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ABSTRACT

We propose a novel framework, teemmulative distribution functioncgif)-intervals,
that intuitively describes data coupled with uncertainithaut losing any information
given in the problem definition. Our new proposition bringsat a construction of
two algebraic convex structures: théf-intervals and thérobability Box (p-box)cdf-
intervals. The two proposed structures were driven by tlaetiwal usage of reliable
approaches itonstraint Programming (CRNd Operation Research (ORaradigms.
These approaches tackbrge scale constraint optimization (LSC@roblems associ-
ated with data uncertainty in a tractable manner. The key igléo bound data observed
in the problem definition, then perform the computation omhythe bounds using in-
terval reasoning techniques. Output solution set frompligess satisfies all possible
realization of the data sought. Approaches following thevea modeling commonly
treat data in their interval representation with an equadfte thus they do not reflect
any possible degree of knowledge about the whereabouts.

Motivated by bringing more knowledge to the realized solutset, we introduced
the cdf-intervals in Baad, Gervet, and Abdennadt{2f10Q]. The bounding points, in
the cdf-intervals algebraic structure, each is specified by twoesl data and its cu-
mulative distribution functionddf) [Saad et al(2010]. This new structure attempts
to represent data in 2 dimensions (2D)nanner, yet the probability distribution (the
2" dimension) is an approximated representation of the adigaibution. We further
extended thedf-intervals, with the notion gp-box in order to enclose all available in-
formation by twocdf distributions Faad, Gervet, and Fruehwirt®012h,Saad, Gervet,
and Fruehwirth(20123,Saad, Fruhwirth, and Gervé2014 and Saad(2014]. The
bounding distributions are chosen to be uniform in orderatgeethe computations over
the novel algebraic structure. The probabilities, withinge bounds, are ranked based
on the stochastic dominance. In this work, we define the fbfrasneworks for con-
straint reasoning over thelf-intervals and the-box cdf-intervals. The modeling and
reasoning are constructed within tBé paradigm due to its powerful expressiveness.
Moreover, we construct a system of global constraints, thestwo algebraic structures,
by extendinginterval Linear Systems (ILSyith a second dimension (treslf). We de-



velop a formalConstraint Logic Programming (CLRanguage from the new defined
domains and show how the new domains affect the problemblasiaand the decision
process. We implement the new language as a separate saldetann the ECIPS
constraint programming environment.

The p-box cdf-intervals combine techniques from the convex modelingake ad-
vantage of their tractability, with approaches revealingtdiable information from the
probabilistc and stochastic world, to take advantage of éx@ressiveness. We perform
a comparison in the data representation and in the reaspeiiigrmance over models
from the two paradigms and our novel framework. This congoariis further adopted
to model two different real-life applications: the Netwaorkaffic Application problem,
used in network design problems, and the Inventory Managempmblem of a man-
ufacturing process. The empirical evaluation of our immeatation shows that, with
minimal overhead, the output solution set realizes a full@sure of the data along with
tighter bounds on its probabilistic distributions. Saba$ sought to be feasible in the
real domain are excluded by tipebox cdf-intervals reasoning since they are infeasi-
ble because they violate the properties of tdé-domain. Additional knowledge, on
the data whereabouts, gained by the implementation of ouelrdormal and practical
framework gives rise to a wide range of future research work.
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CHAPTER1

INTRODUCTION

Constraint domains which tackle data uncertainty haveiveddittle attention in the
Constraint Programming (CRnd in theOperation Research (ORparadigms. In this
research, we introduce a novel framework: thienmulative distribution functionclif)-
intervals. This novel framework intuitively encapsulagsy probability distribution
derived from past measurements or future forecasts intotarval data. It is a multi-
paradigm contribution that combines the powerful exprétysbf the CP techniques,
with the inexpensive computational nature of reliable nied® allow for uncertainty
reasoning that is more tractable.

1.1 Problem Definition

Real-world applications, such as in planning, scheduldiggnosis, or tracking prob-
lems, are modeled biarge scale constraint optimization (LSCfxpblems. They are
unavoidably coupled with uncertainty due to unpredictabternal as well as external
environmental aspects. Data uncertainty can be found tmdilimited to:

1. Planning: the placement of the renewable energy parksndispon the varying
demands for energy and the construction cost of the p&dsjet and Atef2013.

2. Scheduling: the inventory management problem, in a naatufing process, rely
on the observed fluctuating information of customer demasdtip costs and
item prices,Tarim and Kingsmai§2004

3. Diagnosis: the network traffic management and enginggincesses count on
the collected traffic flow information. The collection prgseis often operated
in a distributed manner. Accordingly, the measurement @ifl-olefined due to
packet loss or deviation from designated pa@yssglauser and Rexfo(@005.
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Chapter 1. Introduction

4. Tracking: the detailed identification of objects belanggto an image differs in
significance in a real-time image recognition problem. Ibased on the differ-
ent interpretation of various color shades and their meatiberuyver and Hodé
(2009.

This uncertainty affects not only the behavior of the proble hand but also its
acquired optimal solution. It is necessary to quantify gxgsuncertainty in the problem
under consideration in order to acquire reliable solutiobcertain data in turn can
be found: incomplete or following a probabilistic distritan. So far research effort
towards formalizing and solving large scale problems cediplith uncertainty factors
is quite few. TheCP paradigm proved to have a considerable flexibility in foratig
optimization problems, whildtinear Programming (LP)rovided a better realization of
optimal solutions for scalable problems. Techniques fdirlayzation have even more
incorporated advantages that exist in both paradigms. Oparadigm, by means of
Constraint Satisfaction Problem (CSfinition, aims at building framework for fixed
point semantics which results in narrowing the possible alomof solution. The most
recognizedCPframeworks which handle uncertainty are listed below:

» Mixed CSPsFargier, Lang, and Schi€2996, seek for one robust solution which
satisfies as many realizations as possible. This framevgogkjuivalent to a one
stage stochastiCSPin the discrete form

Interval CSPs Benhamou and OId€i997), provide a propagation technique for
uncertainty represented by real interval domains

BranchingCSPs Fowler and Brown(2003, handle problems characterized by
having variables revealed by time.

» Partial CSPqvaluedCSFs and semiringBistarelli et al.(1999) attach an uncer-
tainty value or in other words a degree of preference to caimés. PartialCSP
frameworks are adopted explicitly to deal with soft constsa

» Certainty closure Wncertain Constraint Satisfaction Problem (UCKRprke-
Smith and Gervef2009, associates uncertainty to constraint coefficientsgthfer
the output solution is characterized to be reliable and al@ any of the possible
values from the closure of the decision space.

» StochasticCSPs Tarim, Manandhar, and Walg2006, exhaustively build sce-
narios based on the input probability distribution; suctictire reacts to values
suggested by stochastic variables in different mannersh Eeenario in turn is
considered as a classidaSPon its own.

On the other hand)R paradigm, found in reliable and robust computation, quast f
approximating large scale problems so that they becomealsielwsingLP techniques.
Without this approximatioh.P that inherently lacks flexibility in problem representatio
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1.2. Motivation

would not be sufficient to handle the uncertainty componedrge scale optimization
problems. The most well-know@R frameworks can be listed as follows:

* Interval LP, Beaumont(1998, allows for expanding the solution possibilities;
hence, an uncertain value is described by bounded intanstksad of a singleton
value. Interval linear computations are easily conductedtey do not guarantee
the tightest bounds on the resulting solution set.

» Robust optimizationBen-Tal and Nemirovski2000, approximates the problem,
often by using the variance and expected values, such thabsdible scenarios
for uncertainty are subsumed in a convex ellipsoidal sethSepresentation en-
capsulates ambiguity provided by erroneous measurenuggpjte the existence
of uncertainty, it makes all possible solution set avadabl

e Stochastid.P, Sen and Higl€1999, thoroughly formulates a tree that exhibit pos-
sible set of actions for a given problem. Each branch in e is associated with
an expected probable value; therefore unrealistic saistinight be unnecessarily
explored.

All of the above mentioned alternatives i6P andOR, generally, work as follows:
some of the models attach a point-wise probability to theesin the discrete domain;
some others adopt an approximated known form of probaldigyribution. Arranged
approximations, of the known distribution, are based onctileulation of the variance
and the expected values. Solutions are commonly derived the maximization of
the expected value or they are obtained in a set intervalliZRéans acquired may not
provide the accurate feasible solution with respect to thesd problem since in real-life
situations the probability distribution pursues unfaarikshapes.

1.2 Motivation

Solution reliability and robustness is an important aspéciptimization that is not suf-
ficiently reported inCPandOR, especially for those applications which are tightly cou-
pled with data uncertainty. Our work was driven by the pradtusage of reliable ap-
proaches irCPwhich are computationally tractable. These approache®edound in
the UCSPframework in [Yorke-Smith(2004)] to tackle network design problems, and
more recently, in the renewable energy park placement @noblvith uncertain demand
and costs. When adopted in real life situations, howevetJBSPlacks the expressivity
of the information on the data whereabouts, which is alregiden in the problem defi-
nition. There is a need to extend classical interval coefficmodels to account for any
potential data distribution available. This dissertatshrows how this can be achieved
with little overhead, while enriching the solution setsguwoed with an encapsulation on
the data probability distribution.
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1.3 Contribution

Indeed our goal is to add expressiveness to the solutioketbable models while pre-
serving tractability. The choice of linear enclosure of da¢a distribution ensures both.
The main contribution of this work concerns the formal d&fom of a new interval arith-
metic and its implementation. We show that bounding a randanable distribution,
with two tight linearcdf distributions, is a safe enclosure at minimal overhead. We
also show how intuitively thedf-intervals framework describes values coupled with
uncertainty, using nativ€Ptechniques to propagate more information to the system of
constraints and the variable closure of the solution set.

In the novel framework, uncertainty of data defined in thebfm is represented
asProbability Box (p-box)cdf-interval coefficients which are input to the solver. Solu-
tion sets acquire additional quantitative information ethadds knowledge of the data
whereabouts.

1.3.1 Challenges

» Extend reliable models with quantitative information
» Preserve tractability

» Bounding ill-defined/ uncertain data whereabouts withatérring any assump-
tions on their distribution

» Reason withcdf-intervals by defining variable domains and constraintririee
rules.

1.3.2 Mission

Our work aims at addressing the need to reason about datkedouith uncertainty from
a language viewpoint. We required a domain ordering, mamnoforoperty, dominance
over thecdf andp-box notions. Such concepts and definitions are quite new t&Cte
paradigm. We also show how conventional reliable computiethods can be extended
effectively to account for bounded distributions.

We start by defining a new domain for reasoning with uncedaia. The key idea is
to combine the usual interval arithmetic approach with @sdaimension capturing the
cdf of the variable whose primary dimension (an interval of dilesin the real domain)
spans the value that the uncertain variable can take. Thik imtroduces this new
domain, why it forms gpartially ordered set (pose@nd how to define the conventional
arithmetic operations and their computations on this nemain. The entire exercise
makes it possible to define constraints over variables aditninain, where the solution
method deliver intervals for variables alongside the @h¥ragment of thedf.

The fundamental algebraic structure in our framework isctifeinterval. The main
idea behind this work is to express the data by an intervéalricludes all the information

4



1.4. Thesis Organization

along with its uncertainty. It is the interval which enclese set ofcdf-points defined

on 2 dimensions (20)The cdf-Intervals framework is employed to reason about data
with uncertainty inexpensively in @onstraint Logic Programming (CLBystem. Rea-
soning operations are exerted on the convex structurenegtpmints. They facilitate the
shrinking of the interval in order to obtain a solution sehile maintaining the interval
properties. Result of these operations, i.e. the solu@nis also an interval enclosed
by two bounds.

CP together withLP techniques are adopted to formalize the full system of con-
straints defined by thedf-intervals. Using thedf-intervals we seek the propagation of
values along with their probability distributions to thessm of constraints. Due to the
new defined propagation algebra more information is intceduto the closure, while
values along with their probability of existence are readizSuch realizations could be
useful for a better allocation of resources when a soluti@es and its probability is
produced.

1.4 Thesis Organization

The remainder of this dissertation consists of three pagtailthg our contributions:
where to apply thecdf framework, how to construct its algebraic structure and how
it works. We also show examples of real life applications laberate how to model
problems coupled with data uncertainty using ¢déinterval framework.

Partl. Context We start by describing the context: the basic concepts fayitiie pil-
lars which construct thedf-intervals; types for data uncertainty which exist in thal+e
world applications; and the literature review which diage® the different paradigms
which tackle data with uncertainty. We end part | with a corrgmn between the con-
structions of input data in different convex modealkCSE cdf-intervals andy-box cdf-
intervals.

Part Il. Framework we show how data given in the problem definition is represknte
in the cdf-intervals. We show how to extract the confidence intervats\ee compare
this presentation with existing approaches. We elabotaethieoretical construction
of cdf-intervals, and we show how to build them from a language p@nt. This,

in fact, paves the way to shape the language structure, visdoenain calculus, and
the arithmetic operations which are computed inDar@anner. As a consequence, we
implement the novel algebraic structure inference rulespractical framework and the
solver. To complete the full constraint system, we develepséem of global constraints
which adoptscdf-intervals to express and execute linear systems of comstra

Part 1ll. Applications to support the proof of concept, we tackle two different +eal
life applications: theNetwork traffic flow analysis problem (NTARInd the inventory
management problem. We show in this part how to utilizedtifeintervals framework
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in order to easily express the problem. We also comparedhéntervals framework
obtained solution sets, their significance, and the systerfofmnance with various ex-
isting approaches and techniques commonly employed inapglications. Finally, we
support our argument by comparing our framework with exgstechniques in terms of
expressiveness to model the original problems, additisigalificance gained, solutions
obtained, and system behavior and performance. The threeqgfdhis dissertation are
concluded by a discussion section which summarizes the pwiiris elaborated and
potential work to be considered in the future. The append@mahstrates the proofs
which form the theoretical framework of thelf-intervals and includes parts of thdf-
intervals solver implementation.
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CHAPTER 2

BASIC CONCEPTS

This chapter recalls fundamental concepts we use to clesisethe basic features of
our formal framework. These definitions can be foundStark and Wood41994);
Williamson and Downq1990; Gubner(2009; Berleant(1993; Glen, Leemis, and
Drew (2004). Readers familiar with those concepts can skip this chapte

2.1 From the Probability Theory

2.1.1 Random Variable

A random variableX : Q — R defines a mapping from an original sample spQc®
the real lineR. In other words, a random variab¥eis a function whose domain {3 and
whose range is some subset of the real ine

Property 2.1 (discrete random variable).assumes values from a finite domain

A typical example of a discrete random variable can be founani experiment of
tossing a die. The output can be any of the values, given istaofifinite domain,
{1,2,3,4,5,6}.

Property 2.2 (continuous random variable). maps the set of possible values over a
continum.

For instance, a value, that is given from a measurement gsasfebut not limited to,
temperature, height and rainfall, cannot be precise. Rangwiables involved in these
processes are continuous, because they can always olfiaitegimally more precise
values.

Random variables are denoted by capital letde,Z and values they map are de-
noted by lower-case lettersy,z.

Property 2.3 (probability space(R, 4, Py)).
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e Ris the real line.

* A is the Borelo-algebra of all subsets a generated by countable unions and
intersections of sets with the forfaco, X].

» Py is the set function assigning a numbefR] > 0 to each set A& £.

Definition 2.1 (probability distribution function PDF). assigns a probability to each
subset of the possible outcomes of a random variable fromngkaspace. It is a
function of x which contains all the information necessarycompute PE] YE in the
Borel field of events

Fx(X) = P[X < X] = Px[(—c0, X)] (2.1)

Property 2.4. Fx(c0) = 1 Fx(—o) = 0 X3 < % — Fx(x1) £ Fx(X2)

Definition 2.2 (the probability mass function p(a)). is the probability distribution
whose sample space is encoded by a discrete random variable iX positive for a
countable number of values mapped by X.

L i=12...
PX)=3 _ 0 all other values of x

Example 2.1. A data set X= {4, 6,8, 10,12 14} has 6 distinct observations and 12 dif-
ferent readings. The set of corresponding number of obiemaper value (frequencies)
Freay = {4,2, 2,2, 1, 1} shows how many times each distinct value in the set occues. Th
probability mass functionx{10) = 0.167 is computed by dividing the number of times
‘10 is observed by the total number of reading"

Definition 2.3 (the probability density function pdf). describes the relative likelihood
a random variable is to take a value from a continuous sammpes.

The probability of the random variable lying within a randevaluese R is given
by the integral of this variables density over that range, it.is given by the area under
the density function and above the horizontal axis and betvike lowest and greatest
values of the range R. f(X) is nonnegativé/x € R, and its integral over the entire space
is equal to one.

P{X e B} = f f(x)dx
B

Property 2.5 (probability distribution function of the uni form random variable).
defined over an intervdk, b]

o

(2.2)

IA
— —~+ ~+
vV IA A
[@ 2 @ D)

Fx(t) = ﬁ a
1

it is known that the distribution is equally (uniformly)dily to occur at any point lying
within the interval bounding point&, b]
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Property 2.6 (the probability density function (pdf) of a uniformly distributed ran-
dom variable). defined over an intervdh, b]

fx(X) = lea Vxa<x<b (2.3)

2.1.2 Cumulative Distribution Function cdf

Thecdf, is thePDF, it defines the accumulated probability density so far. Mormally,
Fx(x) is the probability that a random variab¥etakes on a value less than or equakto
On a discrete levekdf is the summation of the probability mass function; equivdye
on the continuous level, it is obtained by integrating ghebability density function
(pdf) up to the item valuex.

Definition 2.4 (cumulative distribution function). Given an item value x, with den-
sity functionf(x), and an unknown variable (commonly referred to as the reaked
random variable) X, thedf of x Fx(X) is the function:

Fx(X) = Z px(X) discrete random variable
X<X
X
Fx(X) = f fx(x)dx continous random variable (2.4)

Thecdf values range between [0,1].

In example2.1, thecdf value when the variabl¥ = 10 isFx(10) = 0.833; this value
is computed by accumulating the probability density fummtdf the data values prior to
10.

Property 2.7. Everycdfis monotonically increasing.

The cdf associated with a density function is always increasing .t data popu-
lation resides between two points havicdf values ‘0* and ‘1'. Thecdf slope increases
and decreases together with the population behavior:rfgsteriingcdf slopes represent
higher proportion of the population residence at lower vaales (conventionally named
quantiles).

Property 2.8. Thecdf of a uniformly distributed random variable over a given i
[a,b] is given by Equatior?.2

By observation, a uniformly distributeddf is graphically represented by a line
whose slope i%}—a between the two bounds of the intervallp]. The cdf of the variable
is O for all values belova and it is 1 for all quantiles greater thén

11
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2.2 Joint Cumulative Distribution Function

Operations can be performed odfs but carry a different interpretation than operations
over standard arithmetic calculus since they relate toaitiies. The joint operation
is essential to our solver and is recalled below. jtet cdf results from superimposing
densities of two random variables in a relation, each exgsicdf on its own.

Definition 2.5 (joint cdf). Fxy(x,y) Given two random variables X and Y, théjry(2)
Fxy(Xy) =P(X <X Y <Y) (2.5)

For independent variables(X < x, Y <y) = Fx(X)Fy(y).

When two random variables are involved in an addition retgtthe convolution op-
eration is an expensive joint pointwise product on their padensities and it produces
a density function.

Definition 2.6 (convolution operation).Given z= x +y, convolution is the probability
density function y{y(2); where both random variables X and Y engaged in the addition
take values up to x and y respectively; the resulting distrim is obtained by accumu-
lating the densities for each value ofzx + y € (-0, o).

AppendixA.3.1details the derivation of the convolution operation whidélds the
probability distribution of the sum of two random variables

discrete random variable

@ = D, KR E=X= ) xEZ=-()
X=—00 y=—0c0

Z

Fxv(2 = Z fxv(2)

X+Yy=—co
continous random variable

ot = [ 0ty Xdx = [ " -y W dy

(&) —00

Fxv(2) = j: ‘ fxv(2)dz

Example 2.2. In this example, we compute the convolution between theorandri-
able illustrated in the data set from examgld. and another data set ¥ {12, 15, 18, 21, 24}
with corresponding set of frequencies Reg {1, 3,6,5,3}. Eventually convolution is
computationally expensive because it is a pointwise ojmeratFigure A.2 depicts the
pdf and thecdf addition distribution of the two discrete random variables
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Fig. 2.1: Convolution of two random variable discrete dlsttions: (a) pdf of
X = {4,6,8,10,12 14} with frequencies Freg = {4,2,2,2,1,1} (b) pdf of Y =
{12 15,18, 21, 24} with frequencies Freg= {1, 3,6, 5, 3} (c) pdf of (X+Y) and (d) cdf
of (X+Y)

2.3 Stochastic dominance

In probability theory the stochastic dominance definestafipartial ordering on ran-
dom variables. A random variable is dominating another whesngreater in the order-

ing.
Definition 2.7 (first order stochastic dominance)Given X and Y, Y has a first order
stochastic dominance over X; or in other words X is domindtgd when

P(X > X) < P(Y > X) VX € (—o0, +0) (2.6)

In terms ofcdfs. Fy(X) < Fx(X) VX € (—o0,+o0). Example2.2 shows that the
random variableY dominatesX because computed valugX > 12) = 0.08 and

13
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P(Y > 12) = 0.94. Calculations are given by summing up probability déesitor quan-
tiles greater than 12. This computation indicates that tn@bleY is more likely to
occur at higher quantiles when comparedtorhis observation is because of the prob-
abilitic property, which enforces the sum of probabilities a given random variable
over the domain of real®8 must always be equal to 1. First order stochastic dominance
isillustrated in Fig.2.2@) VX € (—co, +00); it shows thatY is dominatingX with respect

to the first order stochastic dominance.

In the general casedfs under comparison might not be comparable under the first
order stochastic dominance. This illustrated in FA@ (b) and (c) for some quantile
Fx(X) < Fy(x). The second order stochastic dominance handles such tcadefined
an ordering among the random variables.

Definition 2.8 (second order stochastic dominance)f a random variable Y has a
second order stochastic dominance over X. Then X is donuirstéy :

X X
Fx <s Fv, f Fy(X)dx < f Fx(X)dx V¥X e (—oo, +00) (2.7)

(%Y (%Y

The integration otdf calculates the area under the curve frem to +co.

Property 2.9. Second stochastic ordering indicates that the mean of Xlésaat as high
as that of Y

Fig. 2.2 shows three examples in which we compare two random vasabknd
Y: Y has a second order stochastic dominance Bverall cases. We note that the first
order stochastic dominance allows us to compar@ndY in the first illustration Fig.

2.2(a) only.

2.4 Probability Box (p-box)

P-boxesare interval-probabilistic bounds adopted in the literatio enclose an impre-
cisely known probability distributiof-erson, Kreinovich, Ginzburg, Myers, and Sentz
(2003; Williamson and Downg1990. A p-box is a convex structure that embraces a
set of probabilities: f, F] denotes the set of nondecreasing cumulative distribstibn
andF, are respectively the dominated and dominant distributioands as depicted in
Fig. 2.3

Definition 2.9 (p-box). [F, Fx] specifies the probability box of a random variable X
whose distribution k is contained within the p-box bounds:

Ex(X) <s Fx(X) <s Fx(X) ¥X € (=00, +00) (2.8)

Wherexs is the second order stochastic ordering of the probalsilitie
Similar to numeric interval arithmetic, interval-probkdtic arithmetic is applied on
random variables. Given two random variabkésandY, Fyx € [Ex,fx] and Fy €

14
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Fig. 2.2: Stochastic dominance: random variat{esndY shaping 2 uniform distribu-
tions in (a) wherd=y(X) <s Fx(X) ¥YX € (=0, +00); in (b) and (c)dx € (-0, +0) Where
Fy(X) £ Fx(x) but [*_ Fy(x)dx < [* Fx(x)dx Vx € (~co, +o0)

(b)
Fig. 2.3:p-boxstructure: (a) the general case (b) when bounds are unifatisiributed

[EY,EY] are the uncertaicdf of X andY respectively. The joint distribution of andY
Fxy is unknown yet it is contained within the joint p-box struetuefined by the joint
bounds F.., Fxv].

Fyy <s Fxy <s Fxy (2.9)
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CHAPTER 3

L ITERATURE REVIEW

So far research effort towards formalizing and solvingdssgale problems coupled with
uncertainty by means of constraint systems is quite fewhénréalm ofOR, LP tech-
niques are easily adaptable since they exploit the problem & global perspective. By
means of simple linear inequalitielsPs provide optimal decisions in real-world situa-
tions on a scale. On the other hand, @fparadigm proved to have a considerable flexi-
bility in formulating real-world combinatorial problemk.aims at building frameworks
for fixed point semantics which result in narrowing the pblesdomains of solution.
Within the past decade approaches from @eandLP have been extended to handle
forms of data uncertainty.

3.1 Uncertainty in the conceptual world

The representation of uncertainty is debatable. To de&l eata surrendered by uncer-
tainty many techniques have been proposed in the literaitire Gum (1995 initiated
and introduced the International Organization for Stadidation in (1993). Nielsen
(2000 emphasized on seeking the root cause of uncertainty inrti#gm. Uncertainty
in the literature is commonly due to two main reasons: incigifit information which
yields errors, ill-defined data and ignorance; and fluchgatiature which a result of
future forecasts, a stochastic nature or a dynamically gihgrenvironmenterson and
Ginzburg(1996. This uncertainty can be associated with the set of vagldomains
or constraints in the problem definitidtaltings(2009. Hence, it is important to appro-
priately represent the uncertainty because it affects migttbe behavior of the problem
in hand but also its acquired optimal solution. Work has lsk@me to attach this uncer-
tainty to the problem definition in order to deal with it in tbenceptual world. Fig3.1
depicts a classification for the uncertainty found in thé weald and how it is identified
then represented from the problem definition to the coneéptorld.

The set of plausibility measures is the most general and aomapproach that
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subsumes all techniques which represent, deal and reasoh @dta coupled with un-
certainty in the conceptual world. They are classified by tagin categories: proba-
bility and possibility. The set of plausibility measureslude: probability measures,
Dempster-Shafer belief functions, possibility measurasking functions and relative
likelihood. The main idea is to map the set of possible wofldsan algebra to some
arbitrary partially ordered setalpern(2003]. We briefly define and distinguish the
difference between the concepts in the following:

Real World Conceptual World
Uncertainty Plausibility
input; 3
Information Dynamically

c . .
o ignorance changing c
b= Rel
% insufficient fluctuating =
© 3 Probability Possibility
g erroneous forecasts o
= )
o o«
o ill-defined stochastic
oy Singelton solution Set of solutions Probability measures Fuzzy logic
S .
g Reliable Convex g Monte Carlo Method| | Possibility measures
S b % Dempster-Shafer
§ Robust & belief functions
o

Satisfaction degree Ranking functions

distribution Relative likelihood
c oltput

Fig. 3.1: Classification of uncertainty

Probability is a well-known powerful technique that is best utilized whaimeric
uncertainty is in place. A probability measure maps setsnimlgebra over the set of
possible worlds to [0,1]. When the probability concept is@téd, two major obstacles
reveal: 1. numerical information is sometimes not fullyypded in the problem defini-
tion. 2. Every two events must be probabilistically compéavhich is not always the
case.

The sets of probability measures define and concentrate on lower and upper bound
probabilities. This concept is more appropriate when itasdhto represent the data
whereabouts due to ignorance or lack of information.

*The set of states or elementary outcomes an agent mightrtekednsideration
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3.1. Uncertainty in the conceptual world

Monte Carlo analysis [Hammersley, Handscomb, and We{4965] is the most fa-
mous probabilistic approach which incorporates staistwaluation of mathematical
functions using random samples. The method is computatiemsive and it requires
the application of a large number of independent random Esneach of which seeks
an output deterministically. Resulting outcomes are theggrated to form a numerical
probabilistic distribution. In this method, the larger thember of random samples taken
within a range, the more accurate results are obtained.

The Dempster-Shafer belief functions refer to the theory of evidence which was in-
troduced by Arthur Dempster, then developed by Glenn Shafee theory attaches a
degree of likelihood to the set of events. It is a modified ioeref the set of probability
measures where belief is consider as the lower bound pidpaliihe degree of evi-
dence varies between [0,1], and the sum of the support ogesethof possible worlds
must be equal to 1. We classify the Dempster-Shafer beliedtions under the umbrella
of the probabilistic world since bounds in the theory of evide are probabilities.

The Possibility measures are based on the well-knownzzylogic Zadeh(1965. The
main idea behind this logic is to attach a possibility measwarying between [0,1]
to each subset of the possible worlds. In the possibilisticldvcomputation is more
structured and well-defined. This fact justifies why resedends to adopfuzzylogic
especially when dealing with uncertainty in the conceptuaild.

The Ranking functions are utilized to order the set of possible worlds. This apghnoa
attaches a natural number or infinity to each and every pesséi. Higher numbers
mean greater degree of surprise associated with the set.

The Relative likelihood is used to order each and every set in the possible worlds
which are assigned a degree of likelihood that ranges bet{ze#]

Despite the fact that it is hard to distinguish between the data types, research
commonly differentiate between ill-defined informatiorddtuctuating data when deal-
ing with them. Reasoning about data coupled with uncestaises different mathe-
matical propagation techniques: convex models are faweotezh ignorance takes place
while probabilistic models are best adopted when the daalflactuating nature. Both
techniques yield an identical range of data values. Intemalysis are characterized to
be more conservative. They can often consider many unreagesstcomes along with
important ones. Probabilistic approaches add a quamétatformation that expresses
the likelihood, yet these approaches impose assumptiotiseatistribution shape in or-
der to conceptually deal with it in a mathematical manneblda.1 shows the relative
execution time for all models given that a deterministidanse takes time units as
described irFerson and Ginzburl996.
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Model | Execution time
Deterministic point estimate E

Interval analysis 4E

Monte Carlo NE whereN € [100,50000]
Belief and ranking K2E whereK e [20, 100]

Table 3.1: Relative execution timek is the execution time taken by a deterministic
model.N is the number of random samples

Solutions to problems coupled with uncertainty follow twaimapproaches: proac-
tive or reactive. The first approach use all the availableAtedge in order to provide
solutions which maintain the uncertainty in a robust manner irrespective of the
whereabouts still a solution is validated for the given utae data. Solutions for the
reactive approach are flexible, i.e. for any change, saiatinight be reused to produce
new ones which rely on previous states. Output solutionslassified, as shown in Fig.
3.1linto: a single solution or a set of solutions. The set of soh# obtained are fur-
ther classified as: convex, robust, having a satisfactigmegeor following a probability
distribution.

3.2 Implementation Techniques

Systems of constraints are usually embedded in declanatogramming languages in
order to obtain an intuitive descriptive algebraic stroetuThey are heavily used in
the problem solving environments where we need to find adloféssolutions which
satisfy a large set of constraints. The main idea behindetsetsing techniques is to
separate logic from control. This separation allows useessily extend and manipulate
existing programs. This is achieved by defining constraintsallow the solver to search
for feasible solutions. In a constraint solving frameworitiables are constraints over
different domains, then diverse query-answer mechanisams Artificial Intelligence
(Al) to Operation ResearcfOR) are used to find solutions respecting a large number
of constraints. Two main competing line of research adgptiose mechanisms have
emerged, they are classified &onstraint Programmin¢CP) andLinear Programming
(LP). Techniques for hybridization incorporating advantagesting in both paradigms
have been recently evolveHpoker(2000)].

3.2.1 Constraint Programming line of research

TheCPparadigm is a powerful technique that intuitively expressed formulates deci-
sion problems. They aim at building frameworks which regultarrowing domains of
variables based on a predefined set of constraints usinggoiatisemantic techniques.
A CSPconsists of a set of decision variables over some domain loesaand con-
nected by a set of relations (constraints). A constraintesplyiven this representation,
seeks an assignment to decision variables that satisfyethaf sonstraints. By means
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of predefined inference rule reduction, a constraint satwgimizes the search space
to be visited, then it uses backtracking, branch and bounkbcal search mechanisms
to acquire a solution within the reduced space. This prosebs-Complete. Global
constraints are problem specific constraints which mighadsted to the solver in order
to allow for a more efficient and effective search mechanigrtensions to theCSP
framework include: finding optimal solutions, associatprgference with constraints
and reasoning within a distributed environment.

Definition 3.1 (a classicalCSP). is a triple? = (X, D, C) where X is the set of n prob-
lem variables X= {x1, Xo, ..., Xn}, D is the set of n variable domains®{Dq, Do, ..., Dn},
and C is the set of t constraints €£{C,,C,, ..., Ci}.

Definition 3.2 (a constraint).Cj = (Rs;, Sj) is defined by the relationdk on the con-
straint scope $ = scop€C;) which expresses the Cartesian product of the variable
domains in the relation R

Definition 3.3 (a solution to theCSP®). is an n-tuple assignmet = {ai, @y, ..., an}
where a € D; and which satisfies (efined over a relation .

A given task is to search for one solution or all seG&Psolutionssol(®?). This set
is empty when theCSPis unsatisfiable. CSPhave been tackled by diverse techniques
and they became a very interesting topic in many fields of agerscience and beyond.

Example 3.1 (Course scheduling)We illustrate the different constraint programing
approaches using the course scheduling example descrilfeadtings (2006. Consider

that we need to schedule a short course, with lectures, igalcessions and tutorials,
over three days. This schedule can be modeled in a detetimifGiSPusing9 different
variables labeled asjx where i symbolizes the day number and j signifies the session
type (L = lecture,2 = practical session an@ = tutorial). The domain of each variable
varies between0, 1,2, 3,4, 5} indicating the number of sessions assigned on a given
day. The set of constraints are defined as follows:

3
Vi )%= 2 (3.1)
=1
3
ViY xj€12...,5 (3.2)
i=1
3 3
Z xj €10,11,12 (3.3)
i=1 j=1

The first constraint indicates that the number of sessiomsdpg cannot be less than
2; the second constraint states that the schedule must cobttiveeri to 5 sessions
per type; and the third constraint ensures that the total hemof sessions over the
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three days should be betwe&fito 12. Fig. 3.2 depicts the modeling process of the
course scheduling problem and one solution instance gigen the search space which
satisfies all defined constraints in the deterministic case.

Type Type
U w| e | e | w|ra | 1@
g 1 X11 X12 X13 g 1 1 0 1
8 2 X21 X22 X23 8 2 1 1 0
3 X31 | X32 | Xs33 3 0 2 4

CY (b)
Fig. 3.2: Course scheduling problem: (&)ariables model, (b) one solution instance

3.2.2 Linear Programming line of research

LP techniques are easily adaptable to provide optimal detwssioreal-world situations
on a scale. UnlikeCP which explores the problem partially through variable doma
propagation techniquekP exploits the problem from a global perspective using simple
linear inequalities which geometrically correspond to avex polyhedroh. An LP
problem identifies a set of decision variables, a set of firwastraints and a linear
objective function.

Definition 3.4. a classicalLP problem is described as:

mincx /l objective function (linear)
subjectto Ax b I/l resource constraints
x>0,xeR"

Where A is an nx n matrix.

Once anLP problem is formalized we can infer its dual. The duality thes a
strong tool that is well-suited for sensitivity analysiglarariable domain filtering.

Definition 3.5. the dual of an LP is described as:

maxab /l objective function (linear)
subjectto 1A <c // resource constraints
1>0,1eR™

Property 3.1. anLP problem is characterized to be:

"The polyhedron is the convex region enclosing the set offfiasolutions and that has vertices each
of which is a basic feasible solution
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#1. Unbounded when none of the feasible solutions is optimal
P2. Infeasible when no feasible solution exists
#3. Have an optimal solution.

Both the primal problem and its dual yield the same optimhaltemn when they are
bounded and feasible (‘strong duality’). Generally theéropt solution of arlL.P problem
is obtained using the Simplex method which iteratively dsiia sequence of adjacent
basic feasible solutions. This Simplex method is based @g#ometric structure of the
problem.

Definition 3.6. anInteger Programming (IPproblem is arLP problem with integrality
constraint

Definition 3.7. a Mixed Integer Programming (MIPproblem is anLP problem where
some variables coupled with integrality constraints

Definition 3.8. the convex hull tightest possible convex set containingilbéaintegral
solutions

The course scheduling problem in examplé can be represented . Yet since
the problem consists of 9 variables, we couldn’t represegtaiphically. To easily vi-
sualize the geometrical feature of BR problem, we refer to a production scheduling
problem that consists of two variables and two resourcesvaich is studied thoroughly
in [Thipwiwatpotjana(2010)].

Example 3.2. Production scheduling problem A producer depends on twanme
sources x and » (supplies of two grades of mineral oil) in the manufacturfgwo
products A and B and wants to minimize the production cose froblem informa-
tion and set of constraints are listed in Tatde2 and theLP model deduced out of this
information is described as follows:

minz = 2x; + 3%,

subjectto 2x; + 6.1667%, > 17483,
3%y + 3% > 16175,

X1+ Xo <100,

X1, X2 > 0.

Where the first constraint describes the situation wherestita of supplies which
form the product A should meet its demands. Similarly, tlcersd constraint ensures
product B demands satisfaction. The constraipt+xx, < 100 sets the limit on the
supply. Fig.3.3illustrates the derivation of the optimal solution by dragyithe linear
inequalities and obtaining their intersections to searohthe minimum possible cost.
Using thisLP approach we obtain one optimal solutigr;, X;) = (37.84, 16.08) that
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Mineral Oil Products Costs | Limit on the processed
(fl.oz.) Type A Type B | (£/fl.oz.)| amount of mineral oil
(oz.ffl.oz.)| (oz./fl.oz.) (fl.oz.))
X1 2 3 2 1
X2 6.1667 3 3 1
> > = <
Demands
17483 | 16175 z 100

Table 3.2: Production scheduling problem definition

achieves a minimum cost z $12392. This optimal solution is derived from the set
of feasible solutions bounded by the polyhedron depicteléign 3.3. Note that this
solution was obtained using the graphical property of linggequalities which tackle
the problem from a global point of view.

X
10
_..%X
5N
¥ \\/
8ot % A

40} ]
-
N i
320

I
*®

N . . . ~ 5 x
=0 20 20 60 80 ——00 '

X% =37.84

Fig. 3.3: Polyhedron (feasible region) derived for the puotion scheduling problem in
example3.2

3.3 Modeling and reasoning with uncertainty

We describe existing uncertainty in the conceptual worlee réiew in the context of
uncertainty how different approaches are adopted in thésimgntation of the models
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3.3.1 Probabilistic/Stochastic paradigm
General Description

Probabilistic models are the most generalized statishiasieworks that articulate prob-
lems questing decision analysis. They aim at numericallyesenting the uncertainty
brought into the problem under consideration. Uncertamgyescribed in a probabilis-
tic format assuming a probability value for each scenari@prdaches for stochastic
programming search for optimality of one given scenariovjgied in the problem. By
means of statistics and probability distribution propestiexpectation, variance and cor-
relation, a stochastic model iteratively generates piteatitputs for the set of over-
whelming input randomly distributed data; this iterativegess produces probable so-
lutions that follow random distributions and accordinghg trealization of the projected
maximum likelihood outcome is explored.

Input data

Input data, in the problem definition, is often observed theotto accurately incorporate
the distribution of the random process, or is based on lstiodata to serve for a bet-
ter realization of future forecasts. Statistical toolskseedraw the best fit probability
distribution of the problem under consideration.

CP implementations

Probabilistic CSPs define the uncertainty over the presence of constraintshdin t
model, each constraint is associated with an independebiapility value that evalu-
ates its degree of satisfaction. Final decision produceasaignment that maximizes
the probability of consistency which satisfies the set ofgiien constraints. Implemen-
tation of the Probabilisti€ SPscan be found in the well-known soft constraint frame-
works: ValuedCSPSchiex, Fargier, and Verfailli€l999 and semiringBistarelli et al.
(21999.

Example 3.3. Consider three additional constraints in the course scliaduCSP, de-
tailed in exampled.1, each is associated with a probability value. New constsaare
defined as a probabilisti€SPas follows:

3 3
D, X2z ) % (P=06) (3.4)
i=1 i=1
X32 > X12, (P = 05) (35)
3
D %2<2,(P=02) (3.6)
i=1

Where the number of practical sessions must be greater tramamber of lectures;
on day3 the number of practical session is greater than that of diaynd the total
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number of practical sessions is less tHanEach constraint is associated with a prob-
ability value: 0.6, 0.5 and 0.2 respectively. The final decision is an assignment to all
variables with a maximum probability. Fi§.4shows an assignment with this maximum
probability.

Type
]| ra | Te
o 1 1 0 2
813 oz

Fig. 3.4: Course scheduling problem: one solution instaircéhe probabilisticCSP
representation

Mixed CSPs Fargier et al(1996 describe problems with unknown set of constraints.
Variables are divided into controllable and uncontrokaparameters. The second type
of parameters might be associated with a probability distion. A final decision is a
reliable solution that satisfies all probable occurrendgmometers with the maximum
possible probability value.

Example 3.4. Referring to exampl&.1 where we suppose that tutorials on daand
lectures on day2 will be determined later upon reveal of the tutor scheduley. B.5
shows that both variables;xand »; are uncontrollable and are given possible do-
mains in the initial statg0, 1} and {0, 1, 2} respectively. Assume that the probrability
distribution over uncontrollable variables is predefineceo each value in the domain
as{0:031:07} for xy3and{0 : 05,1 : 04,2 : 0.1} for xp3. Accordingly, each so-
lution in the search space is associated withossible solutions for both variablegsx
and %1 in the MixedCSP, and each combination resulting from the Cartesian product
of the uncontrollable variable domains might be associatéti a probability value (the
intersection/product of probability values involved).€eT$plution suggested in Figg.5

is associated witld possible domain combinations sing® 0},{1, 2} should be omitted
from the solution space in order to ensure that the last caidt (indicating that the
total should be betweegi0, 11 12}) in the problem is satisfied. Obtained solution has a
maximal probability value equal 3%

Dynamic CSPs deal with problems that change over time in a sequential erann
Those changes can affect. variables, domains, constraitiésms of scope and defi-
nition. Each problem in the sequence is defined from prevataies. Dynami€CSPs

in Mittal and Falkenhainef1990 focus on a subset of variables and constraints that
are subject to change (activity constraints). Solving DyitaCSPsfollow three main
strategies: minimize the need for change by seeking a rebligion; minimize the cost
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Type
| : L) | P2) | TR)
o |1 2 0 X13
>
g2 Xo1 | 2 1
3 0 2 2
X13 X21 Prob
0 0.15
0< 1 0.12
2 0.03
0 0.35
1< 1 028 @
2 0.07

Fig. 3.5: Course scheduling problem: one solution instaimcéne MixedCSPrepresen-
tation with a maximum probabilit.93

of change by acquiring a stable solution; and minimize tlaetien time by questing
quick solutions. Solving strategies are concerned witeeghmain types of problem:

1. Unknown future: this type of problem is tackled using tbeal repair methods
which apply minor modifications on assignments from presipuoblem states
until an acceptable solution is obtained. The min-conflietiristic detailed in
Minton, Johnston, Philips, and Lai{d@992 minimizes the number of unsatisfied
constraints using problem dependent heuristics. The L@bhahges algorithm in
Verfaillie and SchieX1994) resolve the conflict by partitioning the problem vari-
ables into three sets based on their assignments: fixedgctubjbe modified or
unassigned variables. The algorithm tempts to apply madidios on the assign-
ments of variables in the second set until it reaches an aibt@ssolution.Petcu
and Faltingg2005 retain solution stability by adding new special constisim
be satisfied.El Sakkout and Wallacé2000 define linear minimal perturbation
functions over a solution in a prior state, then they are defims objective in the
new problem stateBartak, Muller, and Rudové&004) extend these functions to
solve over-constrained problems.

