
Department of Computer Science
Series of Publications A

Report A-2018-5

Solving Optimization Problems via
Maximum Satisfiability: Encodings and

Re-Encodings

Jeremias Berg

To be presented with the permission of the Faculty of Science
of the University of Helsinki, for public criticism in Auditorium
CK112, Exactum, Gustaf Hällströmin katu 2b, on May 25th,
2018, at 12 o’clock noon.

University of Helsinki
Finland

Supervisors
Associate Professor Matti Järvisalo, University of Helsinki, Finland
Professor Petri Myllymäki, University of Helsinki, Finland

Pre-examiners
Professor Lakhdar Sais, Université d’Artois, France
Professor Peter Stuckey, University of Melbourne, Australia

Opponent
Associate Professor Inês Lynce, Universidade de Lisboa, Portugal

Custos
Associate Professor Matti Järvisalo, University of Helsinki, Finland

Contact information

Department of Computer Science
P.O. Box 68 (Gustaf Hällströmin katu 2b)
FI-00014 University of Helsinki
Finland

Email address: info@cs.helsinki.fi
URL: https://www.helsinki.fi/en/computer-science
Telephone: +358 2941 911

Copyright c© 2018 Jeremias Berg
ISSN 1238-8645
ISBN 978-951-51-4241-2 (paperback)
ISBN 978-951-51-4242-9 (PDF)
Helsinki 2018
Unigrafia

Solving Optimization Problems via Maximum Satisfiability:
Encodings and Re-Encodings

Jeremias Berg

Department of Computer Science
P.O. Box 68, FI-00014 University of Helsinki, Finland
jeremiasberg@gmail.com
http://www.jeremiasberg.com

PhD Thesis, Series of Publications A, Report A-2018-5
Helsinki, April 2018, 86 + 102 pages
ISSN 1238-8645
ISBN 978-951-51-4241-2 (paperback)
ISBN 978-951-51-4242-9 (PDF)

Abstract

NP-hard combinatorial optimization problems are commonly encountered
in numerous different domains. As such efficient methods for solving in-
stances of such problems can save time, money, and other resources in
several different applications. This thesis investigates exact declarative ap-
proaches to combinatorial optimization within the maximum satisfiability
(MaxSAT) paradigm, using propositional logic as the constraint language
of choice. Specifically we contribute to both MaxSAT solving and encoding
techniques.

In the first part of the thesis we contribute to MaxSAT solving technology
by developing solver independent MaxSAT preprocessing techniques that
re-encode MaxSAT instances into other instances. In order for preprocess-
ing to be effective, the total time spent re-encoding the original instance
and solving the new instance should be lower than the time required to
directly solve the original instance. We show how the recently proposed
label-based framework for MaxSAT preprocessing can be efficiently inte-
grated with state-of-art MaxSAT solvers in a way that improves the empir-
ical performance of those solvers. We also investigate the theoretical effect
that label-based preprocessing has on the number of iterations needed by
MaxSAT solvers in order to solve instances. We show that preprocessing
does not improve best-case performance (in the number of iterations) of
MaxSAT solvers, but can improve the worst-case performance. Going be-

iii

iv

yond previously proposed preprocessing rules we also propose and evaluate
a MaxSAT-specific preprocessing technique called subsumed label elimina-
tion (SLE). We show that SLE is theoretically different from previously
proposed MaxSAT preprocessing rules and that using SLE in conjunction
with other preprocessing rules improves empirical performance of several
MaxSAT solvers.

In the second part of the thesis we propose and evaluate new MaxSAT
encodings to two important data analysis tasks: correlation clustering and
bounded treewidth Bayesian network learning. For both problems we em-
pirically evaluate the resulting MaxSAT-based solution approach with other
exact algorithms for the problems. We show that, on many benchmarks,
the MaxSAT-based approach is faster and more memory efficient than other
exact approaches. For correlation clustering, we also show that the qual-
ity of solutions obtained using MaxSAT is often significantly higher than
the quality of solutions obtained by approximative (inexact) algorithms.
We end the thesis with a discussion highlighting possible further research
directions.

Computing Reviews (2012) Categories and Subject
Descriptors:

Mathematics of computing→Combinatorial optimization
Theory of computation→Constraint and logic programming
Theory of computation→Problems, reductions and completeness

General Terms:
Algorithms, Satisfiability, Combinatorial Optimization

Additional Key Words and Phrases:
constraint optimization, maximum satisfiability, MaxSAT, preprocessing

Acknowledgements

This work was done as part of the Constraint Reasoning and Optimization
(CoReO) group of the Department of Computer Science at the Univer-
sity of Helsinki. First and foremost I would like to express my sincerest
gratitude to my advisor, Associate Professor Matti Järvisalo for all of the
guidance and advice I have received during my PhD studies. I especially
want to thank you for believing in me enough to let me pursue my own
research interests. I am also very grateful to Professor Petri Myllymäki
for the numerous roles he has played in making this work possible. Many
thanks go to all of my other co-authors as well: Paul Saikko, Brandon Mal-
one, Tuukka Korhonen, Antti Hyttinen, Emilia Oikarinen, Kai Puolamäki,
Kerstin Bunte and Samuel Kaski. Working with all of you has been most
pleasant and educational.

The quality of this manuscript has been significantly improved by the
valuable feedback I have received from various people. I would especially
like to thank my pre-examiners Professor Lakhdar Sais and Professor Peter
Stuckey for their valuable input as well as Associate Professor Inês Lynce
for taking the time to come to Helsinki to be my opponent. I extend
my gratitude to everyone else who has given me feedback and suggestions,
Matti, Antti, Jonas and Brandon as well as all anonymous reviewers of each
publication.

I am immensely grateful for the support I have received from the Doc-
toral School of Computer Science (DoCS). I thank the board and steering
committee for giving me the financial stability needed complete my PhD.
I especially want acknowledge Dr Pirjo Moen for helping me with most
non-research related issues during my time as a PhD student. I also want
to thank the Emil Aaltonen Foundation and the Nokia Foundation for fi-
nancially supporting my PhD research.

I consider myself very lucky to have been a member of the CoReO
research group. I’d like to thank past and present members of CoReO
for the very inspiring research environment you have provided and the
many interesting discussions we have had over the years. In addition to

v

vi

my colleagues I would also like to thank my friends and other colleagues,
both in and outside of Kumpula campus, for the welcome and necessary
distractions from research. A special thanks goes to everyone that played
cards with me in the coffee room or belayed me on the climbing wall. I
am also immensely grateful for the opportunities given to me by my family
and relatives. Without your support I would not be who I am today and
probably would not have pursued a PhD in the first place. Finally I would
like to thank Christina for being there for me through the ups and downs
of day to day life.

Helsinki, April 2018

Jeremias Berg

Contents

1 Introduction 1

1.1 Maximum Satisfiability . 3

1.2 Contributions of the Thesis 4

1.2.1 Original Publications 5

1.2.2 Research Questions 5

1.2.3 Specific Contributions by the Present Author 10

1.3 Organization of the Thesis 11

2 Preliminaries 13

2.1 Propositional Satisfiability 13

2.2 Maximum Satisfiability . 15

2.3 Cardinality Constraints . 17

2.4 SAT-based MaxSAT Solvers 18

3 Preprocessing for Maximum Satisfiability Solving 23

3.1 Label-based MaxSAT Preprocessing 24

3.2 Integrating Label-based Preprocessing into SAT-based Solving 27

3.3 Effect of Preprocessing on SAT-based Solving 32

3.4 Subsumed Label Elimination 35

4 Maximum Satisfiability for Data Analysis 41

4.1 Correlation Clustering . 41

4.1.1 Problem Setting . 42

4.1.2 MaxSAT Encodings of Correlation Clustering 43

4.1.3 Experimental Evaluation 47

4.2 Bounded Treewidth Bayesian Network Structure Learning . 50

4.2.1 Problem Setting . 50

4.2.2 MaxSAT Encoding of BTBNSL 51

4.2.3 Experimental Evaluation 53

5 Conclusion 55

vii

viii Contents

References 59

Reprints of the original publications 87

Chapter 1

Introduction

Mathematical optimization is a rich field of study with numerous applica-
tions. Whenever we are given a problem and tasked with finding a solution
that is “best”, we are faced with an optimization problem. If the space
of possible (feasible) solutions is discrete, we talk about a combinatorial
optimization problem [1]. The exact definition of a solution being best (op-
timal) depends on the specific problem at hand. Commonly used quality
measures include the length or cost of a solution. In this thesis, we focus
on computationally challenging combinatorial optimization problems and,
in particular, on developing maximum satisfiability [2] as a tool for solving
them.

Computationally challenging optimization problems are common. Sev-
eral of the well-known NP-complete decision problems correspond to NP-
hard optimization problems. Consider, for example, the traveling salesper-
son problem (TSP) [3, 4]. An instance of TSP consists of a set of locations
and the pairwise distances between them. A (feasible) solution to the in-
stance is a route which visits all of the locations. The problem of deciding
the existence of a route that has length at most some given bound is NP-
complete. The corresponding NP-hard combinatorial optimization problem
asks to find the shortest possible route.

NP-hard optimization problems are encountered in various settings, in-
cluding, but not restricted to: telecommunications and network design [5],
computational biology [6, 7], clustering [8–10], structure learning of prob-
abilistic graphical models [11–13], argumentation [14], itemset mining [15–
18], data visualization [19–21], planning [22–24], scheduling [25–30], rout-
ing [31], timetabling [32–36], hardware and software verification [37–39],
covering [40], air traffic management [41, 42] and cancer therapy design [43].

The abundance and diversity of optimization problems suggests that
efficient algorithms for can save time (e.g,. scheduling), money (e.g., net-

1

2 1 Introduction

work design) or other resources in various applications. For example, an
effective solution method to TSP could significantly decrease the delivery
times and fuel costs of a delivery company.

The research field of combinatorial optimization is well-established and
studied [1]. The solution approaches to combinatorial optimization prob-
lems can roughly be divided into four categories: approximation algo-
rithms [44–48], local search algorithms [49–52], problem-specific exact al-
gorithms [3, 53–56] and exact declarative methods [2, 57–62]. This thesis
focuses on exact declarative methods for solving NP-hard combinatorial
optimization problems.

Figure 1.1 overviews the declarative approach to solving an instance p
of an NP-hard optimization problem P. The first step of the declarative
approach is the encoding of p into some mathematical constraint language
L. In other words, the declarative approach assumes the existence of a
function (an encoding) P → L that maps each instance p of P to an instance
F(p) of L, i.e., a set of constraints in L. The instance F(p) describes p in the
sense that optimal solutions to F(p) correspond to optimal solutions to p.
We assume that the constraint instance F(p) can be formed in polynomial
time with respect to the size of p. This assumption is typical when working
with declarative methods, although there has been some research into larger
encodings, often for solving even more complex problems [63–65].

After encoding p into F(p), the next step in the declarative approach
is solving F(p), i.e., computing an optimal assignment to the variables in
F(p). We call such an assignment an optimal solution to F(p). Finally, the
optimal solution to F(p) is used to reconstruct an optimal solution to p.
Analogously to the encoding step, we assume that the reconstruction step
is computable in polynomial time. Since P is NP-hard, these assumptions
imply that L should be NP-hard as well. More specifically, we focus in
this thesis on optimization problems and constraint languages with NP-
complete decision counterparts. In the rest of the text, we use the term
NP-hard in an informal manner to refer to specifically to such problems.

A notable characteristic of the pipeline in Figure 1.1 is that the (only)
two computationally challenging steps are defining an encoding P → L
and solving the constraint instance F(p). Assuming P 6= NP, no complete
solver for an NP-hard constraint language will run in polynomial time on
every instance [66]. The efficiency of the declarative approach relies instead
on designing solvers and encodings which ensure that the “interesting” in-
stances of P are encoded into constraint instances F(p) on which the solver
is able to avoid its worst case running time. By interesting instances we
mean instances that are encountered in actual applications of the prob-

1.1 Maximum Satisfiability 3

Instance p of P Instance F(p)

Solution τ to F(p)Solution to p

Encoding

Solver

Reconstruction

Figure 1.1: A declarative approach to solving an optimization problem P.

lem. Consider for example a delivery company applying a solution method
to TSP. A significant fraction of the theoretically possible instances (sets
of locations) of TSP are never going to be encountered by the company
in practice. Instead, an encoding and a solver which together are able to
solve the instances corresponding to actually possible locations are enough
to obtain a solution approach to TSP which is sufficient for the company’s
needs.

A significant benefit of the declarative approach to solving optimization
problems is its generality. The computationally challenging step of solving
F(p) is independent of the particular optimization problem P being solved.
This means that improvements in solver technology of the chosen constraint
language translate directly into more efficient algorithms to several different
optimization problems, given the existence of well-performing encodings.
Over the last decades, a number of different NP-hard constraint languages
with varying features have been proposed and developed. A well known
example is integer programming [57, 67, 68]. Others include constraint
programming [59, 69], answer set programming [60, 61], maximum satisfi-
ability [2] and its extensions to satisfiability modulo theories [70–72]. This
thesis focuses on propositional logic as the underlying constraint language
and maximum satisfiability as the corresponding constraint optimization
problem.

1.1 Maximum Satisfiability

Maximum satisfiability (MaxSAT) is the optimization counterpart of the
archetypical NP-complete propositional satisfiability (SAT) problem [66].
The expressive semantics of propositional logic, the constraint language
underlying MaxSAT, allow encoding many NP-hard optimization problems
as MaxSAT instances. At the same time, the relatively simple syntax also

4 1 Introduction

allows the development of efficient solvers. The potential of propositional
logic as the constraint language has been witnessed by the exceptional suc-
cess of SAT solvers over the last decade [73, 74]. Recent improvements
in MaxSAT solving technology and encodings have led to MaxSAT being
applied in many different problem domains, including clustering [75], prob-
abilistic modeling [76–79], data visualization [20], haplotype inference [80–
82], game theory [83] treewidth computation [84], reasoning over biological
networks [85, 86], electronic markets [87], routing [31], software verifica-
tion and code debugging [37, 88–92], planning [24, 93, 94], cancer ther-
apy design [43], computing covering arrays [95] scheduling [36], probabilis-
tic reasoning [78], upgradeability [96], design debugging [97], analysis of
other constraint satisfaction problems [98] and computer memory recon-
struction [99].

The state of the art in MaxSAT solving techniques is evaluated annually
in the MaxSAT Evaluations [100–102]. The evaluations have shown that
the effectiveness of MaxSAT solvers for solving other optimization problems
builds heavily on the effectiveness of SAT solvers. More specifically, many
of the solvers that are most effective on MaxSAT instances that correspond
to other optimization problems make extensive use of satisfiability solvers as
subroutines. In the rest of the thesis such solvers are collectively called SAT-
based MaxSAT solvers. SAT-based MaxSAT solvers can further be divided
into roughly three subcategories: the model-guided [103–108], the core-
guided [106, 109–120] and the implicit hitting set based [121–123] solvers.
Most of the contributions of this thesis are developed in the context of core-
guided and implicit hitting set based solvers, although many of the ideas
are simple to extend to model-guided solvers as well.

It should be noted that in addition to SAT-based MaxSAT solvers, an-
other commonly used approach to MaxSAT solving is branch and bound
(B&B) [124–134]. B&B solvers tend to be most effective on random MaxSAT
instances as well as challenging instances of smaller size. Such instances
are encountered for example in combinatorics [100–102].

1.2 Contributions of the Thesis

This thesis is based on six peer-reviewed publications. The contributions
of this thesis are divided into two interrelated research questions. In this
section we first overview the publications and then discuss the research
questions. We also briefly overview the specific contributions of the present
author to each individual publication. The remaining chapters of the thesis
will then discuss the contributions of each publication in more detail.

1.2 Contributions of the Thesis 5

1.2.1 Original Publications

The following six peer-reviewed publications form the basis of this thesis.
The papers are referred to as Papers I-VI in the rest of the text.

I Jeremias Berg, Paul Saikko, and Matti Järvisalo. Improving the
Effectiveness of SAT-Based Preprocessing for MaxSAT. In
Proceedings of the 24th International Joint Conference on Artificial
Intelligence (IJCAI), pages 239-245. AAAI Press, 2015.

II Jeremias Berg, Paul Saikko, and Matti Järvisalo. Re-using Auxil-
iary Variables for MaxSAT Preprocessing. In Proceedings of the
IEEE 27th International Conference on Tools with Artificial Intelli-
gence (ICTAI), pages 813-820. IEEE Computer Society, 2015.

III Jeremias Berg and Matti Järvisalo. Impact of SAT-Based Pre-
processing on Core-Guided MaxSAT Solving. In Proceedings of
the 22nd International Conference on Principles and Practice of Con-
straint Programming (CP), volume 9892 of Lecture Notes in Computer
Science, pages 66-85. Springer International Publishing, 2016.

IV Jeremias Berg, Paul Saikko, and Matti Järvisalo. Subsumed Label
Elimination for Maximum Satisfiability. In Proceedings of the
22nd European Conference on Artificial Intelligence (ECAI), volume
285 of Frontiers in Artificial Intelligence and Applications, pages 630-
638. IOS Press, 2016.

V Jeremias Berg and Matti Järvisalo. Cost-Optimal Constrained
Correlation Clustering via Weighted Partial Maximum Sat-
isfiability. Artificial Intelligence. 244:110-142, 2017.

VI Jeremias Berg, Matti Järvisalo, and Brandon Malone. Learning Op-
timal Bounded Treewidth Bayesian Networks via Maximum
Satisfiability. In Proceedings of the 17th International Conference on
Artificial Intelligence and Statistics (AISTATS), volume 33 of JMLR
Workshop and Conference Proceedings, pages 86-95. JMLR, 2014.

Reprints of the publications are included at the end of the thesis.

1.2.2 Research Questions

This thesis contributes to improving the effectiveness of using MaxSAT for
solving combinatorial optimization problems by studying two distinct but
connected research questions. The first question concerns the development

6 1 Introduction

of MaxSAT solving methods, specifically in the form of solver-independent
MaxSAT preprocessing [135]. The second question concerns the develop-
ment of new MaxSAT encodings for two data analysis problems, correlation
clustering [136] and bounded treewidth Bayesian network structure learn-
ing [137, 138].

Research Question 1: Preprocessing in MaxSAT solving

The first part of the thesis focuses on improving SAT-based MaxSAT solv-
ing. More specifically, Papers I-IV develop preprocessing techniques for
MaxSAT. Preprocessing [139–141] extends the declarative pipeline (Fig-
ure 1.1) by adding a preprocessing step directly after the encoding step.
During preprocessing, the constraint instance F(p) is re-encoded into an-
other constraint instance pre(F(p)) using polynomial-time computable in-
ference rules. In this context, the inference rules are called preprocessing
rules and the process of re-encoding F(p) is called preprocessing F(p).
Analogously to the encoding, the preprocessing rules used should preserve
optimal solutions. Informally, we say that preprocessing is sound if any op-
timal solution to pre(F) can be used to reconstruct an optimal solution to
F in polynomial time. The goal of (sound) preprocessing is to increase the
applicability of MaxSAT for solving optimization problems by decreasing
the overall time spent solving instances. In other words, effective prepro-
cessing makes the total time spent preprocessing F(p) together with the
time spent solving pre(F(p)) lower than the time required to directly solve
F(p). In this thesis, we focus on problem-independent preprocessing, i.e.,
preprocessing that does not depend on the particular optimization problem
P being solved. In other words, we focus on preprocessing techniques that
can be applied on any MaxSAT instance F , regardless of the particular
domain from which F was obtained.

In SAT solving, the importance of preprocessing is well-understood [140].
Many modern SAT solvers apply preprocessing before starting search [141–
150]. The effectiveness of preprocessing in SAT solving suggests that simi-
lar effective preprocessing rules could be developed for MaxSAT solving as
well. This possibility is especially interesting in the context of SAT-based
MaxSAT solvers, since their effectiveness relies heavily on SAT solvers.
Generalizing preprocessing rules proposed for SAT solving to MaxSAT is
not straightforward. Direct application of many such rules to MaxSAT in-
stances is not sound [135]. Informally, the reason is that, in order to be
sound for SAT-solving, a preprocessing rule should preserve satisfiability,
not the number of falsified clauses, and thus not optimal MaxSAT solutions
either [151].

1.2 Contributions of the Thesis 7

One approach to sound MaxSAT preprocessing is the so-called MaxSAT
resolution rule [151]. Preprocessing rules based on MaxSAT resolution are
indeed used by some B&B solvers [131, 152, 153]. However, such rules
are difficult to use efficiently when solving MaxSAT instances that cor-
respond to industrial applications. The reason is that each application
of MaxSAT resolution adds several new clauses to the instance. Hence,
MaxSAT resolution based preprocessing rules often increase the size of the
already large industrial instances beyond what MaxSAT solvers can handle.
In this thesis we focus on an alternative approach to MaxSAT preprocessing
known as label-based preprocessing [135, 154]. Label-based preprocessing
of MaxSAT instances allows generalizing several of the existing and well-
established preprocessing rules proposed for SAT solving to MaxSAT by
adding a single new variable (a label) to each soft clause of the instance
before preprocessing.

In Papers I and II we develop label-based preprocessing further. In
Paper I we show how label-based preprocessing can efficiently be incor-
porated with SAT-based MaxSAT solvers. The central insight of Paper I
is that most SAT-based MaxSAT solvers add extra variables to the soft
clauses of MaxSAT instances regardless of the use of preprocessing. In Pa-
per I we show that the labels added during preprocessing can be reused in
the solver, thus avoiding the need for the solver to add any new variables.
We also show that reusing variables improves the empirical performance
of LMHS, an at the time state-of-the-art SAT-based MaxSAT solver [123].
In Paper II we take the idea further and show that some variables in the
input MaxSAT instance itself can be reused in the preprocessing and solv-
ing phases. This further reduces the number of new variables that need
to be added when preprocessing and solving MaxSAT instances. We also
show that identifying reusable variables from MaxSAT instances improves
empirical performance of LMHS.

In Paper III we present a theoretical analysis on the effect of prepro-
cessing on the number of SAT solver calls that SAT-based MaxSAT solvers
require in order to terminate. An underlying motivation for the analysis is
that SAT solver calls are the most computationally expensive step of such
solvers. Thus insights into which factors influence the number of necessary
calls can potentially significantly improve them. In Paper III we show that
label-based generalizations of preprocessing rules for SAT solving can not
reduce the minimum number of necessary SAT solver calls. We also show
that preprocessing can ensure that the solver avoids worst-case executions,
i.e., that preprocessing can decrease the maximum number of iterations
required by SAT-based MaxSAT solvers.

8 1 Introduction

Finally, in Paper IV we propose and analyze a new label-based MaxSAT
preprocessing rule called subsumed label elimination (SLE). We analyze
the theoretical differences between SLE and the generalizations of prepro-
cessing rules for SAT solving. In particular, we show that including SLE
amongst the preprocessing rules used during label-based preprocessing can
result in more clauses and variables removed from the instance. We also
report on an empirical evaluation on the effect of using SLE during label-
based preprocessing. Our results show that SLE can improve the empirical
performance of some state-of-the-art SAT-based MaxSAT solvers.

Research Question 2: Applications of MaxSAT in Data Analysis

The second part of this thesis focuses on developing MaxSAT encodings of
other NP-hard combinatorial optimization problems. More specifically, Pa-
pers V and VI develop new MaxSAT encodings for two data analysis tasks:
correlation clustering [136] (Paper V) and bounded treewidth Bayesian net-
work structure learning [137, 155] (Paper VI).

