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ABSTRACT

We propose a novel framework, thecummulative distribution function (cdf)-intervals,
that intuitively describes data coupled with uncertainty without losing any information
given in the problem definition. Our new proposition brings about a construction of
two algebraic convex structures: thecdf-intervals and theProbability Box (p-box)cdf-
intervals. The two proposed structures were driven by the practical usage of reliable
approaches inConstraint Programming (CP)andOperation Research (OR)paradigms.
These approaches tacklelarge scale constraint optimization (LSCO)problems associ-
ated with data uncertainty in a tractable manner. The key idea is to bound data observed
in the problem definition, then perform the computation onlyon the bounds using in-
terval reasoning techniques. Output solution set from thisprocess satisfies all possible
realization of the data sought. Approaches following the convex modeling commonly
treat data in their interval representation with an equal weight, thus they do not reflect
any possible degree of knowledge about the whereabouts.

Motivated by bringing more knowledge to the realized solution set, we introduced
the cdf-intervals in [Saad, Gervet, and Abdennadher(2010)]. The bounding points, in
the cdf-intervals algebraic structure, each is specified by two values: data and its cu-
mulative distribution function (cdf) [Saad et al.(2010)]. This new structure attempts
to represent data in a2 dimensions (2D)manner, yet the probability distribution (the
2nd dimension) is an approximated representation of the actualdistribution. We further
extended thecdf-intervals, with the notion ofp-box, in order to enclose all available in-
formation by twocdf distributions [Saad, Gervet, and Fruehwirth(2012b),Saad, Gervet,
and Fruehwirth(2012a),Saad, Frühwirth, and Gervet(2014) and Saad(2014)]. The
bounding distributions are chosen to be uniform in order to ease the computations over
the novel algebraic structure. The probabilities, within those bounds, are ranked based
on the stochastic dominance. In this work, we define the formal frameworks for con-
straint reasoning over thecdf-intervals and thep-box cdf-intervals. The modeling and
reasoning are constructed within theCP paradigm due to its powerful expressiveness.
Moreover, we construct a system of global constraints, overthe two algebraic structures,
by extendingInterval Linear Systems (ILS)with a second dimension (thecdf). We de-
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velop a formalConstraint Logic Programming (CLP)language from the new defined
domains and show how the new domains affect the problem variables and the decision
process. We implement the new language as a separate solver module in the ECLiPSe

constraint programming environment.
Thep-boxcdf-intervals combine techniques from the convex modeling, totake ad-

vantage of their tractability, with approaches revealing quatifiable information from the
probabilistc and stochastic world, to take advantage of their expressiveness. We perform
a comparison in the data representation and in the reasoningperformance over models
from the two paradigms and our novel framework. This comparison is further adopted
to model two different real-life applications: the NetworkTraffic Application problem,
used in network design problems, and the Inventory Management problem of a man-
ufacturing process. The empirical evaluation of our implementation shows that, with
minimal overhead, the output solution set realizes a full enclosure of the data along with
tighter bounds on its probabilistic distributions. Solutions sought to be feasible in the
real domain are excluded by thep-box cdf-intervals reasoning since they are infeasi-
ble because they violate the properties of thecdf-domain. Additional knowledge, on
the data whereabouts, gained by the implementation of our novel formal and practical
framework gives rise to a wide range of future research work.
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CHAPTER 1

I NTRODUCTION

Constraint domains which tackle data uncertainty have received little attention in the
Constraint Programming (CP)and in theOperation Research (OR)paradigms. In this
research, we introduce a novel framework: thecummulative distribution function (cdf)-
intervals. This novel framework intuitively encapsulatesany probability distribution
derived from past measurements or future forecasts into an interval data. It is a multi-
paradigm contribution that combines the powerful expressivity of the CP techniques,
with the inexpensive computational nature of reliable models, to allow for uncertainty
reasoning that is more tractable.

1.1 Problem Definition

Real-world applications, such as in planning, scheduling,diagnosis, or tracking prob-
lems, are modeled bylarge scale constraint optimization (LSCO)problems. They are
unavoidably coupled with uncertainty due to unpredictableinternal as well as external
environmental aspects. Data uncertainty can be found in, but not limited to:

1. Planning: the placement of the renewable energy parks depends on the varying
demands for energy and the construction cost of the parks,Gervet and Atef(2013).

2. Scheduling: the inventory management problem, in a manufacturing process, rely
on the observed fluctuating information of customer demands, setup costs and
item prices,Tarim and Kingsman(2004)

3. Diagnosis: the network traffic management and engineering processes count on
the collected traffic flow information. The collection process is often operated
in a distributed manner. Accordingly, the measurement can be ill-defined due to
packet loss or deviation from designated paths,Grossglauser and Rexford(2005).
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Chapter 1. Introduction

4. Tracking: the detailed identification of objects belonging to an image differs in
significance in a real-time image recognition problem. It isbased on the differ-
ent interpretation of various color shades and their motions, Deruyver and Hodé
(2009).

This uncertainty affects not only the behavior of the problem in hand but also its
acquired optimal solution. It is necessary to quantify existing uncertainty in the problem
under consideration in order to acquire reliable solutions. Uncertain data in turn can
be found: incomplete or following a probabilistic distribution. So far research effort
towards formalizing and solving large scale problems coupled with uncertainty factors
is quite few. TheCPparadigm proved to have a considerable flexibility in formulating
optimization problems, whilstLinear Programming (LP)provided a better realization of
optimal solutions for scalable problems. Techniques for hybridization have even more
incorporated advantages that exist in both paradigms. TheCP paradigm, by means of
Constraint Satisfaction Problem (CSP)definition, aims at building framework for fixed
point semantics which results in narrowing the possible domains of solution. The most
recognizedCPframeworks which handle uncertainty are listed below:

• Mixed CSPs, Fargier, Lang, and Schiex(1996), seek for one robust solution which
satisfies as many realizations as possible. This framework is equivalent to a one
stage stochasticCSPin the discrete form

• IntervalCSPs, Benhamou and Older(1997), provide a propagation technique for
uncertainty represented by real interval domains

• BranchingCSPs, Fowler and Brown(2003), handle problems characterized by
having variables revealed by time.

• PartialCSPs(valuedCSPs and semirings,Bistarelli et al.(1999)) attach an uncer-
tainty value or in other words a degree of preference to constraints. PartialCSP
frameworks are adopted explicitly to deal with soft constraints.

• Certainty closure (Uncertain Constraint Satisfaction Problem (UCSP)), Yorke-
Smith and Gervet(2009), associates uncertainty to constraint coefficients; thereof,
the output solution is characterized to be reliable and can take any of the possible
values from the closure of the decision space.

• StochasticCSPs, Tarim, Manandhar, and Walsh(2006), exhaustively build sce-
narios based on the input probability distribution; such structure reacts to values
suggested by stochastic variables in different manners. Each scenario in turn is
considered as a classicalCSPon its own.

On the other hand,ORparadigm, found in reliable and robust computation, quest for
approximating large scale problems so that they become solvable usingLP techniques.
Without this approximationLP that inherently lacks flexibility in problem representation
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would not be sufficient to handle the uncertainty component in large scale optimization
problems. The most well-knownORframeworks can be listed as follows:

• Interval LP, Beaumont(1998), allows for expanding the solution possibilities;
hence, an uncertain value is described by bounded intervalsinstead of a singleton
value. Interval linear computations are easily conducted but they do not guarantee
the tightest bounds on the resulting solution set.

• Robust optimization,Ben-Tal and Nemirovski(2000), approximates the problem,
often by using the variance and expected values, such that all possible scenarios
for uncertainty are subsumed in a convex ellipsoidal set. Such representation en-
capsulates ambiguity provided by erroneous measurements;despite the existence
of uncertainty, it makes all possible solution set available.

• StochasticLP, Sen and Higle(1999), thoroughly formulates a tree that exhibit pos-
sible set of actions for a given problem. Each branch in the tree is associated with
an expected probable value; therefore unrealistic solutions might be unnecessarily
explored.

All of the above mentioned alternatives in:CPandOR, generally, work as follows:
some of the models attach a point-wise probability to the values in the discrete domain;
some others adopt an approximated known form of probabilitydistribution. Arranged
approximations, of the known distribution, are based on thecalculation of the variance
and the expected values. Solutions are commonly derived from the maximization of
the expected value or they are obtained in a set interval. Realizations acquired may not
provide the accurate feasible solution with respect to the actual problem since in real-life
situations the probability distribution pursues unfamiliar shapes.

1.2 Motivation

Solution reliability and robustness is an important aspectof optimization that is not suf-
ficiently reported inCPandOR, especially for those applications which are tightly cou-
pled with data uncertainty. Our work was driven by the practical usage of reliable ap-
proaches inCPwhich are computationally tractable. These approaches canbe found in
theUCSPframework in [Yorke-Smith(2004)] to tackle network design problems, and
more recently, in the renewable energy park placement problems with uncertain demand
and costs. When adopted in real life situations, however, theUCSPlacks the expressivity
of the information on the data whereabouts, which is alreadygiven in the problem defi-
nition. There is a need to extend classical interval coefficient models to account for any
potential data distribution available. This dissertationshows how this can be achieved
with little overhead, while enriching the solution sets produced with an encapsulation on
the data probability distribution.
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1.3 Contribution

Indeed our goal is to add expressiveness to the solution setsof reliable models while pre-
serving tractability. The choice of linear enclosure of thedata distribution ensures both.
The main contribution of this work concerns the formal definition of a new interval arith-
metic and its implementation. We show that bounding a randomvariable distribution,
with two tight linearcdf distributions, is a safe enclosure at minimal overhead. We
also show how intuitively thecdf-intervals framework describes values coupled with
uncertainty, using nativeCPtechniques to propagate more information to the system of
constraints and the variable closure of the solution set.

In the novel framework, uncertainty of data defined in the problem is represented
asProbability Box (p-box)cdf-interval coefficients which are input to the solver. Solu-
tion sets acquire additional quantitative information which adds knowledge of the data
whereabouts.

1.3.1 Challenges

• Extend reliable models with quantitative information

• Preserve tractability

• Bounding ill-defined/ uncertain data whereabouts withoutinferring any assump-
tions on their distribution

• Reason withcdf-intervals by defining variable domains and constraint inference
rules.

1.3.2 Mission

Our work aims at addressing the need to reason about data coupled with uncertainty from
a language viewpoint. We required a domain ordering, monotonic property, dominance
over thecdf andp-box notions. Such concepts and definitions are quite new to theCP
paradigm. We also show how conventional reliable computingmethods can be extended
effectively to account for bounded distributions.

We start by defining a new domain for reasoning with uncertaindata. The key idea is
to combine the usual interval arithmetic approach with a second dimension capturing the
cdf of the variable whose primary dimension (an interval of quantiles in the real domain)
spans the value that the uncertain variable can take. This work introduces this new
domain, why it forms apartially ordered set (poset), and how to define the conventional
arithmetic operations and their computations on this new domain. The entire exercise
makes it possible to define constraints over variables on this domain, where the solution
method deliver intervals for variables alongside the relevant fragment of thecdf.

The fundamental algebraic structure in our framework is thecdf-interval. The main
idea behind this work is to express the data by an interval that includes all the information
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along with its uncertainty. It is the interval which encloses a set ofcdf-points defined
on 2 dimensions (2D). Thecdf-Intervals framework is employed to reason about data
with uncertainty inexpensively in aConstraint Logic Programming (CLP)system. Rea-
soning operations are exerted on the convex structure extreme points. They facilitate the
shrinking of the interval in order to obtain a solution set, while maintaining the interval
properties. Result of these operations, i.e. the solution set, is also an interval enclosed
by two bounds.

CP together withLP techniques are adopted to formalize the full system of con-
straints defined by thecdf-intervals. Using thecdf-intervals we seek the propagation of
values along with their probability distributions to the system of constraints. Due to the
new defined propagation algebra more information is introduced to the closure, while
values along with their probability of existence are realized. Such realizations could be
useful for a better allocation of resources when a solution value and its probability is
produced.

1.4 Thesis Organization

The remainder of this dissertation consists of three parts detailing our contributions:
where to apply thecdf framework, how to construct its algebraic structure and how
it works. We also show examples of real life applications to elaborate how to model
problems coupled with data uncertainty using thecdf-interval framework.

Part I. Context We start by describing the context: the basic concepts forming the pil-
lars which construct thecdf-intervals; types for data uncertainty which exist in the real-
world applications; and the literature review which diagnoses the different paradigms
which tackle data with uncertainty. We end part I with a comparison between the con-
structions of input data in different convex models:UCSP, cdf-intervals andp-boxcdf-
intervals.

Part II. Framework we show how data given in the problem definition is represented
in thecdf-intervals. We show how to extract the confidence intervals and we compare
this presentation with existing approaches. We elaborate the theoretical construction
of cdf-intervals, and we show how to build them from a language viewpoint. This,
in fact, paves the way to shape the language structure, its new domain calculus, and
the arithmetic operations which are computed in a 2D manner. As a consequence, we
implement the novel algebraic structure inference rules, the practical framework and the
solver. To complete the full constraint system, we develop asystem of global constraints
which adoptscdf-intervals to express and execute linear systems of constraints.

Part III. Applications to support the proof of concept, we tackle two different real-
life applications: theNetwork traffic flow analysis problem (NTAP)and the inventory
management problem. We show in this part how to utilize thecdf-intervals framework
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in order to easily express the problem. We also compare thecdf-intervals framework
obtained solution sets, their significance, and the system performance with various ex-
isting approaches and techniques commonly employed in suchapplications. Finally, we
support our argument by comparing our framework with existing techniques in terms of
expressiveness to model the original problems, additionalsignificance gained, solutions
obtained, and system behavior and performance. The three parts of this dissertation are
concluded by a discussion section which summarizes the mainpoints elaborated and
potential work to be considered in the future. The appendix demonstrates the proofs
which form the theoretical framework of thecdf-intervals and includes parts of thecdf-
intervals solver implementation.
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CHAPTER 2

BASIC CONCEPTS

This chapter recalls fundamental concepts we use to characterize the basic features of
our formal framework. These definitions can be found inStark and Woods(1994);
Williamson and Downs(1990); Gubner(2006); Berleant(1993); Glen, Leemis, and
Drew(2004). Readers familiar with those concepts can skip this chapter.

2.1 From the Probability Theory

2.1.1 Random Variable

A random variableX : Ω → R defines a mapping from an original sample spaceΩ to
the real lineR. In other words, a random variableX is a function whose domain isΩ and
whose range is some subset of the real lineR.

Property 2.1 (discrete random variable).assumes values from a finite domain

A typical example of a discrete random variable can be found in an experiment of
tossing a die. The output can be any of the values, given in a list of finite domain,
{1, 2, 3, 4, 5, 6}.

Property 2.2 (continuous random variable).maps the set of possible values over a
continum.

For instance, a value, that is given from a measurement process of, but not limited to,
temperature, height and rainfall, cannot be precise. Random variables involved in these
processes are continuous, because they can always obtain infinitesimally more precise
values.

Random variables are denoted by capital lettersX,Y,Z and values they map are de-
noted by lower-case lettersx,y,z.

Property 2.3 (probability space(R,B,Px)).
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• R is the real line.

• B is the Borelσ-algebra of all subsets ofR generated by countable unions and
intersections of sets with the form(−∞, x].

• Px is the set function assigning a number Px[A] ≥ 0 to each set A∈ B.

Definition 2.1 (probability distribution function PDF). assigns a probability to each
subset of the possible outcomes of a random variable from a sample space. It is a
function of x which contains all the information necessary to compute P[E] ∀E in the
Borel field of events

Fx(x) = P[X ≤ x] = Px[(−∞, x)] (2.1)

Property 2.4. FX(∞) = 1 FX(−∞) = 0 x1 ≤ x2→ FX(x1) ≤ FX(x2)

Definition 2.2 (the probability mass function p(a)). is the probability distribution
whose sample space is encoded by a discrete random variable X. It is positive for a
countable number of values mapped by X.

p(xi) =


≥ 0 i = 1, 2, . . .
= 0 all other values of x

Example 2.1. A data set X= {4, 6, 8, 10, 12, 14} has 6 distinct observations and 12 dif-
ferent readings. The set of corresponding number of obervations per value (frequencies)
FreqX = {4, 2, 2, 2, 1, 1} shows how many times each distinct value in the set occurs. The
probability mass function fX(10) = 0.167 is computed by dividing the number of times
‘10‘ is observed by the total number of readings ‘12‘.

Definition 2.3 (the probability density function pdf ). describes the relative likelihood
a random variable is to take a value from a continuous sample space.

The probability of the random variable lying within a range of values∈ R is given
by the integral of this variables density over that range, i.e. it is given by the area under
the density function and above the horizontal axis and between the lowest and greatest
values of the range∈ R. f (x) is nonnegative∀x ∈ R, and its integral over the entire space
is equal to one.

P{X ∈ B} =
∫

B
f (x)dx

Property 2.5 (probability distribution function of the uni form random variable).
defined over an interval(a, b]

FX(t) =



0 t ≤ a
t

b−a a ≤ t ≤ b
1 t ≥ b

(2.2)

it is known that the distribution is equally (uniformly) likely to occur at any point lying
within the interval bounding points(a, b]
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Property 2.6 (the probability density function (pdf) of a uniformly distributed ran-
dom variable). defined over an interval[a, b]

fX(x) =
1

b− a
∀x a≤ x ≤ b (2.3)

2.1.2 Cumulative Distribution Function cdf

Thecdf, is thePDF, it defines the accumulated probability density so far. Moreformally,
FX(x) is the probability that a random variableX takes on a value less than or equal tox.
On a discrete level,cdf is the summation of the probability mass function; equivalently,
on the continuous level, it is obtained by integrating theprobability density function
(pdf) up to the item valuex.

Definition 2.4 (cumulative distribution function). Given an item value x, with den-
sity function f (x), and an unknown variable (commonly referred to as the real-valued
random variable) X, thecdf of x FX(x) is the function:

FX(x) =
∑

X≤x

pX(x) discrete random variable

FX(x) =
∫ x

−∞

fX(x)dx continous random variable (2.4)

Thecdf values range between [0,1].

In example2.1, thecdf value when the variableX = 10 isFX(10)= 0.833; this value
is computed by accumulating the probability density fucntion of the data values prior to
10.

Property 2.7. Everycdf is monotonically increasing.

Thecdf associated with a density function is always increasing. All the data popu-
lation resides between two points havingcdf values ‘0‘ and ‘1‘. Thecdf slope increases
and decreases together with the population behavior: faster growingcdf slopes represent
higher proportion of the population residence at lower realvalues (conventionally named
quantiles).

Property 2.8. Thecdf of a uniformly distributed random variable over a given interval
[a,b] is given by Equation2.2

By observation, a uniformly distributedcdf is graphically represented by a line
whose slope is1

b−a between the two bounds of the interval [a, b]. Thecdf of the variable
is 0 for all values belowa and it is 1 for all quantiles greater thanb.
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2.2 Joint Cumulative Distribution Function

Operations can be performed oncdfs but carry a different interpretation than operations
over standard arithmetic calculus since they relate to probabilities. The joint operation
is essential to our solver and is recalled below. Thejoint cdf results from superimposing
densities of two random variables in a relation, each exerting acdf on its own.

Definition 2.5 (joint cdf ). FXY(x, y) Given two random variables X and Y, theirfXY(z)

FXY(x, y) = P(X ≤ x,Y ≤ y) (2.5)

For independent variables P(X ≤ x,Y ≤ y) = FX(x)FY(y).

When two random variables are involved in an addition relation, the convolution op-
eration is an expensive joint pointwise product on their pair of densities and it produces
a density function.

Definition 2.6 (convolution operation).Given z= x+ y, convolution is the probability
density function fXY(z); where both random variables X and Y engaged in the addition
take values up to x and y respectively; the resulting distribution is obtained by accumu-
lating the densities for each value of z= x+ y ∈ (−∞,∞).

AppendixA.3.1 details the derivation of the convolution operation which yields the
probability distribution of the sum of two random variables.

discrete random variable

fXY(z) =
+∞∑

x=−∞

fX(x) fY(z− x) =
+∞∑

y=−∞

fX(z− y) fY(y)

FXY(z) =
z∑

x+y=−∞

fXY(z)

continous random variable

fXY(z) =
∫
+∞

−∞

fX(x) fY(z− x)dx=
∫
+∞

−∞

fX(z− y) fY(x)dy

FXY(z) =
∫ z

−∞

fXY(z)dz

Example 2.2. In this example, we compute the convolution between the random vari-
able illustrated in the data set from example2.1and another data set Y= {12, 15, 18, 21, 24}
with corresponding set of frequencies FreqY = {1, 3, 6, 5, 3}. Eventually convolution is
computationally expensive because it is a pointwise operation. FigureA.2 depicts the
pdf and thecdf addition distribution of the two discrete random variables.
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(a) (b)

(c) (d)

Fig. 2.1: Convolution of two random variable discrete distributions: (a) pdf of
X = {4, 6, 8, 10, 12, 14} with frequencies FreqX = {4, 2, 2, 2, 1, 1} (b) pdf of Y =

{12, 15, 18, 21, 24} with frequencies FreqY = {1, 3, 6, 5, 3} (c) pdf of (X+Y) and (d)cdf
of (X+Y)

2.3 Stochastic dominance

In probability theory the stochastic dominance defines a list of partial ordering on ran-
dom variables. A random variable is dominating another whenit is greater in the order-
ing.

Definition 2.7 (first order stochastic dominance).Given X and Y, Y has a first order
stochastic dominance over X; or in other words X is dominatedby Y when

P(X > x) ≤ P(Y > x) ∀x ∈ (−∞,+∞) (2.6)

In terms ofcdfs: FY(x) ≤ FX(x) ∀x ∈ (−∞,+∞). Example2.2 shows that the
random variableY dominatesX because computed valuesP(X > 12) = 0.08 and
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P(Y > 12)= 0.94. Calculations are given by summing up probability densities for quan-
tiles greater than 12. This computation indicates that the variableY is more likely to
occur at higher quantiles when compared toX. This observation is because of the prob-
abilitic property, which enforces the sum of probabilitiesfor a given random variable
over the domain of realsR must always be equal to 1. First order stochastic dominance
is illustrated in Fig.2.2(a) ∀x ∈ (−∞,+∞); it shows thatY is dominatingX with respect
to the first order stochastic dominance.

In the general casecdfs under comparison might not be comparable under the first
order stochastic dominance. This illustrated in Fig.2.2 (b) and (c) for some quantilex:
FX(x) ≤ FY(x). The second order stochastic dominance handles such casesto defined
an ordering among the random variables.

Definition 2.8 (second order stochastic dominance).If a random variable Y has a
second order stochastic dominance over X. Then X is dominated by Y:

FX 6S FY,

∫ x

−∞

FY(x)dx≤
∫ x

−∞

FX(x)dx ∀x ∈ (−∞,+∞) (2.7)

The integration ofcdf calculates the area under the curve from−∞ to +∞.

Property 2.9. Second stochastic ordering indicates that the mean of X is atleast as high
as that of Y

Fig. 2.2 shows three examples in which we compare two random variables X and
Y: Y has a second order stochastic dominance overX in all cases. We note that the first
order stochastic dominance allows us to compareX andY in the first illustration Fig.
2.2(a) only.

2.4 Probability Box (p-box)

P-boxesare interval-probabilistic bounds adopted in the literature to enclose an impre-
cisely known probability distributionFerson, Kreinovich, Ginzburg, Myers, and Sentz
(2003); Williamson and Downs(1990). A p-box is a convex structure that embraces a
set of probabilities: [F, F] denotes the set of nondecreasing cumulative distributions. F
andF, are respectively the dominated and dominant distributionbounds as depicted in
Fig. 2.3

Definition 2.9 (p-box). [FX, FX] specifies the probability box of a random variable X
whose distribution FX is contained within the p-box bounds:

FX(x) 6S FX(x) 6S FX(x) ∀x ∈ (−∞,+∞) (2.8)

Where6S is the second order stochastic ordering of the probabilities.
Similar to numeric interval arithmetic, interval-probabilistic arithmetic is applied on

random variables. Given two random variablesX and Y, FX ∈ [FX, FX] and FY ∈
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(a) (b)

(c)

Fig. 2.2: Stochastic dominance: random variablesX andY shaping 2 uniform distribu-
tions in (a) whereFY(x) 6S FX(x) ∀x ∈ (−∞,+∞); in (b) and (c)∃x ∈ (−∞,+∞) where
FY(x) � FX(x) but

∫ x

−∞
FY(x)dx≤

∫ x

−∞
FX(x)dx ∀x ∈ (−∞,+∞)

(a) (b)

Fig. 2.3:p-boxstructure: (a) the general case (b) when bounds are uniformly distributed

[FY, FY] are the uncertaincdf of X andY respectively. The joint distribution ofX andY
FXY is unknown yet it is contained within the joint p-box structure defined by the joint
bounds [FXY, FXY].

FXY 6S FXY 6S FXY (2.9)
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CHAPTER 3

L ITERATURE REVIEW

So far research effort towards formalizing and solving large scale problems coupled with
uncertainty by means of constraint systems is quite few. In the realm ofOR, LP tech-
niques are easily adaptable since they exploit the problem from a global perspective. By
means of simple linear inequalities,LPsprovide optimal decisions in real-world situa-
tions on a scale. On the other hand, theCPparadigm proved to have a considerable flexi-
bility in formulating real-world combinatorial problems.It aims at building frameworks
for fixed point semantics which result in narrowing the possible domains of solution.
Within the past decade approaches from theCP andLP have been extended to handle
forms of data uncertainty.

3.1 Uncertainty in the conceptual world

The representation of uncertainty is debatable. To deal with data surrendered by uncer-
tainty many techniques have been proposed in the literature. TheGum(1995) initiated
and introduced the International Organization for Standardization in (1993). Nielsen
(2000) emphasized on seeking the root cause of uncertainty in the problem. Uncertainty
in the literature is commonly due to two main reasons: insufficient information which
yields errors, ill-defined data and ignorance; and fluctuating nature which a result of
future forecasts, a stochastic nature or a dynamically changing environmentFerson and
Ginzburg(1996). This uncertainty can be associated with the set of variables, domains
or constraints in the problem definitionFaltings(2006). Hence, it is important to appro-
priately represent the uncertainty because it affects not only the behavior of the problem
in hand but also its acquired optimal solution. Work has beendone to attach this uncer-
tainty to the problem definition in order to deal with it in theconceptual world. Fig.3.1
depicts a classification for the uncertainty found in the real world and how it is identified
then represented from the problem definition to the conceptual world.

The set of plausibility measures is the most general and common approach that
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subsumes all techniques which represent, deal and reason about data coupled with un-
certainty in the conceptual world. They are classified by twomain categories: proba-
bility and possibility. The set of plausibility measures include: probability measures,
Dempster-Shafer belief functions, possibility measures,ranking functions and relative
likelihood. The main idea is to map the set of possible worlds∗ in an algebra to some
arbitrary partially ordered set [Halpern(2003)]. We briefly define and distinguish the
difference between the concepts in the following:

Fig. 3.1: Classification of uncertainty

Probability is a well-known powerful technique that is best utilized when numeric
uncertainty is in place. A probability measure maps sets in an algebra over the set of
possible worlds to [0,1]. When the probability concept is adopted, two major obstacles
reveal: 1. numerical information is sometimes not fully provided in the problem defini-
tion. 2. Every two events must be probabilistically comparable which is not always the
case.

The sets of probability measures define and concentrate on lower and upper bound
probabilities. This concept is more appropriate when it is hard to represent the data
whereabouts due to ignorance or lack of information.

∗The set of states or elementary outcomes an agent might take into consideration
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Monte Carlo analysis [Hammersley, Handscomb, and Weiss(1965)] is the most fa-
mous probabilistic approach which incorporates statistical evaluation of mathematical
functions using random samples. The method is computation intensive and it requires
the application of a large number of independent random samples, each of which seeks
an output deterministically. Resulting outcomes are then integrated to form a numerical
probabilistic distribution. In this method, the larger thenumber of random samples taken
within a range, the more accurate results are obtained.

The Dempster-Shafer belief functions refer to the theory of evidence which was in-
troduced by Arthur Dempster, then developed by Glenn Shafer. The theory attaches a
degree of likelihood to the set of events. It is a modified version of the set of probability
measures where belief is consider as the lower bound probability. The degree of evi-
dence varies between [0,1], and the sum of the support over the set of possible worlds
must be equal to 1. We classify the Dempster-Shafer belief functions under the umbrella
of the probabilistic world since bounds in the theory of evidence are probabilities.

The Possibility measures are based on the well-knownfuzzylogic Zadeh(1965). The
main idea behind this logic is to attach a possibility measure varying between [0,1]
to each subset of the possible worlds. In the possibilistic world computation is more
structured and well-defined. This fact justifies why research tends to adoptfuzzylogic
especially when dealing with uncertainty in the conceptualworld.

The Ranking functions are utilized to order the set of possible worlds. This approach
attaches a natural number or infinity to each and every possible set. Higher numbers
mean greater degree of surprise associated with the set.

The Relative likelihood is used to order each and every set in the possible worlds
which are assigned a degree of likelihood that ranges between [0, 1]

Despite the fact that it is hard to distinguish between the two data types, research
commonly differentiate between ill-defined information and fluctuating data when deal-
ing with them. Reasoning about data coupled with uncertainty uses different mathe-
matical propagation techniques: convex models are favoredwhen ignorance takes place
while probabilistic models are best adopted when the data has a fluctuating nature. Both
techniques yield an identical range of data values. Interval analysis are characterized to
be more conservative. They can often consider many unnecessary outcomes along with
important ones. Probabilistic approaches add a quantitative information that expresses
the likelihood, yet these approaches impose assumptions onthe distribution shape in or-
der to conceptually deal with it in a mathematical manner. Table 3.1 shows the relative
execution time for all models given that a deterministic instance takesE time units as
described inFerson and Ginzburg(1996).
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Model Execution time
Deterministic point estimate E
Interval analysis 4E
Monte Carlo NE whereN ∈ [100, 50000]
Belief and ranking K2E whereK ∈ [20, 100]

Table 3.1: Relative execution time.E is the execution time taken by a deterministic
model.N is the number of random samples

Solutions to problems coupled with uncertainty follow two main approaches: proac-
tive or reactive. The first approach use all the available knowledge in order to provide
solutions which maintain the uncertainty in a robust manner, i.e. irrespective of the
whereabouts still a solution is validated for the given uncertain data. Solutions for the
reactive approach are flexible, i.e. for any change, solutions might be reused to produce
new ones which rely on previous states. Output solutions areclassified, as shown in Fig.
3.1 into: a single solution or a set of solutions. The set of solutions obtained are fur-
ther classified as: convex, robust, having a satisfaction degree or following a probability
distribution.

3.2 Implementation Techniques

Systems of constraints are usually embedded in declarativeprogramming languages in
order to obtain an intuitive descriptive algebraic structure. They are heavily used in
the problem solving environments where we need to find admissible solutions which
satisfy a large set of constraints. The main idea behind these solving techniques is to
separate logic from control. This separation allows users to easily extend and manipulate
existing programs. This is achieved by defining constraintsand allow the solver to search
for feasible solutions. In a constraint solving framework,variables are constraints over
different domains, then diverse query-answer mechanisms from Artificial Intelligence
(AI) to Operation Research(OR) are used to find solutions respecting a large number
of constraints. Two main competing line of research adopting those mechanisms have
emerged, they are classified as:Constraint Programming(CP) andLinear Programming
(LP). Techniques for hybridization incorporating advantagesexisting in both paradigms
have been recently evolved [Hooker(2006)].

3.2.1 Constraint Programming line of research

TheCPparadigm is a powerful technique that intuitively expresses and formulates deci-
sion problems. They aim at building frameworks which resultin narrowing domains of
variables based on a predefined set of constraints using fixedpoint semantic techniques.
A CSPconsists of a set of decision variables over some domain of values and con-
nected by a set of relations (constraints). A constraint solver, given this representation,
seeks an assignment to decision variables that satisfy the set of constraints. By means
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of predefined inference rule reduction, a constraint solverminimizes the search space
to be visited, then it uses backtracking, branch and bound, or local search mechanisms
to acquire a solution within the reduced space. This processis NP-Complete. Global
constraints are problem specific constraints which might beadded to the solver in order
to allow for a more efficient and effective search mechanism.Extensions to theCSP
framework include: finding optimal solutions, associatingpreference with constraints
and reasoning within a distributed environment.

Definition 3.1 (a classicalCSP). is a tripleP = 〈X,D,C〉 where X is the set of n prob-
lem variables X= {x1, x2, . . . , xn}, D is the set of n variable domains D= {D1,D2, . . . ,Dn},
and C is the set of t constraints C= {C1,C2, . . . ,Ct}.

Definition 3.2 (a constraint).C j = 〈RS j ,S j〉 is defined by the relation RS j on the con-
straint scope Si = scope(Ci) which expresses the Cartesian product of the variable
domains in the relation Ri.

Definition 3.3 (a solution to theCSPP). is an n-tuple assignmentA = {a1, a2, . . . , an}

where ai ∈ Di and which satisfies Cj defined over a relation RS j .

A given task is to search for one solution or all set ofCSPsolutionssol(P). This set
is empty when theCSPis unsatisfiable.CSPhave been tackled by diverse techniques
and they became a very interesting topic in many fields of computer science and beyond.

Example 3.1 (Course scheduling).We illustrate the different constraint programing
approaches using the course scheduling example described in Faltings(2006). Consider
that we need to schedule a short course, with lectures, practical sessions and tutorials,
over three days. This schedule can be modeled in a deterministic CSPusing9 different
variables labeled as xi j , where i symbolizes the day number and j signifies the session
type (1 = lecture,2 = practical session and3 = tutorial). The domain of each variable
varies between{0, 1, 2, 3, 4, 5} indicating the number of sessions assigned on a given
day. The set of constraints are defined as follows:

∀i
3∑

j=1

xi j ≥ 2 (3.1)

∀ j
3∑

i=1

xi j ∈ 1, 2, . . . , 5 (3.2)

3∑

i=1

3∑

j=1

xi j ∈ 10, 11, 12 (3.3)

The first constraint indicates that the number of sessions per day cannot be less than
2; the second constraint states that the schedule must contain between1 to 5 sessions
per type; and the third constraint ensures that the total number of sessions over the
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three days should be between10 to 12. Fig. 3.2 depicts the modeling process of the
course scheduling problem and one solution instance given from the search space which
satisfies all defined constraints in the deterministic case.

Type
HHHHHHi

j
L(1) P(2) T(3)

D
a
ys 1 x11 x12 x13

2 x21 x22 x23

3 x31 x32 x33

(a)

Type
HHHHHHi

j
L(1) P(2) T(3)

D
a
ys 1 1 0 1

2 1 1 0
3 0 2 4

(b)

Fig. 3.2: Course scheduling problem: (a)9 variables model, (b) one solution instance

3.2.2 Linear Programming line of research

LP techniques are easily adaptable to provide optimal decisions in real-world situations
on a scale. UnlikeCP which explores the problem partially through variable domain
propagation techniques,LP exploits the problem from a global perspective using simple
linear inequalities which geometrically correspond to a convex polyhedron† . An LP
problem identifies a set of decision variables, a set of linear constraints and a linear
objective function.

Definition 3.4. a classicalLP problem is described as:

mincx // objective function (linear)

subject to Ax≥ b // resource constraints

x ≥ 0, x ∈ Rn

Where A is an m× n matrix.

Once anLP problem is formalized we can infer its dual. The duality theory is a
strong tool that is well-suited for sensitivity analysis and variable domain filtering.

Definition 3.5. the dual of an LP is described as:

maxλb // objective function (linear)

subject to λA ≤ c // resource constraints

λ ≥ 0, λ ∈ Rm

Property 3.1. an LP problem is characterized to be:

†The polyhedron is the convex region enclosing the set of feasible solutions and that has vertices each
of which is a basic feasible solution
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P1. Unbounded when none of the feasible solutions is optimal

P2. Infeasible when no feasible solution exists

P3. Have an optimal solution.

Both the primal problem and its dual yield the same optimal solution when they are
bounded and feasible (‘strong duality‘). Generally the optimal solution of anLP problem
is obtained using the Simplex method which iteratively builds a sequence of adjacent
basic feasible solutions. This Simplex method is based on the geometric structure of the
problem.

Definition 3.6. anInteger Programming (IP)problem is anLP problem with integrality
constraint

Definition 3.7. a Mixed Integer Programming (MIP)problem is anLP problem where
some variables coupled with integrality constraints

Definition 3.8. the convex hull tightest possible convex set containing feasible integral
solutions

The course scheduling problem in example3.1can be represented byLP. Yet since
the problem consists of 9 variables, we couldn’t represent it graphically. To easily vi-
sualize the geometrical feature of anLP problem, we refer to a production scheduling
problem that consists of two variables and two resources andwhich is studied thoroughly
in [Thipwiwatpotjana(2010)].

Example 3.2. Production scheduling problem A producer depends on two main re-
sources x1 and x2 (supplies of two grades of mineral oil) in the manufacturingof two
products A and B and wants to minimize the production cost. The problem informa-
tion and set of constraints are listed in Table3.2 and theLP model deduced out of this
information is described as follows:

minz= 2x1 + 3x2

subject to 2x1 + 6.1667x2 ≥ 174.83,

3x1 + 3x2 ≥ 161.75,

x1 + x2 ≤ 100,

x1, x2 ≥ 0.

Where the first constraint describes the situation where thesum of supplies which
form the product A should meet its demands. Similarly, the second constraint ensures
product B demands satisfaction. The constraint x1 + x2 ≤ 100 sets the limit on the
supply. Fig.3.3 illustrates the derivation of the optimal solution by drawing the linear
inequalities and obtaining their intersections to search for the minimum possible cost.
Using thisLP approach we obtain one optimal solution(x∗1, x

∗
2) = (37.84, 16.08) that
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Mineral Oil Products Costs Limit on the processed
(fl.oz.) Type A Type B (£/fl.oz.) amount of mineral oil

(oz./fl.oz.) (oz./fl.oz.) (fl.oz.))
x1 2 3 2 1
x2 6.1667 3 3 1

≥ ≥ = ≤

Demands
174.83 161.75 z 100

Table 3.2: Production scheduling problem definition

achieves a minimum cost z∗ = $123.92. This optimal solution is derived from the set
of feasible solutions bounded by the polyhedron depicted inFig. 3.3. Note that this
solution was obtained using the graphical property of linear inequalities which tackle
the problem from a global point of view.

Fig. 3.3: Polyhedron (feasible region) derived for the production scheduling problem in
example3.2

3.3 Modeling and reasoning with uncertainty

We describe existing uncertainty in the conceptual world. We review in the context of
uncertainty how different approaches are adopted in the implementation of the models
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3.3.1 Probabilistic/Stochastic paradigm

General Description

Probabilistic models are the most generalized statisticalframeworks that articulate prob-
lems questing decision analysis. They aim at numerically representing the uncertainty
brought into the problem under consideration. Uncertaintyis described in a probabilis-
tic format assuming a probability value for each scenario. Approaches for stochastic
programming search for optimality of one given scenario provided in the problem. By
means of statistics and probability distribution properties: expectation, variance and cor-
relation, a stochastic model iteratively generates potential outputs for the set of over-
whelming input randomly distributed data; this iterative process produces probable so-
lutions that follow random distributions and accordingly the realization of the projected
maximum likelihood outcome is explored.

Input data

Input data, in the problem definition, is often observed in order to accurately incorporate
the distribution of the random process, or is based on historical data to serve for a bet-
ter realization of future forecasts. Statistical tools seek to draw the best fit probability
distribution of the problem under consideration.

CP implementations

Probabilistic CSPs define the uncertainty over the presence of constraints. In their
model, each constraint is associated with an independent probability value that evalu-
ates its degree of satisfaction. Final decision produces anassignment that maximizes
the probability of consistency which satisfies the set of thegiven constraints. Implemen-
tation of the ProbabilisticCSPscan be found in the well-known soft constraint frame-
works: ValuedCSPSchiex, Fargier, and Verfaillie(1995) and semiringsBistarelli et al.
(1999).

Example 3.3. Consider three additional constraints in the course scheduling CSP, de-
tailed in example3.1, each is associated with a probability value. New constraints are
defined as a probabilisticCSPas follows:

3∑

i=1

xi2 ≥

3∑

i=1

xi1, (P = 0.6) (3.4)

x32 > x12, (P = 0.5) (3.5)
3∑

i=1

xi2 ≤ 2, (P = 0.2) (3.6)

Where the number of practical sessions must be greater than the number of lectures;
on day3 the number of practical session is greater than that of day1; and the total
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number of practical sessions is less than2. Each constraint is associated with a prob-
ability value: 0.6, 0.5 and 0.2 respectively. The final decision is an assignment to all
variables with a maximum probability. Fig.3.4shows an assignment with this maximum
probability.

Type
HHHHHHi

j
L(1) P(2) T(3)

D
a
ys

1 1 0 2
2 1 1 1
3 0 2 2

Fig. 3.4: Course scheduling problem: one solution instancein the probabilisticCSP
representation

Mixed CSPs Fargier et al.(1996) describe problems with unknown set of constraints.
Variables are divided into controllable and uncontrollable parameters. The second type
of parameters might be associated with a probability distribution. A final decision is a
reliable solution that satisfies all probable occurrences of parameters with the maximum
possible probability value.

Example 3.4. Referring to example3.1 where we suppose that tutorials on day3 and
lectures on day2 will be determined later upon reveal of the tutor schedule. Fig. 3.5
shows that both variables x13 and x21 are uncontrollable and are given possible do-
mains in the initial state{0, 1} and {0, 1, 2} respectively. Assume that the probrability
distribution over uncontrollable variables is predefined over each value in the domain
as {0 : 0.3, 1 : 0.7} for x13 and {0 : 0.5, 1 : 0.4, 2 : 0.1} for x21. Accordingly, each so-
lution in the search space is associated with6 possible solutions for both variables x13

and x21 in the MixedCSP, and each combination resulting from the Cartesian product
of the uncontrollable variable domains might be associatedwith a probability value (the
intersection/product of probability values involved). The solution suggested in Fig.3.5
is associated with4 possible domain combinations since{0, 0},{1, 2} should be omitted
from the solution space in order to ensure that the last constraint (indicating that the
total should be between{10, 11, 12}) in the problem is satisfied. Obtained solution has a
maximal probability value equal to93%

Dynamic CSPs deal with problems that change over time in a sequential manner.
Those changes can affect: variables, domains, constraintsin terms of scope and defi-
nition. Each problem in the sequence is defined from previousstates. DynamicCSPs
in Mittal and Falkenhainer(1990) focus on a subset of variables and constraints that
are subject to change (activity constraints). Solving Dynamic CSPsfollow three main
strategies: minimize the need for change by seeking a robustsolution; minimize the cost
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Type
HHHHHHi

j
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D
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Fig. 3.5: Course scheduling problem: one solution instancein the MixedCSPrepresen-
tation with a maximum probability0.93

of change by acquiring a stable solution; and minimize the reaction time by questing
quick solutions. Solving strategies are concerned with three main types of problem:

1. Unknown future: this type of problem is tackled using the local repair methods
which apply minor modifications on assignments from previous problem states
until an acceptable solution is obtained. The min-conflict heuristic detailed in
Minton, Johnston, Philips, and Laird(1992) minimizes the number of unsatisfied
constraints using problem dependent heuristics. The LocalChanges algorithm in
Verfaillie and Schiex(1994) resolve the conflict by partitioning the problem vari-
ables into three sets based on their assignments: fixed, subject to be modified or
unassigned variables. The algorithm tempts to apply modifications on the assign-
ments of variables in the second set until it reaches an admissible solution.Petcu
and Faltings(2005) retain solution stability by adding new special constraints to
be satisfied.El Sakkout and Wallace(2000) define linear minimal perturbation
functions over a solution in a prior state, then they are defined as objective in the
new problem states.Barták, Müller, and Rudová(2004) extend these functions to
solve over-constrained problems.

2. Unknown type of change: solutions to this type of problemsfollow the oracle
approachVan Hentenryck and Le Provost(1991). In this approach the structure
of prior states in the sequence are retained and solutions tonew problems main-
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tain the same path (fruitless sub-trees are pruned from the search space).Jussien
(2003) adds explanations (problem-specific constraints) to the problem structure
which support the change during the search.

3. Uncertain information about the change in the future: using the recurrentCSP
approachWallace and Freuder(1998) to record the source and frequency of the
change. The aim is to find a robust solution that maintains allpossible changes.
This type of solution is characterized to be proactive irrespective of the change.
Note that Stochastic CSPsWalsh(2000) and Branching CSPsFowler and Brown
(2003) are different forms of the recurrentCSPapproach

Other forms of DynamicCSPcan be found in OpenCSPsFaltings and Macho-Gonzalez
(2005). They are generally found in a distributed environment where the set of variables
and their constraints are initially defined but domain values and tuple relations are re-
vealed over time. Open CSPs follow an interactive approachLamma et al.(1999) where
changes result in the extension of domains and tuple relations. They are acquired online
by querying the network resources for available information. The querying mechanism
in this type of problems is usually the most expensive operation.

