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Chapter 1

Introduction

A considerable part of the current research in theoretical computer science finds
its roots in Cobham’s thesis that problems solvable in practice are those with
polynomial-time algorithms [41]. This has certainly proved to be a powerful in-
sight: polynomial-time problems are usually easier to solve than NP-hard ones,
and the study of complexity classes closed under polynomial-time reductions has
raised deep questions about the structure of combinatorial problems. When the
limitations of Cobham’s thesis are discussed, the same argument is often heard:
there are impractical polynomial-time algorithms. Recently, the spectacular per-
formance improvement of SAT solvers, which sometimes handle instances with
millions of variables and prove nontrivial theorems on their own [88], suggests
that there may exist reasonably practical exponential-time algorithms as well.

Ironically, the scientific community that studies the Constraint Satisfaction
Problem (CSP) can be partitioned into two groups that are in perfect contradic-
tion with Cobham’s thesis. The design of exponential-time algorithms is left into
the hands of researchers whose main goal is practical solving, while in the mean-
time complexity theorists have built an impressive catalog of subproblems with
sophisticated polynomial-time algorithms and zero applications.

The present work is an attempt to bring this literature on tractable subprob-
lems closer to being useful. The apparent lack of ambition of this statement is
better understood with a measure of the obstacles that must be overcome. First,
many of these tractable classes are defined by elusive algebraic properties and more
often than not the complexity of testing for them is unknown. Second, hoping that
practical CSP instances would fall readily into these highly structured classes on
a regular basis is probably unrealistic, so mechanisms must be designed in order to
make the framework more adaptable. Third, some of those polynomial-time algo-
rithms were not designed with performance in mind and have critical flaws, such
as an exponential dependency on the domain size. Fourth and last, the definition
of CSP used in most theoretical works does not leave room for one of the most
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widely used feature of constraint solvers, global constraints.
There has been remarkably little research on these issues, but we find they

are fertile grounds for both theoretical and practical investigation. In this thesis
we tend to stay on the theoretical side, but draw our motivation from practical
considerations and even perform preliminary experiments to illustrate our results.

Outline of the Thesis
The necessary technical background is given in Chapter 2. The next three chapters
present our contributions:

Chapter 3 addresses the issue of CSP instances that do not quite fit in any
well-studied tractable class. We investigate the possibility of computing efficiently
a decomposition of a given instance into a reasonable number of subproblems
that belong to a fixed “target” tractable class using the framework of strong back-
doors [136]. We observe that computing optimal decompositions is almost always
NP-hard, but a refined analysis through parameterized complexity shows that for
certain tractable classes good decompositions can be found efficiently if they exist.
We also introduce partition backdoors, which are generally easier to compute but
may provide suboptimal decompositions. The content of this chapter has been
published in [11] and [34], although this manuscript contains slightly different def-
initions and a minor additional result.

Chapter 4 presents novel and highly non-trivial polynomial-time algorithms
for testing membership in tractable classes that have the property of being con-
servative. These classes have the double advantage of being very well understood
and working nicely with the partition backdoor approach developed in Chapter 3.
Our main result is a proof that the conservative tractability criterion defined by
Bulatov [21] is polynomially decidable. This is without a doubt the most signifi-
cant contribution of this thesis, as it both answers a difficult theoretical question
and sows the seeds for a potential efficient algorithm in the future (our algorithm
being at the same time polynomial-time and extremely inefficient). We get as a
byproduct of our methods an improved (“uniform”) algorithm for one of the most
important conservative tractable classes, CSP over languages admitting conserva-
tive edge polymorphisms. This chapter has been published in [31] and [30].

Chapter 5 approaches the subject of harnessing tractability in CSP from a
very different angle. It is commonplace for CSP solvers to allow modelling with
predicates: for instance, the user can state “at most k distinct values can be used
to assign these n variables”. Some predicates encapsulate NP-hard problems, and
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making meaningful deductions from these constraints is very difficult for the solver.
This time, we explore the possibility of using the (parameterized) tractability
results for the encapsulated problems in order to speed up the resolution of CSP
instances. For this, we define formally loss-less kernelization, a new variant of
kernelization dedicated to the context of constraint reasoning. We use the Vertex
Cover problem as a case study to showcase our ideas. The experimental part of
this chapter has been published in [35] and the theoretical part in [32].
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Chapter 2

Background

This chapter introduces the fundamentals of constraint satisfaction and parame-
terized complexity, which form the technical core of the present thesis. We will on
purpose present more material than is absolutely necessary in order to help the
reader understand the broader scientific context. This background will be comple-
mented by small sections spread between our contributions which will introduce
auxiliary concepts, notation and results as they are needed. We will only assume
from the reader familiarity with elementary notions of mathematics and compu-
tational complexity.

This chapter is organized as follows:

• Section 2.1 defines the Constraint Satisfaction Problem and introduces basic
notation.

• Section 2.2 is a survey of tractable classes for CSP based on restrictions of
the constraint language. This section is given special emphasis because its
content will serve as a basis for our own contributions presented in Chapters 3
and 4.

• Section 2.3 complements this survey by a quick overview of known tractable
classes obtained by imposing restrictions on the constraint (hyper)graph.
Knowledge of these tractable classes is not required to understand our results
or their significance, but we feel that omitting them would give the reader
an excessively truncated view of tractability in CSP.

• Finally, Section 2.4 introduces parameterized complexity, which will be an
integral part of our arsenal in our attempt to harness the tractable classes
presented in Section 2.2.
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We note that tractability results that do not fall within the scopes of Sec-
tions 2.2 and 2.3 exist. These tractable classes are called hybrid. However, they
are quite scattered and tend to be relatively small in general. For detailed informa-
tion on these classes, we direct the reader to the recent surveys on the complexity
of CSP [44][33].

2.1 Constraint Satisfaction Problems
The Constraint Satisfaction Problem (CSP) is a common formalism for combi-
natorial problems that can be expressed as deciding if there exists an assignment
to a set of finite-domain variables that satisfies a set of constraints. For example,
solving a system of equations over a finite field is a problem of this kind; in this
case the constraints are equations that must hold. In 3-SAT, the variables are
Boolean and constraints are ternary clauses that must be satisfied. CSP gener-
alizes both by only assuming that constraints are relations imposed on subsets of
variables. The first explicit mention of this problem is found in a 1974 paper by
Montanari [115].

Definition 1. A CSP instance is a triple (X ,D, C), where

• X is a finite set of variables;

• D is a finite set of values;

• C is a finite set of constraints, that is, pairs (SC , RC) where SC is a tuple of
variables (the scope of C) and RC ⊆ D|SC | is a relation over D.

A solution to a CSP instance is an assignment φ : X → D such that ∀(SC , RC) ∈
C, φ(SC) ∈ RC (where φ is the operation on tuples of variables obtained by com-
ponentwise application of φ). The problem is to decide if a solution exists, which
is NP-complete [99]. In this definition, variables do not come with individual
domains: variable-specific domain restrictions must be enforced using unary con-
straints. Unless explicitly stated otherwise, we will assume that all relations are
given in input as tables of tuples.
Remark 1. This last assumption has very important implications. For instance,
it implies that SAT (with unbounded clause arity) is not a subproblem of CSP.
More generally, in many areas of mathematics equations are never represented
as explicit lists of solutions. Doing so may change the complexity drastically by
inflating exponentially the input size. However, for other problems in which the
arity of the relations is naturally bounded, such as Graph k-Coloring, this
hypothesis is harmless. In the more practice-oriented literature, it is common to

12



represent a relation R as the set of tuples that is accepted by a certain polynomial-
time algorithm δR. This gives more latitude to CSP solvers for handling internally
high-arity constraints, and makes the modelling phase noticeably easier by allowing
the use of predicates. Families of relations represented intentionally are usually
called global constraints. However, with this framework for relations the problem
becomes much less interesting from a complexity-theoretic point of view since
every NP problem becomes technically a CSP with a single constraint. These
two definitions of CSP coexist peacefully in the literature because the constraint
programming community is strongly polarized; the choice of encoding for relations
is usually clear from the research topic. Unfortunately, the scope of this thesis is
quite wide and will cover both settings. We will try to reduce ambiguity as much
as possible.

Example 1. The input of the Betweenness problem is a set U of n elements
and a set T of ordered triples of distinct elements of U . The question is: is it
possible to find a total ordering >U of U such that for each triple (a, b, c) ∈ T ,
either a >U b >U c or c >U b >U a? Betweenness is NP-complete [120], and
can be easily encoded in CSP as follows. The domain is {1, . . . , n} and we have
one variable xu for each u ∈ U . Between any two distinct variables xu, xv we
add the constraint xu 6= xv. This ensures that solutions will always be bijections
between U and {1, . . . , n}. Then, for each triple (a, b, c) ∈ T we add on (xa, xb, xc)
a constraint with predicate R(xa, xb, xc) ⇐⇒ (xa > xb > xc) ∨ (xc > xb > xa),
where > is the usual ordering on N. Note that these constraints have O(n3) tuples,
so the resulting instance has polynomial size. It is easy to see that an assignment
φ is a solution to the CSP instance if and only if the ordering >U such that
a >U b ⇐⇒ φ(xa) > φ(xb) is a solution to the instance of Betweenness.

Equivalent formulations. CSP is known under multiple names. In logic, CSP
corresponds to special types of first-order formulas that allow only existential quan-
tification and conjunctions of relational predicates. These formulas are called
primitive positive. In database theory, CSP instances correspond to conjunctive
queries. CSP can also be formalized as a homomorphism problem as follows. A
signature is a finite set σ of relation symbols Ri, each with a specified arity ki. A
relational structure A over σ, or σ-structure, is a finite universe A together with
one relation RA

i ⊆ Aki for each symbol Ri ∈ σ. If I = (X ,D, C) is a CSP in-
stance and σI = {R1, . . . , Rm} is the set of all relation symbols that appear in its
constraints, the left-hand side structure of I is the σI-structure AL with universe
X and for each i, the tuples of RAL

i are the scopes of constraints whose relation
is Ri. The right-hand side structure of I is the σI-structure AR with universe D
and for each i, RAR

i is the relation Ri. The solutions to I are then exactly the
mappings φ : X → D such that φ(RAL

i ) ⊆ RAR
i for each Ri ∈ σ, or equivalently,
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the homomorphisms from AL to AR.

CSP solving. CSP is a popular choice for encoding real-world problems in
artificial intelligence and operational research. The reason is twofold: modelling
is intuitive (much more so than Integer Linear Programming or SAT), and
CSP solvers perform quite well in practice despite the obvious exponential worst-
case. For readers completely unfamiliar with practical CSP solving, let us recall
the basic skeleton of most CSP solvers.

Backtracking search. The search space is the set of all possible assignments
to the variables. The typical solver will explore depth-first a search tree,
picking a variable-value pair (x, d) at each node and branching on the two
cases x ← v and x 6= v. When the algorithm detects that the succession
of decisions leading to a node makes the instance unsatisfiable, it reverses
the last decision (it backtracks) and continues the exploration from there.
The heuristic that chooses the value (x, v) to branch on is critical as even a
single poor decision may have devastating consequences. The design of such
heuristics is one of the motivations for our results in Chapter 3.

Propagation. At each node of the search tree, the solver uses a polynomial-
time algorithm to shrink the problem by identifying inconsistent assignments.
Those rules are typically variants of local consistency methods (such as en-
forcing generalized arc-consistency, described in Section 2.2.3, Remark 2).
Propagation algorithms are delicate tradeoffs between pruning quality and
time complexity; an overzealous algorithm might backfire by spending a con-
siderable amount of time to prune assignments that would be much more
easily ruled out after a few additional decisions. The main contribution of
Chapter 5 is a novel theoretical framework for the conception of such algo-
rithms.

In modern implementations these components are often complemented with learn-
ing [53][100], which infers new valid constraints by analyzing past failures in the
search tree and has been hugely successful in SAT solvers [116]. Other features
commonly sighted include (but are not limited to) symmetry-breaking [76], local
search procedures [98] and alternative exploration strategies such as breadth-first
search and limited discrepancy search [83].

Notation. In the subsequent chapters we will manipulate CSP instances in
many ways, and for this we need to introduce some elementary notations.

Tuples and scopes. Throughout the thesis, tuples will be delimited by paren-
theses and symbols for tuples of domain values will be written in boldface.
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Given a tuple t and I ⊆ {1, . . . , |t|}, we denote by t[I] the projection of t
onto I. We will give special treatment to constraint scopes and sometimes
treat them as sets of variable occurrences rather than tuples. For instance,
if SC is a scope and we pick x ∈ SC , the operation SC\x will remove x from
SC but not every occurrence of the variable pointed by x. If C = (SC , RC)
is a constraint, t ∈ RC and x ∈ SC , we will use the shorthand t[x] for “t[i]
with i such that S[i] = x”. This will greatly alleviate the notational burden
by reducing the use of integer indexes.

Operations on CSP instances. Given a constraint C = (SC , RC) and a
subset of variables X1 ⊆ X , we denote by C[X1] the projection of C onto X1
(which is null if SC does not contain any variable in X1). The projection of a
CSP instance I = (X ,D, C) onto X1 ⊆ X is the instance I|X1 = (X1,D, C∗)
with C∗ = {C[X1] | C ∈ C}. A partial solution to I is a solution to some
projection of I. Given a subset X1 ⊆ X and an assignment ψ : X1 → D, we
denote by I[X1 ← ψ(X1)] the instance obtained from I by removing from
each constraint relation the tuples t such that t[x] 6= ψ(x) for at least one
x ∈ X1, and then projecting I onto X\X1. We will say that I[X1 ← ψ(X1)]
is the residual instance after application of the partial assignment ψ to X1.

Constraint languages. We will use R(.) and S(.) as operators that return
respectively the relation and the scope of a constraint. A constraint language
over a set D is a set of relations over D, and the language L(I) of a CSP
instance I = (X ,D, C) is the set {R(C) | C ∈ C}. We will use D(Γ) to
denote the domain of a constraint languages Γ, that is, the set of all values
that appear in at least one tuple. Because constraint languages are sets
of relations and relations are sets of tuples, we will use square brackets as
delimiters for relations to avoid confusion.

2.2 Language-based Tractable Classes
A natural way to study the fine-grained complexity of CSP is to impose a fixed
catalog of relations that are available for modelling instances and see how that
affects the complexity. This type of restriction is often referred to as non-uniform
CSP, and the rich theory that has been built around it will be the background for
many of our own contributions.

Definition 2. Let Γ be a constraint language. We denote by CSP(Γ) the restric-
tion of CSP to instances I such that L(I) ⊆ Γ.

Well-known problems which are naturally of this form are legion. For instance,
Graph k-Coloring is exactly CSP({6=k}) where 6=k is the disequality over a k-
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element domain, and k-XORSAT is CSP(Γ⊕) where Γ⊕ contains all XOR-clauses
of arity at most k. Because of the sheer diversity of possible constraint languages
Γ, one could expect a rich complexity landscape where, depending on Γ, CSP(Γ)
can be in P, NP-complete, or in one of the infinitely many intermediate complexity
classes whose existence is proven by Ladner’s Theorem [107] assuming P 6= NP.
The starting point for much of the current research is the observation that non-
uniform CSP is, from a logic point of view, the largest subclass of NP that might
contain only P and NP-complete problems [63]; in the same paper Feder and Vardi
conjectured that it is the case, at least for finite languages.

Conjecture 1 (The Dichotomy Conjecture [63]). For every finite constraint lan-
guage Γ, CSP(Γ) is either polynomial-time or NP-complete.

More that twenty years have passed and this conjecture is still open. Much
of the initial research on non-uniform CSP consisted in disparate tractability
or hardness results, with no unified framework to relate these results to each
other [129][134][96]. This issue was solved by the algebraic approach to non-
uniform CSP, formally introduced in a seminal 1997 paper by Cohen, Gyssens
and Jeavons [95] but already suggested in Feder and Vardi’s original work [63].
This approach has been the foundation of most of the recent successes [21][19][8].
The central idea is to relate the complexity of non-uniform CSP to the identities
satisfied by certain closure operations called polymorphisms.

2.2.1 Expressive Power of Constraint Languages
Let Γ be a fixed, finite constraint language. The textbook approach to prove that
CSP(Γ) is NP-complete is to pick another language Γ∗ known to be NP-complete
and patiently build gadgets for each R ∈ Γ∗ using only relations from Γ. The
strategy of the algebraic approach to CSP is to study the complexity of constraint
languages not by looking directly at the relations, but at the gadgets that can or
cannot be made from them.

What we call gadget is generally a CSP instance whose solution set, when
projected onto a specific subset of variables, is the desired relation. This notion of
“CSP plus projections” is captured by formulas called pp-definitions.

Definition 3. A relation R has a pp-definition in a constraint language Γ if it
can be defined via a formula using only relations from Γ, conjunction, existential
quantification and the equality relation.

We also say that R is expressible over Γ. By extension, a language has a
pp-definition in Γ if and only if each of its relations has one.
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Definition 4. Let Γ be a constraint language. The relational clone of Γ, denoted
by 〈Γ〉, is the set of all relations pp-definable in Γ.

If Γ∗ ⊆ 〈Γ〉, then CSP(Γ∗) is (logspace) reducible to CSP(Γ) because we can
turn every relation in Γ∗ into a gadget over Γ [95]. This improvement alone already
simplifies greatly the task of classifying the complexity of all constraint languages,
because it implies that we need not distinguish two languages that generate the
same relational clone. The next step is to find a way to characterize nicely which
relations are found in 〈Γ〉.

2.2.2 Polymorphisms
Polymorphisms are componentwise closure operations that can have the powerful
property of witnessing that a given relation R does not belong to 〈Γ〉.

Definition 5. Let Γ be a constraint language over a domain D and k > 0 be a
natural number. An operation f : Dk → D is a polymorphism of Γ if and only
if

∀R ∈ Γ, ∀t1, . . . , tk ∈ R, f(t1, . . . , tk) ∈ R

where f is the operation on tuples obtained by componentwise application of f .

The set of polymorphisms of a given constraint language contains every projec-
tion over its domain and is closed under composition. It is therefore a (concrete)
clone. The link with relational clones is made explicit in the next proposition by
Geiger, which dates back to 1968.

Proposition 1 ([75]). If Γ and Γ∗ are constraint languages over the same domain
D, then Γ∗ ⊆ 〈Γ〉 if and only if every polymorphism of Γ is a polymorphism of Γ∗.

This means in particular that in order to show that a constraint language Γ∗ is
not expressible over Γ, we need only produce a single polymorphism of Γ that does
not preserve Γ∗. Unfortunately, in the worst case the size of this polymorphism
can be exponentially large and deciding expressibility is co-NEXPTIME-hard in
general [135][133].

Intuitively, the computational hardness of a language Γ can only increase as
〈Γ〉 gets bigger. Thus, if Γ has very nontrivial polymorphisms (i.e. operations that
are polymorphisms of few relations) then 〈Γ〉 will be severely restricted and Γ has
a chance to be tractable. This relationship between relational clones and clones
of polymorphisms is quite tight as a Galois connection can be established between
the two [93].
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Example 2. Let us consider the language Γ3-LINp of all 3-variables linear equations
over GF(p) for a given prime natural number p ≥ 2. CSP(Γ3-LINp) is easily seen
as polynomial-time via Gaussian elimination, and thus it must admit nontrivial
polymorphisms. Let R(x, y, z) ⇐⇒ ax+ by + cz = d be an equation over GF(p),
and let f be such that f(d1, d2, d3) = d1 − d2 + d3. Observe that if (t1, t2, t3) =
((x1, y1, z1), (x2, y2, z2), (x3, y3, z3)) are tuples of R then

a f(x1, x2, x3) + b f(y1,y2, y3) + c f(z1, z2, z3)
= a (x1 − x2 + x3) + b (y1 − y2 + y3) + c (z1 − z2 + z3)
= d

and hence f(t1, t2, t3) ∈ R. This means that f is a polymorphism of Γ3-LINp ; this
type of group-theoretic polymorphism is highly nontrivial and is a particular case
of Mal’tsev polymorphisms, which will be discussed in Section 2.2.4.

Now, we can start asking the important question: what makes a polymorphism
desirable? We aim to identify polymorphisms that imply the tractability of any
language they preserve, so they must enforce a strong structural property to the
relational clone or, equivalently, to the clone of polymorphisms. The study of such
properties is the main topic of universal algebra, and they are usually presented
in the form of identities satisfied by the operations (here, polymorphisms), where
identities are universally quantified equations over operation symbols and domain
variables.

Throughout the thesis we will make use of a number of different properties for
polymorphisms, and many of them will appear in multiple sections or chapters.
For simplicity, we have gathered them in the next definition. The wavy equality
sign ≈ signifies that the variables (x, y, z, etc.) are universally quantified over the
domain.

Definition 6. Let f be an operation of arity k. We say that f is

• idempotent if
f(x, . . . , x) ≈ x

• conservative if ∀(x1, . . . , xk),

f(x1, . . . , xk) ∈ {x1, . . . , xk}

• a Siggers operation if k = 4 and

f(y, x, y, z) ≈ f(x, y, z, x)
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• a weak near-unanimity (WNU) operation if k ≥ 3 and

f(y, x, x, . . . , x, x) ≈ f(x, y, x, . . . , x, x) ≈ . . . ≈ f(x, x, x, . . . , x, y)

• a near-unanimity (NU) operation if k ≥ 3 and

f(y, x, x, . . . , x, x) ≈ f(x, y, x, . . . , x, x) ≈ . . . ≈ f(x, x, x, . . . , x, y) ≈ x

• a majority operation if k = 3 and

f(x, x, y) ≈ f(x, y, x) ≈ f(y, x, x) ≈ x

• a minority operation if k = 3 and

f(x, x, y) ≈ f(x, y, x) ≈ f(y, x, x) ≈ y

• a Mal’tsev operation if k = 3 and

f(x, x, y) ≈ f(y, x, x) ≈ y

• a generalized majority-minority (GMM) operation if k ≥ 3, and
∀(a, b) either

∀(x, y) ∈ {a, b}, f(y, x, . . . , x) = f(x, y, . . . , x) = . . . = f(x, x, . . . , y) = x

or
∀(x, y) ∈ {a, b}, f(y, x, . . . , x) = f(x, x, . . . , y) = y

• a (k-1)-edge operation if k ≥ 3 and

f(x, x, y, y, y, . . . , y, y) ≈ y

f(x, y, x, y, y, . . . , y, y) ≈ y

f(x, y, y, x, y, . . . , y, y) ≈ y

f(x, y, y, y, x, . . . , y, y) ≈ y

. . .

f(x, y, y, y, y, . . . , x, y) ≈ y

f(x, y, y, y, y, . . . , y, x) ≈ y

• a totally symmetric (TS) operation (or set operation) if ∀(x1, . . . , xk, y1, . . . , yk),

{x1, . . . , xk} = {y1, . . . , yk} ⇒ f(x1, . . . , xk) = f(y1, . . . , yk)
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• a semilattice operation if k = 2 and

f(x, x) ≈ x, f(x, y) ≈ f(y, x), f(x, f(y, z)) ≈ f(f(x, y), z)

• a 2-semilattice operation if k = 2 and

f(x, x) ≈ x, f(x, y) ≈ f(y, x), f(x, f(x, y)) ≈ f(x, y)

These identities will allow us to present concise definitions of the most im-
portant tractable classes of languages found in the literature. Polymorphisms
have proved to be very valuable in capturing the deep computational properties
of constraint languages; in particular they have been used to make a more specific
version of Conjecture 1 that suggests a characterization of all tractable constraint
languages.

Conjecture 2 ([26]). Let Γ be a constraint language. Γ is tractable if and only if
it has a Siggers polymorphism.

This conjecture is the algebraic equivalent of the statement “a language is
tractable if and only if it cannot simulate Positive 1-in-3-SAT”, where the
“simulation” is done using a slightly improved version of pp-definability called
pp-interpretability. It can be made even more specific by assuming without loss
of generality that Γ is a digraph [63] and a core [26], that is, a language whose
unary polymorphisms (endomorphisms) are all surjective. The conjecture has been
confirmed in the case of 2- and 3-element domains [129][19], languages that contain
all possible unary relations over their domain (which are called conservative and
will be the main focus of Chapter 4) [21], and digraphs with no sinks and no
sources [8] (generalizing the Hell-Nešetřil theorem for undirected graphs [86]).

Now that we know what polymorphisms are and why they are important,
we can finally survey the major tractability results for non-uniform CSP. We
will partition them into two groups, one for each of the two main algorithmic
techniques.

2.2.3 Tractability via Local Consistency
Local consistency techniques are the most common incomplete polynomial-time
algorithms for CSP in practical works. The idea is as follows: instead of looking at
the instance as a whole, focus on subproblems with a bounded number of variables
and infer as much information as you can from them. This information will be
embodied by new constraints, which may in turn be used to refine the reasoning
made earlier on adjacent subproblems, and so on. This fundamental process is
generally referred to as constraint propagation. If a contradiction is derived on a
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subproblem then the instance has no solution. For certain constraint languages,
the converse is true.

The ideas behind local consistency fit quite well the reasoning most humans
would do when solving a CSP. Let us illustrate this with sudoku solving. What
everybody does first is to create a list of potential values for each cell, and then
review the constraints involving that cell (line, column and subtable) to see which
values can be pruned. Whenever a list has been reduced, we check if the change
can be used to prune additional values elsewhere, and so on. This is one of the
simplest form of local consistency, where we derive new constraints (lists) on size-1
subproblems (cells).

Definition 7. Let k, l be fixed natural numbers such that 1 ≤ k ≤ l. A CSP
instance is (k, l)-minimal if

• Every subset of l variables is contained in the scope of a constraint, and

• For every subset X of k variables, the projections onto X of any two con-
straints whose scopes contain X are identical.

For every fixed k, l a CSP instance I can be turned into an equivalent instance
I ′ that is (k, l)-minimal in polynomial time. The algorithm adds new “allow-all”
constraints on every size-l subset of variables, and then removes tuples from the
constraints until all projections on k variables agree. Given a language Γ, we
say that (k, l)-minimality decides CSP(Γ) if the above algorithm always derives a
contradiction on unsatisfiable instances of CSP(Γ). In this case, we say that Γ has
width (k, l). We will use width k as a shorthand for width (k, k), k-minimality for
(k, k)-minimality and say that Γ has bounded width if it has width (k, l) for some
k, l.

For SAT, unit propagation is equivalent to enforcing 1-minimality, so Horn
clauses are a simple example of width 1 language [129]. The idea was later gener-
alized to show that all constraint languages with a semilattice polymorphism have
width 1 [95]. A full characterization of width 1 languages can be found in Feder
and Vardi’s work [63], which has been subsequently reformulated in algebraic terms
by Dalmau and Pearson [50].

Theorem 1 ([50]). A constraint language Γ has width 1 if and only if it has totally
symmetric polymorphisms of all arities.

An equivalent formulation requires a single totally symmetric polymorphism of
arity D(Γ) [50].
Remark 2. A CSP instance is generalized arc consistent (GAC) if there is one
unary constraint D(x) on each variable x ∈ X , and for every d ∈ D(x) and
C ∈ C such that x ∈ S(C) there exists t ∈ R(C) such that ∀y, t[y] ∈ D(y) and
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t[x] = d [112][113]. The tuple t is called a support for the pair (x, d). 1-minimal
instances are GAC, and if I is GAC then removing from every constraint every
tuple that is not a support yields a 1-minimal instance, so GAC and 1-minimality
are almost the same property. However, enforcing GAC does not involve remov-
ing tuples from constraints of arity greater than 1 and as such this operation is
much easier to perform on instances involving intentionally-represented relations;
all that is needed is an algorithm δ+

R for each relation R that computes in polyno-
mial time the variable-value pairs that have supports in R. This algorithm δ+

R is
called a propagator, and the design of such algorithms for frequently used global
constraints is a very active research topic [124][114][14]. Propagators will be the
main motivation for the contributions presented in Chapter 5.

The set of all bijunctive clauses, defined as conjunctions of binary clauses, is
an example of language that has width (2, 3) but not width 1 [129]. On the CSP
front, connected row-convex constraints have been shown to have width 3 [56]. In
both cases, the languages have actually a stronger property than bounded width
called bounded strict width in which every consistent assignment to k variables
(for some finite k) can be extended greedily to a solution of the whole instance.
The polymorphisms characterizing bounded strict width were already identified by
Feder and Vardi (although the terminology used was different) [63], and Jeavons,
Cohen and Cooper gave a refined characterization [94]. We say that a relation
is k-decomposable if it is equivalent to the conjunction of its projections on k
variables.

Theorem 2 ([94]). Let Γ be a constraint language and k ≥ 3. The following
statements are equivalent:

• Γ has strict width k;

• Γ has a near-unanimity polymorphism of arity k;

• Every R ∈ 〈Γ〉 is (k − 1)-decomposable.

While all width 1 and bounded strict width languages were identified at the
early times of the algebraic era, progress on other languages on the bounded width
hierarchy has been quite slow (aside from Bulatov’s proof that languages with a
2-semilattice polymorphism have width 3 [18]). In Feder and Vardi’s original work,
a conjecture was formulated: every core constraint language Γ has either bounded
width or the ability to count, which is informally the ability to simulate linear
equations over a finite field [63]. More than fifteen years later, this conjecture was
confirmed by Barto and Kozik [7] and a simple polymorphism-based characteriza-
tion was given in [102].
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Theorem 3 ([7][102]). A constraint language Γ has bounded width if and only if it
has two weak near-unanimity polymorphisms f, g of respective arities 3, 4 satisfying

f(x, x, y) ≈ g(x, x, x, y)

Note that [7] only establish this result for core constraint languages, but it can
easily be extended to the general case (see e.g. Lemma 6.4 of [37]). This condition
is equivalent to having weak near-unanimity polymorphisms of all arities greater
than 3. The tractable class of all languages of bounded width is very general, but
at first sight it could suffer from a scalability problem: enforcing (k, l)-minimality
is exponential-time in l, which can potentially be arbitrarily large depending on
Γ. A surprising result, obtained independently by Bulatov and Barto, shows that
every language of bounded width has width (2, 3) [6][20][23]. Combining this result
with [48] we can draw the following picture.

Theorem 4 ([6][48]). Let Γ be a constraint language. Exactly one of the following
statements is true:

• Γ has width 1;

• Γ has width (2, 3), but not width 2 nor width (1, l) for any l ≥ 1;

• Γ does not have bounded width.

As it is, the class of languages of bounded width seems reasonably practical
since enforcing (2, 3)-minimality is cubic time. In a very recent development, it was
shown that enforcing singleton linear arc consistency (SLAC), a consistency notion
weaker than (2, 3)-minimality, is an alternative decision procedure for languages
of bounded width [101]. Enforcing SLAC is quadratic time. This series of highly
nontrivial results is an edifying example of the impressive progress made in the
understanding of tractable classes during the past decades.

2.2.4 Tractability via Few Subpowers
We have seen in the last section that the only obstruction to solvability by local
consistency methods is the ability to simulate linear equations over a prime field.
This leads us directly to the second major algorithmic technique, which can handle
those equations as it generalizes Gaussian elimination. This type of algorithm
differs fundamentally from local consistency methods as it uses polynomial-sized
representations of all solutions to reason directly on the whole set of variables. For
instance, the solution set of a system of homogeneous linear equations is a vector
space, which can be represented very efficiently by a basis and the table of the
field operations. In the few subpowers algorithm, the encoding of relations is very
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similar: a small subset of tuples is kept (a generating set), and polymorphisms are
used to combine them.

Initially, this generating set approach was borrowed from group theory [63]
but since then it has been extended to more general algebras. The first major
breakthrough of the approach was Bulatov’s proof that the existence of a Mal’tsev
polymorphism implies tractability.
Theorem 5 ([17]). Every constraint language that admits a Mal’tsev polymor-
phism is tractable.

The original proof was very involved, but it has been greatly simplified over
the years [24][61]. The most recent algorithm encodes relations (i.e. solution sets)
using frames, which are generating sets whose size is linear in both the domain
size and the relation arity, and whose closure under the Mal’tsev polymorphism
is the original relation [61]. The algorithm for solving CSP instances assuming a
Mal’tsev polymorphism starts from a frame of the solution set of an instance with
no constraints (i.e. Dn) and then adds the constraints one by one, updating the
frame at each step. The final frame is empty if and only if the instance does not
have a solution.

The first notable generalization of Bulatov’s result was obtained by Dalmau.
Theorem 6 ([47]). Every constraint language that admits a generalized majority-
minority polymorphism is tractable.

Because near-unanimity polymorphisms are also generalized majority-minority
polymorphisms, the languages they preserve can be solved by both local consis-
tency and algorithms based on polynomial-sized representations.

The conclusion of this line of work was reached in [91] and [10] with a neces-
sary and sufficient condition for this algorithmic technique to be applicable: the
existence of an edge polymorphism.
Theorem 7 ([91]). Every constraint language that admits an edge polymorphism
is tractable.

The algorithm for CSP over a language with an edge polymorphism is usually
referred to as the few subpowers algorithm (hence the title of this section). If a
language Γ does not have an edge polymorphism, the number of distinct relations
of arity r in 〈Γ〉 grows too fast with r for compact representations to exist [10], so
this result determines precisely the reach of methods based on generating sets.

2.3 Structural Tractable Classes
In the relational structure homomorphism formulation of CSP seen in Section 2.1,
non-uniform CSP corresponds to the case where the right-hand side structure is
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fixed. A class of CSP is said to be structural if the left-hand side structure is
restricted instead (but not fixed, because it would be trivially polynomial-time).
None of our contributions will involve directly structural classes of CSP, but we
feel that a quick overview would help the reader understand the big picture.

A hypergraph is a pair (V,E) where V is a finite set of vertices, and E is a
collection of non-empty subsets of V called hyperedges. A graph is an hypergraph
with only size-2 hyperedges, which are called edges.

Definition 8. The constraint hypergraph of a CSP instance (X ,D, C) is the
hypergraph (X , {S(C) | C ∈ C}).

Definition 9. The primal graph of a CSP instance (X ,D, C) is the graph (X , E)
such that (x, y) ∈ E if and only if there exists C ∈ C such that {x, y} ⊆ S(C).

Like many other combinatorial problems, CSP is hard because of feedback
effects. Restricting the primal graph to be acyclic turns arc-consistency into a
complete decision procedure for CSP, and thus this fragment is tractable [54].
More generally, this property of having limited feedback can be extended using
tree decompositions.

Definition 10. Let G = (V,E) be a graph. A tree decomposition of G is a
tree T = ({V1, . . . , Vn}, ET ) whose vertices are subsets of V and such that

(i) ∪i∈{1,...,n}Vi = V ;

(ii) ∀e ∈ E, there exists i such that e ⊆ Vi;

(iii) ∀v ∈ V , the sets Vi that contain v form a connected subtree of T .

The width of a tree decomposition is the size of the largest set Vi minus one,
and the treewidth of a graph is the minimum width possible over all its tree de-
compositions. The following theorem by Grohe shows the full strength of tree
decompositions.

Theorem 8 ([80]). Let G be a recursively enumerable class of graphs. Assuming
FPT 6= W[1]1, the restriction of CSP to instances whose primal graph is in G is
polynomial-time if and only if G has bounded treewidth.

The straightforward algorithm for solving a CSP instance assuming a tree de-
composition works in a dynamic programming fashion, by computing full solution
sets of the subinstances corresponding to the set Vi starting from the leaves. The
bound on the size of each Vi ensures that the number of solutions is polynomial.

1A common complexity-theoretic assumption; additional information on these classes can be
found in Section 2.4
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An alternative is the k-consistency algorithm, which becomes a decision procedure
when the primal graph has treewidth at most k [66].

When considering restrictions on the constraint hypergraphs, the complexity
landscape becomes a bit more varied. If the restriction entails bounded arity, every
tractable case falls in the scope of Theorem 8 [80]. However, it is clear that this
cannot be the case in general. For example, if the restriction only imposes the
existence of an hyperedge that covers every vertex, the treewidth of the primal
graph is not bounded but the associated CSP is polynomial-time: this hyperedge
translates into a giant constraint that covers the whole instance, and solutions can
only be found among its tuples.

Fractional edge covers assign to each hyperedge a weight in such manner that
for each vertex v, the weights of the hyperedges that contain v sum up to 1. The
fractional edge cover number is the minimum total weight over all fractional edge
covers. Grohe and Marx [81] showed that if a restriction on constraint hypergraphs
entails a bounded fractional edge cover, not only the associated CSP is tractable
but every instance has polynomially many solutions. Recall that the dynamic
programming approach on (hyper)tree decompositions works well because each
bag of vertices has few solutions; if the two approaches are mixed by defining the
size of each bag as its fractional edge cover number rather than its number of
vertices, we obtain the tractable restriction of CSP instances whose constraint
hypergraphs have bounded fractional hypertree width. This is the most general
structural tractability result known to date, but there is no matching hardness
result.

Theorem 9 ([81]). Let H be a class of hypergraphs with bounded fractional hyper-
tree width. The restriction of CSP to instances whose constraint hypergraph is in
H is polynomial-time.