Clustering is one of the central problems of unsupervised machine learn-
ing [156–159]. Given a set of data points, the goal of clustering is to par-
tition the set in some meaningful way. The partitioning is typically called
a clustering of the data and each set of a clustering is a cluster. This
definition of clustering is very general, a number of different clustering
problems and algorithms have been proposed over the years [160–164], in-
cluding some constraint-based approaches [8–10, 165–167]. In Paper V, we
focus on the correlation clustering problem [168–174]. Correlation cluster-
ing is a recently proposed clustering paradigm geared towards classifying
data based on qualitative similarity information—as opposed to quantita-
tive information—of pairs of data points. An instance of the correlation
clustering problem consists of a set of data points and pairwise similarity
information over them. The similarity information expresses preferences on
whether or not the pair of points should be assigned to the same cluster.
Informally, pairs of points that are similar should be assigned to the same
cluster. At the same time, pairs of points that are dissimilar should be
assigned to different clusters. An optimal solution to the instance balances
these two conflicting objectives as well as possible. In contrast to other typi-
cal clustering paradigms, correlation clustering does not require the number
of clusters as input. Instead, the optimal number should be learned during
search. This makes correlation clustering especially well-suited for settings
in which the true number of clusters is unknown. Consider for example the
problem of clustering documents by topic without any prior knowledge on
what those topics might be or how many of them there are [136, 175].

1.2 Contributions of the Thesis 9

In Paper V we propose and prove the correctness of three MaxSAT
encodings of correlation clustering. We also empirically compare the re-
sulting MaxSAT-based solution approach with previously proposed exact
and approximation (inexact) algorithms. Our results indicate that, within
the scalability of exact approaches, the MaxSAT-based approach is often
both faster and more memory-efficient than other exact approaches. We
also show that the clusterings obtained using MaxSAT are of significantly
better quality than the ones obtained by inexact algorithms, especially on
sparse instances with missing similarity information.

Bayesian networks are an important class of probabilistic graphical
models widely-used for representing joint probability distributions of sets
of random variables [137, 176]. A Bayesian network structure is a directed
acyclic graph (DAG) in which each node corresponds to a random variable.
The graph represents the conditional dependencies between the variables.
Often, a Bayesian network structure that represents given data well is not
known a priori, and needs to be learned from observations (data) instead.
Learning the optimal structure is a well-known optimization problem called
the Bayesian network structure learning problem (BNSL) [177–180]. There
are two main frameworks for BNSL: the score-based framework, and the
independence test-based framework. In the score-based framework, each
possible DAG structure is assigned a score that measures how well the
structure explains the observations. The goal of BNSL is to compute a
best-scoring network. For several commonly used scoring functions, the
BNSL problem is NP-hard [181]. As is typical for challenging optimiza-
tion problems, early solution methods to the problem tended to focus on
polynomial-time inexact algorithms [182–187] while interest in exact algo-
rithms for BNSL has increased within the last decade [54, 180, 188–191].

After having learnt a Bayesian network structure, the network is typ-
ically used for probabilistic inference tasks, such as inferring the prob-
ability distribution of some variables, possibly given the values of oth-
ers. For general Bayesian network structures, this inference task is NP-
hard [192]. However, it is becomes tractable whenever the underlying net-
work structure has bounded (fixed) treewidth [193, 194]. Treewidth is a
well-known graph-theoretic measure [195]. Informally, treewidth measures
how “close” a given graph is to being a tree. All trees have treewidth 1
and all complete graphs with n nodes have treewidth n− 1. Treewidth has
important connections to (in)tractability. Many NP-hard problems become
tractable when restricted to instances that can be modeled using graphs
with bounded treewidth [196, 197]. The fact that inference is tractable
in Bayesian networks with low treewidth motivates the development of

10 1 Introduction

algorithms that learn optimal Bayesian network structures with bounded
treewidth, a problem known as bounded treewidth Bayesian network struc-
ture learning (BTBNSL). Compared to the recent progress in practical al-
gorithms for optimally solving BNSL, fewer algorithms have been proposed
for BTBNSL [138, 198–201]. In Paper VI we study BTBNSL in the score-
based framework. It should be noted that the extra constraint bounding
the treewidth of the solution network structure is a non-trivial addition to
BNSL. BTBNSL is also an NP-hard optimization problem [199]. In fact,
computing the treewidth of any graph is NP-hard [202].

In Paper VI we propose a MaxSAT encoding of BTBNSL. We com-
pare the resulting MaxSAT-based solution approach to a previously pro-
posed dynamic programming algorithm as the only other practical exact
solution algorithm to BTBNSL available at the time of the publication of
Paper VI [198]. We show that the MaxSAT-based method is more memory-
efficient and scales noticeably better than the dynamic programming algo-
rithm.

1.2.3 Specific Contributions by the Present Author

All publications were jointly co-written by all of their authors. Other con-
tributions by the present author are as follows.

Paper I: The idea of reusing labels in a SAT-based MaxSAT solver was
first proposed by the present author. The modifications required for label
reusing in LMHS were done by the second author of the paper as the author
of the LMHS solver. The present author modified a SAT preprocessor to
be usable as a MaxSAT preprocessor and ran all of the experiments.

Paper II: The idea of identifying literals from the input formula that
can be used as labels in preprocessing and assumptions in MaxSAT solving
was a natural extension of Paper I. The present author implemented the
modifications to the external preprocessor used in the publication and ran
all of the experiments.

Paper III: The theoretical analysis was conducted by the present author
under the guidance of the second author.

Paper IV: The idea of subsumed label elimination was developed by
the present author with assistance from the other authors. The present
author implemented the technique into the preprocessor and ran all of the
experiments.

1.3 Organization of the Thesis 11

Paper V: The MaxSAT encoding of correlation clustering was jointly
developed by the authors of the publication. The present author ran all of
the experiments.

Paper VI: The MaxSAT encoding of bounded treewidth Bayesian net-
work learning was co-developed by the authors of the publication. The
present author ran all experiments presented in the paper.

1.3 Organization of the Thesis

The rest of the thesis is organized as follows. In Chapter 2 we give the
background information relevant to this thesis. The contributions to the
first and second research question are then overviewed in more detail in
Chapters 3 and 4, respectively. We conclude the thesis with a summarizing
discussion in Chapter 5.

12 1 Introduction

Chapter 2

Preliminaries

In this chapter we give the relevant definitions and background informa-
tion for understanding the main results of this thesis. First we give precise
definitions of the satisfiability and maximum satisfiability problems in Sec-
tions 2.1 and 2.2, respectively. We then proceed by overviewing cardinality
constraints in Section 2.3 as an important class of higher level constraints
commonly used in both SAT-based MaxSAT solving and MaxSAT encod-
ings of other optimization problems. We end the chapter by overviewing
SAT-based MaxSAT solvers in Section 2.4. In our discussion we assume
familiarity with propositional logic.

2.1 Propositional Satisfiability

We identify the truth value true with 1 and false with 0. A Boolean variable
x has the domain {0, 1}. A literal l is a Boolean variable x or its negation
¬x. For a literal l, it holds that ¬¬l = l. A clause C is a disjunction (∨) of
literals and a formula in conjunctive normal form (CNF) is a conjunction
(∧) of clauses. We will mostly treat clauses as sets of literals and CNF for-
mulas as sets of clauses. We will also simplify set notation when modifying
formulas. Specifically, given a clause C and a CNF formula F , F \ C is
identified with F \{C} and F ∪C with F ∪{C}. We denote the set of vari-
ables and literals of a clause C by Var(C) and Lit(C), respectively. The
set of variables Var(F) and literals Lit(F) of a formula F are defined by
Var(F) =

⋃
C∈F Var(C) and Lit(F) =

⋃
C∈F Lit(C), respectively. For

a set L of literals, we use ¬L to denote the set of negations of the literals
in L, i.e., ¬L = {¬l | l ∈ L}. L is a set of assumptions if either x /∈ L
or ¬x /∈ L for each variable x ∈ Var(F). Given a literal l, we denote
by ClF (l) the set of clauses of F which contain l, dropping the subscript

13

14 2 Preliminaries

whenever clear from context. The clauses Cl(L) containing literals from
the set L ⊆ Lit(F) are defined by Cl(L) = ∪l∈LCl(l).

Given a set V of Boolean variables, a truth assignment τ over V is a
function τ : V → {0, 1}. A truth assignment is extended to literals, clauses
and CNF formulas in the standard way: ¬x is true (τ(¬x) = 1) if x is
false (τ(x) = 0), a clause C is true (τ(C) = 1) if τ(l) = 1 for at least one
literal l ∈ C, and a CNF formula F is true (τ(F) = 1) if τ(C) = 1 for all
clauses C ∈ F . A truth assignment τ satisfies a clause C if τ(C) = 1 and a
formula if τ(F) = 1, else it falsifies them. A CNF formula F is satisfiable if
there exists a truth assignment τ which satisfies it, else F is unsatisfiable.
Two formulas F1 and F2 are equivalent if τ(F1) = τ(F2) for any truth
assignment τ over Var(F1)∪Var(F2). The formulas are equisatisfiable if F1

is satisfiable if and only if F2 is. The well-known propositional satisfiability
(SAT) problem asks if a given CNF formula F is satisfiable. As is common
in most practical applications, we treat the SAT problem as the problem of
computing a satisfying assignment to F or proving that one does not exist.
Essentially all modern SAT solvers can provide a satisfying assignment
whenever invoked on a satisfiable formula F .

A truth assignment τ : S → {0, 1} over a proper subset S ⊂ Var(F)
is a partial assignment of the formula F . The simplification of F under a
partial truth assignment τ is another formula F τ obtained by removing all
clauses satisfied by τ from the formula and all literals falsified by τ from
the remaining clauses. When convenient, we will treat a (partial) truth
assignment τ as a set of literals by l ∈ τ if and only if τ(l) = 1. Similarly,
each set L ⊆ Lit(F) of assumptions can be treated as a (partial) truth
assignment. In this thesis we use partial truth assignments in the context
of satisfiability checking under assumptions [203]. Given a formula F and
a set of assumptions L ⊆ Lit(F), we say that F is satisfiable under L if
FL is satisfiable. For an alternative view, F is satisfiable under L if there
exists a satisfying assignment τ to F that sets τ(l) = 1 for all l ∈ L.

Given a CNF formula F , a SAT solver is an algorithm that computes
a satisfying assignment to F or proves that one does not exist. The de-
velopment of SAT solvers is an active area of research [73, 74, 204–210].
Besides pure satisfiability checking, SAT solvers are commonly used as sub-
routines in more complex algorithms, for example in SAT-based MaxSAT
solvers [116, 203]. Most modern SAT solvers that are used in SAT-based
MaxSAT solving implement the conflict-driven clause learning (CDCL) al-
gorithm [204, 211, 212]. CDCL solvers have in turn evolved from the older
Davis-Putnam-Logemann-Long search procedure [213]. In this thesis we
only use CDCL SAT solvers as black boxes in SAT-based MaxSAT solvers

2.2 Maximum Satisfiability 15

and as such will not discuss the details of how they operate here. The
only requirement we make of a SAT solver is that it supports satisfiability
querying under assumptions, and that it is able to compute subsets of the
assumptions which explain unsatisfiability. More precisely, given a formula
F and a set of assumptions L ⊆ Lit(F) for which FL is unsatisfiable, we
assume that the SAT solver can extract a subset L′ ⊆ L such that FL

′

is unsatisfiable as well. Most modern CDCL SAT solvers support these
features through the so-called assumption interface.

2.2 Maximum Satisfiability

An instance F of weighted partial maximum satisfiability (or MaxSAT for
short) is a triplet F = (Fh, Fs, w) consisting of two CNF formulas, the
hard clauses Fh and the soft clauses Fs, and a weight function w : Fs → N.
The literals Lit(F) and variables Var(F) of MaxSAT instances are the
literals and variables of Fh ∧ Fs, respectively. Given a MaxSAT instance
F = (Fh, Fs, w), any truth assignment τ which satisfies Fh is a solution to
F . The cost COST(F , τ) of a solution τ to F is the sum of the weights of
soft clauses it falsifies, i.e.,

COST(F , τ) =
∑

C∈Fs

w(C) · (1− τ(C)).

A solution τ o to F is optimal if COST(F , τ o) ≤ COST(F , τ) for all so-
lutions τ to F . The (optimal) cost of the instance F is the cost of the
optimal solutions to F . We denote the optimal cost of an instance F by
COST(F). In the rest of the thesis, we assume that all MaxSAT instances
have solutions, or equivalently, that Fh is satisfiable.

The MaxSAT solvers we work with in this thesis make extensive use
unsatisfiable cores. Given a MaxSAT instance F = (Fh, Fs, w), a subset
κ ⊆ Fs is an unsatisfiable core if the formula Fh ∧κ is unsatisfiable. A core
κ is a minimal if Fh ∧ κs is satisfiable for all κs ⊂ κ. Minimal cores are
abbreviated by MUS (minimal unsatisfiable subformula). A set M ⊆ Fs
is a correction set (of F) if the formula Fh ∧ (Fs \M) is satisfiable. The
correction set M is minimal (an MCS) if Fh ∧ (Fs \Ms) is unsatisfiable for
all Ms ⊂ M . We denote the set of MUSes and MCSes of F by MUS(F)
and MCS(F), respectively.

The MCSes and MUSes of MaxSAT instances are related to each other
via hitting sets. Given a collection of sets K, a set H is a hitting set over K
if H ∩K 6= ∅ for all K ∈ K. A hitting set H is irreducible if no Hs ⊂ H is
a hitting set over K. For a MaxSAT instance F , the well known hitting set
duality theorem establishes a connection between MUS(F) and MCS(F).

16 2 Preliminaries

Theorem 1 (Hitting Set Duality [214]). A set κ is an MUS of a MaxSAT
instance F if and only if it is an irreducible hitting set over MCS(F).
Similarly, a set M is an MCS of F if and only if it is an irreducible hitting
set over MUS(F).

Minimal correction sets provide an alternative definition of the MaxSAT
problem. For a solution τ to a MaxSAT instance F = (Fh, Fs, w), let
U(τ) ⊆ Fs be the set of soft clauses falsified by τ . We say that τ is a
minimal solution to F if U(τ) is set-minimal, i.e., if there does not exist a
solution τ2 to F for which U(τ2) ⊂ U(τ). Notice that all optimal solutions
to F are minimal but the converse does not hold. It is simple to show that
there exists a many-to-one correspondence between minimal solutions and
the MCSes of F . More specifically, a solution τ of F is minimal if and only
if U(τ) ∈ MCS(F). We say that a minimal solution τ to F corresponds
to an MCS M τ of F if M τ = U(τ). The correspondence is not one-to-one,
instead each M ∈MCS(F) corresponds to a set of minimal solutions of F .
However, if two minimal solutions τ1 and τ2 to F correspond to the same
M ∈ MCS(F), then τ1 and τ2 satisfy (and hence also falsify) the exact
same clauses of F . This implies that

Cost(F , τ1) =
∑

C∈Fs

τ1(C)=0

w(C) =
∑

C∈M
w(C) =

∑

C∈Fs

τ2(C)=0

w(C) = Cost(F , τ2).

In this thesis we will treat minimal solutions that correspond to the same
MCSes as equivalent. We say that an M ∈ MCS(F) corresponds to a
solution τM if τM is a minimal solution of F that corresponds to M . A set
M ∈MCS(F) is optimal if it corresponds to an optimal solution of F .

The relationship between MCSes and minimal solutions of MaxSAT
instances suggests an alternative definition of the MaxSAT problem. Let
F = (Fh, Fs, w) be a MaxSAT instance with the weight function w extended
to sets S ⊆ Fs of soft clauses by w(S) =

∑
C∈S w(C). Denote the set of

solutions and minimal solutions to F by sol(F) and msol(F), respectively.
The optimal cost COST(F) of F can be expressed in terms of the MCSes
of F by

COST(F) = min
τ∈sol(F)

COST(F , τ) = min
τ∈msol(F)

COST(F , τ)

= min
τ∈msol(F)

w(M τ) = min
M∈MCS(F)

w(M).

In other words, an M ∈ MCS(F) is optimal if w(M) ≤ w(M ′) for all
M ′ ∈ MCS(F). Thus the MaxSAT problem can be reformulated as the

2.3 Cardinality Constraints 17

problem of computing an Mo ∈ arg minM∈MCS(F){w(M)}. By hitting set
duality, such Mo is also a minimum-cost hitting set over MUS(F), i.e.,
a hitting set over MUS(F) which minimizes w(Mo) over all hitting sets
of MUS(F). Notice that a minimum-cost hitting set is guaranteed to be
irreducible. The following theorem shows that a satisfiability query can be
used in order to verify that a hitting set over any collection of cores of F
is an optimal MCS without computing the entire MUS(F).

Theorem 2 (Adapted from [122]). Let F = (Fh, Fs, w) be a MaxSAT
instance and C a collection of cores of F . Let M be a minimum cost hitting
set over C and assume that Fh ∧ (Fs \M) is satisfiable. Then M is an
optimal MCS of F .

The implicit hitting set solvers we work with in this thesis are based on
Theorem 2.

2.3 Cardinality Constraints

Despite the simple syntax, several types of complex constraints can be mod-
eled with CNF formulas. One such class of constraints commonly used in
both SAT-based MaxSAT solving and MaxSAT encodings of other problems
are cardinality constraints, an important special case of the more general
class of pseudo-boolean constraints. Given a set L = {l1, . . . , ln} of n literals,
a set W = {w1, . . . , wn} of weights, a constant k and ◦ ∈ {≤,≤,≥≥,=}, a
pseudo-boolean constraint is a linear constraint over L of form

∑n
i=1wili◦k.

A truth assignment τ satisfies the constraint whenever
∑n

i=1wiτ(li) ◦ k is
true. We denote the set of clauses resulting from encoding a pseudo-boolean
constraint

∑n
i=1wili ◦k to CNF by CNF(

∑n
i=1wili ◦k). A pseudo-boolean

constraint is a cardinality constraint if wi = 1 for all 1 ≤ i ≤ n. The numer-
ous applications of cardinality constraints have motivated the development
several different CNF encodings of them [215–220].

Example 1. Let L = {l1, . . . , lN} be a set of literals and consider the
at-most-one cardinality constraint

N∑

i=1

li ≤ 1

enforcing that at most one of the literals in L must be set to true. The at-
most-one constraint is commonly used in SAT-based MaxSAT solving [111,
115, 116, 120] as well as MaxSAT encodings of other problems, including
correlation clustering and bounded treewidth Bayesian network structure

18 2 Preliminaries

learning. A simple way of encoding this constraint in CNF is with O(n2)
clauses of form (¬li∨¬lj) for every distinct li and lj in L. As an example of
a more compact encoding, the ladder encoding uses n−1 auxiliary variables
y1, . . . , yn−1 and clauses corresponding to li ↔ (¬yi ∧ yi+1) as well as yi →
yi+1. All in all the ladder encoding uses O(n) auxiliary variables and O(n)
clauses.

2.4 SAT-based MaxSAT Solvers

In this section we overview and discuss the two types of MaxSAT solvers
on which the rest of the thesis focuses on. The contributions of this thesis
to MaxSAT preprocessing are not specific to a single MaxSAT solver, but
instead two classes of MaxSAT solvers that we call core-guided solvers [111,
115–117, 119, 120] and implicit hitting set based solvers [121–123]. We
discuss these solvers in terms of two abstract MaxSAT solving algorithms:
CG, representing core-guided solvers and IHS, representing implicit hitting
set based solvers. In the rest of the thesis, we use the term MaxSAT
algorithm to refer to abstractions and MaxSAT solver to refer to concrete
implementations of MaxSAT algorithms.

The CG and IHS algorithms are presented in pseudocode in Figure 2.1
on the left and right side, respectively. These abstractions cover several
modern MaxSAT solvers, including Fu-Malik (WPM1, WMSU1) [116, 221,
222], PMRES [115], OLL [111, 223] and ONE (K) [119] (the CG algorithm),
as well as MaxHS [121, 122] and LMHS [123] (the IHS algorithm). It should
be noted that solvers implementing CG or IHS often also make use of several
different additional heuristics and search strategies [224–227] that are not
included in the pseudocodes of Figure 2.1.

Both CG and IHS rely extensively on the ability to extract unsatisfiable
cores from MaxSAT instances. Let (Fh, Fs) be two sets of clauses such that
Fh ∧ Fs is unsatisfiable. In both CG and IHS, a core κ ⊆ Fs is extracted
using the assumption interface of the underlying SAT solver. Let FAs =
{C∨aC | C ∈ Fs} be the set of all clauses in Fs, each extended with a unique
assumption variable aC . Let also A(Fs) = Var(FAs)\Var(Fs) be the set of
all assumption variables and consider a subsetAs ⊆ A(Fs). Core extraction
using assumptions is based on the fact that the simplification of Fh ∧ FAs
under ¬As is the formula Fh∧{C | C ∨aC ∈ Cl(As)}. In order to see this,
consider a clause C ∨ aC ∈ FAs . If aC ∈ As, the partial assignment ¬As
reduces C∨aC to C. If aC /∈ As, the clause C∨aC can be trivially satisfied
by setting aC to true. Hence we can check the satisfiability of Fh ∧ Fs
by querying a SAT solver for the satisfiability of Fh ∧ FAs under ¬A(Fs).

2.4 SAT-based MaxSAT Solvers 19

1 CG(Fh, Fs, w)
2 (Fw

h , F
w
s)← (Fh, Fs)

3 while true do
4 (result, κ, τ)← IsSAT(Fw

h , F
w
s)

5 if result=”satisfiable” then
6 return τ
7 else
8 Fw

s = (Fw
s \ κ)

9 Fw
s ← Fw

s ∧ CLONE(κ)
10 (Fw

h , F
w
s)← RELAX(Fw

h , F
w
s , κ)

1 IHS(Fh, Fs, w)
2 C ← ∅
3 while true do
4 H ← MinCostHittingSet(C)
5 (result, κ, τ)← IsSAT(Fh, (Fs \H))
6 if result=”satisfiable” then
7 return τ
8 else
9 C ← C ∪ {κ}

Figure 2.1: Abstractions of the two types of MaxSAT algorithms we work
with in this thesis.

If the formula is satisfiable, the returned truth assignment (restricted to
Var(Fh ∧ Fs)) is also a satisfying assignment of Fh ∧ Fs. Otherwise, the
subset ¬Aκ ⊆ ¬A(Fs) of the assumptions returned by the solver can be
mapped to an unsatisfiable core κ = {C | C ∨ aC ∈ Cl(Aκ)} of (Fh, Fs).
In Figure 2.1 we abstract this functionality into the function IsSAT. The
result of a query IsSAT(Fh, Fs) is a triplet (result, κ, τ), where result is
true if and only if Fh ∧ Fs is satisfiable. If Fh ∧ Fs is satisfiable, then
τ is a satisfying assignment to it. Otherwise κ is an unsatisfiable core
of Fh ∧ Fs. In the IHS algorithm the assumption interface is also used
for removing clauses from the SAT-solver queries. More specifically, for
a subset H ⊆ Fs, the satisfiability of Fh ∧ (Fs \ H) is equivalent to the
satisfiability of Fh ∧ FAs under ¬RH = ¬(A(Fs) \ A(H)). This enables
clause removal from the formula without the need to reset the internal
state of the SAT solver. Notice that if Fh∧FAs is unsatisfiable under ¬RH ,
the core returned by the SAT solver is guaranteed to be a subset of Fs \H.

Given an input MaxSAT instance F = (Fh, Fs, w), the CG algorithm
maintains a working formula (Fwh , F

w
s), initialized to (Fh, Fs) on Line 2.