StochasticCSPs exist in two forms: policy-based inWalsh(2000) and scenario-based
Tarim et al.(2006). The policy-based approach, like MixedCSPs, classify variables into
controllable (decision variables are assigned the OR nodes) and uncontrollable (stochas-
tic variables are assigned the AND nodes). It is a multi-stage probabilisticCSPwherein
a probability distribution is associated with the domain ofeach state variable. Requests
alternate states and decision variables. Similar to Probabilistic CSPs a solution is an
assignment of decision variables that maximizes the probability of consistency. The
scenario-based approach exhaustively builds all possiblesets of scenarios based on the
input probability distribution. Each path in the tree is associated with a probability value
and each scenario is considered as a classicalCSPon its own. The scenario-based ap-
proach reacts to values suggested by stochastic variables in different manners.

Branching CSPs Fowler and Brown(2003) follow the Markov decision process MDP
in Puterman(2009) to model sequential decision problems with a lack of knowledge
about input variables and their associated set of constraints. Variables are dealt with as
soon as they are revealed by time, in a sequential manner. Absent variables are associated
with a probability value. A querying mechanism is exerted, at each step, in which a new
added variable is assigned a probability value that maximizes the global expected utility.

Example 3.5. Consider a modified version of the course scheduling problemin example
3.1. For simplicity, a list of constraints requesting the allocation of one-hour time slot
of lectures and practical sessions in one room are revealed in sequence. (A) one hour
lecture followed immediately by a one hour practical; (B) two practical hours; (C) one

28



3.3. Modeling and reasoning with uncertainty

hour lecture followed later by a one hour practical; (D) one hour lecture. As soon as
they are issued each is given a time slot (revenue) or rejected (no revenue). The aim is
to maximize the overall expected revenue. Fig.3.6 depicts the decision tree and shows
how to derive a solution instance for the BranchingCSPwhich has a maximum overall
expected revenue equal to11.88.

A← ⊥
0.6 0.4

B← xP1 C← xL2

0.2 0.8 0.3 0.7
∅ C← xL2 D← xL1 ∅

������ PPPPPP

���� HHHH����HHHH

Periods
1 2 3

L ∅ ∅ ∅

P B1 B2 ∅

Periods
1 2 3
∅ C1 ∅

B1 B2 C2

Periods
1 2 3
D C1 ∅

∅ ∅ C2

Periods
1 2 3
∅ C1 ∅

∅ ∅ C2

Pr = 0.12, R= 6 Pr = 0.48, R= 15 Pr = 0.12, R= 12 Pr = 0.28, R= 9

Fig. 3.6: Course scheduling problem: one solution instancein the BranchingCSPrep-
resentation with a maximum overall expected revenue11.88

LP implementations

Sampling Techniques Sampling techniques approximate a large number of scenarios
to be solved in a deterministic manner. Generally, the modelis given as:

minx{c
T x : Ax ≤ b}, and,Pr{(A, b) = (As, bs)} = ps,∀s= 1, . . . ,S (3.7)

One of the two methods is adopted: 1. estimating coefficientsand right-hand sides
within a decomposition scheme; 2. generating sample problems which are solved using
a deterministic algorithm. The quality of the solution set that differentiates between
various approaches is how close the objective value is to thetrue optimal objective of
the problem.

Sampling techniques in the literature can be found in: Crude-Monte-Carlo, Monte-
Carlo-Pre-Sampling, Importance SamplingInfanger (1999). The implementation of
these approaches can be found in the DECIS/GAMS interface that uses the CPLEX
solver callable libraryOptimization (1989). It is shown that both the Crude-Monte-
Carlo and the Importance Sampling approaches extract quantities of the random param-
eters from their distributions without/with variance reduction techniques respectively.
The Monte Carlo pre-sampling method defines the parameters over the sample of the
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random distributions. DECIS’s implementation computes anapproximation of the ob-
jective value along with a confidence interval. It was shown in Infanger (1992) that
sample size plays a major role in the quality of the solution set obtained. Higher values
of the sample size yield solution sets which are closer to theoptimal value. However,
increasing the sample size is computationally exhaustive.

Other sampling techniques which seek the decrease of the number ofLP problems
solved are: the Sample Average Approximation and the Stochastic Decomposition meth-
ods. The former is based on the well-known Monte-Carlo simulation method. The
problem is iteratively solved deterministically on estimations of a random sample. The
method uses decomposition and branch-and-cut to compute anapproximation of the ob-
jective functionVerweij, Ahmed, Kleywegt, Nemhauser, and Shapiro(2003). On the
other hand, the Stochastic Decomposition is a two-stage stochastic programming algo-
rithm that uses random observations of random variables. These observations are used
in a deterministic Benders’ decomposition algorithm as a sequence of incumbent solu-
tions which converge to a unique optimal. The stochastic decomposition as pointed out
in Sen, Zhou, and Huang(2011) is known to have a faster computational speed when
compared to other sampling techniques.

Mean risk model [Markowitz (1952)] characterizes the uncertainty by two different
features: the mean, which describes the expected outcome and the risk, which evaluates
the dispersion from the mean values. In this model, a trade-off analysis between the
mean and the risk is achieved using a multi-objective optimization technique that maxi-
mizes the mean outcome while minimizing the risk factor. Theobjective function of the
mean-risk model is rewritten as:

maxcx− λx′Vx, x ≥ 0

WhereV is the variance coefficient matrix which contains the deviation from the mean
values of the variable coefficients.

Chance-constraint model Charnes, Cooper, and Symonds(1958) andPrekopa(1973)
searches for feasible solutions which are reliable in the given uncertain environment.
Constraints are associated with a probability degree of satisfaction which is maximized
in the reasoning process. A chance-constraintLP model is reformulated as:

maxcx : s.t.P(Ax≥ b) ≥ α, x ≥ 0

Whereα ∈ [0, 1]. We used this model in Chapter10, as a linear programming interpreta-
tion of the inventory control example, in order to exert a performance analysis of models
having different uncertainty interpretations.

Recourse/multi-stage model [Dantzig (1955)] partitions the decision variables on
two-stages: the first is solvable using a deterministicLP. The second stage is a subse-
quent of the first-stage decision and the actual realizationof the uncertainty parameters.
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It is a corrective step which filters infeasible values issued from specific realization of
uncertainty that is based on a random distribution. Extensions to the model exist in
studying the convexity of the recourse function when the defined random distribution is
discrete [Wets (1974)] and developing scenario-based policies through decomposition
techniques for continuous uncertain parameters [Birge and Louveaux(1988)]. The two-
stage is further extended to a multi-stage formulation which builds a scenario-based tree
which uses the uncertainty in the filtration process [Rockafellar and Wets(1991) and
Sen and Higle(1999)].

Example 3.6. Refer back to the production scheduling problem in example3.2. The
manufacturer should decide and plan ahead the production schedule and needed re-
sources to meet the uncertain customer demands before they are realized. This plan
needs to maintain the minimal possible production cost. In case when demands are not
satisfied a shortage penalty is added. Given that

â11 = {1 : 1/4, 2 : 1/2, 3 : 1/4}, â12 = {5 : 1/6, 6 : 1/2, 7 : 1/3}

b̂1 = {149 : 5/12, 180 : 1/3, 211 : 1/4}, b̂2 = {138 : 1/4, 162 : 1/2, 185 : 1/4}

where{v : p} indicates the value and its probability of occurrence, the two-stage re-
course model is formulated as follows:

min 2x1 + 3x2 + EζQ(x1, x2, ζ)

s.t.x1 + x2 ≤ 100, x1, x2 ≥ 0. (3.8)

ζ is the random vector(â11, â12, . . . , âmn, b̂1, b̂2, . . . , b̂m), definingâi j and b̂i as random
variables with m number of constraints and N possible scenarios each of which has a
different probability of occurrence. Hence for each j= 1, 2, . . . , 81, we have:

Q(x1, x2, ζ
j) := 7 max{b j

1 − a j
11x1 − a j

12x2, 0} + 12 max{b j
2 − 3x1 − 3x2, 0}

= max 7y1 + 12y2

s.t.a j
11x1 + a j

12x2 + y1(ζ j) ≥ b j
1, 3x1 + 3x2 + y2(ζ j) ≥ b j

2, y1, y2 ≥ 0. (3.9)

Where7 is the penalty cost when there is a shortage in the productionof type A. Similarly,
12 is the shortage penalty cost of type B. This formulation yields an optimal solution of
x∗1 = 31.80 and x∗2 = 29.87 with a first-stage minimum cost153.21$and a sum of costs
155.38$. This optimal solution is violated with minimum probability of 1

4
1
6

1
4 =

1
96 by the

constraint x1 + 5x2 ≥ 211

The Minimax Regret models Eldar, Ben-Tal, and Nemirovski(2004) seek the miti-
gation of the given uncertainty rather than anticipating it. This is done by defining the
regret function which is the solution deviation from the true objective value of the prob-
lem. The model constructsk set of deterministic scenarios. The aim is to minimize the
maximum regret function (‘worst regret function‘) that is due to uncertainty and which
is identified as:R(x) = max{cT x− z(ζk)}, k = 1, 2, . . . ,N
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Example 3.7. Consider the production planning example with uncertain demands for
type A and type B are given by b1 ∈ {149, 180, 211} and b2 ∈ {138, 162, 185} respec-
tively and their production schedule is given by a11 ∈ {1, 2, 3} and a12 ∈ {5, 6, 7}.
The worst-regret function which needs to be minimized is R(x1, x2) = max{2x1 + 3x2 −

z(a11, a12, b1, b2)}

z(ζk) = z(a11, a12, b1, b2) := min 2x1 + 3x2

s.t. a11x1 + a12x2 ≥ b1, 3x1 + 3x2 ≥ b2,

x1 + x2 ≤ 100, x1, x2 ≥ 0.

The minimum value of z in this case is97.74, found when a11 = 3, a12 = 6, b1 = 149
and b2 = 138. Consequently the model can be rewritten as:

minR(x1, x2) = 2x1 + 3x2 − 94.74

s.t. x1 + 5x2 ≥ 211, 3x1 + 3x2 ≥ 185,

x1 + x2 ≤ 100, x1, x2 ≥ 0.

Obtained maximum regret from this problem is R∗ = 65.91 with x∗1 = 24.33 and x∗2 =
37.33. This output solution signifies that not knowing the values given in the uncertain
sets (a11, a12, b1, and b2) the worst regret based on the choices of the optimal x1 and x2
is 65.91$.

Benefits

• Flexible enough to describe the uncertainty nature of real-world problems

• Employed when we involve large data input sets

• Analytical calculations using differential equations are ‘the most expressive be-
havior representation paradigm‘

• Stochastic models are best candidates when forecasting future expectations are
required.

Drawbacks

• Not flexible enough to represent problems with ill-defined data; in this class of
problems the probability distribution of random input variables is unknown.

• Representation of large scale systems of differential equations is infeasible

• Exerting point-by-point convolution for probability distributions is an exhaustive
computation

• Stochastic models are scenario-based hence the searchingprocess depends on the
nature of the current situation or the scenario being explored
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• It is based on exhaustive search techniques thus does not guarantee optimal solu-
tion exploration in large scale problems.

• Due to its exhaustive search nature, research that seeks integrating stochastic
paradigm into other methods is quite few

Output solutions

Analytical calculations are involved in the propagation process. Such calculations in-
clude thorough point convolution of the provided input random distributions. They typi-
cally rely on differential and integral equations ‘convolution product‘ to derive the output
random distribution.

• It is a typical representation of the random element introduced in the problem

• In order to explore the tree-based scenarios, generic search techniques are em-
ployed: tabu search and genetic algorithms

• Iteratively produces randomly distributed outcomes fromrandom input data

3.3.2 Possibilistic paradigm

General Description

The aim of introducingfuzzymodels is to approximate the probability distribution by
a set of intervals (called alpha-cuts). This is to ensure simplified computation when
Zadeh’s extension possibilistic theorem, inZadeh(1965), is applied on the produced set
for reasoning about the data. Examples of formalizing the possibilistic distribution to
approximate real data uncertainty imposed by the measurement process can be found
in Mauris, Berrah, Foulloy, and Haurat(2000); Mauris, Lasserre, and Foulloy(2001);
Van De Ree and Jager(1993); Urbanski and Wsowski(2003); Ferrero and Salicone
(2004); Mauris (2007). Fuzzymodels are best used when the data is ill-defined; i.e.
its probability distribution is unknown. They are conservative by adequately describe
uncertainty in measurement resulting from ‘systematic error‘ [Gum(1995)].

Input data

The possibilistic distribution is built based on a computedstandard deviation: assuming,
in the general case, a unimodal and symmetric distribution if the probability distribution
is not known:

• Input data to the model that results from the measurement process is often uncer-
tain or erroneous.

• Data is symbolized by two main intervals (alpha-cuts): worst (kernel) and best
(support) bound approximation of the probability distribution. This is provided by
assuming a standard deviation for the distribution being observed.
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• Formalizing the possibilistic distribution presumes andfollows a generic probabil-
ity distribution: Guassian, Triangular, Rectangular and U-Shaped [Gum(1995)].

CP implementations

Fuzzy CSPs Dubois, Fargier, and Prade(1996) Attaching fuzziness toCPformalism
has been thoroughly researched.CP models based on the possibilistic theory aim at
providing a degree of ‘expressiveness‘ to traditionalCPapproaches in order to look for
robust solution: a solution which successfully satisfies asmany realization of data as
possible. However, the degree of imprecision is implemented on constraint tuples: in a
discrete manner. There is a lack of investigation for continuous input data and subse-
quent solution space regarding this approach.CP implementations following thefuzzy
membership approach are used to describe soft constraintsMeseguer, Rossi, and Schiex
(2006) and prioritized constraintsSchiex(1992). The former attaches a level of sat-
isfaction preference to constraints. Solutions to the problem are those with maximal
constraint satisfiability. The priority constraint model sets a priority degree which quan-
tifies the satisfaction degree of the constraint. The aim is to satisfy the most important
constraints.FuzzyCSPs can be intuitively integrated into soft constrained frameworks:
ValuedCSPSchiex et al.(1995) and semiringsBistarelli et al.(1999). During the search
process preferences and priorities are used to support the search heuristics which focus
on the most promising instances.

Example 3.8. Consider thefuzzy version of the course scheduling problem in example
3.1, where each constraint is associated with a degree of preference. For instance, Pro-
fessor A is assigned the lectures of the course and she prefers to give four lectures. Dr. B
is assigned the practical sessions and he prefers to give three. Finally, Dr. C is assigned
the tutorials and prefers to give three of them. Table3.3 describes the course session
assignments along with their preference degree. The rest ofthe predefined constraints
in the problem are classified as hard constraints, hence theyshould be completely satis-
fied, i.e. their satisfaction degree provided in thefuzzy CSPmodel is assigned a value
of 1. Fig. 3.7 illustrates two solutions to the problem with different satisfaction degree.
Note thatfuzzy operations select the minimal degree of satisfaction when constraints
in a fuzzy relation are in conjunction. Accordingly the first solutionyields afuzzy de-
gree of satisfaction equal to0.8. During the search the best solution has the maximal
satisfaction degree.

LP implementations

Fuzzy LPs [Rommelfanger(1996)] definefuzzycoefficients on constraints and/or ob-
jective function. In order to reduce the cost of gathering the exact information, they
solve the problem iteratively. At the beginning a ‘compromise solution‘ is perceived
then it is further improved in subsequent steps. They work onfinding a ‘compromise
solution‘ which iteratively realizes better solutions to the fuzzyproblem. Variations of
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Sums of Tuples Assigned
1 2 3 4 5 Otherwise

lectures
∑3

i=1 xi1 0.4 0.6 0.8 1 0.8 0
practicals

∑3
i=1 xi2 0.6 0.8 1 0.8 0.7 0

tutorials
∑3

i=1 xi3 0.6 0.8 1 0.8 0.7 0

Table 3.3: Production scheduling problem:fuzzy constraints and their satisfaction de-
grees

Constraint
Assignment Sat

Sum Degree
Sessions per Day 2, 4, 4 1.0

Total Sessions 10 1.0
Lectures 3 0.8

Practicals 3 1.0
Tutorials 4 0.8
Overall Satisfaction Degree:0.8

Type
HHHHHHi

j
L(1) P(2) T(3)

D
a
ys

1 1 0 1
2 2 1 1
3 1 2 1

Constraint
Assignment Sat

Sum Degree
Sessions per Day 2, 4, 4 1.0

Total Sessions 10 1.0
Lectures 4 1.0

Practicals 3 1.0
Tutorials 3 1.0
Overall Satisfaction Degree:1.0

Type
HHHHHHi

j
L(1) P(2) T(3)

D
a
ys

1 1 0 1
2 1 1 0
3 0 2 4

Fig. 3.7: Course scheduling problem: two solution instances with different satisfaction
degree

the problem representation can define a combination of crispand soft constraints. The
fuzzyLP formulation depends on an ‘extended addition‘ that is basedon the ‘Yager’s
parametrized t-norm‘ and thefuzzyLP can be in the form:

C̃1x1 ⊕ C̃2x2 · · · ⊕ C̃nxn→ Mãx

s.t.Ãi1x1 ⊕ Ãi2x2 · · · ⊕ Ãinxn≤̃B̃i , i = 1, . . . ,m,

x1, x2, . . . , xn ≥ 0.

WhereÃi j , B̃i, C̃ j for i = 1, . . . ,m and j = 1, . . . , n are defined asfuzzysets inR. The⊕
is afuzzy‘extended addition‘ and̃≤ is thefuzzyinequality.

Example 3.9. Recall the production scheduling problem in example3.2, constraint co-
efficients in thefuzzy version of the problem are defined byfuzzy membership function.
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For instance:

â11 = {1 : 1/3, 2 : 1, 3 : 1/2}, â12 = {5 : 1/3, 6 : 3/4, 7 : 1}

b̂1 = {149 : 1/2, 180 : 1, 211 : 2/3}, b̂2 = {138 : 1/3, 162 : 3/4, 185 : 1}

where{v : p} represents the value and its possibility. The problem becomes:

min2x1 + 3x2 + EA(sT ĝT)

s.t.x1 + x2 ≤ 100, x1, x2 ≥ 0.

To simplify let Uα = ST(max{b̂− Â, 0}), M(Uα) is the average value of the uncertainty
at a satisfaction levelα, and EA(û) is the mean of M(Uα) for all α-levels. Let sT =
[7, 12]T , ĝT

= [ĝ1, ĝ2]T , ĝ1 = max{b̂1 − â11x1 − â12x2, 0} and ĝ2 = max{b̂2 − 3x1 −

3x2, 0}. The problem definesα-levels over the different membership functions defined on
variable coefficients. Solution to the problem is the set of all possible combinations of
the piecewiseα-levels, each is delt with separately as a simple crispLP program. The
α-level sets for̂b1 − â11x1 − â12x2:

α ∈ [0, 1/3] ⇒ M(U1
α) = 180− 2x1 − 6x2

α ∈ (1/3, 1/2] ⇒ M(U1
α) = 180− 2.5x1 − 6.5x2

α ∈ (1/2, 2/3] ⇒ M(U1
α) = 195.5− 2x1 − 6.5x2

α ∈ (2/3, 3/4] ⇒ M(U1
α) = 180− 2x1 − 6.5x2

α ∈ (3/4, 1] ⇒ M(U1
α) = 180− 2x1 − 7x2

and forb̂2 − 3x1 − 3x2

α ∈ [0, 1/3] ⇒ M(U2
α) = 161.67− 3x1 − 3x2

α ∈ (1/3, 3/4] ⇒ M(U2
α) = 173.5− 3x1 − 3x2

α ∈ (3/4, 1] ⇒ M(U2
α) = 185− 3x1 − 3x2
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The objective function can be rewritten as :

2x1 + 3x2 + 7
∫ 1

3

0
max{180− 2x1 − 6x2, 0}dα

+7
∫ 1

2

1
3

max{180− 2.5x1 − 6.5x2, 0}dα

+7
∫ 2

3

1
2

max{195.5− 2x1 − 6.5x2, 0}dα

+7
∫ 3

4

2
3

max{180− 2x1 − 6.5x2, 0}dα

+7
∫ 1

3
4

max{180− 2x1 − 7x2, 0}dα

+12
∫ 1

3

0
max{161.67− 3x1 − 3x2, 0}dα

+12
∫ 3

4

1
3

max{173.5− 3x1 − 3x2, 0}dα

+12
∫ 1

3
4

max{185− 3x1 − 3x2, 0}dα

The system yields a unique optimal solution with an objective value R∗ = $139.37,
x∗1 = 45.63 and x∗2 = 16.04

Output solutions

The authors in [Mauris, Berrah, et al.(2000); Mauris et al.(2001); Van De Ree and
Jager(1993); Urbanski and Wsowski(2003); Ferrero and Salicone(2004)] provided
different propagation techniques for typical possibilistic distributions usingfuzzysets.
Equivalent to the joint distribution function in probabilistic domains, the key propagation
technique infuzzymodels is the T-norm operations. It is an extension of interval-based
min/max operations that is performed on each alpha-cut interval in thefuzzypossibilistic
approximated distribution. Result on the discrete point level is the union of all operations
exerted per granule.

Benefits

• Operations on data using the possibilistic theory are simpler than other available
techniques which use the probabilistic reasoning.

• Exert the ‘Dominance possibility‘ effect; i.e. it is a pessimistic approach provided
that output result is an upper bound of the solution set.
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• Unlike interval-based approach, the possibilistic distribution provides worst and
best case scenarios represented respectively by the support and the kernel of the
possible solution set

Drawbacks

• In the case of a full knowledge of the input data probabilitydistribution, possibility
technique is less adequate in expressing the problem under consideration when it
is compared to probabilistic approaches

• Propagation is based on interval-based framework (worst case scenario), it is typ-
ical to interval-based approaches in its computation and reasoning, and it doesn’t
have an effect on the uncertainty degree. The solution spaceis large and further
exhaustive search needs to take place.

• The lack of complete knowledge representation yields inaccurate realization of the
solution space

3.3.3 Reliable/Robust paradigm

General Description

Data uncertainty in reliable paradigms is bracketed by convex structures: interval or el-
lipsoidal. This structure in turn assigns safe-guards for erroneous and deviated measure-
ments to guarantee that all data is enclosed in the model. However, it does not provide
any knowledge about the population distribution of the input measured data. Reasoning
using convex modeling approaches is constructed on the extreme points of the structure,
unlike exhaustive point computation found and exerted in other paradigms.

Input data

Ideal model when input data uncertainty comes from ill-defined or erroneous measure-
ment. Data is represented by a convex set which embraces all provided information
within its end-points.

CP implementations

Numerical CSP [Benhamou and Older(1997)] uncertain data is embraced within in-
tervals. The framework provides an inference mechanism forinterval constraints de-
fined over linear and non-linear systems. It is mainly introduced to solve problems of
real-intervals by means of interval-based techniques. In this model the propagation is
exerted only on the bounds enveloping real interval domains. Output realizations are in
turn interval bounds guaranteed to contain the actual solution of the problem in hand.
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Certainty closure [Yorke-Smith and Gervet(2009)] associates uncertainty to con-
straint coefficients. Interval coefficients in this model are used to bracket the ill-defined
data given in the problem definition. This is exerted by shaping a Normal distribution
over the measurement (here dealt with as the Normal distribution average). Interval
bounds are then assigned the maximum and minimum values to include the majority of
the Normal distribution data population. This framework brings together modeling and
solving methodologies from the linear programming into theCP paradigm to provide
reliable and efficient approaches for uncertain constrain problems.

Example 3.10. Consider the course schedulingCSP, in example3.1, the set of con-
straints defined by the certainty closuse can be reformulated as:

∀i
3∑

j=1

w j xi j ≥ 2 (3.10)

∀ j
3∑

i=1

w j xi j ∈ {1, . . . , 5} (3.11)

3∑

i=1

3∑

j=1

w j xi j = t (3.12)

Where∀ jw j and t are uncertain coefficients each is defined over a real-interval domain.
Solution to the problem is a covering set of all possible realizations.

LP implementations

Interval linear programming . Research has thoroughly studied variations of theIn-
terval Linear Programming (ILP)due to their inexpensive computations when employed
in large scale systems.Ning and Kearfott(1997) work on the computation of the in-
terval Guassian elimination techniques.Rohn (1993), Hansen(1980),Hansen(1992)
extract the inverse of the coefficient matrix when its components are represented by real
intervals. Suprajitno and Mohd(2010) and Ramesh and Ganesan(2011) generalized
the Simplex method to incorporate real interval computations. Beaumont(1998), Jans-
son(1997), Oettli (1965) andAberth (1997) derive inclusion bounds over the solution
set.Chinneck and Ramadan(2000) incorporate the uncertainty in the objective function
calculations with the hull. The generalILP model can be rewritten as:

minZ =
n∑

j=1

[c j , c j ]

subject to
n∑

j=1

[ai j , ai j ]x j ≥ [bi , bi ] ∀i = 1, . . . ,m (3.13)

Generally, interval linear computations are easily conducted but they do not guarantee
the tightest bounds on the resulting solution set.
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Robust optimization [Ben-Tal and Nemirovski(2000) andMulvey, Vanderbei, and
Zenios(1995)] Random components are represented by means of variance reduction
techniques. Uncertainty, in this case, is encapsulated within a convex ellipsoidal set
which approximates the problem. The model can be rewritten as:

min[ sup
c,A,b∈U

cT x : (Ax≤ b)∀(c,A, b) ∈ U]

Where data for (c,A, b) are not known for certain. The model, with ‘boundedness as-
sumptions‘, searches for a solution to the best objective that satisfies all realizations of
the constraints. The computed objective seeks the minimization of the worst case sce-
nario.

Interval Expected Value [Thipwiwatpotjana and Lodwick(2008) andSengupta, Pal,
and Chakraborty(2001)] combine the possibility and the probability within the same
constraint. Uncertainty is represented by an interval of expected value which is bounded
by the smallest and the largest expected values. Intervals are then utilized as coefficients
in the interval linear program.

Example 3.11. Returning to the production planning problem, the intervalexpected
value â11 = [1.6667, 2.5] and b̂1 = [169.6667, 180]. TheLP model can be reformu-
lated as:

min 2x1 + 3x2

s.t.[1.6667, 2.5]x1 + 6.1667x2 ≥ [169.6667, 180],

x1 + x2 ≥ 100,

x1, x2 ≥ 0. (3.14)

In this example the bounds on the objective function is[$117.35, $127.87] and the op-
timal solution x1 ∈ [33.89, 44.41] and x2 ∈ [9.51, 20.03] is obtained by solving, in this
case, fourLP problems generated by the extreme points bounding the expected value
intervals.

Output solutions

Results of convex models are reliable and guarantee to carry-out all potential solutions
of the problem in-hand. Uncertainty is represented as set ofvalues that are enclosed
between extreme points. To derive outer bounds, the model isbased on an approximation
that is not necessarily reversed. The output solution is a non-tight set. It is characterized
to be reliable and can take any of the possible values from theclosure of the decision
space. Each value in the set has an equal uncertainty degree.

Benefits

• Efficient integration of interval computation methods inCP

40



3.4. Summary

• Ideal when partial data is used due to the overwhelming amount of information

• Deal with real data

• Enclose the uncertainty using what is known for sure about the data

• Guarantee the true problem is contained in the model hence described

• Produce robust/reliable solutions

• Efficiently derive the closure to an uncertain constraint problem

• Computationally tractable

Drawbacks

• Result in a solution set with equal uncertainty weights.

• Doesn’t reflect any possible degree of knowledge, i.e. the model lacks information
about the random distribution embraced by its extreme points

• Acquired solution space can be very wide lacking expressive approximation of the
problem in-hand for speedy future search

3.4 Summary

In this chapter we review research efforts to reason about data in the presence of un-
certainty. We started by studying the different uncertainty types found in the real-world
applications. We then elaborate how research classifies those types and maps them in
the conceptual world to deal with them mathematically. Explored mathematical models
are adopted consequently to reason about data with uncertainty. Two paradigms were
explored:CP andLP. The study of the two paradigms summarizes: 1. how uncertain
data is input to the models. 2.CP andLP existing implementation techniques. 3. the
property of the output solution set obtained from the reasoning process when different
models from both paradigms are adopted. TheCPandLP paradigms employ different
mathematical concepts to handle and to reason about data with uncertainty. Those math-
ematical concepts can be listed as: probabilistic, possibilistic, fuzzyand convex models.
We showcase and elaborate with examples how models from bothparadigms with differ-
ent mathematical concepts behave. We also clarify the advantages and drawbacks found
in the literature when each concept is adopted. This study isdue to the fact that our
framework inherits its properties from the two paradigms: theCPand theLP. We will
elaborate more about this inheritance in the rest of the chapters. The following chapter
shows how we construct the intervals of the input data with uncertainty in existing con-
vex techniques and how this construction evolved to construct the intervals representing
the data with uncertainty in our proposed p-boxcdf-intervals framework.
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CHAPTER 4

CONSTRUCTING THE I NTERVALS

The concept of convex modeling, as pointed out in Section3.3.3, was coined to for-
malize the idea of enclosing uncertainty sets and yield reliable solutions, i.e guaranteed
to contain any solution produced by any possible realization of the data [Chinneck and
Ramadan(2000), Ben-Haim and Elishakoff(1995), Yorke-Smith and Gervet(2009)].
Interval coefficients have been introduced inOR andCPto specify and enclose uncer-
tain data in order to provide reliable solutions to convex models. They are at the heart
of paradigms such as robust optimization [Ben-Tal and Nemirovski(1999); Hoffman
(2000)] in OR as well as mixedCSP[Fargier et al.(1996)], reliable constraint reason-
ing [Yorke-Smith(2004),Yorke-Smith and Gervet(2009)], and quantifiedCSP[Zhou,
Doyle, and Glover(1996)] in CP. These paradigms specify erroneous and incomplete
data using uncertainty sets that denote a deterministic andbounded formulation of an
ill-defined data. To remain computationally tractable, theuncertainty sets are approxi-
mated by convex structures such as intervals (extreme values within the uncertainty set)
and interval reasoning can be applied ensuring effective computations. In this chapter we
focus on how convex structures were constructed in the literature. We showcase, with
a running example, how the convex representation of data with uncertainty is evolved
from reliable models to include additional information about the data whereabouts. Yet
they remain tractable by keeping their convex properties.

4.0.1 Constructing reliable intervals

For instance, we consider the traffic volumes in theNTAP. In this problem traffic vol-
umes are monitored in a distributed manner [Grossglauser and Rexford(2005)]. Ac-
cordingly, the measurement of one designated flow can differby milliseconds. Output
observations from the measurement process are often erroneous or incomplete due to
packet loss or inaccurate deviation. Fig.4.1 illustrates a snapshot, at a point in time, of
an arbitrary network. Numbers provided on the links represent the average of readings
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per flow on each link (the flow headed towards nodeB from nodeA (VA→B), in this
snapshot, is on average equal to 204 packets).

The information available, in the problem definition, is typically point elements
along with their frequencies, intensities or probability of occurrence. Out of which ex-
isting reliable approaches deduce the average and standarddeviation or approximate the
given data to the nearest probability distribution. The original list of observations along
with their frequencies of occurrence, of the flow from nodeA to nodeB, are illustrated
in Fig. 4.2.

Fig. 4.1: Network of 4-nodes: a snapshot

Fig. 4.2: Collected observations ofVA→B

To represent (VA→B), reliable models commonly adopt one of the two approaches:

1. Store the minimum and the maximum observed values from themeasurement
process. In this example, they are 201 and 209 respectively (as illustrated in Fig.
4.3)

2. Derive the probability distribution from the list of values and their occurrences
(Fig. 4.4). Out of this derivation, the statistical average and standard deviation
can be obtained. Hence, the nearest known probability distribution (in most cases
the Normal distribution Fig.4.5) is computed. The output minimum and max-
imum values from this process for (VA→B) are respectively 197 and 211. It is
obtained by deriving the confidence interval which includes98% of the statistical
data population resulting from the measurement.
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Fig. 4.3: Reliable model representation ofVA→B

Fig. 4.4:VA→B: probability distribution histogram

Fig. 4.5:VA→B: nearest Normal distribution

Example 4.1. The convex representation of traffic volume destined to the node B from
the node A is the interval VA→B ∈ [201, 208]and[197, 211] in the two commonly adopted
reliable approaches: convex modeling andUCSP.

Reliable approaches, in their convex representation, do not account for the data
whereabouts which are available during the data collection. The outcome of these sys-
tems is a solution set that can be refined when more knowledge is acquired about the
data population, and does not exclude any potential solution.
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Fig. 4.6:VA→B: reliable model representation of Normal distribution at±3σ

4.0.2 Constructing thecdf -intervals

Motivated by conveying the data whereabouts given in the problem definition, we intro-
duced thecdf-intervals inSaad et al.(2010). Thecdf-intervals structure extends interval
data models with a second dimension: a quantitative dimension added to the measured
input data. This quantitative dimension provides information about the probability dis-
tribution of the data.

We have selected thecdf because it has been used, for this purpose, in different
models to analyze the distribution of the data whereabouts (e.g. inGubner(2006) and
Tversky and Kahneman(1992)). Thecdf enjoys three main properties:

1. Thecdf is a monotone, non-decreasing function, like arithmetic ordering suitable
for interval computations and pruning.

2. It directly represents the aggregated probability that aquantity lies within bounds,
thus, showing the confidence interval of this uncertain data.

3. It brings flexibility to the problem modeling assumptions(e.g. by bounding data
by means of the derivedcdf. In Saad et al.(2010), we constructed thecdf-intervals
which is a convex model that approximates the data whereabouts to the nearest
uniform cdf-distribution within a confidence interval).

Our methodology, inSaad et al.(2010), consists of building data intervals employing
2D points as extreme values. In thecdf-intervals model, we assume that with each
uncertain data value comes its frequency of occurrence or density function. We then
compute thecdf over this function. The concept ofcdf-intervals proved to be capable
of representing a new type of convex sets, following the concept of interval coefficients.
This requires the decision variables to range overcdf-itervals as well. Basically, in the
cdf-intervals framework, elements of a variable’s domain are points in a2D-space, the
first dimension represents the data value, and the second is its aggregatedcdf-value. It
is defined as acdf-interval specified by its lower and upper bounds.

Recall from Example4.1, the real-intervals representation ofVA→B ∈ [201, 209] and
[197, 211] in the two commonly adopted reliable approaches. In order to illustrate this
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interval representation in thecdf-intervals framework, we first need to project the obser-
vations given in the original definition of the problem onto thecdf. Fig. 4.7 illustrates
the original probability distribution and its nearest Normal distribution projections onto
thecdf dimension, and Fig.4.8 illustrates the traffic volumeVA→B in thecdf-intervals.
In this case, it is represented by the interval [(201, 0.1), (207.73, 0.98)]. In this exam-
ple the value 201 is the data value in the real domainR and 0.1 is its cdf value. The
cdf-interval representation ofVA→B is approximating the unknown distribution and it
indicates that the real values ranges within [201, 207.73], while thecdf ranges within
[10%, 98%].

The main idea, inSaad et al.(2010), is to show that we can preserve the tractability
of convex modeling computation while enriching the uncertain data sets with a repre-
sentation of the degree of knowledge available.

4.0.3 Constructing thep-box cdf -intervals

As shown in Fig.4.8, thecdf-intervals model approximates the original probability dis-
tribution to the nearest uniform distribution. Despite thefact that this approximation
roughly indicates the residence of the data population, it lacks the full encapsulation of
the interval in the2D (i.e. it is not a comprehensive representation of the observed data
along with its whereabouts). This led us to further extend the cdf-interval model to en-
capsulate not only the observed data but also its unknown probability distributionSaad
et al. (2014). The new2D interval framework adopts the concept ofp-box, detailed in
Ferson et al.(2003), to envelop the unknown probability distribution and to ensure the
enclosure of any potential solutions along with their whereabouts. We have chosen uni-
form distributions to exert the interval envelopment due totheir tractable computation,
compared to other probability distributions.

Fig. 4.7:VA→B: Normal distribution projection onto thecdf domain

Thep-boxaugmentation further modifies the point representation. Inorder to fully
represent a line we need at least 3 values. Fig.4.9depicts thep-boxcdf representation
of VA→B which is represented by thep-boxcdf-interval
[(201, 0.1, 0.187), (208, 0.87, 0.128)]. A point in thep-boxcdf-intervals framework is a
triplet which lists the data value in the real domainR, thecdf value and thecdf line slope.
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Fig. 4.8:VA→B: cdf-interval representation

Fig. 4.9:VA→B:p-boxcdf-interval representation

For the same example they are 201, 0.1 and 0.187 respectively. Thisp-boxcdf-interval
representation indicates the full encapsulation of the real data between the bounds 201
and 208. The envelopment of thecdf indicates that 201 has a chance of occurrence that
cannot exceed 10% while 208 has acdf value that is at least 87%. The significance of
the interval representation is detailed in Chapter5.

In summary, thecdf-intervals framework specifies elements of a variable domain
in a 2D-space, the first dimension represents the data value, whereas the second shows
its cdf-uniform distribution. A new domain ordering is defined within the 2D-space.
This raises the question of performing arithmetic computations over such variables to
infer bound consistency. As a result more information is transmitted to the realized so-
lution sets. We augment thecdf-interval points byp-boxes (two bounding distributions
embracing all possible distributions) to specify new domain bounds on the probability
distribution along with data value bounds in theR domain. In this dissertation we de-
fine the constraint domain over which the calculus in this newdomain structure can be
performed, including the inference rules.

48



PART II

FRAMEWORK





CHAPTER 5

DATA REPRESENTATION

Quantitative information is usually available during the data collection process, but lost
during the reasoning because it is not accounted for in the representation of the uncertain
data. This information however is crucial to the reasoning process, and the lack of its
interpretation yields erroneous reasoning because of its absence in the produced solution
set. It is always necessary to quantify uncertainty that is naturally given in the problem
definition in order to obtain robust and reliable solutions.

In this chapter we elaborate how uncertain data, probably collected in a measurement
process, is represented; then input to the model. Information available in the problem
definition is typically; point elements along with their frequencies of occurrence, inten-
sities or probability distribution. The majority of the existing models, as pointed out
in Chapter3, deduce out of this information the average point and standard deviation;
consequently their reasoning is based on expected values [Gum (1995),Kessel(2002)
andNielsen(2000)]. Some probabilistic models approximate the data whereabouts to
its nearest probability distribution representation [Kendall et al.(1946)]; yet these mod-
els are characterized to have an expensive computation because reasoning, in this case,
is exerted in a pointwise manner. Convex models offer reliability and robustness, their
computations are tractable, but do not account for quantitative information [Benhamou
and Older(1997),Ben-Haim and Elishakoff(1995),Beaumont(1998) andYorke-Smith
(2004)]. Fuzzymodels have been introduced in order to combine between reliable and
probabilistic models, by drawing the possibilistic distribution of the data representation
[Mauris, Lasserre, and Foulloy(2000), Ferrero and Salicone(2004) andMauris(2007)].

We first elaborate how to construct thecdf-intervals structure by means of a formal
algorithm published inSaad et al.(2010). Then we show how this algorithm has evolved
to construct thep-boxcdf-intervals convex structure,Saad et al.(2014) andSaad(2014).
Thep-boxcdf-intervals algebraic structure seeks the full encapsulation of the data along
with the whereabouts observed, irrespective of the probability distribution they outline.
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In this chapter, we show how ap-boxcdf-interval bounds the observed probability dis-
tribution. The outcome of this process is the established interval; it has two uniformly
distributedcdf-bounds. Uniform distributions are chosen to ease the computation of
storing and reasoning about data. We also compare this new formulation with input
coefficients described by reliable, probabilistic andfuzzymodelsSaad et al.(2014).

5.1 Establishing the Confidence Interval

Data obtained from empirical measurement often follows an unknown probability dis-
tribution [Gum(1995)]. This data is produced by an instrument, characterized tohave
components of imprecision. In the general case, it is evaluated in a discrete manner
because measurement is performed at specific time points. Computedcdf-distribution,
in this case, draws a staircase shape and the actual continuous distribution between the
measured points is unknown [Smith and La Poutre(1992)].

Given a set ofn data series obtained in a measurement process of a population m, m,
n, or possibly randomly generated, we establish a generic construction of the confidence
possibilistic/probabilistic interval as follows:

1. Data is collected andn quantiles (data values) are distinguished, each is repre-
sented byxi.

2. Thepdf of the genuine observations is derived from
(xiFreqi )∑n

1 xiFreqi
, where Freqi is the

number of times a quantilexi is observed.

3. The average ¯x =
x1Freq1+···+xnFreqn∑n

1 xiFreqi
and their standard deviation

σ =

√
1
n

∑n
1(xi − x̄)2 are computed. Note that other probabilistic tools like the

variance can be derived when additional knowledge on the probability distribution
is needed.

4. The possibilistic/ probabilistic distributions are derived from the average and the
standard deviation values. Based on theGum(1995) any probability distribution
(parametric/non-parametric) is typically approximated to the nearest Normal dis-
tribution.

5. Computation and reasoning are based on the derived distributions since pointwise
operations are computationally expensive.

5.1.1 The Measurement Process

As a running example, Figure5.1 illustrates the data collection process which is exerted
by means of a measuring instrument. Values, defined as quantiles, are collected along
with their frequencies of occurrence. Reliable models can derive the interval represen-
tation of this specific sample by storing the minimum and maximum observed values;
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5.1. Establishing the Confidence Interval

in this example the values are 1 and 8 respectively. Consequently, the produced robust
interval is signified by two bounding points in the real domain R, as [1, 8].

Fig. 5.1: The data observation of the measurandX

5.1.2 Computing the probability distribution

Given the observed data along with its frequency of occurence, we can obtain the den-
sity function, described in Definition2.3, and derive the average and standard deviation
of the sample data. The nearest Normal probability distribution andfuzzymembership
function are consequently derived and illustrated in Figure 5.2. Figure5.2 shows how
the data whereabouts is enveloped within the produced distributions: probabilistic or
possibilistic. Then, they are input as coefficients to theirdesignated models. It is worth
noting that the Normal distribution representation is given by its average and standard
deviation, in this case 4 and 2.11 respectively; while thefuzzymembership representa-
tion is given by a triplet [−2, 4, 11] if it is a triangularfuzzypresentation, or a quartet
[−2, 4, 5, 11] if it is a traperzoidal presentation.

(a) (b)

Fig. 5.2: Deriving the probability distribution of the measurandX: (a) Normal distribu-
tion, (b) fuzzymembership function
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5.1.3 Projecting Distributions onto thecdf -domain

Recall from Section2.1 thecdf distribution is an aggregated value of the density func-
tion; i.e. thecdf value of an element is its density value in addition to the sumof densities
of all preceding elements. Hence thecdf allows us to keep information about thepdf in
an aggregated manner. Figure5.3 illustrates the computedcdf distribution of the same
sample data. Thiscdf has a staircase shape because of the discrete characteristic of
the measurement process. Figure5.4 depicts the projection of the Normal distribution
and thefuzzymembership function onto thecdf-domain in order to visualize accuracy
of the studied distribution to encapsulate the observed data whereabouts. Clearly both
representations are based on approximation and lack precise point fitting.

Fig. 5.3: Constructing thecdf-distribution ofX

(a) (b)

Fig. 5.4: Constructing the Normal andfuzzycdf-distributions of the measurandX: (a)
Normalcdf-distribution, (b)fuzzycdf-distribution

5.1.4 Constructing thecdf -intervals

Consider that in the set of data illustrated in Fig.5.1, we construct thecdf-interval
as detailed in Algorithm1. The algorithm runs inO(n)wheren is the number of distinct
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procedureConstructCDFIntervalBounds(m,Arr[n],Freq[n])

1: cdf[1] ← Freq[1]/m
2: for i = 2 to ndo
3: cdf[i] ← (Freq[i]/m) + cdf[i − 1]
4: i = 1,
5: while (Freq[i] ≤ 0.02) do
6: i ← i + 1
7: lowerbound← (Arr[i], cdf[i])
8: upperbound← (cdf−1[0.98], 0.98)

Algorithm 1: data interval bounds construction

values in the data set. It receives three parameters: the size of the data population,m,
a sorted list (ascending order) of the distinct measured data, and a list of their corre-
sponding frequencies. Both lists are of the same sizen. The algorithm first computes
thecdf in a cumulative manner. The turning points are then extracted by recording the
data values that have acdf greater than, or equal to, 2%, and the value withcdf equal
to 98%; the two values were chosen such that they are distant from the average by±3σ.
This algorithm was previously published inSaad et al.(2010).