2. Unknown type of change: solutions to this type of probldoiew the oracle
approachvan Hentenryck and Le Provogt99]). In this approach the structure
of prior states in the sequence are retained and solutionevigproblems main-
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tain the same path (fruitless sub-trees are pruned fromeifuels space)Jussien
(2003 adds explanations (problem-specific constraints) to thelpm structure
which support the change during the search.

3. Uncertain information about the change in the futurengigthe recurrenCSP
approachWallace and Freudd1998 to record the source and frequency of the
change. The aim is to find a robust solution that maintainp@dkible changes.
This type of solution is characterized to be proactive pessive of the change.
Note that Stochastic CSR¥alsh(2000 and Branching CSPsowler and Brown
(2003 are different forms of the recurre@SPapproach

Other forms of Dynami€ SPcan be found in Ope@SP-altings and Macho-Gonzalez
(2009. They are generally found in a distributed environmentnghiee set of variables
and their constraints are initially defined but domain valaad tuple relations are re-
vealed over time. Open CSPs follow an interactive appraachma et al(1999 where
changes result in the extension of domains and tuple ratidhey are acquired online
by querying the network resources for available infornratibhe querying mechanism
in this type of problems is usually the most expensive opmrat

StochasticCSPs exist in two forms: policy-based Walsh(2000 and scenario-based
Tarim et al.(2006. The policy-based approach, like Mix€5Ps classify variables into
controllable (decision variables are assigned the OR naafesuncontrollable (stochas-
tic variables are assigned the AND nodes). It is a multistagbabilisticCSPwherein

a probability distribution is associated with the domaireath state variable. Requests
alternate states and decision variables. Similar to Pitiiad CSPs a solution is an
assignment of decision variables that maximizes the pibtyabf consistency. The
scenario-based approach exhaustively builds all posséikeof scenarios based on the
input probability distribution. Each path in the tree is@sated with a probability value
and each scenario is considered as a clas§i&®ton its own. The scenario-based ap-
proach reacts to values suggested by stochastic variabtifdrent manners.

Branching CSPs Fowler and Browr(2003 follow the Markov decision process MDP
in Puterman(2009 to model sequential decision problems with a lack of knolgée
about input variables and their associated set of conttraWfariables are dealt with as
soon as they are revealed by time, in a sequential manneenfbariables are associated
with a probability value. A querying mechanism is exertddach step, in which a new
added variable is assigned a probability value that maxsiilze global expected utility.

Example 3.5. Consider a modified version of the course scheduling prolmesrample
3.1 For simplicity, a list of constraints requesting the alidion of one-hour time slot
of lectures and practical sessions in one room are reveaieseguence. (A) one hour
lecture followed immediately by a one hour practical; (Bptpractical hours; (C) one
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hour lecture followed later by a one hour practical; (D) oneun lecture. As soon as
they are issued each is given a time slot (revenue) or rajecte revenue). The aim is
to maximize the overall expected revenue. Bdi depicts the decision tree and shows
how to derive a solution instance for the Branchi@§Pwhich has a maximum overall
expected revenue equal14.88.

A L
y w
B « Xp1 C«— X2

0 C « X2 D « XL1 0

Periods Periods Periods Periods
11213 112 3 112 | 3 112 | 3
Lo | 0|0 O |Ci| O D|Ci]| O 0| Ci| O
P| B |B| 0 B | By | Co 0|0 |C 01 0 |C

Pr=012 R=6 Pr=048 R=15 Pr=012R=12 Pr=028 R=9

Fig. 3.6: Course scheduling problem: one solution instaimcthe BranchingCSPrep-
resentation with a maximum overall expected revellLlg8

LP implementations

Sampling Techniques Sampling techniques approximate a large number of scenario
to be solved in a deterministic manner. Generally, the msdgiven as:

miny{c"x : Ax < b}, and Pr{(A,b) = (AS,b%)} = ps,¥s=1,...,S (3.7)

One of the two methods is adopted: 1. estimating coefficiant$ right-hand sides
within a decomposition scheme; 2. generating sample prabighich are solved using
a deterministic algorithm. The quality of the solution Seattdifferentiates between
various approaches is how close the objective value is tartieeoptimal objective of
the problem.

Sampling techniques in the literature can be found in: GiMdate-Carlo, Monte-
Carlo-Pre-Sampling, Importance Sampliiidanger (1999. The implementation of
these approaches can be found in the DECIS/GAMS interfaaeubes the CPLEX
solver callable libraryOptimization (1989. It is shown that both the Crude-Monte-
Carlo and the Importance Sampling approaches extractitjgardf the random param-
eters from their distributions without/with variance retlan techniques respectively.
The Monte Carlo pre-sampling method defines the parameterstioe sample of the
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random distributions. DECIS’s implementation computespproximation of the ob-
jective value along with a confidence interval. It was showrnnfanger (1992 that
sample size plays a major role in the quality of the solutieinobtained. Higher values
of the sample size yield solution sets which are closer tootitenal value. However,
increasing the sample size is computationally exhaustive.

Other sampling techniques which seek the decrease of theetuohLP problems
solved are: the Sample Average Approximation and the Ssbichiaecomposition meth-
ods. The former is based on the well-known Monte-Carlo satoth method. The
problem is iteratively solved deterministically on esttiroas of a random sample. The
method uses decomposition and branch-and-cut to compuatemaximation of the ob-
jective functionVerweij, Ahmed, Kleywegt, Nemhauser, and Shag2603. On the
other hand, the Stochastic Decomposition is a two-stagiasbic programming algo-
rithm that uses random observations of random variablegsd& lbbservations are used
in a deterministic Benders’ decomposition algorithm ascueace of incumbent solu-
tions which converge to a unique optimal. The stochastiohposition as pointed out
in Sen, Zhou, and Huan@01J) is known to have a faster computational speed when
compared to other sampling techniques.

Mean risk model [Markowitz (1952)] characterizes the uncertainty by two different
features: the mean, which describes the expected outcodnhamisk, which evaluates
the dispersion from the mean values. In this model, a tréidaralysis between the
mean and the risk is achieved using a multi-objective ogtitimn technique that maxi-
mizes the mean outcome while minimizing the risk factor. ®hgective function of the
mean-risk model is rewritten as:

maxcxX— Ax/Vx x>0

WhereV is the variance coefficient matrix which contains the désrafrom the mean
values of the variable coefficients.

Chance-constraint model Charnes, Cooper, and Symor{d958 andPrekopg1973
searches for feasible solutions which are reliable in tlverguncertain environment.
Constraints are associated with a probability degree @ffaation which is maximized
in the reasoning process. A chance-constraitnodel is reformulated as:

maxcx: st.P(Ax>b) > a, x>0

Wherea € [0, 1]. We used this model in Chapt®0, as a linear programming interpreta-
tion of the inventory control example, in order to exert afpenance analysis of models
having different uncertainty interpretations.

Recourse/multi-stage model [Dantzig (1959] partitions the decision variables on
two-stages: the first is solvable using a determinis#c The second stage is a subse-
quent of the first-stage decision and the actual realizatighe uncertainty parameters.
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It is a corrective step which filters infeasible values issfrem specific realization of
uncertainty that is based on a random distribution. Exterssio the model exist in
studying the convexity of the recourse function when thengefirandom distribution is
discrete Wets (1974] and developing scenario-based policies through decsitipo
techniques for continuous uncertain parametBigpe and Louveaux1988]. The two-
stage is further extended to a multi-stage formulation tvkwgilds a scenario-based tree
which uses the uncertainty in the filtration proceBedkafellar and Wet$1991) and
Sen and Higlg1999)].

Example 3.6. Refer back to the production scheduling problem in exar3gte The
manufacturer should decide and plan ahead the productidredicle and needed re-
sources to meet the uncertain customer demands before thagalized. This plan
needs to maintain the minimal possible production cost.asecvhen demands are not
satisfied a shortage penalty is added. Given that

A1=1{1:1/4,2:1/2,3:1/4),4,=1{5:1/6,6:1/2,7 : 1/3}
by = {149 : 512 180 : 3,211 : 1/4},b, = {138 : 4,162 : /2,185 : 1/4}

where{v : p} indicates the value and its probability of occurrence, the-stage re-
course model is formulated as follows:

min 2x; + 3%z + E,Q(X1, X2, {)
St.X1 + X <100 %1, X > 0. (3.8)

£ is the random vectofay1, &2, . . ., Bmn, b1, Dy, . . ., by), definingd;; and by as random
variables with m number of constraints and N possible sdesagach of which has a
different probability of occurrence. Hence for eack [L, 2, ..., 81, we have:

Q(X1, X2, gj) =7 ma>{bi - ailxl - aizxz, 0} +12 maxbé — 3X1 — 3%, 0}
=max &1 + 12y,
stalx +alo + i) 2 b, 3+ +ya(l)2bl yy220 (39

Where7 is the penalty cost when there is a shortage in the productidype A. Similarly,
12is the shortage penalty cost of type B. This formulationdgieln optimal solution of
x; = 31L80and % = 29.87 with a first-stage minimum co&6321$and a sum of costs
15538% This optimal solution is violated with minimum probalyildf 111 = & by the
constraint % + 5x, > 211

The Minimax Regret models Eldar, Ben-Tal, and NemirovskR004) seek the miti-
gation of the given uncertainty rather than anticipatingTihis is done by defining the
regret function which is the solution deviation from theetmbjective value of the prob-
lem. The model constructsset of deterministic scenarios. The aim is to minimize the
maximum regret function (‘worst regret function®) that isedto uncertainty and which
is identified asR(x) = maxc' x— ()}, k=1,2,...,N
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Example 3.7. Consider the production planning example with uncertaimédeds for
type A and type B are given by & {149 180,211 and bp € {138 162 185 respec-
tively and their production schedule is given by a {1,2,3} and a» € {5,6,7}.
The worst-regret function which needs to be minimized(ig,R2) = max2x; + 3x; —
Z(ay1, a1, by, )}
Z({k) = z(all, aio, bl, bz) ‘= min 2X1 + 3X2
St ariXq + agXe > by, 3xg + 3% > by,
X1+ X2 <10Q X1, X2 > 0.

The minimum value of z in this case9a74, found when g = 3, aj» = 6, by = 149
and Iy = 138 Consequently the model can be rewritten as:

MIiNR(Xy, X2) = 2X1 + 3% — 94.74
St. X1+ 5% > 211 3x; + 3% > 185

X1 + X2 < 10Q X1, Xo > 0.

Obtained maximum regret from this problem is R 6591 with x; = 2433 and X, =
37.33. This output solution signifies that not knowing the valugsmin the uncertain
sets (a1, a12, by, and b) the worst regret based on the choices of the optimand %
is 65.91%
Benefits

 Flexible enough to describe the uncertainty nature ofweald problems

» Employed when we involve large data input sets

» Analytical calculations using differential equation® adthe most expressive be-
havior representation paradigm’

» Stochastic models are best candidates when forecastinge faxpectations are
required.

Drawbacks

» Not flexible enough to represent problems with ill-definedad in this class of
problems the probability distribution of random input adalies is unknown.

» Representation of large scale systems of differentiahgops is infeasible

» Exerting point-by-point convolution for probability digutions is an exhaustive
computation

 Stochastic models are scenario-based hence the seaprbiress depends on the
nature of the current situation or the scenario being egglor
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* Itis based on exhaustive search techniques thus does a@trgee optimal solu-
tion exploration in large scale problems.

* Due to its exhaustive search nature, research that setdgrdting stochastic
paradigm into other methods is quite few

Output solutions

Analytical calculations are involved in the propagatiomgass. Such calculations in-
clude thorough point convolution of the provided input ramddistributions. They typi-
cally rely on differential and integral equations ‘conviddi product' to derive the output
random distribution.

* Itis a typical representation of the random element iniced in the problem

 In order to explore the tree-based scenarios, generictsé¢achniques are em-
ployed: tabu search and genetic algorithms

* Iteratively produces randomly distributed outcomes framdom input data

3.3.2 Possibilistic paradigm
General Description

The aim of introducinguzzymodels is to approximate the probability distribution by
a set of intervals (called alpha-cuts). This is to ensurephfi@d computation when
Zadeh's extension possibilistic theorem Ziadeh(1969, is applied on the produced set
for reasoning about the data. Examples of formalizing thesidistic distribution to
approximate real data uncertainty imposed by the measutepnecess can be found
in Mauris, Berrah, Foulloy, and Haur@000; Mauris, Lasserre, and Foulld2001);

Van De Ree and Jagé€i993; Urbanski and Wsowsk{2003; Ferrero and Salicone
(2009; Mauris (2007). Fuzzymodels are best used when the data is ill-defined; i.e.
its probability distribution is unknown. They are conseiwa by adequately describe
uncertainty in measurement resulting from ‘systematioreflGum (1995)].

Input data

The possibilistic distribution is built based on a compw&hdard deviation: assuming,
in the general case, a unimodal and symmetric distribufitimei probability distribution
is not known:

* Input data to the model that results from the measuremeaeps is often uncer-
tain or erroneous.

e Data is symbolized by two main intervals (alpha-cuts): stgkernel) and best
(support) bound approximation of the probability disttibn. This is provided by
assuming a standard deviation for the distribution beirgeoled.
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» Formalizing the possibilistic distribution presumes &oltbws a generic probabil-
ity distribution: Guassian, Triangular, Rectangular an&kaped Gum (1995].

CP implementations

Fuzzy CSPs Dubois, Fargier, and Prad&996 Attaching fuzziness t&P formalism
has been thoroughly researche@P models based on the possibilistic theory aim at
providing a degree of ‘expressiveness' to traditioG& approaches in order to look for
robust solution: a solution which successfully satisfiesnasly realization of data as
possible. However, the degree of imprecision is implentnteconstraint tuples: in a
discrete manner. There is a lack of investigation for camtirs input data and subse-
guent solution space regarding this approaCl.implementations following théuzzy
membership approach are used to describe soft consthesgsguer, Rossi, and Schiex
(2009 and prioritized constraintSchiex(1992. The former attaches a level of sat-
isfaction preference to constraints. Solutions to the lprabare those with maximal
constraint satisfiability. The priority constraint modetsa priority degree which quan-
tifies the satisfaction degree of the constraint. The airo satisfy the most important
constraints.FuzzyCSPs can be intuitively integrated into soft constrainesngworks:
ValuedCSPSchiex et al(1995 and semiring8istarelli et al.(1999. During the search
process preferences and priorities are used to suppore#nelrsheuristics which focus
on the most promising instances.

Example 3.8. Consider thefuzzy version of the course scheduling problem in example
3.1, where each constraint is associated with a degree of pafar. For instance, Pro-
fessor A is assigned the lectures of the course and she ptefgive four lectures. Dr. B

is assigned the practical sessions and he prefers to gieettiinally, Dr. C is assigned
the tutorials and prefers to give three of them. TaBlg describes the course session
assignments along with their preference degree. The retbteopredefined constraints
in the problem are classified as hard constraints, hence sheyld be completely satis-
fied, i.e. their satisfaction degree provided in flaezy CSPmodel is assigned a value
of 1. Fig. 3.7illustrates two solutions to the problem with differentistiction degree.
Note thatfuzzy operations select the minimal degree of satisfaction whmerstraints

in a fuzzy relation are in conjunction. Accordingly the first solutigields afuzzy de-
gree of satisfaction equal 10.8. During the search the best solution has the maximal
satisfaction degree.

LP implementations

Fuzzy LPs [Rommelfangef1996)] definefuzzycoefficients on constraints and/or ob-
jective function. In order to reduce the cost of gathering ¢xact information, they
solve the problem iteratively. At the beginning a ‘compreensolution‘ is perceived
then it is further improved in subsequent steps. They workimmfing a ‘compromise
solution* which iteratively realizes better solutions tefuzzyproblem. Variations of
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Sums of Tuples Assigned
1 2 3 4 5 Otherwise

lectures 2.%1]/04 06 08 1 08 0
practicals Y3,%, [06 08 1 08 07 0
tutorials Y3, x3 |06 08 1 Q8 07 0

Table 3.3: Production scheduling problerfuzzy constraints and their satisfaction de-
grees

Constraint Assignment Sat

Sum Degree
Sessions per Day 2,4,4 10 Type
Total Sessions 10 10 J
Lectures 3 0.8 [ LD | PR TE)
Practicals 3 10 o 1 1 0 1
Tutorials 4 0.8 8 2 2 1 1
Overall Satisfaction Degree).8 3 1 2 1
Constraint Assignment Sat
Sum Degree
Sessions per Day 2,4,4 10 Type
Total Sessions 10 10 J
Lectures 4 10 i LD | PR TE)
Practicals 3 10 o 1 1 0 1
Tutorials 3 10 fDU 2 1 1 0
Overall Satisfaction Degreet.0 3 0 2 4

Fig. 3.7: Course scheduling problem: two solution instanegth different satisfaction
degree

the problem representation can define a combination of amsbsoft constraints. The
fuzzyLP formulation depends on an ‘extended addition‘ that is basethe ‘Yager’s
parametrized t-norm‘ and tHazzyL P can be in the form:

61X1 ® 62X2 BN ) éan — Max
StAIX. @ AXp - ® AnXn<Bi, i=1,...,m,

X1, X2,..., %X >0

WhereAjj, B;,Cj fori = 1,...,mandj = 1,...,n are defined afuzzysets inR. The®
is afuzzy'extended addition* and is thefuzzyinequality.

Example 3.9. Recall the production scheduling problem in exantpl® constraint co-
efficients in thduzzy version of the problem are defined fugzy membership function.
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For instance:

1=1{1:1/3,2:1,3:1/2},8,={5:1/3,6:3/4,7:1)
by ={149:1/2,180 : 1211 : 2/3},b, = {138 : /3,162 : 34,185 : 1}

where{v : p} represents the value and its possibility. The problem besom

min2x; + 3%, + EA(S'§")
St.X1 + X0 <100 Xg, Xo > 0.

To simplify let U, = ST(max{B - A 0})), M(U,) is the average value of the uncertainty
at a satisfaction levet, and EAQ) is the mean of NU,) for all a-levels. Let § =
[7,22], 8" = [01, 817, 01 = maxbs — &1x1 — &%, 0) and @, = max(b, — 3x; —

3X2, 0}. The problem definas-levels over the different membership functions defined on
variable coefficients. Solution to the problem is the setllgb@ssible combinations of
the piecewiser-levels, each is delt with separately as a simple cti§pprogram. The
a-level sets fob; — 811X — A1

a €[0,1/3] = M(U2) = 180- 2x; — 6x;

a € (1/3,1/2] = M(U}) = 180- 2.5x; — 6.5,
a € (1/2,2/3] = M(U2) = 1955 — 2x; — 6.5,
a € (2/3,3/4] = M(UL) = 180- 2x; — 6.5,
a € (3/4,1] = M(U2) = 180-2x; — 7x,

and forb, — 3x; — 3%,

a €[0,1/3] = M(U?) = 16167 - 3x; — 3%,
a € (1/3,3/4] = M(U?) = 1735 - 3x; — 3%
a € (3/4,1] = M(U?) = 185- 3x; — 3x,
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3.3. Modeling and reasoning with uncertainty

The objective function can be rewritten as :

1

%) + 3% + 7 f * max(180— 2x; — 6%, O}dar
0
1

+7 ﬁ * max(180— 2.5x; — 6.5%,, Oldar

3
2

+7 ﬁ * max(1955 — 2x; — 6.5%,, Olda

2
3

+7 ﬁ " max(180— 2x; — 6.5%,, O}da

3
1
+7j; max180— 2x; — 7Xy, O}da
b

1
+12 f * Max(16167 — 3x, — 3%, 0)da
0
3

+12 fl " max(1735 - 3x; — 3%y, Oldar

3

1
+12ﬁ max{185— 3X1 - 3X2, O}da
1

The system yields a unique optimal solution with an objectiglue R = $13937,
X; = 4563and X, = 16.04

Output solutions

The authors in Mauris, Berrah, et al(2000; Mauris et al.(2001); Van De Ree and
Jager(1993; Urbanski and Wsowsk{2003; Ferrero and Salicon€004] provided
different propagation techniques for typical possiktististributions usinguzzysets.
Equivalent to the joint distribution function in probaktic domains, the key propagation
technique infuzzymodels is the T-norm operations. It is an extension of irlebased
min/max operations that is performed on each alpha-cutvalten thefuzzypossibilistic
approximated distribution. Result on the discrete powellies the union of all operations
exerted per granule.

Benefits

» Operations on data using the possibilistic theory are knthan other available
techniques which use the probabilistic reasoning.

» Exert the ‘Dominance possibility* effect; i.e. it is a pessstic approach provided
that output result is an upper bound of the solution set.
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 Unlike interval-based approach, the possibilistic disiion provides worst and
best case scenarios represented respectively by the s@ubthe kernel of the
possible solution set

Drawbacks

* In the case of a full knowledge of the input data probabditstribution, possibility
technique is less adequate in expressing the problem undsideration when it
is compared to probabilistic approaches

» Propagation is based on interval-based framework (waist scenario), it is typ-
ical to interval-based approaches in its computation aagdaming, and it doesn’t
have an effect on the uncertainty degree. The solution sgdaege and further
exhaustive search needs to take place.

» The lack of complete knowledge representation yieldsdueate realization of the
solution space

3.3.3 Reliable/Robust paradigm
General Description

Data uncertainty in reliable paradigms is bracketed by ermtructures: interval or el-
lipsoidal. This structure in turn assigns safe-guards fimreous and deviated measure-
ments to guarantee that all data is enclosed in the model.ei#awit does not provide
any knowledge about the population distribution of the inpeasured data. Reasoning
using convex modeling approaches is constructed on theregtpoints of the structure,
unlike exhaustive point computation found and exerted reoparadigms.

Input data

Ideal model when input data uncertainty comes from ill-dedilor erroneous measure-
ment. Data is represented by a convex set which embracesoaipd information
within its end-points.

CP implementations

Numerical CSP [Benhamou and Old€d997)] uncertain data is embraced within in-
tervals. The framework provides an inference mechanismnterval constraints de-
fined over linear and non-linear systems. It is mainly intied to solve problems of
real-intervals by means of interval-based techniqueshilrmodel the propagation is
exerted only on the bounds enveloping real interval domangput realizations are in
turn interval bounds guaranteed to contain the actualisalaif the problem in hand.
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3.3. Modeling and reasoning with uncertainty

Certainty closure [Yorke-Smith and Gervef2009] associates uncertainty to con-
straint coefficients. Interval coefficients in this moded ased to bracket the ill-defined
data given in the problem definition. This is exerted by shg@ Normal distribution
over the measurement (here dealt with as the Normal disrib@average). Interval
bounds are then assigned the maximum and minimum valuesltm@the majority of
the Normal distribution data population. This frameworks together modeling and
solving methodologies from the linear programming into @@ paradigm to provide
reliable and efficient approaches for uncertain constresblpms.

Example 3.10. Consider the course scheduligSE, in example3.1, the set of con-
straints defined by the certainty closuse can be reformdlate

3
Vi) wjxj>2 (3.10)
=1
3
Vi wixje(l,....5) (3.11)
i=1
3 3
D0 wix =t (3.12)
i=1 j=1

WhereY jw; and t are uncertain coefficients each is defined over a reakal domain.
Solution to the problem is a covering set of all possibleiregions.

LP implementations

Interval linear programming . Research has thoroughly studied variations ofithe
terval Linear Programming (ILRjue to their inexpensive computations when employed
in large scale systemaNing and Kearfott(1997) work on the computation of the in-
terval Guassian elimination techniqueRohn (1993, Hansen(1980,Hansen(1992
extract the inverse of the coefficient matrix when its congots are represented by real
intervals. Suprajitno and Mohd2010 and Ramesh and Ganes&®011) generalized
the Simplex method to incorporate real interval computeti@eaumonti(1999, Jans-
son (1997, Oettli (1965 andAberth (1997 derive inclusion bounds over the solution
set.Chinneck and Ramadd2000 incorporate the uncertainty in the objective function
calculations with the hull. The generiélP model can be rewritten as:

n

minZ = Z[Cj,c_j]
=1
subject to

n
Dlap.alx =[] vi=1...,m (3.13)
i=1

Generally, interval linear computations are easily cotetidut they do not guarantee
the tightest bounds on the resulting solution set.
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Robust optimization [Ben-Tal and Nemirovsk{2000 and Mulvey, Vanderbei, and
Zenios (1995] Random components are represented by means of variaduoetian
techniques. Uncertainty, in this case, is encapsulatekirwé convex ellipsoidal set
which approximates the problem. The model can be rewritsen a

min[ sup c'x: (Ax< b)V(c, A b) € U]
c,Abeld
Where data ford, A, b) are not known for certain. The model, with ‘boundedness as-
sumptions’, searches for a solution to the best objectiae ghtisfies all realizations of
the constraints. The computed objective seeks the mintoizaf the worst case sce-
nario.

Interval Expected Value [Thipwiwatpotjana and Lodwick2008 andSengupta, Pal,
and Chakraborty{2001)] combine the possibility and the probability within thensa
constraint. Uncertainty is represented by an interval peeked value which is bounded
by the smallest and the largest expected values. Interkakhan utilized as coefficients
in the interval linear program.

Example 3.11. Returning to the production planning problem, the intereapected
value a;; = [1.6667 2.5] and by = [169.6667 180]. TheLP model can be reformu-
lated as:

min 2x; + 3%
st.[1.6667 2.5]x; + 6.1667, > [169.6667, 180],
X1 + %o > 100,

X1, X2 = 0. (3.14)

In this example the bounds on the objective functiof$14.7.35, $12787] and the op-

timal solution X € [33.89,44.41] and % € [9.51, 20.03] is obtained by solving, in this
case, fourLP problems generated by the extreme points bounding the texpegalue

intervals.

Output solutions

Results of convex models are reliable and guarantee to-oatrgll potential solutions

of the problem in-hand. Uncertainty is represented as setlokes that are enclosed
between extreme points. To derive outer bounds, the moHabisd on an approximation
that is not necessarily reversed. The output solution isatight set. It is characterized
to be reliable and can take any of the possible values frontltsire of the decision

space. Each value in the set has an equal uncertainty degree.

Benefits

« Efficient integration of interval computation method<dR
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« |deal when partial data is used due to the overwhelming atnailinformation

Deal with real data

Enclose the uncertainty using what is known for sure allweittta

e Guarantee the true problem is contained in the model hesmeited

Produce robust/reliable solutions

Efficiently derive the closure to an uncertain constranaoem

Computationally tractable

Drawbacks

* Result in a solution set with equal uncertainty weights.

» Doesn't reflect any possible degree of knowledge, i.e. thdahlacks information
about the random distribution embraced by its extreme point

« Acquired solution space can be very wide lacking expresspproximation of the
problem in-hand for speedy future search

3.4 Summary

In this chapter we review research efforts to reason abdat idathe presence of un-
certainty. We started by studying the different unceriatyipes found in the real-world
applications. We then elaborate how research classifie® ttypes and maps them in
the conceptual world to deal with them mathematically. Brgd mathematical models
are adopted consequently to reason about data with urmdgrtdiwo paradigms were
explored: CP andLP. The study of the two paradigms summarizes: 1. how uncertain
data is input to the models. ZP andLP existing implementation techniques. 3. the
property of the output solution set obtained from the reegpprocess when different
models from both paradigms are adopted. TieandLP paradigms employ different
mathematical concepts to handle and to reason about dé&tamdertainty. Those math-
ematical concepts can be listed as: probabilistic, pdigibj fuzzyand convex models.
We showcase and elaborate with examples how models fronplaodidigms with differ-
ent mathematical concepts behave. We also clarify the galyas and drawbacks found
in the literature when each concept is adopted. This studipésto the fact that our
framework inherits its properties from the two paradignise @P and theLP. We will
elaborate more about this inheritance in the rest of thetersipThe following chapter
shows how we construct the intervals of the input data witteaainty in existing con-
vex techniques and how this construction evolved to coasthe intervals representing
the data with uncertainty in our proposed p-lwai-intervals framework.
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CHAPTER4

CONSTRUCTING THE INTERVALS

The concept of convex modeling, as pointed out in Secidh3 was coined to for-
malize the idea of enclosing uncertainty sets and yielcléi solutions, i.e guaranteed
to contain any solution produced by any possible realinadibthe data Chinneck and
Ramadan(2000, Ben-Haim and Elishakof{1999, Yorke-Smith and Gerve2009)].
Interval coefficients have been introduceddR and CPto specify and enclose uncer-
tain data in order to provide reliable solutions to convexdals. They are at the heart
of paradigms such as robust optimizatidep-Tal and Nemirovsk{1999; Hoffman
(2000] in OR as well as mixedCSP[Fargier et al(1996)], reliable constraint reason-
ing [Yorke-Smith(20049),Yorke-Smith and Gervef2009], and quantifiedCSP[Zhou,
Doyle, and Glovel(1996] in CP. These paradigms specify erroneous and incomplete
data using uncertainty sets that denote a deterministiddandded formulation of an
ill-defined data. To remain computationally tractable, tineertainty sets are approxi-
mated by convex structures such as intervals (extremewalithin the uncertainty set)
and interval reasoning can be applied ensuring effectivgpeations. In this chapter we
focus on how convex structures were constructed in theatitee. We showcase, with
a running example, how the convex representation of data wvitertainty is evolved
from reliable models to include additional information abthe data whereabouts. Yet
they remain tractable by keeping their convex properties.

4.0.1 Constructing reliable intervals

For instance, we consider the traffic volumes in ®iBAP. In this problem traffic vol-
umes are monitored in a distributed mann@érdssglauser and Rexfo@005]. Ac-
cordingly, the measurement of one designated flow can diffamilliseconds. Output
observations from the measurement process are often eusre incomplete due to
packet loss or inaccurate deviation. Fglillustrates a snapshot, at a point in time, of
an arbitrary network. Numbers provided on the links represige average of readings
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per flow on each link (the flow headed towards nd@&lé&om nodeA (Va_g), in this
snapshot, is on average equal to 204 packets).

The information available, in the problem definition, is itglly point elements

along with their frequencies, intensities or probabilifyoocurrence. Out of which ex-
isting reliable approaches deduce the average and stadeldedion or approximate the
given data to the nearest probability distribution. Theioal list of observations along
with their frequencies of occurrence, of the flow from n@d& nodeB, are illustrated

in Fig. 4.2
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Fig. 4.2: Collected observations @f_.g

To represent\{a_,g), reliable models commonly adopt one of the two approaches:

1. Store the minimum and the maximum observed values fronmtbasurement

process. In this example, they are 201 and 209 respectiasllstrated in Fig.

4.3

. Derive the probability distribution from the list of vasi and their occurrences

(Fig. 4.4). Out of this derivation, the statistical average and saathdleviation
can be obtained. Hence, the nearest known probabilityildision (in most cases
the Normal distribution Fig.4.5) is computed. The output minimum and max-
imum values from this process foWf_g) are respectively 197 and 211. Itis
obtained by deriving the confidence interval which inclu€i8%o of the statistical
data population resulting from the measurement.
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Example 4.1. The convex representation of traffic volume destined to tluke 1B from
the node Ais the interval AZ,g € [201, 208]and[197, 211]in the two commonly adopted
reliable approaches: convex modeling ad@€SP

Reliable approaches, in their convex representation, dcaocount for the data
whereabouts which are available during the data collecfidre outcome of these sys-
tems is a solution set that can be refined when more knowledgeduired about the
data population, and does not exclude any potential solutio
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—— Normal distribution :g:
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Fig. 4.6:Va_,g: reliable model representation of Normal distributiorn:8tr

4.0.2 Constructing thecdf -intervals

Motivated by conveying the data whereabouts given in thelpro definition, we intro-
duced thecdf-intervals inSaad et al(2010. Thecdf-intervals structure extends interval
data models with a second dimension: a quantitative dimareidded to the measured
input data. This quantitative dimension provides inforioratbout the probability dis-
tribution of the data.

We have selected thedf because it has been used, for this purpose, in different
models to analyze the distribution of the data whereabauts (nGubner(2006§ and
Tversky and Kahnemaf1992). Thecdf enjoys three main properties:

1. Thecdf is a monotone, non-decreasing function, like arithmetteang suitable
for interval computations and pruning.

2. Itdirectly represents the aggregated probability theaiantity lies within bounds,
thus, showing the confidence interval of this uncertain.data

3. It brings flexibility to the problem modeling assumptidiesg. by bounding data
by means of the derivettlf. In Saad et al(2010, we constructed thedf-intervals
which is a convex model that approximates the data wheréstiouhe nearest
uniform cdf-distribution within a confidence interval).

Our methodology, irtaad et al(2010, consists of building data intervals employing
2D points as extreme values. In tloef-intervals model, we assume that with each
uncertain data value comes its frequency of occurrence msitgefunction. We then
compute thecdf over this function. The concept ofif-intervals proved to be capable
of representing a new type of convex sets, following the ephof interval coefficients.
This requires the decision variables to range mdHritervals as well. Basically, in the
cdf-intervals framework, elements of a variable’s domain an@ts in a2D-space, the
first dimension represents the data value, and the secotdlagdregateddf-value. It
is defined as adf-interval specified by its lower and upper bounds.

Recall from Examplé.1, the real-intervals representation\tf_,g € [201, 209] and
[197,211] in the two commonly adopted reliable approaches. lerotdl illustrate this
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interval representation in thelf-intervals framework, we first need to project the obser-
vations given in the original definition of the problem onite tdf. Fig. 4.7 illustrates
the original probability distribution and its nearest Nadrdistribution projections onto
the cdf dimension, and Fig4.8illustrates the traffic volum&a_,g in the cdf-intervals.
In this case, it is represented by the interval [(ZD1), (207.73,0.98)]. In this exam-
ple the value 201 is the data value in the real donfaiand 01 is its cdf value. The
cdf-interval representation ofa_,g is approximating the unknown distribution and it
indicates that the real values ranges within [2ZI7.73], while thecdf ranges within
[10%, 98%].

The main idea, irbaad et al(2010, is to show that we can preserve the tractability
of convex modeling computation while enriching the undartiata sets with a repre-
sentation of the degree of knowledge available.

4.0.3 Constructing thep-box cdf -intervals

As shown in Fig.4.8, thecdf-intervals model approximates the original probabilitg-di
tribution to the nearest uniform distribution. Despite fhet that this approximation
roughly indicates the residence of the data populatiomcitd the full encapsulation of
the interval in the2D (i.e. it is not a comprehensive representation of the olesedata
along with its whereabouts). This led us to further exteraltif-interval model to en-
capsulate not only the observed data but also its unknowwapility distributionSaad
et al.(2014. The new2D interval framework adopts the conceptmbox detailed in
Ferson et al(2003, to envelop the unknown probability distribution and tcere the
enclosure of any potential solutions along with their wabmits. We have chosen uni-
form distributions to exert the interval envelopment du¢hteir tractable computation,
compared to other probability distributions.
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Fig. 4.7:Va_g: Normal distribution projection onto thedf domain

The p-boxaugmentation further modifies the point representatiorordier to fully
represent a line we need at least 3 values. Ei§depicts the-box cdf representation
of Va_,g Which is represented by thebox cdf-interval
[(201,0.1,0.187) (208 0.87,0.128)]. A point in thep-box cdf-intervals framework is a
triplet which lists the data value in the real dom&irthecdf value and thedf line slope.
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For the same example they are 201, 8nd 0187 respectively. Thip-box cdf-interval
representation indicates the full encapsulation of thedat between the bounds 201
and 208. The envelopment of thdf indicates that 201 has a chance of occurrence that
cannot exceed 10% while 208 hasdf value that is at least 87%. The significance of
the interval representation is detailed in Chagter

In summary, thecdf-intervals framework specifies elements of a variable damai
in a 2D-space, the first dimension represents the data value, asére second shows
its cdf-uniform distribution. A new domain ordering is defined vitithe 2D-space.
This raises the question of performing arithmetic compomat over such variables to
infer bound consistency. As a result more information iagraitted to the realized so-
lution sets. We augment tluelf-interval points byp-boxes (two bounding distributions
embracing all possible distributions) to specify hew damadunds on the probability
distribution along with data value bounds in tRedomain. In this dissertation we de-
fine the constraint domain over which the calculus in this dewain structure can be
performed, including the inference rules.
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CHAPTERDS

DATA REPRESENTATION

Quantitative information is usually available during thegalcollection process, but lost
during the reasoning because it is not accounted for in fhresentation of the uncertain
data. This information however is crucial to the reasonimgcess, and the lack of its
interpretation yields erroneous reasoning because distsrece in the produced solution
set. Itis always necessary to quantify uncertainty thaatsimally given in the problem
definition in order to obtain robust and reliable solutions.

In this chapter we elaborate how uncertain data, probablgated in a measurement
process, is represented; then input to the model. Infoamavailable in the problem
definition is typically; point elements along with their dngencies of occurrence, inten-
sities or probability distribution. The majority of the siing models, as pointed out
in Chapter3, deduce out of this information the average point and stahdaviation;
consequently their reasoning is based on expected valuas [1995,Kessel (2002
andNielsen(2000]. Some probabilistic models approximate the data whereisbto
its nearest probability distribution representatieifdall et al.(1949]; yet these mod-
els are characterized to have an expensive computatioms®caasoning, in this case,
is exerted in a pointwise manner. Convex models offer riifipland robustness, their
computations are tractable, but do not account for quaingtenformation Benhamou
and Older(1997,Ben-Haim and Elishakoff1995,Beaumont(1998 and Yorke-Smith
(2004)]. Fuzzymodels have been introduced in order to combine betweeableland
probabilistic models, by drawing the possibilistic distriion of the data representation
[Mauris, Lasserre, and Foulld2000, Ferrero and Salicon@004 andMauris(2007)].

We first elaborate how to construct théf-intervals structure by means of a formal
algorithm published irsaad et al(2010. Then we show how this algorithm has evolved
to construct the-boxcdf-intervals convex structur&aad et al(2014) andSaad2014).
Thep-boxcdf-intervals algebraic structure seeks the full encapsuiaif the data along
with the whereabouts observed, irrespective of the prdibalistribution they outline.
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Chapter 5. Data Representation

In this chapter, we show how@abox cdf-interval bounds the observed probability dis-
tribution. The outcome of this process is the establishéghval; it has two uniformly
distributedcdf-bounds. Uniform distributions are chosen to ease the ctatipo of
storing and reasoning about data. We also compare this nemufation with input
coefficients described by reliable, probabilistic dnzzymodelsSaad et al(2014).

5.1 Establishing the Confidence Interval

Data obtained from empirical measurement often follows @knawn probability dis-
tribution [Gum (1995]. This data is produced by an instrument, characterizethte
components of imprecision. In the general case, it is eteduan a discrete manner
because measurement is performed at specific time pointsp@edcdf-distribution,
in this case, draws a staircase shape and the actual caminligtribution between the
measured points is unknow8Binith and La Poutrél992)].

Given a set ofh data series obtained in a measurement process of a poputatio #
n, or possibly randomly generated, we establish a generistagrtion of the confidence
possibilistic/probabilistic interval as follows:

1. Data is collected and quantiles (data values) are distinguished, each is repre-
sented byx;.

, , , , Freq) ,
2. Thepdf of the genuine observations is derived frﬁ#}m, where Fregis the
number of times a quantibg is observed.

— xiFreq+-+x,Freq . ‘L
3. The average = STxFreq and their standard deviation

o = £ 30(x — X2 are computed. Note that other probabilistic tools like the
variance can be derived when additional knowledge on thiegiibty distribution
is needed.

4. The possibilistic/ probabilistic distributions are ided from the average and the
standard deviation values. Based on @&an (1995 any probability distribution
(parametric/non-parametric) is typically approximatedie nearest Normal dis-
tribution.

5. Computation and reasoning are based on the derivedhdistiis since pointwise
operations are computationally expensive.

5.1.1 The Measurement Process

As a running example, Figufe lillustrates the data collection process which is exerted
by means of a measuring instrument. Values, defined as tpgrdie collected along
with their frequencies of occurrence. Reliable models aanivd the interval represen-
tation of this specific sample by storing the minimum and mmaxn observed values;
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5.1. Establishing the Confidence Interval

in this example the values are 1 and 8 respectively. Consdguthe produced robust
interval is signified by two bounding points in the real domaj as [1, 8].
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Fig. 5.1: The data observation of the measur&nd

5.1.2 Computing the probability distribution

Given the observed data along with its frequency of occlgene can obtain the den-
sity function, described in DefinitioB.3, and derive the average and standard deviation
of the sample data. The nearest Normal probability didfivbuandfuzzymembership
function are consequently derived and illustrated in Fegu@. Figure5.2 shows how
the data whereabouts is enveloped within the producedhiisons: probabilistic or
possibilistic. Then, they are input as coefficients to thesignated models. It is worth
noting that the Normal distribution representation is gy its average and standard
deviation, in this case 4 and1A respectively; while théuzzymembership representa-
tion is given by a triplet 2,4, 11] if it is a triangularfuzzypresentation, or a quartet
[-2,4,5,11] if it is a traperzoidal presentation.
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Fig. 5.2: Deriving the probability distribution of the meaandX: (a) Normal distribu-
tion, (b) fuzzymembership function
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Chapter 5. Data Representation

5.1.3 Projecting Distributions onto thecdf -domain

Recall from Sectior?.1the cdf distribution is an aggregated value of the density func-
tion; i.e. thecdf value of an element is its density value in addition to the sfidensities

of all preceding elements. Hence tt@f allows us to keep information about thdf in

an aggregated manner. Figls illustrates the computecdf distribution of the same
sample data. Thisdf has a staircase shape because of the discrete charactefisti
the measurement process. Figbré depicts the projection of the Normal distribution
and thefuzzymembership function onto thedf-domain in order to visualize accuracy
of the studied distribution to encapsulate the observed daereabouts. Clearly both
representations are based on approximation and lack prgaist fitting.
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Fig. 5.3: Constructing thedf-distribution ofX
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Fig. 5.4: Constructing the Normal arfidzzycdf-distributions of the measurangt (a)
Normal cdf-distribution, (b)fuzzycdf-distribution

5.1.4 Constructing thecdf -intervals

Consider that in the set of data illustrated in Figl, we construct thedf-interval
as detailed in Algorithni. The algorithm runs i©(n) wheren is the number of distinct

54



5.1. Establishing the Confidence Interval

procedureConstructCDFIntervalBounds, Arr[n], Freq])

cdf[1] « Freq[1l)m
for i = 2tondo
cdffi] « (Freqf]/m) + cdffi — 1]
i=1,
while (Freqf] < 0.02) do
i—i+1
lowerbound« (Arr[i], cdf[i])
upperbound— (cdf1[0.98],0.98)

Algorithm 1: data interval bounds construction

values in the data set. It receives three parameters: theobithe data populatiorm,
a sorted list (ascending order) of the distinct measured, datd a list of their corre-
sponding frequencies. Both lists are of the same siz&€he algorithm first computes
the cdf in a cumulative manner. The turning points are then extdalterecording the
data values that havealf greater than, or equal to, 2%, and the value with equal
to 98%; the two values were chosen such that they are distantthe average by 3o
This algorithm was previously published $aad et al(2010.

