
Representations in Constraint
Programming

Christopher Jefferson

This thesis is submitted in partial fulfilment of the
requirements for the degree of

Doctor of Philosophy.

University of York
York

YO10 5DD
UK

Department of Computer Science

June 30th 2007

Abstract

Constraint programming is a powerful and general purpose tool which is used

to solve both combinatorial and real-world problems. The process of mapping a

real-world problem into a constraint program, called modelling, involves a number

of choices and hence it is currently more of an art than a science.

One important choice in modelling is what variables will be used to represent

the states of the problem. This choice is often optimised to try to take advantage

of the global constraints in the solver being used. This concentration on global

constraints has allowed the performance of models to improve as more and better

global constraints are designed and implemented. However, this obsession with

global constraints has lead to a lack of study of the variables, independent of the

particular set of constraints implemented by a given solver.

The results of this thesis provide a strong basis on which to build systems

which can automatically choose the appropriate variables to represent the high-

level variables in a given problem.

This thesis presents a framework to compare the different sets of variables

which represent a given problem, independent of how the constraints are imple-

mented. This provides a number of powerful and useful results and allows a

number of useful results to be proved. These include how a common set represen-

tation performs as well as the theoretically best possible representation on a large

set of common set and multisets constraints. Further, many families of constraints

on sets and multisets which include the cardinality constraint are shown to have

no tractable implementation. This provides a limit on how well representations

can perform.

This framework for describing representations is also used to show how a

close examination of the variables can allow more efficient implementations and

better understanding of common concepts in constraint programming, including

connecting multiple models of the same problem and breaking symmetry.

2

Acknowledgements

There are many people who have helped me while working through this thesis.

Obviously I would first like to thank Alan Frisch, who has tolerated my many

diversions & wanderings and provided the topics this thesis is about. I want to

thank Ian Miguel for being a constant source of useful suggestions and paper

references from the next desk, and along with his wife Angela providing nights

filled with horror films and Neo-Geo gaming. I would also like to thank Ian Gent

for lending his ideas and name to the “Gent Representation”, Pete Jeavons for

both useful discussions and tolerating my thesis overflowing far longer than it

was ever intended to, my CP drinking group for the “eye rule” and the York

Anime Society for giving me something to do on Sundays. I also want to thank

my family, in particular my parents and brothers, for their support through my

very lengthy education.

I am in debt to both of my examiners, Christian Bessiere and Colin Runciman,

for providing a large number of helpful corrections, and tolerating a submitted

thesis which was less polished than I would have liked. My apologises for requiring

you to slog through quite so many minor mistakes, and obviously any remaining

mistakes are my own!

Finally, I have no doubt that without Karen’s everlasting fountain of love,

help and pressure this thesis would have been much worse, much later, and most

likely never finished at all. I love you with all my heart.

3

Declarations

Parts of this thesis have appeared in the following publications which have been

subject to peer review:

1. Section 8.4 is based on and extends:

Alan M. Frisch, Christopher Jefferson and Ian Miguel. Symmetry-breaking

as a Prelude to Implied Constraints: A Constraint Modelling Pattern, Pro-

ceedings of the 16th European Conference on Artificial Intelligence, 2004.

2. Parts of Sections 8.1 and 8.2 are based on:

Dave Cohen, Peter Jeavons, Chris Jefferson, Karen E. Petrie and Barbara

M. Smith. Symmetry Definitions for Constraint Programming, Journal of

Constraints, 11:115-137, 2006.

3. Throughout this thesis is work based on and extending:

Christopher Jefferson and Alan M. Frisch. Representations of Sets and

Multisets in Constraint Programming, Proceedings of the Fourth Interna-

tional Workshop on Modelling and Reformulating Constraint Satisfaction

Problems, LNCS 3709, Springer, 2005.

4

Contents

Abstract 2

Acknowledgements 3

Declarations 4

1 Introduction 10

2 Background 14

2.1 Mathematical Introduction . 14

2.2 Constraint Satisfaction Problems 18

2.2.1 Complexity of CSPs . 20

2.3 Solving CSPs . 22

2.3.1 Trivial Methods . 22

2.3.2 Stochastic Search . 23

2.3.3 Backtracking Search . 23

2.3.4 Branching . 24

2.3.5 Propagation Algorithms 26

2.4 Symmetry Breaking . 29

2.4.1 Group Theory . 30

2.4.2 Symmetry Definitions . 31

2.4.3 Static Symmetry Breaking 32

2.4.4 Dynamic Symmetry Breaking 34

2.4.5 Comparison . 35

5

CONTENTS

2.5 Conclusion . 36

3 Related Work 37

3.1 Comparisons of Representations 37

3.2 Refining Specifications . 40

3.2.1 Program Reformulation 41

3.3 Implementing High-Level Representations 43

3.4 Conclusion . 44

4 Introduction to Representations 45

4.1 Introduction and Examples . 45

4.2 Theory of Representations . 49

4.3 Variable Representations . 54

4.4 Partial Representations . 58

4.5 Combining Representations . 59

4.6 Representational Propagators . 61

4.7 Representational Symmetry . 65

4.8 Example Representations . 66

4.8.1 Examples . 72

4.9 Conclusion . 72

5 Dominating Representations 73

5.1 Variable Representations . 79

5.1.1 Extra information by adding variables 80

5.1.2 Extra information by splitting literals 80

5.1.3 Extra information by variable/value swapping 81

5.1.4 Booleanize a variable . 83

5.2 Set Representations . 84

5.3 Equivalence . 85

5.4 N-way Limited Representation . 88

5.4.1 Monotonic (Multi)set Constraints 90

6

CONTENTS

5.5 Conclusion . 92

6 Perfect Representations 93

6.1 Perfect Constraint Families . 93

6.2 Decomposing and Rewriting Constraints 100

6.3 NP-Hard Perfect Representations 106

6.4 Conclusion . 111

7 Random Representations 112

7.1 BIBDs . 114

7.1.1 Implementation Details . 115

7.1.2 Comparing the occurrence and random representations . . 116

7.2 Channelled Representations . 117

7.2.1 Channelling Experiments 119

7.3 Random Problems . 121

7.4 Conclusion . 123

8 Breaking Symmetry in Representations 125

8.1 Introduction . 125

8.2 Traditional CSP Symmetry . 126

8.3 Recursive Symmetry Breaking . 130

8.4 Problem Specific Symmetry Breaking 132

8.4.1 The 3-fractions Puzzle . 134

8.5 Representation Aware Propagation 138

8.6 Conclusion . 142

9 Conclusion 143

9.1 Summary . 143

9.2 Limitations and Future Work . 145

7

CONTENTS

List of Definitions
Set - Definition 2.2, page 14

Multiset - Definition 2.2, page 14

Set Operators - Definition 2.3, page 15

Field - Definition 2.4, page 15

Relation - Definition 2.5, page 16

Array - Definition 2.6, page 16

Function - Definition 2.7, page 16

Homomorphism - Definition 2.8, page 17

Powerset - Definition 2.9, page 17

Domains - Definition 2.10, page 18

CSP - Definition 2.11, page 19

Extensional Constraint - Definition 2.12, page 20

NP - Definition 2.13, page 20

SAT - Definition 2.14, page 21

Branching Algorithm - Definition 2.15, page 24

N-way Static Branching - Definition 2.16, page 25

Variable Ordering - Definition 2.17, page 25

Propagator - Definition 2.18, page 28

Group - Definition 2.19, page 30

Stabiliser - Definition 2.20, page 30

Stabiliser - Definition 2.20, page 30

Symmetry - Definition 2.21, page 31

Variable Symmetry - Definition 2.22, page 31

Value Symmetry - Definition 2.23, page 31

Lexicographic Ordering - Definition 2.24, page 32

Reducable - Definition 3.1, page 37

Viewpoint - Definition 3.2, page 38

Channelling - Definition 3.3, page 38

Social Golfers Problem - Definition 4.1, page 49

BIBD - Definition 4.2, page 49

Lattice - Definition 4.3, page 50

Representation - Definition 4.4, page 52

Simple Representation - Definition 4.5, page 53

Variable Representation - Definition 4.6, page 54

Induced Representation - Definition 4.7, page 54

Partial Representation - Definition 4.9, page 58

8

CONTENTS

Partial Variable Representation - Definition 4.10, page 58

Lattice Join - Definition 4.11, page 59

Representation Join - Definition 4.12, page 60

Variable Representation Join - Definition 4.13, page 61

Propagator on Representations - Definition 4.14, page 62

Mapping Propagator to a Representation - Definition 4.15, page 64

Variable Representation Symmetry - Definition 4.16, page 65

Add Symmetry Breaking to a Representation - Definition 4.17, page 66

Symmetry Breaking Constraints - Definition 4.18, page 66

Occurrence Representation - Definition 4.19, page 67

Fixed Size Explicit Representation - Definition 4.20, page 68

Explicit Representation with Dummy - Definition 4.21, page 68

Explicit Representation with Check - Definition 4.21, page 69

Gent Representation - Definition 4.23, page 70

Lexicographic Order on Sets - Definition 4.24, page 71

Lexicographic Set Representation - Definition 4.25, page 71

Domination - Definition 5.1, page 74

Embedding - Definition 5.2, page 75

Channelling - Definition 5.3, page 79

Representations of Permutations - Definition 5.4, page 79

Augmenting a Representation - Definition 5.5, page 80

Literal Splitting - Definition 5.6, page 81

Variable Value Swap - Definition 5.7, page 82

Booleanizing a Variable - Definition 5.8, page 83

Literal Equivalent Representation - Definition 5.9, page 85

N-way Limited Representation - Definition 5.10, page 88

Monotonic Set Constraint - Definition 5.11, page 90

Perfect GAC implementation - Definition 6.1, page 93

Completely Perfect GAC Implementation - Definition 6.2, page 94

Split - Definition 6.3, page 96

Flattening a Constraint - Definition 6.4, page 102

Constraint Hyper-Graph - Definition 6.5, page 107

Randomised Copy of a Representation - Definition 7.1, page 113

Microstructure Complement - Definition 8.2, page 129

Solution Symmetry - Definition 8.3, page 129

f-Lexicographic Constraints - Definition 8.4, page 133

3 Fractions Puzzle - Definition 8.5, page 135

9

Chapter 1

Introduction

“Science is what we understand well enough to explain to a computer. Art is

everything else we do.”

Donald Knuth, Foreword to A = B.

At its core, Computer Science is the study of algorithms which enable comput-

ers to perform tasks. Artificial Intelligence is the study of “intelligent” algorithms,

which can be used to solve a range of different problems with varying levels of

effectiveness. One major breakthrough in this area came from Stephen Cook [14],

who showed the existence of problems which can be used to express a large range

of other problems and solve them. These problems, found by Cook, therefore

provide the possibility of an effective general framework to solve a huge range of

further problems.

There is a large number of these problems. Some of them, including Satisfi-

ability (SAT), Integer Linear Programming (ILP) and Constraint Programming

(CP), have been practically investigated and used as a universal framework to

solve both real-world and combinatorial problems.

All three of these languages require a problem to be specified as a list of

variables, each with a domain and a list of constraints on the variables. Both

SAT and ILP provide a very small language of allowed constraints, requiring the

use of a library of special tricks to map more complex constraints and objects. CP

overcomes this problem by not fixing the list of allowed constraints, but instead

allowing them to vary from problem to problem. This means CP provides a much

more expressive language than SAT or ILP. CP solvers come with a large selection

of efficient implementations of many constraints and often provide the option of

implementing new constraints.

10

Chapter 1. Introduction

Unfortunately while mapping a problem to some CP models is simple, these

naive models will usually perform extremely poorly. There are a number of choices

which must be made when constructing a good CP model of a given problem.

Firstly, the possible assignments to the problem must be mapped to a number

of CP variables. Secondly, the constraints must be mapped to these variables,

where possible using those constraints which have an efficient implementation in

the solver. It is also possible to implement new problem-specific constraints.

Further, but often necessary, steps in effectively refining a problem to a CP

model include adding logically redundant constraints, generating multiple con-

nected models of the same problem and dealing with both the symmetries of the

original problem and those introduced during modelling. While experienced prac-

titioners in the field are often able to quickly come up with reasonable choices for

each of these tasks, modelling is still very much an art rather than a science.

The flexibility of being able to add new constraints to a solver has provided

huge gains in the practical performance of CP solvers, with both commercial

[47] and open-source [12, 36, 75] solvers providing a range of global constraints

and providing the ability to add new ones. Algorithms to allow the efficient

implementation of new constraints are frequently produced, leading to a large

catalogue of constraints which can be used to provide more expressive ways of

writing problems.

This concentration on implementing ever more powerful constraints has how-

ever lead to a gap in the theory of constraint programming. Frequently the quality

of a set of variables is considered only in terms of which constraints with efficient

implementations from a particular solver can be placed on them.

This thesis takes a different and novel route, building a theory of how well

a particular set of variable represents a problem independently of the practical

implementation of the constraints. While these two issues cannot be completely

separated in practice, studying the variables in isolation allows two interesting

and useful observations. Firstly, cases where a given representation has flaws

which are impossible to fix by implementing better constraints. Secondly, cases

where apparent differences between different representations are only artefacts

of the usage of a particular set of global constraints, which can then be easily,

efficiently and generally worked around.

One major limitation of ignoring implementation details and concentrating

solely on search trees is that it ignores that constraints may be very efficiently

implementable on one representation but take exponential time to implement

11

Chapter 1. Introduction

for another representation. This does mean that the results of this thesis will

have to be applied with sense. Ignoring this issue does have a number of major

advantanges, not least allowing the comparison of representations and families

of constraints whose complexity has not been identified, rather than remaining

limited to a number of small well-studied representations and constraints where

the complexity of implementation is known.

Chapter 2 provides definitions of the mathematical terms and notation which

will be used throughout this thesis, as well as a short guide to constraint pro-

gramming and the common techniques and algorithms used to implement modern

backtracking constraint solvers. Finally this chapter provides a brief introduction

to group theory and symmetry, which is used only in Chapter 8.

Chapter 3 discusses the sections of the constraint programming literature and

some closely related areas which are directly related to this thesis. This will

provide an overview of the existing work which has been performed on reformula-

tion and refinement of constraint programs and show where the holes are in this

previous work which will be filled in this thesis.

Chapter 4 provides an introduction to the central idea of this thesis, a repre-

sentation of a single variable by either a lattice or a list of other variables with a

mapping back to the domain of the original variable. There are a number of sub-

tle issues which must be dealt with in providing a definition of a representation.

Any definition must both encapsulate those representations already in common

usage, without allowing structures which would violate conditions which a CP

practitioner would expect to hold. This chapter also provides a guide to how

representations can be used to help solve a particular CSP and gives a number

of examples of representations. In particular, this chapter provides a number of

representations of set and multiset variables which will be used throughout the

rest of the thesis. While sets and multisets will be the principle example used in

this thesis, the theory applies to any kind of representational choice.

Using the definitions built in Chapter 4, Chapter 5 discusses the strongest

possible relationship between two different representations of the same variable,

that one of them produces a smaller search space for all possible CSPs, which

is referred to as one dominating the other. This also leads naturally on to the

idea of two representations being equivalent. This chapter discusses why different

equivalent representations may appear to differ, and how these changes can be

efficiently dealt with.

While dominance provides a very strong method of comparing representations,

12

Chapter 1. Introduction

in many cases it is too coarse. Chapter 6 shows how representations can be

compared on all CSPs built using a particular language of constraints. This

provides a much finer comparison. The main result of this chapter is to give a

number of sufficient conditions for one representation to be as good as the perfect,

or complete, representation on a given language of constraints. This means that

on CSPs built from only those constraints, such representations generate the

smallest possible search space.

Chapter 7 differs from the other chapters of the thesis in providing no theoreti-

cal results. This chapter contains a number of experiments, comparing a common

set representation with randomly generated ones on both a common structured

CP problem known as the Balanced Incomplete Block Design and randomly gen-

erated problems. This chapter does not aim to provide a comprehensive compar-

ison of representations, but aims to illustrate a number of interesting features of

representations and also channelling between different representations.

Symmetry is an important feature of solving many constraint problems. Chap-

ter 8 considers how symmetry breaking interacts with representational choice.

This results in a better understanding of how choosing an appropriate method

of breaking symmetry can result in smaller searches and and also provides new

symmetry breaking methods can proactively break symmetry, using some of the

theory of representations presented earlier in the thesis. This can provide smaller

search spaces than existing symmetry breaking methods which mostly only act

reactively, avoiding parts of the search space symmetric to those explored before.

13

Chapter 2

Background

This chapter introduces a number of concepts used throughout this thesis. Section

2.1 introduces the general mathematical terms and definitions and the rest of

the chapter gives a general introduction to the mathematics and algorithms of

constraint programming.

2.1 Mathematical Introduction

This section introduces some necessary basic mathematical concepts which are

used throughout the thesis. Many of these definitions will already be familiar,

however there sometimes slight differences in how these terms are defined and

so they are given here to avoid any confusion. Definition 2.1 defines some basic

mathematical terms.

Definition 2.1. X ⇐⇒ Y denotes “if and only if”, and is true only when either

both X and Y are true, or both are false.

X ≡ Y is true if and only if either X = Y or both X and Y are undefined.

Two of the most used concepts in this thesis are sets and multisets. While

these are common terms, the exact definitions are given in Definition 2.2. The

definitions of a number of common operators used on sets and multisets are given

in Definition 2.3.

Definition 2.2. A multiset, denoted as a list of elements {x1, x2, . . .}m, is an

unordered collection which permits duplicates. The more common notation, {{}},
for multisets is not used to avoid confusion with sets of sets. A set can be

14

Chapter 2. Background

considered as a multiset in which no value can occur more than once. Sets can

be denoted by a list of distinct elements between {}.

Definition 2.3. Given sets or multisets S and T , the following operations are

defined:

Element: occ(i, S) denotes the number of occurrences of i in the set or multiset

S. Of course this value will always be zero or one for a set. i ∈ S denotes

that there is at least one occurrence of i in S.

occ(1, {1, 2, 1}m) = 2, occ(1, {2, 3}) = 0

Subset: S ⊆ T is true if the number of occurrences of all values in S is less than

the number of occurrences in T

{1, 1, 2}m ⊆ {1, 1, 2, 2}m, {1, 1, 2}m 6⊆ {1, 2, 2}m

Intersection: S ∩ T is the (multi)set which for each i in either S or T contains

the minimum of occ(i, S) and occ(i, T).

{1, 1, 2, 2}m ∩ {1, 1, 1, 2, 3}m = {1, 1, 2}m

Union: S ∪ T is the (multi)set which for each i in either S or T contains the

maximum of occ(i, S) and occ(i, T).

{1, 1, 2, 2}m ∩ {1, 1, 1, 2, 3}m = {1, 1, 1, 2, 2, 3}m

Other set and multiset operation will be defined where they are used.

Definition 2.4 defines some methods for referring to sets of numbers. As

mentioned in the definition, rational, real and complex numbers are not used in

this thesis unless explicitly stated otherwise. This is not required by the theory,

but makes its presentation much simpler.

Definition 2.4. Z denotes the set of integers. N denotes the set of integers

greater than or equal to 1 and N0 denotes the set of integers greater than or equal

to 0. The notation [a..b] for integers a and b where a ≤ b refers to the set of

integers {i|a ≤ i ≤ b}. It can be assumed all examples in this thesis will only

use integers rather than the rational numbers (Q) or real numbers (R) unless

explicitly stated otherwise.

Relations are very important in this thesis, used in definitions of both con-

straints and representations. Definition 2.5 gives the formal definition of a relation

which will be used in this thesis and a number of special types of relations which

will arise.

15

Chapter 2. Background

Definition 2.5. Given a set S, a relation R on S is a set of ordered pairs (i, j)

where both i and j are from S. There are a number of special conditions a relation

can satisfy:

Symmetric: (i, j) ∈ R ⇐⇒ (j, i) ∈ R.

Anti-symmetric: (i, j) ∈ R ∧ (j, i) ∈ R =⇒ i = j.

Transitive: (i, j) ∈ R ∧ (j, k) ∈ R =⇒ (i, j) ∈ R.

Reflexive: ∀i. (i, i) ∈ R.

Partial Ordering: Anti-symmetric, transitive and reflexive.

Total Ordering: An ordering where at least one of (i, j) ∈ R and (j, i) ∈ R is

true for all pairs of values i, j in S.

There are many different names for ordered lists. In this thesis these will

always be called arrays (Definition 2.6), rather than vector or list.

Definition 2.6. An array is denoted as w. The elements are listed explicitly as

〈a1, a2, . . . , an〉. The length of w is denoted |w|. The ith element is denoted by

w[i]. w[a . . . b] represents the array 〈w[a], w[a+ 1], . . . , w[b]〉.

While functions are a basic and commonly used concept, there are a number

of slightly different definitions in common usage. Definition 2.7 gives the exact

definitions used for various types of functions in this thesis.

Definition 2.7. A function from a set S to a set T is denoted f : S → T . A

partial function is a function which is only defined for some values in S. A

total function is defined for all elements of S (functions will be total unless

stated otherwise). The domain of a function is those values of S for which it

is defined, the range is the set of t in T such that f(s) = t for some s. Three

frequently used types of functions are:

surjective: For all t in T , there is some s such that f(s) = t.

injective: For any two distinct elements s1 and s2 of S, f(s1) and f(s2) are

different.

bijective: A function which is both injective and surjective.

16

Chapter 2. Background

Given a bijection g : S → T , the inverse of g, denoted g−1, is the function

from T to S defined by g−1(t) = s ⇐⇒ g(s) = t.

Given f : S → T and g : T → U , the composition of f and g, often denoted

gf , is a function mapping S to U defined as gf(x) = g(f(x)).

Often functions are not defined simply between sets, but between structured

objects and in this case it often only makes sense to consider functions which

preserve structure in some way. Homomorphisms are one such class of function.

Definition 2.8. Given two sets S and T with a relation RS on S and RT on T ,

a homomorphism is a function f from S to T such that if the pair (s1, s2) is in

the relation RS, then the pair f(s1), f(s2) is in the relation RT .

One fundamental mathematical concept, which will be used throughout this

thesis, is sets and their generalisation multisets, both of which are defined in

Definition 2.2. In general sets will be considered as multisets which are restricted

to only allow at most one of each value. While this notation is unusual for

sets, it allows many parts of the thesis to easily discuss both sets and multisets

simultaneously. Example 2.1 gives some examples of sets and multisets.

Example 2.1. Both {1, 2}, {2, 1} are the same set which contain exactly two

elements. {1, 2}m represents the multiset containing the same elements. {1, 2, 2}
is not a valid set. {1, 2, 2}m is a multiset containing the one occurrence of 1 and

two occurrences of 2. occ(1, {1, 2}) = 1 and occ(0, {1, 2}) = 0.

There is a large number of ways of building new sets and multisets from

existing ones. A number of these will be used in thesis, which are given in

Definition 2.9. Example 2.2 shows these methods being used on some small sets

and multisets.

Definition 2.9. {f(x)|p(x)} denotes the set S defined as f(x) ∈ S ⇐⇒ p(x).

P(S) is the powerset of S, defined as the set {s|s ⊆ S}.

Example 2.2. Both {x2|0 ≤ x ≤ 3} and {x2|−3 ≤ x ≤ 3} are equal to the same

set, {0, 1, 4, 9}1. Power-sets exist for both sets and multisets. For example:

• P({0, 1}) = {{}, {0}, {1}, {0, 1}}.

• P({0, 1, 1}m) = {{}m, {0}m, {1}m, {0, 1}m, {1, 1}m, {0, 1, 1}m}.
1All examples in this thesis will only consider integer values, as already stated

17

Chapter 2. Background

There are many restricted families of set and multiset domains, for example

where all the assignments must have the same size. Some of these families have

better representations which can make use of the extra information. The families

which will be used in this thesis are described in Definition 2.10.

Definition 2.10. Given a set S and c ∈ N, the following list gives a number

of special set and multiset domains and their description in English. These are

outlined as they will be used repeatedly during this thesis.

• P(S)

All subsets of a set S.

• {s | s⊆S, |s| = c}
All subsets of a set S of size c.

• {s | s⊆S, |s| ≤ c}
All subsets of a set S of size at most c.

• {s | s⊆mS,∀i. occ(i, s) ≤ c}
All multisets containing at most c occurrences of each element of a set S.

• {s | s⊆mS, |s| = c}
All multisets drawn from a set S of size c.

• {s | s⊆mS, |s| = c}
All multisets drawn from a set S of size at most c.

2.2 Constraint Satisfaction Problems

Constraint satisfaction problems, often abbreviated to CSP, are a commonly used,

natural and expressive manner of specifying both combinatorial and real-world

problems. A CSP is defined in 3 parts, an array of variables, each with an

associated domain, and a set of constraints which the variables must satisfy in a

solution.

The first usage of CSPs is generally considered to be by Ugo Montanari [60] as

a method of describing and solving problems related to line drawings. Since then

a number of practical and powerful algorithms have been invented and used to

solve a large range of problems. The fundamental definition of a finite constraint

satisfaction problem remains similar, it is given in Definition 2.11 and a simple

18

Chapter 2. Background

example is given in Example 2.3. Throughout this thesis only finite domain CSPs

will be considered, so the requirement of finiteness will not be mentioned again.

Definition 2.11. A Constraint Satisfaction Problem (CSP) P is a triple

〈V ,D,C〉 where:

1. V is an array of variables.

2. D is a function which maps each variable to a set, called the domain of

the variable. The domain of a variable v is also denoted dom(v).

3. C is a set of constraints.

A sub-domain of a variable v is a subset of D(v). A literal is a pair 〈v, d〉
where v is a variable and d is a value from its domain. An assignment is a sub-

domain of size 1. An assignment of an array of variables consists of an assignment

to each element of the array, similarly an assignment to a CSP consists of an

assignment for all the variables in the CSP. It is hoped this overloading of the

term assignment to apply to single variables, array of variables and whole CSPs

aids rather than confuses the reader.

Each constraint c is defined over an array of variables, call the scope of c,

denoted scope(c). The arity of a constraint is defined as |scope(c)|. Constraints

of arity 1 are called unary, those of arity 2 are called binary. Any assignment

to the variables in scope(c) will either satisfy or fail to satisfy the constraint. An

assignment to an array of variables which includes scope(c) satisfies c if and only

if the values that assignment takes on scope(c) satisfies c. An assignment to P

which satisfies all the constraints is a solution.

Example 2.3. Consider the CSP P = 〈V,D,C〉, defined as:

V = {X, Y, Z}.

D = X 7→ {1, 2, 3}, Y 7→ {1, 2, 3}, Z 7→ {1, 2, 3}.

C = {X > Y,X + Y > 3,X ∗Y ∗ Z ≥ 6}.

The partial assignment 〈X, Y 〉 = 〈2, 1〉 satisfies the constraint X > Y but does

satisfy X + Y > 3. As this partial assignment does not give an assignment to Z,

it is not defined if this partial assignment satisfies X ∗Y ∗ Z ≥ 6. The assignment

〈X, Y, Z〉 = 〈2, 1, 3〉 satisfies all the constraints and is therefore a solution.

19

Chapter 2. Background

Definition 2.11 differs from the normal definition of a CSP by not concretely

defining what a constraint is. Usually a constraint is defined as a set of allowed

assignments as in Definition 2.12. The problem with this definition is that mod-

ern constraint solvers express many constraints in an intensional language, for

example arithmetic constraints such as A = B, or A + B + C = 3 or more com-

plex statements like “there are at least 4 occurrences of X in the array L”. In

most of this thesis this distinction will not be of importance, where it matters it

will be discussed.

Definition 2.12. An extensional constraint c ∈ C in a CSP P = 〈V,D,C〉
is a pair 〈W,T 〉 where each element of W is an element of V and T is a set of

assignments to W . An assignment a of W is accepted by c if and only if a ∈ T .

A CSP solver takes a CSP instance and searches for assignments to each

variable which together satisfy all of the constraints. This basic framework can

be extended in a number of ways, one of the most common is by allowing an

optimisation function which maps assignments to the integers, and requiring the

solver to find the solution which has the highest (or lowest) value under this

optimisation function. There are a range of both commercial [47] and open-

source [12, 36, 75] general-purpose constraint solvers which can be used to solve

CSPs.

2.2.1 Complexity of CSPs

One reason why CSPs are so important is that they are an example of an NP-

complete language which is expressive and has a number of highly efficient solvers.

NP-complete problems are important theoretically as they provide a method of

solving a large range of problems. Definition 2.13 gives an overview of the basic

definitions involved in NP and NP-completeness. A more complete discussion of

complexity and NP-completeness can be found in Garey and Johnson [32].

Definition 2.13. Given an infinite class of problems C, where the input size of

each instance I in C is denoted |I|:

• C is polynomial time solvable if there exists a polynomial p such that

any instance I can be solved in time p(|I|).

• C is NP-easy if there exists a polynomial p such that possible solutions to

an instance I ca be checked in time p(|I|).

20

Chapter 2. Background

• C is NP-hard if given any NP-easy problem D, there is a function f : D → C

such that f(d) is solvable if and only if d is and there exists a polynomial p

such that |f(d)| ≤ p(|d|).

• C is NP-complete if it is both NP-easy and NP-hard.

If a problem is NP-complete, any NP-easy problem can be mapped to it with

only a polynomial increase in the required space. As an NP-easy problem requires

only it is possible to check in polynomial time if a possible solution is correct,

this includes a huge range of problems. At the present moment, it is not known

if there is an algorithm to solve NP-complete problems in polynomial time, and

it appears unlikely such a proof will be provided soon. Therefore the best known

algorithms for solving NP-complete problems are all exponential in the worst case.

However, there can be a large variance between the performance of the known

algorithms in practice.

One of the first problems to be proved NP-complete, by Cook’s theorem [15],

and a common language for mapping other problems into is satisfiability, com-

monly known as SAT. Definition 2.14 provides a definition of the SAT problem,

and a few variants.

Definition 2.14. An instance of SAT is a pair 〈V,C〉, where V is a set of Boolean

variables, and C is a set of clauses. A clause is a set of literals, where a literal is

either a variable or it’s negation. Given an assignment to V , a clause is satisfied

if at least one literal in it is true. A solution is an assignment to V which satisfies

all the clauses.

k SAT is a variant of SAT where every clause must be of size k. 1-in-k SAT

requires each clause be of size k, and exactly one literal is true in each clause.

Both k SAT and 1-in-k SAT are NP-complete, as shown in [32].

Example 2.4. The SAT problem (A ∧ B) ∨ (!A ∧ C) is true when A and C are

both true, for any value of B. Considered as a 1-in-2 SAT problem, B would have

to be false to ensure in the first clause only one term was true.

There are a number of SAT solvers available [20,61] which can solve problems

with hundreds of thousands of variables, which are used to solve problems in a

number of fields.

CSPs can easily be seen to be NP-easy as long as each constraint is NP-easy,

as checking a solution to an CSP just involves checking each constraint in turn.

21

Chapter 2. Background

A 3-SAT problem is obviously a CSP, so CSPs are also NP-hard. Therefore they

are also NP-complete, while providing a more expressive language than SAT.

While it is possible with only polynomial space increase to map any NP-

complete problem to any other, in many cases the transformation is complex and

loses much of the structure of the original problem. As CSPs allow any constraint

to be used, it is often easier to express problems as a CSP rather than in the much

more limited language of SAT. This makes at the language CSPs make them a

good candidate for a general framework to easily express problems.

One important place where NP-completeness comes up in constraint program-

ming is propagation algorithms. The propagators of many intensional constraints

turn out to be NP-complete and in general these are considered too expensive,

so a less powerful form of propagation must be used. This is discussed further in

Section 2.3.5.

2.3 Solving CSPs

Once a problem has been specified as a CSP the next step is to solve it. Depending

on what is required, this may involve proving no solution exists or finding either

one solutions, all solutions or the solutions which maximises an objective function.

There are a number of different methods for solving CSPs, which vary in the

complexity of implementation, speed of solving and which types of problems they

are best at solving. As CSPs are NP-complete, in the worst case all known

algorithms have at least exponential complexity. This does not stop there being

large differences in the relative performance of the various algorithms.

2.3.1 Trivial Methods

It is useful to consider first trivial methods of solving CSPs, as these can then

be compared and contrasted with more efficient methods. The most trivial and

obvious method of solving a CSP is generate and test, which simply enumerates

all possible assignments and checks each of them in turn to see if it satisfies all

the constraints, and therefore is a solution. This method is trivially correct and

as CSPs are NP-complete, has the best known worst-case complexity. However,

for many problems it is possible to do much better than trivial algorithms such

as this.

22

Chapter 2. Background

2.3.2 Stochastic Search

One family of methods for solving CSPs are incomplete methods [66]. These al-

gorithms typically start with a random assignment to the variables of the CSP,

and then use varying methods to move through the space of assignments in the

search for a solution. Many variations of stochastic search exist, which use dif-

ferent methods of moving through the space of assignments and also use various

techniques to restart search in a different part of the search space.

The biggest flaw of stochastic search is that it is impossible to ever show that

all solutions to a problem have been found, or to show a problem has no solutions.

More importantly to this thesis while how variables are represented appears to be

as important in stochastic search as it is in complete search; it is non-obvious what

connections, if any, there are between the theory of representations in stochastic

and backtrack search. For example in complete search symmetry breaking has

proved to almost always be beneficial but in stochastic search Prestwich and

Roll [63] showed that symmetry breaking frequently leads to poorer performance

and purposefully adding extra symmetry to a problem can improve performance.

This thesis considers only search strategies which build on backtracking search

and stochastic search will not be considered or discussed further.

2.3.3 Backtracking Search

Chronological backtracking (BT) [8] is the foundation of almost all modern CSP

solvers and algorithms. BT is a tree-search algorithm which tries each possible

assignment to each variable in turn, and backtracks if the partial assignment at

any node violates any constraint. An example of a BT search for the CSP given

in Example 2.3 on page 19 is given in Figure 2.1. This diagram shows how search

progresses by choosing a variable and branching on each value in its domain. The

large circular nodes represent failures and the square node finding a solution.

This figure shows some interesting features of BT searches. Much less search

is performed for X = 1 than would be done for generate and test, because as

soon as Y is assigned, the constraint X > Y is violated.

This basic idea of BT can be improved upon in two ways. Firstly in Example

2.3 the constraint X > Y clearly implies that in no solution can X = 1 or Y = 3.

This can be used to reduce the domains of X and Y before search and similar

reasoning could be applied during search if the domains of X or Y changed. This

23

Chapter 2. Background

X= 1 2

1 2 3Y= 1

1 2 3Z=

Figure 2.1: A BT search tree of Example 2.3.

is the basis of propagation algorithms, a group of algorithms which have led to

many magnitudes of improvement in the performance of CSP solvers. Secondly

the order in which the BT algorithm choses which variables and values to branch

on can have a massive effect in the size of the search tree. In the extreme case,

if the variable and values are chosen in exactly the correct order the search can

move directly to a solution.