Fig.5.5 illustrates thecdf-interval construction of the sample data given in the run-
ning example of this chapter. As listed in Table5.1, the data set size isn = 8, the
population size ism= 25,Arr[n] = [1, 2, 3, 4, 5, 6, 7, 8], and the corresponding frequen-
ciesFreq[n] = [4, 2, 4, 5, 5, 1, 2, 2]. The computedcdf-interval has the following bounds
[(1, 0.16), (7.75, 0.98)]. Clearly the resulting interval is an approximation and lacks the
full encapsulation of the measured data whereabouts.

(a) (b)

Fig. 5.5: Constructing thep-boxcdf-intervals bounds ofX
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X
data freq pdf cdf (CDF[n]-CDF[1])/ (CDF[n-1]-CDF[1])/

value (Arr[n]-Arr[1]) (Arr[n]-Arr[2])
1 4 0.16 0.16
2 2 0.08 0.24 0.08
3 4 0.16 0.4 0.12 0.08
4 5 0.2 0.6 0.15 0.12
5 5 0.2 0.8 0.16 0.15
6 1 0.04 0.84 0.14 0.16
7 2 0.08 0.92 0.13 0.14
8 2 0.08 1 0.12 0.13

lb 1 0.16 0.16
ub 8 0.64 0.08

Table 5.1: Preprocessing steps for modeling collected data

5.1.5 Constructing thep-box cdf -intervals

Algorithm 2 shows thep-boxcdf-interval construction steps for the same example. Two
parameters are taken into consideration: Arr[n] is an array ofn distinct elements (ob-
served and sorted); whereas the second parameter is cdf[n]; the set of their computed
cdf values.

The two arrays, together, form the staircase function shapewith quantiles stored in
Arr[] and cdf values stored incdf[]. Note that a staircase function defines as set of
constant valuescdf[i] over a set of intervals [Arr[i],Arr[ i+1]] ∀i < n [Smith La Poutre-
Smith La Poutre]. Accordingly, the set of upper and lower bounding points forming the
staircase function are{[Arr[ i],cdf[i]] } ∀i, 1 ≤ i ≤ n and{[Arr[ i + 1],cdf[i]] } ∀i, 1 ≤ i < n
respectively. The aim of the algorithm is to envelop those observed points with the high-
est and lowest possible average probabilistic step increase from the first quantile interval
of the staircase function. Issuing the slopes from this specific interval is sufficient to
compute the bounds due to thecdf monotonic property2.7.

Recall that, from property2.8, a cdf slope is the average step value that indicates
how the probability distribution increases. Algorithm2 starts by computing 2n slopes
issued from the 2 points, specified as (Arr[1],cdf[1]) and (Arr[2],cdf[1]), and destined
to all other points in thecdf-domain. This is to calculate the list of possible average
step values between the observed staircase bounding points. Slopes are then sorted to
extract the steepest line and the flatest line. The geometricarea under the line, computed
by the integral, determines the dominated (dominating)cdf distribution with maximum
(minimum) area as indicated in Section2.3. Accordingly, the lower bound in thecdf
domain is the fastest increasing line slope and issued from the 1st quantile observation,
and vise versa the upper bound is the least increasing line slope and issued from the
maximum quantile value having the minimum observedcdf value. This is to guarantee
the full encapsulation of all the measured data between the two bounding lines. Upper
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procedureConstructPBOXCDFIntervalBounds(Arr[n],CDF[n])

1: // compute the list of slopes between the observed points in thecdf-domain
2: j ← 0
3: for i = 2 to ndo
4: slopeslb[ j] ← (cdf[i] − cdf[1])/(Arr[ i] − Arr[1])
5: slopesub[ j] ← (cdf[i − 1] − cdf[1])/(Arr[ i] − Arr[2])
6: // find the most increasing lower bound slopeO(nlog(n))

Sxl ← getmax(slopeslb)
7: // find the least increasing upper bound slopeO(nlog(n))

Sxu← getmin(slopesub)
8: // get the lower bound point

a← Arr[1]
Fa← CDF[1]
Sa← Sxl

9: // get the upper bound point by projecting the maximum observed quantile
//onto the upper bound slope

b← Arr[n]
Fb← Sxu ∗ (Arr[n] − Arr[2]) + CDF[1]
Sb← Sxu

10: // return cdf-interval
[(a, Fa,Sa), (b, Fb,Sb)]

Algorithm 2: data interval bounds construction

and lowercdf uniform distributions are depicted by the red lines in Fig.5.5 (b), and
accordingly we can deduce thep-boxcdf-interval as published inSaad et al.(2014).

Theorem 5.1. Algorithm2 is correct with time complexity O(nlog(n)).

Proof. Computing the 2n slopes is exerted by applying the equations:
(cdf[i] − cdf[1])/(Arr[ i] −Arr[1]) and (cdf[i − 1] − cdf[1])/(Arr[ i] −Arr[2]). Each of the
specified equations is linear withO(1) time complexity. Indexing both arrays: quantiles
Arr[] andcdf[] starting from the 1st element up ton (the size of the array is the number of
distinct observations which is practically finite). Hence computing the slopes loops over
the elements of the array with a time complexity ofO(n). The list of calculated slopes
is then sorted inO(nlog(n)) time complexity. Accordingly, we can conclude that the
algorithm is ofO(nlog(n)) which is the time taken to sort the list of computed slopes.�

Fig.5.5illustrates interval data construction given by the example displayed in Table
5.1. The data set sizen = 10; computedp-box cdf-interval has the following bounds
[(1, 0.16, 0.16), (8, 0.64, 0.08)] for X.
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5.2 Interpretation of the confidence interval I

Consider the practical meaning of intervalI that we have sought to obtain. For a given
interval of points specified byI = [pa, pb], pa and pb are the extreme points which
bound thecdf-interval andI = [pa, pb], pa and pb are the extreme points which bound
thep-boxcdf-interval.

5.2.1 Thecdf -interval I =[pa, pb]

This interval is built according to two main sources of information: 1) the monotonic
and non-decreasing properties of thecdf curve to account for the degree of knowledge,
2) the extreme turning points over such a curve. Recall that thecdf-curve indicates the
aggregated distribution function of a data set. Plotting a point on this curve tells us
what are the chances that the actual data value lies on or before this point. The extreme
turning points, we have sought, are those points distant from the average by±3σ ; This
correponds to 99.7% of the total population when it is following a Normal distribution.
It is also important to note the effectiveness of using thecdf as an indicator of the degree
of knowledge. Given the measurement of datapx, such thatpx = (x, Fp

x) is any point,
and due toFp monotone non-decreasing property, we have the following:

a ≤ x ≤ b, Fp
a ≤ Fp

x ≤ Fp
b

Given thatpa = (a, Fp
a) andpb = (b, Fp

b)

Definition 5.1. F I
x is the projected approximated cdf value of px onto FI (the cdf asso-

ciated to the interval), we will denote px ∈ I as px = (x, F I
x) for any point lying within

theI interval bounds such that:

a < x < b, F I
x =

F I
b − F I

a

b− a
.(x− a) + F I

a (5.1)

Property 5.1. Fp
a = F I

a and Fq
b = F I

b

It is worth noting that this projection operation is linear because theF I
x is derived

from the line equation of thecdf curve; hence, it takesO(1) to compute thecdf-value of
a point located within thecdf-interval bounds.

Example 5.1. Fig. 5.6(a) illustrates the computation of FIx. We have
I = [(1, 0.16), (7.75, 0.98)]. Given a data value x= 5 we compute its cdf FIx = 0.65, and
obtain the point px = (5, 0.65).
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(a) (b)

Fig. 5.6: Linear approximation withinI = [pa, pb] (a) cdf-interval bounds and (b)p-box
cdf-interval bounds

5.2.2 Thep-box cdf -interval I =[pa, qb]

One can see that this interval approach does not aim at approximating the curve but
rather enclosing it in a reliable manner. The complete envelopment is exerted by means
of thecdf-bounds; which are depicted by the red curves in Fig.5.5. It is impossible to
find a point that exists outside the formed interval bounds. Thecdf bounds are chosen
to have a uniform distribution because of its monotonic. Each bound is represented by a
line with a slope issued from one of the extreme quantiles. Storing the full information
of each bound is sufficient to restore the designated interval assignment. Each bound,
in turn, is denoted by a triplet point representation, in the2D space, that guarantees the
full information on; the extreme quantile value observed; thecdf-line issued from this
observed value; and the degree of steepness formed by this line. The slope of the uni-
form cdf-distribution indicates how the probabilistic values accumulate for successive
quantiles on the line. Accordingly, thep-boxcdf-interval point representation:

pa = (a, Fp
a ,S

p
a) andqb = (b, Fq

b,S
q
b).

Definition 5.2. Sp
x is the slope of a given cdf-distribution; it signifies the average step

probabilistic value. For a given uniform cdf-distribution

Sp
x =

Fb − Fa

b− a
,∀a ≤ x ≤ b (5.2)

The average step value, denoted asSp
x, derives the probabilistic values of consequent

quantiles on the real domainR.

Plotting a pointpx within the p-box cdf-interval deduces bounds on its possible
chances of occurrence.

Definition 5.3. F I
x is the interval of values obtained when px is projected onto thep-box

cdf bounds. For a point px ∈ I denoted as px = (x, Fp
x ,S

p
x)

a < x < b, and Fq′

b ≥ F I
x ≥ Fp′

a and Sp
a ≥ Sp

x ≥ Sq
b (5.3)
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Fp′
a andFq′

b are the possible maximum and minimumcdf valuespx can take; both
are computed by projecting the pointpx onto thecdf distributions passing through points
a andb respectively. They are derived using the following linear projections that are
computed inO(1) complexity:

Fp′
a = min(Sp

a(x− a) + Fp
a , 1) and Fp′

b = max(Fp
b − Sp

b(b− x), 0)

The equation above guarantees the probabilistic feature ofthe cdf-function by re-
stricting its aggregated value from exceeding the value 1 and having negative values
below 0.

Example 5.2. Fig. 5.6(b) illustrates the computation ofF I
x. We have

I = [(1, 0.16, 0.16), (8, 0.64, 0.08)]. Given a data value x= 5 we compute itscdf-bounds
F I

x = [0.4, 0.8]. This means that the possible chance of the value to be at most5 is
between40%and80%, with an average step probabilistic value between8% and16%.

We can conclude from the above examples that the new algebraic structure adds
up quantitative information to real intervals. Thecdf-interval yields one approximated
probabilistic value for a given quantile; while thep-boxcdf-interval representation pro-
duces an interval ofcdf values which encapsulates all chances the designated quantile
can possibly occur.
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CHAPTER 6

THEORETICAL FRAMEWORK

As demonstrated in Chapter5, bounds, which specify uncertain data, are constructed in
a preprocessing step resulting from the measurement. Established intervals are utilized
as input coefficients to the constraint system. The constraint system, in turn, utilizes this
additional information to produce a solution set, as opposed to a solution point. The
variables thus denote intervals within the structure and constraint processing needs to be
extended to perform arithmetic operations within the novelalgebraic structure. Thecdf-
interval approach extends real interval arithmetic. It adds a second dimension to each
uncertain value, requiring us to define a new ordering among points in a two dimensional
space, together with new inference rules.

6.1 Notations

Throughout this thesis we assume that data takes its value inthe set of real numbersR,
denoted bya,b,c. Data points are denoted byp, q, r possibly subscripted by a data value.
px is the pointp that has a quantilex, i.e. x is its mapping value onR. Variables are
denoted byX, Y, Z and intervals of elements from the specified domains are denoted by
I , J,K.

6.2 Defining thecdf lattice in the 2D-space

The lattice sketches the fundamental features of a formal language description. Lattice,
as aposet, is a general algebraic structure which defines for every twoelements a partial
ordering, a greatest lower bound (glb) and a least upper bound (lub). The lattice defi-
nition of ordering calculus and arithmetic operations are exerted on the computational
domain which is the domain of discourse that maps a variable to a measureable quantile
together with its knowledge in the2D-space.
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Let ΣU be the signature of thecdf-interval formal language.ΣU= {4U, glbU ,
lubU , ⊙, ∈[pa,qb]}. U is subscripted by ‘1‘ to characterize thecdf-intervals with one
approximatedcdf distribution and by ‘b‘ to signify the p-box cdf-intervals domain of
discourse. The⊙ is a binary arithmetic operation over the points defined in the 2D-
space.∈[pa,qb] is the predicate symbol interpreted as the ordering operator of a point px

aspa 4U px 4U qb. The set ofcdf-interval points extends the Herbrand universe. They
express the data and its knowledge in a2D-space. Points are represented by tuples in the
U1 and by triplets in theUb domain of discourse.

6.2.1 Data point structure

The cdf-interval computation domain is defined in the2D-space. The notion of acdf
valueFX(x) is associated to the uncertainty value of a given pointp. This value quantifies
the knowledge about its chance of occurrence. For simplicity, FX(x) is notedFp

x , i.e.
the cdf value of an uncertain datap at valuex. A data population, with a uniformly
distributedcdf curve, creates the set ofcdf-interval points such that each pointpx is
specified by the observed data quantile in the real domainR along with itscdf value.
This quantifiable knowledge is issued from a probability distribution, hence its value
ranges∈ [0, 1].

Definition 6.1 (a cdf -interval lattice structure). is the set of tuples, specified, in the
2D-space, asU1 =R×[0, 1] : real quantiles and their corresponding cdf values. Tuples
are partially ordered over the setU1 with unique glb and lub.

A p-box cdf-interval point px typically lies on a cumulative uniform distribution
function FX which shapes a line; this line characterizes two values: acdf value and
a slope denoted respectively byFp

x andSp
x
∗. Fp

x quantifies the aggregated probability
of point p at quantilex (by definition 0≤ Fp

x ≤ 1) andSp
x signifies the average step

chance of occurrence of sequencial quantiles lying on the same cdf-distribution. Due
to the monotonic property of the cumulative distribution function, Sp

x cannot take neg-
ative values. By definition, ap-boxcdf-interval pointpx is a triplet specified by (x,Fp

x ,

Sp
x) ∈Ub.

Definition 6.2 (a p-box cdf -interval lattice structure). is the set,Ub =R×[0, 1]×R+,
of triplets (observed quantile, cdf and slope) partially ordered, and constitutes aposet
with unique glb and lub.

It is worth noting that the three elements must be present in order to express the full
information of the uniformcdf-distribution, which is described by a line equation, and
issued from an arbitrary quantile. The first element of the triplet is the real quantile; the
second element is itscdf value; and the last element shows the average step probabilistic
value of the distribution.

∗For a real interval [a,b], the slope of thecdf uniform distribution is given byFb−Fa
b−a , whereFb andFa

are thecdf values of quantilesb anda on thiscdf-distribution respectively

62



6.2. Defining thecdf lattice in the2D-space

Theorem 6.1. The p-box cdf-interval lattice is partially ordered, and constitutes a poset
with unique glb and lub.

Proof. Points defined on thep-box cdf-interval lattice are specified as tripletsUb =

R × [0, 1] × R+. Elements of the triplet shape a uniformcdf distribution issued from the
quantiles defined on the real domainR. The list ofcdf distributions follow the stochastic
dominance ordering, defined in Section2.3, to order, partially, random variables (prob-
abilities). Accordingly, p-boxcdf-interval triplet points are partially ordered in a 2D
manner: reals and probabilities. By definition, partially ordered elements form a poset
in which every two elements have a meetglb and a joinlub. Consequently, the poset has
a uniqueglb and a uniquelub. �

6.2.2 Partial Ordering

We can order (partially) points inU1 andUb for the cdf-intervals andp-box cdf-
intervals respectively. Accordingly, we can construct an algebra over variables taking
their value in the2D-space.

The2D-orderingU1 arrangescdf-interval points such that points with smaller quan-
tiles and lesscdf values come before those points with higher quantiles and higher ag-
gregated chance to occur.

Definition 6.3 (Ordering over U1,4U1). Let px = (x, Fp
x ), qy = (y, Fq

y) ∈ U1, the
ordering4U1 is a partial order defined by:

px 4U1 qy ⇔ x ≤ y and Fp
x ≤ Fq

y (6.1)

Example 6.1. Consider the three points px = (4, 0.17), qy = (9, 0.87) and rz = (2, 0.43)
depicted in Fig.6.1 (a). We have px 4U1 qy and rz 4U1 qy, but px and rz are not com-
parable in the4U1 ordering. In this case, the ordering is satisfied in the1st dimension,
quantiles2 ≤ 4, but it is unfulfilled in the2nd dimension,cdf values0.43� 0.17.

Property 6.1. A cdf-interval delimited by two points px and qy is specified by the syntax
[px, qy] such that px 4U1 qy.

Property 6.2. SinceU1 is a posetthen by definition any subset [px, qy] ∈U1 satisfies
the following laws:

P1. Reflexivity:∀x, px 4U1 px

P2. Antisymmetry: (px 4U1 qy and, qy 4U1 px)⇒ (px = qy)

P3. Transitivity: (px 4U1 qy and, qy 4U1 rz)⇒ (px 4U1 rz)

The ordering4Ub arrangesp-box cdf-interval points such that points at the outset
lie on dominatedcdf distributions, where small data values are more likely to happen at
smaller quantiles and vice versa.
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Definition 6.4 (Ordering over Ub,4Ub). Let px = (x, Fp
x ,S

p
x), qy = (y, Fq

y ,S
q
y) ∈Ub,

the ordering4Ub is a partial order defined by:

px 4Ub qy ⇔ x ≤ y and
∫ y

−∞

Fqdy≤
∫ y

−∞

Fpdy (6.2)

px andqy are located on two differentcdf-distributions:Fp andFq respectively. The
integral ordering enforces the a second order stochastic dominance ofFq overFp. Both
Fp andFq are calculated from the storedcdf value and slope.

AppendixA.1 shows the integration derivation of linear equations. Integration in-
equality yields a direct linear substitution in the following

∫ y

−∞

Fqdy≤
∫ y

−∞

Fpdy⇔ Fq
y ≤ (y− x)Sp

x + Fp
x (6.3)

Example 6.2. Consider three points px = (4, 0.17, 0.047), qy = (9, 0.87, 0.09) and rz =
(2, 0.43, 0.68) which are depicted in Fig.6.1 (b). We have rz 4Ub px and rz 4Ub qy,
but px and qy are not comparable on theUb lattice. If we substitute the values in the
inequality, we obtain4 ≤ 9 but 0.87 � 0.405. In this case, quantile ordering is satisfied
but the stochastic dominance inequality is not.

(a) (b)

Fig. 6.1: Points ordering over (a)U1 (b)Ub

Property 6.3. A p-boxcdf-interval delimited by two points px and qy is specified by the
syntax [px, qy] such that px 4Ub qy.

Property 6.4. Theposetproperty ofUb enforces any subset [px, qy] ∈Ub to satisfy the
following rules:

P1. Reflexivity:∀x, px 4Ub px

P2. Antisymmetry: (px 4Ub qy and, qy 4Ub px)⇒ (px = qy)

P3. Transitivity: (px 4Ub qy and, qy 4Ub rz)⇒ (px 4Ub rz)
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6.2. Defining thecdf lattice in the2D-space

6.2.3 Meet and Join Operators

One important task in interval reasoning is the computationof a new interval from arbi-
trary points or previous intervals, such that it describes the smallest interval containing
the possible collection of elements. This is based on the meet and join operators.

Definition 6.5 (Meet and join overU1). Given the arithmetic ordering and meet and
join operations over the reals(R,≤,min,max) and the ordering of cdf values within
([0, 1],≤,min,max), the meet lub1 and join glb1 operators of two points px and qy inU1

are defined by:

glb1(px, qy) = (min(x, y), min(Fp
lb, F

q
lb))

lub1(px, qy) = (max(x, y), max(Fp
ub, F

q
ub)) (6.4)

where lb= min(x, y) and ub= max(x, y)

From Equation6.4, we can deduce thatglb1 is a point in the2D-space. The 1st

dimension (quantile),lb, is a result of applying the minimum operation on the points
quantiles. To obtain thecdf component of theglb1, we projectlb onto,Fp andFq, the
cdf distributions of the points under consideration. The 2nd component of theglb1 is
the minimum value obtained from the projections. Similarily, we computelub1 but in
that case we replace the minimum by the maximum operation. The consistency property
establishes the link between the partial ordering4U1 and the pair (glb1, lub1) as actual
meet and join.

Property 6.5 (Consistency property overU1).

px 4U1 qy⇔ px = glb1(px, qy)

px 4U1 qy ⇔ qy = lub1(px, qy) (6.5)

Proposition 6.1 (⊥U1 and⊤U1).

⊥U1 is the universal greatest lower bound of cdf-interval points and it is equal to
(0.0, 0.0)

⊤U1 is the universal least upper bound of cdf-interval points and it is equal to (+∞, 1.0)

assuming that all random variables are greater than zero.

Proof. On theR domain where all random variables are observed greater than0, the
minimum and the maximum measured quantiles are respectively 0 and+∞. Thecdf is a
probability distribution, hence 0 and 1 are respectively the minimum and the maximum
possible values acdf can obtain. Accordingly, we can conclude that points⊥U1 =

(0.0, 0.0) and⊤U1 = (+∞, 1.0) �
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Example 6.3. Fig. 6.2 [a] depicts the glb1 and lub1 computations of two points px =

(4, 0.17) and qy = (9, 0.87). By substituting in Eq.6.4, the minimum and maximum
quantiles are respectively4 and 9. The minimum and maximumcdf values obtained
from the projection operation are0.09 and 0.8 respectively. Accordingly the points,
glb1(px, qy) = (2, 0.09) and lub1(px, qy) = (9, 0.8).

Definition 6.6 (Meet and join overUb). Given the arithmetic ordering, meet and join
operations over reals(R,≤,min,max) and the second order stochastic dominance of cdf
distributions, the meet (glbb) and join (lubb) operators of two points px and qy inUb are
defined by:

glbb(px, qy) = (min(x, y), max(Fp
lb, F

q
lb), max(Sp

x ,S
q
y))

lubb(px, qy) = (max(x, y), min(Fp
ub, F

q
ub), min(Sp

x ,S
q
y)) (6.6)

where lb= min(x, y) and ub= max(x, y)

The following property establishes the link between the partial ordering4Ub and the
pair (glbb, lubb) as actual meet and join.

Property 6.6 (Consistency property overUb).

px 4Ub qy ⇔ px = glbb(px, qy)

px 4Ub qy⇔ qy = lubb(px, qy) (6.7)

Proposition 6.2 (⊥Ub and⊤Ub).

⊥Ub is the universal greatest lower bound ofp-boxcdf-interval points and it is equal
to (0.0, 1.0,∞)

⊤Ub is the universal least upper bound ofp-boxcdf-interval points and it is equal to
(+∞, 0.0, 0.0)

assuming that all random variables are greater than zero.

Proof. On theR domain where all random variables are observed greater than0, the
minimum and the maximum measured quantiles are respectively 0 and+∞. The 2nd

order stochastic dominance integral defined in Eq.6.3yields 0 for⊥Ub and∞ for ⊤Ub.
Accordingly, the proposed universal greatest lower bound and lowest upper bound, both
maintain lattice real ordering on theR domain in addition to the stochastic dominance
on the probabilistic domain. �

Example 6.4. Fig. 6.2 [b] illustrates an example which computes glbb and lubb of two
points px = (4, 0.17, 0.047) and qy = (9, 0.87, 0.09). By substituting in Eq.6.6, the
minimum and maximum quantiles are respectively4 and 9; the results of applying the
max and min operations on the computed stochastic dominanceintegration are0.42and
0.405 respectively; the maximum and minimum slopes are respectively 0.09 and0.047.
Accordingly we can compute the points, glbb(px, qy) = (4, 0.42, 0.09) and lubb(px, qy) =
(9, 0.405, 0.047).
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6.2. Defining thecdf lattice in the2D-space

(a) (b)

Fig. 6.2: Meet and join operations (a)glb1 andlub1 (b) glbb andlubb

6.2.4 Data Point Arithmetic Operations

We extend the computation domain with binarycdf point arithmetics. Operations to
combine uncertainties in the framework rely on the convolution operation over random
variables detailed in Section2.2. We consider the standard arithmetic operations in-
terpreted over the set of realsR, then, we extend the notion to reason about thecdf
distribution of the data population.

Theorem 6.2. For ⊙ ∈ {+U,−U ,×U,÷U} a binary cdf point arithmetic over the2D-
space, px⊙qy = ((x⊙y), Fp⊙q

x⊙y ,S
p⊙q
x⊙y ), yields a cdf point defined in the 2D space. Resulting

point is a triplet with a quantile value, a cdf distribution and a slope

Any two points, each lying on a differentcdf distribution, can be involved in a
relation given by a function. This relation outlines acdf that is based on their joint
cdf-distribution, defined in Section2.2, by double integrating the product of the two
probability distributions they shapeStark and Woods(1994); Williamson and Downs
(1990).

We derive thecdf equations of the binary arithmetic operations over uniformcdf
distributions, and described by Definition2.4, in AppendixA.3, A.4, A.5 andA.6. No-
tice that uniform distribution computations are linear. Hence, they are inexpensive as
opposed to other existing probability distributions.

Lemma 6.1. +U is the binaryp-boxcdf point addition over the2D-space.

px +U qy = ((x+ y), Fp+q
x+y ,S

p+q
x+y )

(x + y) is the addition operation of the two points in the real domainR, Fp+q
x+y and

Sp+q
x+y are respectively the cdf value and the slope of the cdf distribution resulting from
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the addition operation in the probabilistic domain and are derived in AppendixA.3.2

Fp+q
x+y =

∫ x+y

p0+q0

∫ z−q0

p0

1
(p1−p0)(q1−q0)dτdz (p0 + q0) ≤ (x+ y) ≤ (p0 + q1)

+

∫ x+y

p0+q1

∫ q1

p0

1
(p1−p0)(q1−q0)dτdz (p0 + q1) ≤ (x+ y) ≤ (p1 + q0)

+

∫ x+y

p1+q0

∫ p1

z−q1

1
(p1−p0)(q1−q0)dτdz (p1 + q0) ≤ (x+ y) ≤ (p1 + q1) (6.8)

Sp+q
x+y =

1
(p1+q1)−(p0+q0)

As deribed by EquationA.10, (p0 and q0) are the quantile projections of the cdf distri-
butions with cdf value equal to0 and (p1 and q1) are the quantiles with cdf value equal
to 1.

Proof. Readers can refer to SectionA.3 in the Appendix �

Fig. 6.3: Thep-boxcdf-point addition

Example 6.5. Let px and qy be twop-boxcdf triplet points such that px = (3.0, 0.7, 0.1)
and qy = (2, 0.6, 0.2). We can compute thep-boxcdf addition of two intervals, given that
their bounds are defined in the2D-space (values and knowledge about their occurrence),
as follows:

1. Calculate the projected quantiles of the uniform distributions each point lies on.
From EquationA.10p0 = −3.99, p1 = 6.0, q0 = −0.99 and q1 = 4.0.

2. Compute the real addition operation(x+ y) = 5
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6.2. Defining thecdf lattice in the2D-space

3. Derive the integral value† of thecdf from Equation6.20, and as detailed in Ap-
pendixA.3.2

a) Calculate the quantiles which bound the regions of the addition operation
illustrated in Fig.A.3for eachcdf point respectively.

{ p0 + q0, p1 + q0, p0 + q1, p1 + q1 } = { −4.98, 5.01, 0.01, 10.0}. Resulting
lists are then sorted in order to define the different areas ofintegration

b) The real addition is located within the quantile additionsegments. This is
exerted in order to determine the number of regions which will be considered
in the integration. For this example, we have p0+ q1 ≤ (x+ y) ≤ p1+ q0, the
2nd and3rd elements in the computed list, includes2 integration regions.

Fp+q
x+y = 0.66

4. Calculate the slope of thecdf distribution from Equation6.21. Sp+q
x+y = 0.066

Fig. 6.3 illustrates the arithmeticcdf point addition relation(p + q). Result of the
operation is specified by thep-boxcdf-point ((x+ y), Fp+q

x+y ,S
p+q
x+y ) = (5.0, 0.66, 0.066).

Lemma 6.2. ×U is the binary p-box cdf point multiplication over the2D-space.
px×Uqy = ((x × y), Fpq

xy ,S
pq
xy) (x × y) is theR domain multiplication operation, Fpq

xy

and Spq
xy are respectively the cdf value and the slope of the cdf distribution resulting from

the multiplication operation in the probabilistic domain and are derived in Appendix
A.4.2

Fpq
xy =

∫ xy

p0q0

∫ z
q0

p0

1
(p1−p0)(q1−q0)

1
|τ|

dτdz (p0q0) ≤ (xy) ≤ (p0q1)

+

∫ xy

p0q1

∫ z
q0
z

q1

1
(p1−p0)(q1−q0)

1
|τ|

dτdz (p0q1) ≤ (xy) ≤ (p1q0)

+

∫ xy

p1q0

∫ p1
z

q1

1
(p1−p0)(q1−q0)

1
|τ|

dτdz (p1q0) ≤ (xy) ≤ (p1q1) (6.9)

Spq
xy =

1
(p1q1)−(p0q0)

Proof. Readers can refer to SectionA.4 in the Appendix �

Example 6.6. The result of multiplying twop-box cdf-points px = (3.0, 0.7, 0.1) and
qy = (2, 0.6, 0.2) is computed in the2D-space as detailed in AppendixA.4.2.

1. The bounding quantiles of the uniform distributions are computed as in the first
step of Example6.5.

†To compute the integration we calculate the area under thecdf distribution line along the bounds
defined on the integral limits
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Fig. 6.4: Thep-boxcdf-point multiplication

2. The computed multiplication in the real domain(x× y) = 6.

3. The integration over the jointpdf is performed in order to compute thecdf bound-
ing values. This is obtained from Equation6.9and derived in AppendixA.4.2

a) Quantiles, depicted in Fig.A.4, which bound the different segments of the
multiplication are computed then sorted.

{ p1q0, p0q1, p0q0, p1q1 } = { −15.99,−5.99, 3.99, 24.0}.

b) xy is located in the3rd segment, hence, the number of integrals to be consid-
ered in thecdf calculations.

Fpq
xy = 0.55

4. The resulting slope of thecdf distribution obtained from Equation6.10. Spq
xy =

0.025

The p-box cdf-point depicted in Fig. 6.10 is the result of multiplying px and qy

= (6, 0.55, 0.025).

Lemma 6.3. −U is the binaryp-boxcdf point subtraction over the2D-space.

px−Uqy = ((x− y), Fp−q
x−y ,S

p−q
x−y ) (x− y) is theR domain subtraction operation, Fp−q

x−y

and Sp−q
x−y are respectively the cdf value and the slope of the cdf distribution resulting

from the subraction operation in the probabilistic domain and are derived in Appendix
A.5.2
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6.2. Defining thecdf lattice in the2D-space

Fp−q
x−y =

∫ x−y

q0−p1

∫ z+p1

q0

1
(q1−q0)(p1−p0)dτdz (q0 − p1) ≤ (x− y) ≤ (q0 − p0)

+

∫ x−y

q0−p0

∫ q1

q0

1
(q1−q0)(p1−p0)dτdz (q0 − p0) ≤ (x− y) ≤ (q1 − p1)

+

∫ x−y

q1−p1

∫ q1

z+p0

1
(q1−q0)(p1−p0)dτdz (q1 − p1) ≤ (x− y) ≤ (q1 − p0) (6.10)

Sp−q
x−y =

1
(q0−p1)−(q1−p0)

Proof. Readers can refer to SectionA.5 in the Appendix �

Fig. 6.5: Thep-boxcdf-point subtraction

Example 6.7. Thep-boxcdf-point resulting from the difference between px and qy in
the relation px − qy is computed following the steps listed inA.5.2

1. We compute the real difference(x− y) = 1

2. Bounding values of thecdf in Equation6.10 which result from the integration
detailed in AppendixA.5.2Fp−q

x−y = 0.6

3. The slopes of the boundingcdf distribution are obtained from Equation6.24.
Sp−q

x−y = 0.066

Thep-boxcdf-point output from the subtraction operation px − qy is shown in Fig.
6.11and is equal to(1, 0.6, 0.066).
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Lemma 6.4. ÷U is the binaryp-boxcdf point division over the2D-space.

px÷Uqy = ((x ÷ y), F
p
q
x
y
,S

p
q
x
y
) (x ÷ y) is theR domain division operation, F

p
q
x
y

and

S
p
q
x
y

are respectively the cdf value and the slope of the cdf distribution resulting from the

division operation in the probabilistic domain and are derived in AppendixA.6.2

F
p
q
x
y
=

∫ x
y

q0
p1

∫ p1
q0
z

|τ|
(q1−q0)(p1−p0)dτdz q0

p1
≤ x

y ≤
q0
p0

+

∫ x
y

q0
p0

∫ p1

p0

|τ|
(q1−q0)(p1−p0)dτdz q0

p0
≤ x

y ≤
q1
p1

+

∫ x
y

p1
q1

∫ q1
z

p0

|τ|
(q1−q0)(p1−p0)dτdz q1

p1
≤ x

y ≤
q1
p0

(6.11)

S
p
q
x
y
=

1
(

q0
p1

)−(
q1
p0

)

Proof. Readers can refer to SectionA.6 in the Appendix �

Fig. 6.6: Thep-boxcdf-point division

Example 6.8. Thep-boxcdf-point resulting from the division between px and qy in the
relation px ÷ qy is computed by following the steps listed inA.6.2. Depicted in Fig.6.6
the result of computing the division in the2D-space and it is equal to(1.5, 0.75, 0.099).

6.3 Defining thecdf interval constraint domain

The cdf constraint domain is the structure over whichcdf interval calculus is exerted.
We construct the algebraic structure over the computation domain equipped with the
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predicate symbols4U and∈[pa,qb] , thecdf constraint relations, which belong to the sig-
natureΣU. 4U is thecdf point ordering and∈ [pa, qb] is interpreted as the constraint of
acdf interval variable to take its value within the specified domain. The main idea of the
system is to perform interval calculus which guarantees that the domain of any variable
is enveloped by acdf interval.

The fundamental algebraic structure of thecdf-interval constraint domain is the in-
terval which encloses a set ofcdf-points characterized in the2D-space:U1 orUb. To
remain computationally tractable, we do not maintain a fulldomain representation of
points which define the set of distributions; rather we definethe interval domain which
encloses a family of probability distributions. Definedcdf intervals, in the constraint do-
main, are employed to reason about data with uncertainty inexpensively in the Constraint
Logic Programming (CLP) paradigm.

6.3.1 cdf -interval structure

The key element to acdf-interval domain is the uniformcdf distribution it lies on. How-
ever, to remain computationally tractable we do not maintain a full domain representa-
tion of the points defining the distribution. Instead, we approximate the curve by a line
whose extreme points are the bounds of the interval. Elements of the interval domain,
belonging toU1, lie on this linear curve.

Definition 6.7 (cdf -interval domain). is a pair [pa, pb] satisfying pa 4U1 pb and de-
noting the convex structure enclosing the set:

{px = (x, Fp
x) | pa 4U1 px 4U1 pb, a ≤ x ≤ b, and Fp

x =
Fp

b − Fp
a

b− a
.(x− a)+ Fp

a } (6.12)

Property 6.7. A cdf variable X in the constraint relation X∈ [pa, pb] takes its value
from the constraint domain range enclosed by the twocdf-points pa and pb.

Example 6.9. Consider acdf-variable in the relation X∈ I whereI = [(1, 0.16),
(7.75, 0.98)], illustrated in fig.5.6[a]. X can take any point value(x, F I

x) such that
1 ≤ x ≤ 7.75 and FI

x =
0.98−0.16

7.75−1 .(x− 1)+ 0.16.

Together with real (min, max) operations, the second order stochastic dominance is
employed in thep-boxframework to characterize the bounds of the interval. Designated
bounds are chosen to follow uniform distributions in order to simplify the computations.
The enveloped set ofp-box cdf-points has an upper boundcdf with the fastest rising
slope and which is dominated by all enclosed distributions in the interval. Conversely,
the lower boundcdf has the slowest rising slope and it is dominating allcdf distributions
contained within the interval bounds.

Definition 6.8. [pbox cdf-interval domain] is a pair [pa, qb] satisfying pa 4Ub qb and
denoting the set:

{px = (x, Fp
x ,S

p
x) | pa 4Ub px 4Ub qb} (6.13)

where a≤ x ≤ b , Fp′
a ≥ Fp

x ≥ Fq′

b and Sp
a ≥ Sp

x ≥ Sq
b
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Fp′
a andFq′

b are the linear projections of quantilex onto thecdf-distribution bounds
and they are computed as follows:

Fp′
a = min(Fp

a − Sp
a(a− x), 1) and Fq′

b = max(Fq
b − Sq

b(b− x), 0) (6.14)

Example 6.10. A cdf-variable X in the constraint relation X∈ I. I = [(1, 0.16, 0.16),
(8, 0.64, 0.08)], illustrated in fig.5.6 [b]. X can take any point value(x, F I

x,S
I
x) such

that 1 ≤ x ≤ 8, FI
x bounds lie between min((0.16− 0.16(1− x)), 1) ≥ F I

x ≥ max((0.64−
0.08(8− x)), 0), and the average step probabilistic value is0.16≥ SI

x ≥ 0.08

Property 6.8. A cdf variable X is sought to range over acdf-interval domainI =
[pa, qb] if and only if X∈ [pa, qb]

Definition 6.9. The smallest convex interval which represents two arbitrary points px
and qy defined in a 2D-space lattice is: [glbUb(px, qy), lubUb(px, qy)].

Theorem 6.3. A p-box cdf-interval[pa, pb] is convex and it forms a lattice structure

Proof. Let I = [pa, pb] be ap-box cdf-interval. If rs andvt ∈ I then by definition6.8
pa 4Ub rs, vt 4Ub pb. The bounding pointspa and pb are theglbUb and thelubUb of
all points lying within the interval includingrs andvt. One can deduce that all points
lying betweenglbUb(rs, vt) andlubUb(rs, vt) exist∈ I , hence, the domain range specified
as [glbUb(rs, vt), lubUb(rs, vt)] ∈ I . This proofs that the domain [pa, pb] is convex with
uniqueglb andlub which forms, from Theorem6.1, a lattice structure. �

Property 6.9. If r s, vt ∈ I = [glbUb(px, qy), lubUb(px, qy)], then,glbUb(rs, vt) ∈ I and
lubUb(rs, vt) ∈ I. One can deduce that all points lying betweenglbUb(rs, vt) and

lubUb(rs, vt) exist∈ I, hence, the domain range specified as [glbUb(rs, vt), lubUb(rs, vt)]
∈ I

Example 6.11. Fig. 6.7(b) visualizes Property6.9. Clearly, the smallest convex interval
that forms the two points rs and vt: [glbUb(rs, vt),lubUb(rs, vt)]
= [(6, 0.52, 0.08), (8, 0.45, 0.06)] ∈ [(4, 0.42, 0.09), (9, 0.405, 0.047)] which, in turn, is
the smallest convexp-boxcdf-interval that represents px and qy. Similarily, Fig. 6.7(a)
depicts that[(6, 0.45), (8, 0.73)] ∈ [(4, 0.17), (9, 0.87)] for thecdf-interval domain.

6.3.2 cdf -Interval domain calculus

It is worth noting that thecdf-interval domain calculus guarantees an assignment of
p-box cdf-interval domains to variables. This assignment is essentially a convexcdf
structure. The convexity of the structure maintains an inexpensive computation of do-
mains in a disjunction. This is due to the fact that interval operations are exerted on the
predefined bounds of the given ranges. We can construct an algebra over the variables
taking their value in the2D-space specified as (quantiles× probability distributions),
R×[0, 1]×R+ in theU1 domain andR×[0, 1] in theUb domain.
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(a) (b)

Fig. 6.7: Convex interval representation [a]cdf-interval [b] p-boxcdf-interval

Definition 6.10. The algebraic convex cdf structure is defined in the set of cdfdomain
of rangesRU. Each element in the setRU is a convex subset ofU.

Definition 6.11. The cdf constraint domain is the algebraic structure ofRU, ordered by
the4U and defines the cdf constraint relations⊙ and∈[pa,qb]. { RU, 4U, ⊙U, ∈[pa,qb] }

Definition 6.12. Let I = [pa, pb] and J = [qc, qd] be two interval ranges∈ RU the
ordering relation4U over the two intervals is defined as:

[pa, pb] 4U [qc, qd] ⇔ pa 4 qc and pb 4 qd (6.15)

Definition 6.13. Two cdf-interval rangesI = [pa, pb] andJ = [qc, qd] ∈RU are in a dis-
junction. The convex representation which encloses all elements from the two intervals
I andJ is their union

lubRU ([pa, pb], [qc, qd]) = [glbb(pa, qc), lubb(pb, qd)]

: glbb(pa, qc) 4U lubb(pb, qd) (6.16)

Definition 6.14. The intersection of two cdf-interval rangesI = [pa, pb] andJ = [qc, qd]
encloses common elements,∈ U, from the two intervalsI andJ

glbRU ([pa, pb], [qc, qd]) = [lubb(pa, qc), glbb(pb, qd)]

: lubb(pa, qc) 4U glbb(pb, qd) (6.17)

The meet and join operations over thep-boxcdf-interval ranges∈RU should main-
tain the convex property of the resulting interval. The result of these operations is an
element ofRU. In other words, the lower boundcdf distribution should always be
dominated by the upper boundcdf uniform representation to ensure the second order
stochastic dominance. When an area of conflict takes place, the case when the min-
imum possible probability distribution is greater than itsmaximum interpretation, the
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p-boxcdf operation seeks to further prune the resulting domain in order to eliminate the
conflict. This elimination is exerted in two steps: 1) Extract the point where the two
designated lines intersect; 2) The lower boundcdf-points is assigned the point of inter-
section. All points lying below this intersection are eliminated from the resultingp-box
cdf-interval domain.

This operation is illustrated in Fig.6.8 during the intersection operation where the
calculatedlubb is (2, 0.07, 0.24). In this illustration lower bound and upper bound distri-
butions intersect at (2.48, 0.16, 0.24). The area of conflict occurs between (2, 0.07, 0.24)
and (2.48, 0.16, 0.24), in this area the minimumcdf-distribution is greater than its max-
imum presentation. To maintain the consistency of data (i.e. the convexity of the struc-
ture) the algorithm further prunes the resulting domain. This is exerted by shifting the
point (2, 0.07, 0.24) to (2.48, 0.16, 0.24). Eventually, the additional calculation enforces
the convex envelopment property, where thecdf-distribution bounds enclose all points
which belong to the interval under consideration.

Fig. 6.8: ComputingglbRU andlubRU

Example 6.12. Fig. 6.8 shows the computation of the meet and jointglbRU and lubRU
constraints exerted on two variables X and Y. X∈ [(1, 0.16, 0.22), (8, 0.49, 0.05)] and
Y ∈ [(2, 0.07, 0.24), (9, 0.67, 0.08)]

glbRU (X,Y) = [(2.48, 0.16, 0.24), (8, 0.58, 0.08)]

lubRU (X,Y) = [(1.0, 0.16, 0.22), (9, 0.54, 0.05)]

6.3.3 cdf -interval domains arithmetic operations

Clearly this work follows the real interval arithmetic introduced inBenhamou and Older
(1997). In particular, when the degree of knowledge provides equal weight to each data
value, the computed intervals are identical.

The knowledge representation in thecdf-intervals is the tightest possible uniformly
distributedcdf-bounds enveloping an unknown probability distribution. This encapsula-
tion describes the data whereabouts minimum and maximum possible chance of occur-
rence.
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For⊙RU ∈ {+RU ,−RU ,×RU ,÷RU } a binary interval arithmetic over the2D-space we
seek:

[pa, pb] ⊙RU [qc, qd] = {pX ⊙ qY | pX ∈ [pa, pb], qY ∈ [qc, qd]} (6.18)

Theorem 6.4. A binary interval arithmetic relation exerted over two p-box cdf-intervals
yields a convex structure.

Proof. The proof follows the work ofStark and Woods(1994); Williamson and Downs
(1990) and noted in Section2.2. Any two ranges, each enclosing a differentcdf distribu-
tion, can be involved in a relation given by a function. This relation encloses their joint
cdf-distribution. Probabilities resulting from all possiblepairwise relations between two
ill-defined random variables are contained within the output computation exerted on the
upper and the lowercdf distribution bounds which are supported in Theorem6.3 to
maintain a convex structure. �

From this generic methodology we derivecdf equations for the binary arithmetic
operations listed in Equation6.18. Such operations seek the computation of the maxi-
mum and the minimum possiblecdf bounds that encapsulate the probability distribution
resulting from the random binary arithmetic operation. We have chosen the bounding
cdf-distributions to be uniform, as described by Equation2.2, due to its inexpensive
linear computation as opposed to other existing probability distributions.