The algorithm iteratively queries the internal SAT solver using the function
IsSAT(Fwh , F

w
s) (Line 4), obtaining a triplet (result, κ, τ). Whenever the

SAT solver returns “satisfiable”, CG terminates and returns the assignment
τ , guaranteed to be an optimal solution to F (Line 6). Otherwise, a core κ
of (Fwh , F

w
s) is obtained. The algorithm proceeds by relaxing the working

instance and compiling information about the core into it (Line 10). Most
of the implementations of RELAX that we are aware of assume that all
of the soft clauses in the core have equal weight. To handle cores κ with
varying clause weights, the solvers use a standard technique known as clause
cloning [109, 221] (Line 9). First the smallest weight among all clauses in
κ is computed, wκmin = min{w(C) | C ∈ κ}. Then each clause C ∈ κ
for which w(C) > wκmin is cloned; a duplicate clause Clone(C) is added

20 2 Preliminaries

to Fws , the weight of the original clause is set to wκmin, and the duplicate
Clone(C) is given the residual weight w(Clone(C)) = w(C)− wκmin. All
duplicates are left in the working instance as soft clauses and the function
RELAX(Fwh , F

w
s , κ) is invoked using the original clauses of κ which now all

have equal weight. The exact manner in which the formula is modified, i.e.,
the implementation of RELAX, depends on the concrete MaxSAT solver.
A classical example is the Fu-Malik solver [116] in which each clause C ∈ κ
is extended with a fresh relaxation variable rC to form the extended clause
C∨rC . The extended clauses are left in the formula as soft and a cardinality
constraint CNF(

∑
r = 1) is added as hard clauses. Several of the early

core-guided solvers relax the soft clauses in the core and add cardinality
constraints as hard clauses. In contrast, more recently proposed core-guided
solvers harden the soft clauses in the core and add cardinality constraints
as soft clauses [111, 115, 119, 120].

In contrast to the CG algorithm, the IHS algorithm does not add
or remove any clauses at all during execution and instead only works
on the input hard and soft clauses. Given an input MaxSAT instance
F = (Fh, Fs, w), the IHS algorithm maintains a set C of cores of F , initial-
ized to ∅ on Line 2. At each iteration, a minimum-cost hitting set over C is
computed (Line 4). Then a SAT solver is invoked on all of the clauses in the
working formula, except for the ones in H (Line 5). If the formula is satisfi-
able, H is an optimal MCS of F (Theorem 2) and IHS terminates, returning
the optimal solution satisfying Fh ∧ (Fs \ H) (Line 7). Otherwise, a new
core is obtained and added to the set C (Line 9), after which the algorithm
reiterates. In two solvers implementing the IHS algorithm, MaxHS [122]
and LMHS [123], a minimum-cost hitting set is obtained by solving the
current hitting set problem using an integer programming solver.

Beyond the scope of this thesis, a third class of SAT-based MaxSAT
solvers are the so-called model-guided solvers [103–108, 110]. When in-
voked on a MaxSAT instance F = (Fh, Fs, w), a model-guided solver
initializes an upper and lower bound UB and LB of the optimal cost of
Cost(F). The exact manner in which the bounds are initialized depends
on the solver, a simple example sets LB = 0 and UB =

∑
C∈Fs

w(C).
During search, the solver queries a SAT solver for the satisfiability of
Fh ∧ FAs ∧ CNF(

∑
C∈Fs

(w(C) · aC) ≤ k) where k is some constant sat-
isfying LB ≤ k ≤ UB. If the formula is satisfiable, then Cost(F) ≤ k
and the value of the upper bound is lowered. Similarly, if the formula is
unsatisfiable, then Cost(F) > k and the value of the lower bound is in-
creased. The solver iterates until an optimal solution is found. Different
model-guided solvers make use of several different search strategies and

2.4 SAT-based MaxSAT Solvers 21

encodings of cardinality constraints. Some also use unsatisfiable cores for
more precise control on which soft clauses are relaxed and how much the
bounds are updated [106, 107].

Finally we mention that in addition to SAT-based MaxSAT solvers a
central approach to exact MaxSAT solving is branch and bound (B&B) [124–
133]. Given an input MaxSAT instance F , B&B solvers search for an opti-
mal solution to F by branching on the two possible values of each variable
in the formula. In order to avoid exhaustive search over all possible assign-
ments of the variables, B&B solvers make use of several different bound
computation and other inference rules [131, 134, 152, 228, 229] designed to
allow effective pruning of the search tree. Some B&B solvers also make use
of restricted forms of unsatisfiable cores in their bound computations [125].

22 2 Preliminaries

Chapter 3

Preprocessing for Maximum
Satisfiability Solving

In this chapter we discuss the contributions of this thesis to MaxSAT pre-
processing techniques, overviewing Papers I-IV. While the importance of
preprocessing in SAT solving is well-established [140–144, 146–150], the role
of preprocessing in MaxSAT solving is not as developed [135, 151]. Here we
focus on the label-based approach to MaxSAT preprocessing [135] and the
CG and IHS MaxSAT algorithms presented in Figure 2.1 of Section 2.4.
The empirical results presented in this chapter focus on the LMHS MaxSAT
solver [123], a from-scratch instantiation of the IHS algorithm by the sec-
ond author of Papers I, II and IV. All experiments were performed on a
cluster of 2.53-GHz Intel Xeon quad core machines with 32 GB memory
and Ubuntu Linux, using a per-instance memory limit of 30 GB. Since the
time limit used in the experiments varied between papers, we will specify
them in the relevant sections. For the formal proofs and complete empirical
results, we direct the reader to the reprints of the papers at the end of the
thesis.

This chapter is organized as follows. In Section 3.1 we give prelimi-
naries on label-based preprocessing of MaxSAT instances. In Section 3.2
we discuss how label-based preprocessing can be integrated into SAT-based
MaxSAT solving in a manner that significantly decreases the number extra
variables and clauses that are added (Papers I and II). We demonstrate
that tighter integration between the preprocessing and solving steps results
in improved empirical performance of LMHS. In Section 3.3 we overview
a theoretical analysis of the effect of preprocessing on the number of it-
erations required by CG and IHS (Paper III). Finally, in Section 3.4 we
present a MaxSAT-specific preprocessing technique that we call subsumed
label elimination (SLE) (Paper IV). We give theoretical results on the differ-

23

24 3 Preprocessing for Maximum Satisfiability Solving

ences between SLE and the MaxSAT generalizations of preprocessing rules
for SAT solving. We also show that using SLE in conjunction with previ-
ously proposed preprocessing rules leads to further simplifications during
preprocessing as well as improved empirical performance of LMHS.

3.1 Label-based MaxSAT Preprocessing

Most of the contributions of this thesis to MaxSAT preprocessing build on
previous work [135] on lifting four central preprocessing rules proposed for
SAT to MaxSAT using the so called labeled CNF (LCNF) framework [154,
230]. More specifically, the rules lifted are bounded variable elimination,
subsumption and self-subsuming resolution [141], as well as blocked clause
elimination [231]. In this chapter we focus on the same four rules and call
them SAT-based preprocessing rules. It should, however, be noted that, in
addition to these four, several other preprocessing rules have been proposed
for SAT solving [140, 142, 143, 145–150].

For some intuition on why SAT-based preprocessing rules can not di-
rectly be applied on MaxSAT instances, consider the subsumption elimi-
nation (SE) rule. Let F be a SAT formula and C,D two clauses of F . We
say that C subsumes D if C ⊆ D. A clause D is subsumed if some other
clause subsumes it. The SE rule allows removing subsumed clauses from
F . Let pre(F) be the formula resulting after an application of SE on F .
Then F and pre(F) are equisatisfiable since any assignment τ that satisfies
the former will satisfy the latter and vice versa. More generally, we say
that a preprocessing rule is sound for SAT-solving if (i) applying the rule
to a formula F gives an equisatisfiable formula pre(F) and (ii) a satisfying
assignment to F can be reconstructed from any satisfying assignment to
pre(F) in polynomial time. Even if SE is sound for SAT solving, the next
example demonstrates that directly removing subsumed clauses from the
hard and soft clauses of MaxSAT instances can alter the costs of solutions
and thus also the optimal solutions.

Example 2. Let F = (Fh, Fs, w) be a MaxSAT instance with

Fh = {(¬x1), (¬x2), (¬x3 ∨ ¬x4)},
Fs = {(x1 ∨ x3), (x2 ∨ x3), (x3), (x4)}

and w(C) = 1 for each C ∈ Fs. An optimal solution τ to F sets τ(x1) =
τ(x2) = τ(x4) = 0 and τ(x3) = 1, falsifying one soft clause. Direct appli-
cation of SE on Fh ∧ Fs removes two soft clauses. The resulting instance

3.1 Label-based MaxSAT Preprocessing 25

F2 = (F 2
h , F

2
s , w

2) has

F 2
h = {(¬x1), (¬x2), (¬x3 ∨ ¬x4)} and F 2

s = {(x3), (x4)}.

One optimal solution τ2 to F2 sets τ2(x1) = τ2(x2) = τ2(x3) = 0 and
τ2(x4) = 1. This solution falsifies one soft clause in F2 but three in F .

Example 2 illustrates the fact that instead of only preserving satisfying
assignments, MaxSAT preprocessing should preserve the optimal solutions
of instances.

Definition 1. Let F be a MaxSAT instance, R a preprocessing rule, and
pre(F) the instance obtained by preprocessing F with R. Assume τp is an
optimal solution to pre(F). The preprocessing rule R is sound for MaxSAT
if an optimal solution τ to F can be reconstructed from τp in polynomial
time.

Procedure 3.1 describes label-based preprocessing of a MaxSAT instance
F = (Fh, Fs, w) using SAT-based preprocessing rules. First, each soft
clause C ∈ Fs is extended with a unique new label (Boolean variable)
lC to form the labeled clause C ∨ lC and the set of labeled soft clauses
FLs = {C ∨ lC | C ∈ Fs}. Notice the similarity between labels and assump-
tion variables used in SAT-based MaxSAT solving (recall Section 2.4). Let
L(F) = Var(FLs)\Var(Fs) be the set of all added labels. The next step of
label-based preprocessing is preprocessing the formula Fh ∧ FLs with SAT-
based preprocessing rules, thereby obtaining the formula pre(Fh ∧ FLs). In
order to guarantee soundness for MaxSAT, bounded variable elimination
and self-subsuming resolution are restricted from removing any variables
in L(F) during preprocessing [135]. Finally, the preprocessed MaxSAT in-
stance pre(F) = (F ph , F

p
s , wp) has F ph = pre(Fh ∧ FLs) as hard clauses. The

soft clauses F ps contain unit clauses with negations of labels that appear
among the hard clauses: F ps = {(¬lC) | lC ∈ Lit(F ph) ∩ L(F)}. The weight
of each soft clause wL((¬lC)) is equal to the weight w(C) of the soft clause
to which lC was added in the first step. We emphasize that soft clauses are
only added for labels lC ∈ Lit(F ph). Even if bounded variable elimination
or self subsuming resolution can not remove any labels, a label can still
be removed from the instance during preprocessing. For example, if a soft
clause is subsumed by a hard clause, SE can remove the labeled soft clause
during preprocessing together with the corresponding label.

The basis for the soundness of label-based preprocessing with SAT-
based preprocessing rules is the following theorem.

26 3 Preprocessing for Maximum Satisfiability Solving

Preprocess F = (Fh, Fs, w)

1. Let FLs = {C ∨ lC | C ∈ Fs, lC new} and L(F) = Var(FLs) \
Var(Fs).

2. Preprocess the CNF formula Fh ∧ FLs using SAT-based prepro-
cessing rules.

• Do not remove any l ∈ L(F) with bounded variable elimi-
nation nor self-subsuming resolution.

3. Return
pre(F) = (F ph , F

p
s , w

p)

with F ph = pre(Fh ∧ FLs), F ps = {(¬lC) | lC ∈ Lit(F ph) ∩ L(F)}
and wp((¬lC)) = w(C).

Procedure 3.1: Label-based preprocessing of a MaxSAT instance F .

Theorem 3. (Adapted from [135]) Assume that an instance F = (Fh, Fs, w)
is preprocessed using label-based preprocessing with SAT-based preprocess-
ing rules to obtain pre(F) = (F ph , F

p
s , wp). For each soft clause C ∈ Fs, let

lC be the label added to C during preprocessing. Then the following hold.

(i) The optimal costs of F and pre(F) are equal.

(ii) M ∈MUS(F) if and only if {(¬lC) | C ∈M} ∈MUS(pre(F)).

We show that label-based preprocessing with SAT-based preprocess-
ing rules is sound for MaxSAT using Theorem 3 and hitting set duality
(Theorem 1).

Theorem 4. Label-based preprocessing with SAT-based preprocessing rules
is sound for MaxSAT.

Proof. (Sketch) Let F = (Fh, Fs, w) be a MaxSAT instance and pre(F) =
(F ph , F

p
s , wp) an instance obtained by label-based preprocessing of F using

SAT-based preprocessing rules. Consider an optimal solution τp to pre(F)
and let M τp be the MCS corresponding to τp. By Theorem 3 and hitting
set duality, the set M = {C | (¬lC) ∈ M τp} is an MCS of F . Since
wp((¬lC)) = w(C) for all (¬lC) ∈ M τp , it follows that wp(M τp) = w(M).
Since M τp is optimal for pre(F) and COST(pre(F)) = COST(F), the

3.2 Integrating Label-based Preprocessing into SAT-based Solving 27

MCS M is optimal for F . Hence the solution τM corresponding to M is
an optimal solution to F . The fact that τM can be reconstructed from
τp in polynomial time follows from the fact that SAT-based preprocessing
rules allow reconstruction of satisfying assignments to CNF formulas [135,
140].

3.2 Integrating Label-based Preprocessing into
SAT-based Solving

As the first contribution to MaxSAT preprocessing of this thesis we inves-
tigate label-based preprocessing in conjunction with SAT-based MaxSAT
solving. In Paper I we show how to improve the empirical performance of
LMHS [123], a MaxSAT solver implementing the IHS algorithm, by reusing
labels as assumptions.

More generally, we show that if a preprocessed MaxSAT instance pre(F)
is solved with a SAT-based MaxSAT solver, the labels introduced during
preprocessing can be reused as the assumption variables used for core ex-
traction within the internal SAT solver. Since a similar number of as-
sumption variables would otherwise be introduced by the solver, reusing
labels as assumptions removes the need to add extra variables when using
label-based preprocessing with SAT-based MaxSAT solving. In more detail,
assume that the IHS algorithm instructed to reuse labels as assumptions is
invoked on a preprocessed MaxSAT instance pre(F) = (F ph , F

p
s , wp). Then

the internal SAT solver of IHS is first initialized with the clauses in F ph (and
specifically not F ps). During search, the cores in C are maintained in terms
of label variables. Each computed hitting set H is the set of label variables
that should not be assumed to be false in the next SAT solver call. Each
unsatisfiable SAT solver call obtains a new subset of the label variables
and the augmented IHS algorithm terminates as soon as a SAT solver call
returns “satisfiable”. While Paper I focuses on the IHS algorithm, a similar
idea is applicable to the CG algorithm as well. Notice that labels l can be
treated as soft clauses by introducing a unit clause (¬l) on demand.

Informally, the correctness of reusing labels as assumptions follows by
considering an execution of IHS not reusing labels as assumptions invoked
on a preprocessed MaxSAT instance pre(F) = (Fh, Fs, w). Initially each
soft clause (¬lC) ∈ Fs is extended with an assumption variable a to form
the clause (¬lC ∨a). Notice that this clause is equivalent to the implication
¬a → ¬lC . Let A(pre(F)) be the set of all assumption variables. During
an iteration of the while-loop (Lines 3-9), IHS will first compute H as
a minimum-cost hitting set over the set of cores C identified so far. In

28 3 Preprocessing for Maximum Satisfiability Solving

practice, H is a subset of A(pre(F)) containing the assumption variables a
of all clauses ¬lC ∨ a which will be removed from the instance in the next
SAT solver call. Afterwards a SAT solver is invoked on Fh ∧ FAs under
¬(A(pre(F)) \H). In this call, each soft clause (¬lC ∨ a) for which a /∈ H
is reduced to (¬lC) due to assuming a to be false. Thus the value of lC is
propagated to false as well. Similarly, if a ∈ H, the value of a is not assumed
to be anything at all. However, as a only appears in a single clause, the SAT
solver can assign it to true in order to satisfy the clause (¬lC ∨ a). As ¬lC
does not appear in any other clause, the SAT solver can also assign lC to
true, satisfying all clauses in ClFh

(lC). Thus the assumptions only affect
the values of the corresponding label variables through the implications
¬a → ¬lC . An alternative description of reusing labels as assumptions
is hence to not introduce the implications ¬a → ¬lC at all, but instead
directly assume the values of the lC variables. In Paper I we give a more
direct proof of soundness using the formal LCNF framework [135].

In addition to the theoretical analysis, Paper I also reports on an ex-
perimental evaluation of the effect that reusing labels as assumptions has
on LMHS. The evaluation was performed using the weighted partial indus-
trial and crafted benchmarks of the 2014 MaxSAT evaluation [101] using a
per-instance time limit of 1 h. Figure 3.2 shows a summary of the results.
The line MaxHS-2.5 corresponds to the newest version of the MaxHS solver
at the time [121, 122]. MaxHS is included to give a baseline comparison to
LMHS.

The line LMHS+pre of Figure 3.2 of shows the performance of LMHS
using preprocessing without reusing labels as assumptions. We note that
preprocessing without reusing labels actually degrades overall performance
of the solver. The best overall performance is achieved by LMHS+R-pre,
corresponding to LMHS using preprocessing and reusing labels as assump-
tions. In the rest of this chapter, we will refer to LMHS+R-pre simply as
LMHS, explicitly mentioning whenever it is used without reusing labels as
assumptions.

Reusing Literals from MaxSAT Instances

In Paper II we show how the number of variables that need to be in-
troduced to a MaxSAT instance F during preprocessing and SAT-based
solving can be decreased further. We prove that literals l ∈ Lit(F) that
satisfy three easily identifiable criteria can be reused as labels in prepro-
cessing and assumptions in SAT-based MaxSAT solving. We also propose
group detection as a simple pattern-matching procedure to identify such
literals. We experimentally demonstrate that reusable literals can be iden-

3.2 Integrating Label-based Preprocessing into SAT-based Solving 29

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 440 450 460 470 480 490 500 510 520 530

T
im

e
o
u
t
(s

)

Instances solved

MaxHS-2.5
LMHS-pre

LMHS
LMHS+R-pre

Figure 3.2: The effect of reusing labels as assumptions on LMHS (from
Paper I).

tified in a significant fraction of the MaxSAT evaluation benchmarks and
that using group detection leads to modest improvements in the empirical
performance of LMHS.

In more detail, we introduce the concept of a group-detectable literal.

Definition 2. Let F = (Fh, Fs, w) be a MaxSAT instance and l ∈ Lit(F).
The literal l is group-detectable if it satisfies the following three criteria.

1. (¬l) ∈ Fs.

2. ¬l /∈ Lit(Fh ∧ (Fs \ (¬l))).

3. l /∈ Lit(Fs).

In words, a literal l is group-detectable in an instance F = (Fh, Fs, w) if l is
not a member of any soft clauses of F and its negation ¬l does not appear
in any clause in Fh ∧ Fs except for one unit soft clause. We say that a soft
clause (¬l) is group-detectable if the literal l is.

In Paper II we show that given any MaxSAT instance F (preprocessed
or not), all group-detectable literals l ∈ Lit(F) can be reused as labels
for preprocessing and assumptions for core extraction. For some intuition
on the connection between Paper I and II, notice that if an instance F
is preprocessed to obtain a preprocessed instance pre(F), then every soft

30 3 Preprocessing for Maximum Satisfiability Solving

clause in pre(F) is group-detectable. Hence group detection could be seen
as a generalization of reusing labels as assumptions after preprocessing.

In Paper II we propose group detection as a pattern matching procedure
for identifying group-detectable literals and reusing them as labels during
preprocessing and assumptions during solving. Intuitively, the correctness
of group detection should be clear. In the paper we give a formal proof of
correctness using the LCNF framework [135]. The name group detection
stems from a setting in which we are given a group G of clauses and wish
to encode the soft group constraint

∧
C∈GC of weight wg in CNF. One

possible encoding is to: (i) introduce a single new group variable g, (ii)
extend each C ∈ G with the same g variable to form the clause C ∨ g, (iii)
treat all extended clauses C ∨ g as hard, and (iv) introduce the soft clause
(¬g) with weight cw. Notice that using this encoding the literal g is group-
detectable. An observation similar to Paper II was made in [232] where the
authors study group MaxSAT as an alternative approach to handling soft
group constraints.

In Paper II we report on the results of an empirical evaluation of group
detection. Figure 3.3 shows the fraction of soft clauses group-detectable in
the weighted partial industrial and crafted benchmarks of the 2014 MaxSAT
evaluation. As the figure illustrates, all soft clauses are group-detectable in
over 40% of the crafted and over 30% of the industrial instances, suggest-
ing that a significant fraction of the soft clauses in the considered MaxSAT
benchmarks correspond to encodings of group constraints. The effect of
group detection on the total solving time of LMHS is shown in Figure 3.4
on the same benchmark set. All runs were performed using a per-instance
time limit of 1 h. The base algorithm (the line LMHS in the plot), using
neither preprocessing nor group detection, exhibits the worst performance.
Interestingly, the variant using only group detection and no preprocess-
ing (LMHS-G) is competitive with the variant using preprocessing with-
out group detection (LMHS-pre). This observation highlights the impor-
tance of minimizing the number of extra variables and clauses during label-
based preprocessing and SAT-based MaxSAT solving. Best performance is
achieved by using both preprocessing and group detection (LMHS-G-pre),
even if the improvement over LMHS-G and LMHS-pre is modest. In Paper
II we offer one possible explanation for the modesty of the improvement
to be the fairly strong connection between group detection and bounded
variable elimination. Apart from the LMHS solver, the paper also includes
empirical results for the Eva solver [115] as an example of a solver that
implements the CG algorithm.

3.2 Integrating Label-based Preprocessing into SAT-based Solving 31

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

S
o
ft
 C

la
u
s
e

s
 R

e
u
s
e
d

 (
%

)

Instances (%)

Industrial
Crafted

Figure 3.3: The fraction of soft clauses reusable as labels or assumptions
(from Paper II).

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 460 470 480 490 500 510 520 530

T
im

e
o
u

t
(s

)

Instances solved

LMHS
LMHS-pre

LMHS-G
LMHS-G-pre

Figure 3.4: The effect of group detection on the LMHS MaxSAT solver
(from Paper II).

32 3 Preprocessing for Maximum Satisfiability Solving

3.3 Effect of Preprocessing on
SAT-based MaxSAT Solving

Paper III focuses on improving the theoretical understanding of the effect
of label-based preprocessing on the number of SAT solver calls made by
SAT-based MaxSAT algorithms. We note that theoretical analysis of many
SAT-based MaxSAT algorithms is in general challenging. For example, the
number of SAT solver calls necessary for the CG algorithm to solve any
MaxSAT instance is not known. The difficulty in determining the number
stems to some extent from the fact that the instance is modified during
search. Thus the core extracted on each iteration is a core of the current
instance but not necessarily a core of the original instance. More generally,
the effect that the formula rewriting step of the CG algorithm has on the
core structure of the input instance remains an interesting open question,
even if some results are known [233]. Analysis of the IHS algorithm is
simpler since it only extracts cores of the original instance. It is known
that the number of SAT solver calls necessary for the IHS algorithm to
solve MaxSAT instances can be exponential in the number of soft clauses,
even when restricted to unweighted instances [234].

In Paper III we provide a full characterization of the effect of label-based
preprocessing with SAT-based preprocessing rules on the number of neces-
sary SAT solver calls of two algorithms: IHS and CGH . CGH is an abstract
MaxSAT algorithm first studied in [233]. In particular CGH is similar to
CG except for the fact that CGH only considers implementations of Relax
in which the soft clauses of the core remain in the instance as soft clauses
and new cardinality constraints are added as hard clauses. In [233] the
authors provide a characterization of the cores in the ith working formula
of CGH in terms of the cores of the input instance and the added (hard)
cardinality constraints. Our results in Paper III for CGH make use of this
characterization. As a by-product of the main result, we also develop a
similar characterization of the MUSes, thus sharpening the main results
of [233].

