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ABSTRACT

In most industrial contexts, decisions are made based on incomplete information.

This is due to the fact that decision makers cannot be certain of the future behavior of

factors that will affect the outcome resulting from various options under consideration.

Stochastic Constraint Satisfaction Problems provide a powerful modeling framework

for problems in which one is required to take decisions under uncertainty. In these

stochastic problems, the uncertainty is modeled by using discrete random variables

to capture uncontrollable factors like the customer demands, the processing times of

machines, house prices, etc. These discrete random variables can take on a set of

possible different values, each with an associated probability and are useful to model

factors that fall outside the control of the decision maker who only knows the probability

distribution function of these random variables which can be forecasted, for instance, by

looking at the past behavior of such factors. There are controllable variables on which

one can decide, named decision variables which allow to model the set of possible choices

for the decisions to be made. Finally, such problems comprise chance constraints which

express the relationship between random and decision variables that should be satisfied

within a satisfaction probability threshold – since finding decisions that will always

satisfy the constraints in an uncertain environment is almost impossible.

If the random variables’ support set is infinite, the number of scenarios would be

infinite. Hence, finding a solution in such cases is impossible in general. In this thesis,

within the context of an infinite set of scenarios, we propose a novel notion of statistical

consistency. Statistical consistency lifts the notion of consistency of deterministic con-

straints to infinite chance constraints. The essence of this novel notion of consistency

is to be able to make an inference, in the presence of infinite scenarios in an uncertain

environment, based on a restricted finite subset of scenarios with a certain confidence

level and a threshold error. The confidence level is the probability that characterises

the extent to which our inference, based on a subset of scenarios, is correct whereas

the threshold error is the error range that we can tolerate while making such an infer-

ence. The statistical consistency acknowledges the fact that making a perfect inference

in an uncertain environment and with an infinite number of scenarios is impossible.
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The statistical consistency, thus, with its reliance on a limited number of scenarios, a

confidence level, and a threshold error constitutes a valid and an appropriate practical

road that one can take in order to tackle infinite chance constraints.

We design two novel approaches based on confidence intervals to enforce statistical

consistency as well as a novel third approach based on hypothesis testing. We analyze

the various methods theoretically as well as experimentally. Our empirical evaluation

shows the weaknesses and strengths of each of the three methods in making a cor-

rect inference from a restricted subset of scenarios for enforcing statistical consistency.

Overall, while the first two methods are able to make a correct inference in most of the

cases, the third is a superior, effective, and robust one in all cases.
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Chapter 1

Introduction

In this Chapter, we introduce the topic of this thesis in Section 1.1. Then, we define

our research problem in Section 1.2. Next, in Section 1.3 we summarize the list of our

contributions. Finally, we provide an outline of the thesis in Section 1.4.

1.1 Topic of the Thesis

In most industrial contexts, decisions are made based on incomplete information. This

is due to the fact that decision makers cannot be certain of the future behavior of

factors that will affect the outcome resulting from various options under consideration.

Stochastic Constraint Satisfaction Problems (SCSPs) provide a powerful modeling

framework for problems in which we are required to take decisions under uncertainty.

In these stochastic problems, the uncertainty is modeled by using discrete random

variables to capture uncontrollable factors like the customer demands, the processing

times of machines, house prices, etc. These discrete random variables can take on a set

of possible different values, each with an associated probability and are useful to model

factors that fall outside the control of the decision maker who only knows the probability

distribution function of these random variables which can be forecasted, for instance,

by looking at the past behavior of such factors. We also have controllable variables

on which we can decide, named decision variables which allow us to model the set of

possible choices for the decisions to be made. Finally, such problems comprise chance

constraints which express the relationship between random and decision variables that

should be satisfied within a satisfaction probability threshold – since finding decisions

that will always satisfy the constraints in an uncertain environment is almost impossible.

Anm-stage SCSP [Wal02, TMW06, HRTP12] is a 7-tuple ⟨V, S,D, P, C, β, L⟩, where
V is a set of decision variables and S is a set of random variables, D is a function

mapping each element of V (respectively, S) to a domain (respectively, support) of

1



potential values. In classical SCSPs both decision variable domains and random variable

supports are assumed to be finite. P is a function mapping each element of S to a

probability distribution for its associated support. C is a set of chance-constraints over

a non-empty subset of decision variables and a subset of random variables. β is a

function mapping each chance-constraint h ∈ C to βh which is a threshold value in the

interval (0, 1]. L = [⟨V1, S1⟩, . . . , ⟨Vi, Si⟩, . . . , ⟨Vm, Sm⟩] is a list of decision stages such

that each Vi ⊆ V , each Si ⊆ S, the Vi form a partition of V , and the Si form a partition

of S.

To solve an m-stage SCSP, an assignment to the variables in V1 must be found

such that, given random values for S1, assignments can be found for V2 such that,

given random values for S2, . . ., assignments can be found for Vm so that, given random

values for Sm, the chance constraints are satisfied in the specified fraction of all possible

scenarios. Under the assumption that random variable supports are finite, the solution

of an m-stage SCSP is, in general, represented by means of a policy tree [TMW06]. The

arcs in such a policy tree represent values observed for random variables whereas nodes

at each level represent the decisions associated with the different stages. Solving an

m-stage SCSP is a computationally challenging task and it is in PSPACE [Wal02], in

general.

An m-stage SCOP is an m-stage SCSP with an additional objective function f over

a non-empty subset of decision and a subset of random variables. An optimal solution

to a maximization SCOP is a satisfying policy tree with a maximum expected value for

f .

An example of a single-stage SCOP is the stochastic knapsack problem in which we

have a knapsack of capacity k, a set of n items. Each item i has a random weight wi

and a deterministic value vi. The objective is to find an optimal subset of items so that

our chances of exceeding the capacity does not exceed a given threshold βh. Figure 1.1

shows a SCSP model of the problem with a single chance constraint. For each item i,

we introduce a binary decision variable xi which takes the value 1 if and only if item i

is selected to be put in the knapsack, 0 otherwise. We also have a random variable wi

for each item i to model the uncertain weight of the item. The support of each wi is

a set of possible weights, each with a specified probability. The only chance constraint

specifies that the probability of not exceeding the knapsack’s capacity k should not be

below threshold βh. Finally, the objective function maximises the expected profit.

If the random variables’ support set is infinite, the number of scenarios would be

infinite and the policy tree itself would be infinite. Hence, finding a satisfying policy

tree in such cases is impossible in general. Let us illustrate this situation using the

following single-stage SCSP.

2



Objective function:

Max{E{
∑n

i=1 vixi}}
Constraints:

pr{
∑n

i=1wixi ≤ k} ≥ βh

Decision variables:

xi ∈ {0, 1} ∀i ∈ 1, . . . , n

Random variables:

wi ∈ support(wi) ∀i ∈ 1, . . . , n

Stage structure:

V1 = {x1, x2, . . . , xn}
S1 = {w1, w2, . . . , wn}
L = [⟨V1, S1⟩]

Figure 1.1: A single-stage stochastic knapsack model.

Example. Let us consider a single-stage SCSP in which V = {x1, x2} and S =

{s1, s2}. The random variable s1 may take two possible values 4 and 5, each with

probability 0.5. The random variable s2 may also take two possible values 3 and 4,

each with probability 0.5. The domain of the decision variable x1 is {1, 2, 3, 4} whereas

the domain of x2 is {3, 4, 5, 6}. We have two chance constraints h1 and h2 defined as

follows:

h1 : pr{s1x1 + s2x2 ≥ 30} ≥ 0.75

h2 : pr{s2x2 = 12} ≥ 0.5

Since this SCSP is a single-stage one, then decision variables x1 and x2 must be

set to unique values before the random variables are observed. A satisfying policy tree

to this SCSP is shown in Figure 1.2 in which x1 = 3 and x2 = 6. The first chance

constraint is satisfied in all four scenarios and hence the satisfaction probability is 1

which is larger than the needed 0.75. The second chance constraint is only satisfied in

two scenarios out of four with satisfaction probability 0.5 which is enough to make the

chance constraint satisfied.

Now, assume instead that the random variables s1 and s2 are two continuous random

variables. Assume s1 takes values following a uniform distribution over the interval [4, 5]

and s2 takes values following a uniform distribution over the interval [3, 4]. Indeed, the

policy tree for the same assignment x1 = 3 and x2 = 6 is an infinite policy tree as

shown in Figure 1.3. It becomes impossible to check whether or not such a policy tree

is a satisfying policy tree in a finite amount of time since we need to check an infinite

3



Figure 1.2: A satisfying policy tree with x1 = 3 and x2 = 6.

number of scenarios.

Figure 1.3: An infinite policy tree.

It is important to note that a solution to the classical m-stage SCSP is indeed a

trustworthy solution as it considers all possible scenarios and the satisfying policy tree

4



hedges against all uncertainties. However, it suffers from two main drawbacks: (1) No

satisfying policy tree can be found if the random variables are continuous since the

number of scenarios would have be infinite in that case; and (2) it becomes computa-

tionally very challenging as the number of scenarios grows to a certain level so that the

resulting models will be too huge to even fit in memory.

The authors in [RHTP11, RHTP15] introduce the notion of (αc, ϑ)-solutions where

αc
1 is a confidence level and ϑ is a threshold tolerance. Instead of looking for an

exact solution, as in the classical m-stage SCSPs, which might not be even possible, we

search for a solution that, with confidence level αc, guarantees a satisfaction probability

that is no lower than βh − ϑ for each chance constraint h. The (αc, ϑ)-solution to

an infinite SCSP P is indeed a solution (i.e., a satisfying policy tree) to a restricted

version P̂ of P in which we only consider a finite subset of the scenarios. In addition

to being able to address the drawback of an infinite policy tree, it also provides a more

practical framework for decision makers to state their needs through the notions of αc

and ϑ. Furthermore, the method proposed in [RHTP11, RHTP15] provides likelihood

guarantees for the quality of the estimated solution, with respect to (wrt) the complete

set of scenarios, computed from a finite set of samples.

1.2 Research Problem

The approach in [RHTP11, RHTP15] is a reformulation approach which can be de-

scribed as follows. Consider an m-stage SCSP P :

P = ⟨V, S,D, P, C, β, L⟩

Note that if any of the random variables in S has an infinite support, then the

corresponding policy tree of P would compromise an infinite number of scenarios. No

solution method to date can solve such kind of problems in general as it requires finding a

satisfying infinite policy tree. Let Ω denote the set of all scenarios of P . The approach

in [RHTP11, RHTP15] introduces the novel notion of an (αc, ϑ)-solution which is a

solution to reformulation of P constructed by solving a restricted version of P , P̂ , by

considering a finite subset of the scenarios Ω̂ ⊆ Ω instead. It is shown in [RHTP11,

RHTP15] how to construct the finite set Ω̂ through sampling in such a way that a

satisfying policy tree to P̂ is indeed an (αc, ϑ)-solution to P . Thus, the approach in

[RHTP11, RHTP15] shows how to find an (αc, ϑ)-solution to P by reformulating into

P̂ :

1In the original paper αc is referred to as α. But, to differentiate it later on from the significance

level α, we rename it here as αc.
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P̂ = ⟨V, S, D̂, P̂ , C, β, L⟩

such that all the supports are finite and a solution to P̂ can be computed using

the techniques in [HRTP12] which itself re-use the classical constraint solvers that are

implemented for deterministic problems.

However, for certain values of αc and ϑ, the minimum number of samples required

to find an (αc, ϑ)-solution of an infinite SCSP P may still be too large so that solving

the resulting reformulated P̂ would be a very challenging task.

In this thesis, we take a different perspective towards computing an (αc, ϑ)-solution

of an infinite single-stage SCSP P . Instead of reformulating the original infinite SCSP

into a finite sampled one and use the classical search algorithms based on inference rules

suitable for deterministic constraints, we propose to directly work with the infinite one

by lifting the inference that guides the search in the deterministic case to stochastic

inference.

To this end, we need to consider each chance constraint h of an infinite SCSP P :

h : pr{Ch} ≥ βh

and propose how to lift the notion of consistency of deterministic constraints to

statistical consistency for infinite chance constraints. Statistical consistency is a novel

concept that we propose in the presence of uncertainty in SCSPs in which the number of

scenarios is infinite. The essence of this novel notion of consistency is to be able to make

an inference in the presence of infinite scenarios in an uncertain environment based on

a restricted finite subset of scenarios (i.e., a scenario sample of restricted size) with a

certain confidence level and a threshold error. The confidence level is the probability

that characterises the extend to which our inference, based on a subset of scenarios, is

correct whereas the threshold error is the error range that we can tolerate while making

such an inference. The statistical consistency acknowledges the fact that making a

perfect inference in an uncertain environment and with an infinite number of scenarios

is impossible. The statistical consistency, thus, with its reliance on a limited number of

scenarios, a confidence level, and a threshold error constitutes a valid and an appropriate

practical road that one can take in order to tackle infinite chance constraints. Hence,

a core research question that we address in this thesis is the following:

How to extend the notion of consistency to an infinite chance constraint?

Once the notion of statistical consistency is defined, one needs to also show how to

enforce it so that constraint solver can be lifted to stochastic constraint solvers. Thus,

a second core question that we address in this thesis is the following:
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How to enforce statistical consistency?

If one can answer these two core questions in a satisfactory manner, then any con-

straint solver or search algorithm can use the stochastic inference (through the statistical

consistency enforcing algorithm) to directly reason and solve an infinite SCSP in order

to compute an (αc, ϑ)-solution.

1.3 Summary of Contributions

The contributions of this thesis can be summarised as follows:

1. The introduction of the novel notion of statistical consistency, (αc,ϑ)-consistency,

for infinite stochastic constraint satisfaction problems;

2. Two novel approaches based on confidence intervals to enforce (αc,ϑ)-consistency;

3. A novel third effective and robust approach based on hypothesis testing that is

superior to the previous ones based on confidence intervals;

4. An empirical evaluation of the various methods for enforcing (αc,ϑ)-consistency.

1.4 Outline of the Thesis

• In Chapter 2, we review Stochastic Programming, Stochastic Constraint Pro-

gramming, and (αc,ϑ)-solutions in stochastic constraint satisfaction problems.

• In Chapter 3, we propose a novel notion of statistical consistency for stochas-

tic constraint satisfaction problems. This statistical consistency is crucial if one

wants to lift the inference about value consistency in the presence of uncertainty,

especially when the set of possible scenarios is infinite.

• In Chapter 4, we propose and experimentally validate two novel approaches based

on confidence intervals that enforce statistical consistency for stochastic constraint

satisfaction problems.

• In Chapter 5, we take a different approach based on composite hypothesis testing

that can be used to enforce statistical consistency and validate it experimentally.

The results show that it is an effective, robust, and practical method.

• In Appendix A, we present the necessary formal background which includes de-

scription of the basic concepts in probability theory and statistics and various

sampling methods.
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• In Appendix B, we present the implementation details of the key building blocks of

our experiments for the approaches based on confidence intervals and hypothesis

testing in the R Language.
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Chapter 2

Literature Review

In this chapter, we first introduce Stochastic Programming in Section 2.1. Then, we

describe Stochastic Constraint Programming in Section 2.2. Finally, we review (αc,ϑ)-

solutions in stochastic constraint satisfaction problems in Section 2.3.

2.1 Stochastic programming

Stochastic programming is a framework for modeling optimization problems that in-

volve uncertainty [BL97, KW94, Sen72, GW74, AW70, Kuh05]. Examples are schedul-

ing jobs under uncertain processing times, sequencing aircraft landing under random

plane departure/arrival delays, inventory control under uncertain future demands (see

examples: [Sil78, Por02, Sca60, Ask81, BT88, GS77, Gra99, SWdK04, TS08, TK06,

Tem07, PS08]).

To solve optimization problems under uncertainty, stochastic programming needs to

represent uncertain elements of these problems. To this end, random variables are used

as the modeling tool to represent this uncertainty [Vaj72]. Thus, uncertain elements in

stochastic programming are assigned to a known probability distribution. For example,

a customer demand that is uncertain can be modeled as a random variable with known

probability distribution such as a normal distribution.

The typical requirement in stochastic programs is to maintain certain constraints,

called chance constraints [CC59, CC63]. Chance constraints are constraints that in

addition to decision variables also involve random variables and need to be satisfied at

a prescribed level of probability called threshold. For instance, since customer demand

is uncertain, a demand chance constraint can be used to specify that regardless of the

demand uncertainty we need to make decision in such a way that the customer demand

is guaranteed to be satisfied in 95% of the possible future realizations of the customer

demand or simply at threshold 0.95.
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Wheat Corn Sugar Beets

Yield (T/acre) 2.5 3 20

Planting cost ($/acre) 150 230 260

Selling price ($/T) 170 150 36 under 6000 T

10 above 6000 T

Purchase price ($/T) 238 210

Minimum requirement (T) 200 240

Total available land: 500 acres

Table 2.1: Data for farmer’s problem

The objective is typically related to minimization (or maximization) of some expec-

tation on the problem costs (or profits).

Let us consider a typical optimization problem under uncertainty which is a framer’s

stochastic problem [BL97]. Throughout this example we will present the basic foun-

dation of stochastic programming and highlight the main advantage of the stochastic

programming solution over the classical deterministic approaches.

2.1.1 The Deterministic Farmer’s Problem

Consider a farmer who has 500 acres of land. On his land, the farmer can plant three

types of crops: grain, corn, and sugar beets. In winter time, the farmer needs to decide

how to partition his land among the three different crops such that:

1. At least 200 tons (T) of wheat and 240 T of corn are needed to be used for cattle

feed. These amounts can be raised on the farm or bought from a wholesaler. Any

production in excess of the feeding requirement would be sold. Selling prices are

170 and 150 per ton of wheat and corn, respectively. The purchase prices are 40%

more than this due to the wholesaler’s margin and transportation costs;

2. The sugar beet crop sells at 36/T. However, there is a rule that imposes a quota

on sugar beet production. Any amount in excess of the quota can be sold only at

10/T. The farmer’s quota for next year is 6000 T;

3. Based on past experience, the farmer knows that the mean yield on his land is

roughly 2.5 T, 3 T, and 20 T per acre for wheat, corn, and sugar beets, respec-

tively.

In Table 2.1, we summarize the data and the planting costs for these crops.
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Minimize:
150x1 + 230x2 + 260x3 + 238y1− 170w1

+210y2− 150w2− 36w3− 10w4

Constraints:

x1 + x2 + x3 ≤ 500

2.5x1 + y1− w1 ≥ 200

3x2 + y2− w2 ≥ 240

w3 + w4 ≤ 20x3

w3 ≤ 6000

Decision Variables: x1, x2, x3, y1, y2, w1, w2, w3, w4 ≥ 0

Figure 2.1: A LP model of the deterministic farmer’s problem.

The deterministic farmer’s problem can be modeled as a Linear Program (LP)

[Wol98] as follows.

• x1 = acres of land devoted to wheat;

• x2 = acres of land devoted to corn;

• x3 = acres of land devoted to sugar beets;

• w1 = tons of wheat sold;

• y1 = tons of wheat purchased;

• w2 = tons of corn sold;

• y2 = tons of corn purchased;

• w3 = tons of sugar beets sold at the favorable price; and

• w4 = tons of sugar beets sold at the lower price.

A LP model of the deterministic farmer’s problem is shown in Figure 2.1.

The optimal solution to the deterministic farmer’s problem based on expected yields

is shown in Table 2.2.

This optimal solution is easy to understand. The farmer devotes enough land to

sugar beets to reach the quota of 6000 T. He then devotes enough land to wheat and

corn production to meet the feeding requirement. The rest of the land is devoted to

wheat production. Some wheat can be sold. To an extent, the optimal solution follows

a very simple heuristic rule: to allocate land in order of decreasing profit per acre. In

this example, the order is sugar beets at a favorable price, wheat, corn, and sugar beets

at the lower price. This simple heuristic would, however, no longer be valid if other

side constraints, such as labor requirements or crop rotation, would be included.
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Culture Wheat Corn Sugar Beets

Surface (acres) 120 80 300

Yield (T) 300 240 6000

Sales (T) 100 6000

Purchase

Overall profit: 118,600

Table 2.2: Optimal solution for the deterministic problem

2.1.2 The Shortcomings of the Deterministic Model

Unfortunately, the yields of the crops vary according to the weather. Past experience

shows that we have quite different yields for the same crop over different years mainly

because of changing weather conditions. Most crops need rain during the few weeks

after seeding or planting, then sunshine is welcome for the rest of the growing period.

Sunshine should, however, not turn into drought, which causes severe yield reductions.

Dry weather is again beneficial during harvest. From all these factors, yields varying

20% to 25% above or below the mean yield are not unusual.

The above deterministic formulation only considers the mean yield which does not

take into consideration the possibility of weather conditions. This makes the solution

sensitive to any change in the weather conditions. The farmer is left with no sensible

decision if the yield varies 20% above or 25% below. Even though the deterministic

model can be solved to optimality, this optimal solution is of no use if the weather

conditions did not guarantee the mean yield.

So, how can we remedy this problem? How can we incorporate the weather uncer-

tainty when trying to solve the farmer’s stochastic problem?

One approach introduced by stochastic programming is to represent these variable

yields using discrete and correlated random variables.