Addition ‘ +RU ‘

Consider two intervalsI = [pa, pb] andJ = [qc, qd], their arithmetic addition is a result
of adding every two pointspx andqy, each lying within one of the intervals which belong
to the binary computation. It is worth noting that this computation is very expensive if
it is exerted in a pointwise manner. Hence, we rely on the convex property of thep-box
cdf-interval to perform this computation on the interval bounds only. The result of this
computation yields ap-box cdf convex structure which encloses all possible quantiles
as well as probability distributions that can be output fromthe arithmetic addition op-
eration. The addition of thecdf-intervals is exerted on the bounding quantile values
using real interval arithmetic addition, the jointcdf addition is conducted on the twocdf
bounding distributions separately, The resulting convex interval is specified by

[(lb+, F
I+J
lb+
,SI+J

lb+
), (ub+, F

I+J
ub+
,SI+J

ub+
)]

Real interval arithmetic addition is applied to compute lower and upper quantile bounds
respectively denoted aslb+ andub+. The resultingcdfs, F I+J

lb+
and F I+J

ub+
are obtained

by superimposing lower bound distributions (Fp
a andFq

c) and upper bound distributions
(Fp

b andFq
d) respectively. The computation of thecdf values and slopes is based on the

convolution operation previously discussed in section2.2.

lb+ = min(a+ c, a+ d, b+ c, c+ d) andub+ = max(a+ c, a+ d, b+ c, c+ d) (6.19)
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F(I+J)
lb+

=

∫ lb+
alb+clb

fIJ(z)dz

F(I+J)
ub+

=

∫ ub+
aub+cub

fIJ(z)dz (6.20)

SI+J
lb+
=

1
(blb + dlb) − (alb + clb)

SI+J
ub+
=

1
(bub + dub) − (alb + clb)

(6.21)

AppendixA.3 describes the proof of this finding. It shows that the result of the integra-
tion in the above equations is a linear computation; knowingthe bounds of the uniform
distributions we directly substitute their values in orderto obtain the bounds of thecdf
distributions.alb andclb are quantiles withcdf value equal to 0;bub anddub are quantiles
with cdf value equal to 1. These quantiles are located respectively on the lower bound
and upper bound uniformcdf distributions.

The interval addition operation can be further generalizedto the n-ary relation case.

Definition 6.15 (n-ary cdf -interval addition). n cdf-intervals involved in the addition
operation is denoted by

[(lbn
+, F

n+
lb+
,Sn+

lb+
), (ubn

+, F
n+
ub+
,Sn+

ub+
)]

lbn
+ = (alb1 + ... + albn) and ubn+ = (aub1 + ... + aubn)

Fn+
lb+
=

1
n!

(alb1 + ... + albn − lbn
+)

n

(blb1 − alb1)...(blbn − albn)

Fn+
ub+
= 1−

1
n!

(aub1 + ... + aubn − ubn
+)

n

(bub1 − aub1)...(bubn − aubn)

Sn+
lb+
=

1
((blb1 + ... + blbn)) − (alb1 + ... + albn)

Sn+
ub+
=

1
(bub1 + ... + bubn) − (aub1 + ... + aubn)

Example 6.13. Let I andJ be twocdf-intervals such thatI = [(1, 0.8, 0.099),
(2, 0.03, 0.02)] and J = [(3, 0.7, 0.1), (6, 0.02, 0.01)]. The computedp-boxcdf interval
addition is exerted on thecdf bound points defined in the2D-space (values and knowl-
edge about their occurrence). Fig.6.9 illustrates the arithmetic additionp-box cdf-
interval relationI+J. Result of the operation is specified by thecdf-interval [ra+c, rb+d] =
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6.3. Defining thecdf interval constraint domain

Fig. 6.9: Thecdf-interval addition

[(4, 0.75, 0.049), (8, 0.02, 0.006)]. Note that in the absence ofcdf knowledge distribu-
tion, where candidate intervals have equal uncertainty weights, we obtain a real interval
arithmetic addition[4, 8]. The additional knowledgep-boxcdf-interval representation
introduces is the fact that any point lying within the interval bounds has an average
step probability value varying within[0.6%, 4.9%] with a minimum probability value
between[0%, 2%]. Clearly, the span of thep-boxcdf-interval domain resulting from the
addition operation increased along the quantiles. It indicates that thecdf bounded dis-
tributions, covering more real quantiles in a uniform manner, have decreased in values
(minimum and maximum probability distributions) along with slopes (the average step
probabilistic values).

Multiplication ‘ ×RU ‘

The multiplication operation, ofI = [pa, pb] andJ = [qc, qd] , is exerted on pair of points
belonging to the intervals in a binary relation. The result of this operation is enveloped
by ap-boxcdf-interval whose bounds are defined as

[(lb×, F
I×J
lb×
,SI×J

lb×
), (ub×, F

I×J
ub×
,SI×J

lb×
)]

Operation on quantile values follows the conventional realinterval arithmetic mul-
tiplication. The lower and upper bounds are defined bylb× andub×. Recall that data
values can be negative:

lb× = min(a× c, a× d, b× c, c× d) andub× = max(a× c, a× d, b× c, c× d)

The cdf-distributions which envelop the data whereabouts of the interval resulting
from the multiplication operation ofI × J can be computed as detailed inA.4.2. They
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are defined as:

F I×J
lb×
=

∫ lb×

alb×clb

fIJ(z)dz

F I+J
ub×
=

∫ ub×

aub×cub

fIJ(z)dz (6.22)

The slope of thecdf-distributions are

SI×J
lb×
=

1

IJu
lb − IJl

lb

SI×J
ub×
=

1

IJu
ub− IJ l

ub

WhereIJl
lb =min{albclb, albdlb, blbclb, blbdlb}, IJu

lb =max{albclb, albdlb, blbclb, blbdlb},
IJl

ub =min{aubcub, aubdub, bubcub, bubdub} andIJu
ub =max{aubcub, aubdub, bubcub, bubdub}.

AppendixA.4 derives the proof of the above equations. To compute,alb, clb, blb, dlb,
aub, cub, bub, dub , the bounds of thecdf distributions which envelopI andJ we refer to
the linear EquationA.10. Each of these bounds has apdf value equal to 0.

Fig. 6.10: Thecdf-interval multiplication

Example 6.14. Thep-boxcdf-interval which results from the multiplication operation
overI×J = [(1, 0.8, 0.099), (2.0, 0.03, 0.02)]×[(3.0, 0.7, 0.1), (6, 0.02, 0.01)] is computed
in the2D-space by computing thep-boxcdf-point multiplication of the interval bounding
points as detailed in AppendixA.4.2.

The result of multiplyingI × J is the depictedp-box cdf-interval in Fig. 6.10.
[r lb× , rub× ] = [(3, 0.64, 0.014), (12, 0.0019, 0.00019)]. Observably, the span of quantiles
along this interval has increase and the average step valuesobtained are[0.019%, 1.4%].
Probabilities, in this case, are fairly distributed along ahigher range of quantiles.

Subtraction ‘−RU ‘

Thep-boxcdf-interval which results from the difference operation, ofI = [pa, pb] and
J = [qc, qd] is defined as

[(lb−, F
I−J
lb−
,SI−J

lb−
), (ub−, F

I−J
ub−
,SI−J

lb−
)]
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lb− = min(a− c, a− d, b− c, c− d) andub− = max(a− c, a− d, b− c, c− d)

F I−J
lb−
=

∫ lb−

alb−dlb

fIJ(z)dz

F I−J
ub−
=

∫ ub−

aub−dub

fIJ(z)dz (6.23)

SI−J
lb−
=

1

IJu
lb − IJ l

lb

SI−J
ub−
=

1

IJu
ub− IJl

ub

WhereIJl
lb = min{alb − clb, alb − dlb, blb − clb, blb − dlb}, IJu

lb = max{alb − clb, alb −

dlb, blb − clb, blb − dlb}, IJ l
ub = min{aub − cub, aub − dub, bub − cub, bub − dub} andIJu

ub =

max{aub− cub, aub− dub, bub− cub, bub− dub}.
The derivation of the above equations are shown in AppendixA.5. Subtractions on

the bounding points are exerted. Resultingp-box cdf-points enclose all possiblecdf
distributions resulting from the point-wise subtractionsof points lying within the two
intervals under consideration.

Fig. 6.11: Thecdf-interval subtraction

Example 6.15. Thep-boxcdf-interval difference betweenI and J in the relationJ − I
computes thep-boxcdf-interval which envelops the output of the subtraction operation
J − I is shown in Fig.6.11. [r lb− , rub− ] = [(1, 0.39, 0.049), (5, 0.34, 0.006)]. Any point
lying within the interval bounds has an average step probability value varying within
[6%, 4.9%] with a minimumcdf value 0.3. Notice that thiscdf value is obtained by
projecting the quantile of the lower bound onto the dominantcdf distribution.
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Division ‘÷RU ‘

The ratio operation, ofI = [pa, pb] and J = [qc, qd] yields a p-boxcdf-interval whose
bounds are defined as

[(lb÷, F
I÷J
lb÷
,SI÷J

lb÷
), (ub÷, F

I÷J
ub÷
,SI÷J

lb÷
)]

lb÷ = min(a÷ c, a÷ d, b÷ c, c÷ d) andub÷ = max(a÷ c, a÷ d, b÷ c, c÷ d)

F I÷J
lb÷
=

∫ lb÷

alb
dlb

fXY(z)dz

F I÷J
ub÷
=

∫ ub÷

aub
dub

fXY(z)dz (6.24)

SI÷J
lb÷
=

1

IJu
lb − IJl

lb

SI÷J
ub÷
=

1

IJu
ub− IJ l

ub

WhereIJl
lb =min{alb

clb
,

alb
dlb
,

blb
clb
,

blb
dlb
}, IJu

lb = max{alb
clb
,

alb
dlb
,

blb
clb
,

blb
dlb
},

IJl
ub = min{aub

cub
,

aub
dub
,

bub
cub
,

bub
dub
} andIJu

ub =max{aub
cub
,

aub
dub
,

bub
cub
,

bub
dub
}.

AppendixA.6 details the proof of the above equations.

Fig. 6.12: Thecdf-interval division

Example 6.16. The computation of thep-boxcdf ratio J ÷ I is listed in AppendixA.6.2
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6.3. Defining thecdf interval constraint domain

The resultingp-boxcdf-interval is depicted in Fig.6.12. It is specified by the cdf-
interval [r lb÷ , rub÷ ] = [(1.5, 0.47, 0.05), (6, 0.42, 0.02)]. Clearly the slope of the lower
bound distribution increased in this case. This is due to thefact that the span of the
quantile bounds have shrinked because of the division operation.

Noticeably, the core operations, computed overp-boxcdf-intervals, adopt the com-
putation in the2D-space: real arithmetic and probabilistic computation. The latter op-
erations are proved to be linear, in AppendixA.3, A.4, A.5 and A.6 due to thecdf
monotonic property and since we exert these operations on linear uniform distributions
which enclose the intervals under consideration. The computation seek to find two val-
ues for thecdf bounds and their slopes. Obtained domains are proved to havea convex
algebraic structure which encloses an unknown probabilitydistribution. Examples6.13,
6.14, 6.15and6.16further ellaborate that shrinking the real quantile boundsyields an
increase in the range ofcdf distributions bounding the resultant interval and vise versa.
This is due to the fact that the uniform distribution fairly divides the average step prob-
abilistic value over the quantile range. Yet the output interval encloses the unknown
probability distribution due to the probability theory inFerson et al.(2003); Williamson
and Downs(1990).

83





CHAPTER 7

PRACTICAL FRAMEWORK

In the constraint programming paradigm relations between variables are specified as
constraints. A set of rules and algebraic semantics, definedover the list of constraints,
formalize the reasoning about the problem. As a fundamentallanguage component in
CLP, these set of rules, with a syntax of definite clauses, form the language schemeJaffar
and Lassez(1987). The constraint solving scheme is intuitively and efficiently utilized in
the reasoning over the computation domain. The scheme formally attempts at assigning
to variables a suitable domain of discourse equipped with anequality theory together
with a least and a greatest model of fix-point semantics. Starting from an initial state the
reasoning scheme follows a local consistency technique which attempts at constraining
each variable over thecdf-interval domain while excluding values not belonging to the
feasible solution.

7.1 Thecdf-interval language scheme

Definition 7.1. The system of constraints assigns each variable a cdf-interval range
from RU

1. function symbols, mapping variables to cdf-intervals, are∈ {+U,×U,−U,÷U}

2. relation symbols are∈ {=U,4U}

3. X ∈ [pa, pb] constrains the variable X to a domain range such that
pa 4U px 4U pb

4. CU 4U CU1 is in the set of constraints where CU and CU1 are specified as
expressions
(i.e. constants, variables and operations∈ {glbU , lubU ,⊙})
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The constraint system behaves like a solver over real intervals. It is based on the
relational arithmetic of real intervals where arithmetic expressions are interpreted as
relationsCleary(1987). Variables in a relation are expressed in terms of others and sub-
ject tocdf-interval domain refinement using local consistency techniques. To simplify
the complexity of the operations, n-ary constraints are decomposed into primitive ones
which contain at most twocdf-interval variables in a relation.

The notion of arc consistency inMackworth(1977) ensures that, for a binary rela-
tion, every pair of points enveloped by the domain of variables beloging to the relation
must be satisfied. This notion, however, consists of an infinite number of checks, when
adopted in thecdf-interval algebraic structure, since the domain encloses an infinitesi-
mal number of elements in the 2D-space. Thecdf-interval scheme instead adequately
seeks the local consistency on the interval bounds and this implies that every pair of
points lying within the bounds satisfy the system local consistency. Domain holes are
not taken into consideration because they increase the system computational complexity.

Property 7.1. Let C1 4U C2 be a primitivecdf constraint. This binary constraint is
local consistent if and only if:

C1. glbU(C1) 4U glbU(C2) and

C2. lubU(C1) 4U lubU(C2)

7.2 Thecdf-interval inferrence rules

Operations which refine thecdf-interval domain exclude elements from the domain in
order to satisfy the conditions defined by the local consistency notion. This refinement
is also called domain pruning and it is intuitively exerted on thecdf-interval domain
bounds defined in the 2D-space. Relations are handled using the transformation rules
which extend those defined over the real intervals coupled with inferences over the
bounds of thecdf distributions. The solver converges to a fixed point or infers fail-
ure. We ensure termination of the generic constraint propagation algorithm because the
cdf-interval domain ordering4U is reflexive, antisymmetric and transitive. Hereafter
we present the main transformation rules for the basic arithmetic operations. When a
domain remains unchanged we will use the following notation: I = [pa, pb], J = [qc, qd]
andK = [re, r f ]. The cdf-variables are denoted byX, Y andZ and their initial binding
is set toX = I , Y = J andZ = K . We attach a (′) to points on the bounds when they
are subject to domain prunning (adjustment due to the operation). Failure is detected if
some domain bounds do not preserve the ordering4U.

7.2.1 Ordering constraint X 4U Y

To infer the local consistency of the binary ordering constraint, we extend the lower
cdf-bound ofX and contract the uppercdf-bound ofY. This is to maintain the domain
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interval ordering described previously in Section6.3.2. To infer about the ordering con-
straint we use the following rule:

pb
′
= glb(pb, qd), qc

′
= lub(pa, qc)

{X ∈ I ,Y ∈ J,X 4U Y} 7−→ {X ∈ [pa, pb
′],Y ∈ [qc

′, qd],X 4U Y}

Example 7.1. Let the initialcdf domain binding for X∈ [(2.0, 0.4, 0.8), (6.0, 0.2, 0.05]
and Y∈ [(1.0, 0.6, 0.7), (5.0, 0.1, 0.06)], the inequality constraint X4U Y, as shown in
Fig. 7.1, prunes the domain of X from the upper bound and the domain of Yfrom the
lower bound. The output domains from this operation are X∈ [(2.0, 0.4, 0.8), (5.0, 0.1, 0.06)]
and Y∈ [(2.0, 0.4, 0.8), (5.0, 0.1, 0.06)]. Clearly resulting domains preserve the convex
property of thep-boxcdf-intervals.

Fig. 7.1: Ordering constraint execution. Initial bindingsareX ∈ I , Y ∈ J.

7.2.2 Equality constraint X = Y

The binary equality constraint seeks at refining extreme points bracketing the domains
of both variables such that resulting domains are identical. Resulting domains from the
equality areX,Y ∈ [pa

′, pb
′] after conducting the intersection on the original domains.

This is exerted using the following inference rule:

pb
′
= glb(pb, qd), pa

′
= lub(pa, qc)

{X ∈ I ,Y ∈ J,X = Y} 7−→ {X ∈ [pa
′, pb

′],Y ∈ [pa
′, pb

′],X = Y}

7.2.3 Ternary addition constraintsX +U Y = Z

The addition operation is implemented by summing up pair of points, defined in the
2D space and located within thecdf-interval bounds which enclose the domain ranges
of X andY. This operation is convex and can be computed from the end points of the
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domains involved in the addition. Thecdf-domain ofZ is updated to envelop all points
defined in that range. The inference rule applied in this operation maps the Cartesian
product of thecdf initial binding domains involved in the relation (I × J × K ) to a
new Cartesian product (I ′ × J′ × K ′). The resulting Cartesian productR3

U
includes all

possible three-point-set which satisfy the local consistency of the constraint and which
is specified as+U ≡ {(px, qy, rz) : px, qy, rz ∈ U, px + qy = rz}. Notice that initial
bounds, enveloping the domain ofZ, affect this triplet-point set. The resulting full set
of solutions is given by+U

⋂
I × J × K . To obtain the output domain bindings, we

project the Cartesian product onto each variable domain involved in the relation. The
output Cartesian product when projected on the domain ofX yields the set of elements
specified as{px : ∃qy, rz(px, qy, rz) ∈ +U

⋂
I × J × K }. To infer about thecdf ternary

addition constraint we use the following:

r f
′
= (ub+, F I+J

ub+
,SI+J

ub+
), re

′
= (lb+, F I+J

lb+
,SI+J

lb+
)

{X ∈ I ,Y ∈ J,Z ∈ K ,Z = X +U Y} 7−→ {X ∈ I ,Y ∈ J,Z ∈ [re
′, r f

′],Z = X +U Y}

pb
′
= (ub−, FK−J

ub−
,SK−J

ub−
), pa

′
= (lb−, FK−J

lb−
,SK−J

lb−
)

{X ∈ I ,Y ∈ J,Z ∈ K ,X = Z −U Y} 7−→ {X ∈ [pa
′, pb

′],Y ∈ J,Z ∈ K ,Z = Z −U Y}

The projection onto theY domain is symmetrical.

Example 7.2. Table7.1and Fig.7.2depict the execution steps of thecdf ternary addi-
tion inference rules, exerted on the variable domains involved in the relation Z= X+UY.
Observe that domain pruning is performed in a2 dimensional manner: quantile andcdf.
The addition of the two variables X and Y is performed on the bounds of their prede-
fined domains then it is projected onto the initial bindings.The first row in Fig. 7.2
shows output domains from the addition I+ J, K− J and K− I. Domain operations are
exerted on the extreme points. The second row illustrates the intersection of the output
domains with the initial bindings, assigned to Z, X and Y. Obtained domains from the
ternary addition operation areK′, J′ andI′. Clearly in this example pruning real quan-
tile bounds is identical to that of real domains and since output domains preserve the
stochastic dominance property no further pruning takes place.

Example 7.3. Table7.1and Fig. 7.3 show another example which incorporates differ-
ent cdf distribution bounds issued from the same real quantiles. The property of these
distributions were tweaked to affect the output domains pruning. This is due to the fact
that the model seeks to preserve the convexity of thep-boxcdf intervals. Pruned do-
mains resulting from the operation detailed in this examplehave different real lower
bound quantiles:1.68 and2.55 for X and Y respectively.
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Initial bindings (Example7.2) X Y Z

X +U Y =

[(0, 0.6, 0.099), (2, 0.03, 0.01)] +U [(1, 0.65, 0.049),

[(1, 0.7, 0.098), (3, 0.1, 0.04)] (5, 0.044, 0.008)]

Z −U X =

[(4, 0.8, 0.05), (6, 0.05, 0.008)] −U [(2, 0.6, 0.033),

[(0, 0.6, 0.099), (2, 0.03, 0.01)] (6, 0.467, 0.004)]

Z −U Y =

[(4, 0.8, 0.05), (6, 0.05, 0.008)] −U [(1, 0.56, 0.033),

[(1, 0.7, 0.098), (3.0, 0.1, 0.04)] (5, 0.2, 0.006)]

Output variable domain bounds [(1, 0.56, 0.033), [(2, 0.6, 0.033), [(4.0, 0.8, 0.05),

(2.0, 0.03, 0.01)] (3.0, 0.1, 0.04)] (5.0, 0.044, 0.008)]

Initial bindings (Example7.3) X Y Z

X +U Y =

[(0.0, 0.4, 0.25), (2.0, 0.1, 0.06)] +U [(1.0, 0.45, 0.11),

[(1.0, 0.5, 0.2), (3.0, 0.2, 0.05)] (5.0, 0.15, 0.027)]

Z −U X =

[(4.0, 0.3, 0.9), (6.0, 0.04, 0.02)] −U [(2.45, 0.23, 0.195),

[(0.0, 0.4, 0.25), (2.0, 0.1, 0.06)] (6.0, 0.28, 0.015)]

Z −U Y =

[(4.0, 0.3, 0.9), (6.0, 0.04, 0.02)] −U [(1.62, 0.23, 0.16),

[(1.0, 0.5, 0.2), (3.0, 0.2, 0.05)] (5.0, 0.28, 0.014)]

Output variable domain bounds [(1.62, 0.23, 0.16), [(2.45, 0.23, 0.195), [(4, 0.78, 0.11),

(2, 0.1, 0.06)] (3.0, 0.2, 0.05)] (5.0, 0.15, 0.027)]

Table 7.1: Execution steps of ternary addition constraintZ = X +U Y.
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Fig. 7.2: Ternary addition inference rule execution. Initial bindings areX ∈ I , Y ∈ J and
Z ∈ K . Final bindings areX ∈ I ′, Y ∈ J′ andZ ∈ K ′.

7.2.4 Ternary multiplication constraint X ×U Y = Z

The ternary multiplication is not naturally convex, yetCleary(1987) introduced an al-
gorithm which seeks an output convex domain from the multiplication. The algorithm is
based on splitting the domains, especially when they are bounded by quantiles equal to
0; the problem, in this case, is solved as separate sub-problems; then, resulting domains
are unified. Ternary multiplication onp-boxcdf-intervals domains is first performed on
real quantiles using real interval domain multiplication.Resulting quantile bounds are
then projected on thecdf domain. Inferring about the product of 3cdf bounding domains
yields a set of all possible triplets taking their values from the domains (I ′ × J′ × K ′)
and specified by the set×U ≡ {(px, qy, rz) : px, qy, rz ∈ U, px × qy = rz}. Elements of
X projected on the output Cartesian product are specified as{px : ∃qy, rz(px, qy, rz) ∈
×U
⋂

I × J × K }. The ternary multiplication is described by the following inference
rules.

r f
′
= (ub×, F I×J

ub×
,SI×J

ub×
), re

′
= (lb×, F I×J

lb×
,SI×J

lb×
)

{X ∈ I ,Y ∈ J,Z ∈ K ,Z = X ×U Y} 7−→ {X ∈ I ,Y ∈ J,Z ∈ [re
′, r f

′],Z = X ×U Y}
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Fig. 7.3: Ternary addition inference rule execution. Initial bindings areX ∈ I , Y ∈ J and
Z ∈ K . Final bindings areX ∈ I ′, Y ∈ J′ andZ ∈ K ′. Initial bindings have identical
quantiles in the real domain but final bindings are further pruned to maintain thecdf
stochastic ordering property

pb
′
= (ub÷, FK÷J

ub÷
,SK÷J

ub÷
), pa

′
= (lb÷, FK÷J

lb÷
,SK÷J

lb÷
)

{X ∈ I ,Y ∈ J,Z ∈ K ,X = Z ÷U Y} 7−→ {X ∈ [pa
′, pb

′],Y ∈ J,Z ∈ K ,Z = Z ÷U Y}

The projection ontoY’s domain is symmetrical.

Example 7.4. Fig. 7.4 depicts the execution of the ternary multiplication Z= X ×U
Y where initial domain bindings are specified as X∈ [(0, 0.6, 0.099), (2, 0.02, 0.01)],
Y ∈ [(−1, 0.7, 0.098), (3, 0.1, 0.04)] and Z ∈ [(−3.0, 0.8, 0.05), (7.0, 0.05, 0.008)]. Ob-
servably, domains of X and Y remain unchanged but domain of Z was pruned to∈
[(−2, 0.37, 0.012), (6, 0.042, 0.008)] due to the multiplication operation.

7.3 Operational semantics of thecdf-intervals

In practice, a problem has a set constraints system, each constraint is defined over a
set of variables, each of which is defined over an interval domain. Constraints may
share some variables. Thep-boxcdf-interval domains, involved in a relation, are subject
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Fig. 7.4: Ternary multiplication inference rule execution.

to be pruned by the list of constraints incorporating variables bind to these domains.
The operational semantic of thep-boxcdf-intervals follows the relaxation algorithm of
fixed-point semantics proposed for real intervals in [Lee and Van Emden(1993)]. The
algorithm, as described in Algorithm3, is performed as a list of state transitions. It
defines two sets of constraint list: passivePU in which all constraints are stable (i.e.
approved to be local consistent) and activeAU which contains all constraints subject to
the consistency check. The set of domain constraints is symbolized byRU. An arbitrary

statei is specified as〈AUi ,
−−→
RUi ,

−−→
PUi〉. The initial state lists all the problem constraints

in AU, it is specified as〈AU0,Ø,Ø〉 and the final state is either a ‘fail‘ if one of the
domain constraints is empty or〈Ø,RUi

′,PU
′〉, where all constraints have been checked

for local consistency and moved from the active list to the constraints storeCU. The only
difference in the operation lies in the execution of inference rules which is performed
in the two 2D-space. For any system of constraints, if its defined inference rules are
characterized to contract variable domains while being idempotent,Older and Vellino
(1993) proved that fixed-point semantic algorithm always terminates irrespective of the
ordering of the inference rules execution.

For the set ofp-boxcdf-interval variablesVU, the relaxation algorithm is described
in Algorithm 3
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7.3. Operational semantics of thecdf-intervals

1: InitializeAU to the list of all constraints in the network
2: Initialize PU to the empty list
3: whileAU is not emptydo

4: remove the first constraint〈̺,
−−→
VU〉 fromAU

5: apply domain narrowing usingcdf inference rules on〈̺,
−−→
VU〉 to obtain

−−−→
V′U.

6: if interval narrowing failsthen
7: Exit with failure

8: else if
−−→
VU ,

−−−→
VU

′ then

9:
−−→
VU ←

−−−→
VU

′

10: for each constraint〈ξ,
−−→
YU〉 in PU do

11: if
−−→
VU and

−−→
YU share narrowed variable(s)then

12: remove〈ξ,
−−→
YU〉 fromPU and append it toAU

13: append〈̺,
−−→
VU〉 to the end ofPU which maps thecdf interval variable

domainVi toRU

Algorithm 3: relaxation algorithm

7.3.1 The design of thecdf-interval solver

An implementation of the constraint system was establishedas a separate module in the
ECLiPSe constraint programming environmentECRC(1994). ECLiPSe provides two
major components to build the solver: attributed variable data structure and suspension
handling mechanism. Fundamentally, attributed variablesare specific data structures
which attach more than one data type. Together they permit for a new definition of uni-
fication which extends the well-known Prolog unificationLe Huitouze(1990); Holzbaur
(1992). A cdf-interval point is implemented in an attributed variable data structure which
encompasses three main constituents: quantile,cdf value and slope. Whilst constraints
suspension handling is a highly flexible mechanism that aimsat controlling user defined
atomic goals. This is achieved by waiting for user-defined conditions to trigger specific
goals. AppendixB describes part of the solver source code and shows a list of query/an-
swer examples which are implemented using the list inference rules detailed in Section
7.2.

The cdf-interval solver roots and derivations

The cdf-interval language inherits its syntactic features from Prolog. A function or a
predicate can be implemented equivalently in two formats: infix or postfix. This feature
allows us to implement arithmetic operators in the infix format (for example+(pa, qb)
and pa + qb are equivalent). Hence we can seek for the development of a data-driven
language which intuitively realizes meta-programming.

cdf-interval domains are defined over reals:
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1. quantiles range [−∞,+∞], the cdf values range [0, 1] and the slope values range
[0,+∞], by definition.

2. The ‘... ‘ cdf domain range operator take the boundingcdf points as parameters
to indicate that the interval ranges between the bounding points. This operator is
defined in the infix format

3. The{ ˜ , | } operators append the uncertainty components to the real quantile: cdf
value and slope

For example acdf-interval domain range is expressed by the formula
‘2˜0.7|0.86...3˜0.1|0.028 ‘ in cdf-interval solver. We definecdf-interval linear
constraints to incorporate the following:

1. cdf-interval constant expressions of the form ‘2˜0.7|0.86...3˜0.1|0.028 ‘

2. cdf-interval coefficients each multiplied by thecdf-variables

3. ‘X.::A˜FA|SA...B˜FB|SB ‘ is semantically equivalent topa 4U X 4U qb given
that pa andqb arep-boxcdf-interval points specified as (a, Fp

a ,S
p
a) and (b, Fq

b,S
q
b)

respectively.

4. Binary relations are specified as{ .<, .=< , .=, .>, .>= }

5. { +,- } are binary operations defined by the infix notation.{ + } and{ - } are left
associative and have the same binding order∗.

A linear constraint is specified by the formula (s op t) wheres andt are linear expres-
sions and op∈ { .<, .=< , .=, .>, .>= } For example
‘ (3˜0.8|0.96...4˜0.4|0.034) * X + (2˜0.7|0.86...3˜0.1|0.028) *
(Y + X + (6˜0.9|0.85...7˜0.5|0.029) ‘ is an arithmetic expression and
‘ (3˜0.8|0.96...4˜0.4|0.034) * X + (2˜0.7|0.86...3˜0.1|0.028) * Y +

X .=< (4˜0.9|0.85...5˜0.5|0.029) * Z + (6˜0.7|0.86...7˜0.1|0.028)

+ Y‘ is a linear constraint. Arithmetic constraints are the fundamental language feature
of the modeling in the constraint programming paradigm. Arithmetic constraints are lin-
ear constraints augmented by the binary arithmetic multiplication { * }. Any expression
of the form ‘X * Y + (6˜0.7|0.86...7˜0.1|0.028) .=<

(4˜0.9|0.85...5˜0.5|0.029) * Z‘ is an arithmetic constraint.

The cdf -interval delay mechanisms

We use the Eclipse suspend library in our user-defined goals implementation. Goals con-
tainingcdf variables are suspended until they are initialized and theyare subject to the
waking condition of the active constraint when variable domain bounds change. Accord-
ingly, we use ‘X1->inst ‘, ‘ X1->min ‘ and ‘X1->max ‘as suspending parameters which

∗Binding ordering of arithmetic operators is detailed in [Apt and Wallace(2006)]
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identify any changes in the variable domain. By means of constraint propagation tech-
niques we refine the variable domain, moving the boundingcdf points. Once this occurs,
the list of all system constraints attached to this variableare woken and further domain
pruning may be applied. This is exerted by calling the ECLiPSe built-in ‘wake/0 ‘. The
local consistency mechanism ensures variable domain refinement by applying thecdf-
interval inference rules.

Example 7.5. The goal ‘X.::3˜0.8|0.7...5˜0.1|0.02

, Y.::2˜0.7|0.87...4˜0.4|0.017 ‘ , X.=<Y . ‘ produces the refined domains:
‘X.::3˜0.8|0.7...4˜0.4|0.017 ‘ ‘ Y.::3˜0.8|0.7...4˜0.4|0.017 ‘ and the
delayed goal: ‘X .=< Y ‘. More examples can be found in AppendixB

7.4 Empirical evaluation

To evaluate the added value of the new constraint domain, we considered an example
provided inYorke-Smith and Gervet(2009), and attachedcdf value and slope to the
interval bounds. We tested the system for coefficients lyingon the positive quadrant
(i.e. they are assigned positive values). Example8.1 aims at solving a system of linear
equations which hascdf coefficients and unknown variables having no certainty degree
defined, i.e. the lower bound points are′(0, 1.0,∞)′ whereas upper-bound of the variable
interval is ′(∞, 0, 0)′. Shown below are pruned domains of the variables at fixed point
using our inference rules. Thecdf-intervals attached to the data (here coefficients) were
propagated onto thecdf-variables,X1 andX2. We can see that inferences on the quantile
component of the 3-D space point yield similar pruning on theresulting variable domains
and the additional information coming from thecdf and slope components demonstrate
the information gained on the density of occurrence for the resulting points within the
cdf-domains.

Example 7.6. Consider the system of linear equations(A,ℜ, b) shown below:

A =



[(−2.0, 0.5, 0.2), (2.0, 0.01, 0.095)] [(1.0, 0.3, 0.32), (2.0, 0.02, 0.083)]
[(−2.0, 0.7, 0.1), (−1.0, 0.01, 0.087)] [(−1.0, 0.2, 0.3), (−1.0, 0.01, 0.087)]
[(6.0, 0.9, 0.98), (6.0, 0.01, 0.018)] [(1.5, 0.1, 0.6), (3.0, 0.06, 0.034)]


,

ℜ =



4RU

=

=


andb =



[(3.0, 0.88, 0.4), (4.0, 0.4, 0.088)]
[(−5.0, 0.85, 0.1), (5.0, 0.02, 0.013)]
[(4.0, 0.9, 0.02), (15.0, 0.01, 0.001)]



Fig. 7.5 illustrates two skewed intersecting boxes, each encloses the output solu-
tion population residence for X1 and X2. The shown boxes are the result of applying
cdf propagation techniques on thecdf linear equations provided in this example. The
black box is the representation of X1 solution domain bounded by[(0.0, 1.0,+∞),
(5.0, 0.46, 0.07)] and the yellow one is the solution domain of the variable X2 given by
(0.0, 1.0,+∞), (2.5, 0.28, 0.07)]. Clearly, both solutions intersect in the X1-X2 2D space
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Fig. 7.5: Example8.1: Solution set resulting from thecdf computations

as illustrated by their projection depicted by the shaded checkerboard region. Typically,
the 2D projection plane matches their 2D LP solution domain and it represents the real-
interval arithmetic solution. This is due to the fact that lateral areas of the boxes share
common 2D planes in the 3D space, yet each variable encapsulates a different proba-
bilty distribution. SectionB.5, in AppendixB, shows the query/answer syntax for the
system of linear equations input to/output from our solver implementation.
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CHAPTER 8

P-BOX CDF-I NTERVALS GLOBAL

CONSTRAINTS

Global constraints have been widely used in theCPliterature in order to enhance the rea-
soning process in terms of efficiency and effectiveness. As part of a constraint solver im-
plementation, they take advantage of the constraints modeling semantics to reason about
problem specific data from a global perspectiveW.-J. van Hoeve and Katriel(2006).
Many propositions to formulate global constraints of theCPmodeling by means ofLP
representations have been thoroughly researched in the literatureRefalo(2000); Milano,
Ottosson, Refalo, and Thorsteinsson(2001); Hnich, Rossi, Tarim, and Prestwich(2011).
Such hybridizations proved to inherit the intuitive expressiveness of theCP paradigm
while applying the powerfulLP optimization techniques. These approaches aim at in-
tegrating theLP paradigm into theCP and they proved to perform very well in the
deterministic case.

In this chapter, we define the system of global constraints over the p-boxcdf-intervals
algebraic structures, by extendingInterval Linear Systems (ILS)with a second dimen-
sion: thecdf. This new proposition inherits its characteristics from the hybridization
techniques found in the literature and surveyed byRefalo(2000); Milano et al.(2001);
Hnich et al.(2011).

8.1 P-Box CDF-Intervals LP

TheCPcharacteristic of the model comes from adopting our p-boxcdf-intervals frame-
work. We build the global constraints, by transforming the problem into an equivalent
set of linear equations on the domain of quantiles which, in turn, are solved by the Sim-
plex methodChvátal (1983). We show how thep-box cdf-intervals constraint model
does generalize theILS Hansen(1979). Hence, linear systems withp-box cdf-interval
coefficients and variables can be solved by a simple polynomial transformation into a
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linear model. The approach is similar to the ILS with positive coefficients (also called
Positive Orthant Linear Interval (POLI)Beaumont(1998). This approach was adopted
by Yorke-Smith and Gervet(2009) to extract real bounds of theILS with interval coeffi-
cients in theirUCSPalgebraic structure. Resulting extreme quantiles, obtained from the
POLI, are then projected onto the probability domain in order to deduce bounds on the
cdf bounding distributions. We show that extreme points obtained inUCSPandcdf-ILS
are equivalent.

8.1.1 ExtendedUCSPTransformation (EUCSPT) Algorithm

The transformation algebra prunes output solution domainsby extracting extreme points
in the interval hull. Hence, we can obtain the full closure ofthe ILS; which represents
the problem in hand along with its data whereabouts.

Extract the 

LP & its dual

Solve 2 eplex

instances using

the Simplex method

Project onto the

bounding

cdf-distributions
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Fig. 8.1:EUCSPTAlgorithm

The algorithm as depicted in Fig.8.1 is composed of four main steps:

1. Extract theLP and its dual

2. Solve 2 eplex instances

3. Project the quantiles onto thecdf bounding distributions

4. Extract the final solutioncdf-interval bounds

Definition 8.1. LetV be a set of n p-box cdf-variables, andC a set of m linear con-
straints overV with p-box cdf-interval coefficients. A p-box cdf-intervalLinear System
UILS induced byC overV is a tuple〈A,ℜ,B〉, whereA ∈ (R × [0..1] × R+)m×n is the
matrix of the LHS intervals[glbA, lubA], B ∈ (R × [0..1]R+)m is the vector of the RHS
intervals[glbB, lubB] andℜi ∈ {≺U,4U,=,<U,≻U} ∀i = 1, ..,m is a list of m relations
defined over p-box cdf-intervals.

Theorem 8.1. The Positive Orthant Linear transformation of the cdf-intervals (POLI-
CDF) ρ = 〈A,ℜ,B〉 is the complete solution set of the interval linear inequality system
〈A‘X{ℜ}B‘〉 and it is defined as follows:

(Ai ‘ , Bi ‘) =


(glbAi , lubBi ) if {≺U,4U} ∈ ℜi

(lubAi , glbBi ) if {≻U,<U} ∈ ℜi


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Proof. According to the p-boxcdf-intervals notation, any pointpx that belongs to the
interval lies between theglb andlub with respect to the ordering4U: glb 4U px 4U lub.
Both {≻U,<U} ∈ ℜi are the mirror of{≺U,4U} ∈ ℜi.
The proof demonstrates that all realizations obtained inS1 = Σ(A,B), which is the
complete solution set of the UILS, coincide withS2 = Σ(A‘ ,B‘), which is the solution
set resulting from the transformation.
For any pointpx ∈ S2, A‘ ∈ A andB‘ ∈ B, B‘ andB‘ are theglb andlub elements of the
original interval solution set. Hence,px ∈ S1.
On the other hand, for any pointpx ∈ S1, ∃A ∈ A, B ∈ B such thatAX 4U B for
px <U ⊥, where⊥ is theglb of all points. For each linear p-boxcdf-interval inequality
though the operator4U is monotonic. Thereof, inequality holds with a decrease in the
LHS, an increase in the RHS, or both. For any point inB, Bi 4U lubBi andAi <U glbAi ,
any pointpx <U ⊥, the inequalityAi px <U glbAi px holds. �

This transformation proves the equivalence of the models. Hence, solving the pro-
duced list of constraints yields the full closure of the original CSPproblem along with
its maximum and minimum probabilities of occurrence. For a given optimization prob-
lem, we seek to extract the interval bounds enclosing the underlined objective function
Z. The maximization of the designated function exploits its upper bound. Similarly,
the minimization, introduced by the duality theoryVon Neumann(1947), searches for
the lower bound.min(Z) 4U (Z) 4U max(Z). Chinneck and Ramadan(2000) proved
that this transformation yields the interval hull of the solution set for theILS with inter-
val coefficients. This approach is adopted inBertsimas, Pachamanova, and Sim(2004);
Bertsimas and Sim(2004) in order to develop robust optimization problems forILS
under uncertainty. In the first step of the algorithm, we showhow to extract the maxi-
mization problem and its dual from the system of uncertain linear equations formulated
by thep-boxcdf-intervals.

Extract the LP and its dual.

Consider the following maximization problem over thep-boxcdf-coefficients and vari-
ables:

Maximize Z =RU

n∑

j=1

[pej , pf j ]X j

subject to
n∑

j=1

[pai j , pbi j ]X j 4RU [pci , pdi ] ∀i = 1, 2, . . . ,m

∀ j, X j ∈ [pxj , qxj ], and pxj , qxj ∈ R × [0..1] × R+
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The transformation of the above model according to Theorem8.1

max Z =
n∑

j=1

[pf j ]X j

s.t.
n∑

j=1

[pai j ]X j 4U [pdi ] ∀i = 1, 2, . . . ,m

∀ j, pxj 4U X j 4U qxj

min Z =
m∑

i=1

[pci ]Yi

s.t.
m∑

i=1

[pbji ]Yi <R [pej ] ∀ j = 1, 2, . . . , n

∀i, pyi 4U Yi 4U qyi(8.1)
n is the number of variables andm is the number of constraints.

Upper and lower bounds of thep-box cdf-intervals are dictated based on Theorem
8.1. The complexity of this splitting step isO(2m). The transformation of the above
model yields (2n+1) inequalities over p-boxcdf-interval bounding points. The produced
solution set isSi = {Sk

i |k = 1, 2, ..., 2n+1}, where the upper-bound value range isSi =

lub2n+1

k=1 Sk
i , and the lower-bound value range isSi = glb2n+1

k=1 Sk
i . Despite the fact that this

presentation can be solved in the p-boxcdf-interval constraint solver, it is not as scalable
as the Simplex method adopted to solveILS. An intermediate step needs to be introduced
in order to extract linear equations which yield equivalentsolution bounds

Example 8.1. Consider the maximization problem Maximize(X1 + X2), st.(A,4RU ,B)
shown below:

A =



[(−2, 0.5, 0.2), (2, 0.01, 0.095)] [(1, 0.3, 0.32), (2, 0.02, 0.083)]
[(−3, 0.7, 0.1), (−1, 0.01, 0.087)] [(1, 0.2, 0.3), (1.5, 0.01, 0.087)]
[(6, 0.9, 0.98), (6, 0.01, 0.018)] [(1.5, 0.1, 0.6), (3, 0.06, 0.034)]


,

ℜ =



4RU

4RU

4RU


andB =



[(3, 0.88, 0.4), (4, 0.4, 0.088)]
[(1, 0.85, 0.1), (5, 0.02, 0.013)]
[(4, 0.9, 0.02), (15, 0.01, 0.001)]



The output of the first step in the transformation will be: Maximize(X1+X2), st.(A,4U,B)

A =



(−2, 0.5, 0.2) (1, 0.3, 0.32)
(−3, 0.7, 0.1) (1, 0.2, 0.3)
(6, 0.9, 0.98) (1.5, 0.1, 0.6)


,ℜ =



4U

4U

4U


andB =



(4, 0.4, 0.088)
(5, 0.02, 0.013)
(15, 0.01, 0.001)



and the dual is formed from the maximization of the lower bounds Minimize((3, 0.88, 0.4)∗
Y1 + (1, 0.85, 0.1) ∗ Y2 + (4, 0.9, 0.02)∗ Y3), st.(A,<U,B)

AT
D =



(2, 0.01, 0.095) (2, 0.02, 0.083)
(−1, 0.01, 0.087) (1.5, 0.01, 0.087)
(6, 0.01, 0.018) (3, 0.06, 0.034)


,ℜD =


<U

<U

 andbD =


1
1



Solve2 eplex instances.

The Simplex method is then computed on the maximization and the dual of the miniza-
tion problem. The computations is exerted over the first component of the coefficient
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triplet p-boxcdf-interval point. Calculations yield the bounding quantiles of the objec-
tive function as well as the variables under consideration.Despite the fact that Simplex
method worst case complexity is exponential, it is worth noting from the literature that
it performs well in the average case. In example8.1, the calculated quantile bounds of
the objective function,x1 andx2 are [1.08, 7], [0.25, 1] and [0.83, 6] respectively.

Project the quantiles onto thecdf bounding distributions.