There is a certain asymmetry between the results we presented for left- and
right-hand side restrictions: in this section, we considered constraint hypergraphs
but systematically ignored the relation symbols that label each hyperedge. With
these labels taken into account the picture is not much different, as Theorem 8
carries over if H is only required to have bounded treewidth modulo homomorphic
equivalence [80].

2.4 Parameterized Complexity
It is reasonable to say that an algorithm is efficient if it scales well when the in-
stances become more difficult. Classical complexity theory is a direct application
of this statement, in which the input size is implicitly regarded as a universal mea-
sure for the intrinsic hardness of a given instance. This is quite coarse-grained;

26



maybe the algorithm performs very well on some distributions of inputs and terri-
bly on others. When this situation arises, one can only wonder: is there a better
measure of hardness than the input size?

Parameterized complexity aims to answer that question by measuring the ef-
ficiency of an algorithm as a multivariate function of both the input size and
an auxiliary measure, the parameter. The parameter will typically attempt to
measure some structural property of the instance; in graphs problems, it can for
example measure how tree-like the input graph is. If the time complexity of an
algorithm scales well when the parameter k is fixed but the input size increases,
we can narrow down the source of hardness to the structural property measured
by k. Just like classical complexity, this multivariate analysis of algorithms can
then be used to study problems.

A problem is parameterized if each instance x is paired with a nonnegative
integer k called the parameter.

Definition 11. The class XP consists of all parameterized problems that can be
solved in time O(f(k)|x|g(k)) for some computable functions f and g.

This class of problems is an immediate application of the discussion above: if
the parameter k is fixed, the complexity of the algorithm witnessing membership
in XP grows polynomially with the input size. These parameterized problems are
called slice-wise polynomial. However, XP is not what parameterized complexity
is famous for, since the vast majority of the literature is concerned with a more
ambitious class of problems.

Definition 12. The class FPT consists of all parameterized problems that can
be solved in time O(f(k)|x|O(1)) for some computable function f .

The problems in FPT are said to be fixed-parameter tractable. FPT exhibits
the same property as XP: if the parameter is fixed, an FPT algorithm becomes
polynomial-time. The major difference is that k now only contributes to the con-
stant factor, and no longer to the degree of the polynomial. This distinction yields
a huge difference in scalability because even a polynomial of degree 10 is largely
impractical.

Example 3. The Vertex Cover problem is a classical NP-complete problem
that will be discussed in depth in Chapter 5. Vertex Cover takes as input a
graph G = (V,E) and an integer p, and asks if there exists S ⊆ V of at most p
vertices that intersects every edge in E. We will use p as the parameter. Member-
ship in XP is straightforward since we can simply enumerate all |V |p subsets of at
most p vertices.

To see that Vertex Cover parameterized by p is in FPT as well, let us
consider the following algorithm A which takes as input G and a subset L of
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vertices. If L intersects every edge in E, the algorithm returns true. Then, if
|L| ≥ p we return false and otherwise we pick an edge e = (u, v) that does not
intersect with L and return A(G,L ∪ {u}) ∨A(G,L ∪ {v}). Now, let us see what
happens when we invoke A(G, ∅). If A(G, ∅) returns true, at least one recursion
call to A has been made with an input L of size at most p that intersects every
edge, so the instance of Vertex Cover is satisfiable. Conversely, if the instance
has a solution S then invoking A with L ⊂ S as input will make two recursion
calls with respectively L∪ {u} and L∪ {v} for some edge {u, v}. Because S must
intersect {u, v}, at least one of these calls will be with a set L′ ⊆ S such that
|L′| = |L| + 1 and we can repeat the same argument inductively. Eventually, a
recursion call will be made with L = S and A will return true. Therefore, because
∅ ⊆ S, A(G, ∅) will always return true if the instance is satisfiable.

The recursion tree of A has a branching factor of 2, its depth cannot exceed p
and the amount of work at each node is polynomial, so A(G, ∅) gives its answer
in time O(2p|G|O(1)). This is a simple illustration of the bounded search tree
technique which will be used in Chapter 3.

Beyond Vertex Cover a number of problems have been shown to be FPT for
parameters much better than the input size. The classes FPT and XP are nested,
with FPT known to be a strict subset of XP [60]. Between FPT and XP, Downey
and Fellows proposed a full hierarchy of intermediate parameterized classes [58]:

FPT ⊆ W[1] ⊆ W[2] ⊆ . . . ⊆ XP

where for each t, W[t] is believed to be a strict subset of W[t+1]; for instance, we
know that FPT 6= W[1] unless the Exponential Time Hypothesis fails [38]. This
hierarchy is called the W-hierarchy, or weft hierarchy. Each of these classes is closed
under fpt-reductions, which are the parameterized counterparts to polynomial-time
many-one reductions and defined as follows.

Definition 13. Let P and Q be parameterized problems. An fpt-reduction of P
to Q is an operation φ that maps every instance (x, k) of P to an instance (x′, k′)
of Q such that

• x is a yes-instance if and only if x′ is,

• φ can be computed in time O(f(k)|x|O(1)) for some computable function f ,
and

• k′ ≤ g(k) for some computable function g.

Fpt-reductions differ from polynomial-time many-one reductions in two ways:
they are allowed to be exponential-time as long as they are FPT, but they must
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preserve the parameter. The two types of reductions are in general incomparable.
Fpt-reductions provide a well-defined completeness theory for these classes, and
through this notion they give the ability to show that a problem is fixed-parameter
intractable unless there is a collapse somewhere in the W-hierarchy. For instance,
the k-Clique problem parameterized by k is W[1]-complete [59], and Dominat-
ing Set parameterized with solution size is W[2]-complete [58].

Over the years, the considerable scientific attention directed towards parame-
terized complexity has resulted in a wealth of algorithmic techniques tailored for
FPT algorithm design. Notable examples include bounded search trees (as in Ex-
ample 3), iterative compression [123], color coding [3], and LP-branching [92]; a
detailed survey of these techniques (and more) can be found in [46]. In Chapter 5
we will be particularly concerned with another technique, kernelization.

Definition 14. Let P be a parameterized problem. A kernelization of P is an
operation K that maps every parameterized instance (x, k) of P to a new instance
(x′, k′) of the same problem such that

• K can be computed in polynomial time,

• k′ ≤ g(k) for some computable function g, and

• |x′| ≤ f(k) for some computable function f .

The instance (x′, k′) is the kernel of (x, k). Kernelization is in essence a
polynomial-time preprocessing routine whose performance in reducing the problem
size is guaranteed in terms of the parameter. The philosophy is identical to that
of the class FPT, as it captures algorithms that work well when the parameter is
small. The idea is simply applied to polynomial-time preprocessing rather than
exponential-time exact algorithms. Most kernelization algorithms work using a list
of small, easily applicable reduction rules - the main technical challenge is often
to prove that when these rules are no longer applicable, the size of the instance
is bounded by a function of the parameter. Kernelization has been the subject
of extensive research, with very small kernels obtained for a variety of problems
(e.g. at most 2k vertices for Vertex Cover [118], or k6 clauses for Almost-
2-SAT [104]), and new tools have been developed to prove kernelization lower
bounds [15][87].

If a kernelization exists for a given parameterized problem, an FPT algorithm
exists as well because employing bruteforce on the kernel is FPT. An important
fact about kernelization is that the converse is true as well: if a problem is FPT,
then it can be kernelized. To see this, assume that you have an algorithm with
running time O(f(k)|x|O(1)) that solves your problem. Then, if the instance has
size at least f(k), this algorithm is actually polynomial-time and we can use it
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to compute a constant-sized kernel, which only depends on the satisfiability of
the instance. Otherwise, we can leave the instance untouched since |x| ≤ f(k).
Therefore, a kernel of size f(k) can be derived from the FPT algorithm. However,
because f(k) will typically be exponential in k, this kernel is very poor; the true
challenge is to find kernels that are polynomial-sized and as small as possible.
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Chapter 3

Backdoors into Tractable
Constraint Languages

In general, tractable classes that can be solved by an algorithm whose complexity
is a reasonable polynomial tend to be quite small, in the sense that they contain
only highly structured instances. Furthermore, even assuming that every con-
straint language that is not currently known to be NP-hard is tractable (which is
as hopeful as one can be), the probability that a language comprised of a single
loop-free random relation is tractable tends to zero as either the domain size or
the maximum arity tends to infinity [111]. This effect is even more pronounced for
random languages because they are at least as hard as each of their relations. In
practice, even though industrial CSP instances are all but random it is quite un-
likely that they fit nicely into one of the few well-studied tractable classes presented
in Chapter 2.

The viewpoint adopted in this chapter is that it is possible to make broader
use of the theoretical work on tractable classes by defining a proper notion of
distance between a given instance and an efficiently solvable restriction of CSP. In
this setting, this notion of distance to a tractable class H must be algorithmically
meaningful: the instances at distance k should be easier to solve than instances at
distance k + 1 (at least in terms of worst-case complexity), and there must exist
a reasonably fast algorithm for solving instances k-distant from H if k is small.
In the context of CSP and SAT, a natural measure of distance that satisfies
our requirements is the strong backdoor size. Informally, a strong backdoor into
a tractable class H is a subset of variables whose complete instantiation always
yields a residual instance in H. If an instance has a size-k strong backdoor B
into a class H, then it can be decomposed into at most |D|k instances in H by
branching exhaustively on the possible assignments to B. The computation of the
set B itself can be done either by enumerating all k-subsets of variables or by a
more sophisticated method. Strong backdoors were introduced in [136] with the
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original goal of explaining the performance of CSP and SAT solvers, and have
attracted significant attention in the following years [126][57][73].

When approaching strong backdoors, one must make a clear distinction be-
tween the solving phase, where the backdoor is known, and the computation of
the backdoor. If a nontrivial backdoor B is already known then regardless of its
size it is a useful information for a constraint solver, which can invoke a dedicated
algorithm whenever the backtracking search procedure has assigned every variable
in B (we omit small additional technical requirements here; variables outside B
may have been assigned as well and the instance may have been reduced by aux-
iliary inference, such as consistency algorithms). In fact, if the backdoor size k is
quite large this approach is likely to be more efficient in practice than a straight de-
composition of the instance into |D|k subproblems. For example, if a CSP instance
has 150 variables a backdoor of size 40 provides an uncompetitive decomposition
but can still allow a general backtracking algorithm to prune a large number of
branches, even if the backdoor is not used to guide the branching heuristic. As
a direct consequence, improving the worst-case complexity of the solving phase is
important but not critical for the usefulness of the framework.

The computation of the backdoor itself is a whole different matter. As k grows,
deciding if a size-k strong backdoor exists becomes increasingly difficult while the
information it would provide becomes less and less computationally relevant. The
critical point is the (approximate) value of k for which the backdoor approach no
longer yield any performance gain overall. If the backdoor detection algorithm
scales poorly with k, the threshold will be reached very quickly and the applicabil-
ity of the whole framework will be severely restricted. Therefore, it makes sense to
focus on the detection phase (instead of the solving phase) and more precisely on
algorithms that scale very favorably with the backdoor size k. To that endeavor
the use of parameterized complexity theory is natural and k is the parameter of
choice.

In this chapter we shall attempt to identify which properties of the tractable
class H affect the parameterized complexity of detecting strong backdoors into
H for the parameters k and k + r (backdoor size plus maximum arity). In a
complementary fashion we also describe partition backdoors, a relaxation of strong
backdoors that is noticeably easier to detect but may also be much larger.

3.1 Strong Backdoors
In this section we shall define formally all necessary notions and give a comprehen-
sive overview of existing results on strong backdoor theory. While strong backdoors
were originally defined in terms of subsolvers (in this case the target property is to
be solvable by a given algorithm), we opt for another definition that only requires
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the subproblems to belong to a given set of instances. This is roughly equivalent
since we can always define the target set of instances to be exactly those solvable
by the subsolver, or design the subsolver so that it only accepts the designated
instances.

Definition 15. Let I = (X ,D, C) be a CSP instance and H be a fixed set of
CSP instances. A strong backdoor of I into H is a subset of variables B ⊆ X
such that ∀φ : B → D, I[B ← φ(B)] ∈ H.

For the associated detection problem, we can either make H part of the input
or define a detection problem for every fixed H. The latter is more adapted to
our ultimate purpose, which is to identify which properties of H can make strong
backdoors into H easier to detect.

Strong H-Backdoor Detection
Input: A CSP instance I = (X ,D, C), an integer k
Question: Does I have a strong backdoor into H of size at most k?

We note that strong backdoors could easily be strengthened with additional
inference after the backdoor variables are assigned. Our definition requires that
every subproblem must belong to H, even those that are trivially unsatisfiable.
While we have no doubt that extra layers of inference (such as arc consistency)
could have a dramatic effect on the backdoor size, the backdoor is also likely to
become unrealistically hard to compute. For instance, in the context of SAT even
the very straightforward feature of empty clause detection (which adds to H every
instance that contains an empty clause) makes backdoor detection substantially
more difficult [57]. We believe that finding a form of inference that improves
sufficiently the backdoor size to counterbalance the increased computational cost
of detection is quite challenging. In this thesis we will only focus on the standard
definition of strong backdoor and leave these considerations for future work.

Example 4 (Root sets). Following [52], given a binary CSP instance I = (X ,D, C)
and a constraint C = ((x, y), R) ∈ C we write x → y (resp. y → x) if there
exists a function f : D → D such that (a, b) ∈ R ⇐⇒ b = f(a) (resp.
(a, b) ∈ R ⇐⇒ a = f(b)). If either x → y or y → x, C (and by extension
R) is said to be functional. Using the → relation, one can associate every binary
instance I with a directed graph GI that describes the functional dependencies
of the variables. One of the key ideas of [52] is that evaluating every complete
instantiation of a root set of GI (a subset of vertices B such that every vertex can
be reached from B via a directed path) is sufficient to decide the satisfiability of
I. Because of the functional dependencies, a root set is always a strong backdoor
into the set of all instances that are solved by a single call to the arc consistency
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procedure. The converse is false, but finding a minimum-size root set in a binary
CSP has the advantage of being polynomial-time [52].

Because of the complete freedom left in the definition of the class H, strong
backdoor detection covers a wide variety of problems as particular cases. For
instance, ifH is the set of all CSP instances whose constraint graph has some fixed
property P then detecting a minimum-size backdoor into H can be reformulated
as finding in the constraint graph the largest induced subgraph with property P
(or, equivalently, a minimum subset of vertices whose removal leaves a residual
graph with property P), a classical problem which has been extensively studied
for many choices of P [110][82][90][29]. Orthogonally, some forms of symmetry
breaking can be formulated in terms of strong backdoor detection. Given a CSP
instance I = (X ,D, C) a variable x ∈ X is irrelevant [16] if for every solution
φ : X → D and v ∈ D, the assignment φ′ : X → D such that φ′(y) = v if y = x
and φ′(y) = φ(y) otherwise is also a solution. The set of all irrelevant variables of
a CSP instance is exactly the complement of the minimum-size strong backdoor
into the union of CSP({Dk | k ∈ N}) with the set of all unsatisfiable instances. An
even more far-fetched example of strong backdoor detection would consider CSP
as deciding if the input instance has an empty strong backdoor to the set of all
satisfiable CSP instances. It is clear from these examples that if we wish to keep
backdoor detection from being too wild we must restrict H to tractable classes of
instances whose associated strong backdoor detection problem can be handled by
relatively homogeneous algorithmic methods.

For CSP it is natural to focus on classes H of instances that are either struc-
tural (definable by restrictions on the constraint hypergraph) or language-based
(definable by restrictions on the constraint language). This excludes degenerate
classes while still allowing most types of backdoor that have a nonzero probability
of being useful in practice.

If H is structural, the complexity of Strong H-Backdoor Detection pa-
rameterized by k is a pure graph theoretic problem. In CSP, the most interesting
case arises when H is the set of all CSP instances whose primal constraint graph
has treewidth bounded by a constant c; assuming FPT 6= W[1] and a bound on the
constraint arities every tractable structural restriction of CSP must have bounded
treewidth [80]. In this case Strong H-Backdoor Detection is (non-uniform)
FPT because the class twc+kv of all graphs obtained by adding at most k vertices
to a graph with treewidth at most c is minor-closed and hence can be recognized
in cubic time [125]. From a theoretical perspective this result essentially settles
the complexity of detecting strong backdoors into (relevant) structural restrictions
of CSP. It leaves however the practical questions completely unanswered since nei-
ther the FPT algorithm itself nor its exact complexity is known (only its existence
is proven by [125]). The most notable exception is the case c = 1 (that is, back-
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door to instances whose constraint graph is a forest) which admits a quite efficient
backdoor detection algorithm [55]. This type of backdoor (sometimes referred to
as a cycle cutset [54]) is well known to the CSP community but has yet to be
exploited in practice.

Due to the broad attention attracted by the Feder-Vardi conjecture, the liter-
ature on the complexity of CSP leans heavily towards language-based tractable
classes. However, aside from the content of this thesis the only notable results
on the complexity of Strong H-Backdoor Detection for CSP when H is
language-based are presented in [70]. Their results can be summarized as follows:
if H is characterized by a predicate on individual polymorphisms of bounded arity
then Strong H-Backdoor Detection is FPT with parameters d+ k+ r (the
combination of domain size, backdoor size, and constraint arity), W[2]-hard with
parameter k if the polymorphisms are idempotent, and W[2]-hard with parameter
k even on binary instances for a selection of common types of polymorphisms.
There is a slight redundancy between their results and those presented in the
present thesis due to the fact that they were obtained roughly at the same time
and published independently.

Beyond CSP, there is a rich literature on Strong H-Backdoor Detec-
tion for SAT, including a complexity classification of Strong H-Backdoor
Detection when H is a defined via a DPLL-based subsolver [132], one the base
classes of Schaefer’s Dichotomy Theorem [119], combinations of such classes [70]
and several generalizations [73][71]. Backdoor theory has also been extended to
valued CSP [67], answer-set programming [65], planning [105][106] and other AI
problems beyond NP [64].

The main contribution of this chapter is a series of quite general theorems that
aim to classify the parameterized complexity of Strong H-Backdoor Detec-
tion for language-based classes H. We opted to avoid using the domain size d as
a parameter because it would restrict the applicability too severely (see [70] for a
treatment of this case), and instead we focus on the parameters k and k + r.

3.2 Composite Classes
As stated in the previous section, we will focus on backdoors into language-based
classes of instances. For simplicity, from this point on we will use H to denote
classes of languages (instead of classes of instances, as we have done so far in
this chapter) and write abusively Strong H-Backdoor Detection to mean
Strong CSP(H)-Backdoor Detection. In order to achieve a homogeneous
treatment of existing tractable classes, we need a framework that is

(i) General enough to capture most tractable classes defined in the CSP liter-
ature;
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(ii) Sufficiently restrictive to permit a uniform technical approach, and in partic-
ular avoid artificial or degenerate classes for which strong backdoor detection
requires specific algorithmic techniques;

(iii) Capable of highlighting in a simple and clear fashion the key properties
of a tractable class H that are relevant to the complexity of Strong H-
Backdoor Detection.

Given the nature of most published results, it is natural to focus on language-
based classes defined by restrictions on the set of polymorphisms. The first idea
that comes to mind is to suppose that we have some predicate P on the set of all
polymorphisms of a language that holds true if and only if the language belongs to
the class H. This framework is extremely general and satisfies (i). However, to see
that it fails to satisfy (ii) it is sufficient to observe that every reasonable tractable
class of languages is closed by taking sublanguages, as any algorithm that solves
CSP(Γ) can also solve CSP(Γ′) for every Γ′ ⊆ Γ. This simple property enforces a
form of monotonicity, and by ensuring that the empty language is always in the
class it also ensures that a strong backdoor exists. However, a general predicate on
the set of all polymorphisms can for instance be designed to hold false whenever
the language has a semilattice polymorphism, which yields an artificial tractable
class that does not even contain the empty language and for which the backdoor
detection problem has very unusual properties.

Instead of predicates on the set of polymorphisms, Gaspers et al. [70] opted
for predicates on individual polymorphisms - a language Γ then belongs to the
class if and only if the predicate holds true for at least one polymorphism of Γ.
This solves the problem with (ii), but with a potential loss in expressibility since
some classical tractable classes of languages are characterized by combinations of
polymorphisms. Furthermore, our findings concerning the condition (iii) do not
fit well within this framework.

For simplicity of presentation (and with the property (iii) in mind) we opted
for a set-based approach instead of predicates. For the remainder of this chapter,
we shall assume that every class H has a decidable membership problem and is
associated with an infinite supply of domain values D(H) such that the domain
of each Γ ∈ H is a finite subset of D(H). However, we do not require that every
d ∈ D(H) belongs to at least one Γ ∈ H.

Definition 16. Let H be a class of constraint languages. We say that H is

• simple if ∀Γ, (Γ ∈ H ⇐⇒ ∀R ∈ Γ, {R} ∈ H);

• composite if there exists a set S of simple classes such that H = ∪S∈SS;

• algebraic if ∀Γ ∈ H and Γ′ ⊆ 〈Γ〉, Γ′ ∈ H;
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• idempotent if ∀Γ ∈ H and a ∈ D(H), Γ ∪ {[(a)]} ∈ H;

• conservative if ∀Γ ∈ H, c ≥ 1 and t ∈ D(H)c, Γ∪{[(t[1]), . . . , (t[c])]} ∈ H.

Note that by definition simple classes always contain the empty language. The
set S is allowed to have infinitely many elements, which is critical for generality
purpose, and using the distributivity of intersection over union together with the
fact that any intersection of simple classes is simple it is easy to see that any
class derived from simple classes using intersections and unions is composite. The
following lemma is immediate.

Lemma 1. A class H is composite if and only if ∀Γ ∈ H and Γ′ ⊆ Γ,Γ′ ∈ H.

Proof. Suppose that H is composite and let Γ′ ⊆ Γ ∈ H. By compositionality,
there exists a simple class FΓ ⊆ H such that Γ ∈ FΓ, and it follows from the
definition of simple classes that Γ′ ∈ FΓ ⊆ H. For the converse implication,
suppose that ∀Γ ∈ H and Γ′ ⊆ Γ,Γ′ ∈ H and define FΓ = {Γ′|Γ′ ⊆ Γ} for
every Γ ∈ H. For a fixed Γ, ∅ always belongs to FΓ and ∀Γ′ 6= ∅, Γ′ ⊆ Γ ⇐⇒
∀R ∈ Γ′, R ∈ Γ. Therefore, each FΓ is simple. Moreover H ⊆ ∪Γ∈HFΓ, which is
composite, and by hypothesis we have FΓ ⊆ H for every Γ ∈ H, so ∪Γ∈HFΓ ⊆ H
and finally ∪Γ∈HFΓ = H.

Corollary 1. Every algebraic class is composite.

Alternatively, composite classes can be defined directly using the property of
Lemma 1. The choice of a constructive definition involving unions of simple classes
will become clear from our results (Corollary 2 and Theorem 12 in particular). In
general, we will assume algebraicity and idempotency for our hardness results but
only compositionality for FPT algorithms.

Example 5. Let Hmax be the set of all languages over finite subsets of N that
admit the polymorphism max(., .) with respect to the usual ordering of N. This
class is tractable as any instance over a max-closed language can be solved by
establishing generalised arc consistency. Using our terminology this class is simple,
idempotent, conservative and algebraic. Now, consider instead the class Hpmax
of all languages that are max-closed with respect to at least one ordering of N.
This class is still algebraic, idempotent and conservative, but no longer simple:
R0 = [(0, 1), (1, 0), (0, 0)] is max-closed with respect to all orderings >i such that
0 >i 1, R1 = [(0, 1), (1, 0), (1, 1)] is max-closed with respect to all orderings >j

such that 1 >j 0 but {R0, R1} is not max-closed with respect to any ordering.
More generally, every class that can be defined using disjunctions of predicates
on individual polymorphisms is algebraic, and idempotent if the polymorphisms
satisfying the predicate are.
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3.3 Complexity of Strong Backdoor Detection
In general, FPT algorithms only make sense for problems that cannot be solved
in polynomial time. Therefore, before we dive into the realm of parameterized
complexity we must establish the classical hardness of Strong H-Backdoor
Detection.

Theorem 10. Strong H-Backdoor Detection is NP-hard for every idem-
potent algebraic tractable class H, even for binary CSP.

Proof. We reduce from Vertex Cover. Let I = (G, k) be an instance of Vertex
Cover and D3 = {α, β, γ} ⊂ D(H) be a set of three distinct domain values.
We consider two cases. First, suppose that Γ = {[(α, α), (β, β)], [(β, β), (γ, γ)],
[(α, α), (γ, γ)]} /∈ H. We create a CSP with one variable per vertex in G, and
if two variables correspond to adjacent vertices we add three constraints using
respectively the three relations in Γ between them. Since Γ /∈ H, every strong
backdoor into H corresponds to a vertex cover of G. Conversely, if we have a
vertex cover then after any assignment of the corresponding variables we are left
with unary constraints with at most one tuple and the resulting language is in H
by idempotency. Now, suppose instead that Γ ∈ H. For every edge (x, y) in G, we
add the constraint 6=D3 (x, y) (the disequality on D3). Since CSP( 6=D3) is NP-hard
and H is tractable, a strong backdoor must correspond to a vertex cover on G.
Furthermore, once the variables corresponding to a vertex cover on G are assigned
we are left with an instance over {[(α), (β)], [(β), (γ)], [(α), (γ)]} ⊆ 〈Γ〉. Therefore,
any vertex cover is a strong backdoor into H, which concludes the reduction.

Remark 3. This theorem does not apply in general to tractable composite classes.
For instance, let H be the set of all languages that contain only binary bijections
between subsets of D(H) or unary relations with a single tuple. This tractable
class is simple (thus composite) and idempotent, but on binary CSP Strong
H-Backdoor Detection can be solved in polynomial time using these two
observations:

(i) If there is a binary constraint R with scope (x, y) and α, β, γ such that
{(α, β), (α, γ)} ⊆ R and β 6= γ, then y must belong to every strong backdoor
into H;

(ii) If there is a unary constraint with scope (x) and strictly more than one tuple,
then x must belong to every strong backdoor into H.

These two observations define a sufficient condition for a variable to belong a
minimum-size backdoor (i.e. the identified variables must belong to every strong
backdoor into H). We shall now prove that this condition is also necessary. Since
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H is simple, we only need to show that every constraint in every residual instance
belongs to H. Suppose that we have identified a maximal set B of variables using
(i) and (ii) and let I denote a residual instance obtained after some assignment φ
to B. By rule (i), every binary constraint in I is a bijection so we only need to focus
on unary constraints. By rule (ii), if I contains a unary constraint C = ((x), R)
with more than one tuple (say, (α), (β) ∈ R) then it was produced from a binary
constraint C ′ = ((x, y), R′) of the original instance in which y ∈ B but x /∈ B.
Then, by hypothesis we had (α, φ(y)), (β, φ(y)) ∈ R′, and thus applying rule (ii)
should have also added x to B, a contradiction. Therefore, B is a strong backdoor
into H.

In the case of Boolean CSP, Theorem 10 cannot apply verbatim. This is due
to the fact that every binary Boolean language is a special case of 2-SAT and is
therefore tractable. Thus, a binary Boolean CSP has always a backdoor of size 0
to any class that is large enough to contain 2-SAT, and the minimum backdoor
problem is trivial. The next proposition shows that this is the only case for which
Strong H-Backdoor Detection is not NP-hard under the idempotency con-
dition. Note that looking for a strong backdoor in a binary Boolean CSP has no
practical interest; however this case is considered for completeness.

Proposition 2. On Boolean CSP with arity at most r, Strong H-Backdoor
Detection is NP-hard for every idempotent algebraic tractable class H if r ≥ 3.
For r = 2, Strong H-Backdoor Detection is either trivial (if every binary
Boolean language is in H) or NP-hard.

Proof. The proof is essentially identical to that of Theorem 10, only with more
cases to examine. First, suppose that every binary Boolean language is inH. Then,
if r = 2, Strong H-Backdoor Detection is trivial. If r ≥ 3, we reduce from
3-Hitting Set. Let I = (U, S, k) be an instance of 3-Hitting Set. We create a
CSP instance with one variable per element in U , and for each (ui, uj, ul) ∈ S, if
R1 = [(1, 0), (0, 1)] ∈ H we add the constraint R2 = [(1, 0, 0), (0, 1, 0), (0, 0, 1)] on
the corresponding variables and R3 = [(1, 0, 0), (0, 1, 1)] otherwise. Observe that,
since CSP({R2}) is known to be NP-hard (by a reduction from Positive 1-in-
3-SAT) and R3 ∈ 〈{R1}〉, in either case the added constraint does not belong to
H. Thus, if a backdoor of size at most k exists, then the corresponding subset of
U must be a hitting set. Conversely, let B denote the CSP variables associated
with a hitting set of size at most k. If we used the constraint R2 in the reduction,
then after a complete assignment to B the remaining constraints are a subset of
{R1, [(0)], [(1)], [(0, 0)]} which is inH sinceH is idempotent, algebraic and R1 ∈ H.
If the reduction was done using R3, after any assignment we are left with a CSP
instance whose language contains only relations with a single tuple, which always
belong to H by idempotency and algebraicity. Finally, in both cases, B is a
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backdoor of size k, which completes this part of the reduction. Now, suppose
that there exists a binary Boolean language Γ that is not in H. Once more, we
reduce from Vertex Cover. Let (G, k) be an instance of Vertex Cover and
Γ1 = {[(0, 0), (1, 1)]}. We create a CSP instance with one variable per vertex in G.
If two vertices are adjacent, we add between them the constraint of Γ1 if Γ1 /∈ H
and all constraints in Γ otherwise. By construction any strong H-backdoor of size
at most k must be a vertex cover, and the same line of reasoning as in the proof of
Theorem 10 gives us that the variables corresponding to any vertex cover of size
at most k is a strong backdoor into H, which concludes the proof.

The typical example of an algebraic tractable class that is not idempotent
(and thus does not fall into the scope of Theorem 10) is that of constant-closed
languages. We will explore strong backdoor detection for that particular case in
Section 3.3.3. Finally, while these results are enough to justify the use of pa-
rameterized complexity, they do not quite settle the classical complexity of strong
backdoor detection. This problem does not seem to be in NP in general as checking
if a subset of variables is a strong backdoor can be difficult. However, we will show
that Strong H-Backdoor Detection is in NP for many composite classes H
in Section 3.3.2.

3.3.1 Parameter k
We now consider the parameterized complexity of Strong H-Backdoor De-
tection when the parameter is k (the size of the backdoor) and show that unfor-
tunately no FPT algorithm exists unless FPT = W[2], at least when H is algebraic
and idempotent. Furthermore, we establish this result under the very restrictive
condition that the input CSP has a single constraint, which highlights the fact
that Strong H-Backdoor Detection is more that a pseudo-Hitting Set
on the constraints that do not belong to H.

For any triplet (α, β,m) ∈ D(H)2×N+ such that α 6= β and m ≥ 3, we denote
byRm

3 (α, β) the result of duplicating the last column of [(β, α, α), (α, β, α), (α, α, β)]
until the total arity becomes m. It is straightforward to see that CSP({Rm

3 (α, β)})
is NP-hard for every m,α, β by a reduction from Positive 1-in-3-SAT. In similar
fashion, we define Rm

2 (α, β) as an extension of [(β, α), (α, β)] of arity m.

Theorem 11. Strong H-Backdoor Detection is W[2]-hard for every idem-
potent algebraic tractable class H when the parameter is the size of the backdoor,
even if the CSP has a single constraint.

Proof. The proof is an FPT-reduction from Hitting Set parameterized by solu-
tion size k. Let (p,Ω, S) be an instance of Hitting Set, where Ω is the universe
(|Ω| = n) and S = {Si | i = 1..s} is the collection of p-sets. We assume without
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loss of generality that p ≥ 3 (if needed we pad each set with unique elements), and
Ss does not intersect with any other set in S. If it is not the case, we can just add
a new set of p new unique elements and increment k by one. Let (α, β, α1, . . . , αs)
be s + 2 distinct elements from D(H). We build an n-ary relation R, where each
column is associated with a value from Ω as follows.

For every Si ∈ S, we consider two cases. If {R2
2(α, β)} /∈ H, we add two tuples

t1, t2 to R such that the restriction of [t1, t2] to the columns corresponding to
the values appearing in Si form the relation Rp

2(α, β), and the other columns are
constant with value αi. If {R2

2(α, β)} ∈ H, we add 3 tuples t1, t2, t3 such that the
restriction of t1, t2, t3 to the columns corresponding to Si form Rp

3(α, β), and the
remaining columns are constant with value αi. Once the relation is complete, we
apply it to n variables to obtain an instance of our backdoor problem. See Figure
3.1 for an example of the construction.

Ω = (u1, . . . , u10)
S1 = (u3, u4, u5)
S2 = (u2, u5, u6)
S3 = (u1, u3, u7)
S4 = (u8, u9, u10)

(a) 3-Hitting Set

u1 u2 u3 u4 u5 u6 u7 u8 u9 u10
α1 α1 β α α α1 α1 α1 α1 α1
α1 α1 α β α α1 α1 α1 α1 α1
α1 α1 α α β α1 α1 α1 α1 α1
α2 β α2 α2 α α α2 α2 α2 α2
α2 α α2 α2 β α α2 α2 α2 α2
α2 α α2 α2 α β α2 α2 α2 α2
β α3 α α3 α3 α3 α α3 α3 α3
α α3 β α3 α3 α3 α α3 α3 α3
α α3 α α3 α3 α3 β α3 α3 α3
α4 α4 α4 α4 α4 α4 α4 β α α
α4 α4 α4 α4 α4 α4 α4 α β α
α4 α4 α4 α4 α4 α4 α4 α α β

(b) Constraint C

Figure 3.1: Example of reduction from a Hitting Set instance to the problem of
finding a strong backdoor into a class H such that {R2

2(α, β)} ∈ H. The reduction
produces a single constraint C.

Suppose we have a backdoor of size at most k, and suppose there exists a set
Si such that none of the corresponding variables belong to the backdoor. Then, if
we assign every variable in the backdoor to αi, the reduced constraint must belong
to H. By idempotency and algebraicity, we can further assign every remaining
variable outside of Si to the value αi and the resulting constraint must still be in
H. The reduced constraint becomes either Rp

2(α, β) if {R2
2(α, β)} /∈ H, or Rp

3(α, β),
which is not in H since H is tractable and we assume P 6= NP. In both cases, this
constraint does not belong to H, and we have a contradiction. Therefore, if there
is a backdoor of size at most k, we also have a hitting set of size at most k.

Conversely, suppose we have a hitting set L of size at most k. We prove that the
associated set of variables form a backdoor. Observe that because Ss has an empty
intersection with every other set there is no set Si such that L ⊆ Si. Therefore,
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every assignment to the variables corresponding to L that does not yield an empty
constraint must assign at least one variable to a value that is neither α nor β.
This implies that every residual constraint (after some assignment to L) is either
empty or a subrelation of a single block (i.e. pair or triple) of tuples associated
with some Si ∈ S. The latter case yields two possibilities. If H does not contain
{R2

2(α, β)}, then the block i must have been reduced to a single tuple, since the
two initial tuples t1, t2 satisfy t1[xj] 6= t2[xj] for all xj associated with a value in
Si. Thus, by idempotency and algebraicity the resulting constraint is in H. Now,
if H contains {R2

2(α, β)} the resulting constraint has at most two tuples (same
argument as above), which can only happen if no variable is assigned to β. If we
are in this situation, the new constraint must be an extension of R2

2(α, β) (with
the extra columns with constant value αi) and hence is in H by algebraicity and
idempotency. In both cases, L provides a strong backdoor into H of same size.

A version of this theorem still holds on Boolean CSP if we allow multiple
constraints in the target instance, even if these constraints are all the same relation.

Proposition 3. On Boolean CSP, Strong H-Backdoor Detection is W[2]-
hard for every idempotent algebraic tractable class H when the parameter is the
size of the backdoor, even if the CSP has a single type of constraint.

Proof. The proof is similar to the non-Boolean case, but more straightforward
since we are allowed multiple constraints. We FPT-reduce from Hitting Set
parameterized by solution size. Let (p,Ω, S) be an instance of Hitting Set,
where Ω is the universe (|Ω| = n) and S = {Si | i = 1..s} is the collection of
p-sets. We assume p ≥ 3, as we did for Theorem 11. We create a CSP instance
with one variable per element in Ω. For each set Si ∈ S, if {Rp

2(0, 1)} ∈ H
we add the constraint Rp

3(0, 1) on the variables corresponding to the values in
Si, and Rp

2(0, 1) otherwise. By construction, the language of the instance only
contains constraints outside H, so a strong backdoor of size k must intersect every
constraint and hence corresponds to a hitting set of (p,Ω, S). Conversely, the set of
variables B corresponding to a hitting set of size at most k form a backdoor: after
every assignment to B, at least one variable in each constraint is assigned, so the
language is either formed of relations with a most one tuple (if {Rp

2(0, 1)} /∈ H)
or a collection of extensions of Rp

2(0, 1) ({Rp
2(0, 1)} /∈ H) plus relations with at

most one tuple. In either case, the resulting language is in H, which concludes the
proof.

