronological backtracking

Input: Smt (ΦP ∧ ΦT , T)
Output: true, if ΦP ∧ ΦT is satisfiable modulo theory T ; otherwise false

1 repeat
2 α := unit propagate(ΦP , α);
3 if α = unsat then return false;
4 M := theory consistency check(ΦT , T, α);
5 if M 6= sat then
6 add ¬(M) permanently to ΦP ;
7 return false;

8 if ∀b ∈ B′ : |D′(b)| = 1 then return true;
9 (M,α) := theory propagate(ΦT , T, α);

10 Φ′P := ΦP ∧M ;

11 until M = ∅;
12 l := propose literal(Φ′P);
13 return dpll solve(Φ, T, α + l) or dpll solve(Φ, T, α + ¬l);

an interpreted predicate in ΦT (line 9). These implied literals extend the partial as-

signment and a clausal explanation is added to the Sat database. The propagation

stops if no implied literal is inferred. Then the Sat solver selects an unfixed literal

(line 12) and branches over it (line 13).

In general, an Smt Dpll(T) solver uses conflict learning, conflict-driven search,

and non-chronological backtracking.

Example 2.30. Consider the running example Ex. 2.27 with the propositional ab-

straction in Ex. 2.28 and the Sat assignment order in Ex. 2.29. The Dpll(T)

algorithm with backjumping and conflict learning solves the problem as follows:

0. Root level.

→ Unit propagation assigns true to J0 ≤ sAK, JsA ≤ 9K, J1 ≤ sBK, JsB ≤ 9K,
J1 ≤ sCK, JsC ≤ 10K, J6 ≤ sDK, and JsD ≤ 9K.

1. bAB is assigned true.

→ T -propagate: b∗BA = true with bAB → b∗BA.

→ T -propagate: b∗DA = true with bAB ∧ JsB ≤ 9K ∧ J6 ≤ sDK→ b∗DA.

→ Unit propagation on bAD ∨ ¬b∗DA: bAD = true.

2. bAC is assigned true.

→ T -propagate: b∗CA = true with bAC → b∗CA.

3. bBC is assigned true.

2.5 Satisfiability Modulo Theories 43

→ T -propagate: b∗CB = true with bBC → b∗CB.

→ T -propagate: b∗DB = true with bBC ∧ JsC ≤ 10K ∧ J6 ≤ sDK→ b∗DB.

→ Unit propagation on bBD ∨ ¬b∗DB: bBD = true.

→ T -propagate: bCD = false with JsD ≤ 9K∧ J0 ≤ sAK∧ bAB ∧ bBC → ¬bCD.

→ Unit propagation on bCD ∨ ¬b∗CD: b∗CD = false.

→ T -consistency check (conflict clause): ¬J0 ≤ sAK ∨ ¬bAB ∨ ¬bBD ∨ b∗DC ∨
¬JsC ≤ 10K.

→ Conflict learning (1-Uip nogood): ¬bBC ∨ ¬bAB ∨ ¬J0 ≤ sAK ∨ ¬JsC ≤
10K ∨ ¬J6 ≤ sDK ∨ ¬JsD ≤ 9K.

→ Backjumping to the decision level 1.

1. Resuming propagation.

→ Unit propagation on latest nogood: bBC = false.

→ Unit propagation on bBC ∨ ¬b∗CB: b∗CB = false.

→ T -propagate: b∗DC = true with ¬b∗CB ∧ JsB ≤ 9K ∧ J6 ≤ sDK.

→ Unit propagation on bCD ∨ ¬b∗DC : bCD = false.

2. bAC is assigned true.

→ Unit propagation on ¬bAC → b∗CA: b∗CA = true.

→ T -propagate: bBD = false with JsD ≤ 9K∧J0 ≤ sAK∧bAC∧¬b∗CB → ¬bBD.

→ Unit propagation on bBD ∨ ¬b∗DB: b∗DB = false.

→ T -consistency check (conflict clause): ¬J0 ≤ sAK ∨ ¬bAC ∨ ¬bCD ∨ b∗DB ∨
¬JsB ≤ 9K.

→ Conflict learning (1-Uip nogood): ¬bAC∨¬bCD∨b∗CB∨¬J0 ≤ AK∨¬JsB ≤
9K ∨ JsD ≤ 9K.

→ Backjumping to the decision level 1.

Here, the Smt solver performs the same search steps as the Sat solver in Ex. 2.20

on page 28. If the Lcg solver uses backjumping then the Smt solver also performs

the same steps.

2.5.2 Comparison to Lazy Clause Generation Solving

Smt solving using the Dpll(T) algorithm and Lcg solving have strong similarities:

(i) a Sat solver is used to inherit its advanced techniques for conflict learning, non-

chronological backtracking,1 and conflict-driven search, (ii) both lazily translate the

original problem to the Sat solver as the search progresses, and (iii) the translation

is performed by specialised propagators which explain their propagation.

1If the Lcg solver supports non-chronological backtracking.

44 Chapter 2. Basic Principles

Hence, theory solvers can be implemented as Lcg propagators and vice versa.

A difference between both solving approaches is that the Sat solver is the master

solver in an Smt Dpll(T) solver whereas it is just a propagator in an Lcg solver.

The consequence is that the Smt solver uses search strategies provided by the Sat

solver whereas the Lcg solver can additionally use the search strategies from the

Fd solver.

Another difference is that each variable in the Lcg solver has a representation in

the Sat solver whereas normally, the Smt Dpll(T) does not, since it is not needed.

Instead, each constraint has a representation. Put simply, the Smt solver solves

the relational dependencies between constraints whereas the Lcg solver tries to

construct a solution for each constraint. Consequently, a Sat conflict-driven search

can take the variables’ domains into account in the Lcg solver.

3
Satisfaction and Implication

Algorithms for Unit Two Variable

Per Inequalities

T
he unit two variable per inequality (Utvpi) constraints form one of the

largest class of integer constraints which are polynomial time solvable (un-

less P=NP). There is considerable interest in their use for constraint solv-

ing (Jaffar et al. 1994, Harvey and Stuckey 1997), abstract interpretation (Miné

2006), spatial databases (Sitzmann and Stuckey 2000) and theorem proving (Lahiri

and Musuvathi 2005). Moreover, they generalise difference constraints which model

precedence constraints in scheduling problems.

Most uses of Utvpi constraint are inherently incremental. Utvpi constraint

solving repeatedly asks satisfiability questions in an incremental manner in order to

drive a search in a large search space. Abstract interpretation uses of Utvpi (Miné

2006) build descriptions of program points in an incremental manner by taking the

description of the previous program point and adding new constraints to generate a

description for the next program point. Theorem proving may be non-incremental

as in Lahiri and Musuvathi (2005) where Utvpi problems arise as subproblems

required by a verification system, but modern techniques such as Smt solving (see

Sec. 2.5 on page 37), require incremental satisfaction and implication algorithms as

well as algorithms for explanation.

In this chapter we develop new incremental algorithms for Utvpi constraint sat-

isfaction and implication. These algorithms can be directly used in a lazy online

Smt solver using the Dpll(T) algorithm (see Alg. 2.4 on page 42) as the theory

consistency check and the theory propagator. Moreover, they can be integrated in

46 Chapter 3. Satisfaction and Implication Algorithms for UTVPI

an Fd solver (without explanation) and an Lcg solver.

3.1 Introduction

A Utvpi constraint has the form ax+by ≤ d where x, y are integer variables, d ∈ Z
and a, b ∈ {−1, 0, 1}. For example x + y ≤ 2, x − y ≤ −1, 0 ≤ −1 and x ≤ 2 are

Utvpi constraints. Utvpi constraint solving is based on transitive closure: The

constraints ax − y ≤ d1 and y + bz ≤ d2 imply the constraint ax + bz ≤ d1 + d2.

We can determine all the Utvpi consequences of a set of Utvpi constraints by

transitive closure, but we need to tighten some constraints. The transitive closure

procedure can generate constraints of the form x + x ≤ d and −x − x ≤ d, which

need to be tightened to x ≤
⌊
d
2

⌋
and −x ≤

⌊
d
2

⌋
respectively.

Jaffar et al. (1994) and Harvey and Stuckey (1997) present incremental consistency

checking algorithms for adding a Utvpi constraint c to a set φ of Utvpi constraints.

They are based on maintaining the transitive and tight closure of the set of Utvpi

constraints φ involving n variables. Both algorithms require O(n2) time and O(n2)

space for an incremental satisfaction check. Both algorithms can also be used to

incrementally check implication of Utvpi constraints by φ∪ {c}. These algorithms

require O(n2 + p) time and O(n2 + p) space for incremental implication checking,

where p is the number of constraints we need to check for implication. In order to

(non-incrementally) check satisfiability of m Utvpi constraints on n variables these

approaches require O(n2m) time, and to check implication they require O(n2m+ p)

time.

An improvement on the complexity of non-incremental satisfiability for Utvpi

constraints was devised by Lahiri and Musuvathi (2005). They define a non-incre-

mental satisfiability algorithm requiring O(nm) time and O(n+m) space. The key

to their approach is to map Utvpi constraints to difference constraints (also called

separation theory constraints) of the form x − y ≤ d, where x and y are integer

variables and d ∈ Z.

The difference constraints are a well studied class of constraints because of their

connection to shortest path problems. We can consider the constraint x − y ≤ d

as a directed edge x → y with weight d. Satisfiability of difference constraints

corresponds to the problem of negative weight cycle detection, and implication of

difference constraints corresponds to finding shortest paths (see e.g. Cotton and

Maler 2006, for details).

The mapping of Utvpi to difference constraints by Lahiri and Musuvathi (2005)

is a relaxation of the problem. The relaxed problem is solved by a negative (weight)

3.1 Introduction 47

cycle detection algorithm but it guarantees only the satisfiability in Q for the Utvpi

problem. In order to check satisfiability in Z they need to construct an auxiliary

graph and check for certain paths in this graph.

In this chapter we first extend Lahiri and Musuvathi’s algorithm (see Lahiri and

Musuvathi 2005) to check satisfaction incrementally in O(n log n+m) and O(n+m)

space. Then we show how to build an incremental satisfiability and implication

algorithm using the relaxation of Lahiri and Musuvathi (2005) and the incremental

implication approaches for difference constraints of Cotton and Maler (2006), which

can incrementally check implication in O(n log n + m + p) time and O(n + m + p)

space.

We give experimental results showing that our algorithms improve upon the previ-

ous incremental algorithms for Utvpi satisfaction and implication checking, unless

the constraint graph is dense.

We then consider using our incremental approach as a basis for a non-incremental

algorithm for implication checking in O(n2 log n+ nm+ p) time and O(n+m+ p)

space. Similarly we can generate all implied constraints in O(n2 log n + nm) time

and O(n+m+p) space, where here p is the number of generated implied constraints.

One of the interests of solving Utvpi constraints is in solving Boolean combina-

tions of Utvpi constraints, e.g. (x− y ≤ 3∨ y− x ≤ 4)→ (x− z ≤ 2∧ z− y ≤ 1).

Seshia et al. (2007) discuss how to encode Boolean combinations of Utvpi con-

straints in conjunctive normal form (Cnf) by giving a tight bound on the region of

satisfiability. An alternate approach is to use incremental satisfaction and implica-

tion algorithms in a lazy online Smt solver (Nieuwenhuis et al. 2005). This requires

that one can efficiently discover unsatisfiable subsets and implicants of implied con-

straints. We discuss how to extend the incremental algorithm to discover minimal

unsatisfiable subsets and minimal implicants in O(n) time. Surprisingly this is not

as simple as the case for difference constraints.

In summary the contributions of this chapter are:

• A new incremental satisfiability algorithm for Utvpi based on the approach of

Lahiri and Musuvathi, which is asymptotically better than previous algorithms

for this problem.

• A new incremental implication algorithm for Utvpi, based on a fundamental

new understanding of how we can compute the tightened transitive closure,

which is asymptotically better than previous algorithms for this problem.

• Experiments illustrating that for sparse problems our algorithms are signifi-

cantly better than existing algorithms for these problems.

48 Chapter 3. Satisfaction and Implication Algorithms for UTVPI

• New non-incremental algorithms for implication checking and implication gen-

eration which are asymptotically better than existing algorithms for these

problems.

• The first algorithms we are aware of specifically for generation of minimal

unsatisfiable subsets and minimal implicants for Utvpi problems.

The remainder of the chapter is organised as follows. In the next section we give

preliminary definitions. In Sec. 3.3 we explain the approach of Lahiri and Musuvathi

(2005) to Utvpi satisfaction. In Sec. 3.4 we show how their approach can be modi-

fied to perform incremental satisfaction. In Sec. 3.5 we show how to do incremental

implication checking, which also introduces a new way to do incremental satisfia-

bility checking. In Sec. 3.6 we give experimental comparisons of the algorithms for

satisfiability and implication. In Sec. 3.7 we show how we can create non-incremental

implication checking from the incremental algorithms. In Sec. 3.8 we explain how

to generate minimal explanations of the unsatisfiability and implication for use in

an Smt solver. Finally in Sec. 3.9 we conclude.

3.2 Preliminaries

In this section we give notations and preliminary concepts.

A weighted directed graph G = (V,E) is made up of vertices V and a set E of

weighted directed edges (u, v, d) from vertex u ∈ V to vertex v ∈ V with weight d.

We also use the notation u
d→ v to denote the edge (u, v, d).

A path P from v0 to vk in graph G, denoted v0 vk, is a sequence of edges

e1, . . . , ek where ei = (vi−1, vi, di) ∈ E and k ∈ N. Let |P | be the number of edges

appearing in P . A simple path P is a path where vi 6= vj, 0 ≤ i < j ≤ k.

A (simple) cycle P is a path P where v0 = vk and vi 6= vj, 0 ≤ i < j ∧ k ∧ (i 6=
0 ∨ j 6= k).

The path weight of a path P , denoted w(P) is Σk
i=1di.

Let G be a graph without negative weight cycles, that is without a cycle P where

w(P) < 0. Then we can define the shortest path from v0 to vk, which we denote by

SP (v0, vk), as the (simple) path P from v0 to vk such that w(P) is minimised.

Let wSP (x, y) = w(SP (x, y)) or +∞ if no path exists from x to y.

Given a graph G and vertex x define the functions δ←x , δ
→
x : V → R as

δ←x (y) = wSP (y, x) and δ→x (y) = wSP (x, y) .

Let G be a graph without negative weight cycles. Then π is a valid potential

3.2 Preliminaries 49

function for G if π(u) + d− π(v) ≥ 0 for every edge (u, v, d) in G. An edge (u, v, d)

is called tight if π(u) + d− π(v) = 0.

There are many algorithms (see e.g. Cherkassky and Goldberg 1996) for detecting

negative weight cycles in a weighted directed graph, which either detect a cycle or

determine a valid potential function for the graph.

Given a valid potential function π for graph G = (V,E) we can define the reduced-

cost graph rc(G) as (V, {(x, y, π(x) + d− π(y)) | (x, y, d) ∈ E}). All weights in the

reduced cost graph are non-negative and we can recover the original path length

w(P) for path P from x to y from paths in the reduced cost graph since w(P) =

w+π(y)−π(x) where w is the weight of the corresponding path in the reduced-cost

graph.

Since edges in the reduced-cost graph are non-negative we can use Dijkstra’s

algorithm (Dijkstra 1959) to calculate the shortest paths in the reduced-cost graph

in time O(n log n+m) instead of O(nm).

3.2.1 Difference Constraints

Difference constraints have the form x− y ≤ d where x and y are integer variables

and d ∈ Z. We can map difference constraints to a weighted directed graph.

Definition 3.1. Let C be a set of difference constraints and let G = (V,E) be the

graph comprised of one weighted edge x
d→ y for every constraint x − y ≤ d in C.

We call G the constraint graph of C.

The following well-known result characterises how the constraint graph can be

used for satisfiability and implication checking of difference constraints.

Theorem 3.1. Let C be a set of difference constraints and G its corresponding

graph. C is satisfiable if and only if G has no negative weight cycles, and if C is

satisfiable then C |= x− y ≤ d if and only if wSP (x, y) ≤ d.

3.2.2 UTVPI Constraints

A Utvpi constraint is of the form ax+ by ≤ d, where x and y are integer variables,

a, b ∈ {−1, 0, 1} and d ∈ Z.

Definition 3.2. The transitive closure TC(φ) of a set of Utvpi constraints φ is

defined as the smallest set S containing φ such that

ax− y ≤ d1 ∈ S ∧ y + bz ≤ d2 ∈ S ⇒ ax+ bz ≤ d1 + d2 ∈ S

50 Chapter 3. Satisfaction and Implication Algorithms for UTVPI

The tightened closure TI(φ) of a set of Utvpi constraints φ is defined as the smallest

set S containing φ such that

ax+ ax ≤ d ∈ S ⇒ ax ≤
⌊
d

2

⌋
∈ S, a ∈ {−1, 1}

The tightened transitive closure TTC(φ) of φ is the smallest set containing φ that

satisfies both conditions.

The fundamental results for Utvpi constraints solving are (Jaffar et al. 1994):

Theorem 3.2 (Unsatisfiability, Jaffar et al. (1994)). Let φ be a set of Utvpi con-

straints. Then φ is unsatisfiable if and only if exists c ≡ (0 ≤ d) ∈ TTC(φ) where

d < 0.

Theorem 3.3 (Implication, Jaffar et al. (1994)). Let c ≡ ax + by ≤ d be a Utvpi

constraint and let φ be a satisfiable set of Utvpi constraints. Then φ |= c if and

only if either c ≡ (0 ≤ d) is a tautology, there exists {ax ≤ d1, by ≤ d2} ⊆ TTC(φ)

with d1 + d2 ≤ d, there exists ax+ by ≤ d′ ∈ TTC(φ) with d′ ≤ d.

Example 3.1. Consider the Utvpi constraints φ ≡ {x − y ≤ 2, x + y ≤ −1,

−x − z ≤ −4}, Then TC(φ) includes in addition {x + x ≤ 1, −y − z ≤ −2,

y − z ≤ −5,−z − z ≤ −7, x − z ≤ −3}. And TI(TC(φ)) includes in addition

{x ≤ 0,−z ≤ −4} and TTC(φ) = TI(TC(φ)) in this case. The constraint −z ≤ −3

is implied by φ as is y − z ≤ 0.

3.3 Lahiri and Musuvathi’s Approach

Lahiri and Musuvathi map Utvpi constraints φ to difference constraints or equiv-

alently a weighted directed graph Gφ, and they use graph algorithms to detect

satisfiability.

We denote the constraint graph arising from φ as Gφ = (V,E). The graph G

contains two vertices x+ and x− for every variable x. These variables are used to

convert Utvpi constraints into difference constraints. The vertex x+ represents +x

and x− represents −x.

Let φ be a set of Utvpi constraints. Each Utvpi constraint c ∈ φ is mapped to a

set of difference constraints D(c), or equivalently a set of weighted edges E(c). The

mapping is shown in the Tab. 3.1. Each Utvpi constraint on two variables generates

two difference constraints and accordingly two edges in the constraint graph. Each

Utvpi constraint on a single variable generates a single constraint, and hence a

single edge.

3.3 Lahiri and Musuvathi’s Approach 51

Table 3.1: Transformation from Utvpi constraint c to associated difference con-
straints D(c) to edges in the constraint graph E(c).

Utvpi c Diff. Constr. D(c) Edges E(c)

x− y ≤ d
x+ − y+ ≤ d x+ d→ y+

y− − x− ≤ d y−
d→ x−

x+ y ≤ d
x+ − y− ≤ d x+ d→ y−

y+ − x− ≤ d y+ d→ x−

−x− y ≤ d
x− − y+ ≤ d x−

d→ y+

y− − x+ ≤ d y−
d→ x+

x ≤ d x+ − x− ≤ 2d x+ 2d→ x−

−x ≤ d x− − x+ ≤ 2d x−
2d→ x+

Let −u denote the counterpart of a vertex u ∈ V , i.e. −x+ := x− and −x− := x+.

Clearly, for each edge (u, v, d) ∈ E the graph Gφ also includes the edge (−v,−u, d)

(called its counteredge) which has equal weight. This correspondence extends to

paths.

Lemma 3.1 (Lahiri and Musuvathi (2005)). If there is a path P from u to v in the

constraint graph Gφ, then there is a counterpath path P ′ from −v to −u such that

w(P) = w(P ′).

If we relax the restriction on variables to take values in Z and allow them to take

values in Q we can check satisfiability in Q using Gφ.

Lemma 3.2 (Lahiri and Musuvathi (2005)). A set of Utvpi constraints φ is un-

satisfiable in Q if and only if the constraint graph Gφ = (V,E) contains a negative

weight cycle.

The reason why the satisfiability in Z cannot be tested with Gφ arises from the

possible implication of constraints of the form x+ x ≤ d or −x− x ≤ d through the

transitivity of constraints in φ. If d is odd (equivalently d/2 ∈ Q \ Z) then φ may

be satisfiable with x = d/2 but not with x = bd/2c.

Example 3.2. Consider the Utvpi problem φ′ ≡ {x−y ≤ 2, x+y ≤ −1, −x−z ≤
−4, −x + z ≤ 3}, then a transitive consequence of the first two is x + x ≤ 1, while

a consequence of the second two is −x− x ≤ −1. Together these require x = 1
2
.

The graph Gφ′ is shown in Fig. 3.1(a). A zero weight cycle is extracted in

Fig. 3.1(b). This cycle has solutions in Q but not in Z.

52 Chapter 3. Satisfaction and Implication Algorithms for UTVPI

y+

−1

x+2oo

−1

~~

z+3oo

y−
2 // x−

3 //

−4

>>

z−

−4

`` y+

−1

x+2oo

x−
3 // z−

−4

`` y+

−1

x+2oo

−1

~~

z+

y−
2 // x−

−4

>>

z−

−4

``

(a) (b) (c)

Figure 3.1: (a) Gφ′ for φ′ of Example 3.2 which is Q-satisfiable but not Z satisfiable.
(b) a zero weight cycle in Gφ′ . (c) Gφ for φ of Example 3.1.

Algorithm 3.1: LaMu (Lahiri and Musuvathi 2005)

Input: φ a set of Utvpi constraints
Output: Satis if φ is satisfiable, Unsat otherwise

1 Construct the constraint graph Gφ = (V,E) from φ;
2 Run a negative cycle detection algorithm on Gφ;
3 if Gφ contains a negative cycle then
4 return Unsat
5 else
6 let π be a valid potential function for Gφ

7 E ′ := {(u, v) | (u, v, d) ∈ E, π(u) + d = π(v)};
8 Hφ := (V,E ′);
9 Group the vertices in Hφ into strongly connected components (Sccs).

Vertices u and v are in the same Scc if and only if there is a path from u to
v and a path from v to u in Hφ. u and v are in the same Scc exactly when
there is a zero weight cycle in Gφ containing u and v;

10 for all u ∈ V do
11 if −u is in the same Scc as u in Hφ and π(−u)− π(u) is odd then
12 return Unsat

13 return Satis

The satisfaction algorithm of Lahiri and Musuvathi (2005) is based on Lem. 3.2

and the following result.

Lemma 3.3 (Lahiri and Musuvathi (2005)). Suppose Gφ has no negative cycles and

φ is unsatisfiable in Z. Then Gφ contains a zero weight cycle containing vertices u

and −u such that wSP (u,−u) is odd.

The Lahiri and Musuvathi algorithm is shown in Alg. 3.1: LaMu. The algorithm

first checks Q satisfiability using a negative cycle detection algorithm (line 3), and

then checks that no such zero weight cycles exists inGφ (lines 5–13) while building up

an auxiliary graph Hφ containing all tight edges E ′ and determining all its strongly

connected components (Scc).

Example 3.3. A valid potential function for the graph shown in Fig. 3.1(a) is

3.4 Incremental UTVPI Satisfaction 53

π(y+) = 5, π(x+) = 3, π(z+) = 0, π(y−) = 2, π(x−) = 4, π(z−) = 7. Each of the

edges is tight, so E ′ contains all edges, and all nodes are in the same Scc. Both x+

and x− occur in the same Scc and SP (x+, x−) = π(x−)− π(x+) = 1 is odd, hence

the system is unsatisfiable.

The complexity of LaMu is O(nm) time and O(n + m) space assuming the

application of the Bellman-Ford single source shortest path algorithm (Bellman 1958,

Ford and Fulkerson 1962) for negative cycle detection.

3.4 Incremental UTVPI Satisfaction

The incremental satisfaction problem is: Given a satisfiable set of Utvpi φ (with

n variables and m constraints) and Utvpi constraint c, determine if φ ∪ {c} is

satisfiable. In this section we define an incremental satisfaction checker for Utvpi

constraints that requires O(n log n + m) time and O(n + m) space. It relies on

simply making incremental the algorithm LaMu of Lahiri and Musuvathi. We

examine the two major components of their algorithm: negative cycle detection,

and the calculation of strongly connected components (Sccs).

The key is to make the negative cycle detection and the Scc computation incre-

mental. We make use of incremental negative cycle detection algorithms previously

used for difference constraints. We also carefully consider how the Sccs can change

under the addition of constraints, in order to minimise the work in recalculating

Sccs.

For incremental negative cycle detection we use an algorithm due to Frigioni et al.

(1998), using the simplified form (Alg. 3.2: IncConDiff) of Cotton and Maler

(2006) (since we are not interested in edge deletion). Given a graph G = (V,E)

and valid potential function π for G and edge e = u
d→ v, this algorithm returns

G′ = (V,E ∪ {e}) and a valid potential function π′ for G′ or determines a negative

cycle and returns Unsat. The complexity is O(n log n+m) time and O(n+m) space

using Fibonacci heaps to implement argmin.

IncConDiff works as follow: it takes a copy π′ of the valid potential function

π and the edge to be added (u, v, d) and repairs all π′ values of nodes t violating

π′(s) + d′ − π′(t) ≤ 0 for an edge (s, t, d′) ∈ Gφ∪{u−v≤d}. If the potential function is

valid after the addition of (u, v, d), i.e., γ(v) ≥ 0 (line 2) then the conditions (line

4 and 11) are not satisfied and algorithm terminates straightforwardly (line 13).

Otherwise the π′ value of v is fixed at first by adding γ(v) to its previous value π(v).

This can lead to violation of the potential function condition on its outgoing edges

(v, t). For all these edges the node t is added to the priority queue with priority γ(t)

54 Chapter 3. Satisfaction and Implication Algorithms for UTVPI

Algorithm 3.2: IncConDiff (Cotton and Maler 2006)

Input: Gφ = (V,E) a graph, π a valid potential function for Gφ, edge
(u, v, d) a new constraint to add to Gφ.

Output: Unsat if φ ∪ {u− v ≤ d} is unsatisfiable, or Gφ∪{u−v≤d} and a valid
potential function π′ for Gφ∪{u−v≤d}.

1 π′ := π;
2 γ(v) := π(u) + d− π(v);
3 γ(w) := 0 for all w 6= v;
4 while min(γ) < 0 ∧ γ(u) = 0 do
5 s := argmin(γ) ;
6 π′(s) := π(s) + γ(s) ;
7 γ(s) := 0 ;

8 for all s
d′→ t ∈ G do

9 if π′(t) = π(t) then
10 γ(t) := min{γ(t), π′(s) + d′ − π′(t)}

11 if γ(u) < 0 then
12 return Unsat

13 return ((V,E ∪ {(u, v, d)}), π′)

(line 10). The same procedure is applied for fixing the π′ values of all nodes in the

queue starting with the node with a lowest priority. The algorithm proves either

satisfiability if it can empty the queue or unsatisfiability if γ(u) becomes negative

(line 10). Implementation details can be found in Cotton and Maler (2006).

To make the Scc computation of LaMu in the zero reduced-cost graph incremen-

tal, we use the same Scc algorithm as before, but restrict its application. The zero

reduced-cost graph is the subgraph of the reduced-cost graph with all zero weight

edges. The key to incrementalising the Scc calculation is the following lemma which

shows that the addition of a new constraint will either make no change to the Sccs

in a manner which is quick to detect, or can only collapse Sccs for the graph of the

previous problem.

Lemma 3.4. Let φ be a satisfiable set of Utvpi constraints and πφ a valid potential

function for Gφ. Let Hφ be the graph of zero weight reduced-cost edges in Gφ. Let

Gφ′ be Gφ with the addition of an edge (u, v, d) and define analogously πφ′ and Hφ′.

If πφ(u) + d > πφ(v) the Sccs of Hφ and Hφ′ are identical. If πφ(u) + d ≤ πφ(v)

then the Sccs of Hφ′ are either identical to those of Hφ or result from the union of

Sccs in Hφ reachable from v in Gφ.

Proof. We carry out the proof with respect to IncConDiff. If πφ(u) + d > πφ(v)

then γ(v) > 0 and no potential function values change, so Hφ′ = Hφ and the result

3.4 Incremental UTVPI Satisfaction 55

holds.

If πφ(u) + d = πφ(v) then γ(v) = 0 and no potential function values change, so

Hφ′ = Hφ with the addition of the edge (u, v) if not already present. Clearly, this

can only result in the union of Sccs of Hφ reachable from v.

If πφ(u) + d < πφ(v) then γ(v) < 0 and IncConDiff does create a new potential

function πφ′ . We show that each node s reachable from v in Hφ has its potential

function value changed to πφ′(s) = πφ(s) + γ(v) by induction on path length from

v.

The base case clearly holds.

Suppose the result holds for s reachable from v in k steps. Each node t where

(s, t) ∈ Hφ is such that there exists an edge (s, t, d′) inGφ where πφ(s)+d′−πφ(t) = 0.

When s is selected for updating in IncConDiff, then each t which has not been

changed already, has γ(t) set to γ(v). When t is selected IncConDiff will define

πφ′(t) = πφ(t) + γ(v).

Clearly then each edge (s, t) ∈ Hφ also exists in Hφ′ .

Thus Sccs in Hφ′ must be unions of Sccs in Hφ, and since the only potential

values changing are those reachable from v in Gφ the result holds.

The incremental Utvpi satisfaction algorithm Satis (shown in Alg. 3.3) simply

runs IncConDiff at line 3 of LaMu. If the newly added edge (u, v, d) has a

reduced cost of zero it has to rebuild the zero reduced-cost graph Hφ graph to

determine possible Z unsatisfiability, since the Sccs of the zero reduced-cost graph

may have changed. It does so only for nodes reachable from v in Gφ. Therefore

Satis computes the Sccs of the subgraph H (defined at line 8) just containing

these nodes and their incident zero reduced-cost edges. Then it uses the same check

as LaMu for Z unsatisfiability (line 10). The algorithm requires O(n + m) time

and space for the Scc construction and checking, and hence the overall complexity

is dominated by IncConDiff requiring O(n log n+m) time and O(n+m) space.

Theorem 3.4. Algorithm 3.3 (Satis) is correct and runs in O(n log n + m) time

and O(n+m) space.

Proof. The complexity follows straightforwardly, recall that constructing Sccs re-

quires O(n + m) time and space. The correctness follows from the correctness of

LaMu (Lem. 3.2 and 3.3) as well as Lem. 3.4 which allows us to avoid generating

the Sccs of the entire graph Gφ∪{c}.

56 Chapter 3. Satisfaction and Implication Algorithms for UTVPI

Algorithm 3.3: Satis – Incremental satisfaction for UTPVI constraints.

Input: φ a satisfiable set of Utvpi constraints, Gφ = (V,E) is the
constraint graph of φ, π is a valid potential function for Gφ, c a
Utvpi constraint

Output: Satis if φ ∪ {c} is satisfiable, Unsat otherwise
1 for all (u, v, d) ∈ E(c) do
2 r := IncConDiff((V,E),π,(u, v, d));
3 if r = Unsat then
4 return Unsat
5 else
6 ((V,E), π) := r

7 if π(u) + d− π(v) = 0 then
8 Determine the Sccs of the graph

H = (V, {(s, t) | (s, t, d′) ∈ E, π(x) + d′ = π(y)}) reachable from the
node v;

9 for all s ∈ V reachable from v in H do
10 if −s is in the same Scc as s in H and π(−s)−π(s) is odd then
11 return Unsat

12 return Satis

3.5 Incremental UTVPI Implication

The incremental implication problem is given by a set P of p = |P | Utvpi con-

straints and a satisfiable set φ of m Utvpi constraints on n variables, where φ 6|=
c′, ∀c′ ∈ P , as well as a single new Utvpi constraint c. For each c′ ∈ P the incre-

mental implication problem is to check if φ ∧ c |= c′.

Incremental implication is important if we wish to use Utvpi constraints in an

Smt solver, as well as for uses in abstract interpretation and spatial databases.

Our approach to incremental implication is similar to the approach of Cotton and

Maler (2006) for incremental implication for difference constraints. The fundamental

new insight that our implication algorithm exploits is that building the tightened

transitive closure TTC of a constraint set φ can be managed by first building the

transitive closure TC(φ) and then applying the tightening on it.

In this section we first prove that TTC(φ) = TI(TC(φ)) using two lemmas.

This means that we can determine most of the information about the tightened

transitive closure by considering transitive closure from the constraint graph. We

then show how, using this insight, we can reason about Utvpi implication simply

using shortest paths, as well as a function to extract the upper and lower bounds of

variables directly from the constraint graph.

3.5 Incremental UTVPI Implication 57

To prove some of the following results we introduce the notion of a proof of a

constraint being a member of TTC(φ) as follows:

Definition 3.3. A proof of a constraint c ∈ TTC(φ) (or analogously TI(φ) or

TC(φ)) is a tree of nodes labelled by constraints. The root of the tree is labelled

c. If the constraint c is generated by transitive closure of c1 and c2 then a node

labelled c has two child nodes labelled c1 and c2. If the constraint c is generated by

tightening of c′ then the node labelled c has a single child node labelled c′. If c ∈ φ
then c is a leaf.

The next two lemmas show that TTC(φ) can be built up by the two closure

steps TI(TC(φ)). The first show that a constraint involving two variables in the

tightened transitive closure is created from the transitive closure operator, i.e., in

other words a tightening introduces constraints involving a single variable and any

further transitive closure involving them can only create new constraints involving

a single variable.

Lemma 3.5. Let ax + by ≤ d ∈ TTC(φ) where {a, b} ⊆ {−1, 1} then ax + by ≤
d ∈ TC(φ).

Proof. Define a constraint ax+ by ≤ d as a binary constraint if {a, b} ⊆ {−1, 1}.
The proof is by induction on proof size. If c ∈ TTC(φ) then it has a finite proof.

If the proof size is 0, then c is a leaf and c ∈ TC(φ).

Suppose the result holds for all proofs of size less than k. Let c ∈ TTC(φ)

be a binary constraint with proof size k. Now c is generated using the transitive

closure rule, since the tightening rule cannot generate binary constraints. Examining

the transitive closure rule, if the result is binary then the generating constraints

c1 ≡ ax − y ≤ d1 and c2 ≡ y + bz ≤ d2 are also binary. Since the proof for the

constraints c1 and c2 are less than k then by induction, {c1, c2} ⊆ TC(φ), hence

c ∈ TC(φ).

For TTC(φ) = TI(TC(φ)) we only have to show that any result of transitive clo-

sure on a new Utvpi constraint by ≤ d′ introduced by tightening, can be mimicked

using the constraint by + by ≤ {2d′, 2d′ + 1} that introduced it, and tightening the

end result.

Lemma 3.6. Let ax ≤ d ∈ TTC(φ) where a ∈ {−1, 1} then ax ≤ d ∈ TI(TC(φ)).

Proof. We show that for each ax ≤ d ∈ TTC(φ) either ax ≤ d ∈ TC(φ) or ax+ax ≤
d′ ∈ TC(φ) where d′ = 2d or d′ = 2d+ 1. Then clearly ax ≤ d ∈ TI(TC(φ)).

58 Chapter 3. Satisfaction and Implication Algorithms for UTVPI

The proof is by induction on proof size. Let c ∈ TTC(φ). If the proof size is 0

then c ∈ φ and c ∈ TI(TC(φ)). Suppose the result holds for all proofs of size less

than k. Let ax ≤ d ∈ TTC(φ) with proof size k.

If the root node is a transitive closure node with children labelled c1 and c2

then exactly one of c1 and c2 is binary. Assume c1 is binary, the other case is

similar. Now c1 ≡ ax − y ≤ d1 and c2 ≡ y ≤ d2 and d = d1 + d2. By Lem. 3.5

c1 ∈ TC(φ). Since the proof of c2 has size less than k by induction we have that

y ≤ d2 ∈ TC(φ) or y + y ≤ d2 + d2 + e ∈ TC(φ)—if y ≤ d2 6∈ TC(φ)—where

e ∈ {0, 1}. In the first case, clearly ax ≤ d ∈ TC(φ). In the second case, we have

ax+ax ≤ d1 +d1 +d2 +d2 + e ∈ TC(φ) by two applications of the transitive closure

on c1 and c2, and then on c1 again. Hence, the induction hypothesis holds.

If the root node is a tightening node with child c′ then c′ is binary and hence by

Lem. 3.5 c′ ∈ TC(φ), and the induction hypothesis holds, too.

The above two results show that TC(φ) is the crucial set of interest for Utvpi

implication checking. The following result shows how the constraint graph can be

used to reason about TC(φ). It also shows implicitly (in combination with Lem. 3.2)

that the satisfaction in Q is decided by TC(φ) if a constraint 0 ≤ d ∈ TC(φ) where

d is negative.

Lemma 3.7. c ∈ TC(φ) if and only if there is a cycle of length d, in the case of

c ≡ 0 ≤ d, or a path u v of length d in Gφ where (u, v, d) ∈ E(c).

Proof. (⇒): The proof is by induction on proof size. Clearly if the proof size is 0,

then c ∈ TC(φ) and E(c) appear in the graph Gφ. Let c ≡ ax + bz ≤ d1 + d2 have

proof size k. Then c is built using c1 ≡ ax− y ≤ d1 and c2 ≡ y + bz ≤ d2. Assume

for simplicity a = 1, and b = −1. The remaining cases are similar.

By induction there exists a path from x+ y+ of length d1 in Gφ and there exists

a path y+ z+ of length d2 in Gφ. Hence there is a path of length d1 + d2 from x+

to z+. Now if x = z this is a cycle.

(⇐): The proof is by induction on the number of edges in path u v. If the

number of edges is 1 then (u, v, d) ∈ Gφ and hence c ∈ φ.

Let u v be a path of length d involving k edges, then it has the form u w

of length d1 and (w, v, d2) ∈ Gφ where d = d1 + d2. Now by induction there is

(u,w, d1) ∈ E(c1) for some c1 ∈ TC(φ) and (w, v, d2) ∈ E(c2) for some c2 ∈ φ.

Assume c1 is of the form x − y ≤ d1, and c2 is of the form y − z ≤ d2, where

w = y+, u = x+ and v = z+. The other cases are similar. Then by transitive closure

c ≡ x− z ≤ d1 + d2 ∈ TC(φ) and (u, v, d) ∈ E(c).

3.5 Incremental UTVPI Implication 59

Example 3.4. Consider φ of Ex. 3.1. Then for example x + x ≤ 1 ∈ TC(φ)

and there is a path x+ x− of length 1 in Gφ shown in Fig. 3.1(c). Similarly

y − z ≤ −5 ∈ TC(φ) and there are paths z− y− and y+ z+ of length −5 in

Gφ.

The consequence of Lem. 3.7 is that we can use paths not only to reason about all

constraints in TC(φ) but also to infer about the tightened constraints in TTC(φ) by

looking for paths from a node u to its counternode −u in the constraint graph Gφ.

That means no tightened edges need to be added to Gφ just as in the satisfiability

case. But still tightening has to be handled. For that we introduce a bounds function

ρ which records the upper and lower bounds for each variable x, on the vertices x+

and x−. It is defined as:

ρ(u) =

⌊
wSP (u,−u)

2

⌋
.

We can show that ρ(x+) is the upper bound of x and −ρ(x−) is the lower bound

of x. Using Lem. 3.6 and 3.7 we have.

Lemma 3.8. For Utvpi constraints φ,

ρ(x+) = min{d | x ≤ d ∈ TTC(φ)}

ρ(x−) = min{d | − x ≤ d ∈ TTC(φ)}

where we assume min ∅ = +∞.

Example 3.5. Consider the graph in Fig. 3.1(c) for constraints φ of Ex. 3.1. Then

ρ(x+) = 0 since wSP (x+, x−) equals 1 and x ≤ 0 ∈ TTC(φ), while ρ(z−) = −4

since wSP (z−, z+) = −7 and −z ≤ −4 ∈ TTC(φ). Note e.g. ρ(x−) = +∞ and

there is no constraint of the form −x ≤ d in TTC(φ).

The next two theorems state how the constraint graph Gφ and the bounds function

ρ can be used to reason about satisfaction and implication. The key to incremental

satisfaction is the following result.

Theorem 3.5. If the constraint graph Gφ contains no negative weight cycle (i.e. φ

is satisfiable in Q) then φ is unsatisfiable in Z if and only if a vertex v ∈ V exists

with ρ(v) + ρ(−v) < 0.