We performn ×m p-boxcdf-intervals division operations, as demonstrated by Lemma
6.4, provided by the set ofm contraints. Since the boundingcdf-distributions are uni-
form, i.e. forming a line equation, the division operation exerted in the probabilistic
dimension is ofO(1) complexity. The obtained quantile bounds extracted from the pre-
vious step are then projected onto the resulting domain of the divisions. This projection
has, in turn, a linear computation. It is exerted by calculating thecdf-value of a given
quantile, when it is located on acdf-distribution.

Extract the final solution bounds.

Extracted solution bound triplets are selected from the projected list of thecdf-distributions.
This list is ordered in the probability domain by means of thesecond order stochastic
dominance (Definition2.8). The lower and the uppercdf-bounds per variable are the
dominated and dominant distributions respectively. Possibly, further domain pruning
is exerted to preserve thecdf-stochastic dominance properties in order to ensure that
the maximumcdf-value of a variable quantile should be greater than, or equal to, its
minimum probability of occurrence.

Proposition 8.1. Thep-boxcdf-intervals bounding the solution domain of the variable
Xi.

Xi ∈ [glbm
j=1(p j

xi ), lubm
j=1(q j

xi )]∀i ∈ 1 . . . n

For each variableXi in the system of linear constraints, the result of the division
operation is given by the intersection of allp-boxcdf-intervals [p j

xi
, q j

xi
], i is the index of

the variable in the variable list andj is the index of its involved constraint.p j
xi andq j

xi

are the lists of lower and upper bounding points respectively. In order to extractpxi and
qxi for each variable such thatpxi 4U Xi 4U qxi , we compute theglb and thelub on p j

xi

andq j
xi

respectively resulting from all given constraints.
In Example8.1the resultingp-boxcdf-intervals forX1 andX2 are [(0.25, 0.85, 0.1),

(1, 0.75, 4.44e−17)] and [(0.83, 0.86, 0.14), (6, 0.081, 0.0055)] respectively. We can also
compute the objective functionZ by applying thep-boxcdf-intervals addition operation
X1 + X2. It is given in this example as [(1.08, 0.85, 0.06), (7, 0.75, 4.44e− 17)].

8.1.2 Algorithm Complexity

We compare our new proposed algorithm for global constraintrelaxation with the one
introduced inYorke-Smith and Gervet(2009). Note that this algorithm is constructed
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over the objective function (minimization/maximization)existing as part of the prob-
lem characteristics. This initial step bypasses the computation of the 2n eplex instances
solved in the algorithm proposed byYorke-Smith and Gervet(2009) to compute the in-
terval hull of theUCSPalgebraic structure. This set of operations was necessary in order
to extract the bounds of the solution sought for each variable. Our algorithm further adds
the bounds on the likelihood of each variable. This additional information comes from
thep-boxcdf-intervals property which guides the knowledge about the search space not
only from the real domain perspective but also from a probabilistic viewpoint. Table8.1
shows the computation complexity of each step in our transformation algorithm. Clearly,
we have gained an improved complexity when compared to the algorithm introduced in
Yorke-Smith and Gervet(2009). Moreover, the additional probabilistic information is
exerted linearly.

p-boxcdf-intervals
Extract LP and its dual O(m)
Solve 2 eplex O(2n+1)
Projection O(nm))
Extract solution bounds O(2n)

UCSP
Generate linear inequalities O(2m)
Solve 2n eplex O((2n)(2n+1))

Extract solution bounds O(2n)

Table 8.1: Computation complexity of the transformation algorithm

8.1.3 Performance Comparison

Fig. 8.2: Real-time performance

The framework was tested on two systems of constraints with densities: 12 (4 vari-
ables and 5 constraints) and 127 (17 variables and 26 constraints). Performance is given
in terms of seconds: the real-time taken by the algorithm to compute the bounds of the
final solution set. We used the ECLiPSe profiling in order to calculate the percentage of
the total time, each predicate takes to carry-out its designated taskECRC(1994).
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p-boxcdf-intervals UCSP cdf-intervals

12
va

ria
bl

es

ExtractLP 26.4% 13.04% 8.1%
Solve eplex instances 20.68% 86.95% 45.9%
Project thecdf-distributions 52.87% N/A 2.7%
Extract the solution 0% N/A 43.24%

Total real-time (sec.) 0.059 0.358 0.44

12
7

va
ria

bl
es ExtractLP 52.92% 37.65% 37.91%

Solve eplex instances 0.19% 62.34% 21.77%
Project thecdf-distributions 46.34% N/A 3.87%
Extract the solution 0.535% N/A 36.44%

Total real-time (sec.) 20.39 86.45 222.24

Table 8.2: Real-time execution

Real-time performance of thep-box cdf-intervals framework is compared to the
UCSPand thecdf-intervals with one approximatedcdf-uniform distribution. Coeffi-
cient bounds of theILS are choosen to be the same, in order to check for the ability of
the algebraic structure to shrink the bounds of the solutionset. In this experiment we
employ theUCSPtransformation algorithm adopted for theUCSPin Yorke-Smith and
Gervet(2009) and for thecdf-intervals with one approximatedcdf-uniform distribution
Saad et al.(2010). TheUCSPtransformation algorithm consists of four main steps. It
starts with extracting the set ofLP inequality constraints on the real bounds of the UCSP
and on the first component of thecdf-interval algebraic structure. The second step of
the transformation algorithm, as inYorke-Smith and Gervet(2009), computes 2 eplex
instances per variable, and it creates one maximization andone minimization objective
function over each variable. Note that in this step the optimization of the genuine ob-
jective function defined in the problem is not included in thecomputation of the interval
hull of the solution set. The third step in the algorithm computes the minimum and the
maximum values, in the domain of reals, resulting from the second step instances. The
computation over theUCSPstops at this steps and the real interval hull bounding the
solution set can be derived in the real domain. However, and since thecdf-intervals al-
gebraic structure works on a2D space, 2 extra steps are added. The first additional step
computesn×mcdf division operations. Then thecdf-intervalsglb andlub computations
are exerted to deduce thecdf bounding points.

Table 8.2 shows a comparison between the proposed EUCSPT algorithm for the
p-box cdf-intervals and theUCSPtransformation algorithm adopted for theUCSPin
Yorke-Smith and Gervet(2009) and for thecdf-intervals with one approximatedcdf-
uniform distributionSaad et al.(2010). Obviously, the EUCSPT algorithm is less ex-
pensive in terms of complexity and real runtime taken in seconds. This is due to the
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fact that, in our proposed transformation algorithm, we run2 simplex instances on the
main problem and its dual. On the other hand, theUCSPtransformation algorithm runs
2 simplex method per variable in order to extract their bounding real points. Fig.8.2
and Table8.2 illustrate that the projection onto thecdf-domain takes less real time exe-
cution when compared to solving the eplex instances per variable in theUCSPand the
cdf intervals algebraic structure.

Table8.2 shows the percentage of the real-time taken by each predicate to execute.
The third column in the table represents the execution of thecdf-intervals algebraic
structure with one approximatedcdf-uniform distribution. Clearly, both solving the 2n
eplex instances and computing the solution setglb and thelub of thecdf-interval bound-
ing points take almost the same time range. Noticeably, then×mcdf division operations
take 2.7% and 3.87% of the execution time for both the 12 and the 127 problem densities
respectively. In the case of thep-boxcdf-interval algebraic structure, shown in the first
column, they take 0.03 seconds and 9.44 seconds when 12 and 127 problem densities
are involved. We can conclude from these observations that the division operations are
not expensive in terms of execution time.

Another advantage of the proposed algorithm is that it considers the optimization
of the objective function defined in the genuine problem. Moreover,p-boxcdf-interval
bounding points of the objective function are computed and extracted by this proposed
algorithm.

8.2 Summary

This chapter introduces a relaxation technique for the global chance constraint. It defines
the LP relaxation approach utilized for global constraints over the p-box cdf-intervals.
Thep-box cdf-intervals were employed because they guarantee a full encapsulation of
the observed information along with its whereabouts. This method is a preprocessing
propagation technique that analyzes the problem from a global perspective and in a
tractable manner. Compared to existing reliable techniques, it suggests tighter as well as
more accurate bounds on the search space in a two dimensionalmanner, enclosing the
data along with its probability of occurrence. This new domain propagation proved to
be efficient and effective.
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CHAPTER 9

NETWORK TRAFFIC ANALYSIS

PROBLEM

In the field of telecommunication theNetwork Traffic Matrix (TM) is an essential tool
that identifies traffic flows between all possibleOrigin and Destination (OD)-pairs in
a given network. It is widely used to help network administrators monitor the actual
network traffic and issue cost of service reports.TM is typically used in network design
problems to seek the realization of all possible flows by installing links at minimum cost;
while satisfying the link capacity constraints (i.e. the flow cannot exceed the installed
link capacity). Accordingly,TM is employed in capacity planning, traffic engineering,
reliability analysis, network management and other network adminitrative tasks.

ExploitingTM with completeOD-pair combinations, for a real-world large network,
is an expensive computation. This matrix computation is directly proportional to the
square of the matrix dimension; in this case, the number ofOD-pair entries. To obtain
TM data two measurement mechanisms can be found: direct and indirect. The direct
approach is based on NetFlow (Claise, Sadasivan, Valluri, and Djernaes(2004)) and
sFlow (Pheal(1992)) mechanisms; it is more accurate; but more expensive. The direct
mechanism mainly exploits the packet content at several network protocol layers. On
the other hand, the indirect approach is widely used and supported in actual networks. It
is based on measuring the network link-counts; and it is exerted by theSimple Network
Management Protocol (SNMP)(Case, Fedor, Schoffstall, and Davin(1990)). The task
of measuring link-counts of a network is done at ease and its dedicated instruments are
widespread. Thereof, for real-world large networks, research has focused on algorithms
that calculate theTM based on the link-counts (Jin et al.(2008)).

Eventually, traffic volumes in the network fluctuate. Observed fluctuations urge net-
work planners to overestimate the flow in order to ensure adequate network sustainabil-
ity. Statistical methods seek at estimating demands based on prior measurements and
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building assumptions on the population of traffic distribution.
Convex modeling, such as inKoster, Kutschka, and Raack(2010), typically for-

mulate the network problem inMIP. They seek at exploiting minimum and maximum
bounds which encapsulate all feasible realizations of the end-to-end network traffic flow.
Convex frameworks seek at exploiting extreme bounds that encapsulate all feasible re-
alizations of the end-to-end network traffic flow. Estimatedresulting flow has an equal
degree/weight of uncertainty and lacks the portrayal of thedata whereabouts.

To the best of our knowledge, available techniques lack the ability to provide an
accurate model which describes natural fluctuations of the traffic flow. Hence, a repre-
sentation that account for the encapsulation of the actual distribution of data, provided
in the problem definition, is needed.

9.1 Modeling the NTAP problem

Typically, data available for theNTAP is:

1. Measurements of the traffic flow in each link.

2. Routing matrix that specifies theOD-pair network usage.

The measurement process of the link-counts is exerted by theSNMP (Case et al.
(1990)). ConsiderY a vector of sizer which identifies the measured traffic volumes
(link-counts) for each link at a given timet. r is the number of links in the network.
Successive measurements can be repeatedly taken over time.The vectorYt denotes mea-
sured link-counts at timet. The frequency oft is generally determined by the network
operator and it can vary from less than 5 mins to a month time interval. The number
of origin-destination pairs in the network is:c = n(n − 1); wheren is the number of
Network Point of Presence (POP); POPcan be either a routing or an end node. The rout-
ing matrix A is r × c; it is normally obtained from theBorder Gateway Protocol (BGP)
configurations, through theOpen Shortest Path First (OSPF), or Intermediate System
- Intermediate System (IS-IS)link weights, at the router interface. Each column inA
represents a traffic flow and each row corresponds to a link. Inthe simple case,Ai j

is set to 1 if theOD-pair i uses the linkj and 0 otherwise. Accordingly, the problem
Y = AX searches for values ofOD-pairs inX. Computed values should be able to repro-
duce link-counts which are close in value to the measured ones. Generally, theNTAP
is under-constrained because the number of links is significantly small, compared to the
number of traffic demands, (r ≪ c). This fact yields a feasible solution set that can be
infinite.

We study a fragment of a network with three nodes (A, B,C) and two bidirectional
links, as illustrated in Fig.9.1. In this networkc = 6 traffic flow variables andr = 4
directed link loads.

Fig. 9.2 is the mathematical representation of the 3 nodes problem inthe deter-
ministic case as explained inAiroldi and Faloutsos(2003). Nodes are connected by
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Fig. 9.1: Network of 3-nodes and 2-bidirectional-links

bidirectional links. Non-observableOD flows are represented by dash circles. Measur-
able traffic flows are represented by solid circles and each ispointing to theOD flow that
is possibly utilizing its corresponding link.

Fig. 9.2: Mathematical model of 3-nodes and 2-bidirectional-links



y1

y2

y3

y4


=



1 1 0 0 0 0
1 0 1 0 0 0
0 0 0 1 1 0
0 0 0 0 1 1





x1

x2

x3

x4

x5

x6



Generally, the network is subject to three types of constraints:

1. Link traffic constraints: on each link the sum of flow is equal to the measured
traffic volume

2. Traffic conservation constraints: at each router, the flowleaving the network is
destined to the router and the flow coming in the network is issued by the router.
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3. Flow conservation constraints: at each node, total incoming flow is equivalent to
the total outgoing flows.

We basically use this model and extend it to describe data anticipated bycdf-intervals
andp-boxcdf-intervals. In our model, the matrixA will contain an identityp-boxcdf-
element when the flow is assigned to the link and a zero elementwhen it is not.

9.2 Input Dataset Representation

To test the model we used the Matlab toolboxMatlab (2010) to generate and convert
measurable data intocdf-intervals andp-box cdf-intervals. Under uncertainty, data is
provided by either a single demand matrix or a set ofn distinct measured-demand ma-
trixes. In the single matrix case provided demands are oftenbased on approximating the
original measured values, forecasting traffic volumes or computing statistical assump-
tions on the data population. Whereas in the original problem a set of multiple demand
matrixes are provided each representing the demand measurement at a given time point.
The data corpus available inOrlowski, Pióro, Tomaszewski, and Wessäly(2007) and
Orlowski, Pióro, Tomaszewski, and Wessäly(2010) provide two types of datasets: sin-
gle and dynamic set of traffic matrixes. As illustrated in Fig. 9.3, we formed thep-box
cdf-intervals from the original dynamic data and we generated both Normal and Pois-
son distributions for each element in the single demand matrix to build thep-box cdf-
interval coefficients. Output coefficients from this operation are then utilized to model
theNTAP problem and form theY vector. Recall that theA matrix has an identityp-box
cdf-interval element if the corresponding traffic flow uses the link and a zerop-boxcdf-
interval element otherwise. The formed matrix coefficientsis input to the solver which
in turn seeks ap-boxcdf-interval output representation for eachnetwork flow (netflow)
variable. Resulting solution sets are then compared with the original demand matrix of
the problem in order to validate our methodology.

Fig. 9.3: Simulating the traffic loads
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9.2.1 Simulated TM

To compute the distributions, we assume that the measurement provided in the single de-
mand matrix is the mean value. We then setn as the number of readings/measurements;
(i takes values from 1 ton); for eachOD-pair we generaten values based on either Pois-
son or Normal distributions. As proposed byMedina, Taft, Salamatian, Bhattacharyya,
and Diot(2002), the Poisson distribution computation per element is as follows:

1. Generate aλi value from the uniformly distributed interval [100, 500]

2. Apply the Poisson distribution function over the generatedλi to get the value of a
network demandXi = Poisson(λi )

And the Normal distribution generation per value is as follows:

1. Generateµi (mean value) for eachOD-pair from the uniformly distributed interval
[100, 500]

2. Set the varianceσ2
i = 40 for all

3. Apply the Normal distribution function over the generated µi to get the value of a
network demandXi = Normal(µi , σi)

9.2.2 Interval coefficients formulation

In the two cases (single and dynamic demand matrixes), the measurement operation
yields a set ofn evaluations per flow variable; we simulate this scenario foreach element
in the TM; we aggregate the probability distribution generated in Section9.2.1then we
construct the flow setcdf distribution. This operation yields, for each flow variable, an
array ofn distinct quantiles along with their correspondingn cdf values; such array is
input to the preprocessing steps of each framework.
The interval representation of each flow variable is established as follows:

1. Minimum and maximum values are recorded to represent theUCSPinterval bounds.

2. cdf-distribution of n-steps is computed based on generated Poisson or Normal
distributions provided in Section9.2.1.

3. Algorithm 1 and Algorithm2 are applied to contruct thecdf-interval andp-box
cdf-interval bounds. In the first case, onecdf-uniform distribution represents the
interval and in the second case thep-box cdf-interval structure encapsulates all
possible occurrences of the data measured.
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9.3 An instance: a network with 4 nodes

For a detailed demonstration, we utilize a small hypothetical network with 4 nodes. This
network is depicted in Fig.9.4 and it is used inMedina et al.(2002) andYorke-Smith
and Gervet(2009). We employ this network to visualize how data is manipulated on the
set ofnetflow variables. As shown in Fig.9.4 all links are bidirectional except for the
link between nodesA andC. Fig. 9.4 is a snapshot at a point in time where the true
values of traffic volumes are displayed on the links.

Fig. 9.4: 4-nodes instance

Link-counts are then simulated to form the interval bounds in the 3 algebraic struc-
tures:

1. Error correction model (µ, 40) represented byUCSP

2. cdf-intervals with 1 approximatedcdf-distribution

3. p-boxcdf-intervals encapsulated by twocdf-distributions

Table9.1displays the calculated interval bounds when the data is following a Normal
distribution. Clearly, computedp-box cdf-intervals encapsulate the data whereabouts;
the framework also adds more information about the maximum and minimum probabil-
ities a quantile value can obtain.

Clearly intervals derived in the three models under consideration encapsulate the ac-
tual measured value. The second column in Table9.1 lists the hypothetical mean values
measured on the links specified in the first column. And since this measurement is based
on a Normal probability function we constructed their corresponding distributions (µ, 40)
as in Section9.2.1; we accordingly establish data within interval-bounds in an exhaustive
manner. Recognized data from this operation simulate an adequate hypothetical repre-
sentation of a standardNTAP problem. The rest of Table9.1are derived bounds for the
three models; clearly,UCSPwhich employs an error correction model over-estimates
the extreme points of the interval as shown in the last two columns; theUCSPmodel
seeks to encapsulate all possible data; As shown inYorke-Smith and Gervet(2009) the
model assumes data is following a Normal distribution whichis not always the case
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in a typical NTAP problem. Moreover, intervals provided inUCSPhave an equally
weighted knowledge of data whereabouts. In thecdf-intervals with one approximated
uniform distribution, deduced input intervals are the mostpruned; they also contain the
true measurement within their extreme bounds; unlike theUCSPthe steepness of thecdf
distribution is an acceptable indication of the data whereabouts specially when we need
to express data in an uncertain environment. However, this model considers the approx-
imation of the probability to a uniform distribution and lacks the representation of the
possible maximum and minimum probability data can happen. Thep-boxcdf-intervals
framework encapsulates all possible data along with their possible probabilities using
two uniformly distributed probabilities that are issued from the extreme points.

Example 9.1. Consider in Table9.1 the traffic flow from node A to node B: VAB; its
generated Normal distribution mean value is204. This value is bounded by the interval
of quantiles[171.02, 226.08] in theUCSPmodel. In thecdf-intervals model VAB ranges
between quantiles174.49 and206.75 with an average step value of2.9%; i.e. derived
cdf-value of quantile175.49 is 0.0664. p-boxcdf-intervals representation is a full en-
capsulation of the actual data; i.e. data cannot exist outside the interval quantile and
probabilistic bounds.p-boxcdf-interval of thenetflowvariable VAB shows that quantiles
cannot lie outside the interval[174.49, 208.12]. It is worth noting that this interval of
quantiles has tighter bounds, when it is compared to theUCSPinterval representation.
Thep-boxcdf-intervals structure indicates that probabilistic average step values lie be-
tween[2.5%, 5.3%]. Given this information, we can deduce that thecdf-value of176.49
is between a minimum value of0.09 and a maximum value of0.94.

Table9.2 demonstrates solution sets resulting from Table9.1 input interval coeffi-
cients. Each solver reasons about its corresponding input intervals and deduce the values
of the unknown Netflow variables; solutions in turn are compared with the original Net-
flow true values that are listed in column 2. Positively provided solution sets in all the
models under consideration contain the designated Netflow true values.

Similarly, the model was generated based on a Poisson distribution in order to mon-
itor the problem behavior under different hypothetical distributions. Generated input
interval coefficients are listed in Table9.3, and the output generated from the 3 models
is listed in Table9.4. Output solution sets in all cases adequately encapsulate the original
Netflow data.

For the same coefficient input bounds, Fig.9.5 illustrates the result of pruning the
outputnetflowvariableFAC in the2D space. Noticeably quantile bounds are typical in
the three models under consideration. TheUCSPshows an equal degree of occurrence
for all quantiles that lie within the interval bounds. The approximatedcdf distribution of
thecdf-intervals algebraic model lies between the two maximum andminimum uniform
probability bounds of thep-boxcdf-interval representation.

Similarly, Fig. 9.6demonstrates how thenetflowvariableFAD is pruned.UCSPand
cdf-intervals with one approximated distribution generate the same extreme quantiles.
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Derived measured bounds
p-box UCSP

True cdf-intervals cdf-intervals err correction
Values model (µ, 40)

lb cdflb slopelb ub cdfub slopeub lb cdflb ub cdfub lb ub
VAB 204 174.49 0.037 0.053 208.12 0.19 0.025 174.49 0.037 206.75 0.98 171.02 226.08
VBA 593 503.23 0.01 0.012 604.12 0.006 6.40E-05 525.88 6E-04 600 1 492.82 658.0
VAC 658 598.43 0.007 0.014 665.69 0.01 0.001 603.92 8E-04 665.69 1 591.49 701.61
VBC 565 505.32 0.01 0.014 572.58 0.09 0.004 505.32 2E-04 572.58 1 498.39 608.50
VCB 1011 890.79 0.01 0.009 1025.31 0.009 6.40E-05 913.44 7E-04 1021.19 0.99 876.92 1097.15
VCD 913 822.51 0.009 0.009 923.4 0.001 0.001 825.26 1E-04 923.40 1 812.11 977.28
VDC 927 837.42 0.02 0.016 938.30 0.006 6.50E-05 858.69 1.4E-03 932.81 0.99 827.01 992.18
TAin 863 772.92 0.01 0.011 873.81 0.16 1.53E-03 778.41 1E-04 872.43 1 762.51 927.69
TAout 593 503.23 0.01 0.012 604.12 0.006 6.40E-05 525.88 6E-04 600 1 492.82 658.0
TBin 977 887.03 0.02 0.012 987.91 0.08 3.57E-03 887.03 1E-04 983.79 1.0 876.62 1041.79
TBout 1034 943.91 0.04 0.017 1044.64 0.05 7.99E-03 943.75 9E-04 1039.15 0.99 933.35 1098.52
TCin 750 660.24 0.01 0.01 761.13 0.17 1.59E-03 664.36 1E-04 760.44 1 649.83 815.01
TCout 978 888.10 0.01 0.012 988.99 0.16 1.50E-03 893.59 7E-04 986.93 0.99 877.70 1042.87
TDin 927 837.42 0.024 0.016 938.3 0.006 6.50E-05 858.69 1.4E-03 932.81 0.99 827.01 992.18
TDout 913 822.51 0.01 0.009 923.4 0.019 1.77E-03 825.26 1E-04 923.40 1.0 812.11 977.28

Table 9.1: Link-counts whenOD-pairs are based on a Normal distribution
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Solution set bounds
p-box UCSP

True cdf-intervals cdf-intervals err correction
Values model (µ, 40)

lb cdflb slopelb ub cdfub slopeub lb cdflb ub cdfub lb ub
FAB 204 175.87 0.11 5.32E-02 208.12 0.06 1.53E-03 174.49 0 206.75 0.98 171.02 226.08
FAC 338 274.48 0.01 1.48E-02 375.37 0.16 1.50E-03 279.97 0 375.37 0.99 249.58 414.76
FAD 320 293.79 0.11 2.94E-02 323.95 0.06 1.53E-03 290.32 0 323.95 1 286.85 341.91
FBA 412 314.44 0.01 1.26E-02 482.59 0.01 6.40E-05 337.09 0 455.82 1 268.12 543.41
FBC 194 97.22 0.01 1.47E-02 265.37 0.16 1.50E-03 97.22 0 265.37 0.99 50.89 326.18
FBD 371 307.22 0.01 1.47E-02 408.10 0.09 1.77E-03 307.22 0 408.1 1 282.32 447.49
FCA 88 0.0 0.0 1.48E-02 188.78 0.01 6.40E-05 0 0 188.78 0.99 0 224.71
FCB 441 343.97 0.04 1.79E-02 511.95 0.01 6.40E-05 348.61 0 506.46 0.99 297.48 572.77
FCD 221 124.09 0.01 1.09E-02 292.24 0.17 1.59E-03 126.84 0 292.24 1 77.77 353.06
FDA 94 0 0.02 1.63E-02 188.78 0.01 6.40E-05 0 0 188.78 0.99 0 224.71
FDB 388 358.2 0.06 7.67E-02 391.83 0.01 6.40E-05 358.2 0 388.39 0.98 354.73 409.79
FDC 446 280.99 0.02 1.63E-02 580.1 0.01 6.50E-05 286.49 0 574.61 0.99 192.52 637.45

Table 9.2: Netflow variables: comparison between output solution sets and true values whenOD-pairs input coefficients are based on a Normal
distribution
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Derived measured bounds
p-box

cdf-intervals UCSP cdf-intervals
lb cdflb slopelb ub cdfub slopeub lb ub lb cdflb ub cdfub

VAB 174.49 0.0374 0.0532 208.12 0.095 2.59E-02 174.49 208.12 174.49 0.03744 208.12 1
VBA 503.23 0.0114 0.0126 604.12 6.8E-03 6.40E-05 503.23 604.12 503.23 0 604.12 1
VAC 598.43 7.2E-03 0.0148 665.69 0.1130 1.62E-03 598.43 665.69 598.43 0 665.69 1
VBC 505.32 0.0107 0.0147 572.58 0.0886 4.13E-03 505.32 572.58 505.32 2.3E-04 572.58 1
VCB 890.79 0.0152 9.6E-03 1025.31 9E-03 6.40E-05 890.79 1025.31 890.79 0 1025.31 1
VCD 822.51 8.8E-03 9.8E-03 923.40 0.1855 1.77E-03 822.51 923.40 822.51 0 923.40 1
VDC 837.42 0.0235 0.0163 938.30 6.9E-03 6.5E-05 837.42 938.30 837.42 0 938.30 1
TAin 772.92 0.0137 0.0116 873.81 0.1599 1.53E-03 772.92 873.81 772.92 0 873.81 1
TAout 503.23 0.0114 0.0126 604.12 6.8E-03 6.4E-05 503.23 604.12 503.23 0 604.12 1
T Bin 887.03 0.0183 0.0126 987.91 0.3777 3.57E-03 887.03 987.91 887.03 6.6E-05 987.91 1
T Bout 943.91 0.0407 0.0179 1044.64 0.0456 7.99E-03 943.91 1044.64 943.91 2.56E-03 1044.64 1
TCin 660.24 0.0108 0.0109 761.13 0.1661 1.59E-03 660.24 761.13 660.24 0 761.13 1
TCout 888.10 0.0140 0.0122 988.99 0.1574 1.50E-03 888.10 988.99 888.10 0 988.99 1
TDin 837.42 0.0235 0.0163 938.30 6.9E-03 6.50E-05 837.42 938.30 837.42 0 938.30 1
TDout 822.51 8.8E-03 9.8E-03 923.40 0.1855 1.77E-03 822.51 923.40 822.51 0 923.40 1

Table 9.3: Link-counts: bounds on input coefficient values that are based on a Poisson distribution
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Solution set bounds
p-box

cdf-intervals UCSP cdf-intervals
lb cdflb slopelb ub cdfub slopeub lb ub lb cdflb ub cdfub

FAB 175.87 0.1107 0.0532 208.12 0.1599 1.53E-03 174.49 208.12 174.49 0 208.12 1
FAC 274.48 7.2E-03 0.0148 375.37 0.1574 1.50E-03 274.48 375.37 274.48 0 375.37 1
FAD 293.79 0.1139 0.0294 323.95 0.1599 1.53E-03 290.32 323.95 290.32 0 323.95 1
FBA 314.44 0.0114 0.0126 482.59 6.8E-03 6.40E-05 314.44 482.59 314.45 0 482.59 1
FBC 97.22 0.0107 0.0147 265.37 0.1574 1.50E-03 97.22 265.37 97.22 0 265.37 1
FBD 307.22 0.0107 0.0147 408.10 0.1855 1.77E-03 307.22 408.10 307.21 0 408.10 1
FCA 0 2.6E-03 0.0148 188.78 6.8E-03 6.4E-05 0 188.78 0 0 188.78 1
FCB 343.97 0.0407 0.0179 511.95 9E-03 6.4E-05 343.97 511.95 343.96 0 511.95 1
FCD 124.09 0.0108 0.0109 292.24 0.1661 1.59E-03 124.09 292.24 124.09 0 292.24 1
FDA 0 0.0235 0.0163 188.78 6.8E-03 6.4E-05 0 188.78 0 0 188.78 1
FDB 358.20 0.0553 0.0767 391.83 9E-03 6.4E-05 358.20 391.83 358.20 0 391.83 1
FDC 280.99 0.0235 0.0163 580.10 6.9E-03 6.50E-05 280.99 580.10 280.99 0 580.10 1

Table 9.4: Netflow variables: output solution sets when input coefficients are based on a Poisson distribution
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Chapter 9. Network Traffic Analysis Problem

Fig. 9.5: PruningFAC in the2D space

However, the two bounding distributions of thep-boxcdf-intervals representation inter-
sect; this intersection yields a conflict in thecdf property: the maximumcdf distribution
at small quantiles is less in value than their minimum distribution; in other words, any
point that lies in the2D space before 293.79 will have a minimumcdf that is greater
than its maximum distribution; hence, it is impossible to find a solution point in this in-
consistent area; this conflict allows the solver to further prune the domain. Accordingly,
quantiles ofFAD can be 293.79 at 11% but they cannot be less than the value 293.79.

Fig. 9.6: PruningFAD in the2D space

We have generated 80 instances of the above 4-nodes network problem: 40 instances
based on Poisson distributions and the other 40 are based on Normal distributions of
OD-pairs. Link-counts were simulated. Output solution sets of all maneuvers witnessed
a total encapsulation of the generated Netflow data. Thep-box cdf-intervals algebraic
structure can further prune the output solution domains to prohibit the upper bound prob-
ability from being dominated by lower bound distribution. The solver detected an area
of conflict in 33% -42% of the cases when Poisson distributionwas employed; and 16%
- 25% of the cases were observed when Normal distribution wastaken under consider-
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9.4. Scalability Test

ation; in these cases output solution domains from thep-boxcdf-intervals were further
pruned when compared to bounded realizations resulting from UCSPandcdf-intervals;
this is becausep-boxcdf-intervals disregard unrealistic quantiles from the search space.

Fig. 9.7: Real-time comparison

9.4 Scalability Test

In this experiment we employed the corpus available inOrlowski et al.(2007, 2010). As
shown in Fig.9.7and Fig.9.8twelve networks with varying densities were employed:

1. Number of variables: 12 to 688

2. Number of nodes: 4 to 26

3. Number of links: 5 to 84

Clearly the real-time taken to find the problem solution domains is directly proportional
to the network density. The problem density is specified by the number of unknown/
variables the solver needs to exploit based on the given link-counts.

Fig. 9.7and Fig.9.8illustrate the real-time spent by the three solvers in seconds and
in log scale. Fig.9.7 show thatp-box cdf-intervals exploit variable solution domains
with almost the same real-time asUCSP; and this is further observed even in the log
scale Fig.9.8. Hence, thep-boxcdf-intervals framework is cost effective and does not
add up computational cost for large problems. Moreover, it adds up information about
the minimum and maximum distributions of data; accordingly, user (domain expert) can
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Chapter 9. Network Traffic Analysis Problem

Fig. 9.8: Real-time comparison (log scale)

choose to further constraint the output domain of the variable by specifying a probability
limit to restrict the search space.

9.5 Summary

In this chapter we compare thep-boxcdf-intervals with convex models. We proved that
the new algebraic structure can easily formulate problems that are modeled by means
of convex intervals such as theUCSP. We support our argument by a case study using
the consortium ofNTAP problems. The new structure incorporates knowledge on data
whereabouts along with the interval of quantiles. This enables decision makers to in-
clude additional information that is already given in the problem then they can use this
knowledge to reason about the data. Experimental results show thatp-boxcdf-intervals
can further prune the domain of intervals; this occurs when stochastic dominance proba-
bilistic property is violated; in this case the algebraic structure of thep-boxcdf-intervals
seeks to find the nearest possible point that satisfies the probabilistic dominance. We
proved in practice thatp-boxcdf-intervals employ this behavior in a cost effective man-
ner without adding significant computation cost for large problems.
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CHAPTER 10

M ANAGEMENT OF I NVENTORY

Inventory management involves a large class of real life problems; the daily ordering
of newspapers; the booking of airline flights; the ordering of items in a supply chain
of a manufacturing process. In this consortium of real life applications, determining
an adequate quantity to be kept in-stock, with minimal cost,given the stochasticity of
the demand/order environment, is an open-ended area of research (Jacob, Chase, and
Aquilano(2009)).

Companies seek to design a cost effective model that synchronizes production plans
with supplier’s orders. In a manufacturing environment, producers schedule ahead orders
of raw materials to meet their promised delivery timings with minimum possible cost.
However, the schedule of orders is based on two main factors which are fluctuating:
customer demands and market prices. Those two factors in turn change the size, cost
and time of orders unpredictably.

10.1 Problem definition

The inventory problem is simplified to a one stage replenishment cycle of one item and
it resembles the case of a newsvendor. Typically and on a daily basis, a newsvendor
needs to determine the number of newspapers to buy before observing demands. Excess
ordering yields an overhead cost since overstock newspapers on the second day become,
by nature, obsolete. On the other hand, unmet demand leads toprofit loss and possi-
bly additional unforeseen ‘customer switching cost‘. Thismodel has been thoroughly
researched due to its importance and applicability in real life.

More extensions to the model incorporate variations on the following:

• setup time

• production (batches, single machines, parallel machines, open shops, flow shops,
job shops)
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Chapter 10. Management of Inventory

• inventory (minimum service level, backlogging)

• customer demands

10.2 Evolution of current models

The Economic Order Quantity (EOQ)is the first model for the management of multi-
stage inventory introduced inHarris (1913). A typical EOQmodel deals with a single
item and a single manufacturing machine. In his model Harrisderives the optimal quan-
tity to order based on a set of predefined constants: demand rate, setup cost, cost per
item for a continuous time scale and infinite time horizon.

Wagner and Whitin(1958) studied the first mathematical lot-sizing model. Their
model is based on demands of a single item with inventory holding and setup costs,
which differ over the set of N periods of time. The model seeksa minimum total cost
of inventory management. Subsequently a variety of the model extensions were built to
take into consideration multiple items and multiple stages.

In the Economic Lot Scheduling Problem (ELSP)(Elmaghraby(1978)) multiple
items with constant demand rate are considered. The model divides the manufacturing
process into cycles that follow similar patterns.ELSPseeks an overall minimum cost
over the time horizon and determines the start and finish times, the processing sequence
and the machine loading for each job.

Potts and Van Wassenhove(1992) built lot-sizing schedules for multiple items while
batching similar jobs in order to minimize setup times and costs. In their model, items
are grouped based on setup costs.Kuik, Salomon, and Van Wassenhove(1994) group
items of the manufacturing process to induce time-phased production that seeks servic-
ing for fluctuating demand patterns

The production inventory management problem is naturally coupled with uncertainty
and randomness in its customers’ demand, setup-times and suppliers’ capacity. This
uncertainty has a large impact on the cost of inventory, due to either excess in inventory
sizes that are carried out, or on the contrary, stock-out that yields unsatisfied demands.
In planning, there is a need to consider actual and forecasted information that is under
a dynamic environment. To deal with uncertainty and unforeseen demands, existing
models simplify fluctuating information to create deterministic versions of the problem
that is easier to deal with. The effect of modeling using the deterministic case inevitably
yields errors that impact the behavior and cost of the production procedure.

10.3 Modeling Aspects of Inventory Management

The management of inventory defines the structure of policies involved in monitoring
inventory levels. Accordingly, planning the time and quantity of items to be ordered
should maintain adequate inventory levels. Modeling the operational aspects of inven-
tory defines the setup time, the production process, the inventory levels, the replenish-
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10.4. Measured Output

ment policies, the customers’ demand and the rolling time horizon. More strategic mod-
els define the lot sizing problem as a substructure that is integrated in the manufacturing
and distribution planning process, which might include supplier selection.

10.3.1 Lead/Setup Time

Lead time is the time taken once the order is placed until the item is processed. Setup
time may vary for different operations at different times and it adds up cost on the in-
ventory operation. Basic models often either neglect cost that is due to the setup time or
consider it unchangeable over time for simple computation.

10.3.2 Replenishment Policies

Inventory management modeling depends on the policy adopted by the management.
Replenishment policies play a major role in availing material to the production process.
Policies determine the number, time and quantity of replenishments. Commonly utilized
inventory replenishment policies are periodical and continuous. Periodical replenish-
ment policy sets constant time intervals between ordering requests; whilst continuous
replenishment policy seeks to monitor the stock level, and triggers an ordering request
when it reaches a predefined threshold. The challenge is to find an optimal replenish-
ment policy that meets customer demands with minimal cost. Replenishment policy
determines the reorder point, i.e. the point an order takes place. It is commonly symbol-
ized byT andR respectively for periodic time and continuous reorder point policies.

10.3.3 Customer Demands

Customer demands are obviously the most unpredictable component of the inventory
management problem. Stochastic models use a variation of forecasting methods to plan
and schedule ahead their orders; observations output from the forecasted demands are
generally simplified to the nearest probability distribution (usually the Normal distribu-
tion) and they are delt with as points of expectations; the model is then approximated
to the deterministic version using resulting points of expectation in order to simplify the
computation.

10.4 Measured Output

Existing models of the inventory management seek to find the optimal quantity to order
at a specific time that achieves the minimum possible cost. Tothe best of our knowledge
current modeling results are commonly given and delt with aspoint values. The problem
has a fluctuating nature that yields a probability distribution for each output.
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10.4.1 Quantity to Order

The well known modelEOQof Harris (1913) builds basic equations for the quantity to
order under a deterministic and a predefined set of demands. Derived equations seek to
find the optimum quantity which must be ordered and that achieves the minimum over-
all cost. The model and its extensions consider the deterministic case, while produced
outputs are point values even in stochastic andfuzzyversions.

10.4.2 Reorder Point

Reoder point defines a threshold on the level of inventory that when reached an order
should take place. This level is a safe guard lead time that ensures the smooth transaction
of the order without interrupting the manufacturing process. Both reorder point and lead
time can vary over time because of external environmental circumstances such as the
time taken by the shipment placement.

10.4.3 Inventory Costs

The cost of inventory incorporates:

• Holding cost of excess ordered quantity in stock

• Setup cost of preparing product components

• Ordering cost of purchasing production items

• Shortage cost of unmet customer demands which include unforeseen switching
cost

Total cost is defined as the sum of all previously specified costs.

10.5 Basic Model

The basic inventory management deterministic modelEOQ draws cost equations and
adds them up to find the optimal quantity to order which is the lowest point on the curve
resulting from the addition (Harris(1913)). Fig. 10.1shows that cost in general depends
on the size of the order. For instance it is cheaper to order items in batches. Also, the
cost for holding items in the inventory increases over time due to interest charges and
depreciation. The basic model bases its equations on a predefined constant demand rate,
setup cost, and cost per item. The equation of the total cost is

TC = DC +
D
Q

S +
Q
2

H (10.1)

Equation10.1shows that total cost is the sum of three components:

• purchase costDC the average annual demand multiplied by the cost per item
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10.5. Basic Model

• ordering costDQS the number of orders placed multiplied by the cost of each order

• holding costQ2 H the average level of inventory througout the year multiplied by
the holding cost per item

Equation10.1is differentiated over the quantity to orderQ in order to get the minimum

point value forQ =
√

2DS
H ; where:

• TC: total cost

• D: annual demand rate

• C: cost per unit item

• S: setup cost

• H: annual holding cost

Reorder point is signified asR = d̄L whered̄ is the average daily demand andL is the
daily lead time; clearly both components are constants.

Example 10.1. Harris (1913) shows the application of theEOQon two different man-
ufacturing items: a copper connector and a stud. The former is an example of a cheap
item and the latter is a more expensive part.

Connector Stud

Monthly demand rate 1, 230 30
Cost per item $0.0135 $5.65
Setup cost $2.15 $1.85
Annual interest and depreciation cost 10% 10%

daily lead time 2hrs 2hrs
Quantity to order 6, 856 49
Reorder point 82 units 2 units
Ordering cost $387 $13.72
Holding cost $342.85 $2.45
Purchase cost $199.26 $2034
Total manufacturing cost $929.11 $2050.17

Table 10.1: EOQ deterministic model for two manufacturing items: copper connector
and stud; an example of a cheap item and an expensive one

From Table10.1we can observe that the optimal quantities to order are respectively
6, 856and49 units of copper connector and stud items. The model suggestsissuing the
replenishment order when the inventory level reaches82 copper connectors and2 stud
units. It is worth noting that the model demonstrates that cheaper items with higher
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demand rate can be kept in the inventory in larger quantitieswhen compared to more
expensive items. Derived optimal quantities yield a total manufacturing cost of$929.11
and$2050.17 for the copper connector and the stud respectively.

Example10.1 recommends keeping the lowest possible inventory levels especially
when items are expensive. This is to avoid the overhead of theholding cost that re-
sults from the depreciation and the interest rates. On the other hand managers of the
manufacturing process should avoid understock in order to satisfy customer demands.

Clearly Example10.1 demonstrates that in the basicEOQ model demand rate is
given as an average annual value; it is a constant value in thedeterministic model; more-
over, the item cost and the lead time are unchangeable over time and the interest rate is
incorporated in the model for both items as one value: 10%.

Table10.2shows a simulation of theEOQwhen applied in a real life situation: the
stud manufacturing process. The first row monitors time cycles over the year. Monthly
customer demand is varying and it is given in the second row but it is on average 30
items per month. We started the simulation with an empty inventory level. Negative
values of inventories signify unsatisfied demands in the observed cycle. The simulation
considers two cases: 1. we allow backlogs to satisfy unmet demands and 2. no backlogs
are allowed in the second situation. In the latter case unsatisfied demands are not served
in the following cycle and cause a penalty which is evaluatedby a shortage cost.

Clearly when backlogs are allowed, more replenishments areissued and ordering
cost increases. The order size exeeds the value 49 in order tosatisfy unmet demands
from previous cycles; yet inventory holding cost decreasesbecause excess ordered items
are promptly processed to cover backlogs. Shortage cost is 0because all demands are
satisfied in this case. In general the overall total manufacturing cost when backlogs are
allowed is $1013.65 and it is $1037.25 when no backlogs are allowed. In both cases, the
total manufacturing cost is 49%− 50% of the figure obtained from theEOQdetermistic
model. We can conclude from the simulation results that the total cost obtained from the
deterministic case is not accurately calculated. Managersof the manufacturing process
need to know in advance, the order quantities and the total costs that reflect real life
situations in a better way, because they are used in their decision making and budget
allocation procedures.

10.6 Existing Approaches

10.6.1 Dynamic programming line of research

Dynamic Programming (DP)was the first line of research that considers the problem
of inventory management. Since DP is applied in problems that contain a sequence of
interrelated decisions, the algorithm seeks optimizationby dividing the problem into
a more simplified set of nested subproblems. TheDP model sets the objective cost
function that needs to be minimized, a recursive formulation of the cost function at state
i, and boundary condition at the initial state. It is worth noting that theDP models
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t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10

Actual Monthly Demands 26 36 23 28 32 30 29 37 25 34

N
o

ba
ck

lo
gs

Reorder point 1 0 1 0 1 0 1 0 1 0 0

Order size 49 49 49 49 49

Inventory ending level 23 -13 26 -2 17 -13 20 -17 24 -10

Costs Setup Holding Purchase Shortage Total Cost

$11.1 $10.93 $1384.25 -$617.545 $259.335 $1048.07

B
ac
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og

s
ar

e
al

lo
w

ed

Reorder point 1 0 1 0 1 1 0 1 0 1 1

Order size 49 36 34 51 41 28 43

Inventory ending level 23 -13 13 -15 2 21 -8 4 -21 -6

Costs Setup Holding Purchase Shortage Total Cost

$12.95 $6.3 $1350.35 -$355.95 $0 $1013.65

Table 10.2: Simulation of theEOQon actual customer demands for 10 cycles
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Cost

Qopt

Order quantity size (Q)

total cost

holding cost

cost of items

ordering cost

Fig. 10.1: Size of the quantity to order

do not scale well in a stochastic environment. ExistingDP models such as those in
Clark and Scarf(1960) andMoon and Gallego(1994) approximate the problem to the
deterministic case in order to overcome the complexity of the recursive formulation.
They assume full knowledge of the demand distribution. In addition, they are restricted
to the specification of serial supply chain network topology. It is worth noting thatDP
utilizes myopic policies for search; i.e. it is restricted to finding the minimum cost of the
current time period. Recently, hybrid optimization techniques incorporationgDP and
CPhave been proposed inRossi(2008).