A first possibility is to assume some correlation among the yields of the different

crops. A very simplified representation of this would be to assume, e.g., that years are

good, fair, or bad for all crops, resulting in above average, average, or below average

yields for all crops. To fix these ideas, ”above” and ”below” average indicate a yield

20% above or below the mean yield given in Table 2.1. For simplicity, we assume

that weather conditions and yields for the farmer do not have a significant impact

on prices. The farmer wishes to know whether the optimal solution is sensitive to

variations in yields. He decides to run two more optimizations based on above average

and below average yields. Tables 2.3 and 2.4 give the optimal solutions he obtains

in these cases. Again, the solutions in Tables 2.3 and 2.4 seem quite natural. When
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Culture Wheat Corn Sugar Beets

Surface (acres) 183.33 66.67 250

Yield (T) 550 240 6000

Sales (T) 350 6000

Purchase

Overall profit: 167,667

Table 2.3: Optimal solution: average yields (+20%)

Culture Wheat Corn Sugar Beets

Surface (acres) 100 25 375

Yield (T) 200 60 6000

Sales (T) 6000

Purchase 180

Overall profit: 59,950

Table 2.4: Optimal solution: average yields (-20%)

yields are high, smaller surfaces are needed to raise the minimum requirements in wheat

and corn and the sugar beet quota. The remaining land is devoted to wheat, whose

extra production is sold. When yields are low, larger surfaces are needed to raise the

minimum requirements and the sugar beet quota. In fact, corn requirements cannot be

satisfied with the production, and some corn must be bought.

The optimal solution is very sensitive to changes in yields. The optimal surfaces

devoted to wheat range from 100 acres to 183.33 acres. Those devoted to corn range

from 25 acres to 80 acres and those devoted to sugar beets from 250 acres to 375 acres.

The overall profit ranges from 59,950 to 167,667.

2.1.3 A Scenario Representation

Since long-term weather forecasts cannot be accurately predicted six months ahead, the

farmer must make up his mind without perfect information on yields.

The main issue here is clearly on sugar beet production. Planting large surfaces

would make it certain to produce and sell the quota, but would also make it likely to

sell some sugar beets at the unfavorable price. Planting small surfaces would make it

likely to miss the opportunity to sell the full quota at the favorable price. The farmer

now realizes that he is unable to make a perfect decision that would be best in all

circumstances.
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The farmer has to decide now on how to partition the land before observing the

realization of the yields in the future. However, the sales and purchases would depend

on the outcome of yields. He would, therefore, want to assess the benefits and losses of

each decision in each possible future situation or scenario. There are three scenarios in

total: above average, average, and below average.

Taking into account the yield uncertainty, one can remodel the Farmer’s problem as

follows. Decisions on land assignment (x1, x2, x3) have to be taken now, but sales and

purchases (wi, i = 1, . . . , 4, yj, j = 1, 2) depend on the yields. It is useful to index those

decisions by a scenario index s = 1, 2, 3 corresponding to above average, average, or

below average yields, respectively. This creates a new set of variables of the form wis,

i = 1, 2, 3, 4, s = 1, 2, 3 and yjs, j = 1, 2, s = 1, 2, 3. As an example, w32 represents

the amount of sugar beets sold at the favorable price if yields are average. Assuming

the farmer wants to maximize long-run profit, it is reasonable for him to seek a solution

that maximizes his expected profit. If the three scenarios have an equal probability of

1/3, the farmer’s problem can be modelled as shown in Figure 2.2

The optimal solution of the model of Figure 2.2 is given in Table 2.5. The top line

gives the planting areas, which must be determined before realizing the weather and

crop yields. This decision is called the first stage. The other lines describe the yields,

sales, and purchases in the three scenarios. They are called the second stage. The

bottom line shows the overall expected profit. The optimal solution can be understood

as follows. The most profitable decision for sugar beet land allocation is the one that

always avoids sales at the unfavorable price even if this implies that some portion of the

quota is unused when yields are average or below average. The area devoted to corn is

such that it meets the feeding requirement when yields are average. This implies sales

are possible when yields are above average and purchases are needed when yields are

below average. Finally, the rest of the land is devoted to wheat. This area is large

enough to cover the minimum requirement. Sales then always occur. This solution

illustrates that it is impossible, under uncertainty, to find a solution that is ideal under

all circumstances. Selling some sugar beets at the unfavorable price or having some

unused quota is a decision that would never take place with a perfect forecast. Such

decisions can appear in a stochastic model because decisions have to be balanced or

hedged against the various scenarios.

The hedging effect has an important impact on the expected optimal profit. Suppose

yields vary over years but are cyclical. A year with above average yields is always

followed by a year with average yields and then a year with below average yields. The

farmer would then take optimal solutions as given in Table 2.3, then Table 2.2, then
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Minimize:

150x1 + 230x2 + 260x3 −1
3
(170w11− 238y11 + 150w21

−210y21 + 36w31 + 10w41)

−1
3
(170w12− 238y12 + 150w22

−210y22 + 36w32 + 10w42)

−1
3
(170w13− 238y13 + 150w23

−210y23 + 36w33 + 10w43)

Constraints:

x1 + x2 + x3 ≤ 500

3x1 + y11− w11 ≥ 200

3.6x2 + y21− w21 ≥ 240

w31 + w41 ≤ 24x3

w31 ≤ 6000

2.5x1 + y12− w12 ≥ 200

3x2 + y22− w22 ≥ 240

w32 + w42 ≤ 20x3

w32 ≤ 6000

2x1 + y13− w13 ≥ 200

2.4x2 + y23− w23 ≥ 240

w33 + w43 ≤ 16x3

w33 ≤ 6000

Decision Variables: x, y, w ≥ 0

Figure 2.2: An LP model of the stochastic farmer’s problem.

Table 2.4, respectively. This would leave him with a profit of 167,667 the first year,

118,600 the second year, and 59,950 the third year. The mean profit over the three

years (and in the long run) would be the mean of the three figures, namely 115,406

per year. Now, assume again that yields vary over years, but on a random basis. If

the farmer gets the information on the yields before planting, he will again choose the

areas on the basis of the solution in Table 2.2, 2.3, or 2.4, depending on the information

received. In the long run, if each yield is realized one third of the years, the farmer will

get again an expected profit of 115,406 per year. This is the situation under perfect

information. As we know, the farmer unfortunately does not get prior information on

the yields. So, the best he can do in the long run is to take the solution as given by

Table 2.5. This leaves the farmer with an expected profit of 108,390. The difference

between this figure and the value, 115,406, in the case of perfect information, namely

7016, represents what is called the expected value of perfect information (EVPI) which

represents the loss of profit due to the presence of uncertainty.

Another approach the farmer may have is to assume expected yields and always to
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Wheat Corn Sugar Beets

First stage Area (acres) 170 80 250

s = 1 Above Yield (T) 510 288 6000

Sales (T) 310 48 6000 (favor. price)

Purchase (T) - - -

s = 2 Average Yield (T) 425 240 5000

Sales (T) 225 - 5000 (favor. price)

Purchase (T) - - -

s = 3 Below Yield (T) 340 192 4000

Sales (T) 140 - 000 (favor. price)

Purchase (T) - 48 -

Overall profit: 108,390

Table 2.5: Optimal solution based on the stochastic model in Figure 2.2

allocate the optimal planting surface according to these yields, as in Table 2.2. This

approach represents the expected value solution. It is common in optimization but can

have unfavorable consequences. Using the expected value solution every year results in

a long run annual profit of 107,240. The loss by not considering the random variations is

the difference between this and the stochastic model profit from Table 2.5. This value,

108,390-107,240=1,150, is the value of the stochastic solution (VSS), the possible gain

from solving the stochastic model. Note that it is not equal to the expected value of

perfect information, and may in fact be larger than the EVPI. These two quantities

give the motivation for stochastic programming in general. EVPI measures the value

of knowing the future with certainty while VSS assesses the value of knowing and

using distributions on future outcomes. Our emphasis will be on problems where no

further information about the future is available so the VSS becomes more practically

relevant. In some situations, however, more information might be available through

more extensive forecasting, sampling, or exploration. In these cases, EVPI would be

useful for deciding whether to undertake additional efforts.

2.2 Stochastic Constraint Programming

2.2.1 Constraint Satisfaction Problems

Combinatorial Optimization problems are ubiquitous in industry[Tsa93, RvBW06]. Ex-

amples are production planning subject to demand and resource availability so that
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profit is maximized, scheduling jobs on machines subject to precedence constraints so

that the makespan is minimized, vehicle routing subject to initial and final location

of the goods and the transportation vehicles so that delivery time and fuel expenses

are minimized, etc. Such types of interesting problems arising from real-life can be

represented as constraint satisfaction problems (CSPs).

A CSP consists of a set of variables, each with a finite domain of values, and a set

of constraints specifying allowed combinations of values for some variables [Tsa93]. A

solution to a CSP is an assignment of variables to values in their respective domains

such that all of the constraints are satisfied.

Constraint propagation techniques are inference methods that help reducing the

original CSP into another which is smaller in size. The size of a CSP is the product of

the domain sizes of all variables. To achieve this, each constraint in the original CSP is

associated with a constraint propagator. The propagator removes from the domains of

the variables in the scope of this constraint inconsistent values. Inconsistent values are

values that do not appear in any solution to that particular constraint. Inconsistent

values can be inferred by using a number of local consistency concepts. For example, a

constraint c is generalized arc consistent (GAC ) iff when a variable is assigned any of

the values in its domain, there exist compatible values in the domains of all the other

variables of c [MM88] . A CSP is GAC iff all constraints are GAC.

Example. Consider the constraint:

4x+ 3y − 2z = 10

where the domains of the variables are:

D(x) = D(y) = D(z) = {0, 1, . . . , 9}

Enforcing GAC prunes all the inconsistent values from the domains of x, y, and z,

i.e., all the values that do not appear in any solution to the constraint. Thus, enforcing

GAC reduces the domains to:

D(x) = {0, 1, . . . , 7} D(y) = {0, 2, 4, 6, 8} D(z) = {0, 1, . . . , 9}

Consistency, however, is neither a necessary nor a sufficient condition for a problem

to be solvable. That is why search is needed in order to find a solution to a CSP. Con-

straint solvers typically, using a search method, explore partial assignments enforcing a

local consistency property. Thus, a solution to a CSP is typically found through the in-

teraction of a search procedure and constraint propagation techniques. In [Tsa93], there

are different search algorithms that may be used together with constraint propagation

to solve CSPs.
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Constraints:

(1) ∀j ∈ V
∑

i∈B Xi,j = r

(2) ∀i ∈ B
∑

j∈V Xi,j = k

(3) ∀j1, j2, j1 < j2 ∈ V
∑

i∈B Xi,j1 ∗Xi,j2 = λ

Decision Variables:

Xi,j ∈ {0, 1}, ∀i ∈ V, ∀j ∈ B

Figure 2.3: A constraint program of the BIBD problem

2.2.2 Constraint Programming

Many problems can be modelled as CSPs and efficiently solved by applying the tech-

niques developed for CSPs. Constraint programming (CP) provides a platform for users

that helps them describe their problems as CSPs.

The CP languages provide constructs for declaring the variables, their domains,

and constraints between these variables [HSD98]. In most of these languages the solv-

ing techniques are hidden in a solver that is composed of a search algorithm and a

propagation algorithm for each constraint.

We now show a typical constraint program for the balanced incomplete block

design (BIBD) problem which is a standard combinatorial problem from design theory

with applications in experimental design and cryptography (prob028 in www.csplib.org).

BIBD generation is to find a set of b > 0 subsets of a set V of v ≥ 2 elements such that:

• each subset consists of exactly k elements (v > k > 0);

• each element appears in exactly r subsets (r > 0);

• each pair of elements appear simultaneously in exactly λ subsets (λ > 0).

A BIBD instance is thus explained by its parameters ⟨v, b, r, k, λ⟩.
A BIBD instance is specified by a 2-dimenisonal 0/1 matrix X of B × V , where

B = {0, . . . , b − 1}. A variable Xi,j in this matrix takes the value 1 iff the subset i

contains the element j. The constraints therefore enforce exactly r 1s per row, k 1s per

column, and a scalar product of λ between any pair of distinct rows (see Figure 2.3).
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2.2.3 Stochastic Constraint Satisfaction Problems

There have been many attempts to incorporate uncertainty within the CSP formalism

(e.g., [THPR08, FLMCS95, BS06, BM06, HRTP11]). But, in this thesis, we focus on

the Stochastic Constraint Satisfaction approach.

Stochastic constraint satisfaction problems (SCSPs) are a powerful modeling frame-

work for decision making under uncertainty. SCSPs were first introduced in [Wal02]

and further extended in [TMW06] to allow multiple chance-constraints and a range of

different objectives. In contrast to classical constraint programming, stochastic con-

straint programming features random variables and chance-constraints, i.e. constraints

that should be satisfied according to a prescribed probability.

An m-stage SCP is defined as a 7-tuple ⟨V, S,D, P, C, β, L⟩, where

• V = {x1, x2, . . . , xm} is a set of decision variables;

• S = {s1, s2, . . . , sm} is a set of stochastic variables;

• D is a function mapping each element of V and each element of S to a domain of

potential values. Both decision and stochastic variable domains are assumed to

be finite;

• P is a function mapping each element of S to a probability distribution for its

associated domain;

• C is a set of chance-constraints over a non-empty subset of decision variables and

a subset of stochastic variables;

• β is a function mapping each chance-constraint h ∈ C to βh which is a threshold

value in the interval (0, 1]. We will denote a chance-constraint by using the no-

tation “Pr{⟨cons⟩} ≥ βh”, meaning that constraint ⟨cons⟩, constraining decision

and random variables, should be satisfied with probability greater or equal to βh;

and

• L = [⟨V1, S1⟩, . . . , ⟨Vi, Si⟩, . . . , ⟨Vm, Sm⟩] is a list of decision stages such that each

Vi ⊆ V , each Si ⊆ S, the Vi form a partition of V , and the Si form a partition of

S. The decision stages are defined based on a response policy. A response policy

states the rules that decide when decision variables have to be set.

The solution of an m-stage SCP is, in general, represented by means of a policy

tree [HRTP12]. The arcs in such a policy tree represent values observed for stochastic

variables whereas nodes at each level represent the decisions associated with the different

stages. Each level of the tree represents a stage.
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Figure 2.4: Policy tree for the SCSP in Example 1

In a policy tree, an assignment to the variables in V1 must be found such that, given

random values for stochastic variables in S1, an assignment can be found for V2 such

that, given random values for S2, . . . , an assignment can be found for Vm so that ,

given random values for Sm the chance-constraints be satisfied with probability greater

or equal to βh.

Unlike SP, SCP offers a richer modeling language which supports chance-constraints

over global, nonlinear, logical constraints in addition to linear ones, as well as an elegant

way of describing the stage structure. Detailed comparisons between the Artificial

Intelligence approach and the Operations Research approach to modeling and solving

integer combinatorial problems[NW88] in general can be found in [HC88, LP01].

Example. Let us consider a two-stage SCSP ([HRTP12]) in which V1 = {x1}
and S1 = {s1}, V2 = {x2} and S2 = {s2}. Stochastic variable s1 may take two

possible values, 5 and 4, each with probability 0.5; stochastic variable s2 may also

take two possible values, 3 and 4, each with probability 0.5. The domain of x1 is

{1, . . . , 4} and the domain of x2 is {3, . . . , 6}. There are two chance constraints in C,

c1 : Pr{s1x1+s2x2 ≥ 30} ≥ 0.75 and c2 : Pr{s2x1 = 12} ≥ 0.5. In this case, the decision

variable x1 must be set to a unique value before random variables are observed, while

decision variable x2 takes a value that depends on the observed value of the random

20



variable s1. A possible solution to this SCSP is the satisfying policy tree shown in Fig.

2.4 in which x1 = 3, x1
2 = 4 and x2

2 = 6, where x1
2 is the value assigned to decision

variable x2, if random variable s1 takes value 5, and x2
2 is the value assigned to decision

variable x2, if random variable s1 takes value 4.

As the example shows, a solution to a SCSP is not simply an assignment of the

decision variables in V to values, but it is instead a satisfying policy tree. For a recent

survey on different approaches to uncertainty see [HRTP10].

2.3 (αc,θ)-Solutions

In [RHTP11], the authors argue that in the presence of infinite set of scenarios due to

continuous random variables, the complete existing approaches in [TMW06, HRTP12]

cannot be employed directly to solve such stochastic problems. There are a number of

ways to overcome this problem. For instance, different sampling strategies have been

proposed in [TMW06] in order to reduce a-priori the support of random variables and

therefore produce SCSPs that are manageable in size. Taking a different heuristic ap-

proach, the authors in [PTRH09] build a neural network to encode a policy function

that takes the best possible decision with respect to the past history of decisions taken

and values observed for the random variables. Nevertheless, their approach is purely

heuristic and does not provide any likelihood guarantee on the quality of the solutions

found. In contrast, [RHTP11] shows that statistical estimation via confidence intervals

can be employed to provide likelihood guarantees for the quality of the solutions found

when using N samples rather than all the scenarios. In fact, in the presence of con-

tinuous random variables, the decision maker can only hope to ”estimate” a solution

in general. Therefore, the concept of (αc,ϑ)-solutions introduced two more parameters

that can be set by the decision maker that provide certain likelihood guarantees. Given,

a SCSP, an (αc,ϑ)-solution is an assignment A in which for each chance constraint h

(where h : pr{c} ≥ βh denotes the chance constraint h in which the decision variables

take the values in assignment A), with confidence level αc, we guarantees that the

satisfaction probability of c (i.e, pr{c}) to be no less that βh − ϑ.

Definition 1. (in [RHTP11, RHTP15]) An (αc,θ)-solution to a SCSP is an assignment

that at least with probability αc provides for every chance constraint h ∈ C a satisfaction

probability greater than or equal to βh − ϑ.

In operations research, and particularly in stochastic programming, the state-of-

the-art technique that applies sampling in combinatorial optimisation is the sample

average approximation (SAA) method [KSHDM01, ASS02, LSW06, Bra12a, Bra12b].
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SAA methods for problems comprising a single chance constraint were discussed in

[AS08, LA08, PAS09, Che52, Hoe63, Bra12a, Bra13].
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Chapter 3

Statistical Consistency

In this chapter, we propose a novel notion of statistical consistency for stochastic con-

straint satisfaction problems. This statistical consistency is crucial if one wants to lift

the inference about value consistency in the presence of uncertainty, especially when

the set of possible scenarios is infinite. The new notion of statistical consistency is

parameterised by a confidence probability, αc, and a threshold error ϑ. The goal is to

be able to make an inference, with confidence probability αc, about whether a value is

consistent or not with respect to the uncertain environment without the error exceeding

threshold value ϑ. This new statistical consistency can be used to develop new family of

search algorithm that enforce such consistency during search. By doing so, we achieve

to lift the reasoning and inference about value consistency during search for stochastic

constraint satisfaction problem in which we have infinite set of scenarios.

The rest of this Chapter is organised as follows. In Section 3.1, we introduce some

basic search algorithms for the CSP and show how to combine search and propagation

in Section 3.2 in order to boost the search process. Then, we formalise the notion

of (αc,ϑ)-consistency in Section 3.3 and propose for the first time a novel concept

of statistical consistency to stochastic constraint satisfaction problems. Finally, we

conclude in Section 3.4.

3.1 CSP: Search Algorithms

Recall that a CSP consists of a set of variables, each with a finite domain of values,

and a set of constraints specifying allowed combinations of values for some variables

[Tsa93]. A solution to a CSP is an assignment of variables to values in their respective

domains such that all of the constraints are satisfied.

As an example, consider the Map Coloring Problem [Tsa93] in which we are given a

map such as the one in Figure 3.1 and three colors red, green, and blue. The objective
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is to color every region with a color such that no two neighboring regions are colored

with the same color.

Figure 3.1: A Map Coloring Problem.

A solution to the Map Coloring Problem in Figure 3.1 is shown in Figure 3.2.

Figure 3.2: A Solution to a Map Coloring Problem.

Modeling the Map Coloring problem as a CSP consists of decalring a set of decision

variables, their domains and a set of constraints. In Figure 3.3, we show the encoding of

the decision variables: each region is mapped to a decision variable. In Figure 3.4. we

show the constraint network which states a binary not-equal constraint between every

two decision variables whose corresponding regions are neighbors. The domain of each
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decision variable is made up of the three colors. It is obvious to see that if there exists

an assignment of values to variables such that all constraints are satisfied represents a

solution to the Map Coloring problem.

Figure 3.3: Decision Variables of the Map Coloring Problem.

How to search for a solution to a CSP? To search is to make an (educated) guess

among several alternatives. But be prepared to undo that guess and try a different

alternative if the guess does not lead to a solution. We will focus on systematic search.

Given sufficient time, if there is a solution, it will be found. If there is no solution, the

search space will be exhausted and the search will report that there is no solution.

The typical search process when solving a CSP is searching through a space of

partial assignments. A partial assignment is an assignment to one or more decision

variables. We generally begin with an empty assignment and incrementally attempt to

extend it into a solution. We will assume a backtracking search style: If we discover

that the current partial assignment cannot be extended to a solution (a dead end), we

backtrack over last decision made and try an alternative one.

The search for a solution to a CSP may be viewed as exploring a tree(see Figure 3.5).

The root of the tree represents the CSP before any search choices. The choices made

correspond to branches in the tree. The descendants of the root node correspond to

sub-CSPs, i,e., the original CSP augmented with a partial assignment which leaves us

with a simplified problem.

There are two common branching styles used. In d-way branching, each branch

under a parent node represents the assignment of one of the d domain values from the

domain of a particular variable as depicted in Figure 3.6.
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Figure 3.4: A Constraint Model of the Map Coloring Problem.