Proof. Let φ be a satisfiable set of Utvpi constraints in Q. By Lem. 3.7 there is

no constraint 0 < d ∈ TC(φ) where d < 0. Therefore φ is unsatisfiable in Z if and

only if such a constraint belongs to TTC(φ) \ TC(φ) (Thm. 3.2), i.e. a possible

unsatisfiability is caused by tightening.

60 Chapter 3. Satisfaction and Implication Algorithms for UTVPI

Lemma 3.5 implies the equivalence for each constraint c ∈ TTC(φ) \ TC(φ) to

ax ≤ d where a ∈ {−1, 0, 1}. Hence, φ is unsatisfiable in Z if and only if two

constraints x ≤ d1 and −x ≤ d2 with d1 + d2 < 0 exist in TTC(φ) if and only if (by

Lem. 3.8) ρ(x+) + ρ(x−) < 0.

Effectively failure can only be caused by tightening if the bounds of a single

variable contradict.

Example 3.6. Consider the graph in Fig. 3.1(a) for constraints φ′ of Ex. 3.2. There

is no negative weight cycle in Gφ′ but ρ(x+) = 0 and ρ(x−) = −1 because of

x−
−4→ z+ 3→ x+. Hence the system is unsatisfiable.

Similarly the key to incremental implication is the following rephrasing of Thm. 3.3.

Theorem 3.6. If φ is a satisfiable set of Utvpi constraints then φ |= c if and only

if for at least one (u, v, d) ∈ E(c) either wSP (u, v) ≤ d or ρ(u) + ρ(−v) ≤ d.

Proof. Let φ be a satisfiable set of Utvpi constraints. Because of Thm. 3.3 it holds

φ |= c and c ≡ ax + by ≤ d if and only if ax + by ≤ d′ ∈ TTC(φ) and d′ ≤ d or

{ax ≤ d1, by ≤ d2} ⊆ TTC(φ) and d1 + d2 ≤ d.

Now, the theorem holds straightforwardly due to Lem. 3.8 for the constraints with

one variable, and Lem. 3.5 and 3.7 for the other constraints.

Example 3.7. Consider the graph in Fig. 3.1(c) for constraints φ of Ex. 3.1. φ |=
−z ≤ −3 is shown since wSP (z−, z+) = −7 ≤ 2×−3.

Algorithm 3.4: Impl shows the new algorithm. As input it takes the constraint

graph Gφ, a valid potential function π, the bounds function ρ, a set P of Utvpi

constraints to check for implication, as well as the Utvpi constraint c which should

be added to φ.

In the first step (line 1) the constraint c is transformed to its corresponding edges

E(c) in a constraint graph. Then each edge in E(c) is added consecutively to the

constraint graph Gφ by using the IncConDiff algorithm of Cotton and Maler

(2006). After inserting all edges in G′, the constraint graph equals Gφ∪{c} and π′ is

a valid potential function for G′. Hence φ ∪ {c} is satisfiable in Q. The remainder

of the algorithm maintains the bounds function ρ′ (lines from 8 to 12) and it is used

to test the satisfiability in Z (lines 13 and 14), and the implication of constraints in

P (lines 15 to 18). For building an efficient implementation of shortest paths the

reader is referred to Cotton and Maler (2006).

By Lem. 3.7 to maintain ρ we need to see if the shortest path from x to −x
has changed. We only need to scan for new shortest paths using the newly added

3.5 Incremental UTVPI Implication 61

Algorithm 3.4: Impl – Incremental satisfaction and implication for Utvpi
constraints.

Input: Gφ = (V,E) a constraint graph representing set of Utvpi constraints
φ, π a valid potential function on Gφ, ρ the bounds function of φ, P a
set of Utvpi constraints not implied by φ, and a Utvpi constraint c
to be added.

Output: Gφ∪{c}, a valid potential function π′ and the bounds function ρ′ of
φ ∪ {c} and the set P ′ ⊆ P of constraints not implied by φ ∪ {c},
or Unsat if φ ∪ {c} is not satisfiable.

1 G′ := Gφ, π′ := π, ρ′ = ρ, compute E(c);
2 for all e ∈ E(c) do
3 res := IncConDiff(G′, π′, e);
4 if res = Unsat then
5 return Unsat
6 else
7 (G′, π′) := res

8 let (u, v, d) be any edge in E(c);
9 compute δ←u and δ→v by using the reduced-cost graph for G′ via π′;

10 for all x ∈ V do
11 sp := δ←u (x) + d+ δ→v (−x);
12 ρ′(x) := min{ρ(x), b sp

2
c};

13 for all x ∈ V do
14 if ρ′(x) + ρ′(−x) < 0 then return Unsat;

15 P ′ := ∅;
16 for all c′ ∈ P do
17 (x, y, d′) := first element in E(c′);
18 if δ←u (x) + d+ δ→v (y) > d′ and δ←u (−y) + d+ δ→v (−x) > d′ and

ρ′(x) + ρ′(−y) > d′ then P ′ := P ′ ∪ {c′};
19 return (G′, π′, ρ′, P ′)

edges. We can restrict attention to a single added edge (u, v, d) since if there is a

path from x over the edge (u, v, d) to −x (x+ u
d→ v x−) then because of

Lem. 3.1 there is equal-weight path from x via the “counter-edge” (−v,−u, d) to

−x (x+ ≡ −x− −v d→ −u −x+ ≡ x−).

We calculate the shortest paths in Gφ∪{c} from each vertex x to u (δ←u (x)) and

from v to each vertex x (δ→v (x)) (line 9). The shortest path for δ←u can be computed

like δ→u by simply reversing the edges in the graph.

We can then calculate the shortest path from x to −x via the edge u
d→ v using

the path x+ u
d→ v x− as δ←u (x) + d + δ→v (−x). We update ρ′ if required

(line 12).

We can now check satisfiability of φ ∪ {c} in Z using Thm. 3.5 (lines 13 and 14).

62 Chapter 3. Satisfaction and Implication Algorithms for UTVPI

Finally we check implications using Thm. 3.6.

Using the above results, it is not difficult to show that the algorithm is correct

with the desired complexity bounds.

Theorem 3.7. Algorithm 3.4 (Impl) is correct and runs in O(n log n+m+p) time

and O(n+m+ p) space.

Proof. The algorithm is correct if it returns Unsat in the case of unsatisfiability of

φ ∪ {c} or the constraint graph Gφ∪{c}, its valid potential function π′, its bounds

function ρ′ and the set of constraints P ′ ⊆ P not implied by φ ∪ {c}.
Lemma 3.2 and algorithm IncConDiff (see Cotton and Maler (2006)) guarantee

that after termination of IncConDiff G′ = Gφ∪{c} and π′ is its valid potential

function if φ ∪ {c} is satisfiable in Q; otherwise φ ∪ {c} is unsatisfiable and the

algorithm returns Unsat.

After application of IncConDiff the algorithm maintains the bounds function

(lines 8 to 12) by calculation of the shortest path x u → v −x via one

added edge (u, v, d) ∈ E(c) for each node x in Gφ∪{c}. Remark that we only have

to consider the shortest paths via the added edges, since ρ give us the length of a

shortest path without those added edges. Due to Thm. 3.5 the algorithm checks

φ ∪ {c} for unsatisfiability in Z in the next two lines. If it is unsatisfiable Impl

terminates and returns Unsat.

The remainder of the algorithm computes the set of non-implied constraints P ′ ⊆
P by testing for all constraints c′ ∈ P if the length of both paths x u → v

y, −y u → v −x are longer than d′ and the sum of the upper bounds

ρ′(x) + ρ′(−y) is greater than d′ where (x, y, d′) ∈ E(c′). If all three cases hold then

c′ is not implied by φ ∪ {c} thanks to Thm. 3.6.

The run-time is determined by the run-time of IncConDiff, the calculation of

δ←u , δ→v which are O(n log n + m), and the implication check O(p). All the other

computations can be done in constant or linear time with respect to n and m. So

the overall run-time is O(n log n+m+ p).

The space is determined by the space to store the graph and implication con-

straints so it is O(n + m + p). The algorithm only needs to attach a constant

amount of information to parts of the graph.

3.6 Experimental Results

We present empirical comparisons of the algorithms discussed herein, first on satis-

faction and then on implication questions.

3.6 Experimental Results 63

For both experiments we generate 60 Utvpi instances φ in each problem class

with the following specifications: the values d range uniformly in from −15 to 100,

approximately 10% are negative, each variable appears in at least one Utvpi con-

straint, each constraint involves exactly two variables, and there is at most one

constraint allowed between any two variables.

The experiments were run on a Sun Fire T2000 running SunOS 5.10 and a 1 GHz

processor. The code was written in C and compiled with gcc 3.4.3 and option -O3.

Each run was given a 2 minute time limit.

We run incremental satisfaction on a system of m constraints in n variables,

adding the constraints one at a time. We compare: Satis the incrementalisation of

LaMu presented in Sec. 3.4, Impl the incremental implication checking algorithm

of Sec. 3.5 where p = 0, mLaMu running LaMu m times for m satisfaction checks,

and HaSt the algorithm of Harvey and Stuckey (1997). For the computation of the

shortest paths we used a binary priority queue for argmin, and the early termination

and caliber heuristics (Cotton and Maler 2006).

The results are shown in left of Tab. 3.2, where d represents the density of a

Utvpi instance, which is defined as m/2n2 representing the percentage of the num-

ber of constraints m in the instance to the maximal number of non-quasi-syntactic

redundant constraints for n variables. A constraint ax + by ≤ d is quasi-redundant

with respect to φ if and only if ax + by ≤ d′ ∈ φ with d′ < d applies. We split the

examples into cases that are satisfiable, Z unsatisfiable, and Q unsatisfiable. More-

over, the fourth row shows the number of examples for each case written (satisfiable,

Z unsatisfiable, Q unsatisfiable) and the overall average runtime. For more dense

satisfiable systems Impl is best, but overall Satis is the clear winner. Interestingly

for very dense satisfiable systems (not shown here) HaSt beats the others.

For the implication benchmarks we chose 5 satisfiable, Z unsatisfiable, and Q un-

satisfiable instances for each problem class. In addition, 5 implication sets P of size

p were created for each n using the same restrictions as defined above. On average

over all benchmarks, 65% of the constraints in P were implied by the corresponding

φ.

The incremental implication experiments check satisfiability and the implications

of constraints P incrementally as each of the m constraints were added one at a time.

A run was terminated if there were no more constraints to add, or unsatisfiability was

detected. We compare the two algorithms that can check implication: Impl versus

HaSt. The right of Tab. 3.3 shows the results. Overall the checks for implication

are cheap compared to the satisfaction check for HaSt, but not for Impl, since it

must compute the shortest path after each constraint addition. Hence the times

64 Chapter 3. Satisfaction and Implication Algorithms for UTVPI

Table 3.2: Average runtime in seconds of the satisfiability algorithms

Examples Satis Impl mLaMu HaSt

n = 100 feasible 0.03 0.13 1.02 1.56
m = 1000 Z-inf. 0.01 0.09 0.57 1.42
d = 5% Q-inf. 0.01 0.04 0.26 0.81

all (32, 8, 20) 0.02 0.10 0.70 1.29

n = 100 feasible 0.18 0.34 3.81 1.98
m = 2000 Z-inf. <0.01 0.14 1.25 1.68
d = 10% Q-inf. 0.02 0.03 0.21 0.68

all (31, 9, 20) 0.10 0.20 2.23 1.50

n = 100 feasible 0.98 0.94 12.39 2.31
m = 4000 Z-inf. 0.02 0.15 1.17 1.82
d = 20% Q-inf. 0.01 0.04 0.25 0.80

all (28, 12, 20) 0.46 0.48 6.10 1.71

n = 200 feasible 0.73 1.28 16.84 16.72
m = 4000 Z-inf. 0.03 0.43 3.17 13.34
d = 5% Q-inf. 0.01 0.11 0.91 6.01

all (30, 11, 19) 0.37 0.76 9.29 12.71

n = 200 feasible 3.82 3.35 56.14 19.17
m = 8000 Z-inf. 0.03 0.52 4.03 14.86
d = 10% Q-inf. 0.01 0.09 0.79 4.84

all (29, 11, 20) 1.86 1.74 28.14 13.60

n = 200 feasible 17.76 11.01 >120.0 20.75
m = 16000 Z-inf. 0.04 0.65 5.59 18.13
d = 20% Q-inf. 0.01 0.10 0.84 5.19

all (28, 12, 20) 8.30 5.30 >57.4 15.04

n = 800 feasible 3.78 13.57 >120.0 >120.0
m = 12800 Z-inf. 0.12 6.80 63.98 >120.0
d = 1% Q-inf. 0.03 1.68 14.17 >120.0

all (27, 13, 20) 1.74 8.14 >72.59 >120.0

of HaSt are similar to the satisfaction case, and Impl needs about three times

longer. While HaSt improves the more dense the system, Impl is the clear winner

on sparse systems.

While Utvpi constraints are used in a number of practical applications, they are

usually deeply embedded inside other systems, such as theorem provers, or program

3.7 Non-Incremental Implication Checking and Generation 65

Table 3.3: Average runtime in seconds of the implication algorithms

Examples Impl HaSt

n = 100 p = 50 0.31 1.28
m = 1000 p = 100 0.32 1.29
d = 5% p = 200 0.34 1.31

n = 100 p = 50 0.53 1.49
m = 2000 p = 100 0.54 1.50
d = 10% p = 200 0.56 1.52

n = 100 p = 50 1.10 1.66
m = 4000 p = 100 1.12 1.68
d = 20% p = 200 1.14 1.70

n = 200 p = 100 2.11 12.52
m = 4000 p = 200 2.16 12.56
d = 5% p = 400 2.26 12.66

n = 200 p = 100 3.84 12.19
m = 8000 p = 200 3.89 12.25
d = 10% p = 400 4.00 12.35

n = 200 p = 100 10.24 13.59
m = 16000 p = 200 10.31 13.66
d = 20% p = 400 10.46 13.82

n = 800 p = 400 34.74 >200.0
m = 12800 p = 800 35.50 >200.0
d = 1% p = 1600 37.08 >200.0

analysers, so there are no suites of stand-alone Utvpi problems we are aware of. Our

experience of the kinds of Utvpi problems that arise from these applications are

that they are very sparse. This indicates that our algorithms should be advantageous

for real applications.

3.7 Non-Incremental Implication Checking and

Generation

The incremental algorithm of the previous sections can be extended to create non-

incremental implication algorithms which either check all constraints in a set P

for implication or compute all (tightly) implied constraints. These algorithms are

of particular importance for the use of Utvpi constraints in abstract interpreta-

tion (Miné 2006) since they allow checking of implication between two sets of Utvpi

constraints, and building a canonical form of a set of Utvpi constraints.

66 Chapter 3. Satisfaction and Implication Algorithms for UTVPI

Algorithm 3.5: Non-incremental satisfaction and implication for Utvpi con-
straints.

Input: Gφ = (V,E) a constraint graph representing set of Utvpi constraints
φ and P a set of Utvpi constraints not implied by φ.

Output: Either P ′ ⊆ P a set of Utvpi constraint implied by φ, or Unsat, if
φ is unsatisfiable.

1 if LaMu(φ) = Unsat then return Unsat;
2 P ′ := ∅; let π be the generated valid potential function of Gφ;
3 for all u ∈ V do
4 compute δ→u by using rc(Gφ) via π;
5 for all c ≡ u+ by ≤ d ∈ P do
6 if y 6= 0 ∧ δ→u (y−b) ≤ d or y = 0 ∧ bδ→u (−u)/2c ≤ d then

P ′ := P ′ ∪ {c}

7 return P ′

The non-incremental implication algorithm which checks constraints P for impli-

cation by φ is shown in Alg. 3.5. At first it checks the satisfiability of φ by using

LaMu. If φ is unsatisfiable then the algorithm terminates with Unsat. Then the

shortest path of all pairs of nodes is computed using Johnson’s algorithm (see John-

son 1977) which runs Dijkstra’s algorithm from every node u in the reduced cost

graph rc(Gφ) via the valid potential function π.

If the shortest path between u and v is d′ then all constraints u−v ≤ d are implied

with d′ ≤ d. To ensure that we check each constraint ax+ by ≤ d ∈ P at most one

time, we assume a map from u = ax to all constraints of the form ax+ by ≤ d ∈ P .

The overall complexity is O(n2 log n+ nm+ |P |) time and O(n+m+ |P |) space

which is determined by Johnson’s algorithm O(n2 log n + nm) time and the size of

the implication set P .

To generate all tightly implied constraints of satisfiable system φ, that is for

φ |= ax + by ≤ d but φ 6|= ax + by ≤ d′ for d′ < d, we use a variation of the same

algorithm. Instead of checking the constraints in P for implication we use δ→u to

create new constraints. For each u ∈ V and each v where δ→u (v) < +∞ we create

the constraint u−v ≤ δ→u (v) if v 6∈ {u,−u}, and the constraint u ≤ bδ→u (v)/2c when

v = −u.

Finally we generate u+v ≤ du+dv for each u ≤ du and v ≤ dv previously created

where v 6∈ {u,−u}, and remove any quasi-syntactic redundant constraints, that is

ax+ by ≤ d where ax+ by ≤ d′ and d′ < d, from the generated set.

This algorithm needs O(n2 log n+ nm) time and O(n+m+ |P |) space, since the

number of implied constraints |P | is bounded in O(n2).

3.8 Generation of Minimal Unsatisfiable Subsets and Minimal Implicants 67

3.8 Generation of Minimal Unsatisfiable Subsets

and Minimal Implicants

Given φ an unsatisfiable set of Utvpi constraints, then a minimal unsatisfiable

subset of φ is a set M ⊆ φ such that M is unsatisfiable and each M ′ ⊂ M is

satisfiable. Suppose that φ |= c, a minimal implicant M of c is a set M ⊆ φ such that

M |= c and for each M ′ ⊂M , M ′ 6|= c. These are highly related since M |= c if and

only if M ∧ ¬c is unsatisfiable. Minimal unsatisfiable subsets (minimal implicants)

are useful if we are using a Utvpi solver as a theory solver in a lazy online Smt

solver (Nieuwenhuis et al. 2005) which requires an explanation of unsatisfiability

(and implication) to encode in Booleans the knowledge of the Utvpi solver.

In the remainder of this section we explain the generation of a minimal sub-

set M ⊆ φ in the case of Q-unsatisfiability of φ. A minimal subset generator

for Z-unsatisfiability and implication φ |= c can be adapted easily from the Q-

unsatisfiability case.

The underlying idea is to use the algorithm IncConDiff to recover a simple

negative cycle as in Cotton and Maler (2006) and construct a minimal unsatisfiable

set with respect to this cycle. The algorithm recovers a negative cycle by keeping

track of the last edge (u, v, d) for every node v which refines γ(v) in IncConDiff.

Hence, each node in a negative cycle has one associated edge which will form a

simple negative cycle. This cycle is extracted by backtracing from x to y where

(x, y, .) is the last added edge to the constraint graph.

The corresponding constraint set of the cycle defines a minimal unsatisfiable set

in the difference constraint context, but not in all cases for Utvpi constraints, since

a Utvpi constraint with two variables is represented by two edges in the constraint

graph.

Example 3.8. Consider the satisfiable constraint set φ = {x − u ≤ 0, u − y ≤
0, x− v ≤ 0,−v− y ≤ 0, y ≤ 0} and the constraint c ≡ −x ≤ −1. Here φ′ = φ∪{c}
is unsatisfiable in Q.

The left-hand side in Fig. 3.2 shows the constraint graph Gφ′ and the right-hand

side a table with a possible sequence of IncConDiff steps under the assumption

that the algorithm was called with Gφ, π, and (x−, x+,−2) where π(v) = 0 for all

nodes v. The table shows: the number of the step, the dequeued node, its tracked

edge, and the caused refinements of γ.

The constraint set of the tracked negative cycle (the outer cycle in the graphGφ′) is

φ′ which is not minimal, since φ′\{x−u ≤ 0, u−y ≤ 0} and φ′\{x−v ≤ 0,−v−y ≤ 0}
are the only minimal unsatisfiable sets.

68 Chapter 3. Satisfaction and Implication Algorithms for UTVPI

x+

0

}}
0

��

x−
−2oo

u+

0

v+

0

��

u−

0

OO

v−

0

``

y+ 0 // y−

0

OO

0

>>

No. node tracked edge refines
1 x+ (x−, x+,−2) γ(u+) = −2

γ(v+) = −2
2 u+ (x+, u+, 0) γ(y+) = −2
3 v+ (x+, v+, 0)
4 y+ (u+, y+, 0) γ(y−) = −2
5 y− (y+, y−, 0) γ(u−) = −2,

γ(v−) = −2
6 v− (y−, v−, 0) γ(x−) = −2
- x− (v−, x−, 0)

Figure 3.2: The outer cycle is one possible tracked cycle whose corresponding con-
straint set is not minimal. The steps of IncConDiff are shown on the
right-hand side.

The reason for the tracked non-minimal set depends on the two equal-weight paths

and theirs counterpaths from x+ to y+ and y− to x− respectively. Each path can

refine the γ-value y+ and x− respectively, whose tracked edge decides which path

we backtrace during recovery of the cycle. In our example we backtrace the path

via v− from x− to y−, but not its counterpath from y+ to x+, since the backtracked

edge (u+, y+, 0) of y+ is part of the other path which leads to a non-minimal set.

To generate a minimal unsatisfiable subset M of non-minimal unsatisfiable sets

N we could apply a general algorithm for minimal unsatisfiability, for example that

described in Junker (2004) which needs O(|N |) steps. In each step the algorithm

checks the satisfiability of a subset of N , so the overall run-time is O(|N | ·τ) where τ

is the run-time complexity of one satisfiability check. In our case τ is O(nm) where

n is the number of variables in N and m = |N |.
But we can do far better. Figure 3.3 shows the only two possible patterns of

constraint graphs GN which can occur if the corresponding Utvpi constraint set N

of a simple negative cycle is not minimal. A wiggly line represents a path between

two nodes and a path labeled P̄ is the counterpath of P .

Lemma 3.9. Let C be a simple negative cycle in Gφ and N be its corresponding

constraint set. If N is a non-minimal unsatisfiable constraint set then its constraint

graph GN fits into one of the patterns appearing in Fig. 3.3.

Proof. Let N be the corresponding constraint set of a simple negative cycle C =

(x1, x2, . . . , xn) in Gφ, which is a non-minimal unsatisfiable constraint set. Since

0 ≤ d 6∈ N with d < 0 and C is a simple cycle there exists a minimal unsatisfiable

constraint set M ⊂ N with |M | > 1. Due to Lem. 3.2 GM contains a simple negative

3.8 Generation of Minimal Unsatisfiable Subsets and Minimal Implicants 69

−v
R̄

//

Q

��

u

P
xx

Q̄

��
−u

S̄

OO

R

88 v

S

YY

P̄oo

(Pattern A)

−u

S̄

��

Q

��

u

P
xx

P̄
oo

−v R̄ //

R

88 v

S

YY

Q̄

OO

(Pattern B)

Figure 3.3: Two possible patterns of constraint graph of a non-minimal unsatisfiable
constraint set arising from a simple negative-weight cycle. In Pattern A
PQRS is a negative cycle but PR̄ may represent a negative cycle derived
from a strict subset of the constraints. In Pattern B PQRS is a negative
cycle but either PQRQ̄ or PS̄RS may be negative cycles derived from
a strict subset of the constraints.

cycle CM for which the following holds:

CM ∩ C 6= ∅ and CM \ C 6= ∅ .

Let S̄ = (−u = −sk → −sk−1 → · · · → −s1 = −v) be a path in CM \ C such

that nodes {−sk,−s1} appear in C and nodes −si, 1 < i < k do not appear in

C. Moreover, let CS̄ be its corresponding constraint set. As CS̄ ⊂ CM ⊂ C the

counterpath S = (v = s1 → s2 → · · · → sk = u) must be a part of C.

W.l.o.g. let xi = si−n+k for all n − k < i ≤ n, xi = −sk, and xj = −s1. Hence,

i 6= j and i, j ≤ n− k.

Pattern A (i > j): Therefore, C equals PQRS, where P = xn xj, Q = xj

xi, and R = xi xn−k+1.

Pattern B (i < j): For pattern B the paths on C = PQRS are P = xn xi,

Q = xi xj, and R = xj xn−k+1.

Thus, GC also includes their counterpath in both cases. Furthermore, because of

the selection of S̄ the paths Q, Q̄, S, and S̄ do not share any interior nodes. Note

that this is not necessarily the case for the pairs of paths P , R̄, and P̄ , R. This

means that all paths from a node in Q, S to a node in P , or R must pass at least

u, −u, v, or −v.

Our approach to determining minimal unsatisfiable subsets extends Cotton and

Maler (2006) by preventing the construction of negative cycles including pattern A

or B. It does do by slightly changing the order for dequeuing the nodes and extending

the backtracing of a negative cycle, so that the generated unsatisfiable constraint

70 Chapter 3. Satisfaction and Implication Algorithms for UTVPI

set is minimal. First we introduce a new order ≺ on the pair (γ,#s) over γ and the

minimal number of edges of a shortest path from s to the nodes:

(γ(u),#s(u)) ≺ (γ(v),#s(v)) ⇐⇒ γ(u) < γ(v) or γ(u) = γ(v)∧#s(u) < #s(v)

where #s(x) = min{|P | | P = s x : w(P) = wSP (s, x)}.
Compared to the order used by IncConDiff this order changes the sequence of

dequeuing of nodes—therefore also for the tracked edges, as well—but only for two

nodes with the same γ-values. The behaviour of dequeuing on those nodes is like a

breadth-first search. Thus, IncConDiff with ≺ will find a simple negative cycle

with the shortest length and the minimal number of edges, so that the constraint

graph of its corresponding constraints cannot match with pattern A.

Example 3.9. Consider the pattern A of Fig. 3.3 and suppose that all paths only

include edges with a weight of 0 except for P and P̄ which only contain the edge

(u,−v,−2) and (v,−u,−2) respectively. Moreover, let us assume that no path

shares any of its interior nodes with any other path.

The graph with the paths Q, R, S, and their counterpaths has no negative cycle,

but with the path P and P̄ it does. Then a minimal unsatisfiable set can only result

from the cycles PR̄ or P̄R. During a run of IncConDiff each γ-value can be

refined exactly once to −2. The new order ≺ avoids a refinement of γ(u) through

the last edge in the path S, which would lead to a non-minimal set, if IncConDiff

starts at −v. In this example γ(u) will always be refined by the last edge in R̄, since

the number of edges of the simple shortest path from −v via R̄ to u is smaller by

|QS| than the other simple path QRS.

To avoid a recovery of a cycle whose constraint graph fits in pattern B we change

the tracked edge of some nodes during backtracing of a cycle as follows: If we back-

trace over the edge (u, v, d) then we set the tracked edge of −u to the counteredge

(−v,−u, d) if and only if 0 = π(−v)+d−π(−u) and #s(−u) = #s(−v)+1. That is,

if the path from s via −v to −u is a simple shortest path from s to −u and the num-

ber of edges of both paths are the same. (Only in this situation can IncConDiff

make a “bad” decision concerning pattern B during the Q-satisfiability check.)

Example 3.10. Let us consider the Ex. 3.8. The steps shown in the right of Fig. 3.2

can still be performed by using the new order ≺, because the competing paths have

the same number of edges.

During the recovery of the cycle—beginning at the node x−—we switch the tracked

edge (u+, y+, 0) of y+ to (v+, y+, 0), since we backtrace over the edge (y−, v−, 0)

3.8 Generation of Minimal Unsatisfiable Subsets and Minimal Implicants 71

Algorithm 3.6: ModIncConDiff – Modified version of IncConDiff re-
turning a minimal unsatisfiable set in the case of Q-unsatisfiability.

Input: Gφ = (V,E) a graph, π a valid potential function for Gφ, (u, v, d) a
new edge to add to Gφ.

Output: Minimal unsatisfiable set M if φ ∪ {u− v ≤ d} is unsatisfiable, or
Gφ∪{u−v≤d} and a valid potential function π′ for Gφ∪{u−v≤d}.

1 γ(v) := π(u) + d− π(v); #v(v) := 0;
2 γ(w) := 0 and #v(w) :=∞ for all w 6= v;
3 while min(γ) < 0 ∧ γ(u) = 0 do
4 s := argmin(γ, #v) wrt. the order ≺ ;
5 π′(s) := π(s) + γ(s) ;
6 γ(s) := 0 ;

7 for all s
d′→ t ∈ G do

8 if π′(t) = π(t) and γ(t) > π′(s) + d′ − π′(t) then
9 ∆ := π′(s) + d′ − π′(t);

10 if γ(t) > ∆ or (γ(t) = ∆ and #v(t) > #v(s) + 1) then
11 γ(t) = ∆;
12 #v(t) = #v(s) + 1;
13 tracked edge(t) := (s, t, d′);

14 if γ(u) < 0 then
15 s := u; M := {u− v ≤ d};
16 while s 6= v do
17 (w, t, d′) := tracked edge(s); /* t is the current s */

18 if π(−t) + d′ − π(−w) = 0 and #v(−w) = #v(−t) + 1 6=∞ then
19 tracked edge(−w) := (−t,−w, d′);
20 M := M ∪ {w − t ≤ d′};
21 s := w;

22 return M

23 return ((V,E ∪ {(u, v, d)}), π′)

before reaching y+. Thus, the recovered cycle contains the path via v− and its coun-

terpath instead of its competing path via u+, so that the corresponding constraint

set {−x ≤ −1, x− v ≤ 0,−v − y ≤ 0, y ≤ 0} is a minimal unsatisfiable set.

The modified version of IncConDiff with ≺ and backtracing is presented in

ModIncConDiff. In the Q-unsatisfiability case the algorithm returns a minimal

unsatisfiable set. Otherwise, it is the same as IncConDiff.

Theorem 3.8. Let φ be a satisfiable set of Utvpi constraints and c be a Utvpi

constraint. If φ ∪ {c} is Q-satisfiable then each run of ModIncConDiff which

adds one edge of E(c) more to Gφ is successful and the last run establishes a valid

72 Chapter 3. Satisfaction and Implication Algorithms for UTVPI

potential function on Gφ∪{c}; Otherwise one run of ModIncConDiff terminates

with a minimal unsatisfiable set M of φ ∪ {c}.

Proof (sketch): The correctness of the algorithm—whether it terminates with Gφ∪{c}

and a valid potential function π on that graph or it terminates with a minimal

unsatisfiable setM—follows straightforwardly from the correctness of IncConDiff,

since ≺ only changes the order of dequeuing the nodes where the “old” order chooses

“randomly” the next node to dequeue.

To show that the algorithm generates a minimal unsatisfiable set M if φ ∪ {c} is

unsatisfiable leads to an extensive case study. For this reason we omit the details of

this proof.

We need to show that because of the order ≺ the corresponding constraint graph

of the recovered negative cycle by ModIncConDiff cannot match with the pattern

A. Then we show that this corresponding graph also cannot fit in the pattern B due

to the switching of the tracked edge during the backtracing of the cycle.

Due to Lem. 3.9 the tracked cycle must lead to a minimal unsatisfiable set.

The modified algorithm ModIncConDiff can also be used to generate a minimal

unsatisfiable set in the Z-unsatisfiable case, and a minimal implicant. For both cases

we run the algorithm on φ with the edges in E(c′) of the constraint c′ ≡ ax+ by ≤
d−2, if c ≡ ax+by ≤ d causes the Z-unsatisfiability of φ∪{c} or c ≡ −ax−by ≤ −d
is implied by φ, since φ ∪ {c′} is Q-unsatisfiable. The complexity of answering all

these questions using ModIncConDiff is O(n log n+m) time and O(n+m) space

where m = |N | and n is the number of variables occurring in N .

3.9 Final Remarks

We have presented new incremental algorithms for Utvpi constraint satisfaction

and implication checking which improve upon the previous asymptotic complexity,

and perform better in practice for sparse constraint systems.

We have adapted the algorithms herein to provide non-incremental implication

checking in O(n2 log n + nm + p) time and O(n + m + p) space, and generate all

implied constraints in O(n2 log n + nm) time and O(n + m + p) space, where p is

the number of implied constraints generated.

We also extended the algorithms to return a minimal unsatisfiable subset when

unsatisfiability is detected, and a minimal implicant of an implied constraint.

4
Explaining the Propagation of the

Cumulative Constraint

T
he cumulative constraint models the usage of scarce cumulative resources.

These resources are part of many real-world scheduling problems such as

constructing a bridge or building, employee scheduling, ship loading, time

tabling, processor or production scheduling etc. (see e.g. Neumann and Schwindt

1997, Kolisch 2001, Demeulemeester and Herroelen 2002, Artigues et al. 2008).

Moreover, each dimension in multi-dimensional cutting and packing problem can

be seen as an individual cumulative resource. Thus, cumulative resources can de-

scribe not only machines that are able to run multiple tasks in parallel but also

entities such as: electricity, water, consumables or even human skills.

In this chapter we investigate how to explain the propagation of the cumulative

constraint, so that the explanations lead to a pruning of the search space as much as

possible. These explanations are developed for cumulative propagators in an Lcg

solver (described in Sec. 2.4 on page 30). Before this we study explanations that are

created when using decompositions of the global constraint cumulative, and use the

knowledge gained for the creation of explanations for cumulative. Experimental

results are presented in Chap. 5 and 6.

4.1 Introduction

The cumulative constraint models the relationship between a scarce cumulative re-

source and activities requiring some part of the resource capacity for their execution.

The resource cannot be overloaded at any point of time, i.e., the accumulated re-

source requirements of activities must be less than or equal to the available resource

74 Chapter 4. Explaining the Propagation of the Cumulative Constraint

f

d

c

e

ba

source sink

(a) Activities with precedence relations.

0 2

a
b

4 6 8 10 12 14

cd
e

f

16 18 20

(b) A possible schedule.

Figure 4.1: A small cumulative resource problem, with 6 activities to place in the
5x20 box, with activity a before b before c, and activity d before e.

capacity in each time period. In this work, we restrict ourself to renewable resources,

i.e., resources with a constant resource capacity over time, and non-preemptive activ-

ities, i.e., their execution cannot be interrupted. A change in the resource capacity

can be modelled by fictitious activities that claim the non-available capacity in a

time interval.

Example 4.1. Consider a simple resource scheduling problem. There are six activ-

ities a, b, c, d, e, and f to be scheduled to end before time 20. The activities have

respective durations 2, 6, 2, 2, 5, and 6, and respective activities requiring 1, 2, 4,

2, 2, and 2 units of resource, with a resource capacity of 5. Assume further that

there are precedence constraints: activity a must complete before activities b begins,

written a� b, and similarly b� c, d� e. Figure 4.1a shows the six activities and

precedences, while 4.1b shows a possible schedule, where the last activity ends at

time period 13.

In 1993 Aggoun and Beldiceanu (1993) introduced cumulative in order to effi-

ciently solve complex scheduling problems in a constraint programming framework,

especially for Fd solvers. The cumulative constraint cannot compete with specific

Operations Research methods for restricted forms of scheduling, but since it is ap-

plicable whatever the side constraints are it is very valuable. Since that time a great

deal of research has investigated new stronger and faster propagation techniques (see

e.g. Caseau and Laburthe 1996, Carlier and Pinson 2004, Nuijten 1994, Baptiste and

Le Pape 2000, Schutt and Wolf 2010, Viĺım 2009), but still most of these techniques

only pay off in limited cases or are not scalable.

Demeulemeester and Herroelen (1992, 1997) implicitly show the importance of

nogoods to fathom the huge search space of the basic resource-constrained project

scheduling (Rcpsp) problem that involves several cumulative resources and prece-

dence relations between activities. Their method is the best-known complete method

so far and heavily relies on dominance rules and cut sets—a kind of problem spe-

cific nogoods—but unfortunately, the number of cut sets grows exponentially in the

4.1 Introduction 75

number of activities, so that this method is considered to be efficient only for small

problems.

This observation indicates that an explaining version of cumulative may signifi-

cantly improve current scheduling methods. In comparison to the specific nogoods

of Demeulemeester and Herroelen (1992, 1997) we are interested in general nogoods,

since they are domain-independent. As discussed in Sec. 2.3, Sat solvers learn gen-

eral nogoods from each conflict, but a static translation of a problem to a Sat

problem may be prohibitive because of the implicit limits on the number of vari-

ables and constraints that they can handle efficiently. In practice, this is the case

for problems involving cumulative resources. However, Lcg solvers and lazy online

Smt solvers (see Sec. 2.4 and 2.5) allow the usage of the Sat solver facilities by

lazily transforming the problem to a Sat problem. Ohrimenko et al. (2009) use

an Lcg solver to solve open shop scheduling problems—which is a special case of

Rcpsp—by decomposition, their approach outperforms the best available constraint

solvers. Consequently, explanation for cumulative in an Lcg solver seems to be

very promising.

Global constraints can almost always be decomposed into simpler constraints by

introducing new intermediate variables to encode the meaning of the global con-

straint. Since the introduction of cumulative (Aggoun and Beldiceanu 1993), little

attention has been paid to decompositions of cumulative because decomposition

cannot compete with the global propagator because of the overheads of intermedi-

ate variables, and the lack of a global view of the problem. But once we consider

explanation we have to revisit this. Decomposition of global constraints means that

explanation of behaviour is more fine grained and hence more reusable. Also it

avoids the need for complex explanation algorithms to be developed for the global

constraint.

In this chapter we investigate how to build explanations for cumulative in an

Lcg solver, so that these explanations lead to stronger nogoods deduced during

the conflict learning in the Sat solver. Firstly, the cumulative resource scheduling

is introduced and related work of explanation for cumulative is discussed. Sec-

ondly, we examine two decompositions of cumulative. Then, we show that building

cumulative with specialised explanation capabilities can further improve upon the

explaining decompositions. Finally, the explanations of cumulative are extended

to take flexible resource capacities, flexible resource usages of activities, and flexible

processing times of activities into account.

76 Chapter 4. Explaining the Propagation of the Cumulative Constraint

4.2 Cumulative Resource Scheduling

First, we define activities and the cumulative resource scheduling problem, and then

discuss algorithms for the cumulative propagator.

Definition 4.1 (Activity). An activity (also called task) i is specified by its start

time si, its processing time (duration) pi, its resource usage (capacity usage or

capacity/resource requirement) ri, and its energy (area or workload) energy i = pi×ri.

In general, the start time of an activity is variable. Depending on the problem,

the processing time and resource usage can be variable too while the energy is fixed.

In rare circumstances (e.g. steel melting or carpet cutting) the processing time and

energy can be variable, but not the resource usage.

Definition 4.2 (Cumulative Resource (Scheduling) Problem). A cumulative re-

source (scheduling) problem (Crp) is a Csp that is characterised by a cumulative

resource with the (constant) resource capacity R, a set of (non-preemptive) activi-

ties V , and a domain on the activity variables. The goal is to find a solution that

assigns values from the domain to the variables for each activity, so that the following

constraints are satisfied:

∀i ∈ V : energy i = pi × ri (4.1)

∀τ ∈ [0..T) :
∑

i∈V:si≤τ<si+pi

ri ≤ R , (4.2)

where T is the planning horizon and τ is a time period or, short, a period. A solution

is also called schedule.

If just the start times are variable then the goal simplifies to finding an assignment

for the start time variables that satisfies (4.2), and (4.1) is an equation between

integers.

In the remainder of this work, models or part of them are stated in the Zinc

modelling language (Marriott et al. 2008). The constraint cumulative has the Zinc

type

1 predicate cumulat ive (array [int] o f var int : s ,

2 array [int] o f var int : p , array [int] o f var int : r , var int : R) ;

where s [i] is the start time of the activity i, p[i] its processing time, r [i] its resource

usage, and R the resource capacity.

4.2 Cumulative Resource Scheduling 77

Example 4.2. Consider the cumulative resource problem defined in Ex. 4.1. This

can be modelled by

cumulative([sa, sb, sc, sd, se, sf], [2, 6, 2, 2, 5, 6], [1, 2, 4, 2, 2, 2], 5)

with precedence constraints a � b, b � c, d � e, modelled by sa + 2 ≤ sb,

sb+6 ≤ sc, and sd+6 ≤ se. The propagators for the precedence relations determines

a domain D where D(sa) = [0 .. 8], D(sb) = [2 .. 10], D(sc) = [8 .. 18], D(sd) =

[0 .. 13], D(se) = [2 .. 15], D(sf) = [0 .. 14]. The cumulative propagator does not

determine any new information. If we add the constraints sc ≤ 9, se ≤ 4, then

precedence determines the domains D(sa) = [0 .. 1], D(sb) = [2 .. 3], D(sc) =

[8 .. 9], D(sd) = [0 .. 2], D(se) = [2 .. 4]. The cumulative propagator may be able

to determine that activity f cannot start before time 10.