10.6.2 CP line of research

CPhas been successfully utilized for deterministic planningand scheduling models. Yet
the technique lacks an accurate representation of the model, particularly when random-
ness and uncertainty are introduced in the problem.

To model the problem stated in Example10.1, aCPclassical model defines the total
cost minimization constraint deterministically and describes the quantity to order as a
variable that is assigned a domain of integers.CP searches for the quantity to order
which achieves a total minimum cost. Table10.3illustrates the search that is exerted by
enumerating all possible values of the quantity to order within the assigned domain of
integers. The enumerated values are then substituted in thetotal cost constraint equation.
The result of the enumeration is 362 and 795 which give total minimum costs of $278.93
and $2070.49 for the connector and the stud manufacturing items respectively.

10.6.3 Stochastic Constraint Programming (SCP)line of research

The stochastic newsvendor model refers back to the work introduced by the promi-
nant economist Edgeworth in (Edgeworth(1888)) who mathematically represented the
amount of money to be deposited in a bank account with a randomcash withdrawal.

Due to its powerful expressiveness,SCPis an intuitive way of modeling combina-
torial problems coupled with stochasticity. It is generally used inCP for optimization
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Connector Stud

Q TC Q TC

600 282.15 200 2077.3
601 282.11 201 2077.18
. . . . . . . . . . . .

795 278.93 362 2070.49
. . . . . . . . . . . .

812 278.94 370 2070.5
. . . . . . . . . . . .

817 278.95 270 2072.16

Table 10.3:CPenumeration of the quantity to order size for the total cost calculation

under uncertainty. Stochastic models aim at numerically representing the uncertainty
brought into the problem under consideration. They iteratively generate potential out-
puts for the set of input randomly distributed data in a pointwise manner. This iterative
process in turn produces probable solutions that follow random distributions and accord-
ingly realization of the maximum likelihood of projected outcomes are explored.

SCPdivides the problem into decision stages; each stage consists of a pair (Vi ,Si)
whereVi andSi are the sets of decision variables and stochastic variablesrespectively.
One-stageStochastic Constraint Satisfaction Problem (SCSP)(V,Si) assigns decision
variables inV for each stochastic variable value inS. This assignment should satisfy
hard-constraints and all possible scenarios specified by stochastic variables. the m-stage
SCPpartitions the problem into disjointed sets of multiple stages (Vi ,Si). Decision
variables in a stage are realized by observing former stages. The solution is represented
by a policy tree where each path represents variable assignments to a given scenario.

Solution methods are based on two approaches: policy based and scenario based.
The former, inWalsh(2002), establishes the tree paths by assigning values to variables
in order to satisfy possible scenarios. Decision variablescan take only one value, hence
they are assigned to the OR nodes, whilst stochastic variables list all possible events and
they are given the AND nodes. The model realizes one value that satisfies all possible
constraints. The scenario based approach, inTarim et al.(2006), exhaustively builds the
tree of all possible sets of scenarios in a list of paths. Eachscenario (path) is solved with
conventional deterministicCPon its own. A path in the tree is associated with a proba-
bility value. In this model the number of scenarios grows exponentially with the number
of stages. A global chance constraint, introduced inRossi(2008), combinedSCPwith
DP to calculate the cost using the minimum distance algorithm.It is worth noting that
SCPis more flexible and powerful in modeling inventory management problems cou-
pled with randomness. YetSCPdoes not scale well when it involves solving the actual
problem.

Table10.4shows the scenario-based approach enumeration of the quantity to order
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given in Example10.1. In this example, each cost component (the ordering, the holding
and the purchasing costs) is associated with a probability distribution function. TheSCP
approach builds the scenario tree by associating each path with a probability of occur-
rence. This probability is computed by multiplying each andevery combination of the
probabilities given for the cost components. The total costwith the highest probability
of occurrence is then evaluated. Finally, the quantity to order size selected is the most
likely to occur and at the same time it satisfies the total minimum cost constraint. It is
shown in bold fonts as 197 and 3216 for the stud and connector manufacturing items.
Their highest probability values are: 0.18 and 0.264 respectively. As shown by this
example, the stochastic computation can be infeasible because they are exerted on the
given probability distributions exhaustively, i.e. in a point-by-point manner.

Interest & Setup Prob Q Ordering Holding
depreciation cost cost cost

Stud

4.45%
$12.5 0.02 85 $62.50 $6.53
$18.5 0.05 103 $74.00 $9.65
$26.1 0.03 122 $78.30 $13.61

11.60%
$12.5 0.12 136 $37.50 $6.36
$18.5 0.3 166 $55.50 $9.50
$26.1 0.18 197 $52.20 $13.43

20.10%
$12.5 0.06 179 $37.50 $6.33
$18.5 0.15 259 $37.00 $22.97
$26.1 0.09 259 $52.20 $13.33

Connector

1.10%
$1.075 0.039 1608 $10.75 $0.564
$2.15 0.082 2274 $15.05 $1.15
$4.3 0.049 3216 $21.5 $2.36

2.20%
$1.075 0.13 2274 $7.5 $0.56
$2.15 0.264 3216 $10.75 $1.13
$4.3 0.16 4548 $17.2 $2.3

4.40%
$1.075 0.064 3216 $5.38 $0.55
$2.15 0.134 6432 $6.45 $4.4
$4.3 0.08 6432 $12.9 $2.26

Table 10.4: Scenario-basedCSPenumeration of the quantity to order size for the total
cost calculation

10.6.4 Mixed integer programming line of research

Bookbinder and Tan(1988) used the static-dynamic uncertainty strategy to determine
the optimal policy. Their model formulates the problem on two stages: first determine
the replenishment periods; then seek the actual orders upondemand realization. In their
modelBookbinder and Tanassume that demand is a random variable following a normal
probability distribution. They build their deterministicequivalent model on the demand
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expectations for each period and they assumed constant itemcost, which has no role in
the replenishment policy. Hence it has no effect on determining the best solution of the
schedule.

Definition 10.1. The uncertain linear programming inventory model for mixedinteger
programming is formulated as follows:

minimize E{TC} =
∫

d1

∫

d2

. . .

∫

dN

N∑

t=1

(aδt + hIt + vXt)

× g1(d1)g2(d2) . . . gN(dN) (10.2)

subject to δt =


1 if Xt > 0
0 otherwise



It = I0 +

t∑

i=1

(Xi − di)

Xt, It ≥ 0, t = 0, 1, . . . ,N

Bookbinder and Tan(1988) used this model in order to reflect the fluctuations of
the inventory levels in each cycle over the time horizon. In this model the three cost
components are:

• The ordering cost denoted bya (the cost per item) and mutiplied byδt which
represents the number of times an order is issued.δt = 1 when an order is issued
andδt = 0 otherwise.

• The holding cost depends on the inventory levelIt at cyclet, wheret is a given
period/cycle in a time horizon from{1 . . .N}.

• The purchase cost varies based on the item costv multiplied by the quantity to
order sizeRt at cyclet.

The customer demanddt defined over a time periodt is often given by a known
probability density functiong(dt). The inventory levelIt is the difference between the
order quantityRt, and the customer demandsdt in a given cycle. The problem in this
case has a total time horizon equal toN cycles. And the model seeks the minimization
of the total cost expected value that is symbolized byE{TC}.

Bertsimas and Thiele(2006) proved that mixed-integer programming outperforms
DP in terms of computation and cost results. They used a mixed-integer programming
model to find bounds on the solution of the cost. In their computation, a convex rep-
resentation which encapsulates the unknown probability distribution is derived; yet the
output obtained does not contain any information on the datawhereabouts.
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10.6.5 Probabilistic programming line of research

Probabilistic approaches are flexible enough to describe the uncertainty in real-world
problems. They add a quantitative information that expresses the likelihood. Operations
are exerted on probability distributions which approximate the observed data.

Probabilistic models often define the uncertainty over the presence of constraints.
They impose assumptions on the probability distributions shape to deal with them math-
ematically by means of the expected values and the standard deviation. Final decision
is an assignment that maximizes the probability of consistency which satisfies the set
of the given constraints.Tarim and Kingsman(2004) developed a probabilistic mixed-
integer programming algorithm based on the work introducedby Bookbinder and Tan
and which combines the multi-steps into a single one. The probabilistic inventory model
proposed byTarim and Kingsman(2004) is defined as follows:

minimize E(TC) =
N∑

t=1

(aδt + hE(It) + vE(Xt)) (10.3)

subject to E(It) = E(Xt) − E(dt),

E(Xt) ≥ E(It−1)),

E(Xt) − E(It−1) ≤ Mδt,

E(It) ≥
t∑

j=1

(G−1
dt− j+1+···+dt

(α) −
t∑

k=t− j+1

E(dk))Pt j ,

t∑

j=1

Pt j = 1,

Pt j ≥ δt− j+1 −

t∑

k=t− j+2

δk

E(Xt),E(It) ≥ 0,

δt,Pt j ∈ {0, 1},

t = 1, . . . ,N

j = 1, . . . , t

In this model, an additional service level constraint is added to guarantee that the in-
ventory levels are always kept positive with a probability greater than a valueα (Pr(It ≥

0) ≥ α). This is represented by the equation which relates the inventory levelIt with the
variations of the monthly demanddk by means of the cumulative probability distribution
functionGD(t) = Gd1 . . .Gdt (α) defined for{d1 . . . dt}. In this equation variations of the
monthly demand are associated with the inventory level and their constraint relation is
satisfied with a certain probability value symbolized byPt j . The set of constraints in
this system are defined over the expected values of the inventory E(It) and the monthly
demandE(dk).

132



10.6. Existing Approaches

Table 10.5 shows the input of the stud manufacturing item detailed in Example
10.1. The number of calculated ordering placements is 4 and the computed total cost
is $2142.15. The ordering quantity differs with each order placementdepending on the
monthly demand and the level of inventory reached.

10.6.6 Fuzzy programming line of research

Fuzzymodels introduce the vague representation of demands and costs. They approx-
imate the probability distribution by a set of intervals called ‘alpha-cuts‘. The possi-
bilistic theorem,Zadeh(1965), is applied on the alpha-cuts to reason about the data in a
simplified way. In the inventory management problem,fuzzysets are estimated subjec-
tively to represent the uncertainty observed in demands andcosts. The possibilistic dis-
tribution of the input data is built based on a computed standard deviation: assuming, in
the general case, a unimodal and symmetric distribution of the probabilityGum(1995).
Demands and costs are described byfuzzymembership functions.Dutta, Chakraborty,
and Roy(2005) use a triangular membershipfuzzyfunction in their model, andXu and
Hu (2012) model uncertain customer demands by means of randomfuzzyvariables.

Thefuzzymodel formulation depends on an ‘extended addition‘ (�) that is based on
the ‘Yagers parametrized t-norm‘,Yager(1997). Operations on data using the possibilis-
tic theory exert the ‘Dominance possibility‘. The possibilistic distribution accordingly
provides worst and best case scenarios represented respectively by the support and the
kernel of the possible solution set. In order to obtain the resulting solutions, cost and
demand are subject to fuzzification and defuzzification algorithms to generate the ex-
pected profit, then to calculate bounds on the optimal quantity to order. This operation
is exerted, while maximizing the expected profit and minimizing the expected cost. As
a result, the optimum quantity to order is calculated in a discrete manner, i.e. for each
possible given demand with afuzzyrepresentation of the holding and ordering costs.

Definition 10.2. The fuzzy inventory model is formulated as follows:

minimize TC=
N∑

t=1

(aδt � hIt � vXt) (10.4)

subject to δt =


1 if Xt > 0
0 otherwise



It = I0 �

t∑

i=1

(Xi � di)µi

Xt, It ≥ 0, t = 0, 1, . . . ,N

Table10.6shows results of running thefuzzymodel on the stud manufacturing item
listed in Example10.1. In this model the variations of the monthly demand follow
triangular shape distributions, and constraint preferences are represented by means of
fuzzymembership functionsµi . The calculated total cost is $2702.93.
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t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10 t = 11

Monthly 32 30 26 36 23 29 37 25 34 28 32
demands
Reorder 1 0 1 0 0 1 0 0 1 0 0
point
Order 62 0 85 0 0 91 0 0 94 0 0
quantity
Initial It 62 30 0 59 23 0 62 25 0 60 32
EndingIt 30 0 59 23 0 62 25 0 60 32 0

Setup cost $74
Holding cost $34.15
Purchase cost $2034
Total cost $2142.15

Table 10.5: Probabilistic model calculation of the quantity to order size and the total cost of the stud manufacturing item
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t = 1 . . . t = 5 t = 6 . . .

Monthly [23.9, 24.3, 25] . . . [29.7, 29.95, 30.3] [31.3, 32.2, 32.9] . . .

demands
Membership [0.08, 0.16, 0.1] . . . [0.08, 0.16, 0.04] [0.02, 0.12, 0.06] . . .

function
Reorder 1 . . . 1 0 . . .

point
Order 56 . . . 89 0 . . .

quantity
EndingIt 30 . . . 57 0 . . .

Setup cost $67.2
Holding cost $9.05
Purchase cost $2626.68
Total cost $2702.93

Table 10.6:fuzzymodel calculation of the quantity to order size and the totalcost of the
stud manufacturing item

10.6.7 Reliable programming line of research

Reliable techniques suggest convex structures, interval or ellipsoidal, to guarantee a full
data enclosure in the model when uncertainty takes place. The certainty closure (UCSP)
introduced byYorke-Smith and Gervet(2009) associates the uncertainty to constraint
coefficients. Interval coefficients are used to bracket the ill-defined data. This framework
brings together modeling and solving methodologies fromLP into theCPparadigm to
provide reliable and efficient approaches for uncertain constrain problems.

This convex model is a modified version of the probabilistic model proposed by
Tarim and Kingsman(2004) as listed in Equation10.3but it incorporates convex struc-
tures which are boldified to represent interval coefficients. Variables are no longer given
as expected values because in the convex model, we seek the bounds which encapsu-
late realized solution sets. The inverse of the cumulative probability distributionG−1

D(t)
is replaced by the monthly demand intervals in the service level constraint. Input data
interval coefficients are produced by shaping a Normal distribution over the observa-
tions. Interval bounds are then assigned the maximum and minimum values to include
the majority of the Normal distribution data population.
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Definition 10.3. The convex model formulation of the inventory management problem
is defined as follows:

minimize TC=
N∑

t=1

(aδt + hIt + vXt) (10.5)

subject to It = Xt − dt,

Xt ≥ It−1,

Xt − It−1 ≤ Mδt,

It ≥

t∑

j=1

dt-j+1 + · · · + dt −

t∑

k=t− j+1

dk,

t∑

j=1

Pt j = 1,

Pt j ≥ δt− j+1 −

t∑

k=t− j+2

δk

Xt, It ≥ 0,

δt,Pt j ∈ {0, 1},

t = 1, . . . ,N

j = 1, . . . , t

Reasoning using convex models is a tractable computation because it is constructed
over the extreme points of the algebraic structure, unlike exhaustive point computation
found and exerted in other paradigms. Results of convex models are reliable and guar-
antee to carry-out all potential solutions of the problem in-hand. To derive outer bounds,
the model is based on an approximation that is not necessarily reversed. Acquired reli-
able realizations can be very wide lacking an expressive approximation of the problem
in-hand and missing possible degree of knowledge because each value in the solution set
has an equal uncertainty degree.

Table10.7 shows results of running the convex model on the stud manufacturing
item listed in Example10.1. In this model the variations of the monthly demand are
given as interval bounds. The number of ordering placementsis given an interval repre-
sentation. The model att = 10 suggests a no replenishment at the lower bound an order
issuing at the upper bound. The total setup, holding and purchase costs are given by
an interval representations. This means that each value within the interval has the same
probability of occurrence. The calculated total cost is anypoint lying within the interval
bounds [$739.5, $4458.3]. Despite the fact that the resulting solution set guarrantees a
full encapsulation of the data, convex models lack the expressiveness of the probabilistic
information.
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acronym]“glossaryentryp-box?“glossaryentryfieldp-box“glsnamefontp-boxProbability
Box“relax —setentrycounter[]page“glsnumberformat137p-boxacronym]“glossaryentry“emph
–cdf˝?“glossaryentryfieldcdf“glsnamefont“emph –cdf˝cummulative distribution function“relax
—setentrycounter[]page“glsnumberformat137cdf-intervals representation

t = 1 . . . t = 5 t = 10 . . .

Monthly [23.9, 25] . . . [29.7, 31.3] . . . [37.6, 39.1]
demands
Reorder [1, 1] . . . [0, 0] . . . [0, 1]
point
EndingIt [114.6, 115.7] . . . [0.0, 6.4] . . . [0, 1.5]

Setup cost [$22.4, $66.3]
Holding cost [$16.65, $190.29]
Purchase cost [$1496.7, $2077.18]
Total cost [$1535.7, $2333.77]

Table 10.7: Convex model calculation of the quantity to order size and the total cost of
the stud manufacturing item

10.7 Modeling Inventories withp-box cdf -intervals representation

This section details the construction of thep-box cdf-interval model for the inventory
management problem and which is an extension of the convex model representation
listed in Equation10.5. Recall Equation10.1of theEOQmodel, the cost function has
three main components: purchase cost, holding cost and ordering cost. Each cost com-
ponent has a stochastic nature; for instance the purchase cost varies on the size of the
order; the ordering cost depends on number of times orders are issued; and the holding
cost varies with the size of items in-stock. Thep-boxcdf-intervalsCPexpressive nature
enables us to build theEOQset of constraints without introducing any approximation.
Accordingly, probability distribution of demands, ordering sizes, inventory levels, re-
order points and cost components are encapsulated and represented in a reliable manner
in order to consider all possible realizations of the problem in hand.

In this section the subscriptt denotes the snapshot of the problem at a given time
period/cycle. I is the inventory level,X is the quantity to order andd is the customer
demands. Boldified characters arep-boxcdf-interval representations of constraint coef-
ficients.

10.7.1 Ordering Cost

The ordering cost incorporates the number of orders and the cost of issuing an order.
Recall from Equation10.1 the EOQ model assumes the number of issued orders as
D/Q whereD is the annual average customer demand andQ is the total size of ordered
quantity (Harris(1913)). This assumption is based on the expected discrete value of the
demand which is by nature unpredictable. In our model we symbolize the issuing of a
replenishement withδ; it is an unknown variable assigned from the discrete domainof
values{0, 1}. δ takes the value 1 when a replenishment is scheduled in the current time
period and 0 otherwise.δ is then multiplied by the ordering costa that depends on the
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fluctuating market prices and which is represented by ap-box cdf-interval that bounds
the real distribution of the cost.

Definition 10.4. The total ordering cost of the inventory management problemfor N
cycles is

OC = ΣN
t=1aδt (10.6)

where a is thep-boxcdf-interval representation of the ordering cost, t= 1..N andδ ∈
[0, 1]

10.7.2 Holding Cost

Inventory levels and depreciation charges are the main aspects that affect the holding
cost. TheEOQ model assigns a discrete value for the average inventory level equal
to Q/2. However, in reality, the current inventory level is the difference between the
ordered quantity and the realized consumer demands; it is defined asIt = Xt−dt. Depre-
ciation and interest charges are in turn fluctuating based onmarket prices and they are
denoted byh.

Definition 10.5. The total holding cost of the inventory management problem for N cy-
cles is

HC = ΣN
t=1hIt (10.7)

whereh is thep-boxcdf-interval representation of the holding cost.

It = Xt − dt (10.8)

where Xt is the size of the order variable at cycle t and dt is the p-box cdf-interval
representation of the customer demand in cycle t

10.7.3 Purchase Cost

When a replenishment is scheduled, the cost of purchasing depends on the order size is
X and the varying cost per unit item isv.

Definition 10.6. The purchase cost of the inventory management problem for N time
periods is

PC = ΣN
t=1vXt (10.9)

wherev is thep-boxcdf-interval representation of the unit item cost.

10.7.4 The Model

Thep-boxcdf-intervals model is an extension of the convex model representation listed
in Equation10.5. The model hybridizes theCP high expressivity of uncertainty given
by thep-boxcdf-intervals representation with the fast and easy way of solving systems
of linear equations given by theMIP to find the bounds on the quantity to order and
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the total cost. Output realizations envelop the actual solution set of the problem along
with its data whereabouts. The aim is to schedule ahead replenishement periods and find
the optimal quantity bounds that achieve minimum total manufacturing cost using cost
components introduced in this section. A reorder point withorder sizeXt should meet
customer demands up to the next point of replenishment.

To maintain a certain service level, inventory management models either assign a
penalty cost on shortage or maintain inventory levels to a minimum threshold in order to
ensure no backlogs. The former criteria is presented in Equation ?? and the latter adds
a new constraintPr {It > 0} > α; the additional constraint maintains a positive inventory
level with a probability greater than a predefined constantα.

Definition 10.7. The set ofp-boxcdf-intervals constraints that define an inventory man-
agement problem given N cycles time horizon are

minimize TC=
N∑

t=1

(aδt + hIt + vXt) (10.10)

subject to It = Xt − dt,

Xt ≥ It−1,

Xt − It−1 ≤ Mδt,

It ≥

t∑

j=1

dt-j+1 + · · · + dt −

t∑

k=t− j+1

dk,

t∑

j=1

Pt j = 1,

Pt j ≥ δt− j+1 −

t∑

k=t− j+2

δk

Xt, It ≥ 0,

δt,Pt j ∈ {0, 1},

t = 1, . . . ,N

j = 1, . . . , t

N can be set to one in order to characterize theEOQ p-boxcdf-intervals with one
cycle hence results can be easily compared with previous simple models. It is worth not-
ing that the set of constraints in Definition10.7symbolize demands, costs, and inventory
levels byp-boxcdf-intervals; i.e. they encapsulate the unknown fluctuating nature of the
problem.

10.8 Evaluation of the model

Recall the stud item in Example10.1, Figure10.2 illustrates the demand observations
along with their corresponding probabilities over a time horizon equals to 10 cycles.
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The dotted mid-line represents the mean demands; this dotted line is in turn enveloped
by two probabilistic upper and lower bounds. Clearly, demands and input variable costs
vary within each cycle. In this section we study the observedinformation for 10 dif-
ferent models to compare and study the effect of adopting deterministic, probabilistic,
fuzzy, SCSP, MIP, UCSP, cdf-intervals andp-box cdf-intervals on the inventory prob-
lem quality of solution. Table10.8 lists different input variable formats to the models
under consideration. Demands depicted in Figure10.2are shown in the last column of
Table10.8. Our empirical evaluation considers the implementation ofthe following list
of models:

• EOQis the basic deterministic inventory management model detailed in Section
10.5. This model takes one average value of the observed demands over the year
as shown in Equation10.1and in this case it is 30 items.

• Probabilistic, is listed in the set of constraints defined by Equation10.3. This
model commonly assumes that data is normally distributed; in each cycle the prob-
abilistic model takes the mean value of the observed customer demand and this is
shown in Table10.8.

• fuzzy(Dutta), as shown by the set of constraints listed by Equation 10.4, uses the
fuzzyapproach adopted inDutta et al.(2005); fuzzycustomer demands are listed
in the last column of Table10.8; each input in the demand set is itself afuzzy
membership function; the model, in turn, generates an overall fuzzymembership
function of the optimal quantity to order that achieves the maximum possible ex-
pected profit.

• Petrović I, (Petrović, Petrović, and Vujošević(1996)), is anotherfuzzyapproach
that represents customer demands byfuzzysets; the approach usesfuzzificationand
defuzzificationtechniques in order to deduce one value for the optimal quantity to
order.

• Petrović II inPetrović et al.(1996) has an additional advantage over Petrović I: it
deals with imprecise inventory costs: overage and shortagecosts; they are in this
case represented asfuzzysets

• MIP in Tarim and Kingsman(2004), is aMIP approach listed by Equation10.2.
In this model, input demands are represented by their observed distribution mean
per cycle.

• SCSPin Rossi(2008), a constraint based programming approach which combines
SCPwith DP to calculate the overall inventory management cost using the mini-
mum distance algorithm.

• UCSPin Yorke-Smith and Gervet(2009), uncertainty closure uses the set of con-
straints defined by Equation10.5to calculate the bounds on the cost and optimal
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quantity to order; demands inUCSPcan be input as a set of intervals representing
observed bounds per cycle or as an overall interval boundingthe measured data
over the year.

• cdf-intervals model is an extension of theUCSPmodel where demands are repre-
sented by an approximated set ofcdf-intervals

• p-box cdf-intervals has the unknown distribution of demands boundedby p-box
cdf-intervals representation to encapsulate all observed data along with its where-
abouts.

Fig. 10.2: Demand observations over the year

In summary, customer demand information illustrated in Figure10.2along with in-
put variables detailed in Table10.8can be viewed and delt with from two perspectives:

• Each replenishment order size and time reveals detailed information at each cycle.

• The overall quantity to be ordered and total cost over the year help desision makers
allocate and schedule ahead long-term manufacturing budget and process.

10.8.1 Input Coefficients

We study the stud item of Example10.1. Table10.8 lists input coefficients to models
under consideration. For any observed distribution of data, coefficients are presented as
bounds in the 3 models: theUCSP, thecdf-intervals and thep-boxcdf-intervals.
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ordering cost holding cost cost per item Monthly demands

EOQ 1.85 10% 5.56 30
Probabilistic,

1.85 10% 5.56
[26.2, 35.4, 23.2,

fuzzyPetrović I, 27.8, 32.3, 30.8,
SCSP, MIP 29.3, 36.9, 24.7, 33.9]
fuzzyDutta 1.85 10% 5.56 [[25.5, 26.2, 27], [34.6, 35.4, 36.1],

[23, 23.2, 23.9], [27, 27.8, 28.5],
[31.6, 32.3, 33.1], [30, 30.8, 31.6],
[28.5, 29.3, 30], [36.1, 36.9, 37.4],

[23.9, 24.7, 25.5], [33.1, 33.9, 34.6]]
fuzzyPetrović II 1.85 [4.65%, 10.37%, 16.1%] 5.56 [26.2, 35.4, 23.2,

27.8, 32.3, 30.8,
29.3, 36.9, 24.7, 33.9]

UCSP [1.25, 2.61] [4.65%, 16.1%] [1.06, 11.1] [23.2, 36.9]
cdf-intervals [[1.25, 0.04], [[4.65%, 0.08], [[1.06, 0.08], [[23.2, 0.04],

[2.56, 0.98]] [15.45%, 0.98]] [9.99, 0.98]] [36.15, 0.98]
p-boxcdf-intervals [[1.25, 0.04, 0.8], [[4.65%, 0.08, 12.07], [[1.06, 0.08, 0.14], [[23.2, 0.04, 0.09],

[2.61, 0.36, 0.26]] [16.1%, 0.88, 7.87]] [11.1, 0.4, 0.04]] [36.9, 0.43, 0.03]]

Table 10.8: Input variables for the stud manufacturing item: costs and monthly demands observed for 10 cycles
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10.8. Evaluation of the model

Customer demands/cycle

We consider the raw measured customer demands without imposing approximation on
its stochastic nature. We focus on one cycle (cycle 7) given the distribution of demands
over the year illustrated in Figure10.2. Figure10.3zooms into the observed customer
demands in cycle 7. Figure10.3[a] shows a comparison between the actual measured
data and its nearest derived Normal probability distribution. Figure10.3[b] illustrates
thefuzzymembership function that represents the observed data in cycle 7.
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Fig. 10.3: Observed customer demand of the stud item in cycle7 (a) nearest Normal
distribution (b)fuzzymembership function of the collected demand

Figure10.4 illustrates a projection of the observed customer demand incycle 7 in
the cdf domain. We use this figure to compare between 4 different approaches: prob-
abilistic, fuzzy, cdf-interval andp-box cdf-interval; and we show how accurate data is
encapsulated and presented in each model. Clearly thep-box cdf-interval envelops all
existing data along with its whereabouts. Customer demand in cycle 7 ranges between
quantiles 28.6 and 29.9 with a step value∗ at least 0.7 and at most 1.1. Using the slope
of the cdf-interval we can judge where data is accumulated over the interval of quan-
tiles: the average step value in this example is 0.75; fuzzyrepresentation approximately
encapsulates the data whereabouts, as illustrated in Fig.10.4(b). However, the Normal
distribution, Fig. 10.4(a), which is commonly used in probabilistic models, does not
follow the natural shape of the observed data distribution in the cdf domain because
probabilities have to be between the values [0, 1] for the quantiles in the real domain of
[-∞,∞].

Similarly, demands for each cycle are derived and compiled into a single set. The
produced demand set is then input to the different models, tocompare output results and
performance. This process can be performed at each cycle as aseparateEOQ model
myopically in order to minimize the cost belonging to the cycle under consideration.

Forecasted customer demands of a set of cycles that ranges within a predefined time
horizon seek to calculate:

∗The average step value is the slope of the givencdf-distribution in this case its minimum value is equal
to 0.7; i.e. if quantile 28.6 has acdf-value 0.08, then thecdf-value of quantile 29.6 is 0.78 at minimum
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Fig. 10.4: Projection of the collected data in thecdf domain (a) Normalcdf distribution
(b) projection of thefuzzymembership function on thecdf domain (c)cdf-interval repre-
sentation of demand in cycle 7 (d)p-boxcdf-interval representaion of customer demand
in cycle 7

• reorder points

• each cycle inventory initial and ending levels

• each cycle order up to level

• each cycle setup, overage, purchase, shortage and total costs

Customer demands over a time horizon

Decision makers seek to look at the problem over a given time horizon so that they
can schedule ahead a long-term manufacturing process. To showcase this process, we
consider the observed data over a 10 cycle time horizon and wemonitor the effect of
modeling the unknown measured distribution on the representation of data input to the
models. Observed customer demands are considered as: one overall mean value in the
EOQmodel, a set of mean normal distribution value/cycle in the probabilistic model and
a set offuzzymembership functions infuzzymodels.

On the other hand, models with convex structures are capableof seeking a long term
plan in one step/iteration. This method is the fastest and most appropriate when we
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10.8. Evaluation of the model

need to include the fluctuating nature of the problem over theyear while seeking to plan
ahead:

• the overall inventory levels to plan for the inventory capacity

• the overall total cost to plan long term budget allocation

Cost components

(a) (b)

(c) (d)

Fig. 10.5: Input measurement of the stud item holding cost over a time horizon of 10 cy-
cles (a) observed measurement and its nearestfuzzymembership function (b) projection
of the fuzzymembership function on thecdf domain (c)cdf-interval representation (d)
p-boxcdf-interval representaion

Figure10.5illustrates how holding cost data is encapsulated in the studied models.
TheEOQ, stochastic,fuzzyDutta, PetrovićI can deal only with one value, the mean mea-
sured value. This is because these models by nature cannot deal with varying distribution
or bounds. PetrovićII’s model as shown in Table10.8handles afuzzyrepresentation of
the holding cost in its calculations; and Figure10.5[a] depicts its membership function
which ranges within thefuzzyinterval [4.75%, 10.375%, 16%].

Clearly, holding cost ranges between quantiles 4.75% and 16% which are considered
in theUCSPmodel as interval bounds. Thecdf-interval model shows that this interval
has an average step value of 8.3. Thep-box cdf-interval further bounds the unknown
data distribution by means of two uniformcdf-distributions with an average step value

145



Chapter 10. Management of Inventory

ranging between 7.87 and 12.07; this means that for each quantile above 4.75% and
below 16% an increase of 1% has an expected probability valuebetween 0.0787 and
0.1207. Data in this case is totally encaspsulated along with its whereabouts information.

10.8.2 Output Solution

We simulate the models under two different conditions: whenbacklogs are either al-
lowed or not allowed. In our simulation we utilize real demand data bounds illustrated
in Figure10.2over a time horizon of 10 cycles. Values in Table10.8 are input to the
models and yield optimal size to order, inventory levels andtotal cost presented in Ta-
bles10.9, 10.10and10.11. We note that incorporated item, setup and variable costs are
given as bounds for convex models but they are treated as a single value in the rest of
the models under consideration. This is because non-convexmodels do not represent
variables in terms of bounds.

Reorder Points

Reorder points are represented in Table10.9 column 1 by the set of cycles where an
order should be issued. This set ensures that the overall process demands are met and
satisfied. Reorder points are recommended by the models to seek the minimization of
the overall cost. The output set of reorder points in turn affects the setup and purchase
costs and this is illustrated in Table10.10columns 1 and 3 respectively.UCSP, cdf-
intervals andp-box cdf-intervals models output lower and upper bound sets in their
recommendations. The rest of the studied models each suggests one set in their output
solution. For instance,SCSPproposes only two reorder points: at cycles 1 and 3;MIP
suggests cycles{1, 3, 6, 9} to minimize the overall cost of the stud item manufacturing
process example.

Quantity to order

UCSP, cdf-intervals andp-box cdf-intervals output a convex representation for this
quantity: the optimum quantity to order cannot be outside the obained bounds and the
stochasticity is captured within input as well as output representation of variables. Fig.
10.6depicts the graphical representation of the quantity to order output solution from the
different models under consideration. Thep-boxcdf-interval is illustrated by the shaded
region and the bounds of its convex representation draw the dotted rectangle. Clearly,
the solution set obtained from thep-box cdf-intervals model, when compared with the
outcome of the convex model, realize and additional knowledge (i.e. tighter bounds in
thecdf domain). This solution set is opposed to a one value proposedas 49 item by the
EOQ model due to its deterministic nature. Noticeably, Probabilitic and fuzzymodels
suggest equivalent reorder point value that lies within thesame range of quantiles: 24
and 30 items when no-backlogs are allowed and 27 and 58 items when backlogs are
allowed. The reason behind the increase in the latter case isdue to the need to fulfill
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10.8. Evaluation of the model

unmet demands from previous cycles.SCSPandMIP propose less number of cycles in
the set of reorder points hence to meet customer demands the quantity of the order size
is higher: it is 91 and 182 items respectively when backlogs are allowed.
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Fig. 10.6: Output solution representation of the order up tolevel

Inventory levels and unmet demands

A decision taken on the set of reorder points along with the quantity to order in each cycle
control the levels of inventory. Table10.9lists bounds on the set of inventory levels over
the 10 cycles. In the shown results the upper bound value of the inventory level affects
the holding cost of the manufacturing process as listed in Table 10.10column 2. Nega-
tive inventory levels signify unmet customer demands in theobserved cycle. This value
differs from one model to another since each proposes a different set of reorder points as
well as quantity to order. For instance, when no-backlogs are allowed in the manufactur-
ing process, theSCSPvalue of unmet demands is the highest compared to other models;
it reaches a value of 252 items which in turn imposes the highest shortage penalty value
that lies within the interval range: $[5910.28, 6371.76] as shown in Table10.10column
4. Probabilistic andfuzzymodels have a similar behavior and obtained unmet demands
value reaches: 72 items and their shortage penalty is: $[1576.35, 2050.95]. In general,
unmet demands results in shortage penatly when backlogs areallowed is less because
in this case unsatisfied demands from previous cycles are usually ordered and met in
subsequent cycles. The set of possible solutions is encapsulated in theUCSPmodel
since the model envelops all possible realizations of the problem in hand. However out-
put solution range obtained from theUCSPmodel is extremely wide.cdf-intervals and
p-boxcdf-intervals models seek to meet all observed demands thus they exclude output
realizations that contradict the stochastic nature of the problem.
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EOQ {1, 2, 3, 4, 5, 6, 7, 8, 9} [−15.6, 26] [−15.6, 26] 49
Probabilistic {1, 2, 3, 4, 5, 6, 7, 8, 9} [−61, 0] [−72,−2] 24
SCSP {1, 3} [−217, 4] [−252, 4] 30
fuzzyDutta {1, 2, 3, 4, 5, 7, 8, 9} [0, 37] [1, 37] 36
fuzzyPetrović I {1, 2, 3, 4, 5, 6, 7, 8, 9} [−61, 0] [−72,−2] 24
fuzzyPetrović II {1, 2, 3, 4, 5, 6, 7, 8, 9} [−61, 0] [−72,−2] 24
MIP {1, 3, 6, 9} [0, 149] [24, 149] 120
UCSP [{1}, {1, 2, 3, 4, 5, 6, 7, 8, 9}] [−236, 1222] [−270, 1222] [0, 220.7]
cdf-intervals [{1}, {1, 2, 3, 4, 5, 6, 7, 8, 9}] [(0, 0), [(0, 0), [(0, 0),

(1239, 1)] (1239, 1)] (220.7, 1)]
p-boxcdf-intervals [{1}, {1, 2, 3, 4, 5, 6, 7, 8, 9}] [(0, 1,∞), [(0, 1, 0.43), [(6.99, 0, 0.31),

(1215, 1, 0.43)] (1215, 1, 0.43)] (219.9, 1, 0.27)]

ba
ck

lo
gs

ar
e

al
lo

w
ed EOQ {1, 2, 3, 4, 5, 6, 7, 8, 9} [−40.3, 23.5] [−40.3, 23.5] 49

Probabilistic {1, 2, 3, 4, 5, 6, 7, 8, 9} [0, 24] [0, 24] [27, 58]
SCSP {1, 3} [−38, 67] [−38, 67] 91
fuzzyDutta {1, 2, 3, 4, 5, 7, 9} [−38, 74] [−38, 74] 100
fuzzyPetrović I {1, 2, 3, 4, 5, 6, 7, 8, 9} [0, 24] [0, 24] [27, 58]
fuzzyPetrović II {1, 2, 3, 4, 5, 6, 7, 8, 9} [0, 24] [0, 24] [27, 58]
MIP {1, 3, 6, 9} [−38, 152] [−38, 152] 182
UCSP [{1}, {1, 2, 3, 4, 5, 6, 7, 8, 9}] [−44, 211] [−69, 211] [0, 238]
cdf-intervals [{1}, {1, 2, 3, 4, 5, 6, 7, 8, 9}] [(0, 0), [(0, 0), [(0, 0),

(210, 1)] (210, 1)] (237, 1)]
p-boxcdf-intervals [{1}, {1, 2, 3, 4, 5, 6, 7, 8, 9}] [(0, 1,∞), [(0, 1, 0.43), [(0, 1, 0.31),

(210, 1, 0.43)] (210, 1, 0.43)] (237, 1, 0.27]

Table 10.9: The stud manufacturing item bounds on the inventory levels and reorder points simulated for 10 cycles
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10.8. Evaluation of the model

Total cost

Total cost listed in Table10.11incorporates four components: setup, holding, purchase
and shortage costs listed in Table10.10. Cost components vary and depend on the order
size and the inventory levels. Clearly from Table10.10, purchase cost is the highest
portion of the total cost; its interval representation is wider when backlogs are allowed.
Setup and holding costs are equal in both cases: backlogs andno-backlogs. Output
values from theEOQ, Probabilitic,fuzzyare located within realized interval bounds.

p-boxcdf-interval bounds encapsulate all possible realizations ofminimal cost and
yield a range of quantile values between $993.67 and $6646.55 when backlogs are al-
lowed. The lower bound quantile obtained indicates that forthe same range of input data
the model can achieve a better minimal cost value. In case when no-backlogs are allowed
in the model this range increases with an upper bound of $9884.87, this is mainly due to
the additional shortage cost caused by unmet customer demands. Thep-boxcdf-interval
representation further explains that an increase of $1 has an expected probability value
that ranges between 0.2% and 12%. Generally, bounds on the total cost obtained help
decision makers better plan their budget allocation in comparison with a single value
that might not be applied when unconvex models are implemented in real-time.

10.8.3 Scalability of the model

In this section we compare the above studied solvers in termsof scalability. We have
implemented 5 data sets with variations of demand distributions.

• Randomly generated monthly demands for 7,10 and 24 cycles Fig. 10.7

• P1 set: demand distribution mean value per cycle is
50(1+ sin(πt/6))

• P2 set: demand distribution mean value per cycle is
50(1+ sin(πt/6))+ t

• P3 set: demand distribution mean value per cycle is
50(1+ sin(πt/6))+ (52− t)

• P4 set: demand distribution mean value per cycle is
50(1+ sin(πt/6))+min(t, 52− t)

wheret is the cycle number.

We have generated a random demand distribution for each given mean value in the
above list. Recall that convex andfuzzymodels studied in this chapter bound each of the
values presented. On the other handSCSP, probabilistic andMIP models can only deal
with one value for each run. In this scalability test each solver seeks to find the optimal
inventory levels, ordering points and order-up-to-level values for each cycle in the given
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EOQ [11.7, 25.3] [10.8, 12.84] [1025.48, 1132.26] [187.58, 227.695]
Probabilistic [11.7, 25.3] [0, 0] [0, 1356] [1576.35, 2050.95]
SCSP [2.34, 5.06] [0.186, 0.483] [311.36, 316.92] [5910.28, 6371.76]
fuzzyDutta [10.53, 22.77] [9.3465, 24.633] [1830.6, 1830.6] [0, 0]
fuzzyPetrović I [11.7, 25.3] [0, 0] [1356, 1356] [1576.35, 2050.95]
fuzzyPetrović II [22, 22] [0, 0] [1356, 1356] [1576.35, 2050.95]
MIP [4.68, 10.12] [41.2455, 129.283] [2246.24, 2246.24] [0, 0]
UCSP [1.25, 26.1] [0.0465, 1375.423] [150.12, 8520.7] [0, 7394.8]
cdf-intervals [(1.25, 0), [(0.047, 0.01), [(1049.67, 0), [(0, 0.35),

(25.6, 0.9)] (1346.47, 1)] (8622.1, 1)] (7394.8, 1)]
p-boxcdf-intervals [(1.25, 0.04, 0), [(0.0465, 0.65, 0.23), [(988.44, 0, 0.003), [(0, 0.65, 0.005),

(26.1, 0.36, 0.267)] (1172.08, 1, 0.17)] (8491.232, 1, 0] (7394.8, 1, 0)]

ba
ck

lo
gs

ar
e

al
lo

w
ed EOQ [12.95, 12.95] [4.44, 3.3] [829.99, 869.54] [470.08, 607.94]

Probabilistic [11.7, 25.3] [5.58, 19.32] [1678.05, 1762.8] [0, 0]
SCSP [2.34, 5.06] [4.42, 15.62] [272.44, 283.56] [1378.88, 1451.16]
fuzzyDutta [7.02, 15.18] [12.741, 44.919] [2502.95, 2582.05] [723.2, 757.1]
fuzzyPetrović I [11.7, 25.3] [5.58, 19.32] [1678.05, 1762.8] [0, 0]
fuzzyPetrović II [22, 22] [12.45, 12.45] [1678.05, 1762.8] [0, 0]
MIP [4.68, 10.12] [22.3665, 78.246] [3319.32, 3374.92] [1006.36, 1061.96]
UCSP [1.25, 26.1] [1.26, 138.14] [294.68, 5804.64] [0, 1506.76]
cdf-intervals [(1.25, 0), [(1.26, 0.19), [(294.68, 0), [(328.04, 0.8),

(25.6, 0.9)] (125.76, 1)] (5932.52, 1)] (1506.76, 1)]
p-boxcdf-intervals [(1.25, 0.04, 0), [(1.26, 0.99, 0.27), [(1123.66, 0, 0.004), [(0, 0.65, 0.005),

(26.1, 0.36, 0.27)] (137.5, 1, 0.2)] (5799.08, 1, 0] (1506.76, 1, 0)]

Table 10.10: The stud manufacturing item output costs calculated for 10 cycles
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when no-backlogs are allowed when backlogs are allowed
o/p min cost bounds on total cost o/p min cost bounds on total cost

EOQ $1048.07 [1235.56, 1398.1] $1013.65 [1355.865, 1455.315]
Probabilistic $3052.55 [2944.05, 3432.25] $1714.7 [1695.33, 1807.42]
SCSP $6325.46 [6224.17, 6694.22] $1672.66 [1658.08, 1755.4]
fuzzyDutta $1849.08 [1850.4765, 1849.08, 1878.003] $3262.6 [3245.91, 3262.6, 3399.25]
fuzzyPetrović I $3052.55 [2944.05, 3432.25] $1714.7 [1695.33, 1807.42]
fuzzyPetrović II $3056.05 [2954.35, 3428.95] $1729.45 [1712.5, 1797.25]
MIP $2262.33 [2292.17, 2385.64] $4360.14 [4352.73, 4525.25]
UCSP $[151.42, 9922.22] [1803.95, 6669.44]
cdf-intervals $[(1050.96, 0.23), [(1086.22, 0.8),

(9994.14, 1)] (6411.92, 1)]
p-boxcdf-intervals $[(1056.3, 0, 0.1), [(993.67, 0, 0.12),

(9884.87, 0, 0.002)] (6646.55, 0, 0.002)]

Table 10.11: The stud manufacturing item optimal quantity to order effect on the total cost observed for 10 cycles
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Chapter 10. Management of Inventory

time horizon that realize the minimum total cost. We run the tests using a Core2 Duo
CPU, 2.53GHz and 3GB RAM under a windows environment.