In order to simplify the discussion, we will from now on focus on what
we call normalized MaxSAT instances, a view on MaxSAT instances similar
to [119]. A MaxSAT instance FN = (FNh , F

N
s , w) is normalized if each soft

clause C ∈ FNs is group-detectable. We say that a literal l ∈ Lit(FN) is a
soft literal if (¬l) ∈ FNs . The results of Papers I and II imply that we can
assume all MaxSAT instances to be normalized. In more detail, given any
MaxSAT instance F = (Fh, Fs, w) we construct a normalized instance FN
by replacing each C ∈ Fs which is not group detectable by a hard clause

3.3 Effect of Preprocessing on SAT-based Solving 33

C ∨ gC and a soft clause (¬gC) of weight w(C). The results of Papers I
and II imply that FN has the same optimal solutions as F and reusing
all the group-detectable literals of FN as assumptions allows solving FN
without introducing any extra variables compared to solving F . Normalized
MaxSAT instances are convenient for the analysis conducted in Paper III. If
a normalized MaxSAT instance F = (Fh, Fs, w) is preprocessed with group
detection to obtain the instance pre(F) = (F ph , F

p
s , w), then F ps ⊆ Fs, and

Theorem 3 can be restated as follows.

Corollary 1. Let F be a normalized MaxSAT instance and pre(F) the in-
stance resulting after preprocessing F using label-based preprocessing with
group detection and SAT-based preprocessing rules. Then MUS(F) =
MUS(pre(F)), which implies MCS(F) = MCS(pre(F)).

While Paper III focuses on SAT-based preprocessing rules, the results hold
for any preprocessing rules that satisfy Corollary 1.

In Paper III we analyze four variants of a fixed A ∈ {CGH , IHS}.
• A: the base algorithm.

• Apre: A applied after label-based preprocessing.

• AMUS: A using an idealized SAT solver that is guaranteed to extract
an MUS when invoked on an unsatisfiable formula.

• AMUS
pre : AMUS applied after label-based preprocessing.

We investigate the relative performance of these variants from two separate
points of view, the best case and worst case in the number of iterations
(SAT solver calls). Let F be a normalized MaxSAT instance and A ∈
{CGH , IHS}. Due to non-deterministic heuristics of SAT solvers, there are
several different possible executions of A invoked on F . We define the
length of an execution of A on F as the number of cores extracted by A
during that execution before termination. A best-case execution of A on F
has length equal to the minimum over all possible executions of A on F .
Similarly, a worst-case execution has length equal to the maximum over
all possible executions. Let Minlen(A,F) and Maxlen(A,F) denote the
length of best-case and worst-case executions of A on F , respectively.

Figures 3.5 and 3.6 overview the results of our analysis. We establish
that for any A ∈ {CGH , IHS}, label-based preprocessing using SAT-based
preprocessing rules can not decrease the length of the best-case executions
of A on any instance (Figure 3.5). On the other hand, preprocessing can
decrease the length of the worst-case executions on some instances. In-
tuitively, the results follow from the inability of SAT-based preprocessing

34 3 Preprocessing for Maximum Satisfiability Solving

A

AMUS

Apre

AMUS
pre

Figure 3.5: Best-case performance in the number of iterations of A ∈
{CGH , IHS}. Here X → Y indicates that Minlen(X,F) ≤Minlen(Y,F)
on all MaxSAT instances F (from Paper III).

A

AMUS

Apre

AMUS
pre

Figure 3.6: Worst-case performance in the number of iterations of
A ∈ {CGH , IHS}. Here X → Y indicates that Maxlen(X,F) ≤
Maxlen(Y,F) on all MaxSAT instances F . X 9 Y indicates that X → Y
does not hold (from Paper III).

3.4 Subsumed Label Elimination 35

rules to affect the MUS structure of MaxSAT instances, as stated in Corol-
lary 1. In essence, we show that the best-case executions of A on any
instance F correspond to executions where the SAT solver only returns
MUSes. Since SAT-based preprocessing can not affect the MUSes of F ,
any executions, where the SAT solver only returns MUSes, are valid for
both A and Apre. However, as preprocessing can still remove some of the
soft literals of MaxSAT instances, applying SAT-based preprocessing before
solving might in some cases allow the algorithm to avoid bad executions
following from extracting cores that are not MUSes.

Finally, we note that, in addition to CGH , IHS and the results of Paper
III, it is known that O(log(COST(F))) calls to a SAT solver are required
to solve any MaxSAT instance [235]. The result is obtained using a model-
guided MaxSAT solver which uses a combination of linear and binary search
for the optimal cost (recall Section 2.4). As preprocessing does not affect
the optimal cost of instances, the same result implies that label-based pre-
processing with SAT-based preprocessing rules can not affect the minimum
number of SAT solver calls required by the model-guided solver studied
in [235] either.

The focus in this section was on the number of iterations of SAT-based
solvers. Even if preprocessing does not decrease the minimum number of
iterations, the empirical evaluations conducted in Papers I and II demon-
strate that preprocessing does improve the empirical performance of SAT-
based MaxSAT solvers on some instances. While a complete theoretical
understanding of how preprocessing affects SAT-based MaxSAT solvers
remains an interesting open research question, we note that the analysis
conducted in Paper III does not cover the effect of preprocessing on the
individual SAT-solver calls executed by IHS and CGH .

3.4 Subsumed Label Elimination

As the final contribution of this thesis to MaxSAT preprocessing, we inves-
tigate a MaxSAT-specific preprocessing rule which does not satisfy Corol-
lary 1, but still guarantees sound MaxSAT preprocessing. More specifically,
in Paper IV we propose and analyze subsumed label elimination (SLE). We
prove correctness of SLE, give theoretical analysis comparing SLE to SAT-
based preprocessing rules, and show empirically that incorporating SLE in
the preprocessing step further improves performance of several MaxSAT
solvers implementing CG and IHS. In the paper we also briefly overview
the connection between SLE and the so-called column dominance rule pro-
posed in the early 90s in conjunction with branch-and-bound approaches

36 3 Preprocessing for Maximum Satisfiability Solving

for the binate covering problem [236]. We will not detail the binate covering
problem here, except to say that while SLE can be seen as the MaxSAT
counterpart of the column dominance rule, Paper III reports on the first
study of such a rule in the context of MaxSAT that we are aware of.

Similarly to the previous section, we assume that all MaxSAT instances
in this section are normalized. This allows identifying MCSes with sets of
soft literals. More specifically, let F = (Fh, Fs, w) be a normalized MaxSAT
instance and consider a subset K ⊆ Fs of soft clauses. We are interested
in determining the satisfiability of the formula FK = Fh ∧ (Fs \ K). Let
C ∈ K and D ∈ (Fs \K) be two soft clauses of F . Then C = (¬l1) and
D = (¬l2) for two soft literals l1 and l2. Now ¬l1 /∈ Lit(FK) since C is
the only clause of Fh ∧ Fs containing ¬l1. Thus all clauses in ClFK

(l1)
can be trivially satisfied by assigning l1 to true. On the other hand, as
D ∈ FK , any potential satisfying assignment τ to FK assigns l2 to false.
In other words, any potential satisfying assignment to FK can set all soft
literals l for which (¬l) ∈ K to true and has to set all literals l for which
(¬l) ∈ Fs \K to false. Hence the satisfiability of FK is equivalent to the

satisfiability of the simplification FK
L

h of Fh under the partial assignment
KL = {l | (¬l) ∈ K}∪{¬l | (¬l) ∈ Fs \K}. Thus K is a correction set of F
if and only if FK

L

h is satisfiable. In this section, we identify sets M ⊆ Fs of
soft clauses of normalized MaxSAT instances with the partial assignment
ML = {l | (¬l) ∈ M} ∪ {¬l | (¬l) ∈ Fs \M}. Specifically, we define the

simplification FMh of Fh under M ⊆ Fs to be equal to FM
L

h .

Next we give an informal description of SLE. Let F = (Fh, Fs, w) be a
normalized MaxSAT instance, and l1 and l2 two soft literals of F . We say
that l2 subsumes l1 if (i) Cl(l1) ⊆ Cl(l2), i.e., l2 appears in all of the same
clauses as l1, and (ii) w((¬l1)) ≥ w((¬l2)). SLE allows removing subsumed
literals from F . More formally, SLE allows enforcing all subsumed literals
to false and simplifying the instance accordingly. The soundness of SLE
follows from the fact that if l1 is subsumed by l2, then there exists an
optimal M ∈ MCS(F) which does not contain (¬l1). Hence there also
exists an optimal solution τM to F that assigns l1 to false. More specifically,
we show that if (¬l1) is a member of some M1 ∈ MCS(F), then M2 =
(M1 \ (¬l1))∪ (¬l2) is a correction set of F . Thereby M2 contains an MCS
Ms of F for which (¬l1) /∈ Ms. Notice that the assumption w((¬l1)) ≥
w((¬l2)) implies that w(M1) ≥ w(M2) ≥ w(Ms), so either M1 is not
optimal, or all three are. To see that M2 is a correction set, notice that
the simplifications of Fh under M1 and M2 satisfy FM

2

h ⊆ FM1

h and recall

that FM
1

h is satisfiable1.

1After publication of Paper IV we have discovered a minor error in the proof of the

3.4 Subsumed Label Elimination 37

In Paper IV we provide a formal proof of correctness of SLE on the
LCNF level. In more detail, for any normalized MaxSAT instance F =
(Fh, Fs, w), we show that the soft literal l1 is subsumed by the soft literal
l2 if (i) (¬l2) appears in the same MUSes of F as (¬l1) and (ii) w((¬l1)) ≥
w((¬l2)). However, as checking which literals belong to which MUSes is
NP-hard, the first condition is probably not checkable in polynomial time.
Instead, we show that Cl(l1) ⊆ Cl(l2) is a sufficient condition for (¬l2)
appearing in the same MUSes as (¬l1).

In addition to its proof of correctness, Paper IV also contains addi-
tional theoretical analysis of SLE. We show that, in contrast to the SAT-
based preprocessing rules, SLE does not satisfy Corollary 1. Instead, we
show that the MUSes of MaxSAT instances pre(F) preprocessed with SLE
are restrictions of the MUSes of F onto the soft clauses of pre(F). The
contrast between SLE and SAT-based preprocessing is further exemplified
in Paper IV by MaxSAT instances on which no SAT-based preprocessing
rules can be applied but SLE can. The possibility of SLE affecting the
MUSes of MaxSAT instances also means that preprocessing with SLE can
in some cases remove optimal MaxSAT solutions. More precisely, assume
that two labels l1 and l2 subsume each other, i.e., that Cl(l1) = Cl(l2) and
w((¬l1)) = w((¬l2)). Then, if there exists an optimal M1 ∈MCS(F) con-
taining l1 and not l2, there also exists an optimal M2 ∈MCS(F) containing
l2 and not l1. Even so, SLE can soundly remove either l1 or l2, thus also
removing the corresponding MCS and optimal MaxSAT solutions. How-
ever, as implied by the soundness of SLE, it will never remove all optimal
solutions nor create new ones.

It should be noted that only using SLE during preprocessing might
not be very effective. The reason is the precondition Cl(l1) ⊆ Cl(l2). In
order for this condition to be met, the formula needs to contain clauses
with more than one soft literal. However, many normalized MaxSAT in-
stances encountered in practical applications need not contain such clauses.
Consider for example an un-normalized MaxSAT instance F = (Fh, Fs, w)
that does not contain any group-detectable soft clauses. Then every clause
in the normalized instance FN = (FNh , F

N
s , w) obtained from F following

Section 3.3 contains at most one soft literal. Even so, SLE can still be
used when preprocessing FN as long as other techniques capable of dis-
tributing soft literals among clauses are used as well. In our work the main
preprocessing rule capable of this is bounded variable elimination.

theorem corresponding to this discussion, Theorem 6. The last sentence of the proof
should read: ”By assumption, R′ = (R \ {l2}) ∪ {l1}, a subset of Lbls(Φpre), is a hitting
set of LMUS(Φ) and hence contains an irreducible hitting set of LMUS(Φ), i.e, an LMCS
of Φ.”

38 3 Preprocessing for Maximum Satisfiability Solving

In Paper IV we present the result of an experimental evaluation on the
effect of SLE together with SAT-based MaxSAT solvers. As benchmarks we
used the industrial and crafted benchmarks of the 2015 MaxSAT evaluation.
Figure 3.7 demonstrates the effect that SLE has on the fraction of soft
literals remaining after preprocessing with and without SLE. We found that
especially on weighted instances, SLE can significantly increase the number
of soft literals that are removed during preprocessing. For example, for one
third of the weighted partial industrial instances (x = 0.3), with SLE close
to 80% of the soft literals are eliminated (y ≈ 0.2, i.e., some 20% of the
soft literals remain afterwards). In comparison, without SLE only ≈ 45%
are eliminated.

Figure 3.8 gives a break-down of the effect that SLE has on the running
time of LMHS on the different families of the weighted partial industrial
benchmarks. The experiments were run using a per-instance timeout of 30
min. We see that, for a majority of the instances, SLE improves the total
solving time of LMHS, both compared to using no preprocessing, and only
using SAT-based preprocessing. In Paper IV, we also provide results for
Eva [115], Open-WBO [113], and Primal-Dual [120].

After the publication of Paper IV we have generalized SLE, resulting in
a technique called group-subsumed label elimination (GSLE) [237]. A soft
literal l of a MaxSAT instance F is group-subsumed by a set L of soft lit-
erals if (i) Cl(l) ⊆ Cl(L) and (ii) w((¬l)) ≥∑

lg∈Lw((¬lg)). GSLE allows
removing group-subsumed literals from F . GSLE is a straightforward gen-
eralization of SLE, the proof of correctness is essentially identical to SLE.
Both SLE and GSLE are implemented in the MaxSAT preprocessor Max-
Pre [237], developed after publication of Paper IV. Interestingly, we have
found that using GSLE during preprocessing does not significantly increase
total preprocessing time compared to using SLE. In addition to SLE and
GSLE, MaxPre also includes all other algorithmic ideas for preprocessing
proposed in this thesis, namely label reuse and group detection.

3.4 Subsumed Label Elimination 39

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

F
ra

c
ti
o

n
 o

f
s
o

ft
 l
it
e

ra
ls

 r
e

m
a

in
in

g
 a

ft
e

r
p

re
p

ro
c
e

s
s
in

g

Fraction of Instances

PMS-NoSLE
PMS-SLE

WPMS-NoSLE
WPMS-SLE

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Fraction of Instances

WPMS-NoSLE

WPMS-SLE

PMS-NoSLE

PMS-SLE

Figure 3.7: Fraction of soft literals remaining in industrial (left) and crafted
(right) unweighted (PMS) and weighted (WPMS) benchmarks after prepro-
cessing with and without SLE (from Paper IV).

 1

 10

 100

 1000

 1 10 100 1000

w
/p

re
+

S
LE

LMHS

 1

 10

 100

 1000

 1 10 100 1000

w
/p

re
+

S
LE

LMHS w/pre

correlation-clustering
upgradeability-problem
haplotyping-pedigrees
preference_planning
railway-transport
hs-timetabling
wcsp_spot5_log
wcsp_spot5_dir
timetabling
packup-wpms
BTBNSL

Figure 3.8: Effect of SLE on runtimes without (left) and with (right) SAT-
based preprocessing of LMHS on industrial weighted partial instances (from
Paper IV).

40 3 Preprocessing for Maximum Satisfiability Solving

Chapter 4

Maximum Satisfiability for Data
Analysis

In this chapter we discuss the contributions of this thesis to the devel-
opment of new MaxSAT encodings for two NP-hard data analysis prob-
lems, correlation clustering (Paper V) and bounded treewidth Bayesian
network structure learning (BTBNSL) (Paper VI). Correlation clustering
is discussed in Section 4.1 and BTBNSL in Section 4.2. In both sections
we give a precise definition of the data analysis task as a combinatorial
optimization problem, overview the MaxSAT encodings we propose, and
present a summary of the results of an empirical evaluation of the resulting
MaxSAT-based approach.

In order to simplify the discussion, we will present all MaxSAT encod-
ings in this chapter in terms of general propositional logic. This can be
done without loss of generality as it is well-known that for any formula G
in propositional logic, there exists an equivalent CNF formula F G . Fur-
thermore, the size of F G can be assumed to be polynomial in the size of
G. More specifically, applying the well-known Tseitin encoding [238] on
G results in an equivalent CNF formula F G the number of variables and
clauses of which are linear in the number of constraints and variables of G.

4.1 Correlation Clustering

In Paper V we present and evaluate three MaxSAT encodings for the corre-
lation clustering problem [239]. Under the original formulation, an instance
of correlation clustering consists of an undirected graph with the nodes cor-
responding to a set of data points and each edge labeled as either positive
or negative. Two points with a positive edge between them are similar,

41

42 4 Maximum Satisfiability for Data Analysis

and points with a negative edge between them are dissimilar. The goal
of correlation clustering is to cluster the nodes of the graph in a way that
correlates as well as possible with the edge labeling. More specifically, an
optimal clustering balances two conflicting objectives. On one hand, sim-
ilar points should be assigned to the same cluster. On the other hand,
dissimilar points should be assigned to different clusters. Notice that there
exists “trivial” clusterings that maximize either individual objective. The
number of similar points assigned to the same cluster is maximized by a
clustering that assigns all nodes to the same cluster. Similarly, the number
of dissimilar points assigned to different clusters is maximized by a clus-
tering that assigns all nodes to different clusters. However, no such trivial
clustering is in general optimal with respect to both objectives. Balanc-
ing the conflicting objectives is an important characteristic of correlation
clustering. The lack of a “trivial” clustering that balances both objectives
makes correlation clustering well-suited for situations in which the true
number of clusters is unknown.

The rest of the Section is organized as follows. In Section 4.1.1 we de-
tail the general setting under which we study correlation clustering. The
three MaxSAT encodings we propose for the problem are presented in Sec-
tion 4.1.2 and an overview of the results of the experimental evaluation
reported on in Paper V is given in Section 4.1.3.

An interest in correlation clustering has continued after the publication
of Paper V [240–243]. We especially note a recently published paper that
develops one of the MaxSAT encodings that we propose in Paper V in the
context of the clique partitioning problem [244].

4.1.1 Problem Setting

An instance of correlation clustering consists of a set V = {v1, . . . , vN}
of N data points and a symmetric similarity matrix W ∈ RN×N where
R = R ∪ {∞,−∞}. From now on, we fix V and say that an instance
consists only of the matrix W . We denote the element on row i column j in
W by W (i, j). The values of W represent similarities of pairs of points, the
points vi and vj are similar if W (i, j) > 0 and dissimilar if W (i, j) < 0. An
instance of correlation clustering can equivalently be viewed as an weighted
undirected graph G = (V,E) where {vi, vj} ∈ E if W (i, j) 6= 0, and the
weight of each edge {vi, vj} is equal to W (i, j). Figure 4.1 gives an example
of a similarity matrix W on the left and the corresponding graph on the
right.

A function cl : V → N is a clustering of W if cl(vi) = cl(vj) for all
W (i, j) = ∞ and cl(vi) 6= cl(vj) for all W (i, j) = −∞. These kinds of

4.1 Correlation Clustering 43

W =




∞ 0 −2 5
0 ∞ −∞ −3
−2 −∞ ∞ 1
5 −3 1 ∞




v1

v2

v3

v4

−2

5−∞

−3

1

Figure 4.1: A Similarity matrix and its graph representation.

constraints enforcing two points to the same or to different clusters are
commonly called must-link and cannot-link constraints, respectively [245].

Given an instance W of correlation clustering, the cost Cost(W, cl) of
a clustering cl : V → N is

Cost(W, cl) =
∑

cl(vi)=cl(vj)
i<j

(I[−∞ < W (i, j) < 0] · |W (i, j)|) +

∑

cl(vi)6=cl(vj)
i<j

(I[∞ > W (i, j) > 0] ·W (i, j)) ,

where I[b] is an indicator function which takes the value 1 if the condi-
tion b is true, else I[b] = 0. A clustering cl is optimal if Cost(W, cl) ≤
Cost(W, cl′) for all clusterings cl′ of W .

Example 3. Consider the similarity matrix W in Figure 4.1 (left). An
optimal clustering cl of this instance assigns cl(v1) = cl(v4) = 1, cl(v2) = 2
and cl(v3) = 3. The cost Cost(W, cl) of cl is 1.

An important factor to note here is that the cost of a clustering does
not depend on the specific cluster indexes. Hence the search for an optimal
clustering of W can be restricted to functions cl : V → [N] where [N] =
{0, . . . , N − 1}. More generally, given a similarity matrix W , a clustering
cl : V → N and a permutation σ : N → N, the function clσ = σ ◦ cl is also
a clustering of V with Cost(W, cl) = Cost(W, clσ). In other words, the
space of clusterings is highly symmetric.

4.1.2 MaxSAT Encodings of Correlation Clustering

In this section we overview our three related MaxSAT encodings of correla-
tion clustering, the transitive encoding, the unary encoding and the binary

44 4 Maximum Satisfiability for Data Analysis

encoding. For the remaining of this section, we fix an instance W of corre-
lation clustering to an N ×N similarity matrix with E non-zero elements.
In other words, we assume that there are E pairs of distinct 1 ≤ i < j ≤ N
for which W (i, j) 6= 0.

For each encoding, we describe the MaxSAT instance F(W) result-
ing after applying the encoding on W and a procedure for converting an
optimal solution τ of F(W) to an optimal clustering clτ of W . In the
rest of the section, let Transitive(W), Unary(W) and Binary(W) de-
note the MaxSAT instances produced by the transitive, unary and bi-
nary encodings on W , respectively. Even though the specifics of each
instance differ, the overall structure of them is similar. Let F(W) ∈
{Transitive(W),Unary(W),Binary(W)} and F(W) = (FWh , FWs , wW).
The hard clauses FWh represent a conjunction of two complex constraints:
FWh = IsFunc(W)∧Sol(W). The constraint IsFunc(W) is satisfied if clτ

is a function clτ : V → N, and Sol(W) is satisfied if clτ is a clustering of W .
The constraint Sol(W) is further divided into two parts corresponding to
the must-link (SameCl(i, j)) and cannot-link (DiffCl(i, j)) constraints,
respectively:

Sol(W) =
∧

W (i,j)=∞
SameCl(i, j) ∧

∧

W (i,j)=−∞
DiffCl(i, j).

The constraint SameCl(i, j) is satisfied if and only if clτ (vi) = clτ (vj)
and the constraint DiffCl(i, j) is satisfied if and only if clτ (vi) 6= clτ (vj).
Since all hard clauses are satisfied by any solution to the MaxSAT instance,
the semantics of the constraints ensure that any solution to the MaxSAT
instance corresponds to a clustering of W.

The soft clauses FWs are defined in a way which ensures that

Cost(F , τ) = Cost(W, clτ)

for any MaxSAT solution τ . The soft clauses contain SameCl(i, j) with
weight wW (SameCl(i, j)) = W (i, j) for each 0 < W (i, j) < ∞ and a
constraint DiffCl(i, j) with weight wW (DiffCl(i, j)) = |W (i, j)| for each
−∞ < W (i, j) < 0; all in all,

FWs =
∧

0<W (i,j)<∞
SameCl(i, j) ∧

∧

0>W (i,j)>−∞
DiffCl(i, j).

In Paper V, the correctness of each MaxSAT encoding is established by
showing that Cost(F , τ) = Cost(W, clτ) and that for any clustering cl of
W there exists a solution τcl to F(W) for which cl = clτcl .