A special case of Crp is disjunctive resource scheduling where the resource ca-

pacity R equals 1. Although all discussions about Crp hold for this special case

in this work we concentrate on pure Crp, i.e., R > 1, since more sophisticated

techniques exist to tackle scheduling problems with disjunctive resources. In dis-

junctive resource scheduling an activity has to precede or follow another activity,

since activities cannot be executed concurrently. Relying on this fact, the expla-

nation developed later in this chapter might not be the best one for solving such

problems. Some other solution methods can exploit the binary relationship between

activities.

To decide whether a Crp problem is feasible is NP-complete, since already its

specialised version where all parameters of activities are fixed except the start times

is NP-complete (Baptiste et al. 1999). Thus, there does not exist an efficient algo-

rithm that can solve all Crp instances in polynomial time, unless P = NP . Conse-

quently, no efficient cumulative propagator can even achieve bounds(R) consistency

(cf. Def. 2.12 on page 13) (unless P = NP).

Nonetheless, different propagation algorithms have been developed which achieve

a weaker consistency level than bounds(R) consistency. They differ in their prop-

agation strength, their runtime complexity, and their applicability. Baptiste et al.

(2001) exhaustively relates them to each other regarding their propagation strength.

The propagation algorithms mainly reason about the compulsory parts of activi-

ties (Lahrichi 1982) or about the energies of activities (Erschler and Lopez 1990).

These algorithms are referred as consistency check or filtering algorithms depending

on their purpose.

78 Chapter 4. Explaining the Propagation of the Cumulative Constraint

f

f

f

earliest completion time
 lb(s[i]) + lb(p[i])

latest completion time
 ub(s[i]) + ub(p[i])

earliest start time
 lb(s[i])

latest start time
 ub(s[i])

compulsory part

Figure 4.2: The compulsory part of an activity (on the bottom) deduced from the
earliest start time (on the top) and the latest completion time (on the
bottom).

4.2.1 Reasoning about the Compulsory Parts

If ub(si) < lb(si) + lb(p[i]) then the compulsory part of an activity i is the time

interval [ub(si), lb(si) + lb(p[i])) in which the activity must be executed due to its

time window. The compulsory part (see Fig. 4.2) can be seen as an intersection

between the schedule times if the activity is started at its earliest and latest time

considering the lowest and highest processing time of the activity, respectively.

The consistency check based on these parts is called time-table (or time-tabling).

It records the compulsory parts of all activities over the planning horizon. This

record is called the resource profile (or histogram). This check can be performed in

O(n log n) runtime and O(n) space where n is the number of activities.

The time-table filtering algorithm uses this resource profile to infer new bounds

on the start and end time variables. For each activity it tests if the activity can be

started at its earliest start time without causing a resource overload. If not then the

lower bound of the start time variable is increased appropriately. The case for the

upper bound of the start time variable is symmetric. The time complexity of these

algorithms is O(n log n+np) where p is the number of height changes in the profile.

Due to their low complexity and their usage of simple data structures both algo-

rithms appear to be the most scalable algorithms for the cumulative propagator so

far. Therefore they are usually used as default propagators. A drawback is that the

search must lead to creation of compulsory parts before an inference can be made.

Thus, the main propagation may start late in the search.

4.2.2 Reasoning about the Energies

In comparison to the time-table algorithms, reasoning about energies of the activities

can deduce new bounds in an early stage of a search.

4.2 Cumulative Resource Scheduling 79

The overload check (Wolf and Schrader 2006) is a consistency check algorithm.

It checks for a resource overload in specific time intervals that are defined by the

activities. In each time interval it sums up the needed energies of the activities that

must be completely scheduled in this interval and checks if the sum exceeds the

available energy. It runs in O(n log n) time and O(n) space.

Nuijten (1994) generalised the filtering algorithms of (extended) edge-finding, and

not-first/not-last for the disjunctive propagator to the cumulative propagator. All

three algorithms detect the relationship between one activity j and a subset of

activities Ω excluding j by considering the activity’s energy. (Extended) edge-finding

infers if the activity j must strictly end after (start before) all activities in Ω, not-

first infers if the activity j must start after the end of at least one activity in Ω and

not-last infers if the activity j must end before the start of at least one activity in Ω.

The edge-finding algorithm was corrected by Mercier and Van Hentenryck (2008)

and its runtime complexity reduced to O(kn log n) (Viĺım 2009) where k is the

number of distinct resource usages of activities. The not-first/not-last algorithm was

corrected by Schutt et al. (2006) and its runtime complexity lowered to O(n2 log n)

(see Schutt and Wolf 2010).

Baptiste and Le Pape (2000) present the left-shift/right-shift filtering algorithm,

also called energetic reasoning (Baptiste et al. 2001), which subsumes (extended)

edge-finding, but not not-first/not-last. It considers the required energies of ac-

tivities in specific time intervals. This required energy is the minimal energy that

overlaps with the time interval when the activity starts at its earliest start time

(left shift) or ends at its latest completion time (right shift). It is more complex

and stronger than the other filtering algorithms, but it needs to consider many time

intervals to demonstrate its full power. Since it runs in O(n3) time, it is rarely used.

Caseau and Laburthe (1996) generalised the use of activity intervals from the

disjunctive constraint to the cumulative constraint. An activity interval is charac-

terised by two activities i and j and contains all activities whose earliest start time

and latest end time are included in the time interval [start .. end] where start is the

earliest start time of i and end the latest end time of j, i.e., ub(s[j]) +ub(p[j]). The

number of activity intervals is thus O(n2). The activity intervals are incrementally

maintained and used to check consistency, propagate the lower (upper) bound of

the start (end) variable by rules which cover (extended) edge-finding, detect prece-

dences between activities and eliminate duration-usage pairs if the energy for an

activity is given. Additionally, the compulsory parts are incrementally tracked for

the consistency check and the time-table filtering.

These filtering algorithms are more likely to propagate if the slack, i.e., available

80 Chapter 4. Explaining the Propagation of the Cumulative Constraint

energy in some time interval, is small. Baptiste and Le Pape (2000) showed that the

use of these algorithms is beneficial for highly cumulative problems, i.e., problems in

which many activities can be run in parallel, but not for highly disjunctive problems.

Due to its lower complexity and simpler structure the edge-finding algorithm is the

most used one if the problem is not highly disjunctive.

4.3 Related Work on Explanations

There is a substantial body of work on explanations in constraint satisfaction (see

e.g. Dechter et al. 1991, Chap. 6), but there was little evidence until recently of

success for explanations that combine with propagation (although see Jussien et al.

2000, Jussien and Lhomme 2002). The constraint programming community revisited

this issue after the success of explanations in the SAT community.

Katsirelos and Bacchus (2005) generalised the nogoods from the Sat commu-

nity. Their generalised nogoods are conjunctions of variable-value equalities and

disequalities, e.g. {x1 = 3, x4 = 0, x7 6= 6}. For bound inference algorithms this

representation is not suitable since one bound update of a variable must be explained

by several nogoods.

The Lcg approach (introduced in Sec. 2.4 on page 30) is a hybrid of Sat and Fd

solvers. It keeps the abstraction of the constraints and their propagators just explain

their inferences to the Sat solvers. Moreover, their bounds on integer variables are

represented by Boolean literals so they are more suitable for explaining a bound

filtering algorithm. In this chapter we use Lcg to implement a first version of

an explaining global cumulative constraint consisting of the time-table consistency

check and filtering algorithm. This constraint is compared to the two decompositions

which also use Lcg on the parts of their decomposition.

There has been a small amount of past work on explaining cumulative. Viĺım

(2005) considered the disjunctive case of cumulative where he presented a frame-

work based on justification and explanation. The explanation consists of a subset

of initial constraints, valid search decisions, and conflict windows for every activ-

ity. He proposed explanations for an overload check concerning an activity interval,

edge-finding, not-first/not-last, and detectable precedence filtering algorithms.

In this work, we consider the general case cumulative and in particular show how

to explain time-table and edge-finding filtering. Explaining edge-finding for general

cumulative is more complex than for the disjunctive case, since we have to take

into account the resource capacity and that activities can run in parallel. Moreover,

Viĺım (2005) does not consider explaining the propagation of the filtering algorithms

4.4 Propagating the Cumulative Constraint by Decomposition 81

stepwise.

Jussien (2003) presents explanations for the time-table consistency and filtering

algorithms in the context of the PaLM system (Jussien and Barichard 2000). The

system explains inconsistency at time t by recording the set of activities St whose

compulsory part overlaps t and then requiring that at least one of them takes a

value different from their current domain. These explanations are analogous to the

näıve explanations we describe later which examine only the current bounds, but

they are much weaker since they do not use bounds literals in the explanations. The

time-table filtering explanations are based on single time periods but again use the

current domains of the variables to explain.

Recently, independently from our work, explanations for cumulative have been

developed in the Scip framework (Achterberg 2009), which is a hybrid of constraint

and integer programming (Berthold et al. 2010, Heinz and Schulz 2011). Their expla-

nations are built “backwards”, i.e., during backtracking, whereas the explanations

herein are created “forwards”, i.e., during the propagation.

They present explanations for the energetic reasoning and time-table consistency

and filtering algorithms. Based on energetic reasoning, they also describe explana-

tions for a restricted version of the edge-finding filtering algorithm. In all cases,

the explanations consist of lower or upper bounds the activities involved. Besides

the trivial explanations they determine a minimal set of activities that causes the

inconsistency or a bound update for the considered algorithms. Neither Berthold

et al. (2010), Heinz and Schulz (2011), described any form of bounds widening.

Hence, it appears their explanations for the time-table and edge-finding algorithms

correspond to the näıve explanation described later.

4.4 Propagating the Cumulative Constraint by

Decomposition

Usually the cumulative constraint is implemented as a single propagator, since it

can then take more information into account during propagation. But building a

global constraint is a considerable undertaking which we can avoid if we are willing

to encode the constraint using decomposition into primitive constraints.

In the remainder of this section we assume that only the start times are variable

and the other parameters of an activity are fixed.

82 Chapter 4. Explaining the Propagation of the Cumulative Constraint

4.4.1 Time Decomposition

The time decomposition (TimeD) Aggoun and Beldiceanu (1993) (sometimes re-

ferred as time-indexed decomposition) arises from (4.2). For every time period t the

sum of all resource requirements must be less than or equal to the resource capacity.

The Zinc encoding of the decomposition is shown below where: index set(a) returns

the index set of an array a (here [1 .. n]), lb(x) (ub(x)) returns the declared lower

(upper) bound1 of a variable x, and bool2int(b) is 0 if the Boolean variable b is

false, and 1 if it is true.

1 predicate cumulat ive (

2 array [int] o f var int : s , array [int] o f var int : p ,

3 array [int] o f var int : r , var int : R

4) = l et {
5 set o f int : V = i n d e x s e t (s) ,

6 set o f int : t imes = min ([lb (s [i]) | i in V]) . .

7 max ([ub(s [i]) + ub(p [i]) − 1 | i in V])

8 } in f o ra l l (t in t imes) (

9 sum(i in V) (

10 boo l 2 i n t (s [i] <= t /\ t < s [i] + p [i]) ∗ r [i]

11) <= R

12) ;

This decomposition implicitly introduces new Boolean variables Bit. Each Bit

represents that activity i is active at time period t:

∀t ∈ [0 .. T − 1] ,∀i ∈ [1 .. n] : Bit ↔ Js[i] ≤ tK ∧ ¬Js[i] ≤ t− p[i]K

∀t ∈ [0 .. T − 1] :
∑

i∈[1 .. n]

r[i] ·Bit ≤ R

Note that since we use Lcg, the Boolean variables for the expressions Js[i] ≤ tK and

Js[i] ≤ t−p[i]K already exist and for an activity i we only need to construct variables

Bit where lb(s[i]) ≤ t < ub(s[i]) + p[i] for the initial domain Dinit.

At most n × T new Boolean variables, n × T conjunction constraints, and T

inequality constraints (of size n) are created. This decomposition implicitly records

the resource profile over time.

To add another cumulative constraint for a different resource on the same activ-

ities we can reuse the Boolean variables, and we just need to create T new sum

constraints.

The variable Bit records whether the activity i must use its resources at time

period t. Hence Bit is true indicates a compulsory part of activity i. It holds in the

1The declared lower and upper bound are the bounds of the initial domain.

4.4 Propagating the Cumulative Constraint by Decomposition 83

0 2 4 6 8 10 12 14

a

b

c
d

e

f

16 18 20

a
b

e
c

a

b

c
d

e

f

0 2 4 6 8 10

Figure 4.3: An example of propagation of the cumulative constraint.

time interval [lb(s[i]) .. lb(s[i]) + p[i]− 1] ∩ [ub(s[i]) .. ub(s[i]) + p[i]− 1].

Example 4.3. Consider the problem of Ex. 4.2 after the addition of sc ≤ 9, se ≤ 4.

The domains are D(sa) = [0 .. 1], D(sb) = [2 .. 3], D(sc) = [8 .. 9], D(sd) = [0 .. 2],

D(se) = [2 .. 4], D(sf) = [0 .. 14]. Propagation on the decomposition determines

that Bb5 is true since sb ≤ 5 and ¬(sb ≤ 5 − 6 = −1), similarly for Be5. The

propagator of the inequality constraints determines that Bf5 is false, and hence

¬(sf ≤ 5) ∨ sf ≤ −1. Since the second half of the disjunct is false already we

determine that sf ≥ 6. Similarly propagation on the decomposition determines that

Bc9 is true, and hence Bf9 is false, and hence ¬(sf ≤ 9) ∨ sf ≤ 3. Since the second

disjunct must be false (due to sf ≥ 6) we determine that sf ≥ 10.

The top of Fig. 4.3 shows each activity in a window from earliest start time to

latest end time, and highlights the compulsory parts of each activity. If there is

no darkened part (as for d and f) then there is no compulsory part. Propagation

of the decomposition will determine Ba1, Bb3, Bb4, Bb5, Bb6, Bb7, Bc9, Be4, Be5,

and Be6 which corresponds to the compulsory parts of each activity. The resulting

resource profile is shown at the bottom of Fig. 4.3. Clearly at times 5 and 9 there

is insufficient resource capacity for the activity f with the resource usage 2.

We can expand the model to represent holes in the domains of start times—usually

Csp representation of activities does not encode holes. The literal Js[i] = tK is a

Boolean representing the start time of the ith activity is t. We add the constraint

Js[i] = tK→
∧

t≤t′<t+p[i]

Bit′

which ensures that if Bit′ becomes false then the values {t′−p[i]+1, t′−p[i]+2, . . . , t′}
are removed from the domain of s[i].

84 Chapter 4. Explaining the Propagation of the Cumulative Constraint

We tested this extended model on large instances of Rcpsp from the PSPLib, but

it neither improved the search time, the number of choice points, nor the average

distance to the best known upper bound in average. This is not surprising since for

Rcpsp we have no propagators that can take advantage of the holes in the domain.

The expanded model may be useful for cumulative scheduling problems with side

constraints that can benefit from such reasoning.

Another Time Decomposition

Hooker (2005) uses a variant of TimeD in his linear programming formulation which

avoids the introduction of 0-1 variables corresponding to the Boolean variables Bit.

His decomposition solely relies on 0-1 variables corresponding to the variables Js[i] =

tK and can be written as the following Zinc predicate.

1 predicate cumulat ive (

2 array [int] o f var int : s , array [int] o f var int : p ,

3 array [int] o f var int : r , var int : R

4) = l et {
5 set o f int : V = i n d e x s e t (s) ,

6 set o f int : t imes = min ([lb (s [i]) | i in V]) . .

7 max ([ub(s [i]) + ub(p [i]) − 1 | i in V])

8 } in f o ra l l (t in t imes) (

9 sum(i in V) (

10 sum(t i in t imes where t − p [i] < t i /\ t i <= t) (

11 boo l 2 i n t (s [i] = t i) ∗ r [i]

12)

13) <= R

14) ;

We compared both decompositions on some harder instances of Rcpsp with 30

activities from the PSPLib by using an Lcg solver. On all these instances Hooker’s

variant significantly slowed down the solver (a factor of 19 for one instance). There

are a few hypotheses why this variant does not perform well for Lcg solvers.

First, the variant can save at most n× T Boolean variables, but it can add up to

2n× T clauses, due to the fact that the variables Js[i] = tK are created on demand

in an Lcg solver whereas the variables Js[i] ≤ tK are always built. Consequently,

up to 3n × T additional clauses are generated to express the relationship between

those variables.

Second, the Lcg propagator for the linear inequality constraint has no knowledge

that the individual Boolean variables Js[i] = 0K, Js[i] = 1K, . . . , represent values from

the same domain. Thus, the Lcg propagator may not create a strong explanation.

4.4 Propagating the Cumulative Constraint by Decomposition 85

Third, one strength of Lcg comes from learning about bounds on variables which

is achieved by using Boolean variables Js[i] ≤ tK. But the variant promotes learning

about individual values in the domain of a variable.

To conclude, Hooker’s variant of the time decomposition is very effective in the

context of mixed-integer programming. However, it is not so effective for Lcg

solvers.

4.4.2 Activity Decomposition

The activity decomposition (ActiD) is a relaxation of the time decomposition. It

ensures a non-overload of resources only at the start (or end) times which is sufficient

to ensure non-overload at every time for non-preemptive activities. Therefore, the

number of variables and linear inequality constraints is independent of the size of

the planning horizon. It was used by El-Kholy (1996) for temporal and resource

reasoning in planning. The Zinc code for the decomposition at the start times is

below.

1 predicate cumulat ive (

2 array [int] o f var int : s , array [int] o f var int : p ,

3 array [int] o f var int : r , var int : R

4) = l et { set o f int : V = i n d e x s e t (s)}
5 in f o ra l l (j in V) (

6 sum(i in V where i != j) (

7 bo o l 2 i n t (s [i] <= s [j] /\ s [j] < s [i] + p [i]) ∗ r [i]

8) <= R − r [j]

9) ;

The decomposition implicitly introduces new Boolean variables: B1
ij ≡ “activity

j starts at or after activity i starts”, B2
ij ≡ “activity j starts before activity i ends”,

and Bij ≡ “activity j starts when activity i is running”.

∀j ∈ [1 .. n] , ∀i ∈ [1 .. n] \ {j} : Bij ↔ B1
ij ∧B2

ij

B1
ij ↔ s[i] ≤ s[j]

B2
ij ↔ s[j] < s[i] + p[i]

∀j ∈ [1 .. n] :
∑

i∈[1 .. n]\{j}

r[i] ·Bij ≤ R− r[j]

Note not all activities i must be considered for an activity j, only those i which

can overlap at the start times s[j] regarding precedence constraints—if they exist,

resource constraints and the initial domain Dinit.

86 Chapter 4. Explaining the Propagation of the Cumulative Constraint

Since the Sat solver does not know about the relationship among the B1
∗∗ and

B2
∗∗ the following implied constraints can be posted for all i, j ∈ [1 .. n] where i < j

in order to improve the propagation and the learning of reusable nogoods.

B1
ij ∨B2

ij B1
ji ∨B2

ji B1
ij ∨B1

ji B1
ij → B2

ji B1
ji → B2

ij

In addition for each precedence constraint i� j we can post ¬Bij.

The size of this decomposition only depends on n whereas the size of TimeD

depends on n and the number of time periods in the planning horizon. At most

3n(n − 1) Boolean variables, 3n(n − 1) equivalence relations, 5(n − 1)(n − 2)/2

redundant constraints and n sum constraints are generated. Another cumulative

resource constraint can reuse the Boolean variables and requires only adding n new

sum constraints.

Example 4.4. Consider the problem of Ex. 4.2 after the addition of sc ≤ 9, se ≤ 4.

The domains from precedence constraints are D(sa) = [0 .. 1], D(sb) = [2 .. 3],

D(sc) = [8 .. 9], D(sd) = [0 .. 2], D(se) = [2 .. 4], D(sf) = [0 .. 14]. Propagation on

the decomposition learns ¬B2
ab, ¬B2

bc and ¬B2
de directly from precedence constraints

and hence ¬Bab, ¬Bbc, and ¬Bde. From the start times propagation determines that

B1
ab, B

1
db, B

1
ae, B

1
de, B

1
ac, B

1
bc, B

1
dc, B

1
ec, and similar facts about B2

∗∗ variables, but

no information about B∗∗ variables. The sum constraints determine that ¬Bcf and

¬Bfc, but there are no bounds changes. This illustrates the weaker propagation of

the ActiD decomposition compared to the TimeD decomposition.

If we use end time variables e[i] = s[i] + p[i] instead of start time variables, we

can generate a symmetric ActiD decomposition to that defined above.

In comparison to the TimeD decomposition, the ActiD decomposition is stronger

in its ability to relate to activity precedence information (i � j), but generates a

weaker profile of resource usage, since no implicit profile is recorded. They are thus

incomparable in strength of propagation, although in practice the TimeD decompo-

sition it almost always stronger.

4.5 Explanations for Cumulative Propagators

Propagators for cumulative check the consistency of the current Crp or prune

inconsistent values from the variables domain. In order to gain maximum benefit

from the underlying Sat solver (in terms of nogood learning) these algorithms must

explain inconsistency and domain changes of variables using Boolean literals that

encode the integer variables and domains in the Sat solver. When using Lcg it

4.5 Explanations for Cumulative Propagators 87

is not strictly necessary that a propagator explains all its propagations, in which

case the resulting propagated constraints are treated like decisions, and learning

is not nearly as useful. The decomposition approaches to cumulative inherit the

ability to explain from the explanation capabilities of their base constraints. The

challenge in building an explaining global constraint is to minimise the overhead of

the explanation generation and make the explanations as reusable as possible.

In this section, explanations that only take variable start times into account are

developed and they are then extended to explanation that can additionally consider

flexible processing times, resource usages, and resource capacity, in the next section.

4.5.1 Consistency Check

Our cumulative propagator first performs a consistency check to determine whether

the constraint is satisfiable. Here we consider the time-table consistency check based

on the resource profile. If an overload in resource usage occurs on a resource with

a maximal capacity R in the time interval [s .. e− 1] involving the set of activities

Ω, the following condition holds:

∀i ∈ Ω : ub(s[i]) ≤ s ∧ e ≤ lb(s[i]) + p[i] ∧
∑
i∈Ω

r[i] > R

Note that here and in the subsequent text lb(.) and ub(.) refers to the lower and the

upper bound of the variable in the current state of propagation. A näıve explanation

explains the inconsistency using the current domain bounds on the corresponding

variables from the activities in Ω, which is always a correct explanation for any

constraint. ∧
i∈Ω

Jlb(s[i]) ≤ s[i]K ∧ Js[i] ≤ ub(s[i])K→ false

In some cases some activity in Ω might have compulsory parts before or after the

overload. These parts are not related to the overload, and give us the possibility to

widen the bounds in the explanation. We can widen the bounds of all activities in

this way so that their compulsory part is only between s and e. The corresponding

explanation is called a big-step explanation.

∀i ∈ Ω : Je− p[i] ≤ s[i]K ∧ Js[i] ≤ sK→ false

The big-step explanation explains the reason for the overload over its entire width.

We can instead explain the overload by concentrating on a single time period t

88 Chapter 4. Explaining the Propagation of the Cumulative Constraint

in [s .. e− 1] rather than examining the whole time interval. This allows us to

strengthen the explanation. The explanation has the same pattern as a maximal

explanation except we use t for s and t+1 for e. We call these explanations pointwise

explanations. The pointwise and big-step explanation coincide iff s + 1 = e.∧
i∈Ω

Jt− p[i] < s[i]K ∧ Js[i] ≤ tK→ false (4.3)

The pointwise explanation is implicitly related to the TimeD where an overload

is explained for one time period. That time period by TimeD depends on the

propagation order of the constraints related to an overload whereas for cumulative

we have the possibility of choosing a time period to use to explain inconsistency.

This means that we have more control and flexibility about what explanation is

generated which may be beneficial. In the experiments reported herein we always

choose the mid-point of [s .. e− 1].

There are many open questions related to time periods for pointwise explanations

in general and with respect to the possible search space reduction from derived

nogoods or explanations: does it matter which time period is picked, if so, which is

the best one?

Sometimes a resource overload is detected where the activities set Ω of activities

that have a compulsory part at that time which is not minimal with respect to

the resource capacity, i.e., there exists a proper subset of activities Ω′ ⊂ Ω with∑
i∈Ω′ r[i] > c. The same situation happens for the TimeD decomposition as well.

Here, again with the global view of cumulative, we know the context of the activities

involved and can decide which subset Ω′ is used in order to explain the inconsistency

if a choice exists. Here as well, it is an open question which subset is the best to

restrict the search space most, or whether it does not matter? For our experiments

the lexicographic least set of activities is chosen where the order is given by the

order of appearance in cumulative, unless it is otherwise stated.

Example 4.5. Consider the problem of Ex. 4.1 with the additional constraints

sc ≤ 9, se ≤ 4, and sf ≤ 4. The resulting bounds from precedence constraints are

D(sa) = [0 .. 1], D(sb) = [2 .. 3], D(sc) = [8 .. 9], D(sd) = [0 .. 2], D(se) = [2 .. 4],

D(sf) = [0 .. 4]. The time interval of positions where the activities can fit and

the resulting resource profile are shown in Fig. 4.4. There is an overload of the

resource capacity between time 4 and 6 with Ω = {b, e, f}., The simple explanation

is J2 ≤ sbK∧Jsb ≤ 3K∧J2 ≤ seK∧Jse ≤ 4K∧J0 ≤ sfK∧Jsf ≤ 4K→ false. The maximal

explanation is J0 ≤ sbK∧ Jsb ≤ 4K∧ J1 ≤ seK∧ Jse ≤ 4K∧ J0 ≤ sfK∧ Jsf ≤ 4K→ false.

A minimal explanation picking time 5 is J−1 ≤ sbK ∧ Jsb ≤ 5K ∧ J1 ≤ seK ∧ Jse ≤

4.5 Explanations for Cumulative Propagators 89

0 2 4 6 8 10 12 14

a

b

c
d

e

16 18 20

a
b

e
c

f

f

a

b

c
d

e

f

0 2 4 6 8 10

Figure 4.4: An example of an inconsistent partial schedule for the cumulative con-
straint.

5K ∧ J−1 ≤ sfK ∧ Jsf ≤ 5K→ false. Note that each explanation is stronger than the

previous one, and hence more reusable. Note also that some of the lower bounds (0

and −1) are universally true and can be omitted from the explanations.

4.5.2 Time-Table Filtering

Time-table filtering is based on the resource profile of the compulsory parts of all

activities. In a filtering without explanation the height of the compulsory parts

concerning one time period or a time interval is given. For an activity the profile

is scanned through to detect time intervals where it cannot be executed. The lower

(upper) bound of the activity’s start time is updated to the first (last) possible time

period with respect to those time intervals. If we want to explain the new lower

(upper) bound we need to know additionally which activities have the compulsory

parts of those time intervals.

A profile is a triple (A,B,C) where A = [s .. e− 1] is a time interval, B the

set of all activities i with ub(s[i]) ≤ s and lb(s[i]) + p[i] ≥ e (that is a compulsory

part in the time interval [s .. e− 1]), and C the sum of the resource usages r[i] of

all activities i in B. Here, we only consider profiles with a maximal time interval

A with respect to B and C, i.e., no other profile ([s′ .. e′ − 1] , B, C) exists where

s′ = e or e′ = s.

Let us consider the case when the lower bound of the start time variable for

activity j can be maximally increased from its current value lb(s[j]) to a new value

LB[j] using time-table filtering (the case of decreasing upper bounds is analogous

and omitted). Then there exists a sequence of profiles [D1, . . . , Dp] where Di =

90 Chapter 4. Explaining the Propagation of the Cumulative Constraint

([si .. ei − 1] , Bi, Ci) where e0 = lb(s[j]) and ep = LB[j] such that

∀1 ≤ i ≤ p : Ci + r[j] > R ∧ si ≤ ei−1 + p[j]

Hence each profile Di pushes the start time of activity j to ei.

A näıve explanation of the whole propagation would reflect the current domain

bounds from the involved activities.(
Jlb(s[j]) ≤ s[j]K ∧

∧
1≤i≤p, k∈Bi

Jlb(s[k]) ≤ s[k]K ∧ Js[k] ≤ ub(s[k])K

)
→ JLB[j] ≤ s[j]K

As for the consistency check it is possible to use smaller (bigger) values in the

inequalities to get a big-step explanation.(
Js1 + 1− p[j] ≤ s[j]K ∧

∧
1≤i≤p, k∈Bi

Jei − p[k] ≤ s[k]K ∧ Js[k] ≤ siK

)
→ JLB[j] ≤ s[j]K

Both the above explanations are likely to be very large—they involve all start times

appearing in the sequence of profiles—and hence are not likely to be very reusable.

One solution is to generate separate explanations for each profile Di starting from

the earliest time interval. An explanation for the profile Di = ([si .. ei − 1] , Bi, Ci)

which forces the lower bound of activity j to move from ei−1 to ei is(
Jsi + 1− p[j] ≤ s[j]K ∧

∧
k∈Bi

Jei − p[k] ≤ s[k]K ∧ Js[k] ≤ siK

)
→ Jei ≤ s[j]K ,

which corresponds to a big-step explanation of an inconsistency over the interval

[si .. ei − 1].

Again we can use pointwise explanations based on single time periods rather than

a big-step explanation for the whole time interval. Unlike the consistency case,

we may need to pick a set of time periods no more than p[j] apart to explain the

increasing of the lower bound of s[j] over the time interval. For a profile with

length greater than the processing time of activity j we may need to pick more

than one time period in a profile. Let [t1, . . . , tm] be a set of time periods such that

t0 = lb(s[j]), tm+1 = LB[j], ∀1 ≤ l ≤ m : tl−1 +p[j] ≥ tl and there exists a mapping

P (tl) of time periods to profiles such that ∀1 ≤ l ≤ m : sP (tl) ≤ tl < eP (tl) Then we

4.5 Explanations for Cumulative Propagators 91

build a pointwise explanation for each time period tl, 1 ≤ l ≤ m(
Jtl + 1− p[j] ≤ s[j]K ∧

∧
k∈Bi

Jtl + 1− p[k] ≤ s[k]K ∧ Js[k] ≤ tlK

)
→ Jtl + 1 ≤ s[j]K

(4.4)

This corresponds to a set of pointwise explanations of inconsistency. We use these

pointwise explanations in our experiments, by starting from t0 = lb(s[j]) and for

j ∈ [1 ..m] we choose tj as the greatest time that maintains the conditions above.

The exception is that we never entirely skip a profile Di even if this is possible,

but instead choose ei − 1 as the next time period and continue the process. Our

experiments show this is slightly preferable to skipping a profile entirely.

Example 4.6. Consider the example shown in Fig. 4.3(b). which adds sc ≤ 9,

se ≤ 4 to the original problem. The profile filtering propagator can determine

that activity f can start earliest at time 10, since it cannot fit earlier. Clearly

because there is one resource unit missing—one available but two required—in the

tine interval [4 .. 7] it must either end before or start after this interval. Since

it cannot end before it must start after this time. Similarly for the time interval

[9 .. 10] is must either end before or start after, and since it cannot end before it

must start after. So for this example lb(sf) = 0 and LB[f] = 10 and there are two

profiles used [D1, D2] = [([4 .. 7] , {b, e}, 4), ([9 .. 10] , {c}, 4)].

The näıve explanation is just to take the bounds of the activities (b, e, c) involved

in the profile that is used: e.g. J2 ≤ sbK ∧ Jsb ≤ 3K ∧ J2 ≤ seK ∧ Jse ≤ 4K ∧ J8 ≤
scK ∧ Jsf ≤ 9K→ J10 ≤ sfK. (Note we omit redundant literals such as J0 ≤ sfK).

The iterative profile explanation explains each profile separately as J1 ≤ sbK∧Jsb ≤
4K∧ J2 ≤ seK∧ Jse ≤ 4K→ J7 ≤ sfK and J4 ≤ sfK∧ J8 ≤ scK∧ Jsc ≤ 9K→ J10 ≤ sfK.

The iterative pointwise explanation picks a set of time periods, say 5 and 9, whose

corresponding profiles are D1 and D2, and explains each time period minimally

giving: Jsb ≤ 5K∧J1 ≤ seK∧Jse ≤ 5K→ J6 ≤ sfK and J4 ≤ sfK∧J8 ≤ scK∧Jsc ≤ 9K→
J10 ≤ sfK. Note that this explanation is analogous to the explanation devised by the

decomposition in Ex. 4.3, and stronger than the iterative profile explanation.

The global cumulative using time-table filtering and the TimeD decomposition

have the same propagation strength. The advantage of the global approach is that we

can control the times periods we propagate on, while the decomposition in the worst

case may propagate on every time period in every profile. The possible advantage

of the decomposition is that it learns smaller nogoods related to the decomposed

variables, but since Bit simply represents a fixed conjunction of bounds in practice

the nogoods learned by the TimeD decomposition have no advantage.

92 Chapter 4. Explaining the Propagation of the Cumulative Constraint

4.5.3 (Extended) Edge-Finding Filtering

The (extended) edge-finding filtering (Nuijten 1994) is based on activity intervals

and reasoning about the energy of activities. Edge finding finds a set of activities

Ω that all must occur in the time interval [sΩ .. eΩ] such that the total resources

used by Ω are close to the amount available in that time interval (R× (eΩ− sΩ)). If

placing activity j at its earliest start time requires more than the remaining amount

of resources from this range, then activity j cannot be strictly before any activity

in Ω. We can then update its lower bound accordingly.

Since the edge-finding and extended edge-finding are highly related we combine

them in one rule and refer to them just as edge-finding for simplicity. Given a set of

activities Ω and activities j 6∈ Ω where energyΩ, eΩ and sΩ generalise the notation

of the energy, the end time and start time from activities to activity sets, and ojΩ is

the maximum resource usage for activity j before sΩ:

energy∅ = 0 energyΩ =
∑
i∈Ω

energy i e∅ = +∞ eΩ = max
i∈Ω

(ub(s[i]) + p[i])

s∅ = −∞ sΩ = min
i∈Ω

(lb(s[i])) ojΩ = r[j]×max(sΩ − lb(s[j]), 0)

then

j ∈ V ,Ω ⊆ V \{j} : energyΩ + energy j > R× (eΩ− sΩ) + ojΩ ⇒ j 6� i.∀i ∈ Ω (4.5)

If the rule holds the lower bound of the start time of the activity j can be increased

to

LB[j] := max
Ω′⊆Ω:rest(Ω′,r[j])>0

sΩ′ +

⌈
rest(Ω′, r[j])

r[j]

⌉
where rest(Ω′, r[j]) = energyΩ′ − (R− r[j])× (eΩ′ − sΩ′). Figure 4.5 illustrates the

(extended) edge-finding rule.

A näıve explanation would be(
Jlb(s[j]) ≤ s[j]K ∧

∧
i∈Ω

(Jlb(s[i]) ≤ s[i]K ∧ Js[i] ≤ ub(s[i])K)

)
→ JLB[j] ≤ s[j]K

In order to gain a stronger explanation we can maximise the bounds on the activities

in Ω. For that we have to consider that the condition for the edge-finding solely

depends on Ω, j and the new lower bound for j on a subset Ω′ of Ω. We obtain a

4.5 Explanations for Cumulative Propagators 93

2 4 6 8 10 0 2 4 6 8 10

��
��
��
��
��
��

��
��
��
��
��
��

0

sΩ eΩ

R× (eΩ − sΩ)

r[j] energyj

energyΩ

sΩ eΩ

r[j]

RR
max(sΩ − lb(s[j]), 0)

Figure 4.5: The left hand side of the figure illustrates the available energy within the
interval [sΩ .. eΩ] plus the additional energy ojΩ when activity j starts
earlier than sΩ, while the right hand side illustrates the required energy
if j starts earlier than all activities in Ω. For the illustrated situation we
have j = f, lb(s[j]) = 0 and Ω = {b, c, e}. Since there is unused energy
(the shaded area) no propagation occurs.

big-step explanation.JsΩ∪{j} ≤ s[j]K ∧
∧

i∈Ω\Ω′
(JsΩ ≤ s[i]K ∧ Js[i] + p[i] ≤ eΩK)∧

∧
i∈Ω′

(JsΩ′ ≤ s[i]K ∧ Js[i] + p[i] ≤ eΩ′K)

)
→ JLB[j] ≤ s[j]K

If we look at the unused activity of the time interval [sΩ .. eΩ] and the energy

needed for the activity j in that time interval if j is scheduled at its earliest start

time lb(s[j]) then the latter energy minus the former can be larger than 1. This

would mean that the remaining energy can be used to strengthen the explanation

in some way.

The remaining energy ∆ concerning an activity j and the Ω satisfying the edge-

finding condition is

∆ = eΩ + r[j]× (lb(s[j]) + p[j]−max(sΩ, s[j]))−R× (eΩ − sΩ)

Different (non-exclusive) options exist to use this energy to strengthen the explana-

tion where Ω′ ⊆ Ω maximises LB[j].

1. By increasing the value of the end time eΩ if ∆/c > 1, but not for Ω′.

2. By decreasing the value of the start time sΩ if ∆/c > 1, but not for Ω′.

3. By decreasing the value of the start time sj if ∆/r[j] > 1.

4. By removing an activity i from Ω \ Ω′ if ∆ > energy i

94 Chapter 4. Explaining the Propagation of the Cumulative Constraint

Finally, if several Ω′ ⊆ Ω exist with which the lower bound of an activity j could be

improved then the explanations can be split into several explanation as in the time-

table filtering case. The filtering algorithm presented by Viĺım (2009)2 and Mercier

and Van Hentenryck (2008) directly compute LB[j] and its stepwise computation is

hidden in the core of those algorithms. Hence, they have to be adjusted in a way

that can increase the runtime complexity from O(kn log(n)) to O(kn2 log(n)) and

O(kn2) to O(kn3) where n is the number of activities and k the number of distinct

resource usages.

For a pointwise explanation, rather than consider all Ω′ ⊆ Ω we restrict ourselves

to explain the bounds update generated by Ω. The big-step explanation is generated

as before (but Ω = Ω′). With the new bound the edge-finding rule (4.5) will now

hold for Ω′ and we can explain that. Clearly, the pointwise explanation is stronger

than the big-step explanation, because we broaden the bounds requirements on the

activities in Ω′ in the big-step explanation, and the later explanation only considers

activities in Ω′.

Example 4.7. Consider the example of Ex. 4.1 where we split the activity e into

two parts e1 of duration 2 and e2 of duration 3, but place no precedence constraints

on these new activities. Suppose the domains of the variables are D(sa) = {0},
D(sb) = {2}, D(sc) = {8}, D(sd) = [0 .. 2], D(se1) = [2 .. 6], D(se2) = [2 .. 5],

D(sf) = [2 .. 14], so activities a, b and c are fixed. The situation is illustrated

in Fig. 4.6. The time-table filtering propagator cannot determine any propagation

since f seems to fit at time 2, or after time 10. But in reality there are not enough

resources for f in the time interval [2 .. 10] since this must include the activities b,

c, e1, and e2. The total amount of resources available here is 5 × 8 = 40, but 12

are taken by b and 8 are taken by c, e1 requires 4 resource units somewhere in this

interval, and e2 required 6 resource units. Hence there are only 10 resource units

remaining in the interval [2 .. 10]. Starting f at time 2 requires at least 12 resource

units be used within this interval hence this is impossible.

The edge-finding condition holds for Ω = {b, c, e1, e2} and f. Now rest({c}, 2) =

10 − (5 − 2) × (10 − 8) = 4 for Ω′ = {c}. The lower bound calculated is LB[f] =

8 + d4/2e = 10. The näıve explanation is J2 ≤ sfK ∧ J2 ≤ sbK ∧ Jsb ≤ 2K ∧ J2 ≤
se1K ∧ Jse1 ≤ 6K ∧ J2 ≤ se2K ∧ Jse2 ≤ 5K ∧ J8 ≤ scK ∧ Jsc ≤ 8K→ J10 ≤ sfK.

The big-step explanation ensures that each activity in Ω \ Ω′ uses at least the

amount of resources in the interval [2 .. 10] as found in the reasoning above. It is

J2 ≤ sfK ∧ J2 ≤ sbK ∧ Jsb ≤ 4K ∧ J2 ≤ se1K ∧ Jse1 ≤ 8K ∧ J2 ≤ se2K ∧ Jse2 ≤ 7K ∧ J8 ≤

2Viĺım only presents the edge-finding algorithm, but the algorithm can be extended for extended
edge-finding.

4.5 Explanations for Cumulative Propagators 95

0 2 4 6 8 10 12 14

d

e1

f

16 18 20

a
b

c

b
c

a

e2

e1 e2

(a)

0 2 4 6 8 10 12 14

d

e1

f

16 18 20

a
b

c

b
c

a

e2

e1 e2

(b)

Figure 4.6: (a) An example of propagation of the cumulative constraint using edge-
finding. (b) The result of propagating after the first step of stepwise
edge-finding.

scK ∧ Jsc ≤ 8K→ J10 ≤ sfK.