Fig.5.5illustrates thecdf-interval construction of the sample data given in the run-
ning example of this chapter. As listed in Talilel, the data set size is = 8, the
population size isn = 25, Arr[n] = [1,2,3,4,5,6, 7, 8], and the corresponding frequen-
ciesFreqn] =[4,2,4,5,5, 1, 2, 2]. The computeddf-interval has the following bounds
[(1,0.16),(7.75,0.98)]. Clearly the resulting interval is an approximatiorddacks the
full encapsulation of the measured data whereabouts.

[ == Observed cdf distribution|
9| [ p-boX cdf-interval

‘LBG ‘‘‘‘‘ Observed cdfdistribution‘ (7.75'0_98) z -&

9| [ cif-interval

01(1,0.16,0.16)

, .
01 2 3 4 5 6

L L L
1 2 3 4 5 6

7 8 7 8
quantiles quantiles

@ (b)
Fig. 5.5: Constructing thp-box cdf-intervals bounds oX
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Chapter 5. Data Representation

X
data | freq | pdf cdf | (CDF[n]-CDF[1])/ | (CDF[n-1]-CDF[1])/
value (Arr[n]-Arr[1]) (Arr[n]-Arr[2])
1 4 0.16 | 0.16
2 2 0.08 | 0.24| 0.08
3 4 0.16 | 0.4 | 0.12 0.08
4 5 0.2 0.6 | 0.15 0.12
5 5 0.2 0.8 | 0.16 0.15
6 1 0.04 | 0.84|0.14 0.16
7 2 0.08 | 0.92] 0.13 0.14
8 2 008 |1 0.12 0.13
b |1 0.16| 0.16
ub | 8 0.64 0.08

Table 5.1: Preprocessing steps for modeling collected data

5.1.5 Constructing thep-box cdf -intervals

Algorithm 2 shows thep-boxcdf-interval construction steps for the same example. Two
parameters are taken into consideration: Ari§ an array ofn distinct elements (ob-
served and sorted); whereas the second parameter iy;ditii¢ set of their computed
cdf values.

The two arrays, together, form the staircase function skaftequantiles stored in
Arr[] and cdf values stored ircdf[]. Note that a staircase function defines as set of
constant valuesdf[i] over a set of intervals [Ari], Arr[i + 1]] Vi < n[Smith La Poutre-
Smith La Poutre]. Accordingly, the set of upper and lowerrztng points forming the
staircase function argArr[i],cdf[i]]} Vi, 1 < i < nand{[Arr[i + 1],cdf[i]]} Vi, 1<i<n
respectively. The aim of the algorithm is to envelop thosgeolzed points with the high-
est and lowest possible average probabilistic step ineream the first quantile interval
of the staircase function. Issuing the slopes from this ifpaaterval is sufficient to
compute the bounds due to tbéf monotonic property.7.

Recall that, from property.8, a cdf slope is the average step value that indicates
how the probability distribution increases. Algorititrstarts by computing r2slopes
issued from the 2 points, specified as (Argtf[1]) and (Arr[2],cdf[1]), and destined
to all other points in thedf-domain. This is to calculate the list of possible average
step values between the observed staircase bounding .p&iluges are then sorted to
extract the steepest line and the flatest line. The geons&&under the line, computed
by the integral, determines the dominated (dominatodj)distribution with maximum
(minimum) area as indicated in Secti@rB8. Accordingly, the lower bound in thedf
domain is the fastest increasing line slope and issued fnenit quantile observation,
and vise versa the upper bound is the least increasing lope €ind issued from the
maximum quantile value having the minimum obseredéivalue. This is to guarantee
the full encapsulation of all the measured data betweernvtbébbunding lines. Upper
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5.1. Establishing the Confidence Interval

procedureConstructPBOXCDFIntervalBoun{rr[n], CDF[n])

. I/ compute the list of slopes between the observed pointsindf-domain
j<0
. fori=2tondo
slopeg,[j] « (cdf[i] — cdf[1])/(Arr[i] — Arr[1])
slopegy[j] « (cdffi — 1] — cdf[1])/(Arr[i] — Arr[2])
/I find the most increasing lower bound slapénlog(n))
Sx < getmaxslopesg,)
7. I/ find the least increasing upper bound sl@yalog(n))
Sxu < getmir(slopesg;,)
8: // get the lower bound point
a <« Arr[1]
Fa < CDF[1]
Sa < Sx
9: /] get the upper bound point by projecting the maximum olesguantile
/lonto the upper bound slope
b« Arr[n]
Fp < Sxu=* (Arr[n] — Arr[2]) + CDF[1]
Sp < Sy
10: // return cdf-interval
[(a. Fa, Sa). (b, Fp, Sp)]

Algorithm 2: data interval bounds construction

o gk wNR

and lowercdf uniform distributions are depicted by the red lines in F&g5 (b), and
accordingly we can deduce tpeboxcdf-interval as published iSaad et al(2014).

Theorem 5.1. Algorithm 2 is correct with time complexity @log(n)).

Proof. Computing the & slopes is exerted by applying the equations:

(cdffi] — cdf[1]) /(Arr[i] — Arr[1]) and (cdf[i — 1] — cdfi1]) /(Arr[i] — Arr[2]). Each of the
specified equations is linear wi(1) time complexity. Indexing both arrays: quantiles
Arr[] and cdf] starting from the # element up tm (the size of the array is the number of
distinct observations which is practically finite). Henogrputing the slopes loops over
the elements of the array with a time complexity@(ih). The list of calculated slopes
is then sorted irO(nlog(n)) time complexity. Accordingly, we can conclude that the
algorithm is ofO(nlog(n)) which is the time taken to sort the list of computed slopes.

Fig.5.5illustrates interval data construction given by the exantisplayed in Table
5.1 The data set size = 10; computedp-box cdf-interval has the following bounds
[(1,0.16,0.16), (8,0.64, 0.08)] for X.
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Chapter 5. Data Representation

5.2 Interpretation of the confidence interval |

Consider the practical meaning of intervahat we have sought to obtain. For a given
interval of points specified by = [pa, po], Pa and p, are the extreme points which

bound thecdf-interval andl = [pa, pp], Pa and py are the extreme points which bound
the p-box cdf-interval.

5.2.1 Thecdf-interval | =[pa, po]

This interval is built according to two main sources of imf@tion: 1) the monotonic
and non-decreasing properties of titd curve to account for the degree of knowledge,
2) the extreme turning points over such a curve. Recall ttetdf-curve indicates the
aggregated distribution function of a data set. Plottingoantpon this curve tells us
what are the chances that the actual data value lies on arebibiis point. The extreme
turning points, we have sought, are those points distant fhe average by3 o ; This
correponds to 99% of the total population when it is following a Normal dibtrtion.
Itis also important to note the effectiveness of usingdtiteas an indicator of the degree
of knowledge. Given the measurement of dpgasuch thatp, = (x, F¥) is any point,
and due td=P monotone non-decreasing property, we have the following:

Given thatp, = (a, F§) andpy = (b, F})

Definition 5.1. F! is the projected approximated cdf value gfqnto F' (the cdf asso-
ciated to the interval), we will denote,E | as p = (x, F}) for any point lying within
thel interval bounds such that:

|_Fb_Fa _ I
a<x<b, FX_—b 3 x-a)+F;, (5.2)

Property 5.1. F§ = Fland F} = F|

It is worth noting that this projection operation is lineadause thé ! is derived
from the line equation of thedf curve; hence, it take®(1) to compute thedf-value of
a point located within thedf-interval bounds.

Example 5.1. Fig. 5.6 (a) illustrates the computation of EWe have
| =[(1,0.16),(7.75,0.98)]. Given a data value x 5we compute its cdf F= 0.65, and
obtain the point p = (5, 0.65).
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5.2. Interpretation of the confidence interval

7 f 7 ’8
quantiles quantiles

(a) (b)

Fig. 5.6: Linear approximation withih= [pa, pp] (a) cdf-interval bounds and (ly)-box
cdf-interval bounds

5.2.2 Thep-box cdf-interval | =[pa, Qp]

One can see that this interval approach does not aim at dpptmg the curve but
rather enclosing it in a reliable manner. The complete epraknt is exerted by means
of the cdf-bounds; which are depicted by the red curves in Bi§. It is impossible to
find a point that exists outside the formed interval boundse ddf bounds are chosen
to have a uniform distribution because of its monotonic.rHamund is represented by a
line with a slope issued from one of the extreme quantilesrii®j the full information
of each bound is sufficient to restore the designated intasgignment. Each bound,
in turn, is denoted by a triplet point representation, in2Bespace, that guarantees the
full information on; the extreme quantile value observéet ddf-line issued from this
observed value; and the degree of steepness formed byrteisThe slope of the uni-
form cdf-distribution indicates how the probabilistic values aoclate for successive
qguantiles on the line. Accordingly, tieebox cdf-interval point representation:

Pa = (& F4, ) andap = (b, F. SP).
Definition 5.2. S is the slope of a given cdf-distribution; it signifies the e step
probabilistic value. For a given uniform cdf-distribution

Fp—F
SQ: b—aa

The average step value, denotedS&sderives the probabilistic values of consequent
quantiles on the real domair.

,Ya<x<b (5.2)

Plotting a pointpx within the p-box cdf-interval deduces bounds on its possible
chances of occurrence.

Definition 5.3. F! is the interval of values obtained whegip projected onto the-box
cdf bounds. For a point,pe | denoted as p= (x, F, SF)

a<x<b andF' >F,>Fy ands>sk>s! (5.3)
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Chapter 5. Data Representation

Fg’/ and Fg/ are the possible maximum and minimutf valuespy can take; both
are computed by projecting the poipit onto thecdf distributions passing through points
a andb respectively. They are derived using the following lineasjgctions that are
computed inO(1) complexity:

FY = minSE(x-a) +FJ,1) and F! =maxF - SP(b- x),0)

The equation above guarantees the probabilistic featutkeafdf-function by re-
stricting its aggregated value from exceeding the value d. lmving negative values
below O.

Example 5.2. Fig. 5.6 (b) illustrates the computation &f.. We have

I =[(1,0.16,0.16), (8, 0.64,0.08)]. Given a data value x 5we compute itsdf-bounds
F! = [0.4,0.8]. This means that the possible chance of the value to be at Srisst
betweem0% and 80%, with an average step probabilistic value betw@&8aand 16%.

We can conclude from the above examples that the new algestraicture adds
up quantitative information to real intervals. Tbef-interval yields one approximated
probabilistic value for a given quantile; while tpebox cdf-interval representation pro-
duces an interval ofdf values which encapsulates all chances the designatedilguant
can possibly occur.
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CHAPTER®G

THEORETICAL FRAMEWORK

As demonstrated in ChaptBy bounds, which specify uncertain data, are constructed in
a preprocessing step resulting from the measurement. |Ebidh intervals are utilized

as input coefficients to the constraint system. The comstsgistem, in turn, utilizes this
additional information to produce a solution set, as opgdsea solution point. The
variables thus denote intervals within the structure amgiraint processing needs to be
extended to perform arithmetic operations within the nagébraic structure. Thslf-
interval approach extends real interval arithmetic. Itsaddsecond dimension to each
uncertain value, requiring us to define a new ordering amoingpin a two dimensional
space, together with new inference rules.

6.1 Notations

Throughout this thesis we assume that data takes its valine iset of real numbeis,
denoted bya,b,c. Data points are denoted lpyq, r possibly subscripted by a data value.
px is the pointp that has a quantile, i.e. x is its mapping value oi®. Variables are
denoted byX, Y, Z and intervals of elements from the specified domains aretddriy
I,J K.

6.2 Defining thecdf lattice in the 2D-space

The lattice sketches the fundamental features of a formaglage description. Lattice,
as aposef is a general algebraic structure which defines for everyel@ments a partial
ordering, a greatest lower boungllf) and a least upper bountllf). The lattice defi-
nition of ordering calculus and arithmetic operations ateried on the computational
domain which is the domain of discourse that maps a variademheasureable quantile
together with its knowledge in th2D-space.
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Chapter 6. Theoretical Framework

Let ¢, be the signature of thedf-interval formal language.Xq= {<, glbg,
lubgs, ©, €[p,qo}- U is subscripted by ‘1* to characterize tleelf-intervals with one
approximatedcdf distribution and by b to signify the p-box cdf-intervals domain of
discourse. The is a binary arithmetic operation over the points defined &ab-
space.€[p, q,] IS the predicate symbol interpreted as the ordering opecédta point py
aspa <u Px <wu G- The set otcdf-interval points extends the Herbrand universe. They
express the data and its knowledge Caspace. Points are represented by tuples in the
U1 and by triplets in the/, domain of discourse.

6.2.1 Data point structure

The cdf-interval computation domain is defined in tAB-space. The notion of edf
valueFx(X) is associated to the uncertainty value of a given ppirithis value quantifies
the knowledge about its chance of occurrence. For simpliEix(x) is notedFY, i.e.
the cdf value of an uncertain datp at valuex. A data population, with a uniformly
distributedcdf curve, creates the set ofif-interval points such that each poip is
specified by the observed data quantile in the real dofRaatong with itscdf value.
This quantifiable knowledge is issued from a probabilitytriisition, hence its value
ranges [0, 1].

Definition 6.1 (a cdf-interval lattice structure). is the set of tuples, specified, in the
2D-space, a¥{1 =Rx]0, 1] : real quantiles and their corresponding cdf values. Tuples
are partially ordered over the sét/; with unique glb and lub.

A p-box cdf-interval point py typically lies on a cumulative uniform distribution
function Fx which shapes a line; this line characterizes two valuesdfavalue and
a slope denoted respectively By} andSk*. FP quantifies the aggregated probability
of point p at quantilex (by definition 0< F{ < 1) andSY, signifies the average step
chance of occurrence of sequencial quantiles lying on theesalf-distribution. Due
to the monotonic property of the cumulative distributiomdtion, S§ cannot take neg-
ative values. By definition, p-box cdf-interval pointpy is a triplet specified byxFZ,
S)F()) eUy.

Definition 6.2 (ap-box cdf -interval lattice structure). is the set{, =Rx[0, 1]xR™,
of triplets (observed quantile, cdf and slope) partialldered, and constitutes @oset
with unique glb and lub.

It is worth noting that the three elements must be presentdardo express the full
information of the uniforncdf-distribution, which is described by a line equation, and
issued from an arbitrary quantile. The first element of thget is the real quantile; the
second element is itgdf value; and the last element shows the average step prabiabili
value of the distribution.

*For a real intervald, b, the slope of thedf uniform distribution is given bybej%, whereF, andF,
are thecdf values of quantiles anda on thiscdf-distribution respectively
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Theorem 6.1. The p-box cdf-interval lattice is partially ordered, andnsbitutes a poset
with unique glb and lub.

Proof. Points defined on the-box cdf-interval lattice are specified as tripletg, =

R x [0, 1] x R*. Elements of the triplet shape a unifoouf distribution issued from the
quantiles defined on the real dom&nThe list ofcdf distributions follow the stochastic
dominance ordering, defined in Secti@s3, to order, partially, random variables (prob-
abilities). Accordingly, p-boxcdf-interval triplet points are partially ordered in a 2D
manner: reals and probabilities. By definition, partialigered elements form a poset
in which every two elements have a mg#i and a joinlub. Consequently, the poset has
a uniqueglb and a uniquéub. ]

6.2.2 Partial Ordering

We can order (partially) points ifi{; and Uy, for the cdf-intervals andp-box cdf-
intervals respectively. Accordingly, we can construct &elara over variables taking
their value in the2D-space.

The2D-ordering?{; arrangegdf-interval points such that points with smaller quan-
tiles and lesxdf values come before those points with higher quantiles agidehiag-
gregated chance to occur.

Definition 6.3 (Ordering over Uy, <q,). Let pc = (X FX), ay = (v.Fy) € Uy, the
ordering <y, is a partial order defined by:

Px <u, Gy © x<yand F < FJ (6.1)

Example 6.1. Consider the three pointsyp- (4,0.17),qy = (9,0.87)and r, = (2,0.43)
depicted in Fig.6.1(a). We have p<q, 0y and 1, <q;, qy, but pc and r, are not com-
parable in the<q,, ordering. In this case, the ordering is satisfied in t#dimension,
quantiles2 < 4, but it is unfulfilled in the2"d dimensioncdf values0.43 £ 0.17.

Property 6.1. Acdf-interval delimited by two pointsy@and g, is specified by the syntax
[px, Q] such that g <q/, Q.

Property 6.2. Since?{; is a posetthen by definition any subset,[jm,] €/ satisfies
the following laws:

P1. Reflexivity:VX, px <a, Px
P2. Antisymmetry: (R=<;, Oy and, ¢ <q¢; Px) = (Px = dy)
P3. Transitivity: (P <¢, Oy and, G <¢;, 2) = (Px <a 1'2)

The ordering<q, arrange-box cdf-interval points such that points at the outset
lie on dominatectdf distributions, where small data values are more likely fopes at
smaller quantiles and vice versa.
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Definition 6.4 (Ordering over Uy, <4,). Let pc = (X, FX, SX), ay = (v, Fy, Sy) €Uy,
the ordering<qy, is a partial order defined by:

y y
Px <u, Gy © X<y and f Fidy < f FPdy (6.2)

—00

px anday are located on two differenif-distributions: FP andF9 respectively. The
integral ordering enforces the a second order stochastiirdmce ofF9 over FP. Both
FP andFY are calculated from the storedf value and slope.

Appendix A.1 shows the integration derivation of linear equations. drdé&on in-
equality yields a direct linear substitution in the followgi

y y
f Fady < f FPdy & Fy < (y— X)S¥ + FX (6.3)

(%Y (&)

Example 6.2. Consider three points,p= (4,0.17,0.047) gy = (9,0.87,0.09) and r, =
(2,0.43,0.68) which are depicted in Fig6.1 (b). We have # <q;, pPx and 1; <q, 0y,
but p, and g, are not comparable on thé/y, lattice. If we substitute the values in the
inequality, we obtairt < 9 but 0.87 £ 0.405 In this case, quantile ordering is satisfied
but the stochastic dominance inequality is not.

(-8
59? Lic? SV 5,*/'
. a,=wF) / p
Ry I ~99,0.87) Fy ) ,q' = (y,F3,S9)
/ /" (9,0.87,0.09)
= (Z,F:/, 5; , &
B Rt 1 (2,0.43/0.68) S
F 9(2,0.43 F | " -
D / ’/-/
R P =) Bl /7 _%D,=F .S}
(4,0.17) (4,0.17,0.047)
7 X Yy qudntile 7 X Yy qudntile
(a) (b)

Fig. 6.1: Points ordering over (d)1 (b) Up

Property 6.3. A p-boxcdf-interval delimited by two pointsyand g, is specified by the
syntax [[, oy] such that g <q, 0.

Property 6.4. Theposetproperty of/, enforces any subset {pqy] €, to satisfy the
following rules:

P1. Reflexivity:VX, px <, Px
P2. Antisymmetry: (p<q,, 0y and, ¢ <q¢;, Px) = (Px = Qy)

#3. Transitivity: (B <u, Oy and, g <¢, z) = (Px <, I2)
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6.2. Defining thedf lattice in the2D-space

6.2.3 Meet and Join Operators

One important task in interval reasoning is the computatioa new interval from arbi-
trary points or previous intervals, such that it descrittesgmallest interval containing
the possible collection of elements. This is based on the arekjoin operators.

Definition 6.5 (Meet and join over U,). Given the arithmetic ordering and meet and
join operations over the real€R, <, min,maX and the ordering of cdf values within
([0, 1], <, min,max, the meet lupand join glly operators of two points,pand g, in 74,
are defined by:

glby (px. @) = (Min(x.y), min(Fy. Fi))
lubs (P, Gy) = (Maxx,y), maxFi, Fi)) (6.4)

where Ib= min(x, y) and ub= maxXx,y)

From Equation6.4, we can deduce thaflb; is a point in the2D-space. The %
dimension (quantile)lb, is a result of applying the minimum operation on the points
quantiles. To obtain thedf component of thelb;, we projectlb onto, FP andF9, the
cdf distributions of the points under consideration. TH& @mponent of thelb; is
the minimum value obtained from the projections. Simijarnie computdub; but in
that case we replace the minimum by the maximum operatioa.cbhsistency property
establishes the link between the partial orderag and the pair glb,, lub;) as actual
meet and join.

Property 6.5 (Consistency property overifs).

Px < Oy © Px = glby(px, ay)
Px <u Oy © Oy = luby(px. Qy) (6.5)

Proposition 6.1 (Lq¢;, and Tqy,).

Lqq is the universal greatest lower bound of cdf-interval psiand it is equal to
(0.0,0.0)

T, isthe universal least upper bound of cdf-interval pointd afs equal to ¢oo, 1.0)
assuming that all random variables are greater than zero.

Proof. On theR domain where all random variables are observed greaterGhéme
minimum and the maximum measured quantiles are respgcvahd+co. Thecdf is a
probability distribution, hence 0 and 1 are respectively tiinimum and the maximum
possible values adf can obtain. Accordingly, we can conclude that pointg, =
(0.0,0.0) andTqy, = (+0,1.0) O
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Example 6.3. Fig. 6.2 [a] depicts the gl and luly computations of two pointsyp=
(4,0.17) and g, = (9,0.87). By substituting in Eq.6.4, the minimum and maximum
guantiles are respectively and 9. The minimum and maximunodf values obtained
from the projection operation ar8.09 and 0.8 respectively. Accordingly the points,
glb; (px. Gy) = (2.0.09) and luby(px. dy) = (9.0.8).

Definition 6.6 (Meet and join over Up). Given the arithmetic ordering, meet and join
operations over realéR, <, min, max and the second order stochastic dominance of cdf
distributions, the meet (gl and join (lul,) operators of two pointspand g, in Uy are
defined by:

glby(px. @) = (Min(x.y), maxFp. F}l). maxSy, sy))
lubn(Ps, dy) = (Maxx.y), min(Ff, Fib), min(Sg, Sf) (6.6)
where Ib= min(x, y) and ub= maxX,y)

The following property establishes the link between theiglordering<q,, and the
pair (@lb,, lubp) as actual meet and join.

Property 6.6 (Consistency property overi{y).

Px <u, Oy © Px = glby(px. ay)
Px <, Gy © Oy = lubp(px, Qy) (6.7)

Proposition 6.2 (L¢,, and Tqy,).

Llqq, is the universal greatest lower bound phboxcdf-interval points and it is equal
to (0.0, 1.0, o)

Ta, IS the universal least upper bound jpfbox cdf-interval points and it is equal to
(+0,0.0,0.0)

assuming that all random variables are greater than zero.

Proof. On theR domain where all random variables are observed greaterGhéme
minimum and the maximum measured quantiles are respgctivahd+co. The 2d
order stochastic dominance integral defined in €§.yields O for Lq,, andeo for Tqy,.
Accordingly, the proposed universal greatest lower bourtilawest upper bound, both
maintain lattice real ordering on tfiedomain in addition to the stochastic dominance
on the probabilistic domain. m]

Example 6.4. Fig. 6.2[b] illustrates an example which computes gnd luly, of two
points i = (4,0.17,0.047) and g, = (9,0.87,0.09). By substituting in Eq.6.6, the
minimum and maximum quantiles are respectivebnd 9; the results of applying the
max and min operations on the computed stochastic domirnateggation are0.42 and
0.405respectively; the maximum and minimum slopes are respdci09 and 0.047.
Accordingly we can compute the points, iy, ay) = (4,0.42 0.09) and luly(px, o) =
(9,0.4050.047).
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6.2. Defining thedf lattice in the2D-space

S S O
S &/ g Sy
AN p
” up; = (4’ .0 /{ - (y’Fg 'sfvl )
/ /" (9,0.87,0.09)
2.,0.43 = <2441 =
/& ~7 " /,/'.1 bb(pXqu)=
/ T -~ (9,0.405,0.047)
S Ly B, = (%, 5)
glb; = (2,0.09) (%019 (4,0.17,0.047)
z X qudntile X Y qudntile

@ (b)
Fig. 6.2: Meet and join operations (@, andlub; (b) glb, andluby,

6.2.4 Data Point Arithmetic Operations

We extend the computation domain with binargyf point arithmetics. Operations to
combine uncertainties in the framework rely on the convolubperation over random
variables detailed in Sectich.2 We consider the standard arithmetic operations in-
terpreted over the set of redls then, we extend the notion to reason aboutate
distribution of the data population.

Theorem 6.2. For © € {+q, —u, X4, ¢} @ binary cdf point arithmetic over thgD-
space, Rogy = ((xaY). Fy). Siey), yields a cdf point defined in the 2D space. Resulting
point is a triplet with a quantile value, a cdf distributioma a slope

Any two points, each lying on a differemdf distribution, can be involved in a
relation given by a function. This relation outlinescdf that is based on their joint
cdf-distribution, defined in SectioB.2, by double integrating the product of the two
probability distributions they shapgtark and Wood$1994); Williamson and Downs
(2990.

We derive thecdf equations of the binary arithmetic operations over unifaath
distributions, and described by Definiti@, in AppendixA.3, A.4, A.5 andA.6. No-
tice that uniform distribution computations are linear. nde, they are inexpensive as
opposed to other existing probability distributions.

Lemma 6.1. +4, is the binaryp-boxcdf point addition over th@D-space.
Pxtu Gy = (x+Y), Fly, SEY)
(X +y) is the addition operation of the two points in the real dornEi,nF)E’:)‘,1 and

SQ:;,* are respectively the cdf value and the slope of the cdf tigion resulting from
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the addition operation in the probabilistic domain and aerigled in AppendipA.3.2

FRY = Lo o ® gy 0792 (Mo + o) < (x+) < (Po+ )
+ Jove S G A9z (Po+ ) < (X+Y) < (P1+ o)
e B @iz (Lt G) < (x+Y) < (pi+a)  (6.8)

bt _— 1
Xty (P1+01)—(Po+0o)

As deribed by EquatioA.1Q (po and @) are the quantile projections of the cdf distri-
butions with cdf value equal and (p and q) are the quantiles with cdf value equal
to 1.

Proof. Readers can refer to Sectidn3 in the Appendix m]

cdf

guantile
Fig. 6.3: Thep-boxcdf-point addition

Example 6.5. Let p; and g, be twop-boxcdf triplet points such that p= (3.0,0.7,0.1)

and ¢, = (2,0.6,0.2). We can compute theboxcdfaddition of two intervals, given that
their bounds are defined in tl3®-space (values and knowledge about their occurrence),
as follows:

1. Calculate the projected quantiles of the uniform disttibns each point lies on.
From EquationA.10pg = —3.99, p; = 6.0, g = —-0.99and g, = 4.0.

2. Compute the real addition operatigr+y) = 5
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6.2. Defining thedf lattice in the2D-space

3. Derive the integral valueof the cdf from Equation6.20 and as detailed in Ap-
pendixA.3.2

a) Calculate the quantiles which bound the regions of theitamidoperation
illustrated in Fig. A.3for eachcdf point respectively.

{ Po + Go. P1 + Go. Po + G P1 + G } = { —4.98,5.01,0.01, 10.0}. Resulting
lists are then sorted in order to define the different areasi@gration

b) The real addition is located within the quantile additisegments. This is
exerted in order to determine the number of regions whichbeitonsidered
in the integration. For this example, we havg+pg: < (X+Y) < p1 + Qo, the
2"d and 39 elements in the computed list, includzimtegration regions.

FPrY =066

X+y
4. Calculate the slope of theif distribution from Equatior6.21 S};}} = 0.066

Fig. 6.3illustrates the arithmeticdf point addition relation(p + g). Result of the
operation is specified by theboxcdf-point (x + y), F¢.y\, Skiy) = (5.0,0.66, 0.066)

Lemma 6.2. xq, is the binary p-box cdf point multiplication over t@®-space.

Pexuty = (XX ), Fys Sk (x x y) is theR domain multiplication operation,
and §y are respectively the cdf value and the slope of the cdf digion resulting from
the multiplication operation in the probabilistic domaimé are derived in Appendix
A4.2

FYy fpoqo fpo iy mdrdz (Poto) < (xy) < (Poch)

ot J2 5 o Bz (o) < () < (Paci)

+pr1§0 51 Gk A drdz (Pido) < () < (Pi) (6.9)
Pq _ 1
Sy = -
Proof. Readers can refer to Sectiémnd in the Appendix O

Example 6.6. The result of multiplying tw@-box cdf-points g = (3.0,0.7,0.1) and
gy = (2,0.6,0.2) is computed in th@D-space as detailed in Appendix4.2

1. The bounding quantiles of the uniform distributions aoenputed as in the first
step of Examplé.5.

"To compute the integration we calculate the area underdiifedistribution line along the bounds
defined on the integral limits
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cdf

quantilé
Fig. 6.4: Thep-box cdf-point multiplication

2. The computed multiplication in the real domé&inx y) = 6.

3. The integration over the joiqtdf is performed in order to compute tleef bound-
ing values. This is obtained from Equatiérd and derived in Appendif.4.2

a) Quantiles, depicted in FigA.4, which bound the different segments of the
multiplication are computed then sorted.

{ P10, Pod1. PoCo, P10 } = { —15.99, -5.99,3.99, 24.0}.

b) xy is located in th&9 segment, hence, the number of integrals to be consid-
ered in thecdf calculations.

Fly = 0.55

4. The resulting slope of thedf distribution obtained from Equatiofi.10 Sk =
0.025

The p-box cdf-point depicted in Fig. 6.10is the result of multiplying pand g,
= (6,0.55,0.025)

Lemma 6.3. —¢, is the binaryp-boxcdf point subtraction over th2D-space.

px—uy = (X —Y). FXy. Sk} (x—y) is theR domain subtraction operation,
and $_‘3 are respectively the cdf value and the slope of the cdf tigion resulting
from the subraction operation in the probabilistic domaimdaare derived in Appendix

A5.2

70



6.2. Defining thedf lattice in the2D-space

FOY = foon ke @t @792 (do— P1) < (X=Y) < (do - Po)
* J(;)c::);o qjl (Q1—QO)%P1—FJO) drdz (G0 - po) < (X=Y) =< (th — P1)

* fq)i:);n zjlpo (Q1—QO)](P1—IOO) drdz (G = po) < (x=Y) < (@ = po)  (6.10)

p-q _ 1
Sy = @ po)

Proof. Readers can refer to Sectiéns in the Appendix

cdf

-(1,0.6,0.066) -

‘quantilé
Fig. 6.5: Thep-boxcdf-point subtraction

Example 6.7. The p-box cdf-point resulting from the difference betweep gnd g, in
the relation g — gy is computed following the steps listedArb.2

1. We compute the real differene—y) = 1

2. Bounding values of thedf in Equation6.10 which result from the integration
detailed in Appendid.5.2F} 1 = 0.6

3. The slopes of the boundirggif distribution are obtained from Equatiof.24
Sky = 0.066

Thep-boxcdf-point output from the subtraction operatiory p gy is shown in Fig.
6.11and is equal td1, 0.6, 0.066).
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Lemma 6.4. +q, is the blnaryp boxcdf point division over th@D-space.
Pxruly = (X =), F Sq) (x +y) is theR domain division operation, F and

P
Sy are respectively the cdf value and the slope of the cdf digion resulting from the
dizlision operation in the probabilistic domain and are detl in Appendid.6.2

P
q || P o~ X %
Fy fqo Jo Graferm iz §<y< R
L i B P X R
+f“° po @) pipo) 4792 By <y <
5 a1
[ L B Ao x G
* fpo Gw 4792 o <5 <5 (6.11)
0 1
Sy =
Proof. Readers can refer to Sectién6 in the Appendix m]
>
O

quantilé
Fig. 6.6: Thep-box cdf-point division

Example 6.8. Thep-boxcdf-point resulting from the division betweer and g, in the
relation py + gy is computed by following the steps listedAr6.2 Depicted in Fig.6.6
the result of computing the division in tB®-space and it is equal t(1.5,0.75,0.099).

6.3 Defining thecdf interval constraint domain

The cdf constraint domain is the structure over whiddf interval calculus is exerted.
We construct the algebraic structure over the computat@main equipped with the
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6.3. Defining thedf interval constraint domain

predicate symbolsq, andepp, g1, thecdf constraint relations, which belong to the sig-
natureXq,. <¢ is thecdf point ordering andt [pa, gp] IS interpreted as the constraint of
acdf interval variable to take its value within the specified domahe main idea of the
system is to perform interval calculus which guaranteesttteadomain of any variable
is enveloped by adf interval.

The fundamental algebraic structure of ti-interval constraint domain is the in-
terval which encloses a set ofif-points characterized in thgD-space: U1 or Up. TO
remain computationally tractable, we do not maintain a dalinmain representation of
points which define the set of distributions; rather we deffiveeinterval domain which
encloses a family of probability distributions. Definedf intervals, in the constraint do-
main, are employed to reason about data with uncertainkperesively in the Constraint
Logic Programming (CLP) paradigm.

6.3.1 cdf-interval structure

The key element to edf-interval domain is the uniforradf distribution it lies on. How-

ever, to remain computationally tractable we do not maingfull domain representa-
tion of the points defining the distribution. Instead, we @gpmate the curve by a line
whose extreme points are the bounds of the interval. Elesyarthe interval domain,
belonging tol{1, lie on this linear curve.

Definition 6.7 (cdf -interval domain). is a pair [pa, pp] satisfying p <u, Po and de-
noting the convex structure enclosing the set:

P_ P
{px = (X F) | Pa <2, Px <2, Po, @< X< b, and F{ = E_aa.(x—a)+ FP) (6.12)

Property 6.7. A cdf variable X in the constraint relation X [pa, pp] takes its value
from the constraint domain range enclosed by the ¢aigpoints p and .

Example 6.9. Consider acdf-variable in the relation Xe | wherel = [(1,0.16),
(7.75,0.98)], illustrated in fig.5.6a]. X can take any point valugx, F) such that

1<x<7.75and F, = 228048 (x— 1) 1+ 0.16.

Together with realrfiin, max operations, the second order stochastic dominance is
employed in the-boxframework to characterize the bounds of the interval. Dresdigd
bounds are chosen to follow uniform distributions in oraesimplify the computations.
The enveloped set gi-box cdf-points has an upper bourudif with the fastest rising
slope and which is dominated by all enclosed distributionghé interval. Conversely,
the lower bounddf has the slowest rising slope and it is dominatingéfldistributions
contained within the interval bounds.

Definition 6.8. [pbox cdf-interval domain] is a pair [g gp] satisfying g <, dp and
denoting the set:

{Px = (% FX, SX) | Pa <at, Px <4y G} (6.13)
whereas x<b,FY >FP>Ff and > Sf > !
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Fg’/ and Fg' are the linear projections of quantikonto thecdf-distribution bounds
and they are computed as follows:

FY =min(F} - Sh(a-x.,1) and F =maxF] - Si(b-x),0) (6.14)

Example 6.10. A cdf-variable X in the constraint relation X 1. | = [(1,0.16,0.16),
(8,0.64,0.08)), illustrated in fig.5.6 [b]. X can take any point valugx, F!, S}) such
that1 < x < 8, F} bounds lie between ni{®.16 — 0.16(1— X)), 1) > F! > max(0.64 -
0.08(8- x)), 0), and the average step probabilistic valuedid6 > S! > 0.08

Property 6.8. A cdf variable X is sought to range over edf-interval domainl =
[Pa. Gp] if and only if X & [pa, 0p]

Definition 6.9. The smallest convex interval which represents two arbjtqaoints g
and g, defined in a 2D-space lattice is: [giR (Px, dy), lubgs (Px, Oy)]-

Theorem 6.3. A p-box cdf-interva[ pa, pp] is convex and it forms a lattice structure

Proof. Let | = [pa, pp] be ap-box cdf-interval. Ifrs andv; € | then by definition6.8
Pa <, I's, Vi <a, Po. The bounding pointp, and p, are theglbe,, and thelubq, of
all points lying within the interval includings andv;. One can deduce that all points
lying betweerglbqey, (rs, i) andlubq, (rs, vt) existe |, hence, the domain range specified
as plbgy, (rs, ), lubg, (rs, )] € 1. This proofs that the domairpi, pp] is convex with
uniqueglb andlub which forms, from Theorerd.1, a lattice structure. m]

Property 6.9. If rs, v € | = [glbqg, (Px. Qy), lubg, (Px, Qy)], then, glbg, (rs, i) € | and
luby, (rs, i) € I. One can deduce that all points lying betwegtiny,, (rs, ) and

lubqy, (rs, vt) existe I, hence, the domain range specified gidd,, (s, i), lubqgy (rs, Wt)]
el

Example 6.11. Fig. 6.7(b) visualizes Propertg.9. Clearly, the smallest convex interval
that forms the two pointssiand v: [glbgy, (r's, Vi).lubqy, (r's, Vt)]

= [(6,0.52, 0.08), (8,0.45,0.06)] € [(4,0.42 0.09), (9, 0.405 0.047)] which, in turn, is
the smallest convegx-boxcdf-interval that representsand g,. Similarily, Fig. 6.7 (a)
depicts tha{(6, 0.45), (8,0.73)] € [(4,0.17), (9, 0.87)] for the cdf-interval domain.

6.3.2 cdf-Interval domain calculus

It is worth noting that thecdf-interval domain calculus guarantees an assignment of
p-box cdf-interval domains to variables. This assignment is essint convexcdf
structure. The convexity of the structure maintains anpeasive computation of do-
mains in a disjunction. This is due to the fact that intery@m@tions are exerted on the
predefined bounds of the given ranges. We can construct ebralgver the variables
taking their value in theD-space specified as (quantilgsprobability distributions),
Rx[0, 1]xR* in the ¢/1 domain andR %[0, 1] in the U/, domain.
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B B 4
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Fig. 6.7: Convex interval representation falf-interval [b] p-boxcdf-interval

Definition 6.10. The algebraic convex cdf structure is defined in the set otlodfain
of rangesRy,. Each element in the sBY, is a convex subset af.

Definition 6.11. The cdf constraint domain is the algebraic structureRgf, ordered by
the<y and defines the cdf constraint relatioesand ey, g,1- { R, <u, Ous €(pagol

Definition 6.12. Let| = [pa, Pp] and J = [qc, qq] be two interval ranges Ry, the
ordering relation<q, over the two intervals is defined as:

[Pa, Pb] <u/ [Gc.Ga] & Pa< e and @ < Qg (6.15)

Definition 6.13. Two cdf-interval range$ = [pa, Pp] andJ = [qc, dq] €Ry/ are in a dis-
junction. The convex representation which encloses athetgs from the two intervals
| andJ is their union

lubg,, ([ Pas Pol, [Gc. dal) = [9Iby(Pa, dc), Iubp(Po, da)]
: glby(Pa, dc) < lubp(Po, Gd) (6.16)

Definition 6.14. The intersection of two cdf-interval ranges: [ pa, po] andJ = [qc, Q4]
encloses common elemergsi{, from the two interval$ andJ

9lbg,, ([Pa, Po], [Ac, da]) = [lubp(Pa, Ac), 9lbL(Po. Ad)]
 lubp(Pas 0c) </ 91b(Po, da) (6.17)

The meet and join operations over {hdox cdf-interval ranges€R;, should main-
tain the convex property of the resulting interval. The lestithese operations is an
element ofRy. In other words, the lower bouncdf distribution should always be
dominated by the upper bourwdif uniform representation to ensure the second order
stochastic dominance. When an area of conflict takes plaeecdase when the min-
imum possible probability distribution is greater thanrtaximum interpretation, the
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p-boxcdf operation seeks to further prune the resulting domain ier@eliminate the
conflict. This elimination is exerted in two steps: 1) Extré#te point where the two
designated lines intersect; 2) The lower bowdd-points is assigned the point of inter-
section. All points lying below this intersection are elivaied from the resulting-box
cdf-interval domain.

This operation is illustrated in Figs.8 during the intersection operation where the
calculateduby, is (2, 0.07,0.24). In this illustration lower bound and upper bound distri
butions intersect at (28,0.16,0.24). The area of conflict occurs between(®7, 0.24)
and (248 0.16,0.24), in this area the minimurdf-distribution is greater than its max-
imum presentation. To maintain the consistency of data tfie convexity of the struc-
ture) the algorithm further prunes the resulting domainisT$ exerted by shifting the
point (2 0.07,0.24) to (248,0.16,0.24). Eventually, the additional calculation enforces
the convex envelopment property, where tak-distribution bounds enclose all points
which belong to the interval under consideration.

5| glbro(X, V) 5 [ ubgu(X, Y)

X

0.4+
(8,0.5§,0-08) (9,0.54,0.05)

0.2,

AN
o (1.0,0,16,0.22),

(2.48,0.16,0.24)
a5

7

9 10 9 10
values values

Fig. 6.8: Computingylbg,, andlubg,,

Example 6.12. Fig. 6.8 shows the computation of the meet and jgjltiz,, and lubg,,
constraints exerted on two variables X and Y €X(1, 0.16,0.22), (8, 0.49,0.05)] and
Y € [(2,0.07,0.24),(9,0.67,0.08)]

glbg,, (X, Y) = [(2.48 0.16,0.24), (8, 0.58,0.08)]
lubg,, (X, Y) = [(1.0,0.16,0.22), (9. 0.54, 0.05)]

6.3.3 cdf-interval domains arithmetic operations

Clearly this work follows the real interval arithmetic inttuced inBBenhamou and Older
(19979. In particular, when the degree of knowledge provides kege@yht to each data
value, the computed intervals are identical.

The knowledge representation in tb@f-intervals is the tightest possible uniformly
distributedcdf-bounds enveloping an unknown probability distributiomisTencapsula-
tion describes the data whereabouts minimum and maximusitpeshance of occur-
rence.
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Forog, € {+ry> —Ry»> Xry» TRy, ) @ DiNary interval arithmetic over tigb-space we
seek:

[ Pas Po] ©ry, [c, dal = {Px © Qv | Px € [Pa. Pol, Ay € [0, Ad]} (6.18)

Theorem 6.4. A binary interval arithmetic relation exerted over two pxoadf-intervals
yields a convex structure.

Proof. The proof follows the work otark and Wood$§1994); Williamson and Downs
(1990 and noted in Sectiol.2. Any two ranges, each enclosing a differedt distribu-
tion, can be involved in a relation given by a function. Thetation encloses their joint
cdf-distribution. Probabilities resulting from all possilgeairwise relations between two
ill-defined random variables are contained within the ougmmputation exerted on the
upper and the lowecdf distribution bounds which are supported in Theoréra to
maintain a convex structure. O

From this generic methodology we deriedf equations for the binary arithmetic
operations listed in Equatiof.18 Such operations seek the computation of the maxi-
mum and the minimum possibtelf bounds that encapsulate the probability distribution
resulting from the random binary arithmetic operation. Veeehchosen the bounding
cdf-distributions to be uniform, as described by EquatibR due to its inexpensive
linear computation as opposed to other existing probghiigtributions.