Figure 3.5: Search as Tree Traversal.

In, 2-way branching, we try extending partial assignment with x = v first. If

no solution found, we remove v from consideration before continuing as depicted in

Figure 3.7.

Note that most modern constraint solvers [LtOpt94, BPS99, ILO07] use 2-way

branching. The instantiation order is the order in which assignments to variables are

made. The level in a search tree corresponds to the number of assignments made and
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Figure 3.6: D-way Branching.

Figure 3.7: 2-way Branching.

also known as search depth. During search, we call those variables that have not yet

been assigned as future variables. Similarly, those variables that have been assigned are

called past variables. Each branch in a search tree represents a partial assignment (see

Fgure 3.8 for an example). A branch that reaches depth n, is a complete assignment.

Generate&Test. A simple (but very expensive) method of solving a CSP. Each

possible complete assignment is generated and then tested to see if it satisfies all the

constraints. It is a brute force method that only checks constraints after a complete as-

signment has been generated. It is a systematic search algorithm and hence guaranteed

to find a solution if one exists (eventually), but it is almost never used in practice.

Backtracking. Backtracking is a general algorithm for finding all (or some) so-

lutions to combinatorial problems, notably constraint satisfaction problems, that in-

crementally builds candidates to the solutions, and abandons each partial candidate c
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Figure 3.8: Partial assignment ⟨x1 = a, x2 = a⟩.

(”backtracks”) as soon as it determines that c cannot possibly be completed to a valid

solution [Knu68]. It improves on Generate&Test by incrementally extending partial

solutions. Every time we make an assignment, we check to see if a constraint has been

violated. The backtracking algorithm traverses the search tree recursively, from the

root down, in depth-first order. At each node c, the algorithm checks whether c can be

completed to a valid solution. If it cannot because a constraint has been violated, the

whole sub-tree rooted at c is skipped (pruned). Otherwise, the algorithm (1) checks

whether c itself is a valid solution if it is a depth n, and if so reports it; and (2) recur-

sively enumerates all sub-trees of c. Therefore, the actual search tree that is traversed

by the algorithm is only a part of the potential tree. The total cost of the algorithm is

the number of nodes of the actual tree times the cost of obtaining and processing each

node.

Part of the Search Tree of the Map Coloring Problem that could be explored using

the Backtracking algorithm is shown in Figure 3.9.

The Backtracking algorithm is also systematic, like Generate&Test, and so is guar-

anteed to find a solution if one exists. Since it checks a constraint as soon as all of the

variables that it constrains are instantiated, it can spot dead-ends much faster than

Generate&Test. In general, the sooner you can spot a dead-end, the more search you

will save.

3.2 Combining Search and Propagation

How can we do better than the Backtracking algorithm? Indeed, the Backtracking

algorithm just looks backwards and checks a constraint when all the variables in the

scope of such a constraint are instantiated. Hence, the constraints are only used for

checking a partial assignment but not as a means to make inference about the values
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Figure 3.9: Part of the Search Tree of the Map Coloring Problem.

of future variables. As the size of the search space is the product of the domain sizes

of all variables and is thus too big in general to enumerate all possible assignments,

many CP solution methods are based on local consistency techniques which help reduce

the size of the search space and hence improving on the Backtracking algorithm. The

main idea is to detect and remove from the domains of the future variables all those

values that cannot be a part of any solution. Such values lack support and are called

inconsistent.

Constraint propagation is the process of making deduction (or: inference) via a sub-

set of the constraints. The deduced information is recorded as changes to the domains

of the future variables by pruning values from domains. Any local change to the domain

of any decision variable during search can forms the basis for further deductions. Hence

the result of a change is gradually propagated through the constraint network.

A consistency property holds when constraint propagation of a certain kind reaches

a fixpoint, i.e., we can deduce nothing new. Consistency may be (1) local involving

one constraint or (2) global which involves all the constraints. Many local consistency

notions exist in the literature [Apt03]. For instance, the following type of consistency

are defined for binary constraints:

Definition 2. A binary constraint is (i, j)-consistent iff its variables have non-empty

domains and any consistent assignment of i variables can be consistently extended to j
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additional variables.

One of the most widely used consistency techniques for binary constraints is arc-

consistency (AC) and is defined as follows:

Definition 3. A binary constraint is arc-consistent iff it is (1, 1)-consistent.

A CSP typically has several constraints, and a value in a domain may not be a part

of a solution even though it is consistent with respect to a local consistency property

defined on a single constraint. Hence, consistency is not a sufficient condition for a

problem to be solvable.

A general notion of arc-consistency, which is not restricted to binary constraints, is

generalised arc-consistency (GAC):

Definition 4. A constraint is generalised arc-consistent iff its variables have non-empty

domains, and for any value in the domain of a variable, there exist consistent values in

the domains of the other variables.

GAC is the strongest form of consistency and weaker forms of consistency exist such

as bounds consistency which is defined only for totally ordered domains. The reader

can see [DB97] and [Wal01] for a comparison of different consistency properties.

Algorithms maintaining consistency on the constraints by removing the inconsistent

values from the domains [Apt03] are incorporated into CP systems. The fundamental

way in which systematic constraint solvers work is as follows. Before searching for solu-

tions, the constraints need to be examined for maintaining consistency. During search,

as an assignment to xi is made, we propagate its consequences. When the domain of a

variable xi is modified, values in the domain of the other variables participating in the

same constraint as xi might lose their support and become inconsistent. If this is the

case then the constraint has to be examined and consistency needs to be established

if necessary. Propagation may result in removal of inconsistent values, which is also

known as pruning or filtering. This change may lead to further inconsistencies, hence

the result of any modification is gradually propagated through the entire CSP. Finally,

this process terminates. We then have three possible situations:

1. a domain becomes empty (domain wipe-out) and thus a failure occurs. We back-

track and try an alternative assignment and remove the value that led to this

failure from the domain of the decision variable;

2. a solution is found and the search process is terminated;

3. there exists at least one variable which is not ground (i.e. whose domain is not

singleton yet) and all the constraints are consistent. Then, we pick a future

variable and assign a value for it and the whole process starts over.
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See [vB06] for a survey for Backtracking algorithms combined with propagation for

CSPs.

An example of how search and propagation are combined towards solving the Map

Coloring problem is given in Figure 3.10, Figure 3.11, Figure 3.12, Figure 3.13, and

Figure 3.14 in which we discover a dead-end.

In Figure 3.10, when we assignWA to red, the color red is removed, due to constraint

propagation, from the domains of the two neighboring variables NT and SA.

Figure 3.10: Constraint propagation after assigning WA to red.

In Figure 3.11, the effect of propagating assigning Q to green leads to the pruning

of the color green from the domains of its neighbor variables NT , NSW , SA. But, the

propagation does not stop there. As depicted in Figure 3.12, since the domain of SA

is a singleton of color blue, blue is pruned from the domain of NSW and is reduced

to a singleton color red. Since NSW is a neighbor of V , then red is pruned from the

domain of V as shown in Figure 3.13. Finally, in Figure 3.14, because of the constraint

between NT and SA and blue being the only remaining value in the domain of both

variables a domain wipe-out occurs due to propagation.

Figure 3.11: Constraint propagation after assigning Q to green (continued).

Bessière and Régin have defined GAC-schema [BR97] which is a general framework

for AC algorithms. GAC-schema is based on the AC-7 arc-consistency algorithm for
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Figure 3.12: Constraint propagation after assigning Q to green (continued).

Figure 3.13: Constraint propagation after assigning Q to green (continued).

binary constraints [BFR99] and allows enforcing GAC on constraints of arbitrary arity.

Bessière and Régin have also defined a schema for enforcing GAC on an arbitrary

conjunction of constraints [BR98].

Many constraints arising in the real-life CSPs are often non-binary. A global con-

straint is a constraint which involves usually more than 2 variables, and encapsulates its

own filtering algorithm which is used to propagate the constraint [BH03]. Many useful

global constraints have been proposed in the last ten years [BCDP07]. An example is

the all-different constraint:

all-different(⟨X1, . . . , Xn⟩)

which holds iff no pair of variables in ⟨X1, . . . , Xn⟩ are assigned the same value. A

specialised efficient and effective pruning algorithm for the all-different constraint is
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Figure 3.14: Domain Wipe-out: Constraint propagation after assigning Q to green

(continued).

given in [Reg94]. It is generally inefficient to decompose such constraints into simple

binary constraints because the total pruning obtained by the propagation of each sim-

pler constraint is likely to be weaker. As another example, [Rég96] makes use of the

flow theory and proposes an efficient GAC filtering algorithm for the global cardinality

constraint.

3.3 (αc,ϑ)-consistency

Constraint propagation techniques are inference methods that help reducing the original

CSP into another which is smaller in size. How can we extend such a notion to chance

constraints in SCSPs in which the random variables have either a finite support set or

even an infinite one?

The authors in [HRTP12] extend the notion of GAC for only global chance con-

straints in SCSPs in which the random variables have a finite support set. Since, in this

thesis we restrict ourselves to single-stage SCSPs, we present a simplified definition of

GAC for single-stage SCSPs. Let us consider a single stage SCSP ⟨V, S,D, P, C, β, L⟩.
Let h ∈ C be a chance constraint constraining a subset of variables Xh ⊆ V and a

non-empty subset of random variables Sh ⊆ S:

h : pr{Ch} ≥ βh

Let Ωh denote the set of scenarios constructed from the random variables Sh. Let A be

an assignment of the decision variables in Xh. Let T A
h be the policy tree restricted to

h, i.e., the policy tree for a single-stage SCSP composed only of the chance constraint h
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which is ⟨Vh, Sh, D, P, {h}, β, ⟨Vh, Sh⟩⟩ in which the decision variablesXh take the values

in assignment A. In other words, each arc in this policy tree is a possible scenario s ∈ Ωh

whose probability is denoted by pr(s). Let Cs
h denote the constraint Ch in which the

random variables are replaced with the actual values in s. Let Cs
h denote the expression

in which the decision variables in Cs
h take the values specified in assignment A. Let the

boolean Bs
h be 1 if expression Cs

h is satisfied, 0 otherwise.

In [BHHW07], the authors studied the computational complexity of reasoning with

global constraints and identified a number of crucial questions. The question that is is

at the core of all generic arc consistency algorithms is the question which is generally

asked for all values one by one is the following [BHHW07]:

Instance. A constraint C, a domain D on var(C) (i.e., the variables in the scope

of constraint C), and a value v for variable x ∈ var(C)

Question. Does value v for x have a support on C in D? I.e., does there exist an

assignment A that satisfies C in which x = v

How do we establish support for a given value for a chance constraint? We propose

the following definition:

Definition 5. Given a chance constraint h. A value v in the domain of x ∈ Xh is

GAC iff there exists an assignment A in which x = v and∑
s∈Ωh

Bs
hpr(s) ≥ βh

In other words, a value v in the domain of x ∈ Xh is GAC iff there exits an

assignment A in which x = v and T A
h is a satisfying policy tree.

Definition 6. A chance constraint h is GAC iff every value in the domain of every

variable in Xh is GAC.

Definition 7. A SCSP is GAC iff every chance constraint is GAC.

The authors in [HRTP12] propose novel approximate generic propagation algorithms

for any chance constraint that reuse the corresponding propagators of the deterministic

version of the chance constraints.

Note that the above consistency definition for chance constraints assumes that all

the random variables in Sh have discrete finite support. If at least one random variable

in Sh has an infinite support, then Ωh would be an infinite set of scenarios and, for any

assignment A, the corresponding policy tree T A
h would compromise an infinite number

of arcs. Indeed, the sum that tests whether a value v is GAC or not would be an infinite

sum. So, how to proceed is one of the core questions that this thesis tries to address.
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Inspired by the concept of (αc,ϑ)-solutions proposed in [RHTP15], we introduce

the notion of (αc,ϑ)-consistency for chance constraints of single-stage SCSPs in which

at least one random variable has an infinite support. Due to the infinite number of

scenarios that we are required to consider in order to establish whether or not a value v

is GAC which makes it practically impossible, instead we seek to establish whether value

v is consistent, with confidence αc, and error tolerance threshold ϑ by looking at a finite

subset of sampled scenarios. By having the parameters αc, we control how confident

we want to be in our judgment whereas ϑ controls the level of error we are ready to

tolerate. Thus, we are now ready to introduce the novel definition of (αc,ϑ)-consistency

as follows.

Definition 8. Given a chance constraint h. A value v in the domain of x ∈ Xh is (αc,

ϑ)-GAC iff there exists an assignment A in which x = v and, with confidence level αc,∑
s∈Ωh

Bs
hpr(s) ≥ βh − ϑ

Note that in 100αc% of the times, a value v who is truly consistent is detected as so

according to this definition with error ϑ. In the other cases, we accept the fact that we

incorrectly classify a truly consistent value as inconsistent as well as a truly inconsistent

value as consistent.

Now consider two values v and w in the domain of x ∈ Xh. If v is (αc, ϑ)-GAC and w

is (αc, ϑ)-GAC, then together v and w are not (αc, ϑ)-GAC since the errors accumulate.

Indeed, simultaneously v and w are guaranteed to be (α2
c , ϑ)-GAC. Therefore, unlike

the definition of GAC for chance constraints in which random variables are discrete and

finite, if a value v is GAC and another value w is GAC, then both are GAC. In our case,

we need to worry about multiple statements since our definition of (αc, ϑ)-consistency

is probabilistic in nature. Thus, for a chance constraint we propose the following novel

definition:

Definition 9. A chance constraint h is (αc, ϑ)-GAC iff simultaneously every value in

the domain of every variable in Xh is (αc, ϑ)-GAC.

Similarly, when we consider a SCSP composed of multiple chance constraints, we

propose the following definition:

Definition 10. A SCSP is (αc, ϑ)-GAC iff simultaneously every chance constraint is

(αc, ϑ)-GAC
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3.4 Conclusion

In this chapter, inspired by the concept of (αc,ϑ)-solutions proposed in [RHTP15],

we introduce , for the first time, the notion of (αc,ϑ)-consistency for infinite chance

constraints for single-stage SCSPs in which at least one random variable has an infinite

support. The essence of this novel notion of consistency is to be able to make an

inference about value consistency in the presence of infinite scenarios in an uncertain

environment based on a restricted finite subset of scenarios (i.e., a sample of restricted

size) with a certain confidence level αc and a threshold error ϑ. The confidence level

αc characterises the extend to which our inference, based on a subset of scenarios,

is correct whereas the threshold error ϑ is the error range that we can tolerate while

making such an inference. The statistical consistency acknowledges the fact that making

a perfect inference in an uncertain environment and with an infinite number of scenarios

is impossible. The (αc,ϑ)-consistency, a form of statistical consistency, with its reliance

on a limited number of scenarios, a confidence level, and a threshold error constitutes

a valid and an appropriate practical road that one can take in order to tackle inference

about value consistency in the context of infinite chance constraints.
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Chapter 4

Enforcing Statistical Consistency

via Confidence Intervals

In this chapter, in Section 4.1 we review the concept of confidence intervals. Then, in

Section 4.2, we present and experimentally validate our first approach to infer whether

or not a value v is (αc,ϑ)-consistent which is an adaptation of the approach in [RHTP15].

By taking a different approach, we show in Section 4.3 our second method which is an

improvement over the first one and validate it empirically. Finally, before we conclude in

Section 4.5, we show how to use the Bonferroni correction to enforce (αc,ϑ)-consistency

in Section 4.4.

4.1 Confidence Intervals

To draw conclusions about a scientific system, statisticians make use of fundamental

laws of probability and statistical inference. The theory of statistical inferences consists

of those methods by which one makes inferences or generalizations about a population

by using information gathered in the form of samples drawn from the population to

estimate some population parameter.

A point estimator of some population parameter Θ is a single value θ̂ of a statistics

Θ̂. For example, the value x̄ of the statistics X̄ which is the sample mean, computed

from a sample of size n is a point estimate of the population mean µ.

It is true that our accuracy increases with large samples, but there is still no reason

why we should expect a point estimate from a given population to be a representative

of the population.There are many situations in which it is preferable to determine an

interval within which we would expect to find the value of the parameter. Such an

interval is called an interval estimate. An interval estimate is defined by two numbers,

between which a population parameter, is said to lie. An interval estimate of a popula-
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tion parameter θ is an interval of the form θ̂L < θ < θ̂U , where θ̂L and θ̂U depend on the

the value of the statistic θ̂ for a particular sample and also on the sampling distribution

of θ̂. For example, a < µ < b is an interval estimate for the population mean µ. It

indicates that population mean is greater than a but less than b.

The most prevalent form of interval estimation is confidence intervals. From the

sampling distribution of θ̂, we should be able to determine θ̂L and θ̂U such that the

probability of θ̂L < θ < θ̂U is equal to any positive value between 0 and 1. If, for

instance, we find θ̂L and θ̂U such that the probability of θ̂L < θ < θ̂U is 1 − α, for

0 < α < 1, then we have a probability of 1 − α of selecting a random sample that

will produce an interval covering θ. The interval [θ̂L, θ̂U ] computed from the selected

sample, is then called a (1 − α)100% confidence interval, the fraction 1 − α is called

the confidence coefficient or the degree of confidence, and the endpoints, θ̂L and θ̂U ,

are called the lower and upper confidence limits, respectively.

When α is 0.05, we have a 95% confidence interval. But, when α is 0.01, we obtain

a w ider 99% confidence interval. Indeed, the more confident the confidence interval is

the wider it is. But of course, it is better to be 95% confident that the average life of a

certain machine is between 7 and 8 years than to be 99% confident that it is between

3 and 10 years old, Ideally, we prefer a short interval with a high degree of confidence

level.

Since, in Chapter 4 of this thesis we will focus on binomial distribution, we will

illustrate next one of the exact methods to construct confidence intervals. The Clopper-

Pearson interval [CP34] is a common method for calculating binomial confidence in-

tervals. The Clopper-Pearson interval is an exact interval since it is based directly on

the binomial distribution rather than any approximation to the binomial distribution.

This interval never has less than the nominal coverage for any population proportion,

but that means that it is usually conservative. For example, the true coverage rate of a

95% Clopper-Pearson interval may be well above 95%, depending on n and the width

of the interval.

The Clopper-Pearson interval is a symmetric two-sided confidence interval but can

be expressed as a single-sided interval:

(plb, 1) and (0, pub) where

plb = min{p|Pr{bin(N ; p) ≥ X} ≥ 1− α
2
},

pub = max{p|Pr{bin(N ; p) ≤ X} ≥ 1− α
2
},

X is the number of successes (or “yes” events) observed in the sample, bin(N ; p) is

a binomial random variable with N trials and probability of success p and α is the

significance level. Note that we assume plb = 0 when X = 0 and that pub = 1 when
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X = N .

4.2 Statistical Inference Rules: A First Approach

4.2.1 Presenting the First Approach

Suppose we are given a chance constraint h : pr{C} ≥ βh over an infinite set of scenarios

Ωh, an assignment A in which x = v, a confidence level αc, and a threshold error ϑ.

Our goal is to answer the question of whether v is an (αc, ϑ)-consistent.

Recall that a value v in the domain of x ∈ Xh is (αc, ϑ)-consistent iff there exists

an assignment A in which x = v and, with confidence level αc,∑
s∈Ωh

Bs
hpr(s) ≥ βh − ϑ

Let µ =
∑

s∈Ωh
Bs

hpr(s) be the actual satisfaction probability.

A value v in the domain of x ∈ Xh is (αc, ϑ)-inconsistent iff there exists no assign-

ment A in which x = v and, with confidence level αc,

µ ≥ βh − ϑ

For the rest of this section, we suppose we are given a chance constraint h : pr{C} ≥
βh over an infinite set of scenarios Ωh, a specific assignment A in which x = v, a

confidence level αc, and a threshold error ϑ. Our goal is to answer the question of

whether v is an (αc, ϑ)-consistent with respect to just an assignment A. Later on, we

show how v is (αc, ϑ)-consistent or not with respect to the whole chance constraint h.

In [RHTP15, RHTP11], the authors introduced the concept of an (αc, ϑ)-solution of

a SCSP P in which the set of scenarios Ω is infinite, and where αc is a confidence level

and ϑ is a threshold tolerance error. An (αc, ϑ)-solution is an assignment that, with

confidence level αc, guarantees a satisfaction probability that is no lower than βh − ϑ

for each chance constraint h in P .

Therefore, one can relate the notion of (αc, ϑ)-consistency and (αc, ϑ)-solution as

follows:

Definition 11. A value v in the domain of x ∈ Xh is an (αc, ϑ)-consistent iff there

exists an assignment A in which x = v that is an (αc, ϑ)-solution to the SCSP consisting

of a single chance constraint h.

The approach in [RHTP15, RHTP11] shows that an (αc, ϑ)-solution can be found

by searching for a solution to a reformulation of P , P̂ , by considering a finite subset

of the scenarios Ω̂ ⊆ Ω instead. The new SCSP P̂ is referred to as a sampled SCSP. It

39



is shown in [RHTP11, RHTP15] how to construct the finite set Ω̂ through sampling in

such a way that a satisfying policy tree to P̂ is indeed an (αc, ϑ)-solution to P . Thus,

the approach in [RHTP11, RHTP15] shows how to find an (αc, ϑ)-solution to P by

reformulating into P̂ by determining the minimum sample size n that guarantees that.