The first three rows in Table10.12show the real time taken by each model in seconds
to generate the output solution of the total cost given the 3 randomly generated demand
sets over 7, 10 and 24 cycles. Generally real-time increaseswith the increase of the
number of cycles in the time horizon. From the given results we can observe that the
slope of theSCSPtime curve is the steepest; this indicates that theSCSPsolver times out
at earlier stages when it is compared tofuzzyand convex models. Solvers that implement
fuzzyapproaches all have almost the same time performance and they are faster than
probabilistic solver. For this specific data set convex models realize bounds on the output
solution in less than 50% the time taken byfuzzysolvers;MIP solver is faster when time
horizons are 7 and 10 cycles.

Two other measurements, the shared heap used and the controlstack used, are taken
into consideration in order to study the memory consumptionof each model. The shared
heap used is the memory allocated to store compiled Prolog code and its related vari-
ables and necessary buffers. The control stack used is utilized to hold backtracking in-
formation. Table10.12demonstrates that stochastic model memory consumption grows
exponentially when scaling-up the problem, it reaches 100%for a time horizont = 24.
The p-box cdf-intervals behavior is similar to convex models. Probabilistic andfuzzy
models have the best shared heap utilization. Clearly the percentage of the control stack
utilized in the stochastic model is the highest. This is due to the behavior of stochastic
techniques which exhaustively build the solution scenarios in order to reach a solution.
It is worth noting that convex models andp-boxcdf-intervals do not need to build this
tree since output solution set is provided within an interval range that is encapsulating
all possible output scenarios.

Furthermore, Tables10.13and10.14show the time performance comparison of the
models under consideration with the 4 variations of the randomly distributed demands of
our imperical evaluation. The real-time taken to output thefinal solution set per model
is measured in seconds. It differs from one model to another and depends mainly on the
set of input demand distributions and the number of cycles foreseen in the given time
horizon. Results are not recorded after a time-out of 2 hours.

Clearly from Fig.10.8and Tables10.13and10.14theSCSPwas the first to times out
and the probabilistic model comes in second place followed by theMIP thenfuzzymod-
els. The best model in terms of scalability is theUCSP. Evidentlyp-box cdf-intervals
model finds bounds on the output solution within almost a similar time range realized by
the UCSP. Moreover, solution bounds obtained by thep-box cdf-intervals incorporate
knowledge on the data whereabouts.

If we look at the overall manufacturing process,UCSP, CDF1 and PBOX outper-
form the rest of the models in terms of time taken to find boundson the plan. In the three
models data is collected and bounds on the probability distribution of the input coeffi-
cients are composed. Derived input coefficients are then utilized as input to the models
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time horizont stochastic probabilistic fuzzy cdf p-box convex
real time (sec) 7 0.43 3.71 3.06 0.81 0.78 0.5

10 70.14 6.08 5.77 3.28 3.28 3.06
24 1683.36 175.22 159.05 55.41 32.5 31.2

control stack used 7 62.87% 46.71% 23.35% 0% 0% 0%
10 89.82% 46.71% 23.35% 0% 0% 0%
24 100% 46.71% 23.35% 0% 0% 0%

shared heap used 7 0.21% 0.4% 0.29% 6.87% 6.86% 6.82%
10 0.21% 0.5% 0.29% 9.68% 9.67% 9.62%
24 100% 0.9% 0.7% 22.93% 23.04% 22.79%

Table 10.12: Real-time taken and measurement of memory consumption
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24 26 28 30 32 34 36 38 40 42 44 46

P1 set

SCSP 2497.22 3127.24 3828.05 4599.65 5442.04 6355.23
PROB 196.93 446.42 641.57 1882.5 1710.91 2207.96 6557.76
MIP 49.23 97.68 197.53 572.62 1081.1 1594.68 3294.46 6933.5 6556.86
PETROII 139.68 351.52 577.55 1138.5 1228.8 1479.68 1697.76 1869.98 2129.6 2328.48 5265.93
DUTTA 124.2 239.98 590.61 1213.92 1597.44 1942.08 2284.2 2512.56 2700.0 2698.92 3252.48
PETROI 124.04 257.8 721.28 1189.5 1873.92 1447.89 2148.12 1898.86 2096.0 2302.02 4123.69
CDF1 82.06 265.85 600.75 1244.6 865.78 642.75 891.5 1130.0 1351.67 2289.59 2340.78
PBOX 58.24 260.77 574.62 1187.45 675.77 586.81 874.12 1110.59 1256.86 1955.72 2119.47
UCSP 56.33 212.72 482.03 1111.26 432.88 553.48 778.28 961.24 1088.4 1800.23 1844.06 1828.4

P2 set

SCSP 2525.0 3162.02 3870.62 4650.8 5502.57 6425.92
PROB 225.88 326.56 829.57 1422.0 3242.4 5248.25
MIP 65.68 106.02 449.73 823.76 875.81 4395.8 7272.81
PETROII 176.4 314.34 717.36 1620.0 2088.96 2653.02 3311.28 3869.92 5136.0 6615.0
DUTTA 148.32 180.27 672.53 945.0 1451.52 1742.67 1963.44 2317.62 2388.0 2725.38
PETROI 155.24 243.37 682.43 1389.0 1661.44 1846.71 1967.58 5732.69 5004.0 2055.06
CDF1 211.92 428.46 619.6 1465.45 775.08 538.88 854.55 1285.74 1922.06 2102.92
PBOX 171.9 363.05 603.42 1376.66 669.89 520.13 813.36 1211.82 1663.99 1985.7
UCSP 119.77 309.54 517.18 1238.79 440.33 468.82 693.04 1095.12 1371.14 1814.8

Table 10.13: Real-time taken to solve instances where the set of demands is given as in P1 and P2
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P3 set

SCSP 2492.17 3120.91 3820.3 4590.34 5431.04 6342.38
PROB 216.22 419.97 1048.32 1773.75 2444.8 4722.27 6156.0
MIP 60.09 53.79 136.02 469.03 736.8 3873.24 4682.94 5188.97 8467.79
PETROII 209.52 312.09 728.0 1696.5 2216.96 3034.5 3777.85 4194.83 5192.0 7003.09
DUTTA 143.28 232.09 757.12 1003.5 1551.36 1864.05 2031.48 2263.47 2568.0 3003.21
PETROI 178.57 263.66 989.15 1199.25 1231.36 1430.55 2998.8 5736.3 2568.0 4423.24
CDF1 171.7 370.84 627.6 1195.14 888.15 622.29 1073.09 1372.47 1775.58 2435.39
PBOX 157.94 368.78 625.1 1047.68 840.45 532.45 920.0 1172.04 1567.14 2147.39
UCSP 144.15 298.46 531.96 897.83 743.92 529.05 848.64 1144.34 1548.07 2091.32

P4 set

SCSP 2499.74 3130.39 3831.91 4604.29 5447.54 6361.65
PROB 357.86 325.14 1241.24 2259.0 2672.64 4404.36
MIP 55.19 104.72 314.78 590.79 1732.67 3547.5 6042.37
PETROII 197.28 315.46 1024.05 1831.5 2319.36 3063.4 3531.6 4534.16 5368.0 6368.04
DUTTA 156.96 248.99 822.64 1053.0 1697.28 2020.11 2400.84 2469.24 2712.0 3082.59 4414.08
PETROI 200.74 292.49 861.22 1531.5 1367.04 1684.87 1640.16 2714.72 2124.0 3245.76 5382.08
CDF1 251.81 377.27 614.4 1357.18 800.11 605.21 922.54 1127.69 1379.99 1990.82 2051.26
PBOX 209.19 376.52 595.77 1156.04 664.42 601.99 813.17 1010.49 1186.99 1698.63 1684.34
UCSP 127.79 307.38 520.14 1155.23 442.47 519.8 697.55 968.99 1177.76 1570.67 1449.6 1668.72

Table 10.14: Real-time taken to solve instances where the set of demands is given as in P3 and P4

155



Chapter 10. Management of Inventory

(a) (b)

(c)

Fig. 10.7: Input demand distributions with mean sets over (a) 7, (b) 10 and (c) 24 cycles

and solution is deduced in one stage; i.e. all foreseen cycles at once. Output solution is
an envelopment of an unknown distribution.

10.9 Summary

In this chapter, we discussed the inventory management problem and its application in
the manufacturing process. We described how different models formulate the inventory
problem and what is the useful solution output. Generally, input to the model is: cus-
tomer demands, setup cost, variable item cost and holding costs. Noticeably, input to the
problem has a stochastic nature and variables with fluctuating values are usually approx-
imated in order to simplify the complexity of the algorithm that seeks to find the optimal
solution. Output from the models is basically the schedule and size of orders, inventory
levels and the total cost. Obtained output helps decision makers to plan ahead for the
inventory and order capacities as well as the budget of the manufacturing process. We
elaborated the evolution of the model formulation in the literature starting from the very
basic deterministicEOQmodel. We exerted a comparison betweenSCSP, probabilitic,
fuzzy, MIP, UCSP, cdf-intervals andp-boxcdf-intervals models.SCSPand probabilitic
models, in practice, proved to be the slowest models. While studiedfuzzymodels have
almost the same time performance. Petro II incorporatesfuzzycost variable in the model
hence it allows for reasoning while consideringfuzzyencapsulation of the given data.

We practically proved that convex modelsUCSP, cdf-intervals andp-boxcdf-intervals
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Fig. 10.8: Model scalability comparison for (a) P1 set of demand distributions with no
trend over the time horizon,(b) P2 set of demand distributions with positive trend over
the time horizon,(c) P3 set of demand distributions with negative trend and (d) P4 set of
demand distributions with trend

encapsulate each demand distribution in a convex representation in order to incorporate
the problem inputs fluctuating nature. Clearly results showthat convex models are very
fast and outperform the rest of the models. Our approach suggests a range of quantities
to order along with an idea of data whereabouts. This information will provide all op-
tions to the decision maker; hence they will be given a range of quantities to order along
with the range of costs for each decision.
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CHAPTER 11

CONCLUSION

In this dissertation, we propose a novel framework and a formal constraint logic pro-
gramming language overcdf-intervals to reason about data with uncertainty. The key
idea is to extend convex models with probabilistic information in order to realize adi-
tional quantifiable knowledge on the data whereabouts. Our aim is to intuitively describe
data coupled with uncertainty or following unknown distributions without losing any
knowledge given in the problem definition.

We introduced inSaad et al.(2010) the cdf-intervals structure which was our first
attempt to represent data in a2D domain representation: real andcdf. Despite the fact
that thecdf-intervals structure represents and reasons about data alongside its where-
abouts in the2D, it is an approximation of the probability distribution, hence it lacks the
full encapsulation of the actual probability distributionof the data. We extend thecdf-
intervals with ap-box structure to obtain a safe enclosure in which data along withits
whereabouts are enveloped by two probability distributions [Saad et al.(2012b),Saad et
al. (2012a),Saad et al.(2014) andSaad(2014)]. Boundingcdf-distributions are chosen
to be uniform because they have linear computations. In thischapter we summarize the
thesis list of contributions.

11.1 Related work

In Chapter3, we provide the technical background that supports the scheme and proofs
the correctness of the theory behind our framework. We recall all probabilistic concepts
which establish and explain thecdf and thep-box, the main building blocks of our
algebraic structure. We also demonstrate how probabilistic operations are exerted in the
probability paradigm. These operations are the core maneuver in the reasoning process
when it is concerned with probabilistic distributions.

We reviewed how data uncertainty is usually tackled and dealt with in different
paradigms. The literature categorizes the models to followeither probabilistic or pos-
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Chapter 11. Conclusion

sibilistic approaches. We studied the two approaches and their diverse implementations
in the CP and LP paradigms. We also provide their advantages and drawbacks when
they are implemented in real-life problems. There is so muchto do in the literature con-
cerning reasoning about real-life situations coupled withuncertainty. Representations
and solving techniques are often catered to specific situations and cannot be generalized.
There is no one existing integrated paradigm that enables researchers to represent and
deal with all types of uncertainty.

We are interested in systems of constraints inCP andOR because they are easily
embedded in declarative programming languages. Such systems are heavily used in the
problem solving environments, while separating logic fromcontrol. TheCPparadigm
is characterized to be flexible in expressing optimization problems. On the other hand,
the LP paradigm provides a better realization of optimal solutions when problems are
scalable. Systems of constraints inCP andOR define a set of constraints through an
intuitive descriptive algebraic structure along with the domains allowed for variables
in a constraint relation. The aim is to find an admissible solution or set of solutions
to the problem under consideration. This is achieved by an appropriate definition of a
query-answering mechanism following AI and/orORtechniques.

11.2 Uncertain Data Representation

Alternative approaches found inCP andOR, generally, follow diverse approximation
techniques to represent data uncertainty/population distribution observed in the problem
definition. Some approaches deal with uncertainty by associating a point-wise probabil-
ity to values in the discrete domain. Some others seek to approximate the observations
to the nearest known probability distribution using statistical tools such as the expected
value and variance. Approaches following convex techniques enclose all possible data
and treat them with an equally weighted knowledge (probability of occurrence). This
is to ensure the tractability of the model by performing the reasoning on the interval
bounding values (extreme points).

In Chapter5, we show how observed data in the problem definition is collected and
represented by the algebraic structure defined in our model.Data whereabouts often
forms an unknown random distribution. Since this distribution is unknown we enclose
it between two uniform distributions. Bounding distributions along with the minimum
and maximum quantile values construct ap-box. We show that by issuing lines with a
maximum (minimum) slopes from the minimum (maximum) measured quantile values,
we guarantee the full encapsulation of the probability distribution being measured and
following an unknown distribution. We then compare betweenthe different representa-
tions of input data to show how accurate its whereabouts are enveloped in the models
(probabilistic, fuzzy, cdf-intervals andp-box cdf-intervals). Thep-box cdf-intervals
representation out of this comparison is the most safe enclosure which guarantees the
full encapsulation of available data along with its whereabouts. A point lying in the
p-boxcdf-interval bounds has a chance of occurrence lying between the uniform distri-
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butions bounding thep-box. Accordingly thep-box representation allows for an addi-
tional quantitative information about bounds on the possible chances of occurrence of
quantile values. Table11.1lists the main differences between the convex representation
in real-intervals,cdf-intervals andp-boxcdf-intervals.

11.3 New domain definition

After the data collection process we form thep-box cdf-interval which is as safe en-
closure that identifies the confidence interval in a two-dimensional manner: values and
bounds on their chance of occurrence. We then propose a new domain for reasoning with
uncertain data. The key idea is to combine the usual intervalarithmetic approach with
a second dimension capturing the cumulative distribution function cdf of the variable
whose primary dimension (the real domainR) spans the value that the uncertain variable
can take. We define thecdf-intervals domain and how the interval arithmetic opera-
tions are exerted over this new domain. The entire exercise makes it possible to define
constraints over variables defined on this domain. Solutionmethod of these constraints
deliver intervals for the variables with thecdf in our first approach, and alongside an
envelopedcdf in thep-boxcdf-interval approach.

As opposed to points defined over the lattice of realsR, a point in thecdf-interval
is defined by a line (the uniformcdf-distribution) in a2D-space manner. Our firstcdf-
intervals structure aligns all points lying between the interval bounds into one line that
approximates the whereabouts to the nearestcdf-uniform distribution. This representa-
tion is revisited such that each point is associated with onecdf-uniform distribution. In
a 2D-space, a line is generally constructed following one of thetwo approaches: four
values (two values on thex axis and their corresponding values on they axis) or three
values (anx value, ay value and a slope). The first approach defines thecdf-interval
domain proposed to define our first algebraic structure. The second approach defines
triplet points bounding thep-box cdf-interval. Each triplet point corresponds to: the
quantile value, thecdf and the slope of the uniform distribution which shows how data
is scattered along the quantiles (on thex axis). Storing a triplet for each bounding uni-
form distribution is sufficient to construct thep-box cdf-interval, hence the minimum
and the maximum quantiles alongside bounds on the chance of occurrence any point
lying between the interval bounds can happen are all stored by the bounding triplet rep-
resentation.

Points of the new defined domains are consequently ranked in atwo-dimensional
manner. Distributions lying towards the upper bound are dominating those preceding
them. This fact helps us defining our computation domain in the 2D-space wherein
thecdf is associated to the uncertainty value of a point. The core operations computed
overp-boxcdf-intervals extends real interval arithmetic with a probabilistic computation
over the boundingcdf-uniform distributions which is in turn a linear computation hence
adding a minimal overhead while performing the calculations over the interval bounds.
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Reliable intervals cdf-intervals p-boxcdf-intervals

Initial data
representa-
tion

Bounds on the observed data are
recorded but its whereabouts is not

It is one point lying within thep-box
cdf-interval

encapsulates all data presented/mea-
sured and provided in the problem un-
der consideration

All values provided within the interval
bounds are equally weighted

Assumes that data is uniformly dis-
tributed across the interval. If this is
the case then it is an exact presentation
of the data probability and values

cdf-bounds restrict the possibility of
data to occur outside the interval lim-
its

The interval encapsulates and deals
with only one domain: the domain of
realsR

When the data is not uniformly dis-
tributed, estimatedcdf-uniform distri-
bution is an approximation of the data
realization

The interval is a full encapsulation of
data and its whereabouts

Lattice property on one dimension: the
real domainR

Lattice property for each dimension.
The framework makes use of the
monotonic property of thecdf. The
steepness of the distribution slope
roughly indicates the whereabouts

Lattice property for each dimension:
quantile and probability

Maintains an interval-based approach
in the real domainR

Maintains an interval-based approach
in the quantifiable dimension (proba-
bility) along with the real dimension

Maintains an interval-based approach
in the quantifiable dimension (proba-
bility) along with the real dimension

Point repre-
sentation

A point is a singleton value in the real
domainR

A point is a tuple. The monotonic prop-
erty of thecdf seeks to store only two
values per bound: quantile andcdf.
Thus we do not store the full probabil-
ity information

A point is a triplet. This triplet in-
dicates a 2D line which is thecdf-
uniform distribution

Reasoning Output solution set is an interval of
quantile bounds (like inUCSP)

Builds 2 sets of constraints that enable
us to reason in a2D manner. Hence,
output solution set is not only interval
quantile bounds but also it shows an ap-
proximated uniform distribution of the
data whereabouts

Builds the set of constraints on the real
domainR then project obtained real so-
lution onto thecdf-domain

Table 11.1: Convex structures
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Resulting domains from these operations are proved to have aconvex algebraic structure
which encloses the unknown probability distribution.

11.4 Thecdf-intervals Language and Constraint Solver

We define the new domain over a lattice structure. As aposet, a lattice defines for every
two elements a partial ordering, aglb andlub. Those definitions outline the fundamen-
tal features of a formal language description. The new ordering calculus and arithmetic
operations are exerted on the computational domain: the domain of discourse that maps
a variable to a measureable quantile together with its knowledge in the2D-space. Op-
erations are performed on the bounding uniform distributions. They are linear because
uniform distributions each is shaping a line.

We develop a formalCLPlanguage from the new defined domains and show how this
new domain affects the problem variables and the decision process. Thecdf-intervals
CLP language intuitively formalizes the set of rules and fix-point semantics to reason
about data coupled with uncertainty. The reasoning scheme follows a local consis-
tency approach which attempts at constraining each variable over thecdf-interval do-
main while excluding infeasible solutions.

We implement the new language as a separate solver module in the ECLiPSe con-
straint programming environment. We use the ECLiPSe environment due to its data-
driven programming facility which intuitively realizes meta-programming. This is ac-
complished by using the attributed variables to specify thecdf-interval data structures,
and the suspension library to control the triggering mechanism for executing delayed
clauses. We provide in our implementation an extension to the Prolog unification, con-
straint ordering relations and arithmetic operations overthe cdf-intervals variable do-
mains.

Empirical evaluation shows that solutions from constraintsystems overp-box cdf-
intervals domains intersect with those output from the realintervals, especially when real
bounds are the same. Moreover, the violation of thecdf ordering property may shrink
the interval domain. Hence the realized solution space can further be pruned. This is
an added value thep-boxcdf-intervals introduce: solutions sought to be feasible in the
real domain are excluded since they are infeasible because they violate the properties
belonging to thecdf-domain.

11.5 Definition of new Global Constraints

We define global constraints over systems of linear equations described by thep-box
cdf-intervals algebraic structure. The new constructed global constraints extend interval
linear systems with a second dimension (the probability). In the linear systems of equa-
tions,p-boxcdf-intervals are introduced as variable coefficients. They can be solved by
simple polynomial transformation into a linear model whichis then sent to the Simplex
method. We run 2 Simplex to compute interval bounds. This approach is often used to
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solve Interval Linear Systems and it is very cost effective.Interval quantiles are then
projected onto thecdf domain in order to obtain bounds on thecdf-distributions. The
p-box cdf-intervals closure realizes quantile values along with bounds on their where-
abouts. We show that extreme triplet points resulting from this operation is equivalent to
those obtained from theCSPversion of the solver.

11.6 Practical Evaluation

We apply the novel language to model two different real-lifeapplications:NTAP used
in network design problems and the inventory management problem.

11.6.1 NTAP Problem

The NTAP problem is used in traffic monitoring and network diagnosticwhich serve
in capacity planning, traffic engineering, reliability analysis, network management and
other network administrative tasks. The observed traffic volumes in the problem defini-
tion have a fluctuating nature and most of the techniques adopted to serve this problem
are either reliable (they seek bounds that encapsulate all possible realizations) or ro-
bust (they approximate the problem to the nearest possible deterministic case).NTAP
is a large scale optimization problem which is usually underconstrained (the number of
links is significantly small compared to the number of trafficdemands) and has a solu-
tion set characterized to be infinitesimal. Most of the existing approaches serving this
consortium of applications lack the full encapsulation of the actual distribution of data
that is provided in the problem definition.

We describe how to intuitively model theNTAP problem in thep-boxcdf-intervals
and compare this representation with the deterministic, certainty closure and the ap-
proach of thecdf-intervals with one approximated uniform distribution. Weshowcase
our concept with hypothetical data and network topologies collected from the sndlib
data corpus and a sample network instance of 4 nodes. Intervals derived in three mod-
els encapsulate the actual measured value. TheUCSPprovide a solution set with equal
knowledge weights. Thecdf-intervals approach yields an interval with one approxi-
mated uniform distribution. Thep-boxcdf-intervals realizations incorporate additional
knowledge on the data whereabouts and might further prune the resulting domains in
order to comply with the probability ordering properties. Hence thep-boxcdf-intervals
approach can exclude solutions which might exist in convex model yet they are impos-
sible to happen.

11.6.2 Inventory Management Problem

The class of inventory management problem is widely used in real-life situations which
can be listed but not limited to: the daily ordering of newspapers, the booking of airline
flights and the ordering of items in a supply chain of a manufacturing process. In this
type of problems decision makers need to schedule ahead the ordering of items which
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fulfill uncertain consumer demands, associated by fluctuating market prices, with a min-
imal possible cost. We provide the evolution of the existingmodels which help solving
this consortium of applications. The main modeling aspectswhich are input to the model
and which define the structure of policies involved in monitoring the inventory levels are:
the setup time that adds extra cost in the manufacturing process, the replenishment poli-
cies which vary between periodical and continuous monitoring of the inventory levels,
and the customer demands characterized to be unpredictableyet they need to be fulfilled
and satisfied in a timely manner. Modeling the inventory problem yields output factors
which help the decision makers to take further steps like: defining the reorder point and
determining the quantity to order. Both actions lead to a setof costs (holding cost, setup
cost, ordering cost and shortage cost) which affect the overall cost of the manufacturing/
production process.

We studied the different modeling approaches which tackle the inventory manage-
ment problem: the deterministic version (EOQ model), dynamic programming, con-
straint programming and its stochastic version, uncertainty closure framework, mixed
integer programming, andfuzzyprogramming. We show how thep-boxcdf-intervals in-
tuitively envelop the uncertain data found in different modeling aspects with minimum
overhead. To evaluate our model and its solution we compare the p-box cdf-intervals
inventory management model version with all of the above mentioned approaches by
means of a process with a finite time horizon. In practice and based on our findings,
stochastic constraint programming and probabilistic models are the slowest. Fuzzy mod-
els with variable representation proved to have the same time performance and their
output solutions are characterized to be reliable, i.e. they seek the satisfaction of all
possible realizations. Convex models of the certainty closure, thecdf-intervals and the
p-box cdf-intervals encapsulate all possible distributions of the demands in a convex
representation. They seek bounds on the solution sets. Thisfact allows for building
inventories with appropriate capacities and budget. Moreover, thep-box cdf-intervals
framework provides a range of quantities to order and a rangeof costs for each decision
along with bounds on its whereabouts.

To the best of our knowledge,p-boxeshave never been implemented in theCP
paradigm, yet they are very good candidates to deal with and reason about uncertainty
in the probabilistic paradigm, especially when the data is shaping an unknown distribu-
tion. The concept ofp-boxesrelies on the probabilistic approach that ranks probability
distributions based on their stochastic dominance. It is a safe envelopment of the data
whereabouts especially when it follows an unknown distribution. Thecdf was selected
due to its aggregated nature which enables the propagation of the information to the
interval bounds. In addition to its capability of easily ranking probability distributions
within a p-box domain. We have implemented thep-box cdf-intervals in the ECLiPSe

constraint programming environment, and we have shown that, with minimal overhead,
obtained solutions gained tighter bounds in the probabilistic domain when compared
with convex models.

167





CHAPTER 12

FUTURE WORK

The introduction of a novel framework to reason about data coupled with uncertainty due
to ignorance or based on variability, paves the way to many fruitful research directions.
We can list many in: studying models having variables following dependent probability
distributions, further investigating the model structureto deal with disjoint domains,
suggesting a list of global constraints, exploring different search techniques, generalizing
the framework to deal with all types of uncertainty, revisiting the framework within a
dynamically changing environment, and last but not least applying the model to a variety
of large scale optimization problems which target real-life engineering and management
applications.

12.1 Dependencies of variables

When we construct our model, we assume that all variables have independent probability
distributions. This is to ease the computation and the reasoning about the distributions.
For future work we need to account for data dependencies if exist in the problem rep-
resentation. In theNTAP, we can study, for instance, the network traffic flows which
split into more than one link. The probability distributionthat shapes each flow variable
traversing a link will depend on another link-flow variable.

12.2 Disjoint domains

The p-box cdf-intervals is a convex structure which sets bounds on the data and its
whereabouts. We did not tackle examples where we have an uncertain variable with dis-
joint domains. We expect that disjoint domains will add up more probabilistic computa-
tion on thecdf bounding distributions because more triplet points will beinvolved. The
question for future work is how to balance between representing the full set of domains
in a convex structure as opposed to dealing with them as multi-intervals in disjunction.
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This should be coupled with a full study on the price with respect to the complexity of the
computation of disjoint domains since in this case the number of enumerated domains is
larger.

12.3 Global constraints

Global constraints are pre-filtering algorithms which capture problem specific structures
in order to reduce the search space by disregarding infeasible realizations. They utilize
different paradigms which view the problem with a global perspective such as in: the
graph theory constructs the problem visually using a graph (directed/undirected) defined
over a set of vertices and nodes; and the linear programming paradigm incorporates
continuous variables in a set of linear equalities and inequalities, along with an objec-
tive function that needs to be optimized [W. van Hoeve and Katriel(2006)]. Examples
of global constraints can be found in: the sum and knapsack constraints associates a
scalar to the sum of the set of variables; the global cardinality constraint assigns every
value to a variable [Régin (1996), Régin (1999)]; the element constraint states that a
value is equal to theith variable in a constraint [Van Hentenryck and Carillon(1988)];
the Alldifferent constraint is based on the matching theoryfor efficient filtering [Régin,
Petit, Bessière, and Puget(2000)]; and the Cumulative constraint allocates and sched-
ules resources in a cumulative manner [Baptiste, Laborie, Le Pape, and Nuijten(2006)].
The p-box cdf-intervals framework is aligned with the concepts of globalconstraints.
Using the propagation techniques following thep-box cdf algebraic structure, we can
eliminate values from the domains that do not lead to an admissible solution before the
search takes place. The probability dominance property is an essential tool, in this case,
it introduces probabilistic constraints which eliminate unnecessary values which contra-
dict the satisfaction of the problem set of constraints. We have adopted techniques from
the linear programming paradigm to represent boundingcdf distributions of the variable
constraint coefficients. This technique provides an efficient propagation technique that
prunes the domain of a variable to a convex representation that excludes all unnecessary
values from thep-boxcdf-interval. Further investigations need to take place to study the
integration of thep-boxcdf-intervals within a global graphical representation of a given
problem when it is subject to uncertainty.

12.4 Search Techniques

Thep-boxcdf-interval algebraic structure constrains variable domains in a two dimen-
sional manner. The probabilistic dimension adds an extra constraint in the constraint
network in order to maintain the probabilistic dominance property. The novel structure
can be plugged into existing search techniques for problem instances existing in the un-
certain and stochastic world. The challenge here is to improve the search methods by
adding information bounding the probability distributionof a given event.
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Techniques for solvingCSPcan be found in: backtracking search and local search.
Solving algorithms can be either complete or incomplete. The backtracking search is a
complete algorithm (eventually it leads to a solution) whereas the local search is incom-
plete (might not find the optimal solution of the problem). Backtracking often requires
an exponential amount of space and time. Research to improvethe backtracking al-
gorithms is quite large and usually it is accompanied by heuristics which often order
the search tree with the most promising branch to be visited first. A typical backtrack-
ing algorithm is a set of branching constraints that build a tree. The variations of such
branches are formed by enumeration, binary choice point or domain splitting [van Beek
(2006)]. An example of a future work can be combining thep-box cdf-intervals with
value ordering heuristics [Ginsberg(1993), Vernooy and Havens(1999)]. This algo-
rithm seeks to find the best next value for a given variable that is more likely to be part
of the solution. The choice of this value can be supported by the stored probabilistic
value within thecdf-interval structure. Another possible integration can be associated
with the ‘randomization and restart‘ search strategies [Harvey(1995), Gomes, Selman,
Kautz, et al.(1998)]. Thep-boxcdf-interval structure can assist in finding the best point
in time wherein the restart should take place. This can be done, for instance, when the
search with the variable domain has a very low probability ofsatisfaction.

A detailed survey about local search techniques adopted inCSPscan be found in
Hoos and Tsang(2006). Local search by means of meta-heuristics is one of the most
powerful search techniques for solving large problem instances in many practical appli-
cations. The most prominent local search techniques are: stochastic local search, simu-
lated annealing, tabu search and dynamic local search. To find an optimal solution, the
algorithm iteratively utilizes a randomization in order toimprove the realization when
the solution reached is infeasible, sub-optimal or incomplete. The key idea is to select
the new candidate solution in a stochastic manner. The probabilistic property stored in
thep-boxcdf-interval algebraic structure can assist in this selection: the most promising
choice that is more likely leads to a solution.

12.5 Modeling Uncertainty

Uncertainty, in the literature, as shown in Chapter3 can be due to ignorance or stochas-
tic nature of the problem. To represent uncertainties, the model selection process is
overwhelmed with an infinite number of proposed models each targeting a specific un-
certainty type. There is an urgent need to deal and reason about all types of uncertainty
and variability in a single framework. Uncertainty is assessed either by enumeration
(requiring expensive calculations) or bounds (acquiring less expensive computation).
The challenge is to construct a system which identifies the uncertainty type, builds an
adequate problem structure and finds the most effective and efficient resolution form.
Ideally, all proposed frameworks should be brought together this is by integrating the
cdf-intervals with semiringCSPs[Bistarelli et al.(1999)], valuedCSPs[Schiex et al.
(1995)], mixedCSPs[Fargier et al.(1996)], SCSPs[Walsh(2000)], dynamicCSPs[Falt-
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ings and Macho-Gonzalez(2005)], andfuzzyCSPs[Dubois et al.(1996)]. As a result we
can introduce an intuitive expressiveness of the uncertainty associated with the problem
definition. Furthermore, we should seek the integration of the hybridization techniques
which bring theLP power into theCPfor better optimization and solution findings.

12.6 Dynamically changing environment

In this dissertation, we studied thecdf-intervals algebraic structure to model uncertain
environment in a single time snapshot. However, uncertainty can also be found in a
changing environment. As pointed out in Chapter3, solving problems which change
over time has two main strategies: minimize the need for change by seeking a reliable
solution; minimize the cost of change by acquiring a stable solution; and minimize the
reaction time by questing for quick solutions. Since thecdf-intervals are convex struc-
tures they seek a robust solution which envelop all possiblerealizations of the uncertain
problem, hence they can assist in the modeling and solving ofproblems using the first
listed strategy.

A possible future line of research is to study the integration of thecdf-intervals with
existing local repair methods targeting applications withunknown future. For instance,
when the min-conflict heuristic is used to minimize the number of unsatisfied constraints
[Minton et al.(1992)] or to solve over-constrained problems [Barták et al.(2004)], the
additional knowledge, which is provided by thecdf-intervals about the whereabouts,
can be propagated to guide the heuristics towards minimizing the possible chance of
occurrence of unsatisfied constraints in the problem.

When the type of change is unknown, thecdf-intervals can be a good candidate
in the integration with the oracle approach [Van Hentenryck and Le Provost(1991)].
This is due to the ability ofp-boxes to retain a convex structure that stores previous
observations. In this case prior states in the sequence are retained while excluding all
unnecessary sub-trees from the search space. Solutions to new problems can maintain
the same path.

A third type of dynamic environment exists when informationabout the change is
uncertain. This type of problems often use the recurrentCSPapproach to record the
source and frequency of the change. Thep-box cdf-intervals are characterized to be
proactive since they store all observed information (data and its whereabouts) in a convex
structure. Techniques to integrate recurrentCSPWallace and Freuder(1998) with the
p-boxcdf-intervals should take place in order to enrich the framework with a tractability
property. This integration can be generalized to incorporate theSCSPs[Walsh(2000)]
and the BranchingCSP[Fowler and Brown(2003)] for the same reason.

In a distributed environment, uncertainty can be found in the variable domains since
they are revealed over time in a distributed manner. Thep-box cdf-intervals structure
can define bounds on such domains. Accordingly, they can be intuitively integrated with
OpenCSPs[Faltings and Macho-Gonzalez(2005)]. The p-box cdf-intervals restrict
the search space to the possible realizations. When they areused interactively they
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exclude all infeasible solutions from the search space hence we expect a less expensive
computation.

12.7 Applications

Tackling real-world applications, coupled with data uncertainty, is a broad and diverse
field of research. As pointed out in Chapter3, they are the heart of many Engineering and
Management problems such as in: planning, scheduling, diagnostic and tracking. These
problems can be found in a diverse list of applications such as in risk assessment, finan-
cial markets trading and product design reliability analysis. The given uncertainty varies
in its definition and representation between ill-defined andfluctuating. Even though we
developed a model for theNTAP and the inventory management problems, there is a
lot to be done in this area and the applications tackled in this thesis in particular. For
instance, we need to study the model variations when distributed information about the
link-flow in theNTAP is observed and for several adopted measurement techniques. An-
other example in the inventory management problem the modelcan differ based on the
implemented replenishment policy of inventory levels.

The key idea is to identify the source of uncertainty and seekbounds on the given
knowledge (data and its whereabouts). Then the representation of the uncertainty using
the convex structure should envelop all the observed information. Third, the problem is
modeled in terms of variables, domains and constraints. This will provide thep-boxcdf-
intervals problem algebraic structure which follow the bound consistency propagation
techniques in order to prune the search space. The output from this operation is a solution
set per variable having ap-box cdf-interval convex structure. Thep-box cdf-intervals
framework can be utilized to model and solve an endless list of future optimization
problems coupled with uncertainty.
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CHAPTER A

PROOFS SUPPORTING THE

THEORETICAL FRAMEWORK

A.1 Stochastic ordering of p-boxcdf-intervals points

Assume two pointspx = (x,Fp
x ,S

p
x) and qy = (x, Fq

y ,S
q
y), each lying on a different

uniform cdf-distribution. We need to prove that

Fp
Y 6S Fq

X :
∫ y

−∞

Fqdy≤
∫ y

−∞

Fpdy⇔ Fq
y ≤ (y− x)Sp

x + Fp
x (A.1)

Proof. Recall from Definition2.8, to identify a second order stochastic dominance of a
random variable over another, we perform the integration over thecdf-distribution, by
calculating the area under the designated curves. The slopeequations are:

Sp
x =

Fp′
y − Fp

x

y− x

Sq
y =

Fq
y − Fq′

x

y− x
(A.2)

whereFp′
y is the projectedcdf value of the pointqy quantiley onto thecdf-distribution

of point px. Similarily, Fq′
x is the projectedcdf value of the pointpx quantilex onto the

cdf-distribution of pointqy. From the slope equations, we can derive the two projected
values:

Fp′
y = (y− x)Sp

x + Fp
x

Fq′
x = (y− x)Sq

y − Fq
y (A.3)
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Appendix A. Proofs Supporting the Theoretical Framework

The integrations over the givencdf-distributions are:
∫ y

−∞

Fpdy= Fp′
y

∫ y

−∞

Fqdy= Fq
y (A.4)

If we substituteFp′
y with its derived value that includes the observed slope andcdf,

the resulting linear equations are:
∫ y

−∞

Fpdy= (y− x)Sp
x + Fp

x

∫ y

−∞

Fqdy= Fq
y (A.5)

�

A.2 Computing the p-boxcdf-interval points of projection

For two real intervalsI ∈ [a0, b1] andJ ∈ [c0, d1] data is uniformly distributed between
each interval bounds. Hence, due to the probability distribution function definition, from
Equation2.3, we have:

fI (x) =



0 x < a0
1

b1−a0
a0 ≤ x ≤ b1

0 x > b1

(A.6)

fJ(y) =



0 y < c0
1

d1−c0
c0 ≤ y ≤ d1

0 y > d1

(A.7)

Consider two random variablesX andY defined over real intervals such thatX ∈
[a, b] and Y ∈ [c, d], X ⊆ I andY ⊆ J, anda0 ≤ a ≤ b ≤ b1, c0 ≤ c ≤ d ≤ d1. The
cdf-values fora, b, c, andd, taking their values from thecdf distributions formed byI
andJ, areFa,Fb,Fc, andFd respectively. Thecdf-distribution functions defined forX
andY are:

FX =



0 x < a
x

b1−a0
a ≤ x ≤ b

1 x > b

(A.8)

FY =



0 y < c
y

d1−c0
c ≤ y ≤ d

1 y > d

(A.9)

The red lines in Fig.A.1 illustrates the characteristic functions which representX
andY distributions. Clearly, each has a line equation within thepoints bounding the
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A.3. Addition of twocdf uniform distributions

a0 b1 Xa b

Fb

Fa

1

0

cd
f

c0 d1 Yc d

Fd

Fc

1

0

cd
f

Fig. A.1: The characteristic functions ofX ⊆ I andY ⊆ J

intervals [a, b] and [c, d]. Given the values ofa, b,c, d and their correspondingcdf
valuesFa, Fb,Fc, Fd, we can calculate the projections on the X-axisa0, c0, b1 andd1 of
the intervalsI andJ from the slope (by projecting the line equation onto the ‘0‘ and ‘1‘
cdf-axis values). Accordingly we can deduce the following:

a0 = a− Fa
(b− a)

(Fb − Fa)

b1 = b+
(1− Fb)(b− a)

(Fb − Fa)
(A.10)

Similarily

c0 = c− Fc
(d − c)

(Fd − Fc)

d1 = d +
(1− Fd)(d − c)

(Fd − Fc)
(A.11)

A.3 Addition of two cdf uniform distributions

As noted in Section2.1, the cdf is based on the integration of thepdf. We therefore
derive the jointpdf over the interval of the addition. The resultingpdf is then integrated
to obtain the jointcdf.

A.3.1 Deriving the joint pdf over the interval of the addition

Consider an intervalZ, such that,Z = X+Y. X andY are the intervals illustrated in Fig.
A.1. The eventZ = z occurs if and only if values fromX andY, summed up together,
are equal toz. In this relation, ifX = τ thenZ = z if and only if Y = z− τ, τ andz are
arbitrary real values. Accordingly, the eventZ = z occurs when both eventsX = τ and
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Y = z− τ happen together.τ can take any value from the real domainR: −∞ ≤ τ ≤ +∞.
The probability distribution function ofZ can be obained from the following convolution
operations derived as follows:

FZ(z) =
x

x+y≤z

fXY(x, y) dx dy=
∫
+∞

−∞

(
∫ z−y

−∞

fXY(x, y)dx)dy

substituting

GXY(x, y) =
∫

fXY(x, y)dx

then

FZ(z) =
∫
+∞

−∞

[GXY(z− y, y) −GXY(−∞, y)]dy (A.12)

FZ(z) =
∫
+∞

−∞

∫
fXY(z− y, y) − fXY(− inf , y)dy (A.13)

for independent random variable

fXY(−∞, y) = fXY(−∞) fXY(y) (A.14)

and by definitionfXY(−∞) = 0 then fXY(−∞, y) = 0 and

FZ(z) =
∫
+∞

−∞

∫
fXY(z− y, y)dy (A.15)

which is the convolution operation defined by the following equation:

fZ(z) =
∫
+∞

−∞

fX(τ) fY(z− τ)dτ =
∫
+∞

−∞

fX(z− τ) fY(τ)dτ (A.16)

Fig. A.2: The convolution operation

Fig. A.2 illustrates the convolution operation on two uniformly distributed intervals
X ∈ [a, b] andY ∈ [c, d]. The visual convolution operation exerts the following steps:

1. Each distribution is expressed in terms of a variableτ: fX(τ) and fY(τ)
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A.3. Addition of twocdf uniform distributions

Fig. A.3: Z values as function of quantiles taken fromX andY given thatZ = X + Y

2. One of the two functions is mirrored around the real 0:fY(−τ)

3. An offset is added to the mirrored function:fY(z− τ)

4. The offsetz takes values from−∞ to +∞ to allow fY(z− τ) to slide along theτ
axis; as shown by the sliding arrow in Fig.A.2

5. As illustrated in Fig.A.2, the shaded regions are superimposed to compute the
integration

Values of the random variableZ, as a function ofX andY, form the set of declined
lines drawn in Fig.A.3. Since bothX andY are random variables mapped onto two
real intervals bounded by [a, b] and [c, d] respectively,Z is mapped onto the real interval
bounds [a + c, b + d]. The characteristic function ofZ is a piecewise linear function
defined by the 5 different regions. Bounds differenciating each region are determined by
the dotted blue lines:z= a0 + c0, z= a0 + d1, z= b1 + c0 andz= b1 + d1. Thepdf of Z
is computed as follows:

zlb = min(a0 + d1, c0 + b1) and zub = max(a0 + d1, c0 + b1) (A.17)
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Then fZ : R→ [0,∞) is the piecewise linear function given by:

fZ(z) =



0, z< a0 + c0
z−(a0+c0)

(b1−a0)(d1−c0) , a0 + c0 ≤ z≤ zlb
zlb−(a0+c0)

(b1−a0)(d1−c0) , zlb ≤ z≤ zub
(b1+d1)−z

(b1−a0)(d1−c0) , zub ≤ z≤ b1 + d1

0, z> b1 + d1

(A.18)

A.3.2 Deriving the cdf over the interval of the addition

By definition, thecdf distribution is obtained by integrating thepdf. Due to its mono-
tonic property, we only need to calculate thecdf of the bounding quantiles:z = a + c
andz= b+ d, the calculated minimum and maximum quantiles respectively. The events
z = a + c and z = b + d are located within the set of regions depicted in Fig.A.3.
Note that (a0 + c0) ≤ (a + c) and that (b + d) ≤ (b1 + d1) because [a, b] ⊆ [a0, b1] and
[c, d] ⊆ [c0, d1]. For an arbitraryz= x+ y wherex ∈ [a, b] andy ∈ [c, d]:

FZ(z= x+ y) =
∫ x+y

a0+c0

fXY(z)dz

We can replacefXY(z) by its constituents from EquationA.18.