Addition * +¢,,

Consider two interval$ = [pa, pp] andJ = [qc, q], their arithmetic addition is a result
of adding every two pointpy andgy, each lying within one of the intervals which belong
to the binary computation. It is worth noting that this cortgtion is very expensive if

it is exerted in a pointwise manner. Hence, we rely on the eéomvoperty of thg-box
cdf-interval to perform this computation on the interval bosimhly. The result of this
computation yields @-box cdf convex structure which encloses all possible quantiles
as well as probability distributions that can be output fritv@ arithmetic addition op-
eration. The addition of thedf-intervals is exerted on the bounding quantile values
using real interval arithmetic addition, the joiruf addition is conducted on the tveolf
bounding distributions separately, The resulting conmarival is specified by

[(Ibs, F, S, (uby, L2, S

Real interval arithmetic addition is applied to computedownd upper quantile bounds
respectively denoted db, andub,. The resultingcdfs, Fi” andF|}” are obtained
by superimposing lower bound distributiorsi(andFd) and upper bound distributions
(FE and Fg) respectively. The computation of tieef values and slopes is based on the
convolution operation previously discussed in secfidh

Ib, =min(@a+c,a+d,b+cc+d)andub, = max@+c,a+d,b+c,c+d) (6.19)
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Chapter 6. Theoretical Framework

F(|+J) — f|b+ f|J(Z)dZ

b, ayp+Cib
b,
Fio? = L fu(@dz (6.20)
S|+J — 1
B (bip + dib) — (@ + Cib)
S ! (6.21)

ub: ™ (byp + dub) — (@ + Cip)

AppendixA.3 describes the proof of this finding. It shows that the resiulhe integra-
tion in the above equations is a linear computation; knowtregbounds of the uniform
distributions we directly substitute their values in ortteobtain the bounds of thedf
distributions.ay, andcy, are quantiles witledf value equal to Obyp anddyp are quantiles
with cdf value equal to 1. These quantiles are located respectivetieolower bound
and upper bound uniforrodf distributions.

The interval addition operation can be further generalindatie n-ary relation case.

Definition 6.15 (n-ary cdf -interval addition). n cdf-intervals involved in the addition
operation is denoted by

[(I0}, Fig.» Sy, ). (ubl, PG, - St )]

Ib} = (ap, + ... + @b,) and ulf = (aup, + ... + aun,)

n+ _ i (albl + ...+ 8p, — Ibﬂ)n
Ib+ n! (b|b1 - albl)"'(b|bn - albn)
1 (auby, + - + aup, — ubl})"

=1 =
e n! (bu, — aup,)---(Bup, — aun,)
n+ l
Sip, =
* ((bp, +... + bp,)) — (@p, + ... + ap,)
1

n+ _
U ™ (byp, + ... + bup,) — @upy + ... + Auby)

Example 6.13. Let| andJ be twocdf-intervals such that = [(1, 0.8, 0.099)
(2,0.030.02)] andJ = [(3,0.7,0.1), (6,0.02 0.01)]. The computeg-boxcdf interval
addition is exerted on thedf bound points defined in tHZD-space (values and knowl-
edge about their occurrence). Figs.9 illustrates the arithmetic additiop-box cdf-
interval relationl +J. Result of the operation is specified by tuinterval [r a.c, Mb+d] =
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6.3. Defining thedf interval constraint domain

T 7 o ron e ity ! ......... .
_94,0.150.049)

o LK
‘7I0!')j ........ R

| 8|0.02,o§.oof6)

# | QUahti]E

Fig. 6.9: Thecdf-interval addition

[(4,0.75,0.049) (8,0.02 0.006)]. Note that in the absence ofif knowledge distribu-
tion, where candidate intervals have equal uncertaintygives, we obtain a real interval
arithmetic addition[4, 8]. The additional knowledgp-box cdf-interval representation
introduces is the fact that any point lying within the int@nbounds has an average
step probability value varying withif0.6%, 4.9%] with a minimum probability value
betweerj0%, 2%]. Clearly, the span of thp-boxcdf-interval domain resulting from the
addition operation increased along the quantiles. It irdes that thecdf bounded dis-
tributions, covering more real quantiles in a uniform manfmve decreased in values
(minimum and maximum probability distributions) alonghw#lopes (the average step
probabilistic values).

Multiplication * xg,,‘

The multiplication operation, df = [ pa, pp] andJ = [, Q4] , is exerted on pair of points
belonging to the intervals in a binary relation. The resiilthés operation is enveloped
by ap-box cdf-interval whose bounds are defined as

[y, Fp, SEY). (ubs, FI, S

Operation on quantile values follows the conventional netrval arithmetic mul-
tiplication. The lower and upper bounds are definedlhyandub,. Recall that data
values can be negative:

Iby = min(ax c,axd,bxc,cxd)andub, = max@x c,axd,bxc,cxd)

The cdf-distributions which envelop the data whereabouts of tierval resulting
from the multiplication operation df x J can be computed as detailedAm.2. They
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are defined as:

by
Fo = fa fi3(2)dz

bXCip
uby
Fi) = f fi3(2)dz (6.22)
AubXCub
The slope of thedf-distributions are
IxXJ _ 1 IxJ _ 1

b, — | “ubc [
I‘Jlub_l‘]lb I‘]ﬂb_I‘Jub

Wherel 3|, = min{ay,Cio, @b, bibCio, bindin}, 135, = MaxayCin. &b i, bibCib, bindin},
13!, = min{ausCub, @unbub, BubCub, Puplub} and1JY, = max{aysCub, @ubub, BubCub, Bublub}-
Appendix A.4 derives the proof of the above equations. To compaig,Cp, b, dip,
aub, Cub, bup, dup , the bounds of thedf distributions which envelop andJ we refer to
the linear Equatio\.10. Each of these bounds hagdf value equal to 0.

=
(8]
I/'
1.0,0,8,0.099),~
i
(310.7,041) L s X
3,0.64,0.014)
IxJ
(Z,GS 03,;0.02 ""J'IZE,U. 0 9:‘?;'0'(?01;)
(6,0.02,0.01)  quantie

Fig. 6.10: Thecdf-interval multiplication

Example 6.14. Thep-boxcdf-interval which results from the multiplication operation
overl xJ = [(1,0.8,0.099) (2.0,0.03 0.02)]x[(3.0,0.7,0.1), (6,0.02,0.01)] is computed
in the2D-space by computing theeboxcdf-point multiplication of the interval bounding
points as detailed in Appendix.4.2

The result of multiplying x J is the depictedo-box cdf-interval in Fig. 6.10
[rb,,run.] = [(3,0.64,0.014) (12 0.0019 0.00019)] Observably, the span of quantiles
along this interval has increase and the average step valb&sned ard0.019% 1.4%].
Probabilities, in this case, are fairly distributed alondhagher range of quantiles.

Subtraction ‘—g,,*

The p-box cdf-interval which results from the difference operation) 6f [pa, pp] and
J =[qc, q4] is defined as

[(Ib_, Fis?. Si;). (ub, F L. S} )]

80



6.3. Defining thedf interval constraint domain

Ibo =min(a-c,a-d,b—cc-d)andub. = max@-c,a-d,b-c,c—d)

Ib_
Fio? = f fi3(2)dz
aq

b—dib
ub_
Fd = [tz (6.23)
ayb—dub
o = e Sl =
_ - Su I
I‘]Iub_l‘]lb IJﬂb—IJub

WherelJ}, = min{ay, — Cp, &b — dib, b — Cip, b — div}, 13} = maxX(ap, — Cip, ap —
dip. bib — Cip, b — dip}, 13!, = Min{aup — Cub, 8ub — Aub, Bub — Cub, bub — dup} and 134, =
max{ayp — Cub, 8ub — dub, Bub — Cub, Bub — dup}-

The derivation of the above equations are shown in AppeAdix Subtractions on
the bounding points are exerted. Resultijpox cdf-points enclose all possibledf
distributions resulting from the point-wise subtractiasfspoints lying within the two
intervals under consideration.

quantilé
Fig. 6.11: Thecdf-interval subtraction

Example 6.15. Thep-boxcdf-interval difference betweehandJ in the relationJ — |
computes th@-boxcdf-interval which envelops the output of the subtraction afien
J — 1 is shown in Fig.6.11 [rp_,run.] = [(1,0.39,0.049) (5,0.34,0.006)]. Any point
lying within the interval bounds has an average step proligbvalue varying within
[6%, 4.9%] with a minimumcdf value 0.3. Notice that thiscdf value is obtained by
projecting the quantile of the lower bound onto the domiratitdistribution.
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Division ‘=g,

The ratio operation, of =

[pa, pp] @and J = [qc, qq] Yields a p-boxcdf-interval whose
bounds are defined as

(b, Fiy?, S}y, (ub., Fip2, i)

Ib. =min(@a+c,a+d,b+cc+d)andub. = max@+c,a+d,b+c,c=d)

Ib.
FllbiJ = j;lb fxy(Z)dZ

Ay
Fled = "~ fxy(2)dz (6.24)
ub+ - ap XY .
dup
SI+J 1 1+J _ 1

DTy gl T Y, -1l

[ a a bp bp u _ a a bp bp
| WhereI‘Jlb - mlbn{ b >dp’ Cp° dlb}' I‘]lb - ax{Cm’bdm ’bC|b’ dlb}'
Qub Qub DBub Dub u _ Qub Sub Bub DBub
1 b_mln{cub dub’ Cub’ db}andl‘]ub_max{Cub’dub’Cub’(_jub :
AppendixA.6 details the proof of the above equations.

(6,0.02,0.01)  quantile
Fig. 6.12: Thecdf-interval division

Example 6.16. The computation of the-boxcdf ratio J + | is listed in Appendid.6.2
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6.3. Defining thedf interval constraint domain

The resultingp-box cdf-interval is depicted in Fig6.12 It is specified by the cdf-
interval [y, run.] = [(1.5,0.47,0.05), (6,0.42,0.02)]. Clearly the slope of the lower
bound distribution increased in this case. This is due toft#w that the span of the
guantile bounds have shrinked because of the division tipera

Noticeably, the core operations, computed gqwdrox cdf-intervals, adopt the com-
putation in the2D-space: real arithmetic and probabilistic computatione Ttter op-
erations are proved to be linear, in Appendix3, A.4, A.5 and A.6 due to thecdf
monotonic property and since we exert these operationsearliuniform distributions
which enclose the intervals under consideration. The cdatipn seek to find two val-
ues for thecdf bounds and their slopes. Obtained domains are proved toshewavex
algebraic structure which encloses an unknown probaldigiribution. Example$.13
6.14 6.15and6.16further ellaborate that shrinking the real quantile bouyig&ds an
increase in the range efif distributions bounding the resultant interval and visesaer
This is due to the fact that the uniform distribution fairlivides the average step prob-
abilistic value over the quantile range. Yet the outputrivdkencloses the unknown
probability distribution due to the probability theory kierson et al(2003; Williamson
and Downg1990.
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CHAPTER7

PRACTICAL FRAMEWORK

In the constraint programming paradigm relations betwesmakiles are specified as
constraints. A set of rules and algebraic semantics, defimedthe list of constraints,
formalize the reasoning about the problem. As a fundamdamtgiuage component in
CLP, these set of rules, with a syntax of definite clauses) tbe language schendaffar
and Lasset1987. The constraint solving scheme is intuitively and effithgatilized in
the reasoning over the computation domain. The scheme figrateempts at assigning
to variables a suitable domain of discourse equipped witequality theory together
with a least and a greatest model of fix-point semanticstiBggirom an initial state the
reasoning scheme follows a local consistency techniquehwdiitempts at constraining
each variable over thedfinterval domain while excluding values not belonging te th
feasible solution.

7.1 Thecdf-interval language scheme

Definition 7.1. The system of constraints assigns each variable a cdfviaterange
from Ry,

1. function symbols, mapping variables to cdf-intervalg @f+q/, X4, —, ~}
2. relation symbols are {=¢;, <4}

3. X €[pa, pp] constrains the variable X to a domain range such that
Pa <z Px <u Pp

4. Cy <qu Cqua is in the set of constraints whereqCand Cy; are specified as

expressions
(i.e. constants, variables and operation$glbq,, luby,, ©})
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Chapter 7. Practical Framework

The constraint system behaves like a solver over real ialerit is based on the
relational arithmetic of real intervals where arithmetipeessions are interpreted as
relationsCleary(1987. Variables in a relation are expressed in terms of othelssab-
ject to cdf-interval domain refinement using local consistency tephes. To simplify
the complexity of the operations, n-ary constraints ar@dgmwsed into primitive ones
which contain at most twodf-interval variables in a relation.

The notion of arc consistency Mackworth (1977 ensures that, for a binary rela-
tion, every pair of points enveloped by the domain of vagalbeloging to the relation
must be satisfied. This notion, however, consists of an tefimimber of checks, when
adopted in thesdf-interval algebraic structure, since the domain enclosesfaitesi-
mal number of elements in the 2D-space. Tl interval scheme instead adequately
seeks the local consistency on the interval bounds andnipsies that every pair of
points lying within the bounds satisfy the system local ¢stesicy. Domain holes are
not taken into consideration because they increase thensysimputational complexity.

Property 7.1. Let C; <¢; C, be a primitivecdf constraint. This binary constraint is
local consistent if and only if:

CLl. glby(Cy) <u glby(C2) and
C2. luby(C1) <o/ Iubey(C2)

7.2 Thecdf-interval inferrence rules

Operations which refine thedf-interval domain exclude elements from the domain in
order to satisfy the conditions defined by the local consstenotion. This refinement
is also called domain pruning and it is intuitively exerted the cdf-interval domain
bounds defined in the 2D-space. Relations are handled ustngansformation rules
which extend those defined over the real intervals couplddl imferences over the
bounds of thecdf distributions. The solver converges to a fixed point or infil-
ure. We ensure termination of the generic constraint pratagy algorithm because the
cdf-interval domain orderingq, is reflexive, antisymmetric and transitive. Hereafter
we present the main transformation rules for the basicrastit operations. When a
domain remains unchanged we will use the following notatloa [pa, pp], J = [dc, Qd]
andK = [re, r¢]. Thecdf-variables are denoted b, Y andZ and their initial binding
issettoX =1,Y = JandZ = K. We attach a’j to points on the bounds when they
are subject to domain prunning (adjustment due to the dpajatailure is detected if
some domain bounds do not preserve the ordesing

7.2.1 Ordering constraint X <q; Y

To infer the local consistency of the binary ordering camist; we extend the lower
cdf-bound ofX and contract the uppedf-bound ofY. This is to maintain the domain

86



7.2. Thecdf-interval inferrence rules

interval ordering described previously in Sect@B.2 To infer about the ordering con-
straint we use the following rule:

Po’” = gIb(Pb, da), Ac” = lub(pa, o)
(Xel,Yed, X<y Y} — (Xe[papp]Y €[, qal, X <u Y}

Example 7.1. Let the initial cdf domain binding for Xe [(2.0, 0.4, 0.8), (6.0, 0.2, 0.05]
and Y e [(1.0,0.6,0.7), (5.0,0.1,0.06)], the inequality constraint X4, Y, as shown in
Fig. 7.1, prunes the domain of X from the upper bound and the domainfainy the
lower bound. The output domains from this operation are 2.0, 0.4, 0.8), (5.0, 0.1, 0.06)]
and Y e [(2.0,0.4,0.8), (5.0,0.1,0.06)]. Clearly resulting domains preserve the convex
property of thep-boxcdf-intervals.

o

\" J o I
(20408 1
(6,0.2/0.05)

L -—=~

= ,/" '
/"ism&;mO’GY o
quantile”

Fig. 7.1: Ordering constraint execution. Initial bindirmgeX € 1,Y € J.

7.2.2 Equality constraint X =Y

The binary equality constraint seeks at refining extrematpdiracketing the domains
of both variables such that resulting domains are identiRabkulting domains from the
equality areX,Y € [pd’, pp’] after conducting the intersection on the original domains
This is exerted using the following inference rule:

Po” = 9Ib(Py, Ga). Pa” = lub(pa, Gc)
{X € I’Y € ‘J’X = Y} — {x € [pa,, pb,]’Y € [pa’, pb,]’x = Y}

7.2.3 Ternary addition constraints X +¢, Y = Z

The addition operation is implemented by summing up pairahis, defined in the
2D space and located within tleelf-interval bounds which enclose the domain ranges
of X andY. This operation is convex and can be computed from the enmdof the
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domains involved in the addition. Thelf-domain ofZ is updated to envelop all points
defined in that range. The inference rule applied in this ajgar maps the Cartesian
product of thecdf initial binding domains involved in the relation & J x K) to a
new Cartesian product’(x J* x K’). The resulting Cartesian prodLﬁﬁ, includes all
possible three-point-set which satisfy the local consisteof the constraint and which
is specified astq/ = {(Px. Qy,r2) : Px.Qy. 1z € U, px + Qy = rz}. Notice that initial
bounds, enveloping the domain &f affect this triplet-point set. The resulting full set
of solutions is given by+¢, (1 x J x K. To obtain the output domain bindings, we
project the Cartesian product onto each variable domailvad in the relation. The
output Cartesian product when projected on the domaiX yields the set of elements
specified agpx : Jqy, r(Px. Gy, Iz) € +¢ (1 x I x K}. To infer about thecdf ternary
addition constraint we use the following:

’ _ 1+J 1+J ’_ 1+J 1+J
r{’ = (uby, Fub+,Sub+), re = (b, F|b+ ,SIb+

Xel,Yeld,ZeK,Z=X+y Y}— {Xel,Yel, Ze[r,r{'],Z=X+q4 Y}

P’ = (ub, Fi Y, S ), pa’ = (Ib-, Fig™, S
Xel,Yel,ZeK,X=Z-¢Y}r— {Xe[psd.p].Ye€IZeK,Z=Z -4 Y}

The projection onto th&¥ domain is symmetrical.

Example 7.2. Table7.1and Fig. 7.2 depict the execution steps of tbaf ternary addi-
tion inference rules, exerted on the variable domains wvewlin the relation Z= X+¢/Y.
Observe that domain pruning is performed i@ dimensional manner: quantile ardif.
The addition of the two variables X and Y is performed on thende of their prede-
fined domains then it is projected onto the initial bindingehe first row in Fig. 7.2
shows output domains from the additios U, K- J and K- |. Domain operations are
exerted on the extreme points. The second row illustrategtiersection of the output
domains with the initial bindings, assigned to Z, X and Y. &bi#d domains from the
ternary addition operation ar&’, J’ andl’. Clearly in this example pruning real quan-
tile bounds is identical to that of real domains and sincepatitdomains preserve the
stochastic dominance property no further pruning takesg@la

Example 7.3. Table7.1and Fig. 7.3 show another example which incorporates differ-
ent cdf distribution bounds issued from the same real quantilese froperty of these
distributions were tweaked to affect the output domainsimy This is due to the fact
that the model seeks to preserve the convexity opthexcdf intervals. Pruned do-
mains resulting from the operation detailed in this exampdwe different real lower
bound quantiles1.68 and2.55for X and Y respectively.
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Initial bindings (Exampl€’.2)

X+ Y =

[(0,0.6,0.099) (2,0.03,0.01)] +q,
[(1,0.7,0.098) (3,0.1,0.04)]
Z-yX=

[(4,0.8,0.05), (6,0.05,0.008)] —¢/
[(0,0.6,0.099) (2,0.03,0.01)]
Z-qyY =

[(4,0.8,0.05), (6,0.05,0.008)] —¢/
[(1,0.7,0.098) (3.0,0.1,0.04)]

[(1,0.56,0.033)
(5,0.2,0.006)]

[(2,0.6,0.033)
(6,0.467,0.004)]

[(1,0.65,0.049)
(5,0.044,0.008)]

Output variable domain bounds

[(1,0.56,0.033)
(2.0,0.03,0.01)]

[(2,0.6,0.033)
(3.0,0.1,0.04)]

[(4.0,0.8,0.05),
(5.0,0.044,0.008)]

Initial bindings (Example’.3)

X

Y

z

X+ Y=
[(0.0,0.4,0.25),(2.0,0.1,0.06)] +4,
[(1.0,0.5,0.2),(3.0,0.2,0.05)]
Z—qyX=

[(4.0,0.3,0.9), (6.0,0.04,0.02)] —¢,
[(0.0,0.4,0.25),(2.0,0.1,0.06)]
Z-y Y=

[(4.0,0.3,0.9), (6.0,0.04,0.02)] —¢,
[(1.0,0.5,0.2),(3.0,0.2,0.05)]

[(1.62,0.23,0.16),
(5.0,0.28,0.014)]

[(2.45,0.23,0.195)
(6.0,0.28,0.015)]

[(1.0,0.45,0.11),
(5.0,0.15,0.027)]

Output variable domain bounds

[(1.62,0.23,0.16),
(2,0.1,0.06)]

[(2.45,0.23,0.195)
(3.0,0.2,0.05)]

[(4,0.78,0.11),
(5.0,0.15,0.027)]

Table 7.1: Execution steps of ternary addition constraigt X +, Y.
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Fig. 7.2: Ternary addition inference rule execution. &libindings areX € 1,Y € J and
Z € K. Final bindings areX e I’, Y € ) andZ € K’.

7.2.4 Ternary multiplication constraint X x¢; Y =Z

The ternary multiplication is not naturally convex, y@eary (1987 introduced an al-
gorithm which seeks an output convex domain from the mudgplon. The algorithm is
based on splitting the domains, especially when they aradexdiby quantiles equal to
0; the problem, in this case, is solved as separate subgmnsblthen, resulting domains
are unified. Ternary multiplication gm-box cdf-intervals domains is first performed on
real quantiles using real interval domain multiplicatidResulting quantile bounds are
then projected on thedf domain. Inferring about the product ot8f bounding domains
yields a set of all possible triplets taking their valuesiirthe domainsi( x J’ x K”)
and specified by the sety; = {(px, Qy,r2) : Px. Oy, Iz € U, Px X Oy = r}. Elements of
X projected on the output Cartesian product are specifiggh,as 3qy, r,(px, dy, ) €
xg (1 x J x K}. The ternary multiplication is described by the followingférence
rules.

(" = (ube, FIX2,SE9). 1’ = (Iby, FR2, S

Xel,Yeld,ZeK,Z=Xxy Y}r— {Xel,Yel, Ze[rd,r{'],Z=Xxqy Y}
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Fig. 7.3: Ternary addition inference rule execution. &liindings areX € 1,Y € J and
Z € K. Final bindings areX € I’, Y € J’ andZ € K’. Initial bindings have identical
quantiles in the real domain but final bindings are furthempd to maintain thedf
stochastic ordering property

P’ = (ub:. FX2, SK). pa’ = (b, FIS™, SE

ub. °

Xel,YedZeK X=Z=-u Y r—(Xe[ps,p.YE€ZeK,Z=Z 1Y)

The projection onty’s domain is symmetrical.

Example 7.4. Fig. 7.4 depicts the execution of the ternary multiplication=2X xq¢,
Y where initial domain bindings are specified aseX[(0, 0.6,0.099) (2, 0.02,0.01)],
Y € [(-1,0.7,0.098), (3,0.1,0.04)] and Z € [(—3.0,0.8,0.05),(7.0,0.05,0.008)] Ob-
servably, domains of X and Y remain unchanged but domain o&Z pruned toe
[(-2,0.37,0.012) (6,0.042 0.008)] due to the multiplication operation.

7.3 Operational semantics of thecdf-intervals

In practice, a problem has a set constraints system, eadtraon is defined over a
set of variables, each of which is defined over an interval @lom Constraints may
share some variables. Theboxcdf-interval domains, involved in a relation, are subject
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Fig. 7.4: Ternary multiplication inference rule execution

to be pruned by the list of constraints incorporating vddatbind to these domains.
The operational semantic of tipebox cdf-intervals follows the relaxation algorithm of
fixed-point semantics proposed for real intervalslied and Van Emde(i1993]. The
algorithm, as described in Algorithrd, is performed as a list of state transitions. It
defines two sets of constraint list: pass#g in which all constraints are stable (i.e.
approved to be local consistent) and actig which contains all constraints subject to
the consistency check. The set of domain constraints is slyreld byRq,. An arbitrary
statei is specified a$?{rm,§!:[g , @)i). The initial state lists all the problem constraints
in Aq, it is specified agAqo, D, D) and the final state is either a ‘fail’ if one of the
domain constraints is empty (&, Rqsi’, Pv’), where all constraints have been checked
for local consistency and moved from the active list to thest@ints stor€q,. The only
difference in the operation lies in the execution of infeemules which is performed
in the two 2D-space. For any system of constraints, if itsngefiinference rules are
characterized to contract variable domains while beingnlgtent,Older and Vellino
(1993 proved that fixed-point semantic algorithm always terrtr@sarrespective of the
ordering of the inference rules execution.

For the set op-boxcdf-interval variablesVq, the relaxation algorithm is described
in Algorithm 3
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1. Initialize Aq, to the list of all constraints in the network
2: Initialize P, to the empty list
3: while Aq, is not emptydo

—_—>
4:  remove the first constraitp, V) from Aqy

—> —
apply domain narrowing usinegdf inference rules oo, V) to obtainV«.

5:
6. if interval narrowing failghen
7. Exit with failure
=5 =
8. else if Vu # Va' then
—> —
9: Vu « V'
—
10:  for each constraint(&, Yu) in P¢, do
— —
11: if Va andYw share narrowed variable(8)en
—>
12: remove(¢, Yu) from Py, and append it toAq,
—
13: appendo, Vu) to the end ofP4, which maps thedfinterval variable

domainV; to Ry,
Algorithm 3: relaxation algorithm

7.3.1 The design of theedf-interval solver

An implementation of the constraint system was establisisea separate module in the
ECL'PS constraint programming environmeBCRC (1994. ECLPS provides two
major components to build the solver: attributed variald&adstructure and suspension
handling mechanism. Fundamentally, attributed variablesspecific data structures
which attach more than one data type. Together they permat firew definition of uni-
fication which extends the well-known Prolog unificatiom Huitouze(1990; Holzbaur
(1999. A cdf-interval point is implemented in an attributed variablédstructure which
encompasses three main constituents: quamtieyalue and slope. Whilst constraints
suspension handling is a highly flexible mechanism that aihesntrolling user defined
atomic goals. This is achieved by waiting for user-definendd@tons to trigger specific
goals. AppendixB describes part of the solver source code and shows a lisieoy/gun-
swer examples which are implemented using the list inferentes detailed in Section
7.2

The cdf-interval solver roots and derivations

The cdf-interval language inherits its syntactic features frorol®y. A function or a
predicate can be implemented equivalently in two formaifx or postfix. This feature
allows us to implement arithmetic operators in the infix fatnifor example+(pa, db)
and ps + (p are equivalent). Hence we can seek for the development ofeadii@en
language which intuitively realizes meta-programming.

cdf-interval domains are defined over reals:

93



Chapter 7. Practical Framework

1. quantiles range-, +0], the cdf values range [AL] and the slope values range
[0, +o0], by definition.

2. The'.. ' cdf domain range operator take the boundaal points as parameters
to indicate that the interval ranges between the boundimgtg0This operator is
defined in the infix format

3. The{~,| }operators append the uncertainty components to the reatilguadf
value and slope

For example &df-interval domain range is expressed by the formula
270.7|0.86...370.1|0.028 “in cdf-interval solver. We definedf-interval linear
constraints to incorporate the following:

1. cdf-interval constant expressions of the foref0.7|0.86...370.1]|0.028 '
2. cdf-interval coefficients each multiplied by tleelf-variables

3. ‘X.::AFA|SA...BFB|SB ‘is semantically equivalent tp; <y X <¢/ Op given
that p, andqp, arep-boxcdf-interval points specified as(F§, S§) and b, F,l, S
respectively.

4. Binary relations are specified fs, =< , .=, >, >= }

5. { +,- }are binary operations defined by the infix notati¢r. } and{ - } are left
associative and have the same binding order

A linear constraint is specified by the formuls ¢p t) wheresandt are linear expres-

sionsand og { .<, .=< , .=, >, >= } For example
“(370.8]0.96...470.4|0.034) *X + (270.7|0.86...370.1]0.028) *
(Y + X + (670.9]0.85...770.5]|0.029) ‘is an arithmetic expression and
‘(370.8]0.96...470.4|0.034) *X + (270.7|0.86...370.1]0.028) *Y +
X .=< (470.9]0.85...570.5|0.029) *Z + (670.7]0.86...7°0.1|0.028)

+ Y'is alinear constraint. Arithmetic constraints are thedamental language feature
of the modeling in the constraint programming paradigmthnietic constraints are lin-
ear constraints augmented by the binary arithmetic midépbn{ = }. Any expression
of the form X = Y +(670.7|0.86...770.1|0.028) .=<
(470.9|0.85...570.5|0.029) = Z'is an arithmetic constraint.

The cdf -interval delay mechanisms

We use the Eclipse suspend library in our user-defined goglementation. Goals con-
taining cdf variables are suspended until they are initialized and #neysubject to the
waking condition of the active constraint when variable dombounds change. Accord-
ingly, we use X1->inst ‘, ' X1->min ‘ and ‘X1->max ‘as suspending parameters which

*Binding ordering of arithmetic operators is detailed Apf and Wallacg2006)]
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identify any changes in the variable domain. By means of tcaimé propagation tech-
niques we refine the variable domain, moving the boundfgoints. Once this occurs,
the list of all system constraints attached to this variabeewoken and further domain
pruning may be applied. This is exerted by calling the BEE built-in ‘wake/0 ‘. The
local consistency mechanism ensures variable domain neéineby applying thedf-
interval inference rules.

Example 7.5. The goal X.::370.8|0.7...570.1]0.02

, Y.::1270.7|0.87...470.4|0.017 ‘', X.=<Y . ‘produces the refined domains:
‘X.::370.8|0.7...470.4]|0.017 “*Y.::370.8]0.7...470.4|0.017 ‘and the
delayed goal: X .=< Y ‘. More examples can be found in Appenix

7.4 Empirical evaluation

To evaluate the added value of the new constraint domain,onsidered an example
provided inYorke-Smith and Gerve2009, and attacheddf value and slope to the
interval bounds. We tested the system for coefficients Iyinghe positive quadrant
(i.e. they are assigned positive values). Exani@pleaims at solving a system of linear
equations which hasdf coefficients and unknown variables having no certainty ekegr
defined, i.e. the lower bound points a(@, 1.0, )" whereas upper-bound of the variable
interval is’(c0, 0,0). Shown below are pruned domains of the variables at fixed: poin
using our inference rules. Thoelf-intervals attached to the data (here coefficients) were
propagated onto thedf-variables,X; andX,. We can see that inferences on the quantile
component of the 3-D space point yield similar pruning orréseilting variable domains
and the additional information coming from thdf and slope components demonstrate
the information gained on the density of occurrence for #eaiiting points within the
cdf-domains.

Example 7.6. Consider the system of linear equatigis R, b) shown below:

[(-2.0,0.5,0.2), (2.0,0.01, 0.095)] [(10,0.3,0.32), (2.0,0.02,0.083)]
A= [(-2.0,0.7,0.1),(-1.0,0.0,0.087)]  [(~1.0,0.2,0.3),(-1.0,0.010.087)] |.

[(6.0,0.9,0.98), (6.0, 0.01, 0.018)] [(15,0.1,0.6), (3.0, 0.06,0.034)]
<Ry [(3.0,0.88 0.4), (4.0,0.4,0.088)]
R=| = |andb=| [(~5.0,0.850.1),(5.0,0.02 0.013)]

= [(4.0,0.9,0.02),(15.0,0.01,0.001)]

Fig. 7.5illustrates two skewed intersecting boxes, each encldsutput solu-
tion population residence for Xand X2. The shown boxes are the result of applying
cdf propagation techniques on thelf linear equations provided in this example. The
black box is the representation oflsolution domain bounded (0.0, 1.0, +0),
(5.0,0.46,0.07)] and the yellow one is the solution domain of the variabkgken by
(0.0,1.0, +0), (2.5,0.28,0.07)]. Clearly, both solutions intersect in thel X2 2D space
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~=
.5,0-28,0.07)
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Fig. 7.5: Example3.1 Solution set resulting from thedf computations

as illustrated by their projection depicted by the shadeeckierboard region. Typically,
the 2D projection plane matches their 2D LP solution domaid #@ represents the real-
interval arithmetic solution. This is due to the fact thatelal areas of the boxes share
common 2D planes in the 3D space, yet each variable encapsutadifferent proba-
bilty distribution. SectiorB.5, in AppendixB, shows the query/answer syntax for the
system of linear equations input to/output from our solweplementation.
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CHAPTER S8

P-BoxXx CDF-INTERVALS GLOBAL

CONSTRAINTS

Global constraints have been widely used in@#iterature in order to enhance the rea-
soning process in terms of efficiency and effectiveness.afisqf a constraint solver im-
plementation, they take advantage of the constraints rmgpgémantics to reason about
problem specific data from a global perspective-J. van Hoeve and KatrigR008§.
Many propositions to formulate global constraints of @@ modeling by means dfP
representations have been thoroughly researched ingnatliteRefalo(2000; Milano,
Ottosson, Refalo, and Thorsteinsg@001); Hnich, Rossi, Tarim, and Prestwi¢h011).
Such hybridizations proved to inherit the intuitive exmieeness of th&€P paradigm
while applying the powerfulLP optimization techniques. These approaches aim at in-
tegrating thelLP paradigm into theCP and they proved to perform very well in the
deterministic case.

In this chapter, we define the system of global constraings the p-boxcdfintervals
algebraic structures, by extendihgerval Linear Systems (ILS)ith a second dimen-
sion: thecdf. This new proposition inherits its characteristics frore tiybridization
techniques found in the literature and surveyedgfalo (2000; Milano et al.(200D);
Hnich et al.(2011).

8.1 P-Box CDF-Intervals LP

The CP characteristic of the model comes from adopting our p-tdhintervals frame-
work. We build the global constraints, by transforming tmeljpem into an equivalent
set of linear equations on the domain of quantiles whichyiin,tare solved by the Sim-
plex methodChvatal (1983. We show how the-box cdfintervals constraint model
does generalize théS Hansen(1979. Hence, linear systems withtbox cdf-interval
coefficients and variables can be solved by a simple polyabtransformation into a
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linear model. The approach is similar to the ILS with positooefficients (also called
Positive Orthant Linear Interval (POLBeaumont{(1998. This approach was adopted
by Yorke-Smith and GervegR009 to extract real bounds of tHeS with interval coeffi-
cients in theitUCSPalgebraic structure. Resulting extreme quantiles, obthfrom the
POLI, are then projected onto the probability domain in otdededuce bounds on the
cdf bounding distributions. We show that extreme points oletin UCSPandcdf-ILS
are equivalent.

8.1.1 ExtendedUCSP Transformation (EUCSPT) Algorithm

The transformation algebra prunes output solution domajrextracting extreme points
in the interval hull. Hence, we can obtain the full closurah#ILS; which represents
the problem in hand along with its data whereabouts.

(%]
f— 5 —T
- Solve 2 eplex 3 Project onto the Extract final 2
3 Extract the e} . . S . 3 A &
2 LP & its dual » instances using o > bounding - solution S—ﬂb
— b . . . (=
its dua the Simplex method| £ cdf-distributions -°°—". p-box cdf-bounds 27
- =
S s 28
o

Fig. 8.1: EUCSPTAIgorithm

The algorithm as depicted in F&1is composed of four main steps:
1. Extract the_P and its dual

2. Solve 2 eplex instances

3. Project the quantiles onto tlkef bounding distributions

4. Extract the final solutiondf-interval bounds

Definition 8.1. Let V be a set of n p-box cdf-variables, agda set of m linear con-
straints overV with p-box cdf-interval coefficients. A p-box cdf-interizhear System
UILS induced byC overV is a tuple(A, R, B), whereA € (R x [0..1] x R*)™" is the
matrix of the LHS interval§glba, luba], B € (R x [0..1]R*)™ is the vector of the RHS
intervals[glbg, lubg] and R € {<¢, <w, =, =, >} Yi = 1,..,mis a list of m relations
defined over p-box cdf-intervals.

Theorem 8.1. The Positive Orthant Linear transformation of the cdf-mtds (POLI-
CDF)p = (A, R, B) is the complete solution set of the interval linear inequyadystem
(A'X{*R}B") and it is defined as follows:

(glba, lubg) if {<q,<q} € Ry }

(A", Bi) ={ (luba, glbg)  if {>/.>u) € R,
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Proof. According to the p-boxcdfintervals notation, any poinpy that belongs to the
interval lies between thglb andlub with respect to the orderingq,: glb <¢; px < lub.
Both {>¢, >4/} € Ri are the mirror of<q,, <¢/} € Rj.

The proof demonstrates that all realizations obtaine&;in= X(A, B), which is the
complete solution set of the UILS, coincide with = X(A‘, BY), which is the solution
set resulting from the transformation.

For any pointpy € Sy, A* € A andB' € B, B and B' are theglb andlub elements of the
original interval solution set. Hencey € S;.

On the other hand, for any poim € S;, A € A, B € B such thatAX <q¢; B for
px =u L, whereL is theglb of all points. For each linear p-badfinterval inequality
though the operatokq, is monotonic. Thereof, inequality holds with a decreaséhen t
LHS, an increase in the RHS, or both. For any poinBjrB; <¢, lubg, andA; >4, glba,,
any pointpy >¢; L, the inequalityA; px >¢/ glba, px holds. O

This transformation proves the equivalence of the modekndd, solving the pro-
duced list of constraints yields the full closure of the or&d CSPproblem along with
its maximum and minimum probabilities of occurrence. Foivey optimization prob-
lem, we seek to extract the interval bounds enclosing thenlindd objective function
Z. The maximization of the designated function exploits pper bound. Similarly,
the minimization, introduced by the duality thedvgn Neumann(1947), searches for
the lower bound min(Z) <¢; (Z) <¢y maxZ). Chinneck and Ramadg2000 proved
that this transformation yields the interval hull of thewg@n set for thdLS with inter-
val coefficients. This approach is adoptedBiertsimas, Pachamanova, and S2004);
Bertsimas and Sinf2004) in order to develop robust optimization problems fb6
under uncertainty. In the first step of the algorithm, we slmow to extract the maxi-
mization problem and its dual from the system of uncertaiedr equations formulated
by thep-box cdf-intervals.

Extract the LP and its dual.

Consider the following maximization problem over thidoox cdf-coefficients and vari-
ables:

n
Maximize Z =g,, Z[pej, Pt 1|
i1

n
subject to Z[paj, Po;1Xj <ry [Po>Pg] Yi=12,....m

=1
Vi, Xj€[px.0x]. and py.dx € R x[0.1] xR"
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The transformation of the above model according to Thed@em

n
max Z =

m
[ps]X; min Z = > [pa]Yi
=1 i=1

n
S.t.

m
[Pay1Xj </ [Pa] Yi=12,....m st > [py]Yi>=[pg] ¥ji=12....n
j=1 i=1

Vi, Py <u Xj <y Oy Vi, py <u i <u qy(8.1)
nis the number of variables amdis the humber of constraints.

Upper and lower bounds of thebox cdf-intervals are dictated based on Theorem
8.1 The complexity of this splitting step ©(2m). The transformation of the above
model yields (21) inequalities over p-boxdfinterval bounding points. The produced
solution set isS; = {Sik|k = 1,2,...,2"1}, where the upper-bound value rangeSjs=
lubZ” Sk, and the lower-bound value rangeds= glbZ", S¥. Despite the fact that this
presentation can be solved in the p-lmobkinterval constraint solver, it is not as scalable
as the Simplex method adopted to sdiv8. An intermediate step needs to be introduced

in order to extract linear equations which yield equivalgritition bounds

Example 8.1. Consider the maximization problem Maxin(Xe + Xp), st(A, <g,,, B)
shown below:

[(-2,0.5,0.2),(2,0.01,0.095)]  [(10.3,0.32),(2,0.02 0.083)]
A =] [(-3,0.7,0.1),(-1,0.01,0.087)]  [(10.2,0.3),(1.5,0.010.087)] |.
[(6,0.9,0.98), (6,0.01,0.018)]  [(L5,0.1,0.6), (3,0.06,0.034)]

<Ry [(3,0.88,0.4), (4,0.4,0.088)]
R=| <g, |andB=| [(1,0.850.1),(5,0.020.013)]
<Ry [(4,0.9,0.02), (15,0.01,0.001)]

The output of the first step in the transformation will be: htaizeX;+X5), st(A, <4, B)

(-2,05,02)  (10.3,0.32) <u (4,0.4,0.088)
A=]|(-3,07,01) (1L0203) |,R=| <¢ |andB=| (50.020.013)
(6,0.9,0.98)  (15,0.1,0.6) <u (15,0.01,0.001)

and the dual is formed from the maximization of the lower ldguviinimizé€(3, 0.88, 0.4)«
Y1 +(1,0.850.1) = Yz + (4,0.9,0.02) = Y3), St(A, >¢, B)

(2,0.01,0.095) (20.02,0.083) .
AL =| (-1,0010087)  (15,0.010.087) |, Rp = [ :”
(6,0.01,0.018) (30.06,0.034) Tu

andbD:[ i]

Solve2 eplex instances.

The Simplex method is then computed on the maximization heditial of the miniza-
tion problem. The computations is exerted over the first camept of the coefficient

100



8.1. P-Box CDF-Intervals LP

triplet p-box cdf-interval point. Calculations yield the bounding quarsitd# the objec-
tive function as well as the variables under consideratidespite the fact that Simplex
method worst case complexity is exponential, it is worthrmgpfrom the literature that
it performs well in the average case. In examl& the calculated quantile bounds of
the objective functiony; andx, are [108, 7], [0.25, 1] and [Q83, 6] respectively.

Project the quantiles onto thecdf bounding distributions.

We performn x m p-box cdf-intervals division operations, as demonstrated by Lemma
6.4, provided by the set ain contraints. Since the boundirggif-distributions are uni-
form, i.e. forming a line equation, the division operatioreed in the probabilistic
dimension is 0f0(1) complexity. The obtained quantile bounds extractethftbe pre-
vious step are then projected onto the resulting domaineofliisions. This projection
has, in turn, a linear computation. It is exerted by cal@ugathe cdf-value of a given
quantile, when it is located onalf-distribution.

Extract the final solution bounds.

Extracted solution bound triplets are selected from thgepted list of thecdf-distributions.
This list is ordered in the probability domain by means of $keeond order stochastic
dominance (Definitior2.8). The lower and the uppexdf-bounds per variable are the
dominated and dominant distributions respectively. Bbgsfurther domain pruning

is exerted to preserve thmlf-stochastic dominance properties in order to ensure that
the maximumcdf-value of a variable quantile should be greater than, or lepyats
minimum probability of occurrence.

Proposition 8.1. Thep-boxcdf-intervals bounding the solution domain of the variable
Xi' . .
Xi € [glbﬂl(pg),lub’j“zl(q;)]w €l...n

For each variablex; in the system of linear constraints, the result of the divisi
operation is given by the intersection of ptbox cdf-intervals [pﬁ'q,qﬁ'q], i is the index of
the variable in the variable list andis the index of its involved constrain'pﬁ'(i and qfq
are the lists of lower and upper bounding points respegtivalorder to extracpy and
O for each variable such that, <¢/ Xi <¢/ 0y, we compute thglb and thelub on p},
andqf'q respectively resulting from all given constraints.