The approach in [RHTP15, RHTP11] uses the exact Clopper-Pearson confidence

interval [CP34] to analytically compute the minimum sample size n required for each

chance constraint h to satisfy a given αc, ϑ, and βh. The paper also shows that if you

find a solution to a SCSP restricted to a sample of size n by using the current existing

approaches[TMW06, HRTP12], then that solution is indeed an (αc,ϑ)-solution to the

original problem.

Definition 12. As stated in [RHTP15], n is computed as the minimum value for which

max(pβh

ub − βh, βh − pβh

lb ) ≤ ϑ,

where pβh

lb and pβh

ub are the single-sided Clopper-Pearson confidence interval bounds for a

confidence probability αc, and round(βhN) “successes” in n trials; round() approximates

the value to the nearest integer.

According to [RHTP15], if we let h1, . . . , hk be k chance constraints in a SCSP P ,

let P̂ be a sampled SCSP over n samples, where n is the number of samples required to

guarantee a confidence level αc and an error tolerance threshold ϑ for each constraint

hi considered independently, according to the previous definition, then by Proposition

4 in [RHTP15], any policy tree T̂ that is a solution to P̂ is an (αc, ϑ)-solution to P .

Note, however according to the contrapositive of proposition 1 in [RHTP15], that if

µ ∈]pβh

lb , p
βh

ub[, then we can neither prove or disprove that a policy tree T is an (αc, ϑ)-

solution or not. The same is also true when µ ∈]βh−ϑ, βh+ϑ[ according to contrapositive

of proposition 2 in [RHTP15]. If µ ≥ βh + ϑ, then according to proposition 2 in

[RHTP15] we have a satisfying policy tree. If µ ≤ βh−ϑ, then according to proposition

2 in [RHTP15] we cannot have a satisfying policy tree.

We are now ready to propose the first method for testing whether a value v is

(αc, ϑ)-consistent or not by using the approach in [RHTP15] as follows:

Step 1: Compute the sample size n required to guarantee a confidence level αc and an

error tolerance threshold ϑ;

Step 2: Solve the sampled SCSP P̂ composed of the single chance constraint h in

which the domain of x is set to {v} using a sample of scenarios of size n;

Step 3: Classify v as (αc,ϑ)-consistent if P̂ has a satisfying policy tree. Otherwise, v

is classified as (αc,ϑ)-inconsistent.
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ϑ = 0.01 6900

ϑ = 0.009 8500

ϑ = 0.008 10700

ϑ = 0.007 15000

ϑ = 0.005 28000

ϑ = 0.001 700000

Figure 4.1: The theoretical sample size n needed as ϑ varies to guarantee a 0.95 confi-

dence level as per Definition 2 in [RHTP15].

Note that, theoretically, this method should be able to make correct classification

in αc% of the times as long as µ /∈]βh − ϑ, βh + ϑ[.

4.2.2 Validating the First Approach

Now, we run some empirical study to validate the first approach.

Let us consider a chance constraint Pr{C} ≥ βh over an infinite set of scenarios Ωh

in which all scenarios have the same probability a, and an assignment A in which x = v.

Let µ = pr{CA} where CA is the constraint C in which all decision variables take the

values in A. For any given scenario, s ∈ Ωh, expression Cs
A denotes CA in which all the

random variables take the values in s. Expression Cs
A is 1 iff it is satisfied, 0 otherwise.

Now,

µ =
∑
s∈Ωh

Cs
A.a

Let Ωh = Ωs
h ∪ Ωu

h where for each s ∈ Ωs
h we have that Cs

A is 1 and for each s ∈ Ωu
h

we have Cs
A is 0.

So when all scenarios have the same probability, we have

µ =

∑
s∈Ωs

h
Cs

A

|Ωh|
=

|Ωs
h|

|Ωh|

Thus, the satisfaction probability (µ) we are trying to estimate, from a set of sam-

ples, can be seen as estimating the ”success” probability of the associated Bernoulli

trial. This variable can produce only two outcomes: ”yes” with probability p and ”no”

with probability 1 − p. In our case, the value p = µ — the “yes” probability — is

unknown, but can be estimated by repeatedly observing the behavior of the random

variable in a sequence of Bernoulli trials. Such an experiment is known as the binomial

experiment [Pap84].
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If we consider a sample Sn of size n, the sample mean x̄ is equal to:

x̄ =

∑
s∈Ss

n
Cs

A

n
=

|Ss
n|
n

where Sn = Ss
n ∪ Su

n where for each s ∈ Ss
n we have that Cs

A is 1 and for each s ∈ Su
n

we have Cs
A is 0. Note that x̄ is the binomial proportion of success in the first n trials.

The proportion of success x̄ is typically used to estimate the probability of success p

when this probability is unknown. indeed, the expected value of x̄ is p.

To test our first method, we set our true mean µ to 0.5 of a Bernoulli trial. We vary

βh to take values in

{0.48, 0.49, 0.5, 051, 0.52, 0.53}

and

ϑ ∈ {0.01, 0.009, 0.008, 0, 007, 0.005, 0.001}

.

In Figure 4.1, we show the theoretical sample size n needed for different values of ϑ

to guarantee a 0.95 confidence level as per Definition 2 in [RHTP15]. As expected, as

ϑ gets smaller, the sample size increases.

For each sample size n we generate a sample Sn of size n of 0’s and 1’s where each 0

and 1 is generated using a Bernoulli distribution whose p = µ. Indeed, each value in Sn

simulates, with probability µ, the outcome of a scenario in which the chance constraint

h : pr{C} ≥ βh is satisfied, and with probability 1 − µ, the outcome of a scenario

in which the chance constraint is unsatisfied. The sample mean x̄ is the satisfaction

probability restricted to the n scenarios. So, if x̄ ≥ βh, we have a satisfying policy

tree and hence classify value v as (αc,ϑ)-consistent. Otherwise, we classify value v as

(αc,ϑ)-inconsistent.

For each configuration ⟨βh, αc, ϑ⟩ we run 1000 experiments and record the number

of times c we classify value v as (αc,ϑ)-consistent and the number of times f it is (αc,ϑ)-

inconsistent. Now, if the true mean µ is greater than or equal to βh − ϑ, we compute

the Correct Classification Rate (CCR) of our method as

c

c+ f
=

c

1000

Note that, f
f+c

represents the ratio of wrong classification in this case. This is the ratio

of type I error since we are rejecting a consistent value v. If, however, the true mean µ

is strictly smaller than βh − ϑ, then CCR is computed as

f

c+ f
=

f

1000
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Infer v as (αc, ϑ)-consistent Infer v as (αc, ϑ)-inconsistent

v is truly (αc, ϑ)-consistent Correct classification Wrong classification

v is truly (αc, ϑ)-inconsistent Wrong classification Correct classification

Figure 4.2: Four possible outcomes of an experiment (⟨Sn, βh, αc, ϑ⟩)

Consistent

βh = 0.48 99.8%

βh = 0.49 95.4%

βh = 0.50 49.1%

βh = 0.51 5.5%

Inconsistent

βh = 0.52 100%

βh = 0.53 100%

Figure 4.3: The correct classification rate (CCR) for µ = 0.5, αc = 0.95, and ϑ = 0.01

using the first approach.

Note that, c
f+c

represents the ratio of wrong classification in this case. This is the ratio

of type II error since we are accepting an inconsistent value v.

There are four possible outcomes in each experiment as depicted in Figure 4.2.

Indeed, CCR is the most important indicator of whether or not the confidence interval

approach is effective or not in correctly classifying (αc, ϑ)-consistent values or not.

Figures 4.3, 4.4, 4.5, 4.6, 4.7, 4.8 show the results of our experiments.

From the results in Figure 4.3, we are able to make the following remarks:

• The CCR of a consistent value is above 95%, as expected by the theory, when

µ ≥ βh + ϑ (i.e, for βh = 048 and βh = 0.49 in this case).

• When βh = 0.50, we are in the critical case since βh − ϑ < µ < βh + ϑ. As

expected from our theory, the first inference method cannot guarantee a CCR

above or equal to 95%. The first method in this case is only able to achieve a

49.1% CCR.

• When µ = βh − ϑ, the true classification of the value should be consistent, yet,

our inference method classifies it as inconsistent. The CCR in this case is as

low as 5.5%. This case requires more attention because according to [RHTP15]

(proposition 1) such situations are included in the case of µ ≤ βh − ϑ which is

wrongly treated as violating the chance constraint and therefore from the first

approach’s point of view this value must be classified as inconsistent whereas
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Consistent

βh = 0.48 100%

βh = 0.49 97.2%

βh = 0.50 49.9%

Inconsistent

βh = 0.51 96.5%

βh = 0.52 100%

βh = 0.53 100%

Figure 4.4: The correct classification rate (CCR) for µ = 0.5, αc = 0.95, and ϑ = 0.009

using the first approach.

Consistent

βh = 0.48 100%

βh = 0.49 98%

βh = 0.50 51.2%

Inconsistent

βh = 0.51 97.2%

βh = 0.52 100%

βh = 0.53 100%

Figure 4.5: The correct classification rate (CCR) for µ = 0.5, αc = 0.95, and ϑ = 0.008

using the first approach.

in reality it is not. This kind of flaw will be treated and corrected in our next

methods.

• When µ ≤ βh − ϑ, the CCR of an inconsistent value is above 95% as expected by

the theory (i.e., for βh = 0.52 and βh = 0.53 in this case).

The results in Figure 4.4, Figure 4.5, Figure 4.6, Figure 4.7, and Figure 4.8 do

confirm the theory:

• The CCR of a consistent value is above 95%, as expected by the theory, when

µ ≥ βh + ϑ

• When βh = 0.50, we are in the critical case . As expected from our theory, the

first inference method cannot guarantee a CCR above or equal to 95%. The first

method in this case is only able to achieve around 50% CCR.
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Consistent

βh = 0.48 100%

βh = 0.49 99.2%

βh = 0.50 51.5%

Inconsistent

βh = 0.51 98.4%

βh = 0.52 100%

βh = 0.53 100%

Figure 4.6: The correct classification rate (CCR) for µ = 0.5, αc = 0.95, and ϑ = 0.007

using the first approach.

Consistent

βh = 0.48 100%

βh = 0.49 100%

βh = 0.50 51.7%

Inconsistent

βh = 0.51 99.9%

βh = 0.52 100%

βh = 0.53 100%

Figure 4.7: The correct classification rate (CCR) for µ = 0.5, αc = 0.95, and ϑ = 0.005

using the first approach.

• When µ ≤ βh − ϑ, the CCR of an inconsistent value is above 95% as expected by

the theory.

The results confirm the expected theoretical result . Indeed, in every configuration,

the CCR is above 95% as expected as long as µ /∈]βh−ϑ, βh+ϑ[ and in fact are slightly

better in practice. When we are in the critical case, increasing the sample size beyond

the theoretical value does not have any positive effect except for the case when βh = .50

in Figure 4.3. But, when µ = β−ϑ, the inference method is flawed and unable to make

a correct classification and need to be corrected.

Thus, in summary, our first approach is able to achieves a CCR of 95% or above as

long as µ /∈]βh−ϑ, βh+ϑ[ which leaves us with an important challenge: Is it possible to

do more correct inference in the critical case and overcome the flawed case? I.e., when

µ ∈ [βh − ϑ, βh + ϑ[.
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Consistent

βh = 0.48 100%

βh = 0.49 100%

βh = 0.50 48.7%

Inconsistent

βh = 0.51 100%

βh = 0.52 100%

βh = 0.53 100%

Figure 4.8: The correct classification rate (CCR) for µ = 0.5, αc = 0.95, and ϑ = 0.001

using the first approach.

4.3 Statistical Inference Rules Through Confidence

Intervals: A Second Approach

In this section, we first revisit the previous approach and look at it with a different

perspective and gain new insights so that we are able to present our second method.

Finally, we empirically validate it.

4.3.1 Looking at the First Approach Using a Different Per-

spective

Another possible angle from wish we can analyze the first approach is to reason about

the value of x̄ as an estimated quantity consisting of an interval rather than an exact

value. Indeed, in the first approach we do compute x̄ using a sample of size n but

we do not reason about it as an estimate quantity of µ that may have some error.

Instead, the error threshold value ϑ is used to constitute an interval around βh (i.e,

[βh − ϑ, βh + ϑ]) according to the approach in [RHTP15]. But, βh is indeed known

and constant! What is uncertain is indeed the quantity µ and x̄ is the sample mean

that constitutes an estimate of this unknown true mean µ. A better way to represent

our margin of error is to consider the estimated quantity as an interval [x̄ − ϑ, x̄ + ϑ]

rather than an exact value. This interval is called a confidence interval (CI) and can

be constructed in many ways to compromise a margin of error with a confidence level

αc for the true mean [Vol93, AC98, CP34]. In our case, we will use, as in [RHTP15],

the exact Clopper-Pearson confidence intervals [CP34]. In fact, the bounds x̄ − ϑ and

x̄+ ϑ are the single-sided Clopper-Pearson confidence interval bounds for a confidence

probability αc [CP34].
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More formally, a chance constraint h, for a given assignment A in which x = v, a

confidence interval [x̄ − ϑ, x̄ + ϑ] can be computed from a sample of size n such that

the coverage probability of this interval of the true mean is at least αc, i.e., the actual

probability that the interval contains the true mean is αc. The true mean µ, covered

by the CI [x̄− ϑ, x̄+ ϑ] with coverage probability αc can be any value in that interval.

Let us analyze the cases of where βh can be with respect to the CI [x̄ − ϑ, x̄ + ϑ],

having the first approach’s assumption that

µ /∈]βh − ϑ, βh + ϑ[

in mind:

Clear accept: If βh ≤ x̄ − 2ϑ, then even when µ takes the minimum possible value

x̄− ϑ, we have that

βh ≤ x̄− 2ϑ(= x̄− ϑ− ϑ = µ− ϑ)

So, we have µ ≥ βh + ϑ and, hence, according to proposition 2 of [RHTP15],

with probability αc, assignment A can be proved to be a satisfying policy tree.

Thus, v can be classified correctly as being (αc,ϑ)-consistent. See Figure 4.9 for

an illustration.

Clear reject: If βh ≥ x̄ + 2ϑ, then even when µ takes the maximum possible value

x̄+ ϑ, we have that

βh ≥ x̄+ 2ϑ(= x̄+ ϑ+ ϑ = µ+ ϑ)

So, we have µ ≤ βh−ϑ and, hence, according to proposition 2 of [RHTP15], with

probability αc, assignment A can be proved to be a non-satisfying policy tree.

Thus, v can be classified correctly as being (αc,ϑ)-inconsistent. See Figure 4.10

for an illustration.

Undecidable: If βh ∈]x̄− 2ϑ, x̄+ 2ϑ[, then we consider two sub-cases:

Case a: If βh ∈]x̄−2ϑ, x̄], then βh+ϑ belongs to the CI [x̄−ϑ, x̄+ϑ] and so does

the true mean µ. It is not possible to verify whether µ ≥ βh+ϑ is true or not.

Indeed, we are in the case described by the contrapositive of proposition 2 in

[RHTP15] and the assumption µ /∈]βh − ϑ, βh + ϑ[ is no longer valid. Thus,

it is impossible to classify v as being (αc,ϑ)-(in)consistent. See Figure 4.11

for an illustration.
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Figure 4.9: The ”clear accept” case.

Figure 4.10: The ”clear reject” case.

Figure 4.11: The ”undecidable” case: sub-case a.

Figure 4.12: The ”undecidable” case: sub-case b.

Case b: If βh ∈ [x̄, x̄+2ϑ[ , then βh−ϑ belongs to the CI [x̄−ϑ, x̄+ϑ] and so does

the true mean µ. It is not possible to verify whether µ ≤ βh − ϑ is true or

not. Indeed, we are in the case described by contrapositive of proposition 2

in [RHTP15] and the assumption µ /∈]βh−ϑ, βh+ϑ[ is no longer valid. Thus,

it is impossible to classify v as being (αc,ϑ)-(in)consistent. See Figure 4.12

for an illustration.

Thus, one can easily design a new inference method as follows:

Step 1: Find a large enough sample size n, compute x̄, and construct a confidence

interval [x̄− ϑ, x̄+ ϑ] so that its coverage probability is αc;
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Step 2: We have three mutually exclusive cases:

Consistent: If βh ≤ x̄− 2ϑ, then classify v as (αc,ϑ)-consistent;

Inconsistent: If βh ≥ x̄+ 2ϑ, then classify v as (αc,ϑ)-inconsistent;

Mixed: We have two sub-cases:

• If βh ∈]x̄− 2ϑ, x̄], classify v as (αc,ϑ)-consistent because x̄ ≥ βh;

• If βh ∈]x̄, x̄+ 2ϑ], classify v as (αc,ϑ)-inconsistent because x̄ < βh;

It remains, however, a challenging task to figure out how to compute a large enough

sample size n to guarantee a CI of width 2ϑ. Despite that, the two points of view lead

to the same conclusions but using quite two different approaches. Next, however, we

will show how to extend the approach based on CIs in order to improve our correct

inference. We will also show how to compute the sample size that is large enough to

guarantee the proper width of our CI.

4.3.2 Presenting the Second Approach

Let us consider a CI [x̄−ϑ, x̄+ϑ] constructed using a sample of size n. Let min = x̄−ϑ

and max = x̄ + ϑ. Now, recall that our main goal is to answer the following question:

is µ ≥ βh − ϑ or not?

We make the following number of observations:

Observation 1. If βh ≤ min, then it is also true that βh − ϑ ≤ min. Thus, since

µ is covered by the CI [x̄ − ϑ, x̄ + ϑ] with probability αc and even in the worst case

when µ = min we still have µ ≥ βh − ϑ, with probability αc, we can classify v as being

(αc,ϑ)-consistent in this case.

Note that, in the first approach, the inference mentioned in Observation 1 is only

possible if βh ≤ x̄ − 2ϑ as discussed above. Thus, by changing our point of view, we

already can make more correct inference, with probability αc when the first method

fails to do so.

Our second observation is about the width of the CI which is 2ϑ. Is it necessary for

the width to be 2ϑ?

Observation 2. Let us assume we restrict the width of the CI to be ϑ instead of

2ϑ, i.e., the CI is [x̄− ϑ
2
, x̄+ ϑ

2
]. Now, consider the case when βh ∈ [x̄− ϑ

2
, x̄+ ϑ

2
]. Recall

that our true mean is covered by CI with coverage probability αc. Now, we have two

cases: (1) If µ ≥ βh, then it is also true that µ ≥ βh − ϑ; (2) if µ < βh, then in the

worst case µ can be as small as min = x̄ − ϑ
2
and βh as large as max = x̄ + ϑ

2
. But,

min = max − ϑ which means µ ≥ βh − ϑ is always true in this case. Therefore, in
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Figure 4.13: The ”clear accept” case of the second method.

Figure 4.14: The ”clear reject” case of the second method.

either case, we have µ ≥ βh − ϑ. Thus, with probability αc, we can classify v as being

(αc,ϑ)-consistent in this case as well.

So, based on Observation 1 and Observation 2, when βh ≤ max and the width of

the CI is ϑ, with probability αc we classify v as being (αc,ϑ)-consistent and improving

on the first approach. See Figure 4.13 for an illustration.

Theorem 1. For any chance constraint h, for any assignment A in which x = v, for

any ϑ, and for any αc, for all values of βh ≤ x̄ + ϑ
2
, using a CI [x̄− ϑ

2
, x̄ + ϑ

2
] one can

properly classify v as being (αc,ϑ)-consistent with probability αc or above.

Proof. Follows immediately from Observation 1 and Observation 2.

Our third observation is as follows:

Observation 3. If βh > max + ϑ, then it is also true that βh − ϑ > max. Thus,

since µ is covered by the CI [x̄ − ϑ
2
, x̄ + ϑ

2
] with probability αc and even in the worst

case when µ = max we still have µ < βh − ϑ, with probability αc, we can classify v as

being (αc,ϑ)-inconsistent in this case. See Figure 4.14 for an illustration.

Theorem 2. For any chance constraint h, for any assignment A in which x = v, for

any ϑ, and for any αc, for all values of βh > x̄+ 3ϑ
2
, using a CI [x̄− ϑ

2
, x̄+ ϑ

2
] one can

properly classify v as being (αc,ϑ)-inconsistent with probability αc or above.

Proof. Follows immediately from Observation 3.

Finally, we identify the case where we fail to make an inference with probability at

least αc:

Observation 4. If max < βh ≤ max+ ϑ, then βh − ϑ ∈]x̄− ϑ
2
, x̄+ ϑ

2
].. Since, with

coverage probability αc, µ is covered by [x̄ − ϑ
2
, x̄ + ϑ

2
], it is impossible in this case to
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Figure 4.15: The critical case of the second method.

make a correct classification with probability αc because we can either have µ ≥ β−ϑ

or µ < βh − ϑ. So, this is the critical case in which we fail to make a correct inference

with probability αc or above. See Figure 4.15 for an illustration.

Therefore, one can show the following:

Theorem 3. For any chance constraint h, for any assignment A in which x = v, for

any ϑ, and for any αc, there exists always a value for βh such that it is impossible, using

the CI approach, to properly classify v as being (αc,ϑ)-consistent or not with probability

αc or above.

Proof. Follows immediately from Observation 4 by setting βh ∈]x̄+ ϑ
2
, x̄+ 3ϑ

2
] .