2.3.4 Branching

Chronological backtracking branches at each node by taking a variable and gen-

erating a new search node for every assignment (Definition 2.11 on page 19) to

that variable. There are more complex methods of branching which can greatly

reduce the size of search. Definition 2.15 gives a general definition of static and

dynamic search methods. Static branching methods are simpler, as they are fixed

before search and are dependent only on the current depth of search. Note that

the definitions of static and dynamic branching algorithms given here are not suf-

ficient to ensure that search will actually terminate. This is because the results

of going down a branch requires discussing how the constraints are propagated,

and so must wait until later.

Definition 2.15. A branching algorithm defines how during search in a CSP

the solver generates the child nodes of the current node, by adding a new con-

straint to each child node.

24

Chapter 2. Background

A static branching algorithm on a set of variables V is an array L of

arrays of constraints where each element C of L must satisfy the condition that

any assignment to the variables of the CSP must satisfy at least one constraint

in C.

A dynamic branching algorithm on a set of variables V is an algorithm

which for any node of search uses the state of search at that node to generate an

array of constraints C such that every assignment to the variables of the CSP is

satisfied by at least one element of C.

There are a number of common branching methods in common usage. The

main one considered in this thesis is given Definition 2.16.

Definition 2.16. Given an array of variables V , and an ordering of the domain

of each element of V , the N-way static branching takes the first variable which

has not yet been branched on in V and generates a branch assigning that variable

each value in its domain in turn.

There is a large body of research into heuristics which have shown they are

of vital importance to efficiently solving CSPs. Dynamic search heuristics are

often found to lead to smaller search trees [58] and Hwang and Mitchell [46]

showed that 2-way branching can lead to exponentially smaller searches than an

n-way branching heuristic in some CSPs, although this result only holds if adding

auxiliary variables to the CSP is forbidden.

Unfortunately, the huge flexibility of general dynamic search heuristics and

the unpredictability they bring to how the search tree will be generated makes

it very difficult to compare different representations when dynamic heuristics are

being used. In particular, Theorem 5.1 on page 75 shows the simple result that

given any two representations there exist dynamic branching algorithms which

will lead to the first outperforming the second and the second outperforming the

first in finding a first solution.

Often the extreme flexibility of allowing any constraint to be used in branching

is not required or at least not used. Definition 2.17 gives the much more commonly

used and much simpler branching methods used in many CSP solvers, where the

only constraints used in branching are X = a and X 6= a, for a variable X and

constant a. This kind of branching was used in the example search in Diagram

2.1 and Definition 2.16.

Definition 2.17. Given a CSP P = 〈V,D,C〉, a variable ordering is a per-

mutation of the elements of V , a value ordering for a variable v ∈ V is a

25

Chapter 2. Background

permutation of the domain of D(v).

Given a variable ordering R and a value ordering Lv for each variable, the N-

way branching static branching algorithm is defined by an array of constraints

C, the same length as R, defined by: C[i] = 〈R[i] = LR[i][1], R[i] = LR[i][2], . . .〉.

2.3.5 Propagation Algorithms

One of the most successful methods for improving chronological backtracking has

been propagation algorithms. Propagation is an example of a forward step algo-

rithm, which looks at the branching decisions made so far and attempts to make

deductions which either reduce the size of the search tree or prove no solution

can exist below the current node of search.

Some forward steps, such as path consistency [59] and k-consistency [25] treat

the constraints as sets of allowed assignments which can have elements removed if

they can be proved to never be in a solution. While very powerful, these methods

are unusable if constraints are not represented as a set of assignments and very

few modern CSP solvers do this. Therefore such methods will not be considered

in this thesis.

The other standard method of implementing propagation algorithms is to

store a sub-domain for each variable which lists currently allowed assignments. A

propagator can remove a value from the sub-domain of a variable when it can be

proved it occurs in no solution. This definition varies slightly from the one used in

many papers, where the domains are reduced and each node represents a different

CSP. This makes a number of theoretical issues much simpler, in particular it fixes

the representation for the whole problem, rather than having it change at each

node.

Most propagation algorithms used in modern CSP solvers and all encountered

in this thesis work in the same basic way. The algorithms operate on a sub-domain

of each variable in the CSP and look for domain values which cannot occur in

any solution and can therefore be removed. Throughout this thesis unless stated

otherwise propagation algorithms operate on only a single constraint at a time, so

the only way the propagators of different constraints can pass information is by

reducing the current sub-domain of any variable. These propagation algorithms

are then performed repeatedly until none of them can remove any more values

from the current sub-domain of any variable. Example 2.5 provides some simple

examples of propagation algorithms. The second case here shows how it can be

26

Chapter 2. Background

necessary to run propagators multiple times until a fixed point is reached. The

most important part of this is example is the third, which shows how propagation

algorithms which consider each constraint in isolation can miss seemingly simple

deductions.

Example 2.5. The following constraints are each defined on the three variables

X, Y and Z which each have domain {0, 1, 2}.

1. X < Y

In any solution, as X must be strictly smaller than Y then X cannot be

2. For a similar reason, Y cannot be 0. As no constraint refers to Z, the

domain of Z is unchanged.

The sub-domains after propagation are X ∈ {0, 1}, Y ∈ {1, 2}, Z ∈ {0, 1, 2}

2. X < Y,Y < Z

Considering only the first constraint, X 6= 2 and Y 6= 0. Considering only

the second, Y 6= 2 and Z 6= 0. Given Y 6= 2, the constraint X < Y can now

be used to deduce that X = 0 and Y = 1. Using Y = 1 and Y < Z, clearly

Z = 2.

The sub-domains after propagation are X ∈ {1}, Y ∈ {2}, Z ∈ {2}.

3. X = Y, X 6= Y

Considering each constraint in isolation, no values can be removed from

the domain of any variable. Therefore any propagation algorithm which

considers constraints in isolation will not deduce these constraints have no

solutions.

The sub-domains after propagation are X, Y, Z ∈ {0, 1, 2}.

A series of algorithms have been designed to handle the propagation of CSPs

where all the constraints are binary and expressed extensionally, including AC-

3 [56] and AC-2001 [7]. These algorithms, in particular AC-2001, can be modified

to handle non-binary constraints, but storing non-binary constraints as lists of

tuples rapidly becomes impractical, as such an algorithm must have dn worst-case

complexity for a constraint of arity n and domain size d, as this is the number of

possible tuples.

Most constraint solvers in practice use a general framework similar to AC-

5 [43], which allows special propagators to be written for each constraint, using

the kind of reasoning given in 2.5. There are various different methods of im-

plementing such frameworks which attempt to improve performance by checking

27

Chapter 2. Background

constraints in different orders or trying ensure the same constraint is not checked

multiple times. For the purposes of this thesis these optimisations can be ignored,

as they do not affect the theoretical complexity of the algorithms.

While in general propagating a constraint to the maximum possible extent

must be exponential, for many constraints it is possible to write special algo-

rithms which can perform propagation in polynomial time, in a similar fashion to

Example 2.5. Almost all modern constraint solvers, including ILOG Solver [47],

Eclipse [12] and Minion [36] provide a large set of such propagators.

These propagators may perform varying levels of propagation, depending on

the level which can be efficiently performed. Often there are multiple propagators

implemented for the same constraint, achieving different levels of propagation.

Definition 2.18 gives a general definition of a propagator, based on the definition

given by Apt in [3]. The only difference between Definition 2.18 and Apt’s defini-

tion is the fourth requirement. This simplifies using propagators during search as

without this identifying solutions requires an extra step, where each assignment

found by search is checked against each constraint to see if it satisfies them. An

example propagation is given in Example 2.6.

Definition 2.18. Given a constraint c whose scope is the array of CSP variables

V , a propagator P of c is a function from the set S = {〈s1, s2, . . . , s|V |〉|si ∈
dom(V [i])} to itself which satisfies the following set of conditions:

1. Monotonic:
∀{s1, s2} ⊆ S. (∀i ∈ {1, . . . , |V |}. s1[i] ⊆ s2[i]) =⇒

(∀i ∈ {1, . . . , |V |}. P (s1)[i] ⊆ P (s2)[i])

2. Non-increasing:

∀s ∈ S. ∀i ∈ {1, . . . , |V |}. P (s)[i] ⊆ s[i].

3. Preserves solutions:

For all s in S and all assignments a to s, if a satisfies c, then a is also an

assignment to P (s).

4. Identifies Assignments:

For all s in S which are assignments, then if the assignment is not allowed

by c then P (v) = ∅ .

The GAC propagator for a constraint C is the propagator which returns the

smallest possible legal sub-domain for each variable.

28

Chapter 2. Background

Example 2.6. One propagator for the constraint X < Y , is defined as follows:

Given a sub-domain DX for X and DY for Y

D′X= {i|i ∈ DX , i < max(DY)}.

D′Y= {i|i ∈ DY , i > min(DX)}.

Return the new domain D′X for X and D′Y for Y .

For example, given DX = {1, 3, 5} and DY = {0, 1, 2, 3}, this propagator

would return D′X = {1}, DY = {2, 3}. This propagator encapsulates the first part

of Example 2.5. It can be easily checked that it satsfies all the requirements of

being a propagator as set out in 2.18

Many constraints have had specialised propagators written for them, which

achieve much better performance than the general propagation algorithm in GAC-

Schema. One of the most famous of these is an algorithm by Regin [67], which

GAC propagates if an array of variables are all different. The complexity of

this algorithm is greater than imposing a clique of not-equals, but achieves more

propagation. The all-different constraint occurs so frequently in constraint pro-

gramming that a number of other implementations have be written, for example

Van Beek et. al. [54] present an algorithm for implementing all-different which

achieves a weaker form of propagation called Bounds propagation. Which level

of propagation should be used in which problems is something which at present

is decided only by trial and error.

2.4 Symmetry Breaking

Many CSPs have symmetry and dealing with it effectively can produce substantial

improvements in solution time. The usual definition of symmetry used in CP is

an automorphism of the literals of the CSP that maps solutions to solutions.

When a CSP has symmetry, symmetric solutions will be found. In many ways

more importantly, the solver will spend time searching parts of the search tree

that are symmetric. Therefore using a method which breaks some or all of the

symmetry of a CSP should reduce the size of the search tree and if the overhead

of symmetry breaking is small in comparison to the gains in size of the search

tree reduce the time taken to find a solution, or prove no solution exists.

29

Chapter 2. Background

2.4.1 Group Theory

Any discussion of symmetry must involve a discussion of groups, which are the

most natural method of representing collections of symmetries. Group theory

is an important and long-standing area of mathematical research. Groups are

useful in CP as they can be used to express and work with symmetries. Many

powerful algorithms for solving group-theoretic questions are known, and have

been efficiently implemented in systems such as GAP [31] and MAGMA [9]. Some

group theory will be used in the review of previous symmetry breaking methods

in Chapter 3, and then extensively in Chapter 8 to extend existing symmetry

breaking methods. One special type of group is the permutation group, given

in Definition 2.19. From here, the word “group” will be used only to refer to

permutation groups. This is not actually a limitation, as all groups that will

occur will naturally be permutation groups over some set of elements and in fact

all groups can be considered as permutation groups, and must be given in this

way to GAP or MAGMA.

Definition 2.19. A permutation group G over a set S is a set of automorphisms

on S which satisfy the following axioms:

Identity: ∃e ∈ G. ∀s ∈ S. e(s) = s.

Inverse: ∀g ∈ G. g−1 ∈ G

Composition: ∀g, h ∈ G. gh ∈ G.

A sub-group of G is a subset of G which also satisfies the group axioms. The

order of a G, denoted |G|, is the number of elements of G.

The image of an element s ∈ S under a group element g ∈ G is denoted sg.

There is a number of number of ways of manipulating groups. Many of the

ones which will be used in this thesis are given in Definition 2.20

Definition 2.20. Given a permutation group G over a set S, the following prop-

erties can be defined:

1. Stabiliser : Given s ∈ S, the subset of G defined by {g|g ∈ G, sg = s} is

the stabiliser of s. It forms a subgroup of G.

2. Orbit : Given s ∈ S, the subset of S defined by {sg|g ∈ G}, also denoted

as sG, is the orbit of s in G

30

Chapter 2. Background

Example 2.7. Given a matrix with m rows and n columns, the row symmetries

of the matrix are those permutations which reorder the rows while leaving the

elements of each column in the same position. The column symmetries are defined

similarly. Row and column symmetry is the combination of all elements of these

two groups. Note that this group does not contain all symmetries of the matrix,

for example the elements of each row must still appear in the same row, although

possibly reordered.

2.4.2 Symmetry Definitions

Definition 2.21. Given a set D and some predicate P defined over the elements

of D, a symmetry is defined as a bijective function f : D → D such that ∀x ∈
D,P (x) ⇐⇒ P (f(x)).

As f is bijective it follows that f−1 is also a symmetry and if f and g are

symmetries so is fg.

Definition 2.21 gives the most general definition of a symmetry. From this it

can be deduced that given any set of symmetries their closure under inverse and

composition will form a group.

There are two further simplifications of the definitions of symmetries which we

shall discuss, variable symmetry (Definition 2.22) and value symmetry (Definition

2.23)

Definition 2.22. A variable symmetry of a CSP with set of variables X is

defined to be a bijective function f between the set X of variables such that given

one solution, replacing the value of each variable x ∈ X with the value of f(x)

also gives a solution.

Definition 2.23. A value symmetry if a CSP with set of variables X each with

domain D is defined to be a bijective function f : D → D such that replacing the

value of each variable x ∈ X with f(x) leads to another solution.

Variable and value symmetry appear easier to work with and understand than

full symmetry groups, and a number of algorithms appear designed to work only

on variable symmetries. It is however worth noting that the more full definition of

symmetry becomes equivalent to variable symmetry if the CSP is mapped to the

binary variable representation, where each variable X with domain D is replaced

with the set {Xa|a ∈ D} and Xa = 1 ⇐⇒ X = a. Using this any method

designed to work on variable symmetry can be applied to literal symmetry.

31

Chapter 2. Background

Given the symmetries of a CSP the knowledge of their existence can be used

to reduce the size of the search performed. There are two major methods used to

break symmetry in CP:

Static symmetry breaking methods choose before search starts a representative

from each symmetric set of assignments and impose constraints so only one

of them can occur during search (or at least one can occur during search

for incomplete methods).

Dynamic methods alter the search procedure so once an assignment has been

disregarded, no symmetric equivalent to that assignment will be explored

in future.

2.4.3 Static Symmetry Breaking

The basic principle behind static symmetry breaking, first shown in [64], is to

choose a privileged member from each symmetric group of assignments and place

constraints which forbid any of the other symmetric assignments from occurring.

Clearly it would not be feasible to simply enumerate all the symmetric sets

of assignments and place a constraint for each one. One of the most successful

general methods of static symmetry breaking is based on the work of Luks, Roy

and Crawford [16,55] who studied adding lexicographic constraints to the problem

definition to break variable symmetries.

This method orders the variables in the CSP and then imposes constraints so

that if assignments are considered as ordered under this ordering, only the lexico-

graphically (Definition 2.24) smallest image of each assignment is allowed. This

is done by imposing that for each symmetry the assignment to the variables must

be lexicographically less than or equal its image under the symmetry. Example

2.8 gives a practical example of this method.

Definition 2.24. Given two equal length arrays V and W , both with values from

the same ordered domain, V ≤lex W if V = W or if at the smallest value of i

where V [i] and W [i] differ, V [i] is smaller than W [i].

Example 2.8. Consider a CSP containing a 2 × 2 matrix with the symmetries

that both the rows and columns can be exchanged. Below is an example assignment

to this matrix, and its four symmetric equivalents under these symmetries.(
1 2

3 4

)(
3 4

1 2

)(
2 1

4 3

)(
4 3

2 1

)

32

Chapter 2. Background

The matrix

(
A B

C D

)
can be represented by the string ABCD and its sym-

metric equivalents are CDAB,BADC and DCBA. This implies the constraints

ABCD ≤lex CDAB, ABCD ≤lex BADC and ABCD ≤lex DCBA to break the

symmetries of the matrix. Only the first of the matrices above satisfies all of these

constraints, showing the symmetry is broken.

As in Example 2.8, if the variables of the matrix are labelled and considered

as strings (for example read from left-to-right, top-to-bottom), constraints can be

imposed ensuring one of these strings is the lexicographically least.

This system is commonly known as the Crawford ordering. These constraints

allow exactly one representative of each symmetric class of assignments. There-

fore this method is both consistent and complete. The major problem with this

system is that it requires one constraint for each element of the symmetry group.

A symmetry group over n variables can be as large as n! and in many useful

problems grows at least exponentially. It has been shown [73] that for some sym-

metry groups with special properties (for example abelian) it is always possible to

construct polynomial sized sets of constraints. Unfortunately these special group

properties seem to turn up very rarely in real problems.

One way that the problem of exponential size sets of constraints can be solved

is to only use a subset of the constraints generated by the Crawford ordering.

This can lead to the symmetry breaking system no longer being complete but

cannot cause it to become inconsistent.

Choosing a subset of constraints has been demonstrated most effectively on

matrices with symmetries of both the rows and columns [21]. Here it has been

shown that the Crawford ordering generated by ordering the variables in left-to-

right, top-to-bottom order contains the constraints that the rows are constrained

to be in lexicographic order with the smallest on the left and the columns are

constrained to be in lexicographic order with smallest at the top. This ordering

shall be referred to as lex2.

The constraints are not complete, as can be shown by the following matrix,

where these two matrices are symmetric under row and column permutations but

both satisfy lex2(
1 2

2 0

) (
0 2

2 1

)
lex2 was originally proved correct by Ilya Shlyakhter [73] and independently

a larger study was performed by Frisch et al. [23, 26]. Other practically useful

33

Chapter 2. Background

subsets of the Crawford ordering constraints for row and column symmetry have

been found [30], but it is not yet fully understood why some constraints appear

to be more useful than others.

2.4.4 Dynamic Symmetry Breaking

An alternative to static symmetry breaking is dynamically breaking the symmetry

during search. While there are a number of dynamic symmetry breaking algo-

rithms with often complex implementations, the basic underlying idea is simple.

A list is kept of the sub-domains of the variables at every previous node of search.

At each new node, an algorithm checks if some symmetric image of this new node

can be embedded in any previously checked search node. If so, then a part of the

search space symmetric to this has already been searched and there is no need to

do so again.

The first system which investigated this was symmetry breaking search trees

[4], later extended to SBDS [38](Symmetry Breaking During Search) which in

its simplest form imposes one constraint for each member of the symmetry group

at each fail node, which forbids any symmetric equivalent from occurring. While

this can be optimised slightly, it still suffers from the same problem as basic static

symmetry breaking, which is that the number of added constraints is linear in the

size of the symmetry group which itself often grows exponentially with regards

the number of variables.

Therefore a newer system was constructed known as SBDD (Symmetry Break-

ing by Dominance Detection) which does not add constraints to the solver but

simply takes the current node and previous failed nodes and attempts to check

for the current node being contained in a symmetric version of a failed node

(also known as dominated). While this system was more effective, it required a

complex algorithm to detect dominance to be written for each problem.

There are any powerful algorithms for solving group-theoretic questions and

a number of systems which implement these algorithms, for example GAP [31]

and MAGMA [9].

CGT has been used with a high level of success in dynamic symmetry break-

ing with both SBDS [34] and SBDD [35], allowing generic systems which can

handle groups many magnitudes larger than previous bests. Recent advances [53]

have provided the CGT tools necessary to efficiently implement static symmetry

breaking [48].

34

Chapter 2. Background

GAP-SBDD uses computational group theory to cope with any symmetric

group it is given, making it the first of the symmetry breaking systems which could

be used by the untrained user, including help in constructing the group itself [62].

In a similar way to STAB, the runtime of GAP-SBDD can be exponential at

each search node. In an experiment of a problem with a search group of size 1030,

GAP-SBDD took over 25 seconds at each search node, whereas without symmetry

breaking it is possible to search hundreds of thousands of nodes a second. Despite

this, as the symmetry group is so large the search is still faster.

While the implementation details of these, and other dynamic symmetry

breaking systems vary the underlying principle is to record which areas of the

search space have been searched previously, and then avoid searching areas sym-

metric to them when they are later reached in the search space.

2.4.5 Comparison

There are advantages and disadvantages to the two methods of symmetry breaking

(static and dynamic). Static is typically much faster at each node of the search

tree as it requires less work. However with static symmetry breaking it is possible

for the solver to be prevented going down a branch of the search tree that contains

a solution because it is forbidden by the symmetry breaking constraints. Dynamic

symmetry breaking does not have this problem as it will only block parts of the

search tree symmetric to ones already investigated. However it appears that as

long as the variable ordering is chosen with care then static symmetry breaking

can be competitive (it is possible to choose variable orderings which cause static

symmetry breaking to perform many times worse, however as the variables in

the problem are symmetric in some way it is arguable that the choice of variable

ordering can be up to a point decided by the symmetry breaking constraints).

Dynamic symmetry breaking methods are usually computationally more ex-

pensive than the static symmetry breaking, and require extra support from the

solver itself. One of the most interesting parts of static symmetry breaking is

that it can lead to extra useful implied constraints. This will be explored in

depth later.

35

Chapter 2. Background

2.5 Conclusion

This chapter has covered a large number of basic mathematical concepts and

a brief introduction to constraint programming. The contents of this chapter

are the building blocks on which all of modern constraint programming is built.

Chapter 3 will look at those areas of the literature which more directly relate to

this thesis and the holes left in the existing research which this thesis investigates.

36

Chapter 3

Related Work

How to represent high-level variables in CSPs is something which is handled, at

least implicitly, in the majority of papers on constraint programming. In par-

ticular, every paper which contains a constraint model of a pre-existing problem

has to make a choice on how to represent the original problem as a CSP. In the

vast majority of these papers however, which representations were considered,

and how the one which was used in the experiments was chosen, is neglected.

This chapter discusses a number of areas of research which have investigated

how to generate and compare different CSP models of the same problem and the

holes in this existing research which are studied in this thesis.

3.1 Comparisons of Representations

One vital part of comparing different CSP models of the same problem is providing

a method of defining how the different CSP models relate to each other. One of

the first such theories was equivalence of CSPs, first discussed by Rossi et al. [69].

This work discussed ways in which CSPs can be considered equivalent. The

first naive definition of equivalent CSPs is that two CSPs share the same sets

of variables, domains and solutions. A second, more useful definition is given in

Definition 3.1, using the idea of reducibility.

Definition 3.1. A CSP P1 = 〈V1, D1, C1〉 is reducible to a CSP P2 = 〈V2, D2, C2〉
if there is an function f mapping V1 to V2 and a function gv for each v ∈ V1

mapping dom(v) to dom(f(v)), such that for any v ∈ V1 and d ∈ dom(v), the

value of v in each solution of P1 is d whenever the value of f(v) in the solution

of P2 is fv(d).

37

Chapter 3. Related Work

P1 and P2 are equivalent if P1 is reducible to P2 and P2 is reducible to P1

While equivalence provides a good start, it fails to capture many examples

of different representations of different problems which often arise in CP. An

extension of equivalence came from the study of viewpoints (Definition 3.2), first

introduced by Geelen [33].

Definition 3.2. A viewpoint of a problem P is defined as a pair 〈X,DX〉, where

X = {x1, . . . , xn} is a set of variables, and DX is a set containing, for each x ∈ X,

an associated domain DX(x) giving the possible values for x. Each assignment

to 〈X,DX〉 must be related to an assignment to P . A set of constraints on a

viewpoint is valid if they ensure the solutions to the viewpoint exactly represent

the solutions to P .

Viewpoints provide a much more general framework than equivalence. Exam-

ple 3.1 gives an example of a common viewpoint. The major problem of view-

points is that they are too general, as any viewpoint can represent any problem

with no solutions if constraints are placed such that all solutions are forbidden,

a problem recognised by the authors.

Example 3.1. Consider a CSP which requires finding a permutation of the set

{1, . . . , n}. One obvious viewpoint of this is as an array V of length n of variables

with domain {1, . . . , n}, where V [i] represents the ith element of the permutation.

Another viewpoint of this problem is another array W of length n of variables

with domain {1, . . . , n}, where W [i] gives the position of i in the permutation.

These two viewpoints are connected by the condition that V [i] = j if and only if

W [j] = i.

Despite the limitations of viewpoints, they can still be used to usefully compare

different models of the same problem. Law, Lee and others [13, 51, 52] have

compared different viewpoints of the same problem, in particular the viewpoints

given in Example 3.1. They showed significant improvements could be gained

in CSPs with only binary constraints when multiple viewpoints were used in the

same problem. In general, when multiple viewpoints or models are used in the

same problem, constraint must be imposed on them to ensure they represent the

same solution. Such constraints are called channelling constraints and are defined

in Definition 3.3. This definition is purposefully a little vague, as the exact form

of channelling constraints can vary depending on how the model is constructed.

38

Chapter 3. Related Work

Definition 3.3. Given two sets of variables V and W and a pair of functions

f and g which map assignments to V and W into a set D, where f(v) = g(w)

means v and w represent the same assignment, then the constraint f(V) = g(W),

or any constraint logically equivalent to it is a channelling constraint between

V and W .

This thesis addresses two major problems from this work in viewpoints. Firstly

by defining representations independently of the constraints of the problem struc-

ture is much better preserved, avoiding the problem of all viewpoints with no

solutions being equivalent. Secondly, Section 5.3 will show how many of the ap-

parent differences between different viewpoints are due to artificial limitations,

for example requiring binary constraints, which can be easily removed.

There have been a number of previous papers which have carefully studied

a selection of representational choices, and given both theory and experimental

evidence to help both modellers and automated modelling systems to make an

optimal choice.

One place where this kind of comparison has been made previously is the

thesis of Brahim Hnich [45], which studied alternative representations of different

families of functions.

Hnich looked at a number of function representations, some of which are ap-

propriate only for particular types of functions, such as total or bijective. Further,

some representations performed much better for particular types of functions.

On these representations he compared the implementations of a number of con-

straints, including finding the inverse, range and domain of a function.

This thesis expands on and differs from this earlier work in a number of ways.

While providing a number of representations of functions, Hnich did not try

to provide a unifying framework which included these and other representations

found in constraint programming. The comparisons in Hnich’s work concentrated

on many representations which are viewed as equivalent in this thesis (Defini-

tion 5.2 on page 75) and studied how different propagators compared on these

models. This thesis takes a different route, ignoring issues to do with different

levels of propagation while allowing the comparison of more disparate models.

39

Chapter 3. Related Work

3.2 Refining Specifications

The main aim of this thesis is to investigate the choices generated in choosing

between different representations of the high-level variables. A separate issue is

how to automatically use these representations and automatically produce CSP

models of a high-level specification of a problem.

OPL [42] provides a simple language for modelling CSPs, which allows many

problems to be compactly specified. It is however limited as it only provides

integer and enumerated variables. ESRA [22] is a language which aims to build

on OPL, and provides support for variables which represent sets and relations.

ESRA is not intended to be solved directly, but instead specifications in ESRA

are refined to specifications in OPL by simplifying variables and constraints into

a form which OPL will accept.

Similarly, NP-Spec [11] allows the specification of NP-complete problem in

a subset of existential second order logic. NP-Spec provides a small number of

high-level types, such as sets and partitions of integers, which are refined down

into simpler types. Also like ESRA, it only provides a single possible refinement

for each type, and each constraint which can be defined on it.

F [45] is a language which provides support for different types of functions

on integers. F is refined by a system called Fiona into a subset of OPL. The

major advantage of Fiona over other systems is that it knows of a number of

different representations of function variables and is able in some cases to choose

automatically which should be used. F supports a number of special classes

of functions, such as total or bijective. Furthermore, if the same variable can

be refined multiple different ways in the same CSP, then the different models

are connected by constraints which ensure the different models achieve the same

solution.

All the systems of refinement discussed so far this section only provide sup-

port for a small fixed range of high-level constructs. The Essence [27] language

does not have this limitation. Essence supports arbitrarily complex types, for

example sets of sets, or functions of partitions. Essence is refined by a system

called Conjure [28], which uses a series of recursive rules to refine an Essence

specification into a subset of the language suitable for giving the existing con-

straint solvers. Conjure can produce different models of the same variable like

Fiona.

The major current limitation of Conjure is that it produces a large number

40

Chapter 3. Related Work

of refinements of the same specification and does not make any decisions on which

of these would be best to use. The aim of this thesis is to work towards filling

this gap in automated modelling, producing a framework which can be used to

choose between different representational choices.

3.2.1 Program Reformulation

While the field of CSP reformulation is quite new, there is a much larger body

of work on the reformulation of general computer programs, and some of these

systems have been used to create efficient CSP implementations. Therefore it is

informative to look at how these systems have evolved over time and how useful

they can be in implementing refinement of specifications in CP.

KIDS [1] is one such system. It allows the user to specify a program in a high-

level language and a set of possible re-formulations with pre-conditions (of which

a very large number are included in the system). The system then guides the

user through the reformulation of their program by giving a selection of options

on how reformulation can progress, each of which is checked by KIDS to ensure

it will not alter the correct functioning of the program. KIDS is built on a very-

high-level language REFINE [2] which supports many high-level constructs and

was designed to help support program reformulation and refinement. Using KIDS

usually follows the following process.

1. Develop a domain theory for the problem, defining appropriate types and

functions and high-level reasoning about the defined functions, such as in-

formation about distributivity and monotonicity which support design and

optimisation. Obviously this can be done once if many programs are being

written in a similar field.

2. Create a specification of the problem stated in terms of the underlying design

theory

3. Apply a design tactic such as divide-and-conquer, global search or local

search

4. Apply optimisations to the resulting correct (assuming we have the domain

theory and specification correct) but inefficient program. KIDS includes

many optimisation techniques such as simplification, partial evaluation and

finite differencing.

41

Chapter 3. Related Work

5. Apply data type refinements to the high level data constructs in the program,

using a set of data type refinement rules

6. Compile the resulting code (which is in REFINE) to an executable form

(LISP).

KIDS has been used directly to generate efficient implementations of con-

straint satisfaction programs, for example by Westwood and Smith [77] who took

a simple specification of the 8 queens problem and a branching search algorithm

and generated an efficient implementation of the program using KIDS. This work

was effective and also allowed re-use of an existing mature reformulation and re-

finement program. For the solving of CSPs it would however be useful to move

at least some of the optimisation phase to act on the specification. CSPs have

a number of useful properties which a more general system may not be able to

effectively make use of. For example if some algorithm implements a correct

pruning algorithm for a constraint then it can always be replaced with another

correct pruning algorithm which may be stronger or weaker and the final result

of the program will be the same. Also the order in which the pruning algorithm

is applied does not affect the final result (although it may of course effect the

running time). The existence of systems like KIDS does provide encouragement

to the idea that an efficient refinement / reformulator can be designed specifically

for solving CSPs.

One of the major weaknesses of the KIDS system is that while it is capable

of suggesting possibly useful re-formulations via heuristics (for example, finding

small but non-trivial transformations) and making sure that any reformulation

does not effect the correct execution of the problem, it does not however attempt

to suggest which re-formulations should be applied. Some of the re-formulations it

performs can be shown to never reduce the execution speed of a program (such as

extracting constant expressions from loops or not evaluating expressions unless

they will be used) but with others the effects can be more difficult to predict.

Therefore the decision whether to apply a reformulation is always left up to the

judgement of the user. In the field of constraint programming, this thesis aims to

develop a framework in which choices can be made about modelling independent

of users.

An example of a system which makes use of alternative formulations of high

level objects is the SETL [72] language, a language which supports sets and oper-

ations upon them in the basic language. SETL is capable of considering different

representations of a set depending on the operations which will be performed

42

Chapter 3. Related Work

upon it. This appears to be the kind of thing which would be of interest in the

search for automatic reformulations of constraint satisfaction problems, but un-

fortunately the problems turn out to be more separate than they at first appear.

When considering how an object should be represented in a general program, the

decisions are based upon the problem of size and speed. While these are also

important in constraints, some of the most important parts of constraint pro-

gramming do not map well to a software refinement framework. On one hand

CSP can be seen as very trivial, as a CSP specification has no state or loops. In

this case the tools of software refinement, while useful as a guide are designed for

a much more general system and are over-complex. If instead a CSP along with

a solver are viewed as a single unit to be refined, it is difficult to express changes

which can alter the execution of the program to the point where it is unrecog-

nisable, yet still produce a set of solutions which can be viewed as equivalent1.

Previous work on data refinement can give important pointers on how to actually

go about generating low level models based on high level specifications, and also

how to implement these low level models as efficiently as possible. However the

problem of choosing between these representations is one where new research will

have to be performed, although partly inspired by the ideas contained in data

refinement. This thesis builds a framework in which some of these decisions can

be made.

3.3 Implementing High-Level Representations

In modern constraint solvers many constraints have special propagation algo-

rithms composed for them, as discussed in Section 2.3.5. There is a large body of

research on designing propagators for constraints on different representations of a

number of high-level variable types. One of the earliest and most influential was

Conjunto [39], which implemented a number of common constraints on the oc-

currence (Definition 4.19 on page 67) representation of sets, providing an efficient

and simple to use implementation of many common set constraints. This work

has since extended into other domains, such as multisets [49,76] and graphs [18].

Toby Walsh et. al. [6, 76] discuss how to implement many constraints on

the occurrence representation of sets and multisets, both with and without a

fixed size on the set. Walsh et al. also show for a number of constraints that

checking if a set of sub-domains is GAC is NP-complete. This work has been

1see for example the discussion on (multi)sets in section 4.1

43

Chapter 3. Related Work

extended by Sadler [71] to consider more complex set representations, including

the lexicographic representation (Definition 4.25 on page 71).

While this work has produced increasingly powerful representations which

can handle a number of constraints, they are difficult to compare. In many

cases new representations are created by joining extra information to an existing

representation, or producing more powerful propagators. Also in most cases the

major aim of these papers is to either prove or disprove that GAC propagation

can be achieved efficiently. This thesis instead compares these representations

to see how well they approximate the best possible representation, providing a

different and complimentary categorisation of the representations.

One special case of implementing set variables is using reduced ordered bi-

nary decision diagrams (ROBDDs), by Stuckey et al. [50]. These take a different

route, implementing the representation which allows all possible sub-domains of

each variable and therefore requiring worst-case exponential time and space to

perform propagation. ROBDDs have a number of advantages, including provid-

ing an efficient practical framework to easily synthesise constraints together and

combine a number of different set representations. It will be shown in this thesis

that ROBDDs produce the smallest search tree of all set representations on all

problems, but usually take much longer per node, often many orders of magnitude

slower in practice. In exactly what cases this trade-off should be made is not yet

understood, but this thesis goes some way towards providing an answer to this

question.