FZ(z= x+ y) =
∫ x+y

a0+c0

∫ z−c0

a0

1
(b1−a0)(d1−c0)dτdz (a0 + c0) ≤ (x+ y) ≤ (a0 + d1)

+

∫ x+y

a0+d1

∫ d1

c0

1
(b1−a0)(d1−c0)dτdz (a0 + d1) ≤ (x+ y) ≤ (b1 + c0)

+

∫ x+y

b1+c0

∫ b1

z−d1

1
(b1−a0)(d1−c0)dτdz (b1 + c0) ≤ (x+ y) ≤ (b1 + d1)(A.19)

FZ(z= x+ y) =
1
2

(a0 + c0 − x− y)2

(b1 − a0)(d1 − c0)
(a0 + c0) ≤ (a+ c) ≤ (a0 + d1)

FZ(z= x+ y) =
1
2

(c0−d1)
(b1−a0) +

(x+y−a0−d1)
(b1−a0)

(a0 + d1) ≤ (x+ y) ≤ (b1 + c0)

FZ(z= x+ y) =
1
2

(c0−d1)
(b1−a0) +

(b1+c0−a0−d1)
(b1−a0)

+
1

(b1−a0)(d1−c0) {
(a0+c0)2

2 −
(b1+c0)2

2 + (b1 + d1)(x+ y− b1 − d1)}

(b1 + c0) ≤ (x+ y) ≤ (b1 + d1)

From the equations listed above, and knowing the projected values of the uniform
distribution bounds obtained in EquationA.10, we compute the result of the convolution
linearily.
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A.4. Multiplication of twocdf uniform distribution

The slope, by definition, is the average step value thecdf distribution takes. We
compute the slope of thecdf distribution resulting from the addition operation from
EquationA.23 as follows:

Sz =
1

(b1+d1)−(a0+c0)

This is due to the fact that (a0+c0) and (b1+d1) are respectively the lower and upper
bounds of the distribution and theircdf values are equal to ‘0‘ and ‘1‘.

A.4 Multiplication of two cdf uniform distribution

The derivation of the binary multiplication operation is similar to the addition we pro-
vided in SectionA.3. However, in this case, forZ = XY, the eventZ = z occurs if and
only if values fromX andY, multiplied together, are equal toz. Deriving thecdf of the
multiplication is based on the work introduced in [Glen, Leemis, DrewGlen et al.].

A.4.1 Deriving the joint pdf over the interval of the product

In this section, we show how to derive thepdf of the product of the two random variables
X andY, illustrated in Fig.A.1, and which belong to a product operationZ = XY. The
joint pdf of Z can be obained using the following formula [Stark and Woods(1994)]:

fXY(z) =
∫
+∞

−∞

1
|τ|

fX(τ) fY
( z
τ

)
dτ =

∫
+∞

−∞

1
|τ|

fX
(z
τ

)
fY(τ)dτ (A.20)

Fig. A.4: Z values as function of quantiles taken fromX andY given thatZ = XY
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According toGlen et al.(2004), we divide the domain ofZ = XY into 3 main
segments as depicted in Fig.A.4. They are bounded by the dotted lines:z = a0c0,
z = a0d1, z = b1c0 andz = b1d1. When (a0d1) ≤ (b1c0), the probability distribution
function ofZ is described as follows:

fZ(z) =



0, z< (a0c0)∫ z
c0

a0

1
(b1−a0)(d1−c0)

1
|τ|

dτ (a0c0) ≤ z≤ (a0d1)
∫ z

c0
z

d1

1
(b1−a0)(d1−c0)

1
|τ|

dτ (a0d1) ≤ z≤ (b1c0)
∫ b1

z
d1

1
(b1−a0)(d1−c0)

1
|τ|

dτ (b1c0) ≤ z≤ (b1d1)

0, z> b1d1

(A.21)

A.4.2 Deriving the cdf over the interval of the multiplication

To calculate thecdf on the quantile bounds of the multiplication:lb× = min(ac, ad, bc, bd)
andub× = max(ac, ad, bc, bd). The eventsz= lb× andz= ub× are located within the set
of intersecting segments depicted in Fig.A.4. For an arbitraryz = xy wherex ∈ X and
y ∈ Y:

FZ(z= xy) =
∫ xy

a0c0

fXY(z)dz

ReplacingfXY(z) by its constituents, we obtain the following:

FZ(z= xy) =
∫ xy

a0c0

∫ z
c0

a0

1
(b1−a0)(d1−c0)

1
|τ|

dτdz (a0c0) ≤ (xy) ≤ (a0d1)

+

∫ xy

a0d1

∫ z
c0
z

d1

1
(b1−a0)(d1−c0)

1
|τ|

dτdz (a0d1) ≤ (xy) ≤ (b1c0)

+

∫ xy

b1c0

∫ b1
z

d1

1
(b1−a0)(d1−c0)

1
|τ|

dτdz (b1c0) ≤ (xy) ≤ (b1d1) (A.22)

FZ(z= xy) =
xy
(
ln
(

xy
a0c0

))
+ a0c0

(b1 − a0)(d1 − c0)
(a0c0) ≤ (xy) ≤ (a0d1)

FZ(z= xy) =
a0d1

(
ln
(

a0d1
a0c0

))
+a0c0

(b1−a0)(d1−c0) +

ln
(

d1
c0

)
(xy−a0d1)

(b1−a0)(d1−c0)

(a0d1) ≤ (xy) ≤ (b1c0)

FZ(z= xy) =
a0d1

(
ln
(

a0d1
a0c0

))
+a0c0

(b1−a0)(d1−c0) +

ln
(

d1
c0

)
(b1c0−a0d1)

(b1−a0)

+

xyln
(

b1d1
xy

)
−b1c1 ln

(
b1d1
b1c0

)
+xy−b1c0

(b1−a0)(d1−c0) (b1c0) ≤ (xy) ≤ (b1d1)
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A.5. Subtraction of twocdf uniform distribution

The slope of thecdf distribution resulting from the multiplication operationis de-
fined as follows:

Sz =
1

(b1d1)−(a0c0)

Note that, in this case, (a0c0) and (b1d1) are respectively the quantile bounds of the
distribution withcdf values equal to ‘0‘ and ‘1‘.

A.5 Subtraction of two cdf uniform distribution

A.5.1 Deriving the joint pdf over the interval of the difference

Consider an intervalZ, such that,Z = X − Y ≡ Z = X + (−Y). If X = τ, then, the event
Z = zoccurs only ifY = z+ τ takes place.τ can take any value from the real domainR:
−∞ ≤ τ ≤ +∞. The probability distribution function ofZ can be obained as follows:

fXY(z) =
∫
+∞

−∞

fX(τ) fY(z+ τ)dτ (A.23)

Fig. A.5: Z values as function of quantiles taken fromX andY given thatZ = X − Y

Depicted in Fig.A.5, the domain ofZ in terms of theX andY real interval domains.
When (a0 − c0) ≤ (b1 − d1), the probability density function ofZ is defined as follows:
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fZ(z) =



0, z< a0 − c0∫ z+d1

a0

1
(b1−a0)(d1−c0)dτ (a0 − d1) ≤ z≤ (a0 − c0)

∫ b1

a0

1
(b1−a0)(d1−c0)dτ (a0 − c0) ≤ z≤ (b1 − d1)

∫ b1

z+c0

1
(b1−a0)(d1−c0)dτ (b1 − d1) ≤ z≤ (b1 − c0)

0, z> b1 − d1

(A.24)

A.5.2 Deriving the cdf over the interval of the subtraction

The cdf of the bounding quantiles formed by the distribution ofZ are z = lb− and
z= ub−, the minimum and the maximum quantiles respectively.

lb− = min(a− d, a− c, b− c, b− d) andub− = max(a− d, a− c, b− c, b− d)

FZ(z= (x− y)) =
∫ (x−y)

a0−d1

fXY(z)dz

fXY(z) is computed as follows:

FZ(z= (x− y)) =
∫ (x−y)
a0−d1

∫ z+d1

a0

1
(b1−a0)(d1−c0)dτdz (a0 − d1) ≤ (x− y) ≤ (a0 − c0)

+

∫ (x−y)
a0−c0

∫ b1

a0

1
(b1−a0)(d1−c0)dτdz (a0 − c0) ≤ (x− y) ≤ (b1 − d1)

+

∫ (x−y)
b1−d1

∫ b1

z+c0

1
(b1−a0)(d1−c0)dτdz (b1 − d1) ≤ (x− y) ≤ (b1 − c0)(A.25)

FZ(z= (x− y)) =
1
2

((x− y) − (a0 − d1))2

(b1 − a0)(d1 − c0)
(a0 − d1) ≤ (x− y) ≤ (a0 − c0)

FZ(z= (x− y)) =
1
2

(b1−a0)
(d1−c0) +

((x−y)−(a0−c0))
(d1−c0)

(a0 − c0) ≤ (x− y) ≤ (b1 − d1)

FZ(z= (x− y)) =
1
2

(b1−a0)
(d1−c0)

+
1

(b1−a0)(d1−c0) {
(b1−d1)2

2 −
((x−y))2

2 + (b1 − c0)((x− y) − (b1 − d1))}

(b1 − d1) ≤ (x− y) ≤ (b1 − c0)

The slope of thecdf distribution resulting from the subtraction operation is:

Sz =
1

(a0−d1)−(b1−c0)

(a0 − d1) and (b1 − c0) are the distribution quantile bounds and theircdf values are
equal to 0 and 1.
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A.6. Division of twocdf uniform distribution

A.6 Division of two cdf uniform distribution

A.6.1 Deriving the joint pdf over the interval of the division

Consider the two intervalsX andY, illustrated in Fig.A.1, and belonging to a division
operationZ = X ÷ Y. Thepdf distribution ofZ is defined in [Stark and Woods(1994)]
as follows:

fXY(z) =
∫
+∞

−∞

|τ| fX(τ) fY (zτ) dτ =
∫
+∞

−∞

|τ| fX (zτ) fY(τ)dτ (A.26)

Fig. A.6: Z values as function of quantiles taken fromX andY given thatZ = X ÷ Y

Given thata0
c0
≤ b1

d1
, thepdf of Z is defined as follows:

fZ(z) =



0, z< a0
c0∫ d1

a0
z

|τ|
b1−a0

1
d1−c0

dτ a0
d1
≤ z≤ a0

c0∫ d1

c0

|τ|
(b1−a0)(d1−c0)dτ

a0
c0
≤ z≤ b1

d1∫ b1
z

c0

|τ|
(b1−a0)(d1−c0)dτ

b1
d1
≤ z≤ b1

c0

0, z> b1
d1

(A.27)

A.6.2 Deriving the cdf over the interval of the division

The cdf of the bounding quantiles formed by the distribution ofZ are z = lb÷ and
z= ub÷, the minimum and the maximum quantiles respectively.
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FZ(z=
x
y

) =
∫ x

y

a0
d1

fXY(z)dz

fXY(z) is computed as follows:

FZ(z=
x
y

) =
∫ x

y
a0
d1

∫ d1
a0
z

|τ|
(b1−a0)(d1−c0)dτdz a0

d1
≤ x

y ≤
a0
c0

+

∫ x
y

a0
c0

∫ d1

c0

|τ|
(b1−a0)(d1−c0)dτdz a0

c0
≤ x

y ≤
b1
d1

+

∫ x
y

b1
d1

∫ b1
z

c0

|τ|
(b1−a0)(d1−c0)dτdz b1

d1
≤ x

y ≤
b1
c0

(A.28)
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y
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1
2

d2
1

(
x
y −

a0
d1

)
+ a2

0

(
1
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y
− d1
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)
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≤

x
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y
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1

(
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c0
−

a0
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)
+a2

0

(
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(
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+
1
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d1 −
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x
y+c2

0

(
b1
d1
− x

y

)



b1
d1
≤ x

y ≤
b1
c0

The slope of thecdf distribution resulting from the division operation is:

Sz =
1

(
a0
d1

)−(
b1
c0

)

Given thata0
d1

and b1
c0

are bounds of the distribution resulting from the division oper-
ation and theircdf values are equal to ‘0‘ and ‘1‘.
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CHAPTER B

THE P-BOX cdf-INTERVALS

SOLVER IMPLEMENTATION

The p-box cdf-intervals solver is implemented as a separate module in theECLiPSe

constraint programming environmentECRC(1994). The solver follows the structure
of the ic library∗ECRC (1994), it consists of two main modules imported using the
‘use module(cdfi)‘ directive. The first module, ‘cdfikernel‘ details all the core oper-
ations which are exerted on thecdf-intervals. The second module, ‘cdfi‘ defines the list
of constraints and their behavior.

B.1 Syntax

A triplet point in thep-boxcdf-interval is denoted as ‘Q˜F|S ‘, where ‘Q‘ is the quantile
value ‘F‘ is thecdfvalue and ‘S‘ is the slope of thecdfdistribution. By means of the ‘˜ ‘
and ‘| ‘ operators we separate the elements of a point which can takeany value fromR.

A p-boxcdf-interval domain is input to the solver as ‘Glb ... Lub ‘. This repre-
sentation indicates that we have a convexp-box cdf-interval which is bounded by the
two triplet points ‘Glb ‘ and ‘Lub ‘ and separated by the ‘... ‘ operator

Operators are accordingly declared in the solver as follows

% declaring the infix representation of the cdf domain opera tors

:- export
op(550,xfx,’.::’),

op(500,xfx,’...’),

op(450,xfx,’˜’),
op(400,xfx,’|’).

∗The ic library is the constraint solver implementation of the integer/real interval arithmetic in ECLiPSe
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Appendix B. The p-boxcdf-intervals solver implementation

B.2 Core operations

The core operations are implemented in the ‘cdfi-kernel‘ module. They detail all com-
putations exerted on thecdf distributions. Listed below part of this implementation
incorporating: the projection of a quantile onto thecdf-distribution, determining the
dominance of acdf-distribution when compared to another, extracting triplet points out
of theglb andlub operations, exerting the intersection operation between two cdf inter-
vals, and computing the arithmetic operations on a pair ofp-boxcdf-intervals.

The projection operation computes the value of thecdf for a given real quantile lo-
cated within the interval bounds.

% ---- Projection

% find_cdfproj(?X,?Y,-Fxy)

% X is a cdf variable, Y is a cdf variable
% Fxy is the cdf projection of X onto Y

% returns the cdf ground value of X variable
% quantile when projected onto the cdf line of Y

find_cdfproj(X˜_FX|_SX, Y˜FY|SY, FXP):-

FXP = FY - SY * (Y - X).

Extracting the quantiles when thecdf is ‘0‘ or ‘1‘ is reversing the projection oper-
ation. Both are utilized when we need to compute the real interval overwhich thecdf
uniform distribution is defined†.

% get quantile value @ 0 cdf

get_quantileat0(A˜FA|SA, A0):-
A0 is A - (FA / SA).

% get quantile value @ 1 cdf
get_quantileat1(A˜FA|SA, A1):-

A1 is A - (FA - 1)/ SA).

The stochastic dominance compares between two uniformcdf distributions. As de-
tailed in Section2.3, it is determined by integrating thecdf-curves overR. This integra-
tion is a result of calculating the areas enveloped by thecdf distributions. Accordingly,
the dominantcdf is the distribution enclosing a minimum area, whereas the dominated
distribution is encapsulating the maximum area.

% ---- Stochastic Dominance

% stochastic_dominance(?VarX,?VarY,-DominatedVar,-Do minantVar)

% given two cdf lines issued from the same quantile
% return the dominated and the dominant cdf

% VarX is a cdf variable, VarY is a cdf variable,

†Readers can refer to EquationA.10 that defines the uniform distribution over an interval [a, b]
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% DominatedVar is the stochastic dominated variable

% DominantVar is the stochastic dominant variable
% calculate the area under the cdf curve

% over the real domain from -1.0Inf to +1.0Inf
% by computing quantiles of each curve having cdf 0 and 1

% the area having a minimum value is the dominant and vice vers a
stochastic_dominance(X˜FY|SY,X˜FX|SX,X˜Flb|Slb,X˜Fu b|Sub):-

get_quantileat1(X˜FX|SX, X1), get_quantileat1(X˜FY|SY , Y1),

((SY >= +1.0Inf) -> AREA1 is +1.0Inf;
get_quantileat0(X˜FY|SY, Y0),

% calculate the area under the cdf between Y0 and Y1
AREA10 is 0.5 * (Y1 - Y0) ),

( (SX >= +1.0Inf) -> AREA2 is +1.0Inf;

get_quantileat0(X˜FX|SX, X0),
% calculate the area under the cdf between X0 and X1

AREA20 is 0.5 * (X1 - X0) ),
% find the maximum quantile then add up

% the rest of the area under the cdf curve

((Y1 > X1) ->
AREA1 = AREA10, AREA2is AREA20 + Y1

;
AREA2 = AREA20, AREA1is AREA10 + X1 ),

((AREA1 > AREA2) ->
Flb is FY, Slb is SY, Fub is FX, Sub is SX;

Flb is FX, Slb is SX, Fub is FY, Sub is SY).

The glb is the min quantile value projected onto the dominatedcdf bounding the max
area.

% ---- Greatest Lower Bound
% glb(?VarX,?VarY,-GLB)

% VarX is a cdf variable, VarY is a cdf variable,

% GLB is the greatest lower bound
% the point with minimum quantile value and dominated cdf

% 1. project X onto the cdf curve of Y
% 2. Glb is the min quantile value projected

% onto the dominated cdf bounding the max area

glb(X˜FX|SX , Y˜FY|SY , Glb˜Flb|Slb) :-
( X =< Y ->

% project X onto the cdf curve of Y
find_cdfproj(X˜FX|SX, Y˜FY|SY, FXY),

% Glb is the min quantile value projected

% onto the max area
stochastic_dominance(X˜FXY|SY,X˜FX|SX,Glb˜Flb|Slb,_ ˜_|_)

;
% project X onto the cdf curve of Y

find_cdfproj(Y˜FY|SY, X˜FX|SX, FYX),
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Appendix B. The p-boxcdf-intervals solver implementation

stochastic_dominance(Y˜FYX|SX,Y˜FY|SY,Glb˜Flb|Slb,_ ˜_|_)

).

The lub is the max quantile value projected onto the dominantcdf bounding the min
area.

% ---- Least Upper Bound
% lub(?VarX,?VarY,-LUB)

% VarX is a cdf variable, VarY is a cdf variable,

% LUB is the least upper bound
% the point with maximum quantile value and dominant cdf

% 1. project X onto the cdf curve of Y
% 2. Lub is the max quantile value projected

% onto the dominant cdf bounding the min area
lub(X˜FX|SX , Y˜FY|SY , Lub˜Fub|Sub) :-

( X =< Y ->

% project Y onto the cdf curve of X
find_cdfproj(Y˜FY|SY, X˜FX|SX, FYX),

% Lub is the max quantile value projected onto the min area
stochastic_dominance(Y˜FYX|SX,Y˜FY|SY,_˜_|_,Lub˜Fub |Sub)

;

% project X onto the cdf curve of X
find_cdfproj(X˜FX|SX, Y˜FY|SY, FXY),

% Lub is the max quantile value projected onto the min area
stochastic_dominance(X˜FXY|SY,X˜FX|SX,_˜_|_,Lub˜Fub |Sub)

).

The intersection seeks to find thep-boxcdf-interval resulting from joining two inter-
vals. This operation starts by extracting thelub of the intervals lower bounds, then, it
computes theglb of the upper bounds. Finally, it detects whether an area of conflict‡

needs to be removed.

% ---- CDFI Interval Intersection Operation
% intersect(?VarX,?VarY,-Result)

% VarX is a cdf interval (A˜FA|SA...B˜FB|SB),
% VarY is a cdf interval (X0˜FX0|SX0...X1˜FX1|SX1),

% Result is a cdf interval (XL˜FXL|SXL ...XU˜FXU|SXU)

intersect(VarX ,VarY ,I):-
lub(A˜FA|SA, X0˜FX0|SX0, XL0˜FXL0|SXL0),

% project XL onto upper bounds
find_cdfproj(XL0˜FXL0|SXL0, B˜FB|SB, FXL1),

find_cdfproj(XL0˜FXL0|SXL0, X1˜FX1|SX1, FXL2),
FXLmax is max(FXL1,FXL2),

((FXLmax = FXL1) -> SXLmax is SB; SXLmax is SX1),

‡Readers can refer to Section6.3.2for a detailed information about the area of conflict
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((FXL0 > FXLmax) ->

XL is XL0, FXL is FXL0, SXL is SXL0
;

% extract the intersecting quantile point
get_xi(XL0˜FXL0|SXL0,XL0˜FXLmax|SXLmax,XLI˜_|_),

XL is XLI,
find_cdfproj(XLI˜FXLmax|SXLmax, XL0˜FXLmax|SXLmax, FX L),

SXL is SXL0

),

glb(B˜FB|SB, X1˜FX1|SX1, XU0˜FXU0|SXU0),
% project XU onto lower bounds

find_cdfproj(XU0˜FXU0|SXU0, A˜FA|SA, FXU1),

find_cdfproj(XU0˜FXU0|SXU0, X0˜FX0|SX0, FXU2),

FXUmin is min(FXU1,FXU2),
((FXUmin = FXU1) -> SXUmin is SA; SXUmin is SX0),

((FXU0 < FXUmin) ->

XU is XU0, FXU is FXU0, SXU is SXU0
;

% extract the intersecting quantile point
get_xi(XU0˜FXU0|SXU0,XU0˜FXUmin|SXUmin,XUI˜_|_),

XU is XUI,
find_cdfproj(XLI˜FXUmin|SXUmin, XU0˜FXUmin|SXUmin, FX U),

SXU is SXU0

).

Arithmetic operations compute the addition, multiplication, subtraction and division
operations on a pair ofcdf-uniform distributions. Each operation is implemented to
work on the interval bounding triplet points in pairs, i.e. operations on the two interval
lower bounds yield the resultant interval lower bound, and vice versa.

% ---- cdf-intervals arithmetic addition

% arith_addition(?VarX,?VarY,-Result)
% VarX is a cdf interval (A˜FA|SA...B˜FB|SB),

% VarY is a cdf interval (C˜FC|SC...D˜FD|SD),

% VarZ is the result cdf interval (Zl˜Fl|Sl...Zu˜Fu|Su)
arith_addition(VarX,VarY,VarZ):-

Zl is A+C, Zu is B+D,
% get the bounds of the cdf uniform distributions

get_quantileat0(A˜FA|SA, A1),get_quantileat1(A˜FA|SA , B1),

get_quantileat0(C˜FC|SC, C1),get_quantileat1(C˜FC|SC , D1),
% apply the addition over the two uniform distributions

% the cdf value of (A+C) is Fl
get_cdf_add([A,B,C,D],[A1,B1,C1,D1],Fl,_Fu1),

% calculate the slope knowing that the upper bound
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% has cdf value 1 and lower bound cdf value 0

% @ A1+C1 cdf is 0 @ B1+D1 cdf is 1
Sl is (Fl)/((A+C) - (A1+C1)),

% get the bounds of the cdf uniform distributions

get_quantileat0(B˜FB|SB, A2),get_quantileat1(B˜FB|SB , B2),
get_quantileat0(D˜FD|SD, C2),get_quantileat1(D˜FD|SD , D2),

% apply the addition over the uniform distributions

% the cdf value of (B+D) is Fu
get_cdf_add([A,B,C,D],[A2,B2,C2,D2],_Fl2,Fu),

% calculate the slope knowing that the upper bound
% has cdf value 1 and lower bound cdf value 0

%% @ B2+D2 cdf is 0 @ B2* D2 cdf is 1

Su = (Fu - 1)/((B+D) - (B2+D2)).

% calculate the cdf values resulting from
% adding two uniform distributions

% get_cdf_add(?IntervalBounds,?UniformDistBounds,-Fl ,-Fu)

% IntervalBounds is the list of interval bounds
% UniformDistBounds is the list of quantiles

% bounding the two uniform distributions
% and having cdf values 0 and 1

% -Fl lower bound cdf value of the addition
% -Fu upper bound cdf value of the addition

get_cdf_add([A,B,C,D],[A1,B1,C1,D1],Fl,Fu):-

Zl is A+C, Zu is B+D,
Fl is 0.5 * (A1+C1-A-C) * (A1+C1-A-C)/((B1-A1) * (D1-C1)),

Fu is 1-(0.5 * (B1+D1-B-D) * (B1+D1-B-D)/((B1-A1) * (D1-C1))).

Similarily, we have defined in the ‘cdfikernel‘ module thecdf-intervals arithmetic mul-
tiplication, subtraction and division.

% ---- cdf-intervals arithmetic multiplication

% arith_multiplication(?VarX,?VarY,-Result)

% ---- cdf-intervals arithmetic subtraction
% arith_subtraction(?VarX,?VarY,-Result)

% ---- cdf-intervals arithmetic division
% arith_division(?VarX,?VarY,-Result)

B.3 The solver

The solver aims at creating an expressive development environment for programmers
to state their problems intuitively and in a declarative manner. It implements interval
propagation techniques used to solve problems overp-box cdf-intervals. The key idea
is to envelop the true value and its whereabouts within ap-box cdf-interval bounded
by two triplet points. All arithmetic operations are then performed using these bounds,
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hence the resulting interval is widened to take into accountany possible solution to the
problem in hand.

Interval propagation is implemented by means of the attributed variable data struc-
ture together with the suspension handling mechanism. We use both techniques to define
a new unification algorithm overp-box cdf-intervals which extends the Prolog unifica-
tion Le Huitouze(1990); Holzbaur(1992).

A cdf-interval implementation in an attributed variable data structure consists of:
quantiles,cdf values and slopes. We append the notation of ‘lb ‘ and ‘ub ‘ to denote
the representation of lower and upper bounds respectively.The constraint suspension
mechanism depends on two members of the attributed variablestructure: ‘min ‘ and
‘max‘. These two elements are the waiting conditions which definethe suspension list.
When they are triggered, i.e. assigned a wake condition, they do activate§ the constraint
over which the interval variable is defined.

% p-box cdf-interval data structure

:- export struct(cdfi(
qlb, qub, % q for quantile values

flb, fub, % f for the cdf value
slb, sub, % s for the slope

min, % suspensions: wake on update of lo

max % suspensions: wake on update of hi
)).

The attributed variable declares: the data structure that defines thep-boxcdf-interval
variable domain, the unification mechanism which extends the Prolog unification algo-
rithm Le Huitouze(1990); Holzbaur(1992), the handler of the suspensions predicate that
aims at querying the list of suspensions attached to a variable, the handler of the delayed
goals that returns the number of all suspended goals found inthis attributed variable, the
print predicate which accesses and prints thep-boxcdf-interval domain, the get bounds
predicate that retrieves the triplet points bounding the interval, and the update bounds
predicate which updates the bounds of this attributed variable p-box cdf-interval do-
main. Note that calling the update bounds predicate triggers the wake conditions of the
suspension list.

:- meta_attribute(cdfi, [unify:unify_cdfi/3,

test_unify:test_unify_cdfi/2,
suspensions:suspensions_cdfi/3,

delayed_goals_number:delayed_goals_number_cdfi/2,
print:print_cdfi/2,

get_bounds: get_cdfi_bounds/3,

set_bounds: update_cdfi_bounds/3
]).

§When a constraint is activated, it is moved from the passive list of the active list as detailed in Algo-
rithm 3
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B.4 Constraint predicates

?Var .:: ++Domain , constrain ‘Var ‘ to a p-boxcdf-interval domain, where
‘++Domain ‘ is defined in terms of its constituents as:
‘Min˜CDFMin|SMin...Max˜CDFMax|SMax ‘. If ‘ Var ‘ is already assigned ap-box
cdf-interval domain, then bounds of ‘Var ‘ will be updated. Updated bounds are then
checked for their consistency to preserve the convex property of the p-boxcdf-interval
domain. In our implementation, we allow the domain to take the ‘untyped‘ bound values:
‘ -1.0Inf ‘ and ‘+1.0Inf ‘ since quantile bounds are defined inR.

% creating a cdfi variable
X .:: Min ˜ CDFMin | SMin ... Max ˜ CDFMax | SMax :-

impose_cdfi_bounds(X, Min˜CDFMin|SMin, Max˜CDFMax|SMa x).

?ExprX .=< ?ExprY , ‘ExprX‘ is less than or equal to ‘ExprY‘ given that each Expr
yields ap-boxcdf-interval domain. Note that this constraint can be equivalently written
as ‘le(?ExprX,?ExprY) ‘.

?ExprX .= ?ExprY , ‘ExprX ‘ is equal to ‘ExprY ‘ given that each Expr yields a
p-boxcdf-interval domain. Note that this constraint is equivalently written as
‘eq(?ExprX,?ExprY) ‘.

?ExprX + ?ExprY , the addition of two constraintp-box cdf-interval domains ex-
pressed by ‘ExprX ‘ and ‘ExprY ‘.

?ExprX * ?ExprY , the multiplication of two constraintp-boxcdf-interval domains
expressed by ‘ExprX ‘ and ‘ExprY ‘.

Binary p-boxcdf-interval constraints are declared in the ‘cdfi‘ module as follows:

:- export (.=<)/2, (.=)/2.
% defining the infix representation of constraints

% local is used to override the definition of ‘+‘ and ‘ * ‘

% NB: for the operator definition:
% A lower priority number indicates a tighter binding

:- local (+)/2, ( * )/2, (+)/3, ( * )/3.
:- export

op(400,yfx,’ * ’), % tighter than the +

op(430,yfx,’+’),
op(700,xfx,’.=’),

op(700,xfx,’.=<’).

Thep-boxcdf-interval solver is not limited to linear constraints rather it can be used
in general problems like ‘X* X* X + Y* Y .=< Z * Z‘ where ‘X‘, ‘ Y‘ and ‘Z‘ are vari-
ables defined overp-box cdf-interval domains. The ‘cdfi_eval ‘ serves at evaluating
constraint expressions and follows a decomposition approach to deal with complex con-
straint format.
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% cdfi_eval(?ExprX, ?ExprY, -Type)
% evaluating constraint expressions

% for constraint decomposition
% utilized to decompose complex constraint

% expressions into binary ones

% when the expression is an addition constraint
cdfi_eval(CDFI1 + CDFI2, CDFI, _S):-,

+(CDFI1, CDFI2, CDFI).
% when the expression is a multiplication constraint

cdfi_eval(CDFI1 * CDFI2, CDFI,_S) :-

* (CDFI1,CDFI2,CDFI).
% when the expression is a constant cdf domain

cdfi_eval(CDFI, CDFI1, 1)?- !,
((is_bounded(CDFI); is_domain(CDFI)) -> true;

CDFI.:: -1.0Inf˜1.0| 1.0Inf... +1.0Inf˜0.0|0.0 ),
( var(CDFI1) ->

get_cdfi_bounds(CDFI,GlbX˜FlbX|SlbX,LubX˜FubX|SubX) ,

CDFI1.:: GlbX˜FlbX|SlbX... LubX˜FubX|SubX
; true).

cdfi_eval(CDFI1, CDFI, 2)?- !,

((is_bounded(CDFI); is_domain(CDFI)) -> true;

CDFI.:: -1.0Inf˜1.0| 1.0Inf... +1.0Inf˜0.0|0.0 ),
( var(CDFI1) ->

get_cdfi_bounds(CDFI,GlbX˜FlbX|SlbX,LubX˜FubX|SubX) ,
CDFI1.:: GlbX˜FlbX|SlbX... LubX˜FubX|SubX

; true).

% when both expressions are constant cdf domain

cdfi_eval(GlbX˜_FlbX|SlbX...LubX˜_FubX|SubX,
GlbY˜_FlbY|SlbY...LubY˜_FubY|SubY,3) :-

GlbX =< GlbY, LubX =< LubY,
SlbX >= SlbY, SubX >= SubY.

% need an exact match even if they are bounded cdfi

cdfi_eval(CDFI , CDFI,0).

We showcase the implementation of the inequality and addition constraints. The rest
of the system constraints follow the same behavior. The inequality constraint, when
it is applied on twop-box cdf-interval variables, it constrains the first variable to take
values from the domain that are less than or equal to values inthe second variable.
This operation follows thep-box cdf-interval ordering detailed in Section6.2.2. As a
result the system should maintain the bound-consistency property. To reach the goal
‘X .=< Y ‘, domains of ‘X‘ and ‘Y‘ are updated from the upper bound and the lower
bound respectively. This constraint is triggered by the suspension list conditions: the
‘min ‘ and the ‘max‘ of the attributed variables ‘X‘ and ‘Y‘ reciprocally. When ‘min ‘
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of ‘X‘ changes, the domain of ‘Y‘ accordingly should be updated in order to satisfy the
‘X .=< Y ‘ condition, i.e. all values in the domain of ‘Y‘ should be greater than those
in the domain of ‘X‘ and vice versa. The suspension list, in turn, causes a goal wake
up when the upper/lower bound changes. We annotate the goal with a special predicate
called the ‘demon‘. Unlike a normal goal, which disappears from the resolventlist
once it is woken, a goal declared using a ‘demon‘ annotation remains in the resolvent
list when it is woken until it is explicitly killed using the ‘kill_suspension ‘ built-in
predicate. The constraint solver handles boundedp-box cdf-intervals by means of the
‘var_type/3 ‘ predicate. This type of domain intervals has constant (unchangeable)
bounding points.

%-------------------------

% the inequality constraint
CDFI1 .=< CDFI2 :-

le(CDFI1,CDFI2).

%-------------------------
% le constraint

le(X,Y) :-
var_type(X,Y,S),

init_domain(X,X1), init_domain(Y,Y1),
(S = 3 -> SuspList = [X1->inst, Y1->inst] ; true),

(S = 2 -> SuspList = [X1->inst, Y1->cdfi:max]; true),

(S = 1 -> SuspList = [Y1->inst, X1->cdfi:min]; true),
(S = 0 -> SuspList = [X1->cdfi:min, Y1->cdfi:max]; true),

suspend(le(X1,Y1,MySusp), 0, SuspList, MySusp),

le(X1,Y1,MySusp),

(S = 2 -> cdfi_eval(Y,Y1,2); true),

(S = 1 -> cdfi_eval(X,X1,2); true),
(S = 0 -> cdfi_eval(X,X1,2), cdfi_eval(Y,Y1,2); true).

:- demon le/3.
le(X,Y,MySusp) :-

get_cdfi_bounds(X,GlbX˜FlbX|SlbX,LubX˜FubX|SubX),
get_cdfi_bounds(Y,GlbY˜FlbY|SlbY,LubY˜FubY|SubY),

( (is_cdfinterval(X), is_cdfinterval(Y)) ->
true % implicitly re-suspend

;

kill_suspension(MySusp)
),

glb(LubX˜FubX|SubX, LubY˜FubY|SubY, LubNew˜FubNew|Sub New),
lub(GlbX˜FlbX|SlbX, GlbY˜FlbY|SlbY, GlbNew˜FlbNew|Slb New),

update_cdfi_max(X,LubNew˜FubNew|SubNew),

update_cdfi_min(Y,GlbNew˜FlbNew|SlbNew).

Similarly, the ternary addition constraint is implementedin our solver over three
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p-box cdf-interval variables. The implementation covers also the case when one or
more variable has constant (unchangeable) bounds. The assignment of the suspension
list in this operation differs based on the type of each variable involved. This is followed
by the execution ofp-boxcdf-interval addition and subtraction operations as shown by
the inference rules detailed in Section7.2. An intersection operation over each interval
variable with corresponding resultants takes place. Then the output of the intersections
update the bounds of the variables. Changed domains, in turn, trigger the constraints
based on their defined suspension list.

%-------------------------

% the ternary addition constraint
CDFI1 + CDFI2 :-

+(CDFI1,CDFI2,_CDFI).
%-------------------------

% the addition constraint

addition(X, Y, Z) :-
var_type(X,Y,S),

(S = 3 -> init_domain(X,X1), init_domain(Y,Y1); true),
(S = 2 -> init_domain(X,X1), cdfi_eval(Y,Y1,1); true),

(S = 1 -> cdfi_eval(X,X1,1), init_domain(Y,Y1); true),

(S = 0 -> cdfi_eval(X,X1,1), cdfi_eval(Y,Y1,1); true),
(is_bounded(Z) -> init_domain(Z,Z1); cdfi_eval(Z,Z1,1) ),

% suspension list
Sx = [X1->cdfi:min, X1->cdfi:max],

Sy = [Y1->cdfi:min, Y1->cdfi:max],
Sz = [Z1->cdfi:min, Z1->cdfi:max],

(is_bounded(X) -> SuspListx = [X1->inst]; SuspListx0 = [Sz ,Sy],

flatten(SuspListx0,SuspListx)),
(is_bounded(Y) -> SuspListy = [Y1->inst]; SuspListy0 = [Sz ,Sx],

flatten(SuspListy0,SuspListy)),
(is_bounded(Z) -> SuspListz = [Z1->inst]; SuspListz0 = [Sx ,Sy],

flatten(SuspListz0,SuspListz)),

suspend(addz(X1,Y1,Za,MySuspz), 0, SuspListz, MySuspz) ,

suspend(addx(Xa,Y1,Z1,MySuspx), 0, SuspListx, MySuspx) ,
suspend(addx(Ya,X1,Z1,MySuspy), 0, SuspListy, MySuspy) ,

% applying the cdfi addition operation

addx(Xa,Y1,Z1, MySuspx),
addx(Ya,X1,Z1, MySuspy),

addz(X1,Y1,Za, MySuspz),

cdfi_eval(X1,Xa,2), cdfi_eval(Y1,Ya,2), cdfi_eval(Z1, Za,2)

cdfi_eval(X,X1,2), cdfi_eval(Y,Y1,2), cdfi_eval(Z,Z1, 2).

:- demon addz/4.
addz(X,Y,Z,MySusp) :-

( (is_cdfinterval(X), is_cdfinterval(Y)) ->
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true % implicitly re-suspend

;
kill_suspension(MySusp)

),
arith_addition(X, Y, Z).

:- demon addx/4.

addx(X,Y,Z,MySusp) :-

( (is_cdfinterval(Z), is_cdfinterval(Y)) ->
true % implicitly re-suspend

;
kill_suspension(MySusp)

),

arith_subtraction(Y,Z,X).

B.5 Examples

In this section we demonstrate how the programmer can input user-defined constraints to
thep-boxcdf-interval solver in an expressive manner. We also show the solver behavior
and its output whenp-boxcdf-interval propagation mechanisms are adopted.

%-------------------------

%% Intersection
?- X .:: 3.0 ˜ 0.8 | 0.9 ... 5.0 ˜ 0.5 | 0.06,

X .:: 2.0 ˜ 0.6 | 0.7 ... 4.0 ˜ 0.1 | 0.08.

X = X{[(3.0, 0.8, 0.9) ... (4.0, 0.44, 0.06)]}

The unification of twop-boxcdf-interval variables exerts an intersection operation then
update the bounds over the two intervals.

%-------------------------
%% Unification

?- X .:: 3.0 ˜ 0.8 | 0.9 ... 5.0 ˜ 0.5 | 0.06,

Y .:: 2.0 ˜ 0.9 |0.3 ... 4.0 ˜ 0.3 |0.09, Y = X.
X = X{[(3.0, 0.8, 0.9) ... (4.0, 0.3, 0.09)]}

Y = X{[(3.0, 0.8, 0.9) ... (4.0, 0.3, 0.09)]}

The inequality constraint over twop-box cdf-intervals ‘X‘ and ‘Y‘, ‘ X .=< Y ‘ up-
dates the upper bound of ‘X‘ and lower bound of ‘Y‘. The solution obtained has one de-
layed goal: ‘le(X, Y}, ’SUSP-_1632-susp’) ‘ because resulting ‘X‘ and ‘Y‘ have
ap-boxcdf-interval format.

%-------------------------
%% Inequality constraint

?- X .:: 2.0 ˜ 0.4| 0.8 ... 6.0 ˜ 0.2 | 0.05,
Y .:: 1.0 ˜ 0.6 | 0.7 ... 5.0 ˜ 0.1 | 0.06 , X .=< Y.

X = X{[(2.0, 0.4, 0.8) ... (5.0, 0.1, 0.06)]}
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Y = Y{[(2.0, 0.4, 0.8) ... (5.0, 0.1, 0.06)]}

There is 1 delayed goal.

Consider Example7.2 which shows the execution of the ternary addition inference
rule. Initial bindings to domains of ‘X‘, ‘ Y‘ and ‘Z‘ are given in the query along with the
ternary addition or ‘X + Y .= Z ‘ (shuffling the variable order in the constraint yields
the same output solution sets).

%-------------------------
%% Ternary addition

?- X.::0.0˜0.6|0.099...2.0˜0.03|0.01,
Y.::1.0˜0.7|0.098...3.0˜0.1|0.04,

Z.::4.0˜0.8|0.05...6.0˜0.05|0.008,

Z.= X+Y.
X = X{[(1.0, 0.56, 0.033) ... (2.0, 0.03, 0.01)]}

Y = Y{[(2.0, 0.6, 0.033) ... (3.0, 0.1, 0.04)]}
Z = Z{[(4.0, 0.8, 0.05) ... (5.0, 0.044, 0.008)]}

The ternary multiplication operation ‘Z .= X * Y‘ when initial bindings for
‘X.:: 0.0 ˜ 0.6 | 0.099 ... 2.0 ˜ 0.03 | 0.01 ‘,
‘Y .:: -1.0 ˜ 0.7 | 0.098 ... 3.0 ˜ 0.1 | 0.04 ‘ and
‘Z .:: -3.0 ˜ 0.8 | 0.05 ... 7.0 ˜ 0.05 | 0.008 ‘, yields the following mod-
ification in the domains of ‘X‘, ‘ Y‘ and ‘Z‘ all together. Final obtained domains after
applying this operation are:
‘X.::0.0˜0.6|0.099...2.0˜0.03|0.01 ‘,
‘Y.::-1.0˜0.7|0.098 ... 3.0˜0.1|0.04 ‘ and
‘Z.::-2.0˜0.37|0.012 ... 6.0˜0.042|0.008 ‘

%-------------------------
%% Ternary multiplication

?- X .:: 0.0 ˜ 0.6 | 0.099 ... 2.0 ˜ 0.03 | 0.01,
Y .:: -1.0 ˜ 0.7 | 0.098 ... 3.0 ˜ 0.1 | 0.04,

Z .:: -3.0 ˜ 0.8 | 0.05 ... 7.0 ˜ 0.05 | 0.008,

Z .= X * Y.
X = X{[(0.0, 0.6, 0.099) ... (2.0, 0.03, 0.01)]}

Y = Y{[(-1.0, 0.7, 0.098) ... (3.0, 0.1, 0.04)]}
Z = Z{[(-2.0, 0.37, 0.012) ... (6.0, 0.042, 0.008)]}

Consider the system of linear equations provided in Example8.1, one can provide the
set of the system constraints to the solver as shown below. Both variables ‘X1‘ and ‘X2‘
in this system lie within domains of positive reals, i.e. [0,∞]. They are both constrained
to the domain ‘X1.::0.0˜1.0| +1.0Inf ... +1.0Inf˜0.0|0.0 ‘ in order to en-
sure this fact. The linear inequalities and equalities are intuitively input to the solver
using the ‘.=< ‘ and ‘.= ‘ constraints. The right hand side of the equations are defined
over boundedp-boxcdf-intervals, while the left hand side of the inequalities/equalities
are the addition ofp-boxcdf-interval coefficients multiplied by the variables.
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linear_equations([X1,X2]) :-
X1.::0.0˜1.0| +1.0Inf ... +1.0Inf˜0.0|0.0,

X2.::0.0˜1.0| +1.0Inf ... +1.0Inf˜0.0|0.0,
(-2.0˜0.5|0.2...2.0˜0.01|0.095) * X1 +

(1.0˜0.3|0.32...2.0˜0.02|0.083) * X2 .=<

(3.0˜0.88|0.4...4.0˜0.04|0.088),

(-2.0˜0.7|0.1... -1.0˜0.01|0.087) * X1 +
(-1.0˜0.2|0.3... -1.0˜0.01|0.087) * X2 .=

(-5.0˜0.85|0.1... 5.0˜0.02|0.013),

(6.0˜0.9|0.98...6.0˜0.01|0.018) * X1 +

(1.5˜0.1|0.6...3.0˜0.06|0.034) * X2
.= (4.0˜0.9|0.02...15.0˜0.01|0.001),

nl, write(’X1 is ’), write(X1),

nl, write(’X2 is ’), write(X2), nl,

The solver prunes thep-boxcdf-interval domains of ‘X1‘ and ‘X2‘ like the ic solver
in theR domain. Additional information about the whereabouts is also propagated in
order to elaborate on the data stochastic property. Output domains ‘X1‘ and ‘X2‘ are
illustrated in Figure7.5.

?- linear_equations([X1, X2]).
X1 = X1{[(0.0, 1.0, 1.0Inf) ... (2.5, 0.28, 0.07)]}

X2 = X2{[(0.0, 1.0, 1.0Inf) ... (5.0, 0.46, 0.07)]}
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