Now let us consider the pointwise explanation. If we restrict ourselves to use Ω

for calculating the new lower bound we determine LB[j] = 2+d(30− (5−2)× (10−
2))/2e = 5 and the big-step explanation is J2 ≤ sfK ∧ J2 ≤ sbK ∧ Jsb ≤ 4K ∧ J2 ≤
se1K∧Jse1 ≤ 8K∧J2 ≤ se2K∧Jse2 ≤ 7K∧J2 ≤ scK∧Jsc ≤ 8K→ J5 ≤ sfK, which results

in the situation shown in Fig. 4.6(b). We then detect that edge-finding condition

now holds for Ω′ = {c} which creates a new lower bound 10, and explanation

J5 ≤ sfK ∧ J8 ≤ scK ∧ Jsc ≤ 8K → J10 ≤ sfK. The original big-step explanation is

broken into two parts, each logically stronger than the original.

For the original big-step explanation ∆ = 30+2×(2+6−2)−5×(10−2) = 2. We

cannot use this to improve the explanation since it is not large enough. But for the

second explanation in the pointwise approach ∆ = 10+2×(5+6−8)−5×(10−8) =

6. We could weaken the second explanation (corresponding the period 3 in the

enumeration on the page 93) to J3 ≤ sfK ∧ J8 ≤ scK ∧ Jsc ≤ 8K→ J10 ≤ sfK because

∆/r[f] = 6/2 = 3 > 1.

We have not yet implemented edge-finding with explanation, since the problems

we examine are not highly cumulative and for such problems edge-finding filter-

ing cannot compete with time-table filtering. It remains interesting future work to

experimentally compare different approaches to edge-finding filtering with explana-

tion.

96 Chapter 4. Explaining the Propagation of the Cumulative Constraint

d

a

b
b

c
c

e

e

b

f
f

f

2x1

6x2 3x4

2x2

2x44x2

4x3

2x55x2

6x2 4x3 3x4

(a) All possible combinations.

0 2 4 6 8 10 12 14 16 18 20

3

6

(b) Variable resource capacity R.

0 2 4 6 8 10 12 14 16 18 20

3

6

d

a
b

c
e

f

(c) Optimal schedule for R = 5.

Figure 4.7: (a) shows all possible combinations for the processing time and resource
usages; (b) shows the resource R with the flexible resource capacity
between 3 and 6; and (c) an optimal schedule with respect to R = 5.

4.6 Explanation Extensions for Cumulative

Propagators

In the previous section explanations are developed for the most common case of the

cumulative constraint where only start times are variable, i.e., all other parameters

of the activities are fixed. These explanations have different strengths, where the

explanations based on pointwise explanation are the strongest ones. These strongest

explanations are extended in this section, so that they can take variable processing

times, resource usages, and resource capacities into account.

Example 4.8. Consider the example of Ex. 4.1. We assume that the processing

times and resource usages for the activities b, c, e, and f are flexible but constrained

to the fixed energies 12, 8, 10, and 12 respectively and that resource usages are

greater than 1. Moreover, we assume that the resource capacity R can take any

value from 3 to 6. Fig. 4.7 shows all combinations of processing time and resource

usage for each activity, the variable resource capacity, and an optimal schedule in

the case of R = 5.

4.6 Explanation Extensions for Cumulative Propagators 97

4.6.1 Time-Table Consistency Check

Suppose the activities in Ω overload the resource with resource capacity R in the

time interval [s .. e− 1] with respect to their current domain of the resource usages

and the current domain of the resource capacity, i.e.,
∑

i∈Ω lb(r[i]) > ub(R). Then,

the pointwise explanation describes the overload for one time period t in [s .. e− 1].

In the case that durations, resource usages, and the resource capacity are fixed,

Eq. (4.3) on page 88 shows the corresponding explanation. Note that this expla-

nation would be invalid if durations, resource usages or the resource capacity were

variable.

The literal Jt− p[i] < s[i]K in Eq. (4.3) expresses the necessary condition that the

earliest end time s[i] + p[i] must be greater than t in order to create a compulsory

part at the time period t. If the duration is variable then t − p[i] < s[i] becomes

an inequality on two variables which cannot be represented by a domain literal in

Lcg. Hence, we split it into two parts that each contain only one variable, which

allows us to use the literals from the variable domain encoding.

One possibility to split it into two inequalities is t−lb(p[i]) < s[i] and lb(p[i]) ≤ p[i]

which leads to the simple explanation Jt−lb(p[i]) < s[i]K∧Jlb(p[i]) ≤ p[i]K. Instead of

using the constants lb(p[i]) in both inequalities any value in [t− lb(s[i]) + 1 .. lb(p[i])]

would be valid. The bounds for this range results from the fact that only for these

values the corresponding literals Jt− lb(p[i]) < s[i]K and Jlb(p[i]) ≤ p[i]K are true at

the same time with respect to the current domain of s[i] and p[i]—this is necessary

for creating an unit explanation. Later in this section we discuss which values from

the range should be picked or not.

Beside the flexible processing times it is also possible that resource usages and the

resource capacity are variables. The propagator has to explain the resource overload

created by the activities in Ω at the time period t regarding the domain of resource

usages and resource capacity. A simple explanation takes the lower bound of r[i] for

each i ∈ Ω and the upper bound of R into account:

JR ≤ ub(R)K ∧
∧
i∈Ω

Jlb(r[i]) ≤ r[i]K .

This may not result in the strongest explanation if
∑

i∈Ω lb(r[i]) > ub(R) + 1. For

instance, a removal of an activity j ∈ Ω does not resolve the conflict if
∑

i∈Ω lb(r[i])−
ub(R)− 1 > lb(r[j]). How we can strengthen it is discussed later in the section.

Combining the simple explanations with variable durations, resource usages and

the resource capacity into the pointwise explanation leads to the following explana-

98 Chapter 4. Explaining the Propagation of the Cumulative Constraint

tion(∧
i∈Ω

Jt− lb(p[i]) < s[i]K ∧ Jlb(p[i]) ≤ p[i]K ∧ Js[i] ≤ tK

)

∧ JR ≤ ub(R)K ∧

(∧
i∈Ω

Jlb(r[i]) ≤ r[i]K

)
→ false , (4.6)

where the first part explains the creation of compulsory parts at the time period t

and the second part the resource overload.

4.6.2 Time-Table Filtering

Suppose for the activity j the lower bound of its start time variable can be updated

to LB[j]. This update is explained by a set of pointwise explanations covering a

sequence of increasing time periods t1, . . . , tm such that t0 = lb(s[j]), tm+1 = LB[j],

and tl−1+p[j] ≥ tl for all l ∈ [1 ..m]. In the remainder of this section we consider one

of these time periods and simply denote it by t. If only the start times are variable

then (4.4) shows the corresponding explanation. As for the consistency check this

explanation is not valid if processing times, resource usages, or the resource capacity

are variable. In the remainder of this section let t and Ω be one of these time periods

in t1, . . . , tm and the corresponding set of activities such that lb(r[j])+
∑

i∈Ω lb(r[i]) >

ub(R).

In comparison to the consistency check the explanation only describes a possible

resource overload at time period t if the activity j is executed at this period. Thus,

the same explanations in (4.6) for the consistency check can be used for the activity j,

the activities in Ω, and the resource capacity R to describe the possible resource

overload. The remaining literals for the pointwise explanation are related to the

variables s[j], and p[j].

The literal Jt−p[j] < s[j]K in (4.4) describes a necessary condition for the execution

of j at the period t, whereas the literal Jt < s[j]K in (4.4) describes a sufficient

condition for a non-execution of j at this period if the first literal is true. We simply

split the first literal into Jt − lb(p[j]) < s[j]K and Jlb(p[j]) ≤ p[j]K as we have done

for the consistency check case, and the literal remains unchanged. Combining all

explanations results in a pointwise explanation that considers variable start times,

4.6 Explanation Extensions for Cumulative Propagators 99

processing times, resource usages, and resource capacities:

Jt− lb(p[j]) < s[j]K ∧ Jlb(p[j]) ≤ p[j]K∧(∧
i∈Ω

Jt− lb(p[i]) < s[i]K ∧ Jlb(p[i]) ≤ p[i]K ∧ Js[i] ≤ tK

)

∧ JR ≤ ub(R)K ∧

 ∧
i∈Ω∪{j}

Jlb(r[i]) ≤ r[i]K

→ Jt < s[j]K . (4.7)

This explanation can be strengthened in the same way as for the consistency check

which we explain in the remainder of this section.

4.6.3 Strengthening of Explanations for Time-Table

Algorithms

We have presented pointwise explanations for the consistency check (see (4.6)) and

the filtering algorithm (see (4.7)). We have pointed to two aspects of the explanation

that can be strengthened or where we have options for different explanations. Here,

we seek the strongest explanations, since they prune larger parts of the search space,

and if multiple strongest explanations exist we look for the one that may propagate

most frequently in the remaining search. The last decision depends on the search

algorithm used and how it interacts with the conflict analysis.

One part of the explanation encodes the necessary condition for an activity i ∈ Ω

to create a compulsory part at the time period t. This is done by the literals

Jt− lb(p[i]) < s[i]K and Jlb(p[i]) ≤ p[i]K. Instead of using lb(p[i]) as constant in both

inequalities, we can use any value q in [t− lb(s[i]) + 1 .. lb(p[i])]. But not all of them

lead to a strongest explanation.

Example 4.9. Consider Ex. 4.8. For activity e the processing time pe can take

either 10, 5, or 2, and the resource usage re either 1, 2, or 5. Suppose lb(se) = 2,

and lb(pe) = 5 then q is either 4 or 5. Hence, we can explain the necessary condition

either with J1 < seK ∧ J4 ≤ peK or J0 < seK ∧ J5 ≤ peK if t = 5. Since p[e]

cannot take value 4, but 5, it follows J4 ≤ peK → J5 ≤ peK. Because of this and

J0 < seK 9 J1 < seK the first explanation implies the second one, but not vice versa.

Therefore, the second explanation is strictly stronger then the first one.

The following proposition gives the characterisation for which values of q the

explanation results in a strongest explanation.

100 Chapter 4. Explaining the Propagation of the Cumulative Constraint

Proposition 4.1. Suppose an activity i creates compulsory parts with respect to the

current domains of its start and processing time variable, i.e., ub(s[i]) < lb(s[i]) +

lb(p[i]). Let Is[i] and Ip[i] be sets of integers that s[i] and p[i] can take respectively.

Moreover, let t be the time period in [ub(s[i]) .. lb(s[i]) + lb(p[i])− 1] for which a

compulsory part must be explained, and Is[i](t) be {t − i + 1 | i ∈ Is[i]}. Let K =

k1, k2, . . . , km be the numbers in Q ∩
(
Is[i](t) ∪ Ip[i]

)
in increasing order, where Q =

[t− lb(s[i]) + 1 .. lb(p[i])]. Then the following set Q(i, t) contains all integers q from

K that result in a strongest explanation:

Q(i, t) = {kj | 1 ≤ j < m, (kj, kj+1) /∈ I2
s[i](t)}∪

{kj | kj ∈ Is[i](t) ∩ Ip[i]} ∪ {km | km ∈ Is[i](t)}∪

{kj | 1 < j ≤ m, (kj, kj−1) /∈ I2
p[i]} ∪ {k1 | k1 ∈ Ip[i]} .

Proof. Recall that an explanation C1 is stronger than an explanation C2 if C2 → C1.

Thus, C1 is strictly stronger than C2 if C1 9 C2 holds additionally. We say C2 is

(strictly) weaker than C1, respectively.

We prove the proposition in two steps. First, we show that for all values in Q(i, t)

the corresponding explanation is not strictly weaker than any other explanation.

Second, we show that for all values in K \ Q(i, t) the corresponding explanation is

strictly weaker than at least one other explanation.

First, we have to prove the following:

∀q ∈ Q(i, t),∀q′ ∈ K \ {q} : expl(q) 9 expl(q′) or expl(q)↔ expl(q′) ,

where expl(q) ≡ Jt− q < s[i]K ∧ Jq ≤ p[i]K.

Let q and q′ be any number in Q(i, t) and K \ {q}, respectively. Assume that

q = kj. We differentiate between the two cases: kj < q′ and kj > q′.

(kj < q′): It follows t− kj < s[i]→ t− q′ < s[i]. Let j′ be the smallest integer that

satisfies j ≤ j′ ≤ m and kj′ ∈ Ip[i]. If q′ ≥ kj′ then kj ≤ p[i] 9 q′ ≤ p[i]. Hence,

expl(kj) 9 expl(q′). Suppose q′ < kj′ now. Then kj /∈ Ip[i] and it follows

kj ≤ p[i] → q′ ≤ p[i], i.e., expl(kj) → expl(q′). Since kj ∈ Q(i, t) can only

come from the subset {kl | 1 ≤ l < m, (kl, kl+1) /∈ I2
s[i](t)}, it holds j′ = j + 1

and therefore t− q′ < s[i]→ t− kj < s[i]. Together with q′ ≤ p[i]→ kj ≤ p[i],

it follows expl(q′)→ expl(kj). Thus, this case is proven.

(kj > q′): This case is symmetric to the previous case, just s[i] and [p[i] are swapped

in the argument.

4.6 Explanation Extensions for Cumulative Propagators 101

Second, we prove the following:

∀q ∈ K \Q(i, t),∃q′ ∈ K : expl(q)→ expl(q′) and expl(q′) 6→ expl(q) .

Let q be any number in K \ Q(i, t). Assume q = kj then 1 < j < m due to the

definition of Q(i, t). Moreover, kj must be in either Is[i](t) or Ip[i], otherwise it would

be in Q(i, t). Now, we separately prove each case.

(kj ∈ Is[i](t)): Then, it holds that kj ≤ p[i]→ kj+1 ≤ p[i], since all l ∈ [kj .. kj+1 − 1]

are not in Ip[i]. Due to t − kj < s[i] → t − kj+1 < s[i] it follows expl(kj) →
expl(kj+1). Now, we have to show expl(kj+1) 9 expl(kj). Because of the

definition of Q(i, t) the value kj+1 must be in Is[i](t), otherwise kj would be in

Q(i, t). Thus, t− kj+1 < s[i] 9 t− kj < s[i], i.e., expl(kj+1) 9 expl(kj).

(kj ∈ Ip[i]): The proof is symmetric to the previous case.

Therefore, the proposition holds.

In the proposition we do not consider a value in Q that belongs to neither Is[i]

nor Ip[i]. These values either do not result in a strongest explanation or lead to an

explanation that is equivalent to a strongest explanation.

It is desirable to choose a value in Q(i, t), but the propagator might only have

a partial knowledge about the sets Is[i] and Ip[i], for example, if p[i] takes two non-

consecutive values and its domain is encoded as range. Hence, the propagator may

pick a value between those values. Therefore, it might not always be possible for

the propagator to create a strongest explanation.

An Lcg solver encodes domains as ranges and provides to a propagator both

the initial and current bounds. Moreover, Lcg variables can be defined as variable

views (Schulte and Tack 2005) on another Lcg variable, i.e., y = ax+ b where the

variable y is a view on the variable x, and a, b are constants. Note that all variables

in the model are internally represented as variable views, and these variables that

are not defined as a variable view are represented as a view on themselves with

a = 1, x = y, and b = 0. An Lcg propagator has access to x, a, and b when

consulting y. Thus, if the sets Is[i] and Ip[i] can be described as variable views and

the variables are defined s[i] and p[i] as these views then an Lcg solver can deduce

the set Q(i, t).

In our implementation the explanations (4.6) and (4.7) uses maxq∈Q(i,t) q for i ∈ Ω

102 Chapter 4. Explaining the Propagation of the Cumulative Constraint

and minq∈Q(j,t) q for j with respect to these sets

Is[i] = {as[i] · k + bs[i] | k ∈ Dinit(xs[i])} and

Ip[i] = {ap[i] · k + bp[i] | k ∈ Dinit(xp[i])} ,

where s[i] and p[i] are defined as variable views s[i] = as[i] · xs[i] + bs[i] and p[i] =

ap[i] · xp[i] + bp[i], respectively.

Another part of the explanations describes a resource overload at the time period t

in (4.6) or a possible resource overload in (4.7) if the activity j would be executed

at t. Let Ω′ be the set of activities Ω for the first explanation and Ω ∪ {j} for the

second explanation. Thus, in both explanations the situation is described as

JR ≤ ub(R)K ∧
∧
i∈Ω′

Jlb(r[i]) ≤ r[i]K .

This explanation may not result in a strongest explanation if
∑

i∈Ω′ lb(r[i]) > ub(R)+

1. The number lift =
∑

i∈Ω′ lb(r[i])−ub(R)−1 reflects the number of resource units

that can be added to the resource capacity without resolving the overload. This

means that we can use those units to strengthen the explanation. Here, strengthen-

ing means increasing qR in JR ≤ qRK from ub(R) to maximal min(maxDinit
R, ub(R)+

lift), or decreasing qi in Jqi ≤ r[i]K from lb(r[i]) to minimal max(minDinit
r[i], lb(r[i])−

lift) or 0 if lb(r[i])− lift ≤ 0 for all i ∈ Ω′. A reduction of qi to 0 represents a removal

of i from the conflict, i.e., removal of all related literals from the explanation.

All options are non-exclusive and which one has the most benefit is an open

question. The answer is tightly correlated with the conflict analysis used and the

search algorithm. For instance, if the goal is to minimise the resource capacity R

and the search already proved a solution for ub(R) + 1 then to choose any value

greater than ub(R) for qR is wasteful.

Here again, not every value for qR and qi leads to a strongest explanation. The

following proposition characterises which combination of values results in a strongest

explanation.

Proposition 4.2. Let IR and Ir[i] be the set of integers that the variable R and r[i]

can respectively take for each i ∈ Ω′. Moreover, let I0
r[i] be defined as Ir[i] ∪ {0}.

Then, QR and Qr[i] are defined as follows:

QR = IR ∩ [ub(R) .. min(maxDinit
R, ub(R) + z)] ,

∀i ∈ Ω′ : Qr[i] = I0
r[i] ∩ [max(l(i), lb(r[i])− lift) .. lb(r[i])] ,

4.6 Explanation Extensions for Cumulative Propagators 103

where l(i) = minDinit
r[i] if lb(r[i]) − lift > 0, or l(i) = 0 otherwise. Furthermore,

let Γ be a mapping that maps qR and qi to a value from their corresponding set QR

and Qr[i] respectively. The mapping results in a valid strongest explanation if the

following holds: ∑
i∈Ω′

(lb(r[i])− Γ(qi)) + Γ(qR)− ub(R) ≤ lift (validity)

∀i ∈ Ω′ : Qr[i] ∩ [Γ(qi)− rest ..Γ(qi)− 1] = ∅ (strength)

QR ∩ [Γ(qR) + 1 ..Γ(qR) + rest] = ∅ , (strength)

where rest = max(0, lift−
∑

i∈Ω′(lb(r[i])− Γ(qi)) + Γ(qR)− ub(R)).

Proof. The correctness of the proposition is straightforward and it is proven by

contradiction. Suppose Γ is a mapping leading to a valid strongest explanation,

but does not satisfy all equations. If the first equation does not hold for Γ then

the corresponding explanation does not describe a resource overload, since lift =∑
i∈Ω′ lb(r[i])−ub(R)−1. Hence, Γ would be not valid. If the second equation is not

satisfied for i ∈ Ω′ then every mapping Γ′ results in a strictly stronger explanation

than for Γ, where Γ′ is defined by Γ′(x) = Γ(x) for all x ∈ {qR}∪{qj | j ∈ Ω∧ j 6= i}
and Γ(qi) = c where c ∈ Qr[i] ∩ [Γ(qi)− rest ..Γ(qi)− 1]. Thus, Γ would not result

in a strongest explanation. The same argument holds for the remaining equation.

Therefore, it is shown that Γ does not establish a valid strongest explanation.

As mentioned before the propagator might only have partial knowledge about

the sets IR and Ir[i], so that it may choose values that do not lead to a strongest

explanation. Our implementation uses the following sets to generate the sets Qr[i]

and QR:

∀i ∈ Ω′ Ir[i] = {ar[i] · k + br[i] | k ∈ Dinit(xr[i])} , and

IR = {aR · k + bR | k ∈ Dinit(xR)} ,

where r[i] and R are defined as variable views r[i] = aR[i] · xr[i] + br[i] and R =

aR · xR + bR, respectively.

Our implementation strengthens the explanation by using the available units lift

as follows where lift′ are the remaining units from lift and the activities in Ω′ \ {j}
are tried out in input order.

1. qj = min{k ∈ Qr[j] | lb(r[j])− k ≤ lift′}.

104 Chapter 4. Explaining the Propagation of the Cumulative Constraint

2. qR = max{k ∈ QR | k − ub(R) ≤ lift′}.

3. qi = min{k ∈ Qr[i] | lb(r[i]) − k ≤ lift′} for all i ∈ Ω′ \ {j}. If qi = 0 then all

literals related to the activity i are removed.

Overall, the implemented cumulative propagator generates a strongest explana-

tion for (4.6) and (4.7) if it knows about the sets Is[i], Ip[i], Ir[i], and IR. In other

cases, it might not create a strongest explanation. Furthermore, during the progress

of search the conflict analysis can infer that variables cannot globally take some

values from their domain. This information could be used to pick the strongest

explanation that does not include these “forbidden” values. This information is not

available to an Lcg propagator.

4.7 Final Remarks

In this chapter, we focussed on explanations for the cumulative propagation in an

Lcg solver. We first considered the TimeD and ActiD decomposition, the time-table

consistency check and filtering, and the (extended) edge-finding filtering where only

start times are variable. Then we extended the explanation for the two time-table

algorithms, so that they can also take variable processing times, resource usages,

and resource capacities into account.

First, we considered explanations created by two decompositions TimeD and Ac-

tiD. Those explanations are “fine-grained” and explain a resource overload or a

propagation for one time period.

Second, we built an explaining global cumulative that generates pointwise and

strongest explanations if sufficient information about valid values of variables is

available to the propagator. Pointwise explanations only explain a sufficient part of

a conflict or propagation step, i.e., are smaller than explanations using the current

domain bounds. In order to get the most benefit, i.e., biggest reduction of the search

space, a pointwise explanation must be strengthened.

During the progress of search, conflict analysis can infer values in the domains of

variables that cannot take part in any solution of the problem with respect to the

initial set of constraints and the set of nogoods. Thus, it does not seem beneficial

to generate an explanation including those values. The same thing happens for

values in the domain of the objective variable when the problem is optimised. The

cumulative propagator in the Lcg solver has no information about global invalid

values in the domains of variables. Hence, it may create explanations which include

values that cannot take part in any solution.

4.7 Final Remarks 105

Furthermore, the global view on the cumulative constraint gives more control

about how to strengthen the explanations and which resource conflict should be

explained, than in the decomposition case. For instance, one can think about cre-

ating different explanations for different problem classes. But this needs further

investigation.

5
Experiments on

Resource-Constrained Project

Scheduling Problems

T
he resource-constrained project scheduling problem (Rcpsp) is a basic sched-

uling problem involving multiple scarce cumulative resources, activities

consuming one or more resources, and precedence relations between ac-

tivities. A precedence relation expresses that one activity must have finished its

execution before the other one can be started.

One important extension of Rcpsp generalises the precedence relations. These

generalised precedence relations can express that an activity must start at least

or at most a specific time after the other one has started. This problem is called

resource-constrained project scheduling problem with generalised precedence rela-

tions (Rcpsp/max).

In this chapter, we evaluate the explanations for the cumulative constraint devel-

oped in the previous chapter on standard benchmarks for Rcpsp and Rcpsp/max.

We show that our generic approaches outperform the state-of-the-art approaches—

mostly problem specific—on these benchmarks.

5.1 Introduction

In Chap. 4, we introduced the cumulative resource scheduling (Crp) problem con-

sisting of one renewable resource and non-preemptive activities requiring the re-

source for their executions. Rcpsp and Rcpsp/max are generalisations of this

108 Chapter 5. Experiments on RCPSPs

problem. Both involve multiple renewable resources, non-preemptive activities con-

suming some of these resources, and (generalised) precedence relations between ac-

tivities. The goal is to find a schedule of the activities that minimises the project

duration, i.e., the completion time of the last activity, and satisfies all resource and

(generalised) precedence constraints. Rcpsp and Rcpsp/max are respective de-

noted as PS|prec|Cmax and PS|temp|Cmax by Brucker et al. (1999). Both problems

are NP-hard (B lażewicz et al. 1983).

Here, the resources have a constant resource capacity over the planning horizon.

Activities are characterised by variable start times, fixed processing times, and re-

source usages. Precedence relations between two activities i and j are expressed as

si + pi ≤ sj where si and sj respectively are the start times of i and j, and pi the

processing time of i. It is denoted by i� j. Generalised precedence relations1 have

the form si + dij ≤ sj where dij is a discrete distance between them. If dij ≥ 0 this

imposes a minimal time lag, while if dij < 0 this imposes a maximal time lag be-

tween start times. These generalised precedence constraints are a subclass of Utvpi

constraints discussed in Chap. 3 on page 45.

Generalised precedence constraints are significantly different from precedence con-

straints, since they cause the NP-hardness of deciding whether an Rcpsp/max in-

stance is feasible given an infinite planning horizon (Bartusch et al. 1988). The

feasibility is solvable in polynomial time for Rcpsp instances. The reason for this

is the absence of maximal time lags, i.e., here activity executions can always be de-

layed until a time period where enough resource units are available without breaking

any precedence constraints.

However, practical scheduling problems can include substantially varied restric-

tions on the resources and activities. The following restrictions can be modelled

with generalised precedence relations: minimal and maximal overload of activities,

synchronisation of start or end times for activities, change of the resource usage dur-

ing the activity’s execution, fixed start times of activities, setup times, or non-delay

execution of activities (see, e.g. Bartusch et al. 1988, Neumann and Schwindt 1997,

Dorndorf et al. 2000).

In this chapter, we first present related work. We then devote ourselves to Rcpsp

problems. We show how decomposition of cumulative can be competitive with

state-of-the-art specialised methods from the Cp and Or community. We then

show that building a global cumulative propagator with specialised explanation ca-

pabilities can further improve upon the explaining decompositions. After this we

1They are also called as temporal precedence relations, arbitrary precedence relations, minimal
and maximal time lags, and time windows.

5.2 Related Work 109

switch our focus to Rcpsp/max problems and show how our complete approach

including the global cumulative propagator with explanation, outperforms other

complete methods in terms of the runtime and the quality of solutions. Surpris-

ingly, it also outperforms the published incomplete approaches on the considered

benchmarks in terms of the quality of solutions. The G12 Constraint Programming

Platform (Stuckey et al. 2005) is used for implementation of the decomposed and

global cumulative constraint as an Lcg propagator. We evaluate our approach on

Rcpsp and Rcpsp/max from the well-established and challenging benchmark li-

brary PSPLib (Kolisch and Sprecher 1997) and PSP/max-library (Schwindt 2011)

which are accessible via http://129.187.106.231/psplib/.

5.2 Related Work

In this section we briefly present the state-of-the-art solvers from the Ai, Cp, and

Or communities that are compared to our approach. These solvers are either com-

petitive or the best solver on some parts of the considered benchmarks. Most of

the solvers share the fact that they are problem specific, and not generic, as is our

approach implemented in an Lcg solver.

5.2.1 RCPSP

Rcpsp is exhaustively studied in the literature and usually tested on benchmarks

from the PSPLib: j30, j60, j90, and j120, where the numbers indicate the number

of activities in each instance. These test sets were generated by ProGen (Kolisch

et al. 1995). Recent surveys about complete and incomplete methods can be found

in e.g. Artigues et al. (2008), Kolisch and Hartmann (2006), Demeulemeester and

Herroelen (2002). These methods come from different areas such as dynamic pro-

gramming, artificial intelligence, operations research, etc. (Kolisch 1996).

Due to the nature of Rcpsp, i.e., creation of a feasible schedule in polynomial

time without restriction on the planning horizon, many heuristic approaches are

based on serial and parallel scheduling generation schemes (Sgs) (see e.g. Kelley

1963, Bedworth and Bailey 1982)2 that stepwise assign start times to unscheduled

activities. The serial and parallel Sgs are deterministic algorithms that incremen-

tally extend a partial schedule by choosing one or more eligible activities—i.e., all

of whose predecessors are fixed in the partial schedule—which is then scheduled.

These schemes are combined with e.g. priority rules, or meta-heuristics. For more

2The parallel Sgs is referred as Brooks’ algorithm in Bedworth and Bailey (1982).

http://129.187.106.231/psplib/

110 Chapter 5. Experiments on RCPSPs

details about Sgs, different methods based on them, and computational results in

Or see e.g. Hartmann and Kolisch (2000), Kolisch (1996), Kolisch and Hartmann

(2006).

The best known complete algorithm for solving Rcpsp is from Demeulemeester

and Herroelen (1992, 1997). Their specific method is a branch-and-bound approach

relying heavily on dominance rules and cut sets, a kind of problem specific nogoods.

They implicitly show the importance of nogoods to fathom the huge search space of

Rcpsp problems. Their method optimally solved all instances from j30 for the first

time. Unfortunately, the number of cut sets grows exponentially in the number of

activities, so that this method is only considered to be efficient for small problems.

Laborie (2005) developed a Csp-based method using ILOG Scheduler 6.1.

Their method uses minimal conflict sets—set of activities causing a resource overload

when running at the same time—as a branching scheme, and filtering algorithms

including time-table and edge-finding. A conflict set is a set of activities whose

execution might overlap in time and violate at least one resource constraint if they

are executed at the same time. The conflict set is minimal if a removal of any activity

of this set leads to the situation that all remaining activities can be concurrently

run without violating any resource constraint. His method was the best published

method so far on the j60, j90, and j120.

After publishing some parts of our results in Schutt et al. (2009) and publishing

online the remaining parts on Rcpsp, Horbach’s work was published online (Horbach

2010). He proposed a hybrid approach that is similar to a lazy online Smt solver.

The Rcpsp is partially encoded as a Sat problem and lazily extended as the search

progresses. If a so-called process variable—a Boolean variable reflecting that an

activity is run at a particular time period (analogous to the variables Bit from

Chap. 4 on page 82)—is set to true during unit propagation then the Sat solver

is interrupted and a specialised integer linear solver checks for a resource overload

at the corresponding time. In the case of a conflict, a conflict clause consisting of

fixed process variables is returned to the Sat solver. If no overload occurs then the

linear solver sets all unfixed processing variables which correspond to an activity

that needs more resource units than left at this time period to false. As search he

uses a Vsids search (see Sec. 2.3 on page 23).

Horbach’s approach uses the same idea as an Lcg solver: using a Sat solver to

benefit from the advanced Sat technology of its conflict learning facilities in order

to prune the search space. In comparison to our generic approach proposed in this

work his approach is hand-tailored for Rcpsp. Moreover, his best results, which

are comparable with ours, use the best known upper bound for the project duration

5.2 Related Work 111

from the PSPLib as the initial upper bound on the planning horizon whereas our

generic approach determines a first solution and takes its project duration as the

initial upper bound on the planning horizon.

The best known upper bounds on the test sets j60, j90, and j120 were mostly

computed by many highly specialised meta-heuristics. Therefore, it is believed that

these upper bounds are either the optimum or a few time periods off the optimum.

5.2.2 RCPSP/max

Rcpsp/max is a well studied problem with a number of challenging test sets from

the PSPmax-library (Schwindt 2011): Sm, CD, and UBO.3 The first complete

method we are aware of for it was proposed by Bartusch et al. (1988). They use

a branch-and-bound algorithm to tackle the problem. Their branching is based on

resolving (minimal) conflict sets—as in Laborie (2005)—by the addition of prece-

dence constraints breaking these sets. Later other branch-and-bound methods were

developed which are based on the same idea (see e.g. De Reyck and Herroelen 1998,

Schwindt 1998a, Fest et al. 1999). The results from Schwindt are the best published

ones for a complete method on the testset Sm.

Dorndorf et al. (2000) use a time-oriented branch-and-bound combined with con-

straint propagation for precedence and resource constraints. In every branch one

unscheduled and “eligible” activity is selected and its start time is assigned to the

earliest period in time that does not violate any constraint regarding the current

partial schedule. On backtracking they apply dominance rules to fathom the search

space. As far as we can determine this complete approach outperforms other com-

plete methods for Rcpsp/max on the CD benchmark set.

Franck et al. (2001) compare different solution methods on the benchmark set

UBO with instances having from 10 to 1000 activities. Their methods are truncated

branch-and-bound algorithms, filter-beam search, heuristics with priority rules, ge-

netic algorithms and tabu search. All methods share a preprocessing step to deter-

mine feasibility or infeasibility. The preprocessing step decomposes the precedence

network into strongly connected components (Sccs) (which are denoted as “cyclic

structures” in Franck et al. (2001)). The preprocessing then determines a solution or

infeasibility for each Scc individually using constraint propagation techniques and a

destructive lower bound computation where this computation first sets the planning

horizon to a simple lower bound of the Scc and then increments the planning hori-

zon until a feasible solution is found. Once a solution for all Sccs is determined a

3All test sets are accessible from http://www.wior.uni-karlsruhe.de/LS_Neumann/

Forschung/ProGenMax/ and via http://129.187.106.231/psplib/.

http://www.wior.uni-karlsruhe.de/LS_Neumann/Forschung/ProGenMax/
http://www.wior.uni-karlsruhe.de/LS_Neumann/Forschung/ProGenMax/
http://129.187.106.231/psplib/

112 Chapter 5. Experiments on RCPSPs

first solution can be deterministically generated for the original instance; otherwise

infeasibility is proven.

Ballest́ın et al. (2009) employ an evolutionary algorithm based on a serial Sgs with

an unscheduling step. Their crossover operator is based on so called conglomerates,

i.e., sets of cycle structures and other activities which cannot move freely inside a

schedule. It tries to keep the “good” conglomerates of the parents for their children.

This is the best published meta-heuristic so far on the test sets UBO (instances

with up to 100 activities) and CD.

Cesta et al. (2002) propose a two layered heuristic that is based on a temporal

precedence network and an extension of this network by new temporal precedence

relations in order to resolve minimal conflict sets. For guidance, constraint propa-

gation techniques are applied on the network. Their method is competitive on the

benchmark set SM.

Oddi and Rasconi (2009) apply a generic iterative search consisting of a relax-

ation and flattening step based on temporal precedence constraints which are used

for resolving resource conflicts. In the first step some of the temporal precedence

constraints are removed from the problem and then in the second step others are

added if a resource conflict exists. Their method is evaluated on some larger in-

stances from UBO.

In comparison to Rcpsp not many meta-heuristics have been proposed due to

the difficulty of handling generalised precedence relations. Moreover, the published

results on test sets from PSPmax-library indicate a smaller gap between complete

and incomplete methods than for Rcpsp.

5.2.3 Other Related Works

Grimes et al. (2009), Grimes and Hebrard (2010) consider disjunctive resource

scheduling problems, i.e., the resource capacity equals one for all resources. They

apply their method to open-shop scheduling problems and job-shop scheduling prob-

lems with and without generalised precedence relations. These problems are re-

stricted cases of Rcpsp. An open-shop scheduling problem consists of a set of jobs

which are made up by one non-preemptive activity for each resource. A feasible

schedule orders the activities for each job and assigns a start time to each activ-

ity, so that no resource constraint is violated. A job-shop scheduling problem is

an open-shop scheduling problem with a given order on the activities for each job,

where a feasible schedule must obey generalised precedence relations if existent. As

for Rcpsp and Rcpsp/max, a minimal schedule duration is sought. On both prob-

lem classes, their method is competitive and was able to close a number of open

5.3 Resource-Constrained Project Scheduling Problems 113

problems.

Similar to our approach, they use nogood recording from restarts (Lecoutre et al.

2007) to avoid a repeated proving of infeasible parts of the search space in the

subsequent search. Those nogoods are solely based on binary search decisions and

are only generated before the search restarts. Consequently, propagators do not need

to explain their propagation, and no nogoods are learnt between restarts. Compared

to this approach, Lcg learns 1-Uip nogoods after each conflict. This allows Lcg

not only to fathom the search space between restarts from nogoods, but also to build

possibly stronger nogoods, since they are not only based on decisions. However, their

approach seems to be well-suited to disjunctive scheduling, because they can exploit

the binary relationship that one activity has to precede or follow another activity

if they are from the same job or share the same resource. This is not the case for

scheduling problems involving general cumulative constraints, since activities can

be executed concurrently.

A number of linear programming methods have been proposed to solve Rcpsp (see,

e.g., Brucker and Knust 2000, Baptiste and Demassey 2004, Damay et al. 2007).

These methods relax the cumulative constraint to obtain a lower bound on the

project duration. Several relaxations for the cumulative constraint can be found in

these works and in Hooker and Yan (2002), Hooker (2007). Roughly, these methods

work as follows: first, the problem is preprocessed, which can also involve extensive

constraint propagation; second, the gathered information is used to generate an op-

timised mixed-integer programming (Mip) model using those relaxations. This in

turn is solved with a Mip solver by sequential proving of infeasible lower bounds on

the project duration until a feasible solution is found. These methods were success-

ful in determining new lower bounds and closed several open problems. However,

recently Viĺım (2011) obtained comparable or better lower bounds by using a con-

straint programming solver with a hybrid of the time-table and edge-finding filtering

algorithm for the cumulative constraint.

5.3 Resource-Constrained Project Scheduling

Problems

Resource-constrained project scheduling problems (Rcpsp) appear as variants, ex-

tensions and restrictions in many real-world scheduling problems. Therefore, we

test the TimeD, ActiD decompositions and the explaining cumulative propagator—

presented in Chap. 4—on the well-known Rcpsp benchmark library PSPLib (Kolisch

and Sprecher 1997). Before we evaluate our approaches and compare them with

114 Chapter 5. Experiments on RCPSPs

state-of-the-art complete algorithms, we first present the model and different search

strategies used to solve it.

5.3.1 Model

An Rcpsp is denoted by a triple (V , E ,R) where V is a set of activities, E ⊆ V × V
a set of precedence relations between activities and R a set of resources. Each

activity i has a processing time p[i] and a resource usage r[k, i] for each resource

k ∈ R. Each resource k has a resource capacity R[k].

The goal is to find an optimal schedule that minimises the project duration MS, in

the remainder of this section called makespan, while meeting the following conditions

∀i ∈ V : s[i] + p[i] ≤MS ,

∀i� j ∈ E : s[i] + p[i] ≤ s[j] ,

∀t ∈ [0 .. T − 1] ,∀k ∈ R :
∑

i∈V:s[i]≤t<s[i]+p[i]

r[k, i] ≤ R[k] ,

where T is the planning horizon. This Rcpsp problem can be written as a basic

Zinc model.

1 % Parameters

2 int : T; % Planning hor i zon

3 enum Act ; % Set o f a c t i v i t i e s

4 enum Res ; % Set o f r e s o u r c e s

5 set o f int : Times = 0 . .T; % Time p e r i o d s

6 array [Act] o f int : p ; % Process ing t imes o f a c t i v i t i e s

7 array [Act] o f set o f Act : suc ; % Successors o f each a c t i v i t y

8 array [Res , Act] o f int : r ; % Resource usages o f a c t i v i t i e s

9 array [Res] o f int : R; % Resource c a p a c i t i e s

10 % V a r i a b l e s

11 array [Act] o f var Times : s ; % S t a r t time v a r i a b l e s o f a c t i v i t i e s

12 var Times : MS; % Makespan o f the p r o j e c t

13 % Precedence c o n s t r a i n t s

14 constraint

15 f o ra l l (i in Act , j in suc [i]) (s [i] + p [i] <= s [j]) ;

16 % Resource c o n s t r a i n t s

17 constraint

18 f o ra l l (k in Res) (

19 cumulat ive (s , p , [i : r [k , i] | i in Act] , R[k])

20) ;

21 % Makespan c o n s t r a i n t s

22 constraint

23 f o ra l l (i in Act where suc [i] == {}) (s [i] + p [i] <= MS) ;

5.3 Resource-Constrained Project Scheduling Problems 115

24 % O b j e c t i v e

25 solve minimize MS;

A Zinc data file representing the problem of Ex. 4.1 on page 74 is

1 T = 20 ;

2 enum Act = { a , b , c , d , e , f } ;

3 enum Res = { s i n g l e } ;

4 p = array1d (Act , [2 , 6 , 4 , 2 , 5 , 6]) ;

5 suc = array1d (Act , [{b} ,{ c } ,{} ,{ e } , { } , { }]) ;

6 r = array2d (Res , Act , [1 , 2 , 4 , 2 , 2 , 2]) ;

7 R = array1d (Res , [5]) ;

The basic model is refined with constraints expressing activities in disjunction,

which is described next.