In Example8.1the resultingo-boxcdf-intervals forX; andX; are [(025,0.85,0.1),
(1,0.75,4.44e—-17)] and [(083,0.86,0.14), (6,0.081, 0.0055)] respectively. We can also
compute the objective functian by applying thep-box cdf-intervals addition operation
X1 + Xo. Itis given in this example as [(@8, 0.85,0.06), (7,0.75,4.44e — 17)].

8.1.2 Algorithm Complexity

We compare our new proposed algorithm for global constrailaixation with the one
introduced inYorke-Smith and Gervef2009. Note that this algorithm is constructed
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over the objective function (minimization/maximizatioa¥isting as part of the prob-
lem characteristics. This initial step bypasses the coatiout of the 21 eplex instances
solved in the algorithm proposed bprke-Smith and Gervg2009 to compute the in-
terval hull of theUCSPalgebraic structure. This set of operations was necessangler
to extract the bounds of the solution sought for each vagiaDur algorithm further adds
the bounds on the likelihood of each variable. This additionformation comes from
the p-boxcdf-intervals property which guides the knowledge about tlaecdespace not
only from the real domain perspective but also from a prdisaici viewpoint. Table8.1
shows the computation complexity of each step in our transdtion algorithm. Clearly,
we have gained an improved complexity when compared to tf@idim introduced in
Yorke-Smith and Gervef2009. Moreover, the additional probabilistic information is
exerted linearly.

p-boxcdfintervals UCSP
Extract LP and its dual| O(m) Generate linear inequalitigs  O(2m)
Solve 2 eplex 0(2™1) || Solve 2n eplex O((2n)(2™1))
Projection O(nm))
Extract solution bounds O(2n) Extract solution bounds O(2n)

Table 8.1: Computation complexity of the transformatiogoaithm

8.1.3 Performance Comparison

System of Constraints with ?60 System of Constraints with
3 . .
D4s  Extract 1P 4 variables and 5 constraints - 9140 | mExtract LP 17 variables and 26 constraints
Solve eplex instances F120 Solve eplex instances
@35 - m project the cdf-distributions - &

0.3 - mExtract the solution 100

M Project the cdf-distributions

M Extract the solution

0.15

T T
PBOX ucsp CDF PBOX ucsp CDF

Fig. 8.2: Real-time performance

The framework was tested on two systems of constraints veittsities: 12 (4 vari-
ables and 5 constraints) and 127 (17 variables and 26 cotsjraPerformance is given
in terms of seconds: the real-time taken by the algorithnmotopute the bounds of the
final solution set. We used the EELS profiling in order to calculate the percentage of
the total time, each predicate takes to carry-out its desgghtaske CRC(1994).
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p-boxcdf-intervals UCSP cdf-intervals

«» ExtractLP 26.4% 13.04% 8.1%

2 Solve eplex instances 20.68% 86.95% 45.9%
.8 Project thecdf-distributions 52.87% N/A 2.7%

S Extract the solution 0% N/A 43.24%
AN

! Total real-time (sec.) 0.059 0.358 0.44

¢ ExtractLP 52.92% 37.65% 37.91%
g Solve eplex instances 0.19% 62.34% 21.77%
'S Project thecdf-distributions 46.34% N/A 3.87%

,2 Extract the solution 0.535% N/A 36.44%
S Total real-time (sec.) 20.39 86.45 222.24

Table 8.2: Real-time execution

Real-time performance of thp-box cdf-intervals framework is compared to the
UCSPand thecdf-intervals with one approximatecdf-uniform distribution. Coeffi-
cient bounds of théLS are choosen to be the same, in order to check for the ability of
the algebraic structure to shrink the bounds of the solwuimn In this experiment we
employ theUCSPtransformation algorithm adopted for thECSPin Yorke-Smith and
Gervet(2009 and for thecdf-intervals with one approximatectif-uniform distribution
Saad et al(2010. The UCSPtransformation algorithm consists of four main steps. It
starts with extracting the set bP inequality constraints on the real bounds of the UCSP
and on the first component of thelf-interval algebraic structure. The second step of
the transformation algorithm, as ¥orke-Smith and Gervef2009, computes 2 eplex
instances per variable, and it creates one maximizatioroaadninimization objective
function over each variable. Note that in this step the optition of the genuine ob-
jective function defined in the problem is not included in tioenputation of the interval
hull of the solution set. The third step in the algorithm cengs the minimum and the
maximum values, in the domain of reals, resulting from theoed step instances. The
computation over th&JCSPstops at this steps and the real interval hull bounding the
solution set can be derived in the real domain. However, ama# shecdf-intervals al-
gebraic structure works onZD space, 2 extra steps are added. The first additional step
computesix mcdf division operations. Then theglf-intervalsglb andlub computations
are exerted to deduce thdf bounding points.

Table 8.2 shows a comparison between the proposed EUCSPT algorithitinéo
p-box cdf-intervals and theJCSPtransformation algorithm adopted for th&CSPin
Yorke-Smith and Gervef2009 and for thecdf-intervals with one approximatectf-
uniform distributionSaad et al(2010. Obviously, the EUCSPT algorithm is less ex-
pensive in terms of complexity and real runtime taken in sdso This is due to the
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fact that, in our proposed transformation algorithm, we 2usimplex instances on the
main problem and its dual. On the other hand, W&SPtransformation algorithm runs
2 simplex method per variable in order to extract their bangdeal points. Fig.8.2
and TableB.2illustrate that the projection onto tleelf-domain takes less real time exe-
cution when compared to solving the eplex instances peatiarin theUCSPand the
cdf intervals algebraic structure.

Table 8.2 shows the percentage of the real-time taken by each predicaxecute.
The third column in the table represents the execution ofctifentervals algebraic
structure with one approximatexdif-uniform distribution. Clearly, both solving then2
eplex instances and computing the solutiongdietand theub of the cdf-interval bound-
ing points take almost the same time range. Noticeablyn ¥ cdf division operations
take 27% and 387% of the execution time for both the 12 and the 127 problensities
respectively. In the case of tlgebox cdf-interval algebraic structure, shown in the first
column, they take 03 seconds and.®4 seconds when 12 and 127 problem densities
are involved. We can conclude from these observations lieadivision operations are
not expensive in terms of execution time.

Another advantage of the proposed algorithm is that it crsithe optimization
of the objective function defined in the genuine problem. &bwer,p-box cdf-interval
bounding points of the objective function are computed atitheted by this proposed
algorithm.

8.2 Summary

This chapter introduces a relaxation technique for theajlobance constraint. It defines
the LP relaxation approach utilized for global constraints overf-box cdf-intervals.
The p-box cdf-intervals were employed because they guarantee a fulpsotion of
the observed information along with its whereabouts. Thethod is a preprocessing
propagation technique that analyzes the problem from aaglpérspective and in a
tractable manner. Compared to existing reliable techsigtisuggests tighter as well as
more accurate bounds on the search space in a two dimengiamaler, enclosing the
data along with its probability of occurrence. This new donaropagation proved to
be efficient and effective.
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APPLICATIONS







CHAPTER9

NETWORK TRAFFIC ANALYSIS

PROBLEM

In the field of telecommunication theetwork Traffic Matrix (TM)is an essential tool
that identifies traffic flows between all possililgigin and Destination (ODBpairs in

a given network. It is widely used to help network adminitira monitor the actual
network traffic and issue cost of service repofis is typically used in network design
problems to seek the realization of all possible flows byailtisg links at minimum cost;
while satisfying the link capacity constraints (i.e. thealoannot exceed the installed
link capacity). Accordingly,TM is employed in capacity planning, traffic engineering,
reliability analysis, network management and other netvaoiminitrative tasks.

Exploiting TM with completeOD-pair combinations, for a real-world large network,
is an expensive computation. This matrix computation isally proportional to the
square of the matrix dimension; in this case, the numb&@{pair entries. To obtain
TM data two measurement mechanisms can be found: direct amdandThe direct
approach is based on NetFloWléise, Sadasivan, Valluri, and Djerna@904) and
sFlow (Pheal(1992) mechanisms; it is more accurate; but more expensive. ireetd
mechanism mainly exploits the packet content at severatarktprotocol layers. On
the other hand, the indirect approach is widely used andastgapin actual networks. It
is based on measuring the network link-counts; and it isteddyy theSimple Network
Management Protocol (SNMRELase, Fedor, Schoffstall, and Da\{itP90). The task
of measuring link-counts of a network is done at ease anceii&cdted instruments are
widespread. Thereof, for real-world large networks, redeaas focused on algorithms
that calculate thé&M based on the link-countgif et al.(2008).

Eventually, traffic volumes in the network fluctuate. Obsgerfluctuations urge net-
work planners to overestimate the flow in order to ensure @ateqnetwork sustainabil-
ity. Statistical methods seek at estimating demands baseatior measurements and
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Chapter 9. Network Traffic Analysis Problem

building assumptions on the population of traffic distribaot

Convex modeling, such as ikoster, Kutschka, and Raag¢k010, typically for-
mulate the network problem ikIIP. They seek at exploiting minimum and maximum
bounds which encapsulate all feasible realizations of tidkete-end network traffic flow.
Convex frameworks seek at exploiting extreme bounds thedpsulate all feasible re-
alizations of the end-to-end network traffic flow. Estimatedulting flow has an equal
degree/weight of uncertainty and lacks the portrayal otite whereabouts.

To the best of our knowledge, available techniques lack Hiiyato provide an
accurate model which describes natural fluctuations ofrdféd flow. Hence, a repre-
sentation that account for the encapsulation of the acisailition of data, provided
in the problem definition, is needed.

9.1 Modeling the NTAP problem
Typically, data available for thRITAP is:
1. Measurements of the traffic flow in each link.
2. Routing matrix that specifies tl@D-pair network usage.

The measurement process of the link-counts is exerted bpiidP (Case et al.
(1990). ConsiderY a vector of sizer which identifies the measured traffic volumes
(link-counts) for each link at a given time r is the number of links in the network.
Successive measurements can be repeatedly taken overtimgectorY; denotes mea-
sured link-counts at timeé The frequency of is generally determined by the network
operator and it can vary from less than 5 mins to a month tirterval. The number
of origin-destination pairs in the network is: = n(n — 1); wheren is the number of
Network Point of Presence (PQM)OPcan be either a routing or an end node. The rout-
ing matrix Aisr x ¢; it is normally obtained from th&order Gateway Protocol (BGP)
configurations, through th®pen Shortest Path First (OSPB) Intermediate System
- Intermediate System (IS-I9ink weights, at the router interface. Each columnAn
represents a traffic flow and each row corresponds to a linkthénsimple cases;
is set to 1 if theOD-pairi uses the linkj and 0 otherwise. Accordingly, the problem
Y = AX searches for values @D-pairs inX. Computed values should be able to repro-
duce link-counts which are close in value to the measured.o@enerally, theNTAP
is under-constrained because the number of links is signifiz small, compared to the
number of traffic demandsy  c). This fact yields a feasible solution set that can be
infinite.

We study a fragment of a network with three nod@sK, C) and two bidirectional
links, as illustrated in Fig9.1 In this networkc = 6 traffic flow variables and = 4
directed link loads.

Fig. 9.2is the mathematical representation of the 3 nodes probletheirdeter-
ministic case as explained iiroldi and Faloutsog2003. Nodes are connected by
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9.1. Modeling the NTAP problem

S Xy — edge flows
> 0D flows

Fig. 9.1: Network of 3-nodes and 2-bidirectional-links

bidirectional links. Non-observabl@D flows are represented by dash circles. Measur-
able traffic flows are represented by solid circles and eagbirging to theOD flow that
is possibly utilizing its corresponding link.

{ X5 b Xg ‘
O edge flows

A A
20D flows

Fig. 9.2: Mathematical model of 3-nodes and 2-bidirectidim&s

o
V1 11000 X2
y2_10100 X3
yal [0 0 0 1 1 (dfxs
Va 0 0001 X5

| X6 ]

Generally, the network is subject to three types of consisai

1. Link traffic constraints: on each link the sum of flow is elgteathe measured
traffic volume

2. Traffic conservation constraints: at each router, the feaving the network is
destined to the router and the flow coming in the network isdd<y the router.
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3. Flow conservation constraints: at each node, total imegrilow is equivalent to
the total outgoing flows.

We basically use this model and extend it to describe daiepaited bycdf-intervals
andp-box cdf-intervals. In our model, the matri& will contain an identityp-box cdf-
element when the flow is assigned to the link and a zero elewtaen it is not.

9.2 Input Dataset Representation

To test the model we used the Matlab toolddatlab (2010 to generate and convert
measurable data intodf-intervals ando-box cdf-intervals. Under uncertainty, data is
provided by either a single demand matrix or a se distinct measured-demand ma-
trixes. In the single matrix case provided demands are dfésed on approximating the
original measured values, forecasting traffic volumes onmating statistical assump-
tions on the data population. Whereas in the original prokdeset of multiple demand
matrixes are provided each representing the demand measoirat a given time point.
The data corpus available @rlowski, Pioro, Tomaszewski, and Wess&}007) and
Orlowski, Pi6ro, Tomaszewski, and Wessgp10 provide two types of datasets: sin-
gle and dynamic set of traffic matrixes. As illustrated in.Fg3, we formed thep-box
cdf-intervals from the original dynamic data and we generateiti blormal and Pois-
son distributions for each element in the single demandix@tbuild the p-box cdf-
interval coefficients. Output coefficients from this operatare then utilized to model
the NTAP problem and form th& vector. Recall that th& matrix has an identitp-box
cdf-interval element if the corresponding traffic flow uses thi &nd a zerg-box cdf-
interval element otherwise. The formed matrix coefficiaatsput to the solver which
in turn seeks @-box cdf-interval output representation for eachtwork flow (netflow)
variable. Resulting solution sets are then compared wéhotiginal demand matrix of
the problem in order to validate our methodology.

Dynamic set
of matrix
demands Build Solution
Simulate .u| cdf-intervals interval (set)
R link-counts
link-counts a solver per Netflow
coefficients .
X variable
Single Generate
demand > OD-pairs
matrix distributions
T Compare

Fig. 9.3: Simulating the traffic loads
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9.2. Input Dataset Representation

9.2.1 Simulated TM

To compute the distributions, we assume that the measutgraided in the single de-
mand matrix is the mean value. We thensas the number of readings/measurements;
(i takes values from 1 tn); for eachOD-pair we generata values based on either Pois-
son or Normal distributions. As proposed bledina, Taft, Salamatian, Bhattacharyya,
and Diot(2002), the Poisson distribution computation per element is hsvis:

1. Generate a; value from the uniformly distributed interval [10800]

2. Apply the Poisson distribution function over the genedal to get the value of a
network demand; = Poissoril;)

And the Normal distribution generation per value is as foio

1. Generatg; (mean value) for eac®D-pair from the uniformly distributed interval
[100,500]

2. Set the variance? = 40 for all

3. Apply the Normal distribution function over the genethte to get the value of a
network demandck; = Normal(;, o)

9.2.2 Interval coefficients formulation

In the two cases (single and dynamic demand matrixes), tresunement operation
yields a set oh evaluations per flow variable; we simulate this scenari@émh element
in the TM; we aggregate the probability distribution getedan Sectior.2.1then we
construct the flow seatdf distribution. This operation yields, for each flow variglda
array ofn distinct quantiles along with their correspondingdf values; such array is
input to the preprocessing steps of each framework.

The interval representation of each flow variable is esthblil as follows:

1. Minimum and maximum values are recorded to represend @fePinterval bounds.

2. cdf-distribution of n-steps is computed based on generategs&wior Normal
distributions provided in Sectio®.2.1

3. Algorithm 1 and Algorithm2 are applied to contruct thedf-interval andp-box
cdf-interval bounds. In the first case, oogf-uniform distribution represents the
interval and in the second case tox cdf-interval structure encapsulates all
possible occurrences of the data measured.
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9.3 Aninstance: a network with 4 nodes

For a detailed demonstration, we utilize a small hypotlaétietwork with 4 nodes. This
network is depicted in Fig9.4 and it is used irMedina et al.(2002 and Yorke-Smith
and Gerve{2009. We employ this network to visualize how data is manipulaia the
set ofnetflow variables. As shown in Fig9.4 all links are bidirectional except for the
link between node#&\ andC. Fig. 9.4is a snapshot at a point in time where the true
values of traffic volumes are displayed on the links.

Fig. 9.4: 4-nodes instance

Link-counts are then simulated to form the interval boumdghe 3 algebraic struc-
tures:

1. Error correction modej( 40) represented by CSP
2. cdf-intervals with 1 approximateddf-distribution
3. p-boxcdf-intervals encapsulated by tveolf-distributions

Table9.1displays the calculated interval bounds when the datal@solg a Normal
distribution. Clearly, computeg-box cdf-intervals encapsulate the data whereabouts;
the framework also adds more information about the maximuachnainimum probabil-
ities a quantile value can obtain.

Clearly intervals derived in the three models under comaitn encapsulate the ac-
tual measured value. The second column in T&kldists the hypothetical mean values
measured on the links specified in the first column. And sihisemheasurement is based
on a Normal probability function we constructed their cep@ending distributions4, 40)
as in Sectior®.2.1, we accordingly establish data within interval-boundsrireghaustive
manner. Recognized data from this operation simulate aguade hypothetical repre-
sentation of a standafdTAP problem. The rest of Table.1 are derived bounds for the
three models; clearlyJCSPwhich employs an error correction model over-estimates
the extreme points of the interval as shown in the last twarools; theUCSPmodel
seeks to encapsulate all possible data; As showfoike-Smith and Gerve2009 the
model assumes data is following a Normal distribution whimot always the case
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in a typical NTAP problem. Moreover, intervals provided WCSPhave an equally
weighted knowledge of data whereabouts. IndhHé&intervals with one approximated
uniform distribution, deduced input intervals are the nmsined; they also contain the
true measurement within their extreme bounds; unliket8&Pthe steepness of thoelf
distribution is an acceptable indication of the data wheoegs specially when we need
to express data in an uncertain environment. However, tbdetconsiders the approx-
imation of the probability to a uniform distribution and kacthe representation of the
possible maximum and minimum probability data can happédr pfbox cdf-intervals
framework encapsulates all possible data along with thessible probabilities using
two uniformly distributed probabilities that are issuedrfrthe extreme points.

Example 9.1. Consider in Table9.1 the traffic flow from node A to node B:aY¥ its
generated Normal distribution mean value284 This value is bounded by the interval
of quantileg171.02,22608] in the UCSPmodel. In thecdf-intervals model \g ranges
between quantile$7449 and 20675 with an average step value 8f9%; i.e. derived
cdf-value of quantilel7549 is 0.0664 p-boxcdf-intervals representation is a full en-
capsulation of the actual data; i.e. data cannot exist algdhe interval quantile and
probabilistic boundsp-boxcdf-interval of thenetflowvariable Vag shows that quantiles
cannot lie outside the intervdll74.49,20812]. It is worth noting that this interval of
quantiles has tighter bounds, when it is compared tollESPinterval representation.
Thep-boxcdf-intervals structure indicates that probabilistic aveeagtep values lie be-
tween[2.5%, 5.3%)]. Given this information, we can deduce that thi-value 0f17649
is between a minimum value @D9 and a maximum value 6f94.

Table 9.2 demonstrates solution sets resulting from Tahleinput interval coeffi-
cients. Each solver reasons about its corresponding infrrivals and deduce the values
of the unknown Netflow variables; solutions in turn are coredawith the original Net-
flow true values that are listed in column 2. Positively pdegd solution sets in all the
models under consideration contain the designated Netflemwalues.

Similarly, the model was generated based on a Poissonbdistm in order to mon-
itor the problem behavior under different hypotheticaltrilisitions. Generated input
interval coefficients are listed in Tab3, and the output generated from the 3 models
is listed in Table9.4. Output solution sets in all cases adequately encapstlatariginal
Netflow data.

For the same coefficient input bounds, F&5 illustrates the result of pruning the
outputnetflow variableFac in the 2D space. Noticeably quantile bounds are typical in
the three models under consideration. THeSPshows an equal degree of occurrence
for all quantiles that lie within the interval bounds. Theeagpximatedcdf distribution of
thecdf-intervals algebraic model lies between the two maximummamimum uniform
probability bounds of the-box cdf-interval representation.

Similarly, Fig. 9.6 demonstrates how theetflowvariableF p is pruned.UCSPand
cdf-intervals with one approximated distribution generat shme extreme quantiles.
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Derived measured bounds
p-box UCSP
True cdfintervals cdfintervals err correction
Values model (u, 40)
Ib cdf, | slopg, | ub cdf,, | slopgy Ib cdfy, ub cdf, || Ib ub

VaB 204 174.49| 0.037| 0.053 | 208.12 | 0.19 | 0.025 174.49| 0.037 206.75 | 0.98 || 171.02| 226.08
VBa 593 503.23| 0.01 | 0.012 | 604.12 | 0.006 | 6.40E-05|| 525.88| 6E-04 | 600 1 492.82| 658.0
Vac 658 598.43| 0.007| 0.014 | 665.69 | 0.01 | 0.001 603.92| 8E-04 | 665.69 | 1 591.49| 701.61
Vec 565 505.32| 0.01 | 0.014 | 572.58 | 0.09 | 0.004 505.32| 2E-04 | 572.58 | 1 498.39| 608.50
Ves 1011 890.79| 0.01 | 0.009 | 1025.31| 0.009| 6.40E-05|| 913.44| 7E-04 | 1021.19| 0.99 || 876.92| 1097.15
Vep | 913 822.51| 0.009| 0.009 | 923.4 0.001 | 0.001 825.26| 1E-04 | 923.40 | 1 812.11| 977.28
Vpe 927 837.42| 0.02 | 0.016 | 938.30 | 0.006 | 6.50E-05|| 858.69| 1.4E-03| 932.81 | 0.99 || 827.01| 992.18
TAin | 863 772.92| 0.01 | 0.011 | 873.81 | 0.16 | 1.53E-03|| 778.41| 1E-04 | 872.43 | 1 762.51| 927.69
TAout | 593 503.23| 0.01 | 0.012 | 604.12 | 0.006 | 6.40E-05|| 525.88| 6E-04 | 600 1 492.82| 658.0
TBin | 977 887.03| 0.02 | 0.012 | 987.91 | 0.08 | 3.57E-03|| 887.03| 1E-04 | 983.79 | 1.0 876.62| 1041.79
TBout | 1034 943.91| 0.04 | 0.017 | 1044.64| 0.05 | 7.99E-03|| 943.75| 9E-04 | 1039.15| 0.99 || 933.35| 1098.52
TCin | 750 660.24| 0.01 | 0.01 761.13 | 0.17 | 1.59E-03| 664.36| 1E-04 | 760.44 | 1 649.83| 815.01
TCout | 978 888.10| 0.01 | 0.012 | 988.99 | 0.16 | 1.50E-03| 893.59| 7E-04 | 986.93 | 0.99 || 877.70| 1042.87
TDin | 927 837.42| 0.024| 0.016 | 938.3 0.006 | 6.50E-05|| 858.69| 1.4E-03| 932.81 | 0.99 || 827.01| 992.18
TDout | 913 822.51| 0.01 | 0.009 | 923.4 0.019| 1.77E-03|| 825.26| 1E-04 | 923.40 | 1.0 812.11| 977.28

Table 9.1: Link-counts whe@D-pairs are based on a Normal distribution
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Solution set bounds

p-box UCSP
True cdfintervals cdfintervals err correction
Values model (u, 40)

Ib cdfy, | slops, ub cdf,, | slopg,, Ib cdfy, | ub cdf, || Ib ub
Fag | 204 175.87| 0.11 | 5.32E-02| 208.12| 0.06 | 1.53E-03|| 174.49| O 206.75| 0.98 || 171.02| 226.08
Fac | 338 274.48| 0.01 | 1.48E-02| 375.37| 0.16 | 1.50E-03|| 279.97| 0 375.37| 0.99 || 249.58| 414.76
Fap | 320 293.79| 0.11 | 2.94E-02| 323.95| 0.06 | 1.53E-03|| 290.32| 0 323.95| 1 286.85| 341.91
Fga | 412 314.44| 0.01 | 1.26E-02| 482.59| 0.01 | 6.40E-05|| 337.09| O 455.82| 1 268.12| 543.41
Fgc | 194 97.22 | 0.01 | 1.47E-02| 265.37| 0.16 | 1.50E-03|| 97.22 | O 265.37| 0.99 || 50.89 | 326.18
Fep | 371 307.22| 0.01 | 1.47E-02| 408.10| 0.09 | 1.77E-03|| 307.22| 0 408.1 |1 282.32| 447.49
Fca | 88 0.0 0.0 | 1.48E-02| 188.78| 0.01 | 6.40E-05|| O 0 188.78| 0.99 || O 224.71
Fcs | 441 343.97| 0.04 | 1.79E-02| 511.95| 0.01 | 6.40E-05|| 348.61| O 506.46 | 0.99 || 297.48| 572.77
Fcp | 221 124.09| 0.01 | 1.09E-02| 292.24| 0.17 | 1.59E-03|| 126.84| O 292241 1 77.77 | 353.06
Fpa | 94 0 0.02 | 1.63E-02| 188.78| 0.01 | 6.40E-05|| O 0 188.78| 0.99 || O 224.71
Fps | 388 358.2 | 0.06 | 7.67E-02| 391.83| 0.01 | 6.40E-05|| 358.2 | O 388.39| 0.98 || 354.73| 409.79
Fpc | 446 280.99| 0.02 | 1.63E-02| 580.1 | 0.01 | 6.50E-05|| 286.49| 0 574.61| 0.99 || 192.52| 637.45

Table 9.2: Netflow variables: comparison between outputtssi sets and true values whé@m-pairs input coefficients are based on a Nort

distribution
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Derived measured bounds

p-box
cdf-intervals UCSP cdfintervals
Ib cdfy, slopg, | ub cdf,p slopg,, Ib ub Ib cdfp, ub cdf,y,
VaB 174.49| 0.0374 | 0.0532 | 208.12 | 0.095 | 2.59E-02| 174.49| 208.12 || 174.49| 0.03744 | 208.12 | 1
Vga 503.23| 0.0114 | 0.0126 | 604.12 | 6.8E-03| 6.40E-05|| 503.23| 604.12 || 503.23| 0 604.12 | 1
Vac 598.43| 7.2E-03| 0.0148 | 665.69 | 0.1130 | 1.62E-03|| 598.43| 665.69 || 598.43| 0 665.69 | 1
Vac 505.32| 0.0107 | 0.0147 | 572.58 | 0.0886 | 4.13E-03|| 505.32| 572.58 || 505.32| 2.3E-04 | 572.58 | 1
Vee 890.79| 0.0152 | 9.6E-03| 1025.31| 9E-03 | 6.40E-05|| 890.79| 1025.31|| 890.79| 0 1025.31| 1
Vebp 822.51| 8.8E-03| 9.8E-03| 923.40 | 0.1855 | 1.77E-03|| 822.51| 923.40 || 822.51| 0 92340 |1
Vpe 837.42| 0.0235 | 0.0163 | 938.30 | 6.9E-03| 6.5E-05 || 837.42| 938.30 || 837.42| 0 938.30 | 1
TAn 772.92| 0.0137 | 0.0116 | 873.81 | 0.1599 | 1.53E-03| 772.92| 873.81 || 772.92| 0 87381 |1
TAoy || 503.23| 0.0114 | 0.0126 | 604.12 | 6.8E-03| 6.4E-05 || 503.23| 604.12 || 503.23| O 604.12 | 1
T B 887.03| 0.0183 | 0.0126 | 987.91 | 0.3777 | 3.57E-03|| 887.03| 987.91 || 887.03| 6.6E-05 | 987.91 | 1
TBout || 943.91| 0.0407 | 0.0179 | 1044.64| 0.0456 | 7.99E-03|| 943.91| 1044.64| 943.91| 2.56E-03| 1044.64| 1
TCin 660.24| 0.0108 | 0.0109 | 761.13 | 0.1661 | 1.59E-03| 660.24| 761.13 | 660.24| O 761.13 | 1
TCout || 888.10| 0.0140 | 0.0122 | 988.99 | 0.1574 | 1.50E-03| 888.10| 988.99 | 888.10| O 988.99 |1
TDin || 837.42| 0.0235 | 0.0163 | 938.30 | 6.9E-03| 6.50E-05| 837.42| 938.30 || 837.42| 0 938.30 | 1
TDou || 822.51| 8.8E-03| 9.8E-03| 923.40 | 0.1855 | 1.77E-03| 822.51| 923.40 | 822.51| O 92340 |1

Table 9.3: Link-counts: bounds on input coefficient valled aire based on a Poisson distribution
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Solution set bounds

p-box
cdfintervals UCSP cdf-intervals
Ib cdfy, slopg, | ub cdf,y, slopg,, Ib ub Ib cdfy, | ub cdf,p,
Fag || 175.87| 0.1107 | 0.0532| 208.12| 0.1599 | 1.53E-03|| 174.49| 208.12|| 174.49| O 208.12| 1
Fac || 274.48| 7.2E-03| 0.0148| 375.37| 0.1574 | 1.50E-03|| 274.48| 375.37|| 274.48| 0 375.37| 1
Fap || 293.79| 0.1139 | 0.0294| 323.95| 0.1599 | 1.53E-03|| 290.32| 323.95|| 290.32| O 323.95| 1
Fga || 314.44| 0.0114 | 0.0126| 482.59| 6.8E-03 | 6.40E-05|| 314.44| 482.59| 314.45| 0 48259 1
Fec || 97.22 | 0.0107 | 0.0147| 265.37| 0.1574 | 1.50E-03|| 97.22 | 265.37|| 97.22 | O 265.37| 1
Fep || 307.22| 0.0107 | 0.0147| 408.10| 0.1855 | 1.77E-03|| 307.22| 408.10|| 307.21| O 408.10| 1
Fca || O 2.6E-03| 0.0148| 188.78| 6.8E-03| 6.4E-05 || O 188.78|| 0 0 188.78| 1
Fce || 343.97| 0.0407 | 0.0179| 511.95| 9E-03 | 6.4E-05 || 343.97| 511.95|| 343.96| 0 511.95| 1
Fcp || 124.09| 0.0108 | 0.0109| 292.24| 0.1661 | 1.59E-03|| 124.09| 292.24|| 124.09| O 292241 1
Fpa || O 0.0235 | 0.0163| 188.78| 6.8E-03| 6.4E-05 || O 188.78|| O 0 188.78| 1
Fpg || 358.20| 0.0553 | 0.0767| 391.83| 9E-03 | 6.4E-05 || 358.20| 391.83|| 358.20| 0 391.83| 1
Fpc || 280.99| 0.0235 | 0.0163| 580.10| 6.9E-03| 6.50E-05|| 280.99| 580.10|| 280.99| 0 580.10| 1

Table 9.4: Netflow variables: output solution sets when imoefficients are based on a Poisson distribution
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C dfl T re BT R
B R\
09 \\ !
\ g |
0.8 1 d&’. T
1 ((\ (,/ ’ 1
0.7+ 1@ &L 1L
] N s
06 'C i ic |
10 ™M 1 (O
os '3 ™ =
: 1o 1] 107
<
04- S i:-; ! g,
03 © e
02 g B
' s
0.1- 1 = 1o
\ A |
975 280 290 300 310 320 '

I I I I I
330 340 350 360 370 380 FAC

Fig. 9.5: Pruning=ac in the 2D space

However, the two bounding distributions of thébox cdf-intervals representation inter-
sect; this intersection yields a conflict in tbéf property: the maximunadf distribution
at small quantiles is less in value than their minimum distiibn; in other words, any
point that lies in the2D space before 2939 will have a minimumcdf that is greater
than its maximum distribution; hence, it is impossible tafansolution point in this in-
consistent area; this conflict allows the solver to furtheme the domain. Accordingly,
quantiles ofF op can be 2939 at 11% but they cannot be less than the value7293
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Fig. 9.6: Pruning-ap in the 2D space
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We have generated 80 instances of the above 4-nodes netrobilem: 40 instances
based on Poisson distributions and the other 40 are basedwnaNdistributions of
OD-pairs. Link-counts were simulated. Output solution sétllananeuvers witnessed
a total encapsulation of the generated Netflow data. prhex cdf-intervals algebraic
structure can further prune the output solution domainsabipit the upper bound prob-
ability from being dominated by lower bound distributionhel'solver detected an area
of conflict in 33% -42% of the cases when Poisson distributvas employed; and 16%
- 25% of the cases were observed when Normal distributiontakaen under consider-
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9.4. Scalability Test

ation; in these cases output solution domains fromptex cdf-intervals were further
pruned when compared to bounded realizations resulting 8@ SPandcdf-intervals;
this is becausp-box cdf-intervals disregard unrealistic quantiles from the Seapace.

12x104 Network instances (nodes x links) number of variables
=B-p-box cdf-intervals
10 UCsp ©
@ cdf-intervals :

[e)} [0}
T T

B
T

Real time (sec)

Fig. 9.7: Real-time comparison

9.4 Scalability Test

In this experiment we employed the corpus availabl®itowski et al. (2007, 2010. As
shown in Fig.9.7 and Fig.9.8twelve networks with varying densities were employed:

1. Number of variables: 12 to 688
2. Number of nodes: 4 to 26
3. Number of links: 5 to 84

Clearly the real-time taken to find the problem solution dm®as directly proportional
to the network density. The problem density is specified lgyrthmber of unknown/
variables the solver needs to exploit based on the giverclniats.

Fig. 9.7and Fig.9.8illustrate the real-time spent by the three solvers in ses@amd
in log scale. Fig.9.7 show thatp-box cdf-intervals exploit variable solution domains
with almost the same real-time &CSP, and this is further observed even in the log
scale Fig.9.8 Hence, thep-box cdf-intervals framework is cost effective and does not
add up computational cost for large problems. Moreoverldtsaup information about
the minimum and maximum distributions of data; accordingler (domain expert) can
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Fig. 9.8: Real-time comparison (log scale)

choose to further constraint the output domain of the végib specifying a probability
limit to restrict the search space.

9.5 Summary

In this chapter we compare tipebox cdf-intervals with convex models. We proved that
the new algebraic structure can easily formulate probldrasdre modeled by means
of convex intervals such as théCSP. We support our argument by a case study using
the consortium oNTAP problems. The new structure incorporates knowledge on data
whereabouts along with the interval of quantiles. This &®ldecision makers to in-
clude additional information that is already given in thelgem then they can use this
knowledge to reason about the data. Experimental resuits giatp-box cdf-intervals
can further prune the domain of intervals; this occurs whedgstic dominance proba-
bilistic property is violated; in this case the algebrartisture of thep-boxcdf-intervals
seeks to find the nearest possible point that satisfies thmlpilistic dominance. We
proved in practice thgt-box cdf-intervals employ this behavior in a cost effective man-
ner without adding significant computation cost for largefgems.
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CHAPTER 10

M ANAGEMENT OF |INVENTORY

Inventory management involves a large class of real lifédleros; the daily ordering
of newspapers; the booking of airline flights; the orderirigtems in a supply chain
of a manufacturing process. In this consortium of real lpplecations, determining
an adequate quantity to be kept in-stock, with minimal cgsten the stochasticity of
the demand/order environment, is an open-ended area @rcbs@acob, Chase, and
Aquilano (2009).

Companies seek to design a cost effective model that synidesproduction plans
with supplier’s orders. In a manufacturing environmentducers schedule ahead orders
of raw materials to meet their promised delivery timingshaitinimum possible cost.
However, the schedule of orders is based on two main factbishware fluctuating:
customer demands and market prices. Those two factorsrinchange the size, cost
and time of orders unpredictably.

10.1 Problem definition

The inventory problem is simplified to a one stage replenafincycle of one item and
it resembles the case of a newsvendor. Typically and on & dasis, a newsvendor
needs to determine the number of newspapers to buy befoeeviniiy demands. Excess
ordering yields an overhead cost since overstock newspapethe second day become,
by nature, obsolete. On the other hand, unmet demand leguefibloss and possi-
bly additional unforeseen ‘customer switching cost’. Timsdel has been thoroughly
researched due to its importance and applicability in izl |
More extensions to the model incorporate variations onaheving:

* setup time

 production (batches, single machines, parallel machio@sn shops, flow shops,
job shops)
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Chapter 10. Management of Inventory

* inventory (minimum service level, backlogging)

e customer demands

10.2 Evolution of current models

The Economic Order Quantity (EOQ$ the first model for the management of multi-
stage inventory introduced idarris (1913. A typical EOQ model deals with a single

item and a single manufacturing machine. In his model Hdgis/es the optimal quan-

tity to order based on a set of predefined constants: demaedsetup cost, cost per
item for a continuous time scale and infinite time horizon.

Wagner and Whitin(1958 studied the first mathematical lot-sizing model. Their
model is based on demands of a single item with inventoryihgldnd setup costs,
which differ over the set of N periods of time. The model seaksinimum total cost
of inventory management. Subsequently a variety of the ir@densions were built to
take into consideration multiple items and multiple stages

In the Economic Lot Scheduling Problem (ELSE§Imaghraby(1978) multiple
items with constant demand rate are considered. The moddedithe manufacturing
process into cycles that follow similar patternsLSP seeks an overall minimum cost
over the time horizon and determines the start and finishstithe processing sequence
and the machine loading for each job.

Potts and Van Wassenho{&992 built lot-sizing schedules for multiple items while
batching similar jobs in order to minimize setup times anst€oln their model, items
are grouped based on setup codfsik, Salomon, and Van Wassenho{#&994 group
items of the manufacturing process to induce time-phasedugtion that seeks servic-
ing for fluctuating demand patterns

The production inventory management problem is naturaliypéed with uncertainty
and randomness in its customers’ demand, setup-times gpdiess’ capacity. This
uncertainty has a large impact on the cost of inventory, dwgther excess in inventory
sizes that are carried out, or on the contrary, stock-outyleéds unsatisfied demands.
In planning, there is a need to consider actual and foretastermation that is under
a dynamic environment. To deal with uncertainty and unfeasdemands, existing
models simplify fluctuating information to create deterisiiic versions of the problem
that is easier to deal with. The effect of modeling using thdninistic case inevitably
yields errors that impact the behavior and cost of the pricalu@rocedure.

10.3 Modeling Aspects of Inventory Management

The management of inventory defines the structure of pslicieolved in monitoring

inventory levels. Accordingly, planning the time and quignof items to be ordered
should maintain adequate inventory levels. Modeling therafonal aspects of inven-
tory defines the setup time, the production process, theniawe levels, the replenish-
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ment policies, the customers’ demand and the rolling tintezbn. More strategic mod-
els define the lot sizing problem as a substructure thategiated in the manufacturing
and distribution planning process, which might includedigp selection.

10.3.1 Lead/Setup Time

Lead time is the time taken once the order is placed untiltda is processed. Setup
time may vary for different operations at different timeslanadds up cost on the in-
ventory operation. Basic models often either neglect dwtis due to the setup time or
consider it unchangeable over time for simple computation.

10.3.2 Replenishment Policies

Inventory management modeling depends on the policy addpiethe management.
Replenishment policies play a major role in availing matieio the production process.
Policies determine the number, time and quantity of replemients. Commonly utilized
inventory replenishment policies are periodical and camus. Periodical replenish-
ment policy sets constant time intervals between ordemumiests; whilst continuous
replenishment policy seeks to monitor the stock level, aiggers an ordering request
when it reaches a predefined threshold. The challenge isdafiroptimal replenish-

ment policy that meets customer demands with minimal cospldhishment policy

determines the reorder point, i.e. the point an order taleplt is commonly symbol-

ized by T andR respectively for periodic time and continuous reorder ppaoiicies.

10.3.3 Customer Demands

Customer demands are obviously the most unpredictable @oemp of the inventory
management problem. Stochastic models use a variatiorexfdsting methods to plan
and schedule ahead their orders; observations output fierfotecasted demands are
generally simplified to the nearest probability distribatilusually the Normal distribu-
tion) and they are delt with as points of expectations; theleh@s then approximated
to the deterministic version using resulting points of etpgon in order to simplify the
computation.

10.4 Measured Output

Existing models of the inventory management seek to find phienal quantity to order
at a specific time that achieves the minimum possible costh&best of our knowledge
current modeling results are commonly given and delt withast values. The problem
has a fluctuating nature that yields a probability distitoufor each output.
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10.4.1 Quantity to Order

The well known modeEOQ of Harris (1913 builds basic equations for the quantity to
order under a deterministic and a predefined set of demarets/ed equations seek to
find the optimum quantity which must be ordered and that &eki¢he minimum over-
all cost. The model and its extensions consider the detésticircase, while produced
outputs are point values even in stochastic fzdyversions.

10.4.2 Reorder Point

Reoder point defines a threshold on the level of inventory wien reached an order
should take place. This level is a safe guard lead time tgtres the smooth transaction
of the order without interrupting the manufacturing preced3oth reorder point and lead
time can vary over time because of external environmentaligistances such as the
time taken by the shipment placement.

10.4.3 Inventory Costs

The cost of inventory incorporates:
» Holding cost of excess ordered quantity in stock
» Setup cost of preparing product components
» Ordering cost of purchasing production items

» Shortage cost of unmet customer demands which includeresgen switching
cost

Total cost is defined as the sum of all previously specifiedscos

10.5 Basic Model

The basic inventory management deterministic md€elQ draws cost equations and
adds them up to find the optimal quantity to order which is dweeist point on the curve
resulting from the additionHarris (1913). Fig. 10.1shows that cost in general depends
on the size of the order. For instance it is cheaper to orderstin batches. Also, the
cost for holding items in the inventory increases over time tb interest charges and
depreciation. The basic model bases its equations on afpredeonstant demand rate,
setup cost, and cost per item. The equation of the total sost i

TC= DC+%S+ gH (10.1)

Equation10.1shows that total cost is the sum of three components:

* purchase codDC the average annual demand multiplied by the cost per item
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10.5. Basic Model

 ordering cos%S the number of orders placed multiplied by the cost of eackrord

* holding cost%H the average level of inventory througout the year multgplogy
the holding cost per item

Equationl10.1is differentiated over the quantity to ord@rin order to get the minimum
point value forQ = ,/22%; where:

* TC: total cost

e D: annual demand rate
e C: cost per unit item

* S: setup cost

¢ H: annual holding cost

Reorder point is signified a& = dL whered is the average daily demand ahds the
daily lead time; clearly both components are constants.

Example 10.1. Harris (1913 shows the application of theOQ on two different man-
ufacturing items: a copper connector and a stud. The forraemi example of a cheap
item and the latter is a more expensive part.