4.1 Correlation Clustering 45

The transitive encoding of correlation clustering can be seen as a MaxSAT
reformulation of a previously proposed integer programming model for
correlation clustering, a model originally proposed for the clique parti-
tioning problem [168, 175, 246]. The variables of Transitive(W) are
of form xij for each distinct pair i, j = 1, . . . , N . Given a solution τ to
Transitive(W), the corresponding clustering clτ is constructed by as-
signing all vi and vj for which τ(xij) = 1 to the same cluster. With these
variables, the constraint IsFunc(W) is encoded using θ(N3) constraints
of form (xij ∧ xjk) → xik for distinct i, j, and k. Each such constraint
corresponds to the clause (¬xij ∨ ¬xjk ∨ xik); all in all,

IsFunc(W) =
∧

i,j,k distinct

(¬xij ∨ ¬xjk ∨ xik).

The two other constraints, SameCl(i, j) and DiffCl(i, j), are encoded
with unit clauses: SameCl(i, j) = (xij) and DiffCl(i, j) = (¬xij). In
total Transitive(W) contains θ(N2) variables and θ(N3) clauses.

The unary encoding of correlation clustering resembles to some extent
a previously proposed quadratic integer programming formulation of cor-
relation clustering [247]. In contrast to the transitive encoding, the unary
encoding is parametrized on K, the maximum number of clusters in the
solution clustering. The value of K needs to be set before creating the
instance Unary(W). In Paper V, we used K = N in all experiments.
This ensures that the produced clustering is an optimal solution to the
general correlation clustering problem (recall the discussion at the end of
Section 4.1.1). The main variables of Unary(W) are the θ(N · K) vari-
ables of form yki for 1 ≤ i ≤ N and 1 ≤ k ≤ K. Given a solution τ to
Unary(W), the clustering clτ is constructed using those variables by set-
ting clτ (vi) = k if and only if τ(yki) = 1. The constraint IsFunc(W) is
encoded using cardinality constraints:

IsFunc(W) =

N∧

i=1

CNF(

K∑

k=1

yki = 1).

In Paper V we used the so-called sequential encoding [215] to convert the
cardinality constraints to CNF. The other two constraints, SameCl(i, j)
and DiffCl(i, j), are encoded in a straightforward manner by

SAMECL(i, j) =

K∨

k=1

(yki ∧ ykj) and DIFFCL(i, j) =

K∧

k=1

¬(yki ∧ ykj).

Including all clauses and variables introduced by the Tseitin encoding, the
instance Unary(W) contains θ(E ·K+N ·K) variables and θ(E ·K) clauses.

46 4 Maximum Satisfiability for Data Analysis

The third MaxSAT encoding we consider, the binary encoding, is essen-
tially a bitwise reformulation of the unary encoding. Similarly to the unary
encoding, the binary encoding is also parametrized on K. The main vari-
ables of Binary(W) are θ(N · log2(K)) variables of form bai for 1 ≤ i ≤ N
and 1 ≤ a ≤ dlog2(K)e. Given a solution τ to Binary(W), the clustering

clτ is constructed by interpreting τ(b
dlog2(K)e
i), . . . , τ(b1i) as a binary num-

ber c and setting clτ (vi) = c. We note that this construction results in a
clustering clτ : V → 2d

′
for the smallest d′ for which 2d

′ ≥ K. In Paper V,
we present extra constraints that can be added to Binary(W) to ensure
that clτ (vi) ≤ K < N for all 1 ≤ i ≤ N . Notice that such constraints are
not needed if K = N , instead the cluster indexes of clτ can be permuted
to the interval 0, . . . , N − 1 as a post-processing step.

A convenient consequence of the construction of Binary(W) is that
IsFunc(W) = ∅, i.e., no clauses are required in order to ensure that clτ

is a function. The encoding of SameCl(i, j) and DiffCl(i, j) is straight-
forward: two points vi and vj are assigned to the same cluster by clτ if
and only if all bits in the binary representation of their cluster numbers are
equal, i.e.,

SameCl(i, j) =

log2(K)∧

k=1

(bki ↔ bkj) and DiffCl(i, j) =

log2(K)∨

k=1

¬(bki ↔ bkj).

In total Binary(W) contains θ(E+N · log2K) variables and θ(E · log2K)
clauses.

In Paper V we also consider different types of redundant constraints
designed to reduce the symmetries in the binary encoding. As discussed
in the previous section, the space of clusterings of W is very symmetric.
Several of the symmetries are transferred to the space of MaxSAT solu-
tions of Binary(W). Some of the symmetries can be broken by adding
extra constraints to Binary(W). For a simple example of such an con-
straint, we can enforce the point v1 to be assigned to cluster 0 with the

constraint
∧dlog2(K)e
k=1 (¬bk1). Adding extra symmetry breaking constraints

to the instance is non-trivial in general. While such constraints have the
potential of decreasing the solving time of the instance, adding too many
extra constraints can instead increase the size of the instance enough to
degrade the performance of the MaxSAT solver. Notice for example that
the transitive encoding naturally breaks all symmetries related to cluster
indexing while being significantly larger than the other two instances. In
Paper V we report on an experimental evaluation of some possible symme-
try breaking constraints that could be used in conjunction with the binary
encoding.

4.1 Correlation Clustering 47

4.1.3 Experimental Evaluation

In Paper V we report on an experimental evaluation of the applicability of
MaxSAT for solving correlation clustering. As benchmarks we used four
sets of similarity values between amino-acid sequences of proteins [248],
and seven different benchmark sets from the UCL machine learning repos-
itory [249]. The number of data points in the benchmark sets ranges
from 327 to 990. In this section we overview the most significant results
of the experiments using two of the four protein datasets, which we will
from now on refer to as protein 1 and 2. The protein 1 dataset contains
669 data points and the protein 2 dataset contains 586 data points. The
similarity values between the amino acid sequences in the sets were origi-
nally computed using BLAST [250], and the datasets were obtained from
http://www.paccanarolab.org/scps.

In our experiments we compare our MaxSAT encodings with other pre-
viously proposed exact approaches to correlation clustering: an the inte-
ger linear programming (ILP) model [168, 175] and an quadratic integer
programming (QIP) model [247]. All ILP and QIP models were solved
with IBM CPLEX (version 12.6) and Gurobi Optimizer (version 6.0) us-
ing default settings. In our evaluation, all MaxSAT instances were solved
using the 2013 evaluation version of MaxHS [121, 122]. The choice of
MaxHS was motivated by it performing better than Eva500 [115], MsUn-
Core BCD2 version [110, 112], OpenWBO [113, 117] and ILP2013 [251] in
preliminary experimentation. A per-instance time limit of 8 h was enforced
on all solver runs. In addition to exact approaches we also compare our
MaxSAT encodings with four polynomial-time inexact algorithms: Kwick-
Cluster (KC) [168], SDPC [252] and SCPS and CCA [248]. Out of these, the
KC and SDPC algorithms were proposed for the general correlation clus-
tering problem, while SCPS and CCA were proposed specifically to cluster
the protein datasets. The semidefinite programs of SDPC were solved with
the Matlab package SeDuMi 1.3 [253].

The first experiment we report on investigated the scalability of the
exact approaches with respect to the number of data points in the input
instance. For an increasing n, we formed a pruned similarity matrix Wn

by taking the n first data points of the protein 1 dataset. Figure 4.2 shows
the result of this test with n, the number of datapoints used, on the x-axis
and the time required to solve Wn on the y-axis. The reason for the QIP
model missing from the plot is that neither CPLEX nor Gurobi could solve
any of the instances within 8 h, an observation we verified using the non-
commercial SCIP [254] solver as well. From the figure we can clearly see
that the binary MaxSAT encoding scales the best and is the only one able

48 4 Maximum Satisfiability for Data Analysis

 1

 10

 100

 1000

 10000

 100 200 300 400 500 600

S
o
lv

in
g
 T

im
e
 (

s
)

Number of Points

ILP-Gurobi

ILP-Cplex

MaxSAT-Unary

MaxSAT-Transitive

MaxSAT-Binary

Timeout

Figure 4.2: Point scalability of the exact approaches on the Protein 1
dataset (from Paper V).

to solve the full protein 1 dataset. Furthermore, many of the failed runs of
the other exact approaches were due to memory-outs, suggesting that the
algorithms would not terminate regardless of the time limit used.

The second experiment we report on was designed to investigate the
scalability and quality of solutions obtained by the binary MaxSAT encod-
ing with respect to the number of nonzero values in the similarity matrix.
For p ∈ {0.05, 0.10, . . . , 1}, we pruned the input similarity matrix W gener-
ated from either the protein 1 or protein 2 dataset by independently putting
each nonzero value W (i, j) to 0 with probability p. This approach results
in a similarity matrix W ′ where the expected number of nonzero entries is
(1− p) · 100% of the number of nonzero entries in W . As can be seen from
the top row of Figure 4.3, instances with fewer nonzero values are faster
to solve with MaxHS. While this is hardly surprising, a more interesting
observation of this experiment concerns the cost of the clusterings obtained
by solving sparse instances. The bottom row of Figure 4.3 shows the cost
Cost(W, clp) of the optimal clustering clp of the pruned instance W ′ with
respect to the complete instance W . The costs are plotted both for the ex-
act MaxSAT method and the approximative algorithms KC, SDPC, SCPS
and CCA. For both protein 1 and 2, we found that the clustering obtained
by MaxSAT invoked on an instance with 60% (p = 0.4) of the non-zero
values pruned was of lower cost than the clustering obtained by any of the
inexact algorithms when invoked on the complete instance. These results
suggest that first pruning a significant amount of the non-zero values of

4.1 Correlation Clustering 49

 1

 10

 100

 1000

 10000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
o
lv

in
g
 T

im
e
 (

s
)

p

MaxSAT-Binary-Prot2

MaxSAT-Binary-Prot1

Timeout

 600

 700

 800

 900
 1000

 1200

 1500

 2100

 2700

 3500

 4500

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
o

s
t

o
f

C
lu

s
te

ri
n

g

p

SDPC
KC

SCPS
CCA

MaxSAT-Binary

 650

 800

 1000

 1300

 1700

 2300

 3000

 4000

 5000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
o

s
t

o
f

C
lu

s
te

ri
n

g

p

SDPC
KC

SCPS
CCA

MaxSAT-Binary

Figure 4.3: Top: Evolution of running times. Bottom: Cost of the cluster-
ings obtained on sparse matrices. Bottom left: Protein 1 (669 datapoints),
bottom right: Protein 2 (586 datapoints).

the matrix and then solving the sparser matrix using the binary MaxSAT
encoding results in a competitive inexact approach to applications of cor-
relation clustering with medium-size instances as long as running times in
the order of a few minutes are acceptable. For applications where faster
running times are required or larger instances need to be solved, the other
inexact algorithms should be considered. All runs of KC, SDPC, SCPS and
CCA reported on in Paper V were completed within a few seconds.

In addition the experiments on unconstrained correlation clustering,
Paper V also includes results of experiments on the constrained correlation
clustering problem. Constrained correlation clustering extends the correla-
tion clustering problem by allowing extra hard constraints in the instance.
We report on experiments evaluating the effect of extra symmetry breaking
constraints as well as user specified must-link and cannot-link constraints
which might come from an domain expert. We found that in many settings,
adding extra constraints to the instance decreases the running time of the
MaxSAT solver while not significantly increasing the cost of the produced
clustering. As far as we are aware, adding similar constraints to the in-

50 4 Maximum Satisfiability for Data Analysis

exact algorithms is non-trivial. This further highlights the benefits of a
declarative approach to solving correlation clustering.

4.2 Bounded Treewidth Bayesian Network
Structure Learning

In Paper VI we propose and evaluate a MaxSAT encoding of the bounded
treewidth Bayesian network structure learning problem (BTBNSL). We
compare the resulting MaxSAT-based approach to the dynamic program-
ming algorithm of [198], which at the time of publication of Paper VI was
the only other known implementation of a solution algorithm to BTBNSL.
Since the publication of Paper VI there has been a continued interest in
BTBNSL [200, 255–257]. For example, an integer programming-based so-
lution algorithm was published concurrently with Paper VI [199].

Given a set of observations (data) D over some set X of random vari-
ables, the goal of Bayesian network structure learning is to compute a
Bayesian network structure which summarizes statistical dependencies and
independencies in the data. BTBNSL further restricts the set of feasible so-
lutions to networks that have treewidth less than some given bound k ∈ N.
In the score-based approach to BTBNSL, which we focus on, a scoring
function Score is precomputed based on the data. The scoring function
assigns a score Score(G) to each possible network structure G = (X,E).
The score measures how well G explains the data, an optimal network min-
imizes Score over all possible networks. Our MaxSAT encoding is appli-
cable under any decomposable scoring function. We give a precise definition
of a scoring function being decomposable in the next section and note here
that several commonly used scoring functions are decomposable, including
MDL [258], BD [259], and fNML [11]. In the rest of the section, we assume
that all scores are given as input and work with a generic decomposable
scoring function Score.

This section is organized as follows. In Section 4.2.1 we detail BTBNSL
and discuss how the treewidth of a Bayesian network can be computed.
The MaxSAT encoding of BTBNSL is presented in Section 4.2.2 and an
overview of the results of the experimental evaluation conducted in Paper
VI is given in Section 4.2.3.

4.2.1 Problem Setting

Let X = {X1, . . . , XN} be a set of N random variables, and for each
i = 1, . . . , N , let Pi = 2X\{Xi} be the set of candidate parent sets of Xi.

4.2 Bounded Treewidth Bayesian Network Structure Learning 51

An instance of BTBNSL consists of X, a bound k ∈ N, and for each i =
1, . . . , N the set Pi as well as a local score function si : Pi → N associating
a positive cost si(P) to each P ∈ Pi. Picking a single Pi ∈ Pi for each Xi

gives rise to the directed graph G = (X,E) in which (Xj , Xi) ∈ E if and
only if Xj ∈ Pi. We say that any Xj for which (Xj , Xi) ∈ E is a parent
of Xi, and Xi is a child of Xj . The graph G is a solution to the BTBNSL
instance if it is acyclic and has treewidth less than k, i.e., if TW(G) ≤ k.
The score Score(G) of a solution G is equal to the sum of the local scores
of each node and its parent set:

Score(G) =
∑

Xi∈X
si(Pi). (4.1)

As a side note, we say that any scoring function Score for which the value
Score(G) can be computed similarly to Equation 4.1, is decomposable. A
solution Go is optimal if Score(Go) ≤ Score(G) for any solution G.

Figure 4.4 illustrates the definition and computation of the treewidth of
a Bayesian network G = (X,E) [202, 260]. The treewidth of G is equal to
the treewidth of its (undirected) moralized graph Moral(G) = (X,EM),
obtained from G by adding an edge between any two nodes Xi and Xk

that share a common child and dropping the direction of all edges. Given
a linear ordering ≺ of X and two nodes Xi, Xj ∈ X, the node Xi is a
predecessor of Xj (under ≺) if Xi ≺ Xj and {Xi, Xj} ∈ EM . The undi-
rected triangulation ∆(Moral(G),≺) of Moral(G) under ≺ is obtained
by iteratively adding edges to EM between pairs Xj and Xk of nodes that
share a common predecessor. The edges are added until fix point. Finally,
the directed ordered graph ~∆(Moral(G),≺) is obtained from the result-
ing triangulation by ordering all edges according to ≺. The width of ≺ is
the maximum out-degree of any node of ~∆(Moral(G),≺). The treewidth
TW(G) of G is the minimum-width of all linear orderings of X.

4.2.2 MaxSAT Encoding of BTBNSL

In this section we overview our MaxSAT encoding of BTBNSL. Given an
instance of BTBNSL over X = {X1, . . . , XN} and a bound k ∈ N, the
encoding produces the MaxSAT instance Bayes(X, k) = (FXh , F

X
s , w).

For each variable Xi ∈ X and potential parent set S ∈ Pi, the instance
Bayes(X, k) includes a variable PSi . Given a solution τ to Bayes(X, k),
the graph Gτ = (X,Eτ) corresponding to τ has (Xj , Xi) ∈ Eτ if and
only if Xj ∈ S for a S ∈ Pi for which τ(PSi) = 1. The hard clauses of
Bayes(X, k) enforce that Gτ is a solution to X. The soft clauses ensure
that Cost(F , τ) = Score(Gτ).

52 4 Maximum Satisfiability for Data Analysis

X4

X2

X1

X3

X5

X6

(a)

X2

X4 X5

X6

X3

X1

(b)

X1

X2

X4 X5

X3

X6

(c)

X2

X1

X3

X5X4

X6

(d)

Figure 4.4: Computing the treewidth of a Bayesian network structure G =
(X = {X1, . . . , X6}, E). (a) G; (b) the moralized graph Moral(G) =
(X,M(E)) of G; (c) the triangulation ∆(Moral(G),≺) of the moralized
graph under the linear ordering X6 ≺ X2 ≺ X4 ≺ X1 ≺ X3 ≺ X5; (d) the
ordered graph ~∆(Moral(G),≺).

Next we overview the structure of Bayes(X, k). Compared to the
MaxSAT encodings for correlation clustering, the CNF conversions of the
constraints in Bayes(X, k) are somewhat involved. We refer the reader to
Paper VI for the details. The hard clauses FXh of Bayes(X, k) enforce that
the graph Gτ corresponding to a solution τ of Bayes(X, k) is a solution
to the BTBNSL instance X. The clauses in FXh represent a conjunction of
three different complex constraints:

FXh =
N∧

i=1

CNF(
∑

S∈Pi

PSi = 1) ∧ACYC(X) ∧TWCNF(X, k).

The constraint CNF(
∑

S∈Pi
PSi = 1) is satisfied if and only if Gτ has

a single parent set S for each Xi. In Paper VI, we used the improved
sequential counter [261] to encode this cardinality constraint to CNF.

The constraint ACYC(X) is satisfied if and only if the graph Gτ is
acyclic. The CNF encoding of ACYC(X) assigns a level number l(Xi) ∈ N
to each node Xi ∈ X and enforces that the level number of a parent Xj of a
node Xi satisfies l(Xj) ≤ l(Xi). In more detail, we model the level number

l(Xi) of each node Xi in binary using log2(N) variables b1i , . . . , b
log2(N)
i . We

enforce l(Xj) ≤ l(Xi) by modeling the statement “the most significant bit
in which the binary representations of l(Xi) and l(Xj) differ is 1 in l(Xi)”.

The constraint TWCNF(X, k) is satisfied if and only if TW(Gτ) ≤
k. The CNF translation of TWCNF(X, k) follows the SAT encoding for
computing the treewidth of a fixed graph presented in [261]. Essentially,

4.2 Bounded Treewidth Bayesian Network Structure Learning 53

we enforce the existence of a linear ordering of the variables in X that
has width at most k. This is enough to ensure that TW(Gτ) ≤ k as the
treewidth is equal to the minimum width over all possible orderings.

The soft clauses FXs contain a unit negation (¬PSi) with weight si(S)
for all i = 1, . . . , N and S ∈ Pi. These ensure that the cost incurred
by selecting S as a parent for Xi is si(S), as expected. These clauses
ensure that Cost(F , τ) = Score(Gτ) as required to make sure that the
Bayesian network structure Gτ corresponding to an optimal solution τ to
Bayes(X, k) is an optimal solution to BTBNSL.

4.2.3 Experimental Evaluation

In Paper VI we report on an experimental evaluation evaluating of the
applicability of MaxSAT for solving BTBNSL. As benchmark sets we used
eight well-known UCl datasets [249] over 9–29 random variables, as well
as two datasets (Adult and Housing) from [198]. Table 4.1 summarizes
the benchmark sets. For each benchmark, we used the (decomposable)
MDL scoring function [258]. We compare our MaxSAT encoding with the
dynamic programming (DP) algorithm for BTBNSL of [198], the only other
implementation of an exact algorithm for BTBNSL we were aware of at the
time. All MaxSAT instances were solved with the MaxHS [121] solver. A
per instance time limit of 8 h and memory limit of 30 GB were enforced on
all benchmarks and solver runs. We used k = 2, 3 and 4 as bounds for the
treewidth of the solution network.

Table 4.1 overviews the results of our experiment. For each treewidth
bound, the best running time to find an optimal solution is highlighted
in boldface. We observe that the dynamic programming approach is com-
petitive with our MaxSAT approach only for the smallest dataset with 9
variables. Apart from the multiple timeouts (“> 28 800”), we observe that
DP most often runs out of memory (“mo”) on the datasets with more
variables, especially for treewidth bounds greater than 2. In contrast, the
MaxSAT approach (MS) timeouts on only two instances, and, especially,
does not run out of memory. For a clear 2/3 majority of the instances,
MS produces an optimal solution within half-an-hour; and for half of the
instances within around 10 minutes.

54 4 Maximum Satisfiability for Data Analysis

Table 4.1: Running times in seconds of our MaxSAT-based approach (MS)
and the dynamic programming (DP) approach [198] for different UCI
datasets and treewidth bounds k = 2, 3, 4. Explanations: “mo” denotes
a memory out; N denotes the number of variables (nodes); #fails denotes
the number of times the memory or time limit was exceeded.

treewidth ≤ 2 treewidth ≤ 3 treewidth ≤ 4 #fails
Dataset N MS (s) DP (s) MS (s) DP (s) MS (s) DP (s) MS DP

Abalone 9 64 7 166 57 215 536 0 0
Housing 14 2 226 6 927 2 329 > 28 800 2 991 mo 0 2
Wine 14 27 6 924 22 > 28 800 171 mo 0 2
Adult 15 998 > 28 800 1 623 > 28 800 1 782 mo 0 3
Voting 17 22 909 > 28 800 26 419 mo > 28 800 mo 1 3
Zoo 17 410 > 28 800 412 mo 105 mo 0 3
Hepatitis 20 315 mo 100 mo 1 164 mo 0 3
Heart 23 1 198 mo 2 186 mo 41 mo 0 3
Horse 28 192 mo > 28 800 mo 544 mo 1 3
Flag 29 1 418 mo 11 148 mo 1 356 mo 0 3

#fails: 0 7 1 9 1 9 2 25

Chapter 5

Conclusion

This thesis contributed to declarative methods for exactly solving combi-
natorial optimization problems. We focused on MaxSAT encodings and
re-encodings of combinatorial optimization problems with the aim of solv-
ing instances that correspond to real-world applications.

In Papers I-IV we studied MaxSAT solving technology in the form of
solver independent re-encodings, i.e., preprocessing, of MaxSAT instances
F to other instances pre(F) with the aim of making the time required to
re-encode F and solve pre(F) less than the time required to solve F . In
Papers I and II we further developed the previously proposed labeled CNF
framework for MaxSAT preprocessing. In Paper I we showed that the extra
label variables introduced during label-based preprocessing can be reused as
assumption variables in many core-guided and implicit hitting set MaxSAT
solvers, thus avoiding all variables that otherwise would be introduced by
the solvers. We also showed that reusing labels as assumptions is necessary
in order to improve the empirical performance of LMHS, an implicit hitting
set based MaxSAT solver.

In Paper II we generalized the idea proposed in Paper I further by show-
ing that some literals from the input MaxSAT instance itself can be used
as labels during preprocessing and assumptions during solving. We demon-
strated that such literals can be identified using simple pattern matching,
resulting in a procedure we call group detection. Our empirical results in-
dicate that group detection identifies a significant fraction of the literals
in the evaluation benchmarks and that reusing detected literals results in
modest further improvements to the empirical performance of LMHS.

Even though the ideas presented in Papers I and II are theoretically ap-
plicable to both core-guided and implicit hitting set based MaxSAT solvers,
in practice we observed a more significant benefit of label-based preprocess-
ing in conjunction with implicit hitting set based MaxSAT solvers. The

55

56 5 Conclusion

relationship between label-based preprocessing and the formula rewriting
performed by core-guided solvers remains an open and interesting question.
A better understanding of the formula rewriting could result in improved
performance of core-guided solvers and label-based preprocessing. Another
approach to further improving the performance label-based preprocessing
in SAT-based MaxSAT solvers could be via some form of inprocessing, i.e
via preprocessing steps interleaved with the execution of the solving algo-
rithm. It could also be interesting to investigate if similar ideas could be
used in order to develop preprocessing in constraint programming [262, 263]
or other constraint optimization paradigms.