While ignoring how to practically implement constraints clearly means the

results of this thesis must be used with care, it allows a number of powerful

frameworks to be built, which can then be applied to these existing and future

implementations, and show where improvements can be made.

3.4 Conclusion

This chapter has presented the current state of the art in representations in

constraint programming. One common theme throughout this section is lack

of study of variables in isolation from the constraints placed on them and the

comparison of representations which do not have a simple viewpoint relationship.

The later chapters of this thesis provide and investigate a general framework by

which all representations can be usefully compared and contrasted, allowing new

insights into modelling problems as constraint problems.

44

Chapter 4

Introduction to Representations

Section 2.3.3 gave a simplistic introduction to backtracking propagating con-

straint solvers. One important missing point from this is exactly how the domains

of the variables are represented and stored during search. It is only by removing

values from the domains of variables that constraint propagators can affect search

and communicate with each other. Therefore the way in which these domains are

stored, used and changed is fundamental to the efficient operation of a constraint

solver. The aim of this thesis is to study these different representations and show

how the differences between them affect search.

This chapter examines how the representation of high-level variables such as

sets and multisets is implemented in modern CP solvers and builds a theory

which can represent existing representations. This chapter also shows how the

presented theory avoids a number of problems which can arise when trying to

build a theory of how constraint solvers store representations. Finally, a number

of practical example of existing representations will be shown to fit into this

theory.

4.1 Introduction and Examples

This section provides a number of motivating examples which shows the major

features of representations as provided by many modern CP solvers. The impor-

tant ideas of these will then be extracted and used to define a general theory of

representations.

Example 4.1. Consider a variable v with domain {1, . . . , 10}, where the solver

being used stores only sub-domains of v which are complete ranges of values.

45

Chapter 4. Introduction to Representations

These can be represented by pairs of integers 〈a, b〉 where a < b and 〈a, b〉 rep-

resents the sub-domain {a, a + 1, . . . , b}. In the general case of a sub-domain of

{1, . . . , n}, this reduces the number of allowed sub-domains of v from the original

2n to less than n2. Clearly any representation must require at least n states, for

each of the possible assignments, so this new representation is both exponentially

smaller than the naive one and close to the theoretical minimum.

The following list provides two small examples of using this new “range” rep-

resentation in practice:

1. From the initial domain of v, the constraint v ≤ 5 allows the set of assign-

ments {1, . . . , 5}, which can be represented exactly by 〈1, 5〉. Also imposing

the constraint v > 2 leaves {3, 4, 5}, which can be represented exactly by

〈3, 5〉.

2. The smallest range of integers which contains all values allowed by con-

straint v is even is 〈2, 10〉. This also represents the set of assignments

{3, 5, 7, 9}, which are disallowed by the constraint.

Example 4.1 demonstrates one common way in which integer variables are rep-

resented in a CSP solver, allowing only those sub-domains which form a complete

range of integers. As the example shows, in some cases the result of propagating

a constraint can be exactly represented by a range, whereas in other cases there

may not be a range which exactly represents the allowed assignments. Clearly

propagation can not be permitted to remove values which are allowed by the

constraint, so instead the range generated by propagation must contain some val-

ues which do not satisfy the constraint. This does not make the propagator in

any way invalid, but means that other constraints will not be passed as much

information as possible, which can increase the size of search.

For some constraints which occur over integer variables, after propagation it

is always possible to exactly represent the values remaining as a range. In these

cases representing the allowed domain as a range improves the performance of

the solver, while not increasing the size of search. In other cases, a trade-off is

made between increased speed and lower memory usage at each node of search

while causing larger search spaces.

Example 4.2. Consider a set variable s whose domain is P({1, . . . , 10}). One

common compact representation of some of the sub-domains of s is with an array

V of length 10 of Boolean variables. The ith element of V represents if i is in the

46

Chapter 4. Introduction to Representations

set or not. There are 2210
possible sub-domains of s. There are 3 possible sub-

domains of a Boolean variable (unassigned, assigned True or assigned False),

so only 310 representation states of the Boolean array. As there are 210 possible

assignments to the set, the Boolean array takes exponentially less space than the

naive representation, and is close to the theoretically smallest.

The following list gives two small practical examples of using a Boolean array

to represent sub-domains of a set variable in practice.

1. The constraints 2 ∈ s and 2 6∈ s map to the constraints V[2] = True and

V[2] = False. Propagating these two constraints fully will empty the do-

main of V [2], and therefore lead to failure.

2. The constraints |s| = 5 and |s| = 6 map to the constraints sum(V) = 5 and

sum(V) = 6. From the complete domain of V , every assignment to every

variable is part of a solution to both of these constraints, although of course

not both constraints at the same time, and therefore no propagation will

occur if the constraints are propagated independently.

Example 4.2 gives a more complicated representation example, where a set

variable is represented with an array of Boolean variables. This differs from

Example 4.1 as here the result of representing a set by an array of Boolean

variables could be considered as generating a new CSP, rather than deciding

how a solver should internally represent an already given CSP. Of course, this

could also still be considered as a mechanism for representing only some possible

sub-domains, internal to the solver.

The first pair of constraints in Example 4.2, once propagated, lead to a do-

main wipeout. The second pair of constraints would lead to a domain wipeout if

considered on the original set variable but do not lead to any propagation when

the set is represented as an array of Boolean variables.

Example 4.3 gives another method of representing sets.

Example 4.3. Consider a variable X whose domain is all sets of size 2 with

values drawn from {1, 2, 3}. This can be represented by a pair of integer variables

〈V1, V2〉, each with domain {1, 2, 3} and the constraint V1 6= V2. Assignments to

X, V1 and V2 are related by the constraint X = {V1, V2}. The following list shows

two small examples of using this representation in practice.

1. Consider the constraint 2 6∈ X. This would map to the constraint V1 6=
2 ∧ V2 6= 2. If this constraint is propagated, the only remaining assignment

47

Chapter 4. Introduction to Representations

to X represented by V1 and V2 is {1, 3} and therefore all possible elements

of X which do not satisfy the constraint have been removed.

2. Consider the constraint 2 ∈ X. This is represent on V1 and V2 by the con-

straint V1 = 2 ∨V2 = 2. All possible assignments to both V1 and V2 are

part of a solution to this constraint, as given any assignment to V1, V2

could be assigned 2, and vice veras. Therefore it is not possible for prop-

agation to remove any literals. However, the assignments V1 = 1, V2 = 3

and V1 = 3, V1 = 1 both represent X = {1, 3}, which does not satisfy the

constraint.

The sub-domains V1 ∈ {1, 2}, V2 ∈ {2, 3} represents the sub-domain x1 ∈
{ {1, 3}, {2, 3}, {1, 2} }. The sub-domains W1 ∈ {1, 3},W2 ∈ {2} represents

the sub-domain x2 ∈ {{1, 2}, {2, 3}}. While x2 ⊂ x1, it is not the case that

the Wi can be reached from the Vi by propagation. This shows that even

when two particular sub-domains can be represented, it may not be possible

to reach them in search.

Example 4.3 demonstrates three important features which can complicate rep-

resentations. In all three of these examples, some constraints propagate as much

when considered on the representation as the original domain, while others per-

form worse.

Examples 4.1, 4.2 and 4.3 each show some common problems which arise

in representational theory. In each case the number of sub-domains permitted

is massively reduced. Some constraints are unaffected by this reduction as the

results of their propagation are one of the array of allowed sub-domains. Other

constraints do not fit so well with the new representations, and are forced to use

a representational state which also represents assignments which are forbidden by

the constraints. The aim of this thesis is to investigate these problems in depth

and as far as possible give a categorisation of how different representations will

perform on different CSPs.

There is a large range of practical and theoretical problems which contain

set and multiset variables in their most natural specifications. In this thesis

two example problems are considered. The Social Golfers problem (Definition

4.1, problem 10 at www.csplib.org) [5, 41, 74] is a frequently studied problem in

CP. It is also interesting in the context of this thesis due to the nested nature

of the problem’s variable. The BIBD problem (Definition 4.2, problem 28 at

www.csplib.org) are two problems which have been modelled as CP problems

48

Chapter 4. Introduction to Representations

and used as examples in many previous CP papers. They will be used as running

examples throughout this thesis.

Definition 4.1. The 〈g, p, w〉 social golfers problem requires finding a schedule

for g golfers to play on each of w weeks split into p periods in each week, where

no two golfers play together in more than one week. It is only defined in the cases

where g
p

is an integer. A more formal specification of the problem is:

• Given a set G of size g.

• Find a multiset1 Sched of size w, where each element of Sched partitions

G into p equal sized sets.

• Such that no two elements of G are in the same partition for more than one

element of Sched.

Definition 4.2. A 〈v, b, r, k, λ〉 BIBD requires, given a set S of size v, finding b

sets of size k where each element of S occurs in r sets and the intersection of each

pair of sets is size λ. A more formal specification of the problem is:

• Given a set S of size v.

• Find a set BIBD of size b, where each element of BIBD is a subset of S

of size r.

• Such that each element of S occurs in k elements of BIBD and the size of

the intersection of any pair of elements of BIBD is λ.

4.2 Theory of Representations

Section 4.1 showed some examples of representations. This section will outline a

theory which can be used to describe both these and other representations. Based

on the Examples seen earlier in this chapter, a good basis for a representation is

a set of sub-domains with a partial ordering (Definition 2.5 on page 16), where

the partial ordering shows which new sub-domains can be reached from a given

sub-domain during propagation.

Example 4.4 shows how considering a representation as an arbitrary set of

sub-domains can lead to problems. In this example, the representation chosen

1Except in degenerate cases, this can be proved to be a set. However, this is an implied
constraint rather than part of the problem.

49

Chapter 4. Introduction to Representations

leads to a problem, where the order in which constraints are propagated gives

different results. This creates a number of difficulties and does not line up with

the behaviour of both the theory and practice of constraint solvers. In particular,

this also means the naively defined propagators would not be monotonic, which

is one of the conditions which a propagator (Definition 2.18) must satisfy.

Example 4.4. Consider an integer variable X with domain D = {1, 2, 3, 4}.
The “Stupid Solver” representation can represent all sub-domains of X which are

not of size 2. Consider propagating the two constraints X ≥ 2 and X ≤ 3 to the

maximum possible extent. There are two cases.

1. First propagate X ≥ 2, leaving the sub-domain {2, 3, 4}. Propagating X ≤ 3

would remove 4, leaving {2, 3}, but this cannot be represented by the solver.

2. First propagate X ≤ 3, leaving the sub-domain {1, 2, 3}. Propagating X ≥ 2

would remove 2, leaving {2, 3}, but this cannot be represented by the solver.

Therefore the order in which constraints are propagated leads to different re-

sults.

While it may be possible to define representations in some fashion which al-

lows representations such as those in Example 4.4, they would not fit well with

the traditional algorithms and theorems used in CP and therefore a more com-

plex definition will be used in this thesis, which more accurately models existing

representation and their use in constraint solvers.

The major reason that Example 4.4 fails to be a representation is that given

two propagators, the fixed point reached by applying both until propagation stops

differs depending on the order in which they are applied. Lattices, given in Def-

inition 4.3 are a special kind of partially ordered sets which exactly impose the

condition that the fixed point is independent of the order in which the propaga-

tors are applied. Example 4.5 gives an example lattice, inspired by Example 4.1

on page 45.

Definition 4.3. Given a partially ordered set 〈S,≤〉, the lowest upper bound

of two elements s, t ∈ S, denoted lub(s, t), is the member of S satisfying the

following two conditions, where such a member exists:

1. ∀s, t ∈ S. s ≤ lub(s, t) ∧ t ≤ lub(s, t)

2. ∀s, t, u ∈ S. s ≤ u ∧ t ≤ u =⇒ lub(s, t) ≤ u

50

Chapter 4. Introduction to Representations

The greatest lower bound glb of two members of S is defined similarly. A

lattice-ordered set S is a partially ordered set where all pairs of elements

s, t ∈ S have both a lowest upper bound and greatest lower bound.

Example 4.5. Consider the set S = {[a..b]|1 ≤ a ≤ b ≤ n}, where [a..b] repre-

sents the set {a, a+1, . . . , b}. One partial ordering on this set is inclusion, that is

[a..b] ≤ [c..d] ⇐⇒ a ≤ c∧d ≤ b. It is easy to check this satisfies the requirement

of being a partial ordering. Furthermore, every pair of ranges in this definition

has a lowest upper bound, given by lub([a..b], [c..d]) = [min(a, c)..max(b, d)].

Not all pairs have a greatest lower bound however. If ∅, representing the

empty range, is added to S however, then they do. The greatest lower bound is

given by glb([a..b], [c..d]) = [max(a, c)..min(b, d)], where this range denotes ∅ if

max(a, c) > min(b, d).

There are a number of useful mathematical properties of lattices which will

be used in this thesis. These are summarised in Lemma 4.1.

Lemma 4.1. The following properties are true of all finite lattices 〈S,≤〉.

1. There is exactly one lowest upper bound and greatest lower bound of each

pair of elements of S.

2. There exists a value S⇑ in S such that S⇑ is greater than every other element

of S.

3. There exists a value S⇓ in S such that S⇓ is smaller than every other element

of S.

Proof.

1. If g is a greatest lower bound of a and b, then by definition any h such that

h ≤ a and h ≤ b must satisfy h ≤ g. If h was also a greatest lower bound

of a and b, then similarly g ≤ h so g = h. The greatest lower bound follows

identically.

2. If the list of elements of S are labelled s1 to sn, then consider the value of

the expression lub(s1, lub(s2, . . . , lub(sn−1, sn) . . .)). By definition, this must

be greater than or equal to all the si, and also still in the lattice. Therefore

it gives a maximum element, larger than every other value.

51

Chapter 4. Introduction to Representations

3. Proof follows similarly to part 2.

Some simple examples of representations, including Example 4.2 on page 46

and Example 4.1 on page 45, can be defined using only a lattice of sub-domains.

However, more complex examples like Example 4.3 on page 47 show how it is not

possible to simply define a representation as a set of sub-domains. Instead it is

necessary to define the states of the representation (in the case of Example 4.3

these are a sub-domain of each variable) independently of the sub-domains they

represent. This condition is encapsulated in Definition 4.4, along with a number

of other requirements.

Definition 4.4. A representation of a domain D is a pair 〈R, f〉, where R is

a lattice and f is a homomorphism from R to the lattice of sub-sets 〈P(D),⊆〉.
〈R, f〉 must satisfy these three conditions:

1. f(R⇑) = D.

The top state allows all assignments.

2. f(R⇓) = ∅.
The bottom state allows no assignments.

3. ∀r ∈ R. ∀a ∈ f(r). ∃r′ ∈ R. (f(r′) = {a} ∧ r′ ≤ r).

If a state r contains the assignment a, a is reachable from r.

An element of R is known as a state of the representation, and given a state r,

the sub-domain that state represents is f(r). Given r1, r2 ∈ R, r1 is reachable

from r2 if r1 ≤ r2. The set of assignments allowed by r ∈ R is f(r). A state

r ∈ R is an assignment if |f(r)| = 1.

Definition 4.4 gives a number of requirements on representations, which are

necessary so a representation can be used in a tree search. Clearly there must

be a state which can be used as the start of search. The top node of the lattice

is the node which will represent the subset of the assignments represented at

every other node, so this one is used. Similarly there must be a node which

represents no assignments, else there is no way for propagators to cause failure.

The bottom node of the lattice must represent the intersection of the subset of the

assignments represented at all other nodes, so if any node of the lattice represents

no assignments the bottom one will.

52

Chapter 4. Introduction to Representations

The third condition encapsulates the idea that a representation state is a

set of possible assignments. Without this condition, it would be possible for a

representational state to contain some value a, but no state reachable from it

be the assignment a. It would be very difficult to ensure that all assignments

were checked without this condition. One condition which may appear to be

missing is that there must be a representation state which represents each possible

assignment. This is however implied by point 1 and 3 in the definition.

There are a number of interesting families of representations which frequently

occur in this thesis. Examples 4.1 and 4.2 both gave examples of representations

where the ordering on the elements of the representation is exactly the order-

ing on the sub-domains they represent and therefore the representation can be

defined purely in terms of the set of sub-domains which are represented. Not

all representations satisfy this requirement, for instance Example 4.3 does not.

This class of representations, known as simple, will be defined specially as they

occur frequently and some important theorems hold only for simple representa-

tions. Simple representations are formally defined in Definition 4.5. Lemma 4.2

formalises the representation given in Example 4.2, and proves it is simple.

Definition 4.5. A simple representation of a domain D is a representation 〈R, f〉
which satisfies the condition ∀r1, r2 ∈ R. f(r1) ⊂ f(r2) =⇒ r1 < r2.

Lemma 4.2. Consider representing a variable with domain {l, . . . , u} by the

ranges of integers {a, a + 1, . . . , b} for all 1 ≤ a ≤ b ≤ n. The pair 〈R, f〉,
where:

• R = {[a, b]|l ≤ a ≤ b ≤ u} ∪ {∅} with the ordering given by:

∀[a1, b1] ∈ R. [a1, b1] > ∅
∀[a1, b1], [a2, b2] ∈ R. (a1 ≤ a2 ∧ b2 ≤ b1) ⇐⇒ [a1, b1] ≥ [a2, b2]

• f is defined by f([a, b]) = {x|a ≤ x ≤ b} and f(∅) = ∅

is a simple representation of this domain.

Proof. To show R is a lattice, it must be shown that for any pair of values r1, r2 ∈
R, both lub(r1, r2) and glb(r1, r2) are well-defined. Given [a1, b1] and [a2, b2] in R,

the smallest range which contains both these ranges is [min(a1, a2),max(b1, b2)],

and further, clearly any range which contains both the ranges must contain

this range. Defining the glb follows similarly. Finally, lub([a, b], ∅) = [a, b] and

glb([a, b], ∅) = ∅.

53

Chapter 4. Introduction to Representations

To check 〈R, f〉 is a simple representation, each of the four conditions a simple

representation must satisfy from Definition 4.4 must be checked. The first 3 are

easily checked, as f(R⇑) = f([l, u]) = {l, l + 1, . . . , u}, f(R⇓) = f(∅) = ∅ and

∀l ≤ i ≤ u. f([i, i]) = i. The final condition required for a representation and the

condition of being a simple representation can be checked at the same time, as

ignoring the case of ∅, they together require [a, b] < [c, d] ⇐⇒ {i|a ≤ i ≤ b} ⊂
{i|c ≤ i ≤ d}, which is true, and similarily ∅ < r ⇐⇒ ∅ ⊂ f(r) is true.

For any domain, the complete representation is the simple representation

which allows all possible sub-domains of a variable. The complete representation

comes up frequently, as it is effectively how most constraint solvers implement

simple variable types, such as integers, and also because Theorem 5.3 on page 77

proves that at least for static variable orderings it always leads to the smallest

possible search size.

4.3 Variable Representations

One very common pattern in the representations in common usage is represen-

tations which arise by replacing one variable with a number of other variables

with smaller domain. Both Example 4.2 and 4.3 gives examples of this kind of

representation. These differ significantly from other representations as the result

of applying them can be seen as another CSP, whose variables could also be re-

placed by representations. For this reason a specialised theory of these kind of

representations, called variable representations has been divised. Definition 4.6

gives a general definition of variable representations.

Definition 4.6. A variable representation of a variable X is a pair 〈V , g〉,
where V and g are defined as follows:

V : An array of variables.

g: A surjective function from dom(V [1]) × dom(V [2]) × · · · × dom(V [|V |]) to

dom(X).

Definition 4.7. Given a variable representation 〈V , g〉 of a variable X, the rep-

resentation induced from 〈V , g〉 is a representation 〈R, f〉, where R and f are

defined as:

54

Chapter 4. Introduction to Representations

R is a lattice whose elements are all arrays of sub-domains of elements of V , of

more precisely the set {〈s1, s2, . . . , s|V |〉| si ⊆ dom(V [i])}. The ordering on

R is ∀{r1, r2} ⊆ R. (r1 < r2 ⇐⇒ ∀i. r1[i] ⊆ r2[i]).

f maps an array of sub-domains to a set of assignments of X by generating every

assignment the sub-domains represent and applying g to each of them. The

exact mapping is given by f(r) = {g(a1, a2, . . . , an) | ∀i. ai ∈ r[i]}.

Definition 4.6 defines variable representations and simple variable represen-

tations in terms of replacing one variable with an array of variables. Definition

4.7 shows how to induce a representation from a variable representation. Lemma

4.3 shows that the representation induced using Definition 4.7 are indeed correct

representations and simple representations in the traditional sense.

Lemma 4.3. The representation 〈R, f〉 induced by a variable representation

〈V , g〉 of a domain D is indeed a representation. 〈R, f〉 is simple if and only

if g is injective.

Proof. Given r1 = 〈x1, . . . , xn〉 and r2 = 〈y1, . . . , yn〉 in R, as the glb(r1[i], r2[i]) =

xi∪yi, then glb(r1, r2) = 〈x1∪y1, x2∪y2, . . . , xn∪yn〉. The lub is defined similarly

and therefore R is a lattice. To show 〈R, f〉 is a representation, it therefore suffices

to check the four conditions given in Definition 4.4.

1. As g is surjective, ∀d ∈ D there exists an assignment vd of V such that

g(vd) = d. Therefore f(R⇑) = D.

2. f(R⇓) = ∅.

3. ∀d ∈ D. ∃r ∈ R. f(r) = {d}.

4. ∀r1, r2 ∈ R. r1 < r2 =⇒ f(r1) ⊂ f(r2).

If g is not injective, then there exists two assignments v1, v2 to V such that

g(v1) = g(v2). Therefore there must be two states of R representing just these

two assignments, which will be incomparable but map to equal sub-domains, so

〈R, f〉 cannot be simple.

If g is injective, then given r1, r2 ∈ R, if f(r1) ⊂ f(r2), then the set of

assignments to V allowed by r1 must be a subset of those allowed by r2, so

r1 < r2, so 〈R, f〉 is simple.

55

Chapter 4. Introduction to Representations

As stated previously, the main advantage of variable representations is that

they map a CSP to another CSP, which can then either be given to a CSP solver

or have further representation choices applied to it. Definition 4.8 shows how a

variable in a constraint can be replaced by a variable representation.

Definition 4.8. Given a constraint C and a variable representation 〈V , f〉 of a

variable X ∈ scope(C), then replacing X in C by 〈V , f〉 is defined as follows:

Given scope(C) = {X, Y1, . . . , Yn}, then C can be expressed as the subset S of

〈D(X)×D(Y1)×· · ·×D(Yn)〉 which contains the assignments to scope(C) which

are allowed by C. The replacement of C is a new constraint over Vi and Yi which

allows the assignments {〈v1, . . . , v|V |, y1, . . . , yn〉| 〈f(〈v1, . . . , vm〉), y1, . . . , yn〉 ∈
S}.

Example 4.6. Consider a set variable X of size 2 drawn from {0, 1, 2, 3}. This

is represented under the explicit representation by 〈V , f〉, where V = 〈V [1], V [2]〉
and the V [i] have domain {0, 1, 2, 3}, f is defined as mapping each pair of values

〈V1, V2〉 to the set {V1, V2} for those pairs where V1 6= V2. Consider the constraint∑
i∈X = 3, expressed as the set of tuples {〈{0, 3}〉, 〈{1, 2}〉}. When this constraint

is replaced by the representation 〈V , f〉, then the original constraint is replaced by

the constraint 〈V [1], V [2]〉 ∈ {〈0, 3〉, 〈3, 0〉, 〈1, 2〉, 〈2, 1〉}.

An obvious requirement on mapping the constraints on a variable to the con-

straints on a representation of that variable is that the set of solutions must be

preserved. Specifically, each solution of the original problem should be mapped

to at least one solution of the new problem, and any solution of the new problem

should denote a solution to the original problem. Theorem 4.4 show that this

mapping is valid, and that the new CSP has a set of solutions for each original

solution.

Theorem 4.4. In this theorem, 〈V , f〉 is a variable representation of a variable

X with domain D. P is a CSP containing a variable X with domain D, an array

of variables V and the constraint cR : f(V) = X.

1. Consider a CSP P containing X and the CSP P ′ generated by adding the

variables V and the constraint f(V) = X to P . The solutions of P ′ are

exactly generated by taking solutions to P and joining assignments to V

which satisfy f(V) = X, for the assignment to X in the solution.

2. P has the same solutions as the CSP P ′ generated by taking any constraint

C in P (except cR) where X ∈ scope(C) and replacing X with V by 〈V , f〉
in C.

56

Chapter 4. Introduction to Representations

3. If the only constraint in P which refers to X is the constraint f(V) = X, a

new CSP P ′′ can be generated by removing the variable X and the constraint

f(V) = X from P . The solutions to P ′′ are exactly the solutions to P

without the assignment to X.

Proof. 1. For each assignment to X there exists at least one (and exactly one

if the representation is perfect) assignment to V such that f(V) = X is

satisfied.

2. Consider an assignment s to scope(P) which is a solution to P . This will

be a solution to P ′ if and only if s satisfies C with X replaced by V , as

described in definition 4.8. However, s satisfies C and therefore in particular

satisfies f(V) = X. By the definition of replacing a variable in a constraint

with a representation, the original constraint will be satisfied if and only

if the new one is, as the constraint replaced is by replacing assignments to

X with assignments to V which satisfy cr. The reverse argument follows

identically.

3. Clearly any solution to P when limited to scope(P ′′) will be a solution to

P ′′, as the constraints on P ′ are a subset of the constraints on P . Given any

solution to P ′′, adding the unique assignment to X which satisfies f(V) = X

clearly generates a solution to P .

One minor problem with both Definition 4.8 and Theorem 4.4 is that they both

assume that constraints are expressed extensionally. Most constraint solvers op-

erate most efficiently on constraint expressed intensionally using a small language

of constraints provided with the solver. How an intensional representation of a

constraint can be refined to an intensional representation on a representation is

research topic in its own right.

Fiona [45] performs this kind of mapping, and a more general system called

Conjure [28] which the author of this thesis is involved with aims to map be-

tween representations and intensional representations of constraints while allow-

ing arbitrary nesting of both constraints and constraint operators. As Conjure

is not the topic of this thesis, where obvious the intensional version of refined

constraints will simply be given, but a formal method as to how they can be

generated will not be discussed further.

57

Chapter 4. Introduction to Representations

4.4 Partial Representations

One requirement of a representation is that every assignment to the variable

must be represented. Similarly, in variable representations, each assignment to

the representation must represent only a single assignment to the represented

variable. There are interesting and useful representations which fail to satisfy this

requirement, Example 4.7 gives one frequently occurring example, representing

only the size of a set.

Example 4.7. Given a variable X whose domains is all subsets of {1, 5, 10, 20},
the size of X can be represented by a single variable R of domain {0, 1, 2, 3, 4},
where the assignment i to R represents all sets of size i.

The two constraints |X| < 2 and |X| > 3 map to the constraints R < 2 and

R > 3, which have no solution.

In general however, R cannot be used as a representation of X. The constraint

5 ∈ X maps to the constraint R > 0, as for any other assignment to R, there is

some set it represents which is allowed by 5 ∈ X. Similarly, the constraint 5 /∈ X

maps to the constraint R < 4. However while there is no solution to both 5 ∈ X

and 5 /∈ X, there are a number of solutions to R > 0 and R < 4.

As the preceding example shows, partial representations are of limited use

by themselves. When constraints do not line up with the partial representation,

then it is possible to get invalid solutions. However, these partial representa-

tions still have a use in the context of combing representations and channelling,

which will be discussed in the next section. Definition 4.9 gives the definition

of partial representation, Definition 4.10 gives the definition of partial variable

representation.

Definition 4.9. A partial representation 〈R, f〉 of a variable X is defined

identically to Definition 4.4 on page 52, except it may not satisfy requirement 3.

Definition 4.10. A partial variable representation of a variable X is a pair

〈V , g〉 defined as follows:

V : An array of variables of length n

g: A function from the set of assignments of V to P(dom(X)) such that all ele-

ments of dom(X) are contained in the image under g of some assignment

to V .

58

Chapter 4. Introduction to Representations

The partial representation induced by a partial variable representation 〈V , g〉
is the pair 〈R, f〉, defined as:

R: The lattice whose elements are the set {〈s1, s2, . . . , sn〉|∀i. si ⊆ dom(V [i])}
with the ordering ∀{r1, r2} ⊆ R. (r1 < r2) ⇐⇒ (∀i. r1[i] ⊆ r2[i])

f : The function defined over lists of sub-domains of V , where f(r) is the union

of the sets g(a) for every assignment a of r.

4.5 Combining Representations

So far both good and bad representations have been demonstrated. Except the

complete representation, every representation presented so far has had constraints

on which it does not perform as well as the complete representation. This leads

to the question of whether representations can be found.

One obvious way of trying to improve representations is to merge two existing

representations into a single representation. This is closely related to channelling,

a commonly used tool to improve CSP models. Joining representations or chan-

nelling should not be seen as a silver bullet, Section 7.2 shows how combining

representations can in some cases drastically increase the size of search. When

used with care, joining two representations can be used to improve representa-

tions.

Joining representations is closely related to channelling between different rep-

resentations. In fact, channelling can be seen a method of implementing joining

with weak propagation. Joining is stronger than channelling because with chan-

nelling, independent copies of problem constraints are placed on both the repre-

sentations being channelled together. With joining a single constraint would be

placed across both representations.

Joining a list of representations obviously will require joining their lattices.

The general mathematical definition of joining a list of lattices is given in Defini-

tion 4.11, and some simple consequences are given in Lemma 4.5

Definition 4.11. Given a list of lattices 〈R1, . . . , Rn〉, the join of the lattices Ri

is a new lattice R = 〈S,≤R〉 defined as follows:

• S = {〈r1, . . . , rn〉|ri ∈ Ri}

• 〈r1, . . . , rn〉 ≤S 〈r′1, . . . , r′n〉 ⇐⇒ (r1 ≤ r′1 ∧ · · · ∧ rn ≤ r′n)

59

Chapter 4. Introduction to Representations

Lemma 4.5. Given a list of lattices 〈R1, . . . , Rn〉 and their join Ri as given in

Definition 4.11, the following are true:

• R satisfies all the requirements of being a lattice.

• R⇑ = 〈R⇑1 , . . . , R⇑n〉

• R⇓ = 〈R⇓1 , . . . , R⇓n〉

Proof. Obvious from definition of representation and join.

Definition 4.12 describes how two representations are joined, by joining their

lattices. This join is performed in the most straightforward and way, each state

of the new representation is formed from a pair of states, one from each of the

representations being joined.

Definition 4.12. The join of a list of n (possibly partial) representations 〈Ri, fi〉
often denoted 〈R1, f1〉+ · · ·+ 〈Rn, fn〉 is 〈R′, f ′〉, where R′ and f ′ are defined as

follows:

• R′ is the join of the lattices 〈R1, . . . , Rn〉.

• f ′(〈r1, . . . , rn〉) = f1(r1) ∩ · · · ∩ fn(rn).

Theorem 4.6 shows that the join of a list of partial representations is another

partial representation and if at least one of the representations is not partial,

neither is the result.

Theorem 4.6. The join of a list of partial representations is a partial represen-

tation. If at least one of the representations being joined is not partial, the result

is not partial.

Proof. To show the join 〈R, f〉 of a list of n partial representations Ri = 〈Mi, gi〉
of a CSP variable X with domain D is a partial representation of X, it is sufficient

to check three conditions.

1. f is a homomorphism, so for any pair of states r and r′ of R, r ≤ r′ ⇐⇒
f(r1) ⊆ f(r2).

As r and r′ are elements of R, then r = 〈m1, . . . ,mn〉 and r′ = 〈m′1, . . . ,m′n〉.

r ≤ r′ =⇒ m1 ≤ m′1 ∧ · · · ∧mn ≤ m′n

=⇒ (g1(m1) ⊆ g1(m
′
1)) ∧ · · · ∧ (gn(mn) ⊆ gn(m′n))

=⇒ (g1(m1) ∩ · · · ∩ gn(mn)) ⊆ (g1(m
′
1) ∩ · · · ∩ gn(m′n))

=⇒ f(r1) ⊆ f(r2)

60

Chapter 4. Introduction to Representations

2. The image under f of R⇑ must be D.

By Lemma 4.12, f(R⇑) =
⋂

i∈{1,...,n} gi(M
⇑
i) and as the Ri are partial rep-

resentations, then this is equal
⋂

i∈{1,...,n}D = D

3. The image under f of R⇓ must be ∅.
Follows similarly to the proof for R⇑.

The only condition a partial representation must satisfy to be a representation

is that if a state r allows assignment a, a is reachable from r. Without loss of

generality assume R1 is not partial. Then given any element r = 〈m1, . . . ,mn〉, if

a is in f(r) then a is in g1(m1) so there exists m′1 in R1 such that g1(m
′
1) = {a}.

Therefore the state r′ = 〈m′1,m2, . . . ,mn〉 satisfies the condition that f(r′) = a

and r′ ≤ r.

The definition of the join of two representations has a very natural form when

expressed for variable representations and this is given in Definition 4.13. The

proof that the generated representation is the join of the original representations

is a simple generalisation of Theorem 4.6.

Definition 4.13. The join of the variable representations 〈V1, f1〉, . . . , 〈Vn, fn〉
is the variable representation 〈W, g〉 is defined as follows:

• W is the array 〈V1[1], . . . , V1[|V1|], V2[1], . . . , Vn[|Vn|]〉

• g is defined on assignments w of W . Each assignment w can be split into

an assignment vi to each of the Vi. If all the fi(vi) take the same value for

these assignments, g(w) is defined and also takes this value. If any of the

fi(vi) are undefined or different, then g(w) is undefined.

The most commonly join in this thesis is joining the occurrence, explicit or

Gent representation with the partial representation given in Example 4.7. These

will be denoted as the occurrence + size, explicit + size and Gent + size repre-

sentations.

4.6 Representational Propagators

The traditional definition of propagators, as given by Definition 2.18 on page 28,

does not immediately apply to representations. A generalisation to arbitrary rep-

resentations is given in Definition 4.14. Note that propagators on representations

61

Chapter 4. Introduction to Representations

are defined on the ordering of the elements of the representation, and not the

subsets of the domain they represent.

Definition 4.14. Consider a constraint c over an array of variables V , where V [i]

is represented by 〈ri, fi〉. A function P from the set S = {〈r1, . . . , rn〉|ri ∈ Ri} to

itself is a propagator of c if it satisfies the following list of conditions:

1. Monotonic:

∀{s1, s2} ⊂ S. s1 ≤vec s2 =⇒ P (s1) ≤vec P (s2)

2. Non-increasing:

∀s ∈ S. P (s) ≤vec s.