3.3.2 Combined Parameter k+r
As shown by Theorem 10 and Theorem 11, considering independently the maxi-
mum constraint arity r and the size of the backdoor k as parameters is unlikely
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to yield an FPT algorithm. In this section, we study the complexity of Strong
H-Backdoor Detection for the combined parameter k+ r and show that FPT
tractability ensues for tractable composite (but not necessarily algebraic or idem-
potent) classes H that exhibit a particular locality property.

In order to design an algorithm for Strong H-Backdoor Detection that
is FPT for k + r, it is important to have a procedure to check whether a subset
of variables of size at most k is a strong backdoor into H. The natural algorithm
for this task runs in time O(mrtdkPH(Γ)) (where m is the number of constraints,
t the maximum number of tuples and PH(Γ) the complexity of the membership
problem of a language Γ in H) by checking independently each of the dk possible
assignments to B. In our case this approach is not satisfactory: since d is not
a parameter, the term dk is problematic for the prospect of an algorithm FPT
in k + r. The next lemma presents an alternative algorithm for the “backdoor
verification” problem that is exponential only in the number of constraints m.
Although it may seem impractical at first sight (as m is typically much larger than
k), we will show that it can be exploited for many tractable classes.

Lemma 2. Let H be a composite class recognizable in time PH(Γ). Let I =
(X ,D, C) be a CSP instance with m constraints of arity at most r and containing
at most t tuples, and B ⊆ X . It is possible to decide whether B is a strong backdoor
into H in time O(mrt2 +m2r(2t)mPH(Γ)).

Proof. We first focus on a single constraint (S,R). Let BS = B ∩S. Observe that
at most t different assignments of BS can leave R nonempty, since the subrelations
of R obtained with each assignment are pairwise disjoint and their union is R.
To compute these assignments in polynomial time, one can explore a search tree.
Starting from a node labelled R, we pick a nonfixed variable v ∈ BS and for every
d ∈ D(v) such that the subrelation Rv=d is not empty we create a child node
labelled with Rv=d. Applying this rule recursively, we obtain a tree of depth at
most r and with no more than t leaves, so it has at most rt nodes. The time spent
at each node is O(t), so computing all leaves can be done in time O(rt2). Now,
suppose that for each constraint c = (S,R) ∈ C we have computed the set φc of
all locally consistent assignments to BS and stored the resulting subrelation. For
every φ ∈ ∏c∈C φc and every possible subset C ′ of the constraints, we check if the
restriction φs of φ to the constraints of C ′ is a consistent assignment (i.e., every
variable is assigned to at most one value). If φs is consistent, we temporarily remove
from the instance the constraints outside C ′, we apply the assignment φs and we
check whether the language of the resulting instance is inH. The algorithm returns
that B is a backdoor if and only if each membership test inH is successful. To prove
the correctness of the algorithm, suppose that ψ is an assignment of B such that
the resulting language is not in H. Then, at least one subset of the constraints
have degraded into non-empty subrelations. For each of these constraints, the
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restricted assignment ψR is consistent with the others, so the algorithm must have
checked membership of the resulting language in H and concluded that B is not a
strong backdoor. Conversely, if B is a strong backdoor, every complete assignment
to B yields an instance in H. In particular, if we consider only a subset of the
constraints after each assignment, the language obtained is also in H since H is
composite. Thus, none of the membership tests performed by the algorithm will
fail. The complexity of the algorithm is O(mrt2 +m2rtm2mPH(Γ)).

As a corollary, if a CSP instance has a bounded number of constraints then
we can check in polynomial time if a given subset of variables is a strong backdoor
into a polynomially recognizable class H. We now need to identify large classes
of constraint languages for which the backdoor verification problem on arbitrary
CSP instances reduces to the case where the number of constraints is bounded by
a constant. For the next definition, recall that |Γ| denotes the number of distinct
relations in Γ.

Definition 17. Let h ≥ 1 be a fixed integer. A class H is h-Helly if and only if
for every language Γ,

Γ ∈ H ⇐⇒ ∀Γh ⊆ Γ such that |Γh| ≤ h,Γh ∈ H

The minimum integer h such that H is h-Helly is the Helly number of H.

This property is analogous to its counterpart for set systems. By definition,
simple classes are exactly those with Helly number 1. Intuitively, if H has a finite
Helly number we can check if the language of a CSP instance with m constraints
belongs to H by looking at its mh possible projections on h constraints. Our FPT
algorithm for Strong H-Backdoor Detection parameterized by k + r on
classes with a finite Helly number mixes this idea with Lemma 2 and a standard
bounded search tree.

Theorem 12. For every fixed composite class H recognizable in polynomial time,
if H has a finite Helly number then Strong H-Backdoor Detection is FPT
when the parameter is k + r, where k is the size of the backdoor and r is the
maximum constraint arity.

Proof. Let h denote the Helly number of H. The algorithm is a bounded search
tree that proceeds as follows. Each node is labelled by a subset of variables B.
The root of the tree is labelled with the empty set. At each node, we examine
every possible combination of h constraints and check if B is a strong backdoor
for the subset in time O(hrt2 + h2r(2t)hPH(Γ)) (where PH(Γ) is the complexity of
deciding the membership of a language Γ in H) using Lemma 2. Suppose that B
is a strong backdoor for every h-subset. Then, for any possible assignment to B,
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each h-subset of the constraints of the resulting instance must be in H: otherwise,
B would not be a strong backdoor for the h original constraints that generated
them. SinceH is h-Helly, we can conclude that B is a valid strong backdoor for the
whole instance. Now suppose that we have found a h-subset for which B is not a
strong backdoor. For every variable x in the union of the scopes of the constraints
in this subset that is not already in B (there are at most rh such variables x), we
create a child node labelled with B ∪ {x}. At each step we are guaranteed to add
at least one variable to B, so we stop creating child nodes when we reach depth k.
The algorithm returns ‘YES’ at the first node visited that corresponds to a strong
backdoor, and ‘NO’ if no such node is found.

If no strong backdoor of size at most k exists, it is clear that the algorithm
correctly returns ‘NO’. Now suppose that a strong backdoor B, |B| ≤ k, ex-
ists. Observe that if a node is labelled with B ⊂ B and B is not a backdoor
for some h-subset of constraints, then B contains at least one more variable
within this subset. Since the algorithm creates one child per variable that can
be added and the root is labelled with a subset of B, by induction there must
be a path from the root to a node labelled with B and the algorithm returns
‘YES’. The complexity of the procedure is O

(
(rh)kmh(hrt2 + h2r(2t)hPH(Γ))

)
=

O
(
f(k + r)mh(ht2 + h2(2t)hPH(Γ))

)
.

In contrast to the previous hardness results, the target tractable class is not
required to be algebraic or idempotent. However, the class must have a finite
Helly number, which may seem restrictive. The following results aim to identify
composite classes with this particular property.

Proposition 4. Let h be a positive integer and T be a set of simple classes. Then,
H = {Γ | Γ belongs to every Ti ∈ T except at most h} is a (h+ 1)-Helly composite
class.

Proof. H is composite since it is the union of every possible intersection of all but h
classes from T and any class derived from simple classes through any combination
of intersections and unions is composite. We write T = {Ti | i ∈ I}. Let Γ be a
language such that every sublanguage of size at most h+1 is in H. For each R ∈ Γ
we define S(R) = {Ti | {R} /∈ Ti}. Simple classes are 1-Helly so Γ /∈ Ti ⇔ (∃R ∈ Γ
such that {R} /∈ Ti) ⇔ Ti ∈ ∪R∈ΓS(R). So Γ ∈ H if and only if | ∪R∈Γ S(R)| ≤ h.
We discard from Γ every relation R such that |S(R)| = 0 as they have no influence
on the membership of Γ in H. If that process leaves Γ empty, then it belongs to H.
Otherwise, let sj denote the maximum size of ∪R∈ΓjS(R) over all size-j subsets Γj
of Γ. Since each sublanguage Γj of size j ≤ h+1 is in H, from the argument above
we have 1 ≤ s1 ≤ . . . ≤ sh+1 ≤ h, thus there exists j < h+ 1 such that sj = sj+1.
Let Γj ⊆ Γ denote a set of j relations such that | ∪R∈Γj S(R)| = sj. Suppose there
exists R0 ∈ Γ such that S(R0) 6⊆ ∪R∈ΓjS(R). Then, |∪R∈Γj∪{R0}S(R)| > sj = sj+1,
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and we get a contradiction. So ∪R∈ΓS(R) ⊆ ∪R∈ΓjS(R), hence | ∪R∈Γ S(R)| ≤ h
and Γ is in H. Therefore, H is (h+ 1)-Helly.

In the particular case where T is finite and h = |T | − 1, we get the following
nice corollary. Recall that a composite class is any union of simple classes.

Corollary 2. Any union of h simple classes is h-Helly.

Example 6. Let H = {Γ | Γ is either min-closed, max-closed or 0/1/all} on the
universe D(H) = N. H is the union of 3 well-known tractable classes of languages.
By definition, min-closed and max-closed constraints are respectively the languages
that admit min(., .) and max(., .) as polymorphisms. Likewise, 0/1/all constraints
have been shown to be exactly the languages that admit as polymorphism the
majority operation [95]

f(x, y, z) =
{
y if y = z
x otherwise

Thus, H is the union of 3 simple classes and hence is 3-Helly by Corollary 2. Since
H is also recognizable in polynomial time, by Theorem 12 Strong H-Backdoor
Detection is FPT when parameterized by backdoor size and maximum arity.

In the light of these results, it would be very interesting to show a dichotomy. Is
Strong H-Backdoor Detection parameterized by k+r at least W[1]-hard for
every tractable algebraic class H that does not have a finite Helly number? While
we leave most of this question unanswered, we have identified generic sufficient
conditions for W[2]-hardness when r is fixed and the parameter is k.

Given two subsets D1, D2 of D(H) and a bijection φ : D1 → D2, we denote by
Rφ the relation [(d, φ(d)), d ∈ D1]. Given a language Γ, a subdomain D1 of D(Γ) is
said to be conservative if every polymorphism f of Γ satisfies f(x1, . . . , xm) ∈ D1
whenever {x1, . . . , xm} ⊆ D1. For instance, D(Γ′) is conservative for every Γ′ ⊆ Γ,
and for every column of some R ∈ Γ the set of values that appear in that column
is conservative.

Definition 18. A class of constraint languages H is value-renamable if for
every Γ ∈ H and φ : D1 → D2, where D1 is a conservative subdomain of Γ and
D2 ∩D(Γ) = ∅, Γ ∪ {Rφ} is in H.

Intuitively, the addition of Rφ to Γ gives the extra ability to make a copy of a
variable and replace the values in the domain of the copy with new unique symbols.
This feature does not change anything from the algorithmic point of view, and any
tractable class can be generalized to one that is value-renamable.
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Example 7. Let D(H) = N. The class Hmax of all max-closed languages is
not value-renamable: even the simple bijective relation Rφ = [(0, 3), (1, 2)] is not
max-closed, and thus adding Rφ to a Boolean language does not always preserve
membership in Hmax. However, the class of languages that are max-closed with
respect to at least one ordering of the domain is value-renamable since we can
define a polymorphism max2 of Γ ∪Rφ as follows:

max2(d1, d2) =


max(d1, d2) if {d1, d2} ⊆ D(Γ)

φ(max({φ−1(d1), φ−1(d2)})) if {d1, d2} ⊆ D2
d2 if (d1, d2) ∈ D(Γ)×D2
d1 if (d1, d2) ∈ D2 ×D(Γ)

Definition 19. A class of constraint languages H is domain-decomposable if
for each pair of languages Γ1 ∈ H and Γ2 ∈ H, D(Γ1) ∩ D(Γ2) = ∅ implies
Γ1 ∪ Γ2 ∈ H.

Note that constraints with relations from Γ1 cannot share a variable with a con-
straint from Γ2 unless the instance is trivially unsatisfiable, so again any tractable
class can be generalized to one that is domain-decomposable.

Example 8. Let Hmaj be the class of all languages with a majority polymorphism
and Hmsv be the class of all languages with a Mal’tsev polymorphism. Let Hmm =
Hmaj ∪Hmsv. Both Hmaj and Hmsv are domain-decomposable, but not Hmm since

Γ1 = {[(α1, β1), (β1, α1), (β1, β1)]} ∈ Hmaj ⊂ Hmm

Γ2 = {[(α2, α2, β2), (α2, β2, α2), (β2, α2, α2), (β2, β2, β2)]} ∈ Hmsv ⊂ Hmm

but Γ1 ∪ Γ2 /∈ Hmm if α1, β1, α2, β2 are all distinct.

Theorem 13. For CSP with arity at most r, if H is an algebraic class that is

• idempotent

• not 1-Helly (i.e. not simple) for constraints of arity at most r

• value-renamable

• domain-decomposable

then Strong H-Backdoor Detection is W[2]-hard when the parameter is k.

Proof. Since H is not 1-Helly for constraints of arity at most r, there exists a
language Γm = {Ri | i ∈ 1..lm} (of arity rm ≤ r and over a domain Dm, |Dm| = dm)
such that lm > 1 and every sublanguage of Γm is in H but Γm is not. Since H is
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(ψ1 ◦ φ1)(R2)

(ψ1 ◦ φ1)(R3)

y1
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φ2(R1)
Rψ0

2

Rψ1
2

Rψ2
2

Rψ3
2

(ψ2 ◦ φ2)(R3)

(ψ2 ◦ φ2)(R2)

Figure 3.2: Example of the construction for U = (u1, . . . , u7), two sets S1 =
(u2, u4, u5), S2 = (u1, u4, u6), Γm = {R1, R2, R3} and rm = 2. Each arrow is a
(binary) constraint. The upper part of the instance is constructed from S1 and
the lower part from S2.

fixed, we shall consider that Γm is fixed as well and hence has constant size. We
assume for simplicity of presentation that every R ∈ Γm has arity rm.

We perform an FPT-reduction from Hitting Set parameterized with solution
size as follows. Let (p, U, S) be an instance of Hitting Set, with S = {S1, . . . , Ss}
and U = {u1, . . . , un}. For every ui ∈ U , we associate a unique variable xi. For
every set Sj = (uσj(1), . . . , uσj(p)), we add 2rm new variables y1

j , . . . , y
rm
j , z1

j , . . . , z
rm
j

and we create p + 2 new disjoint domains Di
j ⊂ D(H), i ∈ [0 . . . p + 1] of size dm.

Then, we pick a chain of p+ 1 bijections ψij : Di
j → Di+1

j , i ∈ [0 . . . p] and we add
a chain of constraints Rψij

between the p + 2 variables (yrmj , xσj(1), . . . , xσj(p), z
1
j ).

Afterwards, we pick a bijection φj : Dm → D0
j and we apply φj(R1) to y1

j , . . . , y
rm
j .

In the same fashion, if we denote by ψj the bijection from D0
j to Dp+1

j obtained
by composition of all the ψij, we apply every constraint in (ψj ◦ φj)(Γm\{R1})
to the variables z1

j , . . . , z
rm
j . The main idea behind the construction is that both

Γm\{R1} and {R1} are in H but Γm is not: by adding φj(R1) on the variables
y, ψj ◦ φj(Γm\{R1}) on the variables z and the chain of bijections Rψij

on the x
variables, we have a language that is not in H but assigning any value to x yields
a residual language in H (the proof can be found below). We use this property to
encode a Hitting Set instance. See Figure 3.2 for an example of the reduction.

Suppose we have a backdoor to H of size at most k. Then, for each set Sj,
at least one variable from (y1

j , . . . , y
rm
j , xσj(1), . . . , xσj(p), z

1
j , . . . , z

rm
j ) must belong

to the backdoor. Suppose this is not the case. Then, the language Γ of any
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reduced instance would contain the relations of {φj(R1), (ψj ◦φj)(Γm\{R1})} plus
the relations Rψij

. Now, observe that

Rψj(w1, w2) = ∃w1
j , . . . , w

p
j

(
Rψ0

j
(w1, w

1
j ) ∧Rψ1

j
(w1

j , w
2
j ) ∧ . . . ∧Rψpj

(wpj , w2)
)

and therefore Rψj ∈ 〈Γ〉. Furthermore,

(ψj ◦ φj)(R1)(w1, . . . , wrm) = ∃w′1, . . . , w′rm
(
φj(R1)(w′1, . . . , w′rm)

∧Rψj(w′1, w1) ∧ . . . ∧Rψj(w′rm , wrm)
)

which implies that (ψj ◦ φj)(R1) ∈ 〈Γ〉 and thus (ψj ◦ φj)(Γm) ∈ 〈Γ〉. By the same
reasoning we have Γm ∈ 〈(ψj ◦ φj)(Γm) ∪ {R(ψj◦φj)−1}〉. By value-renamability
and algebraicity we have (ψj ◦ φj)(Γm) ∪ {R(ψj◦φj)−1} ∈ H and finally Γm ∈ H,
a contradiction. Therefore, a hitting set of size at most k can be constructed by
including every value ui such that xi is in the backdoor, and if any variable from
y1
j , . . . , y

rm
j , z1

j , . . . , z
rm
j belongs to the backdoor for some j, we also include uσj(1).

Conversely, a hitting set forms a backdoor. After every complete assignment to
the variables from the hitting set, the set of constraints associated with any set Sj
can be partitioned into sublanguages whose domains have an empty intersection
(see Figure 3.2). The sublanguages are either:

• φj(R1) together with some constraints Rψij
and a residual unary constraint

with a single tuple. This language is in H by value-renamability and idem-
potency.

• (ψj ◦φj)(Γm\{R1}) together with some constraints Rψij
and a residual unary

constraint with a single tuple. This case is symmetric.

• A (possibly empty) chain of constraints Rψij
plus unary constraints with a

single tuple, which is again in H since H is idempotent, value-renamable and
contains the language ∅.

Furthermore, the sublanguages associated with different sets Sj also have an empty
domain intersection. Since H is domain-decomposable, the resulting language is
in H.

This result does not contradict Theorem 12, since any class H that is domain-
decomposable, value-renamable and not simple cannot have a finite Helly number
(part of the proof of Theorem 13 amounts to showing that one can build in poly-
nomial time arbitrarily large languages Γ such that every sublanguage is in H but
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Γ is not). The strength of Theorem 13 lies in its generality, as it applies almost im-
mediately to many known tractable classes without having to rely on class-specific
constructions (see Figure 3.3). It is also quite easy to use as value-renamability,
domain-decomposability and non-simplicity are straightforward properties of any
large enough idempotent algebraic tractable class.

Majority (NU3)

NU4

. . .

Mal’tsev (2-edge)

3-edge

4-edge

. . .

∃k : k-edge

∃k : NUk

Semilattice

∀k : TSk 2-Semilattice

∀k ≥ 3 : WNUk

GMM3

GMM4

. . .

∃k : GMMk

Siggers

Figure 3.3: Hasse diagram of classical tractable classes in the idempotent case,
ordered by inclusion. Theorem 13 applies to each of these classes (short proofs
can be found in Appendix A). The subscript after the name of a polymorphism
denotes its arity.

3.3.3 Constant-closed Classes
The results of Section 3.3.1 and 3.3.2 are sufficient to classify the complexity of
Strong H-Backdoor Detection for most language-based tractable classes
H that can be found in the literature and could reasonably be used as targets
for backdoor detection. However, every hardness result so far has been proved
under the assumption that H is idempotent, which covers all natural polynomially
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recognizable tractable classes except one: constant-closed languages.
A language Γ is constant-closed if and only if it admits a unary polymorphism

that always map to the same value α (or, equivalently, if every nonempty rela-
tion R ∈ Γ contains the tuple (α, . . . , α)). Constant-closed languages are trivially
tractable (every instance is satisfiable - just assign every variable to α) and are far
too restricted to be interesting in practice, but form a well-known tractable class
since two of the tractable cases of Schaefer’s Dichotomy for generalised SAT corre-
spond to constant-closed languages [129]. Note that on most instances minimum-
size strong backdoor into α-closed languages for a fixed α is very likely to simply
be the set of all variables, given the very small size of the tractable class and
the non-monotonicity that is inherent to its associated strong backdoor detection
problem (even if a relation is α-closed, branching on an additional variable in the
scope is highly likely to create subrelations that are not α-closed). Still, we shall
explore the complexity of backdoor detection for these classes for completeness.
Theorem 12 tells us that detecting strong backdoors into constant-closed classes in
FPT when the parameter is k+ r, but we will see in this section that this problem
is actually polynomially solvable.

In the context of SAT, finding a minimum-size strong backdoor into 0-closed
languages (traditionally called 0-valid) has been shown in [73] to be a polynomial-
time problem. The case of 1-closed languages is symmetric. The three-line proof
states that the minimum strong backdoor into 0-closed languages is exactly the
set of variables that appear in clauses that contain only positive literals. Although
the result itself is correct, the proof provided is not satisfying as it does not take
into account the non-monotonicity discussed above. Let us consider an example
consisting of two clauses C1 = (v1∨v4∨v5) and C2 = (v1∨v2∨v3). It is clear that
{v1, v4, v5} must belong to every strong backdoor into 0-valid languages, since this
clause is not 0-valid and branching on value 0 for any variable leaves a clause that
also contains only positive literals. However, these variables do not form a strong
backdoor, because assigning v1 to the value 1 turns C2 into a clause whose literals
are all positive! A solution to this problem is simply to repeat the operation until
a fixed point is reached: initialize the candidate backdoor set B to ∅ and add
all variables appearing in any clause to B. Then, remove these variables from the
remaining clauses and repeat the operation (without reinitialising B) until the rule
does not find any variable to include in B. The correctness is straightforward.

The contribution of this section is an extension of this algorithm to CSP over
arbitrary relations. Let α be a fixed domain element, and let Hα denote the class
of all α-closed languages over a given domain D(H). Given a tuple t, we denote
by #αt the number of components in t that are equal to α. The following lemma
describes a simple trick that will be exploited by our algorithm.
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Lemma 3. Let I = (X ,D, C) be a CSP instance, C = (S,R) ∈ C, tα ∈ R be a
tuple of R such that #αtα is maximum and B be any strong backdoor into Hα.
Then,

{x ∈ S | tα[x] 6= α} ⊆ B

Proof. For the sake of contradiction, assume that there exists x ∈ S such that
tα[x] 6= α and x /∈ B. Let φ denote a partial assignment to B that maps every
value x to tα[x]. Let I ′ be the instance obtained from I by application of φ and let
(S ′, R′) be the constraint in I ′ that originates from C. Since B is a backdoor into
Hα, R′ is α-closed and contains the tuple (α, . . . , α). It follows that R contains
a tuple t∗ such that t∗[y] = tα[y] whenever y ∈ B, and t∗[y] = α otherwise. In
particular, t∗[y] = α whenever tα[y] = α and t∗[x] = α. Since tα[x] 6= α, we have
#αt∗ > #αtα, which contradicts the definition of tα.

Given an instance I = (X ,D, C) and a set of variables X ′ ⊆ X, we call (X’,α)-
obstruction an assignment φ to X ′ such that the residual instance after application
of φ is not over an α-closed language.

Theorem 14. For a fixed domain element α, Strong Hα-Backdoor Detec-
tion can be solved in polynomial time.

Proof. Let I = (X ,D, C) be a CSP instance over D(H). We initialize a set
B = ∅. We repeat the following operations until the algorithm terminates. Find
a (B,α)-obstruction φ in polynomial time using Lemma 2 and the fact that Hα is
simple. If no obstruction can be found, B is a strong backdoor into Hα and the
algorithm returns TRUE. Otherwise, let Iφ denote the residual instance obtained
after application of φ to I. Since φ is an obstruction, the language of Iφ is not
α-closed and there exists a constraint C = (S,R) in Iφ such that R does not
contain the tuple (α, . . . , α). Find a tuple tα ∈ R such that #αtα is maximum,
and add to B the set {x ∈ S | tα[x] 6= α}. This set cannot be empty since R is
not α-closed. If after the addition of new variables |B| > k, the algorithm returns
FALSE; otherwise it starts looking for a new obstruction.

We now prove the correctness of this algorithm. Let B denote a minimum-size
strong backdoor into Hα. We will prove by induction that at every iteration of
the algorithm, B ⊆ B. At the first iteration, B = ∅ ⊆ B. Now, suppose that at
iteration i we also have B ⊆ B. Then, if a (B,α)-obstruction φ exists B\B is a
strong backdoor of Iφ into Hα; therefore by Lemma 3 at iteration i + 1 we also
have B ⊆ B, which completes the induction. If the algorithm returns TRUE B is a
strong backdoor of size at most k, and if it returns FALSE then |B| ≥ |B| > k and
I has no strong backdoor into Hα of size at most k.
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In the case where H is a finite union of constant-closed classes, Strong H-
Backdoor Detection is still FPT when the parameter is k+ r by Theorem 12.
In SAT it is known that finding a strong backdoor into the union of 0-valid and
1-valid formulas is W[2]-hard when the parameter is k [70], but this hardness result
does not translate well to CSP because the extensional representation of a clause
has exponentially many tuples. This leads to the following question, which we will
leave open.

Question 1. Let U be an infinite set, c be a fixed integer, α1, . . . , αc ∈ U and
H = Hα1 ∪ . . . ∪ Hαc be the set of all languages over U that are αi-closed for at
least one index i. What is the complexity of Strong H-Backdoor Detection
parameterized by k?

3.4 Partition Backdoors
We have seen in Section 3.3.1 and Section 3.3.2 that strong backdoors are in general
quite difficult to detect, even with the backdoor size as a parameter. The FPT
cases identified in Theorem 12 do not include the most general tractable classes,
and the complexity of the algorithm depends heavily on the Helly number of the
class. In this section we introduce a relaxation of strong backdoors, partition
backdoors, which are tailored to scale well with large target tractable classes.

The concept of partition backdoors is based on two main observations:

(i) As seen in Theorem 11, backdoor detection is significantly harder than a sim-
ple hitting set on the constraints with unwelcome properties because breaking
optimally a given constraint into subrelations that belong to the target class
H is a difficult task;

(ii) Even CSP instances that have numerous constraints are often over a lan-
guage of limited size; i.e. a given relation can be used by many constraints
(typically, this happens for the disequality relation). This suggests that the
number of distinct relations used by the instance could be a reasonable pa-
rameter.

Partition backdoors solve (i) by simply ignoring what happens inside relations;
either a relation is satifying as it is or it has to be (almost) entirely removed from
the instance by branching on variables. By reasoning in terms of relations only,
partition backdoors can then exploit the observation (ii). We only define partition
backdoors for conservative tractable classes even though the idea can be extended
to idempotent classes (simply replace “a vertex cover” by “the vertex set” in the
definition below).
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Definition 20. Let I = (X ,D, C) be a CSP instance and H be a fixed algebraic
conservative tractable class. A partition backdoor of I into H is a subset of
variables B ⊆ X such that there exists a partition C1, C2 of C satisfying

• R(C2) ∈ H

• B is a vertex cover of the primal graph of C1

Proposition 5. Every partition backdoor is a strong backdoor.

Proof. Let I = (X ,D, C) be a CSP instance and B be a partition backdoor into
a conservative class H. Let C1, C2 be a partition of the constraints satisfying the
requirements of the theorem. Because B is a vertex cover of the primal graph of C1,
the scope every C ∈ C1 contains only variables in B except at most one. Therefore,
after any complete assignment to B the constraints of C1 are reduced to at most
unary constraints. The residual instance can be expressed using only constraints
in C2 plus unary relations and thus its language belongs to H by algebraicity.

Intuitively, a minimum-size partition backdoor should be a decent approxi-
mation of the minimum-size strong backdoor if most constraints are of low arity.
However, in the worst case it is clear that a minimum-size partition backdoor can
be arbitrarily larger than a minimum-size strong backdoor (see e.g. [70] for an ex-
emple of such a construction). As a minor remark, the requirement of algebraicity
is purely technical and can be omitted with a slight change in the definition of a
variable assignment. We can now define the associated detection problem.

Strong H-Partition Backdoor Detection
Input: A CSP instance I = (X ,D, C), an integer k
Question: Does I have a partition backdoor into H of size at most k?

Proposition 6. Let H be a conservative algebraic class recognizable in polynomial
time. Strong H-Partition Backdoor Detection is FPT for the parameter
k + l, where l is the size of the language of the input CSP instance.

Proof. Let I = (X ,D, C) be a CSP instance andH be a fixed algebraic conservative
class. The main observation here is that we only have to examine partitions C1, C2
of C such that R(C1) ∩ R(C2) = ∅ since otherwise we could set C ′1 = C1\{C ∈
C1 | R(C) ∈ R(C2)}, C ′2 = C2 ∪ {C ∈ C1 | R(C) ∈ R(C2)} and obtain a partition
C ′1, C ′2 of C such that (i) the vertex cover of C ′1 is no larger than that of C1, (ii)
R(C ′2) ∈ H if and only ifR(C2) ∈ H and (iii)R(C ′1)∩R(C ′2) = ∅. There are at most
2l such partitions, the membership of R(C2) in H can be checked in polynomial
time using the recognition algorithm and computing a size-k vertex cover is FPT
in the parameter k, so the claim follows.

54



Proposition 6 is at the core of the partition backdoors approach. This proposi-
tion clearly does not hold for general strong backdoors because it would contradict
Theorem 11. Note also that the algorithm scales much better with k than the al-
gorithm of Theorem 12 as Vertex Cover algorithms are very efficient and the
exponential factor is completely independent of the target tractable class. Finally,
we can observe that the reduction used to prove Theorem 13 builds an instance in
which the minimum-size strong backdoor is also a partition backdoor. Therefore,
we can transpose this result to partition backdoors without any change (aside from
dropping the requirement for idempotency since we assume thatH is conservative).

Theorem 15. For CSP with arity at most r, if H is a conservative algebraic class
that is

• not 1-Helly (i.e. not simple) for constraints of arity at most r

• value-renamable

• domain-decomposable

then Strong H-Partition Backdoor Detection is W[2]-hard for the pa-
rameter k.

3.5 Preliminary Experiments
Our results are so far purely theoretical, and going from theory to practice is
generally a giant step where clever heuristics, sophisticated data structures and
preprocessing tricks can overshadow even a terrible worst-case complexity estimate.
We see the FPT algorithms of previous sections as ethereal bricks that may be
used to design efficient methods for solving CSP, but there is still a long way to
go before backdoors (or related methods) can be explicitly used in a competitive
CSP solver.

Nevertheless, we performed preliminary experiments with partition backdoors
which already give some insight on the obstacles that will have to be overcome
in the future. We implemented a simple partition backdoor detector for the class
of all languages that have a conservative majority polymorphism. The only no-
table difference with the algorithm described in the proof of Proposition 6 is the
replacement of the generate-and-test algorithm for enumerating the 2l possible sub-
languages with a branch-and-bound paired with a nogood structure that stores the
minimal sublanguages that admit no conservative majority polymorphism. These
simple improvements alone sped up the procedure by orders of magnitude. We
performed the experiment on 191 families of instances of the XCSP repository,
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with an added singleton arc-consistency preprocessing to reduce the size of the
constraints. The maximum backdoor size was fixed at 40 variables.

Of these 191 families of instances, 135 were over languages including huge
relations (global constraints, or simply extensional relations with thousands of
tuples) that could not be handled by the detection algorithm for conservative ma-
jority polymorphisms, which is very memory-intensive. 16 families were generally
solved by the SAC preprocessing (either a domain is emptied, or every variable is
assigned). This left 40 families of instances on which we could perform the experi-
ment properly. None had consistently small partition backdoors into conservative
majority polymorphisms although we had positive results on several instances
(summarized in Figure 3.4).

Instance #Var #Act #Fix #Rel time (s)
driverlogw-01c 71 53 22 2/14 0.40

primes-10-20-2-1 100 79 3 2/20 439.92
primes-10-40-2-1 100 56 6 3/40 344.92
primes-10-40-3-1 100 43 3 3/40 7.80
primes-10-60-2-1 100 28 0 0/59 0.01
primes-10-60-2-3 100 14 0 0/59 0.09
primes-10-60-3-1 100 17 0 0/59 0.00
primes-10-80-2-1 100 11 0 0/79 0.00
primes-10-80-2-3 100 4 0 0/79 0.08
primes-10-80-3-1 100 8 0 0/79 0.01

Figure 3.4: Partition backdoors found. #Var is the number of variables, #Act is
the number of non-assigned variables after SAC preprocessing, #Fix is the size of
the backdoor and #Rel is the ratio of relations in C1.

Our conclusions for this preliminary experiment can be summarized as follows:

• The main limitation of the method seems to be its inability to handle global
constraints, which are very common in repositories of CSP instances such as
XCSP or CSPLib. A possible workaround would be to precompute databases
(using possibly advanced knowledge representation systems) of polymor-
phisms for classical global constraints. We could also simply skip those
instances and focus on the more favourable cases. This is less ambitious, but
having performance gains only on some specific families of instances could
be considered a success if the induced overhead is minimal.

• With our improvements (branch-and-bound and nogood recording) finding
an optimal partition of the constraints never took more than a few dozen
iterations, very far from the 2l upper bound. This is very encouraging and
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confirms the intuition that partition backdoors should be closer to practical-
ity than general strong backdoors.

• Vertex covers are quite easy to compute even with an elementary imple-
mentation, and the high runtime observed on some instances was always a
product of the inefficiency of the detection algorithm for conservative major-
ity polymorphisms. This means that, surprisingly, the only polynomial-time
step of the procedure is the costliest by far.

We did not perform experiments with other conservative tractable classes be-
cause of the general lack of efficient recognition algorithms, although for most
tractable classes there is no known hardness result either.

3.6 Conclusion and Future Research
In this chapter we have proved quite general theorems that yield a near-complete
classification of the complexity of strong backdoor detection when the target
tractable class is language-based. If the parameter is backdoor size, strong back-
door detection is almost always W[2]-hard. When we augment the parameter to
include the maximum arity as well, the complexity landscape becomes more di-
verse; in this setting we have introduced a mesure of heterogeneity of a class of
constraint languages in the notion of Helly number, whose boundedness seems to
correlate strongly with the existence of an FPT algorithm for algebraic idempo-
tent classes. The obvious open question here is whether a bounded Helly number
characterizes exactly the FPT cases. We did not investigate much further since we
consider that our original goal of classifying the complexity of strong backdoors
detection for relevant tractable classes is achieved, and pushing further the anal-
ysis is likely to raise technical problems which are of little interest to the CSP
community. Finally, observing that strong backdoor detection becomes increas-
ingly difficult as the heterogeneity of the tractable class increases (as measured
by its Helly number) we have introduced partition backdoors, a type of strong
backdoors that allow a fair approximation of the minimum-size strong backdoor
for low-arity CSPs. Partition backdoors are easily computable in instances whose
language has few relations, and work well even with very heterogeneous classes
provided we have a fast enough recognition algorithm at our disposal. Finally, we
have performed preliminary experiments on partition backdoors. The results were
mixed but nonetheless provided valuable insight on various aspects of the method.

Overall, strong backdoor detection shows potential but still requires substan-
tial improvements in order to be competitive. In-depth experiments with both
strong backdoors and partition backdoors for various target tractable classes are
needed to understand fully the strengths and weaknesses of the approach. In turn,
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these experiments could be used to design solving hybrid solving methods, such as
backdoor learning during search, backdoor-based variable-branching heuristics or
an adaptive preprocessing technique that can analyze the instance to decide which
target tractable class is the most relevant and choose the most reasonable type of
backdoor it should attempt to compute.

Another important avenue of research raised by our experiments is designing
efficient polynomial-time recognition algorithms for classical tractable classes. This
topic will be investigated in depth in the next chapter.
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Chapter 4

Meta-Problems in Conservative
Constraint Satisfaction

The complexity of constraint satisfaction problems has enjoyed considerable sci-
entific attention in the past decade, motivated by their practical usefulness, their
generality, and the deep theoretical questions they relate to. A sizable part of
this scientific effort has been directed towards the complexity of fixed-language
restrictions and has produced a complex hierarchy of language-based tractable
classes, generally defined by the existence of polymorphisms satisfying a certain
set of identities. Many of these algebraic conditions characterize deep properties of
constraint languages, such as definability in a certain logic [109][49] or solvability
by a given (type of) algorithm [50][94][91].

A question that has been largely overlooked in the existing literature is the
complexity of testing for these properties. There are many reasons for this lack of
interest. The first that comes to mind is that these meta-problems do not fit well in
the non-uniform CSP theory where languages are usually assumed to be fixed (thus
only decidability matters). Naturally, the strong divide between the practical and
theoretical CSP communities also plays an important role since meta-problems
are inbetween, motivated by mostly practical considerations but requiring a secure
grasp of the algebraic CSP theory in order to be properly understood. Another
possible reason is that these meta-problems certainly seem difficult to solve, since
polymorphism-based properties are by essence statements about the expressive
power of constraint languages; for instance, a constraint language has a majority
polymorphism if and only if every expressible relation is 2-decomposable [94] and a
Mal’tsev polymorphism if and only if every expressible relation is rectangular [61].