Connector Stud

Monthly demand rate 1,230 30
Cost per item $0.0135 $565
Setup cost $215 $185
Annual interest and depreciation cost 10% 10%
daily lead time 2hrs 2hrs
Quantity to order 6,856 49
Reorder point 82 units 2 units
Ordering cost $387 $1372
Holding cost $34285 $245
Purchase cost $19926 $2034
Total manufacturing cost $92911  $205017

Table 10.1: EOQ deterministic model for two manufacturitegns: copper connector
and stud; an example of a cheap item and an expensive one

From Tablel0.1we can observe that the optimal quantities to order are retsypely
6, 856 and 49 units of copper connector and stud items. The model suggssiiag the
replenishment order when the inventory level readd2sopper connectors and stud
units. It is worth noting that the model demonstrates thagagier items with higher
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demand rate can be kept in the inventory in larger quantitig®®n compared to more
expensive items. Derived optimal quantities yield a totahofacturing cost 0892911
and $205017 for the copper connector and the stud respectively.

Examplel0.1recommends keeping the lowest possible inventory levglsaslly
when items are expensive. This is to avoid the overhead ohdhding cost that re-
sults from the depreciation and the interest rates. On therdtand managers of the
manufacturing process should avoid understock in ordeatiefg customer demands.

Clearly Examplel0.1 demonstrates that in the bads®©Q model demand rate is
given as an average annual value; it is a constant value ohetieeministic model; more-
over, the item cost and the lead time are unchangeable overand the interest rate is
incorporated in the model for both items as one value: 10%.

Table10.2shows a simulation of thEOQwhen applied in a real life situation: the
stud manufacturing process. The first row monitors timees/dver the year. Monthly
customer demand is varying and it is given in the second rawiths on average 30
items per month. We started the simulation with an emptyritay level. Negative
values of inventories signify unsatisfied demands in thedesl cycle. The simulation
considers two cases: 1. we allow backlogs to satisfy unnmebdds and 2. no backlogs
are allowed in the second situation. In the latter case isgfigat demands are not served
in the following cycle and cause a penalty which is evaluded shortage cost.

Clearly when backlogs are allowed, more replenishmentssated and ordering
cost increases. The order size exeeds the value 49 in ordatisly unmet demands
from previous cycles; yet inventory holding cost decredmeEuse excess ordered items
are promptly processed to cover backlogs. Shortage cosbéz@use all demands are
satisfied in this case. In general the overall total manufag cost when backlogs are
allowed is $10135 and it is $10325 when no backlogs are allowed. In both cases, the
total manufacturing cost is 49%50% of the figure obtained from tleOQdetermistic
model. We can conclude from the simulation results thatdted tost obtained from the
deterministic case is not accurately calculated. Managfettse manufacturing process
need to know in advance, the order quantities and the totts abat reflect real life
situations in a better way, because they are used in theisideanaking and budget
allocation procedures.

10.6 Existing Approaches

10.6.1 Dynamic programming line of research

Dynamic Programming (DPyas the first line of research that considers the problem
of inventory management. Since DP is applied in problemsdbatain a sequence of
interrelated decisions, the algorithm seeks optimizabgrdividing the problem into

a more simplified set of nested subproblems. THemodel sets the objective cost
function that needs to be minimized, a recursive formutatibthe cost function at state

i, and boundary condition at the initial state. It is worthingtthat theDP models
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Actual Monthly Demands 26 36 23 28 32 30 29 37 25 34

No backlogs

Backlogs are allowed

Reorder point 1 0 1 0 1 0 1 0 1 0 0
Order size 49 49 49 49 49
Inventory ending level 23 -13 26 -2 17 -13 20 -17 24 -10
Costs Setup Holding Purchase Shortage Total Cost
$11.1 $10.93 $1384.25 -$617.545  $259.335 $1048.07
Reorder point 1 0 1 0 1 1 0 1 0 1 1
Order size 49 36 34 51 41 28 43
Inventory ending level 23 -13 13 -15 2 21 -8 4 21 -6
Costs Setup Holding Purchase Shortage Total Cost
$12.95 $6.3 $1350.35 -$355.95 $0 $1013.65

LT

Table 10.2: Simulation of theOQon actual customer demands for 10 cycles
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\ / fotal cost

Cost holding cost
~— cost of items
’\ ordering cost
Qopt
Order quantity size (Q)

Fig. 10.1: Size of the quantity to order

do not scale well in a stochastic environment. Existibli§ models such as those in
Clark and Scar{1960 andMoon and Gallegd1994) approximate the problem to the
deterministic case in order to overcome the complexity ef idxcursive formulation.
They assume full knowledge of the demand distribution. lditaah, they are restricted
to the specification of serial supply chain network topololys worth noting thaDP
utilizes myopic policies for search; i.e. it is restrictedinding the minimum cost of the
current time period. Recently, hybrid optimization teciugs incorporationdP and
CPhave been proposed Riossi(2008.

10.6.2 CPline of research

CPhas been successfully utilized for deterministic planr@nd scheduling models. Yet
the technique lacks an accurate representation of the mualticularly when random-
ness and uncertainty are introduced in the problem.

To model the problem stated in Examgle.1, a CP classical model defines the total
cost minimization constraint deterministically and déses the quantity to order as a
variable that is assigned a domain of intege@P searches for the quantity to order
which achieves a total minimum cost. Talile.3illustrates the search that is exerted by
enumerating all possible values of the quantity to ordehiwithe assigned domain of
integers. The enumerated values are then substituted fotdieost constraint equation.
The result of the enumeration is 362 and 795 which give totaimum costs of $2783
and $207049 for the connector and the stud manufacturing items réispic

10.6.3 Stochastic Constraint Programming (SCP)ine of research

The stochastic newsvendor model refers back to the workdoted by the promi-
nant economist Edgeworth iE{lgeworth(1888) who mathematically represented the
amount of money to be deposited in a bank account with a rarudaim withdrawal.

Due to its powerful expressivenesSCPis an intuitive way of modeling combina-
torial problems coupled with stochasticity. It is gengralsed inCP for optimization
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Connector Stud
Q TC Q TC

600 28215 200 2073
601 28211 201 20778

795 27893 362 207049
812 27894 370 207G

817 27895 270 20726

Table 10.3:CPenumeration of the quantity to order size for the total catudation

under uncertainty. Stochastic models aim at numericallyesenting the uncertainty
brought into the problem under consideration. They iteediti generate potential out-
puts for the set of input randomly distributed data in a peis¢ manner. This iterative
process in turn produces probable solutions that followleamdistributions and accord-
ingly realization of the maximum likelihood of projectedtoomes are explored.

SCPdivides the problem into decision stages; each stage ¢ertdig pair ¥, S;)
whereV; andS; are the sets of decision variables and stochastic variagpectively.
One-stageStochastic Constraint Satisfaction Problem (SC8P$;) assigns decision
variables inV for each stochastic variable value $1 This assignment should satisfy
hard-constraints and all possible scenarios specifiedduastic variables. the m-stage
SCP partitions the problem into disjointed sets of multipleggs /i, S;). Decision
variables in a stage are realized by observing former stagessolution is represented
by a policy tree where each path represents variable assigsro a given scenario.

Solution methods are based on two approaches: policy bamkdcanario based.
The former, inWalsh (2002, establishes the tree paths by assigning values to vesiabl
in order to satisfy possible scenarios. Decision variabéestake only one value, hence
they are assigned to the OR nodes, whilst stochastic vasadist all possible events and
they are given the AND nodes. The model realizes one valuestiasfies all possible
constraints. The scenario based approachianm et al.(2006, exhaustively builds the
tree of all possible sets of scenarios in a list of paths. Eaehario (path) is solved with
conventional deterministi€P on its own. A path in the tree is associated with a proba-
bility value. In this model the number of scenarios growsaggntially with the number
of stages. A global chance constraint, introduce®assi(2008, combinedSCPwith
DP to calculate the cost using the minimum distance algorithnis worth noting that
SCPis more flexible and powerful in modeling inventory managetr@oblems cou-
pled with randomness. Y&CPdoes not scale well when it involves solving the actual
problem.

Table10.4shows the scenario-based approach enumeration of theitguangrder
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given in Examplel0.1 In this example, each cost component (the ordering, thairigpl
and the purchasing costs) is associated with a probabistyilaltion function. ThesCP
approach builds the scenario tree by associating each ptittavyprobability of occur-
rence. This probability is computed by multiplying each @wdry combination of the
probabilities given for the cost components. The total @o8t the highest probability
of occurrence is then evaluated. Finally, the quantity tteosize selected is the most
likely to occur and at the same time it satisfies the total mum cost constraint. It is
shown in bold fonts as 197 and 3216 for the stud and connecoufacturing items.
Their highest probability values are:.18 and 0264 respectively. As shown by this
example, the stochastic computation can be infeasibleusecthey are exerted on the
given probability distributions exhaustively, i.e. in ameby-point manner.

Interest& Setup Prob Q  Ordering Holding
depreciation  cost cost cost

$125 002 85 $6250 $653

4.45% $185 005 103 $7400 $965

$261 003 122 $7830 $1361

$125 012 136 $37%0 $636

Stud 11.60% $185 03 166 $55%50 $950
$261 018 197 $5220 $1343

$125 006 179 $3750 $633

20.10% $185 015 259 $3700 $2297

$261 009 259 $5220 $1333

$1075 Q039 1608 $105 $0564

1.10% $215 0082 2274 $19H5 $115

$43 0049 3216 $256 $236

$1075 Q13 2274 $B $056

Connector 2.20% $215 0264 3216 $105 $113
$4.3 016 4548 $12 $23

$1075 Q064 3216 $38 $055
4.40% $215 0134 6432 $6&415 $44

$4.3 008 6432 $12 $226

Table 10.4: Scenario-basé€tSPenumeration of the quantity to order size for the total
cost calculation

10.6.4 Mixed integer programming line of research

Bookbinder and Tarf1988 used the static-dynamic uncertainty strategy to detegmin
the optimal policy. Their model formulates the problem o tstages: first determine
the replenishment periods; then seek the actual ordersdgroand realization. In their
modelBookbinder and Taassume that demand is a random variable following a normal
probability distribution. They build their deterministagjuivalent model on the demand
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expectations for each period and they assumed constantdsihwhich has no role in
the replenishment policy. Hence it has no effect on detengithe best solution of the
schedule.

Definition 10.1. The uncertain linear programming inventory model for mixetgger
programming is formulated as follows:

N
minimize E{TC}:ff... > (@t + hiy + vX)
di Jdy d

N =1
X g1(d1)g2(d2) . .. gn(dn) (10.2)
1 if X;>0 }

subjectto 6 = .
) t {0 otherwise

t
le=1lo+ Z(Xi - d)
i=1

X,y =0, t=0,1,...,N

Bookbinder and Tar§1988 used this model in order to reflect the fluctuations of
the inventory levels in each cycle over the time horizon. his inodel the three cost
components are:

» The ordering cost denoted tgy (the cost per item) and mutiplied by which
represents the number of times an order is isstigé. 1 when an order is issued
and¢; = 0 otherwise.

* The holding cost depends on the inventory lelyedt cyclet, wheret is a given
period/cycle in a time horizon frorfi. .. N}.

e The purchase cost varies based on the item ostiltiplied by the quantity to
order sizeR; at cyclet.

The customer demand defined over a time periotlis often given by a known
probability density functiorg(d;). The inventory level; is the difference between the
order quantityR;, and the customer demandsin a given cycle. The problem in this
case has a total time horizon equalNaycles. And the model seeks the minimization
of the total cost expected value that is symbolizedEly C}.

Bertsimas and Thiel2006 proved that mixed-integer programming outperforms
DP in terms of computation and cost results. They used a mixedier programming
model to find bounds on the solution of the cost. In their cotafen, a convex rep-
resentation which encapsulates the unknown probabilgiridition is derived; yet the
output obtained does not contain any information on the waereabouts.
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10.6.5 Probabilistic programming line of research

Probabilistic approaches are flexible enough to describeutitertainty in real-world
problems. They add a quantitative information that ex@ed#ise likelihood. Operations
are exerted on probability distributions which approxientite observed data.

Probabilistic models often define the uncertainty over ttesgnce of constraints.
They impose assumptions on the probability distributidrepe to deal with them math-
ematically by means of the expected values and the stan@aidtion. Final decision
is an assignment that maximizes the probability of conscstevhich satisfies the set
of the given constraintsTarim and Kingsmar2004 developed a probabilistic mixed-
integer programming algorithm based on the work introduzg@ookbinder and Tan
and which combines the multi-steps into a single one. Theghitistic inventory model
proposed byrarim and Kingsmai2004) is defined as follows:

N
minimize E(TC) = Z(aét + hE(ly) + VE(X)) (10.3)
t=1
subjectto E(l;) = E(X) — E(dy),
E(X0) = E(lt-1)),

E(Xt) — E(lt-1) < Mgy,
t

t
E() = > Gyl ova@— D, E(I)Py,
ji=1

k=t—j+1

E(X), E(lt) > 0,
5. Py € (0,1},
t=1,...,N
=1t

In this model, an additional service level constraint isetlth guarantee that the in-
ventory levels are always kept positive with a probabilitgager than a value (Pr(l; >
0) > ). This is represented by the equation which relates thentove levell; with the
variations of the monthly demartj by means of the cumulative probability distribution
functionGpg) = Gy, ... Gg () defined for{d; ... d}. In this equation variations of the
monthly demand are associated with the inventory level baat tonstraint relation is
satisfied with a certain probability value symbolized By. The set of constraints in
this system are defined over the expected values of the oweE(l;) and the monthly
demande(dy).
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Table 10.5 shows the input of the stud manufacturing item detailed iargple
10.1 The number of calculated ordering placements is 4 and thgputed total cost
is $214215. The ordering quantity differs with each order placentapending on the
monthly demand and the level of inventory reached.

10.6.6 Fuzzy programming line of research

Fuzzymodels introduce the vague representation of demands atsl cbhey approx-
imate the probability distribution by a set of intervalsledl‘alpha-cuts‘. The possi-
bilistic theorem Zadeh(1969, is applied on the alpha-cuts to reason about the data in a
simplified way. In the inventory management problduzzysets are estimated subjec-
tively to represent the uncertainty observed in demand<sast$. The possibilistic dis-
tribution of the input data is built based on a computed steshdeviation: assuming, in
the general case, a unimodal and symmetric distributioheptobabilityGum (1995.
Demands and costs are describediimzymembership functionsDutta, Chakraborty,
and Roy(2005 use a triangular membershipzzyfunction in their model, an&u and
Hu (2012 model uncertain customer demands by means of rarfdanyvariables.
Thefuzzymodel formulation depends on an ‘extended additig) that is based on
the ‘Yagers parametrized t-norn¥ager(1997. Operations on data using the possibilis-
tic theory exert the ‘Dominance possibility’. The posssiit distribution accordingly
provides worst and best case scenarios represented meslyeby the support and the
kernel of the possible solution set. In order to obtain thelteng solutions, cost and
demand are subject to fuzzification and defuzzification rélgms to generate the ex-
pected profit, then to calculate bounds on the optimal gtyatatiorder. This operation
is exerted, while maximizing the expected profit and miningzhe expected cost. As
a result, the optimum quantity to order is calculated in aréi® manner, i.e. for each
possible given demand withfazzyrepresentation of the holding and ordering costs.

Definition 10.2. The fuzzy inventory model is formulated as follows:

N
minimize  TC= " (as @ hl & vX) (10.4)
t=1
. 1 if %>0
Tt =
subject o o {O otherwise}

t
ly = |0@Z(Xi o di)ui
i—1
X, 1 >0, t=0,1,...,N

Table10.6shows results of running tfazzymodel on the stud manufacturing item
listed in Examplel0.1 In this model the variations of the monthly demand follow
triangular shape distributions, and constraint prefezerare represented by means of
fuzzymembership functiong;. The calculated total cost is $2703.
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Monthly 32 30 26 36 23 29 37 25 34 28 32
demands

Reorder 1 0 1 0 0 1 0 0 1 0 0

point

Order 62 0 85 0 0 91 0 0 94 0 0

quantity

Initial ¢ 62 30 0 59 23 0 62 25 0 60 32
Endingl; 30 0 59 23 0 62 25 0 60 32 0

Setup cost $74
Holding cost $3415

Purchase cost $2034
Total cost $214215

Table 10.5: Probabilistic model calculation of the quantiit order size and the total cost of the stud manufacturiem it
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t=1 t=5 t=6

Monthly [239,24.3,25] ... [29.7,29.95303] [31.3,322,329]
demands

Membership  [0.08, 0.16, 0.1]... [0.08,0.16,0.04] [0.020.12,0.06]
function

Reorder 1 ... 1 0

point

Order 56 ... 89 0
quantity

Endingl; 30 57 0

Setup cost $67.2
Holding cost $9.05
Purchase cost $262668
Total cost $270293

Table 10.6:fuzzymodel calculation of the quantity to order size and the todsk of the
stud manufacturing item

10.6.7 Reliable programming line of research

Reliable techniques suggest convex structures, intenallipsoidal, to guarantee a full
data enclosure in the model when uncertainty takes placec@ttainty closurel{CSPH
introduced byYorke-Smith and Gervef2009 associates the uncertainty to constraint
coefficients. Interval coefficients are used to bracketltiaefined data. This framework
brings together modeling and solving methodologies fidfrinto the CP paradigm to
provide reliable and efficient approaches for uncertairsttam problems.

This convex model is a modified version of the probabilistiod®l proposed by
Tarim and Kingsmar§2004 as listed in Equatioi0.3but it incorporates convex struc-
tures which are boldified to represent interval coefficieMtsiables are no longer given
as expected values because in the convex model, we seekuhdsbavhich encapsu-
late realized solution sets. The inverse of the cumulatredability distributionGB%t)
is replaced by the monthly demand intervals in the servieel leonstraint. Input data
interval coefficients are produced by shaping a Normalidigion over the observa-
tions. Interval bounds are then assigned the maximum anuhmam values to include

the majority of the Normal distribution data population.

135



Chapter 10. Management of Inventory

Definition 10.3. The convex model formulation of the inventory managemeatiigm
is defined as follows:

N
minimize  TC= " (ad + hly + VX)) (10.5)
t=1
subjectto {= X;—d;,
Xe > l1,
Xt = li-1 < M6y,
t t
lt szt-j+1+"'+dt— Z dk.
j=1 k=t—j+1

t
Z Py =1
-1

t

Ptj > 6t_j1 — Z Ok
k=t—j+2

X, It > 0,

6ta Pt] € {o’ l},

t=1,...,N

j=1,....t

Reasoning using convex models is a tractable computaticause it is constructed
over the extreme points of the algebraic structure, uni¥teaastive point computation
found and exerted in other paradigms. Results of convex Ia@de reliable and guar-
antee to carry-out all potential solutions of the problern@md. To derive outer bounds,
the model is based on an approximation that is not necegsaviérsed. Acquired reli-
able realizations can be very wide lacking an expressiveoxppation of the problem
in-hand and missing possible degree of knowledge becagbevahue in the solution set
has an equal uncertainty degree.

Table 10.7 shows results of running the convex model on the stud matwfag
item listed in Examplel0.1 In this model the variations of the monthly demand are
given as interval bounds. The number of ordering placemismgizen an interval repre-
sentation. The model &t= 10 suggests a no replenishment at the lower bound an order
issuing at the upper bound. The total setup, holding andhagic costs are given by
an interval representations. This means that each valinrvtfie interval has the same
probability of occurrence. The calculated total cost is powt lying within the interval
bounds [$73%, $44583]. Despite the fact that the resulting solution set gudees a
full encapsulation of the data, convex models lack the esgiveness of the probabilistic
information.
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10.7. Modeling Inventories with
acronym]“glossaryentryp-box?“glossaryentryfieldp-tglsnamefontp-boxProbability
Box“relax —setentrycounterf]page“glsnumberformat ¥ Boxagranym]“glossaryentry“emph

r[]pag‘l?rforat[§ev§reertatiorli’ 6, ’]

demands

Reorder [11] e [0,0] e [0,1]
point

Endingl; [1146,1157] ... [0.0,6.4] e [0,1.5]
Setup cost [$22.4, $66.3]
Holding cost [$16.65,$19029]
Purchase cost [$1496$207718]
Total cost [$15357,$233377]

Table 10.7: Convex model calculation of the quantity to ogiee and the total cost of
the stud manufacturing item

10.7 Modeling Inventories with p-box cdf -intervals representation

This section details the construction of théox cdf-interval model for the inventory
management problem and which is an extension of the convalehrepresentation
listed in Equationl0.5 Recall Equatioril0.1of the EOQmodel, the cost function has
three main components: purchase cost, holding cost andimgdmst. Each cost com-
ponent has a stochastic nature; for instance the purchaseages on the size of the
order; the ordering cost depends on number of times orderssued; and the holding
cost varies with the size of items in-stock. Tiuox cdf-intervalsCP expressive nature
enables us to build theOQ set of constraints without introducing any approximation.
Accordingly, probability distribution of demands, ordegisizes, inventory levels, re-
order points and cost components are encapsulated andeaf®d in a reliable manner
in order to consider all possible realizations of the proble hand.

In this section the subscriptdenotes the snapshot of the problem at a given time
period/cycle. | is the inventory levelX is the quantity to order and is the customer
demands. Boldified characters aréox cdf-interval representations of constraint coef-
ficients.

10.7.1 Ordering Cost

The ordering cost incorporates the number of orders anddbkeaf issuing an order.
Recall from Equatioril0.1 the EOQ model assumes the number of issued orders as
D/Q whereD is the annual average customer demand@rslthe total size of ordered
quantity Harris(1913). This assumption is based on the expected discrete valhe o
demand which is by nature unpredictable. In our model we sjiad the issuing of a
replenishement witld; it is an unknown variable assigned from the discrete doro&in
values{0, 1}. ¢ takes the value 1 when a replenishment is scheduled in thentuime
period and 0 otherwises is then multiplied by the ordering coatthat depends on the
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fluctuating market prices and which is represented pybax cdf-interval that bounds
the real distribution of the cost.

Definition 10.4. The total ordering cost of the inventory management prodieniN
cycles is
oC =z, as (10.6)

where a is thep-boxcdf-interval representation of the ordering cost=t1..N andé €
[0,1]

10.7.2 Holding Cost

Inventory levels and depreciation charges are the maincesyigat affect the holding
cost. TheEOQ model assigns a discrete value for the average inventos} xyual
to Q/2. However, in reality, the current inventory level is théetience between the
ordered quantity and the realized consumer demands; ifireedieas; = X; — di. Depre-
ciation and interest charges are in turn fluctuating basechanket prices and they are
denoted byh.

Definition 10.5. The total holding cost of the inventory management probtaniNfcy-
clesis
HC =N hly (10.7)

whereh is thep-boxcdf-interval representation of the holding cost.
It = Xt - dt (108)

where X is the size of the order variable at cycle t andisl the p-box cdf-interval
representation of the customer demand in cycle t

10.7.3 Purchase Cost

When a replenishment is scheduled, the cost of purchasiognds on the order size is
X and the varying cost per unit itemvs

Definition 10.6. The purchase cost of the inventory management problem fomgl t
periods is
PC =z}, vX (10.9)

wherev is thep-boxcdf-interval representation of the unit item cost.

10.7.4 The Model

Thep-boxcdf-intervals model is an extension of the convex model repitasien listed

in Equation10.5 The model hybridizes th€P high expressivity of uncertainty given
by the p-box cdf-intervals representation with the fast and easy way ofisglgystems
of linear equations given by thlIP to find the bounds on the quantity to order and
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the total cost. Output realizations envelop the actualtswiset of the problem along
with its data whereabouts. The aim is to schedule aheadiishEment periods and find
the optimal quantity bounds that achieve minimum total nfiacturing cost using cost
components introduced in this section. A reorder point witther sizeX; should meet

customer demands up to the next point of replenishment.

To maintain a certain service level, inventory managemeodeis either assign a
penalty cost on shortage or maintain inventory levels tordmmim threshold in order to
ensure no backlogs. The former criteria is presented in titqua? and the latter adds
a new constrainPr {l; > 0} > «; the additional constraint maintains a positive inventory
level with a probability greater than a predefined constant

Definition 10.7. The set op-boxcdf-intervals constraints that define an inventory man-
agement problem given N cycles time horizon are

N
minimize TC= Z(aét + hlg + vX;) (10.10)
t=1
subjectto  {= X;—d,
X > liq,
Xt = lio1 < Moy,
t t
le > Zdt-j+1+"'+d(— Z dy,
j=1 k=t—j+1

St, Pyj € {0, 1},
t=1,...,N
j=1,...,t
N can be set to one in order to characterize EH&Q p-boxcdf-intervals with one
cycle hence results can be easily compared with previoysisimodels. It is worth not-
ing that the set of constraints in Definitid0®.7symbolize demands, costs, and inventory

levels byp-boxcdf-intervals; i.e. they encapsulate the unknown fluctuategmre of the
problem.

10.8 Evaluation of the model

Recall the stud item in Exampl&0.1, Figure10.2illustrates the demand observations
along with their corresponding probabilities over a timeitan equals to 10 cycles.
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The dotted mid-line represents the mean demands; thisddiat&is in turn enveloped
by two probabilistic upper and lower bounds. Clearly, dedsaaind input variable costs
vary within each cycle. In this section we study the obsernwéormation for 10 dif-
ferent models to compare and study the effect of adoptingrhéistic, probabilistic,
fuzzy SCSR MIP, UCSP cdf-intervals ando-box cdf-intervals on the inventory prob-
lem quality of solution. Tablé.0.8lists different input variable formats to the models
under consideration. Demands depicted in Figl@e are shown in the last column of
Table10.8 Our empirical evaluation considers the implementatiotheffollowing list

of models:

* EOQis the basic deterministic inventory management modelilddtan Section
10.5 This model takes one average value of the observed demaadthe year
as shown in Equatioh0.1and in this case it is 30 items.

» Probabilistic, is listed in the set of constraints defingdHguation10.3 This
model commonly assumes that data is normally distributeeach cycle the prob-
abilistic model takes the mean value of the observed custdereand and this is
shown in Tablel0.8

 fuzzy(Dutta), as shown by the set of constraints listed by Eqoditin4 uses the
fuzzyapproach adopted iDutta et al.(2009; fuzzycustomer demands are listed
in the last column of Tabld0.8 each input in the demand set is itselfuzzy
membership function; the model, in turn, generates an dvierzzymembership
function of the optimal quantity to order that achieves treximum possible ex-
pected profit.

 Petrovic |, Petrovic, Petrovic, and Vujo3evi@996), is anotherfuzzyapproach
that represents customer demand$uayysets; the approach usiezzificationand
defuzzificatiortechniques in order to deduce one value for the optimal gydot
order.

 Petrovic Il inPetrovic et al(1996 has an additional advantage over Petrovic I: it
deals with imprecise inventory costs: overage and shoxktagts; they are in this
case represented Agzysets

* MIP in Tarim and Kingsmarf2004), is aMIP approach listed by EquatiatD.2
In this model, input demands are represented by their obdatstribution mean
per cycle.

* SCSHN Rossi(2008, a constraint based programming approach which combines
SCPwith DP to calculate the overall inventory management cost usiagrtmi-
mum distance algorithm.

* UCSPIn Yorke-Smith and Gerveg2009, uncertainty closure uses the set of con-
straints defined by EquatiatD.5to calculate the bounds on the cost and optimal
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guantity to order; demands IWWCSPcan be input as a set of intervals representing
observed bounds per cycle or as an overall interval bounifiegneasured data
over the year.

« cdf-intervals model is an extension of thlCSPmodel where demands are repre-
sented by an approximated setooff-intervals

e p-boxcdf-intervals has the unknown distribution of demands bourzed-box
cdf-intervals representation to encapsulate all observeddalahg with its where-
abouts.

monthly demanads

time (cycles)

Fig. 10.2: Demand observations over the year

In summary, customer demand information illustrated iruFed.0.2along with in-
put variables detailed in Tablg.8can be viewed and delt with from two perspectives:

» Each replenishment order size and time reveals detaifechiation at each cycle.

» The overall quantity to be ordered and total cost over ttae hielp desision makers
allocate and schedule ahead long-term manufacturing baaigleprocess.

10.8.1 Input Coefficients

We study the stud item of Examplé.1 Table10.8lists input coefficients to models
under consideration. For any observed distribution of daiefficients are presented as
bounds in the 3 models: théCSP, thecdf-intervals and th@-box cdf-intervals.
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ordering cost holding cost cost per item Monthly demands
EOQ 1.85 10% 556 30
Probabilistic, [26.2,35.4,232,
fuzzyPetrovit |, 1.85 10% 556 27.8,32.3,30.8,
SCSRMIP 29.3,36.9,24.7,339]
fuzzyDutta 185 10% 556  [[25.5,26.2,27],[34.6,354,36.1],
[23,232,239],[27,27.8,285],
[31.6,323,331],[30,30.8,316],
[28.5,29.3, 30], [36.1, 36.9, 37.4],
[23.9,24.7,25.5],[33.1, 339, 34.6]]
fuzzyPetrovic Il 185 [4.65% 10.37% 16.1%)] 5.56 [262,35.4,232,
278,323,308,
29.3,36.9,24.7,33.9]
UCSP [1.25,2.61] [4.65% 16.1%] [1.06,111] [23.2,36.9]
cdfintervals [[125,0.04], [[4.65% 0.08], [[1.06,0.08], [[23.2,0.04],
[2.56,0.98]] [15.45% 0.98]] [9.99,0.98]] [36.15,0.98]

p-boxcdf-intervals  [[125,0.04, 0.8],
[2.61,0.36,0.26]]

[[4.65% 0.08,12.07], [[1.06,0.08,0.14],
[16.1%,0.88,7.87]]  [11.1,0.4,0.04]]

[[23.2,0.04, 0.09],
[36.9, 0.43, 0.03]]

Table 10.8: Input variables for the stud manufacturing iteosts and monthly demands observed for 10 cycles
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Customer demands/cycle

We consider the raw measured customer demands without ingpapproximation on

its stochastic nature. We focus on one cycle (cycle 7) gikerdtstribution of demands
over the year illustrated in FigurE.2 Figure10.3zooms into the observed customer
demands in cycle 7. Figurg0.3a] shows a comparison between the actual measured
data and its nearest derived Normal probability distrinuti Figure10.3Db] illustrates
thefuzzymembership function that represents the observed datale ¢y

N
=}

m— d d ob servat ons
—normal dnstrlbutlon

i demand observations|
= fuzzy membership

I|II j I II
9.5 o

. 29 29.5
values values
8.

fuzzy membership function
frequencies

frequencies
6 e w e n o o o

Fig. 10.3: Observed customer demand of the stud item in cy¢kd nearest Normal
distribution (b)fuzzymembership function of the collected demand

Figure 10.4 illustrates a projection of the observed customer demaraydie 7 in
the cdf domain. We use this figure to compare between 4 differentomgpies: prob-
abilistic, fuzzy cdf-interval andp-box cdf-interval; and we show how accurate data is
encapsulated and presented in each model. Clearlg-theex cdf-interval envelops all
existing data along with its whereabouts. Customer demamgtdle 7 ranges between
quantiles 286 and 29 with a step valué at least 07 and at most 1. Using the slope
of the cdf-interval we can judge where data is accumulated over tleevialt of quan-
tiles: the average step value in this example. ¥60fuzzyrepresentation approximately
encapsulates the data whereabouts, as illustrated inBigb). However, the Normal
distribution, Fig. 10.4a), which is commonly used in probabilistic models, does no
follow the natural shape of the observed data distributiothe cdf domain because
probabilities have to be between the valueslJGor the quantiles in the real domain of
[-00,00].

Similarly, demands for each cycle are derived and compitéal & single set. The
produced demand set is then input to the different modetxrgpare output results and
performance. This process can be performed at each cyclesggsaaateEOQ model
myopically in order to minimize the cost belonging to theleyender consideration.

Forecasted customer demands of a set of cycles that ranties a/predefined time
horizon seek to calculate:

*The average step value is the slope of the gisdfadistribution in this case its minimum value is equal
to 0.7; i.e. if quantile 28 has acdf-value 008, then thecdf-value of quantile 2% is 078 at minimum
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(| R

o- = observed cdf R
= cummulative fuzzy membershi

cdf
o cdf ‘

0.8

0.61

0.4-

0.2}

25 30 o 25 30

295 295
values values

(@) (b)

o~ = observed cdf

1 | == Cdfinterval (29.8,‘-%9.8)&8 !

o - obgerve cd]
= p-box cdf-interval

o cdf
o cdf

8- i i
'(29:9,0.86,0.7)
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0.4r

0.2r

128.6,0.08,1.1)
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29.5 30
values

295
values

(© (d)

Fig. 10.4: Projection of the collected data in tt¥ domain (a) Normatdf distribution

(b) projection of thduzzymembership function on thelf domain (c)cdf-interval repre-
sentation of demand in cycle 7 (g)boxcdf-interval representaion of customer demand
in cycle 7

* reorder points
» each cycle inventory initial and ending levels
 each cycle order up to level

» each cycle setup, overage, purchase, shortage and tetal co

Customer demands over a time horizon

Decision makers seek to look at the problem over a given tior&zdn so that they
can schedule ahead a long-term manufacturing process. ovecake this process, we
consider the observed data over a 10 cycle time horizon anchevetor the effect of
modeling the unknown measured distribution on the reptatien of data input to the
models. Observed customer demands are considered as: enadl avean value in the
EOQmodel, a set of mean normal distribution value/cycle in ttadpbilistic model and
a set offuzzymembership functions ifuzzymodels.

On the other hand, models with convex structures are capébkeking a long term
plan in one step/iteration. This method is the fastest andtrappropriate when we
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need to include the fluctuating nature of the problem oveyéze while seeking to plan
ahead:

« the overall inventory levels to plan for the inventory ceipa

« the overall total cost to plan long term budget allocation

Cost components

mmm holding tost observations| '
= fuzzy membershi

01y
Q

<
k)
=
Q
s
=
)
=
~
]
Q
&
]
1S
R
3
=4

% 4 6% 8% 10% 12% 14% 16% 18%

values values
(@) (b)
1 9 lro==
= el e 3 i T eres enal
¥ °115.45%,0.98)
08 08 . (16%,0.88,7.87)
P
0.6 0.6
B B
0.4 0.4
0.2 0.2 -
~'%(4.65%,0.08) 4.65%,0.08,12.07)
4 6% 8% 10% 12% 14% 16% 18% 4 6% 8% 10% 12% 14% 16% 18%
values values

(c) (d)
Fig. 10.5: Input measurement of the stud item holding cost axime horizon of 10 cy-
cles (a) observed measurement and its nefuiesymembership function (b) projection

of the fuzzymembership function on thedf domain (c)cdf-interval representation (d)
p-boxcdf-interval representaion

Figure10.5illustrates how holding cost data is encapsulated in thdiestumodels.
TheEOQ, stochasticfuzzyDutta, Petrovicl can deal only with one value, the mean mea-
sured value. This is because these models by nature caraletittevarying distribution
or bounds. Petrovicll’s model as shown in Tabl@8handles duzzyrepresentation of
the holding cost in its calculations; and Figur@.qa] depicts its membership function
which ranges within théuzzyinterval [475% 10.375% 16%].

Clearly, holding cost ranges between quantil&®% and 16% which are considered
in the UCSPmodel as interval bounds. Tieelf-interval model shows that this interval
has an average step value 08.8 Thep-box cdf-interval further bounds the unknown
data distribution by means of two uniforadf-distributions with an average step value
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ranging between .87 and 1207; this means that for each quantile abové5% and
below 16% an increase of 1% has an expected probability Jatween 0787 and
0.1207. Datain this case is totally encaspsulated along withhiereabouts information.

10.8.2 Output Solution

We simulate the models under two different conditions: whaoklogs are either al-
lowed or not allowed. In our simulation we utilize real dematata bounds illustrated

in Figure 10.2 over a time horizon of 10 cycles. Values in Talil@.8 are input to the
models and yield optimal size to order, inventory levels toidl cost presented in Ta-
bles10.9 10.10and10.11 We note that incorporated item, setup and variable costs ar
given as bounds for convex models but they are treated age sialue in the rest of
the models under consideration. This is because non-cameslels do not represent
variables in terms of bounds.

Reorder Points

Reorder points are represented in Tabe9 column 1 by the set of cycles where an
order should be issued. This set ensures that the overakgsalemands are met and
satisfied. Reorder points are recommended by the modelskotise minimization of
the overall cost. The output set of reorder points in turea$ the setup and purchase
costs and this is illustrated in Tabl®.10columns 1 and 3 respectivefJJCSP, cdf-
intervals andp-box cdf-intervals models output lower and upper bound sets in their
recommendations. The rest of the studied models each dagyes set in their output
solution. For instanceSCSPproposes only two reorder points: at cycles 1 anWg?
suggests cyclefl, 3, 6,9} to minimize the overall cost of the stud item manufacturing
process example.

Quantity to order

UCSP cdf-intervals andp-box cdf-intervals output a convex representation for this
guantity: the optimum quantity to order cannot be outsigedbained bounds and the
stochasticity is captured within input as well as outputespntation of variables. Fig.
10.6depicts the graphical representation of the quantity teroodtput solution from the
different models under consideration. Tgudoxcdf-interval is illustrated by the shaded
region and the bounds of its convex representation draw dttedirectangle. Clearly,
the solution set obtained from tlpebox cdf-intervals model, when compared with the
outcome of the convex model, realize and additional knogée(l.e. tighter bounds in
the cdf domain). This solution set is opposed to a one value propasé® item by the
EOQ model due to its deterministic nature. Noticeably, Prolitaband fuzzymodels
suggest equivalent reorder point value that lies withingame range of quantiles: 24
and 30 items when no-backlogs are allowed and 27 and 58 itdmes Wwacklogs are
allowed. The reason behind the increase in the latter cadeeito the need to fulfill

146



10.8. Evaluation of the model

unmet demands from previous cyclé&CSPandMIP propose less number of cycles in
the set of reorder points hence to meet customer demandsidiméity of the order size
is higher: itis 91 and 182 items respectively when backlogsafowed.

SCSP fuzzy MIP

Min =0 max =220.7 2
@
Fig. 10.6: Output solution representation of the order uig\el

Inventory levels and unmet demands

A decision taken on the set of reorder points along with trentjty to order in each cycle
control the levels of inventory. Tabl.9lists bounds on the set of inventory levels over
the 10 cycles. In the shown results the upper bound valueeahtlentory level affects
the holding cost of the manufacturing process as listed IoheTE0.10column 2. Nega-
tive inventory levels signify unmet customer demands indbgerved cycle. This value
differs from one model to another since each proposes aeliffset of reorder points as
well as quantity to order. For instance, when no-backlogsafiowed in the manufactur-
ing process, th&CSPvalue of unmet demands is the highest compared to other sjodel
it reaches a value of 252 items which in turn imposes the Bigteortage penalty value
that lies within the interval range: $[5918, 637176] as shown in Tabl&0.10column

4. Probabilistic anduzzymodels have a similar behavior and obtained unmet demands
value reaches: 72 items and their shortage penalty is: $[25205095]. In general,
unmet demands results in shortage penatly when backlogallaveed is less because
in this case unsatisfied demands from previous cycles am@lysardered and met in
subsequent cycles. The set of possible solutions is enleagdun theUCSPmodel
since the model envelops all possible realizations of thelpm in hand. However out-
put solution range obtained from thisCSPmodel is extremely widecdfintervals and
p-box cdf-intervals models seek to meet all observed demands thysxotude output
realizations that contradict the stochastic nature of thélpm.
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no-backlogs are allowed

backlogs are allowed

reorder points

inventory initial levels

inventory endiryéls order up to levels

EOQ {1,2,3,4,5,6,7,8,9}
Probabilistic {1,2,3,4,5,6,7,8,9}
SCSP (1,3}
fuzzyDutta {1,2,3,4,5,7,8,9}
fuzzyPetrovit | {1,2,3,4,5,6,7,8,9}
fuzzyPetrovic Il {1,2,3,4,5,6,7,8,9}
MIP {1,3,6,9}
UCSP [{1},{1,2,3,4,5,6,7,8,9}]
cdf-intervals [1},{1,2,3,4,5,6,7,8,9}]

p-boxcdf-intervals  [1},{1,2,3,4,5,6,7,8,9}]

[-15.6, 26]
[-610]
[-217,4]
[0,37]

[-61, 0]
[-610]

[0, 149]
[-236 1222]
[(0,0),
(12391)]
[(0, 1, c0),
(1215 1,0.43)]

[-15.6, 26]
[-72 -2]
[-252 4]

[1,37]

[-72 -2]
[-72 -2]

[24 149]
[-270 1222]
[(0,0),

(1239 1)]
[(0,1,0.43),
(12151, 0.43)]

49
24
30
36
24
24
120
[0.2207]
[(0,0),
(2207, 1)]
[(6.99,0,0.31),
(2199, 1,0.27)]

EOQ {1,2,3,4,5,6,7,8,9}
Probabilistic {1,2,3,4,5,6,7,8,9}
SCSP {1,3}
fuzzyDutta {1,2,3,4,5,7,9}
fuzzyPetrovit | {1,2,3,4,5,6,7,8,9}
fuzzyPetrovit Il {1,2,3,4,5,6,7,8,9}
MIP {1,3,6,9}
UCSP [{1},{1,2,3,4,5,6,7,8,9}]
cdf-intervals [1},{1,2,3,4,5,6,7,8,9}]

p-boxcdf-intervals  [1},{1,2,3,4,5,6,7,8,9}]

[-40.3,235]
[0, 24]
[-38,67]
[-38,74]

[0, 24]

[0, 24]

[-38, 152]
[-44,211]
[(0,0),

(210 1)]

[(0, 1, c0),
(210 1,0.43)]

[-40.3,235]
[0, 24]
[-3867]
[-38 74]

[0, 24]

[0, 24]

[-38 152]
[-69,211]
[(0,0),

(210 1)]
[(0,1,0.43),
(210 1,0.43)]

49
[27,58]
01
100
[27,58]
[27,58]
182
[0,238]
[(0,0),
(237,1)]
[(0,1,0.31),
(237.1,0.27]

Table 10.9: The stud manufacturing item bounds on the iovgnévels and reorder points simulated for 10 cycles
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10.8. Evaluation of the model

Total cost

Total cost listed in Tabl&0.1lincorporates four components: setup, holding, purchase
and shortage costs listed in Talile.10 Cost components vary and depend on the order
size and the inventory levels. Clearly from Talil@.1Q purchase cost is the highest
portion of the total cost; its interval representation isleriwhen backlogs are allowed.
Setup and holding costs are equal in both cases: backloga@bdcklogs. Output
values from thé=OQ, Probabilitic,fuzzyare located within realized interval bounds.
p-box cdf-interval bounds encapsulate all possible realizationmiofmal cost and
yield a range of quantile values between $833and $66465 when backlogs are al-
lowed. The lower bound guantile obtained indicates thattfersame range of input data
the model can achieve a better minimal cost value. In casa wixacklogs are allowed
in the model this range increases with an upper bound of $888this is mainly due to
the additional shortage cost caused by unmet customer dism@hep-boxcdf-interval
representation further explains that an increase of $1 ha&xgected probability value
that ranges betweenZ¥ and 12%. Generally, bounds on the total cost obtained help
decision makers better plan their budget allocation in cnspn with a single value
that might not be applied when unconvex models are implegedgeintreal-time.