3. Preserves solutions:

For all s in S, consider all arrays a in S such that each element of a represents

a single assignment and a ≤vec s. Then if the assignment represented by a

satisfies c, then a ≤vec P (v).

4. Identifies Assignments:

For all s in S where P (s) allows a single assignment to V , then if c does

not allow that assignment, P (s) = 0.

The only part of Definition 4.14 which does not immediately follow from the

previous definition of propagators is point 3. Rather than requiring all assign-

ments which represent solutions to the constraint are preserved, a weaker possible

definition is that for every solution, at least one assignment which represents it is

preserved. The following example gives an example of this distinction and why

it matters.

Example 4.8. Consider a variable X with the domain of all subsets of size 2 of

{1, 2, 3, 4, 5}, represented by the variable representation 〈〈y1, y2〉, f〉, where each

of the y have domain {1, 2, 3, 4, 5} and f is defined by f(〈y1, y2〉) = {y1, y2}, when

y1 6= y2.

The constraint 1 ∈ X is most naturally represented by 1 ∈ y1 ∨ 1 ∈ y2. How-

ever a stronger possible propagator is given by the following function P (d1, d2),

defined on a list of sub-domains where di is a sub-domain of yi.

• If 1 ∈ d1 set d1 = {1}.

• If 1 6∈ d1 and 1 ∈ d2, set d2 = {1}.

62

Chapter 4. Introduction to Representations

• If 1 6∈ d1 and 1 6∈ d2, fail.

This definition will clearly lose solutions to 1 ∈ y1 ∨ 1 ∈ y2, for example y1 ∈
{1, 2, 3, 4, 5}, y2 ∈ {1, 2, 3, 4, 5} will be propagated to y1 ∈ {1}, y2 ∈ {2, 3, 4, 5},
which has removed the assignment 〈y1, y2〉 = 〈2, 1〉. On the other hand, every

assignment to X which was represented before is still represented.

It may appear that cases like Example 4.8 are weakening the “preserves solu-

tions” part of the definition of propagator, requiring instead that only one image

of each solution must be preserved, rather than all images of all solutions. This

is however not the case, as Lemma 4.7 shows.

Lemma 4.7. Replacing the 3rd condition in Definition 4.14 with:

3 Preserves solutions:

For all s in S and all assignments a to 〈f1(s[1]), . . . , fn(s[n])〉, if a satisfies c,

then there must be some s′ in S such that s′ represents only a and s′ ≤ P (s)

leads to a logically identical definition.

Proof. Clearly this condition is weaker than the one in Definition 4.14, however

there could be propagators which do satisfy this condition but do not satisfy the

original Condition 3. Consider such a propagator P for a constraint c over a list

of variables V , where V [i] is represented by 〈ri, fi〉, does exist.

If S = {〈r1, . . . , rn〉|ri ∈ Ri}, then there must exist some s and a in S where

a represents a single assignment to V which satisfies c, a ≤vec s but a 6≤vec P (s).

However P must be monotonic, so P (a) ≤vec P (s). But each element of a

allows only a single assignment and as c allows this list of assignments, P (a) = a,

so a ⊆ P (a) ⊆ P (s).

The propagator in Example 4.8 is in fact invalid because it is not mono-

tonic.Propagators are required to be monotonic is this ensures a well-defined

fixed point regardless of the order in which propagators are executed. This makes

studying the behaviour of such propagators much more difficult. The basic idea

of trying to implement stronger propagators like in Example 4.8 still has merit

and is discussed further in Section 8.5.

Definition 4.15 provides the most general and obvious method of mapping a

traditional propagator, that is one on the complete representation, to a propagator

63

Chapter 4. Introduction to Representations

where each variable has a representation. Lemma 4.8 proves that this definition

always produces correct propagators on representations.

Definition 4.15. Given a propagator P of a constraint c on an array of variables

V and an array of representations R, where R[i] = 〈ri, fi〉 is a representation for

V [i], the represented propagator PR of P , also called P with respect to V

with respect to R, is defined on representational states of R as:

PR(r) = lub{x| x ≤vec r ∧ x allows one assignment to V ,

which is allowed by P (〈f1(r[1]), . . . , fn(r[n])〉)}

Lemma 4.8. Consider any propagator P of a constraint c on an array of variables

V and an array of representations R, where R[i] = 〈ri, fi〉. Then the represented

propagator PR, as given in the preceding definition is a propagator as defined by

Definition 4.14.

Proof. In order to be a propagator, PR must be monotonic, non-increasing, pre-

serve solutions and identify assignments. These conditions will be checked in

turn. Given the set S = {〈r1, . . . , rn〉|ri ∈ Ri}:

1. Monotonic:

Consider a pair s1 and s2 in S such that s1 ≤vec s2. For each si, define

ti = 〈fi(si[1]), . . . , fi(si[|V |])〉. Then s1 ≤vec s2 =⇒ t1 ≤vec s2 =⇒
P (t1) ≤vec P (t2).

Looking at the definition of PR, PR(s1) is the lowest upper bound of the

set:

{x| x ≤vec s1 ∧ x allows one assignment to V ,

which is allowed by P (〈f1(s1[1]), . . . , fn(s1[n])〉)}

As s1 ≤vec s2, then PR(s2) is the lowest upper bound of a similar set, which

contains at least all these elements. Therefore if S ⊆ T =⇒ lub(S) ⊆
lub(T), the proof is done. This is true, because lub(T) is greater than or

equal to all the elements in T , and therefore all the elements of S so by

definition lub(S) must be less than or equal to lub(T).

2. Non-increasing:

Looking at the definition of PR, clearly s is greater than or equal to all the

assignments it allows, so by definition PR(s) ≤vec s.

64

Chapter 4. Introduction to Representations

3. Preserves solutions and 4. Identifies solutions:

Both true from definition.

4.7 Representational Symmetry

Rather than considering a CSP and the symmetry it contains, it can be en-

lightening to consider how that CSP was constructed and how the symmetry

became introduced. In particular symmetry can be broadly split into two parts,

those symmetries present in the original problem and those introduced during the

modelling process, often by the use of representations.

A specification of the Social Golfers problem is given in Example 4.1 on

page 49. The original problem does not have any obvious symmetry, yet the

CP model given in Example 4.13 on page 72 has distinguished the golfers, the

order of the weeks, the order of the games within each week and the order of the

players within each game.

This split between problem and representation symmetry is not strictly defined

for all problems. For example, it is unclear from the English specification if

the Social Golfers problem should be modelled as a multiset of weeks, or as

an ordered list of weeks (which would already have symmetry), however once a

strict mathematical model of a problem has been found, the distinction between

problem and modelling symmetry is clear.

The Social Golfers example demonstrates the major way in which symmetry

is introduced, which is distinguishing a group of indistinguishable objects. This

often occurs by refining a set or multiset into the explicit representation. By

noting when symmetry is introduced in this way, it is possible to find some or all

of the symmetries in a CSP model without having to search for them when the

final CSP model is generated.

In general, a representation has symmetry when it is not simple (Definition 4.5

on page 53), so there is more than one assignment to the representation which

represents the same assignment. Symmetry occurs in arbitrary representations,

but defining how to deal with it in general is difficult due to a lack of structure. In

the specific case of variable representations (Definition 4.6 on page 54), Definition

4.16 gives the definition of symmetry.

65

Chapter 4. Introduction to Representations

Definition 4.16. A variable representation R = 〈V , f〉 has symmetry if there

exists two distinct assignments v1 and v2 to V such that f(v1) and f(v2) are both

defined and equal.

There are two different ways of viewing static symmetry breaking on variable

representations. Either the representation itself can be changed to remove the

symmetry, as in Definition 4.17, or a CSP the representation occurs in can have

constraints added to it to break the symmetry, as in Definition 4.18. These two

views are very similar and will lead to identical sets of solutions, but there will

be differences in search space, as if the representation is changed so will any

constraints on it.

Definition 4.17. Given two variable representations R = 〈V , f〉 and R′ = 〈V , f ′〉
of a domain D, R′ is a valid symmetry breaking of R if for all assignments v to

V then if f ′(v) is defined, then f ′(v) is equal to f(v). R′ is a complete symmetry

breaking of R if R′ also has no symmetry.

Given an ordering on the domain of each V [i], the symmetry of R is lex-

icographically broken by the representation R′ if R′ is complete and for each

assignment to D, the lexicographically least assignment to V which represents it

is the one preserved.

Definition 4.18. Given a variable representation R = 〈V , f〉 of a domain D,

a constraint C on V is a valid symmetry breaking constraint for R if for all

assignments d to D, there is at least one assignment v to V such that f(v) = d

and C(v) is true. C is complete if there is only one such assignment for each

assignment to D.

Given an ordering on the domain of each V [i], the symmetry of R is lexico-

graphically broken by the constraint C if C is complete and for each assignment

to D, the lexicographically least assignment to V which represents it is the one

allowed by C.

While some minor issues with symmetry will arise in a number of places, the

main study of symmetry in this thesis arises in Chapter 8.

4.8 Example Representations

Two closely related and very common types of variables in combinatorial problems

are sets and multisets. Sets and multisets will be used both for running examples

66

Chapter 4. Introduction to Representations

throughout this thesis, and also discussed specially in some sections. There are

a number of representations of sets and multisets in common usage in constraint

programming, and each of these will be defined and discussed in this section.

Note that none of the following definitions place any requirements on the

elements of the sets and multisets being represented, although to ease presentation

all examples will only consider sets and multisets of integers.

Probably the most common representation of a set or multiset drawn from a

range of integers is the occurrence representation, given in Definition 4.19. In the

case of sets, this representation is often known as the “characteristic function”.

Definition 4.19. Consider a (multi)set variable X, whose domain is a set of

multisets D, each drawn from a set S. Define maxocc to be maxs∈S,d∈Docc(s, d).

The occurrence variable representation of X is a pair 〈V , f〉 where V and f are

defined as follows:

• V is an array indexed by S of variables with domain {0, . . . , occ}.

• f maps assignments of V to the domain of X by f(v) = {v[s]× s|s ∈ S}m,

where the resulting (multi)set is in D.

V is referred to as the occurrence array.

One feature of Definition 4.19, which occurs in the other representations in

this thesis, is that the representation does not have to represent all sub(multi)sets

of a (multi)set S. For example, the domain of a set variable might contain only

sets of one sizes. In this case, the representation function does not apply to

assignments which represent a set of a different size.

Rather than change representations depending on the particular domain, an

alternative is to impose constraints which restrict which (multi)sets are allowed.

These two methods produce the same solutions, but are not the same. In partic-

ular, if the representation is restricted, propagators of constraints can then make

use of this information, and in the case of GAC propagators are required to do

so.

Example 4.9. Consider a multiset variable X with domain {s | s⊆S, |s| ≤ 4},
which is represented under the occurrence representation by an array V . X =

{1, 3, 3, 4}m is represented by the assignment [1, 0, 2, 1] to V . The assignment

[1, 2, 2, 0] does not represent any multiset, as it contains 5 values whereas the

variable under consideration contains only sets with at most 4 values in them.

67

Chapter 4. Introduction to Representations

The second most common set representation is the explicit representation,

given in Definition 4.20. This representation is most commonly used for repre-

senting small sets of fixed size, often drawn from a very large set. The ordered

explicit representation provides one method of breaking the symmetry of the ex-

plicit representation, making it simple.

Definition 4.20. Consider a (multi)set variable X, whose domain is a set of

multisets D, each drawn from a set S and of the same size N . The fixed-size

explicit variable representation of X is the array 〈E, f〉 where E and f are

defined as follows:

• E is an array of size N of variables with domain S.

• f maps assignments of E to the domain of X by

f(e) = {e[1], e[2], . . . , e[Size]}m, where this multiset is in D.

E is known as the element array.

The ordered explicit representation imposes the extra condition that under

some ordering of S, the assignment to E must be ordered smallest to largest.

Example 4.10. Consider X with domain {s | s⊆m {1, 2, 3, 4, 5},∀i. occ(i, s) ≤
c, |s| = 2} represented by the explicit representation 〈E, f〉. Then E is an ar-

ray of 4 variables, each of domain {1, 2, 3, 4, 5}. The assignments 〈1, 1, 4, 5〉 and

〈1, 5, 4, 1〉 to E both represent the assignment {1, 1, 4, 5}m to X. Only the first

of these would represent the assign in the ordered explicit representation. The

assignment 〈1, 1, 1, 2〉 to E does not represent any assignment to X, as it has 3

occurrences of 1.

There are two ways in which the explicit representation has been extended to

deal with variable sized sets. The first, given in Definition 4.21, places a “dummy

value” in the domain of each variable which is used to denote that a particular

variable is not used. The second, given in Definition 4.22, is to have an extra

array of Booleans which denotes which variables in the element array are in the

(multi)set. An example of both of these is given after their definitions in Example

4.11

Definition 4.21. Consider a (multi)set variable X whose domain is a set of

multisets D, each drawn from a set S. Define N to be maxd∈D|d|. The explicit

with dummy variable representation of X is the pair 〈E, f〉 where E and f are

defined as follows:

68

Chapter 4. Introduction to Representations

• E is an array of length N of variables of domain S∪{∅} (where ∅ represents

a value not in S).

• f maps assignments of E to the domain of X by f(e) = {e[i]|1 ≤ i ≤
N ∧ e[i] 6= ∅}m, where this multiset is in D.

E is known as the element array.

The ordered explicit with dummy representation, given an ordering of S,

requires the assignment to E is ordered from smallest to largest, treating ∅ as if

it were larger than everything in S.

Definition 4.22. Consider a (multi)set variable X whose domain is a set of

multisets D, each drawn from a set S. Define N to be maxd∈D|d|. the explicit

with check variable representation is the pair 〈E.C, f〉, where E, C and f are

defined as follows:

• E is an array of length N of variables of domain S.

• C is an array of length N of Boolean variables.

• f is defined by f(e.c) = {e[i]|1 ≤ i ≤ N ∧ c[i] = True}m, where this

multiset is in D.

E is called the element array, and C is called the check array.

The ordered explicit with check representation requires that the elements

of C which are True come before all of those which are False, and the elements

of E are ordered from smallest to largest.

Example 4.11. Consider a variable X with domain P({1, 2, 3, 4, 5}) represented

by the explicit with dummy representation 〈E, f〉 and by the explicit with check

representation 〈D.C, g〉

Then the assignments 〈1, 2, 3, ∅, ∅〉 and 〈1, ∅, 3, ∅, 2〉 to E both represent the

domain value {1, 2, 3}, as will any other permutation. Both of the assignments

〈1, 2, 3, 4, 5〉. 〈T, T, T, F, F 〉 and 〈1, 2, 3, 1, 1〉. 〈T, T, T, F, F 〉 to D.C also represent

{1, 2, 3}. Here as well as permuting the arrays, it is possible to assign any value

to the element array when the check array is false.

These two methods of extending the explicit representation to variable-sized

sets have their own advantages and disadvantages, mainly to do with symmetry,

as demonstrated in Example 4.11. The major disadvantage of the explicit with

69

Chapter 4. Introduction to Representations

check representation is that it introduces a large amount of extra symmetry, as

when the ith element of the check array is assigned False, then the value of the

ith element of the element array is ignored. This symmetry cannot be captured

by a permutation of the literals of the variables in the representation, so cannot

be easily dealt with by existing symmetry breaking methods in CP. This means

that while the ordered explicit with dummy representation is simple, the ordered

explicit with check representation is not.

The major advantage of the element with check representation is that it is

often easier to integrate with existing intensional constraints, which must often

be rewritten to deal with the extra dummy value which is introduced by the

explicit with dummy representation.

Lemma 4.9. The explicit and explicit with check representations are not simple.

Proof. It is possible to freely permute the array of variables in the explicit repre-

sentation and they will represent the same (multi)set, so as long as this array has

length greater than 1 and more than one possible assignment, the representation

cannot be simple.

Given the common usage of the occurrence and explicit representations and the

fact that (as will be shown later) they each have advantages and disadvantages,

an obvious goal would be to attempt to construct a representation that combines

their advantages. One naive way of doing this would be by joining them. The

Gent2 representation (Definition 4.23) is a new representation which combines

some of the strengths of both the occurrence and explicit representations. This

representation arose when trying to combine the practical benefits of both the

occurrence and explicit representations. Later in this thesis it will be compared to

the occurrence and explicit representations, which will demonstrate its theoretical

advantages over these two representations.

Definition 4.23. Consider a (multi)set variable X whose domain is a set of

multisets D, each drawn from a totally ordered set S. The Gent variable repre-

sentation is a pair 〈V , f〉, where V and f are defined as follows:

• V is an array of length |S| of variables with domain {0, 1, . . . ,max(size)}.

• f maps an assignment v to V to an assignment of X using the following

rules:

2Designed by the author and Ian Gent while modelling a particular problem and later gen-
eralised.

70

Chapter 4. Introduction to Representations

1. f is only defined if the non-zero elements of V are in strictly increasing

order.

2. If v[b] = 0, f(v) contains no occurrences of b.

3. If v[b] 6= 0, then given z = max({v[i]|i < b}), z = 0 if b is the smallest

element of S, then f(v) contains v[b]− z occurrences of b.

4. f(v) is only defined if the previous rules define a multiset in the domain

of X.

Example 4.12. Given X with domain {s | s⊆m {1, 2, 3, 4, 5}, |s| = 4}, consider

X represented under the Gent representation by 〈V , f〉 with the obvious ordering

on {1, 2, 3, 4, 5}. Then 〈0, 2, 0, 4, 0〉 represents {2, 2, 4, 4}M and 〈1, 2, 4, 0, 0〉 rep-

resents {1, 2, 3, 3}M . The representation of both 〈0, 1, 0, 1, 0〉 and 〈0, 2, 0, 1, 0〉 is

undefined, as the non-zero elements are not in strictly increasing order.

The final representation of sets which will be considered in this thesis is the

lexicographic representation, given in Definition 4.25. Unlike the occurrence,

explicit and Gent representations, the lexicographic representation cannot be

considered as a variable representation.

Definition 4.24. Given a set S and an ordering on the elements of S, under

the lexicographic ordering on subsets of S, s1 ≤lex s2 if and only if the smallest

element in s1 is less than the smallest element in s2, s1 is empty or if the smallest

element in both s1 and s2 is a, s1 − a ≤ s2 − a.

Definition 4.25. Consider a (multi)set variable X whose domain is a set of

multisets D, each drawn from a totally ordered set S. The lexicographic repre-

sentation is defined by the pair 〈R, f〉, where R and f are defined as follows:

1. R = {〈l, u〉|l, u ∈ D, l ≤lex u} ∪ {∅}

2. f(〈l, u〉) = {d|d ∈ D, l ≤lex d ≤lex u} and f(∅) = ∅.

The lexicographic ordering is of limited use by itself, but has been very suc-

cessfully combined with the occurrence representation [71] to create a practically

useful set and multiset representation. While the lexicographic representation can

be usefully combined with other representations, it is hard to prove any results

about it in isolation and therefore it will be only briefly discussed in this thesis.

71

Chapter 4. Introduction to Representations

4.8.1 Examples

Example 4.13 gives a model of the social golfers problem suitable for giving to

a CP solver. This model is much more difficult to understand, as the high-level

variables have been stripped away and the partitions replaced with a matrix of

variables. This has massively increased the number of variables in the CSP and

introduced symmetry.

Example 4.13. The social golfers problem was defined originally in Example 4.1

on page 49. Here a more concrete model of the problem will be given, with the

schedule represented as a 3 dimensional matrix.

Here, as the partitions are being represented by matrices, it is necessary to

impose two constraints that the matrix forms a correct partition, by imposing first

that the players in each week are distinct, and secondly that no two players in two

different games in the same week are the same.

Unlike in the previous model, the individual games in each week are now given

a numerical label. The one dimensional matrix Sched[i][j] represents the golfers

which play together in game j in week i.

• Given n, p, w

• Find Sched: 3D matrix indexed by [1..w][1..n/p][1..p] with domain {1..n}

Such that

• ∀i ∈ {1, . . . , w}. ∀j ∈ {1, . . . , n/p}. AllDifferent(Sched[i][j])

• ∀i ∈ {1, . . . , w}. ∀{j, k} ⊆ {1..n/p}.
∀a, b ∈ {1..p}. Sched[i][j][a] 6= Sched[i][k][b]

• ∀i ∈ {1, . . . , w}. ∀j ∈ {(i+ 1), . . . , w}. ∀l, k ∈ {1, . . . , n/p}.
(
∑

x∈{1,...,p},y∈{1,...,p} . Sched[i, k, x] = Sched[j, l, y]) ≤ 1

4.9 Conclusion

This chapter has provided a framework for defining and working with representa-

tions, and shown how the common methods of implementing sets, multisets and

other high-level types fit into this framework. The next two chapters will go on

to show how representations in this framework can be usefully compared to each

other and an informed choice made as to which should be used during search.

72

Chapter 5

Dominating Representations

Chapter 4 provided a framework for defining representations and using them to

solve CSPs directly or to refine a CSP to another simpler CSP. The aim of this

chapter is show how representations can be compared and how one representation

can be proven to be “better” than another.

There are two major difficulties in comparing the performance of different

representational choices in a CSP. The first is that for any specific CSP, the

best possible representation will most likely be very closely related to the set of

solutions. In the case of the Viewpoint formalisation (Subsection 3.1), this can

lead to degenerate behaviour in the case where a problem has no solution. In

general this will lead to a representation which is strongly affected by the list of

solutions to the CSP.

This first difficulty is dealt with in this thesis by comparing representations

over all problems constructed with a specific language of constraints. This has

the obvious weakness that it will not be able to make use of problem-specific

characteristics. However it has many advantages, including hopefully being easier

to apply to a large range of problems and avoiding the problems of trying to find

a better model for a single instance.

The second major problem is to choose which metric to use to compare repre-

sentations. The obvious route would be to compare which choice of representation

either finds a solution or proves no solution exists in the fastest possible time.

This is unfortunately an unachievable goal at present and will probably continue

to be unachievable. Solver-specific optimisations and implementation issues have

a large effect on the time taken, with new releases of solvers and extensions for

existing solvers often radically changing the speed taken to solve particular prob-

lems, for example when new propagators are added for new constraints. Therefore

73

Chapter 5. Dominating Representations

even if such a formalisation could be generated, it would have to be redesigned

for each solver and corrected or restarted from scratch each time the solver was

extended.

Instead, the metric used in this thesis is to compare the size of the search

tree generated. A large number of factors still affect this metric, including the

representations used, the variable and value orderings, the level of propagation

used for each constraint and the symmetry breaking methods used. However,

these are all possible to categorise exactly . So a solver-independent metric can

be constructed and studied.

Clearly the results of this metric must be used with consideration. In par-

ticular, any change in representation which decreases search size at the cost of

increasing the time taken per node of search will be better under this metric. In

the most extreme case, if a CSP is modelled using only a single variable then

propagation at the first node will either find all solutions or prove none exist.

This representation will therefore be the best possible in terms of search size.

Given this proviso this thesis will show it is still possible to make powerful and

useful comparisons of representations based on the search tree their usage in a

problem generates. One particular reoccurring theme will be that in many cases

it will be shown that substantially simplifying some part of search, for example

replacing a representation of exponential size with one of polynomial size, will not

increase the size of search. In this case using the simpler representation should

hopefully always provide a quicker search.

Definition 5.1. Given two representations R1 and R2 of a domain D, R1 domi-

nates R2 if given a CSP where R2 is used to represent one of the variables, then

for all static search orderings replacing R2 with R1 leads to a smaller or equal

sized search.

R1 strictly dominates R2 if R1 dominates R2 and R2 does not dominate

R1. R1 dynamically dominates R2 if R1 also results in a smaller search tree

for every possible dynamic search ordering as well.

Definition 5.1 gives the definition of one representation dominating another,

in terms of search trees. One important result is that the definition of dynamic

dominance given, which at first appears useful, is unfortunately unusable in the

case of simple representations, as shown in Theorem 5.1. The proof of Theorem

5.1 shows that this is true as dynamic orderings provide too much freedom. This

is because as soon as the search tree generated by different representations differs

74

Chapter 5. Dominating Representations

in any way, a dynamic heuristic then has free rein to move one or the other search

tree directly to a solution, or away from a solution.

In a less forced way, any dynamic branching method can be ffected in unpre-

dictable ways by the differences in representations, leading to searches which are

almost impossible to compare. Therefore it is necessary to use only static variable

orderings when considering theoretical performance.

Theorem 5.1. Given two simple representations R1 and R2 of a domain D and a

sub-domain s of X which is represented by R1 and not R2, R1 will not dynamically

dominate R2 and R2 will not dynamically dominate R1.

Proof. This basic idea of this proof is that a dynamic heuristic, having reached s,

or the smallest sub-domain from R2 which contains s can for one domain branch

directly to a solution and in the other, create a large search tree.

Consider two CSPs P1 and P2, each containing two variables, X with domain

D, and a Boolean variable Y . This CSP will have a single constraint, Y = True,

which is propagated by the assignment propagator (that is, the propagator will

wait until the Y is assigned, then fail if it has been assigned False). The only

difference between the CSPs is that in Pi, X is represented using Ri.

Consider the first branch of search performing the propagation X ∈ s, and

that this new constraint is GAC propagated.. If X is represented by R1, then on

this branch X will have sub-domain s. On the right branch it will have a different,

larger sub-domain. At this point, the dynamic branching strategy could choose

either to assign Y = True and then any assignment to X, or assign Y = False

which would fail, then Y = True, then any assignment to X. A dynamic ordering

could choose either to perform the smaller search if the current sub-domain of

X is exactly s, or only if the sub-domain is larger than s. Therefore in different

dynamic orderings, the search using R1 or R2 will be bigger.

Definition 5.2 describes one representation embedding another. Representa-

tions dominating and embedding one another are closely related, and Theorem

5.3 shows that in the case of simple representations, the two are equivalent. For

non-simple representations the relation is unfortunately more complex. Example

5.1 shows that increasing the number of representational states can actually lead

to worse performance during search for non-simple representations.

Definition 5.2. Rep1 = 〈R1, f1〉 embeds Rep2 = 〈R2, f2〉 (or Rep2 is embed-

ded in Rep1) if there is a function M : R2 → R1 such that ∀r ∈ R2. f1(M(r)) =

f2(r) and ∀r1, r2 ∈ R2. r1 ≤ r2 =⇒ M(r1) ≤M(r2).

75

Chapter 5. Dominating Representations

Rep1 and Rep2 are equivalent if Rep1 embeds Rep2 and Rep2 embeds R1.

Rep1 strictly embeds Rep2 if Rep1 embeds Rep2 and Rep2 does not embed

Rep1.

Example 5.1. Given a set variable X with domain {s | s⊆{1, 2, 3, 4, 5}, |s| = 2},
consider representing it by the occurrence representation with occurrence array V

and by the explicit representation with explicit array W .

For every sub-domain of V there is a sub-domain of W which represents the

same assignments. This is generated by assigning as many values of W as are

assigned in V , then removing from the domains of the remaining variables any

values which are disallowed by V . Therefore the explicit representation embeds

the occurrence representation.

Consider the CSP whose only variable is X with the constraints 1 ∈ X, 2 ∈ X
and 3 ∈ X. On the occurrence representation these become V [1] = 1, V [2] = 1

and V [3] = 1. Propagating these three constraints leads to the sum of X becoming

greater than 2, so failure will occur.

On the explicit representation, these constraints become W [1] = 1 ∨W [2] =

1,W [1] = 2∨W [2] = 2 and W [1] = 3∨W [2] = 3. None of these constraints causes

propagation beginning from complete domain, so search will have to be performed

to show the CSP has no solution.

Dominance is very similar to the idea of expressitivity from [76], which simply

compares representations by the set of sub-domains they represent. For simple

representations, Lemma 5.2 shows that they are identical.

Lemma 5.2. Given two simple representations Rep1 = 〈R1, f1〉 and Rep2 =

〈R2, f2〉 then the representation Rep1 embeds the representation Rep2 if and only

if {f2(r2)|r2 ∈ R2} ⊆ {f1(r1)|r1 ∈ R1}.

Proof. If Rep1 embeds Rep2, then there exists a function M : R2 → R1 such that

∀r ∈ R2. f1(M(r)) = f2(r) and therefore ∀r2 ∈ R2. ∃r1 ∈ R1. f1(r1) = f2(r2).

In the opposite direction, as the set of sub-domains represented Rep2 is a

subset of those represented by Rep1 and as both representations are simple (and

so each sub-domain is represented at most once), then the function M from R2

to R1 by f(r2) = r1 ⇐⇒ f1(r1) = f2(r2) demonstrates that Rep1 embeds

the representation Rep2, as the ordering on simple representations is entirely

determined by the domains they represent.

76

Chapter 5. Dominating Representations

Previous work on expressitivity in [76] showed that the explicit representation

dominates the occurrence representation, as the explicit representation can repre-

sent a strict superset of the sub-domains represented by the occurrence represen-

tation. However this viewpoint is overly simplistic, as it assumes a representation

is completely encapsulated by the list of sub-domains it represents and does not

consider how it performs during serach. For non-simple representations it is nec-

essary also to consider the relation between states, as well as the sub-domains

those states represent. Considering only the states which can be represented can

overestimate the effectiveness of a representation, as Example 5.2 demonstrates.

Example 5.2. Consider representing two element multisets drawn from {1, 2, 3}
using the explicit representation both without symmetry breaking and with the

symmetry breaking which orders the elements of the element array.

The sub-domain {{1, 1}M , {1, 2}M ,{2, 3}M , {1, 3}M} can be represented by the

sub-domains 〈{1, 2}, {1, 3}〉 if symmetry breaking is not imposed, but if symmetry

breaking is imposed the smallest sub-domains which allow this set of assignments

is 〈{1, 2}, {1, 2, 3}〉, which also allows {2, 2}M .

Consider now representing the sub-domain {{1, 2}M , {1, 3}M}. It can be rep-

resented exactly by the sub-domains 〈{1}, {2, 3}〉 both with and without symmetry

breaking. However, these domains cannot be reached by removing values from the

domains of 〈{1, 2}, {1, 3}〉.

Without symmetry breaking, there are more possible sets of sub-domains which

can be represented. This comes at the cost however that the domains which were

shown second are not reachable from those which were generated first. It is there-

fore misleading to simply list the states which are reachable during search in the

case of non-simple representations.

Theorem 5.3 shows the expected result that in the case of simple representa-

tions, dominance and embedding are equivalent. As Example 5.2 demonstrated,

such a result will not apply to non-simple representations.

Theorem 5.3. For simple representations R1 and R2 of a domain D, R1 embeds

R2 if and only if R1 dominates R2. Furthermore if R1 strictly embeds R2, R1

strictly dominates R2.

Proof. Consider two CSP implementations P1 and P2 which differ only that some

variable X is represented by the representation Ri in Pi. Beginning from the

complete representational states the weaker representation R2 can only lead to

77

Chapter 5. Dominating Representations

the represented sub-domain of X in P2 becoming larger than that of X in P1.

Similarly if the representational states in P2 get larger, they can never get smaller

than the ones in P1 as P2 can represent only a subset of the states allowed by P1

and propagators are monotonic.

Now consider the case where R1 dominates R2. Given a sub-domain S of D

and an element s ∈ S. A propagator Ps,S for the constraint X = s is defined as

follows:

1. {s} ⊆ d ⊆ S =⇒ Ps,S(d) = {s}.

2. {s} 6⊆ d ⊆ S =⇒ Ps,S(d) = ∅.

3. d = {x} for some x 6= s =⇒ Ps,S(d) = ∅.

4. Otherwise, Ps,S(d) = d.

That Ps,S is a correct propagator mostly follows trivially from the definition

of propagator. The only non-trivial check is if d1 ⊆ d2 =⇒ Ps,S(d1) ⊆ Ps,S(d2).

If d2 ⊆ S then d1 ⊆ S and as s ∈ d2 =⇒ s ∈ d1, in this case the condition holds.

If d2 6⊆ S2, then the conditional also holds.

Now, for each representation state r allowed by R2, consider the sub-domain d

represented by r. If |d| = 1, then R1 must also have a representational state which

represents d. Else, take an element s ∈ d and consider the CSP implementation

with a single variable X of domain D and the single represented Ps,d, where the

first branch is X ∈ d, X 6∈ d, each propagated to GAC.

In the case of representing X by R2, initial propagation will not reduce the

domain. After imposing X ∈ d, the allowed sub-domain will be reduced to d,

which will then be propagated to s, giving a solution. Therefore, if R1 dominates

R2, it must also have a search of at most one node, and in order to do this R1

must be able to represent the sub-domain d. Therefore R1 embeds R2.

In the case where R1 strictly dominates R2, R1 must represent some sub-

domain d of X which is not represented by R2. Consider the CSP with two

variables, one of them X (as required) and the other a Boolean variable Y rep-

resented by the complete representation and the three constraints X ∈ d =⇒
Y = True, X ∈ d =⇒ Y = False, X ∈ d, each of which is propagated to

GAC. In P1, propagating X ∈ d will lead to X having exactly the sub-domain d,

following which Y will be propagated to both False and True, which will empty

its domain. In P2 on the other hand, as X having the sub-domain d cannot be

78

Chapter 5. Dominating Representations

represented, after propagating X ∈ d, some values will be left in the domain of

X which are not in d, and therefore the other two constraints will be unable to

perform any propagation and search will have to continue.

Theorem 5.3 and Lemma 5.2 together have shown that for simple variable

representations, dominance and embedding are exactly equivalent. This means

in this case, checking for dominance becomes much simpler.

5.1 Variable Representations

In general, showing one representation dominates another requires showing the

mapping between them. With variable representations there is often a simpler way

of showing one representation dominates another, by showing relations between

the variables of the representations directly. Such relations are demonstrated in

this thesis using channelling constraints, as given in Definition 5.3, with specific

properties.

Definition 5.3. A set of channelling constraints between two variable repre-

sentations R1 = 〈V1, f1〉 and R2 = 〈V2, f2〉 of a domain D is a set of constraints

on the variables in V1 and V2 such that an assignment v1 to V1 and v2 to V2 satisfy

the conjunction of the channelling constraints if and only if f1(v1) ≡ f2(v2).

Definition 5.4 shows three models of a permutation problem and the chan-

nelling constraints between them.

Definition 5.4. The three variable representations used in [44] to represent a

permutation of the set {1, . . . , n} are:

Row Model: 〈V1, f1〉, where V1 is an array of length n of variables with domain

{1, . . . , n}, and f1 maps an assignment to V1 to the permutation where V1[i]

is the ith element of the permutation, where this is a valid permutation.