In Paper III we presented the results of a theoretical analysis on the
effect of label-based preprocessing with SAT-based preprocessing rules on
core-guided and implicit hitting set based MaxSAT solvers. We showed
that preprocessing can not decrease the number of iterations (SAT solver
calls) required by either algorithm, but can help them avoid some long ex-
ecutions. As discussed at the end of Section 3.3, the results of Paper III
highlight some potentially beneficial approaches to the further development
of MaxSAT preprocessing techniques. Since preprocessing has limited ef-
fect on the number of iterations of MaxSAT solvers, the overall benefit of
preprocessing on MaxSAT solving could be further improved by developing
preprocessing techniques that allow faster core-extraction from unsatisfiable
instances. Furthermore, even though label-based preprocessing with SAT-
based preprocessing rules does not affect the MCS structure of MaxSAT
instances, it can still affect the solutions corresponding to the MCSes. A
better understanding of the effect that preprocessing has on the minimal
solutions that correspond to optimal MCSes could result in improved pre-
processing techniques.

It should also be mentioned that the base of the results presented in
Paper III (Corollary 1 in Section 3.3) is actually stronger than what is re-
quired for sound MaxSAT preprocessing. An argument similar to the proof
of Theorem 4 can be used to show that label-based preprocessing with
SAT-based preprocessing rules preserves all minimal solutions to MaxSAT
instances, not only the optimal ones. Thus preprocessing rules that are
sound but do not satisfy Corollary 1 could affect the number of iterations
of SAT-based MaxSAT solvers more significantly. Finally, it should be
noted that the abstraction of core-guided solvers considered Paper III does
not cover more recently proposed solvers, specifically the ones that intro-
duce soft cardinality constraints. The effect of soft cardinality constraints
on the MUS structure of MaxSAT instances remains an interesting open
question. Developing a better understanding of how the formula rewrit-

57

ings used by core-guided solvers affect the MCSes of the instance could
potentially improve both MaxSAT preprocessing and MaxSAT solving.

As the final contribution to MaxSAT preprocessing of this thesis, we
proposed subsumed label elimination (SLE) in Paper IV. We showed that
SLE is theoretically orthogonal to the SAT-based preprocessing rules in
the sense that using SLE together with the SAT-based preprocessing rules
can result in additional clauses and variables removed during preprocessing.
We also demonstrated that, even though SLE is sound for MaxSAT, it does
not preserve all MCSes of MaxSAT instances. Hence, an interesting further
research direction would be to investigate the effect that SLE has on the
number of iterations of SAT-based MaxSAT solvers. We hypothesize that
the effect of SLE is similar to that of SAT-based preprocessing rules, but do
not have a proof at this time. In addition to the theoretical results, Paper
IV also demonstrated empirically that using SLE together with SAT-based
preprocessing rules results in more variables and clauses being removed dur-
ing preprocessing and in a decrease of the overall solving time of LMHS.
These observations motivate further development of MaxSAT-specific pre-
processing rules that make direct use of the label variables and weights of
the soft clauses.

Papers V and VI proposed MaxSAT encodings of two data analy-
sis tasks: correlation clustering and bounded treewidth Bayesian network
structure learning. We empirically compared our MaxSAT-based solution
approach with other, previously proposed exact algorithms. For both prob-
lems, we observed that the MaxSAT-based approach was faster and more
memory efficient than the other considered approaches on several bench-
marks. After the publication of Papers V and VI we have compiled a set of
MaxSAT benchmarks of both correlation clustering and BTBNSL to each
MaxSAT evaluation organized since 2015, i.e., the 2015, 2016 and 2017
evaluations. Interestingly, the solver that was most successful on those
benchmarks in each evaluation was implicit hitting set based, an observa-
tion we made already in the original publications. This seems to suggest
that these benchmarks exhibit some form of specific structure which is more
easily exploited implicit hitting set based solvers compared to core-guided
solvers. One possible explanation is the high diversity of weights of the soft
clauses in the instances, which means that core-guided solvers need to per-
form a significant amount of clause cloning when solving them. A deeper
understanding of the similarities and differences between core-guided and
implicit hitting set based solvers remains an interesting open question for
developing more effective encodings and MaxSAT solvers for combinatorial
optimization problems at large.

58 5 Conclusion

References

[1] Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Op-
timization: Algorithms and Complexity. Prentice-Hall, Inc., 1982.

[2] Chu Min Li and Felip Manyà. MaxSAT, hard and soft constraints.
In Handbook of Satisfiability, volume 185 of Frontiers in Artificial
Intelligence and Applications, chapter 19, pages 613–631. IOS Press,
2009.

[3] Richard Bellman. Dynamic programming treatment of the travelling
salesman problem. Journal of the ACM, 9(1):61–63, 1962.

[4] Nico L.J. Ulder, Emile H.L. Aarts, Hans-Jürgen Bandelt, Peter J.M.
Van Laarhoven, and Erwin Pesch. Genetic local search algorithms for
the traveling salesman problem. In Proceedings of the 1st Workshop
on the Parallel Problem Solving from Nature, volume 496 of Lecture
Notes in Computer Science, pages 109–116. Springer, 1990.

[5] Mauricio G.C. Resende and Panos M. Pardalos. Handbook of Opti-
mization in Telecommunications. Springer Science & Business Media,
2008.

[6] Zhibin Wang, Chongzhi Zang, Jeffrey A. Rosenfeld, Dustin E.
Schones, Artem Barski, Suresh Cuddapah, Kairong Cui, Tae-Young
Roh, Weiqun Peng, Michael Q. Zhang, and Keji Zhao. Combinato-
rial patterns of histone acetylations and methylations in the human
genome. Nature Genetics, 40:897–903, 2008.

[7] David Allouche, Isabelle André, Sophie Barbe, Jessica Davies, Simon
de Givry, George Katsirelos, Barry O’Sullivan, Steven David Prest-
wich, Thomas Schiex, and Seydou Traoré. Computational protein
design as an optimization problem. Artificial Intelligence, 212:59–79,
2014.

59

60 References

[8] Thi-Bich-Hanh Dao, Khanh-Chuong Duong, and Christel Vrain. Con-
strained clustering by constraint programming. Artificial Intelligence,
244:70–94, 2017.

[9] Ian Davidson, S. S. Ravi, and Leonid Shamis. A SAT-based frame-
work for efficient constrained clustering. In Proceedings of the SIAM
International Conference on Data Mining, pages 94–105. SIAM, 2010.

[10] Sean Gilpin and Ian Davidson. A flexible ILP formulation for hierar-
chical clustering. Artificial Intelligence, 244:95–109, 2017.

[11] Tomi Silander, Teemu Roos, Petri Kontkanen, and Petri Myllymäki.
Factorized normalized maximum likelihood criterion for learning
Bayesian network structures. In Proceedings of the 4th European
Workshop on Probabilistic Graphical Models, pages 257–272, 2008.

[12] Dag Sonntag, Matti Järvisalo, José M. Peña, and Antti Hyttinen.
Learning optimal chain graphs with answer set programming. In
Proceedings of the 31st Conference on Uncertainty in Artificial Intel-
ligence, pages 822–831. AUAI Press, 2015.

[13] Antti Hyttinen, Paul Saikko, and Matti Järvisalo. A core-guided
approach to learning optimal causal graphs. In Proceedings of the
26th International Joint Conference on Artificial Intelligence, pages
645–651. AAAI Press, 2017.

[14] Andreas Niskanen, Johannes Peter Wallner, and Matti Järvisalo. Op-
timal status enforcement in abstract argumentation. In Proceedings
of the 25th International Joint Conference on Artificial Intelligence,
pages 1216–1222. IJCAI/AAAI Press, 2016.

[15] Tias Guns, Anton Dries, Siegfried Nijssen, Guido Tack, and Luc
De Raedt. MiningZinc: A declarative framework for constraint-based
mining. Artificial Intelligence, 244:6–29, 2017.

[16] Tias Guns, Siegfried Nijssen, and Luc De Raedt. K-pattern set min-
ing under constraints. IEEE Transactions on Knowledge and Data
Engineering, 25(2):402–418, 2013.

[17] Benjamin Négrevergne, Anton Dries, Tias Guns, and Siegfried Ni-
jssen. Dominance programming for itemset mining. In Proceedings
of the 13th International Conference on Data Mining, pages 557–566.
IEEE Computer Society, 2013.

References 61

[18] John O. R. Aoga, Tias Guns, and Pierre Schaus. An efficient al-
gorithm for mining frequent sequence with constraint programming.
In Machine Learning and Knowledge Discovery in Databases, pages
315–330, Cham, 2016. Springer International Publishing.

[19] Thomas Hofmann and Joachim M. Buhmann. Pairwise data clus-
tering by deterministic annealing. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 19(1):1–14, 1997.

[20] Kerstin Bunte, Matti Järvisalo, Jeremias Berg, Petri Myllymäki,
Jaakko Peltonen, and Samuel Kaski. Optimal neighborhood preserv-
ing visualization by maximum satisfiability. In Proceedings of the 28th
AAAI Conference on Artificial Intelligence, pages 1694–1700. AAAI
Press, 2014.

[21] Sigurdur Olafsson, Xiaonan Li, and Shuning Wu. Operations re-
search and data mining. European Journal of Operational Research,
187(3):1429–1448, 2008.

[22] Dana Nau, Malik Ghallab, and Paolo Traverso. Automated Planning:
Theory & Practice. Morgan Kaufmann Publishers Inc., 2004.

[23] Jussi Rintanen. Planning with SAT, admissible heuristics and A*. In
Proceedings of the 22nd International Joint Conference on Artificial
Intelligence, pages 2015–2020. AAAI Press, 2011.

[24] Lei Zhang and Fahiem Bacchus. MaxSAT heuristics for cost optimal
planning. In Proceedings of the 26th AAAI Conference on Artificial
Intelligence. AAAI Press, 2012.

[25] Luis C. Rabelo and Albert Jones. Job shop scheduling. In Encyclope-
dia of Operations Research and Management Science, pages 817–830.
Springer, 2013.

[26] Mirko Stojadinovic. Air traffic controller shift scheduling by reduction
to CSP, SAT and SAT-related problems. In Proceedings of the 20th
International Conference on Principles and Practice of Constraint
Programming, volume 8656 of Lecture Notes in Computer Science,
pages 886–902. Springer, 2014.

[27] Miquel Bofill, Marc Garcia, Josep Suy, and Mateu Villaret. MaxSAT-
based scheduling of B2B meetings. In Proceedings of the 12th Inter-
national Conference on the Integration of AI and OR Techniques in
Constraint Programming, volume 9075 of Lecture Notes in Computer
Science, pages 65–73, 2015.

62 References

[28] Jan K. Lenstra, A.H.G. Rinnooy Kan, and Peter Brucker. Complexity
of machine scheduling problems. Annals of Discrete Mathematics,
1:343–362, 1977.

[29] Marius M. Solomon. Algorithms for the vehicle routing and schedul-
ing problems with time window constraints. Operations Research,
35(2):254–265, 1987.

[30] Derya E. Akyol and G. Mirac Bayhan. A review on evolution of
production scheduling with neural networks. Computers & Industrial
Engineering, 53(1):95 – 122, 2007.

[31] Hui Xu, Rob A. Rutenbar, and Karem A. Sakallah. Sub-SAT: a for-
mulation for relaxed Boolean satisfiability with applications in rout-
ing. IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, 22(6):814–820, 2003.

[32] Samuel S. Brito, George H.G. Fonseca, Tulio A.M. Toffolo,
Haroldo G. Santos, and Marcone J.F. Souza. A SA-VNS approach
for the high school timetabling problem. Electronic Notes in Discrete
Mathematics, 39:169–176, 2012.

[33] Andrea Schaerf. A survey of automated timetabling. Artificial Intel-
ligence Review, 13(2):87–127, 1999.

[34] Edmund K. Burke, Barry McCollum, Amnon Meisels, Sanja Petro-
vic, and Rong Qu. A graph-based hyper-heuristic for educational
timetabling problems. European Journal of Operational Research,
176(1):177–192, 2007.

[35] Alain Hertz. Tabu search for large scale timetabling problems. Eu-
ropean Journal of Operational Research, 54(1):39–47, 1991.

[36] Roberto J.A. Achá and Robert Nieuwenhuis. Curriculum-based
course timetabling with SAT and MaxSAT. Annals of Operations
Research, 218(1):71–91, 2014.

[37] Manu Jose and Rupak Majumdar. Cause clue clauses: Error lo-
calization using maximum satisfiability. ACM SIGPLAN Notices,
46(6):437–446, 2011.

[38] Charlie Shucheng Zhu, Georg Weissenbacher, and Sharad Malik.
Post-silicon fault localisation using maximum satisfiability and back-
bones. In Proceedings of the 11th International Conference on Formal
Methods in Computer-Aided Design, pages 63–66. FMCAD Inc, 2011.

References 63

[39] Morten Mossige, Arnaud Gotlieb, and Hein Meling. Deploying con-
straint programming for testing ABB’s painting robots. AI Magazine,
38(2):94–96, 2017.

[40] Javier Barbas and Angel Marin. Maximal covering code multiplexing
access telecommunication networks. European Journal of Operational
Research, 159(1):219 – 238, 2004.

[41] Dimitris Bertsimas, Guglielmo Lulli, and Amedeo R. Odoni. An inte-
ger optimization approach to large-scale air traffic flow management.
Operations Research, 59(1):211–227, 2011.

[42] Arthur Richards and Jonathan P. How. Aircraft trajectory plan-
ning with collision avoidance using mixed integer linear programming.
In Proceedings of the 2002 American Control Conference, volume 3,
pages 1936–1941. IEEE, 2002.

[43] Pey-Chang Lin and Sunil Khatri. Application of MaxSAT-based
ATPG to optimal cancer therapy design. BMC Genomics, 13(6),
2012.

[44] Tung-Wei Kuo, Kate Ching-Ju Lin, and Ming-Jer Tsai. On the
construction of data aggregation tree with minimum energy cost in
wireless sensor networks: NP-completeness and approximation algo-
rithms. IEEE Transactions on Computers, 65(10):3109–3121, 2016.

[45] Anupam Gupta, Viswanath Nagarajan, and R. Ravi. Approximation
algorithms for optimal decision trees and adaptive TSP problems.
Mathematics of Operations Research, 42(3):876–896, 2017.

[46] Anton Milan, Seyed Hamid Rezatofighi, Ravi Garg, Anthony R. Dick,
and Ian D. Reid. Data-driven approximations to NP-hard problems.
In Proceedings of the 31st AAAI Conference on Artificial Intelligence,
pages 1453–1459. AAAI Press, 2017.

[47] David S. Johnson. Approximation algorithms for combinatorial prob-
lems. In Proceedings of the 5th Annual ACM Symposium on Theory
of Computing, pages 38–49. ACM, 1973.

[48] Vijay V. Vazirani. Approximation Algorithms. Springer-Verlag New
York, Inc., 2001.

[49] Richard E. Korf. Depth-first iterative-deepening: An optimal admis-
sible tree search. Artificial Intelligence, 27:97–109, 1985.

64 References

[50] Jordan Thayer and Wheeler Ruml. Anytime heuristic search: Frame-
works and algorithms. In Proceedings of the 3rd Annual Symposium
on Combinatorial Search, pages 121–128. AAAI Press, 2010.

[51] Hisao Ishibuchi and Takashi Yamamoto. Fuzzy rule selection by
multi-objective genetic local search algorithms and rule evaluation
measures in data mining. Fuzzy sets and Systems, 141(1):59–88, 2004.

[52] Eric A. Hansen and Rong Zhou. Anytime heuristic search. Journal
of Artificial Intelligence Research, 28:267–297, 2007.

[53] Gerhard J. Woeginger. Exact Algorithms for NP-Hard Problems: A
Survey, pages 185–207. Springer Berlin Heidelberg, 2003.

[54] Mikko Koivisto and Kismat Sood. Exact Bayesian structure discovery
in Bayesian networks. Journal of Machine Learning Research, 5:549–
573, 2004.

[55] Fedor V. Fomin and Petteri Kaski. Exact exponential algorithms.
Communications of the ACM, 56(3):80–88, 2013.

[56] Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms.
Texts in Theoretical Computer Science. An EATCS Series. Springer,
2010.

[57] George L. Nemhauser and Laurence A. Wolsey. Integer and combina-
torial optimization. Wiley Interscience Series in Discrete Mathematics
and Optimization. Wiley, 1988.

[58] T.C. Hu and Andrew B. Kahng. Linear and integer programming
in practice. In Linear and Integer Programming Made Easy, pages
117–130. Springer, 2016.

[59] Francesca Rossi, Peter Van Beek, and Toby Walsh. Handbook of
Constraint Programming. Elsevier, 2006.

[60] Ilkka Niemelä. Logic programs with stable model semantics as a con-
straint programming paradigm. Annals of Mathematics and Artificial
Intelligence, 25(3-4):241–273, 1999.

[61] Piero Bonatti, Francesco Calimeri, Nicola Leone, and Francesco
Ricca. Answer set programming. In A 25-Year Perspective on Logic
Programming, pages 159–182. Springer-Verlag, 2010.

References 65

[62] Luc De Raedt, Tias Guns, and Siegfried Nijssen. Constraint program-
ming for data mining and machine learning. In Proceedings of the 24th
AAAI Conference on Artificial Intelligence. AAAI Press, 2010.

[63] Ronald de Haan, Martin Kronegger, and Andreas Pfandler. Fixed-
parameter tractable reductions to SAT for planning. In Proceedings
of the 24th International Joint Conference on Artificial Intelligence,
pages 2897–2903. AAAI Press, 2015.

[64] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Hel.
Counterexample-guided abstraction refinement for symbolic model
checking. Journal of the ACM, 50(5):752–794, 2003.

[65] Mikoláš Janota, William Klieber, João Marques-Silva, and Edmund
Clarke. Solving QBF with counterexample guided refinement. Arti-
ficial Intelligence, 234:1–25, 2016.

[66] Stephen A. Cook. The complexity of theorem-proving procedures. In
Proceedings of the 3rd Annual ACM Symposium on Theory of Com-
puting, pages 151–158. ACM, 1971.

[67] Alexander Schrijver. Theory of linear and integer programming. John
Wiley & Sons, 1998.

[68] James F. Campbell. Integer programming formulations of discrete
hub location problems. European Journal of Operational Research,
72(2):387–405, 1994.

[69] Michela Milano and Francesca Rossi. Constraint programming. In-
telligenza Artificiale, 3(1-2):28–34, 2006.

[70] Daniel Larraz, Kaustubh Nimkar, Albert Oliveras, Enric Rodŕıguez-
Carbonell, and Albert Rubio. Proving non-termination using
MaxSMT. In Proceedings of the 26th International Conference on
Computer Aided Verification, volume 8559 of Lecture Notes in Com-
puter Science, pages 779–796, 2014.

[71] Roberto Sebastiani and Patrick Trentin. On optimization modulo
theories, MaxSMT and sorting networks. In Proceedings of the 23rd
International Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems, volume 10206 of Lecture Notes in Com-
puter Science, pages 231–248. Springer, 2017.

66 References

[72] Roberto Sebastiani and Patrick Trentin. OptiMathSAT: A tool for
optimization modulo theories. In Proceedings of the 27th Interna-
tional Conference on Computer Aided Verification, volume 9206 of
Lecture Notes in Computer Science, pages 447–454. Springer, 2015.

[73] Tomas Balyo, Marijn Heule, and Matti Järvisalo. SAT Competition
2016: Recent developments. In Proceedings of the 31st AAAI Confer-
ence on Artificial Intelligence, pages 5061–5063. AAAI Press, 2017.

[74] Matti Järvisalo, Daniel Le Berre, Olivier Roussel, and Laurent Simon.
The international SAT solver competitions. AI Magazine, 33(1):89–
92, 2012.

[75] Jeremias Berg and Matti Järvisalo. Cost-optimal constrained correla-
tion clustering via weighted partial maximum satisfiability. Artificial
Intelligence, 244:110–142, 2017.

[76] Jeremias Berg, Matti Järvisalo, and Brandon Malone. Learning opti-
mal bounded treewidth Bayesian networks via maximum satisfiabil-
ity. In Proceedings of the 17th International Conference on Artificial
Intelligence and Statistics, volume 33 of JMLR Workshop and Con-
ference Proceedings, pages 86–95. JMLR, 2014.

[77] Antti Hyttinen, Patrik O. Hoyer, Frederick Eberhardt, and Matti
Järvisalo. Discovering cyclic causal models with latent variables: A
general SAT-based procedure. In Proceedings of the 29th Conference
on Uncertainty in Artificial Intelligence. AUAI Press, 2013.

[78] James D. Park. Using weighted MaxSAT engines to solve MPE. In
Proceedings of the 18th National Conference on Artificial Intelligence,
pages 682–687. AAAI Press / The MIT Press, 2002.

[79] Tian Sang, Paul Beame, and Henry A. Kautz. A dynamic approach
for MPE and weighted MaxSAT. In Proceedings of the 20th Inter-
national Joint Conference on Artificial Intelligence, pages 173–179,
2007.

[80] Ana Graça, Inês Lynce, João Marques-Silva, and Arlindo L. Oliveira.
Efficient and accurate haplotype inference by combining parsimony
and pedigree information. In Revised Selected Papers of the 4th Inter-
national Conference on Algebraic and Numeric Biology, volume 6479
of Lecture Notes in Computer Science, pages 38–56. Springer, 2012.

References 67

[81] Ana Graça, João Marques-Silva, Inês Lynce, and Arlindo L. Oliveira.
Haplotype inference with pseudo-Boolean optimization. Annals of
Operations Research, 184(1):137–162, 2011.

[82] Inês Lynce and João Marques-Silva. Haplotype inference with
Boolean satisfiability. International Journal on Artificial Intelligence
Tools, 17(2):355–387, 2008.

[83] Xiaojuan Liao, Miyuki Koshimura, Hiroshi Fujita, and Ryuzo
Hasegawa. MaxSAT encoding for MC-net-based coalition struc-
ture generation problem with externalities. IEICE Transactions, 97-
D(7):1781–1789, 2014.

[84] Jeremias Berg and Matti Järvisalo. SAT-based approaches to
treewidth computation: An evaluation. In Proceedings of of the 26th
International Conference on Tools with Artificial Intelligence, pages
328–335. IEEE Computer Society, 2014.

[85] João Guerra and Inês Lynce. Reasoning over biological networks
using maximum satisfiability. In Proceedings of the 18th International
Conference on Principles and Practice of Constraint Programming,
volume 7514 of Lecture Notes in Computer Science, pages 941–956.
Springer, 2012.

[86] Dawn M. Strickland, Earl R. Barnes, and Joel S. Sokol. Optimal
protein structure alignment using maximum cliques. Operations Re-
search, 53(3):389–402, 2005.

[87] Tuomas Sandholm. An algorithm for optimal winner determination
in combinatorial auctions. In Proceedings of the 16th International
Joint Conference on Artificial Intelligence, pages 542–547. Morgan
Kaufmann, 1999.

[88] João Marques-Silva, Mikolas Janota, Alexey Ignatiev, and Antonio
Morgado. Efficient model based diagnosis with maximum satisfia-
bility. In Proceedings of the 24th International Joint Conference on
Artificial Intelligence, pages 1966–1972. AAAI Press, 2015.

[89] Alessandro Bezerra Trindade, Renato De Faria Degelo, Edilson
Galvão Dos Santos Junior, Hussama Ibrahim Ismail, Helder Cruz Da
Silva, and Lucas Carvalho Cordeiro. Multi-core model checking and
maximum satisfiability applied to hardware-software partitioning. In-
ternational Journal of Embedded Systems, 9(6):570–582, 2017.

68 References

[90] Yu Feng, Osbert Bastani, Ruben Martins, Isil Dillig, and Saswat
Anand. Automated synthesis of semantic malware signatures using
maximum satisfiability. In Proceedings of the 24th Annual Network
and Distributed System Security Symposium. The Internet Society,
2017.