Activities in Disjunction

Two activities i and j ∈ V are in disjunction, if they cannot be executed at the

same time, i.e., the sum of their resource usages for at least one resource k ∈ R are

greater than the available capacity: r[i, k] + r[j, k] > R[k]. Activities in disjunction

can be exploited in order to reduce the search space.

The simplest way to model two activities i and j in disjunction is by two reified

linear constraints sharing the same Boolean variable Bij.

Bij → s[i] + p[i] ≤ s[j] ¬Bij → s[j] + p[j] ≤ s[i]

If Bij is true then i � j, and if Bij is false then j � i. The literals Bij and

¬Bij can be directly represented in the Sat solver, consequently Bij represents the

relationship between these activities. The propagator of such a reified constraint

can only infer new bounds on the left hand side of the implication if the right

hand side is false, and on the start times variables if the left hand side is true.

For example, the right hand side in the second constraint is false if and only if

maxD s[i]−minD s[j] < p[j]. In this case the literal ¬Bij must be false and therefore

i� j.

We add these redundant constraints for all pairs of activities in disjunction to

the model which allows the propagation solver to determine information about start

time variables more quickly. The Zinc model of these constraints is as follows.

1 % Redundant non−o v e r l a p p i n g (d i s j u n c t i v e) c o n s t r a i n t s

2 constraint

3 f o ra l l (i , j in Act where i < j) (

4 i f e x i s t s (k in Res) (r [i , k] + r [j , k] > R[k]) then

116 Chapter 5. Experiments on RCPSPs

5 % A c t i v i t y i must be run b e f o r e or a f t e r j

6 l et {var bool : b} in (

7 (b −> s [i] + p [i] <= s [j])

8 /\ (not (b) −> s [j] + p [j] <= s [i])

9)

10 else t rue endif

11) ;

Further Remarks

In practice we share the Boolean variables generated inside the cumulative as de-

scribed in Sec. 4.4.1 (by common sub-expression elimination) and add redundant

constraints as described in Sec. 4.4.2 when using the ActiD decomposition. The

planning horizon T is determined as the makespan of the first solution heuristi-

cally found by selection of the start time variable with the smallest lower bound

(if a tie occurs then the lexicographic least variable) and assignment of the vari-

able to its lower bound. The initial domain of each variable s[i] was determined as

Dinit(s[i]) = [head[i] .. T − tail[i]] where head[i] is the duration of the longest chain

of predecessor activities, and tail[i] is the duration of the longest chain of successor

activities.

5.3.2 Search Strategies

We evaluate our approach on different search strategies. When we optimise an

instance, the search strategies are combined with a branch-and-bound algorithm.

Whenever a new solution is found (with MS = t), a constraint requiring a better

solution (MS < t) is globally added during the search.

Search using Serial Scheduling Generation

Baptiste and Le Pape (2000) adapt the serial Sgs (Kelley 1963)—as described in the

related work section—for a constraint programming framework. For our experiments

we use a form where we do not apply their dominance rules, and we impose a lower

bound on the start time variable instead of posting the delaying constraint “activity

i executes after at least one activity in the schedule”.

1. Select an eligible unscheduled activity i with the earliest start time t = lb(s[i]).

If there is a tie between some activities then select that one with the mini-

mal latest start time ub(s[i]). If still tied then choose the lexicographic least

activity. Create a choice point.

5.3 Resource-Constrained Project Scheduling Problems 117

2. Left branch: Extend the partial schedule by setting s[i] = t. If this branch

fails then go to the right branch. Otherwise go to step 1.

3. Right branch: Delay activity i by setting s[i] ≥ t′ where t′ = min{lb(s[j])+p[j] |
j ∈ T : lb(s[j]) + p[j] > lb(s[i])}, i.e., the earliest completion time of the

concurrent activities. If this branch fails then backtrack to the previous choice

point. Otherwise go to step 1.

The right branch uses the dominance rule that amongst all optimal schedules there

exists one where every activity starts either at the first possible time or immediately

after the completion of another activity. Therefore, the imposing of the new lower

bound is sound; no solution is lost for the considered problem. If we add side

constraints then this assumption could be invalid. This search is simply referred as

to Sgs.

Search using Variable State Independent Decaying Sum

As the Sat conflict driven search we use a variant of Vsids as described in Sec. 2.3

on page 23.

Restarting has been shown to be beneficial in Sat solving (and Csp solving)

in speeding up solution finding, and as being more robust on hard problems. On

restart the set of nogoods has changed as well as the activity of variables, so the

search takes a different path. We also use Vsids search with restarting, which we

denote as Restart. Note that restarting with Sgs is not very attractive since

we rarely learn anything that changes the Sgs search decisions, we effectively just

continue the same search.

Hybrid Search Strategies

One drawback of Vsids search is that at the beginning of the search the activity

counters are only related to the clauses occurring in the original model, and not

to any conflict. This is exacerbated in Lcg where many of the constraints of the

problem may not appear at all in the clause database initially. This can lead to poor

decisions in the early stages of the search. Our experiments support this: there are

a number of “easy” instances which Sgs can solve within a small number of choice

points, where Vsids requires substantially more.

In order to avoid these poor decisions we consider a hybrid search strategy. We

use Sgs for the first 500 choice points and then restart the search with Vsids. The

Sgs search may solve the whole problem if it is easy enough, but otherwise it sets

the activity counters to meaningful values so that Vsids starts concentrating on

118 Chapter 5. Experiments on RCPSPs

meaningful decisions. We denote this search as Hot Start, and the version where

the secondary Vsids search also restarts as Hot Restart.

5.3.3 Experiments

We carried out extensive experiments on Rcpsp instances comparing our approaches

to decomposition without explanation, global cumulative propagators from sicstus

and eclipse, as well as a state-of-the-art complete solving algorithms (Laborie 2005,

Horbach 2010). Detailed results are available at http://www.cs.mu.oz.au/~pjs/

rcpsp.

We use two suites of benchmarks. The library PSPLib contains the four classes

j30, j60, j90, and j120 consisting of 480 instances of 30, 60, 90, and 120 activities

respectively. We also use a suite (BL) of 40 highly cumulative instances with either

20 or 25 activities constructed by Baptiste and Le Pape (2000).

The experiments were run on a X86-64 architecture running GNU/Linux and a

Intel(R) Xeon(R) CPU E54052 processor at 2GHz. The code was written in Mer-

cury (Somogyi et al. 1996) using the G12 Constraint Programming Platform (Stuckey

et al. 2005) and compiled with the Mercury Compiler and grade hlc.gc.trseg. Each

run was given a 10 minute limit.

We compare 4 different implementations of the cumulative constraint with expla-

nation: (t) the TimeD decomposition of Sec. 4.4.1, (s) the ActiD decomposition of

Sec. 4.4.2, (e) an activity decomposition using end times, and (g) a global constraint

cumulative using time-table filtering with explanation. The global cumulative uses

the pointwise explanations for consistency and iterative pointwise explanations for

filtering of Sec. 4.5. We experimented with other forms of explanations for the global

cumulative but they were inferior for hard instances (about 15% worse on average

except for näıve explanations which behave poorly). The present implementation of

the global cumulative recalculates the resource profile on each invocation, which

could be significantly improved by making it incremental. Profiling on a few in-

stances showed that more than half of the time was spent in the propagation of

cumulative.

Results on J30 and BL Instances

The first experiment compares different decompositions and search on the smallest

instances j30 and BL. We compare Sgs, Vsids, Restart, and the hybrid search

approaches using our 4 different explanation approaches. The results are shown

in Tab. 5.1 and 5.2. For j30 we show the number of problems solved (#svd),

http://www.cs.mu.oz.au/~pjs/rcpsp
http://www.cs.mu.oz.au/~pjs/rcpsp

5.3 Resource-Constrained Project Scheduling Problems 119

Table 5.1: Results on j30 instances

cmpr(477) all(480)

search model #svd time fails time fails

Sgs

s 477 2.13 3069 5.86 5375
e 477 2.19 3054 5.93 5331
t 480 0.87 2339 2.83 4230
g 480 0.73 1977 3.04 3919

Vsids

s 480 1.20 2128 1.63 2984
e 480 0.46 1504 0.77 2220
t 480 0.26 1002 0.33 1271
g 480 0.15 797 0.20 1058

Restart

s 480 0.50 1483 0.93 2317
e 480 0.43 1368 0.80 2128
t 480 0.24 856 0.33 1174
g 480 0.15 777 0.22 1093

Hot Start
t 480 0.21 779 0.34 1220
g 480 0.12 706 0.17 956

Hot Restart
t 480 0.26 884 0.35 1231
g 480 0.13 727 0.21 1058

(cmpr(477)) the average solving time in seconds and number of failures on the 477

problems that all approaches solved, and (all(480)) average solving time in seconds

and number of failures on all 480 problems within the execution.4 Note that we

shall use similar comparisons and notation in future tables. For the BL problems

the results are shown in Tab. 5.2. We show the number of solved problems, (all(40))

average solving time and number of failures with a 10 minute limit (on all 40 in-

stances), as well as fails(4000) with a 4000 failure limit.

Of the decompositions the TimeD decomposition is clearly the best, being almost

twice as fast as the ActiD decompositions. This is the effect of the stronger prop-

agation. Note that these are the smallest problems where its relative disadvantage

in size is least visible. The global is usually significantly better than the TimeD

decomposition: it usually requires less search and can be up to twice as fast. In-

terestingly sometimes the TimeD decomposition is faster which may reflect the fact

that it is (automatically) a completely incremental implementation of the cumula-

tive constraint. For these small problems the best search strategy is Hot Start

since the overhead of restarting Vsids does not pay off for these simple problems.

4This means that for problems that time out the number of failures is substantially larger than
those which were solved before timeout.

120 Chapter 5. Experiments on RCPSPs

Table 5.2: Results on BL instances

search model #svd all(40) #svd fails(4000)

Sgs

s 40 2.51 9628 24 0.18 1261
e 40 2.63 9443 24 0.15 1144
t 40 0.82 5892 29 0.04 781
g 40 0.88 5723 30 0.05 860

Vsids

s 40 0.79 4436 31 0.16 1115
e 40 0.77 4104 30 0.15 1025
t 40 0.22 2540 34 0.04 661
g 40 0.20 2039 37 0.04 605

Restart

s 40 0.88 4549 31 0.17 1169
e 40 1.46 5797 32 0.17 1135
t 40 0.13 1626 35 0.05 603
g 40 0.14 1568 36 0.04 546

Hot Start
t 40 0.10 1448 36 0.04 680
g 40 0.12 1485 36 0.04 593

Hot Restart
t 40 0.15 1829 35 0.05 719
g 40 0.25 2460 36 0.05 680

The results on the BL instances show that approaches using TimeD or the global

propagator and Vsids could solve between 6 and 9 instances more than the base

approach (FE) of Baptiste and Le Pape (2000) within 4000 failures. Their “left-

shift/right-shift” approach could solve all 40 instances in 30 minutes, with an average

of 3634 failures and 39.4 seconds on a 200 MHz machine. All our approaches with

TimeD and Vsids find the optimal solution faster and in fewer failures (between a

factor of 1.39 and 2.4).

Next we compare the TimeD decomposition (Sgs+t) and global propagator

(Sgs+g) against implementations of cumulative in sicstus v4.0 (default, and with

the flag global) and eclipse v6.0 (using its 3 cumulative versions from the li-

braries cumulative, edge finder and edge finder3). We also compare against

(Fd+t) a decomposition without explanation (a normal Fd solver) executed in the

G12 system. All approaches use the Sgs search strategy.

The results are shown in the Tab. 5.3 and 5.4. Clearly the more expensive edge-

finding filtering algorithms are not advantageous on the j30 examples, but they do

become significantly beneficial on the highly cumulative BL instances. We can see

that none of the other approaches compare to the Lcg approaches. The best solver

without learning is the sicstus cumulative with global flag. Clearly nogoods are

very important to fathom search space.

5.3 Resource-Constrained Project Scheduling Problems 121

Table 5.3: Results of the Fd solvers on the j30 instances

solver #svd cmpr(364) all(480)

si
c
st

u
s default 418 0.22 337 87.43 141791

global 415 0.40 331 94.01 76533
e
c
l
ip
se cumu 368 13.98 26469 154.79 365364

ef 366 18.33 21717 157.43 173445
ef3 368 16.61 17530 155.87 155142

G
12

Fd +t 404 1.79 5701 104.38 641185
Sgs +t 480 0.01 75 2.83 4230
Sgs +g 480 0.01 70 3.04 3919

Table 5.4: Results of the Fd solvers on the BL instances

solver #svd cmpr(7) all(40)

si
c
st

u
s default 32 2.87 25241 195.05 1896062

global 39 0.90 3755 18.36 63310

e
c
l
ip
se cumu 7 178.90 352318 526.61 2231026

ef 37 43.06 53545 102.60 229332
ef3 37 35.56 39836 81.47 144051

G
12

Fd +t 30 6.71 72427 216.87 2650886
Sgs + t 40 0.01 268 0.82 5892
Sgs + g 40 0.01 278 0.88 5723

While the TimeD decomposition clearly outperforms ActiD on these small ex-

amples, as the planning horizon grows at some point ActiD should be better, since

its model size is independent of the planning horizon. We took the j30 examples

and multiplied the durations and planning horizon by 10 and 100. We compare

the TimeD decomposition versus the (e) end-time ActiD decomposition (which is

slightly better than start-time (s)) and the global cumulative (g). The results

are shown in Tab. 5.5. First we should note that simply increasing the durations

makes the problems significantly more difficult. While the TimeD decomposition is

still just better than the ActiD decomposition for the 10× extended examples, it

is inferior for scheduling problems with very long durations. The most important

result visible from this experiment is the advantage of the global propagator over the

TimeD decomposition as the planning horizon gets larger. The global propagator is

by far the best approach for the larger problems since it has the O(n2) complexity of

the ActiD decomposition but the same propagation strength as the much stronger

TimeD decomposition. Note also how the failures get dramatically worse for the

122 Chapter 5. Experiments on RCPSPs

Table 5.5: Results on the modified j30 instances

search duration model #svd cmpr(462) all(480)

Sgs

1×
e 477 0.11 542 5.93 5331
t 480 0.08 501 2.83 4230
g 480 0.05 371 3.04 3919

10×
e 471 0.58 1812 14.76 9512
t 476 1.03 676 11.04 4972
g 478 0.10 393 4.92 4291

100×
e 466 4.87 4586 23.40 10813
t 465 15.58 724 35.02 1582
g 477 0.70 403 8.51 3684

Vsids

1×
e 480 0.06 318 0.77 2220
t 480 0.04 249 0.33 1271
g 480 0.02 151 0.20 1058

10×
e 480 0.18 821 4.23 4213
t 480 0.63 1210 4.84 2714
g 480 0.06 284 0.39 1215

100×
e 474 1.32 2031 12.36 4224
t 469 9.88 9229 27.35 9707
g 480 0.62 1296 3.15 2360

TimeD decomposition using Vsids as the problem grows. This illustrates how the

large number of Boolean variables in the decomposition makes the Vsids heuristic

less effective.

Results on J60, J90 and J120 Instances

We now examine the larger instances j60, j90 and j120 from PSPLib. For j60

we compare the most competitive search approaches from the previous subsection:

Vsids, Restart, Hot Start and Hot Restart using the TimeD decomposition

and global propagator. For this suite our solvers cannot solve all 480 instances

within 10 minutes. The results are presented in Tab. 5.6. For these examples we

show the average distance of the makespan from our best solution to the best known

solution from PSPLib at the date of 23 April 2009 (most of which are generated

by specialised heuristic methods), as well as the usual time and number of failures

comparisons. Many of these are currently open problems. Our best approaches close

24 open instances (see the end of this section for details). While all of the methods

are quite competitive we see that restarting is valuable for improving the average

distance from the best known solution, and the hybrid approach Hot Restart is

5.3 Resource-Constrained Project Scheduling Problems 123

Table 5.6: Results on j60 instances for TimeD and global propagator

search model #svd avg. dist. cmpr(425) all(480)

Vsids
t 426 4.4 4.85 7216 72.71 41891
g 430 6.2 2.99 4943 67.13 52016

Restart
t 428 4.5 3.53 5139 68.04 61558
g 430 3.7 2.50 4418 66.01 60518

Hot Start
t 429 9.3 2.91 4629 66.64 52812
g 428 18.1 2.93 4848 66.19 57823

Hot Restart
t 429 4.0 3.28 4982 66.60 60146
g 430 3.9 2.60 4658 66.18 60652

Table 5.7: Results on j90 instances for TimeD and global propagator

search model #svd avg. dist. cmpr(395) all(480)

Hot Restart
t 396 7.5 4.16 4364 108.90 90582
g 397 7.5 3.34 3950 108.57 90134

Table 5.8: Results on j120 instances for TimeD and global propagator

search model #svd avg. dist. cmpr(274) all(600)

Hot Restart
t 274 9.7 8.50 8543 329.46 234897
g 282 9.6 5.40 7103 324.51 242343

marginally more robust than the others. Interestingly Hot Start can clearly force

the search into a less promising area than just plain Vsids.

For the largest instances j90 and j120 we ran only Hot Restart since it is

the most robust search strategy, using the TimeD decomposition and the global

propagator. The results are presented in the Tab. 5.7 and 5.8 which show that the

global propagator is superior to the TimeD decomposition. In total we close 15

and 27 open instances in j90 and j120 respectively (see the end of this section for

details).

We compare our best method Hot Restart with either t or g to the methods

by Laborie (2005) and Horbach (2010). Laborie’s method was the best published

method so far on the j60, j90, and j120 instances whereas Horbach’s method

was recently published—after the results of Hot Restart + t were published in

Schutt et al. (2009) and the results of Hot Restart + g were published online at

http://www.cs.mu.oz.au/~pjs/rcpsp and submitted for publication.

Tables 5.9, 5.10, and 5.11 show the percentage of optimally solved instances within

a maximal solving time with the 2.0GHz processor speed of the machine on which

our method was run. We roughly estimate that our machine is 1.5 times faster than

http://www.cs.mu.oz.au/~pjs/rcpsp

124 Chapter 5. Experiments on RCPSPs

Table 5.9: Comparison between state-of-the-art methods on j60

Hot Restart

2.0 GHz t g Horbach Laborie

10s 84.8 85.8 83.1 -
200s 89.2 89.0 - 84.2
300s - - 88.1 -
600s 89.4 89.6 - -

1200s - - - 85.0
3600s - - 89.6 -

Table 5.10: Comparison between state-of-the-art methods on j90

Hot Restart

2.0 GHz t g Horbach Laborie

10s 79.8 80.0 79.0 -
200s 81.7 81.9 - 78.5
300s - - 81.5 -
600s 82.5 82.7 - -

1200s - - - 79.4
3600s - - 82.5 -

Laborie’s machine taking into account the speeds of the processors: 2.0GHz vs.

1.4GHz, and that it has a similar speed as Horbach’s machine: 2.0GHz vs. 2.2GHz.

Clearly this comparison can only be seen as indicative. A dash “-” in the table

means that no results were available with the corresponding time limit.

Our methods clearly outperform Laborie’s method: for every class our methods

were able to solve more problems within 10s than they could solve in half an hour

on their machine. Interestingly, our solver could not solve six instances which were

solved by others. We can also see that the advantage of the global propagator

Table 5.11: Comparison between state-of-the-art methods on j120

Hot Restart

2.0 GHz t g Horbach Laborie

10s 42.3 42.7 40.8 -
200s 45.2 45.8 - 41.3
300s - - 44.7 -
600s 45.7 47.0 - -

1200s - - - 41.7
1800s - - 46.0 -

5.3 Resource-Constrained Project Scheduling Problems 125

increases with increasing problem size.

Our methods perform comparably to Horbach’s method and find and prove faster

optimal solutions. Considering that our methods are generic and start with a loose

upper bound on the makespan in comparison to his hand-tailored method that starts

with the best known upper bound on the makespan, it seems that our methods,

especially Hot Restart + g, are superior. Note that the initial Sat model size of

both methods also depends on the domain size of each start time variable. Hence,

starting with a tight upper bound not only saves runtime to find a tight upper

bound, but also decreases the model size.

Closed Instances

Table 5.12 lists all previously open instances (with respect to the PSPLib at the date

of 29 April 2009, Laborie (2005), and Liess and Michelon (2008)) with their optimal

makespan. We exclude the results of Horbach (2010), since they were published

later than our results. These instances were closed by Hot Restart with the

global cumulative or some other method:

(♣) Vsids + g,

(♠) Hot Restart + t,

(♥) lower bound computation by proof of the equality of lower and best known

upper bound, and

(♦) Hot Restart and lower bound computation—Hot Restart decreased the

previously best known upper bound to 95 and the lower bound computation

proved the optimality of this new bound.

The optimal makespan of almost all closed instances corresponds to the previously

best known upper bound found by meta-heuristics, except for the J120 instances 8 3

and 48 5 where our solver could reduce them by 1 to 95 and 110 respectively. Note

that Hot Restart with the TimeD decomposition was also capable of closing 63

of these instances.

New Lower Bounds

Finally we used Hot Start + g to try to improve lower bounds of the remaining

open problems, by searching for a solution to the problem with the makespan varying

from the best known lower bound to the best known upper bound from PSPLib. We

set the makespan to the best known lower bound and tried to find a solution, if this

126 Chapter 5. Experiments on RCPSPs

Table 5.12: Closed instances

j6
0

Instance 5 10 9 2 9 4 14 1 14 10 17 8 21 9 25 1
Makespan 81 82 87 61 72 85 89 114

Instance 25 3 25 5♣ 25 9 30 5 30 7 30 10 41 1 41 2
Makespan 113 98 99 76 86 86 122 113

Instance 41 6 41 9 46 4 46 5 46 6 46 7 46 9 46 10
Makespan 134 131 74 91 90 78 69 88

j9
0

Instance 5 1 5 2 21 2♥ 21 4 21 5 21 6 21 9 21 10
Makespan 78 93 116 106 112 106 121 109

Instance 26 5♠ 37 1 37 4 37 5 37 8♥ 37 9 37 10♥ 42 2
Makespan 85 110 123 126 119 123 123 102

Instance 42 7 42 10
Makespan 87 90

j1
2
0

Instance 1 3 1 8 1 10 2 2 8 3♦ 21 2 21 7 22 3
Makespan 125 109 108 75 95 117 111 96

Instance 22 8 28 4 28 8 28 9 28 10 29 4 41 2 41 9
Makespan 103 112 99 98 116 80 141 121

Instance 42 5 42 8 48 1 48 5 48 8 48 9 48 10 49 3
Makespan 120 113 100 110 116 113 111 96

Instance 49 4 49 5 49 7 49 10 50 4♥

Makespan 96 89 99 97 100

failed we increased the makespan by one and re-solved. If a solution was found it is

optimal, if we can prove failure for a given makespan we have increased the lower

bound. If the increased lower bound equaled the best known upper bound we have

proved the optimality of the upper bound and closed the instance as well.

In total this method closed 6 more instances and improved the lower bound by

78 instances of the remaining 433 open instances. The improved lower bounds are

listed in Tab. 5.13.

5.4 Resource-Constrained Project Scheduling

with Generalised Precedence Relations

Resource-constrained project scheduling problems with generalised precedence rela-

tions (Rcpsp/max) are an important extension of Rcpsp. In this section we run our

best approach for Rcpsp, i.e., the global cumulative constraint with explanation,

on the test sets from PSP/max-library (Schwindt 2011). First, we present a basic

model and then two extensions of it. We then describe the search strategies used.

5.4 RCPSP with Generalised Precedence Relations 127

Table 5.13: New lower bounds on all instances

j6
0

Instance 9 3 9 5 9 6 9 8 9 9 9 10 25 2 25 4
LB 99 80 105 94 98 88 95 105

Instance 25 6 25 7 25 8 25 10 29 2 29 9 30 2 41 3
LB 105 88 95 107 123 105 69 89

Instance 41 5 41 10 45 3 45 4
LB 109 105 133 101

j9
0

Instance 5 4 5 6 5 8 5 9 21 1 21 7 21 8 37 2
LB 101 85 96 113 109 105 107 113

Instance 37 6 41 3 41 7 46 4
LB 129 147 144 92

j1
2
0

Instance 1 1 6 8 7 2 7 3 7 6 8 2 8 4 8 6
LB 104 140 113 97 115 101 91 84

Instance 9 4 26 2 26 4 26 5 26 7 26 8 26 9 26 10
LB 84 158 160 138 144 167 160 177

Instance 27 2 27 5 27 7 27 10 28 7 29 3 34 8 42 1
LB 109 105 118 110 108 96 86 106

Instance 46 1 46 2 46 3 46 5 46 7 46 9 46 10 47 1
LB 171 186 162 135 155 156 174 129

Instance 47 2 47 4 47 5 47 9 48 3 48 6 48 7 49 2
LB 126 119 125 140 109 102 105 108

Instance 53 3 53 4 53 9 54 7 54 10 60 2
LB 105 137 155 108 107 82

5.4.1 Model

An Rcpsp/max problem is similarly denoted as an Rcpsp problem by a triple

(V , E ,R) where V is a set of activities, E ⊆ V×V×Z a set of generalised precedence

relations between activities andR a set of resources. Each activity i has a processing

time p[i] and a resource usage r[k, i] for each resource k ∈ R. Each resource k has

a resource capacity R[k].

The goal is to find a schedule that minimises the makespan MS of the project

while satisfying all precedence and resource constraints:

∀i ∈ V : s[i] + p[i] ≤MS ,

∀(i, j, dij) ∈ E : s[i] + dij ≤ s[j] ,

∀t ∈ [0 .. T − 1] , ∀k ∈ R :
∑

i∈V:s[i]≤t<s[i]+p[i]

r[k, i] ≤ R[k] ,

where T is the planning horizon.

Example 5.1. A simple example of an Rcpsp/max problem consists of the five

activities [a, b, c, d, e] with start times [sa, sb, sc, sd, se], processing times [2, 5, 3, 1, 2]

and resource usages on a single resource [3, 2, 1, 2, 2] with a resource capacity 4.

128 Chapter 5. Experiments on RCPSPs

0 4 862
0

2

4

a

e

b

c

d

d e

cba

3

-3

20

0
2 1

2

-6

Figure 5.1: Left the activity-on-node network, and right a solution to a small
Rcpsp/max problem.

Suppose we also have the generalised precedences sa +2 ≤ sb (activity a ends before

activity b starts), sb+1 ≤ sc (activity b starts at least 1 time period before activity c

starts), sc−6 ≤ sa (activity c can not start later than 6 time periods after activity a

starts), sd +3 ≤ se (activity d starts at least 3 time periods before activity e starts),

and se − 3 ≤ sd (activity e can not start later than 3 time periods after activity d

starts). Note that the last two precedence constraints express the relation sd+3 = se

(activity d starts exactly 3 time periods before activity e).

Let the planning horizon, in which all activities must be completed, be 8. Fig-

ure 5.1 illustrates the activity-on-node network between the five activities, the source

at the left (time period 0), and sink at the right (time period 8), as well as a solution

to this problem, where a rectangle for activity i has width equal to its duration and

height equal to its resource usages.

Generalised precedence relations (i, j, dij) ∈ E between the activities i and j are

represented as the constraint s[i] + dij ≤ s[j], i.e., it represents a minimal time lag

(j must start at least dij time units after i starts) if dij ≥ 0 and a maximal time lag

(i must start at most −dij time units after the start of j) if dij < 0. Generalised

precedence relations encode not only start-to-start relations between activities, but

also start-to-end, end-to-start, and end-to-end by addition/subtraction of i’s or j’s

processing time to dij. If a minimal time lag d+
ij and a maximal time lag d−ji exist for

an activity j concerning to i then the start time s[j] is restricted to [s[i] + d+
ij..s[i]−

d−ji]. In the case of d+
ij = −d−ji the activity j must start exactly d+

ij time units after i.

A basic Zinc model for the Rcpsp/max problem is illustrated as follows.

1 % Parameters

2 int : T; % Planning hor i zon

3 enum Act ; % Set o f a c t i v i t i e s

4 enum Res ; % Set o f r e s o u r c e s

5 type prec = tup l e (Act , Act , int) ; % (x , y , d) = x + d <= y

6 set o f prec : E ; % Set o f g e n e r a l i s e d precedence r e l a t i o n s

5.4 RCPSP with Generalised Precedence Relations 129

7 set o f int : Times = 0 . .T; % Time p e r i o d s

8 array [Act] o f int : p ; % Process ing t imes o f a c t i v i t i e s

9 array [Res , Act] o f int : r ; % Resource usages o f a c t i v i t i e s

10 array [Res] o f int : R; % Resource c a p a c i t i e s

11 % V a r i a b l e s

12 array [Act] o f var Times : s ; % S t a r t time v a r i a b l e s o f a c t i v i t i e s

13 var Times : MS; % Makespan o f the p r o j e c t

14 % Genera l i sed precedence c o n s t r a i n t s

15 constraint

16 f o ra l l (e in E) (s [e . 1] + e . 3 <= s [e . 2]) ;

17 % Resource c o n s t r a i n t s

18 constraint

19 f o ra l l (k in Res) (cumulat ive (s , p , [i : r [k , i] | i in Act] , R[k])) ;

20 % Makespan c o n s t r a i n s

21 constraint

22 f o ra l l (i in Act) (s [i] + p [i] <= MS) ;

23 % O b j e c t i v e

24 solve minimize MS;

A Zinc data file representing the problem of Ex. 5.1 is

1 T = 8 ;

2 enum Act = { a , b , c , d , e } ;

3 enum Res = { s i n g l e } ;

4 p = array1d (Act , [2 , 5 , 3 , 1 , 2]) ;

5 E = { (a , b , 2) , (b , c , 1) , (c , a ,−6) ,(d , e , 3) , (e , d,−3) } ;

6 r = array2d (Res , Act , [3 , 2 , 1 , 2 , 2]) ;

7 R = array1d (Res , [4]) ;

This basic model has a number of weaknesses: first, the initial domains of the

start times are large; second, each precedence relation is modelled as an individual

linear inequality propagator; and finally, the Sat solver in Lcg has no structural

information about activities in disjunction.

A smaller initial domain reduces the size of the problem because fewer Boolean

variables are necessary to represent the integer domain in the Sat solver. It can

be computed in a preprocess step by taking into account the precedence relations

in E as described in the next paragraph. Individual propagators for precedence

constraints may not be so bad for a small number of precedence relations, but for a

larger number of propagators, their queuing behaviour may result in long and costly

propagation sequences. A global propagator can efficiently adjust the time-bounds

in O(n log n + m) runtime (see Feydy et al. 2008). Reified precedence constraints

can be used for modelling activities in disjunctions as described later in this section.

130 Chapter 5. Experiments on RCPSPs

Initial Domain

A smaller initial domain can be obtained for the start time variables by applying

the Bellman-Ford single source shortest path algorithm (see Bellman 1958, Ford

and Fulkerson 1962)—or any other single shortest path algorithm that admits neg-

ative edge weights—on the digraph G = (V ′, E ′) where V ′ = V ∪ {v0, vn+1},E ′ =

{(i, j,−dij) | (i, j, dij) ∈ E} ∪ {(v0, i, 0), (i, vn+1,−pi) | i ∈ V}, v0 is the source

node, and vn+1 is the sink node. The digraph is referred to as the activity-on-node

network in the literature (e.g. Bartusch, Möhring, and Radermacher 1988, Neu-

mann and Schwindt 1997). If the digraph contains a negative-weight cycle then the

Rcpsp/max instance is infeasible. Otherwise the shortest path from the source v0

to an activity i determines the earliest possible start time for i, i.e., −w(v0 → i)

where w(.) is the length of the path and the shortest path from an activity i to the

sink vn+1 the latest possible start time for i in any schedule, i.e., tmax+w(i→ vn+1).

The Bellman-Ford algorithm has a runtime complexity of O(|V| × |E|).
These earliest and latest start times can not only be used for initial smaller do-

mains, but also to improve the objective constraints by replacing them with

1 constraint

2 f o ra l l (i in Act) (s [i] + t a i l [i] <= MS) ;

where tail[i] is the “negative” length −w(i → vn+1) of the shortest path from i

to vn+1 in the digraph G. Preliminary experiments confirmed that starting the

solution process with a smaller initial domain offers major improvements for solving

an instance and generating a first solution, especially on larger instances. Another

specific advantage for Lcg is that a smaller initial domain also reduces the size of

the problem because fewer Boolean variables are necessary to represent the integer

domain in the Sat solver.

Activities in Disjunction

Activities in disjunction for Rcpsp/max are the same as for Rcpsp (see Sub-

sec. 5.3.1). Two activities i and j ∈ V are in disjunction, if they cannot be executed

at the same time, i.e., their resource usages for at least one resource k ∈ R are

bigger than the available capacity: r[i, k] + r[j, k] > R[k]. We extend our model

with two reified constraints in the same way as for Rcpsp.

5.4.2 Search Strategies

We use branch-and-bound algorithms based on deterministic and conflict driven

branching strategies similar to Rcpsp. Either the branching strategies are used

5.4 RCPSP with Generalised Precedence Relations 131

alone or in combination. After each branch all constraints are propagated until a

fixpoint is reached or the inconsistency for the partial schedule is detected. In the

first case a new node is explored and in the second case an unexplored branch is

chosen if one exists or backtracking is performed.

Search using Deterministic Branching

The deterministic branching strategy selects an unfixed start time variable s[i] with

the smallest possible start time minD s[i]. If there is a tie between several variables

then the variable with the biggest size, i.e., maxD s[i]−minD s[i], is chosen. If there is

still a tie then the variable with the lowest index i is selected. The binary branching

is as follows: left branch s[i] ≤ minD s[i], and right branch s[i] > minD s[i]. In the

remainder this branching is denoted by Mslf.

This branching creates a time-oriented branch-and-bound algorithm similar to

Dorndorf et al. (2000), but it is simpler and does not involves any dominance rules.

Hence, it is weaker than their algorithm.

Search using Conflict-driven Branching

We use the same conflict-driven search, Vsids, as for Rcpsp problems. In order

to accelerate the finding of solutions and increase the robustness of the search on

hard instances, Vsids can be combined with restarts. In the remainder Vsids with

restart is denoted by Restart. Different restart policies can be applied. Here, a

geometric restart on failed nodes with an initial limit of 250 and a restart factor of

2.0 is used.

Hybrid Branching

As for Rcpsp, the activity counters of the variables have to be initialised somehow

at the beginning of the search. By default they are all initialised to the same value.

With no useful information in this initial setting, these activities can mislead Vsids

resulting in poor performance. To avoid this, we consider a hybrid search that uses

Mslf to search initially, which has the effect of modifying the activity counts to

reflect some structure of the problem, and then switch to Vsids after the first restart.

Here, we switch the searches after exploration of the first 500 nodes unless otherwise

stated. The strategy is denoted by Hot Start, and Hot Restart where Vsids

is combined with restart.

132 Chapter 5. Experiments on RCPSPs

5.4.3 Experiments

We carried out experiments on Rcpsp/max instances available at http://www.

wior.uni-karlsruhe.de/LS_Neumann/Forschung/ProGenMax/rcpspmax.html.

We compare our Lcg approaches using the explaining global cumulative propa-

gator to the best known complete and incomplete methods so far on each testset.

At the website http://www.cs.mu.oz.au/~pjs/rcpsp detailed results can be ob-

tained.

Our methods are evaluated on the following test sets which were systematically

created using the instance generator ProGen/max (Schwindt 1995):

CD: c, and d: each consisting of 540 instances with 100 activities and 5 resources.

UBO: ubo10, ubo20, ubo50, ubo100, and ubo200: each containing 90 instances

with 5 resources and 10, 20, 50, 100, and 200 activities respectively. (cf. Franck

et al. 2001).

SM: j10, j20, and j30: each containing 270 instances with 5 resources and 10, 20,

and 30 activities respectively. (cf. Kolisch et al. 1998).

Note that although the testset SM consists of small instances they are considerably

harder than e.g. ubo10 and ubo20.

The experiments were run on an Intel(R) Xeon(R) CPU E54052 processor with 2

GHz clock running GNU/Linux. The code was written in Mercury (Somogyi et al.

1996) using the G12 Constraint Programming Platform (Stuckey et al. 2005) and

compiled with the Mercury Compiler using grade hlc.gc.trseg. Each run was given

a 10 minute runtime limit.

Setup and Table Notations

In order to solve each instance a two-phase process was used. Both phases used the

basic model with the two described extensions (cf. Subsection 5.4.1).

In the first phase a Hot Start search was run to determine a first solution or

to prove the infeasibility of the instance. The feasibility runs were set up with the

trivial upper bound on the makespan T =
∑

i∈V max(p[i],max{dij | (i, j, dij) ∈ E}).
The feasibility test was run until a solution was found or infeasibility proved. If

a solution was found we use UB to denote the makespan of the resulting solution.

In the first phase the search strategy should be good at both finding a solution or

proving infeasibility, but not necessarily at finding and proving the optimal solution.

Hence, it could be exchanged with methods that might be more suitable than Hot

Start. In contrast to the normal Hot Start in the second phase we give the

http://www.wior.uni-karlsruhe.de/LS_Neumann/Forschung/ProGenMax/rcpspmax.html
http://www.wior.uni-karlsruhe.de/LS_Neumann/Forschung/ProGenMax/rcpspmax.html
http://www.cs.mu.oz.au/~pjs/rcpsp

5.4 RCPSP with Generalised Precedence Relations 133

deterministic search in the first phase more time to find a first solution and therefore

we switch the strategies after 5 × n nodes were explored where n is the number of

activities.

In the second optimisation phase, each feasible instance was set up again this

time with T = UB. The tighter bound is highly beneficial to Lcg since it reduces

the number of Boolean variables required to represent the problem. The search for

optimality was performed using one of the various search strategies defined in the

previous subsection.

The execution of the two-phased process leads to the following measurements.

rtmax: The runtime limit in seconds (for both phases together).

rtavg: The average runtime in seconds (for both phases).

fails: The average number of infeasible nodes encountered in both phases of the

search.

feas: The percentage of instances for which a solution was found.

infeas: The percentage of instances for which the infeasibility was proven.

opt: The percentage of instances for which an optimal solution was found and

proven.

∆LB: The average distance from the best known lower bounds of feasible instances

given in (Schwindt 2011).

cmpr(i): Columns with this header give measurements only related to those in-

stances that were optimally solved by each procedure where i is the number

of these instances.

all(i): Columns with this header compare measurements for all instances examined

in the experiment where i is the number of these instances.

Entries with the symbol “-” indicate no comparable number was available. Entries

with two numbers indicate that the corresponding procedure was applied several

times to the instance and the first number gives the average over all runs and the

number in parentheses gives the best number from all runs. Entries marked by a

star “?” indicate that a procedure was not able to find a solution for all feasible

instances and therefore the corresponding number may not be comparable with the

number from other procedures.

134 Chapter 5. Experiments on RCPSPs

Table 5.14: Comparison on the test sets CD, UBO, and SM.

cmpr(2230) all(2340)

Procedure feas opt infeas ∆LB rtavg fails rtavg fails

Mslf 85.0 80.60 15.0 3.96785 7.73 6804 35.96 23781
Mslf + restart 85.0 80.60 15.0 3.96352 7.80 6793 36.04 23787
Vsids 85.0 82.26 15.0 3.76928 2.16 1567 22.91 13211
Restart 85.0 82.26 15.0 3.73334 2.02 1363 22.38 12212
Hot Start 85.0 82.31 15.0 3.84003 2.22 1684 22.71 12933
Hot Restart 85.0 82.35 15.0 3.73049 2.04 1475 22.36 12341

Comparison of the Different Strategies

In the first experiment we compare all of our search strategies against each other

on all test sets. The strategies are compared in terms of rtavg and failures for each

testset.

The results are summarised in the Tab. 5.14. Similar to the results for Rcpsp

all strategies using Vsids are superior to the deterministic methods (Mslf), and

similarly competitive. Hot Restart is the most robust strategy, solving the most

instances to optimality and having the lowest ∆LB. Restart makes the search more

robust for the conflict-driven strategies, whereas the impact of restart on Mslf is

minimal.

In contrast to the results for Rcpsp the conflict-driven searches were not uni-

formly superior to Mslf. The three instances 67, 68, and 154 from j30 were solved

to optimality by Mslf and Mslf with restart, but neither Restart and Hot

Restart could prove the optimality in the given time limit, whereas Vsids and

Hot Start were not even able to find an optimal solution within the time limit.

Furthermore, our method could not find a first solution for the ubo200 instances 2,

4, and 70 nor prove the infeasibility for the ubo200 instance 40 within 10 minutes.

Only for these instances we let our method run until a first solution was found or

infeasibility was proven. The corresponding numbers are included in Tab. 5.14. A

detailed discussion of these instances follows later in this subsection.

Results on CD instances

Table 5.15 presents the results for the testset CD where 98.1% (1.9%) of the in-

stances are feasible (infeasible). Here, we compare Restart and Hot Restart

with the time-oriented branch-and-bound procedure (B&BD00) from Dorndorf et al.