In this critical case, one way is to decide which is the better situation: (1) classify v

as being consistent while it may be inconsistent (increase the chances of type II error);

or (2) classify v as being inconsistent while it may be consistent (increase the chances

of type I error). Indeed, in SCSPs, it is better to reject a consistent value rather than

accepting an inconsistent one in general.

Thus, our new inference method based on CIs in its two versions is as follows:

Step 1: Find a large enough sample size n and construct a confidence interval [x̄ −
ϑ
2
, x̄+ ϑ

2
] so that its coverage probability is αc;

Step 2: We have three mutually exclusive cases:

Consistent: If βh ≤ x̄+ ϑ
2
, then classify v as (αc,ϑ)-consistent;

Inconsistent: If βh > x̄+ 3ϑ
2
, then classify v as (αc,ϑ)-inconsistent;

Mixed: If βh ∈]x̄+ ϑ
2
, x̄+ 3ϑ

2
], we select either of the two choices:

Version I: If you can tolerate more type II errors, then classify v as (αc,ϑ)-

consistent;

Version II: If you can tolerate more type I errors, then classify v as (αc,ϑ)-

inconsistent;
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Figure 4.16: Dynamic computation of a large enough sample n to guarantee a CI of

width ϑ or less.

ϑ = 0.01 28000

ϑ = 0.009 34000

ϑ = 0.008 42500

ϑ = 0.007 55500

ϑ = 0.005 109000

ϑ = 0.001 2750000

Figure 4.17: The initial theoretical sample size n needed as ϑ varies to guarantee a 0.95

confidence level as per Definition 2 in [RHTP15].

We are still left with how to compute a large enough sample size n to guarantee a

CI of width ϑ or less. What we propose is to start with an initial sample size, say n1

computed as per Definition 2 in [RHTP15]. If the CI’s width is still larger than ϑ, we

increase the sample size and keep doing so till we reach a sample size, say nk, after k

iterations till the width is ϑ or below. We illustrate this dynamic approach of computing

a large enough sample size that produces a CI of width ϑ or less in Figure 4.16.

4.3.3 Validating the Second Approach

In Figure 4.17 we present the initial sample size we start with varying ϑ whereas in

Figure 4.18, we present the one dynamically found that guarantees that the width of

the confidence interval is smaller than or equal to ϑ. We notice that in practice, the
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ϑ = 0.01 39000

ϑ = 0.009 48000

ϑ = 0.008 61000

ϑ = 0.007 79000

ϑ = 0.005 155000

ϑ = 0.001 3900000

Figure 4.18: The large enough sample size n needed as ϑ varies to guarantee a 0.95

confidence level computed dynamically.

CCR: Version I CCR: Version II True classification

βh = 0.49 100% 100% Consistent

βh = 0.5 100% 98.3% Consistent

βh = 0.51 97.2% 2.4% Consistent (Mixed case)

βh = 0.52 97.8% 100% Inconsistent

Figure 4.19: The correct classification rate (CCR) for µ = 0.5, αc = 0.95, and ϑ = 0.01

using the second approach based on confidence intervals.

CCR: Version I CCR: Version II True classification

βh = 0.49 100% 100% Consistent

βh = 0.5 100% 97.6% Consistent

βh = 0.51 7% 98.7% Inconsistent (Mixed case)

βh = 0.52 99% 100% Inconsistent

Figure 4.20: The correct classification rate (CCR) for µ = 0.5, αc = 0.95, and ϑ = 0.009

using the second approach based on confidence intervals.

sample size which is large enough to achieve the desired CI width is larger than the

theoretical one found as per Definition 2 in [RHTP15].

In Figure 4.19, Figure 4.20, Figure 4.21, Figure 4.22, Figure 4.23, and Figure 4.24,

we present the results of our experiments when αc = 0.95 for various values of µ, βh,

and ϑ. Each table shows the results of our second method in two versions: (1) when we

are in the mixed case, we do classify v as consistent (referred to as Version I); (2) when

we are in the mixed case, we classify v as inconsistent instead (referred to as Version

II). When for a given βh, and ϑ we are in the mixed case (i.e., βh ∈]x̄+ ϑ
2
, x̄+ 3ϑ

2
]), we

annotate that in the corresponding row in the table of results as ”Mixed case”.

• Figure 4.19, Figure 4.20, Figure 4.21, and Figure 4.22 do represent situations in
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CCR: Version I CCR: Version II True classification

βh = 0.49 100% 100% Consistent

βh = 0.5 100% 97.8% Consistent

βh = 0.51 15.4% 99.7% Inconsistent (Mixed case)

βh = 0.52 100% 100% Inconsistent

Figure 4.21: The correct classification rate (CCR) for µ = 0.5, αc = 0.95, and ϑ = 0.008

using the second approach based on confidence intervals.

CCR: Version I CCR: Version II True classification

βh = 0.49 100% 100% Consistent

βh = 0.5 100% 97.6% Consistent

βh = 0.51 38.1% 99.8% Inconsistent (Mixed case)

βh = 0.52 100% 100% Inconsistent

Figure 4.22: The correct classification rate (CCR) for µ = 0.5, αc = 0.95, and ϑ = 0.007

using the second approach based on confidence intervals.

CCR: Version I CCR: Version II True classification

βh = 0.49 100% 100% Consistent

βh = 0.5 100% 97.5% Consistent

βh = 0.51 97.8% 100% Inconsistent

βh = 0.52 100% 100% Inconsistent

Figure 4.23: The correct classification rate (CCR) for µ = 0.5, αc = 0.95, and ϑ = 0.005

using the second approach based on confidence intervals.

CCR: Version I CCR: Version II True classification

βh = 0.49 100% 100% Consistent

βh = 0.5 100% 97.2% Consistent

βh = 0.51 100% 100% Inconsistent

βh = 0.52 100% 100% Inconsistent

Figure 4.24: The correct classification rate (CCR) for µ = 0.5, αc = 0.95, and ϑ = 0.001

using the second approach based on confidence intervals.

which we experience the three cases: ”Consistent”, ”Inconsistent”, and ”Mixed”.

The results are inline with the theory and we do achieve a 95% or above CCR
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in all cases of ”Consistent” and ”Inconsistent”. Also, when we are in a ”Mixed”

case and the value is truly consistent, Version I as expected achieves a 95% or

above CCR whereas Version II achieve a very low CCR. When, instead, we are in

a ”Mixed” case and the value is truly inconsistent, Version II as expected achieves

a 95% or above CCR whereas Version I achieve a very low CCR.

• Figure 4.23 and Figure 4.24 do represent situations in which we experience only

the two cases: ”Consistent” and ”Inconsistent”. The results are inline with the

theory and we do achieve a 95% or above CCR in all cases of ”Consistent” and

”Inconsistent”.

• As the error threshold value ϑ gets smaller, the sample size required by our method

and computed dynamically increases significantly.

In summary, the experimental results confirm that the second method (both under

Version I or Version II) does achieve indeed a 95% CCR or above as expected in theory

when we are outside the critical case, i.e., when βh /∈]x̄ + ϑ
2
, x̄ + 3ϑ

2
]. Furthermore, the

width of the interval of the critical case of the second method is narrower than the

width of the interval of the critical case of the first method. When βh ∈]x̄+ ϑ
2
, x̄+ 3ϑ

2
],

then depending on whether v is truly consistent or not either the second method under

Version I achieves at least a 95% CCR or Version II. Thus, we could safely state the

superiority of the second method when compared to the first one which does more

correct inference and does overcome the flaw of the first method when µ = βh − ϑ.

4.4 Enforcing (αc,ϑ)-Consistency

So far, we have restricted our analysis to just one assignment A and with respect to

this assignment we looked at how to infer, with confidence αc whether a value v is (αc,

ϑ)-consistent or not. In this section, we consider the question of how to make a chance

constraint (αc, ϑ)-GAC and also how to make a whole SCSP (αc, ϑ)-GAC.

Now, the approaches we have presented in the previous sections treats each value

v separately wrt to a given assignment A and is indeed able to detect whether each

value is (αc,ϑ)-consistent wrt a given assignment or not. But, if each value is (αc,ϑ)-

consistent, how about all values considered simultaneously in a chance constraint, in

more than one chance constraint, and in the whole problem?

Recall that a chance constraint h is (αc, ϑ)-GAC iff simultaneously every value in

the domain of every variable in Xh is (αc, ϑ)-GAC.

Let us consider the cross product of all the domains of the decision variable in Xh,

i.e. our assignment space for chance constraint h denoted by A.
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Constraints:

h1 : pr{C(x, y, r1, r2)} ≥ β1

h2 : pr{C(y, z, r1, r2)} ≥ β2

h3 : pr{C(x, z, r1, r2)} ≥ β3

Decision variables:

x, y, z ∈ {0, 1}
Random variables:

r1, r2: has infinite support

Stage structure:

V1 = {x, y, z}
S1 = {r1, r2}
L = [⟨V1, S1⟩]

Figure 4.25: A single-stage SCSP.

Using, the approach outlined in the previous section, for each value v in the domain

of every decision variable x ∈ Xh one of these two outcomes is possible:

• There exists an assignment A ∈ A for which value v is (αc, ϑ)-consistent;

• For every assignment A ∈ A, value v is (αc, ϑ)-inconsistent.

A naive approach is to simply consider each value separately and if it is (αc, ϑ)-

inconsistent, we prune it. Otherwise, we leave it in the domain. But, the problem is

that errors will accumulate and overall we may not achieve a confidence level of αc.

Let us illustrate this situation by the following experiment. Consider the single-

stage SCSP shown in Figure 4.25. We have three binary decision variables and three

chance constraints as depicted in Figure 4.26. We have two random variables r1 and r2

involved in each chance constraint and have an infinite support.

Assume that β1 = β2 = β3 = 0.5, ϑ = 0.01, and αc = 0.95. Assume further that

for each chance constraint, we know the true mean for each assignment and hence we

are able to precisely know whether a certain assignment satisfies the chance constraint

or not. In Figure 4.27, Figure 4.28, and Figure 4.29, we show the consistent and

inconsistent assignments for chance constraint h1, h2, h3, respectively.

Based on Figure 4.27, value 0 in the domain of x and value 1 in the domain of y

are truly consistent, but value 1 in the domain of x and value 0 in the domain of y are

truly inconsistent.

Based on Figure 4.28, value 1 in the domain of y and value 0 in the domain of z

56



Figure 4.26: Constraint Network of SCSP in Figure 4.25.

Assignment True mean True classification

A1 : ⟨x = 0, y = 0⟩ pr{C(x = 0, y = 0, r1, r2)} = 0.48 Inconsistent

A2 : ⟨x = 0, y = 1⟩ pr{C(x = 0, y = 1, r1, r2)} = 0.5 Consistent

A3 : ⟨x = 1, y = 0⟩ pr{C(x = 1, y = 0, r1, r2)} = 0.42 Inconsistent

A4 : ⟨x = 1, y = 1⟩ pr{C(x = 1, y = 0, r1, r2)} = 0.4 Inconsistent

Figure 4.27: Consistent and inconsistent assignments in h1 wrt to β1 = 0.5 and ϑ = 0.01.

Assignment True mean True classification

A5 : ⟨y = 0, z = 0⟩ pr{C(y = 0, z = 0, r1, r2)} = 0.42 Inconsistent

A6 : ⟨y = 0, z = 1⟩ pr{C(y = 0, z = 1, r1, r2)} = 0.48 Inconsistent

A7 : ⟨y = 1, z = 0⟩ pr{C(y = 1, z = 0, r1, r2)} = 0.49 Consistent

A8 : ⟨y = 1, z = 1⟩ pr{C(y = 1, z = 0, r1, r2)} = 0.4 Inconsistent

Figure 4.28: Consistent and inconsistent assignments in h2 wrt to β2 = 0.5 and ϑ = 0.01.

are truly consistent, but value 0 in the domain of y and value 1 in the domain of z are

truly inconsistent.

Based on Figure 4.29, value 0 in the domain of x and value 0 in the domain of z

are truly consistent, but value 1 in the domain of x and value 1 in the domain of z are

truly inconsistent.

Therefore, an algorithm that enforces (αc,ϑ)-consistency should simultaneously prune

1 from the domain of x, value 0 from the domain of y, and value 1 from the domain of
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Assignment True mean True classification

A9 : ⟨x = 0, z = 0⟩ pr{C(x = 0, z = 0, r1, r2)} = 0.6 Consistent

A10 : ⟨x = 0, z = 1⟩ pr{C(x = 0, z = 1, r1, r2)} = 0.48 Inconsistent

A11 : ⟨x = 1, z = 0⟩ pr{C(x = 1, z = 0, r1, r2)} = 0.42 Inconsistent

A12 : ⟨x = 1, z = 1⟩ pr{C(x = 1, z = 0, r1, r2)} = 0.4 Inconsistent

Figure 4.29: Consistent and Inconsistent Assignments in h3 wrt to β1 = 0.5 and ϑ =

0.01.

z in αc% of the times while allowing an error of ϑ.

But, what if we apply our naive approach, what is the confidence level achieved for

one chance constraint (namely h1), two chance constraints (namely h1 and h2 simulta-

neously), and the whole problem in Figure 4.25 (namely h1, h2, and h3 simultaneously)

if for each value independently we enforce (αc,ϑ)-consistency using the approach in the

previous section.

Our experimental setup is as follows. We run 1000 experiments where each experi-

ment is as follows:

1. For each assignment Ai ∈ {A1, . . . , A12}, since αc = 0.95 and ϑ = 0.01, we

generate an independent sample of size n = 390001.

2. For each value v in the domain of every decision variable (x, y, and z), if, for any

assignment Ai in which v appears, our method in the previous section classifies v

as (αc,ϑ)-inconsistent, we prune v from the domain of the decision variable.

3. The overall number of correct classification is updated as follows:

Correct classification wrt to h1: we increment the number of correct classifi-

cation wrt to h1 by one if we simultaneously prune value 1 from the domain

of x and value 0 from the domain of y.

Correct classification wrt to h1 and h2: we increment the number of correct

classification wrt to h1 and h2 by one if we simultaneously prune value 1

from the domain of x, value 0 from the domain of y, and value 1 from the

domain of z.

Correct classification wrt to h1, h2, and h3: we increment the number of cor-

rect classification wrt to h1, h2, and h3 by one if we simultaneously prune

value 1 from the domain of x, value 0 from the domain of y, and value 1

1Determined from the previous experiments
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from the domain of z. Note that this case is different from the previous case

because in the previous case, only assignments A − 1 through A8 are used

to make the inference whereas in this case all assignments are used in the

inference process.

Finally, the CCR wrt to h1 is the total number of correct classification wrt to h1

divided by 1000. Similarly, we compute the CCR wrt h1 and h2 and the CCR wrt h1,

h2, and h3.

The results of the experiments are shown in Table 4.30.

CCR wrt to h1 CCR wrt h1 and h2 CCR wrt h1, h2, and h3

97.1% 91.4% 88.8%

Figure 4.30: CCR for multiple chance constraints.

As expected, as the number of multiple inferences increase, the overall confidence

level drops as errors accumulate. So, how to cure this problem?

As |A| increase, so does the probability of misclassifying values. Thus, in practice,

to enforce that a single chance constraint h is (αh
c ,ϑ)-GAC that is composed of m

assignments, each value needs to be (αc,ϑ)-consistent wrt to one assignment where αc

can adjusted using the conservative Bonferoni correction [GB97]:

(1− αh
c ) =

m∑
i=1

(1− αc)

So in order to make h1 (αh
c , ϑ)-GAC, where αh

c = 0.8, the adjusted αc should be

0.95 since there are 4 assignments and

(1− 0.8) = 0.2 =
4∑

i=1

(1− 0.95) =
4∑

i=1

(0.05)

To make a whole SCSP (αg
c , ϑ)-GAC composed of n chance constraints, the previous

approach of Bonferroni correction can be extended to achieve this. The correction is as

follows:

(1− αg
c) =

nm∑
i=1

(1− αc)

So in order to make h1 and h2 simultaneously (αg
c , ϑ)-GAC, where αg

c = 0.6, the

adjusted αc should be 0.95 since there are 8 assignments and

(1− 0.6) = 0.4 =
8∑

i=1

(1− 0.95) =
8∑

i=1

(0.05)
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Similarity, in order to make the whole SCSP in Figure 4.26 simultaneously (αg
c ,

ϑ)-GAC, where αg
c = 0.4, the adjusted αc should be 0.95 since there are 12 assignments

and

(1− 0.4) = 0.6 =
12∑
i=1

(1− 0.95) =
12∑
i=1

(0.05)

The Bonferroni correction is indeed very conservative as shown by our experiments.

In table 4.31 we show the expected CCR, in theory and in practice, after we make a

Bonferroni correction for a single chance constraint h1, two chance constraints h1 and

h2 simultaneously, and three chance constraints h1, h2, and h3 simultaneously.

CCR wrt to h1 CCR wrt h1 and h2 CCR wrt h1, h2, and h3

Theory 80% 60% 40%

Practice 97.1% 91.4% 88.8%

Figure 4.31: CCR for multiple chance constraints in theory vs. practice.

The good news is that our methods in practice achieves much higher CCR than

expected. But, it seems that less conservative approaches need to be further studied

and explored in the future. Indeed, if we wish to achieve an overall confidence level of

0.95, the adjusted individual confidence level with 10 assignments, using the Bonferroni

correction, would be 0.995 which is too high which would make the Bonferroni correction

too demanding.

As an alternative solution that would improve the overall confidence level by reduc-

ing the individual errors further is to use a larger sample size than the one found by

our method. By increasing the sample size, we reduce the errors and hence improve the

overall confidence level. Furthermore, since there is very little cost in using a higher

sample size in our method, it is still practical to do so. For instance, in the previous

experiments where for each value we maintain (αc,ϑ)-consistency where αc = 0.95 and

ϑ = 0.01, the sample size found and used by our method was n = 39000 but if we

increase it to 50000, we get the results shown in table 4.32 in which, in all cases, an

overall confidence level of αc is achieved.

CCR wrt to h1 CCR wrt h1 and h2 CCR wrt h1, h2, and h3

Practice (n = 39000) 97.1% 91.4% 88.8%

Practice (n = 50000) 99.6% 96.1% 95.7%

Figure 4.32: CCR for multiple chance constraints in practice with increased sample

size.
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4.5 Conclusion

In this Chapter, we have proposed two methods for enforcing (αc,ϑ)-consistency. We

presented and experimentally validated a first approach based on confidence intervals

to infer whether or not a value v is (αc,ϑ)-consistent with respect to an assignment

A. The empirical results confirm the expected theoretical results which state that a

CCR of at least αc100% can be achieved as long as µ /∈]βh − ϑ, βh + ϑ[. Otherwise, the

proposed method does not have any guarantees about the CCR that can be achieved.

Furthermore, in the case when µ = βh − ϑ, the first approach is flawed and always

makes the wrong influence.

Next, based on an analysis of the first approach by taking a different perspec-

tive which focuses on building a confidence interval around the sample mean x̄ rather

than around βh as in the first approach, we introduced our second statistical inference

method. We proposed two versions of the second method to deal with the critical case

when we are unable to guarantee a CCR of at least 95%: (1) a first version in which

we tolerate the error of misclassifying an inconsistent value as being consistent; and (2)

a second version in which we tolerate the error of misclassifying a consistent value as

being inconsistent instead. The second method (in both versions) not only improves

on the cases in which we are able to make more correct inference at a CCR of at least

αc100%, it also remedies the flaw when µ = βh − ϑ when compared to the first ap-

proach. Our experiments also confirm and validate our theoretical properties of the

second method in both of its versions and show the superiority of the second method

when compared to the first one.

Finally, we have shown how to enforce (αc,ϑ)-GAC for a chance constraint and

how to make a SCSP (αc,ϑ)-GAC by using a Bonferroni correction approach of the

confidence probability αc.
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Chapter 5

Enforcing Statistical Consistency

via Composite Hypothesis Testing

In this chapter, when the sample size is large enough, we assume instead of being the

probability of success of a Bernoulli distribution, the satisfaction probability can be seen

as the mean of a Normal distribution. While the use of the Normal distribution seems

odd at first, it is supported by the central limit theorem and with sufficiently large n, the

Normal distribution is a good estimate of the Binomial distribution. Indeed, according

to [BCNN00, MR03], when the sample size n is 50 or more, the sampling distribution

can be assumed to be the Normal distribution. The main reason why we make this

assumption is to be able to tackle the problem using a hypothesis testing approach.

The rest of the chapter is organised as follows. In Section 5.1, we review hypothesis

testing. Then, in Section 5.2, we show how to classify if a value v is (αc,ϑ)-consistent

or not by means of composite hypothesis testing. Then, we validate our approach in

Section 5.3 and show the superiority of the new approach compared to the previous

ones based on confidence intervals. Finally, we conclude in Section 5.4.

5.1 Hypothesis Testing

A statistical hypothesis is an assumption about a population parameter. This assump-

tion may or may not be true. Hypothesis testing refers to the formal procedures used by

statisticians to accept or reject statistical hypotheses. The methodology employed by

the analyst depends on the nature of the data used, as well as the goals of the analysis.

The goal is either to accept or to reject the null hypothesis.

The best way to determine whether a statistical hypothesis is true would be to

examine the entire population. Since that is often impractical, statisticians typically

examine a random sample from the population. If the sample data are not consistent

62



with the statistical hypothesis, the hypothesis is rejected. There are two types of

statistical hypotheses:

Null hypothesis: This refers to any hypothesis we wish to test and is denoted by H0.

It is usually the hypothesis that sample observations result purely from chance.