Column Model: 〈V2, f2〉, V2 is an array of length n of variables of domain

{1, . . . , n}, and f2 maps an assignment to V2 to the permutation where i is

in the V2[i]
th position in the permutation, where this is a valid permutation

Boolean Model: 〈V3, f3〉, V2 is a 2 dimensional matrix of Booleans indexed

{1, . . . , n}, where f3 maps V3 to the permutation where i is in the jth position

if V3[i][j] is true, where this is a valid permutation.

79

Chapter 5. Dominating Representations

The channelling constraints between these models are V1[i] = j ⇐⇒ V2[j] =

i ⇐⇒ V3[i][j] = 1

Unfortunately there does not appear to be a compact and simple way of

checking if one variable representation dominates another. In practice, both in

this thesis and in any paper referenced in this thesis there are three patterns which

can be used to explain where one variable representation dominates another and

one pattern which is used to generate equivalent representations. These three

patterns are defined in the next three subsections.

5.1.1 Extra information by adding variables

The easiest kind of extension is adding extra variables, this idea is outlined in

Definition 5.5. This is identical to joining a representation with a partial variable

representation, as given in Definition 4.12 on page 60. The reason an alternative

definition is given here is to unify the different methods of extending representa-

tions. It is obvious that adding extra variables will create a representation which

dominates the original (although not necessarily strictly).

Definition 5.5. Given 2 variable representations R = 〈V , f〉 and R′ = 〈V ′, f ′〉,
R′ is R augmented with extra variables if:

1. The first |V | elements of V ′ are exactly the same as V .

2. Given any assignment v′ to V ′, take the assignment v to V by taking the

first |v| values from v′. Then either f(v) ≡ f ′(v′) or f ′(v′) is undefined.

3. Given any assignment v to V , there exists at least one assignment v′ to V ′

where f(v) ≡ f ′(v′) and the first |v| elements of v′ are equal to v.

5.1.2 Extra information by splitting literals

Another method of creating a new representation from an old one in such a way

it always dominates the original is to split a single literal into multiple literals,

while keeping all other parts of the representation the same.

Example 5.3. Consider representing an integer between 0 and 15 in binary by a

Boolean array of length 4. The last variable in the array represents if the variable

is even or odd. This could be extended to 3 values, to represent one of even, odd

non-prime or odd prime.

80

Chapter 5. Dominating Representations

This allows for more representational information, as by setting this to either

odd non-prime or odd prime at the start of search allows representing a sub-

domain which could not be represented before.

Splitting literals is defined in Definition 5.6, and a proof that it creates domi-

nating representations is given in Lemma 5.4. This Lemma does not give a proof

of when the new representation strictly dominates, as proving when this occurs

is a very difficult condition which would be hard to check.

Definition 5.6. Given 2 variable representations R = 〈V , f〉 and R′ = 〈V ′, f ′〉,
the domain element e of V [i] is split into a set s in V ′ if:

1. For all j 6= i. dom(V [j]) = dom(V ′[j])

2. Given d = dom(V [i]) ∩ dom(V ′[i]) then e 6∈ d, d ∩ s = ∅,
dom(V [i]) = d ∪ {e} and dom(V ′[i]) = d ∪ s

3. Given any assignment v to V which does not assign e to V [i], f(v) = f ′(v).

4. Given an assignment v′ to V ′ which assigns an element of s to V ′[i], then the

assignment v which is identical except it assigns e to V [i] satisfies f ′(v′) ≡
f(v).

Lemma 5.4. Consider two representations R = 〈V , f〉 and R′ = 〈V ′, f ′〉 where

the domain element e of V [i] is split into a set s in R′. Then R′ dominates R.

Proof. To show R′ dominates R, it is sufficient to show for each sub-domain of

V there is a sub-domain of V ′ which represents the same set of assignments and

these sub-domains of V ′ have the same ordering as the subsets of V had. This

is very simple to see, by taking any subset of V and if that sub-domain has e in

the sub-domain of V [i], then replacing it with s. The result then follows directly

from the definition of literal splitting.

5.1.3 Extra information by variable/value swapping

The variable/value swap is a generalisation of the mapping given in the first two

cases of Definition 5.4. In that case it is required that every value is taken by

exactly one variable. In the more general case which is descibed in Definition 5.7,

the weaker requirement that each value must be assigned to at most one variable

is used. This requires adding to each variable in the swap a domain value which

81

Chapter 5. Dominating Representations

represents that a particular value is assigned to no variable. Example 5.4 gives

an example of this.

Definition 5.7. Consider a variable representation R = 〈V , f〉, where each vari-

able in V has domain of size n and whenever f(v) is defined, the elements of v

are all different.

In this case, the variable/value swap of R can be defined, which is the new

representation R′ = 〈V ′, f ′〉 where V ′ is an array of length n with domain size

|V | + 1. The purpose of this mapping is that V ′[i] = j will represent v[j] = i.

The extra value in the domain of the variables in V ′ is to allow the possibility

that some assignments to the V[i] never occur.

More precisely, the function Map : V ′ → V is defined only on those assign-

ments to V ′ where all values from 1 to |V | occurs exactly once. In this case an

assignment to V ′ is generated by v[i] = j ⇐⇒ v′[j] = i. This will give exactly

one assignment to each v[i]. Then f ′ is defined as f ′(v′) = f(Map(v′)).

Example 5.4. Consider the explicit representation R = 〈V , f〉 of a fixed sized

subset, size 3, of {1, 2, 3, 4, 5}. The variable/value swap of this will be given by a

representation R′ = 〈V ′, f ′〉. If the assignment to V ′[i] = 4, that means that no

variable in V is assigned i, else the value of V ′[i] tells us which of the elements

of V is assigned i. Some examples of mapping assignments to V ′ to V are:

Map(〈1, 4, 2, 4, 3〉) = 〈1, 3, 5〉, Map(〈1, 2, 3, 4, 4〉) = 〈1, 2, 3〉,
Map(〈3, 4, 2, 4, 1〉) = 〈5, 3, 1〉, Map(〈3, 4, 4, 1, 2〉) = 〈4, 5, 1〉,
Map(〈1, 4, 4, 3, 4〉) : Undefined - No assignment to 2nd variable.

Map(〈1, 4, 3, 1, 2〉) : Undefined - Two assignments to 1st variable.

Lemma 5.5 proves that the simple variable/value swap given in the first two

parts of Definition 5.4 produces two equivalent representations, as each domi-

nates the other. However, in the general case, performing a variable/value swap

produces a representation which strictly dominates the original representation.

Lemma 5.5. Consider two variable representations R1 = 〈V , f〉 and R2 = 〈W, g〉
of a domain D where R2 is the variable/value swap of R1. Then R2 dominates

R1.

Proof. Without loss of generality, assume the domain of each member of V is

{1, 2, . . . , n} for some n and the domain of each variable in W is {0, 1, . . . , |V |},
where W [i] = 0 denotes no element of V is assigned i. Showing R2 dominates R1

requires showing for each sub-domain of V there exists a sub-domain of W which

represents the same sub-domain of D.

82

Chapter 5. Dominating Representations

Given a sub-domain v of V , generate a sub-domain w of W using the following

rule: dom(w[j]) = {i|j ∈ dom(v[i])}∪{0}. This sub-domain satisfies the required

property.

5.1.4 Booleanize a variable

One common trick used in constraint programming, particularly when mapping a

constraint program to SAT, is mapping a single variable X of domain {1, . . . , d}
to an array V of Boolean variables of length d where X = i if and only if V [i] is

True. One obvious example of this is turning the row model of a permutation

into a column model of a permutation, comparing models 1 and 3 in Definition 5.4

on page 79.

Booleanizing a variable is defined in Definition 5.8, and a proof that it creates

an equivalent representation is given in Lemma 5.6.

Definition 5.8. Given 2 variable representations R = 〈V .〈x〉, f〉 and R′ =

〈V .W, f ′〉, x is Booleanized by W in R′ if:

1. W is an array of Boolean variables indexed by dom(x).

2. f ′ is undefined unless exactly one element of W is True.

3. Given an assignment v to V and w to W where the only element of w which

is True is w[i], then f ′(v.w) is equal to f(v.〈i〉), or undefined if f(v.〈i〉) is

undefined.

Lemma 5.6. Consider two representations R = 〈V .〈x〉, f〉 and R′ = 〈V .W, f ′〉
where x is Booleanized by W . Then R′ and R are equivalent.

Proof. To show R′ and R are equivalent, a mapping between sub-domains of

V .〈x〉 to V .W is required. As V is the same in both, only a mapping from x to

W is required.

Given a sub-domain of x, map this to W by adding W [i] = 0 for all variables

and W [i] = 1 for those values i in the sub-domain of x.

Given a sub-domain of W , for it to represent a valid assignment there must

be at least one value whose sub-domain contains 1, and no more than one value

whose sub-domain does not contain 0. If the sub-domain of W [i] is {1}, then

generate the domain of x containing only 1. Otherwise, generate the sub-domain

containing every i where the sub-domain of W [i] contains 1.

83

Chapter 5. Dominating Representations

These two mapping demonstrate the two representations are equivalent.

5.2 Set Representations

In this section, as a concrete example of dominance, there is a number of dom-

inance results shown for the three set representations (occurrence, explicit and

Gent) and some common variations of them. In particular, this shows how the

Gent representations dominates both the occurrence and explicit representations

for representing sets.

Lemma 5.7 and Corollary 5.8 show the Gent representation embeds the occur-

rence representation and the Gent + Size representation embeds the occurrence

+ size representation. As the Gent representation is simple, this means it also

dominates the occurrence representation.

Lemma 5.7. The ordered Gent representation embeds the occurrence represen-

tation when representing sets of fixed and variable size.

Proof. Expand all the ’1’ literals of the occurrence rep to get the Gent represen-

tation

Corollary 5.8. The Gent + size representation embeds the occurrence + size

representation for representing sets.

Proof.

This also follows from Lemma 5.7, noting that the size variable in both represen-

tations will be assigned the same sub-domain.

Unfortunately, the Gent representation does not dominate the occurrence rep-

resentation when representing multisets, as presented in Example 5.5.

Example 5.5. Given a variable with domain {s | s⊆m {1, 2, 3},∀i. occ(i, s) ≤ 2},
consider representing this in the occurrence representation with occurrence array

V and in the Gent representation with Gent array G.

Consider the sub-domain 〈{0, 1, 2}, {0, 2}, {0, 1, 2}〉 of V , which represents all

multisets that do not contain one occurrence of 2. Consider representing this as a

sub-domain of the Gent representation. The assignment 〈0, 2, 3〉 to G represents

{2, 2, 3}m and the assignment 〈1, 3, 0〉 represents {1, 2, 2}m. Therefore the assign-

ments used in these assignments must be contained in any sub-domain of G which

84

Chapter 5. Dominating Representations

allows all multisets which do not contain one occurrence of 2. However, allowing

these assignments allows 〈1, 2, 3〉, which represents the multiset {1, 2, 3}m, which

contains exactly one occurrence of 2. Therefore the Gent representation does not

dominate the occurrence representation for multisets.

Lemma 5.9 shows that the Gent representation also dominates the ordered

explicit representation.

Lemma 5.9. The Gent representation embeds the ordered explicit representation

for both fixed and variable sized sets.

Proof. Consider representing a set variable S of maximum size n with the Gent

representation using an array of variables G and with the explicit with dummy

representation using the array of variables E. Then G is a variable/value swap

of E, with 0 in the domain of the variables in G denoting that a particular value

is taken by no value in E.

5.3 Equivalence

Definition 5.2 on page 75 states that given two representations, if A dominates

B and B dominates A, then A and B are equivalent. The work so far in this

chapter suggests that given a set of equivalent representations, there should be no

reason to choose one over any of the others. One particularly prominent class of

equivalent variable representations are literal equivalent representations. These

are created by rearranging the set of literals, but having the same underlying set.

These are defined in Definition 5.9 and proved equivalent in Lemma 5.10.

Definition 5.9. Two representations R1 = 〈V1, f1〉 and R2 = 〈V2, f2〉 are literal

equivalent if there exists a valid set of channelling constraints between V1 and V2

each of the type V1[i] = j ⇐⇒ V2[k] = l where every literal in both V1 and V2

appears in exactly one constraint.

Lemma 5.10. Two literal equivalent representations are equivalent, that is they

each dominates the other.

Proof. Consider two literal equivalent representations R1 = 〈V1, f1〉 and R2 =

〈V2, f2〉 of a variable X. The channelling constraints between the representations

generate a unique bijection between the literals of V1 and V2. Therefore given

any sub-domain of V1, a unique sub-domain of V2 can be generated by applying

85

Chapter 5. Dominating Representations

this bijection to each literal in the sub-domain of V1. For any assignment v1 to

V1 such that f(v1) is defined, there must be a unique assignment v2 to V2 such

that these two assignments together satisfy the channelling constraints.

This means that the sub-domain of V2 generated by taking a sub-domain of V1

and mapping each literal to V2 must represent the same set of assignments. This

mapping shows R1 dominates R2, and by symmetry R2 also dominates R1.

There have been a number of previous papers however which have shown that

using multiple literal-equivalent representations can provide a large reduction

in search size. For example, Hnich et al. [44] compare the representations of

permutations, given in Definition 5.4, which Lemma 5.11 shows are equivalent.

Lemma 5.11. The 3 variable representations of a permutation of the integers

{1, . . . , n} given in Definition 5.4 on page 79 are equivalent.

Proof. Using the channelling constraints V1[i] = j ⇐⇒ V2[j] = i show the row

and column models are equivalent, and Booleanization shows that the Boolean

model is equivalent to both the row and column models. Therefore the result

follows.

Looking at [44], part of the difference between representations arises because

the constraint that the variables form a permutation is imposed in different ways.

However, this does not appear to explain all the differences, and some fundamental

ones appear to remain, in particular the best model is to use either a variable for

each row or each column, and not the binary model.

There are three reasons why the work on viewpoints shows that multiple

representations can lead to smaller search space. The most simple reason is that

there is an implicit constraint on all variables which impose exactly one literal

in the variable’s domain will be in any solution. Given two literal equivalent

representations, these implicit constraints can change between models.

This effect can be easily seen on permutation problems. The row model (Def-

inition 5.4) of a permutation does not require a constraint that each value is

taken exactly once, the column model does not require a constraint that each

variable takes exactly one value. The Boolean model must impose both of these

constraints explicitly.

For a correct representation these constraints should be imposed, as they form

part of the requirement that an assignment to the variables is a valid assignment

86

Chapter 5. Dominating Representations

to the representation, but often they are not imposed. Clearly it is possible to

explicitly impose these constraints.

The second reason, shown in the work on viewpoints in Section 3.1, is that

the most natural method of imposing constraints on different models may lead

to different levels of propagation. In particular, if a solver requires all constraints

are binary then different models may have very different sets of constraints. Also,

an intensional constraint which a solver can efficiently represent on one model

may have to be imposed as a table constraint on another model.

However, as presented in Section 3.8 of [70], propagators are implemented

by querying and removing values from the set of literals in variables in the con-

straint’s scope. Therefore, given any propagator and a literal equivalent repre-

sentation, it is possible to adapt the algorithm to work directly on the literal

equivalent representation and achieve the same level of propagation there.

The third reason shown in the literature why equivalent representations can be

useful in search is that they may both guide search heuristics and allow different

methods of branching. While it is true that when using a specific existing heuris-

tic, for example choosing the variable with the smallest domain, it is possible to

simulate running a heuristic on each of the literal equivalent representations and

seeing which branching choice would have been made and mapping that to any

of the other representations.

The one major drawback to trying to map branching constraints from one

representation to a literal equivalent one, as given in Example 5.6, is that a set of

branching constraints mapped to an equivalent model may appear to be invalid,

as they forbid assignments. However, it is obvious that these assignments cannot

represent solutions.

Example 5.6. Consider a permutation of {1, . . . , n} represented by two variable

representations 〈V , f〉 and 〈W, g〉. Both V and W are arrays of n variables

of domain {1, . . . , n}. f(v) = 〈v[1], . . . , v[n]〉, where this forms a permutation.

g(w) is the permutation where i appears in the w[i]th position, where this forms a

permutation. These two models are connected by the set of channelling constraints

{V [i] = j ⇐⇒ W [j] = i|i, j ∈ {1, . . . , n}}.

On the first of these models, one valid set of branching constraints is all

assignments to the first variable, generating the constraints {V [1] = 1, V [1] =

2, . . . , V [1] = n}. On the second model, this is equivalent to the set of constraints

{W [1] = 1,W [2] = 1, . . . ,W [n] = 1}. None of these branching constraints allows

the assignment L = 〈1, 1, . . . , 1〉. However in practice this is not a problem, as

87

Chapter 5. Dominating Representations

this assignment does not represent a valid assignment to the representation.

5.4 N-way Limited Representation

While a number of dominance results between different representations have now

been shown, so far no result in this thesis provides a method of comparing the

explicit and occurrence representations. The explicit representation, being non-

simple, is difficult to effectively study and categorise. In particular, as discussed

earlier, just looking at the set of sub-domains that can be represented can be

insufficient to properly study non-simple representations. In this section a study

of the explicit representation and some interesting properties which often arise

during search and make comparison simpler will be discussed.

Definition 5.10. Given an explicit representation of a domain D with explicit

array E and check array C, a sub-domain of E and C is n-way limited if all

variables in E which do not have a single value left in the sub-domain have the

same sub-domain.

For reasons of symmetry, which will be explained in this section, the repre-

sentational state of the explicit representation are often n-way limited, given in

Definition 5.10, during search. There are two ways in which the sub-domain of

a variable can change during search, either through propagation of a problem

constraint, or by propagation by a branching constraint. Lemma 5.12 shows that

propagation of problem constraints must map n-way limited sub-domains to other

n-way limited sub-domains.

Lemma 5.12. Given an explicit representation with explicit array E of the do-

main D of a variable X, then given any propagator for a constraint which involves

X, it is possible to create a stronger propagator which always maps n-way limited

states to n-way limited states which takes at most O(|E|.|dom(E[1])|) time.

Proof. Take some n-way limited set of sub-domains of E, called D. Without loss

of generality, assume that there exists i such that forall j ≤ i, |D[j]| = 1 and for

all j ≥ i, all the D[j] have an identical sub-domain. Now apply the propagator

and assume the constraint does not fail. This may have reduced the domains of

some of the D[j] where j > i.

For any z which was removed from the domain D[j], but not D[k], for j, k > i,

then we can remove z from the domain D[k]. If this was not the case there would

88

Chapter 5. Dominating Representations

have to be an assignment to E where E[k] = D. In this case, consider the

same assignment with the jth and kth position swapped. This assignment clearly

represents the same multiset, and was permitted before propagation, as D[j] and

D[k] were the same. Therefore propagation should not have removed it and was

invalid.

Therefore, after any propagation, it is permitted to look at al variables which

had been unassigned before, take the union of all values removed from all sub-

domains, and removed these from all the sub-domains, leaving the resulting sub-

domains n-way limited.

Performing n-way branching will obviously map n-way limited sub-domains

to other n-way limited sub-domains. Given this restriction on branching, Lemma

5.13 shows that the occurrence representation and n-way limited representations

can represent exactly the same set of sub-domains.

Theorem 5.13. The occurrence representation and the explicit representation

without symmetry breaking and allowing only “n-way limited” sub-domains are

equivalent when representing sets.

Proof. Consider a CSP variable X with domain P(S) for a fixed set S represented

under the occurrence representation by occurrence array O and explicit represen-

tation by explicit array E. Given a sub-domain of O, construct an n-way limited

sub-domain of E as follows:

1) For each element O[x] of O, if O[x]’s sub-domain is {1}, choose a variable

of E and assign it x.

2) Allow each other variable to take all values except those x for which the

sub-domain of O[x] = {0}.

Given an n-way limited sub-domain of E, we can construct a sub-domain of

O by a similar process:

1) The set S denotes the values in those elements of E whose sub-domain

contains more than one values. as E is n-way limited, these domains must all

contain the same values.

2) Define the sub-domain of O[x] as follows: If some sub-domain is assigned

x, then {1}. If no sub-domain contains x, then {0}. If no variable is assigned x,

but x ∈ S, then {0, 1}.

It is easy to check that this sub-domain of O represents the same sets as E.

89

Chapter 5. Dominating Representations

Theorem 5.13 shows that as long as n-way branching is performed during

search, a set represented by the explicit representation will remain n-way limited

throughout all of search.

However, there are still differences between the n-way explicit representa-

tion and occurrence representation which mean the occurrence representation is

strictly better during search. In particular, while the occurrence representation is

simple, the n-way explicit representation still is not. Therefore the n-way explicit

representation cannot perform better than the occurrence representation, but can

still perform worse.

This leads to the obvious question of whether the explicit representation

should ever be used, as in this situation there is no reason to use the explicit

representation, except for space reasons. This result is limited however, as in

general symmetry breaking will be applied to an explicit representation.

Simply applying symmetry breaking however is of limited effectiveness as while

it removes extra values from the domains of variables, this may not improve the

performance. Examining the particular constraints which are being used can show

if they are making use of the extra benefits from values removed by symmetry

breaking. This will be discussed in Section 8.4.

Even with symmetry breaking however, the explicit representation is still un-

able in general to make use of the fact some value has been deduced to be in

the set. Therefore the occurrence representation is preferable in situations where

during search it will be deduced many values are in the (multi)set. The explicit

representation is better when there are constraints relating different members of

the sets, and propagation is more frequent either removing values from the set or

assigning values at the current upper and lower bounds of the set.

5.4.1 Monotonic (Multi)set Constraints

Many commonly occurring constraints on sets and multisets are monotonic (Def-

inition 5.11), and this property can have important consequences on the choice

of representation. Example 5.7 gives an example of a monotonic constraint and

a problem whose constraints are monotonic.

Definition 5.11. A constraint C is monotonically set decreasing with respect

to a set S ∈ scope(C) if given any assignment a to scope(C) which satisfies C,

then replacing the assignment s to S in a with any set t such that t ⊆ s leads

to a new assignment which also satisfies C. monotonically set increasing is

90

Chapter 5. Dominating Representations

defined in the obvious manner.

Example 5.7. Given a set variable S and a fixed set t, the constraint t 6⊆ S is

monotonically set decreasing. The constraints of the Golomb ruler problem (prob

6 at www.csplib.org) can be specified in this form:

∀{i, j}, {k, l} ⊆ {1, . . . , n}. {i, j} 6= {k, l} =⇒ {i, j, k, l} 6⊆ S

As has been shown previously, explicit representations can easily represent

propagation when it can be deduced that some value cannot be present in a

(multi)set variable. However the explicit representation performs poorly when

some value is deduced to be present in a (multi)set variable. This means it may

be expected that the explicit representation will perform well on monotonically

set decreasing constraints and badly on monotonically set increasing constraints.

The first of these is exactly what theorem 5.14 proves.

Theorem 5.14. Given a problem consisting of only monotonically decreasing

constraints on some set variable S, then representing S by the explicit representa-

tion with dynamic symmetry breaking or occurrence representations will produce

identical search trees. (assuming n-way branching).

Proof. In theorem 5.13 it was shown that the n-way limited explicit representation

and occurrence representation are equivalent in terms of representation power.

Assigning a value in the occurrence representation 0 will propagate to the n-

way limited explicit representation as normal, but if a variable is assigned 1 by

propagation, then this is not propagated by normal propagation algorithms.

Given a monotonically decreasing constraint however, this kind of propagation

can never occur.

Note that theorem 5.14 only refers to representations of sets, not multisets.

With multisets the weakness of explicit representations returns. Although explicit

representations can represent that no occurrence of some value is contained in a

(multi)set variable, it is much more difficult to represent that a limited number

can occur, as this requires removing the value from some, but not all, of the

element variables in the explicit representation.

Given a (multi)set variable V drawn from some multiset S, it is possible to

construct a CSP where V is replaced by a new variable V ′ where S − V = V ′,

and all the constraints are altered accordingly. This has the property that any

constraints which were monotonically set increasing on V will be monotonically

91

Chapter 5. Dominating Representations

set decreasing on V ′, and vice versa. This does not unfortunately solve all the

difficulties related to the explicit representation. Firstly given a (multi)set of small

maximum size drawn from a large set then this inversion process may generate a

variable which has too large a domain to be usable in practice. Also Theorem 5.14

does not help in the case where a problem has both monotonically set increasing

and monotonically set decreasing constraints, or constraints which satisfy neither

condition.

5.5 Conclusion

This chapter has shown a number of results involving dominating representations.

For variable representations a number of methods of identifying or generating

dominating representations have been presented, and a number of non-trivial

dominance relations between the occurrence, explicit and Gent representations

have been presented. It has been shown that literal equivalent representations

have the same representative power. The results of previous papers which showed

a difference between literal equivalent representations were shown to involve either

limitations of the solver or bad modelling, both of which could be overcome

by solver improvements without having to introduce multiple literal equivalent

representations.

Two special cases were considered on the standard explicit representation,

which being non-simple is difficult to study. Firstly the n-way limited explicit

representation was presented. While still not simple, this limited version of the

explicit representation is much easier to study and occurs frequently in practice.

Secondly, monotonic set constraints were considered. These constraints help to

demonstrate in which cases the explicit representation performs well and also

occur in practice.

92

Chapter 6

Perfect Representations

Dominance provides a powerful method of comparing representations, but in

many cases it is too coarse, as it compares all possible CSPs. Two represen-

tations may be incomparable when considered over all CSPs, but one may be

better than the other with respect to a single CSP. Comparing two representa-

tions on an arbitrary single CSP without solving it is unfortunately not possible

at present.

This difficulty has arisen before in the study of CSPs, in particular when

looking at CSPs which can be solved in polynomial time. One way this problem

is solved is by splitting CSPs into classes. This is done by considering all CSPs

whose constraints come from a certain language [10]. This categorisation of CSPs

will be considered in this chapter.

6.1 Perfect Constraint Families

The aim of this chapter is to answer the question whether a particular represen-

tation is as good as the complete representation on a particular language of con-

straints, which will be used to express both the basic problem and the branching.

This is formally given in Definition 6.1. While this does not allow two represen-

tations to be directly compared, in the case where a representation is equivalent

to the complete representation, it must dominate all others.

Definition 6.1. Given:

• A set of constraints S over an array of variables V

• An array R where R[i] is a representation of V [i]

93

Chapter 6. Perfect Representations

• A propagator rep(s) for each s ∈ S on R

Then R and the rep(s) are a perfect GAC implementation of S if the fixed

point of GAC propagators on the members of S allow the same set of assignments

as the fixed point of the representations of the constraints.

Definition 6.1 only considers the case where propagation begins from all sub-

domains containing all values. Assuming the set S has the branching constraints

added to it during search, then this captures all possible states that can occur

during search. However, it makes it hard to combine sets of constraints, as it

assumes no other propagation occurs. Example 6.1 provides an example of how a

list of representations can be a perfect GAC implementation for each of two sets

of constraints, but not of their union.

Example 6.1. Consider a CSP P with two multiset variables X and Y , both

with the domain P({1, 2, 3, 4, 5})1 and the two constraints 2 /∈ Y and |X| ≤ |Y|.

Generate a new CSP P ′ where X and Y are represented with the occurrence

representation by arrays of variables X ′ and Y ′, with the two constraints mapped

to Y′[2] 6= 1 and
∑

i X
′[i] ≤

∑
i Y
′[i].

Beginning from all sub-domains containing every possible value, after prop-

agating Y′[2] 6= 1 all sets which are still represented by Y ′ are allowed by the

constraint, and therefore this constraint is perfect. Similarly propagating the con-

straint
∑

i X
′[i] ≤

∑
i Y
′[i] from initial domains is also perfect.

However if Y′[2] 6= 1 is propagated, followed by
∑

i X
′[i] ≤

∑
i Y
′[i], then no

values are removed from X ′. This means the set X = {1, 2, 3, 4, 5} is still repre-

sented despite the fact it does not satisfy the constraint |X| ≤ |Y|, as Y ′[2] = 0

and so X cannot be a set with all 5 elements.

Example 6.1 shows that having two sets of perfect constraints does not mean

their union will be perfect. Therefore while it is a much stronger condition, it

is useful to consider the case where propagation is “perfect” when begun from

any set of sub-domains, as given in Definition 6.2. While this property is much

stronger, it will be shown that it is much better behaved in practice, and satisfied

by many constraints.

Definition 6.2. Consider a constraint C over an array of variables V , an array

R where R[i] is a representation of V [i], and a propagator rep(P) for C on R,

1This can of course also be considered as a set variable

94

Chapter 6. Perfect Representations

then R and rep(P) are a completely perfect GAC implementation of C if the

sub-domains of any representational state of a fixed point of P are GAC with

respect to C.

Note that both Definition 6.1 and Definition 6.2 consider applying a list of

representations to a list of variables, rather than applying a single representation

to a single variable. This is because in many cases replacing all variables of the

same type is perfect, whereas replacing a single variable with a representation is

not.

Note that a completely perfect GAC representation does not require that

every sub-domain of the original variables which are GAC are reachable. It only

requires that given a representational state, after propagation the representation

state reached is GAC.

Example 6.2. Consider a variable A with domain P({1, . . . , n}) represented with

the occurrence representation with occurrence array V . The constraint a ∈ A for

a constant value a is represented by the constraint V[a] = 1. Any sub-domain of

V which is GAC with respect to this constraint will clearly have V [a] with only 1

in its domain and therefore any assignment to V which represents an element of

A will satisfy the original constraint. The occurrence representation is therefore

completely perfect GAC with respect to the constraint a ∈ A.

Example 6.3. Given a natural number n, consider the CSP containing a sin-

gle set variable A drawn from {1, 2, . . . , 2n} and the two constraints |A| = n and

|A| = n + 1. GAC propagation on these two constraints would empty the do-

main of A. Now consider A represented by the occurrence representation with

occurrence array V . The two original constraint will map to sum(V) = n and

sum(V) = n + 1. On any sub-domain of V where less than n−1 variables are in-

stantiated, neither of the constraints would remove any values from the domains

of any variables if propagated, so the size of the search tree using any binary

branching method with constraints of the type X = a,X 6= a will be at least 2n−2

nodes.

Example 6.2 gives an example of a completely perfect GAC constraint, while

Example 6.3 gives an example of a non-perfect one, which leads to an exponential

increase in search size compared to using the complete representation. Lemma

6.1 shows that if the initial set of constraints along with any set of branching

constraint are completely perfect GAC, then the search which results from using

the representations is identical to using the complete representation.

95

Chapter 6. Perfect Representations

Lemma 6.1. Given a CSP implementation, if both the original set of propagators,

and the sets formed by unioning these propagators with the set of propagators used

for branching at any node of search, are completely perfect GAC with respect to a

set of representations, then applying those representations will lead to an identical

search to the case of not using these representations at all.

Proof. This result is true by definition. In any node of search, the result of

propagating both the branching constraints and the original constraints must

result in the same allowed set of assignments whether or not the representations

are applied. In particular if no assignments are allowed in the original CSP, no

assignments are allowed once the CSP is represented and therefore search will

backtrack.

Given that a set of representations being perfect, or completely perfect, with

respect to a set of constraints is useful, it would be useful to construct methods of

easily finding such sets. In theory it is sufficient to check the constraints against

the definition, but this can be difficult, particularly in the case of completely

perfect constraints. In the special case of variable representations, there are a

number of interesting special families of constraints which are easy to identify

and commonly occurring, which can be identified as completely perfect GAC.

The rest of this section will give the definitions and lemmas required to prove

Theorem 6.4, which shows an important sufficient condition for a complete simple

variable representation to be completely perfect GAC with respect to a given

constraint.

One commonly occurring property, given in Definition 6.3, is that a single

constraint can be flattened into a set of constraints with no overlap in their

scopes, called a split. Recognising such splits is useful, as the smaller constraints

can often be easier to work with. Example 6.4 gives an example of such a split.

The split of this constraint is clear from the way in which it is written and in

practice often the most compact way of expressing a constraint makes the split

clear.

Definition 6.3. Given a constraint c, a set of constraints S is defined to be a

split of c if the scopes of any pair of elements of S are disjoint, the scope of c is

equal to the union of the scopes of the elements of S and given an assignment to

the variables in scope(c), c is true if and only if all of the elements of S are.

Example 6.4. Consider two set variables X and Y , which are represented by the

occurrence representation with arrays X ′ and Y ′. Then the constraint X ⊆ Y is

96

Chapter 6. Perfect Representations

mapped to the single constraint ∀i. X ′[i] =⇒ Y ′[i], which can clearly be split into

a set of constraints of the type X ′[i] =⇒ Y ′[i], one for each value which can be

assigned to i.

While there may be a number of different splits of a particular constraint, on

any particular set of scopes, Lemma 6.2 shows that there is a well-defined minimal

set of constraints. By minimal we mean that each constraint in the split contains

only allowed assignments which must be allowed by that constraint in any set of

constraints in the same split. Having this well-defined minimal set of constraints

will make later proofs simpler.

Lemma 6.2. Consider a split S of constraint C. Then the set of constraints S ′

generated by creating a new constraint s′ for each s ∈ S, with scope(s′) = scope(s)

and an assignment allowed by s′ if it can be extended to a valid assignment of C,

is also a split of C. Further, all of the tuples in these constraints must have been

in S.

Proof. There is no assignment to scope(C) which is allowed by C and not by

all the constraints in S ′ as each s′ ∈ S ′ accepts any assignment which can be

extended to a complete assignment of scope(C) which satisfies C.

Consider a constraint s ∈ S, and its equivalent s′ ∈ S ′. The constraint s

cannot allow less assignments than s′, as doing so would forbid some solution to

C. Therefore the set of solutions to the intersection of all constraints in S ′ must

be a subset of the solutions to the intersection of all constraints in S. Therefore

the solutions to S ′ are a subset of the solutions to S, which are equal to the

solutions to C.

If any tuples were deleted from any of the constraints in S ′, then clearly there

would be a solution of C which was not a solution of S ′, as S ′ contains exactly

those tuples which extend to a solution. Therefore S ′ and C have the same set

of solutions.

The following technical proposition gives an alternative definition of a com-

pletely perfect GAC implementation just on variable representations.

Proposition 6.3. Consider an array of CSP variables X and a constraint S, and

an array of variable representations 〈Vi, fj〉 where 〈Vi, fi〉 represents X[i] and a

propagator P on the Vi which represents S. Then P is a completely perfect GAC

implementation of S if and only if given any sub-domains of the variables of each

97

Chapter 6. Perfect Representations

Vi which are fixed under P , any assignment vj to the variables to any specific Vj

such that fj(vj) can be extended to an assignment which satisfies S.