The complexity of meta-problems, or almost equivalently the complexity of
detecting polymorphisms with desirable properties in constraint languages, is a
question that is completely central to the present thesis. Sophisticated algorithms
for restrictions of CSP defined by elusive algebraic properties certainly define
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facets of tractability that have yet to be harnessed, and having a polynomial-time
meta-problem is a primordial quality of a tractable class that enables the whole
backdoor approach that was the subject of the previous chapter. Beyond the obvi-
ous application as preprocessing, connections can be made between meta-problems
and the classical complexity of CSP through the concept of uniform algorithms,
which are polynomial-time algorithms associated with sets of constraint languages
rather than just constraint languages and often allow more efficient solving (this
aspect will be detailed in Section 4.3). The conception of efficient algorithms for
meta-problems is also a first step towards automated complexity proofs, albeit this
idea has hitherto only been used within the CSP world (to discover the smallest
digraph whose associated CSP has unknown complexity [9][74] and to prove the
NP-completeness of deciding if a CSP instance is max-closed modulo a permu-
tation of the domains [79]). Last, and unfortunately least, meta-problems often
have unusual properties that call for novel algorithmic techniques and hence are
interesting in their own right, from a purely academic point of view.

Given a language Γ, the conservative CSP over Γ (c-CSP(Γ) for short) is a
common variant of CSP where all unary relations are accepted in addition to
those of Γ. These additional unary relations correspond to a widely used feature
of practical constraint solving, arbitrary restrictions of variable domains. The
complexity of c-CSP is very well understood, as a dichotomy was established and a
nice polymorphism-based characterization of all conservatively tractable languages
is known [21]. However, these results were obtained thirteen years ago and the
complexity of testing for the tractability criterion has remained unknown since
then. Moreover, conservatively tractable classes of languages are exactly those for
which our results on partition backdoors apply (see Section 3.4, Definition 20),
which gives us additional incentive to focus on meta-problems of this kind.

In this chapter we will develop a rich arsenal of algorithmic tools that allows us
to draw a near-complete complexity classification of conservative meta-problems.
Our contribution is threefold:

• We establish that determining if a constraint language is conservatively
tractable is polynomial-time. In addition, if the language is proven con-
servatively tractable our algorithm also outputs the coloured graph of the
language, which contains valuable information on its algebraic structure.
This is undeniably the strongest result of the chapter, and possibly of the
whole thesis.

• As a byproduct, we exhibit a general connection between the complexity of
the meta-problem and the existence of a semiuniform algorithm on classes
of conservatively tractable languages defined by certain algebraic identities
known as linear strong Mal’tsev conditions. An immediate corollary is a
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polynomial-time algorithm that detects conservative k-edge polymorphisms
for a fixed k, which complements nicely the known results on conservative
meta-problems.

• Observing that the polynomial-time algorithms of the first two contributions
are impractical, we present highly efficient specialized algorithms for detect-
ing conservative Mal’tsev and conservative majority polymorphisms. These
new algorithms avoid the heavy artillery of the first two contributions by
using an orthogonal, finer-grained approach to meta-problems that is inter-
esting in its own right.

4.1 Meta-Problems
For a fixed classH of constraint languages, the meta-problem (or metaquestion [37])
for H is the problem of deciding if an input constraint language Γ belongs to H.
We shall assume that Γ is always given in extension, as we did in the previous
chapter, but we impose no additional restriction and in particular we shall avoid
the (quite common [20][21]) simplifying assumptions that the domain size or the
maximum arity of Γ are bounded. Naturally, we will focus on meta-problems
for classes that are tractable and definable by algebraic means. There exists a
fragmented literature on such meta-problems, although a very recent paper has
started to develop a more systematic approach [37].

The complexity of the meta-problem for a class defined by the existence of
polymorphisms satisfying certain identities depends crucially on whether the said
identities entail idempotency or not. Informally, the idea is that looking for non-
idempotent polymorphisms is hard because it has connections with the coNP-
complete problem of deciding if a constraint language Γ is a core [85]: if a poly-
morphism f of Γ is not idempotent, then h(x) = f(x, . . . , x) can possibly be a
non-surjective endomorphism and one exists if and only if Γ is not a core. This
reasoning has been (indirectly) used to show that deciding if a language Γ has
bounded width is NP-complete [37], despite being polynomial-time if in addition
the polymorphisms witnessing bounded width are required to be idempotent [6].
Similar results state that deciding if Γ has width 1 is NP-hard [109] (member-
ship in NP is still open) and the meta-problem for the class of all languages with
a Siggers polymorphism is NP-complete [25]. An example of idempotent family
of polymorphism that is NP-complete to detect is that of semilattice polymor-
phisms [79][37]. In this case the computational hardness originates from the as-
sociativity of the polymorphisms instead of non-idempotency, and the result still
holds in the conservative case and for semigroup polymorphisms [37]. Incidentally,
because semilattice polymorphisms are idempotent witnesses to bounded width
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this also highlights the fact that more general classes do not necessarily give rise
to harder meta-problems.

The polynomial-time algorithm sketched in [6] to decide if a language has
bounded width witnessed by idempotent polymorphisms can also be used to detect
k-near-unanimity polymorphisms for a fixed k [37]. If k is not fixed the problem
is decidable [5] but of unknown complexity. The applicability of this algorithmic
technique has been characterized in [37], and we will give an in-depth treatment
of the topic in Section 4.3. In contrast, deciding whether a language admits the
median polymorphism (a particular case of majority polymorphism) with respect
to an unknown ordering of the domain is NP-complete [79].

These results may seem numerous but are in fact quite scattered. Detect-
ing a Siggers polymorphism is NP-complete, but what about an idempotent or
conservative Siggers polymorphism? The same question can be asked for totally
symmetric polymorphisms of all arities, which characterize width 1. For Mal’tsev
polymorphisms, the meta-problem is polynomial-time on directed graphs [36] but
for arbitrary languages nothing is known beyond membership in NP. More gen-
erally, the complexity of detecting k-edge polymorphisms is unknown even if k is
fixed.

4.2 Conservative Constraint Satisfaction
In this section we will present the criterion for conservative tractability, as ob-
tained in [21], along with a very useful theorem often referred to as the Three
Operations Theorem. This criterion is naturally equivalent to the existence of a
conservative Siggers polymorphism since it does not contradict the algebraic di-
chotomy conjecture, but its formulation will simplify greatly our analysis of the
meta-problem.

In general, if Γ is a conservative language and there exists {a, b} ⊆ D such that
every polymorphism of Γ is a projection when restricted to {a, b} then R ∈ 〈Γ〉,
where

R =

 a b b
b a b
b b a


It follows that CSP(Γ) is NP-complete as CSP({R}) is equivalent to Positive 1-
in-3-SAT. The Dichotomy Theorem for conservative CSP states that the converse
is true: if for every B = {a, b} ⊆ D there exists a polymorphism f such that f|B
is not a projection, then c-CSP(Γ) is polynomial-time. By Post’s lattice [121],
the polymorphism f can be chosen such that f|B is either a majority operation, a
minority operation or a semilattice.
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Theorem 16 ([21]). Let Γ be a fixed constraint language over a domain D. If for
every B = {a, b} ⊆ D there exists a conservative polymorphism f such that f|B is
either a majority operation, a minority operation or a semilattice then c-CSP(Γ)
is in P. Otherwise, c-CSP(Γ) is NP-complete.

This theorem provides a way to determine the complexity of c-CSP(Γ), since we
can enumerate all ternary operations over D and list those that are polymorphisms
of Γ. However, this naive procedure is super-exponential in time if the domain is
part of the input and hence does not settle the complexity of the meta-problem.

Three different proofs of Theorem 16 have been published [21][4][22], and two
of them rely heavily on a construction called the coloured graph of Γ and denoted
by GΓ. The definition of GΓ is as follows. The vertex set of GΓ is D, and there
is an edge between any two vertices. Each edge (a, b) is labelled with a colour
following these rules:

• If there exists a polymorphism f such that f|{a,b} is a semilattice, then (a, b)
is red;

• If there exists a polymorphism f such that f|{a,b} is a majority operation and
(a, b) is not red, then (a, b) is yellow;

• If there exists a polymorphism f such that f|{a,b} is a minority operation and
(a, b) is neither red nor yellow, then (a, b) is blue.

Additionally, red edges are directed: we have (a → b) if there exists f such
that f(a, b) = f(b, a) = b. It is possible to have (a ↔ b). By Theorem 16, GΓ is
entirely coloured if and only if c-CSP(Γ) is tractable. The next theorem, from ([21],
Proposition 3.1), shows that the tractability of c-CSP(Γ) is always witnessed by
three specific polymorphisms (instead of O(d2) in the original formulation).

Theorem 17 (The Three Operations Theorem [21]). Let Γ be a language such
that c-CSP(Γ) is tractable. There exist three conservative polymorphisms f ∗(x, y),
g∗(x, y, z) and h∗(x, y, z) such that for every two-element set B ⊆ D:

• f ∗|B is a semilattice operation if B is red and f ∗(x, y) = x otherwise;

• g∗|B is a majority operation if B is yellow, g∗|B(x, y, z) = x if B is blue and
g∗|B(x, y, z) = f ∗(f ∗(x, y), z) if B is red;

• h∗|B is a minority operation if B is blue, h∗|B(x, y, z) = x if B is yellow, and
h∗|B(x, y, z) = f ∗(f ∗(x, y), z) if B is red.

The original theorem also proves the existence of other polymorphisms, but we
will only use f ∗, g∗ and h∗ in our proofs.
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4.3 Tools
A healthy place to start our quest for tractable conservative meta-problems is a
review of the existing techniques that have been used to solve meta-problems in
polynomial time for arbitrary constraint languages. This will not take long, for
there is only one such technique.

The complexity of detecting polymorphisms can be expected to depend cru-
cially on the nature of the desired identities. We have seen that looking for an
associative polymorphism is often hard, so it is sensible to avoid identities involving
compositions. In the same vein, a bound on the arity and number of polymor-
phisms is desirable as it ensures membership in NP. A set of identities with these
favourable properties is usually called a linear strong Mal’tsev condition. Given
that universal algebra is not the main topic of the present thesis, we will use a sim-
plified exposition similar to that found in [37]. A linear identity is an expression
of the form

f(x1, . . . , xaf ) ≈ g(y1, . . . , yag)
or

f(x1, . . ., xaf ) ≈ y

where f, g are operation symbols and x1, . . . , xaf , y1, . . . , yag , y are variables. It is
satisfied by two interpretations for f and g on a domain D if the equality holds for
any assignment to the variables. A strong linear Mal’tsev condition M is a finite
set of linear identities. We say that a set of operations satisfy M if they satisfy
every identity inM. A strong linear Mal’tsev condition is said to be idempotent if
it entails fi(x, . . . , x) ≈ x for all operation symbols fi (that is, all sets of operations
satisfyingM are idempotent). Because linear strong Mal’tsev conditions are finite,
the number of operation symbols and their maximum arity are constant.

Example 9. The set of identities

f(x, x, y) ≈ x

f(x, y, x) ≈ x

f(y, x, x) ≈ x

is the idempotent linear strong Mal’tsev condition that defines majority operations.
On the other hand, recall that semilattices are binary operations f satisfying

f(x, x) ≈ x

f(x, y) ≈ f(y, x)
f(x, f(y, z)) ≈ f(f(x, y), z)
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which does not form a linear strong Mal’tsev condition because the identity en-
forcing the associativity of f is not linear.

By extension, we say that a constraint language satisfies a linear strong Mal’tsev
conditionM if it has a collection of polymorphisms that satisfyM. The definabil-
ity of a class of constraint languages by a linear strong Mal’tsev condition M is
strongly tied up with the meta-problem, because for such classes we can associate
any constraint language Γ with a polynomial-sized CSP instance whose solutions,
if any, are exactly the polymorphisms of Γ satisfyingM [37]. We will describe the
construction below.

Definition 21. LetM be a linear strong Mal’tsev condition over operation sym-
bols f1, . . . , fm of respective arities a1, . . . , am and Γ be a constraint language. The
indicator problem of Γ forM, denoted by PM(Γ), is a CSP instance (X ,D, C),
where

(i) X = {xfi(v1,...,vai ) | i ∈ {1, . . . ,m}, (v1, . . . , vai) ∈ Dai };

(ii) D = D(Γ);

(iii) For every i ∈ {1, . . . ,m}, R∗ ∈ Γ and t1, . . . , tai ∈ R∗ there is a con-
straint CR∗

fi(t1,...,tai )
with relation R∗ and scope S such that ∀j ≤ |S|, S[j] =

xfi(t1[j],...,tai [j]);

(iv) For every identity E ∈ M of the form fj(x1, . . . , xaj) ≈ fp(y1, . . . , yap) there
is an equality constraint between xfj(φ(x1),...,φ(xaj )) and xfp(φ(y1),...,φ(yap )) for
every possible assignment φ to {x1, . . . , xaj , y1, . . . , yap};

(v) For every identity E ∈ M of the form fj(x1, . . . , xaj) ≈ y there is a unary
constraint with scope xfj(φ(x1),...,φ(xaj )) and relation {[(φ(y))]} for every pos-
sible assignment φ to {x1, . . . , xaj , y}.

Because this elementary construction will be used extensively throughout the
chapter, we shall complement the definition with an informal overview of its struc-
ture. For every operation symbol fj and every aj-tuple of values (v1, . . . , vaj),
PM(Γ) contains one variable xfi(v1,...,vai ) that dictates where the operation fj should
map (v1, . . . , vai). The constraints described in (iii) force each fj to be a polymor-
phism of Γ, and the constraints (iv) and (v) ensure that (f1, . . . , fm) satisfy the
identities in M. The following is immediate.

Proposition 7. LetM be a linear strong Mal’tsev condition and Γ be a constraint
language. The solutions to PM(Γ) are exactly the polymorphisms of Γ satisfying
M.
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If M is an empty set of identities over a k-ary operation symbol f , PM(Γ) is
called the indicator problem of order k of Γ [95] and will be denoted by IPk(Γ).
Because f is unconstrained, the solutions to IPk(Γ) are exactly the k-ary poly-
morphisms of Γ.

Observe that each constraint in PM(Γ) is either a relation from Γ, a unary
relation with a single tuple or an equality; hence every idempotent polymorphism
of Γ is also a polymorphism of L(PM(Γ)). Thus, if the set of languages satisfying
M is tractable these instances PM(.) have the unusual property to be over a
tractable language if they are satisfiable - a property that will be used with great
effect when combined with the final ingredient: uniformity. LetM denote a strong
linear Mal’tsev condition, and let CSP(M) denote the CSP restricted to instances
whose language satisfies M.
Definition 22. A uniform polynomial-time algorithm forM is an algorithm
that solves CSP(M) in polynomial time.

The term “uniform” here refers to the fact that the language is not fixed (as
in the Feder-Vardi Dichotomy conjecture), but may range over all languages that
satisfy M. The existence of a uniform algorithm implies that CSP(Γ) is in P
for every Γ that satisfies M, but the converse is not guaranteed to be true. For
instance, an algorithm for CSP(M) that is exponential only in the domain size is
polynomial for every fixed Γ that satisfies M, but is not uniform. The following
proposition has been part of the folklore for some time (see e.g. [6]) and has been
recently formalized in [37]. We give here the proof sketch because our contributions
will reuse and refine the core idea.
Proposition 8 ([37]). Let M be an idempotent strong linear Mal’tsev condition.
If M has a uniform algorithm, then the meta-problem for M is polynomial time.
Proof. The idempotency of M ensures that we have a uniform algorithm for the
search problem (i.e. decide if the instance is satisfiable and produce a solution
if one exists) because idempotent polymorphisms always preserve assignments to
variables, which can be seen as unary relations with a single tuple. Given a con-
straint language Γ, to check if Γ satisfies M we build the instance PM(Γ) and
invoke the uniform search algorithm. Since the language of PM(Γ) is Γ plus equal-
ities and unary relations with a single tuple, L(PM(Γ)) satisfies M if and only if
Γ does. If PM(Γ) is satisfiable then Γ satisfiesM and the algorithm must produce
a solution (which can be easily verified), and whenever the algorithm fails to do
so we can safely conclude that Γ does not satisfy M.

This simple trick alone shows that detecting fixed-arity near-unanimity poly-
morphisms or deciding if a language has bounded width witnessed by idempotent
polymorphisms can be done in polynomial time, since these classes correspond to
idempotent strong linear Mal’tsev conditions and have uniform algorithms [6].
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4.4 Semiuniform algorithms
The preliminaries over, we now narrow our attention to Proposition 8 and see in
which ways it could be reinforced for conservative meta-problems. Let us examine
in detail the hypotheses required by the method:

(i) There are finitely many identities in M. Dropping this may cause PM(Γ)
to have exponential size since the arity of the polymorphisms is no longer
bounded. The number of extra constraints needed to enforce the identities
may grow out of control as well.

(ii) The identities inM are linear. Identities that involve composition generally
correspond to exponential-size extra constraints, and the language of PM(Γ)
may no longer admit the polymorphisms of Γ (in fact it may even be NP-
hard, even if Γ is tractable).

(iii) The identities in M entail idempotency. Always true in the conservative
setting.

(iv) M has a uniform polynomial-time algorithm. Without this hypothesis the
argument will not work, but there is no known example of tractable idempo-
tent strong linear Mal’tsev condition with an NP-hard meta-problem either.

Considering all of the above, the requirement for a uniform algorithm seems to
be the least impactful. We will confirm this reasoning by showing that in the case
of conservative languages, the meta-problem for a linear strong Mal’tsev condition
M can be solved in polynomial time assuming a weaker notion of uniformity that
was introduced recently [37].

Definition 23. A semiuniform polynomial-time algorithm forM is an algo-
rithm that solves CSP(M) in polynomial time provided each instance I is paired
with polymorphisms f1, . . . , fm of L(I) that satisfy M.

Semiuniform algorithms are tied to the identities in M rather than the class
of languages it defines; even if CSP(M1) and CSP(M2) denote the exact same
set of instances, the polymorphisms satisfying M2 can be more useful than those
satisfying M1. The algorithm for Mal’tsev constraints is the archetypal example
of a semiuniform algorithm since it is not exponential in |Γ| but requires explicit
access to a Mal’tsev polymorphism in order to solve the instance [24].

The relationship between uniformity and semiuniformity is quite subtle. There
is no known example of idempotent linear strong Mal’tsev condition that has a
semiuniform algorithm but provably no uniform algorithm (even modulo complex-
ity theoretic assumptions), so the two notions might in fact coincide. The following

67



observation gives additional evidence that uniformity and semiuniformity can be
difficult to distinguish.

Observation 1. If M has a semiuniform algorithm, then CSP(M) ∈ NP ∩
coNP.

This follows from the fact that a set of polymorphisms satisfyingM is a polyno-
mially verifiable certificate for both satisfiable and unsatisfiable instances. Recall
that M has a uniform algorithm if and only if CSP(M) ∈ P; Observation 1 tells
us that CSP(M) is not NP-hard unless NP = coNP [77]. The latter statement is
weaker than the former, but not by a large margin. One could also be tempted to
say that NP ∩ coNP problems not believed to be in P are few in number, but keep
in mind that CSP(M) is a promise problem and constructing very hard NP ∩
coNP promise problems is easy by manipulating the promise. For example, given
two SAT instances (I1, I2) deciding if I1 is satisfiable is in NP ∩ coNP if we have
the promise that exactly one instance among (I1, I2) is satisfiable, but this problem
is unlikely to be in P . However, the certificates of those hard NP ∩ coNP promise
problems often rely crucially on the promise to be useful, while the certificates
of CSP(M) (polymorphisms) do not. Overall, Observation 1 should be taken as
mild evidence that semiuniformity might imply uniformity, at least in some cases.

When the complexity of the meta-problem is taken into account as well, we
obtain a picture where an idempotent strong linear Mal’tsev condition M with a
semiuniform algorithm has a uniform algorithm if and only if the search version
of the meta-problem is polynomial-time (a variant of the meta-problem where we
have not only to decide if Γ satisfies M, but also produce the polymorphisms
that witness it). Because a polynomial-time algorithm for the meta-problem will
almost always produce the polymorphisms, this means that replacing the require-
ment of uniformity with semiuniformity in Proposition 8 is unlikely to provide a
generalization in the absolute sense but instead make its applicability easier.

4.5 Semiuniformity and Conservative Polymor-
phisms

We are now ready to present our main technical tool. Given a language Γ, we will
use Γ to denote its conservative completion, that is, the language comprised of Γ
plus all possible unary relations over D(Γ).

Theorem 18. Let M be a linear strong Mal’tsev condition that admits a semiu-
niform algorithm. There exists a polynomial-time algorithm that, given as input
a constraint language Γ, decides if Γ satisfies M and produces conservative poly-
morphisms of Γ satisfying M if any exist.
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The use of Γ in the above theorem is simply a trick to say that we are only
interested in the conservative polymorphisms of Γ that satisfy M (conservativity
is not a linear identity). The following is not quite a corollary, but rather an
equivalent statement giving confirmation that semiuniformity and uniformity are
strongly related.

Theorem 19. Let M be a fixed strong Mal’tsev condition. In the case of conser-
vative languages, M has a semiuniform algorithm if and only if M has a uniform
algorithm.

Our strategy to detect conservative polymorphisms satisfying M assuming a
semiuniform algorithm forM is to cast the meta-problem as a CSP using the con-
struction of Section 4.3 and then compute successively partial solutions φ1, . . . , φα
of slowly increasing size until a solution to the whole CSP is obtained. The origi-
nality of our approach is that φi+1 is not computed directly from φi, but by solving
a polynomial number of CSP instances whose languages admit φi as a polymor-
phism. One can see a semiuniform algorithm as a collection of polynomial-time
algorithms, one per combination of polymorphisms satisfyingM; in our case, each
partial solution is a description of a polynomial-time algorithm that can be used
to compute a slightly larger one. This is strongly reminiscent of a treasure hunt,
where each chest contains the key to unlock the next one.

LetM be a strong linear Mal’tsev condition with operation symbols f1, . . . , fm
of respective arities a1, . . . , am. Let Γ be a constraint language over D and PM(Γ)
be the CSP whose solutions are exactly the polymorphisms of Γ satisfying M (as
described in Section 4.3). Recall that for every symbol fi inM and (d1, . . . , dai) ∈
Dai we have a variable xfi(d1,...,dai ) that dictates where fi should map d1, . . . , dai , and
for every R∗ ∈ Γ and ai tuples t1, . . . , tai ∈ R∗ we have a constraint CR∗

fi(t1,...,tai )
that

forces the tuple fi(t1, . . . , tai) to belong to R∗ (where fi is the operation on tuples
obtained by componentwise application of fi). Our goal is to decide if Γ satisfies
M, which requires the polymorphisms of Γ satisfying M to be conservative. The
solutions to PM(Γ) can easily be guaranteed to be conservative by adding the
unary constraint xfi(d1,...,dai ) ∈ {d1, . . . , dai} on every variable xfi(d1,...,dai ) ∈ X .
We will denote this new problem by PcM(Γ), and each solution φ to PcM(Γ) is a
collection (f1, . . . , fm) of conservative polymorphisms of Γ satisfying M.

We need one more definition. Given a CSP instance I, a consistent restriction
of I is an instance obtained from I by adding new constraints that are either unary
or equalities and then enforcing 1-minimality. We will be interested in the con-
sistent restrictions of PcM(Γ), and we will keep the same notations for constraints
that already existed in PcM(Γ).
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Lemma 4. Let P = (X ,D, C) be a consistent restriction of PcM(Γ). Let fi and
fj be operation symbols in M. If CR∗

fi(t1,...,tai )
∈ C and t′1, . . . , t′aj

∈ R(CR∗

fi(t1,...,tai )
)

then
R(CR∗

fj(t′1,...,t′aj
)) ⊆ R(CR∗

fi(t1,...,tai )
)

Proof. Let S = S(CR∗

fi(t1,...,tai )
) and S ′ = S(CR∗

fj(t′1,...,t′aj
)). Before 1-minimality was

enforced, we had R(CR∗

fi(t1,...,tai )
) = R(CR∗

fj(t′1,...,t′aj
)) = R∗. Thus, after enforcing

1-minimality we have R(CR∗

fi(t1,...,tai )
) = R∗ ∩ (πx∈SD(x)) and R(CR∗

fj(t′1,...,t′aj
)) =

R∗ ∩ (πx∈S′D(x)). However, since t′1, . . . , t′aj
∈ R(CR∗

fi(t1,...,tai )
), the conservativity

constraints ensure that for each k,

D(S ′[k]) = D(xfj(t′1[k],...,t′aj
[k])) ⊆ {t′1[k], . . . , t′aj

[k]} ⊆ D(S[k])

Therefore, R(CR∗

fj(t′1,...,t′aj
)) ⊆ R(CR∗

fi(t1,...,tai )
).

Given two sets of variables X1, X2 ⊆ X , we write X1 C X2 if for each symbol
fi inM, for each x in X2 and for each t in D(x)ai we have xfi(t) ∈ X1. If X1 C X1,
we say that X1 is closed.

Proposition 9. Let P = (X ,D, C) be a consistent restriction of PcM(Γ). If X1
and X2 are subsets of variables such that X1 C X2, then every solution to P|X1 is
a collection of polymorphisms of L(P|X2).

Proof. Let fi, fj ∈ {f1, . . . , fm} be operation symbols inM. LetR∗ ∈ Γ, t1, . . . , tai ∈
R∗, C2 = (S2, R2) ∈ P|X2 be the projection of CR∗

fi(t1,...,tai )
onto X2, and t2

1, . . . , t2
aj
∈

R2. By the nature of projections, there must exist t′1, . . . , t′aj
∈ R(CR∗

fi(t1,...,tai )
) such

that t2
1, . . . , t2

aj
is the projection of t′1, . . . , t′aj

onto X2. Then, by Lemma 4 we have

R(CR∗

fj(t′1,...,t′aj
)) ⊆ R(CR∗

fi(t1,...,tai )
)

and in particular R(CR∗

fj(t′1,...,t′aj
)[X2]) ⊆ R(CR∗

fi(t1,...,tai )
[X2]) = R2. Now, note that

because X1 C X2 and P is 1-minimal, every variable xfj(t′1[k],...,t′aj
[k]) in the scope

of CR∗

fj(t′1,...,t′aj
)[X2] also belongs to X1. We denote this constraint by C1.

Let us summarize what we have: for every symbol fj, every relation R2 ∈
L(P|X2) other than equalities and unary relations (which are preserved by all
conservative polymorphisms) and t2

1, . . . , t2
aj
∈ R2, there is a constraint C1 =

(S1, R1) ∈ P|X1 such that |S1| = |S2|, R1 ⊆ R2 and for every k we have S1[k] =
xfj(t2

1[k],...,t2
aj

[k]). It follows that for every solution (f1, . . . , fm) to P(Γ)|X1 , fj is also
a solution to the indicator problem of order aj of L(P(Γ)|X2) and is therefore a
polymorphism of L(P(Γ)|X2).
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Closed sets of variables allow us to turn partial solutions into true polymor-
phisms of a specific constraint language, hence enabling us to make (limited) use
of semiuniform algorithms. A variable of PcM(Γ) is a singleton if it is of the
form xfi(v,...,v) for some v ∈ D. The sets of variables corresponding to singletons
and X constitute two closed sets; the next lemma shows that many intermediate,
regurlarly-spaced closed sets exist in PcM(Γ) between these two extremes.

Lemma 5. Let PcM(Γ) = (X ,D, C) after applying 1-minimality. There exist X0 ⊆
. . . ⊆ Xα = X such that X0 is the set of all singleton variables, each Xi is closed
and |Xi+1−Xi| ≤ maa, where a and m denote respectively the maximum arity and
number of operation symbols in M.

Proof. Let (D1, . . . , Dα) denote an arbitrary ordering of the subsets of D of size
a. We define

X0 = {xfj(vi,...,vi) | fj ∈M, vi ∈ D}
and for all i ∈ [1..α]

Xi = Xi−1 ∪ {xfj(t) | fj ∈M, t ∈ (Di)aj}

It is clear that X0 is the set of all singleton variables and for all i, |Xi+1−Xi| ≤
m|(Di)a| = maa. It remains to show that each set is closed. Let k ≥ 1 and
suppose that Xk−1 is closed. By induction hypothesis, we only need to ver-
ify that Xk C Xk\Xk−1. Let xfj(v1,...,vaj ) be a variable in Xk\Xk−1. Because
PcM(Γ) is 1-minimal, we have D(xfj(v1,...,vaj )) ⊆ {v1, . . . , vaj} ⊆ Dk. By construc-
tion Xk contains all variables of the form xfc(t) where t ∈ (Dk)ac and because
D(xfj(v1,...,vaj )) ⊆ {v1, . . . , vaj} ⊆ Dk it contains in particular all variables xfc(t)

such that t ⊆ D(xfj(v1,...,vaj )). This implies that Xk C Xk\Xk−1 and concludes the
proof.

We now have every necessary tool at our disposal to start solving PcM(Γ). It
is straightforward to see that if a subset of variables X ′ is closed in PcM(Γ), then
it is closed in every consistent restriction as well.

Proposition 10. If a solution to PcM(Γ)|Xi is known, then a solution to PcM(Γ)|Xi+1

(if any exist) can be found in polynomial time.

Proof. Let (f i1, . . . , f im) be a solution to PcM(Γ)|Xi . We assume that 1-minimality
has been enforced on PcM(Γ). This ensures, in particular, that the domain of each
xfj(t) ∈ Xi+1\Xi contains at most a elements. It follows that Xi+1\Xi has at most
s = ama

a possible assignments φ1, . . . , φs. For every j ∈ [1..s], we create a CSP
instance Pj that is a copy of PcM(Γ) but also includes the constraints corresponding
to the assignment Xi+1\Xi ← φj(Xi+1\Xi). We enforce 1-minimality on every
instance Pj.
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Now, observe that each Pj is a consistent restriction of PcM(Γ), so Xi is still
closed in Pj. Moreover, every variable x ∈ Xi+1\Xi has domain size 1 in Pj; since
Xi contains all singleton variables, if follows that in Pj we have Xi C Xi+1.

By Proposition 9, (f i1, . . . , f im) is a collection of polymorphisms of L(Pj |Xi+1
).

We can then use the semiuniform algorithm to find in polynomial time a solution
to Pj |Xi+1

if one exists by backtracking search (every f iz is idempotent, so we
can invoke the semiuniform algorithm at each node to ensure that the algorithm
cannot backtrack more than one level). A solution to PcM(Γ)|Xi+1 exists if and only
if Pj |Xi+1

has a solution for some j ∈ {1, . . . , s}.

The above proof depends critically on the fact that every complete instan-
tiation of the variables in Xi+1\Xi (followed by 1-minimality) yields a residual
instance over a language that admits (f i1, . . . , f im) as polymorphisms. In other
terms, PcM(Γ)|Xi+1 has a backdoor of constant size into the class of languages that
admit (f i1, . . . , f im) as polymorphisms. We now have at our disposal every ingredi-
ent needed to prove Theorem 18.

Proof (of Theorem 18). The algorithm starts by building PcM(Γ) and computes
the sets X0, . . . , Xα as in Lemma 5. We have a solution to PcM(Γ)|X0 for free
because of the conservativity constraints, and we can compute a solution to PcM(Γ)
by invoking repeatedly (at most α ≤ |X | ≤ mda times) Proposition 10. If the
algorithm fails at any step, Γ does not satisfy M.

An immediate application of Theorem 18 concerns the detection of conservative
k-edge polymorphisms for a fixed k. Recall that a k-edge operation on a set D is
a (k + 1)-ary operation e satisfying

e(x, x, y, y, y, . . . , y, y) ≈ y

e(x, y, x, y, y, . . . , y, y) ≈ y

e(x, y, y, x, y, . . . , y, y) ≈ y

e(x, y, y, y, x, . . . , y, y) ≈ y

. . .

e(x, y, y, y, y, . . . , x, y) ≈ y

e(x, y, y, y, y, . . . , y, x) ≈ y

These identities form a linear strong Mal’tsev condition. The algorithm given
in [91] is semiuniform, but in addition to e it must have access to three other
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polymorphisms p, d, s derived from e and satisfying

p(x, y, y) ≈ x

p(x, x, y) ≈ d(x, y)
d(x, d(x, y)) ≈ d(x, y)

s(x, y, y, y, . . . , y, y) ≈ d(y, x)
s(y, x, y, y, . . . , y, y) ≈ y

s(y, y, x, y, . . . , y, y) ≈ y

. . .

s(y, y, y, y, . . . , y, x) ≈ y

The authors provide a method to obtain these three polymorphisms from e that
requires a possibly exponential number of compositions. However, conservative
algebras are much simpler and we can observe that

s(x1, x2, . . . , xk) = e(x2, x1, x2, x3, . . . , xk)
d(x, y) = e(x, y, x, . . . , x)

p(x, y, z) = e(y, d(y, z), x, . . . , x)

satisfy the required identities and are easy to compute. It follows that in the con-
servative case their algorithm is semiuniform even if only a k-edge polymorphism
e is given.

Corollary 3. For every fixed k, the class of constraint languages admitting a
conservative k-edge polymorphism is uniformly tractable and has a polynomially
decidable meta-problem.

4.6 Deciding the Conservative Dichotomy in Poly-
nomial Time

While the criterion for the conservative dichotomy theorem can be stated as a linear
strong Mal’tsev condition [130], none of the algorithms found in the literature are
semiuniform. Still, Theorem 18 gives a uniform algorithm for constraint languages
Γ whose coloured graph contains only yellow and blue edges: if g∗(x, y, z) and
h∗(x, y, z) are the polymorphisms predicted by the Three Operations Theorem,
then

m∗(x, y, z) = h∗(g∗(x, y, z), g∗(y, z, x), g∗(z, x, y))
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is a generalized majority-minority polymorphism of Γ, which implies that Γ has a
3-edge polymorphism [10].

Our algorithm will reduce the meta-problem to a polynomial number of CSP
instances over languages with conservative 3-edge polymorphisms using a refined
version of the treasure hunt algorithm paired with a simple reduction rule. This
reduction rule is specific to indicator problems and allows us to avoid the elaborate
machinery presented in [22] to eliminate red edges in CSP instances over a tractable
conservative language.

We start by the reduction rule. We say that a binary polymorphism is maxi-
mally commutative if it is commutative on as many 2-elements subsets as possible,
and projects onto its first argument otherwise. By the Three Operations Theorem,
a maximally commutative polymorphism of a conservatively tractable language Γ
is commutative on a pair of values if and only if it is red.
Proposition 11. Suppose that we know a polymorphism f ∗ of Γ that is maximally
commutative if c-CSP(Γ) is tractable. There is a polynomial-time algorithm that
determines if c-CSP(Γ) is tractable, in which case it also returns the colour of
each edge in GΓ.
Proof. If c-CSP(Γ) is tractable, f ∗ is enough to identify every red pair of values.
To determine the colour of non-red pairs we need to look at conservative ternary
polymorphisms. Therefore, we start by building the instance IP3c(Γ), which is the
indicator problem of order 3 of Γ with conservativity constraints. For i ∈ {1, 2, 3},
let πi be the solution to IP3c(Γ) given by πi(xv1,v2,v3) = vi for all v1, v2, v3 ∈ D.
These solutions correspond to the three ternary polymorphisms of Γ that project
onto their ith argument. We enforce 1-minimality and apply the algorithm Reduce.

Algorithm 1: Reduce

s1 ← π1 ;
s2 ← π2 ;
s3 ← π3 ;
while There exist i, j and x ∈ X such that {si(x), sj(x)} is red and
f ∗(si(x), sj(x)) = sj(x) do

s1 ← f ∗(s1, sj) ;
s2 ← f ∗(s2, sj) ;
s3 ← f ∗(s3, sj) ;
for all x ∈ X and v ∈ D(x) s.t. ∀k, sk(x) 6= v do

D(x)← D(x)\v ;

We denote by IP3c
R (Γ) the resulting CSP instance. An important invariant

of this algorithm is that at the end of every iteration of the loop in Reduce, for
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every x ∈ X and v ∈ D(x) there exists s ∈ {s1, s2, s3} such that s(x) = v. This
is straightforward, since we only remove v from D(x) if none of s1(x), s2(x), s3(x)
takes value v. It then follows from the loop condition that at the end of Reduce,
no x ∈ X may have a domain that contains a red pair of elements.

We now show that if IP3c(Γ) has a solution that is majority (resp. minority)
on a non-red pair of values B, then so does IP3c

R (Γ). We proceed by induc-
tion. Suppose that at iteration i of the loop of Reduce, a solution pi that is
majority (resp. minority) on B exists. Let Di(x) denote the domain of a vari-
able x at step i. We set pi+1 = f ∗(pi, sj). Because f always projects onto its
first argument on non-red pairs, a value v can only be removed from Di(x) at
iteration i + 1 if {v, sj(x)} is red and f(v, sj(x)) = sj(x). Therefore, if pi(x)
is removed at iteration i then pi+1(x) = f ∗(pi(x), sj(x)) = sj(x), and otherwise
pi+1(x) ∈ {pi(x), sj(x)} ⊆ Di+1(x); in any case pi+1(x) ∈ Di+1(x). Furthermore,
since B is not red, pi+1(xf(v1,v2,v3)) = pi(xf(v1,v2,v3)) for all {v1, v2, v3} ⊆ B and we
can conclude that pi+1 is still majority (resp. minority) on B.