10.8.3 Scalability of the model

In this section we compare the above studied solvers in tefrssalability. We have
implemented 5 data sets with variations of demand distobat

* Randomly generated monthly demands for 7,10 and 24 cyaed 6.7

» P1 set: demand distribution mean value per cycle is
50(1+ sin(rt/6))

e P2 set: demand distribution mean value per cycle is
50(1+ sin(rt/6)) + t

* P3 set: demand distribution mean value per cycle is
50(1+ sin(rt/6)) + (52— t)

* P4 set: demand distribution mean value per cycle is
50(1+ sin(rt/6)) + min(t, 52 - t)

wheret is the cycle number.

We have generated a random demand distribution for each ginan value in the
above list. Recall that convex afuzzymodels studied in this chapter bound each of the
values presented. On the other h&@WSR probabilistic andMIP models can only deal
with one value for each run. In this scalability test eaclvesoseeks to find the optimal
inventory levels, ordering points and order-up-to-levaues for each cycle in the given
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no-backlogs are allowed

backlogs are allowed

overage cost

purchase cost

shortage cost

setup cost

EOQ [11.7,25.3]
Probabilistic [117,25.3]
SCSP [2.34,5.06]
fuzzyDutta [1053,22.77]
fuzzyPetrovit | [117,25.3]
fuzzyPetrovic Il [22 22]
MIP [4.68,10.12]
UCSP [1.25,26.1]
cdf-intervals [(125,0),

(25.6,0.9)]

p-box cdf-intervals [(125,0.04, 0),

(26.1,0.36,0.267)]

[10.8,12.84]

[0,0]

[0.186 0.483]
[9.3465 24.633]
[0,0]

[0, 0]

[41.2455 129283]
[0.0465 1375423]
[(0.047,0.01),
(134647, 1)]
[(0.0465 0.65,0.23),
(117208,1,0.17)]

[102548, 113226]
[0, 1356]
[31136,31692]
[18306, 18306]
[1356 1356]
[1356 1356]
[224624, 224624]
[15012, 852Q7]
[(104967,0),
(86221, 1)]
[(988.44, 0,0.003),
(8491232 1,0]

[187.58, 227.695]
[157635, 205095]
[591028, 637176]

[0,0]

[157635, 205095]
[157635, 205095]
[0, O]

[0,73948]
[(0,0.35),

(73948, 1)]

[(0, 0.65, 0.005)
(73948, 1,0)]

EOQ [12.95,1295]
Probabilistic [117,25.3]
SCSP [2.34,5.06]
fuzzyDutta [7.02 15.18]
fuzzyPetrovit | [117,25.3]
fuzzyPetrovic Il [22 22]
MIP [4.68,10.12]
UCSP [1.25,26.1]
cdf-intervals [(125,0),

(25.6,0.9)]
[(125,0.04, 0),
(26.1,0.36,0.27)]

p-box cdf-intervals

[4.44,3.3]
[5.58,19.32]
[4.42,15.62]

[12741, 44.919]
[5.58,19.32]
[12.45,12.45]
[22.3665 78.246]
[1.26,13814]
[(1.26,0.19),
(12576, 1)]
[(1.26,0.99,0.27),
(1375,1,0.2)]

[829.99, 86954]
[167805, 17628]
[27244, 28356]
[250295, 258205]
[167805, 17628]
[167805, 17628]
[331932, 337492]
[294.68, 580464]
[(294.68,0),
(593252, 1)]
[(112366,0,0.004)
(579908, 1, 0]

[47008,607.94]
[0,0]
[137888,145116]
[7232,757.1]
[0,0]

[0,0]

[100636, 106196]
[0, 150676]
[(328.04,0.8),
(150676, 1)]

[(0, 0.65,0.005)
(150676, 1,0)]

Table 10.10: The stud manufacturing item output costs Galed for 10 cycles
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when no-backlogs are allowed

when backlogs are allowed

o/p min cost bounds on total cost o/p min cost bounds on tokdl ¢
EOQ $104807 [123556,13981] $101365 [1355865 1455315]
Probabilistic $30555 [294405, 343225] $17147 [169533,1807.42]
SCSP $632546 [622417,669422] $167266 [165808, 17554]
fuzzyDutta $184908 [18504765 184908, 1878003] $32626 [324591, 32626, 339925]
fuzzyPetrovic | $30555 [294405, 343225] $17147 [169533,180742]
fuzzyPetrovic Il $305605 [295435, 342895] $172945 [17125,1797.25]
MIP $226233 [229217,238564] $436014 [435273,452525]
UCSP $[15142 992222] [180395, 666944]
cdfintervals $[(105M®6, 0.23), [(108622 0.8),
(999414, 1)] (641192 1)]

p-boxcdf-intervals

$[(10563, 0,0.1),

(988487, 0,0.002)]

[(993.67,0,0.12),
(664655, 0,0.002)]

Table 10.11: The stud manufacturing item optimal quanttgrder effect on the total cost observed for 10 cycles
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Chapter 10. Management of Inventory

time horizon that realize the minimum total cost. We run #&4 using a Core2 Duo
CPU, 253GHz and 3GB RAM under a windows environment.

The first three rows in Table0.12show the real time taken by each model in seconds
to generate the output solution of the total cost given then8Blomly generated demand
sets over 7, 10 and 24 cycles. Generally real-time increagésthe increase of the
number of cycles in the time horizon. From the given resukscan observe that the
slope of theSCSRime curve is the steepest; this indicates thalS3&Psolver times out
at earlier stages when it is comparedunzyand convex models. Solvers that implement
fuzzyapproaches all have almost the same time performance apditbdaster than
probabilistic solver. For this specific data set convex neralize bounds on the output
solution in less than 50% the time takenfoygzysolvers;MIP solver is faster when time
horizons are 7 and 10 cycles.

Two other measurements, the shared heap used and the ctattolised, are taken
into consideration in order to study the memory consumpticeach model. The shared
heap used is the memory allocated to store compiled Proldg aad its related vari-
ables and necessary buffers. The control stack used igagtito hold backtracking in-
formation. Tablel0.12demonstrates that stochastic model memory consumptiomsgro
exponentially when scaling-up the problem, it reaches 1089 time horizont = 24.
The p-box cdf-intervals behavior is similar to convex models. Probabdi andfuzzy
models have the best shared heap utilization. Clearly treeptage of the control stack
utilized in the stochastic model is the highest. This is duthe behavior of stochastic
techniques which exhaustively build the solution scersainoorder to reach a solution.
It is worth noting that convex models apdbox cdf-intervals do not need to build this
tree since output solution set is provided within an interaage that is encapsulating
all possible output scenarios.

Furthermore, Table$0.13and10.14show the time performance comparison of the
models under consideration with the 4 variations of the oamy distributed demands of
our imperical evaluation. The real-time taken to outputfthal solution set per model
is measured in seconds. It differs from one model to anothédapends mainly on the
set of input demand distributions and the number of cyclessien in the given time
horizon. Results are not recorded after a time-out of 2 hours

Clearly from Fig.10.8and Tabled.0.13and10.14the SCSPwas the first to times out
and the probabilistic model comes in second place followeth®MIP thenfuzzymod-
els. The best model in terms of scalability is tHE€SP. Evidently p-box cdf-intervals
model finds bounds on the output solution within almost algsinime range realized by
the UCSP. Moreover, solution bounds obtained by thox cdf-intervals incorporate
knowledge on the data whereabouts.

If we look at the overall manufacturing proces$CSF, CDF1 and PBOX outper-
form the rest of the models in terms of time taken to find bowrdghe plan. In the three
models data is collected and bounds on the probabilityibligion of the input coeffi-
cients are composed. Derived input coefficients are théimadias input to the models
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time horizont stochastic probabilistic  fuzzy cdf p-box convex
real time (sec) 7 a3 371 306 081 078 05
10 7014 608 577 328 328 306
24 168336 17522 15905 5541 325 312
control stack used 7 627% 4671% 2335% 0% 0% 0%
10 8982% 4671% 2335% 0% 0% 0%
24 100% 4671% 2335% 0% 0% 0%
shared heap used 7 2% Q4% 029% 687% 686% 682%
10 021% 05% 029% 968% 967% 962%
24 100% ™% 07% 2293% 2304% 2279%

Table 10.12: Real-time taken and measurement of memoryoguigon
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SCSP
PROB
MIP
PETROII
DUTTA
PETROI
CDF1
PBOX
UCSP

SCSP
PROB
MIP
PETROII
DUTTA
PETROI
CDF1
PBOX
UCSP

24 26 28 30 32 34 36 38 40 42 44
P1 set
249722 312724 382805 459965 544204 635523
19693 44642 64157 18825 171091 220796 655776
4923 9768 19753 57262 10811 159468 329446 69335 655686
13968 35152 57755 11385 12288 147968 169776 186998 21296 232848 526593
1242 23998 59061 121392 159744 194208 22842 251256 27000 269892 325248
12404 2578 72128 11895 187392 144789 214812 189836 20960 230202 412369
8206 26585 60075 12446 86578 64275 8915 11300 135167 228959 234078
5824 26077 57462 118745 67577 58681 87412 111059 125686 195572 211947
56.33 21272 48203 111126 43288 55348 77828 96124 10884 180023 184406 18284
P2 set
25250 316202 387062 46508 550257 642592
22588 32656 82957 14220 32424 524825
65.68 10602 44973 82376 87581 43958 727281
1764 31434 71736 16200 208896 265302 331128 386992 51360 66150
14832 18027 67253 9450 145152 174267 196344 231762 23880 272538
15524 24337 68243 13890 166144 184671 196758 573269 50040 205506
21192 42846 6196 146545 77508 53888 85455 128574 192206 210292
1719 36305 60342 137666 66989 52013 81336 121182 166399 19857
11977 30954 51718 123879 44033 46882 69304 109512 137114 18148

Table 10.13: Real-time taken to solve instances where th&f semands is given as in P1 and P2

46

A1oluanu] Jo uswabeuey QT J91deyd



GGt

24 26 28 30 32 34 36 38 40 42 44
P3 set
SCSP 249217 312091 38203 459034 543104 634238
PROB 21622 41997 104832 177375 24448 472227 61560
MIP 60.09 5379 13602 46903 7368 387324 468294 518897 846779
PETROIl 20952 31209 7280 16965 221696 30345 377785 419483 51920 700309
DUTTA 14328 23209 75712 10035 155136 186405 203148 226347 25680 300321
PETROI 1787 26366 98915 119925 123136 143055 29988 57363 25680 442324
CDF1 1717 37084 6276 119514 88815 62229 107309 137247 177558 243539
PBOX 15794 36878 6251 104768 84045 53245 9200 117204 156714 214739
UCSP 14415 29846 53196 89783 74392 52905 84864 114434 154807 209132
P4 set

SCSP 249974 313039 383191 460429 544754 636165
PROB 35786 32514 124124 22590 267264 440436
MIP 5519 10472 31478 59079 173267 35475 604237
PETROIl 19728 31546 102405 18315 231936 30634 35316 453416 53680 636804
DUTTA 15696 24899 82264 10530 169728 202011 240084 246924 27120 308259 441408
PETROI 20074 29249 86122 15315 136704 168487 164016 271472 21240 324576 538208
CDF1 25181 37727 6144 135718 80011 60521 92254 112769 137999 199082 205126
PBOX 20919 37652 59577 115604 66442 60199 81317 101049 118699 169863 168434
UCSP 12779 30738 52014 115523 44247 5198 69755 96899 117776 157067 1449 166872

Table 10.14: Real-time taken to solve instances where thaf semands is given as in P3 and P4

|9pow ay1 Jo uonenjeAs ‘g'0T



Chapter 10. Management of Inventory
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Fig. 10.7: Input demand distributions with mean sets ove¥ (&) 10 and (c) 24 cycles

and solution is deduced in one stage; i.e. all foreseen €wtlence. Output solution is
an envelopment of an unknown distribution.

10.9 Summary

In this chapter, we discussed the inventory managementeunoand its application in
the manufacturing process. We described how different lisddemulate the inventory
problem and what is the useful solution output. Generatlput to the model is: cus-
tomer demands, setup cost, variable item cost and holdistg.coticeably, input to the
problem has a stochastic nature and variables with fluciyatlues are usually approx-
imated in order to simplify the complexity of the algorithivat seeks to find the optimal
solution. Output from the models is basically the schednt®size of orders, inventory
levels and the total cost. Obtained output helps decisiokersao plan ahead for the
inventory and order capacities as well as the budget of theufaaturing process. We
elaborated the evolution of the model formulation in therlture starting from the very
basic deterministi€cOQ model. We exerted a comparison betwé&sDSR probabilitic,
fuzzy MIP, UCSR, cdf-intervals andg-box cdf-intervals modelsSCSPand probabilitic
models, in practice, proved to be the slowest models. Whiléiesdfuzzymodels have
almost the same time performance. Petro Il incorporaiesycost variable in the model
hence it allows for reasoning while consideritugzyencapsulation of the given data.
We practically proved that convex model€SP, cdf-intervals ang-boxcdf-intervals
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Fig. 10.8: Model scalability comparison for (a) P1 set of dawh distributions with no

trend over the time horizon,(b) P2 set of demand distrilmstiovith positive trend over
the time horizon,(c) P3 set of demand distributions withatizg trend and (d) P4 set of
demand distributions with trend

encapsulate each demand distribution in a convex repegggenin order to incorporate
the problem inputs fluctuating nature. Clearly results sttt convex models are very
fast and outperform the rest of the models. Our approachesigi@ range of quantities
to order along with an idea of data whereabouts. This infaionawill provide all op-
tions to the decision maker; hence they will be given a rariggiantities to order along
with the range of costs for each decision.
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CHAPTER 11

CONCLUSION

In this dissertation, we propose a novel framework and a &onstraint logic pro-
gramming language ovexdf-intervals to reason about data with uncertainty. The key
idea is to extend convex models with probabilistic inforimtin order to realize adi-
tional quantifiable knowledge on the data whereabouts. {Duisto intuitively describe
data coupled with uncertainty or following unknown distitions without losing any
knowledge given in the problem definition.

We introduced inSaad et al(2010 the cdf-intervals structure which was our first
attempt to represent data irR® domain representation: real andf. Despite the fact
that thecdf-intervals structure represents and reasons about datgside its where-
abouts in th&D, it is an approximation of the probability distribution, e it lacks the
full encapsulation of the actual probability distributiohthe data. We extend trezlif-
intervals with ap-box structure to obtain a safe enclosure in which data along igth
whereabouts are enveloped by two probability distribiif$ead et al(2012h,Saad et
al. (20123,Saad et al(2014 andSaad(2014)]. Boundingcdf-distributions are chosen
to be uniform because they have linear computations. Inctiapter we summarize the
thesis list of contributions.

11.1 Related work

In Chapter3, we provide the technical background that supports thensetend proofs
the correctness of the theory behind our framework. We Iratigdrobabilistic concepts
which establish and explain thedf and thep-box the main building blocks of our
algebraic structure. We also demonstrate how probabiligierations are exerted in the
probability paradigm. These operations are the core mamnan\he reasoning process
when it is concerned with probabilistic distributions.
We reviewed how data uncertainty is usually tackled andtdedh in different

paradigms. The literature categorizes the models to fo#dter probabilistic or pos-
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Chapter 11. Conclusion

sibilistic approaches. We studied the two approaches aiddiverse implementations
in the CP and LP paradigms. We also provide their advantages and dckwhvhen
they are implemented in real-life problems. There is so niaato in the literature con-
cerning reasoning about real-life situations coupled witlertainty. Representations
and solving techniques are often catered to specific siomtand cannot be generalized.
There is no one existing integrated paradigm that enabkearehers to represent and
deal with all types of uncertainty.

We are interested in systems of constraint€Chand OR because they are easily
embedded in declarative programming languages. Suchnsystee heavily used in the
problem solving environments, while separating logic froomtrol. TheCP paradigm
is characterized to be flexible in expressing optimizatioobfems. On the other hand,
the LP paradigm provides a better realization of optimalitsohs when problems are
scalable. Systems of constraintsG® and OR define a set of constraints through an
intuitive descriptive algebraic structure along with thenaiins allowed for variables
in a constraint relation. The aim is to find an admissible tmiuor set of solutions
to the problem under consideration. This is achieved by amogpiate definition of a
guery-answering mechanism following Al and©R techniques.

11.2 Uncertain Data Representation

Alternative approaches found f@P and OR, generally, follow diverse approximation
techniques to represent data uncertainty/populationifalision observed in the problem
definition. Some approaches deal with uncertainty by agsngia point-wise probabil-
ity to values in the discrete domain. Some others seek tmajpate the observations
to the nearest known probability distribution using stet# tools such as the expected
value and variance. Approaches following convex techricereclose all possible data
and treat them with an equally weighted knowledge (proiglof occurrence). This
is to ensure the tractability of the model by performing teasoning on the interval
bounding values (extreme points).

In Chapters, we show how observed data in the problem definition is cabband
represented by the algebraic structure defined in our mddeta whereabouts often
forms an unknown random distribution. Since this distifnutis unknown we enclose
it between two uniform distributions. Bounding distritaris along with the minimum
and maximum quantile values construgb-hox We show that by issuing lines with a
maximum (minimum) slopes from the minimum (maximum) meadujuantile values,
we guarantee the full encapsulation of the probabilityridtistion being measured and
following an unknown distribution. We then compare betwdendifferent representa-
tions of input data to show how accurate its whereabouts rarel@ped in the models
(probabilistic, fuzzy cdf-intervals andp-box cdf-intervals). Thep-box cdf-intervals
representation out of this comparison is the most safe saowhich guarantees the
full encapsulation of available data along with its whe#b. A point lying in the
p-box cdf-interval bounds has a chance of occurrence lying betweenritiorm distri-
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11.3. New domain definition

butions bounding th@-box Accordingly thep-box representation allows for an addi-
tional quantitative information about bounds on the pdesihnances of occurrence of
quantile values. Tablgl.1lists the main differences between the convex representati
in real-intervals cdf-intervals andp-box cdf-intervals.

11.3 New domain definition

After the data collection process we form théox cdf-interval which is as safe en-
closure that identifies the confidence interval in a two-digi@nal manner: values and
bounds on their chance of occurrence. We then propose a maainléor reasoning with
uncertain data. The key idea is to combine the usual intemitdmetic approach with

a second dimension capturing the cumulative distributiomcfion cdf of the variable
whose primary dimension (the real dom&ipspans the value that the uncertain variable
can take. We define thedf-intervals domain and how the interval arithmetic opera-
tions are exerted over this new domain. The entire exercaeemit possible to define
constraints over variables defined on this domain. Solutiethod of these constraints
deliver intervals for the variables with thelf in our first approach, and alongside an
envelopectdf in the p-box cdf-interval approach.

As opposed to points defined over the lattice of ré&lsa point in thecdf-interval
is defined by a line (the uniforradf-distribution) in a2D-space manner. Our firstf-
intervals structure aligns all points lying between theiwal bounds into one line that
approximates the whereabouts to the nearésuniform distribution. This representa-
tion is revisited such that each point is associated withaatieuniform distribution. In
a 2D-space, a line is generally constructed following one ofttiie approaches: four
values (two values on the axis and their corresponding values on yhaxis) or three
values (anx value, ay value and a slope). The first approach definesctifeinterval
domain proposed to define our first algebraic structure. Boersl approach defines
triplet points bounding th@-box cdf-interval. Each triplet point corresponds to: the
guantile value, thedf and the slope of the uniform distribution which shows howadat
is scattered along the quantiles (on thaxis). Storing a triplet for each bounding uni-
form distribution is sufficient to construct thebox cdf-interval, hence the minimum
and the maximum quantiles alongside bounds on the chancecafrence any point
lying between the interval bounds can happen are all stoyéddebbounding triplet rep-
resentation.

Points of the new defined domains are consequently rankedvim-alimensional
manner. Distributions lying towards the upper bound areidating those preceding
them. This fact helps us defining our computation domain eé2h-space wherein
the cdf is associated to the uncertainty value of a point. The coesadipns computed
overp-boxcdf-intervals extends real interval arithmetic with a proliabc computation
over the boundingdf-uniform distributions which is in turn a linear computatibence
adding a minimal overhead while performing the calculaiomer the interval bounds.
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Reliable intervals

cdf-intervals

p-box cdf-intervals

Initial data
representa-
tion

Bounds on the observed data ardé is one point lying within thep-box

recorded but its whereabouts is not

All values provided within the interva
bounds are equally weighted

The interval encapsulates and degalé/hen the data is not uniformly dig

with only one domain: the domain g
realsR

Lattice property on one dimension: th
real domairR

Maintains an interval-based approa
in the real domairk

cdf-interval

| Assumes that data is uniformly dis
tributed across the interval. If this
the case then it is an exact presentat
of the data probability and values

ftributed, estimateddf-uniform distri-

realization

eLattice property for each dimensio
The framework makes use of th
monotonic property of thedf. The
steepness of the distribution sloj
roughly indicates the whereabouts

ciMaintains an interval-based approa
in the quantifiable dimension (probg
bility) along with the real dimension

bution is an approximation of the data

encapsulates all data presented/r
sured and provided in the problem
der consideration

5-cdf-bounds restrict the possibility
sdata to occur outside the interval li
oits

-The interval is a full encapsulation
data and its whereabouts

n.Lattice property for each dimensiq
equantile and probability

be
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a-n the quantifiable dimension (prok
bility) along with the real dimension

Point repre-
sentation

A point is a singleton value in the reg
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alA point is a tuple. The monotonic prog
erty of thecdf seeks to store only tw
values per bound: quantile antif.
Thus we do not store the full probabi
ity information

-A point is a triplet. This triplet i
n dicates a P line which is the cdf-
uniform distribution

Reasoning

Output solution set is an interval ¢
guantile bounds (like iVCSBH

fBuilds 2 sets of constraints that enal
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output solution set is not only interva
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11.4. Thecdf-intervals Language and Constraint Solver

Resulting domains from these operations are proved to hewewex algebraic structure
which encloses the unknown probability distribution.

11.4 Thecdf-intervals Language and Constraint Solver

We define the new domain over a lattice structure. Asset a lattice defines for every
two elements a partial ordering,géb andlub. Those definitions outline the fundamen-
tal features of a formal language description. The new drderalculus and arithmetic
operations are exerted on the computational domain: thethoof discourse that maps
a variable to a measureable quantile together with its kedgé in the2D-space. Op-
erations are performed on the bounding uniform distrimgioThey are linear because
uniform distributions each is shaping a line.

We develop a formaCLPlanguage from the new defined domains and show how this
new domain affects the problem variables and the decisioogss. Thedf-intervals
CLP language intuitively formalizes the set of rules and fixqp@emantics to reason
about data coupled with uncertainty. The reasoning scheth@vs a local consis-
tency approach which attempts at constraining each variaér thecdf-interval do-
main while excluding infeasible solutions.

We implement the new language as a separate solver moduiie EGLPS con-
straint programming environment. We use the EEE environment due to its data-
driven programming facility which intuitively realizes ta@eprogramming. This is ac-
complished by using the attributed variables to specifycitiieinterval data structures,
and the suspension library to control the triggering meigmarfor executing delayed
clauses. We provide in our implementation an extensionédtfolog unification, con-
straint ordering relations and arithmetic operations dkercdf-intervals variable do-
mains.

Empirical evaluation shows that solutions from constraygtems ovep-box cdf-
intervals domains intersect with those output from theirgatvals, especially when real
bounds are the same. Moreover, the violation ofdatieordering property may shrink
the interval domain. Hence the realized solution space wehdr be pruned. This is
an added value thpe-box cdf-intervals introduce: solutions sought to be feasible & th
real domain are excluded since they are infeasible becteseviolate the properties
belonging to thedf-domain.

11.5 Definition of new Global Constraints

We define global constraints over systems of linear equattascribed by the-box
cdf-intervals algebraic structure. The new constructed glotmastraints extend interval
linear systems with a second dimension (the probabilityhé linear systems of equa-
tions, p-box cdf-intervals are introduced as variable coefficients. Theylmsolved by
simple polynomial transformation into a linear model whislthen sent to the Simplex
method. We run 2 Simplex to compute interval bounds. Thiseguh is often used to
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Chapter 11. Conclusion

solve Interval Linear Systems and it is very cost effectiliterval quantiles are then
projected onto thedf domain in order to obtain bounds on tbéf-distributions. The

p-box cdf-intervals closure realizes quantile values along withrigsuon their where-
abouts. We show that extreme triplet points resulting frbis dperation is equivalent to
those obtained from the SPversion of the solver.

11.6 Practical Evaluation

We apply the novel language to model two different real-$ifglications:NTAP used
in network design problems and the inventory managemeiuigum

11.6.1 NTAP Problem

The NTAP problem is used in traffic monitoring and network diagnostitich serve
in capacity planning, traffic engineering, reliability &wss, network management and
other network administrative tasks. The observed trafflarmes in the problem defini-
tion have a fluctuating nature and most of the techniquestaddp serve this problem
are either reliable (they seek bounds that encapsulateosdlilfle realizations) or ro-
bust (they approximate the problem to the nearest posséirmdinistic case)NTAP

is a large scale optimization problem which is usually uraerstrained (the number of
links is significantly small compared to the number of traff@mands) and has a solu-
tion set characterized to be infinitesimal. Most of the éxgspproaches serving this
consortium of applications lack the full encapsulationh# aictual distribution of data
that is provided in the problem definition.

We describe how to intuitively model théTAP problem in thep-box cdf-intervals
and compare this representation with the deterministidaicgy closure and the ap-
proach of thecdf-intervals with one approximated uniform distribution. \8lgowcase
our concept with hypothetical data and network topologietected from the sndlib
data corpus and a sample network instance of 4 nodes. Ilget®aved in three mod-
els encapsulate the actual measured value.U®8Pprovide a solution set with equal
knowledge weights. Thedf-intervals approach yields an interval with one approxi-
mated uniform distribution. Thp-box cdf-intervals realizations incorporate additional
knowledge on the data whereabouts and might further prumeeulting domains in
order to comply with the probability ordering propertieseride they-box cdf-intervals
approach can exclude solutions which might exist in converlehyet they are impos-
sible to happen.

11.6.2 Inventory Management Problem

The class of inventory management problem is widely usedatfilife situations which
can be listed but not limited to: the daily ordering of newsga, the booking of airline
flights and the ordering of items in a supply chain of a martufény process. In this
type of problems decision makers need to schedule aheaddkeng of items which
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11.6. Practical Evaluation

fulfill uncertain consumer demands, associated by fluctgatiarket prices, with a min-
imal possible cost. We provide the evolution of the existimgdels which help solving

this consortium of applications. The main modeling aspetish are input to the model
and which define the structure of policies involved in moriitg the inventory levels are:

the setup time that adds extra cost in the manufacturingepsac¢he replenishment poli-
cies which vary between periodical and continuous momigpof the inventory levels,

and the customer demands characterized to be unpredigtttiteey need to be fulfilled

and satisfied in a timely manner. Modeling the inventory fEobyields output factors

which help the decision makers to take further steps likéinofgy the reorder point and
determining the quantity to order. Both actions lead to afebsts (holding cost, setup
cost, ordering cost and shortage cost) which affect theathvarst of the manufacturing/
production process.

We studied the different modeling approaches which tadideirtventory manage-
ment problem: the deterministic version (EOQ model), dyicaprogramming, con-
straint programming and its stochastic version, uncestaifosure framework, mixed
integer programming, anfdzzyprogramming. We show how theboxcdf-intervals in-
tuitively envelop the uncertain data found in different reling aspects with minimum
overhead. To evaluate our model and its solution we comperp-box cdf-intervals
inventory management model version with all of the abovetrored approaches by
means of a process with a finite time horizon. In practice aaskt on our findings,
stochastic constraint programming and probabilistic nwaee the slowest. Fuzzy mod-
els with variable representation proved to have the same gierformance and their
output solutions are characterized to be reliable, i.ey #e®k the satisfaction of all
possible realizations. Convex models of the certaintywigsthecdf-intervals and the
p-box cdf-intervals encapsulate all possible distributions of tleendnds in a convex
representation. They seek bounds on the solution sets. fatti@llows for building
inventories with appropriate capacities and budget. Mareahep-box cdf-intervals
framework provides a range of quantities to order and a rahgests for each decision
along with bounds on its whereabouts.

To the best of our knowledgey-boxeshave never been implemented in tG@
paradigm, yet they are very good candidates to deal with eaglon about uncertainty
in the probabilistic paradigm, especially when the datd&psg an unknown distribu-
tion. The concept op-boxesrelies on the probabilistic approach that ranks probabilit
distributions based on their stochastic dominance. It iafa snvelopment of the data
whereabouts especially when it follows an unknown distiitsu Thecdf was selected
due to its aggregated nature which enables the propagatitre anformation to the
interval bounds. In addition to its capability of easily karg probability distributions
within a p-box domain. We have implemented tpebox cdf-intervals in the ECIPS®
constraint programming environment, and we have shownwitt minimal overhead,
obtained solutions gained tighter bounds in the probdicilidomain when compared
with convex models.
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CHAPTER 12

FUTURE WORK

The introduction of a novel framework to reason about datglem with uncertainty due
to ignorance or based on variability, paves the way to mamyfdit research directions.
We can list many in: studying models having variables follmvdependent probability
distributions, further investigating the model structtiwedeal with disjoint domains,
suggesting a list of global constraints, exploring différeearch techniques, generalizing
the framework to deal with all types of uncertainty, revigitthe framework within a
dynamically changing environment, and last but not leaglyépg the model to a variety
of large scale optimization problems which target rea-&hgineering and management
applications.

12.1 Dependencies of variables

When we construct our model, we assume that all variablesinadependent probability
distributions. This is to ease the computation and the reagabout the distributions.
For future work we need to account for data dependenciesst exthe problem rep-
resentation. In th&TAP, we can study, for instance, the network traffic flows which
split into more than one link. The probability distributittimt shapes each flow variable
traversing a link will depend on another link-flow variable.

12.2 Disjoint domains

The p-box cdf-intervals is a convex structure which sets bounds on tha dad its
whereabouts. We did not tackle examples where we have amntaimceariable with dis-
joint domains. We expect that disjoint domains will add uprengrobabilistic computa-
tion on thecdf bounding distributions because more triplet points wilitalved. The
question for future work is how to balance between reprasgiie full set of domains
in a convex structure as opposed to dealing with them as-mtstivals in disjunction.
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This should be coupled with a full study on the price with exggo the complexity of the
computation of disjoint domains since in this case the nurabenumerated domains is
larger.

12.3 Global constraints

Global constraints are pre-filtering algorithms which cagtproblem specific structures
in order to reduce the search space by disregarding infeasilizations. They utilize
different paradigms which view the problem with a globalgperctive such as in: the
graph theory constructs the problem visually using a grdpk¢ted/undirected) defined
over a set of vertices and nodes; and the linear programmangdmm incorporates
continuous variables in a set of linear equalities and iaBties, along with an objec-
tive function that needs to be optimized/[ van Hoeve and Katrig006§]. Examples
of global constraints can be found in: the sum and knapsaokt@nts associates a
scalar to the sum of the set of variables; the global carntynebnstraint assigns every
value to a variableRégin (1996, Régin (1999]; the element constraint states that a
value is equal to thé" variable in a constraintan Hentenryck and Carillo(iL988)]:;
the Alldifferent constraint is based on the matching thdonefficient filtering [Régin,
Petit, Bessiere, and Pug@&000]; and the Cumulative constraint allocates and sched-
ules resources in a cumulative manrigajptiste, Laborie, Le Pape, and NuijtE006)].
The p-box cdf-intervals framework is aligned with the concepts of globahstraints.
Using the propagation techniques following thox cdf algebraic structure, we can
eliminate values from the domains that do not lead to an aibhéssolution before the
search takes place. The probability dominance property esaential tool, in this case,
it introduces probabilistic constraints which eliminatenecessary values which contra-
dict the satisfaction of the problem set of constraints. \Akehadopted techniques from
the linear programming paradigm to represent bounddfglistributions of the variable
constraint coefficients. This technique provides an efiicgopagation technique that
prunes the domain of a variable to a convex representataire’tiudes all unnecessary
values from the-boxcdf-interval. Further investigations need to take place tdysthe
integration of they-boxcdf-intervals within a global graphical representation of\aegi
problem when it is subject to uncertainty.

12.4 Search Techniques

The p-box cdf-interval algebraic structure constrains variable domaina two dimen-
sional manner. The probabilistic dimension adds an extretcaint in the constraint
network in order to maintain the probabilistic dominancegarty. The novel structure
can be plugged into existing search techniques for probtetamces existing in the un-
certain and stochastic world. The challenge here is to ingthe search methods by
adding information bounding the probability distributioha given event.
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Techniques for solvin@€SPcan be found in: backtracking search and local search.
Solving algorithms can be either complete or incompletee backtracking search is a
complete algorithm (eventually it leads to a solution) veaerthe local search is incom-
plete (might not find the optimal solution of the problem).cB@acking often requires
an exponential amount of space and time. Research to imphevbacktracking al-
gorithms is quite large and usually it is accompanied by isgos which often order
the search tree with the most promising branch to be visitst A typical backtrack-
ing algorithm is a set of branching constraints that buildea.t The variations of such
branches are formed by enumeration, binary choice poinbwragh splitting an Beek
(2006]. An example of a future work can be combining fhxox cdf-intervals with
value ordering heuristicsdinsberg(1993, Vernooy and Haven§l1999]. This algo-
rithm seeks to find the best next value for a given variableithanore likely to be part
of the solution. The choice of this value can be supportedhBystored probabilistic
value within thecdf-interval structure. Another possible integration can sgoaiated
with the ‘randomization and restart’ search strategi¢aryey (19995, Gomes, Selman,
Kautz, et al(1998]. The p-boxcdf-interval structure can assist in finding the best point
in time wherein the restart should take place. This can be di@n instance, when the
search with the variable domain has a very low probabilitgadfsfaction.

A detailed survey about local search techniques adoptéziSiRscan be found in
Hoos and Tsan@2006. Local search by means of meta-heuristics is one of the most
powerful search techniques for solving large problem msta in many practical appli-
cations. The most prominent local search techniques arehastic local search, simu-
lated annealing, tabu search and dynamic local search. dafiroptimal solution, the
algorithm iteratively utilizes a randomization in orderitoprove the realization when
the solution reached is infeasible, sub-optimal or incatgl The key idea is to select
the new candidate solution in a stochastic manner. The piicgiec property stored in
the p-boxcdf-interval algebraic structure can assist in this selectilbb@ most promising
choice that is more likely leads to a solution.

12.5 Modeling Uncertainty

Uncertainty, in the literature, as shown in Cha@ean be due to ignorance or stochas-
tic nature of the problem. To represent uncertainties, toeahselection process is
overwhelmed with an infinite number of proposed models eardeting a specific un-
certainty type. There is an urgent need to deal and reasart albdypes of uncertainty
and variability in a single framework. Uncertainty is assek either by enumeration
(requiring expensive calculations) or bounds (acquiriegslexpensive computation).
The challenge is to construct a system which identifies tleenainty type, builds an
adequate problem structure and finds the most effective Hilctert resolution form.
Ideally, all proposed frameworks should be brought togethis is by integrating the
cdf-intervals with semiringCSPs[Bistarelli et al.(1999], valued CSPs[Schiex et al.
(1995], mixedCSPdFargier et al(1996], SCSP$Walsh(2000], dynamicCSPqFalt-
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ings and Macho-Gonzal€2005], andfuzzyCSP9Dubois et al(1996]. As aresult we
can introduce an intuitive expressiveness of the unceytaissociated with the problem
definition. Furthermore, we should seek the integratiorhefhybridization techniques
which bring theLP power into theCPfor better optimization and solution findings.

12.6 Dynamically changing environment

In this dissertation, we studied thef-intervals algebraic structure to model uncertain
environment in a single time snapshot. However, uncestatan also be found in a
changing environment. As pointed out in Chapeisolving problems which change
over time has two main strategies: minimize the need for ghdy seeking a reliable
solution; minimize the cost of change by acquiring a stablat®n; and minimize the
reaction time by questing for quick solutions. Since théintervals are convex struc-
tures they seek a robust solution which envelop all posséa#zations of the uncertain
problem, hence they can assist in the modeling and solvingaiflems using the first
listed strategy.

A possible future line of research is to study the integratbthecdf-intervals with
existing local repair methods targeting applications witknown future. For instance,
when the min-conflict heuristic is used to minimize the nundfeinsatisfied constraints
[Minton et al.(1992)] or to solve over-constrained probleni3grtak et al.(2004)], the
additional knowledge, which is provided by tledf-intervals about the whereabouts,
can be propagated to guide the heuristics towards minigittie possible chance of
occurrence of unsatisfied constraints in the problem.

When the type of change is unknown, tbéf-intervals can be a good candidate
in the integration with the oracle approacvah Hentenryck and Le Provo§i991)].
This is due to the ability op-boxes to retain a convex structure that stores previous
observations. In this case prior states in the sequencestmi@ed while excluding all
unnecessary sub-trees from the search space. Solutiomsvtproblems can maintain
the same path.

A third type of dynamic environment exists when informatiloout the change is
uncertain. This type of problems often use the recurf@8P approach to record the
source and frequency of the change. Thbox cdf-intervals are characterized to be
proactive since they store all observed information (dathis whereabouts) in a convex
structure. Techniques to integrate recurré®PWallace and Freuddi1998 with the
p-boxcdf-intervals should take place in order to enrich the framéwdth a tractability
property. This integration can be generalized to incorgotiae SCSP4Walsh (2000)]
and the Branchin@€ SP[Fowler and Browr(2003] for the same reason.

In a distributed environment, uncertainty can be found enwariable domains since
they are revealed over time in a distributed manner. FHoex cdf-intervals structure
can define bounds on such domains. Accordingly, they cantbigvely integrated with
OpenCSPs[Faltings and Macho-Gonzalg2009]. The p-box cdf-intervals restrict
the search space to the possible realizations. When theysawk interactively they
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exclude all infeasible solutions from the search spacedamcexpect a less expensive
computation.

12.7 Applications

Tackling real-world applications, coupled with data utaity, is a broad and diverse
field of research. As pointed out in Chap&they are the heart of many Engineering and
Management problems such as in: planning, schedulingndgig and tracking. These
problems can be found in a diverse list of applications sucim @isk assessment, finan-
cial markets trading and product design reliability anialy$he given uncertainty varies
in its definition and representation between ill-defined finctuating. Even though we
developed a model for theTAP and the inventory management problems, there is a
lot to be done in this area and the applications tackled & tthesis in particular. For
instance, we need to study the model variations when disédbinformation about the
link-flow in the NTAP is observed and for several adopted measurement techniggnes
other example in the inventory management problem the noatediffer based on the
implemented replenishment policy of inventory levels.

The key idea is to identify the source of uncertainty and ssminds on the given
knowledge (data and its whereabouts). Then the representztthe uncertainty using
the convex structure should envelop all the observed irdtion. Third, the problem is
modeled in terms of variables, domains and constraintss Witliprovide thep-boxcdf-
intervals problem algebraic structure which follow the bdwconsistency propagation
techniques in order to prune the search space. The outputifie operation is a solution
set per variable having p:box cdf-interval convex structure. Thg-box cdf-intervals
framework can be utilized to model and solve an endless fisutore optimization
problems coupled with uncertainty.
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CHAPTERA

PROOFS SUPPORTING THE

THEORETICAL FRAMEWORK

A.1 Stochastic ordering of p-boxcdf-intervals points

Assume two pointx = (X.F%,SX) andgy, = (x Fy,Sy), each lying on a different
uniform cdf-distribution. We need to prove that

4 Yy
FO<sFy: f quysf FPdy & Fy < (y— XS} + F{ (A1)

(o) (o)

Proof. Recall from Definition2.8, to identify a second order stochastic dominance of a
random variable over another, we perform the integraticer dve cdf-distribution, by
calculating the area under the designated curves. The stpgions are:

o Fy-FR

SX_
y—X
FQ_FQ’

sy=2L 2~ (A.2)
y—X

whereF)?’ is the projecteatdf value of the pointyy quantiley onto thecdf-distribution

of point py. Similarily, FYY is the projecteatdf value of the point, quantilex onto the
cdf-distribution of pointg,. From the slope equations, we can derive the two projected
values:

Fy = (y— xSk +F%
FY =(y-xSy - Fy (A.3)
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The integrations over the giverdf-distributions are:

y )/
f FPdy = Fy

y
f Fidy = F (A4)

(89

If we substituteFy” with its derived value that includes the observed slopeaatigd
the resulting linear equations are:

y
| Fray= - st
Y
f Fidy = Fy (A.5)

A.2 Computing the p-boxcdf-interval points of projection

For two real interval$ € [ag, bi] andJ € [cp, d1] data is uniformly distributed between

each interval bounds. Hence, due to the probability digtioin function definition, from
Equation2.3, we have:

0 X < ag

i) ={ g @<x<b (A.6)
0 x> b
0 Yy < Co

fiy) =9 g2 Co<ys<d (A7)
0 y>dp

Consider two random variables andY defined over real intervals such théte
[a,blandY € [c,d], X C landY C J,andag <a<b<b;,co<c<dcx<dy. The
cdf-values fora, b, ¢, andd, taking their values from thedf distributions formed by

andJ, areF4,Fp,Fc, andFq respectively. Thedf-distribution functions defined fax
andY are:

0 Xx<a

Fx=1 pig asXx<bh (A.8)
1 X>b
0 y<c

Fy={ g5 c<y=<d (A.9)
1 y>d

The red lines in Fig.A.1 illustrates the characteristic functions which represént
andY distributions. Clearly, each has a line equation within ploénts bounding the
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R S~
EA EA
F, | Fy
F, F,
0 b b x% ¢ ¢ a 4V

Fig. A.1: The characteristic functions ®fC | andY C J

intervals p,b] and [c,d]. Given the values of, b,c, d and their correspondingdf
valuesF,, Fp,F¢, Fg, we can calculate the projections on the X-agscy, by andd; of
the intervald andJ from the slope (by projecting the line equation onto the @dal’
cdf-axis values). Accordingly we can deduce the following:

. (b-a)
o a( Fa(F)tilo_ X
_ 1-Fy a
bl =b+ (Fb - Fa)
Similarily
g (-9
= FC(Fd - c)
(1-Fg)(d-0)
dl =d+ (Fd - c)

A.3 Addition of two cdf uniform distributions

(A.10)

(A.11)

As noted in Sectior?.1, the cdf is based on the integration of tipelf. We therefore
derive the jointpdf over the interval of the addition. The resultipdf is then integrated

to obtain the jointcdf.