(2000) and the evolutionary algorithm Eva from Ballest́ın et al. (2009). The method

5.4 RCPSP with Generalised Precedence Relations 135

Table 5.15: Results on the testset CD.

Procedure rtmax rtavg feas opt infeas ∆LB

B&BD00 100 - 98.1 71.7 1.9 4.6N

Eva - 0.62 98.1 ≥ 65.9 - 3.24 (3.16)

Restart

1 0.38 97.9 78.1 1.6 4.73?

10 1.39 98.1 89.8 1.9 3.20
100 6.17 98.1 94.0 1.9 2.86
600 19.32 98.1 95.8 1.9 2.81

Hot Restart

1 0.44 97.9 76.8 1.6 4.87?

10 1.49 98.1 89.6 1.9 3.20
100 6.27 98.1 93.9 1.9 2.86
600 19.42 98.1 96.0 1.9 2.79

N The ∆LB entry is based on the lower bounds presented in Schwindt (1998b) which were not
accessible for us.

B&BD00 performs better on this testset than the methods proposed by De Reyck

and Herroelen (1998), Schwindt (1998a), Fest et al. (1999).5 Moreover, B&BD00 is

the best published complete method on this testset so far. Their B&BD00 method

was implemented in C++ using Ilog Solver and Ilog Scheduler. Their ex-

periments were run on a Pentium Pro/200 PC, thus their results were obtained on

a machine approximately ten times slower.

We compare our results achieved with a runtime limit of 1 second to their results

with a limit of 100 seconds which should be clearly in favour of them. While B&BD00

can prove feasibility and infeasibility of all instances, the first-phase Hot Start

search with one second was unable to prove infeasibility of four infeasible instances

or find solutions to two feasible instances. It does prove infeasibility of these four

infeasible instances in less than 2.1 seconds and finds a first solution for these two

feasible instances in 4.8 seconds and 5.04 seconds respectively. Within one second

both our methods Restart and Hot Restart were able to prove the optimality

of substantially more instances than B&BD00. With more time our methods are able

to prove optimality of almost all instances in the test sets.

One reason for the first-phase results at one second may simply be that there is

a reasonable set up time required for Lcg to generate all the Boolean variables and

hence there is not much time for search. Another reason for the weakness of proving

infeasibility is that our model only contains propagators that determine the order

of activities in disjunction concerning their domains, but not also their minimal

5Results from Schwindt (1998a) are taken from Dorndorf et al. (2000).

136 Chapter 5. Experiments on RCPSPs

distance in the transitive closure of all precedences.6 Dorndorf et al. (2000) show

that these propagators are important for a fast detection of infeasibility. That Hot

Start is not so good in finding a first solution is not surprising, since the search is

not as problem specific as that of B&BD00. In order to overcome these problems we

could replace our first phase with e.g. the method of B&BD00 to prove infeasibility

and generate a first solution, and then use our second phase approach to find and

prove optimality.

The method Eva is the best published meta-heuristic on this testset. Their results

were obtained on a Samsung X15 Plus computer with Pentium M processor with

1400 MHz clock speed. This means that our machine is at least 1.46 times faster

than theirs. Their limits are a maximum of 5000 schedules, halting the process at

any time after 10 generations where the best schedule could not be improved. Our

methods generate better schedules within 10 seconds than their approach, which

can be seen from the lower ∆LB 3.20 which is less than 3.24.

Overall our methods are able to close 310 open problems and improve the upper

bound for all 21 remaining open problems in testset CD, according to the results

recorded in Schwindt (2011).

Results on UBO instances

Table 5.16 compares our procedures Restart and Hot Restart with the trun-

cated branch-and-bound methods FbsF01, the heuristic DmF01, and the genetic al-

gorithm GaF01 all proposed by Franck et al. (2001) on the UBO testset where 81.7%

(18.3%) of the instances are feasible (infeasible). In this table we add the column

feas + infeas showing the sum of percentage of feas and infeas because the corre-

sponding numbers for FbsF01 are not available. Their results were obtained on a

Pentium II machine with a 333MHz processor, i.e., our machine is at least 6.2 times

faster. They imposed a time limit of n seconds, e.g. an instance with 100 activities

was given at most 100 seconds. We compare our methods with 10 or 100 times lower

time limit which should be favourable to the other methods.

Their methods were able to prove the feasibility or infeasibility for all instances

(except one instance for the method FbsF01). Indeed DmF01 is extremely fast requir-

ing just 0.03 seconds on average, but it does not necessarily find very good solutions,

as shown by the high ∆LB.

In contrast our first-phase was not always able to find a first solution or prove

infeasibility with the time limit n/100. No solution was found for 6 instances with

100 activities, and the infeasibility was not shown for 11 (1) instances with 100 (50)

6These propagators are not available in the G12 Constraint Programming Platform.

5.4 RCPSP with Generalised Precedence Relations 137

Table 5.16: Results on the testset UBO for ubo10, ubo20, ubo50 and ubo100
instances in comparison with FbsF01, DmF01, and GaF01.

Procedure rtmax rtavg feas + infeas feas opt infeas ∆LB

FbsF01 n 12.4 99.66 - - - 6.82?

DmF01 n 0.03 100 81.7 - 18.3 10.72
GaF01 n 3.16 100 81.7 - 18.3 6.93

Restart
n/100 0.21 95.0 80.0 70.8 15.0 5.73?

n/10 0.78 100 81.7 75.3 18.3 4.99

Hot Restart
n/100 0.25 95.0 80.0 69.7 15.0 5.73?

n/10 0.81 100 81.7 75.3 18.3 5.04

Table 5.17: Results on the testset UBO for ubo10, ubo20, ubo50 and ubo100
instances in comparison with Eva.

Procedure rtmax rtavg feas opt infeas ∆LB

Eva - 0.38 81.7 - - 4.82 (4.79)

Restart

1 0.22 80.0 71.4 15.3 5.60?

10 0.89 81.7 75.3 18.3 4.92
100 5.32 81.7 77.2 18.3 4.51
600 24.47 81.7 78.1 18.3 4.40

Hot Restart

1 0.26 80.0 70.6 15.3 5.65?

10 0.92 81.7 75.3 18.3 5.01
100 5.26 81.7 77.2 18.3 4.55
600 24.14 81.7 78.1 18.3 4.43

activities. Once the time limit was extended to n/10 then the first phase was always

able to find a solution or prove infeasibility. If we compare ∆LB achieved with a

time limit n/10 (note for a time limit n/100 the data is not comparable, since our

methods could not find a solution for all feasible instances) then our methods have

a substantially better ∆LB than their approaches, i.e., our methods are quicker in

improving the makespan. Our approaches could prove optimality for a substantial

fraction of these problems even with time limit n/100.

Table 5.17 compares our results with the best meta-heuristic Eva from Ballest́ın

et al. (2009) on the UBO instances with up to 100 activities. Our methods create

better schedules within 100 seconds than the evolutionary algorithm Eva, leading

to a smaller lower bound deviation.

Table 5.18 presents the results on ubo200 which are compared to the iterative

flattening searches Ifs, Ifs-Fr, and Ifs-Mcsr from Oddi and Rasconi (2009).7

7No machine details are given in Oddi and Rasconi (2009).

138 Chapter 5. Experiments on RCPSPs

Table 5.18: Results on the testset UBO for ubo200 instances.

Procedure rtmax rtavg feas opt infeas ∆LB ∆UB

Ifs - 2148.7 88.9 - - - 2.06
Ifs-Fr - 2024.7 88.9 - - - 1.81
Ifs-Mcsr - 1716.7 88.9 - - - 1.65

Restart
100 29.55 81.1 67.8 7.8 7.37? -0.41?

600 139.0 85.6 68.9 10.0 10.11? -1.110?

600+N 187.5 88.9 68.9 11.1 11.88 -1.249

Hot Restart
100 29.9 81.1 68.9 7.8 7.22? -0.48?

600 139.0 85.6 68.9 10.0 10.10? -1.111?

600+N 186.9 88.9 68.9 11.1 11.87 -1.250

N For comparison purpose the instances 2, 4, 40, and 70 were run until a first solution was found
or infeasibility proven.

The table contains the extra column ∆UB that reports the average distance from

the best known upper bounds of feasible instances given in Schwindt (2011). Here,

88.9% (11.1%) instances are feasible (infeasible). Note that Franck et al. (2001)

also run their methods on ubo200, but the presented results are accumulated with

the results on instances with 500 and 1000 activities, so that a comparison is not

possible.

Within the given time limit Hot Start was not able to find a solution for the

instances 2, 4, and 70 nor to prove the infeasibility for the instance 40. In order to

compare the results with Oddi and Rasconi (2009) we let our first solution method

run until a solution was found or infeasibility proven. The runtimes for the instances

2, 4, 40, and 70 are 1030, 1478, 1139, and 3103 seconds, respectively. Interestingly,

the first obtained solutions have a better upper bound by 62, 46, and 37 time

periods for the instances 2, 4, and 70 respectively than the previously best known

upper bound recorded in Schwindt (2011).

Comparing these results on ∆UB with Oddi and Rasconi (2009) clearly our proce-

dures achieve better schedules. Restart and Hot Restart perform comparably.

The ubo200 instances clearly show that Hot Start as the search strategy in the

first phase can have difficulties in finding a first solution or proving infeasibility.

In total our approaches close 178 open instances and improve the upper bound for

27 instances of 31 remaining open instances with 200 activities or less in the testset

UBO, according to the results recorded in Schwindt (2011).

5.4 RCPSP with Generalised Precedence Relations 139

Results on SM instances

Finally for the testset SM we compare our approaches Mslf, Restart, and Hot

Restart with the method B&BS98 from Schwindt (1998a)8, Ises from Cesta et al.

(2002), and Swo(br) from Smith and Pyle (2004). The method B&BS98 (Schwindt

1998a) is a branch-and-bound algorithm that resolves resource conflicts by adding

precedence constraints between activities and has been run on a Pentium 200 with

a 100 second time limit. Ises is a heuristic that also adds precedence constraints

between activities in order to resolve/avoid resource conflicts, uses restarts and

has been run on a SUN UltraSparc 30 (266 MHz) with the same time limit. The

method Swo(br) (Smith and Pyle 2004) is a squeaky wheel optimisation. Their

method is divided into two stages: schedule generation and prioritisation where the

schedule is created by a heuristic with priority scheme and the latter changes the

priorities on variables depending on how “well” it is handled in the former stage.

Their benchmarks were performed on a 1700 Mhz Pentium 4. Note that Ises and

Swo(br) are incomplete methods, i.e., they cannot prove infeasibility unless the

precedence graph contains a positive weight cycle, and optimality is only proven if

the makespan of the solution found equals the known lower bound.

Table 5.19 presents the results for the 270 instances from SM with 30 activities.

From these instances 185, i.e., 68.5%, are feasible and 85, i.e., 31.5%, infeasible.

All our approaches could prove feasibility and infeasibility of all instances within

one second whereas B&BS98 could not find a solution for a few feasible instances.

Moreover, our methods could prove optimality significantly more often than the

complete method B&BS98 (of course also the incomplete methods). All our methods

were able to find on average a better solution in one second than these approaches,

as indicated by a lower ∆LB. For these harder benchmarks our methods clearly

outperform the competition. One reason could be that constraint propagation over

the cumulative constraint has a greater benefit than on other test sets because here

more activities can be run simultaneously.

Our approaches each give similar results: Restart and Hot Restart are su-

perior to Mslf up to 10 seconds, and all are similar to each other with longer time

limits. On the one hand Mslf could prove optimality for three instances where

Restart and Hot Restart only found the optimal solution. On the other hand

Mslf could not find an optimal solution for two instances where Restart and

Hot Restart could. It seems that Mslf may better suit problems where more

activities can be executed in parallel, but this needs further investigation.

8The paper (Schwindt 1998a) was not accessible to us, so that here the reported results are taken
from Cesta et al. (2002).

140 Chapter 5. Experiments on RCPSPs

Table 5.19: Results on the j30.

Procedure rtmax rtavg feas opt infeas ∆LB

B&BS98 100 - 67.7 42.6 - 9.56N

Ises 100 22.68 68.5 33.9 (35.6) - 10.99 (10.37)
Swo(br) 10 1.07 68.5 35.0 - 10.3

Mslf 1 0.16 68.5 58.1 31.5 8.91
10 0.82 68.5 61.9 31.5 8.40
100 4.90 68.5 64.8 31.5 8.23
600 21.61 68.5 65.5 31.5 8.20

Restart 1 0.12 68.5 61.5 31.5 8.38
10 0.57 68.5 64.1 31.5 8.19
100 3.92 68.5 64.8 31.5 8.17
600 21.34 68.5 65.2 31.5 8.12

Hot Restart 1 0.12 68.5 61.5 31.5 8.37
10 0.59 68.5 64.4 31.5 8.18
100 3.93 68.5 64.8 31.5 8.16
600 21.47 68.5 65.2 31.5 8.13

The ∆LB entry marked by N is based on the lower bounds presented in Schwindt (1998b) which
were not accessible for us.

Experiments were also carried out on the instances with 10 or 20 activities. All

our methods could solve all 270 instances with 10 activities within 0.05 seconds

each. Also, all our methods could solve all 270 instances with 20 activities within

30 seconds each. Moreover for the instances with 20 activities an optimal solution

was found within 1 second for all feasible instances.

Our approaches close 85 open problems and improve the upper bound for 3 prob-

lems of the 6 remaining open problems in the test set SM, according to the results

recorded in Schwindt (2011).

In the remainder of this section we list all closed instances and those instances for

which we improve the upper bound on the makespan.

Closed Instances

Tables 5.20–5.28 list all 573 previously open instances closed by one of our methods.

For each instance the following parameters are given: the instance number (Inst), the

previously best known upper bound (Best UB) on the makespan, the proved optimal

makespan (Optimal) and the lowest runtime (Best rt) of our methods which could

solve the instance to optimality. Optimal makespans are written in italics if the

makespan is lower than the previously best known upper bound.

5.4 RCPSP with Generalised Precedence Relations 141

Table 5.20: All closed instances from class c.

In
st

B
es

t
U
B

O
p

ti
m

a
l

B
es

t
rt

In
st

B
es

t
U
B

O
p

ti
m

al

B
es

t
rt

In
st

B
es

t
U
B

O
p

ti
m

al

B
es

t
rt

In
st

B
es

t
U
B

O
p

ti
m

a
l

B
es

t
rt

1 336 336 0.61 3 379 379 0.24 4 258 258 0.70 6 336 327 0.44
12 331 331 0.24 32 370 367 6.12 33 383 383 2.43 34 421 391 60.40
35 259 254 221.81 37 325 312 129.92 38 306 291 40.96 39 428 421 5.10
40 395 386 1.45 62 621 602 10.72 64 688 688 0.39 65 376 355 60.37
90 293 293 0.19 91 260 260 0.74 92 360 360 0.24 94 428 428 0.22
95 399 399 0.58 96 501 501 0.81 97 489 489 0.53 98 518 518 0.55

100 399 399 0.42 121 410 399 6.19 124 304 270 26.90 126 502 502 2.64
127 404 401 0.24 128 505 505 0.53 129 517 506 9.26 130 434 417 28.87
153 554 553 3.76 154 535 524 12.41 155 375 361 201.56 156 399 387 134.98
157 475 453 1.89 158 397 397 1.28 159 488 488 2.44 165 371 371 3.17
181 456 456 0.36 182 376 376 0.37 183 461 461 0.45 185 370 364 2.36
186 410 410 0.40 188 321 307 0.97 190 401 401 0.19 191 493 493 0.13
211 445 445 0.88 212 564 564 0.89 213 710 710 1.01 214 624 624 1.56
217 365 362 2.64 220 403 393 1.95 224 304 304 0.45 242 431 425 76.30
243 533 519 7.76 244 514 508 4.74 246 574 574 1.54 247 478 471 15.98
248 443 430 31.29 249 635 633 1.95 251 308 308 1.21 260 469 469 0.54
271 498 497 2.84 272 277 277 0.39 273 598 579 1.05 277 448 410 2.08
278 587 587 0.27 280 451 451 0.30 301 412 412 1.33 303 329 319 1.53
304 346 333 132.18 306 296 288 1.00 307 342 309 110.16 308 564 545 19.74
309 503 503 2.87 314 329 324 2.03 315 294 294 0.49 328 255 255 0.34
332 336 326 15.10 333 410 404 3.71 335 426 413 3.03 338 415 403 145.06
340 322 312 12.46 346 446 446 8.43 349 451 444 17.53 361 523 513 5.18
363 566 566 1.77 364 372 360 0.36 365 445 445 0.65 366 419 419 0.25
367 322 322 0.32 369 390 390 0.21 391 323 314 6.78 392 322 311 30.72
393 337 331 0.37 394 469 469 0.50 397 588 524 8.76 399 315 290 72.91
400 420 411 2.21 406 362 362 0.22 413 344 344 0.36 421 469 458 7.04
422 794 776 33.42 423 401 401 1.11 424 394 382 74.41 426 350 333 302.85
427 314 308 2.07 428 831 831 30.62 430 361 345 108.07 433 372 369 9.68
435 361 359 3.53 440 260 258 5.52 451 365 365 0.25 452 420 419 0.62
453 659 659 5.45 454 498 493 0.65 455 304 304 0.29 456 609 609 0.26
457 430 428 0.29 458 402 402 0.24 459 499 447 1.26 481 433 420 1.22
482 905 905 16.12 483 426 402 4.73 484 574 574 0.58 486 586 568 15.16
487 734 734 11.47 488 485 483 0.46 489 397 382 6.55 490 462 462 0.22
493 503 503 0.21 495 353 353 0.16 497 333 323 2.58 511 440 440 1.32
513 555 551 0.80 514 501 489 3.21 515 715 673 19.99 516 394 393 1.17
517 407 399 0.78 518 424 418 8.86 519 437 437 0.78 520 567 560 1.38
523 389 389 1.86 530 292 292 0.17 538 308 308 0.38 540 310 310 8.64

142 Chapter 5. Experiments on RCPSPs

Table 5.21: All closed instances from class d.

In
st

B
es

t
U
B

O
p

ti
m

al

B
es

t
rt

In
st

B
es

t
U
B

O
p

ti
m

a
l

B
es

t
rt

In
st

B
es

t
U
B

O
p

ti
m

a
l

B
es

t
rt

In
st

B
es

t
U
B

O
p

ti
m

al

B
es

t
rt

2 488 488 0.71 3 359 351 1.22 6 483 475 1.90 7 371 371 0.47
9 558 552 7.16 10 430 428 1.89 11 400 400 0.13 31 581 562 35.64

32 603 588 285.56 33 448 445 46.95 34 489 466 5.93 36 674 674 11.08
37 529 529 0.67 38 496 490 2.00 40 491 491 0.80 61 476 476 2.02
62 717 710 9.69 64 611 596 6.12 65 539 493 138.61 66 472 449 323.21
67 501 483 4.92 68 582 554 123.64 70 622 613 235.48 71 356 354 2.34
88 394 394 1.12 91 502 502 0.41 92 407 407 0.28 93 392 387 1.09
94 457 457 1.13 96 450 445 0.22 97 468 464 2.49 98 540 527 0.85

100 447 447 0.49 122 665 656 4.19 123 497 481 4.63 124 634 623 7.57
125 492 491 0.76 126 413 393 40.83 127 445 432 0.95 128 661 626 43.29
130 623 616 13.47 134 455 454 0.76 151 575 560 7.24 152 467 456 1.25
153 535 514 204.89 155 463 440 122.23 156 545 514 152.52 157 670 651 65.59
160 546 530 9.81 165 418 418 0.98 166 426 414 52.70 169 386 386 0.74
182 464 464 0.37 184 659 659 0.64 189 608 608 0.97 190 504 504 0.47
211 670 668 4.53 213 449 440 1.77 214 457 455 0.70 215 627 627 1.90
217 635 635 1.00 218 605 605 0.60 219 458 445 2.05 220 685 677 0.95
225 615 615 0.14 241 827 782 26.30 242 803 765 96.46 243 739 713 9.88
245 520 507 3.56 247 481 443 104.31 249 707 684 31.53 251 484 484 0.24
252 600 600 0.35 254 402 402 5.17 258 543 543 0.88 272 597 597 0.51
274 474 473 0.48 275 613 613 1.07 276 526 523 0.46 277 575 569 0.41
280 665 665 0.71 303 485 473 2.33 304 451 451 2.84 305 644 634 3.56
306 596 578 1.46 309 761 754 2.18 332 699 682 75.84 333 588 583 1.58
336 658 658 0.63 337 531 506 6.67 338 632 632 1.12 339 839 839 31.77
340 770 753 184.18 343 522 522 0.29 346 432 432 0.18 348 457 457 0.46
355 431 431 0.53 358 588 588 0.21 361 544 544 0.63 363 430 430 2.50
369 504 504 0.46 370 662 662 0.34 391 655 653 3.93 392 624 624 1.22
393 655 654 0.99 394 507 487 2.95 396 691 687 1.47 397 636 636 1.72
398 422 400 3.66 399 546 543 1.90 400 723 723 0.87 419 551 551 0.17
421 589 550 77.41 422 729 729 0.63 423 791 776 67.25 424 789 757 21.17
425 813 783 17.20 426 707 707 1.00 427 592 592 0.81 428 584 584 0.99
429 663 629 2.33 430 770 768 7.14 431 394 394 0.71 436 477 477 0.42
437 578 578 0.38 440 619 619 0.23 452 616 610 0.85 455 546 546 0.28
456 676 676 0.57 457 553 553 0.21 458 538 538 0.53 462 373 373 0.12
470 483 483 0.17 481 546 546 0.47 482 656 656 1.61 483 578 578 0.31
484 795 795 0.81 485 622 615 1.56 486 692 692 1.44 487 663 663 0.96
489 630 615 4.93 490 778 778 1.02 498 508 508 0.14 501 669 669 0.15
504 438 438 0.16 507 527 527 0.21 511 719 719 1.28 512 580 562 4.30
513 576 566 2.47 514 800 800 1.48 516 801 801 0.79 517 603 602 0.92
518 709 709 2.87 519 618 600 3.25 520 695 695 2.32 522 431 431 0.27
523 409 409 0.75 524 492 490 0.65 528 450 450 0.27 529 421 421 0.29
530 486 486 0.29 540 510 510 0.74

5.4 RCPSP with Generalised Precedence Relations 143

Table 5.22: All closed instances from class j20.
In

st

B
es

t
U
B

O
p

ti
m

a
l

B
es

t
rt

In
st

B
es

t
U
B

O
p

ti
m

al

B
es

t
rt

In
st

B
es

t
U
B

O
p

ti
m

a
l

B
es

t
rt

In
st

B
es

t
U
B

O
p

ti
m

a
l

B
es

t
rt

34 95 95 0.58 35 103 103 1.11 38 106 106 0.43 48 50 50 0.01
58 63 63 0.01 65 92 92 5.45 70 117 117 1.00 71 58 56 0.05
72 50 49 0.08 73 59 58 0.07 75 24 23 0.05 77 46 46 0.02
78 38 38 0.04 80 28 27 0.06 81 43 43 0.01 88 36 36 0.02
90 40 40 0.01 128 100 100 0.44 130 98 98 0.34 149 64 64 0.00

150 47 46 0.01 154 119 119 15.90 167 52 50 0.04 170 63 63 0.01
220 113 113 0.48 246 119 119 1.25

Table 5.23: All closed instances from class j30.

In
st

B
es

t
U
B

O
p

ti
m

a
l

B
es

t
rt

In
st

B
es

t
U
B

O
p

ti
m

al

B
es

t
rt

In
st

B
es

t
U
B

O
p

ti
m

al

B
es

t
rt

In
st

B
es

t
U
B

O
p

ti
m

al

B
es

t
rt

4 104 101 1.12 12 48 46 0.04 13 63 63 0.04 17 57 57 0.02
20 32 31 0.02 24 39 39 0.02 32 114 113 0.23 33 135 114 5.70
37 119 118 8.15 38 93 90 5.42 40 120 113 2.64 41 47 46 0.07
42 64 64 0.02 45 56 54 0.04 46 51 47 0.06 47 46 46 0.02
53 46 46 0.02 57 70 70 0.02 59 58 55 0.09 60 47 46 0.09
67 130 130 15.89 68 174 174 27.08 71 56 54 0.08 75 65 61 0.19
76 72 68 0.19 77 48 46 0.68 78 64 61 0.07 79 71 71 0.09
80 65 65 0.03 89 80 80 0.04 102 60 60 0.04 114 42 42 0.01

119 79 79 0.02 123 151 150 265.21 124 133 133 1.72 129 145 145 0.29
131 83 83 0.02 133 101 101 0.02 134 59 57 0.14 138 96 96 0.03
139 89 88 0.03 144 102 102 0.01 149 105 105 0.01 154 134 134 34.96
163 54 53 0.15 165 70 69 0.18 167 112 112 0.03 168 45 43 4.90
170 96 95 0.08 173 85 85 0.02 174 60 60 0.03 175 71 70 0.03
176 93 93 0.05 195 58 55 0.03 204 52 51 0.03 224 116 116 0.03
230 116 116 0.02 244 153 153 1.24 247 175 175 0.34

Table 5.24: All closed instances from class ubo10.

In
st

B
es

t
U
B

O
p

ti
m

al

B
es

t
rt

In
st

B
es

t
U
B

O
p

ti
m

al

B
es

t
rt

In
st

B
es

t
U
B

O
p

ti
m

al

B
es

t
rt

In
st

B
es

t
U
B

O
p

ti
m

al

B
es

t
rt

9 37 37 0.00 16 28 28 0.00 18 45 45 0.00 23 32 32 0.00
26 34 34 0.00 29 33 33 0.00 34 50 50 0.01 38 57 57 0.00
41 39 39 0.00 43 40 40 0.00 47 27 27 0.00 58 31 31 0.00
60 30 30 0.00 75 32 32 0.00 81 59 59 0.00

144 Chapter 5. Experiments on RCPSPs

Table 5.25: All closed instances from class ubo20.

In
st

B
es

t
U
B

O
p

ti
m

a
l

B
es

t
rt

In
st

B
es

t
U
B

O
p

ti
m

al

B
es

t
rt

In
st

B
es

t
U
B

O
p

ti
m

a
l

B
es

t
rt

In
st

B
es

t
U
B

O
p

ti
m

al

B
es

t
rt

4 98 98 0.06 6 108 108 0.08 8 93 93 0.04 10 106 106 0.08
13 92 92 0.01 15 46 45 0.02 17 69 69 0.02 20 66 65 0.02
21 44 44 0.01 25 39 39 0.01 26 61 61 0.01 28 58 58 0.01
32 86 86 0.05 34 125 125 0.02 40 106 106 0.09 41 62 62 0.01
44 78 78 0.01 46 73 73 0.01 48 88 88 0.02 49 63 63 0.01
54 57 57 0.01 56 56 56 0.01 57 107 107 0.01 60 40 40 0.00
65 119 119 0.03 74 99 99 0.01 82 53 53 0.00 87 75 75 0.00

Table 5.26: All closed instances from class ubo50.

In
st

B
es

t
U
B

O
p

ti
m

a
l

B
es

t
rt

In
st

B
es

t
U
B

O
p

ti
m

al

B
es

t
rt

In
st

B
es

t
U
B

O
p

ti
m

al

B
es

t
rt

In
st

B
es

t
U
B

O
p

ti
m

al

B
es

t
rt

6 232 213 0.48 9 230 194 13.81 11 146 141 0.16 12 115 115 0.13
13 134 134 0.11 14 168 153 0.10 15 105 99 0.19 17 112 109 0.19
18 164 163 0.06 19 166 156 0.16 23 161 161 0.05 30 289 289 0.04
31 308 302 0.26 34 232 223 10.53 36 218 204 16.38 37 232 229 0.27
40 203 201 149.02 41 139 139 0.15 42 148 147 0.06 43 100 98 0.14
45 187 181 0.08 47 196 196 0.08 49 153 145 0.11 51 124 124 0.05
52 139 137 0.05 54 91 89 0.06 55 191 191 0.06 57 133 132 0.06
58 182 182 0.04 60 128 128 0.08 61 288 288 0.22 63 240 240 0.72
64 326 326 0.24 65 215 198 10.59 67 246 243 0.36 68 278 275 0.41
71 156 156 0.10 76 162 162 0.09 77 260 260 0.12 78 219 219 0.10
80 298 298 0.10 82 149 149 0.04 84 169 169 0.07 85 190 190 0.04
87 269 269 0.11 88 245 245 0.05 89 218 218 0.05 90 243 243 0.06

Table 5.27: All closed instances from class ubo100.

In
st

B
es

t
U
B

O
p

ti
m

al

B
es

t
rt

In
st

B
es

t
U
B

O
p

ti
m

al

B
es

t
rt

In
st

B
es

t
U
B

O
p

ti
m

al

B
es

t
rt

In
st

B
es

t
U
B

O
p

ti
m

al

B
es

t
rt

11 263 243 0.53 12 224 216 1.09 13 180 158 0.90 14 206 190 1.90
16 144 131 16.91 18 306 306 0.26 19 200 177 4.67 20 209 201 0.36
21 262 262 0.21 22 492 492 0.30 27 225 204 0.88 36 457 405 127.34
38 483 477 3.00 39 462 457 2.60 41 363 363 0.45 42 359 358 0.44
44 491 483 0.57 45 407 407 0.38 46 283 278 1.19 47 302 301 0.32
48 433 433 0.46 50 269 260 0.81 51 272 267 0.36 53 177 177 0.22
55 247 247 0.25 56 288 288 0.27 57 356 356 0.34 59 256 256 0.21
60 188 188 0.25 61 680 680 3.59 62 540 526 17.73 64 538 533 2.30
65 451 433 284.60 67 459 402 39.81 68 540 538 1.18 71 514 514 0.49
73 414 398 0.57 74 255 228 1.46 76 411 411 0.62 77 351 345 0.68
78 412 410 1.15 79 483 483 0.61 81 453 452 0.44 82 571 568 0.29
85 497 497 0.24 86 531 531 0.31 87 368 363 0.28 88 402 402 0.35
89 374 374 0.23 90 476 476 0.24

5.5 Final Remarks 145

Table 5.28: All closed instances from class ubo200.
In

st

B
es

t
U
B

O
p

ti
m

al

B
es

t
rt

In
st

B
es

t
U
B

O
p

ti
m

a
l

B
es

t
rt

In
st

B
es

t
U
B

O
p

ti
m

al

B
es

t
rt

In
st

B
es

t
U
B

O
p

ti
m

al

B
es

t
rt

11 424 362 25.07 14 467 442 4.68 15 363 361 1.33 16 604 604 1.75
17 470 470 6.51 18 382 377 1.17 28 371 371 1.75 30 350 350 1.12
41 571 533 13.52 42 721 712 3.82 43 653 642 1.16 45 522 514 1.60
46 572 572 2.01 47 380 345 5.18 48 853 853 2.19 49 696 683 2.21
50 650 650 1.10 51 581 581 1.53 52 612 612 2.34 53 624 624 1.63
58 689 689 1.50 63 1424 1422 27.69 68 1205 1155 42.62 69 994 943 72.23
71 728 725 3.01 72 720 717 2.96 73 861 856 2.76 74 1176 1175 9.77
75 830 827 4.86 76 810 808 2.32 77 804 762 11.94 78 778 773 2.31
79 760 757 2.25 82 774 774 1.51 83 820 817 2.11 84 463 463 1.57
85 592 592 1.27

Instances with Better Upper Bound

Table 5.29 on page 146 lists all 51 instances for which our methods could find a

new upper bound on the makespan, but could not prove the optimality. For each

instance the following parameters are given: the class of the instance (Class), the

instance number (Inst), the previously best known upper bound (Best UB) on the

makespan (as reported in Schwindt (2011)), the new best upper bound (New UB),

and the lowest runtime (Best rt) of our methods to find a schedule with the new

best upper bound.

5.5 Final Remarks

In this chapter, we evaluated a new approach solving Rcpsp and Rcpsp/max prob-

lems by using cumulative constraints with explanation in a Lcg system. For both

problems, we used a two-stage process: in the first phase a solution is generated or

infeasibility proven (in the case of Rcpsp/max), and in the second phase a branch-

and-bound algorithm is used for minimising the project duration where the problem

is set up with an upper bound on the project duration found from the first solution.

First, we showed that modelling cumulative constraints by decomposition and

using Lcg is highly competitive on Rcpsp problems. We then improved this by

using a global cumulative propagator with explanation. Benchmarks from Kolisch

and Sprecher (1997) show the strong power of nogoods and Vsids style search to

fathom a large part of the search space. Without building complex specific global

propagators or highly specialised search algorithms, we are able to compete with

highly specialised Rcpsp solving approaches and close 71 open problems.

Second, we used our best approach on Rcpsp problems—i.e., the approach us-

146 Chapter 5. Experiments on RCPSPs

Table 5.29: All new UB for instances from all classes.

C
la

ss

In
st

B
es

t
U
B

N
ew

U
B

B
es

t
rt

In
st

B
es

t
U
B

N
ew

U
B

B
es

t
rt

In
st

B
es

t
U
B

N
ew

U
B

B
es

t
rt

c

61 407 393 417.24 63 380 366 530.73 66 385 368 550.93
67 367 350 151.22 69 388 380 80.91 70 391 379 305.15
125 351 316 159.53 152 384 369 569.71 160 394 374 504.98
218 325 309 148.55 241 430 416 406.44 245 468 453 483.84
310 277 267 549.74 331 388 381 212.15 336 393 371 429.53
337 296 287 103.62 339 429 412 234.70

d
35 420 408 286.63 63 544 524 528.09 158 696 687 390.24
246 489 463 406.39

j30 65 163 162 0.15 73 57 53 187.12 151 158 157 303.55

ubo50 3 204 196 130.22 4 253 216 424.01 10 204 192 117.31

ubo100

4 429 410 132.72 7 447 419 364.42 8 435 400 547.80
10 522 453 343.38 32 485 448 95.06 33 435 418 313.43
34 488 425 245.22 37 453 426 399.41 40 504 473 97.51
70 422 410 296.43

ubo200

2 1000 938 1029.50 3 951 906 242.97 4 1009 963 1477.46
5 866 852 278.91 6 939 841 311.27 8 998 911 400.51
33 892 855 351.70 34 931 816 272.33 36 1025 921 391.01
37 843 798 495.62 39 906 898 505.51 62 853 847 389.05
67 977 904 566.38 70 1009 972 3102.61

ing the global cumulative constraint with explanation—to tackle the even harder

Rcpsp/max problems on three benchmark suites from Schwindt (2011). Experi-

ments on these suites show that our solver is able to find better solutions faster

than competing approaches, and prove optimality for many more instances than

competing approaches.

In contrast to some previous approaches we used individual propagators for prece-

dence constraints instead of propagators taking all precedence constraints into ac-

count at once. This yielded not only weaker propagation, but also slower detection of

infeasibility, in particular for instances with a large number of precedences. Hence,

our generic search used in the first phase is sometimes slower in finding a first so-

lution than some other problem-specific approaches in the literature. However, the

first-phase generic search could be replaced by one of these methods.

Our method closes 573 open Rcpsp/max problems and improves a further 51

upper bounds on the project duration of the 58 remaining open problems, according

to the best known results given in Schwindt (2011). We note though that the

methods from Ballest́ın et al. (2009) and Oddi and Rasconi (2009) may have found

better upper bounds on some of these problems, but we could not find a record of

5.5 Final Remarks 147

them. Note that our method is highly robust: it proves the best known optimum

for each already closed instance in every test. Furthermore, for every open instance

in every test set we either close the instance or improve the upper bounds, except

for 7 instances, in 4 of which we still regenerate the best known upper bound.

Overall, our generic approach not only is competitive on the considered bench-

marks with highly specialised approaches, but also closes in total 644 open problems,

improves 78 (51) lower (upper) bounds on the project duration, and is highly robust.

The key is to lazily build specialised explanations for propagation which are then

used for conflict learning, and to combine the approach with a search that exploits

retrieved information from conflict learning.

6
Carpet Cutting — An Application

T
he carpet cutting problem is a two-dimensional cutting and packing prob-

lem in which carpets are cut from a rectangular carpet roll with a fixed

roll width and a sufficiently long roll length. The goal is to find a non-

overlapping placement of all carpets on the carpet roll, so that the wastage of the

carpet roll is minimised while meeting all domain-specific constraints. Moreover, the

customers require a cutting solution to be produced within 3 minutes, in order to be

usable during the quotation process for estimating the amount of carpet required.

In this chapter, we develop complete solution approaches that decompose the

problem into independent subproblems and minimise the wastage for each subprob-

lem separately. Each decomposition uses two global cumulative constraints, one for

the roll width and one for the roll length, in order to prune more search space. The

cumulative propagation is explained with explanations developed in Chap. 4. On

150 real-world instances provided by the customer we show that our solutions reduce

the wastage by more than 35% on average compared to the existing approach.

6.1 Introduction

The carpet cutting problem consists of a set of carpet shapes (also called items or

objects) that must be cut from a carpet roll with a fixed roll width and a sufficiently

long roll length. The sizes of these objects and the carpet roll are discretised to

a granularity of 1cm. For a cutting solution some items can be rotated or even

split into several pieces before being placed on the roll if additional constraints

are satisfied. The farthest edge of any object from the beginning of the carpet

roll determines the last cut across the roll width. Hence, the wastage of a cutting

150 Chapter 6. Carpet Cutting — An Application

Figure 6.1: Example of a carpet cutting instance.

solution is the wastage from the start of the carpet roll to the last cut. Therefore,

minimising the wastage corresponds to minimising the needed roll length.

In this work the carpet shapes are rectilinear polygons of up to 12 sides that can

be made up of non-overlapping rectangles, that must be placed orthogonally on the

carpet roll, i.e., their edges must be parallel to the borders of the roll. Before the

placement of a carpet shape a rotation may be allowed by 90◦, 180◦, or 270◦, i.e.,

it can be put onto the roll in one of four cardinal directions 0◦, 90◦, 180◦, or 270◦.

But depending on the pile direction of the carpet there may be restrictions on the

which cardinal directions can be used: perhaps only 0◦, 180◦ or perhaps fixed to 0◦.

Normally, a carpet shape is cut as a single piece from the carpet roll, but carpet

shapes for covering stairs or filling up the remainder of a room are allowed to be cut

in several pieces provided that the partition of these carpet shapes satisfy additional

constraints which are described later. The joint of carpets for stairs that is then

introduced between two adjacent pieces can be hidden between the tread and the

riser of the stairs once they are laid. The resulting seams of carpets filling up a

room are hidden at the edge of a room. Moreover, these carpet shapes are simple

rectangles.

Another complexity of the problem is that carpets have a pile direction that may

constrain the orientations of some carpet shapes to be dependent on one or another.

Clients may also prefer to have the pile direction fixed to ensure an even colour of the

carpet when laid relative to a window. Where two carpets join, e.g. at a doorway,

the pile direction becomes visible if the two pieces are not laid with a similar pile

direction. Therefore, all carpet shapes that are joined together must be arranged

pile aligned in the plan. Carpet shapes for stairs must be pile aligned with the pile

direction being up the stairs, for safety reasons this ensures that it is harder to slip

down the stairs.

Example 6.1. Figure 6.1 shows an example of a carpet cutting instance. On the

left side the five carpet shapes A, B, C, D, and E are shown and on the right side

their placement on the carpet roll (gray area). The roll is laid out from the left to

6.1 Introduction 151

the right, i.e., its width is the vertical edge and its length the horizontal one.

On the left-hand side each object contains arrows displaying in which direction

the object can be placed where an arrow pointing to the top, left, bottom, or right

stands for the direction 0◦, 90◦, 180◦, and 270◦ respectively. As shown the object A,

and B can placed in any direction, but not the objects C, D, and E which must be

pile aligned. Moreover, the object E is a carpet for covering four stair steps. The

vertical dotted line shows the edge between the tread and riser of two steps. The

object E can be split at those edges.

In the placement shown on the right-hand side the objects A and B are placed

in the 0◦ direction whereas the other objects are rotated by 180◦. The object E is

partitioned in four parts in order to minimise the needed roll length.

The carpet retailer uses a solution as a base of an on-site cost estimation and

ordering process, to submit an offer to customers. The offer should be made in a

timely manner and a three-minutes runtime limit is given to the cut-plan optimisa-

tion process.

The carpet cutting problem can be characterised as an extension of a two-dimen-

sional orthogonal strip packing (Osp) problem (referred to as a two-dimensional

orthogonal open dimension problem by Wäscher et al. (2007)) with additional con-

straints in which a packing of rectangles with minimal wastage is sought. The

extensions are the placement constraints between rectangles belonging to the same

carpet shape and the partition constraints for carpet shapes covering stairs and fill-

ing up the remainder of the room. The side effect of the first constraints is that for

those carpet shapes a rotation by 180◦ and 270◦ may not be symmetric to a rotation

by 0◦ and 90◦ respectively.