Now, we enforce 1-minimality again. We can ensure that every solution is a
majority (resp. minority) polymorphism when restricted to B by assigning the 6
variables concerned by the majority (resp. minority) identity. Since the remaining
instance I is red-free in GΓ, either c-CSP(Γ) is intractable or L(I) admits a 3-
edge polymorphism. We test for the existence of a 3-edge polymorphism using
Theorem 18. If one exists we use the uniform algorithm given by Corollary 3
to decide if a solution exists and otherwise we can conclude that c-CSP(Γ) is
intractable.

With this result in mind, the last challenge is to design a polynomial-time
algorithm that finds a binary polymorphism f ∗ that is commutative on as many
2-element subsets as possible, and projects onto its first argument otherwise. This
can be achieved using a variant of the algorithm presented in Section 4.5 and the
following lemma.
Lemma 6. Let P = (X ,D, C) denote an 1-minimal instance such that ∀x ∈ X ,
|D(x)| ≤ 2. Suppose that we have a conservative binary polymorphism f of L(P)
and a partition (V1, V2) of the variables such that f(a, b) = f(b, a) = f(D(x))
whenever x ∈ V1, and f projects onto its first argument otherwise. Then, every
variable x ∈ V1 can be assigned to f(D(x)) without altering the satisfiability of P.
Proof. Let C = (S,R) ∈ C. Let S1 = S ∩ V1, S2 = S ∩ V2 and t ∈ R. We assume
without loss of generality that no variable in S is ground (i.e. has a singleton
domain). If x ∈ S, let t[x] = D(x)\t[x]. Because P is 1-minimal, for every x ∈ S1
there exists tx ∈ R such that tx[x] = t[x]. Let x1, . . . , xs denote an arbitrary
ordering of S1. Then, let t(0) = t and for i ∈ {1, . . . , s},

t(i) = f(t(i−1), txi)
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It is immediate to see that if x ∈ S2, then t(s)[x] = t[x] since f will project onto
its first argument at each interation. On the other hand, if xk ∈ S1 and there
exists j such that t(j)[xk] = f(D(xk)) then t(i)[xk] = f(D(xk)) for all i ≥ j. This
is guaranteed to happen for j ≤ k, as either

• t[xk] = f(D(xk)), in which case it is true for j = 0, or

• t(k−1)[xk] = f(D(xk)), in which case it is true for j = k − 1, or

• t(k−1)[xk] = t[xk] 6= f(D(xk)), in which case t(k)[xk] = f(t(k−1)[xk], txk [xk]) =
f(t[xk], t[xk]) = f(D(xk)) and thus it is true for j = k.

It follows that t(s) is a tuple or R that coincides with t on S2, and t(s)[x] = D(f(x))
whenever x ∈ S1. Therefore, assigning each x ∈ S1 toD(f(x)) is always compatible
with any assignment to S2; since this is true for each constraint, it is true for P as
well.

We denote by IP2c(Γ) the CSP instance obtained from IP2(Γ) by adding the
unary constraints enforcing conservativity. We can interpret IP2c(Γ) as the meta-
problem associated with an unconstrained conservative binary operation symbol
f and reuse the definitions and lemmas about closed sets of variables seen in
the last section. In the hierarchy of closed sets given by Lemma 5 applied to
IP2c(Γ), Xi+1 contains the variables of Xi plus two variables xf(a,b), xf(b,a) for
some Bi+1 = {a, b} ⊆ D.

Proposition 12. Suppose that we know a solution fi to IP2c(Γ)|Xi that is maxi-
mally commutative if c-CSP(Γ) is tractable. A solution fi+1 to IP2c(Γ)|Xi+1 with
the same properties can be found in polynomial time.

Proof. The strategy is similar to the proof of Proposition 10. The two differences
are that we do not have a semiuniform algorithm in general, which can be handled
by Lemma 6, and the fact that we are not interested in any solution but in one
that is maximally commutative.

Observe that if IP2c(Γ)|Xi+1 is 1-minimal, then its language is conservatively
tractable and the order-2 conservative indicator problem of L(IP2c(Γ)|Xi+1) is
exactly IP2c(Γ)|Xi+1 plus unconstrained variables (because Xi+1 is closed). There-
fore, by the Three Operations Theorem, a maximally commutative solution to
IP2c(Γ)|Xi+1 is commutative on some pair {u, v} if and only if there is a solu-
tion to IP2c(Γ)|Xi+1 that is also commutative on {u, v}. It follows from this same
argument applied to Xi instead of Xi+1 that if fi is not commutative on some
(u, v) ∈ D2 then either c-CSP(Γ) is NP-complete or Γ has a ternary conservative
polymorphism pu,v that is either a majority or a minority operation on {u, v}.

Let Xi+1 = Xi ∪ {xf(a,b), xf(b,a)}. We have only three assignments to examine
for (xf(a,b), xf(b,a)): (a, a), (b, b) and (a, b). The fourth assignment (b, a) is the
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projection onto the second argument, which does not need to be tried since we
are only interested in the maximally commutative solutions to IP2c(Γ)|Xi+1 . For
each of these assignments, we build the CSP instances P1,P2,P3 by adding the
constraints corresponding to the possible assignments to (xf(a,b), xf(b,a)) to IP2c(Γ)
and enforcing 1-minimality.

For every j ∈ {1, 2, 3} and every pair {u, v} of elements in the domain of
Pj|Xi+1

we create an instance Pjuv by adding the constraint xf(u,v) = xf(v,u) to Pj
and enforcing 1-minimality. Since the variables in Xi+1\Xi are ground in Pjuv, Xi

is closed and Xi contains all singleton variables, we have Xi+1 C Xi in Pjuv. By
Proposition 9, fi is a polymorphism of L(Pjuv |Xi+1

). Now, if a variable x in Pjuv |Xi+1

has domain size 2 and fi is commutative on D(x), by Lemma 6 we can assign x to
fi(D(x)) without losing the satisfiability of the instance. Once this is done, we can
enforce 1-minimality again; the polymorphisms pu′,v′ guarantee that if c-CSP(Γ) is
tractable, the remaining instance has a conservative generalized majority-minority
polymorphism and hence a conservative 3-edge polymorphism. Using Corollary 3,
we can decide if the language of Pjuv |Xi+1

has a conservative 3-edge polymorphism.
If it does not then c-CSP(Γ) is NP-complete, and otherwise we can decide if a
solution exists in polynomial time.

At this point, for every pair (u, v) of elements in the domain of some vari-
able in IP2c(Γ)|Xi+1 we know if a solution to IP2c(Γ)|Xi+1 that is commutative
on (u, v) exists, except if (u, v) = (a, b). This problem can be fixed by checking
if any of Pa,a|Xi+1

or Pb,b|Xi+1
has a solution, where Pa,a and Pb,b are the subprob-

lems corresponding respectively to the assignments (xf(a,b), xf(b,a)) ← (a, a) and
(xf(a,b), xf(b,a))← (b, b).

We then add the equality constraint xf(u,v) = xf(v,u) to IP2c(Γ)|Xi+1 for every
pair (u, v) (including (a, b) if applicable) such that a solution to IP2c(Γ)|Xi+1 that
is commutative on (u, v) exists. On all other pairs, we know that fi+1 must project
on the first argument, so we can ground the corresponding variables. If c-CSP(Γ)
is tractable, then this new CSP instance P has a solution and it must be maxi-
mally commutative. We can solve P by branching on the possible assignments to
(xf(a,b), xf(b,a)) and the usual arguments using fi, Proposition 9 and Lemma 6.

Theorem 20. There exists a polynomial-time algorithm A that, given in input a
constraint language Γ, decides if c-CSP(Γ) is in P or NP-complete. If c-CSP(Γ)
is in P, then A also returns the coloured graph of Γ.

Proof. We use Proposition 12 to find in polynomial time a conservative polymor-
phism f ∗ of Γ that is maximally commutative if c-CSP(Γ) is tractable. If the
algorithm fails, then we know that c-CSP(Γ) is not tractable and the algorithm
stops. Otherwise, we label every pair {a, b} of domain elements with the colour
red if f ∗ is commutative on {a, b}, and otherwise we use Proposition 11 to check if
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there is a conservative ternary polymorphism that is either majority or minority on
{a, b}. If a majority polymorphism is found then we label {a, b} with yellow, else
if a minority polymorphism is found then {a, b} is blue, and otherwise we know
that c-CSP(Γ) is NP-complete. The orientation of the red edges can be easily
computed from IP2c(Γ) using Lemma 6 and f ∗.

4.7 Specialized Algorithms
The worst-case complexity of the algorithm for solving CSP with 3-edge polymor-
phisms is O(m(ndt)25) [91], were n is the number of variables, d is the domain
size, t is the number of tuples and m is the number of constraints. Describing
this algorithm as costly would be an understatement. To decide the conservative
dichotomy in polynomial time, our “treasure hunt” method invokes repeatedly
this algorithm on instances with O(d4) variables (indicator problems for 3-edge
polymorphisms), so the dependency of our algorithm in the domain size is a poly-
nomial whose degree is well over a hundred. This is likely to be an overestimation
because we are using the “3-edge algorithm” on highly structured instances and
with conservative 3-edge polymorphisms, but this is sufficient to claim that our
method, despite solving an important theoretical problem, is utterly impractical.

The techniques we have employed so far are very coarse, and only use the most
elementary properties of indicator problems. In particular, Theorem 18 is per-
haps too general because we have made absolutely no assumption on the identities
encapsulated by the strong linear Mal’tsev condition; the lack of information on
the actual identities prevents us from characterizing the structure of the indicator
problem. In this section we will provide specialized algorithms for detecting respec-
tively conservative Mal’tsev and conservative majority polymorphisms that do not
rely on the Mal’tsev semiuniform algorithm or the uniform algorithm for majority
constraints, singleton arc-consistency. These ad hoc algorithms are very simple
and efficient but the correctness is tricky to prove, especially for Mal’tsev poly-
morphisms. The only result we will reuse from the previous sections is Lemma 4.

4.7.1 Conservative Mal’tsev Polymorphisms
The outline of our approach to detect conservative Mal’tsev polymorphisms is
as follows. We first reduce the problem to that of finding a conservative minor-
ity polymorphism using a simple algebraic trick. Then, we show that enforcing
1-minimality on the indicator problem associated with conservative minority poly-
morphisms leaves an extremely well-structured instance, and a simple reduction
rule allows us to eliminate every variable whose domain contains more than two
values. The residual instance is then shown to be equivalent to a system of linear
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equations over GF(2), and can be solved by Gaussian elimination.

Lemma 7. Let F be a clone. F contains a conservative Mal’tsev operation if and
only if it contains a conservative minority operation.

Proof. Every minority operation is a Mal’tsev operation, hence one implication is
trivial. Suppose that F contains a conservative Mal’tsev operation m, and let

f(x, y, z) = m(z,m(y,m(x, z, y), x),m(x, z, y))

This operation belongs to F because F is a clone, and is conservative since m is
conservative. Furthermore, for every a, b we have

f(a, b, a) = m(a,m(b,m(a, a, b), a),m(a, a, b)) = b

f(b, a, a) = m(a,m(a,m(b, a, a), b),m(b, a, a)) = b

and it is straightforward to see that f(a, a, b) = m(b,m(a,m(a, b, a), a),m(a, b, a))
is always equal to b, whether m(a, b, a) = b or m(a, b, a) = a. Hence, f is a minority
operation of F .

Although this lemma may be known to some, it appears to have never been
pointed out in the literature. The closest results we could find were that digraphs
with a conservative Mal’tsev polymorphisms also have a conservative minority
polymorphism [36] and constraint languages with both a conservative majority
and a conservative Mal’tsev polymorphism also have a conservative minority poly-
morphism [27]. In our case, this lemma is crucial, since the indicator problem
corresponding to conservative minority polymorphisms has interesting (i.e., al-
gorithmically useful) properties that its counterpart for Mal’tsev polymorphisms
does not have.

Let M be the strong linear Mal’tsev condition defining minority polymor-
phisms, i.e.

M :
f(y, x, x) ≈ y
f(x, y, x) ≈ y
f(x, x, y) ≈ y

Given a constraint language Γ, let PcM(Γ) be the CSP instance whose solutions are
exactly the conservative minority polymorphisms of Γ, as detailed in Section 4.5.
For our structural analysis we will assume that for every R∗ ∈ Γ, PcM(Γ) also
contains a constraint CR′

f(t′1,t′2,t′3) for every projection R′ of R∗ and t′1, t′2, t′3 ∈ R′.
These additional constraints are only needed to facilitate our analysis and will not
be required by the algorithm.

A constraint C = (S,R) is functional in x ∈ S if for every valid assignment t of
S\x there is at most one value d ∈ D such that (S\x← t, x← d) is an assignment
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to S that satisfies C. If two relations R and R′ differ only by a permutation of their
columns, we write R ≈ R′. We also remind the reader that if C = CR∗

f(t1,t2,t3) is a
constraint of PcM(Γ), the kth variable in its scope is xf(t1[k],t2[k],t3[k]). Therefore, if
t1[k] = t2[k], the unary constraints will ensure that xf(t1[k],t2[k],t3[k]) is ground (i.e.
has a singleton domain) with value t3[k].

Lemma 8. Let PcM(Γ) = (X ,D, C) after applying 1-minimality. Let C = (S,R) ∈
C be a non-unary constraint and x ∈ S. Either C is functional in x, or R ≈
R(C[S\x])×D(x).

Proof. Let C = CR∗

f(t1,t2,t3) and x = xf(v1,v2,v3). Without loss of generality, we
assume that x occurs last in S. First, suppose that there exists t ∈ R(C[S\x])
such that (t, vk) ∈ R(C) for every vk ∈ D(x). We will show that every tuple must
have the same property as t. Let t′ ∈ R(C[S\x]) be such that (t′, vα) ∈ R(C) but
(t′, vβ) /∈ R(C) for some {vα, vβ} ⊆ D(x). Then, because of the unary constraints,
the constraint CR∗

f((t,vα),(t,vβ),(t′,vα)) has only ground variables in its scope, and its
only possible support is (t′, vβ). By Lemma 4, R(CR∗

f((t,vα),(t,vβ),(t′,vα))) ⊆ R(C) and
hence (t′, vβ) ∈ R(C), a contradiction. Therefore, such a partial tuple t′ cannot
exist and R ≈ R(C[S\x])×D(x).

Now, suppose that D(x) = {v1, v2, v3} and there exists t ∈ R(C[S\x]) such
that (t, vk) ∈ R(C) for exactly two indices k, say 1 and 2. Since C is 1-minimal,
there exists t′ such that (t′, v3) ∈ R(C). However, the scope of CR∗

f((t,v1),(t,v2),(t′,v3))
contains only ground variables and x; therefore R(CR∗

f((t,v1),(t,v2),(t′,v3))) contains the
tuple (t′, vk) for all k ∈ {1, 2, 3}. By Lemma 4 we have R(CR∗

f((t,v1),(t,v2),(t′,v3))) ⊆
R(C), and the partial tuple t′ brings us back to the first case.

If no tuples satisfy either of the above two conditions, C is functional in x.

The key observation in our proof will be that variables with domain size 1
or 2 have very limited interactions with variables with domain size 3 once 1-
minimality has been enforced. Given a constraint C = (S,R) in PcM(Γ), we denote
by S|1,2(C) the restriction of S to variables with domain size 1 or 2, and by S|3(C)
the restriction of S to variables with domain size 3.

Lemma 9. Let PcM(Γ) = (X ,D, C) after applying 1-minimality. Let C ∈ C and
x ∈ S|3(C). It is true that R(C[S|1,2(C) ∪ x]) ≈ R(C[S|1,2(C)])×D(x).

Proof. Let C1 = C[S|1,2(C)] = (R1, S1), C2 = C[S|1,2(C) ∪ x] = (R2, S2) and
assume that x = xf(v1,v2,v3) occurs last in the scope of C2. By Lemma 8, either
R2 = R1 ×D(x) or C2 is functional in x. If it is functional, then by 1-minimality
there exist t, t′, t′′ ∈ R1 such that R2 contains (t, v1), (t′, v2) and (t′′, v3). Then, the
scope of C ′ = CR∗

f((t,v1),(t′,v2),(t′′,v3)) has only ground variables (those corresponding
to S|1,2(C)) plus xf(v1,v2,v3). Therefore, there exists t∗ such that R(C ′) contains
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(t∗, v1), (t∗, v2) and (t∗, v3). By Lemma 4, R(C ′) ⊆ R2 and C2 is not functional
in x, a contradiction.

Lemma 9 only deals with constraints whose scope contains exactly one vari-
able with domain size 3. Unfortunately, for k variables it is not completely true
that R(C[S|1,2(C) ∪ {x1, . . . , xk}]) ≈ R(C[S|1,2(C)]) × D(x1) × . . . × D(xk). Let
xf(v1

1 ,v
1
2 ,v

1
3), . . . , xf(vk1 ,vk2 ,vk3 ) be k variables of the indicator problem. The index-

equality constraint on these variables has three satisfying assignments: (v1
1, . . . , v

k
1),

(v1
2, . . . , v

k
2) and (v1

3, . . . , v
k
3). The next Proposition is the keystone of our proof,

and gives the correct generalization of Lemma 9 to an arbitrary number of variables
with domain size 3.
Proposition 13. Let PcM(Γ) = (X ,D, C) after applying 1-minimality and C ∈ C.
There exists n ≥ 0 and a set of constraints C∗, C1, . . . , Cn such that

C = C∗ ∧
( ∧
i=1..n

Ci

)

where the scope of C∗ is S(C), the constraints Ci are (possibly unary) index-
equalities whose scope are disjoint and cover S|3(C), and

R(C∗) ≈ R(C[S|1,2(C)])× Πx∈S|3(C)D(x)

Proof. We proceed by induction on the size of S|3(C). Let k > 0 and suppose
that Proposition 13 is true for all constraints C ′ such that |S|3(C ′)| ≤ k. Let
C = CR∗

f(t1,t2,t3) = (S,R) be a constraint with |S|3(C)| = k+ 1, and x ∈ S|3(C). By
Lemma 8, either C is functional in x or R(C) = R(C[S\x])×D(x). In the latter
case, C satisfies Proposition 13 by induction. Therefore, we shall assume that C
is functional in x.

By induction, we know that C[S\x] = C∗
∧
i=1..nCi. Let y ∈ {1..n} and Y =

S(Cy). Let vi, i = 1, 2, 3 be the three possible assignments to Y . We assume
without loss of generality that x = xf(u1,u2,u3) (hence, D(x) = {u1, u2, u3}) and
(Y, x) are the last variables in S. Let t ∈ R(C[S\{Y, x}]), and define φt : D(Y )→
D(x) such that φt(v) = {u ∈ D(x) | (t,v, u) ∈ R(C)}. We distinguish three cases.

1. φt has range {ui, uj} for some i 6= j. One of these two values, say ui, has
a preimage of size 2. Let {vp,vs} = φ−1

t ({ui}), vl /∈ {vp,vs}, and ty
1, t

y
2, t

y
3

be the permutation of (t,vp, ui), (t,vs, ui), (t,vl, uj) such that ty
h[Y ] = vh.

The constraint CR∗

f(ty
1 ,t

y
2 ,t

y
3) has only the variables in Y as active variables

(i.e. variables with domain size ≥ 2), and by 1-minimality its relation must
contain (t,vp, uj), (t,vs, uj), (t,vl, uj). By Lemma 4, R must contain these
tuples, a contradiction.
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2. φt is bijective. Suppose that there exist i, j such that i 6= j and φt(vi) = uj.
Let us /∈ {uj, ui}, t′ = (t,vi, uj) and t′′ = (t, φ−1

t (us), us). Let tx
1, tx

2, tx
3 be

the permutation of the tuples ti, t′, t′′ such that tx
h[x] = uh. Recall that ti

is one of the three tuples associated with the constraint C = CR∗

f(t1,t2,t3), and
hence ti ∈ R∗, ti[Y ] = vi and ti[x] = ui. Then, the constraint CR∗

f(tx
1 ,t

x
2 ,t

x
3)

has x as the only active variable in its scope, and for every u ∈ D(x) its
relation must contain the tuple tu such that tu[l] = ti[l] if l /∈ Y ∪ {x},
tu[Y ] = φ−1(us), and tu[x] = u. Note that at this point, Lemma 4 cannot be
applied because ti may not belong toR(C). Let ta

1, ta
2, ta

3 be the permutation
of ti, ts, t′ such that ta

h[x] = uh. The constraint CR∗

f(ta
1,t

a
2,t

a
3) has only ground

variables in its scope except x, and its relation R′ must contain the tuple tf

such that tf [x] = uj and tf [l] = t′′[l] otherwise. However, since R′ ⊆ R we
have tf ∈ R, a contradiction. Therefore, if φt is bijective then it must map
every vi to ui.
Now, suppose that there exists a partial tuple t′ such that φt′ is not equal to
φt. By Case 1 and the reasoning above, φt′ must map every vi to the same
value up. Let {vi,vj} = D(Y )\vp. If we denote by tb

1 , tb
2 , tb

3 the permutation
of (t′,vj, up), (t′,vp, up) and (t,vi, ui) such that tb

h[Y ] = vh, the constraint
CR∗

f(tb
1 ,t

b
2 ,t

b
3) has only the variables in Y as active variables in its scope, and

by 1-minimality its relation must contain the tuple (t,vp, ui). By Lemma 4,
this tuple must belong to R, a contradiction.
Finally, in this case every tuple must induce an index-equality between Y and
x. Therefore, we can add x to the scope of Cy and continue the induction.

3. φt has range {u}. By Cases 1 and 2, we know that the only situation where
the induction may not hold is when φt′ is in this case for every partial
tuple t′ and every choice of Y . For each t′ ∈ R(C[S\x]) and index-equality
constrained set of variables Y ′, we define JY ′(t′) to be t′ plus the set of all
tuples that differ from t′ only on the assignment to Y ′. By functionality, for
each t′ ∈ R(C[S\x]) we can define ψ(t′) to be the sole value u ∈ D(x) such
that (t′, u) ∈ R. It is immediate that ψ(tα) = ψ(tβ) for each tα, tβ ∈ JY ′(t′),
for any fixed Y ′, t′. Furthermore, for any two tuples tα, tβ ∈ R(C[S\x]) such
that tα[S|1,2(C)] = tβ[S|1,2(C)], there exists tY1 , . . . , tYn such that tY1 ∈
JY1(tα), tβ ∈ JYh(tYn) and for each i, tYi+1 ∈ JYi(tYi). In other words,
starting from tα one can obtain tβ by changing the assignments to each Yi
one by one. By transitivity of the equality, this means that ψ(tα) = ψ(tβ).
Since this is true for any pair tα, tβ that share the same values for S|1,2(C), it
follows that C[S|1,2(C)∪x] is functional in x, a contradiction with Lemma 9.
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Theorem 21. There exists an algorithm that decides in time O((rlt3d3 + rlt4) if
a constraint language Γ admits a conservative Mal’tsev polymorphism and outputs
one if one exists, where r is the maximum arity, l is the number of relations in Γ,
d is the domain size and t is the maximum number of tuples in a relation in Γ.

Proof. By Lemma 7, we can look for a conservative minority polymorphism in-
stead. The algorithm builds PcM(Γ) in time O(rlt3), where l is the number of
relations and t, r are respectively the maximum number of tuples and the maxi-
mum arity of a relation. PcM(Γ) has O(lt3 + d3) constraints and O(d3) variables.
Then, we enforce 1-minimality in time O(rlt4). By Proposition 13, assigning every
variable xf(v1,v2,v3) with domain size 3 to v1 does not violate any constraint (since
it respects index-equalities) and is consistent with every satisfying assignment to
the remaining variables. Therefore, we can eliminate every variable with domain
size 3. We are left with an instance whose active variables have domain size 2, and
if it has a solution its language must have a conservative minority polymorphism.
Note that all minority operations coincide on 2-elements domains; therefore, we can
rename each domain by {0, 1} (arbitrarily) and obtain a CSP instance whose lan-
guage has the unique Boolean minority polymorphism m(x, y, z) = x−y+z mod 2.
This instance is equivalent to a system of linear equations over GF(2), and any
such instance with n variables and m constraints of arity r can be solved in time
O(mnr) using iterative methods [127]. The complexity of the whole algorithm is
O(rlt3d3 + rlt4).

To put this result into perspective, the best known algorithm for solving Mal’tev
instances has complexity O(mn4 + mn2l4t4) [61]; therefore even in the case of
bounded arity the complexity of the treasure hunt algorithm applied to conser-
vative Mal’tsev polymorphisms is roughly O(d3(lt3 + d3)(d12 + d6l4)), which is a
polynomial whose dependency in d has degree 18. Finally, the algorithm of Theo-
rem 21 is extremely simple: model the meta-problem as a CSP, apply 1-minimality
and solve the remaining Boolean linear system using your favourite algorithm (al-
though Gaussian elimination is not recommended here due to the sparsity of the
system).

4.7.2 Conservative Majority Polymorphisms
As seen in Section 4.7.1, analyzing the structure of the indicator problem for
languages of large arities can be tedious. Fortunately we need not do this twice,
for languages with majority polymorphisms are 2-decomposable: each constraint
can be replaced by its binary projections without altering the solution set of the
instance [94].

It is fairly straightforward to see that if a language Γ has a majority poly-
morphism, then the indicator problem of its 2-decomposition Γ2 is equivalent to
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the 2-decomposition of the indicator problem of Γ. Let M be the strong linear
Mal’tsev condition that defines majority polymorphisms, i.e.

M :
f(x, x, y) ≈ x
f(y, x, x) ≈ x
f(x, y, x) ≈ x

Given a constraint language Γ we denote by PcM(Γ) the CSP instance whose so-
lutions are exactly the conservative majority polymorphisms of Γ, as detailed in
Section 4.5.

Lemma 10. If PcM(Γ2) is 1-minimal, the assignment

xf(u1,u2,u3) ← (ui ∈ D(xu1,u2,u3) | i is minimum)

is a solution.

Proof. We first consider PcM(Γ2) before 1-minimality is applied. Let CR∗

f(t1,t2,t3) =
(S,R∗) be a constraint of PcM(Γ2) with scope (xf(u1,u2,u3), xf(v1,v2,v3)) such that
both variables are active (i.e. |{u1, u2, u3}| = |{v1, v2, v3}| = 3, as otherwise the
unary majority constraints would force the variable to be ground). Suppose that
there exists a pair i 6= j such that t = (ui, vj) ∈ R. Let k be the index such
that k /∈ {i, j} and (t′1, t′2, t′3) be the permutation of the tuples t, ti, tk such that
t′1[2] = v1, t′2[2] = v2 and t′3[2] = v3. Consider the constraint CR∗

f(t′1,t′2,t′3) = (S ′, R∗).
The second variable in S ′ is xf(v1,v2,v3) and after 1-minimality the first variable will
be fixed to the value ui. Therefore, by Lemma 4, after 1-minimality the constraint
CR∗

f(t1,t2,t3) = (S,R) will contain the tuple (ui, v) for every v ∈ D(xf(v1,v2,v3)). From
this we can deduce that, after 1-minimality, for every i we have either (ui, vi) ∈ R
or (ui, v) ∈ R for every v in the domain of xf(v1,v2,v3). In particular, if i and j are
the minimum indices such that both ui and vi are in the domains, (ui, vj) always
belongs to R.

Theorem 22. Conservative majority polymorphisms can be detected in time O(rlt4)
in constraint languages with l distinct relations of arity at most r and containing
at most t tuples.

Proof. The algorithm starts by assuming that a conservative majority polymor-
phism exists. We build PcM(Γ) and enforce 1-minimality in time O(rlt4). Since
PcM(Γ) is equivalent to PcM(Γ2) if it has a solution, the assignment proposed by
Lemma 10 is a solution if and only if Γ has a majority polymorphism.

Again, this algorithm is much more efficient than using Proposition 8, although
the improvement is not as overwhelming as for conservative Mal’tsev polymor-
phisms. Besides, the time complexity of our algorithm is roughly that of checking
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if a given conservative majority operation is a polymorphism of Γ, so there is
little room for improvement. If memory is a problem (as it was in the previous
chapter, which implemented Proposition 8 to detect conservative majority poly-
morphisms), it may be better to build PcM(Γ2) instead of PcM(Γ) and then verify
that the obtained majority polymorphism of Γ2 is also a polymorphism of Γ. Ide-
ally, further experiments on partition backdoors should use Theorem 22 instead of
Proposition 8 to detect conservative majority polymorphisms.

4.8 Conclusion and Future Research
We have shown that the dichotomy criterion for conservative CSP can be decided
in true polynomial time, without any assumption on the arity or the domain size
of the input constraint language. This solves an important question on the com-
plexity of c-CSP among the few that remain. On the way, we have also proved that
classes of conservative constraint languages defined by linear strong Mal’tsev con-
ditions admitting a semiuniform algorithm always have a tractable meta-problem.
This result is a major step towards a complete classification of meta-problems
in conservative languages and complements nicely the results of [37]. Finally,
observing the inefficiency of our most general algorithms we have developed sim-
ple specialized methods to detect conservative majority and conservative Mal’tsev
polymorphisms.

A number of open questions remain on meta-problems and uniform algorithms.
It is known that Proposition 8 does not hold in general if the linearity requirement
on the Mal’tsev condition is dropped, as semilattices are NP-hard to detect even
in conservative constraint languages despite having a uniform algorithm [79]. The
same happens if the idempotency of the Mal’tsev condition is dropped instead [37].
However, the mystery remains if the requirement for a uniform algorithm is loos-
ened since no tractable idempotent strong linear Mal’tsev condition is known to
have a hard meta-problem. This prompts us to ask if our result on conservative
constraint languages can extend to the general case. An affirmative answer would
be very strong since it would imply that detecting (nonconservative) Mal’tsev
polymorphisms is polynomial-time, which is unknown even in the elementary case
where the Mal’tsev polymorphism is required to be affine.

Question 2. Does there exist an idempotent strong linear Mal’tsev condition M
that has a semiuniform polynomial-time algorithm but whose meta-problem is not
in P, assuming some likely complexity theoretic conjecture?

By producing the coloured graph in polynomial time, the algorithm of The-
orem 16 would be very helpful in the design of a uniform algorithm that solves
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every tractable conservative constraint language (should one exist). An interesting
question is whether such an algorithm exists.

Question 3. Does there exist a uniform polynomial-time algorithm for the class
of all tractable conservative constraint languages?

The successive simplifications [21][4][22] of the proof of the conservative di-
chotomy suggest that conservatively tractable languages may not be as compli-
cated as they appear, and we believe that the answer to Question 3 is likely to be
in the affirmative.

Finally, it is known that detecting a Siggers polymorphism is NP-hard but
Theorem 16 states that it is polynomial-time if the polymorphism has to be con-
servative. It is natural to wonder what happens for idempotent Siggers polymor-
phisms, which is the middle ground between the general and conservative cases.
This question might prove tricky because we do not know yet if languages with
a Siggers polymorphism are tractable, which limits greatly the reach of methods
based on ideas similar to Proposition 8.

Question 4. What is the complexity of deciding if a constraint language has an
idempotent Siggers polymorphism?
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Chapter 5

Kernel-based Propagators: the
Vertex Cover Constraint

The combination of intuitive modelling and efficient solving methods has made
constraint programming a popular paradigm for solving real-world computational
problems. At the heart of its success lies the concept of global constraints, which
are relations represented algorithmically (through a propagator) rather than ex-
tensionally. These constraints scale very well to large arities without being overly
memory-intensive, and the extensive literature on propagators for common types
of global constraints makes up for the loss of a direct access to the list of tuples.

Because a global constraint can be just any NP subproblem, finding a support
for a given variable-value pair is potentially NP-hard. For such global constraints,
which are quite numerous [13], there are two extreme competing approaches. The
most common is to simply decompose the constraint further until GAC can be
achieved in polynomial time, which is generally easy to do but may significantly
hinder the reasoning made possible by the knowledge of the problem structure.
At the extreme opposite, one could decide to enforce GAC anyway by probing
every variable-value pair and hope that the increased quality of propagation will
make up for its worst-case exponential computational cost. There are numerous
intermediate methods, which include using consistency notions weaker than GAC
(such as bound consistency) or simply settle for incomplete propagation rules.

Because propagating NP-hard global constraints is all about tradeoffs and good
scalability, it is fertile ground for parameterized complexity. A study of the pa-
rameterized complexity of global constraints, and of their relevant parameters,
has displayed very promising results [12]. For instance, propagating the NValue
constraint is NP-hard in general [13] and polynomial-time if the domain of each
variable is an interval, but a refined analysis using parameterized complexity has
shown that propagation is FPT when the parameter is the number of holes in the
variable domains [12] - a parameter that can be expected to be rather small when
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using a tailored search heuristic. This FPT algorithm has been subsequently im-
proved using kernelization [72], which is used as a preprocessing for probing: pick
a variable-value pair, and kernelize the problem of deciding if a support exist. In
this chapter we introduce a novel family of kernels, called loss-less kernels, which
are tied to the whole propagation process rather than the subproblems created by
probing. A powerful feature of these new kernels is the ability to propagate even
in the absence of probing, which becomes optional.

In general, kernelization methods proceed to reduce the problem size by apply-
ing dominance rules. From the point of view of global constraints this means that
most kernelization algorithms will remove a domain value because they have found
another in the same domain that is at least as likely to belong to a tuple, but it
does not mean that the removed value has no support. This type of inference can
thus not be used directly for filtering. Unlike general kernelization, loss-less kernels
maintain complete information on all supports and thus define sound propagation
rules. Naturally, because we use more restricted dominance rules this comes at
the price of a larger bound on the kernel size.

We will introduce three variants of loss-less kernels and investigate the appli-
cability of the strongest of them to the VertexCover constraint, both in theory
and practice. Vertex Cover is an ideal ground, because it is

• The flagship problem of the parameterized complexity community, and thus
enjoys a great variety of pruning techniques;

• Useful for modelling a variety of other well-known problems, such as Max-
imum Independent Set, Maximum Clique, and Maximum Common
Induced Subgraph with side constraints.

• Mostly unexplored as a global constraint, which makes our implementation
the first of its kind.

In contrast with the rest of the thesis, the content of this chapter is largely
prospective. We open up a number of research avenues in the design of propagators
based on loss-less kernels, but only study the Vertex Cover case and even in
this restricted context we leave important questions unanswered. Still, we believe
that there is great value in the ideas presented as measured by their potential
applications.

5.1 Loss-less Kernels
Let Q = Q ∪ {∞} denote the set of rational numbers with infinity. An n-ary cost
function over a finite domain D is a function π : Dn → Q. Throughout the chapter
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we will be interested in NP problems that correspond to the decision version of
minimizing an input cost function π drawn from a fixed (but infinite) family Π of
cost functions.

Π-Minimization-Decision
Input: A set of variables X = {x1, . . . , xn} with domains

D(x1), . . . , D(xn) ⊆ D, π ∈ Π over D of arity n, k ∈ Q
Question: Does there exist an assignment φ : X → D such that ∀x ∈

X,φ(x) ∈ D(x) and π(φ(x1), . . . , φ(xn)) ≤ k?

Assignments to X that respect the domains and have finite cost are called feasi-
ble, and solutions are feasible assignments of cost less than k. For a given instance
I with variable set X, σ(I) denotes the minimum cost of a feasible assignment to
X (which is less than k if and only if I is a yes-instance), U(I) denotes the set of
all pairs (x, d) with x ∈ X and d ∈ D(x), and Σ(I) denotes the set of all pairs
(x, d) ∈ U(I) such that there exists a solution φ to I with φ(x) = d (in the CSP
world, this is the set of all variable-value pairs with a support). Depending on the
context, we may write kI instead of k to stress that k belongs to the instance I. We
shall assume that the choice of encoding for π is part of the definition of Π, but to
preserve membership in NP we will assume that π can be evaluated in polynomial
time. For example, Valued CSP is a problem of this kind where π is a sum of
smaller cost functions (constraints), each of which is represented using tables of
costs. In this case the size of π is linear in the total number of (valued) tuples in
the constraints. As another example, the Vertex Cover problem (defined in Ex-
ample 3) is a problem of this kind where each xi is a Boolean variable that decides
if the vertex i should be included in the cover and π is a cost function that returns
∞ if the assignment to X is not a vertex cover of G, and the number of variables
set to true otherwise (the cover size). In this case, the size of π is roughly the size
of the graph G. Given a fixed family Π of cost functions, we can turn an instance
I of Π-Minimization-Decision into a global constraint Cπ whose tuples are the
solutions to I. The scope of that constraint is (x1, . . . , xn, K), where K is a cost
variable, and the predicate of that constraint is π(x1, . . . , xn) ≤ K. The purpose of
this section is to identify new notions of kernelization for those cost-minimization
problems that are relevant to the propagation of their associated constraint.

Classical kernelization for propagating global constraints is typically used in
tandem with probing: pick a variable-value pair (x, d), kernelize the problem of
deciding if a support exists in Cπ and solve it in FPT time using the kernel. This
technique requires to solve a number of FPT problems (and compute a number of
kernels) that is linear in the scope and domain size just to propagate one constraint,
which may be excessively costly from the perspective of the constraint solver.
Furthermore, while propagation is FPT it is difficult to associate the whole process
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with a unique, clear-cut kernel.
As classical kernels typically use rules to identify which values are relevant to

the decision problem (i.e. finding a tuple-solution), we want to define kernels which
capture the values that are relevant to propagation. In other words, if the parame-
ter is p we want a subproblem of size f(p) such that enforcing domain consistency
on this subproblem allows complete propagation of all values in polynomial time.
This is much more consistent with the spirit of kernelization, extends smoothly
constraints with polynomial-time propagators and yields a propagation algorithm
with running time O(g(p) + |I|O(1)pO(1)), instead of O(|I|O(1)g(p)) for probing plus
classical kernelization.