Proof. The definition of completely perfect GAC implementation considers only

the representation states achieved after propagation has finished, and therefore

only the fixed points of P must be considered.

Consider an array r where r[i] is a representational state of Vi, and P (r) = r.

Construct the array A where A[i] is the set of assignments allowed by r[i]. Now

A is GAC with respect to S exactly if any assignment to any sub-domain in A is

extendable to a solution. This is exactly equivalent to any assignment to any of

the r[i] where fi(r[i]) is defined is extendable to a solution.

The results from this section so far are used to prove Theorem 6.4. Using

the existence of splits, this Theorem provides a powerful sufficient, but not nec-

essary, condition which can be used to demonstrate that constraints on variable

representations have completely perfect GAC implementations.

Theorem 6.4. Given an array of simple variable representations R of a list of

variables V , a constraint c on V and the image c′ of c under R, there exists a

completely perfect GAC implementation of c if there exists a split S of c′ where

each s ∈ S contains at most one variable from any element of R.

Proof. If there exists a valid split of c′ into a set of constraints S each of whose

elements contains at most one variable from any element of V , then there is a

split of the form given in Lemma 6.2. Without loss of generality assume any split

takes this form.

Given sub-domains r of each element of R, by Proposition 6.3 it is sufficient

to show any assignment to any r[i] which represents an assignment to V [i] can

be extended to a satisfying assignment of c′.

Assume without loss of generality some assignment a to r1 fails this require-

ment. This assignment must represent an assignment to the represented variable,

and therefore as S is logically equivalent to c′ in the context of the representational

constraints, it must fail to be extendable to a solution to S. As the elements of S

are each on a disjoint set of variables, it must fail to satisfy some specific s ∈ S
and therefore fail to be extendable to a solution to a specific element of s ∈ S.

However, as this is only a single variable in s, and the current sub-domains are

GAC with respect to s so this is a contradiction.

98

Chapter 6. Perfect Representations

Corollary 6.5. Any constraint on an array of unsized multiset variables V of

length n, each with domain drawn from a set S which can be specified in the

form ∀s ∈ S. p(occ(s,V[1]), . . . ,occ(s,V[n])) any predicate p is completely GAC

perfect where all elements of V are represented with the occurrence representation.

Proof. The term occ(s, V [i]) in the occurrence representation is represented by

V ′i [s], where V ′i is the occurrence vector representing V [i]. There is therefore a

natural split of the constraint, where in each element of the split the sth element

of each of the occurrence representations is used. This is demonstrates the split

required by Theorem 6.4.

Corollary 6.5 demonstrates a large family of constraints with completely per-

fect GAC implementations on the occurrence representations. It demonstrates

any constraint built from the operators ∪,∩,−,+,=,⊆,42 on unsized sets and

multisets has a completely perfect GAC implementation for the occurrence repre-

sentation. Further, the constraints x ∈ S, x /∈ S and occ(x, S) = i for fixed i can

also be seen to have a completely perfect GAC implementation by Booleanizing

x (Definition 5.8).

The explicit representation does not have a completely perfect GAC imple-

mentation for any of these constraints except /∈. This can be seen as this is the

only one of these constraints which will split on the explicit representation. This

is also the only one of these constraints on which the Gent representation has a

completely perfect GAC implementation.

One notable missing constraint from the list of constraints on which the oc-

currence representation is completely perfect GAC is |S| = c, for either fixed or

variable c. The lack of a split for this constraint is clear, and Example 6.1 showed

explicitly that this constraint is not completely perfect.

One possible way around this would be to consider the occurrence + size

representation (given at the end of Section 4.5), on which |S| = c clearly has a

split which would satisfy Theorem 6.4, as the constraint would only refer to the

size variable. However, on the occurrence + size representation, Corollary 6.5 no

longer holds. While ∈ and /∈ are still completely perfect GAC, most of the other

constraints, including in particular A ∪B = C and A ∩B = C, do not have a

completely perfect GAC implementation on the occurrence + size representation.

From the definition of perfect GAC implementation, it is clear that if one list

of representations has a perfect GAC implementation (not completely perfect

2symmetric difference

99

Chapter 6. Perfect Representations

GAC) on a particular set of constraints, then replacing one or many of these

representations with one which dominates them will produce a new list of rep-

resentations on which there will exist a perfect GAC implementation. Therefore

as expected on CSP where the occurrence representation is completely perfect

on both the CSP and the branching constraints, the occurrence + size repre-

sentation will be a perfect GAC implementation and therefore still achieve the

minimal (and identically sized) search tree. However, in general they will not be

completely perfect on the occurrence + size representation.

This still does not help with solving CSPs that contain set variables which

have constraints on them that both restrict their size and also impose other

constraints such as subset or intersection. On such CSPs neither the occurrence

representation or the occurrence + size representation have a completely perfect

GAC implementation. This problem will be discussed in Section 6.3.

6.2 Decomposing and Rewriting Constraints

Many constraint problems are most naturally specified with constraints built

recursively from a list of operators, for example (A ∪B) ∪ (C ∩D) ⊆ E. Rather

than attempt to implement propagators for arbitrarily complex constraints, CSP

solvers define a set of primitive constraints and then break all more complex

constraints down into these primitive constraints using extra variables. Example

6.5 gives a simple example of flattening. Flattening a constraint is very different

to splitting, as flattening introduces extra variables.

Example 6.5. One flattening of the constraint (A ∪ B) ∪ (C ∩ D) ⊆ E over

variables A,B,C,D,E into smaller constraints is given below, using three new

variables W,X and Y .

• A ∪B = W

• C ∩D = X

• W ∪X = Y

• Y ⊆ E

In many constraint solvers, flattening is done internally and is not visible to

the user. In the case given in Example 6.5, the newly introduced set variables

may be implemented using the occurrence representation, meaning a large number

100

Chapter 6. Perfect Representations

of CSP variables are introduced. This section looks at how representations and

flattening interact. In particular, it will be shown that if the constraints both

before and after flattening have a completely perfect GAC implementation with

respect to some set of representations, then flattening does not affect the size of

search. While flattening is used in many CP solvers, the author of this thesis has

been unable to find any proofs of its effect on search. Therefore in the process of

proving results about flattening in the presence of representations, results about

flattening in a traditional CP context will also be presented.

In general there are some complications with attempting to automate the

process of flattening a constraint. The type of each new variable and a domain

large enough to hold any value it could take must be calculated. Allowing too large

a domain for any introduced variable would be correct but would reduce efficiency.

Also, the set of constraints that a CSP solver implements may be large and provide

more than one way of splitting a particular constraint, with their own trade-offs

and inefficiencies. These issues will not be dealt with directly in this thesis.

A further discussion of such issues was involved in the design of the Essence

language, and Conjure refinement system, and the recent further mapping of

Essence’ to the Minion constraint solver [68], which handled mapping Essence’

into Minion’s limited input language. The arithmetic part of Minion’s language

is provided in Example 6.6.

Example 6.6. The Minion CSP solver, as of version 0.4, requires all arith-

metic constraints are flattened into constraints from the following list. In these

constraints the xi represent variables, c and the di represent constants and S

represents any finite set of integers.

1.
∑

i∈S xi ≤ c 2.
∑

i∈S xi ≥ c

3. x1 ≤ x2 + c 4.
∑

i∈S dixi ≤ c

5.
∑

i∈S dixi ≥ c 6. x1 6= x2

7. x1 × x2 = x3 8. xx2
1 = x3

9. x1/x2 = x3

Constraints 1 to 4 in this list are redundant as they could all be implemented

using the 5th one, but are provided to give better efficiency. The obviously missing

constraint
∑
xi = c must be implemented using

∑
xi ≤ c and

∑
xi ≥ c.

Studying how flattening affects search is useful for two reasons. First of all

it provides a method of analysing large families of constraints. Second it is the

way in which these constraints are commonly implemented and therefore provides

101

Chapter 6. Perfect Representations

results which can be usefully applied directly to existing solvers. Flattening has

previously been studied for the special case of constraints made from the opera-

tors +,×,≤,= and 6= on integer variables by Harvey and Stuckey [40]. In this

chapter this study will be extended to consider both arbitrary constraints and

more importantly taking into account any representational choices. Examples 6.7

and 6.8 provide two concrete examples of flattening.

Example 6.7. Given the constraint A + B + C = 0 where A,B and C have

domain {−1, 0, 1}, one flattening is generated by the new variable constrained

to be X = A + B and the constraint X + C = 0, where X is a new variable with

domain {−2, 1, 0, 1,−2}.

Example 6.8. Given the constraint A + B ∗A = 0 where the domain of A is

{−n, . . . , n} and B is {−1, 1}, one valid flattening is generated by introducing a

new variable X with domain {−n, . . . , n} and using the constraints X = B ∗A

and A + X = 0.

This flattening can cause the size of search to increase as A occurs in both

constraints. In the original constraint, if B is assigned 1 then GAC propagation

causes A to be assigned 0. In the split version, if B is assigned 1 then the domain

of neither X or A is propagated by GAC propagation on either constraint in

isolation.

Example 6.7 provides an example of a flattening which will not increase the

size of search. This fact will be proved later in this chapter. Example 6.8 shows a

case where a split causes a loss of propagation compared to the constraint before

decomposition. In this case it is because one of the original variables ends up in

both new constraints. Definition 6.4 formalises flattening a constraint.

Definition 6.4. A flattening of a constraint C is defined by:

• An array of variables V , each element of which is contained in scope(C)

• An array of new variables X

• A function f : V → X

• A constraint C ′ with scope(C ′) ⊆ scope(C) +X

Where each assignment to scope(C) satisfies C if and only if it can be extended

to an assignment to scope(C) ∪ X which satisfies C ′ ∧
(
f(V) = X

)
. If such an

assignment to X exists, it must be unique. A flattening is pure if no element of

V is in scope(C ′).

102

Chapter 6. Perfect Representations

Replacing a constraint with a flattened version leads to a new CSP with the

same number of solutions as the original, with each solution to the original CSP

extended by a unique assignment to the newly added variables. However, the

search spaces can be very different. One obvious cause for this is that a number

of extra variables have been introduced. Consider the case where these new

variables are ignored by any variable heuristic and left to the end of the search.

As the introduced variables are always contained on the right hand side of a

constraint of the type f(V) = X, if they are left until the end of search there will

be at most a single value each of them can take. Performing GAC propagation

on the constraint f(V) = X will either assign them a single value or empty their

domains.

Apart from this, the other way in which flattened constraints can effect search

is by causing a reduction (or increase) in the propagation of the original variables.

Example 6.8 provides an example of where this can occur. In general this problem

is related to the decomposition being pure. In the case where the decomposition

is not pure, as seem in Example 6.8 propagation can be lost, caused by multiple

variables occurring in both constraints.

In the case where a split is pure and only a single variable is introduced, then

the CSP after the split is applied will have an identical search tree, if the new

variables are put at the end of the search tree and the newly introduced constraints

and original constraint are propagated to GAC. This result is not directly related

to representations but is a generally useful result for implementing constraint

solvers and will be proven as a special case of the more general result about

flattening constraints in the presence of representations, given in Theorem 6.6

In the case where more than one variable is introduced, in general even a pure

split will cause a loss of propagation. One important case for this thesis, as given

in Example 6.5, is where the introduced variables are a representation.

The particular case which will be closely studied here is when the introduced

variables are a variable representation of a single variable. In this case, if the

representations used have completely perfect GAC implementation on the newly

introduced variables on both constraints after the split, no propagation will be

lost and the search will be the same. To prove this result, the technical Theorem

6.6 must first be proved. While this does not directly refer to representations,

the conditions it places on the variables in the split are closely related to the

requirements of a completely perfect GAC implementation of a constraint on a

representation.

103

Chapter 6. Perfect Representations

Theorem 6.6. Consider a constraint C where scope(C) contains the array of

variables V , which can be pure flattened as:

• A function f : V → X

The constraint f(V) = X will be refered to as Cf

• A constraint C ′ where scope(C ′) = scope(C)− V +X.

Assume that:

1. Any assignment to X which is not in the range of f appears in no valid

assignment of C ′.

2. Given a list of sub-domains of the variables in either scope(Cf) or scope(C ′)

which are GAC, then any assignment to X contained both in that sub-

domain and in the domain of f can always be extended to a valid assignment.

In this case, given a sub-domain of each of the variables in scope(C), they

satisfy GAC(C) if and only if there exists a sub-domain of the variables in X such

that the sub-domains of scope(C) and X together satisfy GAC(Cf) ∧GAC(C ′).

Proof. Given an array of sub-domains DC for the variables in scope(C), an array

of sub-domains DX of the variables in X can be constructed by taking the union

of all assignments to X generated by taking f(v) for all assignments to v in DC

which can be extended to a valid assignment of scope(C).

If DC satisfies GAC(C), then DC and DX together will satisfy GAC(Cf) ∧
GAC(C ′) because any assignment to DC which satisfied C by definition of DX

can be extend in the sub-domain of DX to an assignment which satisfies Cf ∧C ′.
Further, each value in the sub-domain of DX was added only because it was part

of an assignment which satisfied the constraint.

If DC does not satisfy GAC(C), consider if there did exist a sub-domain of

the elements of DX such that DC and DX together satisfy GAC(Cf)∧GAC(C ′).

There must exist a variable z ∈ scope(C) and assignment a to z which cannot be

extended to a valid assignment of C in these sub-domains. There are two cases

to consider, only one of which can be true as the only overlap of these scopes is

on X, which is disjoint from scope(C) as the decomposition is pure

z ∈ scope(Cf): As GAC(Cf) is true, there must be an assignment to V and

X with z = a which satisfies Cf . The assignment this gives to X must

104

Chapter 6. Perfect Representations

be in the domain of f , as it satisfies Cf . This assignment to X must be

extendable to an assignment to C ′, as this was a requirement on C ′. This

gives assignments to Cf and C ′ which satisfy both constraints and agree

on their overlap, which is only X as the split was pure. Therefore this

assignment satisfies C′ ∧Cf , and therefore C.

z ∈ scope(C′): As GAC(C ′) is true, then there must be an assignment to the

variables of C ′ which includes z = a which satisfies C ′. This assignment

includes an assignment to X which must be in the domain of f by require-

ment, and so there must be an assignment to V such that Cf is satisfied.

This gives assignments to the scopes of both Cf and C ′ which satisfy both

constraints and agree on their overlap, so this assignment satisfies C′ ∧Cf ,

and therefore C.

Theorem 6.6 does not directly apply to representations. However, the con-

dition it places on the array of overlapping variables, denoted X, is exactly the

condition that the overlapping variables are the representation of a single variable

that has a completely perfect GAC implementation. This leads to Corollary 6.7.

Corollary 6.7. Consider a pure flattening of a constraint C by introducing a

single variable x and the constraints C ′ and the function f(V) → x for some V

in scope(C). Given representations for each variable in scope(C) and for x with a

completely perfect GAC implementation in both the constraints C ′ and f(V)→ x,

then replacing the variables with the representations will not lead to an increase

in search.

Proof. Follows from Theorem 6.6, as after the representation is applied, the rep-

resentation of x must satisfy the conditions required in that theorem.

Using the results from Section 6.1 and Corollary 6.7, the major result this gives

is that any constraint built from the operators on which the occurrence represen-

tation is perfect, which include ∪,∩,=,⊆ and ∈, on unsized sets and multisets

have a completely perfect GAC implementation on the occurrence representation,

which still holds after the constraints are flattened.

The major limitation of the occurrence representation this does not address

it that it does not allow a completely perfect GAC implementation of cardinality

constraint. The next section investigates this problem and will place a number

105

Chapter 6. Perfect Representations

of strong limitations on any representation which are completely perfect for the

cardinality constraint.

6.3 NP-Hard Perfect Representations

Section 6.1 showed that the occurrence representation has a completely perfect

GAC implementation of a large range of common set and multiset constraints.

One notable exception is constraints which restrict the size of the (multi)set.

An obvious aim would be to search for an efficient representation which has a

completely perfect GAC implementation of constraints which restrict the size of

a (multi)set and also of other commonly occurring (multi)set constraints. This

section will show that such representations do not exist.

To show this, it will be shown that any implementation which did have a

completely perfect GAC implementation on both the cardinality constraint and a

small number of other common (multi)set constraints would provide a method of

solving an NP-complete problem in a polynomial sized search tree. This means

at least one constraint must require exponential time to propagate, assuming

P 6= NP .

One famous class of NP-complete problems is SAT. This was given previously

in Definition 2.14 on page 21, along with 1-in-k SAT, which will also be used here.

As discussed in Section 2.2.1, SAT was one of the first problems to be shown NP-

complete. Here, SAT and some specialisations of it will be used to prove that any

completely perfect GAC implementations of some constraints must be NP-hard

on any representation of sets or multisets.

One obvious question would be are there representations which are completely

perfect GAC on both size constraints and also some or all of the other common

set constraints and which can be implemented in polynomial space and time.

Clearly the complete representation allows these constraints to be implemented

as completely perfect GAC, but requires worst case exponential space and time

to implement propagators. Such a representation would be very useful. Un-

fortunately how to build one is not obvious, it cannot for example be achieved

simply by channelling together multiple representations which individually have

completely perfect GAC of some of the constraints in question.

Many small sets of constraints including the cardinality constraint have the

property that any representation which has a completely perfect GAC implemen-

tation of all the constraints must have one propagator which is NP-hard. These

106

Chapter 6. Perfect Representations

families include just the constraint |S| = c for a constant c and either of the

constraints A∪B = C or A∩B = C. This will be proven by showing that using

such constraints it is possible to build a family of CSPs which are themselves

NP-complete, but which can be solved in a search tree of polynomial size.

A number of classes of CSPs which require only polynomial sized search tree

to solve if constraints are propagated to GAC have been identified. Identifying

the class which will be used here requires first defining the constraint graph of

a CSP, given in Definition 6.5. Figure 6.1 provides an example of a constraint

tree. In this diagram the small black circles are nodes, one for each variable of

the CSP, and the large ellipses represent edges, each containing all the variables

contained in the scope of one constraint.

Definition 6.5. A hyper-graph is a pair 〈V,E〉 where V is an arbitrary set,

called the nodes of the hyper-graph, and E is a set of subsets of V , called the

edges. Hyper-graphs differ from traditional graphs in that each edge can contain

an arbitrary number of vertices.

The constraint hyper-graph of the CSP is a hyper-graph which contains

one node for each variable and one edge for each constraint, where the nodes in

the edge are the variables in its scope.

Freuder proved [24] that where the constraint graph of a CSP has certain

properties, then the CSP can be solved without backtrack if the variables are

assigned in a certain order and GAC propagation is achieved. An exact copy of

this result is given in Lemma 6.8. Notice that the example in Figure 6.1 satisfies

this property.

Lemma 6.8. Consider a CSP P = 〈V,D,C〉 where the intersection of the scopes

of any pair of constraints contains at most one variable and the constraint graph

of the CSP is a tree. Then there exists a variable ordering where a backtracking

search which GAC propagates all constraints will either find a solution or prove

no solution exists in |V | search nodes.

Proof. Proved in [24].

Given Lemma 6.8, the aim is now to attempt to construct problems which

satisfy this tree condition and whose solution would solve an NP-complete prob-

lem. As such problems can be solved in a linear number of search nodes, this

would prove that at least one of the propagation algorithms used in the problem

must itself be NP-hard.

107

Chapter 6. Perfect Representations

S T U

C
B

A

Figure 6.1: The constraint hyper-graph of: S∩T ⊆ U,A∪B ⊆ T,C ⊆ U, |C| = 2

The basic aim of this section is to map 1-in-k SAT to a problem which satisfies

the requirements of Lemma 6.8. These constructions will be similar to those pre-

sented in [6]. However, there are further requirements here than it that paper, as

not only must the mapping solve 1-in-k SAT, it must also satisfy the requirements

of Lemma 6.8.

Clearly if such a mapping can be built, and then shown to satisfy the con-

ditions of Lemma 6.8, then it will have been proven that no representation can

have a completely perfect GAC implementation of all the constraints used and

also still be solved in time polynomial in the size of S. Implementing the frame-

work above requires finding a method of specifying that exactly one value from

some subset of V occurs in S. If this can be implemented in such a way that it

satisfies Lemma 6.8, then this will prove the set of constraints used can not have a

polynomial time completely perfect GAC implementation for any representation,

if P 6= NP .

Lemma 6.9. Consider a set variable X whose domain is all subsets of some set

s and any fixed subset t of s. Then using two set variables with the same domain

as X and only constraints of the form:

108

Chapter 6. Perfect Representations

1. |A| = c for fixed c and a set variable A

2. A ∩B = C for set variables A,B and C

3. A ⊆ B for set variable A and fixed set B

it is possible to implement the constraint “S contains exactly one element of t”

in a way which satisfies the conditions of Lemma 6.8.

Proof. Consider the construction:

1. Two set variables, Checkt and V alt whose domain is all subsets of s.

2. The constraints |Checkt| = 1, |V alt| = |t|, V alt ⊆ t and S ∩V alt = Checkt.

In all solutions V alt must be assigned t. Any assignment to S which allows exactly

one element of s can be extended to a valid assignment to both V alt and Checkt

by assignment Checkt the set containing only this value. In any other case, there

is no assignment to Checkt which will will satisfy all the constraints.

Corollary 6.10. Given a representation which is completely perfect on the con-

straints A∩B = C, |A| = c and A ⊆ B for set variables A,B and C and constant

c, the propagators of at least one of these constraints must be NP-hard.

Proof. Lemma 6.9 shows how these constraints can be used to form the constraint

“S contains exactly one element of t” for set variable S and constant set t in a way

which satisfies Lemma 6.8. The following gives a description of how to implement

1-in-k SAT for a set of variables V and a set of clauses C.

1. A single set variable S which contains all the literals of V

The assignment to S will express the solution to the SAT instance.

2. One constraint for each variable v in V which imposes that exactly one of

the literals of v is contained in S.

3. One constraint for every clause in C which imposes that at exactly one

literal in the clause is in S.

Each of these constraints can be expressed as “S contains exactly one element

of t” and are independent, so using Lemma 6.9 to impose each one will satisfy

Lemma 6.8. This will give a construction which solves 1-in-k SAT in a backtrack

free search, and therefore one of the propagators of these constraints must be

NP-hard.

109

Chapter 6. Perfect Representations

Corollary 6.10 shows that a representation having a completely perfect GAC

implementation of just the constraints A ∩ B = C, |A| = c and A ⊆ S for set

variables A,B and C, and integer constant c and set constant S, is enough to

construct 1-in-k SAT. This shows that only a very small number of common set

constraints added to |A| = c create a set where it is NP-hard to have representa-

tion with complete perfect GAC implementations of all the constraints. This set

of constraints is not as simple as can be achieved, for example Lemma 6.11 shows

how the need for intersection can be eliminated.

Lemma 6.11. Given a set variable S whose domain is all subsets of a set s and a

fixed subset t of s. Then using two set variables whose domain are also all subsets

of s and the constraints:

1. |A| = c for set variable A and constant c.

2. A ⊆ B for set variables A and B.

3. A ⊆ B for set variable A and constant set B.

it is possible to implement the constraint “S contains exactly one element of

s” in a way which satisfies the conditions of Lemma 6.8, and can therefore be

used in Corollary 6.10.

Proof. Consider the construction:

1. Two set variables T1 and T2 whose domain is all subsets of s.

2. The constraint |T1| = |s− t|+ 1.

3. The constraint (s− t) ⊆ T1.

4. The constraint S ⊆ T1.

5. The constraint |T2| = 1.

6. The constraint T2 ⊆ s.

7. The constraint T2 ⊆ S.

T1 must contain all elements of s − t and is of size |s − t| + 1, so contains

exactly one member of t. As S ⊆ T1, S can contain at most one element from t.

T2 is of size exactly 1 and as T2 ⊆ t, that single value must lie in t. As T2 ⊆ S,

that value must also lie in S.

110

Chapter 6. Perfect Representations

These two results together show S must contain exactly one element of t. As

there are no constraints between T1 and T2, the constraints form a tree.

6.4 Conclusion

This chapter has shown that for a large number of set constraints, the occurrence

representation performs as well as the complete representation and continues to

do so when flattened. This provides a powerful and useful result to modellers.

Furthermore, there is no representation which has a completely perfect GAC im-

plementation on both the cardinality of a set and on most other common set

constraints where these propagators run in polynomial time, unless P = NP .

This does not mean that such representations are not useful, for example ROB-

DDs [50] have an NP-complete propagation algorithm yet are still competitive on

many problems. It does however give a strong theoretical limit on the complexity

of any implementation which has a completely perfect GAC implementation of

these constraints.

111

Chapter 7

Random Representations

So far in this thesis the representations considered have had a natural struc-

ture which allows them to be expressed in a compact intensional form. There

is however, a very large number of representations which do not have a natural

compact format and lack any obvious structure. In this chapter a number of

experiments are performed to compare randomly generated representations with

the occurrence representation.

These experiments are not intended to provide comprehensive testing of all

representations in this thesis, rather to illustrate a few important concepts. A

careful practical comparison of many representations in a large range of problems

is an important piece of future work, but is not the aim of this thesis. The purpose

of the experiments here is to demonstrate with a real example some important

points about representations. They aim to investigate the following questions.

• Given a variable representation R = 〈V , f〉, does randomising f , such that

the representation is still valid, make any real difference on problems where

R had a completely perfect GAC implementation?

• Given a variable representation R = 〈V , f〉, does randomising f , such that

the representation is still valid, make any real difference on problems with

random constraints?

• Given many representations, is it possible to add them all to a model and

use channelling constraints and get as small a search as any of the repre-

sentations in isolation?

• Using multiple representations and channelling can clearly increase search

time. Can it increase search size?

112

Chapter 7. Random Representations

Having read this thesis, the answers to these questions may be unsurprising,

but the answers to these questions have surprised a number of senior constraint

practitioners.

Investigating these questions involves first defining exactly what a random

representation is. While in theory it would be possible to generate arbitrary

random representations, producing a solver which can implement an arbitrary

representation would be difficult. Variable representations on the other hand

are specified only as an surjective function from a list of domains to a single

domain. Furthermore, variable representations can be used to transform one

CSP into another. Therefore implementing any variable representation requires

only a solver which can handle extensional constraints.

One obvious advantage of using a variable representation with a compact

implicit form is that this representation can be contained in a small amount of

space. Researchers have designed compact and efficient propagation algorithms

for propagating common constraints on the representations considered in this

thesis, For a random representation, such implementations will not exist and

in general there may not exist an efficient implementation. In the case where

only the size of searches are being compared and the level of propagation on all

constraints achieved on all constraints is the same however, this advantage is

removed. In this case, do carefully crafted representations provide any gain over

a random representation?

Random representations in this section are generated using the algorithm in

Definition 7.1. Example 7.1 gives a concrete example of a random representation

and demonstrates how they can lead to a loss of propagation.

Definition 7.1. A randomised copy of a variable representation 〈V , f〉 of the do-

main D is a variable representation 〈V , f ′〉 of D where f ′ is any partial surjective

function.

Example 7.1. The occurrence representation for subsets of {1, 2, 3} is defined by

〈 〈v1, v2, v3〉, f〉 where f is defined by the table:

f(0, 0, 0) = {} f(0, 0, 1) = {3}
f(0, 1, 0) = {2} f(0, 1, 1) = {2, 3}
f(1, 0, 0) = {1} f(1, 0, 1) = {1, 3}
f(1, 1, 0) = {1, 2} f(1, 1, 1) = {1, 2, 3}

One randomised copy of 〈V , f〉 is 〈V , f ′〉, where f ′ is defined by the following

function:

113

Chapter 7. Random Representations

f ′(0, 0, 0) = {2} f ′(0, 0, 1) = {1, 2}
f ′(0, 1, 0) = {2, 3} f ′(0, 1, 1) = {1, 2, 3}
f ′(1, 0, 0) = {1} f ′(1, 0, 1) = {}
f ′(1, 1, 0) = {1, 3} f ′(1, 1, 1) = {3}

On this random representation, consider propagating the constraints 1 ∈ S and

1 6∈ S. Each assignment to each of the vi can be extended to an assignment which

represents a set which contains 1, and one which represents a set not containing

1. Therefore while performing GAC on both these constraints in the standard

occurrence representation would lead to domain wipe-out, in this random model

it would not.

In the experiments in this chapter all representations will be treated equally,

with the same level of propagation performed on the constraints for each rep-

resentation regardless of whether the representation was randomly generated or

one of the previously discussed representations. Therefore any differences be-

tween sizes of the search trees will be based only on the representations. These

experiments continue the theme of the thesis so far by not reporting the time

taken in any problem. The reason for this is that the propagation algorithms

for random representations use very slow general algorithms. For any particular

random representation there may well exist a much faster algorithm, comparable

in speed to those for the standard occurrence representation, but this was not

investigated.

7.1 BIBDs

The previous discussions of dominating representations and representations with

completely perfect GAC implementations of some constraints showed that the

occurrence representation satisfies a number of theoretical properties that makes

it a good representation. In the vast majority of cases, random representations

will not satisfy any of these properties. Therefore it would seem reasonable that,

for example on problems involving sets and common set constraints, such as

intersection, subset and size then the occurrence representation should outperform

its random counterparts.

A very commonly used benchmark in constraint programming is the Balanced

Incomplete Block Design (BIBD) problem (Definition 4.2 on page 49). There are a

number of possible ways of defining this problem, at different levels of abstraction.

The problem is expressed in Definiton 7.2 as it will be implemented in this section.

114

Chapter 7. Random Representations

Definition 7.2. A 〈v, b, r, k, λ〉 BIBD requires, finding an array of b subsets of

{1, . . . , v} of size k, where each element of {1, . . . , v} occurs in r sets and the

intersection of each pair of sets has size λ.

7.1.1 Implementation Details

Representing the constraints of the BIBD intensionally using the occurrence rep-

resentation is very simple. The major problem with expressing the constraints

extensionally is the constraints which constrain the number of sets which must

contain each value between {1, 2, . . . , n}. In the case where the sets are repre-

sented using a random representation, every variable in a set may be required

to find if it contains a given value. Therefore this constraint will involve every

variable in the BIBD. Theorem 6.6 will be used to keep the arity of constraints

to a manageable size.

Theorem 6.6 on page 103 shows that given a constraint which can be expressed

as:

g(f1(V1), f2(V2), . . . , fn(Vn))

for functions g and fi and disjoint arrays of variables Vi, the propagation achieved

on this constraint is the same as the propagation achieved on each of the con-

straints in the flattening:

{g(x1, x2, . . . , xn), x1 = f1(V1), . . . , xn = fn(Vn)}

generated by introducing new variables xi. In particular, if the new variables

xi are left until the end of search ordering, then the search tree is unaffected

by adding these new variables and splitting the constraint. For each value j ∈
{1, . . . , n}, the constraint that j must occur in exactly r sets would, on random

representations, involve every variable of the BIBD and therefore would quickly

become impossible to implement. This simplification allows us to instead use

constraints of the form bi,j ⇐⇒ j ∈ Si for new booleans bi,j, set variable Si and

constaint j, and then impose ∀j.
∑

i bi,j = r.

There are two minor points which must be recalled about Theorem 6.6. Firstly

it assumes that no two of the Vi have a variable in common. Secondly if the same

expression bi = fi(Vi) is introduced while flattening two separate constraints, then

a new bi should be introduced for each constraint. Reusing the same bi is correct

but will in general decrease the size of search. While in general this would be a

good thing, here Theorem 6.6 is being used only as an implementation detail to

115

Chapter 7. Random Representations

Average Std. Dev. Min Max % Best

occurrence 977.87 237.3 616 1795 84%
3140.03 691.82 1658 4871 0%
1291.24 220.05 898 1912 8%
2957.44 519.80 1542 4145 0%
2480.00 412.29 1609 3590 0%

randomised copy 1815.32 335.50 1134 2680 0%
1965.55 356.78 1004 2782 0%
1279.84 197.40 817 1801 8%
2702.22 539.52 1444 3772 0%
2170.29 419.80 1274 3231 0%

Figure 7.1: The occurrence representation, and 9 randomised copies of the occur-
rence representation, tested on 100 random variable orderings of the (5, 5, 2, 2, 1)
BIBD.

allow the more efficient implementation of extensional constraints of large arity.

7.1.2 Comparing the occurrence and random representa-

tions

This first experiment aims to compare solving BIBDs with the occurrence and

nine randomised copies of the occurrence representation. If the mapping from a

representation to the original domain was unimportant, we would expect the ran-

dom representations to perform as well as the original occurrence representation.

The results of using both the occurrence representation and nine randomly

generated representations for the (5, 5, 2, 2, 1) BIBD is presented in Figure 7.1. In

each case, one hundred experiments were run, each using a random variable or-

dering, proving that these instances of the BIBD problem have no solution. It can

be clearly seen that the original occurrence model performs much better. In both

cases it produces both the smallest instance, the lowest average and the smallest

upper limit. For the (5, 5, 2, 2, 1) BIBD it is the best 84% of the time. This

shows the result, unsurprising based on the previous content of this thesis, that

representations cannot simply be compared by the number of representational

states they allow, but the exact representation is of vital importance.

Consider the concrete random representation given in Example 7.1 and the

example that it is not possible to propagate either 1 ∈ S or 1 6∈ S. This pattern

can occur frequently, meaning until almost every variable is assigned, no prop-

agation will occur. This leads to very little ability for the constraints to pass

116

Chapter 7. Random Representations

information, as this only occurs through propagation to reduce the domains of

variables.

This result relates back directly to the idea of representations with completely

perfect GAC implementations of some constraints. A good representation must

be able to represent the results of the deductions which propagators make, so that

the results of these deductions can pass between constraints. When propagators

are unable to place the results of deductions into the domains of the variables,

then the size of search increases substantially.

7.2 Channelled Representations

A number of papers have shown how channelling can help reduce the size of search,

as discussed in Section 3.1. Channelling is similar to joining representations,

as described in Definition 4.12 on page 60. An obvious question therefore is if

channelling representations can be used to improve the performance of a group

of poorly performing representations.

Channelling is not a silver-bullet which can be used to always get the best

features of multiple models, even when ignoring the fact that adding multiple

models will increase the time taken at each node. Channelling or joining multiple

models should be used with thought and caution, as it can in some cases cause the

size of search to increase and others the reduction in search to be much smaller

than expected. The major cause of this is model drift, which is demonstrated in

Example 7.2.

Example 7.2. Consider representing an integer in range [1, 100] by two variable

representations. The first, denoted 〈VB, fB〉, represents the number in binary,

while the second, denoted 〈VT , fT 〉, represents the integer in ternary. This means

VB[0] = 0 means the integer is divisible by 2, and VT [0] = 0 means the integer

is divisible by 3. Consider the case where both of these representations are being

used, and a channelling constraint is placed between them.