[91] Sean Safarpour, Hratch Mangassarian, Andreas G. Veneris, Mark H.
Liffiton, and Karem A. Sakallah. Improved design debugging using
maximum satisfiability. In Proceedings of the 7th International Con-
ference on Formal Methods in Computer-Aided Design, pages 13–19.
IEEE Computer Society, 2007.

[92] Xujie Si, Xin Zhang, Radu Grigore, and Mayur Naik. Maximum
satisfiability in software analysis: Applications and techniques. In
Proceedings of the 29th International Conference on Computer Aided
Verification, volume 10426 of Lecture Notes in Computer Science,
pages 68–94. Springer, 2017.

[93] Christian Muise, J. Christopher Beck, and Sheila A. McIlraith. Opti-
mal partial-order plan relaxation via MaxSAT. Journal of Artificial
Intelligence Research, 57:113–149, 2016.

[94] Marcel Kevin Tiepelt and Tilak Raj Singh. Finding pre-production
vehicle configurations using a MaxSAT framework. In Proceedings of
the 18th International Configuration Workshop, page 117. École des
Mines d’Albi-Carmaux, 2016.

[95] Carlos Ansótegui, Idelfonso Izquierdo, Felip Manyà, and José Torres-
Jiménez. A MaxSAT-based approach to constructing optimal cov-
ering arrays. In Proceedings of the 16th International Conference
of the Catalan Association for Artificial Intelligence, volume 256 of
Frontiers in Artificial Intelligence and Applications, pages 51–59. IOS
Press, 2013.

[96] Josep Argelich, Daniel Le Berre, Inês Lynce, João Marques-Silva,
and Pascal Rapicault. Solving Linux upgradeability problems us-
ing Boolean optimization. In Proceedings of the 1st International
Workshop on Logics for Component Configuration, volume 29 of Elec-
tronic Proceedings in Theoretical Computer Science, pages 11–22.
Open Publishing Association, 2010.

[97] Yibin Chen, Sean Safarpour, João Marques-Silva, and Andreas G.
Veneris. Automated design debugging with maximum satisfiability.

References 69

IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 29(11):1804–1817, 2010.

[98] Inês Lynce and João Marques-Silva. Restoring CSP satisfiability with
MaxSAT. Fundamenta Informaticae, 107(2-3):249–266, 2011.

[99] Xiaojuan Liao, Hui Zhang, and Miyuki Koshimura. Reconstructing
AES key schedule images with SAT and MaxSAT. IEICE Transac-
tions on Information and Systems, 99(1):141–150, 2016.

[100] Josep Argelich, Chu Min Li, Felip Manyà, and Jordi Planes. The first
and second MaxSAT evaluations. Journal on Satisfiability, Boolean
Modeling and Computation, 4(2-4):251–278, 2008.

[101] Josep Argelich, Chu Min Li, Felip Manyà, and Jordi Planes. MaxSAT
Evaluations. http://maxsat.ia.udl.cat/.

[102] Carlos Ansótegui, Fahiem Bacchus, Matti Järvisalo,
and Ruben Martins. MaxSAT Evaluation 2017, 2017.
http://mse17.cs.helsinki.fi/.

[103] Antonio Morgado, Federico Heras, and João Marques Silva. Model-
guided approaches for MaxSAT solving. In Proceedings of the 25th
IEEE International Conference on Tools with Artificial Intelligence,
pages 931–938. IEEE Computer Society, 2013.

[104] Miyuki Koshimura, Tong Zhang, Hiroshi Fujita, and Ryuzo
Hasegawa. QMaxSAT: A partial MaxSAT solver. Journal of Sat-
isfiability, Boolean Modeling and Computation, 8(1/2):95–100, 2012.

[105] Daniel Le Berre and Anne Parrain. The SAT4J library, release 2.2,
system description. Journal on Satisfiability, Boolean Modeling and
Computation, 7:59–64, 2010.

[106] Carlos Ansótegui and Joel Gabàs. WPM3: An (in) complete algo-
rithm for weighted partial MaxSAT. Artificial Intelligence, 250:37–57,
2017.

[107] João Marques-Silva and Jordi Planes. Algorithms for maximum satis-
fiability using unsatisfiable cores. In Proceedings of Design, Automa-
tion and Test in Europe, pages 408–413. ACM, 2008.

[108] Ruben Martins, Vasco M. Manquinho, and Inês Lynce. Improving
linear search algorithms with model-based approaches for MaxSAT
solving. Journal of Experimental & Theoretical Artificial Intelligence,
27(5):673–701, 2015.

70 References

[109] Vasco M. Manquinho, João Marques-Silva, and Jordi Planes. Algo-
rithms for weighted Boolean optimization. In Proceedings of the 12th
International Conference on Theory and Applications of Satisfiability
Testing, volume 5584 of Lecture Notes in Computer Science, pages
495–508. Springer, 2009.

[110] Federico Heras, Antonio Morgado, and João Marques-Silva. Core-
guided binary search algorithms for maximum satisfiability. In Pro-
ceedings of the 25th AAAI Conference on Artificial Intelligence.
AAAI Press, 2011.

[111] António Morgado, Carmine Dodaro, and João Marques-Silva. Core-
guided MaxSAT with soft cardinality constraints. In Proceedings of
the 20th International Conference on Principles and Practice of Con-
straint Programming, volume 8656 of Lecture Notes in Computer Sci-
ence, pages 564–573. Springer, 2014.

[112] António Morgado, Federico Heras, and João Marques-Silva. Improve-
ments to core-guided binary search for MaxSAT. In Proceedings of the
15th International Conference on Theory and Applications of Satis-
fiability Testing, volume 7317 of Lecture Notes in Computer Science,
pages 284–297. Springer, 2012.

[113] Ruben Martins, Saurabh Joshi, Vasco M. Manquinho, and Inês
Lynce. Incremental cardinality constraints for MaxSAT. In Proceed-
ings of the 20th International Conference on Principles and Practice
of Constraint Programming, volume 8656 of Lecture Notes in Com-
puter Science, pages 531–548. Springer, 2014.

[114] António Morgado, Federico Heras, Mark H. Liffiton, Jordi Planes,
and João Marques-Silva. Iterative and core-guided MaxSAT solving:
A survey and assessment. Constraints, 18(4):478–534, 2013.

[115] Nina Narodytska and Fahiem Bacchus. Maximum satisfiability using
core-guided MaxSAT resolution. In Proceedings of the 28th AAAI
Conference on Artificial Intelligence, pages 2717–2723. AAAI Press,
2014.

[116] Zhaohui Fu and Sharad Malik. On solving the partial MaxSAT prob-
lem. In Proceedings of the 9th International Conference on The-
ory and Applications of Satisfiability Testing, volume 4121 of Lecture
Notes in Computer Science, pages 252–265. Springer, 2006.

References 71

[117] Ruben Martins, Vasco M. Manquinho, and Inês Lynce. Open-WBO:
A modular MaxSAT solver. In Proceedings of the 17th International
Conference on Theory and Applications of Satisfiability Testing, vol-
ume 8561 of Lecture Notes in Computer Science, pages 438–445.
Springer, 2014.

[118] Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy. SAT-based
MaxSAT algorithms. Artificial Intelligence, 196:77 – 105, 2013.

[119] Mario Alviano, Carmine Dodaro, and Francesco Ricca. A MaxSAT
algorithm using cardinality constraints of bounded size. In Proceed-
ings of the 24th International Conference on Artificial Intelligence,
pages 2677–2683. AAAI Press, 2015.

[120] Nikolaj Bjørner and Nina Narodytska. Maximum satisfiability using
cores and correction sets. In Proceedings of the 24th International
Joint Conference on Artificial Intelligence, pages 246–252. AAAI
Press, 2015.

[121] Jessica Davies and Fahiem Bacchus. Exploiting the power of MIP
solvers in MaxSAT. In Proceedings of the 16th International Con-
ference on Theory and Applications of Satisfiability Testing, volume
7962 of Lecture Notes in Computer Science, pages 166–181. Springer,
2013.

[122] Jessica Davies and Fahiem Bacchus. Solving MaxSAT by solving a
sequence of simpler SAT instances. In Proceedings of the 17th Inter-
national Conference on Principles and Practice of Constraint Pro-
gramming, volume 6876 of Lecture Notes in Computer Science, pages
225–239. Springer, 2011.

[123] Paul Saikko, Jeremias Berg, and Matti Järvisalo. LMHS: a SAT-IP
hybrid MaxSAT solver. In Proceedings of the 19th International Con-
ference on Theory and Applications of Satisfiability Testing, volume
9710 of Lecture Notes in Computer Science, pages 539–546. Springer,
2016.

[124] Brian Borchers and Judith Furman. A two-phase exact algorithm for
MaxSAT and weighted MaxSAT problems. Journal of Combinatorial
Optimization, 2(4):299–306, 1998.

[125] Chu Min Li, Felip Manya, and Jordi Planes. Exploiting unit propaga-
tion to compute lower bounds in branch and bound MaxSAT solvers.
In Proceedings of the 11th International Conference on Principles and

72 References

Practice of Constraint Programming, volume 3709 of Lecture Notes
in Computer Science, pages 403–414. Springer, 2005.

[126] Chu Min Li and Zhe Quan. An efficient branch-and-bound algorithm
based on MaxSAT for the maximum clique problem. In Proceedings
of the 24th AAAI Conference on Artificial Intelligence, volume 10,
pages 128–133. AAAI Press, 2010.

[127] André Abramé and Djamal Habet. AHMAXSAT: Description and
evaluation of a branch and bound MaxSAT solver. Journal on Satis-
fiability, Boolean Modeling and Computation, 9:89–128, 2015.

[128] Yan-Li Liu, Chu-Min Li, Kun He, and Yi Fan. Breaking cycle struc-
ture to improve lower bound for MaxSAT. In Proceedings of the 10th
International Workshop on Frontiers in Algorithmics, volume 9711 of
Lecture Notes in Computer Science, pages 111–124. Springer, 2016.

[129] André Abramé and Djamal Habet. Learning nobetter clauses in
MaxSAT branch and bound solvers. In Proceedings of the 28th Inter-
national Conference on Tools with Artificial Intelligence, IEEE Com-
puter Society, pages 452–459, 2016.

[130] David R. Morrison, Sheldon H. Jacobson, Jason J. Sauppe, and Ed-
ward C. Sewell. Branch-and-bound algorithms: A survey of recent
advances in searching, branching, and pruning. Discrete Optimiza-
tion, 19:79–102, 2016.

[131] Chu Min Li, Felip Manya, and Jordi Planes. New inference rules for
MaxSAT. Journal of Artificial Intelligence Research, 30(1):321–359,
2007.

[132] Gintaras Palubeckis. A new bounding procedure and an improved
exact algorithm for the Max-2-SAT problem. Applied Mathematics
and Computation, 215(3):1106–1117, 2009.

[133] Zhao Xing and Weixiong Zhang. MaxSolver: An efficient exact al-
gorithm for (weighted) maximum satisfiability. Artificial intelligence,
164(1-2):47–80, 2005.

[134] Han Lin, Kaile Su, and Chu Min Li. Within-problem learning for
efficient lower bound computation in MaxSAT solving. In Proceedings
of the 23rd AAAI Conference on Artificial Intelligence, pages 351–
356. AAAI Press, 2008.

References 73

[135] Anton Belov, António Morgado, and João Marques-Silva. SAT-based
preprocessing for MaxSAT. In Proceedings of the 19th International
Conference on Logic for Programming, Artificial Intelligence, and
Reasoning, volume 8312 of Lecture Notes in Computer Science, pages
96–111. Springer, 2013.

[136] Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation cluster-
ing. Machine Learning, 56(1-3):89–113, 2004.

[137] Judea Pearl. Probabilistic reasoning in intelligent systems: networks
of plausible inference. Morgan Kaufmann Publishers Inc., 1988.

[138] Gal Elidan and Stephen Gould. Learning bounded treewidth Bayesian
networks. Journal of Machine Learning Research, 9:2699–2731, 2008.

[139] Martin W. P. Savelsbergh. Preprocessing and probing techniques
for mixed integer programming problems. INFORMS Journal on
Computing, 6(4):445–454, 1994.

[140] Matti Järvisalo, Marijn Heule, and Armin Biere. Inprocessing rules.
In Proceedings of the 6th International Joint Conference on Auto-
mated Reasoning, volume 7364 of Lecture Notes in Computer Science,
pages 355–370. Springer, 2012.

[141] Niklas Eén and Armin Biere. Effective preprocessing in SAT through
variable and clause elimination. In Proceedings of the 8th Interna-
tional Conference on Theory and Applications of Satisfiability Test-
ing, volume 3569 of Lecture Notes in Computer Science, pages 61–75.
Springer, 2005.

[142] Marijn Heule, Matti Järvisalo, and Armin Biere. Covered clause
elimination. In Short papers for the 17th International Conference
on Logic for Programming Artificial Intelligence, and Reasoning, vol-
ume 13 of EPiC Series in Computing, pages 41–46. EasyChair, 2013.

[143] Cédric Piette, Youssef Hamadi, and Lakhdar Säıs. Vivifying proposi-
tional clausal formulae. In Proceedings of the 18th European Confer-
ence on Artificial Intelligence, volume 178 of Frontiers in Artificial
Intelligence and Applications, pages 525–529. IOS Press, 2008.

[144] Matti Järvisalo and Armin Biere. Reconstructing solutions after
blocked clause elimination. In Proceedings of the 13th International
Conference on Theory and Applications of Satisfiability Testing, vol-
ume 6175 of Lecture Notes in Computer Science, pages 340–345.
Springer, 2010.

74 References

[145] Inês Lynce and João Marques-Silva. Probing-based preprocessing
techniques for propositional satisfiability. In Proceedings of the 15th
IEEE International Conference on Tools with Artificial Intelligence,
pages 105–110. IEEE Computer Society, 2003.

[146] Fahiem Bacchus and Jonathan Winter. Effective preprocessing with
hyper-resolution and equality reduction. In Selected Revised Papers
of the 6th International Conference on Theory and Applications of
Satisfiability Testing, volume 2919 of Lecture Notes in Computer Sci-
ence, pages 341–355. Springer, 2004.

[147] Sathiamoorthy Subbarayan and Dhiraj K. Pradhan. NiVER: Non-
increasing variable elimination resolution for preprocessing SAT in-
stances. In Online Proceedings of the 7th International Conference
on Theory and Applications of Satisfiability Testing, pages 276–291.
Springer, 2004.

[148] Roman Gershman and Ofer Strichman. Cost-effective hyper-
resolution for preprocessing CNF formulas. In Proceedings of the 8th
International Conference on Theory and Applications of Satisfiability
Testing, volume 3569 of Lecture Notes in Computer Science, pages
423–429. Springer, 2005.

[149] Hyojung Han and Fabio Somenzi. Alembic: An efficient algorithm
for CNF preprocessing. In Proceedings of the 44th annual Design
Automation Conference, pages 582–587. ACM, 2007.

[150] Marijn Heule, Matti Järvisalo, and Armin Biere. Efficient CNF sim-
plification based on binary implication graphs. In Proceedings of the
14th International Conference on Theory and Applications of Satis-
fiability Testing, volume 6695 of Lecture Notes in Computer Science,
pages 201–215. Springer, 2011.

[151] Maria Luisa Bonet, Jordi Levy, and Felip Manyà. Resolution for
MaxSAT. Artificial Intelligence, 171(8-9):606–618, 2007.

[152] Javier Larrosa, Federico Heras, and Simon de Givry. A logical ap-
proach to efficient MaxSAT solving. Artificial Intelligence, 172(2-
3):204–233, 2008.

[153] Josep Argelich, Chu Min Li, and Felip Manyà. A preprocessor for
MaxSAT solvers. In Proceedings of the 11th International Conference
on Theory and Applications of Satisfiability Testing, volume 4996 of
Lecture Notes in Computer Science, pages 15–20. Springer, 2008.

References 75

[154] Anton Belov, Matti Järvisalo, and João Marques-Silva. Formula pre-
processing in MUS extraction. In Proceedings of the 19th Interna-
tional Conference on Tools and Algorithms for the Construction and
Analysis of Systems, volume 7795 of Lecture Notes in Computer Sci-
ence, pages 108–123. Springer, 2013.

[155] Byron Ellis and Wing Hung Wong. Learning causal bayesian net-
work structures from experimental data. Journal of the American
Statistical Association, 103(482):778–789, 2008.

[156] Aristidis Likas, Nikos Vlassis, and Jakob J. Verbeek. The global K-
means clustering algorithm. Pattern recognition, 36(2):451–461, 2003.

[157] Leonard J. Schulman. Clustering for edge-cost minimization. Elec-
tronic Colloquium on Computational Complexity (ECCC), 6(35),
1999.

[158] Anil K. Jain, M. Narasimha Murty, and P. J. Flynn. Data clustering:
A review. ACM Computing Surveys, 31(3):264–323, 1999.

[159] Anil K. Jain and Richard C. Dubes. Algorithms for Clustering Data.
Prentice-Hall, Inc., 1988.

[160] Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clus-
tering: Analysis and an algorithm. In Advances in neural information
processing systems, pages 849–856, 2002.

[161] Robert C. Edgar. Search and clustering orders of magnitude faster
than blast. Bioinformatics, 26(19):2460–2461, 2010.

[162] Daniel Aloise, Pierre Hansen, and Leo Liberti. An improved column
generation algorithm for minimum sum-of-squares clustering. Math-
ematical Programming, 131(1):195–220, 2012.

[163] Weifeng Zhi, Buyue Qian, and Ian Davidson. Scalable constrained
spectral clustering via the randomized projected power method. In
Proceedings of the 2017 IEEE International Conference on Data Min-
ing, pages 1201–1206. IEEE Computer Society, 2017.

[164] Kamal Jain and Vijay V. Vazirani. Primal-dual approximation algo-
rithms for metric facility location and k-median problems. In Pro-
ceedings of the 40th Annual Symposium on Foundations of Computer
Science, pages 2–13. IEEE Computer Society, 1999.

76 References

[165] Rajkumar Jain and Narendra S. Chaudhari. Formulation of 3-
clustering as a 3-SAT problem. In Proceedings of the 5th Indian
International Conference on Artificial Intelligence, pages 465–472.
IICAI, 2011.

[166] Jean-Philippe Métivier, Patrice Boizumault, Bruno Crémilleux,
Mehdi Khiari, and Samir Loudni. Constrained clustering using SAT.
In Proceedings of the 11th International Conference on Advances in
Intelligent Data Analysis, volume 7619 of Lecture Notes in Computer
Science, pages 207–218. Springer, 2012.

[167] Marianne Mueller and Stefan Kramer. Integer linear programming
models for constrained clustering. In Proceedings of the 13th Inter-
national Conference on Discovery Science, volume 6332 of Lecture
Notes in Computer Science, pages 159–173. Springer, 2010.

[168] Nir Ailon, Moses Charikar, and Alantha Newman. Aggregating incon-
sistent information: Ranking and Clustering. Journal of the ACM,
55(5):23:1–23:27, 2008.

[169] Moses Charikar, Venkatesan Guruswami, and Anthony Wirth. Clus-
tering with qualitative information. Journal of Computer and System
Sciences, 71(3):360–383, 2005.

[170] Ron Shamir, Roded Sharan, and Dekel Tsur. Cluster graph modi-
fication problems. Discrete Applied Mathematics, 144(1-2):173–182,
2004.

[171] Ioannis Giotis and Venkatesan Guruswami. Correlation clustering
with a fixed number of clusters. Theory of Computing, 2(1):249–266,
2006.

[172] Erik D. Demaine, Dotan Emanuel, Amos Fiat, and Nicole Immor-
lica. Correlation clustering in general weighted graphs. Theoretical
Computer Science, 361(2-3):172–187, 2006.

[173] Nir Ailon and Edo Liberty. Correlation clustering revisited: The
”true” cost of error minimization problems. In Proceedings of the
36th International Colloquium on Automata, Languages and Pro-
gramming, volume 5555 of Lecture Notes in Computer Science, pages
24–36. Springer, 2009.

[174] Erik D. Demaine and Nicole Immorlica. Correlation clustering with
partial information. In Proceedings of the 6th International Work-
shop on Approximation Algorithms for Combinatorial Optimization

References 77

Problems and 7th International Workshop on Randomization and Ap-
proximation Techniques in Computer Science, volume 2764 of Lecture
Notes in Computer Science, pages 1–13. Springer, 2003.

[175] Jurgen Van Gael and Xiaojin Zhu. Correlation clustering for crosslin-
gual link detection. In Proceedings of the 20th International Joint
Conference on Artificial Intelligence, pages 1744–1749. AAAI Press,
2007.

[176] Adnan Darwiche. Chapter 11 Bayesian networks. In Handbook of
Knowledge Representation, volume 3 of Foundations of Artificial In-
telligence, pages 467 – 509. Elsevier, 2008.

[177] Sebastian Ordyniak and Stefan Szeider. Parameterized complexity
results for exact Bayesian network structure learning. Journal of
Artificial Intelligence Research, 46:263–302, 2013.

[178] Cassio P. de Campos and Qiang Ji. Efficient learning of Bayesian
networks using constraints. Journal of Machine Learning Research,
12:663–689, 2011.

[179] Luis M. de Campos. A scoring function for learning Bayesian net-
works based on mutual information and conditional independence
tests. Journal of Machine Learning Research, 7:2149–2187, 2006.

[180] Mark Bartlett and James Cussens. Integer linear programming for the
Bayesian network structure learning problem. Artificial Intelligence,
244:258–271, 2017.

[181] David M. Chickering. Learning Bayesian networks is NP-complete.
In Learning from Data: Artificial Intelligence and Statistics V, pages
121–130. Springer-Verlag, 1996.

[182] Nir Friedman and Daphne Koller. Being Bayesian about network
structure. A Bayesian approach to structure discovery in Bayesian
networks. Machine Learning, 50:95–125, 2003.

[183] David M. Chickering. Learning equivalence classes of Bayesian-
network structures. Journal of Machine Learning Research, 2:445–
498, 2002.

[184] Tommi Jaakkola, David Sontag, Amir Globerson, and Marina Meila.
Learning Bayesian network structure using LP relaxations. In Pro-
ceedings of the 13th International Conference on Artificial Intelli-

78 References

gence and Statistics, volume 9 of JMLR Proceedings, pages 358–365.
JMLR, 2010.

[185] James Cussens. Bayesian network learning by compiling to weighted
MaxSAT. In Proceedings of the 24th Conference on Uncertainty in
Artificial Intelligence, pages 105–112. AUAI Press, 2008.

[186] Alexandra M. Carvalho, Teemu Roos, Arlindo L. Oliveira, and Petri
Myllymäki. Discriminative learning of Bayesian networks via fac-
torized conditional log-likelihood. Journal of Machine Learning Re-
search, 12:2181–2210, July 2011.

[187] Daniel Eaton and Kevin Murphy. Bayesian structure learning us-
ing dynamic programming and MCMC. In Proceedings of the 23rd
Conference on Uncertainty in Artificial Intelligence, pages 101–108.
AUAI Press, 2007.

[188] Sascha Ott and Satoru Miyano. Finding optimal gene networks using
biological constraints. Genome Informatics, 14:124–133, 2003.

[189] Tomi Silander and Petri Myllymäki. A simple approach for finding
the globally optimal Bayesian network structure. In Proceedings of
the 22nd Conference on Uncertainty in Artificial Intelligence, pages
445–452. AUAI Press, 2006.

[190] James Cussens. Bayesian network learning with cutting planes. In
Proceedings of the 27th Conference on Uncertainty in Artificial Intel-
ligence, pages 153–160. AUAI Press, 2011.

[191] Changhe Yuan and Brandon Malone. Learning optimal Bayesian net-
works: A shortest path perspective. Journal of Artificial Intelligence
Research, 48:23–65, 2013.