The rejection of H0 leads to the acceptance of an alternative hypothesis. H0 is a

hypothesis which the researcher tries to disprove, reject, or nullify.

Alternative hypothesis: This refers to hypothesis that sample observations are in-

fluenced by some non-random cause and is denoted by H1 or Ha.

The null hypothesis refers to the common view of something while the alternative

hypothesis is what the research really thinks is the cause of the phenomenon. For

example, suppose we want to determine whether a coin was fair and balanced. A null

hypothesis might be that half of the flips would result in heads and half in tails. The

alternative hypothesis might be that the number of heads and tails would be very

different.

Symbolically, these hypotheses would expressed as

H0 : p = 0.5

Ha : p ̸= 0.5

Suppose we flipped the coin 50 times, resulting in 40 heads and 10 tails. Given

this result, we would reject the null hypothesis and we would conclude, based on the

evidence, that the coin was probably not fair and balanced.

The terms of acceptance and rejection refer only to our decision based on incomplete

information and we should know that we could be wrong. Since, we will have taken

action based on our estimate about the population, the acceptance of a hypothesis

implies that data do not give sufficient evidence to refute it. Rejection implies that the

sample evidence refutes it.

Based on sample data, statisticians follow a formal process to determine whether to

reject a null hypothesis. This process of hypothesis testing consists of four basic steps:

1. State the hypotheses. This means stating the null and alternative hypotheses

which are mutually exclusive. That is, if one is true, the other must be false.

2. Formulate an analysis plan which describes how to use sample data to evaluate

the null hypothesis. The evaluation often focuses around a single test statistic.
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H0 is true H0 is false

Accept H0 correct decision Type II error

Reject H0 Type I error correct decision

Figure 5.1: Four possible outcomes of hypotheses testing.

3. Analyse sample data. Find the value of the test statistic (mean score, proportion,

t-score, z-score, etc) described in the analysis plan. The test statistic is computed

as follows:

Test statistic =
relevant statistic− hypothesized parameter

standard error of relevant statistic

For example the value of the z-score is computed as follows:

z =
x̄− µ0

σ√
n

4. Interpret the results. Apply the decision rule described in the analysis plan. If

the value of the test statistic is unlikely based on the null hypothesis, reject the

null hypothesis.

Two types of errors can result from a hypothesis test:

Type I error: it occurs when the researcher rejects a null hypothesis when it is true.

The probability of committing a type I error is called the significance level. This

probability is also called alpha and is denoted by α.

Type II error: it occurs when the researcher fails to reject a null hypothesis that is

false. The probability of committing a type II error is called beta and is often

denoted by β. The probability of not committing a type II error is called the power

of the test. It is the probability of rejecting H0 given that a specific alternative

hypothesis is true which is 1− β.

In testing any statistical hypothesis, there are four possible outcomes that determine

whether our decision is correct or in error. These four situations are summarized in

Fig. 5.1

The analysis plan includes decision rules for rejecting the null hypothesis. These

decision rules can be described in two ways, with reference to a region of acceptance or

with reference to a p-value.
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Figure 5.2: Decision criterion.

The region of acceptance is defined so that the chance of making a type I error is

equal to the significance level. The region of acceptance is a range of values. If the test

statistic falls within the region of acceptance, the null hypothesis is not rejected. The

set of values outside the region of acceptance is called the region of rejection. If the

test statistic falls within the region of rejection, the null hypothesis is rejected. In such

cases, we say that the hypothesis has been rejected at the α level of significance.

The p-value is the lowest level (of significance) at which the observed value of the test

statistic is significant. The p-value or calculated probability is the estimated probability

of rejecting the null hypothesis H0 of a study question when the null hypothesis is true.

In other words, the p-value may be considered as the probability of obtaining a result

at least as extreme as the one that was actually observed, assuming that the null

hypothesis is true. Indeed, the smaller the p-value, the greater the evidence is against

the null hypothesis. If we have a given significance level α then we reject H0 if the

p-value is less than or equal to α.

Example. Consider the Null hypothesis that the average weight of female students

in a certain school is 60 kilograms against the alternative hypothesis that is unequal to

60. That is, we wish to test:

H0 : µ = 60

H1 : µ ̸= 60

The alternative hypothesis means that µ < 60 or µ > 60. In this case, the sample

mean is the test statistic. The critical region for the test statistic may be the two

intervals x̄ < 59 and x̄ > 61. The acceptance region will then be the interval 59 ≤ x̄ ≤
61. This decision criterion is illustrated in Figure 5.2.

The probability of committing a type I error (the level of significance of our test α)

is equal to the sum of the areas that have been shaded in each tail of the distribution

in Figure 5.3.

Therefore,

α = P (x̄ < 59 when µ = 60) + P (x̄ > 61 when µ = 60)
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Figure 5.3: Critical region for testing µ = 60 versus µ ̸= 60.

Figure 5.4: Type II error for testing µ = 60 versus µ ̸= 60.

A type II error will result when the sample mean x̄ falls between 59 and 61, when

H1 is true. Therefore, by referring to Figure 5.4 we find that:

β = P (59 ≤ x̄ ≤ 61, when µ = 62 (for example))

There are important properties of a test of a hypothesis:

1. type I and type II errors are related in such a way that an increase in the proba-

bility of one will cause a decrease in the probability of the other in general.

2. The size of the critical region, and hence the probability of committing a type I

error, can always be reduced by adjusting the critical value(s).

3. an increase in the sample size will decrease α and β simultaneously.

4. If the Null hypothesis is false, β is maximum when the true value of a parameter

approaches the hypothesized value. The greater the distance between the true

value and the hypothesized value, the smaller β will be.
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A test of a statistical hypothesis, when the region of rejection is on only one side

of the sampling distribution, is called a one-tailed test. For example, suppose that the

null hypothesis states that the mean is equal to 10. The alternative hypothesis is that

the mean is greater than 10. The region of rejection would consist of a range of values

located on the right side of the sampling distribution. That is, a set of values greater

than 10.

A test of a statistical hypothesis, where the region of rejection is on both sides of

the sampling distribution, is called a two-tailed test. For example, suppose the null

hypothesis states that the mean is equal to 10. The alternative hypothesis would be

that the mean is different from 10. The region of rejection would consist of a range of

values located on both sides of the sampling distribution, i.e., the region of rejection

would consist partly of values that were less than 10 and partly of values greater than

10.

A hypothesis is called composite when the parameter space ϑ is divided into two

disjoint regions, ϑ0 and ϑ1. The test is written as follows:

H0 : ϑ ∈ ϑ0

H1 : ϑ /∈ ϑ1

Rejection and failure to reject the null hypothesis, critical regions, and type I and

II errors have the same meaning for a composite hypothesis as it does with a simple

hypothesis.

5.2 Statistical Inference Rules Through Hypothesis

Testing

This section shows how to formulate the problem of classifying values as being (αc,ϑ)-

consistent as a composite hypothesis testing problem. In subsection 5.2.1, we describe

our Null and alternative hypothesis. In subsection 5.2.2, we show how to calculate

the sample size that is large enough to guarantee a certain level of errors. Next, in

subsection 5.2.3, we show the steps that allow us to classify whether or not a specific

value v is (αc,ϑ)-consistent. For the sake of clarity, we recall the following notation:
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αc Confidence level

ϑ Error threshold tolerance

βh Chance constraint probability satisfaction threshold

α Significance level or type I error rate. α is 1− αc throughout this thesis

β Type II error rate

n sample size

Sn A random sample of size n

5.2.1 Hypothesis Formulation

We show how to enforce (αc, ϑ)-consistency by means of hypothesis testing.

Recall that a value v in the domain of x is (αc, ϑ)-consistent iff, with confidence αc,

there exists an assignment A in which x = v and
∑

s∈Ωh
Bs

hpr(s) ≥ βh − ϑ.

Let P denote the following infinite population for a given assignment A in which

x = v:

P = {Bs
hpr(s)|s ∈ Ωh}

Indeed the expression
∑

s∈Ωh
Bs

hpr(s) can be seen as the mean, denoted by µ, of

the entire population P . It is impossible to evaluate µ exactly in general since P is

infinite. Instead of considering the entire pool, one can draw a statistical sample. The

information obtained from the sample would allow us to develop hypotheses about the

larger infinite population P .

Therefore, for a given assignment A in which x = v, we propose to draw a finite

subset of random samples from P and formulate proper statistical hypothesis which

would allow us, with confidence αc, to make a statistical inference whether µ ≥ βh − ϑ

is true or not based on the evidence provided by the samples.

A possible hypothesis from which one can infer, with confidence αc, whether or not

v is (αc, ϑ)-consistent can be stated as follows:

H0 : µ ≥ βh − ϑ

H1 : µ < βh − ϑ

If, the evidence supports accepting the Null hypothesis, with confidence αc, we

simply infer that v is (αc, ϑ)-consistent since in that case µ ≥ βh − ϑ with confidence

αc. Otherwise, the Null hypothesis is rejected and v is inferred, with confidence αc as

being (αc, ϑ)-inconsistent.

The choice of Null hypothesis is made in such a way that we wish to reject that µ ≥
βh − ϑ since in most cases, most values are inconsistent and the alternative hypothesis
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is often true. So, when we accept the Null hypothesis, based on the evidence with

confidence αc, then we are making sure that it is not purely from chance.

Note that both our Null hypothesis H0 : µ ≥ βh − ϑ and alternative hypothesis

H1 : µ < βh − ϑ are indeed composite hypotheses. So, let us shed some light on the

similarities and the difference between simple Null hypothesis testing and composite

Null hypothesis testing. In what follows, let µ0 = βh − ϑ.

In [LS99], the authors explain that the simple Null hypothesis approach and the

composite Null hypothesis approach for one-tailed hypothesis tests are both valid. In

the case of a simple Null hypothesis approach, the choices for a one-tailed test of a

population mean µ with a specific numeric value µ0 are either

H0 : µ = µ0

H1 : µ < µ0

or

H0 : µ = µ0

H1 : µ > µ0

Regardless of the form of the alternative hypothesis H1 in this case, the Null hy-

pothesis specifies the same value, µ0. In the case of composite Null hypothesis, the

choices are:

H0 : µ ≥ µ0

H1 : µ < µ0

or

H0 : µ ≤ µ0

H1 : µ > µ0

With this approach, the composite Null hypothesis specifies a range of possible

values for the population mean depending upon the appropriate alternative hypothesis.

Because of this difference in the form of the Null hypothesis, the two approaches require

different statistical explanations. For example, let us consider the one-tailed hypothesis

test about the mean of the population:

H0 : µ = µ0

H1 : µ < µ0
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Figure 5.5: Sampling distribution of x̄ under the simple Null hypothesis

with the simple Null hypothesis, the distribution of the sample mean x̄ under the Null

hypothesis is uniquely determined because the value of the population mean is uniquely

specified, H0 : µ = µ0 (see Figure 5.5) and hence the probability of a type I error is

uniquely determined by any given rejection region. Therefore, the appropriate rejection

region of the test is the one for which the probability of its type I errors equals α, the

chosen significance level (as shown in Figure 5.5).

However, using the composite Null hypothesis approach, the sampling distribution

of x̄ under the Null hypothesis is not uniquely determined because the value of the

population mean is not uniquely specified. Since, under the composite Null hypothesis

H0 : µ ≥ µ0 (for example), there are infinite number of alternative sampling distribu-

tions some of which are shown in Figure 5.6.

Because of this multiplicity of sampling distributions, the probability of a type I

error associated with any specific rejection region is not unique. However, the largest

probability of a type I error for any chosen rejection region is associated with the

sampling distribution centered at µ0. We thus select the rejection region that makes

the probability of type I error equal to α for a specific sampling distribution (but less

than α for all other ones specified under the Null hypothesis).

Under this approach, the rejection region is chosen to make the maximum (but

not the actual) probability of type I error equal to α (see Figure 5.6). For all these

reasons, both approaches are statistically valid, yield identical rejection regions, and

produce identical decisions. But, what really differs between the two approaches is the

statistical explanation. The differences can be summarised as follows:
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Figure 5.6: Sampling distribution of x̄ under the composite Null hypothesis.

1. The existence of a single versus multiple sampling distributions under the Null

hypothesis; and

2. The exact versus the conservative maximum probability of type I error associated

with the level of significance, α.

5.2.2 Choice of sample size

The sample size is an important feature of an empirical study in which the goal is to

make inferences about a population from a sample. The sample size should be chosen in

such a way to achieve a good power for a fixed α and a specific alternative hypothesis.

Suppose we want to test the hypothesis:

H0 : µ = µ0

H1 : µ > µ0

with a significance level α when the variance σ2 is known. For a specific alternative

µ = µ0 + δ1, the power:

1− β = P (x̄ > a when µ = µ0 + δ)

where a is the critical bound which is a value that bounds the critical region. The

power of our test can be shown in Figure 5.7

1δ is the difference between the hypothesized mean and the true mean
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Figure 5.7: Testing µ = µ0 versus µ = µ0 + δ.

Therefore,

β = P (x̄ ≤ a when µ = µ0 + δ)

= P (
x̄− (µ0 + δ)

σ√
n

≤ a− (µ0 + δ)
σ√
n

when µ = µ0 + δ)

The statistic x̄−(µ0+δ)
σ√
n

is the standard Normal variable Z. Therefore,

β = P (Z <
a− µ0

σ√
n

− δ
σ√
n

) = P (Z < Zα − δ
σ√
n

)

From which we conclude that

−Zβ = Zα − δ
√
n

σ

and hence

n =
(Zα + Zβ)

2σ2

δ2

This result also holds true when H1 is µ < µ0 and in the case of a two-tailed test, we

have:

n =
(Zα

2
+ Zβ)

2σ2

δ2
(5.1)

Note that when the σ is unknown, some statistics textbooks (e.g., [BCNN00]and

[MR03]) suggest that one can safely replace σ by s (the sample standard deviation)

in the test statistic x̄−(µ0+δ)
σ√
n

when n ≥ 30 or n ≥ 50 and still use the Z-tables for the

appropriate critical region.
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5.2.3 Value consistency classification via composite hypothesis

testing

Given our composite Null hypothesis H0 : µ ≥ βh − ϑ, we show, for an assignment A

in which x = v, the steps that would allow us to classify whether a specific value v is

(αc,ϑ)-consistent or not.

Sampling: We first determine the appropriate sample size n ≥ 50. Then, we use

Simple Random Sampling, to generate a sample. Finally, we compute the sample

mean x̄ and the sample standard deviation s.

Computation of test statistic: The standard deviation σ of the population under

study is indeed unknown. But, since n ≥ 50, one can use the Z-score test statistic

[MR03] denoted as Z = x̄−µ
SE

where SE denotes the standard error SE = s√
n
.

Interpretation: We opt for the traditional method that finds the critical value cv. If

the test statistic z is larger than or equal to the critical value cv, then we fail to

reject H0 (or: we accept H0). Else, if z < cv, then we reject H0 and accept H1

instead.

Inference: If H0 is not rejected, then the value v is classified as (αc,ϑ)-consistent. Else,

the value v is classified as (αc,ϑ)-inconsistent.

Example. Suppose we are given a chance constraint h : pr{C} >= βh over an

infinite number of scenarios where βh is 0.76. Suppose we are given an assignment

A in which x = v. Suppose we take a random sample of 36 scenarios and compute

the satisfaction probability of pr{C} for assignment A (i.e, the sample mean x̄) and

it happens to be 0.745 with a sample standard deviation equal to 0.06. Is the value v

(αc,ϑ)-consistent for αc = 0.95 and ϑ = 0.01 or not?

Using our approach, we formulate the following hypothesis:

H0 : µ ≥ βh − ϑ = 0.75

H1 : µ < βh − ϑ = 0.75

At α = 0.05, we have Z0 = −1.645 (see Figure 5.8) and

Z0 =
x̄− 0.75

σ√
n

Thus,

x̄ = 0.75 +
0.06√
36

.− 1.645 = 0.7335
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Figure 5.8: Critical region for testing µ ≥ 0.75 versus µ < 0.75.

Figure 5.9: Probability of type I error for testing µ ≥ 0.75 versus µ < 0.75.

The probability of committing a type I error or the level of significance of our test,

is equal to the area of the shaded region to the left of x̄ = 0.7335 shown in Figure 5.9

(P (Reject H0|H0 is true)).

Since

α = P (Reject H0|H0 is true) = P (x̄ < 0.7335 when µ = 0.75)

= P (
x̄− µ

σ√
n

<
0.7335− 0.75

0.06√
36

) = P (Z < −1.645) = 0.05

Next, we show how to compute the probability of type II error β, if µ = 0.70 (as

depicted in Figure 5.10).

β = P (Do Not Reject H0|H0 is false) = P (Do Not Reject H0|µ = 0.70)

= P (x̄ ≥ 0.7335|µ = 0.7)

= P (
x̄− µ

σ√
n

≥ 0.7335− 0.70
0.06√
36

) = P (Z ≥ 0.03355) = 1− P (Z < 0.03355)

= 1− 0.9996 = 0.0004
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Figure 5.10: Probability of type II error.

Now, at α = 0.05, the critical value Z0 is -1.645. The test statistic

Z =
(Sample value−Hypothesized value)

Standard error
=

x̄− µ0

σx̄

=
x̄− µ0

σ√
n

and since n > 30, we can replace σ with the sample standard deviation s we have:

Z =
0.745− 0.75

0.06√
36

= −0.05

Since the value of the test statistic (-0.05) is greater than the critical value Z0 =

−1.645, we fail to reject H0. Indeed, there is not enough evidence to reject the claim

that µ ≥ βh − ϑ. Therefore, we correctly classify value v as being (αc,ϑ)-consistent in

this case.

5.3 Empirical study

Suppose we are given a chance constraint h : pr{C} ≥ βh over an infinite set of scenarios

Ωh, an assignment A in which x = v, a confidence level αc, and a threshold error ϑ. The

basic question that this thesis tries to answer is whether we could classify v as (αc,ϑ)-

consistent or not. The approach that we proposed in the previous section reformulates

the problem as a statistical inference problem that could be solved using hypothesis

testing. Let µ be the probability of constraint C restricted to assignment A. Since

the number of scenarios Ωh is infinite, such a quantity is unknown in general. In our

approach, we state the Null hypothesis as H0 : µ ≥ βh − ϑ and the alternative as

H1 : µ < βh−ϑ. Then, we generate a large enough sample S to guarantee a confidence

level αc. Next, we compute an appropriate test statistic (z-test statistic in our case) and

use it to either accept or reject the Null hypothesis. If our Null hypothesis is accepted,

we do classify v as (αc,ϑ)-consistent, else as (αc,ϑ)-inconsistent.

The main goal of this empirical study is to answer the following questions:
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1. Can the hypothesis testing approach yield an acceptable correct classification rate

in practice?

2. Is the theoretical sample size large enough to guarantee the given confidence level?

3. How does the hypothesis testing approach compare against the approach based

on confidence intervals?

5.3.1 Experimental Settings

To be able to an exhaustive empirical study that can cover most situations in practice,

we consider the following experimental set-up:

1. We choose an arbitrary value µ to be 0.5.

2. We choose the classical value 0.95 for αc.

3. We consider the following sample sizes:

n ∈ {50, 100, 200, . . . , 1000, 1200, 1400, . . . , 2000, 2500, . . . ,

5000, 6000, . . . , 10000, 20000, 30000, 40000}

For each sample size we generate a sample Sn of 0’s and 1’s following the Bernoulli

distribution whose p = µ.

4. We vary βh around the µ value as follows: βh ∈ {µ−0.02, µ−0.01, µ, µ+0.01, µ+

0.02, µ+ 0.03, µ+ 0.04, µ+ 0.05, µ+ 0.06, µ+ 0.07, µ+ 0.08, µ+ 0.09}.

5. We vary ϑ between a very small value 0.001 and a larger one 0.01.

Note that the above set-up simulates in an exhaustive manner many practical situ-

ations. Indeed, we have the following:

• Each configuration of ⟨µ, βh, αc, ϑ⟩ represents a practical situation of some chance

constraint h : pr{C} ≥ βh and some assignment A in which x = v. A value v is

(αc, ϑ)-consistent if µ ≥ βh − ϑ. Otherwise, v is (αc, ϑ)-inconsistent.

• Each configuration ⟨Sn, βh, αc, ϑ⟩ represents the chance constraint h (i.e., config-

uration ⟨µ, βh, αc, ϑ⟩) restricted to the subset of the scenarios in Sn. Our goal is

to infer whether or not value v is (αc, ϑ)-consistent or not using the hypothesis

testing approach.