If the first branch made during search is VB[0] = 0. This constrains the vari-

able to be even. This does not allow any propagation to occur to the array VT ,

as for every assignment to every variable, there is an assignment to the other

variables where the result is even. Similarly, assigning VT [0] = 0 causes no prop-

agation to VB.

Example 7.2 shows how propagating assignments can reduce the variables in

117

Chapter 7. Random Representations

different models without propagating this change between the models. In the

most extreme cases, almost all variables can be assigned in both models without

any propagation occurring.

There are two standard methods of using multiple channelled representations

in the same CSP. The branching strategy may either be free to choose a vari-

able from any of the representations to branch on, or a single representation can

be chosen to be branched on and the others used only to increase the level of

propagation and reduce search.

Branching on only one model has the advantage that in many cases it can be

proven that this will not increase the size of search as long as a static branching

strategy is used, as it can only lead to more propagation. However branching on

multiple models can lead to smaller searches, for example as discussed by [19].

This can lead to increased search in two different cases. Firstly consider that

the branching method can choose freely between the two sets of variables and

alternate between them. The problem can degenerate into a case where two

copies of the problem are being almost independently solved at the same time,

which would massively increase the search space. Even if the sub-domains of both

problems contain a solution, they must contain the same solution for the whole

CSP to be solvable.

The second problem, independent of the variable ordering used, is if the mod-

elling is non-redundant, that is that some constraints are imposed only on one

of the models, and some only on the other. In this case if only one model is

branched on, the other will have almost no propagation until almost all variables

are assigned, at which point the other constraints will be checked, leading to a

result where some constraints are effectively not checked until all variables are

assigned. This can clearly massively increase search size.

This leads to the question of how to reduce this problem. One of the most

obvious methods and the one which has stopped this problem being a major

problem in most previous work on channelling is to ensure that model drift does

not occur. In particular, when the alternative models are literal equivalent (Def-

inition 5.9 on page 85), and the channelling constraints achieve GAC, then no

model drift can occur as the different representations will at all points represent

exactly the same set of assignments. However, in this case there is no gain in

representational power by channelling between two such representations.

Another option is to only branch on one of the channelled representations. In

this case as the multiple representations joined together dominate any one of the

118

Chapter 7. Random Representations

representations in isolation, the search space cannot be bigger assuming a static

search ordering. However any reduction in the size of the search over a single

representation may be small.

7.2.1 Channelling Experiments

To demonstrate the possible problems which can arise during channelling, a num-

ber of experiments were performed using joined representations. These consider

branching on both of the original representations and on only one of the original

representations.

7.2.1.1 Branching on One Representation

These experiments compare solving BIBD with a single representation with adding

a second channelled model while keeping the branching on the first model. Once

all variables in the first representation are assigned, the ones in the second will

become assigned by propagation. With a static variable ordering this cannot lead

to an increase in search size. Hence, the experiments only aim to show how much

the size of search is reduced. This experiment is important, because it shows how

effective adding extra redundant models is to improving search.

Three sets of experiments were performed. Each model was tested with one

hundred different randomly generated variable orderings. In each case only the

first model is branched on and the ordering heuristic kept the same when a second

model was added and channelled to. The aim of these experiments is to demon-

strate that in general channelling one model of the BIBD to a second model of a

problem while keeping the branching only on the first model can lead to almost

no improvement.

First, the occurrence representation alone was compared to the occurrence

representation channelled together with 10 different randomised copies of the

occurrence representation to prove there are no solutions to the (5, 5, 2, 2, 1) BIBD.

On average this took around 977 search nodes. None of the 1,000 experiments

improved the size of search by a single node.

Secondly, a randomised copy of the occurrence representation was compared

to the same randomised copy joined with the standard occurrence representation.

Once again the branching only operated on the first model. The average number

of search nodes reduced from 3140 to 3020, a 3.8% improvement. In every instance

there was some improvement, if only a handful of nodes, but in no experiment

119

Chapter 7. Random Representations

Average Std. Dev. Min Max % Best

occurrence 977.87 237.3 616 1795 48%
Two copies of occurrence 969.6 223.99 635 1664 52%

3888.15 1647.22 1082 8027 0%
1902.58 648.55 879 4172 0%

occurrence + 3514.4 1542.32 1089 8770 0%
randomised copy 3436.6 1532.24 1164 8865 0%

2395.72 961.01 978 6091 0%
2624.19 1032.62 1027 6589 0%
1718.91 497.49 880 3131 0%
4176.16 1995.13 1279 11294 0%
2844.41 1023.59 873 5143 0%

Figure 7.2: Compare the occurrence representation, channelling the occurrence
rep with itself, and channelling the occurrence rep with 9 random representations.
Tested on 100 random variable orderings of the (5, 5, 2, 2, 1) BIBD.

was the gain greater than 9%. These times are still very poor in comparison to

the standard occurrence representation alone, where the average number of search

nodes was only 977.

The final experiment involved a random copy of the occurrence representation

joined to a different random copy of the occurrence representation. One random

representation was chosen and then channelled with 10 different other random

models. Of these 10, 6 produced no gain in any of the 100 experiments performed,

3 produced a gain of less than 1%, and one produced a gain of around 4%.

What is most interesting about these experiments, in particular the compar-

ison of attaching the occurrence representation to a random representation, is

the very small gain in performance. This shows that a very poor representation

cannot be improved by attaching a much better performing representation if the

better representation is not considered in the branching.

7.2.1.2 Branching on Multiple Representations

These experiments are similar to those in subsection 7.2.1.1, except here once the

representations are joined the branching strategy branches over all variables.

Figure 7.2 shows results from channelling two models together, one of which

is the standard occurrence representation and one of which is random. For com-

parison, the first two results are simply the standard occurrence representation

by itself and two copies of the standard occurrence representation channelled to-

120

Chapter 7. Random Representations

Average Std. Dev. Min Max % Best

occurrence 8412.7 2494.32 3687 16492 49%
Two copies of occurrence 8485.98 2486.72 3697 16489 50%

112764.15 81294.2 18972 480484 0%
110814.23 72667.91 21067 448059 0%

occurrence + 75751.99 46924.48 17014 279648 0%
randomised copy 72993.3 42767.6 18935 221033 0%

93568.35 58737.88 20165 325405 0%
98183.81 64743.24 20672 381414 0%
87401.62 53234.48 17375 303853 0%
69614.75 41266.01 19275 276068 0%
52511.66 28417.99 16189 149921 0%

Figure 7.3: Compare the occurrence representation, channelling the occurrence
rep with itself, and channelling the occurrence rep with 9 random representations.
Tested on 100 random variable orderings of the (6, 6, 2, 2, 1) BIBD.

gether. This second result should be effectively identical to the first except for

some minor variations caused by a different variable ordering. This is because

whenever one variable in one of the two models has a value removed from its

domain, the same value will be removed from the domain of the same variable in

the channelled representation. This is backed up by the results in Figure 7.2

Without exception, channelling the original and a random representations

performs very poorly. In particular, in no case does it outperform either the

original representation, or the random representations (which are the same as

those given in Figure 7.1) in isolation. The (6, 6, 2, 2, 1) BIBD experiments, shown

in Figure 7.3 shows these results even more strongly on a larger problem, with

the performance of the models involving a random representation even poorer.

These BIBD experiments, while limited in scope, have shown that (as might

be hoped) the occurrence representation does perform better in practice than a

random representation. Also they show that in general, channelling is not a magic

bullet and provides almost no help in combining a number which can be used to

improve performance, by combining a number of random representations.

7.3 Random Problems

The previous section showed how the occurrence representation outperforms ran-

domised copies of the occurrence representations on BIBDs, a problem which

contains many common set constraints. This raises the question of whether the

121

Chapter 7. Random Representations

Average Std. Dev. Min Max % Best
Original 260842.31 54209.18 132424 423110 26.5%

Random 1 260625.90 54444.54 132491 426272 27.5%
Random 2 261407.72 54348.02 127135 414420 23.5%
Random 3 261173.01 54423.89 125776 419634 22.5%

Figure 7.4: Comparison of number of search nodes on random problems of the
occurrence model and three random variants. All results to 2 decimal places.

Occurrence Random 1 Random 2 Random 3
Average Nodes alone 260842 260626 261408 261173
Av. gain with Occurrence 0 1129 1884 1906
Av. gain with Random 1 1414 0 2188 2488
Av. gain with Random 2 4329 1400 0 2235
Av. gain with Random 3 2115 2311 2017 0

Figure 7.5: Comparing four models of a set on a random problem with attaching
an auxiliary model without changing branching strategy.

occurrence representation would outperform a random copy for all problems.

One obvious way to compare the occurrence representation and random copies

to see if they perform the same is on random problems. As these constraints have

no particular structure, there should be no reason for them to perform better

on the occurrence representation, unless it has some structure which allows it to

perform better for all constraints. We expect that the occurrence representation

and random copies are going to perform identically here.

In each problem in this section, a problem is defined over 5 set variables

of domain {1, 2, 3, 4, 5}. A constraint is placed between each pair of variables,

and each tuple is included in each constraint with probability 1
2
. In the case of

problems which have solutions, the entire search space is explored. For each data

point, 200 random problems are generated and tested. In each experiment, the

same 200 problems and branching strategies are used.

Figure 7.4 results show that the original occurrence representation is no better

or worse than any of the random representations, with the average best and worst

search trees about the same, and the original occurrence model performing best

on 26.5% of problems, showing the 4 models are effectively as good as each other.

Figure 7.5 shows an experiment where the standard occurrence representation

and three random variants were used to solve 200 randomly generated problems.

On the same problems with the same branching order, each model was channelled

122

Chapter 7. Random Representations

Occurrence Random 1 Random 2 Random 3
Occurrence 261000 439149 438588 430980
Random 1 - 261788 440850 439735
Random 2 - - 262047 438042
Random 3 - - - 262045

Figure 7.6: Trying all pairs of four models of a set on a random problem, including
channelling each model to itself.

to each of the other models in turn. This could only decrease the size of the search

tree. The values in the diagonal are 0 in all cases, as here the model is channelled

to a copy of itself, proving no gain. These results show two important facts.

Firstly there is no advantage to either starting with the standard occurrence

representation or channelling to it. Secondly adding a second model produces a

gain of less than 1%.

The final set of experiments on random problems, given in Figure 7.6, tries

channelling two models together and branching on both sets of variables. Un-

surprisingly, once again the two main features are that the standard occurrence

model is no better than the random models and the channelled models perform

very poorly except when the two modells being channelled together are identical.

These results show that on random problems, there is no difference between

the performance of the occurrence representation and a randomised copy. They

also show that using multiple representations produces an extremely small gain

at best, and a large decrease in performance at worst. These channelling results

are the same as those achieved for BIBDs.

7.4 Conclusion

This chapter has presented a number of experiments which put this thesis in

context. The most important set of results in this chapter are those involving

channelling. These have shown that using multiple representations and chan-

nelling can result in much worse performance. Further, given a number of models

without knowledge of which is better is not useful in practice. Branching on all

the models can be very poor and when when branching on just one a poor choice

of model to branch on cannot be improved by channelling to good models. A more

complete investigation of exactly when channelling is successful is an important

future research area but outside the scope of this thesis.

123

Chapter 7. Random Representations

This chapter also provided some evidence toward the general claims of this

thesis, namely that representations cannot be considered solely in terms of the

number of representative states they represent. It has shown how on the common

set constraints, the occurrence model outperforms a random alternative. This

makes sense, as it has a completely perfect GAC implementation of many of the

set constraints used in the BIBD problem. The random representations on the

other hand perform very poorly. On random problems however, the occurrence

representation does not better than random variants. This shows the unsurpris-

ing result that when dominance cannot be proved between representations, it is

necessary to consider the problem in which they are to be used.

124

Chapter 8

Breaking Symmetry in

Representations

8.1 Introduction

As discussed in Section 2.4, symmetry breaking is an active and important re-

search area in CP. A large number of experiments have shown how breaking

symmetry can massively decrease the size of search trees and therefore the time

taken to solve problems.

However, effectively making use of symmetry in CP is not trivial and there are

a number of important issuess which must be addressed. Firstly, there are differ-

ent possible definitions of symmetry, which each have their own advantages and

disadvantages. Secondly, given a CSP and a symmetry definition, the symmetry

of a CSP must either be given by the user, or more usefully detected automat-

ically. Finally, an algorithm must be designed to use the symmetries found to

usefully reduce the search size and hopefully also the search time.

Even with the current best-known methods, symmetry breaking is not a sil-

ver bullet. For example, the experiments performed by Petrie [62] on Balanced

Incomplete Block Designs show examples where symmetry breaking slows the

solving process from thousands of nodes per second to 30 seconds per node. Part

of the reason is that in that the symmetry breaking method used, GAP-SBDD,

introduced in Section 2.4.4, involves solving an NP-complete problem at every

node of search. In those experiments however, the reduction in search space

is still sufficiently great that problem can be solved which can not be possible

without symmetry breaking.

125

Chapter 8. Breaking Symmetry in Representations

8.2 Traditional CSP Symmetry

There is no one definition of symmetry which has gained acceptance as the stan-

dard in constraint satisfaction. The general definition of a symmetry, previously

given in Definition 2.21, is repeated here in Definition 8.1. Using this basic idea,

defining symmetries of a CSP involves chosing the properties which must be pre-

served and the set which is permuted. At first both of these seem obvious, but

in practice these must be defined carefully, and what may at first appear to be

equivalent definitions end up differing in subtle ways.

Definition 8.1. A bijective function f is a symmetry with respect to property p

of a set S if ∀s ∈ S.p(s) ⇐⇒ p(f(s)).

One problem which shows the subtle problems involved with defining the

symmetries of a CSP is the n-queens problem.

Example 8.1. The n-queens problem requires placing n queens on an n × n

chessboard such that no two queens can attack each other. This means no two

queens can be on the same row, column or diagonal. Diagram 8.1 shows two

symmetric solutions to the 8-queens problem.

There are three commonly used models for this problem. The first, known as

the Boolean model, uses n × n array M of Boolean variables, where M [i, j] is

True if there is a queen at location 〈i, j〉. The second model, known as the row

model, has a variable of domain {1,2,. . . ,n} for each row, representing where the

queen is in that row. The column model is defined similarly.

Intuitively, the n-queens problem has the same symmetries as a chessboard,

which are rotations by 90, 180 and 270 degrees, reflections vertically, horizontally

and along the two diagonals and combinations of these.All combinations of these

symmetries form one of the symmetries already listed, or the identity symmetry

which does not move the chess board, so the symmetries form a group of size 8.

An obvious definition for symmetries of a CSP is a permutation of the set of

assignments which maps solutions to solutions and non-solutions to non-solutions.

This has two major problems. The first is that it is too restrictive. Consider the

row model of the n-queens problem and a 90 degree rotation. The assignment

where every queen is placed in the first column is mapped under 90 degree rotation

to having all queens in a single row. This means an assignment is mapped to a

non-assignment, as the first variable takes all values and the other variables take

126

Chapter 8. Breaking Symmetry in Representations

Cheq (gift of Adobe Systems) "Chequed Board" p. 1

 !!!!!!!!
"#$%&'()*+
",-,-,-,-+
"+
". ./0 . +
"+
". . 12. +
"34343434+
"56789:;<+
 ========

Cheq (gift of Adobe Systems) "Chequed Board" p. 1

 !!!!!!!!
"#$%&'()*+
",-,-,-,-+
"+
". ./0 . +
"+
". . 12. +
"34343434+
"56789:;<+
 ========

Cheq (gift of Adobe Systems) "Chequed Board" p. 1

 !!!!!!!!
"#$%&'()*+
",-,-,-,-+
"+
". ./0 . +
"+
". . 12. +
"34343434+
"56789:;<+
 ========

Cheq (gift of Adobe Systems) "Chequed Board" p. 1

 !!!!!!!!
"#$%&'()*+
",-,-,-,-+
"+
". ./0 . +
"+
". . 12. +
"34343434+
"56789:;<+
 ========

Cheq (gift of Adobe Systems) "Chequed Board" p. 1

 !!!!!!!!
"#$%&'()*+
",-,-,-,-+
"+
". ./0 . +
"+
". . 12. +
"34343434+
"56789:;<+
 ========

Cheq (gift of Adobe Systems) "Chequed Board" p. 1

 !!!!!!!!
"#$%&'()*+
",-,-,-,-+
"+
". ./0 . +
"+
". . 12. +
"34343434+
"56789:;<+
 ========

Cheq (gift of Adobe Systems) "Chequed Board" p. 1

 !!!!!!!!
"#$%&'()*+
",-,-,-,-+
"+
". ./0 . +
"+
". . 12. +
"34343434+
"56789:;<+
 ========

Cheq (gift of Adobe Systems) "Chequed Board" p. 1

 !!!!!!!!
"#$%&'()*+
",-,-,-,-+
"+
". ./0 . +
"+
". . 12. +
"34343434+
"56789:;<+
 ========

Cheq (gift of Adobe Systems) "Chequed Board"p. 1

 !!!!!!!!
"#$%&'()*+
",-,-,-,-+
"+
". ./0 . +
"+
". . 12. +
"34343434+
"56789:;<+
 ========

Cheq (gift of Adobe Systems) "Chequed Board"p. 1

 !!!!!!!!
"#$%&'()*+
",-,-,-,-+
"+
". ./0 . +
"+
". . 12. +
"34343434+
"56789:;<+
 ========

Cheq (gift of Adobe Systems) "Chequed Board"p. 1

 !!!!!!!!
"#$%&'()*+
",-,-,-,-+
"+
". ./0 . +
"+
". . 12. +
"34343434+
"56789:;<+
 ========

Cheq (gift of Adobe Systems) "Chequed Board"p. 1

 !!!!!!!!
"#$%&'()*+
",-,-,-,-+
"+
". ./0 . +
"+
". . 12. +
"34343434+
"56789:;<+
 ========

Cheq (gift of Adobe Systems) "Chequed Board"p. 1

 !!!!!!!!
"#$%&'()*+
",-,-,-,-+
"+
". ./0 . +
"+
". . 12. +
"34343434+
"56789:;<+
 ========

Cheq (gift of Adobe Systems) "Chequed Board"p. 1

 !!!!!!!!
"#$%&'()*+
",-,-,-,-+
"+
". ./0 . +
"+
". . 12. +
"34343434+
"56789:;<+
 ========

Cheq (gift of Adobe Systems) "Chequed Board"p. 1

 !!!!!!!!
"#$%&'()*+
",-,-,-,-+
"+
". ./0 . +
"+
". . 12. +
"34343434+
"56789:;<+
 ========

Cheq (gift of Adobe Systems) "Chequed Board"p. 1

 !!!!!!!!
"#$%&'()*+
",-,-,-,-+
"+
". ./0 . +
"+
". . 12. +
"34343434+
"56789:;<+
 ========

Figure 8.1: A solution to the 8-queens problem, and its symmetric image under
horizontal flip.

no value. Therefore while any sensible definition of the symmetries of a CSP must

map solutions to solutions, it should not be required that non-solutions map to

non-solutions.

The second, less serious, problem with defining the symmetry group of a CSP

as a permutation of the set of assignments is that this allows too much. Given n

variables of domain size d there are dn assignments, and therefore (dn)! permuta-

tions. One standard result of group theory is that it is possible to represent any

group over n variables with a set of generators of size at most n. However, this

still means specifying the symmetry group of a CSP can require dn permutations.

Furthermore, the most general symmetry group of any CSP will simply allow any

pair of solutions to be permuted, and any pair of non-solutions to be permuted.

This is too large and too general to be of practical use.

The most common definition of symmetry used in CSPs has been instead to

define symmetries as a permutation of the set of literals of the variables. This

has many advantages:

• This definition in practice appears to capture most of the symmetries that

CP practitioners observe.

• Expressing the group as a list of generators takes only O(n2d2) for a CSP

with n variables of domain size d.

• As the set of literals is often stored in the solver during search these groups

map naturally to the internal state of the solver, operations on these groups

map naturally to the state of search.

127

Chapter 8. Breaking Symmetry in Representations

There are symmetries this definition does not encapsulate, most notably con-

ditional symmetries [37]. However such symmetries are at present poorly studied

and there is no general practical algorithm to make use of them in CP. From now

on unless stated otherwise, all references to the symmetry group of a CSP can be

assumed to refer to a group defined over the set of literals of the CSP.

There is still one major problem with the definition of symmetry given thus far,

which is that finding the symmetry group of a CSP appears to require knowing

the complete set of solutions. In fact, as Corollary 8.2 of Theorem 8.1 shows,

given the symmetry group of a CSP it is trivial to check if it has any solutions.

Theorem 8.1. Given a CSP P with at least two variables, the symmetry group

of the solutions of P is the complete group over its literals if and only if P has no

solutions.

Proof. The definition of a solution symmetry requires that it maps solutions to

solutions. Therefore in a CSP with no solutions, any automorphism of the literals

is a symmetry.

In a CSP with at least one solution and at least two variables, take any

solution and consider two assignments to two distinct variables in that solution.

As a symmetry must map solutions to solutions, these two literals can never be

mapped to the same variable by any symmetry.

Corollary 8.2. Given a CSP, knowing if the symmetry group is complete permits

checking if the CSP has a solution by checking if only a single assignment is a

solution.

Proof. Theorem 8.1 shows the symmetry group is complete if and only if the

CSP has no solution for CSPs with at least two variables. In the degenerate case

of a CSP with only one variable, the symmetry group will be the union of the

complete symmetry group over the set of solutions and the complete symmetry

group over the set of non-solutions, so the symmetry group will be complete if

the problem has either no solutions or every assignment is a solution. Which of

these cases holds could be checked by checking only a single assignment.

While finding all symmetries of a CSP may be difficult, it is often possible to

find a large number of symmetries of a CSP. In many cases, symmetries are found

by inspection of the problem by a CSP practitioner and with practice it becomes

easier to identify many common classes of symmetry. Automating symmetry

detection would remove the need for expert practitioners to identify symmetries.

128

Chapter 8. Breaking Symmetry in Representations

One useful theoretical tool for this is the microstructure graph, given in Definition

8.2.

Definition 8.2. Given a CSP P, the microstructure complement graph contains

a single node for each assignment to every variable in P and a hyper-edge between

the assignments disallowed by each tuple in each constraint. It also contains a

hyper-edge between each pair of assignments to each variable, to represent no

variable may take more than one assignment.

Figure 8.2 shows the microstructure complement graph of a simple CSP. The-

orem 8.3 shows that any symmetries of the microstructure graph are also sym-

metries of the CSP.

Theorem 8.3. Any permutation of the vertices of the microstructure complement

graph of a CSP which is a symmetry of that graph also maps solutions of the CSP

to solutions.

Proof. Solutions are sets of vertices in the microstructure graph which form an

independent set, that is there is no hyper-edge which is made up solely of vertices

of the solution. Applying any symmetry of the microstructure graph to such a set

cannot result in it mapping to a new set of vertices which do have an hyper-edge

made only from members of the solution.

The converse is not true, for example Theorem 8.1 showed that any CSP with

no solutions has the complete solution symmetry group, but the microstructure

of most CSPs with no solutions will not have all symmetries. Detecting the

symmetries of the graph is a problem which does not have a known complexity

and it has not been proved if it is polynomial, NP-complete or lies between these

two. However in practice very large graphs can be handled easily. With the

microstructure graph, it is possible to give the two commonly used definitions of

CSP symmetry.

Definition 8.3. A solution symmetry of a CSP is one which maps solutions to

solutions. A constraint symmetry of a CSP is one which maps the microstructure

graph to itself.

One problem with this system of detecting symmetry is that it requires turn-

ing any intensional constraint into an extensional form. As always, for large arity

constraints this can be difficult, or not even practical. Work in automatically

129

Chapter 8. Breaking Symmetry in Representations

X Y Z

Variable = 1

Variable = 2

Figure 8.2: The microstructure complement graph of X = Y, Y 6= Z for variables
X, Y, Z ∈ {1, 2}

detecting symmetries [57,65] shows how to build graphs which encode intensional

constraints in a more compact form. This can lead to a slightly decreased number

of detected symmetries, but ensures the size of the generated graph is polynomi-

ally bounded by the size of the original intensional CSP. In practice, the number

of detected symmetries is almost always identical.

8.3 Recursive Symmetry Breaking

As discussed in Section 4.3, one of the major advantages of variable representa-

tions is they can be applied recursively. This is often performed during the refine-

ment of a high-level specification of a problem into the CSP which will actually

be implemented. The symmetries generated from these repeated applications of

representations could all be combined and then dealt with in one step. However

keeping the nested structure of the symmetries allows more efficient methods of

dealing with the symmetries.

In the case of static symmetry breaking, it is simple to break symmetries

which have been formed by repeated applications of variable representations, as

shown in Theorem 8.4. This allows symmetries which are nested inside each other

to be broken independently, avoiding concerns about how the symmetry breaking

methods used interact.

Theorem 8.4. Consider a variable representation 〈V , f〉 of a domain D with

valid symmetry breaking constraint C and for each element of V a representation

〈Vi, fi〉 with valid symmetry breaking constraint Ci. Then on the representation

made by joining 〈V , f〉 and the representations 〈Vi, fi〉, the image of C under

130

Chapter 8. Breaking Symmetry in Representations

the representations 〈Vi, fi〉 and the constraints Ci is a valid symmetry breaking

constraint. Further, if C and the Ci were each complete, then the new constraint

is also complete over the whole representation.

Proof. Call the variables after all the representations are joined an array of arrays

W , where the ith element of W is the variables of Vi. Then for any assignment d

to D there must be at least one assignment V which represents it and also satisfies

C. In the case where C is complete, there will be exactly one such assignment.

Given an assignment a to V [i], there must be an assignment to Vi which

represents a and satisfies Ci. If Ci is complete, there must be exactly one such

solution. Therefore the both C and Ci together are consistent, and if they are all

complete then the join is complete.

One of the major advantages of breaking each layer of a recursive symmetry

separately rather than combining the various symmetry groups into one is that the

number of constraints required is greatly reduced. For example the Crawford [16]

method of symmetry breaking requires n − 1 constraints for a group of size n.

In the case of a array V where the array has index symmetry group GA, and

each element has a variable symmetry group GV , then the size of the combined

group and there the number of required constraints is |GA − 1| ∗ |GV − 1|n. In

the case where the symmetries on V and its elements are broken separately only

|GA − 1|+ |GV − 1| ∗ n constraints are required.

Petrie [62] showed using different dynamic symmetry breaking methods on

different symmetry groups in the same problem at the same time in general does

not work, as dynamic symmetry breaking methods involve replacing the standard

search procedure with an altered, symmetry aware one. How to combine dynamic

symmetry breaking methods shall therefore not be considered. This still leaves

the case of applying a combination of dynamic and static symmetry breaking to

a recursive symmetry.

Given a recursive symmetry, after applying either a change of representation

or adding constraints to break the symmetry of the lower level, the symmetry

of the upper level still exists. Hence, in this case it is valid to apply a dynamic

symmetry breaking method. This is often done in practice, where it is obviously

valid to apply dynamic symmetry breaking to an index symmetry of V and static

symmetry to its elements, as after applying the static symmetry breaking the

resulting CSP still has the same index symmetry as before. The reverse is not

true, as Example 8.2 shows.

131

Chapter 8. Breaking Symmetry in Representations

Example 8.2. Consider an array of arrays of variables V , where V has two

elements, each an array of 2 elements, where both V and its elements have com-

plete index symmetry. If V [a, b] refers to the bth element of the ath element of

V , then a valid symmetry breaking constraint for the index symmetry of V is

V [1, 1]V [1, 2] ≤lex V [2, 1]V [2, 2].

Consider the case where V [1, 1] = 1, V [1, 2] = 2, V [2, 1] = 2, V [2, 2] = 1 and

its symmetric equivalents are solutions. If the first symmetric assignment to this

which arises during search is V [1, 1] = 2, V [1, 2] = 1, V [2, 1] = 1, V [2, 2] = 2, then

this will be disallowed as a solution by the static symmetry breaking. However, this

dynamic symmetry breaking will now forbid any assignment which is a symmetric

image of this, which will include all the solutions.

8.4 Problem Specific Symmetry Breaking

There have been a number of general complete and incomplete static symme-

try breaking methods, such as the lexicographic [26] and multiset [29] orderings,

which allow many symmetry groups to be broken. For certain commonly occur-

ring symmetry groups, methods such as the “double lex” constraints for row and

column symmetries, provide faster group-specific symmetry breaking methods.

However, there has been relatively little research into problem-specific symmetry

breaking. Example 8.3 demonstrates one simple example of how a clever choice

of symmetry breaking constraint can theoretically decrease search size.

Example 8.3. Consider a CSP with a fixed size set variable S, whose domain

is subsets of {1, . . . ,m} of size n and the constraint “S must include an even

number”. If S were represented by the explicit representation with explicit array

E, this constraint is implemented as ∃s ∈ {1, . . . ,n}. E[s] is even.

As E has symmetry, it can be broken. One way of doing so would be to

alter the representation so that the elements of E must be ordered. This would

indeed break all the symmetry but leave the constraint identical. Consider instead

ordering E such that first come all even values, then all odd values, and within

these ranges the integers are ordered as normal. This can be considered identical

to normal lexicographic symmetry breaking except using a different ordering of the

integers, where all even numbers are smaller than all odd numbers. In this case,

if any element of E is even the first is, so the constraint becomes E[1] is even,

a much simpler constraint which will propagate straight away.

The above example shows the underlying idea behind this section. By choosing

132

Chapter 8. Breaking Symmetry in Representations

symmetry breaking constraints carefully it is often possible to allow constraints

to be more efficiently expressed. Usually the purpose of symmetry breaking is

to avoid searching redundant parts of the search space. However, symmetry can

also reduce propagation. While it is possible to propagate while leaving at least

one symmetric image of each solution, as in Example 8.3, it is not possible to do

so without removing some solutions. Therefore it is worth investing in symmetry

breaking methods which as well as removing the symmetry of the problem, leave

the existing solutions so that the constraints propagate better. In particular

the best case is if after applying symmetry breaking, some constraints gain a

completely perfect GAC implementation.

One very common pattern in CSPs with set and multiset variables, either in

the constraints of a problem or in implied constraints which can be found, is to

require one of more elements of the (multi)set to satisfy a certain set of properties.

One pattern which can be used to represent many examples, of the type given in

Example 8.3, is given in Definition 8.4.

Definition 8.4. Consider a (multi)set variable X whose domain is subsets of

some fixed set S and a function f from S to R, where X is represented under the

explicit representation with element array E. The f-lexicographic constraints

are (f(E[i]) ≤ f(E[i + 1])) ∨ E[i + 1] = ∅, where ∅ represents E[i] not being in the

(multi)set. If the set is fixed size, the constraint is only f(E[i]) ≤ f(E[i + 1]).

Lemma 8.5 shows that the constraints given in Definition 8.4 are valid sym-

metry breaking constraints, and in what case they are complete. The major use

of these constraints is given in Theorem 8.6, where they give constraints of the

form ∃s ∈ S. f(s) ≤ n completely perfect GAC implementations on the explicit

representation.

Lemma 8.5. Given a (multi)set variable X whose domain is subsets of some fixed

set S and some function f from S to R, the f -lexicographic symmetry breaking

constraints, as defined in Definition 8.4, are valid symmetry breaking constraints

for the explicit representation of X. f is complete if and only if it is injective.

Proof. Consider X is represented by the explicit representation with check array

E. Given any assignment e to E, first sort it so all occurrences of ∅ (the value

which denotes that position is not used) are at the end. Then sort all other

values by their image under f . This assignment will satisfy the f -lexicographic

symmetry breaking constraints.

133

Chapter 8. Breaking Symmetry in Representations

If f is injective, then this sorting must always be unique. If f is not injec-

tive, choose an assignment to X which includes two elements which have the

same image under f . Then given any assignment which satisfies the constraints,

permuting these two elements will give another assignment which does.

The next theorem provides the main result of this section, showing how the

correct choice of symmetry breaking can make some constraints perfect on the

explicit representation.

Theorem 8.6. Given a (multi)set variable X whose domain contains all sub-

(multi)sets of some (multi)set S and a function f from S to R, the explicit rep-

resentation with symmetry broken by the f -lexicographic ordering has a totally

perfect GAC implementation of the constraint at least m elements of X sat-

isfy f(s) ≤ n for any m.

Proof. On the symmetry broken explicit representation with element array E,

this constraint is equivalent to ∀i ∈ {1, . . . ,m}. f(E[i]) ≤ n, which is logically

equivalent to the split into the a set of constraints, each of the type f(E[i]) ≤ n,

which satisfies the condition required for a constraint to have a completely perfect

GAC implementation.

An obvious simple extension of Theorem 8.6 would be to allow both a con-

straint which required some element of a set to satisfy f(x) ≤ n, and another to

satisfy f(x) ≥m. These constraints can both be made perfect at the same time,

one placed at one end of the element array and the other at the other. In the case

where the set is of fixed size, this follows simply from symmetry. In the general

case it becomes trickier, as the right-most element of the element array may not

represent a value in the set at all, and in this case it is necessary to instead impose

the more complex, and not completely perfect GAC, constraint which says that

the last element of the element array which represents a value in the set satisfies

f(x) ≥m. This is possible, but complex to implement efficiently.

8.4.1 The 3-fractions Puzzle

As an example of problem-specific symmetry breaking, an in-depth study of the

3-fractions puzzle, a special case of the n-fractions puzzle (CSPLib problem 41), is

undertaken. This instance was chosen as there are a number of powerful implied

constraints, which have completely perfect GAC implementations under different

sets of symmetry breaking constraints. The problem can be formulated in various

134

Chapter 8. Breaking Symmetry in Representations

ways. Definition 8.5 gives both the traditional definition and a slightly different

formulation which will be used here.

Definition 8.5. The aim of the 3 fractions puzzle is to find 9 distinct non-zero

digits, A to I satisfying:

A

BC
+

D

EF
+

G

HI
= 1 (8.1)

Where here and throughout this section, BC is shorthand for 10 ∗B + C, etc.

An alternative, abstract definition of the 3-fractions puzzle is to find a set

variable X of size 3 whose elements are drawn from the following set of tuples:

{〈a, b, c〉|1 ≤ a, b, c ≤ 9, a 6= b 6= c 6= a}

and where X satisfies the constraints that no value occurs in more than one tuple

in X and
∑
〈x, y, z〉 ∈ X. f(x, y, z) = 1 where f(x, y, z) = x

yz
.

The second representation given in Definition 8.5 is present to allow the ideas

of the previous section to be applied. However to make presentation easier, the

discussion of implied constraints will use the first, traditional, model of the prob-

lem.