A.3.1 Deriving the joint pdf over the interval of the addition

Consider an intervad, such thatZ = X + Y. X andY are the intervals illustrated in Fig.
A.l. The evenZ = zoccurs if and only if values fronX andY, summed up together,
are equal t@. In this relation, ifX = rthenZ = zifand only if Y = z— 7, T andz are
arbitrary real values. Accordingly, the eveéht z occurs when both eveni = 7 and
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Y = z— v happen togethet. can take any value from the real dom&n—oco < 7 < +00.
The probability distribution function o can be obained from the following convolution
operations derived as follows:

F2(2) = H fxy(X,y) dx dy= I :O( [ :y fxy (X, y)dX)dy

X+y<z
substituting
Gxy(xy) = f fxv(X, y)dx
then .
F2(2) = f [Gxv(Z—.Y) - Gxv(—co,y)]dy (A.12)
+00
F2(2) = f f fev(@=Y.) — Tyl inf, y)dy (A.13)

for independent random variable
fxy(=0,y) = fixy(—o0) fxy(y) (A.14)
and by definitionfyy(—c) = 0 thenfyxy(—c0,y) = 0 and
—+00
Fe@ = [ [ otz ydy (A15)

which is the convolution operation defined by the followirggiation:

f2(2) = £ h fx(r) fy(z - 7)dr = f h fy(z - 7)fy(r)dr (A.16)

(o) —00

JA(T)

il M2 —T)
.:—d a  z-c b 7_’

Fig. A.2: The convolution operation

Fig. A.2 illustrates the convolution operation on two uniformlytdisuted intervals
X e[a bl andY € [c,d]. The visual convolution operation exerts the followingpst:

1. Each distribution is expressed in terms of a variablé(r) and fy(7)
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Yh

Fig. A.3: Z values as function of quantiles taken frofrandY given thatZ = X +Y

2. One of the two functions is mirrored around the reald:-7)

3. An offset is added to the mirrored functiofy(z — 7)

4. The offsetz takes values from-oo t0 +oo to allow fy(z— 7) to slide along ther
axis; as shown by the sliding arrow in Fig.2

5. As illustrated in Fig.A.2, the shaded regions are superimposed to compute the
integration

Values of the random variabl&, as a function oK andY, form the set of declined
lines drawn in Fig.A.3. Since bothX andY are random variables mapped onto two
real intervals bounded bwy[b] and [c, d] respectivelyZ is mapped onto the real interval
bounds & + c,b + d]. The characteristic function o is a piecewise linear function
defined by the 5 different regions. Bounds differenciatingheregion are determined by
the dotted blue linesz = ag + Cp, z= ag + d1, z= by + ¢p andz = by + d;. Thepdf of Z
is computed as follows:

Zp = min(ag + di, co + by) and z,, = max@g + di, co + by) (A.17)
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Thenfz : R — [0, o) is the piecewise linear function given by:

0, Z<ag+Co
2—(ap+Co)
(bl—a?)m, a+C <2<z
f2(2) = W’ Zb < Z< Zyp (A.18)
m’ ZUbSZSbl-l-dl

A.3.2 Deriving the cdf over the interval of the addition

By definition, thecdf distribution is obtained by integrating tipeif. Due to its mono-
tonic property, we only need to calculate tbdf of the bounding quantilesz = a+ ¢
andz = b+ d, the calculated minimum and maximum quantiles respegtividie events
z=a+candz = b+ d are located within the set of regions depicted in Fig.3.
Note that &y + cp) < (a+ c) and that b + d) < (by + d;) becaused, b] C [ao, b;] and
[c,d] € [co,dq]. For an arbitraryz = x + y wherex € [a, b] andy € [c, d]:

X+Yy
Fz(z=x+y) = f fxy(2)dz

ao+Co
We can replacédyy(2) by its constituents from Equatioh.18.

Fz(z=Xx+Y) faz?;o fz_co Wl(dl_%)drdz (ag + Co) < (X+Y) < (ap + dy)
d
S Wl(dl%)drdz (30 + dh) < (X+Y) < (by + Co)

X+y

+ foyres f—dl R ao)(dl 5 drdz (b1 + o) < (x+Y) < (by + ch)A.19)

1 (ap + Co — X~ y)?

Fo(z= == < < d
z(z=x+Y) 3 (b1 —a0) (@1 — o) (20 + Co) < (a+¢) < (ap + dy)
Frlz=x+y) = 3Ed+ M
(a0 + d1) < (x+Y) < (b1 + Co)
FZ(Z = X+ y) — l (Co_dl) + (b1+CO_aO_dl)

~ 2 (bi-ao) (b1—a0)
2 2
+ (bl—ao)l(dl—co) { (ao+2Co) - (lerZCO) + (01 +di)(X+y—by—dyp)}

(b1 + o) < (x+Y) < (by +dy)

From the equations listed above, and knowing the projecibakes of the uniform

distribution bounds obtained in Equatiénl0, we compute the result of the convolution
linearily.
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A.4. Multiplication of twocdf uniform distribution

The slope, by definition, is the average step valuedtifedistribution takes. We
compute the slope of thedf distribution resulting from the addition operation from
EquationA.23 as follows:

_ 1
Sz = Grd)-Gore

This is due to the fact thag§ + cp) and @1 +d;) are respectively the lower and upper
bounds of the distribution and theidf values are equal to ‘0 and ‘1'.

A.4 Multiplication of two cdf uniform distribution

The derivation of the binary multiplication operation isndar to the addition we pro-
vided in SectiorA.3. However, in this case, fa = XY, the evenZ = z occurs if and
only if values fromX andY, multiplied together, are equal @ Deriving thecdf of the

multiplication is based on the work introduced in [Glen, treg, DrewGlen et al.].

A.4.1 Deriving the joint pdf over the interval of the product

In this section, we show how to derive thef of the product of the two random variables
X andY, illustrated in Fig.A.1, and which belong to a product operatidn= XY. The
joint pdf of Z can be obained using the following formulatark and Wood§1994)]:

fuy(@) = [ h %fx(?’) fy (%)df _ I RS (5) fy(r)dr (A.20)

w 17l

T

o0

YA :

Fig. A.4: Z values as function of quantiles taken frofrandY given thatZ = XY
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Appendix A. Proofs Supporting the Theoretical Framework

According toGlen et al.(2009), we divide the domain oZ = XY into 3 main
segments as depicted in Figh.4. They are bounded by the dotted lines:= agpcy,
Z = agdy, Z = bicg andz = byd;. When @gdi) < (bicp), the probability distribution
function ofZ is described as follows:

0, z < (apCo)

Z

fazlo Wl(dlco)ﬁdT (a0Co) < Z < (apdy)
2@ =1 [ teoagmdr (aoth) <2< (bico) (A.21)

dg

b1 1 1
JZ e mdr (100) <2< (bach)
0, zZ> b]_dl

A.4.2 Deriving the cdf over the interval of the multiplication

To calculate thedf on the quantile bounds of the multiplicatidib; = min(ac, ad, bc, bd)
andub, = max@c, ad, bc, bd). The eventg = Ib, andz = uby are located within the set
of intersecting segments depicted in Fig4. For an arbitrary = xy wherex € X and
yeY:

Xy
Fm:w:f fxy(ddz

20Co

Replacingfxy(2) by its constituents, we obtain the following:

Fz(z=xy) = fa);io fa? sy mdrdz (aoco) < (xy) < (a0dh)
+ oty I3 Traae mdrdz. (a0dh) < () < (brco)

+QQ@EEWEWMz@w<mMmM) (A.22)

xy(In (555)) + 2o

F2(2= ) = S ey = o)

(a0Co) < (xy) < (apdy)

agd(In +agCo  In( 2 |(xy-aody)
Fz(z=xy) = (:)E z(;\o)(dl))co) (tgl 20)((11 Col)

(a0d1) < (xy) < (b1co)

aodl(ln(aoco))+aoCo In(%)(blco—aodl)

F2(z=%) = @ *— Gra
xyln(bl 1) bicy In( )+xy—b1co
+ (b1—20)(d1—c0) (b1co) < (Xy) < (brch)
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A.5. Subtraction of twadf uniform distribution

The slope of theedf distribution resulting from the multiplication operatids de-
fined as follows:

_ 1
S: = Ga)-Gew)

Note that, in this caseafcy) and p.d;) are respectively the quantile bounds of the
distribution withcdf values equal to ‘0" and ‘1"

A.5 Subtraction of two cdf uniform distribution

A.5.1 Deriving the joint pdf over the interval of the difference

Consider an intervat, such thatZ = X -Y =Z = X + (-Y). If X = 7, then, the event
Z = zoccurs only ifY = z+ t takes placer can take any value from the real dom&in
—o0 < T < +o0. The probability distribution function af can be obained as follows:

+00
fyy(2) = f fy (1) fy(z + 7)dr (A.23)
—00
YA R
N
\
N\
. N
N N\
dt >
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Fig. A.5: Z values as function of quantiles taken frofrandY given thatz = X - Y

Depicted in Fig.A.5, the domain o in terms of theX andY real interval domains.
When @g — ¢o) < (b — dy), the probability density function d is defined as follows:
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Appendix A. Proofs Supporting the Theoretical Framework

0, z<ag— Co
fa?dl de (a0 —di1) <z< (ap - Co)

2@ =1 [ poavam® (@ - co) <2< (b - dy) (A.24)
P matamgdr (b dy) <2< (by — co)
0, z>by—d;

A.5.2 Deriving the cdf over the interval of the subtraction

The cdf of the bounding quantiles formed by the distributiondfrez = Ib_ and
z = ub_, the minimum and the maximum quantiles respectively.
Ib_ =min(@-d,a-c,b-cb-d)andub. = max@-d,a-c,b-c,b-d)

(X-Y)
Fa(z=(x—y)) = f fxy(2dz

ag—dy

fxy(2) is computed as follows:

— d
Fzz= (x-y) = [0F [ pratamey 970z (20— di) < (x-) < (a0 — Co)

~y) (b
a(ox_gg L BrmiEey 97z (a0 — o) < (x—Y) < (by — dh)

(x=y) b
+ Jor—ds Z;:O —(bl—ao)l(dl—co) drdz (by —di) < (x-Y) < (by — cfA.25)

+

1((x=Y) - (a0 — dp))?

Fz(z=(x-Yy)) = 2" (b1 — ag)(di — o) (ag—d1) < (x—-Y) < (ap—Cp)
Faz=(-y) =33 +
(a0 — Co) < (x—y) < (b1 — ch)
Fz(z=(x-Y)) _ 1(bi-ag)

— 2 (di—Co)
_ 2 )2
+ (bl—ao)l(dl—co) (& zdl) - 2y)) + (b1 = Co)((X —y) — (b1 — d1))}
(b1 —dp) < (x-y) < (by — o)

The slope of thedf distribution resulting from the subtraction operation is:

_ 1
S = Gd)-iw)

(ag — d1) and b1 — ¢p) are the distribution quantile bounds and thadif values are
equal to 0 and 1.

198



A.6. Division of twacdf uniform distribution

A.6 Division of two cdf uniform distribution

A.6.1 Deriving the joint pdf over the interval of the division

Consider the two intervalX andY, illustrated in Fig.A.1, and belonging to a division
operationZ = X + Y. Thepdf distribution ofZ is defined in Htark and Wood$§1994)]
as follows:

fxv(2) = j: h 7| fx(7) fy (zr) dr = f -~ 7| fx (zr) fy(r)dr (A.26)

(89 —00

YA E

Fig. A.6: Z values as function of quantiles taken frofrandY given thatZ = X + Y

Given that% < 3—1 thepdf of Z is defined as follows:

0, z< %
f%l gl Pz
fz(2 = fcgl mdr o <z< % (A27)
1
fc(? md‘r 3—1 <7< %
0, z> %

A.6.2 Deriving the cdf over the interval of the division

The cdf of the bounding quantiles formed by the distributionfrez = Ib. and
z = ub., the minimum and the maximum quantiles respectively.
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Appendix A. Proofs Supporting the Theoretical Framework

X y
Fz(Z= y) = fa‘ﬂi fxy(Z)dZ

fxy(2) is computed as follows:

X I
Fz(z= ;) fao f Bra0) (= CO)dez aﬂi < § < %
7| b
+fao by eramdrdz 2 <3<l
b b
+ﬁ,1 fco Fam etz <3< (A.28)
2 1
PR v 2w x
VT2 bi-a)di-c)  d Y
d
Fyz= l() _ _dz(ﬂ_%)wo(:g—%)l d2-c2 (5 B @)
22=3) T el 2B Y
B X b
o~y — d

_X 1 1 43¢} X  a
FZ(Z—y) = 3T a2 Bia)(@=a) (9 2)

The slope of thedf distribution resulting from the division operation is:

S, =15
SN ET W)

Given thataﬂi and% are bounds of the distribution resulting from the divisigren
ation and theicdf values are equal to ‘0* and ‘1"
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CHAPTERB

THE P-BOX cdf-INTERVALS

SOLVER IMPLEMENTATION

The p-box cdf-intervals solver is implemented as a separate module IFEQEPS
constraint programming environmeBCRC (1994. The solver follows the structure
of the ic library ECRC (1999, it consists of two main modules imported using the
‘use_module(cdfi) directive. The first module, ‘cdkernel’ details all the core oper-
ations which are exerted on thkdf-intervals. The second module, ‘cdfi‘ defines the list
of constraints and their behavior.

B.1 Syntax

A triplet point in thep-box cdf-interval is denoted as)"F|S ‘, where ‘Q is the quantile
value F is the cdfvalue and §' is the slope of thecdf distribution. By means of theé *
and | ‘ operators we separate the elements of a point which caratakealue fronR.

A p-box cdf-interval domain is input to the solver aSlb ... Lub ‘. This repre-
sentation indicates that we have a conyelkox cdf-interval which is bounded by the
two triplet points Glb * and ‘Lub‘ and separated by the.! ‘ operator

Operators are accordingly declared in the solver as follows

% declaring the infix representation of the cdf domain opera tors
- export

op(550,xfx,’.::"),

op(500,xfx,’..."),

op(450,xfx,™),

op(400,xfx,’|").

*The ic library is the constraint solver implementation af thteger/real interval arithmetic in ERRS’
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Appendix B. The p-basdf-intervals solver implementation

B.2 Core operations

The core operations are implemented in the ‘cdfi-kernel* ad@dThey detail all com-
putations exerted on thedf distributions. Listed below part of this implementation
incorporating: the projection of a quantile onto tbéf-distribution, determining the
dominance of a&df-distribution when compared to another, extracting ttipl@nts out
of theglb andlub operations, exerting the intersection operation betweerctf inter-
vals, and computing the arithmetic operations on a pap-lbbx cdf-intervals.

The projection operation computes the value of tbéf for a given real quantile lo-
cated within the interval bounds.

% ---- Projection
% find_cdfproj(?X,?Y,-Fxy)
% X is a cdf variable, Y is a cdf variable
% Fxy is the cdf projection of X onto Y
% returns the cdf ground value of X variable
% quantile when projected onto the cdf line of Y
find_cdfproj(X"_FX|_SX, Y'FY|SY, FXP):-
FXP = FY - SY * (Y - X).

Extracting the quantiles when tleelf is ‘0" or ‘1" is reversing the projection oper-
ation. Both are utilized when we need to compute the reahiateverwhich thecdf
uniform distribution is defined

% get quantile value @ 0 cdf
get_quantileatO(A"FA|SA, AO0):-
A0 is A - (FA | SA).

% get quantile value @ 1 cdf
get_quantileatl(A"FA|SA, Al):--
Al is A - (FA - 1)/ SA).

The stochastic dominance compares between two uniforaaf distributions. As de-
tailed in SectiorR.3, it is determined by integrating thelf-curves oveR. This integra-
tion is a result of calculating the areas enveloped byctiaistributions. Accordingly,
the dominantdf is the distribution enclosing a minimum area, whereas thmeidated
distribution is encapsulating the maximum area.

% ---- Stochastic Dominance

% stochastic_dominance(?VarX,?VarY,-DominatedVar,-Do minantVar)
% given two cdf lines issued from the same quantile

% return the dominated and the dominant cdf

% VarX is a cdf variable, VarY is a cdf variable,

"Readers can refer to Equatiénl0 that defines the uniform distribution over an intenalt]
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B.2. Core operations

% DominatedVar is the stochastic dominated variable

% DominantVar is the stochastic dominant variable

% calculate the area under the cdf curve

% over the real domain from -1.0Inf to +1.0Inf

% by computing quantiles of each curve having cdf 0 and 1

% the area having a minimum value is the dominant and vice vers a
stochastic_dominance(X"FY|SY,X"FX|SX, X FIb|SIb,X"Fu b|Sub):-
get_quantileatl(X"FX|SX, X1), get_quantileatl(X"FY|SY , Y1),
((SY >= +1.0Inf) -> AREAL i s +1.0Inf;

get_quantileatO(X"FY|SY, YO0),
% calculate the area under the cdf between YO and Y1
AREA10is 0.5 (Y1l - Y0) ),

( (8X >= +1.0Inf) -> AREAZ2 i s +1.0Inf;
get_quantileatO(X"FX|SX, XO0),
% calculate the area under the cdf between X0 and X1
AREA20is 0.5 *(X1 - X0) ),

% find the maximum quantile then add up

% the rest of the area under the cdf curve

(Y1 > X1) ->

AREA1 = AREA10, AREA2is AREA20 + Y1

AREA2 = AREA20, AREALis AREA10 + X1 ),
((AREAL > AREA2) ->
Flo is FY, Sb is SY, Fub is FX, Sub is SX;
Flo is FX, Sb is SX, Fub is FY, Sub is SY).

Theglb is the min quantile value projected onto the dominatétdbounding the max
area.

% ---- Greatest Lower Bound

% glb(?VarX,?VarY,-GLB)

% VarX is a cdf variable, VarY is a cdf variable,

% GLB is the greatest lower bound

% the point with minimum quantile value and dominated cdf
% 1. project X onto the cdf curve of Y

% 2. Glb is the min quantile value projected

% onto the dominated cdf bounding the max area
glb(X"FX|SX , Y'FY|SY , GIb"FIb|SIb) :-
( X =Y ->

% project X onto the cdf curve of Y

find_cdfproj(X"FX|SX, YFY|SY, FXY),

% GIlb is the min quantile value projected

% onto the max area
stochastic_dominance(X"FXY|SY,X"FX|SX,GIb"Flb|SIb, 1)
% project X onto the cdf curve of Y

find_cdfproj(Y'FY|SY, XFX|SX, FYX),
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Appendix B. The p-basdf-intervals solver implementation

stochastic_dominance(Y'FYX|SX,Y FY|SY,GIb"FIb|SIb, ")
).

The lub is the max quantile value projected onto the domir@titbounding the min
area.

% ---- Least Upper Bound

% lub(?VarX,?VarY,-LUB)

% VarX is a cdf variable, VarY is a cdf variable,

% LUB is the least upper bound

% the point with maximum quantile value and dominant cdf
% 1. project X onto the cdf curve of Y

% 2. Lub is the max quantile value projected

% onto the dominant cdf bounding the min area
lub(X"FX|SX , Y'FY|SY , Lub"Fub|Sub) :-
(X =<<Y >

% project Y onto the cdf curve of X

find_cdfproj(Y'FY|SY, X'FX|SX, FYX),

% Lub is the max quantile value projected onto the min area
stochastic_dominance(Y'FYX|SX,Y'FY|SY,_~ |_,LubFub |Sub)
% project X onto the cdf curve of X

find_cdfproj(X"FX|SX, Y'FY|SY, FXY),

% Lub is the max quantile value projected onto the min area
stochastic_dominance(X"FXY|SY,X"FX|SX,_~ |_,Lub’Fub [Sub)

The intersection seeks to find the-box cdf-interval resulting from joining two inter-
vals. This operation starts by extracting the of the intervals lower bounds, then, it
computes thelb of the upper bounds. Finally, it detects whether an area oflict
needs to be removed.

% ---- CDFI Interval Intersection Operation
% intersect(?VarX,?VarY,-Result)
% VarX is a cdf interval (A"FA|SA...B"FB|SB),
% VarY is a cdf interval (X0"FX0|SXO0...X1"FX1|SX1),
% Result is a cdf interval (XL"FXL|SXL ..XU 'FXU|SXU)
intersect(VarX ,VarY ,l):-
[Ub(A"FA|SA, XO0FXO0|SX0, XLO"FXLO|SXLO),
% project XL onto upper bounds
find_cdfproj(XLO"FXLO|SXLO, B"FB|SB, FXL1),
find_cdfproj(XLO"FXLO|SXLO, X1"FX1|SX1, FXL2),
FXLmax i s max(FXL1,FXL2),
((FXLmax = FXL1) -> SXLmax is SB; SXLmax i s SX1),

*Readers can refer to Secti6érB.2for a detailed information about the area of conflict
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B.2. Core operations

((FXLO > FXLmax) ->
XL is XLO, FXL is FXLO, SXL is SXLO
% extract the intersecting quantile point
get_Xi(XLO"FXLO|SXLO,XLO"FXLmax|SXLmax,XLI"_|_),
XL is XLI,
find_cdfproj(XLI"FXLmax|SXLmax, XLO"FXLmax|SXLmax, FX
SXL i s SXLO

),

glb(B"FB|SB, X1"FX1|SX1, XUO"FXUO0|SXU0),

% project XU onto lower bounds
find_cdfproj(XUO"FXUOQ|SXUO, A'FA|SA, FXU1),
find_cdfproj(XUO"FXUOQ|SXUO, X0 FX0|SX0, FXU2),

FXUmin i s min(FXU1,FXU2),
(FXUmin = FXU1) -> SXUmin is SA; SXUmin is SXO0),
((FXUO < FXUmin) ->
XU is XUO, FXU is FXUO, SXU i s SXUO
% extract the intersecting quantile point
get_xi(XUO"FXUO|SXUO,XUO"FXUmin|SXUmin,XUI"_| ),
XU is XUl
find_cdfproj(XLI"'FXUmin|SXUmin, XUO"FXUmin|SXUmin, FX
SXUis SXUO

L),

U),

Arithmetic operations compute the addition, multiplication, subtraction andgion
operations on a pair atdf-uniform distributions. Each operation is implemented to
work on the interval bounding triplet points in pairs, i.gaeoations on the two interval

lower bounds yield the resultant interval lower bound, aice versa.

%
%
%
%
%

---- cdf-intervals arithmetic addition
arith_addition(?VarX,?VarY,-Result)

VarX is a cdf interval (A"FA|SA...B"FB|SB),

VarY is a cdf interval (C"FC|SC...D"FD|SD),
VarZ is the result cdf interval (ZI'FI|SI...Zu™Fu|Su)

arith_addition(VarX,VarY,Var2):-

ZI is A+C, Zu is B+D,

% get the bounds of the cdf uniform distributions
get_quantileatO(A"FA|SA, Al),get_gquantileatl(A"FA|SA
get_quantileatO(C"FC|SC, C1l),get quantileatl(C"FC|SC
% apply the addition over the two uniform distributions
% the cdf value of (A+C) is FI
get_cdf_add([A,B,C,D],[A1,B1,C1,D1],FI,_Ful),

% calculate the slope knowing that the upper bound

, B1),
, D1),
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Appendix B. The p-basdf-intervals solver implementation

% has cdf value 1 and lower bound cdf value 0
% @ Al1+C1l cdf is 0 @ B1+D1 cdf is 1
Sl is (F)/((A+C) - (A1+C1)),

% get the bounds of the cdf uniform distributions
get_quantileatO(B"FB|SB, A2),get_quantileatl(B"FB|SB , B2),
get_quantileatO(D"FD|SD, C2),get_quantileatl(D"FD|SD , D2),
% apply the addition over the uniform distributions

% the cdf value of (B+D) is Fu
get_cdf_add([A,B,C,D],[A2,B2,C2,D2], FI2,Fu),

% calculate the slope knowing that the upper bound

% has cdf value 1 and lower bound cdf value 0

%% @ B2+D2 cdf is 0 @ B2D2 cdf is 1

Su = (Fu - 1)/((B+D) - (B2+D2)).

% calculate the cdf values resulting from
% adding two uniform distributions
% get_cdf_add(?IntervalBounds,?UniformDistBounds,-FI ,-Fu)
% IntervalBounds is the list of interval bounds
% UniformDistBounds is the list of quantiles
% bounding the two uniform distributions
% and having cdf values 0 and 1
% -FI lower bound cdf value of the addition
% -Fu upper bound cdf value of the addition
get_cdf_add([A,B,C,D],[A1,B1,C1,D1],Fl,Fu):-
ZI is A+C, Zu is B+D,
FI is 0.5 *(A1+C1l-A-C) *(Al+C1-A-C)/((B1-Al) *(D1-C1)),
Fu is 1-(0.5 =(B1+D1-B-D) =*(B1+D1-B-D)/((B1-Al) * (D1-C1))).

Similarily, we have defined in the ‘cdikernel’ module thedfintervals arithmetic mul-
tiplication, subtraction and division.

% ---- cdf-intervals arithmetic multiplication
% arith_multiplication(?VarX,?VarY,-Result)
% ---- cdf-intervals arithmetic subtraction
% arith_subtraction(?VarX,?VarY,-Result)
% ---- cdf-intervals arithmetic division

% arith_division(?VarX,?VarY,-Result)

B.3 The solver

The solver aims at creating an expressive developmentoemagnt for programmers
to state their problems intuitively and in a declarative m&n It implements interval
propagation techniques used to solve problems pyeox cdf-intervals. The key idea
is to envelop the true value and its whereabouts withm@ox cdf-interval bounded
by two triplet points. All arithmetic operations are therrfpemed using these bounds,
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B.3. The solver

hence the resulting interval is widened to take into accamytpossible solution to the
problem in hand.

Interval propagation is implemented by means of the atibwariable data struc-
ture together with the suspension handling mechanism. Weaoih techniques to define
a new unification algorithm oveg-box cdf-intervals which extends the Prolog unifica-
tion Le Huitouze(1990; Holzbaur(1992.

A cdf-interval implementation in an attributed variable datacure consists of:
quantiles,cdf values and slopes. We append the notationlof and ‘ub‘ to denote
the representation of lower and upper bounds respectiviihg constraint suspension
mechanism depends on two members of the attributed varshleture: min‘ and
‘max. These two elements are the waiting conditions which defieesuspension list.
When they are triggered, i.e. assigned a wake conditioy,dbeactivaté the constraint
over which the interval variable is defined.

% p-box cdf-interval data structure
;- export struct(cdfi(
glb, qub, % q for quantile values
flb, fub, % f for the cdf value
slb, sub, % s for the slope
min, % suspensions: wake on update of lo
max % suspensions: wake on update of hi

)-

The attributed variable declares: the data structure #fates thep-box cdf-interval
variable domain, the unification mechanism which extendsPttolog unification algo-
rithm Le Huitouze(1990; Holzbaur(1992, the handler of the suspensions predicate that
aims at querying the list of suspensions attached to a \aritiie handler of the delayed
goals that returns the number of all suspended goals fouthisiattributed variable, the
print predicate which accesses and printsgk®ox cdf-interval domain, the get bounds
predicate that retrieves the triplet points bounding thieriral, and the update bounds
predicate which updates the bounds of this attributed btErip-box cdf-interval do-
main. Note that calling the update bounds predicate trgtier wake conditions of the
suspension list.

- meta_attribute(cdfi, [unify:unify_cdfi/3,
test_unify:test_unify_cdfi/2,
suspensions:suspensions_cdfi/3,
delayed_goals_number:delayed_goals_number_cdfi/2,
pri nt :print_cdfi/2,
get_bounds: get_cdfi_bounds/3,
set_bounds: update_cdfi_bounds/3

D

$When a constraint is activated, it is moved from the passsteof the active list as detailed in Algo-
rithm 3
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B.4 Constraint predicates

?Var .:: ++Donmmi n ,constrainVar‘to ap-boxcdf-interval domain, where
‘++Domain‘ is defined in terms of its constituents as:
‘Min"CDFMin|SMin...Max"CDFMax|SMax ‘. If * Var' is already assigned p-box

cdf-interval domain, then bounds o¥ar ‘ will be updated. Updated bounds are then
checked for their consistency to preserve the convex pippéithe p-boxcdfinterval
domain. In our implementation, we allow the domain to take'timtyped‘ bound values:
‘-1.0Inf ‘and ‘+1.0Inf ‘since quantile bounds are definedrn

% creating a cdfi variable
X ;2 Min © CDFMin | SMin ... Max ~ CDFMax | SMax :-
impose_cdfi_bounds(X, Min"CDFMin|SMin, Max"CDFMax|SMa X).

?Expr X . =< ?ExprY ,‘ExprX‘isless than or equal to ‘ExprY* given that each Expr
yields a-box cdf-interval domain. Note that this constraint can be equivilenritten
as 1e(?ExprX,?ExprY) ‘.

?ExprX .= ?ExprY , ‘ExprX‘is equal to ExprY ‘ given that each Expr yields a
p-box cdf-interval domain. Note that this constraint is equivalemititten as
‘eq(?ExprX,?ExprY) .

?Expr X + ?ExprY , the addition of two constrairp-box cdf-interval domains ex-
pressed byExprX ‘ and ‘ExprY ‘.

?Expr X * ?ExprY ,the multiplication of two constraint-box cdf-interval domains
expressed byExprX ‘ and ‘ExprY ‘.
Binary p-box cdf-interval constraints are declared in the ‘cdfi* module d®¥es:

- export (.=<)/2, (.=)/2.
% defining the infix representation of constraints

% local is used to override the definition of ‘+' and * * !
% NB: for the operator definition:

% A lower priority number indicates a tighter binding

;- local (+)/2, ( *)2, (+)I3, ( *)/3.

;- export

op(400,yfx,’ *"), % tighter than the +
op(430,yfx,'+),

op(700,xfx,".="),

op(700,xfx,".=<’).

Thep-boxcdf-interval solver is not limited to linear constraints ratitecan be used
in general problems likexXs X=X + Y+Y .=< Z=*Z where X', 'Y* and ‘Z' are vari-
ables defined over-box cdf-interval domains. Thecdfi_eval * serves at evaluating
constraint expressions and follows a decomposition agpramdeal with complex con-
straint format.
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% cdfi_eval(?ExprX, ?ExprY, -Type)

% evaluating constraint expressions

% for constraint decomposition

% utilized to decompose complex constraint

% expressions into binary ones

% when the expression is an addition constraint
cdfi_eval(CDFI1 + CDFI2, CDFI, _S):-,

+(CDFI1, CDFI2, CDFI).

% when the expression is a multiplication constraint
cdfi_eval(CDFI1 * CDFI2, CDFI,_S) :-

* (CDFI1,CDFI2,CDFI).

% when the expression is a constant cdf domain
cdfi_eval(CDFI, CDFI1, 1)?- !,
((is_bounded(CDFI); is_domain(CDFI)) -> true;

CDFl.:: -1.0Inf"1.0] 1.0Inf... +1.0Inf"0.0]0.0 ),

(var (CDFI1) ->
get_cdfi_bounds(CDFI,GIbX"FIbX|SIbX,LubX "FubX|SubX) ,
CDFI1.:: GIbXFIbX|SIbX... LubX FubX|SubX

; true).

cdfi_eval(CDFI1, CDFI, 2)?- I,
((is_bounded(CDFI); is_domain(CDFI)) -> true;
CDFl.:: -1.0Inf"1.0] 1.0Inf... +1.0Inf0.0|0.0 ),
(var (CDFI1) ->
get_cdfi_bounds(CDFI,GIbX FIbX]|SIbX,LubX"FubX|SubX) ,
CDFI1.:: GIbXFIbX|SIbX... LubX"FubX|SubX
; true).

% when both expressions are constant cdf domain
cdfi_eval(GlbX™_FIbX|SIbX...LubX™_FubX|SubX,
GIbY™_FIbY|SIbY...LubY™_FubY|SubY,3) :-

GIbX =< GlbY, LubX =< LubY,

SIbX >= SlbY, SubX >= SubY.
% need an exact match even if they are bounded cdfi
cdfi_eval(CDFI , CDFI,0).

We showcase the implementation of the inequality and additionstraints. The rest
of the system constraints follow the same behavior. Theuakty constraint, when

it is applied on twop-box cdf-interval variables, it constrains the first variable toetak
values from the domain that are less than or equal to valuéiseirsecond variable.
This operation follows th@-box cdf-interval ordering detailed in Sectidgh2.2 As a
result the system should maintain the bound-consistenogepty. To reach the goal
‘X .=< Y, domains of X' and Y* are updated from the upper bound and the lower
bound respectively. This constraint is triggered by thepension list conditions: the
‘min‘ and the max of the attributed variablesX’ and ‘Y* reciprocally. When fmin "
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of ‘X' changes, the domain of* accordingly should be updated in order to satisfy the
‘X .=< Y ' condition, i.e. all values in the domain o¥* should be greater than those
in the domain of X' and vice versa. The suspension list, in turn, causes a gakéw
up when the upper/lower bound changes. We annotate the dibah wpecial predicate
called the demon'. Unlike a normal goal, which disappears from the resolvsit
once it is woken, a goal declared usingdarhon' annotation remains in the resolvent
list when it is woken until it is explicitly killed using thekill_suspension * built-in
predicate. The constraint solver handles bounaixbx cdf-intervals by means of the
‘var_type/3 ‘' predicate. This type of domain intervals has constant lfangeable)
bounding points.

%

% the inequality constraint

CDFI1 .=< CDFI2 :-
le(CDFI1,CDFI2).

%
% le constraint
le(X,Y) :-

var_type(X,Y,S),

init_domain(X,X1), init_ domain(Y,Y1),

(S = 3 -> SuspList = [X1->inst, Y1->inst] ; true),

(S = 2 -> Susplist = [X1->inst, Y1->cdfimax]; true),

(S = 1 -> Susplist = [Y1->inst, X1->cdfi:min]; true),

(S = 0 -> SusplList = [X1->cdfi:min, Y1->cdfimax]; true),

suspend(le(X1,Y1,MySusp), 0, SuspList, MySusp),
le(X1,Y1,MySusp),

(S 2 -> cdfi_eval(Y,Y1,2); true),
(S =1 -> cdfi_eval(X,X1,2); true),
(S = 0 -> cdfi_eval(X,X1,2), cdfi_eval(Y,Y1,2); true).

.- demon le/3.
le(X,Y,MySusp) :-
get_cdfi_bounds(X,GlbX FIbX|SIbX,LubX"FubX|SubX),
get_cdfi_bounds(Y,GIbY FIbY|SIbY,LubY FubY|SubY),
( (is_cdfinterval(X), is_cdfinterval(Y)) ->
true % implicitly re-suspend

kill_suspension(MySusp)
),
glb(LubX "FubX|SubX, LubY FubY|SubY, LubNew FubNew|Sub New),
lub(GIbX"FIbX|SIbX, GIlbY FIbY|SIbY, GlbNew FlbNew|SIb New),
update_cdfi_max(X,LubNew FubNew|SubNew),
update_cdfi_min(Y,GlbNew FIbNew|SIbNew).

Similarly, the ternary addition constraint is implemeniadour solver over three
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p-box cdf-interval variables. The implementation covers also theeocahen one or
more variable has constant (unchangeable) bounds. Thgmassit of the suspension
list in this operation differs based on the type of each Weianvolved. This is followed

by the execution op-box cdf-interval addition and subtraction operations as shown by
the inference rules detailed in Secti@r2. An intersection operation over each interval
variable with corresponding resultants takes place. Thermutput of the intersections
update the bounds of the variables. Changed domains, intiigger the constraints
based on their defined suspension list.

%
% the ternary addition constraint
CDFI1 + CDFI2 :-

+(CDFI1,CDFI2,_CDFI).
%
% the addition constraint
addition(X, Y, 2) :-

var_type(X,Y,S),

(S = 3 -> init_domain(X,X1), init_domain(Y,Y1); true),

(S = 2 -> init_domain(X,X1), cdfi_eval(Y,Y1,1); true),

(S 1 -> cdfi_eval(X,X1,1), init_domain(Y,Y1); true),

(S = 0 -> cdfi_eval(X,X1,1), cdfi_eval(Y,Y1,1); true),

(is_bounded(Z) -> init_domain(Z,Z1); cdfi_eval(Z,Z21,1) ),

% suspension list

Sx = [X1->cdfi:min, X1->cdfi:max],

Sy = [Y1->cdfi:min, Y1->cdfi:max],

Sz = [Z1->cdfi:min, Z1->cdfi:max],

(is_bounded(X) -> SuspListx = [X1->inst]; SuspListx0 = [Sz .Sy,
flatten(SuspListx0,SuspListx)),

(is_bounded(Y) -> SuspListy = [Y1->inst]; SuspListy0 = [Sz ,SX],
flatten(SuspListy0,SuspListy)),

(is_bounded(zZ) -> Susplistz = [Z1->inst]; SuspListz0 = [Sx .Sy,

flatten(SuspListz0,SuspListz)),

suspend(addz(X1,Y1,Za,MySuspz), 0, SuspListz, MySuspz) ,
suspend(addx(Xa,Y1,Z1,MySuspx), 0, SuspListx, MySuspx) ,
suspend(addx(Ya,X1,Z1,MySuspy), 0, SuspListy, MySuspy)

% applying the cdfi addition operation

addx(Xa,Y1,Z1, MySuspx),

addx(Ya,X1,Z1, MySuspy),

addz(X1,Y1,Za, MySuspz),

cdfi_eval(X1,Xa,2), cdfi_eval(Y1,Ya,2), cdfi_eval(Z1, Za,2)
cdfi_eval(X,X1,2), cdfi_eval(Y,Y1,2), cdfi_eval(Z,Z1, 2).

:- demon addz/4.
addz(X,Y,Z,MySusp) :-
( (is_cdfinterval(X), is_cdfinterval(Y)) ->
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true % implicitly re-suspend

kill_suspension(MySusp)

),
arith_addition(X, Y, 2).

.- demon addx/4.
addx(X,Y,Z,MySusp) :-
( (is_cdfinterval(Z), is_cdfinterval(Y)) ->
true % implicitly re-suspend

kill_suspension(MySusp)

),
arith_subtraction(Y,Z,X).

B.5 Examples

In this section we demonstrate how the programmer can irgartdefined constraints to
the p-boxcdf-interval solver in an expressive manner. We also show tlveisbehavior
and its output whep-box cdf-interval propagation mechanisms are adopted.

%

%% Intersection

?- X .:30708]| 09 ..50" 05 ] 0.06,
X ;20706 ] 07 .. 40" 0.1 ]| 0.08

X = X{[(3.0, 0.8, 0.9) ... (4.0, 0.44, 0.06)]}

The unification of twap-box cdf-interval variables exerts an intersection operation then
update the bounds over the two intervals.

%
%% Unification
?-X .:30708] 09 .. 50" 05] 0.06,

Y 220709 |03 ..40 " 03 10.09, Y = X.
X = X{[(3.0, 0.8, 0.9) ... (4.0, 0.3, 0.09)]}
Y = X{[(3.0, 0.8, 0.9) ... (4.0, 0.3, 0.09)]}

The inequality constraint over two-box cdf-intervals X' and Y, ‘X .=< Y ‘ up-
dates the upper bound of*‘and lower bound of Y'. The solution obtained has one de-
layed goal: fe(X, Y}, 'SUSP-_1632-susp’) ‘ because resultingX’ and ‘Y* have
ap-boxcdf-interval format.

%
%% Inequality constraint
?- X .20 7 04| 08 ... 6.0" 0.2 | 0.05,

Y .10 °06]07 ..50701] 006, X .=<Y.
X = X{[(2.0, 0.4, 0.8) ... (5.0, 0.1, 0.06)]}
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Y = Y{[(2.0, 0.4, 0.8) ... (5.0, 0.1, 0.06)]}
There is 1 delayed goal.

Consider Exampl&.2 which shows the execution of the ternary addition inference
rule. Initial bindings to domains o', * Y* and ‘Z* are given in the query along with the
ternary addition orX + Y .= Z* (shuffling the variable order in the constraint yields
the same output solution sets).

%

%% Ternary addition

?- X.::0.070.6]0.099...2.070.03|0.01,
Y.::1.070.7|0.098...3.070.1/0.04,
Z.::4.070.8/0.05...6.070.05|0.008,
Z.= X+Y.

X = X{[(1.0, 0.56, 0.033) ... (2.0, 0.03, 0.01)]}
Y = Y{[(2.0, 0.6, 0.033) ... (3.0, 0.1, 0.04)]}
Z = Z{[(4.0, 0.8, 0.05) ... (5.0, 0.044, 0.008)]}

The ternary multiplication operatioZ‘.= X = Y‘when initial bindings for
‘X.;; 0.0 7 0.6 | 0.099 .. 20 " 0.03 | 0.01 Y
‘Y .0 -1.0 7 0.7 | 0.098 ... 3.0 ~ 0.1 | 0.04 ‘and
‘Z .2 -3.0 7 0.8 ] 0.05 .. 7.0~ 0.05 | 0.008 ‘, yields the following mod-
ification in the domains ofX, ‘Y and ‘z‘ all together. Final obtained domains after
applying this operation are:
‘X.::0.070.6/0.099...2.070.03|0.01 ‘
'Y.::-1.070.7|0.098 ... 3.070.1|0.04 ‘and
‘Z.::-2.070.37|0.012 ... 6.070.042|0.008 ‘

%

%% Ternary multiplication

?- X .0 00706 | 0099 .. 20 " 0.03 | 0.01,
Y . -1.0 7 0.7 | 0.098 ... 3.0 7 0.1 | 0.04,
Z .::-30 708|005 ..7.0" 005 | 0.008,
Z =X =Y.

X = X{[(0.0, 0.6, 0.099) ... (2.0, 0.03, 0.01)]}
Y = Y{[(-1.0, 0.7, 0.098) ... (3.0, 0.1, 0.04)]}
Z = Z{[(-2.0, 0.37, 0.012) ... (6.0, 0.042, 0.008)]}

Consider the system of linear equations provided in Exa®yilene can provide the
set of the system constraints to the solver as shown belotin \Boiables X1 and ‘X2
in this system lie within domains of positive reals, i.e.d€]. They are both constrained
to the domain X1.::0.0°1.0] +1.0Inf ... +1.0Inf"0.0|0.0 “in order to en-
sure this fact. The linear inequalities and equalities ataitively input to the solver
using the !=< * and ‘.= * constraints. The right hand side of the equations are dgfine
over boundeg-box cdf-intervals, while the left hand side of the inequalitiesigiities
are the addition op-box cdf-interval coefficients multiplied by the variables.
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linear_equations([X1,X2]) :-
X1.::0.0°1.0| +1.0Inf ... +1.0Inf"0.0|0.0,
X2.::0.0°1.0| +1.0Inf ... +1.0Inf"0.0|0.0,
(-2.070.5|0.2...2.070.01]|0.095) * X1 +
(1.070.3]0.32...2.070.02|0.083) * X2 =<
(3.070.88]0.4...4.070.040.088),

(-2.0°0.7|0.1... -1.0°0.01/0.087) + X1 +
(-1.070.2]0.3... -1.0°0.01|0.087) x X2 =
(-5.070.850.1... 5.070.02|0.013),

(6.0°0.9]0.98...6.070.01|0.018) x X1 +
(1.5°0.1/0.6...3.0°0.06]|0.034) x X2
= (4.070.9]0.02...15.070.01|0.001),

nl, write(X1 is '), write(X1),
nl, write('’X2 is '), write(X2), nl,

The solver prunes the-box cdf-interval domains ofX1' and ‘X2 like the ic solver
in the R domain. Additional information about the whereabouts sgropagated in
order to elaborate on the data stochastic property. Outpmiachs X1' and ‘X2' are
illustrated in Figurer.5.

?- linear_equations([X1, X2]).
X1 = X1{[(0.0, 1.0, 1.0Inf) ... (2.5, 0.28, 0.07)]}
X2 = X2{[(0.0, 1.0, 1.0Inf) ... (5.0, 0.46, 0.07)]}
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