Now that we have identified the foundations of the desired kernelization notion,
we can refine it for cost minimization constraints using a recurrent phenomenon
that is critical for CSP solving. Let us consider a cost minimization constraint
Cπ with cost variable K and underlying instance I. Let K denote the maximum
value of K. If σ(I) is much smaller than K then Cπ is likely to contain a very large
number of tuples, and thus propagating this constraint will probably not have a
noticeable effect on the variable domains. On the other hand, during backtracking
search the domain of K will be gradually reduced and it will eventually get to the
point where K ≤ σ(I) + z for a small constant z. This means that the constraint
will get tighter, in the sense that it will contain less tuples and thus be more
likely to perform meaningful propagations. Therefore, it makes sense to bolster
the propagation methods when z is identified as small (for instance because we
know a lower bound of σ(I)). From the kernelization perspective, this means that
we should prioritize kernels whose size will provably decrease as z gets closer to
0, or even kernels that only exist for small values of z. Thus, instead of devising
potentially large kernels that preserve information on all supports for non-kernel
variables, we can focus on kernels that preserve information on all supports whose
cost is at most z from the optimum cost - at the (very small, as argued above)
price of being useful only when the constraint becomes tight.

We will define a hierarchy of three different types of kernels for propagation,
which we call z-loss-less and will be respectively labelled as direct, weak and strong.
Direct z-loss-less kernels, which are the smallest and most general, follow closely
the thought process of the above paragraphs.

Definition 24. Let z ∈ Q and Π be a fixed family of cost functions. A direct
z-loss-less kernelization of Π-Minimization-Decision parameterized by p is
a function that maps in polynomial time each parameterized instance (I, p) of
Π-Minimization-Decision to a new parameterized instance (I ′, p′), such that

(i) There exist computable functions f, g such that |I ′| ≤ f(p) and p′ ≤ g(p);

(ii) I is satisfiable if and only if I ′ is;
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(iii) U(I ′) ⊆ U(I);

(iv) There exists a polynomial-time algorithm A which on input (I, σ(I ′)) com-
putes σ(I);

(v) There exists a polynomial-time algorithm B which, on input (I, σ(I),Σ(I ′))
and whenever σ(I) ≥ kI − z, outputs Σ(I).

Weak z-loss-less kernels improve on their “direct” counterpart by allowing
polynomial-time propagation of non-kernel values even if only the optimum cost
σ(I ′) of the kernel I ′ is known. This gives a nice flexibility: with n variables and
d values in each domain, we can either be satisfied by propagating the nd − f(p)
non-kernel values at the cost of solving a single FPT optimization subproblem,
or push further and decide to propagate the kernel values as well at the cost of
solving a number of subproblems that depends only on the parameter.

Definition 25. Let z ∈ Q and Π be a fixed family of cost functions. A weak
z-loss-less kernelization of Π-Minimization-Decision parameterized by p is
a function that maps in polynomial time each parameterized instance (I, p) of
Π-Minimization-Decision to a new parameterized instance (I ′, p′), such that

(i) There exist computable functions f, g such that |I ′| ≤ f(p) and p′ ≤ g(p);

(ii) I is satisfiable if and only if I ′ is;

(iii) U(I ′) ⊆ U(I);

(iv) There exists a polynomial-time algorithm A which on input (I, σ(I ′)) com-
putes σ(I);

(v) There exists a polynomial-time algorithm B which, on input (I, σ(I)) and
whenever σ(I) ≥ kI − z, outputs Σ(I) ∩ (U(I)\U(I ′)).

Now, let us analyze these two first definitions. The items (i) and (ii) correspond
to classical kernelization. It would be possible to do without (iii) but it is quite
valuable in the CSP context: this constraint will be one among many, and this
requirement ensures that the kernel makes sense from the perspective of the CSP
instance as a whole. To see the necessity for (iv) and (v), recall that our purpose
is to devise a type of kernelization that allows complete propagation on all values
by solving a single problem on the kernel whenever the problem is tight; in this
setting A will be used to determine if the constraint is tight enough, and if it is
the case then B will perform the actual propagation. These two algorithms A and
B are designed to work in tandem, with the output of A being the input of B. So,
why distinguish them?
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In the upcoming sections we will present weak z-loss-less kernels for Ver-
tex Cover with an additional property that turns out to be highly relevant to
propagation: in these kernels, the algorithm B is capable of performing partial
propagation if a lower bound of σ(I) is given in input instead of σ(I). This means
that invoking A becomes optional, and hence the kernel becomes useful even if
the FPT subproblem is not solved at all. Of course, for this to be meaningful
from a theoretical point of view the quality of this partial propagation has to be
quantified in precise terms. This is a bit tricky because the propagation is not
guaranteed in terms of variables and values, as in weak kernels, but in terms of
convergence towards complete propagation as the lower bound gets closer to the
real value of σ(I). Of course, if B does nothing unless σ(I) is given as input it
technically converges; but the key observation is that B cannot do that in general
because it is a polynomial-time algorithm and checking if the input is indeed σ(I)
is likely to be difficult. Therefore, in most cases B will perform increasingly better
propagation as the lower bound gets closer to σ(I), even if it is unknown. If an
algorithm B with this property exists, we will say that the kernel is strong rather
than weak.

Definition 26. Let z ∈ Q and Π be a fixed family of cost functions. A strong
z-loss-less kernelization of Π-Minimization-Decision parameterized by p is
a function that maps in polynomial time each parameterized instance (I, p) of
Π-Minimization-Decision to a new parameterized instance (I ′, p′), such that

(i) There exist computable functions f, g such that |I ′| ≤ f(p) and p′ ≤ g(p);

(ii) I is satisfiable if and only if I ′ is;

(iii) U(I ′) ⊆ U(I);

(iv) There exists a polynomial-time algorithm A which on input (I, σ(I ′)) com-
putes σ(I);

(v) There exists a polynomial-time algorithm B which on input (I, l) where l ∈
Q, l ≤ σ(I) outputs a set Σl ⊆ U(I)\U(I ′) such that

– For every l1, l2 with l1 ≥ l2, Σl1 ⊆ Σl2 ;
– If σ(I) ≥ kI − z then Σσ(I) = Σ(I) ∩ (U(I)\U(I ′)).

We will use loss-less as a shorthand for ∞-loss-less. There are numerous ways
to generalize these definitions - for instance, making z a function of the parameter,
omitting (iii), considering kernels for higher-order consistencies that preserve sup-
ports for simultaneous assignments to variables - but we feel that these definitions
are a nice compromise, being at the same time strong theoretical foundations to
build upon and still in touch with the practical side of constraint programming.
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Example 10. Subset minimization problems ask for a subset S with property P
of a given universe U such that |S| ≤ k. Those problems are particular cases of
our framework, with one Boolean variable for each u ∈ U and a cost function that
returns ∞ whenever the assignment corresponds to a set that does not have the
property P , and the number of variables set to true otherwise. In this context,
Damaschke defined a full kernel as a set W ⊆ U that contains the union of all
inclusion-minimal solutions [51]. These kernels are useful for enumeration purposes
when the property π is ⊃-closed, i.e. Y ⊃ X has the property π whenever X has.
In this case, full kernels computable in polynomial time are always strong loss-less
kernels where σ(I) = σ(I ′) and B does not remove any values unless the input lower
bound is exactly k, in which case it no longer finds supports for the value true in
the domain of non-kernel variables. This is an example for which the convergence
of B to complete propagation is the worst possible, since B does nothing until the
lower bound is equal to k, despite z being infinite. Our own kernels for Vertex
Cover will behave very differently, with propagation happening as soon as the
lower bound exceeds k − z.

Generalizing polynomial-time computable full kernels, enum-kernels are special
kernels which contain all necessary information to enumerate all solutions with
FPT delay [45], and in that aspect they are incomparable with our loss-less kernels
which are required to preserve one support (i.e. solution) for each variable-value
pair, and the existence of these supports must be decidable in polynomial time
(not FPT) from the knowledge of kernel supports. However, because the core idea
is relatively similar we can expect many direct loss-less kernels to be enum-kernels
as well (and vice versa). Finally, in the very specific context of strong backdoors
Samer and Szeider have introduced loss-free kernels [128], which are essentially
identical to full kernels and should not be confused with our own.

5.2 Vertex Cover
Let us start by introducing some elementary notions of graph theory and relevant
notations. An undirected graph is an ordered pair G = (V,E) where V is a set of
vertices and E is a set of edges, that is, pairs in V . We denote the neighbourhood
of a vertex v by N(v) = {u | {v, u} ∈ E}, its closed neighbourhood N+(v) =
N(v) ∪ {v} and N(W ) = ⋃

v∈W N(v). The subgraph of G = (V,E) induced by a
subset of vertices W is denoted G[W ] = (W, 2W ∩E). An independent set is a set
I ⊆ V such that no pair of elements in I is in E. A clique is a set C ⊆ V such
that every pair of elements in C is in E. A clique cover T of a graph G = (V,E)
is a collection of disjoint cliques such that ⋃C∈T C = V . A matching is a subset
of pairwise disjoint edges. Recall that a vertex cover of G is a set S ⊆ V such
that every edge e ∈ E is incident to at least one vertex in S, and observe that the
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complement of a vertex cover is by definition an independent set. The size of a
matching is a straightforward and widely used lower bound to that of any vertex
cover because covering the matching itself requires at least one vertex per edge.
A more refined lower bound can be derived from clique covers: if (C1, . . . , Ch) is
a clique cover, then every vertex cover has to contain at least |Ci| − 1 vertices of
each clique Ci.

We will use the decision version of the Vertex Cover problem to showcase
the interest of z-loss-less kernels.

Vertex Cover
Input: A graph G = (V,E), an integer k
Question: Does G have a vertex cover of size at most k?

Vertex Cover is NP-complete [68] and commonly parameterized by the
solution size k. The problem is easily seen as FPT via a bounded search tree
(see Example 3), and more involved techniques yield an exact FPT algorithm
with running time O(1.2738k + |V |k) [39]. The most recent research on Vertex
Cover often focus on stronger parameters that measure the difference between k
and easily computable lower bounds [69][103], but we shall keep things simple and
use k as the parameter.

5.2.1 Preliminaries: Classical Kernelization
In this section we survey the main existing kernelization methods, and in particular
crown-based kernelization which will serve as a baseline for our own contributions.
Historically, the first kernelization method discovered for Vertex Cover is Buss’s
rule [28]. The idea is straightforward. If a vertex v has degree k + 1, it is clear
that v has to belong to every size-k vertex cover since otherwise we would have to
include its whole neighbourhood; we can therefore safely remove v from the graph
and decrement k by one. If this rule is no longer applicable, then every vertex can
cover at most k edges, and therefore no size-k vertex cover exists unless the graph
has at most k2 edges and k2 +k non-isolated vertices. A more refined kernelization
algorithm works using decompositions called crowns.

Definition 27. Let G = (V,E) be a graph. A crown decomposition of G is a
partition (H,W, I) of V such that

(i) I is an independent set;

(ii) There is no edge between I and H;
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(iii) There is a matching M between W and I of size |W |.

Given a crown decomposition of a graph G, every vertex cover of G[W ∪ I]
has to be of size at least |W | because of the matching M . Since I is an indepen-
dent set, taking the vertices of W over those of I in the vertex cover is always a
sound choice: they would cover all the edges between W and I at minimum cost,
and as many edges in G[W ∪H] as possible. This reduction rule is slightly more
difficult to apply than Buss’s rule because one has to actually compute a crown
decomposition, which is not obviously easy. For this, two competing methods ex-
ist: one based on maximal matchings that leaves a residual instance G[H] with 3k
vertices [2], and one that uses the relaxation of the LP formulation instead and
yields a kernel of size 2k [118]. The best known kernelization for Vertex Cover
leaves a kernel of size 2k − c log(k) by using a reduction to Almost-2-SAT on
top of the LP method [108], but the algorithmic cost becomes quickly prohibitive
as c increases.

There is a fundamental difference between Buss’s rule and crown-based kernel-
ization. Let us turn to the formulation as a cost function minimization problem,
with one Boolean variable for each v ∈ V that decides if v should be in the cover.
When Buss’s rule can be applied to a vertex v, it belongs to all vertex covers of
size at most k. This means that the value 0 in the domain of v is inconsistent, and
1 is consistent if and only if a solution exists. After removal (i.e. assignment to
1) of those, every other non-kernel vertex is isolated, and for these the value 1 is
consistent if and only if the minimum cost is strictly less than k. Overall, this is a
strong ∞-loss-less kernelization. On the other hand, crown decompositions assert
that taking the vertices in W in the cover is at least as good as taking those in
I, but it may happen that size-k (and even minimum-size) vertex covers contain
vertices in I. In other words, we preserve at least one minimum-size cover but
information on supports may be lost in the process. This idea is formalized more
rigorously in the next proposition, which is definitely not surprising but included
for completeness. A full proof based on a reduction from Minimal CSP can be
found in Appendix A.

Proposition 14. Unless P = NP, there is no polynomial-time algorithm that takes
as input:

• A graph G and a crown decomposition (H,W, I) of G,

• The minimum size of a vertex cover of G[H],
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• The list of all vertices of H that belong to all minimum-size vertex covers of
G[H], and

• The list of all vertices of H that belong to no minimum-size vertex covers of
G[H]

and decides if there exists a vertex in W that belongs to all minimum-size vertex
covers of G.

From this proposition we can deduce that crown decompositions are unsafe to
use for computing loss-less kernels, even for direct ones and with z = 0. To resolve
this issue, Chleb́ık and Chleb́ıková defined special crown decompositions for which
every minimum-size vertex cover of the bipartite graph (W, I) contains every ver-
tex in W and none in I [40] (we use here (W, I) as a shorthand for G[W ∪I] minus
the edges between vertices in W ). These crowns are said to be strong. An optimal
strong crown decomposition can be found in polynomial time using a variant of
the LP method, where “optimal” means that H does not have a strong crown
decomposition and |H| ≤ 2k (thus matching the best known bound for standard
crown kernelization). When the upper bound k is exactly the minimum size of a
vertex cover, this kernelization method gives simple rules to completely propagate
non-kernel vertices: this is a strong 0-loss-less kernelization.

5.2.2 z-loss-less Kernels for Vertex Cover

On the scale of z-loss-less kernelization, Buss’s rule and strong crowns correspond
to the two extreme cases z =∞ and z = 0. The kernel obtained by Buss’s rule is
large (quadratic in k) but the propagation algorithm B can be used at any time. In
contrast, the strong crown kernel is almost as small as a kernel can be but does not
infer anything unless the cost k is exactly the minimum size of a vertex cover. In
this section we show that a full hierarchy of intermediate z-loss-less kernelizations
exist between these two, and the bound on the size of these kernels is linear in
both z and k. To achieve this, we consider the following extension of strong crowns.

Definition 28. Let G = (V,E) be a graph and z be a natural number. A z-rigid
crown decomposition of G is a partition (H,W, I) of V such that

(i) I is an independent set;
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(ii) There is no edge between I and H, and

(iii) Every vertex cover of the bipartite graph (W, I) of size at most |W | + z
contains W .

The concept of z-rigidity is illustrated in Figures 5.1 and 5.2. Using our ter-
minology, strong crowns are 0-rigid. In order to find in polynomial time z-rigid
crown decompositions, we will make a small detour and consider decompositions
that are not quite crowns. A partition (H,W, I) of the vertex set of a graph G
is said to be an almost-crown if I is an independent set and N(I) = W (tech-
nically, an almost-crown is simply an alternative representation of independent
sets). The width of an almost-crown Σ = (H,W, I), denoted by δ(Σ), is the size
of a maximum matching between I and W . A crown is then an almost-crown Σ
with δ(Σ) = |W |. A subcrown of an almost-crown (H,W, I) is a crown (H ′,W ′, I ′)
such that W ′ ⊆ W and I ′ ⊆ I.

Proposition 15. Let Σ = (H,W, I) be an almost-crown of a graph G = (V,E)
with no isolated vertex. If |I| > (z + 1)δ(Σ), then Σ contains a z-rigid subcrown.

Proof. We proceed by induction on the value of δ(Σ). If δ(Σ) = 1, every vertex
i ∈ I has the same (unique) neighbour v ∈ W because I does not contain isolated
vertices. It follows that W = {v} and Σ is itself a z-rigid crown since every
vertex cover not containing v is of size at least |I| > z + 1 = z + |W |. Let
k ≥ 1 and suppose that the claim is true for all almost-crowns Σ′ with δ(Σ′) ≤ k.
Let Σ = (H,W, I) be an almost-crown with no isolated vertex and such that
|I| > (z + 1)δ(Σ) = (z + 1)(k + 1). If Σ is not z-rigid, then there exists a cover
S of (W, I) of size at most δ(Σ) + z = k + 1 + z that does not contain W . Now,
let W2 = W ∩ S, I2 = I\S and observe that Σ2 = (I2,W2, V \{I2,W2}) is an
almost-crown (the neighbours of I2 must belong to W2 because S is a cover).

Suppose that δ(Σ2) = k + 1. Then, there exists a matching M2 of size k + 1
between W2 and I2. Because S does not contain W there exists a vertex v ∈ W\S,
and since N(I) = W and S is a vertex cover there must exist i ∈ I ∩ S such that
(i, v) ∈ E. Then, M2 ∪ (i, v) is a matching of size k + 2 of Σ, which contradicts
the hypothesis δ(Σ) = k + 1. Therefore, δ(Σ2) ≤ k.

It remains to prove that |I2| > (z + 1)δ(Σ2). By construction, we have |I2| =
|I| − |S ∩ I| > (z + 1)(k + 1) − (k + 1 + z − |W2|). Since |W2| ≥ δ(Σ2), we have
|I2| > (z+1)(k+1)+δ(Σ2)−(k+1+z) = (z+1)k−k+δ(Σ2). If we let x = δ(Σ2),
the difference d(x) = |I2| − (z + 1)x satisfies

d(x) > (z + 1)k − k + x− (z + 1)x = zk − zx ≥ 0

hence |I2| > (z + 1)δ(Σ2) and we can use the induction hypothesis to obtain the
claim.
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W

H

Figure 5.1: A non-rigid crown decomposition. The vertices of a minimum-size
vertex cover of G[W ∪ I] that does not contain W are circled.

I
W

H

Figure 5.2: With two additional edges between W and I, the crown decomposition
of Figure 5.1 becomes 1-rigid.
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The above proposition actually gives a polynomial-time algorithm to compute
the z-rigid subcrown. Starting from an almost-crown Σ = (H,W, I) satisfying the
criterion of Proposition 15, for each vertex v in W decide if (W, I) has a vertex
cover of size ≤ k + z that does not include v (this is polynomial-time using the
Hopcroft-Karp algorithm [89] and König’s Theorem). If no such vertex cover is
found then Σ is z-rigid, and otherwise follow the reasoning of the proof to reduce
the problem to a strictly smaller almost-crown.

We now show how a suitable almost-crown can be found in polynomial time.
We will use the following lemma, which is adapted from ([2], Theorem 7).

Lemma 11 ([2]). Let (G, k) be an instance of Vertex Cover. There exists a
polynomial-time algorithm that computes a crown decomposition ΣN = (H,W, I)
of G such that |H| ≤ 2(k − |W |) and G[H] has no 0-rigid crown decomposition.

Theorem 23. Given an instance (G, k) of Vertex Cover and an integer z ≤ k,
a strong z-loss-less kernel of (G, k) with at most (z+ 2)k vertices can be computed
in polynomial time.

Proof. We remove all isolated vertices from G and compute the crown decom-
position ΣN = (H,W, I) of G using Lemma 11. Because every z-rigid crown
decomposition is also 0-rigid, every z-rigid crown in G must be a subcrown of
ΣN . If |I| > (z + 1)|W |, we can use Proposition 15 to find a z-rigid crown
and reduce the problem further. Otherwise, we have |G| = |H| + |W | + |I| ≤
2(k − |W |) + |W |+ (z + 1)|W | = z|W |+ 2k ≤ (z + 2)k and the claim follows.

For z = 0, we obtain a kernel of size 2k which matches the bound obtained by
Chleb́ık and Chleb́ıková using more specialized methods. The key strength of their
technique is a guarantee that the kernel does not have a strong crown decomposi-
tion, which we fail to achieve for z-rigid crowns in general. Such an improvement
is left for future research, although we do not believe that very different methods
are needed.

5.2.3 The VertexCover Constraint
We consider the Vertex Cover problem as a constraint over two variables: an
integer variable K to represent the bound on the size of the vertex cover, and
a set variable S to represent the cover itself. The former takes integer values in
a domain D(K) which minimum and maximum values are denoted K and K,
respectively. The latter takes its values in the sets that are supersets of a lower
bound S and subsets of an upper bound S. Moreover, the domain of a set variable
is also often constrained by its cardinality given by an integer variable |S|. We
consider a constraint on these two variables and whose predicate is the Vertex
Cover problem on the graph G = (V,E) given as a parameter:
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Definition 29 (VertexCover constraint).
VertexCover[G](K,S) ⇐⇒ |S| ≤ K & ∀{v, u} ∈ E, v ∈ S ∨ u ∈ S

The use of a set variable S is purely notational; in practice S will be imple-
mented as an array of Boolean variables, so the predicate of the the constraint falls
within the framework of cost function minimization. The propagation mechanism
will make essential use of z-loss-less kernels, lower bound computations plus witness
pruning, a novel pruning rule that yields no theoretical guarantees but appears to
be useful in practice. This last rule is based on the following observation.

Observation 2. If S is a minimum vertex cover of G = (V,E) such that there
exists v ∈ S, J ⊆ N(v) \ S with N(J) ⊆ N+(v) then any vertex cover of G either
contains v or at least |S|+ |J | − 1 vertices.

Proof. Let v ∈ S be a vertex in an optimal vertex cover S. Consider J ⊆ N(v)\S
such that N(J) ⊆ N+(v). Suppose there exists a vertex cover S ′ such that |S ′| <
|S| + |J | − 1 and v /∈ S ′. S ′ must contain every node in N(v) and hence in J .
However, we can build a vertex cover of size at most |S| − 1 by replacing J by v,
since V \ S and thus J are independent sets.

In particular, if |S| is at least k − |J | then the node v belongs to every vertex
cover. This rule is applicable whenever a minimum-size vertex cover is known,
which will happen quite often as a byproduct of lower bound computation. With
every necessary ingredient gathered, we can now describe the general skeleton of
our propagation algorithm.

Algorithm 2 takes as input the set variable S standing for the vertex cover,
an integer variable K standing for the cardinality of the vertex cover, and five
parameters: the graph G = (V,E), a “witness” vertex cover ω initialised to V ,
and three integers λ, zm and δ.

The pruning in Line 1 is a straightforward application of the definition: V \S
is the set of vertices that are excluded from the cover, and the neighbourhood of
these vertices must belong to any vertex cover that respects the current domains.
Then, in Line 2, we apply the∞-loss-less kernelization; in our case, Hb is the Buss
kernel, and every non-kernel vertex is either forced to belong to the cover (F b) or
isolated (Rb).

The parameter w is a known vertex cover (the “witness”) that is kept between
calls to the propagation algorithm to avoid redundant computations, and zm is
the gap limit for computing z-loss-less kernels. If Condition 3 fails, there exists
a vertex cover ω ∪ S of size strictly less than K − zm and we cannot propagate
using z-less-less kernels for z ≤ zm. Otherwise, we attempt on line Line 6 to
compute a new witness using a classical kernel (Line 4) and a bruteforce algorithm
VertexCover. To avoid unnecessary computations we stop the algorithm when we
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Algorithm 2: PropagateVertexCover(S,K,G = (V,E), λ, ω, zm, δ)
1 S ← S ∪N(V \ S);
2 (Hb, F b, Rb)← ∞-LossLessKernel(G[S \ S]);
3 if ω 6⊆ S ∨ |ω ∪ S| ≥ K then
4 (Hk, F k)← Kernel(Hb);
5 if λ > 0 then
6 ω ← F b ∪ F k∪ VertexCover(Hk, λ);
7 if ω is optimal then
8 K ← |ω|;
9 else

10 K ← max(K, |F b|+ |F k|+LowerBound(Hk));

11 if K ≥ K − zm then
12 z ← K −K;
13 (Hz, F z, Rz)← z-LossLessKernel(G[S \ S]);
14 S ← S ∪ F z;
15 if K = K then
16 S ← S \ (Rz ∪Rb);

17 if ω is optimal & K −K ≤ δ then
18 S ← WitnessPruning(G,ω, δ);
19 S ← S ∪ F b;
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find a vertex cover whose size is stricly smaller than K − zm, or when the branch
and bound has reached λ backtracks. In the first case, we know that z-loss-less
kernels with z ≤ zm cannot be used. The second stopping condition is simply used
to control the amount of time spent within the bruteforce procedure. If the search
tree is fully explored, we can conclude that the witness cover is minimum and
therefore we can derive a valid lower bound (Line 8). Otherwise, we simply use
the lower bound computed at the root node by VertexCover, denoted LowerBound
in Line 10 - typically, a clique cover computed using a heuristic.

If the lower bound is tight, then we can apply the pruning from z-rigid crowns as
described in Section 5.2.2. Algorithm z-LossLessKernel returns a tripleHz, F z, Rz

where Hz is the z-loss-less kernel, F z are vertices that must belong to every vertex
cover of size at most z from the minimum possible, and Rz is a set of vertices
that are isolated after removal of F z (i.e. that belonged to the independent set
part of a z-rigid crown). The set F z allows immediate pruning, but the vertices
in Rz (and Rb, which are vertices isolated by Buss’s rule in Line 2) can only be
pruned when K = K (Line 16). In Line 18 we apply the pruning corresponding
to Observation 2. Because this operation is quite costly, here we have again an
integer δ which limits the size of the subsets J to which Observation 2 is applied.
Finally, we apply the pruning on the lower bound of S corresponding to the forced
nodes computed by ∞-LossLessKernel.

5.3 Experiments

We experimentally evaluated Algorithm 2 on the following problem, in which we
want to find a minimum vertex cover that is evenly distributed over a given par-
tition of the vertices.

Balanced Vertex Cover
Input: A graph G = (V,E), a partition (V1, . . . , Vc) of V , two integers

k and b
Question: Does there exist a vertex cover S of size at most k and such that

∀(i, j),
∣∣∣∣ |Vi ∩ S| − |Vj ∩ S| ∣∣∣∣ ≤ b?

For instance, the vertex cover may represent a set of machines to shut down
in a network so that all communications are interrupted. In this case, one might
want to avoid shutting down too many machines of the same type, or same client,
or in charge of the same service, etc. By varying the integer b, we can control
the similarity of the problem to pure minimum vertex cover. This problem can
be easily modelled as a CSP with a VertexCover constraint and a few side
constraints ensuring that the balance criterion is met.
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5.3.1 Implementation
We evaluated the performance of Algorithm 2 with λ set to 5000, zm set to 0
and δ set to 2. The choice of 0 for zm may seem odd because that means we
restrict ourselves to strong crowns only. This decision is motivated by the belief
that our kernelization algorithm is too crude to be useful in practice: the method
will not do anything unless the number of non-isolated vertices is at least (z + 2)
times k, which is only true for very specific graphs (especially if z is large). For
instance, the method is not even guaranteed to find the vertices with z+1 degree-1
neighbours. Improving the method so that it guarantees a kernel with no z-rigid
crown decomposition would solve this problem, but for now our results are purely
theoretical.

Our bruteforce algorithm for Vertex Cover uses clique covers as a lower
bound at each node, and a simple dominance rule (a vertex whose neighbourhood
is a clique can be removed) that is applied until a fixed point is reached. This
implementation is a compromise between powerful branch-and-bound algorithms,
which spend considerable time at each node but excel at solving difficult prob-
lems, and streamlined algorithms which are very efficient for small problems but
do not scale well. The classical kernelization is the straightforward Nemhauser-
Trotter 2k kernel, which requires solving the relaxation of the Vertex Cover
basic ILP formulation. We solve it the usual way, by reducing the problem to a
maximum matching on a certain bipartite graph. We refer the reader to [1] for
more details. For 0-loss-less kernelization, we follow closely the algorithm sketched
in ([40], Lemma 7). Our implementation is very incremental; if G has seen little
change between two calls to Algorithm 2, the kernels (both classical and 0-loss-less)
are not computed from scratch in the second call.

We compared 5 different implementations of the VertexCover constraint,
which correspond to gradually activating the features of our propagation algorithm:

• Decomposition is a simple decomposition in 2-clauses and a cardinality
constraint. This would be the most direct model of the problem as a CSP.

• Clique Cover uses only Buss kernelization, plus a clique cover to compute a
lower bound and detect infeasibility. No 0-loss-less kernels, no witness cover,
and no witness pruning.

• Kernel Pruning uses 0-loss-less kernels in addition to the Clique Cover
approach. No witness is computed, and witness pruning is not used. This
corresponds to Algorithm 2 with zm = 0, λ = 0 and δ = −1.

• Kernel & Witness is Algorithm 2 with zm = 0, λ = 5000 and δ = −1, i.e.
a witness is maintained but witness pruning is not used.
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• VertexCover is Algorithm 2 with zm = 0, λ = 5000 and δ = 2.

5.3.2 Methodology
We used a range of graphs from the dimacs and snap repositories. dimacs graphs
meant for the Maximum Clique problem are complemented in order to effectively
turn Balanced Vertex Cover into a clique problem with side constraints. The
density of the dimacs graphs, once complemented, range from moderate to high.
The snap graphs represent peer-to-peer and collaboration networks and tend to
be relatively sparse but very large (between 5242 and 26518 vertices).

For each graph G = (V,E), we post a VertexCover constraint on the set
variable ∅ ⊆ S ⊆ V . Then, we compute uniformly at random a balanced 4-
partition {s1, s2, s3, s4} of the vertices and we post the following constraint:

max({|si ∩ S| | 1 ≤ i ≤ 4})−min({|si ∩ S| | 1 ≤ i ≤ 4}) ≤ b

We then ask the solver to find a solution which minimizes |S|. For each graph,
we generated 3 instances for b ∈ {0, 4, 8} denoted “tight”, “medium” and “loose”
respectively. However, the classes p2p and ca- are much too large for these values
to make sense. In this case we used three ratios 0.007, 0.008 and 0.009 of the
number of nodes instead. We compared all 5 methods described in Section 5.3.1,
implemented in Mistral [84] and ran on CORE I7 processors with a time limit
of 5 minutes for each instance. Because we are only interested in comparing
propagation algorithms, we used a lexicographic branching heuristic.

5.3.3 Results
The results of these experiments are reported in Table 5.1 (for dimacs) and Ta-
ble 5.2 (for snap). For dimacs instances, we have clustered the instances by classes
whose cardinality is given in the first column to improve readability1. These classes
are ordered from top to bottom by decreasing ratio of minimum vertex cover size
over number of nodes.

We report four values for each class (or single instances for snap) and each
method: ‘#s’ is the number of instances of the class that were not solved to
optimality, ‘gap’ is the average gap with respect to the smallest vertex cover found,
‘cpu’ and ‘#nd’ are mean CPU time in seconds and number of nodes visited,
respectively, until finding the best solution. Notice that CPU times and number
of nodes are then only comparable when the objective values (gaps) are equal. We
colour the tuples (#s, gap, cpu, #nd) that are lexicographically minimum for each
class2.