76



n\βh = µ+ 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

50 5.9% 8.5% 8.5% 8.3% 14.7% 14.7% 21.3% 21.3% 30.2%

100 6.9% 9.4% 13.2% 17.4% 22.4% 29.9% 37.1% 45.6% 54.8%

200 5.1% 9.8% 15.8% 23.2% 34.3% 45.9% 57.7% 67.3% 77%

300 10.1% 14% 22.7% 33.5% 47.8% 63.3% 75.8% 84.5% 91.1%

400 8.5% 16.9% 29% 43.2% 57.7% 72.8% 85.4% 92.5% 97.6%

500 11% 21.3% 35.9% 55.6% 71% 83.8% 92.7% 97.6% 99.3%

600 10.1% 21.7% 41.2% 58.2% 74.9% 87.5% 95.4% 97.7% 99.9%

700 10.2% 23.3% 41.6% 63.1% 81.1% 92.5% 97.8% 99.1% 100%

800 13.9% 29% 48.5% 70.3% 86.1% 95.2% 98.2% 100% 100%

900 11.6% 28.2% 50.8% 72.9% 89% 96.9% 99.7% 100% 100%

1000 14.1% 31.5% 55.1% 79.3% 92.4% 98.1% 99.5% 100% 100%

1200 15% 35.4% 61.4% 82.9% 95% 98.6% 99.8% 100% 100%

1400 14.7% 40.8% 67.2% 87.2% 97% 99.6% 100% 100% 100%

1600 16.5% 43% 73.1% 91.9% 98.5% 99.8% 100% 100% 100%

1800 16% 46.3% 78.5% 94.5% 99.2% 99.9% 100% 100% 100%

2000 20.5% 50% 81.5% 96.6% 99.6% 100% 100% 100% 100%

2500 20.8% 56.6% 86% 97.6% 99.9% 100% 100% 100% 100%

3000 24.1% 65% 94.7% 99.3% 100% 100% 100% 100% 100%

3500 27.1% 68.8% 96% 99.8% 100% 100% 100% 100% 100%

4000 29.6% 76.4% 98.1% 100% 100% 100% 100% 100% 100%

4500 33% 80.4% 99% 100% 100% 100% 100% 100% 100%

5000 33.5% 82.9% 99% 100% 100% 100% 100% 100% 100%

6000 41.4% 89.2% 99.8% 100% 100% 100% 100% 100% 100%

7000 42.4% 93.3% 100% 100% 100% 100% 100% 100% 100%

8000 49.6% 95.7% 100% 100% 100% 100% 100% 100% 100%

9000 49% 98.2% 100% 100% 100% 100% 100% 100% 100%

10000 51.3% 98.5% 100% 100% 100% 100% 100% 100% 100%

20000 80.9% 100% 100% 100% 100% 100% 100% 100% 100%

30000 91.1% 98.5% 100% 100% 100% 100% 100% 100% 100%

40000 97.3% 100% 100% 100% 100% 100% 100% 100% 100%

Figure 5.11: Correct classification rate of an inconsistent value for µ = 0.5, αc = 0.95,

and ϑ = 0.001.

Finally, we generate randomly 1000 configurations ⟨Sn, βh, αc, ϑ⟩ by generating 1000

different Sn’s. For each of the 1000 configurations (or experiments), we perform the

hypothesis testing using our Null hypothesis H0 and depending on whether we accept

or reject H0 we either classify v as (αc, ϑ)-consistent or not.

5.3.2 Validation of the Hypothesis Testing Approach

Firstly, we will calculate the theoretical sample size needed to guarantee a confidence

level of αc = 0.95 in terms of correct inference about a particular value v of being either

(αc,ϑ)-consistent or not. Recall that sample size , as described in section 5.2.2, is equal

to:

n =
(Zα + Zβ)

2σ2

δ2

Since, αc = 0.95, we set the significance level α to 0.05 which would restrict the
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type I error, i,e, rejecting the Null hypothesis when it is true. Similarly, we set β to

0.05 to restrict the rate of type II errors which is failing to reject the Null hypothesis

when it is false. Thus, the power of the test would be 1− β = 0.95.

The standard deviation σ is indeed unknown in our case. We should, therefore,

estimate it by using a sample standard deviation s. We take a random sample of size

50 which has a binomial distribution and compute s as follows:

s =

√√√√ 1

50

50∑
i=1

(xi − x̄)2

where x̄ is the sample mean. We computed the sample standard deviation of a random

sample of size 50 and it happens to be 0.5036.

The value for Zα is equal to Zβ which is -1.645. While the values for α and β in

general control the accuracy of our test (i.e., accuracy is how close a measured value

is to the actual true value.), the choice of δ seems to define how precise we would like

our inference to be (i.e., precision is how close the measured values are to each other).

Indeed, if we decrease δ, we do increase our precision. If we choose a very high precision

and set δ to 0.001, the sample size needed in theory turns out to be a very large number:

n =
(−1.645 +−1.645)20.50362

0.0012
= 2 745 132

For a δ value of 0.01 instead, the theoretical sample size need is 27 451 whereas for a

larger δ being 0.05, the sample size is just 1098.

Case I: ⟨µ = 0.5, αc = 0.95, ϑ = 0.001⟩

In Figure 5.11, we report the CCR for the case where µ = 0.5, αc = 0.95, ϑ = 0.001,

and βh ∈ {µ+ 0.01, . . . , µ+ 0.09}. The sample size has been varied as described in the

Section 5.3. Each entry in Figure 5.11 represents a run of 1000 random experiments

of hypothesis testing of our Null hypothesis where each experiment corresponds to a

random configuration ⟨Sn, βh, αc, ϑ⟩. In all the cases in these experiments, the correct

classification is to classify the values as (αc, ϑ)-inconsistent. In fact, a misclassification

in this case corresponds to a type II error since we accept a Null hypothesis that is

false.

The following observations can be stated based on the results in Figure 5.11:

• When δ is set to 0.001, the theoretical sample size (n = 2 745 132) is too high

and indeed guarantees that our inference method achieves a CCR of 95% or above

under all parameter settings of µ, βh and ϑ;
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• When δ is set to 0.01, the theoretical sample size (n = 27 451) is almost large

enough so that our inference method guarantees under all parameter settings of

µ, βh and ϑ to achieve above a 95% CCR with an exception when βh = µ+ 0.01

which requires a sample size of 30000 or more;

• When δ is set to 0.05, the theoretical sample size (n = 1098) is too little to

guarantee that our inference method achieves a CCR of 95% or above. Indeed,

only when βh ≥ µ+ 0.06, we do achieve above a 95% CCR;

• As the distance between βh − ϑ and µ gets closer, the number of samples needed

to guarantee a 95% classification rate increases. As they get apart, the sample

size needed to guarantee a 95% classification rate decreases. Indeed, the case that

requires the largest sample size is when the distance between βh − ϑ and µ is the

smallest.

The results in Figure 5.11 show that type II errors are indeed sensitive to the value

of δ since as δ decreases, so does the error rate. But if δ is chosen carefully, a 95% or

above CCR when a value v is (αc, ϑ)-inconsistent can be achieved.

In Figure 5.12, we report the CCR for the case where µ = 0.5, αc = 0.95, ϑ = 0.001,

and βh ∈ {µ, µ − 0.01, µ − 0.02}. The sample size has been varied as described in the

Secion 5.3. Each entry in Figure 5.12 represents a run of 1000 random experiments

of hypothesis testing of our Null hypothesis where each experiments corresponds to a

random configuration ⟨Sn, βh, αc, ϑ⟩. In all the cases in these experiments, the correct

classification is to classify the values as (αc, ϑ)-consistent. In fact, a misclassification

in this case corresponds to a type I error since we reject a Null hypothesis that is true.

The results in Figure 5.12 show that we require a much smaller sample size than

the theoretical ones in order to achieve a 95% CCR compared to the inconsistent case.

Indeed, the results show that sample size of as large as 400 are enough to make the

desired inference.

In Figure 5.13, we plot the number of samples that guarantee a CRR equal to or

above 95% as a function of the distance between µ and βh for ϑ = 0.001. The message

is indeed clear: as the distance between µ and βh − ϑ gets closer and the values are

(αc, ϑ)-inconsistent, we require bigger sample sizes. Otherwise, with much less sample

sizes, we do achieve the desired 95% or above CCR.

Case II: ⟨µ = 0.5, αc = 0.95, ϑ = 0.01⟩

In Figure 5.14, we report the CCR for the case where µ = 0.5, αc = 0.95, ϑ = 0.01,

and βh ∈ {µ + 0.01, . . . , µ + 0.09}. The only difference between the experiments in
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n\βh βh = µ βh = µ− 0.01 βh = µ− 0.02

50 94.1% 96.5% 96.5%

100 94.8% 96% 97.4%

200 96.9% 98.3% 99.2%

300 94.9% 97.5% 98.9%

400 96% 97.8% 99.3%

500 95.5% 98.4% 99.6%

600 95.2% 98.3% 99.5%

700 96% 98.9% 99.5%

800 95% 99.1% 99.8%

900 97% 99% 99.7%

1000 95.9% 99.4% 100%

1200 95.7% 99.4% 100%

1400 96.7% 99.7% 100%

1600 95.9% 99.2% 100%

1800 97.2% 100% 100%

2000 96.6% 99.9% 100%

2500 96.6% 99.7% 99.9%

3000 96.9% 99.9% 100%

3500 96.9% 99.8% 100%

4000 96.5% 100% 100%

4500 96% 99.8% 100%

5000 97.2% 100% 100%

6000 97% 100% 100%

7000 95.8% 100% 100%

8000 97.5% 100% 100%

9000 97.8% 100% 100%

10000 97.8% 100% 100%

20000 96.9% 100% 100%

30000 97.8% 100% 100%

40000 98% 100% 100%

Figure 5.12: Correct classification rate of a consistent value for µ = 0.5, αc = 0.95, and

ϑ = 0.001.

Figure 5.14 and Figure 5.11 is just a higher ϑ from 0.001 to 0.01 instead. Note that,

the case where βh = µ+0.01 is no longer covered in this case as the values become (αc,
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Figure 5.13: The x-axis is the distance βh − µ whereas the y-axis is the number of

sample above which we always achieve a correct classification rate greater than 95%.

This plot is for µ = 0.5, αc = 0.95, and ϑ = 0.001.

ϑ)-consistent. We observe that the results are very similar to the ones in Figure 5.11

except that when δ is set to 0.01, we do achieve a 95% or above CCR in all cases.

In Figure 5.15, we report the CCR for the case where µ = 0.5, αc = 0.95, ϑ = 0.01,

and βh ∈ {µ− 0.01, µ, µ+0.01.µ+0.02}. The only difference between the experiments

in Figure 5.12 and the ones in Figure 5.15 is the change in ϑ to 0.01 instead of 0.001.

We observe that for the case βh = µ + 0.01 we require a sample size close to the

theoretical one for δ = 0.01 in order to guarantee a CCR of 95% or above. Otherwise,

we relatively small size is needed to achieve the desired CCR (n = 50). Again, we

notice that the hardest case is when µ is closest to βh − ϑ.

Figure 5.16 is the same as Figure 5.13 for ϑ = 0.01 instead. We clearly see the

same pattern except that now the largest sample sizes are needed when µ approaches

βh−ϑ and the values are (αc,ϑ)-consistent. Note that, our method based on hypothesis

testing is quite robust against variations in the values of ϑ.

5.3.3 Comparing the Hypothesis Testing Approach Against

The Confidence Intervals Approach

The approaches in Chapter 4 and the one in this chapter address the research problem

in quite different ways. But, overall, the approach based on hypothesis testing is a

superior and more robust method for the following reasons:

• First of all, in the confidence interval approaches in Chapter 4, there exists always
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n\βh = µ+ 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

50 5.9% 8.5% 8.5% 14.7% 14.7% 14.7% 21.3% 21.3%

100 6.9% 9.4% 13.2% 17.4% 22.4% 29.9% 37.1% 45.6%

200 6.8% 9.8% 15.8% 23.2% 34.3% 45.9% 57.7% 67.3%

300 10.1% 15.6% 25.8% 38.9% 52.5% 67.4% 78.7% 86.1%

400 10.4% 12.5% 29% 43.2% 57.7% 72.8% 87.9% 94%

500 12.6% 21.3% 35.9% 55.6% 71% 86.1% 94.1% 98%

600 11.9% 24.3% 43.6% 61.1% 77.2% 89% 95.6% 99.2%

700 11.8% 24.9% 44.2% 65.4% 83.2% 93.1% 98.1% 100%

800 13.9% 29% 48.5% 70.3% 86.1% 95.2% 98.3% 100%

900 13.8% 31.2% 53.1% 75.1% 90.9% 97.5% 99.7% 100%

1000 15.6% 33.5% 57% 80.4% 93.4% 98.2% 99.5% 100%

1200 17.1% 33.3% 63.6% 89.3% 95.4% 99% 99.8% 100%

1400 19.2% 44.2% 71.1% 93.6% 97.8% 99.6% 100% 100%

1600 16.9% 46.8% 76.7% 94.9% 98.5% 99.9% 100% 100%

1800 22.3% 48% 79.3% 97.1% 99.4% 100% 100% 100%

2000 22.9% 53.3% 84.2% 99.5% 99.9% 100% 100% 100%

2500 26.6% 59.6% 87.6% 99.8% 100% 100% 100% 100%

3000 31.1% 69.4% 95.7% 100% 100% 100% 100% 100%

3500 34% 72.5% 97.1% 100% 100% 100% 100% 100%

4000 37.8% 80.7% 98.6% 100% 100% 100% 100% 100%

4500 37.8% 85.4% 99.2% 100% 100% 100% 100% 100%

5000 37.8% 86.4% 99.6% 100% 100% 100% 100% 100%

6000 47.2% 92% 100% 100% 100% 100% 100% 100%

7000 48.2% 95.2% 100% 100% 100% 100% 100% 100%

8000 57.7% 96.9% 100% 100% 100% 100% 100% 100%

9000 56.3% 98.7% 100% 100% 100% 100% 100% 100%

10000 60% 99.1% 100% 100% 100% 100% 100% 100%

20000 87.7% 100% 100% 100% 100% 100% 100% 100%

30000 95.7% 100% 100% 100% 100% 100% 100% 100%

40000 98.9% 100% 100% 100% 100% 100% 100% 100%

Figure 5.14: Correct classification rate of an inconsistent value for µ = 0.5, αc = 0.95,

and ϑ = 0.01.

either in the first method or in the second one a case such that it is impossible to

properly classify a value v as being (αc,ϑ)-consistent or not with probability αc

or above in theory and in practice. However, in the approach based on composite

hypothesis testing, we can always classify value v as being (αc,ϑ)-consistent or

not with probability αc or above in theory (and in practice when the sample size

is carefully chosen).

• Secondly, in the hypothesis testing approach, we require a much smaller sample

size in order to achieve a CCR of at least 95% when compared to either the first

or the second method of Chapter 4. In most case, a sample size of as small as 400

is enough for the hypothesis testing approach to achieve the desired CCR when

µ is not so close to βh − ϑ. When, µ approaches βh − ϑ, whereas the approaches

based on confidence intervals may require sample sizes in the order of millions,
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n\βh βh = µ+ 0.01 βh = µ βh = µ− 0.01 βh = µ− 0.02

50 94.1% 96.5% 96.5% 98.5%

100 94.8% 96% 97.4% 98.5%

200 96.1% 97.9% 98.9% 99.2%

300 94.9% 97.5% 98.9% 99.6%

400 95.3% 97.7% 99.6% 99.7%

500 94.7% 98.7% 99.4% 99.9%

600 95.6% 98.8% 99.8% 99.9%

700 95% 98.9% 99.6% 100%

800 96.6% 99.1% 100% 100%

900 94.7% 99.3% 99.9% 100%

1000 95.3% 99.7% 100% 100%

1200 96.2% 99% 100% 100%

1400 94.5% 99.8% 100% 100%

1600 96% 99.8% 99.9% 100%

1800 95.8% 99.6% 100% 100%

2000 95.7% 99.6% 100% 100%

2500 95.8% 100% 100% 100%

3000 94.% 99.9% 100% 100%

3500 96.2% 100% 100% 100%

4000 95.9% 100% 100% 100%

4500 95% 99.9% 100% 100%

5000 96.2% 100% 100% 100%

6000 95.9% 100% 100% 100%

7000 95% 100% 100% 100%

8000 96.2% 100% 100% 100%

9000 96.9% 100% 100% 100%

10000 96.7% 100% 100% 100%

20000 94.3 100% 100% 100%

30000 96% 100% 100% 100%

40000 96% 100% 100% 100%

Figure 5.15: Correct classification rate of a consistent value for µ = 0.5, αc = 0.95, and

ϑ = 0.01.

the approach based on hypothesis testing does not require more than 40000.
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Figure 5.16: The x-axis is the distance βh − µ whereas the y-axis is the number of

sample above which we always achieve a correct classification rate greater than 95%.

This plot is for µ = 0.5, αc = 0.95, and ϑ = 0.01.

5.4 Conclusion

In this chapter by assuming a large enough sample size, the satisfaction probability

that we are trying to estimate from an infinite policy tree can be assumed to follow a

Normal distribution rather than the Bernoulli one. Because of this normality assump-

tion, we were able to formulate the problem of classifying whether or not a value v is

(αc,ϑ)-consistent by means of composite hypothesis testing where the composite Null

hypothesis H0 is stated as µ ≥ βh − ϑ and the alternative composite hypothesis H1 is

stated as µ < βh − ϑ. We have shown that an appropriate large enough smaple size

that guarantees a CCR of at least 95% can be computed by Equation 5.1 in which:

(1) the value of α is set to 1 − αc to limit the rate of type I errors, i.e., the rate of

misclassifying a truly (αc,ϑ)-consistent value as (αc,ϑ)-inconsistent; (2) the value of β

is set to 1 − αc to also limit the rate of type II error, i.e., the rate of misclassifying a

truly (αc,ϑ)-inconsistent value as (αc,ϑ)-consistent; and (3) the value for δ was tuned in

the experiments in order to reveal the best value in practice. The extensive empirical

study have shown that the proposed method based on composite hypothesis testing is

superior to the previous methods based on confidence intervals in terms of: (1) for a

carefully chosen δ, we are able to do inference that achieves at least 95% CCR in all

cases; (2) we do not have any regions in which we are unable to guarantee at least a

95% CCR; and (3) in most cases, a moderate sample size is enough and, as shown in

Figure 5.13 and Figure 5.16, the largest sample size needed –when µ is very close to
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βh − ϑ — is no larger than 40000. In conclusion, the proposed method in this chapter

based on hypothesis testing is an effective, robust, and practical method that is able to

achieve in all cases a CCR of at least 95%.

85



Chapter 6

Conclusions and Future Work

In this chapter, we provide a detailed summary of the contributions of this thesis

in Section 6.1. Then, in Section 6.2, we discuss the results and emphasise on the

shortcomings of the thesis.

6.1 Summary

In this thesis, we take a different approach towards computing an (αc,ϑ)-solution to a

single-stage SCSP P . Instead of reformulating the original infinite SCSP P into a finite

one restricted to a subset of scenarios P̂ and use the standard search techniques to solve

the resulting SCSP P̂ , we propose to directly work with the infinite SCSP P by lifting

the inference that guides the search in the deterministic case to an inference that reasons

about the uncertainties in the presence of an infinite set of scenarios. To this end, we

focus on each chance constraint of an infinite SCSP on its own and propose a novel

consistency property that lifts the notion from the deterministic case to the stochastic

one. Such a notion of consistency is named as statistical consistency and in particular

we propose (αc,ϑ)-consistency as a specific instance of such consistency. The concept

of (αc,ϑ)-consistency is tightly related to the concept of (αc,ϑ)-solutions proposed in

[RHTP15] but fundamentally differs from it in the sense that while (αc,ϑ)-solutions

consider the whole SCSP as a whole, (αc,ϑ)-consistency is focused on each chance

constraint separately. Secondly, while (αc,ϑ)-solutions are found through reformulation

by using the standard search and inference techniques as advocated in [HRTP12], (αc,ϑ)-

consistency is a building block that be used to design new families of search algorithms

that reasons about the infinite SCSP without any reformulation and directly solves

it despite the infinite number of scenarios. Finally, while finding (αc,ϑ)-solutions is

sensitive to a large sample size, enforcing (αc,ϑ)-consistency is not.

Suppose we are given an infinite chance constraint h : pr{C} ≥ βh over an infinite
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set of scenarios Ωh, an assignment A in which x = v, a confidence level αc, and a

threshold error ϑ. The basic question that this thesis tries to answer is whether we

could classify v as (αc,ϑ)-consistent or not. The pillars upon which (αc,ϑ)-consistency

is based are three: (1) Since the number of scenarios in Ωh is infinite, one cannot see a

general method that can work for any chance constraint to determine whether or not a

particular value v is consistent with respect to Ωh. Thus, the first pillar of the notion

of (αc,ϑ)-consistency advocates using only a finite subset of scenarios in order to make

a statistical inference about value v being consistent with respect to the infinite set

Ωh of scenarios; (2) Since, we are considering a subset of scenarios, then our inference

will necessarily be in error. The second pillar of the notion of (αc,ϑ)-consistency is

the confidence probability αc we wish to associate with how confident we are in our

statistical inference; and (3) the last pillar is the notion of the error threshold value

ϑ that specifies the margin of errors we are ready to tolerate while restricting our

statistical inference to only a subset of scenarios.

To be able to enforce (αc,ϑ)-consistency, this thesis proposed three main methods

that can be employed after a Bonferroni correction to the confidence probability αc:

two methods are based on confidence intervals whereas the third one is based on com-

posite hypothesis testing. The first approach we propose and experimentally validate

is inspired by the way (αc,ϑ)-solution were sought through sampling in [RHTP15]. As

a statistical inference method, it is shown in this thesis, both theoretically and experi-

mentally, that a CCR of at least αc100% can be achieved as long as µ /∈]βh−ϑ, βh+ϑ[.