As with most CSPs, there are a number of useful implied constraints which

can be found which are not affected by the choice of symmetry breaking. For

example, as the digits must be distinct, the following bounds are implied:

12 ≤ BC ≤ 98, 12 ≤ EF ≤ 98, 12 ≤ HI ≤ 98 (8.2)

A

BC
,
D

EF
,
G

HI
≤ 9

12
=

3

4
(8.3)

Substituting (8.2) into (8.1), and given that the denominators must be dis-

tinct, the following can be derived:

A+D +G > 12 (8.4)

As the 3 fractions must sum to 1 and are all positive, at least one of the

fractions is less than or equal to 1/3, else their sum would be greater than 1.

Similarly, at least one of the fractions must be greater than or equal 1/3. These

135

Chapter 8. Breaking Symmetry in Representations

two implied constraints are not practically useful themselves, producing no re-

duction in the size of search. However, consider breaking symmetry by imposing

the following ordering constraints:

A

BC
≤ D

EF
≤ G

HI
(8.5)

This model, which will be called ‘Frac-breaking’, is not a complete symmetry

breaking method, as for example 1/29 + 3/87 + 4/56 and 3/87 + 1/29 + 4/56

are symmetrical, but both satisfy (8.5) since the first two fractions are equal.

Nonetheless, (8.5) allows us to make use of symmetry breaking to generate some

useful implied constraints.

Using (8.5), A/BC ≤ 1/3. By similar reasoning, G/HI ≥ 1/3. Upper and

lower bounds can also be derived for D/EF : 1/8 ≤ D/EF < 1/2. The upper

bound follows because if D/EF ≥ 1/2, then G/HI ≥ 1/2 and A/BC ≤ 0, which

is not possible with non-zero digits. (8.3) implies A/BC + D/EF ≥ 1/4, as the

greatest fraction, G/HI, is ≤ 3/4. The lower bound follows. Arranging these

inequalities into linear form gives:

3A ≤ BC, 3G ≥ HI, 2D < EF, EF ≤ 8D (8.6)

Simple bounds reasoning on (8.2) and (8.6) now gives, for example, G ≥ 4 and

H ≤ 2 prior to search, allowing domain reduction in the first node of search.

These could not have been generated if either no symmetry breaking was used,

or symmetry was broken by simply lexicographically ordering the tuples.

Alternative symmetry-breaking constraints that lead to the derivation of dif-

ferent implied constraints are not discussed. These constraints can potentially

reduce the search space even further. For simplicity, consider arranging the vari-

ables of the 3-fractions puzzle into a 3 × 3 matrix:
A D G

B E H

C F I
. Given the problem

constraints, this matrix has column symmetry: any pair of columns can be ex-

changed in a solution to generate a solution. It does not have row symmetry, so

all symmetry can be broken by constraining the columns to be lexicographically

ordered [21]. This can be done in six ways, depending on the order of significance

of the variables in each column. Three alternatives are considered:

〈A,B,C〉 ≤lex 〈D,E, F 〉 ≤lex 〈G,H, I〉 (8.7)

〈B,C,A〉 ≤lex 〈E,F,D〉 ≤lex 〈H, I,G〉 (8.8)

〈C,A,B〉 ≤lex 〈F,D,E〉 ≤lex 〈I,G,H〉 (8.9)

136

Chapter 8. Breaking Symmetry in Representations

Model LexA uses (8.7). This and AllDifferent({A,B,. . . ,I}) gives:

A < D < G (8.10)

From (8.4) and AllDifferent({A,B,. . . ,I}), one of {A,D,G} is greater than 5.

Hence, from (8.10):

G > 5 (8.11)

Model LexB uses (8.8). This and AllDifferent({A,B,. . . ,I}) gives:

B < E < H (8.12)

This implies BC < EF < HI. Substituting BC for EF and HI in (8.1):

A+D +G > BC (8.13)

Since the digits are distinct, the left-hand side can be at most 9 + 8 + 7 = 24.

Hence, from (8.13), B ≤ 2.

Model LexC uses (8.9). This and AllDifferent({A,B,. . . ,I}) gives:

C < F < I (8.14)

No strong constraints can be derived from (8.14), because C, F and I are the less

significant digits in the denominators.

Now the symmetry-breaking models are compared for the 3-fractions puz-

zle. The ‘base’ model, from which they are derived, consists of (8.1–8.4) and

AllDifferent(A− I). Any constraint involving rational expressions was multiplied

out to avoid rounding errors. This slightly reduces propagation, but all differ-

ent models had the basic problem constraints implemented identically. Table 8.1

gives a comparison of all the models tested.

For a thorough comparison, the models were compared using all 9! variable

orderings of 〈A,B,C,D,E, F,G,H, I〉. To remove the effects of arriving at a good

value ordering by chance, the entire search space is searched for each ordering.

The general version of each implied constraint, for example in the case of

(8.11), ∃X ∈ {A,D,G}. X > 5 were tried in all models, but produced uniformly

poor performance, as the reduction in search was at most around 30 nodes and

constraint solvers typically implement constraints of the types ∃s ∈ S.f(s) slowly.

137

Chapter 8. Breaking Symmetry in Representations

Frac-breaking LexA LexB LexC

Initial Composition Basic+(8.5) Basic+(8.7) Basic+(8.8) Basic+(8.9)

Best/Worst Choices 910/46,211 895/33,947 253/20,462 849/30,294

Mean Choices 8,041 6,802 2,434 6,859

Implied Constraints (8.6) (8.10), (8.11) (8.12),(8.13) (8.14)

Best/Worst Choices 668/8,587 812/23,312 198/2,690 734/22,382

Mean Choices 2,507 5,641 734 5,736

Average Improvement 2.39 1.30 2.29 1.19

Table 8.1: Composition of & comparison among models of 3-fractions over all
variable orderings.

Table 8.1 reports the number of choices reported by Minion. Individual

improvements obtained per model by adding constraints implied by symmetry

breaking underlines the importance of choosing the correct method of symme-

try breaking based on both the required and known implied constraints in a

particular problem. Further, if the models are ranked before and after implied

constraints are added, the Fractions-breaking model moves from worst to second

best, showing how useful this result can be. This illustrates that often weaker

(and in this case incomplete) symmetry breaking can sometimes outperform a

stronger scheme when implied constraints are added. Therefore, when choosing

a symmetry-breaking scheme, it is important to consider the implied constraints

that can be derived. Unfortunately, it is not possible yet to provide hard-and-

fast rules as to which particular model should be chosen, because as this problem

shows there can be a range of constraints, each of which gains a completely perfect

GAC implementation under a different symmetry breaking method.

8.5 Representation Aware Propagation

As Section 8.4 showed, symmetry can cause significant problems during the solv-

ing of CSPs. This is caused by limiting propagation as well as the previously iden-

tified problem of causing the multiple symmetrically equivalent search trees to be

explored. The previous section showed how symmetry breaking constraints can be

tailored to particular problem constraints, making previously poorly propagating

constraints gain a completely perfect GAC implementation in a representation

with symmetry breaking.

138

Chapter 8. Breaking Symmetry in Representations

This system does however have its limitations. It suffers from the usual prob-

lems with static symmetry breaking constraints, such as interacting poorly with

certain variable heuristics. Further, it requires choosing in advance a particular

constraint or constraints to give a completely perfect GAC implementation, and

can not be dynamically altered during search.

A more general method would be to weaken the requirements on propagators,

so they only had to ensure at least one representative of each assignment to the

original domain was not removed, rather than the current requirement that every

assignment which represents a possible solution is not removed. This would allow

the kind of deduction given in Examples 8.4 and Example 4.8 on page 62, which

appears both correct, and to subsume the previous section.

Example 8.4. Consider a constraint problem which consists of finding a set S of

size 2 and a set T of size 4 drawn from {1, 2, 3, 4, 5}, which are represented by the

explicit representation without symmetry breaking by element arrays S ′ and T ′.

The only constraint in the CSP is S ⊆ T , which is equivalent to the constraint

∀i ∈ {1, 2}. ∃j ∈ {1, 2, 3, 4}. S ′[i] = T ′[j] on the representations of S ′ and T ′.

Assume the first branch made in search is S ′[1] = 3. At this point it is clear

that some element of T ′ must be assigned 3 in all solutions. However as it could

be any of the variables in T ′ which is assigned 3, no pruning can occur.

Since it is known at least one variable must be assigned the value 3, by sym-

metry some variable could be chosen and assigned 3. This would clearly remove

some solutions, but it would leave at least one symmetric image of each solution.

There are a number of basic problems with changing propagation in this way

which must be overcome. Firstly, as Example 4.8 shows, such propagators are

not monotonic. Therefore the order in which they are applied has an effect on

the resulting search state. Further, Example 5.2 shows how for only a single con-

straint there may be distinct, incomparable minimal sub-domains which represent

a required list of assignments. Despite these difficulties however, applying any

representation aware propagation must result in a smaller search space than not

doing so, and therefore it is still worthwhile finding cases where it can be applied.

As it is not possible to implement it over all constraints at the same time,

representation aware propagation is not a replacement for other forms of sym-

metry breaking, but instead complements it. It cannot in general be combined

with static symmetry breaking, as this would create a situation identical to the

previous section, where the choices of which assignments to keep was made be-

fore search began. However, it does work well with dynamic symmetry breaking

139

Chapter 8. Breaking Symmetry in Representations

methods.

Consider Example 8.4. Rather than simply assigning the first variable in T ′

the value 3, a branch could make this variable 3 on one branch, and not 3 on

the other. This would have created an identical effect down one branch of the

search tree, but produced a new, search tree which explored the first variable

of T ′ not being 3, where there would be no solution. Further, a propagating

dynamic symmetry breaking method will not search this subtree at all, as shown

in Example 8.5.

Example 8.5. Consider a CSP which contains an array T of 4 symmetric vari-

ables each of domain {1, 2, 3}, where this array has complete variable symmetry.

Assume the branch T [1] = 1, T [1] 6= 1 is performed, and the whole of the left

hand branch is searched, and then the right branch is begun.

This leaves the domains T [1] ∈ {2, 3, 4}, T [2], T [3], T [4] ∈ {1, 2, 3, 4}. Con-

sider the assignment T [2] = 1. Then under the symmetry which swaps T [1] and

T [2], this gives T [1] = 1, T [2] ∈ {2, 3, 4}, T [3], T [4] ∈ {1, 2, 3, 4}. This is sub-

sumed by the search node first reached after T [1] = 1 was performed, as there

T [2] also had 1 in its domain.

Therefore a dynamic symmetry breaking algorithm can legally delete the as-

signment T [2] = 1, and similarly the assignments T [3] = 1 and T [4] = 1, leaving

T [1], T [2], T [3], T [4] = {2, 3, 4}.

Example 8.5 shows at least some representation aware propagation can be per-

formed without the need to alter how solvers propagate or deal with symmetry

with only a small increase in search size, by introducing some new nodes which

instantly fail. This is accomplished by a dynamic symmetry breaking method and

careful choice of variable branching. This may at first seem as if it implies repre-

sentation aware propagation is not useful, however this idea of search heuristics

and propagation methods being interchangeable is not new. For example, Sin-

gleton Arc Consistency (SAC) [17] is a propagation method which removes any

domain value which if assigned would lead to GAC propagation failing. However,

this can be completely implemented just using GAC with only a linear increase in

search size, by looking at all literlas which SAC would deleted, and then branch-

ing on each of these literals which will immediately backtrack. This does not stop

SAC being a powerful and useful propagation method, as the only known way of

finding such values is to perform the various SAC algorithms.

Implementing representation aware propagators for arbitrary constraints and

140

Chapter 8. Breaking Symmetry in Representations

representations is beyond the scope of this thesis. As a proof of principle a

common special case will be considered. Consider the n-way limited explicit

representation where the only allowed propagation is to assign an unassigned

variable. At a high level, this involves finding when a particular value must occur

in the set being represented but is not currently assigned to any variable, and

then assigning a variable that value. Example 8.6 gives a practical example of

this idea, and how it can be used to massively reduce the size of search performed.

Example 8.6. Consider the constraint problem with three variables A,B and C,

where A and B have the domain {s | s ⊆m {1, . . . , n}, |s| = p} and C has the

domain {s | s⊆m {1, . . . , n}, |s| = p}, where 1 < p < n, and the single constraint

A+B = C.

A, B and C are represented by the explicit representation, where A,B and C

have element arrays A′, B′ and C ′ respectively. Note that there is no need for a

check array as the sets are of fixed size, and all assignments to the element array

represent valid multisets.

If these arrays were searched by going first through A′, then B′ and finally

C ′ and dynamic symmetry breaking was used, it is possible to see that the only

propagation which can occur is removing values from C ′ which are not assigned

to any element of A′ or B′. Until however C ′ is itself assigned there is no way

the search can fail as there is no way any domain can become empty. Therefore

the search space will be at least of size 22p

When symmetry breaking propagation is used however, whenever a variable in

A′ is assigned it is clear that a variable in C ′ can be assigned the same value.

Therefore the search will fail when the last element of A is assigned, as this value

will not be assignable to C ′. The search space will therefore be at most size 2p.

In fact, using the n-way limited explicit representation with both represen-

tation aware propagation and dynamic symmetry breaking is identical to the

occurrence representation. Both can represent a value being forbidden from the

set and both also represent a value being propagated to always be in the set.

Furthermore, neither allows any other form of propagation. Dynamic symmetry

breaking ensures multiple symmetric images of the same partial assignment are

not checked.

141

Chapter 8. Breaking Symmetry in Representations

8.6 Conclusion

Correctly handling symmetry is an important part of constraint programming.

By storing symmetries in a structured, nested manner rather than considering

the symmetry of the whole CSP as a single group it is often possible to use the

structure to handle different levels of symmetry seperately, leading to both easier

and more efficient implementations. Further, by careful analysis of symmetric

representations and the constraints on them it is possible to design specialised

symmetry breaking constraints which can improve propagation. This provides

large improvements in performance.

Finally, by understanding how symmetry of representations can cause a loss

of propagation this chapter has explained and shown a proof of principle of a new

symmetry breaking method, which proactively rather than reactively breaks sym-

metry. This can lead to exponential improvements in search size over traditional

symmetry breaking methods.

142

Chapter 9

Conclusion

This chapter summarises the strengths and limitations of this thesis and also

outlines future work which the author hopes will usefully extend the results of

this thesis. Section 9.1 provides a summary of novel contributions this thesis has

made. Section 9.2 describes the limitations and flaws in this thesis and how they

might be overcome in future work.

9.1 Summary

The aim of this thesis is to provide a useful method of comparing very different

representations of high-level types while avoiding implementation details wherever

possible. This thesis has largely achieved that goal. The definition of representa-

tions given in Chapter 4 encapsulates both replacing a single high-level variable

with a series of variables and the existing special data structures solvers use to

store these domains. The existing solving frameworks of propagators and branch-

ing have been mapped onto the definition of representations to give a framework

in which they can be studied.

This work has a number of important applications, in particular it provides

a solid framework on which to build an automated refinement system. Such a

system could apply the rules provided by this thesis automatically. This could

solve many of the huge number of choices such a system would have to make, if

allowed to refine and implement a problem using all of the techniques currently

in use in CP. While many such choices would be obvious to an expert practitioner

in the field, they must still be formalised and presented in a form suitable for a

computer.

143

Chapter 9. Conclusion

Chapter 5 defines one of the strongest possible relationships two representa-

tions can have, that one always outperforms the other in terms of search space.

In the case of variables, a number of common operations are shown to generate

dominating variable representations and this is used to show relationships be-

tween a number of representations of sets. This chapter also shows that many

common alternative representations are equivalent, despite the fact that previ-

ous research has shown differences in their performance. This is shown to arise

mainly from limitations in current solver implementations, rather than a theoret-

ical limitation. However, many representations are still incomparable under this

framework, despite the fact it may be possible to compare them on particular

problems.

Chapter 6 considers comparing representations on languages of constraints

rather than over all CSPs. This chapter demonstrates the most practically use-

ful result of the thesis, that the occurrence representation performs as well as

the complete representation on a large range of set and multiset constraints, in-

cluding subset, union, intersect and element. This provides a new method of

discussing how well representations perform which is stronger than simply that

GAC is achieved on the constraints on the representation, but instead compares

the representation against the performance of all possible other repersentations.

The only common constraints excluded are those involving the cardinality of

(multi)sets and disequality constraints.

The most commonly used constraint on which the occurrence representation

does not perform as well as the complete representation is the cardinality con-

straint. It is shown that a small set of constraints which includes cardinality and a

selection of the common set constraints can not have an efficient implementation.

This is because any representation with completely perfect GAC implementation

of all the constraints requires the implementation of the propagators of at least

one of these constraints to be NP-hard. This provides a strong theoretical limit

on how powerful such representations can be in practice if they are to remain

efficient.

Chapter 7 differs from the other chapters in the thesis by providing a number

of experiments which show some important features of the theory of representa-

tions. These experiments are not meant to provide comprehensive testing of all

representations in this thesis, rather to illustrate a few important concepts. There

are three important conclusions which can be drawn from these experiments:

• The occurrence representation outperforms a randomly generated model on

144

Chapter 9. Conclusion

problems involving many set and multisets constraints on which it is has a

completely perfect GAC implementation, even when the problem involves

other constraints.

• The occurrence and random representations perform identically well on

problems whose constraints are generated randomly.

• In general, channelling is very hard to implement in such a way that it can

improve performance of a selection of models. Given a selection of models

and no method of knowing which is best, it is almost impossible to construct

a model that can compete with a single good model in isolation.

The first two points back up the earlier chapters of the thesis, showing that

when comparing representations where no dominance hold, they must be com-

pared with respect to the constraints in the CSP being modelled. The experiments

on channelling show that it is not possible to escape categorising and comparing

models by simply attempting to use many models at once and channel them to-

gether, instead the models must be categorised as to their usefulness in isolation.

Chapter 8 explores the problems of symmetry in representations. It demon-

strates that the symmetries of representations form a useful subclass of symme-

tries which can be handled efficiently. In particular, when representations are

applied in a nested fashion, the resulting symmetry can also be handled in a

nested fashion, improving performance and simplifying implementation.

This chapter also shows that symmetry in representations can often be bro-

ken in different ways, some of which will line up much better with the problem

constraints than others. Further, this method can be generalised to a dynamic

method of proactively breaking symmetry, rather than breaking it reactively,

which can improve performance and in particular produce a case where the two

main set representations, the explicit and occurrence, become equivalent.

9.2 Limitations and Future Work

While this thesis has presented a number of results there are a number of areas

where this work can be extended and improved. Many of these relate to the fact

that this thesis has avoided any results which cannot be backed with theory and

require experiments or heuristic measures. This is important, as this means that

assuming they are correctly applied, any results of this thesis could be applied

145

Chapter 9. Conclusion

by an automated modelling system without the need to worry that a particular

heuristic may not apply to a particular problem. This has however still left a

number of areas for future work. These fall into four main areas.

Firstly, while the basic definitions of representations and propagators can

apply to any type of high-level variable, for space and time reasons they have

only been applied to sets and multisets. An obvious immediate requirement is to

try applying the same theory and principles to representations of other high-level

types, such as functions, relations and graphs. Some preliminary work suggests

in many cases this is fairly simple, in particular because many representations for

these high-level types have a strong resemblance to the occurrence and explicit

representations of sets and multisets. Another, more complex route would be to

apply the theory to less mathematical and more practical high-level types, such

as a schedule or bin packing problem. How productive this would be is unclear.

Secondly, the examples presented and some parts of the theory have ignored

propagation other than GAC. There are a number of ways in which the work

could be extended to consider other levels of propagation, some of which would

dovetail with existing work. Obvious examples of this would involve seeing where

propagators can be implemented in polynomial time and where simpler forms of

propagation are equivalent to GAC. Further, considering if a representations has

a completely perfect implementation with respect to some form of propagation

other than GAC would be more complex, but possible.

Thirdly, channelling and joining representations has been looked at in only

a preliminary fashion. The two main results in this area, showing how joining

equivalent representations is not useful and channelling between very different

representations in general leads to worse performance, are both important. How-

ever, it may still be that the non-equivalent representations which arise in practice

can still be usefully channelled.

Finally, possibly the most major limitation of this thesis is a lack of immediate

practical application to choosing representation in real-world problems containing

many constraints. While it is possible to find problems where some representation

is perfect, there has been no attempt to discuss what should be done in other

cases. Attempting to encapsulate a “proportion of perfectness” for a representa-

tion would allow the theory to be applied more widely. There are a number of

problems with trying to construct such a theory.

Preliminary experiments suggest trying to measure this with a single numerical

value, for example the proportion of values left after propagation, works well

146

Chapter 9. Conclusion

for random representations and random constraints, but performs very badly

on more structure representations and constraints. Further, constraints which

are not symmetric, so as lexicographic ordering, can perform very differently

depending on what order variables are assigned. This must be researched however,

as heuristics in this area would appear a necessity to be able to implement an

automated refinement system.

147

List of References

[1] KIDS: A Knowledge-Based Software Development System, 1991.

[2] L. Abraido-Fandino. An overview of REFINETM 2.0. In Proceedings of the

Second International Symposium on Knowledge Engineering, Madrid, Spain,

1987.

[3] K. Apt. Principles of Constraint Programming. Cambridge University Press,

2003.

[4] Rolf Backofen and Sebastian Will. Excluding symmetries in constraint-based

search. In Proceedings of CP ’99, pages 73–87, 1999.

[5] N. Barnier and P. Brisset. Solving the kirkman’s schoolgirl problem in a few

seconds. In Proceedings of CP ’02, 2002.

[6] Christian Bessière, Emmanuel Hebrard, Brahim Hnich, and Toby Walsh.

Disjoint, partition and intersection constraints for set and multiset variables.

In Proceedings of CP ’04, 2004.

[7] Christian Bessière, Jean-Charles Régin, Roland H. C. Yap, and Yuanlin

Zhang. An optimal coarse-grained arc consistency algorithm. Artificial In-

telligence, 165(2):165–185, 2005.

[8] James R. Bitner and Edward M. Reingold. Backtrack programming tech-

niques. Communications of the ACM, 18(11):651–656, 1975.

[9] W. Bosma and J. Cannon. Handbook of MAGMA functions. Sydney Uni-

versity, 1993.

[10] Andrei Bulatov, Peter Jeavons, and Andrei Krokhin. Classifying the com-

plexity of constraints using finite algebras. SIAM Journal of Computing,

34(3):720–742, 2005.

148

LIST OF REFERENCES

[11] M. Cadoli, G. Ianni, L. Palopoli, A. Schaerf, and D. Vasile. NP-SPEC: An

executable specification language for solving all problems in NP. Computer

Languages, 26:165–195, 2000.

[12] A.M. Cheadle, W. Harvery, A. J. Sadler, J. Schimpf, K. Shen, and M.G. Wal-

lace. ECLiPSe: An introduction. Technical Report IC-Parc-03-1, Imperial

College London, 2003.

[13] B. M. W. Cheng, Kenneth M. F. Choi, Jimmy Ho-Man Lee, and J. C. K. Wu.

Increasing constraint propagation by redundant modeling: an experience

report. Constraints, 4(2):167–192, 1999.

[14] Stephen Cook and Robert Reckhow. On the lengths of proofs in the proposi-

tional calculus (preliminary version). In STOC ’74: Proceedings of the sixth

annual ACM symposium on Theory of computing, pages 135–148, New York,

NY, USA, 1974. ACM Press.

[15] Stephen A. Cook. The complexity of theorem-proving procedures. In STOC

’71: Proceedings of the third annual ACM symposium on Theory of comput-

ing, pages 151–158, New York, NY, USA, 1971. ACM Press.

[16] J. Crawford. A theoretical analysis of reasoning by symmetry in first-order

logic. In AAAI Workshop on Tractable Reasoning, 1992.

[17] Romuald Debruyne and Christian Bessière. Some practicable filtering tech-

niques for the constraint satisfaction problem. In Proceedings of IJCAI ’97,

pages 412–417, Nagoya, Japan, 1997.

[18] Grégoire Dooms, Yves Deville, and Pierre E. Dupont. CP(Graph): Introduc-

ing a graph computation domain in constraint programming. In Proceedings

of CP ’05, pages 211–225, 2005.

[19] Iván Dotú, Alvaro del Val, and Manuel Cebrián. Redundant modeling for the

quasigroup completion problem. In Proceedings of CP ’03, pages 288–302,

2003.

[20] Niklas Een and Niklas Sörensson. An extensible SAT-solver [ver 1.2].

[21] P. Flener, A.M. Frisch, B. Hnich, Z. Kiziltan, IM, J. Pearson, and T. Walsh.

Breaking row and column symmetries in matrix models. In P. van Henten-

ryck, editor, Proceedings of the Eighth International Conference on Principles

and Practice of Constraint Programming, pages 462–476, 2002.

149

LIST OF REFERENCES

[22] P. Flener, J. Pearson, and M. Agren. Introducing ESRA, a relational lan-

guage for modelling combinatorial problems. In Proceedings of LOPSTR ’03:

Revised Selected Papers, volume 3018 of LNCS.

[23] Pierre Flener, Alan M. Frisch, Brahim Hnich, Zeynep Kiziltan, Ian Miguel,

and Toby Walsh. Exploiting common patterns in constraint programming. In

International Workshop on Reformulating Constraint Satisfaction Problems,

2002.

[24] E.C. Freuder. A sufficient condition for backtrack-free search. Journal of the

ACM, 29(1):24–32, 1982.

[25] Eugene C. Freuder. Synthesizing constraint expressions. Communications of

the ACM, 21(11):958–966, 1978.

[26] Alan Frisch, Brahim Hnich, Zeynep Kiziltan, Ian Miguel, and Toby Walsh.

Global constraints for lexicographic orderings. In Proceedings of CP’02, 2002.

[27] Alan M. Frisch, Matthew Grum, Christopher Jefferson, Bernadette Mart́ınez

Hernández, and Ian Miguel. The design of essence: A constraint language for

specifying combinatorial problems. In Manuela M. Veloso, editor, Proceedings

of IJCAI ’07, pages 80–87, 2007.

[28] Alan M. Frisch, Christopher Jefferson, Bernadette Mart́ınez Hernández, and

Ian Miguel. The rules of constraint modelling. In Proceedings of IJCAI ’05,

2005.

[29] A.M. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, and T. Walsh. Multiset ordering

constraints. In 18th International Conference in AI, 2003.

[30] A.M. Frisch, C. Jefferson, and I. Miguel. Constraints for breaking more row

and column symmetries. In Proceedings of CP ’03, 2003.

[31] The GAP Group. GAP – Groups, Algorithms, and Programming, Version

4.2, 2000. (http://www.gap-system.org).

[32] Michael R. Garey and David S. Johnson. Computers and Intractability; A

Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York,

NY, USA, 1990.

[33] Pieter Andreas Geelen. Dual viewpoint heuristics for binary constraint satis-

faction problems. In ECAI ’92: Proceedings of the 10th European conference

150

LIST OF REFERENCES

on Artificial intelligence, pages 31–35, New York, NY, USA, 1992. John Wi-

ley & Sons, Inc.

[34] I. P. Gent, W. Harvey, and T. Kelsey. Groups and constraints: Symmetry

breaking during search. In Proceedings of CP ’02, pages 415–430, 2002.

[35] I. P. Gent, W. Harvey, T. Kelsey, and S. Linton. Generic SBDD using

computational group theory. In Proceedings of CP ’03, pages 333–347, 2003.

[36] Ian P. Gent, Christopher Jefferson, and Ian Miguel. Minion: A fast scalable

constraint solver. In Proceedings of ECAI ’06, pages 98–102, 2006.

[37] Ian P. Gent, Tom Kelsey, Steve Linton, Iain McDonald, Ian Miguel, and

Barbara M. Smith. Conditional symmetry breaking. In Peter van Beek,

editor, CP, volume 3709 of Lecture Notes in Computer Science, pages 256–

270. Springer, 2005.

[38] Ian P. Gent and Barbara M. Smith. Symmetry breaking in constraint pro-

gramming. In Werner Horn, editor, Proceedings of ECAI 2000, pages 599–

603. IOS Press, 2000.

[39] Carmen Gervet. Conjunto: constraint logic programming with finite set do-

mains. In Maurice Bruynooghe, editor, Logic Programming - Proceedings of

the 1994 International Symposium, pages 339–358, Massachusetts Institute

of Technology, 1994. The MIT Press.

[40] W. Harvey and P.J. Stuckey. Improving linear constraint propagation by

changing constraint representation. Constraints, 8[2]:173–207, 2003.

[41] Warwick Harvey. Symmetry breaking and the social golfer problem. In

Proceedings of SymCon’01: Symmetry in Constraints, pages 9–16, 2001.

[42] P. Van Hentenryck. The OPL optimization programming language. The MIT

Press, 1999.

[43] Pascal Van Hentenryck, Yves Deville, and Choh-Man Teng. A generic arc-

consistency algorithm and its specializations. Artificial Intelligence, 57(2-

3):291–321, 1992.

[44] B. Hnich, B.M. Smith, and T. Walsh. Dual modelling of permutation and

injection problems. Journal of Artificial Intelligence Research, Volume 21.

[45] Brahim Hnich. Function Variables for Constraint Programming. PhD thesis,

Uppsala, 2004.

151

LIST OF REFERENCES

[46] Joey Hwang and David G. Mitchell. 2-way vs. d-way branching for CSP. In

Proceedings of CP ’05, pages 343–357, 2005.

[47] ILOG S.A. ILOG Solver 5.3 Reference and User Manual, 2002.

[48] Chris Jefferson, Tom Kelsey, Steve Linton, and Karen Petrie. Gaplex: Gen-

eralized static symmetry breaking. In Frédéric Benhamou, Narendra Jussien,

and Barry O’Sullivan, editors, Trends in Constraint Programming, chapter 9,

pages 191–205. ISTE, London, UK, May 2007.

[49] Zeynep Kiziltan and Toby Walsh. Constraint programming with multisets.

Proceedings of the 2nd International Workshop on Symmetry in Constraint

Satisfaction Problems (SymCon-02), 2002.

[50] Vitaly Lagoon and Peter J. Stuckey. Set domain propagation using ROBDDs.

In Proceedings of CP ’04, 2004.

[51] Y. C. Law and J. H. M. Lee. Algebraic properties of CSP model operators.

In Proceedings of the International Workshop on Reformulating Constraint

Satisfaction Problems: Toward Systematisation and Automation, pages 57–

71, 2002.

[52] Y. C. Law and J. H. M. Lee. Model induction : a new source of CSP model

redundancy. In AAAI, 2002.

[53] S. Linton. Finding the smallest image of a set. In Proceedings of ISSAC 04,

pages 229–234. 2004.

[54] Alejandro López-Ortiz, Claude-Guy Quimper, John Tromp, and Peter van

Beek. A fast and simple algorithm for bounds consistency of the alldifferent

constraint. In IJCAI, pages 245–250, 2003.

[55] E. Luks and A. Roy. Symmetry breaking in constraint satisfaction. In Intl.

Conf. of Artificial Intelligence and Mathematics, 2002.

[56] Alan K. Mackworth. Consistency in networks of relations. Technical report,

Vancouver, BC, Canada, Canada, 1975.

[57] C. Mears, M. Garcia de la Banda, and M. Wallace. On implementings sym-

metry detection. In Proceedings of SymCon’06, 2006.

[58] Michela Milano and Willem J. van Hoeve. Reduced cost-based ranking for

generating promising subproblems. In Proceedings of CP ’02, pages 1–16,

London, UK, 2002. Springer-Verlag.

152

LIST OF REFERENCES

[59] Roger Mohr and T.C. Henderson. Arc and path consistency revisited. Arti-

ficial Intelligence, 28:225–233, 1986.

[60] Ugo Montanari. Networks of constraints: Fundamental properties and ap-

plications to picture processing. Inf. Sci., 7:95–132, 1974.

[61] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and

Sharad Malik. Chaff: Engineering an Efficient SAT Solver. In Proceedings

of the 38th Design Automation Conference (DAC’01), 2001.

[62] Karen E. Petrie. Constraint Programming, Search and Symmetry. PhD

thesis, University of Huddersfield, 2005.

[63] Steve Prestwich and Andrea Roli. Symmetry breaking and local search

spaces. In Second International Conference on Integration of AI and

OR Techniques in Constraint Programming for Combinatorial Optimization

Problems, 2005.

[64] J.-F. Puget. On the satisfiability of symmetrical constraint satisfaction prob-

lems. In Methodologies for Intelligent Systems (Proceedings of ISMIS’93),

volume 689 of LNAI, pages 350–361. Springer, 1993.

[65] Jean-Francois Puget. Automatic detection of variable and value symmetries.

In Proceedings of CP ’05, pages 475–489, 2005.

[66] Colin R. Reeves, editor. Modern heuristic techniques for combinatorial prob-

lems. John Wiley & Sons, Inc., New York, NY, USA, 1993.

[67] Jean-Charles Régin. A filtering algorithm for constraints of difference in

CSPs. In Proceedings of 12th National Conference on AI (AAAI’94), vol-

ume 1, pages 362–367, 1994.

[68] Andrea Rendl, Ian P. Gent, and Ian Miguel. Tailoring solver-independent

constraint models: A case study with essence’ and minion. In Proceedings of

SARA 07, 2007.

[69] Francesca Rossi, Charles Petrie, and Vasant Dhar. On the equivalence of

constraint satisfaction problems. In Luigia Carlucci Aiello, editor, ECAI

’90, pages 550–556, Stockholm, 1990. Pitman.

[70] Francesca Rossi, Peter van Beek, and Toby Walsh. Handbook of Constraint

Programming (Foundations of Artificial Intelligence). Elsevier Science Inc.,

New York, NY, USA, 2006.

153

LIST OF REFERENCES

[71] Andrew Sadler and Carmen Gervet. Hybrid set domains to strengthen con-

straint propagation and reduce symmetries. In Proceedings of CP ’04, pages

604–618, 2004.

[72] J.T. Schwartz, R.B.K. Dewar, E. Dubinsky, and E. Schonberg. Programming

With Sets : An Introduction to SETL. Springer-Verlag, 1986.

[73] Ilya Shlyakhter. Generating effective symmetry-breaking predicates for

search problems. Discrete Applied Mathematics, 2002.

[74] B. Smith. Reducing symmetry in a combinatorial design problem. Technical

report, University of Leeds, 2001. RR 01, University of Leeds (UK), School

of Computer Studies, 2001.

[75] The Geocode team. Generic constraint development environment.

[76] Toby Walsh. Consistency and propagation with multiset constraints: A

formal viewpoint. In Proceedings of CP ’03, 2003.

[77] Stephen J. Westfold and Douglas R. Smith. Synthesis of efficient constraint

satisfaction programs. Knowledge Engineering Reviews, 2001.

154