1Detailed results can be found in Appendix C
2With a “tolerance” of 1s and 1% nodes.
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Decomposition Clique Cover Kernel Pruning Kernel & witness VertexCover
#s gap cpu #nd #s gap cpu #nd #s gap cpu #nd #s gap cpu #nd #s gap cpu #nd

balancing constraint: tight
3 kel 2 2.00 9.7 0.4M 2 2.00 10.6 0.2M 2 2.00 9.1 0.2M 2 2.00 26.6 0.1M 2 2.00 41.0 0.1M
15 p h 12 5.73 8.6 0.5M 10 5.20 15.6 1.1M 11 5.20 11.2 0.6M 11 4.67 27.7 0.4M 11 4.67 28.8 0.4M
12 bro 9 3.67 0.1 11K 9 3.67 0.1 4K 9 3.67 0.1 3K 9 3.67 0.1 2K 9 3.67 0.2 2K
4 joh 1 0.00 0.1 10K 1 0.00 0.0 1K 1 0.00 0.0 1K 1 0.00 0.0 971 1 0.00 0.0 937
15 san 15 10.87 12.2 1.8M 11 9.80 13.3 1.9M 11 9.80 13.7 1.1M 11 9.80 10.8 0.6M 11 9.80 12.4 0.6M
7 c-f 3 10.29 0.2 9K 3 10.29 0.2 18K 3 10.29 0.1 7K 3 10.29 0.1 7K 3 10.29 0.1 7K
6 ham 4 9.00 26.3 2.2M 3 9.00 3.1 0.3M 3 9.00 3.4 0.2M 3 9.00 5.1 0.2M 3 9.00 5.1 0.2M
32 gra 29 40.47 24.6 2.5M 28 40.47 19.8 3.5M 28 39.22 17.6 2.0M 28 40.47 18.9 1.5M 28 41.22 9.8 0.5M
4 man 3 91.00 1.1 33K 3 91.00 1.1 51K 3 91.00 0.9 31K 3 91.00 1.4 31K 3 91.00 1.5 30K
5 mul 5 8.40 7.2 1.8M 4 7.60 41.4 6.3M 3 7.60 24.6 2.1M 3 7.60 25.1 2.1M 3 7.60 19.2 1.7M
3 fps 3 105.00 0.1 7K 3 103.67 40.5 4.2M 3 103.67 56.0 3.2M 3 103.67 61.0 3.2M 3 103.67 14.9 0.8M
3 zer 3 44.67 11.9 2.6M 3 44.67 11.4 1.6M 3 44.67 14.7 1.4M 3 44.67 13.9 1.4M 3 44.67 8.2 0.9M
3 ini 3 191.33 57.5 6.1M 3 191.33 72.7 6.1M 3 191.33 82.3 6.1M 3 191.33 82.6 6.1M 3 191.33 82.6 6.1M

balancing constraint: medium
3 kel 2 1.67 24.1 1.2M 2 0.67 35.9 1.0M 2 0.67 54.7 1.0M 2 0.00 32.8 2K 2 0.00 32.1 2K
15 p h 12 3.07 21.5 1.2M 10 1.27 24.3 0.7M 11 1.27 34.4 0.6M 10 0.87 18.6 60K 10 0.87 18.8 59K
12 bro 9 0.83 15.6 1.9M 8 0.17 17.8 1.0M 8 0.17 25.4 1.0M 8 0.17 23.9 451 8 0.17 22.2 450
4 joh 1 0.00 0.0 11 1 0.00 0.0 11 1 0.00 0.0 11 1 0.00 0.0 11 1 0.00 0.0 11
15 san 15 8.33 35.6 5.0M 7 2.67 30.4 2.4M 7 2.73 33.5 1.6M 7 1.53 42.8 0.4M 7 1.53 43.1 0.4M
7 c-f 3 4.14 0.0 40 3 4.14 0.0 40 3 4.14 0.0 40 3 4.14 0.0 40 3 4.14 0.0 40
6 ham 4 4.67 0.2 53K 2 4.67 0.0 1K 2 4.67 0.0 360 2 4.67 0.0 359 2 4.67 0.0 359
32 gra 26 29.28 32.8 2.7M 22 26.50 21.9 2.2M 22 24.44 23.8 1.4M 22 24.25 21.5 0.9M 22 24.25 23.0 0.9M
4 man 3 89.00 29.3 1.3M 3 88.75 44.6 1.6M 3 88.75 21.1 0.6M 2 88.50 29.6 0.6M 2 88.50 33.4 0.6M
5 mul 5 1.20 0.3 61K 1 1.20 0.0 1K 1 1.20 0.0 682 1 1.20 0.0 682 1 1.20 0.0 560
3 fps 3 103.00 0.0 250 1 102.67 0.0 429 1 102.67 0.0 404 1 102.67 0.0 404 1 102.67 0.0 261
3 zer 3 3.33 37.4 8.2M 1 3.00 11.6 1.5M 1 3.00 25.4 1.5M 1 3.00 14.5 1.5M 1 3.00 14.5 1.5M
3 ini 3 189.00 0.6 65K 1 189.00 0.0 4K 1 189.00 0.0 3K 1 189.00 0.0 3K 1 189.00 0.0 3K

balancing constraint: loose
3 kel 2 1.67 43.3 1.8M 2 0.67 20.1 0.6M 2 0.67 30.4 0.6M 2 0.00 27.7 447 2 0.00 28.0 419
15 p h 12 2.40 20.6 1.2M 10 0.73 32.1 1.0M 11 0.73 47.1 1.0M 9 0.27 18.0 3K 9 0.27 18.0 3K
12 bro 9 0.67 16.2 1.9M 8 0.00 10.6 0.7M 8 0.00 15.8 0.7M 8 0.00 13.6 264 8 0.00 13.6 264
4 joh 1 0.00 0.0 11 1 0.00 0.0 11 1 0.00 0.0 11 1 0.00 0.0 11 1 0.00 0.0 11
15 san 15 8.20 28.1 4.0M 7 2.13 40.9 2.3M 7 2.27 29.6 1.4M 5 0.27 36.8 3K 5 0.27 36.8 3K
7 c-f 2 0.71 0.0 1K 0 0.00 0.6 98K 0 0.00 0.1 7K 0 0.00 0.2 7K 0 0.00 0.2 7K
6 ham 4 2.00 0.0 118 2 2.00 0.0 118 2 2.00 0.0 118 2 2.00 0.0 118 2 2.00 0.0 118
32 gra 23 18.97 29.4 1.9M 17 12.84 12.9 0.8M 17 12.06 15.6 0.5M 17 11.56 14.5 66K 17 11.50 17.3 0.1M
4 man 3 88.50 38.1 0.8M 3 88.50 8.5 0.3M 3 87.75 30.6 0.8M 2 87.00 43.5 0.8M 2 86.50 52.4 0.8M
5 mul 5 0.00 0.0 93 0 0.00 0.0 92 0 0.00 0.0 91 0 0.00 0.0 91 0 0.00 0.0 91
3 fps 3 1.67 1.1 0.1M 1 1.00 12.6 1.0M 1 1.00 13.4 0.5M 1 1.00 13.9 0.5M 1 0.67 53.5 2.1M
3 zer 3 2.00 0.2 48K 0 1.00 2.6 0.4M 0 1.00 2.7 0.2M 0 1.00 2.6 0.2M 0 1.00 0.6 58K
3 ini 3 0.67 6.9 0.5M 0 0.00 20.9 1.3M 0 0.00 28.9 1.0M 0 0.00 31.9 1.0M 0 0.00 11.6 0.5M

Table 5.1: Comparison of approaches on Balanced Vertex Cover: dimacs
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Decomposition Clique Cover Kernel Pruning Kernel & witness VertexCover
#s gap cpu #nd #s gap cpu #nd #s gap cpu #nd #s gap cpu #nd #s gap cpu #nd

balancing constraint: tight
ca-astroph 1 26 1.1 6K 1 23 0.8 7K 1 1 157.9 32K 1 3 178.9 27K 1 0 144.5 26K
ca-condmat 1 16 1.7 9K 1 13 3.5 11K 1 1 175.4 37K 1 3 152.7 30K 1 2 151.5 29K

ca-grqc 1 6 0.1 2K 0 0 1.5 4K 0 0 0.9 3K 0 0 0.9 3K 0 0 0.9 3K
ca-hepph 1 8 154.6 0.7M 1 5 170.8 1.2M 1 7 158.9 0.9M 1 7 173.6 0.9M 1 7 177.6 0.9M
ca-hepth 1 16 0.3 4K 1 4 1.4 9K 1 0 3.2 9K 0 0 5.1 9K 0 0 6.0 9K

p2p-gnutella04 1 66 0.5 6K 1 21 9.3 36K 0 0 4.8 13K 0 0 5.0 13K 0 0 5.9 13K
p2p-gnutella06 1 36 0.3 5K 1 24 1.6 12K 0 0 1.7 8K 0 0 1.8 8K 0 0 2.0 8K
p2p-gnutella08 1 34 0.2 4K 1 34 0.1 4K 1 34 0.1 4K 1 34 0.1 4K 1 34 0.1 4K
p2p-gnutella09 1 25 0.3 5K 1 25 0.1 5K 1 25 0.1 5K 1 25 0.1 5K 1 25 0.1 5K
p2p-gnutella24 1 32 3.8 21K 1 10 169.2 58K 0 0 7.1 25K 0 0 8.5 25K 0 0 9.1 25K

balancing constraint: medium
ca-astroph 1 26 1.1 6K 1 23 0.7 7K 1 1 155.2 32K 1 3 179.9 27K 1 0 138.5 26K
ca-condmat 1 16 1.7 9K 1 13 3.5 11K 1 1 178.6 37K 1 3 153.8 30K 1 2 152.5 29K

ca-grqc 1 6 0.1 2K 0 0 1.5 4K 0 0 0.9 3K 0 0 0.9 3K 0 0 0.9 3K
ca-hepph 1 8 0.5 4K 1 3 4.5 8K 0 0 25.4 11K 0 0 31.0 11K 0 0 22.6 9K
ca-hepth 1 16 0.3 4K 1 4 1.4 9K 1 0 3.0 9K 0 0 5.1 9K 0 0 5.6 9K

p2p-gnutella04 1 66 0.5 6K 1 21 9.4 36K 0 0 4.8 13K 0 0 5.0 13K 0 0 6.0 13K
p2p-gnutella06 1 36 0.3 5K 1 24 1.6 12K 0 0 1.7 8K 0 0 1.8 8K 0 0 2.0 8K
p2p-gnutella08 1 22 0.2 4K 1 22 0.1 4K 1 22 0.1 4K 1 22 0.1 4K 1 22 0.1 4K
p2p-gnutella09 1 21 0.3 5K 1 2 12.4 20K 0 0 3.0 8K 0 0 1.9 6K 0 0 2.0 6K
p2p-gnutella24 1 32 3.8 21K 1 10 168.1 58K 0 0 7.1 25K 0 0 8.5 25K 0 0 9.1 25K

balancing constraint: loose
ca-astroph 1 26 1.1 6K 1 23 0.7 7K 1 1 162.4 32K 1 3 177.8 27K 1 0 140.8 26K
ca-condmat 1 16 1.7 9K 1 13 3.4 11K 1 1 174.4 37K 1 3 155.0 30K 1 1 177.1 31K

ca-grqc 1 6 0.1 2K 0 0 1.5 4K 0 0 0.9 3K 0 0 0.9 3K 0 0 0.8 3K
ca-hepph 1 8 0.5 4K 1 3 5.3 8K 0 0 29.2 11K 0 0 30.8 11K 0 0 21.4 9K
ca-hepth 1 16 0.3 4K 1 4 1.4 9K 1 0 3.0 9K 0 0 5.2 9K 0 0 6.1 9K

p2p-gnutella04 1 66 0.5 6K 1 21 9.5 36K 0 0 4.8 13K 0 0 5.0 13K 0 0 6.1 13K
p2p-gnutella06 1 36 0.3 5K 1 24 1.6 12K 0 0 2.0 8K 0 0 1.8 8K 0 0 2.0 8K
p2p-gnutella08 1 10 0.2 4K 1 10 0.1 4K 1 10 0.1 4K 1 10 0.1 4K 1 10 0.1 4K
p2p-gnutella09 1 21 0.3 5K 1 2 12.3 20K 0 0 3.0 8K 0 0 1.9 6K 0 0 1.9 6K
p2p-gnutella24 1 32 3.8 21K 1 10 167.9 58K 0 0 7.1 25K 0 0 8.6 25K 0 0 9.2 25K

Table 5.2: Comparison of approaches on Balanced Vertex Cover: snap
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Let us take a look at Table 5.1 first. The shift of coloured cells from left
to right when going from top to bottom within each subtable means that our
methods are more effective on instances with smaller vertex covers, which was to
be expected. We can also observe another shift of coloured cells from left to right
when moving from a subtable to the next. This was also an expected outcome since
the pruning on this constraint becomes more prevalent when the problem is closer
to pure Vertex Cover. On these families, every reasoning step (clique covers,
0-loss-less kernels, lower bound from the witness and pruning from the witness)
improves the overall results but it is difficult to single out one step in particular
as more impactful than the others. It should be noted that many instances from
the dimacs repository are adverse to our methods as they tend to have very large
vertex covers (up to 98% of the nodes).

The results on snap presented in Table 5.2 are more impressive. These graphs
are quite sparse, so this was expected. We observe the same shifts in coloured
cells but this time there is a sharp improvement in the objective function (gap)
when a clique cover lower bound is used instead of a decomposition, and then
another one when 0-loss-less kernels are computed for pruning. The pruning from
0-loss-less kernels has also a dramatic effect on the number of instances solved to
optimality. Finally, the other features (witness computation and witness pruning)
improve moderately the solving times and help proving optimality for a few more
instances.
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5.4 Conclusion and Future Research
Observing that standard kernelization does not quite meet the needs of constraint
propagation problems, we have introduced loss-less kernels as a mean to reduce
the whole propagation process to a subproblem whose size is only a function of the
parameter. While the general idea can potentially be applied to any parameterized
constraint, we focused on cost-minimization constraints and defined specialized
variants which are guaranteed to perform increasingly better propagation as the
constraint becomes tighter, i.e. the cost of every tuple is at most a small constant
z from the optimum.

We investigated this new perspective of kernelization on the case study of
Vertex Cover. Partially extending the results of Chleb́ık and Chleb́ıková [40],
we showed that the standard crown kernelization techniques can be adapted to
compute z-loss-less kernels with at most (z + 2)k vertices for every z. We also
note that our z-loss-less kernels preserve much more information than necessary
as they actually allow FPT-delay enumeration of vertex covers with at most z
vertices above the optimum. This suggests that either our techniques can be
refined further, or the difference between loss-less kernels and enumeration kernels
is thinner than expected for some reason. Overall, z-loss-less kernelization opens
up a number of new research avenues, especially if other problems than Vertex
Cover are considered.

We have designed a propagator for the VertexCover constraint based on z-
loss-less kernels, and implemented a simplified version in the Mistral CSP solver.
The experiments are quite promising as the propagator beats consistently a decom-
posed version of the constraint even on the most adverse instances. In particular,
the pruning from loss-less kernels on the graphs with small vertex covers has had
a quite spectacular impact. Finally, this propagator still has a lot of room for
improvement and would especially benefit from advances in z-loss-less kernels for
z > 0.
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Chapter 6

Conclusion

The subject of this dissertation is easy to summarize: find ways, if they exist, to
bring theory closer to practice in constraint satisfaction problems. Because the
theoretical literature on CSP is so extensive and so disconnected with the reality
of CSP solvers, this subject is immensely vast. There is a multitude of possible
approaches, and we have no doubt that many other researchers would have opted
for a completely different route to take on this challenge (see e.g. [117][97]).

Our contributions share a common philosophy: find new theoretical questions
of interest from the practical limitations of tractability results. In Chapter 3, we
observed that tractable classes would probably not appear often in practice and
investigated the parameterized complexity of strong backdoor detection. In Chap-
ter 4, we observed that the complexity of membership tests for many tractable
classes is unknown and developed new polynomial-time algorithms for that pur-
pose. In Chapter 5, we observed that standard kernelization poorly fits the context
of constraint propagation and defined the loss-less variant.

We believe these contributions to be significant advances. The complexity clas-
sification of backdoor detection given in Chapter 3 covers all the natural tractable
classes, the novel algorithmic techniques for meta-problems presented in Chapter 4
are vastly more sophisticated than existing techniques, and the loss-less kerneliza-
tion method introduced in Chapter 3 has shown practical promise.

Still, there is a long way to go before we start to see competitive CSP solvers
that make explicit use of tractable classes. Backdoor theory has not yet proven
its worth, many important meta-problems still have either unknown complexity or
only astronomically inefficient polynomial-time algorithms, and z-loss-less kernel-
ization has so far only be applied to one global constraint, VertexCover. There
are without a doubt countless other ways to harness tractability in CSP, and we
have but prepared the grounds for future research.
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Open problems
We recall here the open problems raised in this thesis. It is on purpose that we
did not include Question 1, as it is of considerably narrower interest compared to
the others.

(i) Does there exist an idempotent strong linear Mal’tsev conditionM that has
a semiuniform polynomial-time algorithm but whose meta-problem is not in
P, assuming some likely complexity theoretic conjecture?

(ii) Does there exist a uniform polynomial-time algorithm for the class of all
tractable conservative constraint languages?

(iii) What is the complexity of deciding if a constraint language has an idempo-
tent Siggers polymorphism?

(iv) Is it possible to improve our algorithm for deciding the conservative di-
chotomy so that its complexity becomes a reasonable polynomial, as we did
for conservative Mal’tsev and conservative majority polymorphisms?

(v) Is it true that for every z, a strong z-loss-less kernelization of Vertex
Cover leaving a residual graph with at most (z+2)k vertices and no z-rigid
crown decomposition exists? We assume here that z is part of the input.
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Appendix A

Omitted Proofs

Proof (of the claim in Figure 3.3). The domain-decomposability of these classes
is trivial, and for value-renamability we refer to Example 7 as the exact same rea-
soning applies to every class in the diagram. The only slightly nontrivial part is
to prove that none of these classes is 1-Helly. Let Γ1

sml be the set of all ternary
Horn clauses and Γ2

sml be the set of all ternary dual-Horn clauses. Both Γ1
sml and

Γ2
sml have a semilattice polymorphism (respectively max and min on the Boolean

domain), so they belong to the classes “Semilattice”, “∀k : TSk”, “2-Semilattice”,
“∀k ≥ 3 : WNUk” and “Siggers”. However, Γ1

sml ∪ Γ2
sml does not have a Siggers

polymorphism and thus belongs to none of these classes. Therefore, they are not 1-
Helly. Now, let R1

mal be the equation R1
mal(x, y, z) ⇐⇒ x+y = z over GF(3), and

let R2
mal = [(1), (2)]. Both of these relations have a Mal’tsev polymorphism (re-

spectively, f(x, y, z) = x−y+z mod 3 and f(x, y, z) = x−y+z mod 2+1) so they
belong to the classes “Mal’tsev”, “k-edge” and “GMMk” for all k ≥ 3. However,
the relation R(y, z) : ∃x,R2

mal(x)∧R1
mal(x, y, z) is pp-definable in {R1

mal, R
2
mal} and

coincides with 6=3, so {R1
mal, R

2
mal} belongs to none of those classes, which then

cannot be 1-Helly. At this point, only the classes of the near-unanimity hierarchy
remain. Let Γ = {[(a1, a2), (a1, b2), (b1, c2)] | (a1, a2, b1, b2, c2) ∈ {0, 1, 2}5}. The
simple gadget given in ([43], Figure 4, Case 1) shows that Γ is NP-complete, but
every R ∈ Γ has a majority polymorphism and thus belongs to “NUk” for all k ≥ 3.
It follows that these classes are not 1-Helly.

Proof (of Proposition 14). The proof is a Cook reduction from Minimal CSP, in
which we are given a CSP instance I with the promise that every tuple in every
constraint belongs to at least one solution and we are asked to produce a solution
(this is a search problem, not a decision problem). Minimal CSP is known to be
NP-hard even on binary instances and domain size 3 [78][62]. Let I = (X ,D, C)
be a binary instance of Minimal CSP with domain size 3. Let GI = (V,E) be
the graph with V = { (x, d) | x ∈ X , d ∈ D } and with an edge between (x, d) and
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(y, d′) if and only if there is a constraint C with scope (x, y) and such that (d, d′)
is not a tuple of C. Observe that the maximum-size independent sets of GI are in
one-to-one correspondance with the solutions to I, and therefore a solution to I
can be computed in polynomial time from any vertex cover of GI . Note also that
every minimum vertex cover of GI contains exactly 2n vertices, where n = |X |.

Let B be a polynomial-time algorithm as in Proposition 14. For every sub-
set V ′ ⊆ V , let GV ′ be the graph with vertex set V ∪ {w, i} and edge set
E ∪ { (v, w) | v ∈ V ′ } ∪ { (w, i) }. By construction, (V, {w}, {i}) is al-
ways a crown decomposition of GV ′ . Now, suppose that we invoke B with input
(GV ′ , (V, {w}, {i}), 2n, ∅, ∅). The input is clearly correct, as every vertex of GI be-
longs to at least one maximum-size independent set and at least one minimum-size
vertex cover. If B says that there exists a minimum-size vertex cover S of GV ′ that
does not contain w, then S must contain its neighbourhood {i} ∪ V ′. Therefore,
there exists a minimum-size vertex cover of GI that contains V ′. We can use this
property to compute greedily a minimum-size vertex cover of GI : if we know a
subset of vertices VS ⊂ V that is a strict subset of a minimum-size vertex cover
of GI , for all v ∈ V \VS we invoke B with input (GVS∪{v}, (V, {w}, {i}), 2n, ∅, ∅).
If B says that there exists a minimum-size vertex cover of GVS∪{v} that does not
contain w, we set VS = VS ∪ {v} and repeat until a minimum-size vertex cover of
GI is known. By construction, the complement of this minimum-size vertex cover
gives a solution to the instance I of Minimal CSP.
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Appendix B

Compendium of Problems

Almost-2-SAT
Input: A set X of Boolean variables, a CNF formula F over X with

at most 2 literals per clause, an integer k
Question: Is there a subset S of at most k clauses and φ : X → {0, 1}

such that F\S evaluates to true?
Complexity: NP-complete and FPT for the parameter k [122]

Betweenness
Input: A universe U , a set T of ordered triples of distinct elements

of U
Question: Is it possible to find a total ordering >U of U such that for

each triple (a, b, c) ∈ T , either a >U b >U c or c >U b >U a?
Complexity: NP-complete [120]

Balanced Vertex Cover
Input: A graph G = (V,E), a partition (V1, . . . , Vc) of V , two inte-

gers k and b
Question: Does there exist a vertex cover S of size at most k and such

that ∀(i, j),
∣∣∣∣ |Vi ∩ S| − |Vj ∩ S| ∣∣∣∣ ≤ b?

Complexity: NP-complete by reduction from Vertex Cover

Clique
Input: A graph G = (V,E), an integer k
Question: Does there exist S ⊆ V such that |S| ≥ k and for all distinct

u, v in S, {u, v} ∈ E?
Complexity: NP-complete [99] and W[1]-complete for the parameter k [59]
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CSP
Input: A set X of variables, a set D of values, a set C of pairs (S,R)

where S is a tuple of variables and R ⊆ D|S|
Question: Does there exist φ : X → D such that ∀(S,R) ∈ C, φ(S) ∈ R?
Complexity: NP-complete [99]

Dominating Set
Input: A graph G = (V,E), an integer k
Question: Does there exist S ⊆ V such that |S| ≥ k and for all u /∈ S,

∃v ∈ S such that {u, v} ∈ E?
Complexity: NP-complete [68] and W[2]-complete for the parameter k [58]

Vertex Cover
Input: A graph G = (V,E), an integer k
Question: Does there exist S ⊆ V such that |S| ≤ k and ∀ e ∈ E,

S ∩ e 6= ∅?
Complexity: NP-complete [99] and FPT for the parameter k

Graph k-Coloring
Input: A graph G = (V,E), an integer k
Question: Does there exist a partition V1, . . . , Vk of v such that ∀e ∈ E

and i ∈ {1, . . . , k}, e 6⊂ Vi?
Complexity: NP-complete for k ≥ 3 [131] and polynomial-time otherwise

d-Hitting Set
Input: A finite universe U , a collection S of sets containing each at

most d elements from U , an integer k
Question: Does there exist H ⊆ U such that |H| ≤ k and ∀S ∈ S,

H ∩ S 6= ∅?
Complexity: NP-complete [99] and FPT for the parameter k [60]

Hitting Set
Input: A finite universe U , an integer p, a collection S of sets con-

taining each at most p elements from U , an integer k
Question: Does there exist H ⊆ U such that |H| ≤ k and ∀S ∈ S,

H ∩ S 6= ∅?
Complexity: NP-complete [99] and W[2]-hard for the parameter k [60]
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Integer Linear Programming
Input: A matrix A, a vector b, a vector c, a vector x of variables,

an integer k
Question: Does there exist a integer solution φ to the system Ax ≤ b

such that cTφ(x) ≥ k?
Complexity: NP-complete [68]

Maximum Common Induced Subgraph
Input: Two graphs (G1, G2), an integer k
Question: Does there exist a graph H with at least k vertices that is

isomorphic to induced subgraphs of both G1 and G2?
Complexity: NP-complete [68]

SAT
Input: A set X of Boolean variables, a CNF formula F over X
Question: Does there exist φ : X → {0, 1} for which F evaluates to

true?
Complexity: NP-complete [42]

Positive 1-in-3-SAT
Input: A set X of Boolean variables, a CNF formula F over X with

only positive clauses and at most 3 literals per clause
Question: Does there exist φ : X → {0, 1} such that exactly one literal

is set to true in each clause in F?
Complexity: NP-complete [129]

3-SAT
Input: A set X of Boolean variables, a CNF formula F over X with

at most 3 literals per clause
Question: Does there exist φ : X → {0, 1} for which F evaluates to

true?
Complexity: NP-complete [99]

k-XORSAT
Input: A set S of linear equations over GF(2) with at most k vari-

ables each
Question: Does S have a solution?
Complexity: Polynomial-time
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Strong H-Backdoor Detection
Input: A CSP instance I = (X ,D, C), an integer k
Question: Does I have a strong backdoor into H of size at most k?
Complexity: Depends on H and the choice of parameter. See Theorem 10,

Theorem 11, Theorem 12, Theorem 13, Theorem 14 and [70]

Strong H-Partition Backdoor Detection
Input: A CSP instance I = (X ,D, C), an integer k
Question: Does I have a partition backdoor into H of size at most k?
Complexity: Depends onH and the choice of parameter. See Proposition 6

and Theorem 15

Π-Minimization-Decision
Input: A set of variables X = {x1, . . . , xn} with domains

D(x1), . . . , D(xn) ⊆ D, π ∈ Π over D of arity n, k ∈ Q
Question: Does there exist an assignment φ : X → D such that ∀x ∈

X,φ(x) ∈ D(x) and π(φ(x1), . . . , φ(xn)) ≤ k?
Complexity: Depends on Π
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Appendix C

Detailed Results for dimacs
Instances

Table C.1: Comparison of approaches on Balanced Vertex Cover: dimacs

Decomposition Clique Cover Kernel Pruning Kernel & witness VertexCover
#s gap cpu #nd #s gap cpu #nd #s gap cpu #nd #s gap cpu #nd #s gap cpu #nd

balancing constraint: tight
mann a27 1 4 0.2 22K 1 4 0.2 23K 1 4 0.2 21K 1 4 0.3 21K 1 4 0.3 21K
mann a45 1 346 - - 1 346 - - 1 346 - - 1 346 - - 1 346 - -
mann a81 1 11 3.3 77K 1 11 3.0 0.1M 1 11 2.6 72K 1 11 3.9 72K 1 11 4.2 71K
mann a9 0 3 0.0 23 0 3 0.0 23 0 3 0.0 23 0 3 0.0 23 0 3 0.0 23

brock200 1 1 5 0.0 14 1 5 0.0 14 1 5 0.0 14 1 5 0.0 14 1 5 0.0 14
brock200 2 0 0 0.1 3K 0 0 0.0 1K 0 0 0.0 1K 0 0 0.1 712 0 0 0.1 699
brock200 3 0 3 0.0 251 0 3 0.0 276 0 3 0.0 229 0 3 0.0 229 0 3 0.0 220
brock200 4 0 1 1.1 0.1M 0 1 0.4 40K 0 1 0.5 37K 0 1 1.4 18K 0 1 1.5 18K
brock400 1 1 4 0.0 143 1 4 0.0 150 1 4 0.0 140 1 4 0.0 140 1 4 0.0 140
brock400 2 1 4 0.0 1K 1 4 0.0 1K 1 4 0.0 1K 1 4 0.0 1K 1 4 0.1 1K
brock400 3 1 5 0.0 2K 1 5 0.0 2K 1 5 0.0 2K 1 5 0.1 2K 1 5 0.1 1K
brock400 4 1 5 0.0 2K 1 5 0.0 2K 1 5 0.0 1K 1 5 0.0 1K 1 5 0.1 1K
brock800 1 1 4 0.0 40 1 4 0.0 41 1 4 0.0 39 1 4 0.0 39 1 4 0.0 39
brock800 2 1 4 0.1 588 1 4 0.0 580 1 4 0.0 575 1 4 0.0 572 1 4 0.1 559
brock800 3 1 5 0.1 467 1 5 0.0 490 1 5 0.0 408 1 5 0.0 408 1 5 0.0 398
brock800 4 1 4 0.1 57 1 4 0.0 63 1 4 0.0 53 1 4 0.0 52 1 4 0.0 52
c-fat200-1 0 4 0.0 3 0 4 0.0 3 0 4 0.0 3 0 4 0.0 3 0 4 0.0 3
c-fat200-2 0 4 0.2 25K 0 4 0.3 41K 0 4 0.1 18K 0 4 0.2 18K 0 4 0.2 18K
c-fat200-5 1 26 0.0 25 1 26 0.0 25 1 26 0.0 25 1 26 0.0 25 1 26 0.0 25
c-fat500-1 0 2 0.0 10 0 2 0.0 10 0 2 0.0 10 0 2 0.0 10 0 2 0.0 10
c-fat500-10 1 14 0.0 101 1 14 0.0 101 1 14 0.0 101 1 14 0.0 101 1 14 0.0 101
c-fat500-2 0 2 0.9 42K 0 2 1.2 90K 0 2 0.5 34K 0 2 0.7 34K 0 2 0.7 34K
c-fat500-5 1 20 0.0 38 1 20 0.0 38 1 20 0.0 38 1 20 0.0 38 1 20 0.0 38
fpsol2.i.1 1 308 - - 1 308 - - 1 308 - - 1 308 - - 1 308 - -
fpsol2.i.2 1 2 0.0 2K 1 2 0.0 2K 1 2 0.0 2K 1 2 0.0 2K 1 2 0.0 2K
fpsol2.i.3 1 5 0.1 11K 1 1 81.1 8.3M 1 1 112.0 6.5M 1 1 122.0 6.5M 1 1 29.8 1.5M
graph00 1 97 0.0 3K 1 97 0.0 3K 1 97 0.0 3K 1 97 0.0 3K 1 97 0.0 3K
graph01 1 143 28.3 3.8M 1 143 30.9 9.1M 1 143 19.7 3.8M 1 143 30.6 3.8M 1 143 36.0 3.8M
graph02 1 117 0.0 128 1 117 0.0 128 1 117 0.0 128 1 117 0.0 128 1 117 0.0 128
graph03 1 185 173.0 17.6M 1 209 159.4 29.3M 1 185 139.2 16.7M 1 209 159.4 14.3M 1 213 0.2 14K
graph04 1 37 0.0 200 1 37 0.0 200 1 37 0.0 200 1 37 0.0 200 1 37 0.0 200
graph05 1 37 0.0 201 1 37 0.0 201 1 37 0.0 201 1 37 0.0 201 1 37 0.0 201
graph06 1 37 0.0 196 1 37 0.0 196 1 37 0.0 196 1 37 0.0 196 1 37 0.0 196
graph07 1 29 0.0 212 1 29 0.0 212 1 29 0.0 212 1 29 0.0 212 1 29 0.0 212
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graph09 1 2 0.0 457 0 2 0.0 457 0 2 0.0 457 0 2 0.0 457 0 2 0.0 457
graph10 1 19 3.9 0.4M 1 19 2.8 0.5M 1 19 2.2 0.3M 1 19 3.1 0.3M 1 19 3.4 0.3M
graph11 1 15 151.6 15.8M 1 15 2.7 0.3M 1 15 1.7 0.1M 1 15 1.4 43K 1 15 1.5 41K
graph12 1 89 39.0 3.8M 1 89 14.9 1.4M 1 89 14.9 1.0M 1 89 21.0 0.9M 1 89 20.9 0.9M
graph13 1 85 114.6 10.9M 1 85 55.0 12.5M 1 85 31.7 4.6M 1 85 47.9 4.6M 1 85 57.3 4.6M
graph14 1 73 157.4 17.3M 1 73 177.4 36.6M 1 61 136.1 19.3M 1 73 161.9 17.0M 1 93 0.0 2K
graph15 1 85 5.4 0.6M 1 85 4.1 1.0M 1 85 3.4 0.6M 1 85 5.8 0.6M 1 85 6.7 0.6M
graph16 1 21 10.0 0.9M 1 21 41.4 4.8M 1 21 8.7 0.9M 1 21 10.8 0.9M 1 21 12.1 0.9M
graph17 1 9 0.1 7K 1 9 0.7 55K 1 9 0.1 6K 1 9 0.1 6K 1 9 0.1 6K
graph18 1 21 1.3 0.1M 1 21 1.3 0.2M 1 21 0.9 0.1M 1 21 1.2 0.1M 1 21 1.4 0.1M
graph19 1 21 0.0 100 1 21 0.0 100 1 21 0.0 100 1 21 0.0 100 1 21 0.0 100
graph20 1 15 0.0 166 1 15 0.0 166 1 15 0.0 166 1 15 0.0 166 1 15 0.0 166
graph21 1 11 0.7 81K 1 7 29.8 3.2M 1 7 17.1 1.1M 1 7 18.8 1.1M 1 7 20.4 1.0M
graph22 1 8 0.3 32K 1 4 8.4 0.9M 1 4 5.2 0.3M 1 4 5.9 0.2M 1 4 6.4 0.2M
graph23 1 5 0.1 9K 1 5 0.1 6K 1 5 0.1 4K 1 5 0.1 4K 1 5 0.1 3K
graph24 1 26 0.1 13K 1 18 9.3 0.4M 1 18 7.5 0.4M 1 18 10.6 17K 1 18 10.6 16K
graph25 1 30 21.2 1.7M 1 22 44.1 2.2M 1 18 140.4 11.1M 1 22 75.1 0.8M 1 22 75.9 0.8M
graph26 1 10 78.4 6.6M 1 10 52.1 9.4M 1 10 34.9 4.2M 1 10 51.8 4.2M 1 10 59.0 4.2M
graph27 1 18 0.2 12K 1 18 0.2 23K 1 18 0.1 10K 1 18 0.1 10K 1 18 0.1 10K
graph28 0 6 0.2 12K 0 6 0.2 21K 0 6 0.1 10K 0 6 0.1 10K 0 6 0.2 10K
graph29 1 18 0.1 6K 1 18 0.1 9K 1 18 0.1 4K 1 18 0.1 4K 1 18 0.1 4K
graph30 0 6 0.1 1K 0 6 0.0 832 0 6 0.0 502 0 6 0.0 502 0 6 0.0 502
graph31 1 14 0.0 55 1 14 0.0 51 1 14 0.0 48 1 14 0.0 48 1 14 0.0 48
graph32 0 6 0.0 43 0 6 0.0 43 0 6 0.0 43 0 6 0.0 43 0 6 0.0 43

hamming10-2 1 34 0.0 467 1 34 0.0 467 1 34 0.0 467 1 34 0.0 467 1 34 0.0 467
hamming10-4 1 0 134.4 6.7M 1 0 11.2 0.5M 1 0 12.0 0.5M 1 0 20.9 0.1M 1 0 21.2 0.1M
hamming6-2 0 8 20.6 6.1M 0 8 6.8 1.4M 0 8 8.1 1.0M 0 8 8.8 1.0M 0 8 9.0 0.9M
hamming6-4 0 0 0.0 3 0 0 0.0 3 0 0 0.0 3 0 0 0.0 3 0 0 0.0 3
hamming8-2 1 12 0.0 105 1 12 0.0 105 1 12 0.0 105 1 12 0.0 105 1 12 0.0 105
hamming8-4 1 0 2.5 0.2M 0 0 0.4 15K 0 0 0.3 15K 0 0 0.7 4K 0 0 0.7 4K

inithx.i.1 1 567 - - 1 567 - - 1 567 - - 1 567 - - 1 567 - -
inithx.i.2 1 4 115.0 12.2M 1 4 145.4 12.2M 1 4 164.5 12.2M 1 4 165.1 12.2M 1 4 165.2 12.2M
inithx.i.3 1 3 0.0 394 1 3 0.0 394 1 3 0.0 394 1 3 0.0 394 1 3 0.0 394

johnson16-2-4 0 0 0.0 12 0 0 0.0 12 0 0 0.0 12 0 0 0.0 12 0 0 0.0 12
johnson32-2-4 1 0 0.0 114 1 0 0.0 114 1 0 0.0 114 1 0 0.0 114 1 0 0.0 114
johnson8-2-4 0 0 0.0 10 0 0 0.0 10 0 0 0.0 10 0 0 0.0 10 0 0 0.0 10
johnson8-4-4 0 0 0.2 40K 0 0 0.0 5K 0 0 0.1 5K 0 0 0.1 3K 0 0 0.1 3K

keller4 0 0 0.1 5K 0 0 0.0 4K 0 0 0.1 4K 0 0 0.1 3K 0 0 0.1 3K
keller5 1 4 20.5 0.9M 1 4 22.1 0.6M 1 4 20.0 0.6M 1 4 72.2 0.3M 1 4 114.3 0.3M
keller6 1 2 8.4 0.1M 1 2 9.7 0.1M 1 2 7.3 0.1M 1 2 7.5 0.1M 1 2 8.5 0.1M

mulsol.i.1 1 3 0.0 108 0 3 0.0 108 0 3 0.0 108 0 3 0.0 108 0 3 0.0 108
mulsol.i.2 1 6 0.0 83 1 2 161.4 25.5M 0 2 79.9 5.9M 0 2 81.2 5.9M 0 2 59.0 4.6M
mulsol.i.3 1 18 0.0 65 1 18 0.0 65 1 18 0.0 65 1 18 0.0 65 1 18 0.0 65
mulsol.i.4 1 9 0.8 0.2M 1 9 1.3 0.2M 1 9 1.0 0.2M 1 9 1.0 0.2M 1 9 1.0 0.2M
mulsol.i.5 1 6 35.1 9.0M 1 6 44.2 5.8M 1 6 42.2 4.4M 1 6 43.0 4.4M 1 6 36.1 3.6M

p hat1000-1 1 2 0.2 7 0 2 0.1 7 1 2 0.1 7 1 2 0.1 7 1 2 0.1 7
p hat1000-2 1 9 6.9 0.3M 1 9 6.6 0.2M 1 9 3.8 0.2M 1 9 6.5 0.1M 1 9 6.8 0.1M
p hat1000-3 1 12 85.4 5.0M 1 12 41.6 2.8M 1 12 41.6 2.2M 1 12 60.2 2.1M 1 12 63.7 2.1M
p hat1500-1 1 4 0.2 76 1 4 0.1 76 1 4 0.2 76 1 4 0.2 76 1 4 0.2 76
p hat1500-2 1 11 0.2 49 1 11 0.1 49 1 11 0.1 49 1 11 0.1 49 1 11 0.1 49
p hat1500-3 1 13 14.6 0.5M 1 13 8.5 0.6M 1 13 7.4 0.4M 1 13 11.1 0.4M 1 13 12.4 0.4M
p hat300-1 0 0 0.0 188 0 0 0.0 175 0 0 0.0 172 0 0 0.0 172 0 0 0.0 145
p hat300-2 1 1 0.4 46K 0 1 0.1 7K 0 1 0.1 5K 0 1 0.1 3K 0 1 0.1 3K
p hat300-3 1 4 0.0 135 1 4 0.0 149 1 4 0.0 98 1 4 0.0 93 1 4 0.0 93
p hat500-1 0 1 0.0 153 0 1 0.0 153 0 1 0.0 153 0 1 0.0 153 0 1 0.0 153
p hat500-2 1 4 15.2 1.4M 1 4 0.3 30K 1 4 0.3 19K 0 0 63.2 0.1M 0 0 64.3 0.1M
p hat500-3 1 5 0.3 35K 1 5 0.2 24K 1 5 0.1 12K 1 1 157.1 0.5M 1 1 160.1 0.5M
p hat700-1 0 3 0.1 37 0 3 0.0 37 0 3 0.0 37 1 3 0.0 37 1 3 0.0 37
p hat700-2 1 8 0.1 1K 1 4 71.6 6.0M 1 4 44.5 2.3M 1 4 59.0 2.0M 1 4 62.0 1.9M
p hat700-3 1 9 5.5 0.4M 1 5 105.2 7.1M 1 5 69.7 4.0M 1 5 58.3 1.4M 1 5 62.6 1.4M