For Osp and related cutting and packing problems different methods have been

applied; a survey can be found in Lodi et al. (2002). The different methods can

be roughly categorised in these groups: (1) positional placement/reasoning and (2)

relational placement/reasoning. The first category includes methods such as the

bottom-left rule (Hadjiconstantinou and Christofides 1995, Martello and Vigo 1998)

and the discretisation of the large rectangle (Beldiceanu and Carlsson 2001). The

second category includes methods that determine the relations (above, under, left,

and right) of each pair of rectangles (Pisinger and Sigurd 2007) and the graph-

theoretical models (Fekete et al. 2007). Our approach includes features of both

categories.

A two-dimensional cutting and packing problem can be relaxed into two scheduling

problems. One of the problems is projected on the length-axis of the large rectangle

and the other on the width-axis of the large rectangle. These relaxations can be

152 Chapter 6. Carpet Cutting — An Application

used in order to infer more about possible positions of the items to be laid on the

large rectangle and detect infeasibilities of partial solutions earlier.

Constraint programming methods include the global cumulative constraints (Ag-

goun and Beldiceanu 1993) that models a cumulative scheduling problem, the sweep

pruning technique for k-dimensional objects (Beldiceanu and Carlsson 2001) and the

geost constraint (Beldiceanu et al. 2007b) (modelling k-dimensional objects that can

take different shapes). Moreover, special pruning algorithms exist for the cumulative

constraint in the case of non-overlapping rectangles (Beldiceanu et al. 2008). The

sweep algorithm and the geost constraint are specifically designed to model non-

overlapping objects with at least two-dimensions. These algorithms demonstrate

very good results if the slack (the unused space) is small. If the slack is not small

then the additional computational effort may not rewarded by the reduction of the

search space.

The existing solution used in the field (Pearson et al. 1998) uses a combination

of heuristic search and dynamic programming in a series of optimisation steps. The

algorithm incrementally selects carpet shapes that are placed across the roll consider-

ing all alternatives and reduces the overall length of material in a branch-and-bound

backtracking search. The algorithm is complex and can be subject to reduced per-

formance when certain rare combinations of heuristic choice lead to inefficiencies

of placement. It is incomplete and often uses the full 3 minutes of runtime, but

considerably less for smaller problems. It was designed to run on 100MHz tablet

PCs with considerably less computing power available than today’s processors.

We define two new complete approaches to the carpet cutting problems. The

first approach decomposes the problem into multiple instances where all the carpets

have fixed dimension and orientation. These subproblems are sequentially solved

by an Lcg solver (see Chap. 2) maintaining the best solution found overall. Since

all dimensions are fixed the constraint propagation is strong. But a disadvantage is

there may be many instances for a single problem. The second approach models the

orientation of the carpet as a variable and hence reduces the number of instances

required for each problem. It can handle problems that the first approach cannot.

6.2 The Carpet Cutting Problem

In the carpet cutting problem there are three different types of carpet shapes:

• room carpets that cover rooms, which are made up of a number of rectangular

pieces which are constrained to align;

6.2 The Carpet Cutting Problem 153

(a)

(b) (c)

Figure 6.2: The origin of a room carpet and its rectangles in each orientation (a).
Possible partitions for a stair carpet (b) and an edge filler carpet (c).

• stair carpets that cover stairs, which can be cut into regular pieces and are

always rectangular;

• edge filler carpets that cover the remainder of a room that is only slightly

wider than the width of the carpet. The remainder of the room is covered

with multiple narrow pieces cut at any point providing each piece is of a

minimum length.

A room carpet is characterised by its set of possible orientations and offsets from

its origin to the origin of its rectangles for each orientation. The origin of a room

carpet is the bottom left corner of the smallest rectangle that encloses all its rectan-

gles in each orientation. Each rectangle has a width and a length which are given for

the 0◦ orientation. The carpet origin is the bottom left corner in each orientation.

Where a room is larger in both directions than the width of the carpet, a choice of

where the full roll width is aligned is made by the user in advance of the placement

optimisation.

Example 6.2. Figure 6.2a shows the room carpet laid out in each orientation. Its

smallest enclosing rectangle is displayed with a red-dotted line. The small black

squares in each rectangle indicate the origin for the carpet and its rectangles. These

pictures show how the offsets from the origin differ for each orientation.

Stair and edge filler carpets are characterised by their width and length. Each of

them may be allowed to be cut in several pieces. Stair carpets are cut with regular

breaks between the tread and the riser of two or more steps hence each single piece

must cover an integral number of steps.

154 Chapter 6. Carpet Cutting — An Application

Edge filler pieces may be cut arbitrarily with irregular length breaks. These shapes

can be divided at any position so long as their length is not smaller than a minimal

given length. The resulting seams are hidden at the edge of a room. Significant

savings in material wastage occur for certain single room carpet orders using this

approach. For both kinds of breaks a maximal number of pieces and minimal length

of sub-pieces can be given.

Example 6.3. Figure 6.2b shows a stair carpet with 4 pieces and possible partitions,

with a maximum of three pieces allowed. Figure 6.2c shows possible partitions for an

edge filler carpet with length 200 units, with a minimal length of 50 units (indicated

by the bar in the bottom left corner) and a maximum of two cuts.

A formal specification of an instance I of the carpet cutting problem is defined as

follows. We are given 3 sets of disjoint objects:

• Room is a set of room carpets. Each c ∈ Room is defined by a set of rectangles

c.rect. For each rectangle r ∈ c.rect we have a length r.len and width r.wid

(in the 0◦ orientation) together with an offset (r.ox, r.oy) from the origin of the

room carpet (in the 0◦ orientation). Moreover, each c ∈ Room is also given a

set of allowable orientations c.ori ⊆ {0◦, 90◦, 180◦, 270◦}.

• Str is a set of stair carpets. For each c ∈ Str we have a width c.wid, step

length c.step and number of steps c.n as well as a maximum number of pieces

c.pcs and minimum steps per piece length c.min.

• Edg is a set of edge filler carpets. For each c ∈ Edg we have a width c.wid,

length c.len as well as a maximum number of pieces c.pcs and minimum length

per piece length c.min.

The remaining part of the model is a set Pile ⊆ Room which determines which

carpets must be pile aligned, i.e., c.ori = {0◦, 180◦} for each c ∈ Pile, and a roll

width RW . Hence, I = (Room, Str, Edg, P ile, RW). Note that all stair and edge

filler carpets must be pile aligned, but this constraint can be neglected, since the

pile orientations are symmetrical for rectangles as it is for parts of these carpets.

The aim is to find an allowable partitioning c.part of each carpet c ∈ Str∪Edg into

rectangles, and position (x, y) and allowed orientation for each rectangle r appearing

in a room carpet such that: none of the rectangles overlap; each of the rectangles

in a room carpet are correctly offset from the origin of the carpet; all pile aligned

carpets are aligned in the same orientation, and the roll length RL is minimised.

Figure 6.3 shows the best solution found by our method for a large instance. It

reduces the wastage by about 33% in comparison to the current method.

6.3 Static Model 155

Figure 6.3: A solution (split into two parts) for Cc instance with 34 room carpets
(involving 74 rectangles) and 2 stair carpets (involving 7 rectangles).
The roll length is about 93m to a granularity of 1cm.

6.3 Static Model

The first model we present, the static model, splits the original problem into in-

stances where the orientations and dimensions of each of the rectangular pieces are

fixed in advance (statically known). This is achieved by fixing rotations of room

carpets and fixing the partitions for stair carpets. The advantage of the static

model is that it reduces the number of variables required to specify the problem,

and gives stronger initial propagation. It reduces the requirements of the global

constraints needed to model non-overlap, since dimensions are fixed. It also im-

proves the strength of preprocessing. The obvious disadvantage of the static model

is that the number of instances required to specify one original problem may become

prohibitive.

To apply the static model we wish to fix the orientation and dimensions of all

the rectangles in the problem. To do so we have to split the problem into multiple

instances. For many problems in the industrial data the number of instances required

is not too large since they are often reasonably constrained.

6.3.1 Dealing with Orientations

Every carpet c ∈ Room \ Pile has an allowable set of orientations in {0◦, 90◦, 180◦,

270◦}. We can split an instance I to remove possibilities of different orientations

for a carpet c by creating the set of instances Io, o ∈ c.ori that are each identical

to I except that c.ori = {o}, and for room carpets we swap the length r.len and

width r.wid of the component rectangles if o ∈ {90◦, 270◦}, and update the offsets

(r.ox, r.oy) to reflect them from the new origin in this orientation.

If pile aligned carpets are involved in an instance then the instance is split into

two instances. In one instance all pile aligned carpets c are fixed to the orientation

0◦ and in the other to 180◦.

Note that before doing this we preprocess instances in order to reduce the possible

orientations of carpets:

156 Chapter 6. Carpet Cutting — An Application

• For room carpets consisting of one rectangle the orientations 0◦ and 180◦ (90◦

and 270◦) are symmetric. If both orientations are given then one of them is

removed. For square carpets the orientation is fixed to 0◦.

• Some room carpets are too wide for the carpet roll if they are placed in a

certain orientations. All those orientations are removed.

• Finally, if all room carpets in one instance that are made of more than one

rectangle must be pile aligned then the pile alignment constraint is removed

from all of them and their orientation is fixed to 0◦, since each solution for the

direction 0◦ is a solution for the direction 180◦ by rotating the carpet roll and

all the placed objects by 180◦.

6.3.2 Stair Carpets

Carpets for stairs play an important role for the difficulty of a problem because they

can be partitioned in many combinations and introduce symmetries if two parts

in the partition have the same length. We can ameliorate the difficulty of stair

carpets by avoiding considering all possible partitions by determining “dominated”

partitions.

Example 6.4. Suppose a stair carpet covers 15 steps and can be cut into an unlim-

ited number of pieces where each part must consist of at least two steps. Possible

partitions are {10, 5}, {10, 3, 2}, {5, 4, 3, 3}, etc. where each multiset represents a

partition and the elements express the size in steps of each piece. The total number

of possible partitions (incl. the partition {15}) is 41.

The partition problem is well studied in number theory. The (generating) function

that counts the number of different partitions for a sum n is called the partition

function (George 1998). This function grows exponentially as the value n increases.

For stair carpets an important simplification of the problem arises when we realise

that not all partitions need to be considered because some parts of a partition can

be broken into smaller pieces which can be laid out in a way identical to the original

coarser pieces.

Example 6.5. Consider a stair carpet with possible partitions {10, 5} and {10, 3, 2}.
Given a layout for the first partition, the piece of length 5 steps in the first partition

can be split into two parts in which one part covers three steps and the other one

two steps, thus giving a layout for the second partition. Hence we need not consider

laying out the first partition, the partition {10, 5} is dominated by the partition

{10, 3, 2}.

6.3 Static Model 157

Definition 6.1. Let P1 and P2 be two different partitions of n (i.e.,
∑
P1 =

∑
P2 =

n). We say P2 = {p21 . . . , p2k} is dominated by P1 = {p11, . . . , p1m} if and only if

there is a mapping σ : 1..m→ 1..k such that ∀i ∈ 1..k : p2i =
∑

j∈1..m where σ(j)=i p1j.

That is we can further partition P2 to obtain P1. Given a set of partitions P we say

P ∈ P is dominating if it is not dominated by any P ′ ∈ P− {P}.

It follows that only dominating partitions must be considered during the solu-

tion process. We now construct a recursive definition of the number nd(n, p, k) of

dominating partitions for a stair carpet of length n steps with maximum number of

pieces p and minimal step length k as follows:

nd(n, p, k) = nd(n, p, k, k) ,

where

nd(n, p, l, k) =



0 if 0 < n and n < l,

0 if 0 ∧ p > 0 and l ≥ 2k,

1 if n = 0 and p = 0,

1 if n = 0, p > 0, and l < 2k,∑
l≤i≤n

nd(n− i, p− 1, i, k) otherwise.

The function nd(n, p, l, k) returns the number of dominating partitions for a carpet

of length n, maximal pieces p, minimum length l and minimum original length k.

The definition captures the following reasoning. The first case is where there is

carpet left but it is smaller that the minimal required length. The second case is

when there is no carpet left but there are pieces remaining and one of the earlier

pieces (which is at least size l) could be split in two. The third case is where there

is no carpet and no pieces left. The fourth case is when there is no carpet left,

and more pieces are possible but the longest piece is not large enough to split. The

recursive case adds up the possibilities of selecting a piece of size i in the range l to

n from a carpet of size n, and determine how many ways to partition the remaining

carpet. The remaining subproblem is for a carpet of length n− i, with one less piece

possible, and a minimum length of i (so we pick pieces in increasing order). The

function can be easily modified to return the dominating partitions.

In the customer data the parameter k is either 1 or 2 and the number of steps n in

a stair carpet ranges from 1 to 18 and 2 to 15 for k = 1 and k = 2 respectively. For

most of the customer data the number of cuts constraint is not constraining (≥ n

158 Chapter 6. Carpet Cutting — An Application

Table 6.1: All dominating partitions for various lengths n where the minimal step
length k is 2, and maximal pieces is n (so effectively no limit on pieces).

n partitions n partitions n partitions

2 {2} 3 {3} 4 {2, 2}
5 {3, 2} 6 {3, 3}, {2, 2, 2} 7 {3, 2, 2}
8 {3, 3, 2},
{2, 2, 2, 2}

9 {3, 3, 3},
{3, 2, 2, 2}

10 {3, 3, 2, 2},
{2, 2, 2, 2, 2}

11 {3, 3, 3, 2},
{3, 2, 2, 2, 2}

12 {3, 3, 3, 3},
{3, 3, 2, 2, 2},
{2, 2, 2, 2, 2, 2}

13 {3, 3, 3, 2, 2},
{3, 2, 2, 2, 2, 2}

14 {3, 3, 3, 3, 2},
{3, 3, 2, 2, 2, 2},
{2, 2, 2, 2, 2, 2, 2}

15 {3, 3, 3, 3, 3},
{3, 3, 3, 2, 2, 2},
{3, 2, 2, 2, 2, 2, 2}

when k = 1 and≥ bn/2c when k = 2), and the total number of dominating partitions

is small. This means we can separate the problem into different instances with

different fixed (dominating) partitions. Table 6.1 shows the dominating partitions

for stair carpets up to 15 steps for k = 2. If k = 1 then the partition with n parts

“1”, i.e., {1, . . . , 1} is the only dominating partition for stair carpets covering n

steps.

We can split a carpet cutting instance I involving a stair carpet c as follows. For

a stair carpet c we determine the set of dominating partitions P of c and create a

new instance IP , P ∈ P where P = {p1, . . . , pm} which is identical to I except that

the partition function for carpet c is fixed so that c.part = {r1, . . . , rm} and the

rectangular pieces ri are constrained as follows: ri.wid = c.wid, ri.len = pi× c.step.

Too many dominating partitions

For some cases in the customer data, for example n = 18, k = 1 and p = 7, there

are 49 dominating partitions. Splitting into different instances becomes prohibitive

when we have to consider other reasons for splitting such as multiple stair carpets,

and different room carpet orientations.

When the number of dominating partitions is too large, we modify the partitioning

as follows. We consider the partitioning problem with no limit on the number of

pieces (or equivalently limit n). For the customer data, the maximal number of

dominating partitions that arise with this weakening is 3 (as illustrated by Tab. 6.1).

We split into instances using these dominating partitions. This model of course can

create a carpet cutting with too many carpet pieces for a regular carpet c. For each

rectangle r ∈ c.part we add a Boolean variable r.last to the model.

6.3 Static Model 159

We constrain r.last to hold if the rectangle does not have another rectangle r′ ∈
c.part directly to the right (6.1) and ensure that there are at most c.pcs last parts

(6.2). These constraints exist for all carpets c ∈ Str:

∀r ∈ c.part : r.last↔ (∀r′ ∈ c.part \ {r} : r.x+ r.len 6= r′.x ∨ r.y 6= r′.y) (6.1)∑
r∈c.part

r.last ≤ c.pcs . (6.2)

6.3.3 The Model

After handling rotations and stair carpets our original instance I is transformed into

a set of static instances I in which all rectangles are fixed in orientation and length

and width. If the splitting process created too many instances I or involved edge

filler carpets then we will have to handle the original problem using the dynamic

model defined in the next section.

We can now model each static instance I ′ ∈ I reasonably straightforwardly. Let

a variable tuple (r.x, r.y) be defined for each rectangle in the instance Rect =

(
⋃
c∈Str c.part) ∪ (

⋃
c∈Room c.rect) which gives the position of the rectangle on the

roll, and variable tuples (c.x, c.y) for each room carpet c ∈ Room. We introduce

variable RL to hold the roll length. The constraints of the model are (6.1–6.2) if

required, together with:

Each rectangle must be on the roll

∀r ∈ Rect : 0 ≤ r.x ∧ r.x+ r.len ≤ RL ∧ 0 ≤ r.y ∧ r.y + r.wid ≤ RW . (6.3)

Each rectangle in a room carpet must be placed correctly relative to the carpet

∀c ∈ Room, ∀r ∈ c.rect : r.x = c.x+ r.ox ∧ r.y = c.y + r.oy . (6.4)

No rectangles overlap which can be modelled with the global constraint diff2.

diff2([r.x | r ∈ Rect], [r.y | r ∈ Rect], [r.len | r ∈ Rect], [r.wid | r ∈ Rect]) (6.5)

For the solver we use, there is no global definition of diff2, instead it is decomposed

into a disjunction of possibilities where ≺ is simply an arbitrary total order imposed

on the rectangles.

∀r1, r2 ∈ Rect s.t. r1 ≺ r2 : r1.x+ r1.len ≤ r2.x ∨ r2.x+ r2.len ≤ r1.x

∨ r1.y + r1.wid ≤ r2.y ∨ r2.y + r2.wid ≤ r1.y . (6.6)

160 Chapter 6. Carpet Cutting — An Application

This decomposition is very weak, and only propagates if three inequalities are un-

satisfiable. In order to get a stronger propagation, two global cumulative constraints

are used: one for the roll length and the other one for the roll width. We hence

enhance the model with the redundant constraints

cumulative([r.x | r ∈ Rect], [r.len | r ∈ Rect], [r.wid | r ∈ Rect], RW) , (6.7)

cumulative([r.y | r ∈ Rect], [r.wid | r ∈ Rect], [r.len | r ∈ Rect], RL) . (6.8)

The constraints cumulative are implemented as global constraints with explana-

tion as described in Chap. 4. They provide much stronger propagation than the

decomposed diff2. Equation (6.8) also provides strong lower bound reasoning on

the objective RL.

In order to find the optimal solution to an original problem instance I we must

find the minimal roll length solution for any of the instances into which I was split.

6.4 Dynamic Model

The static model splits the problem into multiple instances to fix the dimensions

of the rectangles. But this can be prohibitive when an original problem splits into

very many instances, and it does not give an approach to edge filler carpets. The

dynamic model models the problem more directly.

6.4.1 Orientation

For each room carpet c we model its orientation with variable c.vori which takes

a value in c.ori. We introduce two Boolean variables c.0or180 which is true if the

carpet is oriented at 0◦ or 180◦, and similarly c.0or90.

For each rectangle r we introduce a variable r.vlen to hold its length (after ori-

entation), and similarly a variable to hold its width r.vwid, and x offset r.vox and

y offset r.voy from the carpet origin. For each carpet c and rectangle r ∈ c.rect we

precalculate two arrays of offsets of r from the carpet origin and each orientation

o ∈ {0◦, 90◦, 180◦, 270◦} given by oxc,r[o], and oyc,r[o].

The model includes the following constraints for each carpet c ∈ Room:

Enforcing agreement of the orientation and Boolean variables

c.0or180 = (c.vori ∈ {0◦, 180◦}) ∧ c.0or90 = (c.vori ∈ {0◦, 90◦}) . (6.9)

6.4 Dynamic Model 161

Setting length, width and offsets of each rectangle depending on orientation

∀r ∈ c.rect : r.vox = oxc,r[c.vori] ∧ r.voy = oyc,r[c.vori]

∧ r.vwid = r.len+ (r.wid− r.len)× c.0or180 (6.10)

∧ r.vlen = r.wid+ (r.len− r.wid)× c.0or180 . (6.11)

Note that the offset calculation constraints are element constraints.

6.4.2 Edge Filler Carpets

Given an edge filler carpet c ∈ Edg we model this with a set of c.pcs different

rectangles c.part (so |c.part| = c.pcs). We have to ensure that these pieces are

either 0 length (and hence only really pseudo pieces) or reach the minimal length.

∀c ∈ Edg, ∀r ∈ c.part : r.vwid = c.wid ∧ (r.vlen = 0 ∨ r.vlen ≥ c.min) (6.12)

And the sum of the lengths must equal the irregular break length

∀c ∈ Edg :
∑

r∈c.part

r.vlen = c.len . (6.13)

We can also reason about dominating partitions for irregular breaks. Any partition

with a piece r where r.vlen ≥ 2c.min and one piece of zero length will be dominated

by a partition where r is broken in two. Hence we can add

∀c ∈ Edg : (∃r ∈ c.part : r.vlen = 0)→ (∀r ∈ c.part : r.vlen < 2c.min) . (6.14)

If c.len ≥ 2(c.pcs − 1) × c.min then there can be no zero length pieces since the

right hand side of the implication in (6.14) cannot be satisfied at the same time as

(6.13), hence in this case we can simplify (6.12).

6.4.3 The Model

The set of rectangles is Rect =
⋃
c∈Room r.rect ∪

⋃
c∈Str∪Edg c.part. We assume that

for each stair piece r.vlen = r.len and r.vwid = r.wid. The constraints of the model

are: (6.1–6.2) if required, (6.3–6.8) with r.len replaced by r.vlen and r.wid replaced

with r.vwid, (6.9–6.11) and (6.12–6.14) if required.

162 Chapter 6. Carpet Cutting — An Application

6.5 Refining the Models

The basic model can be further enhanced in order to improve the propagation,

reduce the model size, and strengthen the reasoning and the conflict-driven search

in the Lcg solver.

6.5.1 Variable Views

Variable views (Schulte and Tack 2005) are a form of variable aliasing. Suppose

y = ax + c where a and c are constants, then rather than creating a new variable

for y use a view to compute information about the (view) variable y from the real

variable x. This refinement (views) is particularly useful for Lcg solvers since it

improves learning and the generation of strong explanations.

For a fixed orientation room carpet c we can replace the variables r.x and r.y by

views on c.x and c.y for all r ∈ c.rect using (6.4). For non-fixed orientation carpets

c we can use views to define r.vlen and r.vwid for r ∈ c.rect using (6.10) and (6.11).

6.5.2 Disjunction and Better diff2 Decomposition

In all carpet cutting problems the roll width is narrow in comparison to some wide

carpets, so that many other carpets cannot horizontally overlap with these wide

carpets. We say these carpets are in disjunction. Carpets that are in disjunction

with all others can be placed at the beginning of the roll. We denote this as the disj

refinement.

It is simple to check whether two rectangles are disjunctive, but not if we con-

sider room carpets made up of several rectangles and possible rotations of them.

Algorithm 6.1 gives an overview of detecting carpets that are in disjunction with

all other carpets. Each carpet c ∈ Room ∪ Str ∪ Edg has the additional attributes

minDm and minCp which are defined as follows:

c.minDm =

mino∈c.ori c.maxW [o] if c ∈ Room,

c.wid otherwise

c.minCp =

mino∈c.ori c.minW [o] if c ∈ Room,

c.wid otherwise

where c.minW [o] and c.maxW [o] are the minimal accumulated width of the room

carpet c across its length and the width of the tightest enclosing rectangle of c in

the orientation o. Both values are exemplified in Fig. 6.4. Note that for a room

6.5 Refining the Models 163

Algorithm 6.1: Detection of disjunctive carpets.

Input: carp an array of carpets c ∈ Room ∪ Str ∪ Edg sorted in increasing
order of minimal diameter c.minDm.

Data: RW the roll width and minRectWid minimal width of any rectangle
in Rect.

Output: disj an array of true and false values where a true entry for index
means that the carpet carp[i] is disjunctive to all other carpets,
and false in all other cases.

1 for i = 1 to n do disj[i] = true;
2 for i = 1 to n do
3 if disj[i] = false then continue;
4 if i 6= 1 and carp[i].minDm+ carp[1].minDm ≤ RW then
5 disj[i] = false;
6 continue;

7 if carp[i].minCp+minRectWid > RW then continue;
8 for j = 1 to n do
9 if i = j and carp[i] ∈ Str ∪ Edg then

10 continue;

11 if carp[i].minDm+ carp[j].minDm ≤ RW then
12 disj[i] = false;
13 disj[j] = false;
14 break;

15 if carp[i].minCp+ carp[j].minCp > RW then
16 continue;

// Expensive check

17 if is disjunctive(carp[i], carp[j]) then
18 disj[i] = false;
19 disj[j] = false;
20 break;

A

B

C

A
B

C
minW

maxW

Figure 6.4: The room carpet is depicted in one orientation. It is made up by the
rectangles A, B, and C. On the left side the room carpet is shown with
its tightest enclosing rectangle (dotted lines) and the width maxW of
this rectangle. On the right side the minimal accumulated width minW
of the carpet is indicated across the length of the carpet.

164 Chapter 6. Carpet Cutting — An Application

carpet c consisting of one rectangle it holds c.minDm = c.minCp. For each carpet

carp[i]—where i is the increment of the outer loop (lines 9–20)—the algorithm checks

whether it can overlap with the carpet with the smallest minDm (line 4). If not

then the next test checks whether the carpet is in disjunction with the thinnest

rectangle (line 6), hence disjunctive with all other carpets. If neither case holds

for the carpet carp[i] then the algorithm individually tests if carp[i] is disjunctive

with the others carp[j] (lines 8–17). In line 11 the test simply checks if carp[i] and

carp[i] can be placed on top of each other whereas in line 14 the test checks if their

accumulated minimal width exceeds the roll width. In the first case, carp[i] is not

disjunctive and in the second case it is disjunctive with carp[j]. If neither case holds

then at least one of the carpets must be a room carpet made up of more than one

rectangle. Then the algorithm calls the procedure is disjunctive which ultimately

checks if both carpets are in disjunction.

Procedure is disjunctive checks the satisfiability of the problem ({ci, cj}, ∅, ∅,
{ck | carp[k] ∈ Pile}, RW) with an additional constraint on the roll length where

ci and cj are room carpets created from carp[i] and carp[j] respectively as follows

for k ∈ {i, j}:

carp[k] ∈ Room: ck = carp[k];

carp[k] ∈ Str: The stair carpet is transformed to the room carpet ck with ck.rect =

{rk}, ck.ori = {0◦}, rk.wid = carp[k].wid, rk.len = carp[k].step · carp[k].min,

rk.ox = 0 and rk.oy;

carp[k] ∈ Edg: The edge-filler carpet is transformed to the room carpet c1 with

ck.rect = {rk}, ck.ori = {0◦}, rk.wid = carp[k].wid, rk.len = carp[k].min,

rk.ox = 0 and rk.oy.

The roll length RL is constrained to RL < ci.maxL[ci.vori]+cj.maxL[cj.vori] where

c.maxL[o] is a variable modelling the length of the smallest rectangle enclosing the

room carpet c if c is placed in orientation o. Clearly, if ci and cj are disjunctive then

the constraint cannot be satisfied. We solved this problem with a refined dynamic

model with the addition of the constraint on RL.

In the worst case Alg. 6.1 performsO(n2) disjunctive checks where n is the number

of carpets. If the algorithm could not determine, with tests only, whether two

carpets are disjunctive then a final time-consuming check is done. The implemented

algorithm can take up to 12 seconds for large instances to compute all carpets that

are in disjunction with all other carpets.

We can use disjunction to improve the diff2 decomposition (diff2). If a pair of

rectangles r1 and r2 cannot overlap along the width of the carpet role we replace

6.5 Refining the Models 165

the body of (6.6) by the conjunction of two reified constraints on the same Boolean

variable.

(b→ r1.x+ r1.len ≤ r2.x) ∧ (¬b→ r2.x+ r2.len ≤ r1.x) .

Thus, we reduce the number of Boolean variables needed from 4 in (6.6) to 1. For

two rectangles we check two cases of disjunctions. The first one simply checks if

lb(r1.vwid) + lb(r2.vwid) > RW . The second one is based on compulsory parts (see

Lahrichi 1982) along the roll width and the minimal distance of the bottom and top

edge of a rectangle to the top and bottom border of the carpet roll, respectively. The

distance from the bottom r.bottom and top r.top edge of a rectangle r are defined

as

r.bottom =

max
o∈c.ori

{RW + oyc,r[o]− c.maxW [o]} if r ∈ c.part and c ∈ Room,

RW − r.vwid otherwise

r.top =

 min
o∈c.ori

{oyc,r[o] + r.len[o]} if r belongs to a room carpet c,

r.vwid otherwise

where r.len[o] is the length of the rectangle placed in orientation o. If r.bottom <

r.top then r creates a compulsory part covering the y-coordinates in [r.bottom .. r.top].

Example 6.6. Consider the room carpet from Ex. 6.2 shown in Fig. 6.2a on

page 153. Figure 6.5 shows the carpet laid in each orientation on a carpet roll

where in Fig. 6.5a and 6.5b the room carpet is directly placed on the bottom and

top border of the carpet roll, respectively. Each rectangle r of the room carpet is dif-

ferently coloured and the same coloured horizontal line represents r.top or r.bottom.

Only the golden rectangle creates a compulsory part.

Assume that r1.top − r1.bottom > r2.top − r2.bottom for two rectangles. If the

following condition holds then both rectangles are in disjunction:

r1.bottom < r1.top ∧ r1.bottom < r2.top ∧ r2.bottom < r1.top . (6.15)

The first conjunct checks if the rectangle r1 creates a compulsory part along the roll

width and the two remaining conjuncts hold if the rectangle r2 intersects with the

compulsory part of r1 when r2 is directly laid out at the bottom and top border of

the carpet roll. Figure 6.6 gives two examples.

166 Chapter 6. Carpet Cutting — An Application

(a) Coloured horizontal lines represent the values of top.

(b) Coloured horizontal lines represent the values of bottom.

Figure 6.5: Calculation of the values top and bottom for the green, blue, gold, and
pink rectangle which belong the one room carpet. In each sub-figure the
coloured horizontal lines represent the value top or bottom for the same
coloured rectangle.

(a) Both coloured rectangles create a compulsory parts which overlap each other.

(b) The left coloured rectangle creates a compulsory part which intersects with the
right rectangle if the right one is laid out close to the roll borders.

Figure 6.6: A carpet roll is shown where two room carpets are directly placed on
the top and the bottom border of the roll. In the middle of the roll, for
each room carpet a possible compulsory part of the coloured rectangle
is drawn. Each sub-figure shows one example of two rectangles which
satisfy (6.15).

6.5 Refining the Models 167

6.5.3 Symmetry Breaking Constraints

In the model symmetries can occur between rectangles that have the same size, i.e.,

length and width. A symmetry means that those rectangles can be interchanged in

any solution. In order to remove symmetries an order on the origins of the rectangles

can be posted.

The most common case for symmetries occurs for pieces of stair carpets. We

assume a function same(r, r′) which (statically) tests if two rectangles have the

same dimensions, are not rotatable and are not part of a room carpet with more

than one rectangle. For refinement sym we add a lexicographic ordering on (r.y, r.x)

for rectangles that are the same. Symmetry breaking can also considerably simplify

the definition of r.last for stair carpets c ∈ Str since we only need to consider the

lexicographically least member of each symmetric group that appears in the partition

c.part. Finally we can enforce that the pieces of an edge filler carpet are ordered

in length. We could consider looking for more complex symmetries like entire room

carpets that are identical but they do not occur in the customer data.

6.5.4 Forbidden Gaps

Forbidden gaps (Simonis and O’Sullivan 2008) are areas between a rectangle and

a long edge (either from another rectangle or a boundary) that are too small to

accommodate any part of other rectangles. In this work, we forbid these gaps

between rectangles that do not belong to room carpets with multiple rectangles,

and the borders of the carpet roll as follows.

Let gap be the minimal width of any rectangle. In the y direction (fbg y) We

consider how many rectangles (multiples of gap) might fit between the considered

object edge and the border of the carpet roll and restrict the values that r.y can

take for a rectangle r:

none: if ub(RW) < lb(r.y) + gap. We set r.y to 0.

one: if ub(RW) < lb(r.y) + 2 · gap. The rectangle is aligned with either the top or

the bottom of the roll, i.e., r.y = 0 or r.y = RW − r.vwid.

two: in all other cases. We enforce that the rectangle is placed either at the bottom

border of the roll, at least gap units from the borders, or at the top border,

i.e., r.y = 0, r.y ≥ gap ∧ r.y ≤ RW − r.vwid− gap, or r.y = RW − r.vwid.

Similarly, we impose forbidden gaps (fbg x) for the left and right border of the roll.

168 Chapter 6. Carpet Cutting — An Application

6.6 Search Strategies

To solve a carpet cutting problem instance I with our approaches we need to solve

a series of instances I determined by splitting. The generic algorithm first attempts

to find a good solution for each I ′ ∈ I and then uses the best solution found as

an upper bound on roll length, and searches for an optimal solution of each I ′ ∈ I

ordered accordingly to the first solution we found for them. During this process the

upper bound is always the best solution found so far.

The two phase approach has two benefits. First it means that domain sizes of

variables in the optimisation search are much smaller. Because lazy clause generation

generates a Boolean representation of the size of the initial domain size this makes

the optimisation search much more efficient. Second, the first phase ranks the split

instances on the likelihood of finding good solutions, so usually later instances in

the optimisation phase are quickly found to be unable to lead to a better solution.

6.6.1 First Solution Generation

The goal of the first search is to quickly generate a first solution that gives a good

upper bound on the carpet roll length. We examine each split instance in I in turn.

We order the split instances by the partitions of regular stair carpets, examining par-

titions with fewer pieces before partitions with more pieces, and otherwise breaking

ties arbitrarily.

We use a simple sequential search on each split instance. We treat the room

carpets first, in decreasing order of total area. First we assign a horizontal or vertical

orientation for all room carpets by fixing the c.0or180, which fixes the dimensions

of each rectangle. Then we fix the orientation by fixing c.0or90. We then fix the

lengths of edge filler carpets. We next determine c.x for all room carpets c, and

then determine each c.y again in decreasing area order. Finally we place each stair

carpet rectangle by fixing r.x and then r.y treating each rectangle in input order.

6.6.2 Minimisation

A hybrid sequential/activity based search is used to find optimal solutions. We first

fix the orientations of each room carpet as we did in the first-solution search. Then

we switch to the activity-based Vsids search, which concentrates on variables which

are involved in lots of recent failures.

For the activity-based search, we use a geometric restart policy on the number of

node failures in order to make the search more robust. The restart base and factor

are 128 failures and 2.0, respectively.

6.7 Experiments 169

6.7 Experiments

The experiments were carried out on a 64-bit machine with an Intel(R) Pentium(R)

D processor with 3.4 GHz clock and Ubuntu 9.04. For each original problem instance

I an overall 3 minutes runtime limit was imposed for calculating carpets that are

in disjunction with all other carpets if the refinement disj is used, finding a first

solution and minimising the roll length for all split instances I.

The G12/FDX solver from the G12 Constraint Programming Platform (Stuckey

et al. 2005) was used as the Lcg solver. We also experimented with the G12 Fd

solver using search more suitable for Fd (placement of the biggest carpets first).

The latter could only optimally solve 7 instances compared to 76 for Lcg using

the same search. This shows that Lcg is vital for solving the problem to prune

substantial parts of the search space.

Dynamic versus Static Model

Table 6.2 compares the static and dynamic model as well as the current solution

approach on the instances which the static model can handle (126 of 150). It shows

the number of instances solved optimally (“opt.”), the sum of the best first solutions

found for each instance (“init. ΣRL”), the sum of the best solutions found for

each instance (“ΣRL”) and the area of wastage (“wast.”), i.e., for one instance

RL×RW −
∑

c∈Rect c.len× c.wid, relatively to the wastage created by the current

method as well as the total runtime to solve all instances (“Σrt.”). The static

approach solves one more problem and its first solutions are better than for the

dynamic approach. In total, a better first solution was generated for 55 instances.

Where applicable the static approach is preferable.

The existing method finds, but does not prove, 27 optimal solutions. It was

tested by the client IF Computer GmbH on a Dell Latitude D820 with an Intel(R)

Core(TM) Duo processor T2400 processing with 1.86 GHz clock. The times marked

(†) for the existing approach are the sum of times when the best solution was found.

Since it cannot prove optimality for the majority of instances the existing method

uses the whole 3 minutes. The new approach results in an improvement of wastage

of over 33%.

Refinements

Table 6.3 presents the impact of different refinements on the dynamic models. The

entry × means that the refinement was used. We compare the different refinements

with the same features as before.

170 Chapter 6. Carpet Cutting — An Application

Table 6.2: Comparison between dynamic and static approach.

approach opt. init. ΣRL ΣRL wast. Σrt.

dynamic 92/126 171,645 160,536 66.5% 6,247s
static 93/126 168,270 160,399 65.9% 6,946s

Current method 27/126 - 167,668 100% 7,450s†

Table 6.3: Results of different refinements.

di
sj

vi
ew

s

di
ff

2

sy
m

fb
g

x

fb
g

y

opt. init. ΣRL ΣRL wast. Σrt.

86/150 232,181 221,542 67.9% 12,721s
× 88/150 232,075 221,521 67.8% 12,360s
× 89/150 232,181 221,248 66.9% 11,999s
× 89/150 232,181 221,240 66.9% 11,980s
× 99/150 232,181 221,344 67.2% 9,933s
× 88/150 232,181 221,596 68.1% 12,295s
× 88/150 232,181 221,399 67.4% 12,302s

× × 89/150 232,181 221,060 66.3% 12,385s
× × × × × × 106/150 232,075 220,775 65.2% 9,290s

Current method 30/150 - 230,795 100% 8,988s†

The change in number of optimally solved instances clearly illustrates the impor-

tant of symmetry breaking for proving optimality. Variable views and forbidden

gaps have a minor impact on proving optimality.

We can see a tradeoff in the refinements. Most make it harder to find solutions, but

reduce the search space required to prove optimality. When applying all refinements

we solve the most instances, and generate solutions with minimal total length, since

the new optimal solutions make up for unsolved problems where we found worse

solutions.

6.8 Final Remarks

In this chapter we developed an approach to carpet cutting that can find and prove

the optimal solution for real-world instances under a strict time limit. After a

preprocessing phase the approach decomposes an instance into several subproblems.

These subproblems are modelled as either static or dynamic models which use two

cumulative constraints. In the static model the length and the width of carpet

shapes are fixed whereas in the dynamic model these parameters could be variable.

In the last case, the cumulative propagator that considers flexible processing times

6.8 Final Remarks 171

of activities, flexible resource usages of activities, and flexible resource capacities, is

used. Each subproblem is optimally solved with an Lcg solver using a branch-and-

bound algorithm for minimising the wastage and activity-based search heuristic.

Once all subproblems are optimally solved then the global optimum is found.

On 150 real-world instances, we showed that our approach reduces the wastage by

more than 34% on average in comparison with the existing heuristic approach. The

power of the approach comes from the combination of careful modelling of the stair

breaking constraints to eliminate symmetries and dominated solutions, and the use

of Lcg to drastically reduce the time to prove optimality.

7
Conclusion

T
his chapter first summarises the presented work and then gives an outlook

for future research issues.

7.1 Summary

In the first two chapters, we introduced the basic solving scheme for combinatorial

satisfaction and optimisation problems. This scheme is based on a depth-first tree

search with backtracking which is enriched with advanced technologies to skip ex-

ploration of inconsistent subtrees. In detail, decisions are interleaved with constraint

propagation, which removes inconsistent values from the domains of variables. If

the search reaches a conflict node then the conflict analysis deduces a nogood. In

the remaining search the nogood is propagated which leads to further pruning of

inconsistent parts of the search tree. In our experiments we used a search which

takes information gathered during the conflict learning to guide the search.

In the third chapter, we developed new incremental algorithms for satisfaction

and implication for unit two variable per inequality constraints (Utvpi). These

algorithms are based on new theoretical results about reasoning in Utvpi systems

of these constraints, and have the best-known asymptotic time complexity. Experi-

ments show that they are faster on sparse Utvpi systems.

Moreover, we built non-incremental algorithms for implication checking and gen-

eration with the best-known asymptotic time complexity and a special explanation

generation algorithm for minimal unsatisfiable Utvpi subsets and minimal impli-

cants. Overall, we show that the satisfaction and implication problems for Utvpi

systems have the same asymptotic time complexity as those ones for difference con-

straints.

174 Chapter 7. Conclusion

The following chapter is dedicated to strong explanations for propagation algo-

rithms of cumulative resource constraints. First, explanations are built for the stan-

dard algorithms time-table and edge-finding, taking account of flexible start times

of activities. Second, the explanations for the time-table algorithms are extended

with additional consideration of flexible processing times of activities, flexible re-

source usages of activities, and flexible resource capacities. Moreover, we show the

additional complexity and control that comes with these explanations.