Otherwise, the proposed method does not have any guarantees to achieve a desired

CCR. Furthermore, in the case when µ = βh − ϑ, the first approach is flawed and

always makes the wrong inference. Next, based on an analysis of the first approach by

taking a different perspective which focuses on building a confidence interval around the

sample mean x̄ rather than around βh as in the first approach, we propose our second

method. In the second method, as in the first one, there is still a critical case in which

we cannot guarantees to achieve the desired CCR. Yet, we suggested two versions of

the second method to partially remedy this issue: (1) In the first version we tolerate

the errors of misclassifying an inconsistent value as being consistent in the critical case

(i.e., we are ready to endure a higher rate of type I errors); (2) In the second version

we tolerate the errors of misclassifying a consistent value as being inconsistent in the

critical case (i.e., we are ready to endure a higher rate of type II errors). The second

method is shown theoretically and experimentally to be better than the first one since it

makes more correct inference at a CCR of at least αc100% and also overcomes the flaw

of the first method when µ = βh−ϑ. Finally, our last method is a novel approach based

on composite hypothesis testing. In this approach, we assume a large enough sample
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size that would allow us to consider the distribution of the satisfaction probability we

are trying to estimate as being Normal instead of Bernoulli. Therefore, we were able

to formulate our problem of classifying whether or not a value v is (αc,ϑ)-consistent

through means of composite hypothesis testing where the Null composite hypothesis is

stated as H0 : µ ≥ βh − ϑ and the alternative composite one as H1 : µ < βh − ϑ. We

have shown that an appropriate large enough sample size that guarantees a CCR of at

least αc100% can computed by using Equation 5.1. The extensive empirical study has

shown that the proposed method based on composite hypothesis testing is superior to

the previous ones based on confidence interval since, for a carefully chosen δ, we can do

inference that achieves a CCR of at least αc100% in all cases. We do not have any case

in which we are unable to guarantee at least αc100% CCR. Furthermore, a moderate

sample size is enough in most situations to guarantee an αc100% CCR. For all these

reasons, we can claim that the method based on composite hypothesis testing is an

effective, robust, and practical method.

In Summary, this thesis seems to have answered the two main research questions

stated in the introduction in a satisfactory manner. The first question:

How to extend the notion of consistency to an infinite chance constraint?

has been answered by offering the notion of (αc,ϑ)-consistency:

Definition 13. Given a chance constraint h. A value v in the domain of x ∈ Xh is

(αc, ϑ)-GAC iff there exists an assignment A in which x = v and, with confidence level

αc, ∑
s∈Ωh

Bs
hpr(s) ≥ βh − ϑ

The second question:

How to enforce statistical consistency?

has been answered by offering three methods with varying degrees of effectiveness as

depicted in Figure 6.1.

6.2 Discussion and Future Work

Some of the shortcomings and possible future works of this thesis can be summarised

as follows:

• The two methods based on confidence intervals fail to fully achieve the goal of

guaranteeing a CCR of at least αc100% CCR in general. The main reason is due
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Method Strength Weakness

Approach 1 in

Section 4.2

Achieves a desired CCR when

µ /∈]βh − ϑ, βh + ϑ[

cannot guarantee the desired

CCR when µ ∈ [βh−ϑ, βh+ϑ[.

Approach 2:

version I in

Section 4.3

Achieves a desired CCR when

βh /∈]x̄+ ϑ
2
, x̄+ 3ϑ

2
] or βh ∈]x̄+

ϑ
2
, x̄+ 3ϑ

2
] and µ ≥ βh − ϑ

cannot guarantee the desired

CCR when βh ∈]x̄+ ϑ
2
, x̄+ 3ϑ

2
]

and µ < βh − ϑ.

Approach 2:

version II in

Section 4.3

Achieves a desired CCR when

βh /∈]x̄+ ϑ
2
, x̄+ 3ϑ

2
] or βh ∈]x̄+

ϑ
2
, x̄+ 3ϑ

2
] and µ < βh − ϑ

cannot guarantee the desired

CCR when βh ∈]x̄+ ϑ
2
, x̄+ 3ϑ

2
]

and µ ≥ βh − ϑ.

Approach 3 in

Section 5.2

Achieves a desired CCR when

the sample size is carefully cho-

sen

Sensitive to the choice of δ.

Figure 6.1: Summary of the three proposed methods

to the fact that if βh − ϑ falls within the confidence interval, then based on the

evidence we are unable to figure out whether or not µ is to the right of βh − ϑ or

to the left of it. It seems that no matter how small we make the width of such a

CI, we always have such kind of situations as stated in Theorem 3.

• Another drawback is that when we want to enforce (αc,ϑ)-consistency, the con-

fidence probability needs to be adjusted using the Bonferroni correction. This

may lead to very high adjusted values which in turn will result in very high sam-

ple sizes. So, how to deal with this bottelneck in practice? are there any less

conservative approaches that one can try instead of the Bonferroni correction?

• The last method based on composite hypothesis testing is quite sensitive to the

choice of δ. So, a possible future research direction is to tackle this issue. Indeed,

is there a relationship between δ and ϑ that one can exploit?
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Appendix A

Formal Background

In this appendix we outline all the necessary formal background needed to be able to

understand the technical details of this thesis. In Section A.1, we review the basic

definition and concepts in probability theory and statistics. Next, in Section A.2, we

describe various sampling techniques. Note that most of the material in this Chapter

is a based on [MR03].

A.1 Probability Theory and Statistics

Statistics is concerned with making inference about populations and population char-

acteristics [MR03]. Experiments are conducted with results that are subject to chance.

The tossing of a coin is an example of a statistical experiment, a term that is used to

describe any process that generates a set of data. A set of observations is obtained by

repeating the experiment several times. The set of all possible outcomes of a statisti-

cal experiment is called the sample space and is represented by the symbol S. Each

outcome in a sample space is called an element or a member of the sample space. An

event is a subset of a sample space or simply a sample point. The complement of an

event A with respect to S is the subset of all events of S that are not in A. Two events

A and B are mutually exclusive or disjoint if A ∩B = ∅.
The probability of an event A is the sum of the weights of all sample points in A.

Therefore,

0 ≤ P (A) ≤ 1, P (∅) = 0, P (S) = 1

Furthermore, if A1, A2, . . . is a sequence of mutually exclusive events, then

P (A1 ∪ A2 ∪ . . .) = P (A1) + P (A2) + . . .

If an experiment can result in any one of N different equally likely outcomes, and if
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exactly n of these outcomes correspond to event A, then the probability of event A is

P (A) =
n

N

If A and B are any two events, then

P (A ∪B) = P (A) + P (B)− P (A ∩B)

For the events A, B, and C,

P (A∪B∪C) = P (A)+P (B)+P (C)−P (A∩B)−P (A∩C)−P (B∩C)+P (A∩B∩C)

The probability of an event B occurring when it is known that some event A has

occurred is called a conditional probability and is denoted by P (B|A). We have:

P (B|A) = P (A ∩B)

P (A)
, if P (A) > 0

Two eventsA andB are independent if and only if: P (B|A) = P (B) or P (A|B) = P (A),

otherwise, A and B are dependent. If in an experiment the events A and B can both

occur, then

P (A ∩B) = P (A)P (B|A)

We can also write:

P (A ∩B) = P (B ∩ A) = P (B)P (A|B)

Two events A and B are independent if and only if

P (A ∩B) = P (A)P (B)

If the events B1, B2, . . . , Bk constitute a partition of the sample space S such that

P (Bi) ̸= 0 for i = 1, 2, . . . , k, then for any event A of S,

P (A) =
k∑

i=1

P (Bi ∩ A) =
k∑

i=1

P (Bi)P (A|Bi)

Often, the observations generated by different statistical experiments have the same

general type of behavior. Since random variables associated with these experiments can

be described by the same probability distribution and by a single formulae. The prob-

ability distribution can be described as discrete or continuous depending on whether

they define probabilities associated with discrete random variables (i.e, if the set of its

possible outcomes is countable) or continuous random variables (which can take values

on a continuous scale). For example, suppose you flip a coin two times. The statistical

experiment can have four possible outcomes: HH, HT, TH, and TT where H is Head
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and T is Tail. Let the random variable X represent the number of Heads that result

from the experiment. The random variable X can only take on the values 0,1, or 2. So,

it is a discrete random variable.

The probability distribution of the discrete random variable X is a function f(x) if,

for every outcome x, we have:

1. f(x) ≥ 0

2.
∑

x f(x) = 1

3. P (X = x) = f(x)

The cumulative distribution function F (x) is defined as:

F (x) = P (X ≤ x) =
∑
t≤x

f(t), for −∞ < x < ∞

The mean or expected value of X is:

µ = E(X) =
∑
x

xf(x)

The variance of the random variable X is:

σ2 = E[(x− µ)2] =
∑
x

(x− µ)2f(x) = E(x2)− µ2

The probability distribution of the continuous random variable X defined over the

set of real numbers ℜ is f(x), if

1. f(x) ≥ 0 for all x ∈ ℜ

2.
∫∞
−∞ f(x)dx = 1

3. P (a < x < b) =
∫ b

a
f(x)dx

The cumulative distribution function F (x) of the continuous random variable X is

defined as:

F (x) = P (X ≤ x) =

∫ ∞

−∞
f(t)dt, for −∞ < x < ∞

The mean or expected value of X is:

µ = E(X) =

∫ ∞

−∞
f(x)dx

The variance of the random variable X is:

σ2 = E[(x− µ)2] =

∫ ∞

−∞
(x− µ)2f(x)dx
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A.1.1 Some Discrete Probability Distributions

The simplest of all discrete probability distributions is one where the random variable

assumes each of its values with an equal probability. Such a probability distribution

is called a discrete uniform distribution. If the random variable X assumes the values

x1, x2, . . . , xk, with equal probabilities, then the discrete uniform distribution is given

by:

f(x, k) =
1

k
, x = x1, . . . , xk

We note that the uniform distribution depends on the parameter k. The mean of

the discrete uniform distribution is:

µ =

∑k
i=1 xi

k

Since

µ = E(x) =
k∑

i=1

xif(xi, k) =
k∑

i=1

xi

k
=

∑k
i=1 xi

k

The variance is:

σ2 =

∑k
i=1(xi − µ)2

k

Since:

σ2 = E[(X − µ)2] =
k∑

i=1

(xi − µ)2f(xi, k) =
k∑

i=1

(xi − µ)2

k
=

∑k
i=1(xi − µ)2

k

An experiment often consists of repeated trials each with two possible outcomes that

may be labelled success or failure. A success/failure experiment is called a bernoulli

experiment or bernoulli trail. The Bernoulli process must possess the following proper-

ties:

1. The experiment consists of n repeated trials. Each trial results in an outcome

that may be classified as a success or a failure.

2. The probability of success, denoted by p, remains constant from trial to trial.

3. The repeated trials are independent.

The most obvious example of a Bernoulli trial is coin tossing, where success means

heads and failure means tails. The number X of successes in a Bernoulli trial is called a

Binomial random variable. the probability distribution of this discrete random variable

is called the binomial distribution, and its parameters will be denoted by b(x;n, p).

Therefore, a Bernoulli trial can result in a success with probability p and a failure with
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probability q = 1− p. The probability distribution of the binomial random variable X,

the number of successes in n in independent trails, is:

b(x;n, p) =

(
n

x

)
pxqn−x, x = 0, 1, 2, . . . , n

For example, suppose that the probability that a certain kind of component will

survive a given shock test is 3
4
. the probability that exactly 2 of the next 4 components

tested survive is:

b(2; 4,
3

4
) =

(
4

2

)
(
3

4
)2(

1

4
)2

the mean of the binomial distribution is:

µ = np

The variance of a binomial distribution is:

σ2 = npq

A.1.2 Some Continuous Probability Distributions

One of the simplest continuous probability distributions is the continuous uniform dis-

tribution. This distribution is characterized by a density function that is ”flat” and thus

the probability is uniform in a closed interval, say [A,B]. We can illustrate the den-

sity function of the continuous uniform distribution random variable X on the interval

[A,B] by the function:

f(x;A,B) =
1

B − A
, A ≤ x ≤ B

f(x;A,B) = 0, Elsewhere

Due to the simple nature of the density function, probabilities are simple to calculate

for the uniform distribution. However, note that the application of this distribution is

based on the assumption that the probability of falling in an interval within [A,B] is

constant.

The mean of the uniform distribution is µ = A+B
2

and the variance σ2 = (B−A)2

12
.

One of the most important continuous probability distributions is the normal dis-

tribution. Its graph, called the normal curve, is the bell-shaped curve as shown in

Fig. A.1, describes approximately many phenomena that occur in nature, industry, and

research.

A continuous random variable X having the bell-shaped distribution of Fig. A.1

is called a normal random variable. The mathematical equation for the probability
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Figure A.1: The Normal curve.

distribution of the normal variable depends on two parameters: µ and σ, its mean and

standard deviation. We denote the value of the density of X by n(x;µ, σ). The density

function of the normal random variable X, with mean µ and variance σ2 is:

n(x;µ, σ) =
1√
2πσ

e−
1
2
(
(x−µ)

σ
)2 , −∞ < x < ∞

The curve of any continuous probability distribution or density function is con-

structed in such a way that the area under the curve bounded by the two ordinates

x = x1 and x = x2 equals the probability that the random variable X assumes a value

between x = x1 and x = x2. Thus,

P (x1 < X < x2) =

∫ x2

x1

n(x;µ, σ)dx =
1√
2πσ

e−
1
2
(
(x−µ)

σ
)2dx

The difficulty encountered in solving integrals of normal density functions necessi-

tates the tabulation of normal curve areas for quick reference. It is, however, a difficult

task to set up a separate table for every conceivable value of µ and σ. Fortunately,

we are able to transform all the observations of a random variable X to a new set

of observations of a normal random variable Z with mean 0 and variance 1, which is

denoted as the standard normal distribution.

This can be done by the transformation:

Z =
X − µ

σ
Note that if X is a binomial random variable with mean µ = np and variance

σ2 = npq, then the limiting form of the distribution of

Z =
X − np
√
npq
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as n tends to∞, is the standard normal distribution n(Z; 0, 1). The normal distribution

with µ = np and σ2 = np(1 − p) provides a practical approximation to the binomial

distribution when n is large and p is not close to 0 or 1.

The Normal distribution can be used to solve many problems in Management, Eco-

nomics, Engineering, and Science there are still numerous situations that require differ-

ent types of density functions such as the gamma and exponential distributions. The

gamma distribution derives its name from the well-known gamma function:

γ(α) =

∫ ∞

0

xα−1e−xdx, ∀α > 0

The density function of the continuous random variable X which has a gamma

distribution with parameters α and β is given by:

f(x) =
1

βαγ(α)
xα−1e−

x
β , x > 0

f(x) = 0, Elsewhere

where α > 0 and β > 0.

The mean of the gamma distribution is µ = αβ and its variance is σ2 = αβ2.

The special gamma distribution for which α = 1 is called the exponential distribution.

Therefore, the density function of the continuous random variable X which has an

exponential distribution, with parameter β, is:

f(x) =
1

β
e−

x
β , x > 0

f(x) = 0, Elsewhere

where β > 0.

The mean and variance of the exponential distribution are µ = β and σ2 = β2.

A.2 Sampling

A population consists of the totality of observations with which we are concerned,

whether their number is finite or infinite such as groups of people, animals, etc. Each

observation in a population is a value of a random variable X having some probability

distribution f(x). The statistician is interested in arriving at conclusions concerning a

population when it is impossible or impractical to observe the entire set of observations

that make up the population. That is why we must depend on a subset of observa-

tions from the population to help us make inference concerning that same population.

Hence, we define the notion of sampling which is widely used for gathering information
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about a population. A representative sample is one that has all the characteristics of

the population from which it is drawn. A sample is a smaller (but hopefully a repre-

sentative) collection of units from a population used to determine truths about that

population. Any sampling procedure that produces inferences that consistently over-

estimate or consistently underestimate some characteristic of the population is said to

be biased.

This process compromises several stages which are:

1. Defining the population of concern;

2. Specifying a sampling frame, ie.., as set of items or events possible to measure;

3. Specifying a sampling method for selecting items or events from the frame;

4. Determining the sample size;

5. Implementing the sampling plan;

6. Sampling and data collecting;

7. Data which can be selected (sampling frame).

We have two types of sampling. The first one is probability sampling, in which every

unit in the population has a chance (greater than zero) of being selected in the sample.

This probability can be accurately determined, when every element in the population

has the same probability of selection. This is known as an equal probability of selection

(EPS). The probability sampling methods include: simple random sampling (SRS),

systematic sampling, stratified sampling, cluster sampling, and multistage sampling.

The second one is non probability sampling which is any sampling method where some

elements of the population have no chance of selection, or where the probability of

selection cannot be accurately determined. It involves the selection of elements based on

assumptions regarding the population of interest, which forms the criteria for selection.

The selection of elements in this method is non random.

Next, we review the most popular methods of probability sampling that can be

employed to draw conclusions about the population.

Simple random sampling. It is a subset of a statistical population in which each

member of the subset has an equal probability of being chosen. A SRS is meant to

be an unbiased representation of the population. An example of SRS is a group of 3

employees chosen out of 250 employees. In this case the population is all 250 employees

and the sample is random because each employee has an equal chance of being chosen.

Systematic sampling. The steps that we need to follow in order to achieve a

systematic random sample are:
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1. Number the units in the population from 1 to N ;

2. Decide on the sample size n that we need;

3. Calculate the interval size k = N
n
;

4. Randomly select an integer between 1 and k;

5. Select every kth unit.

It is essential to know that the units in the population are randomly ordered, at

least with respect to the characteristics we are measuring. Systematic random sampling

is easy to implement and may be more precise than simple random sampling.

Stratified sampling. also sometimes called proportional or quota random sam-

pling. It divides the population into homogenous subgroups (stratum) which share one

common characteristic. Examples of stratum might be females and males. Once the

stratum are defined, take a simple random sample in each subgroup. This method

assures that you will be able to represent not only the overall population, but also the

key subgroups of the population.

The main purpose in selecting random samples is to elicit information about the

unknown population parameters. Any function of the random variables constituting

a random sample is called a statistic. A statistic is a random variable that depends

only on the observed sample, it must have a probability distribution. The probability

distribution of a statistic is called sampling distribution. If X1, . . . , Xn represent a

random sample of size n, then the sample mean is defined by the statistic:

X̄ =

∑n
i=1Xi

n

For instance, the sample mean X̂ can be used to make an inference concerning

the population mean µ. A measure of sample mean does not by itself give a clear

indication of the nature of the sample. Thus, a measure of variability in the sample

must be considered, i.e., the sample variance. The variability in the sample should

display how the observations spread out from the average, i.e., the sample variance is

defined as follows:

S2 =

∑n
i=1(Xi − X̄)2

n− 1

The sample standard deviation denoted by S, is the square root of the sample

variance.

If we are sampling from a population with unknown distribution, the sampling

distribution of X̄ can be approximately normal with mean µ and variance σ2

n
provided

that the sample size is large. This is a result of the central limit theorem: If X̄ is the
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mean of a random sample of size n taken from a population with mean µ and finite

variance σ2, then the limiting form of the distribution

Z =
X̄ − µ

σ√
n

as n tends to ∞, is the standard normal distribution n(z; 0, 1).
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Appendix B

Implementing Confidence Intervals

and Hypothesis Testing in the R
Language

We present the implementation details of the key building blocks of our experiments.

We used the R language and environment for statistical computing and graphics

[R C13]. It is an environment which was developed at Bell Laboratories by John Cham-

bers and colleagues. R is an environment within which many classical and modern

statistical techniques have been implemented.

For each configuration ⟨µ, βh, αc, ϑ⟩ and a given sample size n, we plan to perform

1000 random experiments by generating 1000 random configurations ⟨Sn, βh, αc, ϑ⟩.
For example, if we wish to generate a sample Sn of size n of values ”0” and ”1”, we

can use the Binomial distribution [Sam65] with parameters n and p which is a discrete

probability distribution of the number of successes in a sequence of n independent

yes/no experiments ( Bernoulli trials), each of which yields success with probability p.

A Bernoulli trial is a random experiment with exactly two possible outcomes, ”success”

and ”failure”, in which the probability of success is the same every time the experiment

is conducted [Pap84]. The binomial distribution is frequently used to model the number

of successes in a sample of size n drawn with replacement from a population.

We need to simulate random Sn that are Binomial. To do this, in R, we call the

rbinom function which has the following parameters:

1. The number of experiments. In our case, these correspond to the sample size n;

2. The number of observations per experiment. In our case, we only record one

observation.
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3. The probability of success p. In our case, this corresponds to µ.

So, to generate a sample of size 100, we call the following in R:

S=rbinom(100,1,p) # generate a random sample of size 100

This will generate a vector of 0’s and 1’s of size 100. Each of the 0’s and 1’s is

generated following the Bernoulli distribution with success probability p.

To compute a 95% Clopper-Pearson interval from a sample S of size n, we call in

R the following commands:

zo=sum(S)

CI_o=binom.confint( x = zo, n, conf.level = 0.95, methods ="exact")

where:

• x is the number of successes in the binomial experiment.

• n is the number of independent trials in the binomial experiment.

• conf.level is the level of confidence to be used in the confidence interval.

• methods is the method to use to construct the interval. The ”exact” corresponds

to the Clopper-Pearson method.

The mean and the standard deviation of a sample can be computed in R using the

following commands:

mn=mean(S)

stt<-sd(S)

The z-statistic —where the number of samples is n, βh is denoted by betah and ϑ

by theta —is computed in R as follows:

z <- (mn-(betah-theta))/(stt/sqrt(n))

For αc = 0.95, we reject the Null hypothesis H0 : µ ≥ βh − ϑ if z < −1.645 and

accept H1 : µ < βh − ϑ. Otherwise, we accept the Null hypothesis H0.
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