san1000 1 16 - - 1 16 - - 1 16 - - 1 16 - - 1 16 - -
san200 0.7 1 1 14 0.0 57 0 6 2.3 0.3M 0 6 3.2 0.2M 0 6 4.7 0.2M 0 6 4.9 0.2M
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san200 0.7 2 1 6 0.0 95 1 6 0.0 95 1 6 0.0 95 1 6 0.0 95 1 6 0.0 95
san200 0.9 1 1 26 0.0 165 1 26 0.0 165 1 26 0.0 165 1 26 0.0 165 1 26 0.0 165
san200 0.9 2 1 24 0.0 86 1 16 113.4 18.9M 1 16 103.3 8.5M 1 16 44.3 2.6M 1 16 47.0 2.6M
san200 0.9 3 1 8 0.0 1K 1 8 0.0 1K 1 8 0.0 607 1 8 0.0 557 1 8 0.0 557
san400 0.5 1 1 5 0.0 1K 0 5 0.0 1K 0 5 0.0 1K 0 5 0.0 1K 0 5 0.0 1K
san400 0.7 1 1 20 0.0 29 1 20 0.0 29 1 20 0.0 29 1 20 0.0 29 1 20 0.0 29
san400 0.7 2 1 14 48.3 4.5M 1 14 46.7 4.5M 1 14 62.3 4.5M 1 14 73.3 4.5M 1 14 91.7 4.5M
san400 0.7 3 1 8 0.0 304 1 8 0.0 304 1 8 0.0 304 1 8 0.0 304 1 8 0.0 304
san400 0.9 1 1 8 13.2 1.8M 1 8 7.5 1.2M 1 8 7.6 0.5M 1 8 5.3 0.5M 1 8 5.8 0.4M
sanr200 0.7 1 2 2.8 0.4M 0 2 1.7 0.2M 0 2 2.2 0.2M 0 2 4.8 0.1M 0 2 5.0 0.1M
sanr200 0.9 1 6 106.0 18.5M 1 6 14.1 2.0M 1 6 13.6 1.1M 1 6 18.0 0.8M 1 6 19.3 0.7M
sanr400 0.5 1 1 0.2 10K 0 1 0.1 8K 0 1 0.1 7K 0 1 0.4 7K 0 1 0.4 6K
sanr400 0.7 1 5 0.0 17 1 5 0.0 17 1 5 0.0 17 1 5 0.0 17 1 5 0.0 17
zeroin.i.1 1 121 - - 1 121 - - 1 121 - - 1 121 - - 1 121 - -
zeroin.i.2 1 4 0.0 177 1 4 0.0 177 1 4 0.0 177 1 4 0.0 177 1 4 0.0 177
zeroin.i.3 1 9 23.9 5.2M 1 9 22.8 3.1M 1 9 29.4 2.8M 1 9 27.7 2.8M 1 9 16.4 1.8M

balancing constraint: medium
mann a27 1 1 17.7 2.5M 1 1 0.1 9K 1 1 0.0 853 0 0 1.1 48K 0 0 0.9 41K
mann a45 1 346 - - 1 346 - - 1 346 - - 1 346 - - 1 346 - -
mann a81 1 9 70.0 1.2M 1 8 133.8 4.6M 1 8 63.2 1.7M 1 8 87.8 1.7M 1 8 99.4 1.7M
mann a9 0 0 0.0 18 0 0 0.0 18 0 0 0.0 18 0 0 0.0 18 0 0 0.0 18

brock200 1 1 1 20.2 3.3M 0 1 0.2 18K 0 1 0.3 18K 0 1 0.2 51 0 1 0.2 51
brock200 2 0 0 0.1 8K 0 0 0.0 303 0 0 0.0 307 0 0 0.1 40 0 0 0.1 40
brock200 3 0 0 31.8 4.3M 0 0 1.0 48K 0 0 1.6 48K 0 0 2.9 90 0 0 3.0 90
brock200 4 0 0 64.8 9.1M 0 0 1.1 64K 0 0 1.8 64K 0 0 1.1 81 0 0 1.1 81
brock400 1 1 1 17.7 2.0M 1 0 90.2 6.0M 1 0 137.4 6.0M 1 0 109.0 2K 1 0 108.3 2K
brock400 2 1 1 7.1 0.8M 1 0 4.5 0.3M 1 0 6.8 0.3M 1 0 5.1 277 1 0 5.1 273
brock400 3 1 1 9.0 1.0M 1 0 22.9 1.4M 1 0 35.9 1.4M 1 0 50.0 647 1 0 29.7 643
brock400 4 1 2 0.1 9K 1 0 54.4 3.4M 1 0 85.0 3.4M 1 0 69.9 1K 1 0 70.2 1K
brock800 1 1 1 15.8 1.0M 1 0 29.6 0.7M 1 0 25.8 0.7M 1 0 36.1 595 1 0 35.5 594
brock800 2 1 1 17.3 1.1M 1 0 4.3 0.1M 1 0 3.7 0.1M 1 0 4.6 126 1 0 4.5 124
brock800 3 1 1 3.2 0.2M 1 1 0.1 2K 1 1 0.1 2K 1 1 0.2 163 1 1 0.2 162
brock800 4 1 1 0.1 1K 1 0 5.4 0.2M 1 0 6.8 0.2M 1 0 8.1 138 1 0 7.9 138
c-fat200-1 0 0 0.0 13 0 0 0.0 13 0 0 0.0 13 0 0 0.0 13 0 0 0.0 13
c-fat200-2 0 0 0.0 25 0 0 0.0 25 0 0 0.0 25 0 0 0.0 25 0 0 0.0 25
c-fat200-5 1 14 0.0 39 1 14 0.0 39 1 14 0.0 39 1 14 0.0 39 1 14 0.0 39
c-fat500-1 0 0 0.0 15 0 0 0.0 15 0 0 0.0 15 0 0 0.0 15 0 0 0.0 15
c-fat500-10 1 6 0.0 113 1 6 0.0 113 1 6 0.0 113 1 6 0.0 113 1 6 0.0 113
c-fat500-2 0 0 0.0 27 0 0 0.0 27 0 0 0.0 27 0 0 0.0 27 0 0 0.0 27
c-fat500-5 1 9 0.0 52 1 9 0.0 52 1 9 0.0 52 1 9 0.0 52 1 9 0.0 52
fpsol2.i.1 1 308 - - 1 308 - - 1 308 - - 1 308 - - 1 308 - -
fpsol2.i.2 1 0 0.0 266 0 0 0.0 265 0 0 0.0 264 0 0 0.0 264 0 0 0.0 263
fpsol2.i.3 1 1 0.0 234 0 0 0.0 594 0 0 0.0 544 0 0 0.0 544 0 0 0.0 260
graph00 1 89 37.6 4.4M 1 57 30.0 4.1M 1 53 109.2 4.1M 1 53 106.9 4.1M 1 53 106.0 4.0M
graph01 1 135 0.0 95 1 135 0.0 95 1 135 0.0 95 1 135 0.0 95 1 135 0.0 95
graph02 1 93 2.7 0.2M 1 93 31.6 4.6M 1 93 3.4 0.2M 1 93 3.6 0.2M 1 93 4.0 0.2M
graph03 1 149 69.7 6.1M 1 173 1.7 0.3M 1 149 76.3 5.5M 1 149 84.5 5.5M 1 149 95.3 5.5M
graph04 1 25 0.0 217 1 25 0.0 217 1 25 0.0 217 1 25 0.0 217 1 25 0.0 217
graph05 1 25 0.0 214 1 25 0.0 214 1 25 0.0 214 1 25 0.0 214 1 25 0.0 214
graph06 1 25 0.0 208 1 25 0.0 208 1 25 0.0 208 1 25 0.0 208 1 25 0.0 208
graph07 1 17 0.0 226 1 17 0.0 226 1 17 0.0 226 1 17 0.0 226 1 17 0.0 226
graph09 1 0 0.0 463 0 0 0.0 463 0 0 0.0 463 0 0 0.0 463 0 0 0.0 463
graph10 1 13 38.7 4.6M 1 4 47.7 4.0M 1 4 30.2 1.2M 1 1 38.2 97K 1 1 38.8 95K
graph11 1 15 48.6 5.2M 1 11 103.9 7.2M 1 11 138.0 7.2M 1 10 32.1 881 1 10 31.8 879
graph12 1 81 44.9 4.6M 1 76 58.2 10.9M 1 76 35.4 3.3M 1 76 45.4 3.3M 1 76 50.8 3.3M
graph13 1 49 168.7 9.1M 1 27 76.0 13.5M 1 9 40.0 2.6M 1 9 44.3 2.6M 1 9 49.4 2.6M
graph14 1 53 6.3 0.2M 1 53 0.0 826 1 53 0.0 228 1 53 0.0 226 1 53 0.0 226
graph15 1 73 124.7 11.8M 1 93 0.0 29 1 73 110.6 11.8M 1 73 140.5 11.8M 1 73 162.8 11.8M
graph16 1 9 0.2 3K 1 9 0.0 539 1 9 0.0 288 1 9 0.0 288 1 9 0.0 288
graph17 0 1 1.5 4K 0 1 0.2 17K 0 1 0.1 523 0 1 0.2 523 0 1 0.2 523
graph18 1 9 0.0 208 1 9 0.0 540 1 9 0.0 145 1 9 0.0 145 1 9 0.0 145
graph19 1 9 0.0 114 1 9 0.0 114 1 9 0.0 114 1 9 0.0 114 1 9 0.0 114
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graph20 1 10 3.0 0.3M 1 1 158.2 10.1M 1 1 23.2 0.7M 1 0 2.6 4K 1 0 2.6 4K
graph21 1 5 101.5 12.0M 1 2 1.2 0.1M 1 2 0.6 35K 1 2 0.3 17K 1 2 0.3 17K
graph22 1 4 71.4 7.7M 1 1 5.4 0.4M 1 1 7.8 0.4M 1 0 23.9 791 1 0 23.7 785
graph23 1 3 66.4 6.7M 1 0 81.3 3.7M 1 0 76.7 3.7M 1 0 24.6 520 1 0 24.6 521
graph24 1 21 52.5 5.0M 1 2 42.0 0.8M 1 2 79.5 0.8M 1 2 81.7 1K 1 2 82.1 1K
graph25 1 24 57.1 4.7M 0 0 18.0 2.6M 0 0 14.7 0.5M 0 0 34.8 0.4M 0 0 36.2 0.4M
graph26 1 0 130.8 3.6M 0 0 0.2 5K 0 0 0.4 1K 0 0 3.1 1K 0 0 3.1 1K
graph27 1 0 14.1 0.8M 0 0 21.0 4.4M 0 0 7.2 0.7M 0 0 10.2 0.7M 0 0 11.8 0.7M
graph28 0 0 0.1 684 0 0 0.0 145 0 0 0.0 143 0 0 0.0 143 0 0 0.0 143
graph29 0 0 8.2 0.7M 0 0 23.5 4.6M 0 0 7.7 0.7M 0 0 9.4 0.7M 0 0 11.1 0.7M
graph30 0 0 0.1 519 0 0 0.0 114 0 0 0.0 112 0 0 0.0 112 0 0 0.0 112
graph31 0 0 0.2 10K 0 0 0.9 98K 0 0 0.1 10K 0 0 0.2 10K 0 0 0.2 10K
graph32 0 0 0.0 51 0 0 0.0 51 0 0 0.0 51 0 0 0.0 51 0 0 0.0 51

hamming10-2 1 22 0.0 481 1 22 0.0 481 1 22 0.0 481 1 22 0.0 481 1 22 0.0 481
hamming10-4 1 0 0.1 5K 1 0 0.0 49 1 0 0.0 40 1 0 0.0 38 1 0 0.0 38
hamming6-2 0 3 1.0 0.3M 0 3 0.0 7K 0 3 0.0 1K 0 3 0.0 1K 0 3 0.0 1K
hamming6-4 0 0 0.0 5 0 0 0.0 5 0 0 0.0 5 0 0 0.0 5 0 0 0.0 5
hamming8-2 1 3 0.0 122 0 3 0.0 122 0 3 0.0 122 0 3 0.0 122 0 3 0.0 122
hamming8-4 1 0 0.0 17 0 0 0.0 17 0 0 0.0 17 0 0 0.0 17 0 0 0.0 17

inithx.i.1 1 567 - - 1 567 - - 1 567 - - 1 567 - - 1 567 - -
inithx.i.2 1 0 1.2 0.1M 0 0 0.1 7K 0 0 0.1 6K 0 0 0.1 6K 0 0 0.1 6K
inithx.i.3 1 0 0.0 362 0 0 0.0 362 0 0 0.0 362 0 0 0.0 362 0 0 0.0 362

johnson16-2-4 0 0 0.0 9 0 0 0.0 9 0 0 0.0 9 0 0 0.0 9 0 0 0.0 9
johnson32-2-4 1 0 0.0 17 1 0 0.0 17 1 0 0.0 17 1 0 0.0 17 1 0 0.0 17
johnson8-2-4 0 0 0.0 5 0 0 0.0 5 0 0 0.0 5 0 0 0.0 5 0 0 0.0 5
johnson8-4-4 0 0 0.0 15 0 0 0.0 15 0 0 0.0 15 0 0 0.0 15 0 0 0.0 15

keller4 0 0 0.0 1K 0 0 0.0 78 0 0 0.0 70 0 0 0.0 29 0 0 0.0 28
keller5 1 4 57.0 3.4M 1 1 107.3 3.1M 1 1 163.3 3.1M 1 0 46.7 6K 1 0 46.2 6K
keller6 1 1 15.2 0.2M 1 1 0.6 5K 1 1 0.8 5K 1 0 51.7 448 1 0 50.0 440

mulsol.i.1 1 0 0.0 101 0 0 0.0 101 0 0 0.0 101 0 0 0.0 101 0 0 0.0 101
mulsol.i.2 1 0 0.0 8K 0 0 0.0 115 0 0 0.0 92 0 0 0.0 92 0 0 0.0 92
mulsol.i.3 1 6 0.0 78 1 6 0.0 78 1 6 0.0 78 1 6 0.0 78 1 6 0.0 78
mulsol.i.4 1 0 1.3 0.3M 0 0 0.0 4K 0 0 0.0 2K 0 0 0.0 2K 0 0 0.0 2K
mulsol.i.5 1 0 0.0 7K 0 0 0.0 282 0 0 0.0 259 0 0 0.0 259 0 0 0.0 259

p hat1000-1 1 0 0.3 1K 0 0 0.1 91 1 0 0.1 78 1 0 0.1 24 1 0 0.1 23
p hat1000-2 1 7 18.4 0.9M 1 5 14.9 0.9M 1 5 14.5 0.5M 1 4 131.6 0.7M 1 4 135.2 0.7M
p hat1000-3 1 9 114.3 6.6M 1 4 63.7 2.7M 1 4 53.4 2.1M 1 2 33.6 0.2M 1 2 34.0 0.2M
p hat1500-1 1 1 1.2 17K 1 0 98.1 0.3M 1 0 147.8 0.3M 1 1 1.7 42 1 1 1.7 41
p hat1500-2 1 6 0.7 12K 1 2 0.7 27K 1 2 0.9 25K 1 1 1.0 277 1 1 1.0 277
p hat1500-3 1 7 101.6 3.9M 1 5 21.1 1.1M 1 5 22.6 0.7M 1 3 76.8 21K 1 3 76.7 21K
p hat300-1 0 0 0.0 464 0 0 0.0 47 0 0 0.0 43 0 0 0.0 14 0 0 0.0 14
p hat300-2 1 0 0.2 29K 0 0 0.0 106 0 0 0.0 100 0 0 0.0 34 0 0 0.0 34
p hat300-3 1 2 0.3 40K 1 2 0.0 162 1 2 0.0 89 1 1 13.3 231 1 1 12.8 231
p hat500-1 0 0 0.1 1K 0 0 0.0 84 0 0 0.0 78 0 0 0.1 22 0 0 0.1 21
p hat500-2 1 3 42.7 4.2M 1 0 99.9 2.2M 1 0 175.6 2.2M 0 0 7.6 225 0 0 7.3 224
p hat500-3 1 4 6.3 0.7M 1 0 62.0 3.1M 1 0 91.1 3.1M 1 0 2.4 156 1 0 2.3 156
p hat700-1 0 0 30.6 0.9M 0 0 4.1 18K 0 0 9.8 17K 0 0 11.0 71 0 0 10.7 70
p hat700-2 1 2 0.7 43K 1 1 0.1 6K 1 1 0.1 3K 1 1 0.1 469 1 1 0.1 459
p hat700-3 1 5 4.6 0.4M 1 0 0.5 49K 1 0 0.5 28K 1 0 0.1 1K 1 0 0.1 1K

san1000 1 6 103.8 3.0M 1 5 0.5 3K 1 5 0.5 3K 1 1 164.2 929 1 1 160.8 925
san200 0.7 1 1 13 0.1 21K 0 0 0.1 7K 0 0 0.2 7K 0 0 0.2 199 0 0 0.2 199
san200 0.7 2 1 3 63.5 12.6M 0 0 13.3 1.2M 0 0 22.4 1.2M 0 0 0.5 402 0 0 0.8 391
san200 0.9 1 1 23 2.1 0.4M 1 21 79.6 11.4M 1 21 114.6 9.1M 1 13 106.0 6.1M 1 13 112.8 6.1M
san200 0.9 2 1 19 113.7 23.2M 0 2 35.6 1.9M 0 2 34.4 1.9M 0 2 2.5 3K 0 2 4.1 3K
san200 0.9 3 1 5 50.4 9.6M 1 4 1.4 0.2M 1 4 2.0 0.2M 1 3 107.8 2K 1 3 109.6 2K
san400 0.5 1 1 5 0.0 2K 0 0 0.9 31K 0 0 1.8 31K 0 0 0.8 247 0 0 0.8 246
san400 0.7 1 1 19 0.0 22 0 2 35.3 1.1M 0 2 64.9 1.1M 0 2 20.1 472 0 2 20.3 470
san400 0.7 2 1 15 0.0 16 0 2 21.0 0.6M 0 2 40.2 0.6M 0 2 15.4 522 0 2 15.7 522
san400 0.7 3 1 5 9.1 1.0M 1 2 43.4 3.0M 1 2 74.2 3.0M 1 0 74.5 1K 1 0 73.9 1K
san400 0.9 1 1 7 7.2 1.0M 1 2 127.2 9.2M 1 3 3.6 0.2M 1 0 31.3 902 1 0 31.5 889
sanr200 0.7 1 0 115.7 17.4M 0 0 1.4 0.1M 0 0 2.2 0.1M 0 0 2.1 123 0 0 2.1 120
sanr200 0.9 1 4 5.5 1.1M 1 0 31.9 3.5M 1 0 46.8 3.5M 1 0 4.6 1K 1 0 4.8 1K
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sanr400 0.5 1 0 53.0 4.5M 0 0 3.7 93K 0 0 5.5 93K 0 0 17.0 174 0 0 16.8 172
sanr400 0.7 1 1 10.3 1.1M 1 0 60.6 3.4M 1 0 89.5 3.4M 1 0 95.4 1K 1 0 92.5 1K
zeroin.i.1 1 9 19.3 4.3M 1 9 34.6 4.3M 1 9 76.1 4.3M 1 9 43.3 4.3M 1 9 43.3 4.3M
zeroin.i.2 1 0 0.0 128 0 0 0.0 128 0 0 0.0 128 0 0 0.0 128 0 0 0.0 128
zeroin.i.3 1 1 92.8 20.2M 0 0 0.2 24K 0 0 0.1 14K 0 0 0.1 14K 0 0 0.1 12K

balancing constraint: loose
mann a27 1 1 0.0 964 1 1 0.0 189 1 1 0.0 127 0 0 0.0 252 0 0 0.0 252
mann a45 1 346 - - 1 346 - - 1 346 - - 1 346 - - 1 346 - -
mann a81 1 7 114.4 2.3M 1 7 25.5 1.0M 1 4 91.9 2.3M 1 2 130.4 2.3M 1 0 157.3 2.3M
mann a9 0 0 0.0 17 0 0 0.0 17 0 0 0.0 17 0 0 0.0 17 0 0 0.0 17

brock200 1 1 1 20.1 3.3M 0 0 2.3 0.2M 0 0 3.4 0.2M 0 0 2.2 94 0 0 2.2 94
brock200 2 0 0 0.1 8K 0 0 0.0 303 0 0 0.0 307 0 0 0.1 40 0 0 0.1 40
brock200 3 0 0 31.7 4.3M 0 0 1.0 48K 0 0 1.5 48K 0 0 3.0 90 0 0 2.9 90
brock200 4 0 0 64.6 9.2M 0 0 1.1 63K 0 0 1.7 63K 0 0 1.1 68 0 0 1.1 68
brock400 1 1 1 13.1 1.5M 1 0 29.9 2.0M 1 0 45.3 2.0M 1 0 38.2 687 1 0 38.5 690
brock400 2 1 1 0.4 43K 1 0 4.4 0.3M 1 0 6.7 0.3M 1 0 5.0 146 1 0 5.1 147
brock400 3 1 1 4.6 0.5M 1 0 22.8 1.4M 1 0 35.5 1.4M 1 0 29.7 509 1 0 29.6 509
brock400 4 1 2 0.1 9K 1 0 54.0 3.4M 1 0 84.5 3.4M 1 0 70.2 1K 1 0 69.7 1K
brock800 1 1 0 40.7 2.5M 1 0 1.0 25K 1 0 0.8 25K 1 0 0.8 84 1 0 0.8 84
brock800 2 1 1 17.3 1.1M 1 0 3.6 0.1M 1 0 3.6 0.1M 1 0 4.6 119 1 0 4.8 118
brock800 3 1 0 1.2 67K 1 0 0.0 677 1 0 0.0 637 1 0 0.1 68 1 0 0.1 68
brock800 4 1 1 0.1 1K 1 0 7.4 0.2M 1 0 6.8 0.2M 1 0 7.8 138 1 0 7.8 138
c-fat200-1 0 0 0.0 13 0 0 0.0 13 0 0 0.0 13 0 0 0.0 13 0 0 0.0 13
c-fat200-2 0 0 0.0 25 0 0 0.0 25 0 0 0.0 25 0 0 0.0 25 0 0 0.0 25
c-fat200-5 0 0 0.1 12K 0 0 1.1 0.2M 0 0 0.1 12K 0 0 0.1 12K 0 0 0.1 12K
c-fat500-1 0 0 0.0 15 0 0 0.0 15 0 0 0.0 15 0 0 0.0 15 0 0 0.0 15
c-fat500-10 1 1 0.0 122 0 0 0.0 339 0 0 0.0 124 0 0 0.2 124 0 0 0.2 124
c-fat500-2 0 0 0.0 27 0 0 0.0 27 0 0 0.0 27 0 0 0.0 27 0 0 0.0 27
c-fat500-5 1 4 0.0 59 0 0 3.0 0.5M 0 0 0.7 42K 0 0 0.8 42K 0 0 0.9 42K
fpsol2.i.1 1 5 3.2 0.4M 1 3 37.9 3.1M 1 3 40.3 1.6M 1 3 41.8 1.6M 1 2 160.6 6.4M
fpsol2.i.2 1 0 0.0 262 0 0 0.0 262 0 0 0.0 262 0 0 0.0 262 0 0 0.0 262
fpsol2.i.3 1 0 0.0 239 0 0 0.0 239 0 0 0.0 239 0 0 0.0 239 0 0 0.0 239
graph00 1 85 40.8 4.8M 1 42 26.2 2.1M 1 17 180.0 4.0M 1 19 81.2 1.9M 1 17 169.8 3.9M
graph01 1 125 0.9 99K 1 125 1.4 0.3M 1 125 1.1 99K 1 125 1.4 99K 1 125 1.5 99K
graph02 1 73 10.4 0.8M 1 73 0.1 9K 1 73 0.0 436 1 73 0.0 436 1 73 0.0 436
graph03 1 13 174.4 5.1M 1 13 0.9 0.1M 1 13 0.1 6K 1 13 0.2 6K 1 13 0.2 6K
graph04 1 13 0.0 235 1 13 0.0 235 1 13 0.0 235 1 13 0.0 235 1 13 0.0 235
graph05 1 13 0.0 228 1 13 0.0 228 1 13 0.0 228 1 13 0.0 228 1 13 0.0 228
graph06 1 13 0.0 228 1 13 0.0 228 1 13 0.0 228 1 13 0.0 228 1 13 0.0 228
graph07 1 8 0.0 238 1 8 0.0 238 1 8 0.0 238 1 8 0.0 238 1 8 0.0 238
graph09 1 0 0.0 463 0 0 0.0 463 0 0 0.0 463 0 0 0.0 463 0 0 0.0 463
graph10 1 11 1.8 0.2M 1 4 47.5 2.1M 1 4 26.8 1.1M 1 0 18.2 745 1 0 17.9 736
graph11 1 15 55.2 6.1M 1 10 92.7 6.6M 1 10 124.3 6.7M 1 0 157.8 2K 1 0 158.1 2K
graph12 1 71 141.5 12.4M 1 31 0.8 0.1M 1 31 0.3 15K 1 31 0.6 14K 1 31 0.6 14K
graph13 1 49 111.0 6.0M 0 0 0.1 5K 0 0 0.1 1K 0 0 0.6 1K 0 0 0.7 1K
graph14 1 0 152.0 2.4M 0 0 5.7 0.9M 0 0 1.0 53K 0 0 1.8 53K 0 0 1.9 53K
graph15 1 62 0.3 22K 1 62 1.4 0.1M 1 62 0.3 22K 1 62 0.3 22K 1 62 0.4 22K
graph16 0 0 1.2 7K 0 0 0.0 426 0 0 0.0 300 0 0 0.1 300 0 0 0.1 300
graph17 0 0 0.1 414 0 0 0.0 206 0 0 0.0 204 0 0 0.0 204 0 0 0.0 204
graph18 0 0 0.1 381 0 0 0.0 284 0 0 0.0 160 0 0 0.0 160 0 0 0.0 160
graph19 0 0 0.2 233 0 0 0.1 371 0 0 0.1 130 0 0 0.3 130 0 0 0.3 130
graph20 1 9 0.0 162 1 1 152.0 9.8M 1 1 22.6 0.7M 1 0 2.5 386 1 0 2.5 385
graph21 1 5 1.6 0.2M 1 2 0.0 4K 1 2 0.0 790 1 0 95.5 2K 1 0 94.8 2K
graph22 1 4 75.5 8.4M 1 1 4.9 0.4M 1 1 7.3 0.4M 1 0 21.4 495 1 0 21.4 489
graph23 1 3 0.0 1K 1 0 49.9 3.7M 1 0 74.4 3.7M 1 0 24.8 473 1 0 24.9 473
graph24 1 21 52.2 5.1M 1 0 28.3 0.5M 1 0 58.5 0.5M 1 0 53.9 652 1 0 54.2 652
graph25 1 14 111.7 8.0M 0 0 1.2 17K 0 0 2.3 17K 0 0 4.5 433 0 0 4.5 433
graph26 1 0 10.4 0.5M 0 0 0.0 646 0 0 0.1 584 0 0 0.1 334 0 0 0.1 334
graph27 1 0 0.1 926 0 0 0.0 199 0 0 0.0 162 0 0 0.0 162 0 0 0.0 161
graph28 0 0 0.1 679 0 0 0.0 147 0 0 0.0 140 0 0 0.0 140 0 0 0.0 140
graph29 0 0 0.1 772 0 0 0.0 124 0 0 0.0 124 0 0 0.0 124 0 0 0.0 124
graph30 0 0 0.1 472 0 0 0.0 118 0 0 0.0 100 0 0 0.0 100 0 0 0.0 100
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graph31 0 0 0.1 80 0 0 0.0 66 0 0 0.0 66 0 0 0.0 66 0 0 0.0 66
graph32 0 0 0.0 51 0 0 0.0 51 0 0 0.0 51 0 0 0.0 51 0 0 0.0 51

hamming10-2 1 12 0.0 494 1 12 0.0 494 1 12 0.0 494 1 12 0.0 494 1 12 0.0 494
hamming10-4 1 0 0.0 33 1 0 0.0 33 1 0 0.0 33 1 0 0.0 33 1 0 0.0 33
hamming6-2 0 0 0.0 33 0 0 0.0 33 0 0 0.0 33 0 0 0.0 33 0 0 0.0 33
hamming6-4 0 0 0.0 5 0 0 0.0 5 0 0 0.0 5 0 0 0.0 5 0 0 0.0 5
hamming8-2 1 0 0.0 129 0 0 0.0 129 0 0 0.0 129 0 0 0.0 129 0 0 0.0 129
hamming8-4 1 0 0.0 17 0 0 0.0 17 0 0 0.0 17 0 0 0.0 17 0 0 0.0 17

inithx.i.1 1 2 20.6 1.4M 0 0 62.7 3.8M 0 0 86.6 3.1M 0 0 95.6 3.1M 0 0 34.7 1.5M
inithx.i.2 1 0 0.0 365 0 0 0.0 365 0 0 0.0 365 0 0 0.0 365 0 0 0.0 365
inithx.i.3 1 0 0.0 361 0 0 0.0 361 0 0 0.0 361 0 0 0.0 361 0 0 0.0 361

johnson16-2-4 0 0 0.0 9 0 0 0.0 9 0 0 0.0 9 0 0 0.0 9 0 0 0.0 9
johnson32-2-4 1 0 0.0 17 1 0 0.0 17 1 0 0.0 17 1 0 0.0 17 1 0 0.0 17
johnson8-2-4 0 0 0.0 5 0 0 0.0 5 0 0 0.0 5 0 0 0.0 5 0 0 0.0 5
johnson8-4-4 0 0 0.0 15 0 0 0.0 15 0 0 0.0 15 0 0 0.0 15 0 0 0.0 15

keller4 0 0 0.0 1K 0 0 0.0 79 0 0 0.0 70 0 0 0.0 29 0 0 0.0 28
keller5 1 4 69.6 4.4M 1 1 59.6 1.9M 1 1 90.5 1.9M 1 0 34.4 1K 1 0 34.5 957
keller6 1 1 60.2 0.9M 1 1 0.7 6K 1 1 0.8 6K 1 0 48.8 275 1 0 49.6 272

mulsol.i.1 1 0 0.0 101 0 0 0.0 101 0 0 0.0 101 0 0 0.0 101 0 0 0.0 101
mulsol.i.2 1 0 0.0 91 0 0 0.0 91 0 0 0.0 91 0 0 0.0 91 0 0 0.0 91
mulsol.i.3 1 0 0.0 87 0 0 0.0 87 0 0 0.0 87 0 0 0.0 87 0 0 0.0 87
mulsol.i.4 1 0 0.0 98 0 0 0.0 94 0 0 0.0 91 0 0 0.0 91 0 0 0.0 91
mulsol.i.5 1 0 0.0 89 0 0 0.0 89 0 0 0.0 89 0 0 0.0 89 0 0 0.0 89

p hat1000-1 1 0 0.3 1K 0 0 0.0 91 1 0 0.1 78 1 0 0.1 24 1 0 0.1 23
p hat1000-2 1 4 97.5 5.1M 1 2 8.8 0.6M 1 2 11.5 0.5M 1 1 52.0 44K 1 1 52.2 43K
p hat1000-3 1 5 112.7 6.7M 1 2 99.7 4.7M 1 2 111.5 4.6M 1 0 10.0 3K 1 0 9.7 3K
p hat1500-1 1 1 0.4 323 1 0 97.1 0.3M 1 0 149.1 0.3M 1 1 0.2 29 1 1 0.2 28
p hat1500-2 1 5 19.6 0.6M 1 2 0.2 5K 1 2 0.2 4K 1 0 33.9 378 1 0 33.3 376
p hat1500-3 1 7 1.4 48K 1 3 115.0 4.7M 1 3 156.7 4.6M 1 2 139.4 2K 1 2 140.4 2K
p hat300-1 0 0 0.0 464 0 0 0.0 47 0 0 0.0 43 0 0 0.0 14 0 0 0.0 14
p hat300-2 1 0 0.2 29K 0 0 0.0 106 0 0 0.0 100 0 0 0.0 34 0 0 0.0 34
p hat300-3 1 2 0.2 33K 1 2 0.0 138 1 2 0.0 86 0 0 13.3 232 0 0 13.2 232
p hat500-1 0 0 0.1 1K 0 0 0.0 84 0 0 0.0 78 0 0 0.1 22 0 0 0.1 21
p hat500-2 1 3 32.4 3.2M 1 0 97.0 2.2M 1 0 176.3 2.2M 0 0 7.3 157 0 0 7.6 157
p hat500-3 1 4 6.3 0.7M 1 0 59.5 3.1M 1 0 93.5 3.1M 1 0 2.4 156 1 0 2.3 156
p hat700-1 0 0 30.7 0.9M 0 0 4.0 18K 0 0 6.7 17K 0 0 11.1 71 0 0 11.0 70
p hat700-2 1 1 0.6 36K 1 0 0.0 1K 1 0 0.0 1K 1 0 0.0 97 1 0 0.0 96
p hat700-3 1 4 6.3 0.5M 1 0 0.4 20K 1 0 0.3 14K 1 0 0.0 170 1 0 0.0 169

san1000 1 6 101.8 3.1M 1 4 165.7 2.4M 1 5 0.5 3K 0 0 163.1 936 0 0 161.6 932
san200 0.7 1 1 13 0.1 31K 0 0 0.1 7K 0 0 0.2 7K 0 0 0.2 199 0 0 0.2 199
san200 0.7 2 1 3 66.3 13.3M 0 0 7.7 0.6M 0 0 13.3 0.6M 0 0 0.4 257 0 0 0.4 255
san200 0.9 1 1 23 3.1 0.7M 1 21 77.7 11.4M 1 21 111.7 9.1M 0 3 2.0 45K 0 3 2.2 45K
san200 0.9 2 1 19 118.7 24.6M 0 0 20.5 1.3M 0 0 20.6 1.3M 0 0 0.7 588 0 0 0.8 585
san200 0.9 3 1 4 48.7 9.5M 1 3 0.6 67K 1 3 0.8 66K 1 1 136.1 2K 1 1 137.8 2K
san400 0.5 1 1 5 0.1 2K 0 0 0.9 31K 0 0 1.7 31K 0 0 0.8 250 0 0 0.8 249
san400 0.7 1 1 19 0.0 22 0 0 51.3 1.0M 0 0 59.8 1.0M 0 0 16.1 455 0 0 15.4 452
san400 0.7 2 1 15 0.0 16 0 0 21.1 0.6M 0 0 40.3 0.6M 0 0 15.4 485 0 0 15.7 485
san400 0.7 3 1 5 9.1 1.0M 1 2 42.9 3.0M 1 2 74.0 3.0M 1 0 74.5 1K 1 0 74.5 1K
san400 0.9 1 1 7 11.3 1.6M 1 2 132.3 9.2M 1 3 3.4 0.2M 1 0 30.9 639 1 0 30.8 642
sanr200 0.7 1 0 3.1 0.5M 0 0 0.1 3K 0 0 0.1 3K 0 0 0.1 58 0 0 0.1 57
sanr200 0.9 1 3 4.8 1.0M 1 0 27.7 1.9M 1 0 25.8 1.9M 1 0 2.6 178 1 0 2.6 178
sanr400 0.5 1 0 43.8 3.8M 0 0 5.2 78K 0 0 4.5 78K 0 0 13.8 136 0 0 13.9 136
sanr400 0.7 1 1 10.5 1.1M 1 0 59.5 3.4M 1 0 86.8 3.4M 1 0 95.3 1K 1 0 95.1 1K
zeroin.i.1 1 6 0.6 0.1M 0 3 7.7 1.1M 0 3 8.2 0.5M 0 3 7.9 0.5M 0 3 1.7 0.2M
zeroin.i.2 1 0 0.0 128 0 0 0.0 128 0 0 0.0 128 0 0 0.0 128 0 0 0.0 128
zeroin.i.3 1 0 0.0 124 0 0 0.0 124 0 0 0.0 124 0 0 0.0 124 0 0 0.0 124
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Résumé
Le problème de satisfaction de contraintes (CSP) est un problème NP-complet
classique en intelligence artificielle qui a suscité un engouement important de la
communauté scientifique grâce à la richesse de ses aspects pratiques et théoriques.
Cependant, au fil des années un gouffre s’est creusé entre les praticiens, qui
développent des méthodes exponentielles mais efficaces pour résoudre des instances
industrielles, et les théoriciens qui conçoivent des algorithmes sophistiqués pour
résoudre en temps polynomial certaines restrictions de CSP dont l’intérêt pra-
tique n’est pas avéré. Dans cette thèse nous tentons de réconcilier les deux com-
munautés en fournissant des méthodes polynomiales pour tester automatiquement
l’appartenance d’une instance de CSP à une sélection de classes traitables ma-
jeures. Anticipant la possibilité que les instances réelles ne tombent que rarement
dans ces classes traitables, nous analysons également de manière systématique la
possibilité de décomposer efficacement une instance en sous-problèmes traitables en
utilisant des méthodes de complexité paramétrée. Finalement, nous introduisons
un cadre général pour exploiter dans les CSP les idées développées pour la ker-
nelization, un concept fondamental de complexité paramétrée jusqu’ici peu utilisé
en pratique. Ce dernier point est appuyé par des expérimentations prometteuses.
Mots-clefs : problème de satisfaction de contraintes, classe traitable, polymor-
phisme, backdoor, complexité paramétrée, kernelization.

Abstract
The Constraint Satisfaction Problem (CSP) is a fundamental NP-complete prob-
lem with many applications in artificial intelligence. This problem has enjoyed
considerable scientific attention in the past decades due to its practical useful-
ness and the deep theoretical questions it relates to. However, there is a wide
gap between practitioners, who develop solving techniques that are efficient for
industrial instances but exponential in the worst case, and theorists who design
sophisticated polynomial-time algorithms for restrictions of CSP defined by cer-
tain algebraic properties. In this thesis we attempt to bridge this gap by providing
polynomial-time algorithms to test for membership in a selection of major tractable
classes. Even if the instance does not belong to one of these classes, we investigate
the possibility of decomposing efficiently a CSP instance into tractable subprob-
lems through the lens of parameterized complexity. Finally, we propose a general
framework to adapt the concept of kernelization, central to parameterized com-
plexity but hitherto rarely used in practice, to the context of constraint reasoning.
Preliminary experiments on this last contribution show promising results. Key-
words: Constraint satisfaction problem, tractable class, polymorphism, backdoor,
parameterized complexity, kernelization.
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