The fifth and sixth chapters show the effect of these explaining cumulative prop-

agators on the generic solving process of two basic scheduling problems and one

industrial placement problem.

In the fifth chapters, we considered the resource-constrained project scheduling

problem and its extension with generalised precedence constraints for minimising the

project duration. Our best complete solution approaches are based on basic models

and a generic conflict-driven search, which are solved by a lazy clause generation

(Lcg) solver. On well-established benchmark sets from the operations research

community, our simple and generic approach outperforms the state-of-the-art com-

plete methods and incomplete methods for problems with generalised precedence

constraints. Moreover, many open problems could be optimally solved or the lower

or upper bound on the project duration improved.

In the sixth chapters, we considered the industrial problem of carpet cutting,

which is a two-dimensional placement problem. We developed a complete approach

that takes all domain-specific constraints into account. It first preprocesses an in-

stance and then decomposes it into several subproblems which are optimally solved

by an Lcg solver, each in turn. The decomposition exploits domain-specific char-

acteristics, e.g. dominating partitions.

Our complete methods using a basic model already outperform the existing in-

complete methods on industrial instances. Further model refinements yielded even

better solutions. All models use a cumulative constraint for each dimension. Thus,

this placement problem shows that not only scheduling problems benefit from the

explaining cumulative propagators.

7.2 Outlook

We developed explanations for the cumulative propagation. In certain situations,

the propagator has multiple options for explaining its propagation. In this thesis,

the choice of explanation is simply based on the input order of the activity. But

this might not be the best choice for all cases. If the choice could be based on the

7.2 Outlook 175

characteristic of the activities or the activities counter of the related variables then

it could lead to a larger reduction of the search space.

We proposed explanations for the edge-finding algorithm, but have not yet eval-

uated them. The question is, whether they improve the solution process just as for

the time-table algorithms, since one explanation potentially includes many activities.

Thus, a resulting nogood might not be so reusable anymore.

Constraint propagators in an Lcg solver can ask for the initial and current do-

mains of the variables. These bounds are used by propagators to generate the

strongest explanations, but the initial domains may include values that the search

already has proven as globally invalid. If the propagator uses these values in the

explanation then the explanation is not a strongest one with respect to the tightest

domain that contains no globally invalid values. If an Lcg solver provides infor-

mation about these tightest domain, which are the domains after the constraint

propagation in the root node, to the propagators then strongest explanations can

always be generated, potentially yielding more reduction of the search space.

We considered two basic project scheduling problems with the objective to min-

imise the project duration. This objective function is advantageous for constraint-

based approaches, because a new upper bound on the project duration has an im-

mediate impact on the upper bound on the start time variables of all activities, i.e.,

it significantly reduces the search space. However, scheduling problems often con-

sider other measurements such as linear objective functions, e.g. the total weighted

tardiness. Normally, a new bound on those measurements only has a small effect on

the reduction of the search space, but not for linear programming based approaches.

A hybridisation of these methods could be beneficial.

The scheduling problems herein have a size of at most 200 activities, which is con-

sidered a small size for some industries where problems with at least 1000 activities

are normal. Our complete methods cannot efficiently handle such large problems.

Future research could deal with how to incorporate them with incomplete methods

where they repeatedly solve smaller subproblems. Especially, a combination with the

large neighbourhood search seems to be fruitful for large scheduling problems (Shaw

2011).

Both of our scheduling approaches use individual propagators for precedence con-

straints which can result in bad queuing behaviour. A global precedence propagator—

taking all precedence constraints into account at once—can resolve this problem in

Lcg solvers and might speed up the solution process.

We also considered the carpet cutting problem. In order to reduce the complexity

of an instance, a preprocessing step was applied. The preprocessing step can be

176 Chapter 7. Conclusion

extended to detect the following situation: the biggest carpets that are in disjunction

with each other might be aligned across the carpet roll length so that all small carpets

whose projection can vertically overlap with at least one of them can be placed above

and below them without overlapping. The resulting placement is an optimal one

which can be fixed in the preprocessing step.

Our solution approach may be further improved by using an explaining version of

the global non-overlapping constraint diff2 instead of the primitive non-overlapping

constraint for each pair of rectangles.

Experiments for the carpet cutting problem have shown that static symmetry

breaking constraints are essential for proving optimality. But for some instances the

solution process was significantly slowed down, especially for finding the first solu-

tions. This means that the symmetry breaking constraints pruned the solutions that

the search could find quickly. The use of dynamic symmetry breaking constraints

may resolve this problem.

In this dissertation, we have substantially improved the state-of-the-art on combi-

natorial resource-constrained scheduling by developing generic explanations for the

propagation of cumulative resource constraint and using the generic framework of

lazy clause generation. We believe that this success will trigger further investigations

of generic methods using conflict learning in the scheduling area.

Bibliography

Achterberg, T (2009). SCIP: solving constraint integer programs. Mathematical Program-

ming Computation, 1:1–41.

Aggoun, A and Beldiceanu, N (1993). Extending CHIP in order to solve complex schedul-

ing and placement problems. Mathematical and Computer Modelling, 17(7):57–73.

Apt, KR (2003). Principles of Constraint Programming. Cambridge University Press,

Cambridge, UK.

Armando, A, Mantovani, J, and Platania, L (2009). Bounded model checking of software

using SMT solvers instead of SAT solvers. International Journal on Software Tools

for Technology Transfer (STTT), 11:69–83.

Artigues, C, Demassey, S, and Néron, E, editors (2008). Resource-constrained Project

Scheduling. Wiley-ISTE.

Ball, T and Jones, RB, editors (2006). Proceedings of Computer Aided Verification –

CAV 2006, volume 4144 of Lecture Notes in Computer Science. Springer Berlin /

Heidelberg.

Ballest́ın, F, Barrios, A, and Valls, V (2009). An evolutionary algorithm for the resource-

constrained project scheduling problem with minimum and maximum time lags. Jour-

nal of Scheduling, pages 1–15. Doi:10.1007/s10951-009-0125-9.

Baptiste, P and Demassey, S (2004). Tight LP bounds for resource constrained project

scheduling. OR Spectrum, 26(2):251–262.

Baptiste, P and Le Pape, C (2000). Constraint propagation and decomposition tech-

niques for highly disjunctive and highly cumulative project scheduling problems.

Constraints, 5(1-2):119–139.

Baptiste, P, Le Pape, C, and Nuijten, W (1999). Satisfiability tests and time-bound

adjustments for cumulative scheduling problems. Annals of Operations Research,

92:305–333.

Baptiste, P, Le Pape, C, and Nuijten, W (2001). Constraint-Based Scheduling. Kluwer

Academic Publishers, Norwell, MA, USA.

Barrett, CW, Sebastiani, R, Seshia, SA, and Tinelli, C (2009). Satisfiability Modulo The-

ories, volume 185 of Frontiers in Artificial Intelligence and Applications, chapter 12,

pages 825–885. IOS Press.

Bartusch, M, Möhring, RH, and Radermacher, FJ (1988). Scheduling project net-

works with resource constraints and time windows. Annals of Operations Research,

16(1):199–240.

Bedworth, DD and Bailey, JE (1982). Integrated Production, Control Systems: Manage-

ment, Analysis, and Design. John Wiley & Sons, Inc., New York, NY, USA.

178 Bibliography

Beldiceanu, N and Carlsson, M (2001). Sweep as a generic pruning technique applied to the

non-overlapping rectangles constraint. In T Walsh, editor, Proceedings of Principles

and Practice of Constraint Programming – CP 2001, volume 2239 of Lecture Notes

in Computer Science, pages 377–391. Springer Berlin / Heidelberg.

Beldiceanu, N, Carlsson, M, Demassey, S, and Petit, T (2007a). Global constraint cata-

logue: Past, present and future. Constraints, 12:21–62.

Beldiceanu, N, Carlsson, M, and Poder, E (2008). New filtering for the cumulative con-

straint in the context of non-overlapping rectangles. In L Perron and MA Trick,

editors, Proceedings of Integration of AI and OR Techniques in Constraint Program-

ming for Combinatorial Optimization Problems – CPAIOR 2008, volume 5015 of

Lecture Notes in Computer Science, pages 21–35. Springer Berlin / Heidelberg.

Beldiceanu, N, Carlsson, M, Poder, E, Sadek, R, and Truchet, C (2007b). A generic geo-

metrical constraint kernel in space and time for handling polymorphic k-dimensional

objects. In Bessière (2007), pages 180–194.

Bellman, R (1958). On a routing problem. Quarterly of Applied Mathematics, 16(1):87–90.

Berthold, T, Heinz, S, Lübbecke, M, Möhring, R, and Schulz, J (2010). A constraint

integer programming approach for resource-constrained project scheduling. In Lodi

et al. (2010), pages 313–317.

Bessière, C, editor (2007). Proceedings of Principles and Practice of Constraint Program-

ming – CP 2007, volume 4741 of Lecture Notes in Computer Science. Springer Berlin

/ Heidelberg.

B lażewicz, J, Lenstra, JK, and Rinnooy Kan, AHG (1983). Scheduling subject to resource

constraints: classification and complexity. Discrete Applied Mathematics, 5:11–24.

Bofill, M, Nieuwenhuis, R, Oliveras, A, Rodŕıguez-Carbonell, E, and Rubio, A (2008a).

The barcelogic SMT solver. In A Gupta and S Malik, editors, Proceedings of Com-

puter Aided Verification – CAV 2008, volume 5123 of Lecture Notes in Computer

Science, pages 294–298. Springer Berlin / Heidelberg.

Bofill, M, Nieuwenhuis, R, Oliveras, A, Rodŕıguez-Carbonell, E, and Rubio, A (2008b). A

write-based solver for SAT modulo the theory of arrays. In A Cimatti and RB Jones,

editors, Proceedings of Formal Methods in Computer-Aided Design – FMCAD 2008,

pages 1–8. IEEE Press.

Borralleras, C, Lucas, S, Navarro-Marset, R, Rodŕıguez-Carbonell, E, and Rubio, A

(2009). Solving non-linear polynomial arithmetic via sat modulo linear arithmetic. In

RA Schmidt, editor, Proceedings of Automated Deduction – CADE-22, volume 5663

of Lecture Notes in Computer Science, pages 294–305. Springer Berlin / Heidelberg.

Bozzano, M, Bruttomesso, R, Cimatti, A, Junttila, T, Ranise, S, van Rossum, P, and

Sebastiani, R (2005). Efficient satisfiability modulo theories via delayed theory com-

bination. In Etessami and Rajamani (2005), pages 443–454.

Bibliography 179

Brucker, P, Drexl, A, Möhring, R, Neumann, K, and Pesch, E (1999). Resource-constrained

project scheduling: Notation, classification, models, and methods. European Journal

of Operational Research, 112(1):3–41.

Brucker, P and Knust, S (2000). A linear programming and constraint propagation-based

lower bound for the rcpsp. European Journal of Operational Research, 127(2):355–

362.

Brummayer, R and Biere, A (2009). Boolector: An efficient SMT solver for bit-vectors

and arrays. In S Kowalewski and A Philippou, editors, Proceedings of Tools and Al-

gorithms for the Construction and Analysis of Systems – TACAS 2009, volume 5505

of Lecture Notes in Computer Science, pages 174–177. Springer Berlin / Heidelberg.

Bryant, RA, Kroening, D, Ouaknine, J, Seshia, SA, Strichman, O, and Brady, B (2009). An

abstraction-based decision procedure for bit-vector arithmetic. International Journal

on Software Tools for Technology Transfer (STTT), 11:95–104.

Carlier, J and Pinson, E (2004). Jackson’s pseudo-preemptive schedule and cumulative

scheduling problems. Discrete Applied Mathematics, 145(1):80–94.

Caseau, Y and Laburthe, F (1996). Cumulative scheduling with task intervals. In MJ Ma-

her, editor, Logic Programming: Proceedings of the 1996 Joint International Con-

ference and Symposium on Logic Programming – JICSLP 1996, pages 363–377. The

MIT Press.

Cesta, A, Oddi, A, and Smith, SF (2002). A constraint-based method for project schedul-

ing with time windows. Journal of Heuristics, 8(1):109–136.

Cherkassky, BV and Goldberg, AV (1996). Negative-cycle detection algorithms. In J Dı́az

and MJ Serna, editors, Proceedings of the European Symposium on Algorithms – ESA

1996, volume 1136 of Lecture Notes in Computer Science, pages 349–363. Springer.

Choi, CW, Harvey, W, Lee, JHM, and Stuckey, PJ (2006). Finite domain bounds con-

sistency revisited. In A Sattar and Bh Kang, editors, AI 2006: Advances in Arti-

ficial Intelligence, volume 4304 of Lecture Notes in Computer Science, pages 49–58.

Springer Berlin / Heidelberg.

Cotton, S and Maler, O (2006). Fast and flexible difference constraint propagation for

DPLL(T). In A Biere and CP Gomes, editors, Proceedings of Theory and Applications

of Satisfiability Testing – SAT 2006, volume 4121 of Lecture Notes in Computer

Science, pages 170–183. Springer Berlin / Heidelberg.

Damay, J, Quilliot, A, Sanlaville, E, Damay, J, Quilliot, A, and Sanlaville, E (2007). Linear

programming based algorithms for preemptive and non-preemptive rcpsp. European

Journal of Operational Research, 182(3):1012–1022.

Davis, M, Logemann, G, and Loveland, D (1962). A machine program for theorem-proving.

Communications of the ACM, 5:394–397.

180 Bibliography

Davis, M and Putnam, H (1960). A computing procedure for quantification theory. Journal

of the ACM, 7:201–215.

De Reyck, B and Herroelen, W (1998). A branch-and-bound procedure for the resource-

constrained project scheduling problem with generalized precedence relations. Euro-

pean Journal of Operational Research, 111(1):152–174.

Dechter, R, Meiri, I, and Pearl, J (1991). Temporal constraint networks. Artificial Intel-

ligence, 49:61–95.

Demeulemeester, E and Herroelen, W (1992). A branch-and-bound procedure for the

multiple resource-constrained project scheduling problem. Management Science,

38(12):1803–1818.

Demeulemeester, EL and Herroelen, WS (1997). New benchmark results for the resource-

constrained project scheduling problem. Management Science, 43(11):1485–1492.

Demeulemeester, EL and Herroelen, WS (2002). Project Scheduling: A Research Hand-

book. Kluwer Academic Publishers.

Dijkstra, EW (1959). A note on two problems in connexion with graphs. Numerische

Mathematik, 1:269–271.

Dorndorf, U, Pesch, E, and Phan-Huy, T (2000). A time-oriented branch-and-bound

algorithm for resource-constrained project scheduling with generalised precedence

constraints. Management Science, 46(10):1365–1384.

Dutertre, B and de Moura, L (2006). A fast linear-arithmetic solver for DPLL(T). In Ball

and Jones (2006), pages 81–94.

El-Kholy, AO (1996). Resource Feasibility in Planning. Ph.D. thesis, Imperial College,

University of London.

Erschler, J and Lopez, P (1990). Energy-based approach for task scheduling under time

and resources constraints. In 2nd International Workshop on Project Management

and Scheduling, pages 115–121.

Etessami, K and Rajamani, S, editors (2005). Proceedings of Computer Aided Verification

– CAV 2005, volume 3576 of Lecture Notes in Computer Science. Springer Berlin /

Heidelberg.

Fekete, SP, Schepers, J, and van der Veen, JC (2007). An exact algorithm for higher-

dimensional orthogonal packing. Operations Research, 55(3):569–587.

Fest, A, Möhring, RH, Stork, F, and Uetz, M (1999). Resource-constrained project schedul-

ing with time windows: A branching scheme based on dynamic release dates. Tech-

nical Report 596, Technische Universität Berlin.

Feydy, T (2010). Constraint Programming: Improving Propagation. Ph.D. thesis, The

University of Melbourne.

Feydy, T, Schutt, A, and Stuckey, PJ (2008). Global difference constraint propagation for

Bibliography 181

finite domain solvers. In S Antoy and E Albert, editors, Proceedings of on Principles

and Practice of Declarative Programming – PPDP 2008, pages 226–235. ACM.

Feydy, T and Stuckey, PJ (2009). Lazy clause generation reengineered. In Gent (2009),

pages 352–366.

Ford, LR and Fulkerson, DR (1962). Flows in Networks. Princeton University Press.

Franck, B, Neumann, K, and Schwindt, C (2001). Truncated branch-and-bound, schedule-

construction, and schedule-improvement procedures for resource-constrained project

scheduling. OR Spectrum, 23(3):297–324.

Fränzle, M, Herde, C, Teige, T, Ratschan, S, and Schubert, T (2007). Efficient solving

of large non-linear arithmetic constraint systems with complex boolean structure.

Journal on Satisfiability, Boolean Modeling and Computation, 1(3-4):209–236.

Frigioni, D, Marchetti-Spaccamela, A, and Nanni, U (1998). Fully dynamic shortest paths

and negative cycle detection on digraphs with arbitrary edge weights. In G Bilardi,

GF Italiano, A Pietracaprina, and G Pucci, editors, Proceedings of European Sympo-

sium on Algorithms – ESA 1998, volume 1461 of Lecture Notes in Computer Science,

pages 320–331. Springer.

Ganesh, V and Dill, DL (2007). A decision procedure for bit-vectors and arrays. In

W Damm and H Hermanns, editors, Proceedings of Computer Aided Verification

– CAV 2007, volume 4590 of Lecture Notes in Computer Science, pages 519–531.

Springer Berlin / Heidelberg.

Gaschnig, J (1979). Performance measurement and analysis of certain search algorithms.

Ph.D. thesis, Carnegie-Mellon University.

Gent, IP, editor (2009). Proceedings of Principles and Practice of Constraint Programming

– CP 2009, volume 5732 of Lecture Notes in Computer Science. Springer Berlin /

Heidelberg.

George, AE (1998). The Theory of Partitions. Cambridge University Press.

Grimes, D and Hebrard, E (2010). Job shop scheduling with setup times and maximal

time-lags: A simple constraint programming approach. In Lodi et al. (2010), pages

147–161.

Grimes, D, Hebrard, E, and Malapert, A (2009). Closing the open shop: Contradicting

conventional wisdom. In Gent (2009), pages 400–408.

Hadjiconstantinou, E and Christofides, N (1995). An exact algorithm for general, orthogo-

nal, two-dimensional knapsack problems. European Journal of Operational Research,

83(1):39–56.

Haralick, RM and Elliott, GL (1980). Increasing tree search efficiency for constraint

satisfaction problems. Artificial Intelligence, 14(3):263–313.

Hartmann, S and Kolisch, R (2000). Experimental evaluation of state-of-the-art heuris-

182 Bibliography

tics for the resource-constrained project scheduling problem. European Journal of

Operational Research, 127(2):394–407.

Harvey, W and Stuckey, PJ (1997). A Unit Two Variable Per Inequality Integer Constraint

Solver for Constraint Logic Programming. In The 20th Australasian Computer Sci-

ence Conference (Australian Computer Science Communications), pages 102–111.

Sydney, Australia.

Heinz, S and Schulz, J (2011). Explanations for the cumulative constraint: An experimen-

tal study. In PM Pardalos and S Rebennack, editors, Proceedings of Experimental

Algorithms – SEA 2011, volume 6630 of Lecture Notes in Computer Science, pages

400–409. Springer Berlin / Heidelberg.

Hentenryck, PV, Saraswat, V, and Deville, Y (1998). Design, implementation, and eval-

uation of the constraint language cc(fd). The Journal of Logic Programming, 37(1-

3):139–164.

Hooker, JN (2005). A hybrid method for the planning and scheduling. Constraints,

10:385–401.

Hooker, JN (2007). Integrated Methods for Optimization. Springer.

Hooker, JN and Yan, H (2002). A relaxation of the cumulative constraint. In P Van Hen-

tenryck, editor, Proceedings of Principles and Practice of Constraint Programming –

CP 2002, volume 2470 of Lecture Notes in Computer Science, pages 686–691. Springer

Berlin / Heidelberg.

Horbach, A (2010). A boolean satisfiability approach to the resource-constrained project

scheduling problem. Annals of Operations Research, 181:89–107.

Jaffar, J, Maher, MJ, Stuckey, PJ, and Yap, RHC (1994). Beyond finite domains. In

A Borning, editor, Proceedings of Principles and Practice of Constraint Program-

ming – PPCP 1994, volume 874 of Lecture Notes in Computer Science, pages 86–94.

Springer Berlin / Heidelberg.

Johnson, DB (1977). Efficient algorithms for shortest paths in sparse networks. J. ACM,

24(1):1–13.

Junker, U (2004). QuickXPlain: preferred explanations and relaxations for over-

constrained problems. In McGuinness and Ferguson (2004), pages 167–172.

Jussien, N (2003). The versatility of using explanations within constraint programming.

Research Report 03-04-INFO, École des Mines de Nantes, Nantes, France. URL

http://www.emn.fr/jussien/publications/jussien-RR0304.pdf.

Jussien, N and Barichard, V (2000). The PaLM system: explanation-based constraint

programming. In Proceedings of TRICS: Techniques foR Implementing Constraint

programming Systems, a post-conference workshop of CP 2000, pages 118–133. Sin-

gapore.

Jussien, N, Debruyne, R, and Boizumault, P (2000). Maintaining arc-consistency within

http://www.emn.fr/jussien/publications/jussien-RR0304.pdf

Bibliography 183

dynamic backtracking. In R Dechter, editor, Proceedings of Principles and Practice

of Constraint Programming – CP 2000, volume 1894 of Lecture Notes in Computer

Science, pages 249–261. Springer Berlin / Heidelberg.

Jussien, N and Lhomme, O (2002). Local search with constraint propagation and conflict-

based heuristics. Artificial Intelligence, 139(1):21–45.

Katsirelos, G and Bacchus, F (2005). Generalized nogoods in CSPs. In MM Veloso and

S Kambhampati, editors, Proceedings on Artificial Intelligence – AAAI 2005, pages

390–396. AAAI Press / The MIT Press.

Kelley, JE, Jr. (1963). The criticial-path method: Resources planning and scheduling,

chapter 21, pages 347–365. Prentice-Hall.

Kolisch, R (1996). Serial and parallel resource-constrained project scheduling methods

revisited: Theory and computation. European Journal of Operational Research,

90(2):320–333.

Kolisch, R (2001). Make-to-order assembly management. Springer.

Kolisch, R and Hartmann, S (2006). Experimental investigation of heuristics for resource-

constrained project scheduling: An update. European Journal of Operational Re-

search, 174(1):23–37.

Kolisch, R, Schwindt, C, and Sprecher, A (1998). Project Scheduling: Recent Models,

Algorithms and Applications, chapter Benchmark instances for project scheduling

problems, pages 197–212. Kluwer Academic Publishers.

Kolisch, R and Sprecher, A (1997). PSPLIB – A project scheduling problem library.

European Journal of Operational Research, 96(1):205–216.

Kolisch, R, Sprecher, A, and Drexl, A (1995). Characterization and generation of a gen-

eral class of resource-constrained project scheduling problems. Management Science,

41(10):1693–1703.

Kowalski, R (1979). Algorithm = logic + control. Communications of the ACM, 22:424–

436.

Kroening, D and Strichman, O (2008). Decision Procedures: An Algorithmic Point of

View. Springer.

Laborie, P (2005). Complete MCS-based search: Application to resource constrained

project scheduling. In LP Kaelbling and A Saffiotti, editors, Proceedings of Artificial

Intelligence – IJCAI 2005, pages 181–186. Professional Book Center.

Lahiri, SK and Musuvathi, M (2005). An efficient decision procedure for UTVPI con-

straints. In B Gramlich, editor, Proceedings of Frontiers of Combining Systems –

FroCoS 2005, volume 3717 of Lecture Notes in Computer Science, pages 168–183.

Springer Berlin / Heidelberg.

Lahiri, SK, Nieuwenhuis, R, and Oliveras, A (2006). SMT techniques for fast predicate

abstraction. In Ball and Jones (2006), pages 424–437.

184 Bibliography

Lahrichi, A (1982). Scheduling: the notions of hump, compulsory parts and their use in

cumulative problems. C. R. Acad. Sci., Paris, Sér. I, Math., 294(2):209–211.

Land, AH and Doig, AG (1960). An automatic method of solving discrete programming

problems. Econometrica, 28(3):497–520.

Lecoutre, C, Sais, L, Tabary, S, and Vidal, V (2007). Nogood recording from restarts. In

MM Veloso, editor, Proceedings of Artifical Intelligence – IJCAI 2007, pages 131–136.

Morgan Kaufmann Publishers Inc.

Liess, O and Michelon, P (2008). A constraint programming approach for the resource-

constrained project scheduling problem. Annals of Operations Research, 157(1):25–

36.

Lodi, A, Martello, S, and Monaci, M (2002). Two-dimensional packing problems: A survey.

European Journal of Operational Research, 141(2):241–252.

Lodi, A, Milano, M, and Toth, P, editors (2010). Proceedings of Integration of AI and OR

Techniques in Constraint Programming for Combinatorial Optimization Problems –

CPAIOR 2010, volume 6140 of Lecture Notes in Computer Science. Springer Berlin

/ Heidelberg.

Mackworth, AK (1977). Consistency in networks of relations. Artificial Intelligence,

8(1):99–118.

Manna, Z and Zarba, CG (2003). Combining decision procedures. In B Aichernig and

T Maibaum, editors, Proceedings of Formal Methods at the Crossroads. From Panacea

to Foundational Support, volume 2757 of Lecture Notes in Computer Science, pages

381–422. Springer Berlin / Heidelberg.

Marriott, K, Nethercote, N, Rafeh, R, Stuckey, PJ, Garcia de la Banda, M, and Wallace,

MG (2008). The design of the Zinc modelling language. Constraints, 13(3):229–267.

Marriott, K and Stuckey, PJ (1998). Programming with Constraints: An Introduction.

The MIT Press, Cambridge, MA, USA.

Martello, S and Vigo, D (1998). Exact solution of the two-dimensional finite bin packing

problem. Management Science, 44(3):388–399.

McGuinness, DL and Ferguson, G, editors (2004). Proceedings of Artifical intelligence –

AAAI 2004. AAAI Press / The MIT Press. ISBN 0-262-51183-5.

Meir, O and Strichman, O (2005). Yet another decision procedure for equality logic. In

Etessami and Rajamani (2005), pages 31–37.

Mercier, L and Van Hentenryck, P (2008). Edge finding for cumulative scheduling. IN-

FORMS Journal on Computing, 20(1):143–153.

Miné, A (2006). The octagon abstract domain. Higher-Order and Symbolic Computation,

19(1):31–100.

Mohr, R and Henderson, TC (1986). Arc and path consistency revisited. Artificial Intel-

ligence, 28(2):225–233.

Bibliography 185

Moskewicz, MW, Madigan, CF, Zhao, Y, Zhang, L, and Malik, S (2001). Chaff: Engi-

neering an efficient SAT solver. In Proceedings of Design Automation Conference –

DAC 2001, pages 530–535. ACM, New York, NY, USA.

Neumann, K and Schwindt, C (1997). Activity-on-node networks with minimal and max-

imal time lags and their application to make-to-order production. OR Spectrum,

19:205–217.

Nieuwenhuis, R and Oliveras, A (2005). DPLL(T) with exhaustive theory propagation and

its application to difference logic. In Etessami and Rajamani (2005), pages 305–309.

Nieuwenhuis, R, Oliveras, A, and Tinelli, C (2005). Abstract DPLL and abstract DPLL

modulo theories. In F Baader and A Voronkov, editors, Proceedings of Logic for

Programming, Artificial Intelligence, and Reasoning – LPAR 2004, volume 3452 of

Lecture Notes in Computer Science, pages 36–50. Springer Berlin / Heidelberg.

Nieuwenhuis, R, Oliveras, A, and Tinelli, C (2006). Solving SAT and SAT Modulo The-

ories: from an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T).

Journal of the ACM, 53(6):937–977.

Nuijten, WPM (1994). Time and Resource Constrained Scheduling. Ph.D. thesis, Eind-

hoven University of Technology.

Oddi, A and Rasconi, R (2009). Iterative flattening search on RCPSP/max problems:

Recent developments. In A Oddi, F Fages, and F Rossi, editors, Proceedings of

Recent Advances in Constraints – CSCLP 2008, volume 5655 of Lecture Notes in

Computer Science, pages 99–115. Springer Berlin / Heidelberg.

Ohrimenko, O and Stuckey, PJ (2008). Modelling for lazy clause generation. In J Harland

and P Manyem, editors, Proceedings of Fourteenth Computing: The Australasian

Theory Symposium (CATS 2008), pages 27–37. Australian Computer Society, Dar-

linghurst, Australia, Australia.

Ohrimenko, O, Stuckey, PJ, and Codish, M (2007). Propagation = lazy clause generation.

In Bessière (2007), pages 544–558.

Ohrimenko, O, Stuckey, PJ, and Codish, M (2009). Propagation via lazy clause generation.

Constraints, 14(3):357–391.

Pearson, C, Birtwistle, M, and Verden, AR (1998). Reducing material wastage in the

carpet industry. In Proceedings of Applications of Prolog – INAP 98, pages 88–99.

Pisinger, D and Sigurd, M (2007). Using decomposition techniques and constraint pro-

gramming for solving the two-dimensional bin-packing problem. INFORMS Journal

on Computing, 19(1):36–51.

Pnueli, A, Rodeh, Y, Shtrichman, O, and Siegel, M (1999). Deciding equality formulas by

small domains instantiations. In N Halbwachs and D Peled, editors, Proceedings of

Computer Aided Verification – CAV 1999, volume 1633 of Lecture Notes in Computer

Science, pages 687–688. Springer Berlin / Heidelberg.

186 Bibliography

Refalo, P (2004). Impact-based search strategies for constraint programming. In MG Wal-

lace, editor, Proceedings of Principles and Practice of Constraint Programming – CP

2004, volume 3258 of Lecture Notes in Computer Science, pages 557–571. Springer

Berlin / Heidelberg.

Régin, JC (1994). A filtering algorithm for constraints of difference in CSPs. In Proceedings

of Artificial Intelligence – AAAI 1994, pages 362–367. AAAI Press, Menlo Park, CA,

USA.

Schulte, C and Stuckey, PJ (2005). When do bounds and domain propagation lead to the

same search space? ACM Transactions on Programming Languages and Systems,

27:388–425.

Schulte, C and Stuckey, PJ (2008). Efficient constraint propagation engines. ACM Trans-

actions on Programming Languages and Systems, 31(1):1–43.

Schulte, C and Tack, G (2005). Views iterators for generic constraint implementations.

In P van Beek, editor, Proceedings of Principles and Practice of Constraint Program-

ming – CP 2005, volume 3709 of Lecture Notes in Computer Science, pages 817–821.

Springer Berlin / Heidelberg.

Schutt, A, Feydy, T, Stuckey, PJ, and Wallace, MG (2009). Why cumulative decomposition

is not as bad as it sounds. In Gent (2009), pages 746–761.

Schutt, A, Feydy, T, Stuckey, PJ, and Wallace, MG (2010). Solving the resource con-

strained project scheduling problem with generalized precedences by lazy clause gen-

eration. URL http://arxiv.org/abs/1009.0347.

Schutt, A, Feydy, T, Stuckey, PJ, and Wallace, MG (2011a). Explaining the cumulative

propagator. Constraints, 16(3):250–282.

Schutt, A and Stuckey, PJ (2010). Incremental satisfiability and implication for UTVPI

constraints. INFORMS Journal on Computing, 22(4):514–527.

Schutt, A, Stuckey, PJ, and Verden, AR (2011b). Optimal carpet cutting. In J Lee,

editor, Proceedings of Principles and Practice of Constraint Programming – CP 2011,

volume 6876 of Lecture Notes in Computer Science, pages 69–84. Springer Berlin /

Heidelberg.

Schutt, A and Wolf, A (2010). A new O(n2 log n) not-first/not-last pruning algorithm for

cumulative resource constraints. In D Cohen, editor, Proceedings of Principles and

Practice of Constraint Programming – CP 2010, volume 6308 of Lecture Notes in

Computer Science, pages 445–459. Springer Berlin / Heidelberg.

Schutt, A, Wolf, A, and Schrader, G (2006). Not-first and not-last detection for cumulative

scheduling in O(n3 log n). In Umeda et al. (2006), pages 66–80.

Schwindt, C (1995). ProGen/max: A new problem generator for different resource-

constrained project scheduling problems with minimal and maximal time lags. WIOR

449, Universität Karlsruhe, Germany.

http://arxiv.org/abs/1009.0347

Bibliography 187

Schwindt, C (1998a). A branch-and-bound algorithm for the resource-constrained project

duration problem subject to temporal constraints. WIOR 544, Universität Karlsruhe,

Germany.

Schwindt, C (1998b). Verfahren zur Lösung des ressourcenbeschränkten Projektdauermin-

imierungsproblems mit planungsabhängigen Zeitfenstern. Shaker-Verlag.

Schwindt, C (2011). Project generator ProGen/max and PSP/max-library.

URL http://www.wior.uni-karlsruhe.de/LS_Neumann/Forschung/ProGenMax/

rcpspmax.html. Last access at the date of 28 June 2011.

Sebastiani, R (2007). Lazy satisability modulo theories. Journal on Satisfiability, Boolean

Modeling and Computation, 3(3-4):141–224.

Sellmann, M and Kadioglu, S (2008). Dichotomic search protocols for constrained opti-

mization. In Stuckey (2008), pages 251–265.

Seshia, S, Subramani, K, and Bryant, R (2007). On solving Boolean combinations of

UTVPI constraints. Journal of Satisfiability, Boolean Modelling and Computation,

3:67–90.

Shaw, P (2011). Constraint programming and local search hybrids. In P Van Hentenryck

and M Milano, editors, Hybrid Optimization, volume 45 of Springer Optimization

and Its Applications, pages 271–303. Springer New York. ISBN 978-1-4419-1644-0.

Simonis, H and O’Sullivan, B (2008). Search strategies for rectangle packing. In Stuckey

(2008), pages 52–66.

Sitzmann, I and Stuckey, PJ (2000). O-trees: a constraint based index structure. In

M Orlowska, editor, Proceedings of Australasian Database Conference – ADC2000,

pages 127–135. IEEE Press.

Smith, TB and Pyle, JM (2004). An effective algorithm for project scheduling with arbi-

trary temporal constraints. In McGuinness and Ferguson (2004), pages 544–549.

Somogyi, Z, Henderson, F, and Conway, T (1996). The execution algorithm of Mercury,

an efficient purely declarative logic programming language. The Journal of Logic

Programming, 29(1–3):17–64.

Stuckey, PJ, editor (2008). Proceedings of Principles and Practice of Constraint Program-

ming – CP 2008, volume 5202 of Lecture Notes in Computer Science. Springer Berlin

/ Heidelberg.

Stuckey, PJ, Garćıa de la Banda, MJ, Maher, MJ, Marriott, K, Slaney, JK, Somogyi, Z,

Wallace, MG, and Walsh, T (2005). The G12 project: Mapping solver independent

models to efficient solutions. In M Gabbrielli and G Gupta, editors, Proceedings of

Logic Programming – ICLP 2005, volume 3668 of Lecture Notes in Computer Science,

pages 9–13. Springer Berlin / Heidelberg.

Tillmann, N and de Halleux, J (2008). Pex-white box test generation for .NET. In

B Beckert and R Hähnle, editors, Proceedings of Tests and Proofs – TAP 2008,

http://www.wior.uni-karlsruhe.de/LS_Neumann/Forschung/ProGenMax/rcpspmax.html
http://www.wior.uni-karlsruhe.de/LS_Neumann/Forschung/ProGenMax/rcpspmax.html

188 Bibliography

volume 4966 of Lecture Notes in Computer Science, pages 134–153. Springer Berlin

/ Heidelberg.

Tseitin, GS (1968). On the complexity of derivation in propositional calculus. Studies in

mathematics and mathematical logic, Part II:115–125. Translated from Russian.

Umeda, M, Wolf, A, Bartenstein, O, Geske, U, Seipel, D, and Takata, O, editors (2006).

Proceedings of Declarative Programming for Knowledge Management – INAP 2005,

volume 4369 of Lecture Notes in Computer Science. Springer Berlin / Heidelberg.

Viĺım, P (2005). Computing explanations for the unary resource constraint. In R Barták

and M Milano, editors, Proceedings of Integration of AI and OR Techniques in Con-

straint Programming for Combinatorial Optimization Problems – CPAIOR 2005, vol-

ume 3524 of Lecture Notes in Computer Science, pages 396–409. Springer Berlin /

Heidelberg.

Viĺım, P (2009). Edge finding filtering algorithm for discrete cumulative resources in

O(kn log n). In Gent (2009), pages 802–816.

Viĺım, P (2011). Timetable edge finding filtering algorithm for discrete cumulative re-

sources. In T Achterberg and J Beck, editors, Proceedings of Integration of AI and

OR Techniques in Constraint Programming for Combinatorial Optimization Prob-

lems – CPAIOR 2011, volume 6697 of Lecture Notes in Computer Science, pages

230–245. Springer Berlin / Heidelberg.

Wäscher, G, Haußner, H, and Schumann, H (2007). An improved typology of cutting and

packing problems. European Journal of Operational Research, 183:1109–1130.

Wolf, A and Schrader, G (2006). O(n log n) overload checking for the cumulative constraint

and its application. In Umeda et al. (2006), pages 88–101.

Zhang, L, Madigan, CF, Moskewicz, MH, and Malik, S (2001). Efficient conflict driven

learning in a boolean satisfiability solver. In Proceedings of Computer Aided Design

– ICCAD 2001, pages 279–285. IEEE Press, Piscataway, NJ, USA.

Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:

SCHUTT, ANDREAS

Title:

Improving scheduling by learning

Date:

2011

Citation:

Schutt, A. (2011). Improving scheduling by learning. PhD thesis, Department of Computer

Science and Software Engineering, The University of Melbourne.

Persistent Link:

http://hdl.handle.net/11343/36701

File Description:

Improving scheduling by learning

Terms and Conditions:

Terms and Conditions: Copyright in works deposited in Minerva Access is retained by the

copyright owner. The work may not be altered without permission from the copyright owner.

Readers may only download, print and save electronic copies of whole works for their own

personal non-commercial use. Any use that exceeds these limits requires permission from

the copyright owner. Attribution is essential when quoting or paraphrasing from these works.

	Introduction
	Current Approaches
	Constraint-based Solving with Learning
	Focus of this Thesis
	Overview

	Basic Principles
	Constraint Programming
	Constraint Satisfaction Problem
	Solving
	Optimisation

	Finite Domain Propagation
	Common Constraints

	Boolean Satisfiability Solving
	Solving
	Conflict Learning and Non-Chronological Backtracking
	Conflict-driven Search and Restarts

	Lazy Clause Generation
	Variable Representation
	Explaining Propagators
	Conflict-driven Search and Optimisation
	Background

	Satisfiability Modulo Theories
	Solving
	Comparison to Lazy Clause Generation Solving

	Satisfaction and Implication Algorithms for UTVPI
	Introduction
	Preliminaries
	Difference Constraints
	UTVPI Constraints

	Lahiri and Musuvathi's Approach
	Incremental UTVPI Satisfaction
	Incremental UTVPI Implication
	Experimental Results
	Non-Incremental Implication Checking and Generation
	Generation of Minimal Unsatisfiable Subsets and Minimal Implicants
	Final Remarks

	Explaining the Propagation of the Cumulative Constraint
	Introduction
	Cumulative Resource Scheduling
	Reasoning about the Compulsory Parts
	Reasoning about the Energies

	Related Work on Explanations
	Propagating the Cumulative Constraint by Decomposition
	Time Decomposition
	Activity Decomposition

	Explanations for Cumulative Propagators
	Consistency Check
	Time-Table Filtering
	(Extended) Edge-Finding Filtering

	Explanation Extensions for Cumulative Propagators
	Time-Table Consistency Check
	Time-Table Filtering
	Strengthening of Explanations for Time-Table Algorithms

	Final Remarks

	Experiments on RCPSPs
	Introduction
	Related Work
	RCPSP
	RCPSP/max
	Other Related Works

	Resource-Constrained Project Scheduling Problems
	Model
	Search Strategies
	Experiments

	RCPSP with Generalised Precedence Relations
	Model
	Search Strategies
	Experiments

	Final Remarks

	Carpet Cutting — An Application
	Introduction
	The Carpet Cutting Problem
	Static Model
	Dealing with Orientations
	Stair Carpets
	The Model

	Dynamic Model
	Orientation
	Edge Filler Carpets
	The Model

	Refining the Models
	Variable Views
	Disjunction and Better diff2 Decomposition
	Symmetry Breaking Constraints
	Forbidden Gaps

	Search Strategies
	First Solution Generation
	Minimisation

	Experiments
	Final Remarks

	Conclusion
	Summary
	Outlook

	References