[192] Gregory F. Cooper. The computational complexity of probabilistic
inference using Bayesian belief networks. Artificial Intelligence, 42(2-
3):393 – 405, 1990.

[193] Steffen L. Lauritzen and David J. Spiegelhalter. Local computations
with probabilities on graphical structures and their application to
expert systems. In Glenn Shafer and Judea Pearl, editors, Readings in
Uncertain Reasoning, pages 415–448. Morgan Kaufmann Publishers
Inc., 1990.

References 79

[194] Johan Kwisthout, Hans L. Bodlaender, and Linda C. van der Gaag.
The necessity of bounded treewidth for efficient inference in Bayesian
networks. In Proceedings of the 19th European Conference on Arti-
ficial Intelligence, volume 215 of Frontiers in Artificial Intelligence
and Applications, pages 237–242. IOS Press, 2010.

[195] Neil Robertson and Paul D. Seymour. Graph minors. II. Algorithmic
aspects of tree-width. Journal of Algorithms, 7(3):309–322, 1986.

[196] Hans L. Bodlaender. A partial k-arboretum of graphs with bounded
treewidth. Theoretical Computer Science, 209(1):1 – 45, 1998.

[197] Umberto Bertele and Francesco Brioschi. Nonserial Dynamic Pro-
gramming. Academic Press, Inc., Orlando, FL, USA, 1972.

[198] Janne H. Korhonen and Pekka Parviainen. Exact learning of bounded
tree-width Bayesian networks. In Proceedings of the 16th Interna-
tional Conference on Artificial Intelligence and Statistics, volume 31
of JMLR Workshop and Conference Proceedings, pages 370—378.
JMLR, 2013.

[199] Pekka Parviainen, Hossein Shahrabi Farahani, and Jens Lagergren.
Learning bounded tree-width Bayesian networks using integer linear
programming. In Proceedings of the 17th International Conference on
Artificial Intelligence and Statistics, volume 33 of JMLR Workshop
and Conference Proceedings, pages 751–759. JMLR, 2014.

[200] Siqi Nie, Denis D. Mauá, Cassio P. De Campos, and Qiang Ji. Ad-
vances in learning Bayesian networks of bounded treewidth. In Ad-
vances in Neural Information Processing Systems, pages 2285–2293,
2014.

[201] Mukund Narasimhan and Jeff Bilmes. PAC-learning bounded tree-
width graphical models. In Proceedings of the 20th Conference on
Uncertainty in Artificial Intelligence, pages 410–417. AUAI Press,
2004.

[202] Hans L. Bodlaender. Discovering treewidth. In Proceedings of the 31st
Conference on Current Trends in Theory and Practice of Computer
Science, volume 3381 of Lecture Notes in Computer Science, pages
1–16. Springer, 2005.

[203] Niklas Eén and Niklas Sörensson. Temporal induction by incremen-
tal SAT solving. Electronic Notes in Theoretical Computer Science,
89(4):543–560, 2003.

80 References

[204] João Marques-Silva and Karem A. Sakallah. GRASP - a new search
algorithm for satisfiability. In Proceedings of the 1996 IEEE/ACM
International Conference on Computer-Aided Design, pages 220–227.
IEEE Computer Society, 1996.

[205] Frank Hutter, Marius Lindauer, Adrian Balint, Sam Bayless, Hol-
ger Hoos, and Kevin Leyton-Brown. The configurable SAT solver
challenge (CSSC). Artificial Intelligence, 243:1–25, 2017.

[206] Forrest Sheng Bao, Chris Gutierrez, Jeriah Jn Charles-Blount,
Yaowei Yan, and Yuanlin Zhang. Accelerating Boolean satisfiability
(SAT) solving by common subclause elimination. Artificial Intelli-
gence Review, pages 1–15, 2017.

[207] Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Pro-
ceedings of the 6th International Conference on Theory and Applica-
tions of Satisfiability Testing, volume 2919 of Lecture Notes in Com-
puter Science, pages 502–518. Springer, 2003.

[208] Gilles Audemard and Laurent Simon. Predicting learnt clauses qual-
ity in modern SAT solvers. In Proceedings of the 21st International
Joint Conference on Artifical Intelligence, pages 399–404. Morgan
Kaufmann Publishers Inc., 2009.

[209] Armin Biere. Lingeling, Plingeling and Treengeling entering the SAT
competition 2013. In Proceedings of SAT Competition, volume B-
2013-1 of Department of Computer Science Series of Publications B,
pages 51–52. University of Helsinki, 2013.

[210] Gilles Audemard and Laurent Simon. Glucose in the SAT 2014 com-
petition. SAT COMPETITION 2014, page 31, 2014.

[211] Lintao Zhang, Conor F. Madigan, Matthew H. Moskewicz, and
Sharad Malik. Efficient conflict-driven learning in a Boolean satis-
fiability solver. In Proceedings of the 2001 IEEE/ACM International
Conference on Computer-Aided Design, pages 279–285. IEEE Com-
puter Society, 2001.

[212] João Marques-Silva, Inês Lynce, and Sharad Malik. Conflict-driven
clause learning SAT solvers. In Handbook of Satisfiability, volume
185 of Frontiers in Artificial Intelligence and Applications, chapter 4,
pages 131–153. IOS Press, 2009.

References 81

[213] Martin Davis, George Logemann, and Donald Loveland. A ma-
chine program for theorem-proving. Communications of the ACM,
5(7):394–397, 1962.

[214] Raymond Reiter. A theory of diagnosis from first principles. Artificial
Intelligence, 32(1):57–95, 1987.

[215] Carsten Sinz. Towards an optimal CNF encoding of boolean cardinal-
ity constraints. In Proceedings of the 11th International Conference
on Principles and Practice of Constraint Programming, volume 3709
of Lecture Notes in Computer Science, pages 827–831. Springer, 2005.

[216] Roberto Aśın, Robert Nieuwenhuis, Albert Oliveras, and Enric
Rodŕıguez-Carbonell. Cardinality networks: a theoretical and em-
pirical study. Constraints, 16(2):195–221, 2011.

[217] Olivier Bailleux and Yacine Boufkhad. Efficient CNF encoding of
Boolean cardinality constraints. In Proceedings of the 9th Interna-
tional Conference on Principles and Practice of Constraint Program-
ming, volume 2833 of Lecture Notes in Computer Science, pages 108–
122. Springer Berlin Heidelberg, 2003.

[218] Soukaina Hattad, Säıd Jabbour, Lakhdar Sais, and Yakoub Salhi.
Enhancing pigeon-hole based encoding of Boolean cardinality con-
straints. In Proceedings of the 9th International Conference on Agents
and Artificial Intelligence, volume 2, pages 299–307. SciTePress, 2017.

[219] Toru Ogawa, Yangyang Liu, Ryuzo Hasegawa, Miyuki Koshimura,
and Hiroshi Fujita. Modulo based CNF encoding of cardinality con-
straints and its application to MaxSAT solvers. In Proceedings of the
25th IEEE International Conference on Tools with Artificial Intelli-
gence, pages 9–17. IEEE Computer Society, 2013.

[220] Ignasi Ab́ıo, Valentin Mayer-Eichberger, and Peter J. Stuckey. Encod-
ing linear constraints with implication chains to CNF. In Proceedings
of the 21st International Conference on the Principles and Practice of
Constraint Programming, volume 9255 of Lecture Notes in Computer
Science, pages 3–11. Springer, 2015.

[221] Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy. Solving
(weighted) partial MaxSAT through satisfiability testing. In Proceed-
ings of the 12th International Conference on Theory and Applications
of Satisfiability Testing, volume 5584 of Lecture Notes in Computer
Science, pages 427–440. Springer, 2009.

82 References

[222] Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy. A new algo-
rithm for weighted partial MaxSAT. In Proceedings of the 24th AAAI
Conference on Artificial Intelligence. AAAI Press, 2010.

[223] Benjamin Andres, Benjamin Kaufmann, Oliver Matheis, and Torsten
Schaub. Unsatisfiability-based optimization in clasp. In Techni-
cal Communications of the 28th International Conference on Logic
Programming, LIPIcs, pages 211–221. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2012.

[224] Carlos Ansótegui, Maria Luisa Bonet, Joel Gabàs, and Jordi Levy.
Improving SAT-based weighted MaxSAT solvers. In Proceedings of
the 18th International Conference on Principles and Practice of Con-
straint Programming, volume 7514 of Lecture Notes in Computer Sci-
ence, pages 86–101. Springer, 2012.

[225] Jeremias Berg and Matti Järvisalo. Weight-aware core extraction in
SAT-based MaxSAT solving. In Proceedings of the 23rd International
Conference on Principles and Practice of Constraint Programming,
volume 10416 of Lecture Notes in Computer Science, pages 652–670.
Springer, 2017.

[226] Jessica Davies and Fahiem Bacchus. Postponing optimization to
speed up MaxSAT solving. In Proceedings of the 19th International
Conference on Principles and Practice of Constraint Programming,
volume 8124 of Lecture Notes in Computer Science, pages 247–262.
Springer, 2013.

[227] Fahiem Bacchus, Antti Hyttinen, Matti Järvisalo, and Paul Saikko.
Reduced cost fixing in MaxSAT. In Proceedings of the 23rd Interna-
tional Conference on Principles and Practice of Constraint Program-
ming, volume 10416 of Lecture Notes in Computer Science, pages
641–651. Springer, 2017.

[228] Federico Heras, Javier Larrosa, and Albert Oliveras. MiniMaxSAT:
An efficient weighted MaxSAT solver. Journal of Artificial Intelli-
gence Research, 31:1–32, 2008.

[229] Rolf Niedermeier and Peter Rossmanith. New upper bounds for max-
imum satisfiability. Journal of Algorithms, 36(1):63–88, 2000.

[230] Anton Belov and João Marques-Silva. Generalizing redundancy in
propositional logic: Foundations and hitting sets duality. CoRR,
abs/1207.1257, 2012.

References 83

[231] Matti Järvisalo, Armin Biere, and Marijn Heule. Blocked clause elim-
ination. In Proceedings of the 16th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, volume
6015 of Lecture Notes in Computer Science, pages 129–144. Springer,
2010.

[232] Federico Heras, Antonio Morgado, and João Marques Silva. MaxSAT-
based encodings for Group MaxSAT. AI Communications, 28(2):195–
214, 2015.

[233] Fahiem Bacchus and Nina Narodytska. Cores in core based MaxSAT
algorithms: An analysis. In Proceedings of the 17th International
Conference on Theory and Applications of Satisfiability Testing, vol-
ume 8561 of Lecture Notes in Computer Science, pages 7–15. Springer,
2014.

[234] Jessica Davies. Solving MaxSAT by Decoupling Optimization and
Satisfaction. PhD thesis, University of Toronto, 2013.

[235] Alexey Ignatiev, Antonio Morgado, Vasco Manquinho, Ines Lynce,
and João Marques-Silva. Progression in maximum satisfiability. In
Proceedings of the 21st European Conference on Artificial Intelli-
gence, volume 263 of Frontiers in Artificial Intelligence and Appli-
cations, pages 453–458. IOS Press, 2014.

[236] Olivier Coudert and Jean Christophe Madre. New ideas for solving
covering problems. In Proceedings of the 32st Conference on Design
Automation, pages 641–646. ACM Press, 1995.

[237] Tuukka Korhonen, Jeremias Berg, Paul Saikko, and Matti Järvisalo.
MaxPre: An extended MaxSAT preprocessor. In Proceedings of the
20th International Conference on Theory and Applications of Satisfi-
ability Testing, volume 10491 of Lecture Notes in Computer Science,
pages 449–456. Springer, 2017.

[238] Grigorii S. Tseitin. On the complexity of derivation in propositional
calculus. In Automation of Reasoning: 2: Classical Papers on Com-
putational Logic 1967–1970, pages 466–483. Springer Berlin Heidel-
berg, 1983.

[239] Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation cluster-
ing. In Proceedings of the 43rd Symposium on Foundations of Com-
puter Science, page 238. IEEE Computer Society, 2002.

84 References

[240] Divya Pandove, Rinkle Rani, and Shivani Goel. Local graph based
correlation clustering. Knowledge-Based Systems, 138:155–175, 2017.

[241] Yixin Zhuang, Hang Dou, Nathan Carr, and Tao Ju. Feature-aligned
segmentation using correlation clustering. Computational Visual Me-
dia, 3(2):147–160, 2017.

[242] Nate Veldt, Anthony Ian Wirth, and David F. Gleich. Correlation
clustering with low-rank matrices. In Proceedings of the 26th Inter-
national Conference on World Wide Web, pages 1025–1034. ACM,
2017.

[243] Evgeny Levinkov, Alexander Kirillov, and Bjoern Andres. A compar-
ative study of local search algorithms for correlation clustering. In
Proceedings of the 39th German Conference on Pattern Recognition,
volume 10496 of Lecture Notes in Computer Science, pages 103–114.
Springer, 2017.

[244] Atsushi Miyauchi and Tomohiro Sonobeand Noriyoshi Sukegawa. Ex-
act clustering via integer programming and maximum satisfiability. In
Proceedings of the 32nd AAAI Conference on Artificial Intelligence,
pages ??? – ??? AAAI Press, 2018. To appear.

[245] Kiri Wagstaff and Claire Cardie. Clustering with instance-level con-
straints. In Proceedings of the 17th International Conference on Ar-
tificial Intelligence, pages 1103–1110. AAAI Press / The MIT Press,
2000.

[246] Martin Grötschel and Yoshiko Wakabayashi. A cutting plane algo-
rithm for a clustering problem. Mathematical Programming, 45(1):59–
96, 1989.

[247] Paola Bonizzoni, Gianluca Della Vedova, Riccardo Dondi, and Tao
Jiang. On the approximation of correlation clustering and consensus
clustering. Journal of Computer and System Sciences, 74(5):671–696,
2008.

[248] Tamás Nepusz, Rajkumar Sasidharan, and Alberto Paccanaro. SCPS:
a fast implementation of a spectral method for detecting protein fam-
ilies on a genome-wide scale. BMC Bioinformatics, 11:120, 2010.

[249] A. Frank and A. Asuncion. UCI machine learning repository, 2010.

References 85

[250] Stephen F. Altschul, Warren Gish, Webb Miller, Eugene W. Myers,
and David J. Lipman. Basic local alignment search tool. Journal of
Molecular Biology, 215(3):403–410, 1990.

[251] Carlos Ansótegui and Joel Gabàs. Solving (weighted) partial
MaxSAT with ILP. In Proceedings of the 10th International Con-
ference on Integration of AI and OR Techniques in Constraint Pro-
gramming for Combinatorial Optimization Problems, volume 7874 of
Lecture Notes in Computer Science, pages 403–409. Springer, 2013.

[252] Moses Charikar and Anthony Wirth. Maximizing quadratic pro-
grams: Extending grothendieck’s inequality. In Proceedings of the
45th Symposium on Foundations of Computer Science, pages 54–60.
IEEE Computer Society, 2004.

[253] Jos F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for
optimization over symmetric cones. Optimization Methods and
Software, 11–12:625–653, 1999. Version 1.05 available from
http://fewcal.kub.nl/sturm.

[254] Tobias Achterberg, Timo Berthold, Thorsten Koch, and Kati Wolter.
Constraint integer programming: A new approach to integrate CP
and MIP. In Proceedings of the 5th International Conference on In-
tegration of AI and OR Techniques in Constraint Programming for
Combinatorial Optimization Problems, volume 5015 of Lecture Notes
in Computer Science, pages 6–20. Springer, 2008.

[255] Siqi Nie, Cassio P. De Campos, and Qiang Ji. Learning bounded tree-
width Bayesian networks via sampling. In European Conference on
Symbolic and Quantitative Approaches to Reasoning and Uncertainty,
pages 387–396. Springer, 2015.

[256] Mauro Scanagatta, Giorgio Corani, Cassio P. de Campos, and Marco
Zaffalon. Learning treewidth-bounded Bayesian networks with thou-
sands of variables. In Advances in Neural Information Processing
Systems, pages 1462–1470, 2016.

[257] Siqi Nie, Cassio P. de Campos, and Qiang Ji. Efficient learning of
Bayesian networks with bounded tree-width. International Journal
of Approximate Reasoning, 80:412–427, 2017.

[258] Wai Lam and Fahiem Bacchus. Learning Bayesian belief networks:
An approach based on the MDL principle. Computational Intelli-
gence, 10:269–293, 1994.

86 References

[259] Gregory F. Cooper and Edward Herskovits. A Bayesian method for
the induction of probabilistic networks from data. Machine Learning,
9:309–347, 1992.

[260] Rina Dechter. Bucket elimination: A unifying framework for reason-
ing. Artificial Intelligence, 113(1-2):41–85, 1999.

[261] Marko Samer and Helmut Veith. Encoding treewidth into SAT. In
Proceedings of the 12th International Conference on Theory and Ap-
plications of Satisfiability Testing, volume 5584 of Lecture Notes in
Computer Science, pages 45–50. Springer, 2009.

[262] Peter J. Stuckey. Lazy clause generation: Combining the power of
SAT and CP (and MIP?) solving. In Proceedings of the 7th Interna-
tional Conference on Integration of AI and OR Techniques in Con-
straint Programming for Combinatorial Optimization Problems, vol-
ume 6140 of Lecture Notes in Computer Science, pages 5–9. Springer,
2010.

[263] Broes de Cat, Marc Denecker, Maurice Bruynooghe, and Peter J.
Stuckey. Lazy model expansion: Interleaving grounding with search.
Journal of Artificial Intelligence Research, 52:235–286, 2015.

Paper I

I

Jeremias Berg, Paul Saikko, and Matti Järvisalo

Improving the Effectiveness of SAT-Based Preprocessing for MaxSAT

c© 2015 IJCAI. Reprinted with permission from Proceedings of the 24th
International Joint Conference on Artificial Intelligence (IJCAI), pages
239-245. AAAI Press, 2015.

Improving the Effectiveness of SAT-Based Preprocessing for MaxSAT

Jeremias Berg and Paul Saikko and Matti Järvisalo
HIIT & Department of Computer Science, University of Helsinki, Finland

Abstract
Solvers for the Maximum satisfiability (MaxSAT)
problem find an increasing number of applications
today. We focus on improving MaxHS—one of
the most successful recent MaxSAT algorithms—
via SAT-based preprocessing. We show that em-
ploying SAT-based preprocessing via the so-called
labelled CNF (LCNF) framework before calling
MaxHS can in some cases greatly degrade the per-
formance of the solver. As a remedy, we propose
a lifting of MaxHS that works directly on LCNFs,
allowing for a tighter integration of SAT-based
preprocessing and MaxHS. Our empirical results
on standard crafted and industrial weighted par-
tial MaxSAT Evaluation benchmarks show overall
improvements over the original MaxHS algorithm
both with and without SAT-based preprocessing.

1 Introduction
Boolean satisfiability (SAT) solving is a modern success story
of computer science, providing means of solving various
types of hard computational problems, based on both direct
applications of SAT solvers, as well as on using SAT solvers
as core NP procedures within more complex decision and
optimization procedures. This success is based on several
breakthroughs in practical solver techniques, central to which
is preprocessing [Eén and Biere, 2005; Heule et al., 2010;
Järvisalo et al., 2012]. However, applying SAT-level pre-
processing in more complex applications of SAT solvers,
such as minimal unsatisfiable core extraction [Belov et al.,
2013a], maximum satisfiability [Belov et al., 2013b], and
model counting [Lagniez and Marquis, 2014], becomes more
difficult, as many of the central SAT preprocessing techniques
can no longer be applied directly without losing correctness.

In this work, we focus on the Maximum satisfiability
(MaxSAT) problem [Li and Manyà, 2009; Morgado et al.,
2013; Ansótegui et al., 2013], a well-known optimization
variant of SAT. Due to recent progress in MaxSAT solv-
ing [Heras et al., 2011; Koshimura et al., 2012; Davies and
Bacchus, 2013a; 2013b; Morgado et al., 2013; Ansótegui and
Gabàs, 2013; Ansótegui et al., 2013; Morgado et al., 2014;
Martins et al., 2014], MaxSAT finds an increasing number
of applications today [Jose and Majumdar, 2011; Zhu et al.,

2011; Guerra and Lynce, 2012; Berg and Järvisalo, 2013;
Berg et al., 2014; Bunte et al., 2014]. While some of the most
important SAT preprocessing techniques, such as bounded
variable elimination [Eén and Biere, 2005], cannot be directly
applied in the context of MaxSAT [Belov et al., 2013b], a
workaround is provided by applying the so-called labelled
CNF (LCNF) framework [Belov and Marques-Silva, 2012].

We focus on improving the performance of the MaxHS
approach [Davies and Bacchus, 2011; 2013a; 2013b] to
MaxSAT solving via SAT-based preprocessing. MaxHS im-
plements a hybrid approach to MaxSAT based on alternating
between SAT-based unsatisfiable core extraction and integer
programming (IP) based optimal hitting set computation over
the unsatisfiable cores. The solver was one of the best in
the 2014 MaxSAT Evaluation in the crafted weighted partial
MaxSAT category. Motivated by this, we develop a lifting of
MaxHS that works directly on LCNFs for solving MaxSAT
instances, which allows for a tight integration of SAT-based
preprocessing and MaxHS, and specifically, allows for di-
rectly re-using assumption variables from the SAT-based pre-
processing step within the MaxHS solver loop. MaxHS com-
putation heavily relies on assumption variables (both in the
SAT solver and the IP solver), enabling more re-use of as-
sumption variables from the preprocessing phase during the
whole execution of the solver compared to e.g. earlier work
on integrating preprocessing with MaxSAT algorithms [Belov
et al., 2013b]. The re-use is beneficial in terms of both hav-
ing to introduce less clauses to the solver, and, as we ex-
plain, enabling more inference within MaxHS. We formally
prove the correctness of the proposed LCNF-level lifting of
MaxHS, and present details on how the lifting can be realized
by minor modifications to the original MaxHS implementa-
tion. We present empirical results using our own compet-
itive re-implementation of MaxHS, with additional features
for implementing the LCNF-level lifting of MaxHS. The re-
sults show the benefits of the tighter integration of preprocess-
ing and MaxHS, with overall improvements over the original
MaxHS algorithm both with and without SAT-based prepro-
cessing, on standard crafted and industrial weighted partial
MaxSAT Evaluation benchmarks.

2 SAT, Preprocessing, and MaxSAT
SAT. For a Boolean variable x, there are two literals, x and
¬x. A clause is a disjunction (∨) of literals. A truth assign-

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

239

ment is a function from Boolean variables to {0, 1}. A clause
C is satisfied by a truth assignment τ (τ(C) = 1) if τ(x) = 1
for a literal x in C, or τ(x) = 0 for a literal ¬x in C. A
set F = {C1, . . . , Cm} of clauses, or equivalently, the con-
junctive normal form (CNF) formula

∧m
i=1 Ci, is satisfiable

(F ∈ SAT) if there is an assignment τ satisfying all clauses
in F (τ(F) = 1), and unsatisfiable (τ(F) = 0 for any assign-
ment τ ; F ∈ UNSAT) otherwise. The Boolean satisfiability
problem (SAT) is to decide whether a given CNF formula is
satisfiable.

SAT Preprocessing. The resolution rule states that, given
two clauses C1 = (x ∨ A) and C2 = (¬x ∨ B), the clause
C = (A∨B), the resolvent of C1 and C2, can be inferred by
resolving on the variable x. We write C = C1 ./x C2. This
is lifted to two sets Sx and S¬x of clauses that all contain the
literal x and ¬x, resp., by Sx ./x S¬x = {C1 ./x C2 | C1 ∈
Sx, C2 ∈ S¬x, and C1 ./x C2 is not a tautology}.

Bounded variable elimination (VE) [Eén and Biere, 2005],
currently the most important SAT preprocessing technique,
follows the Davis-Putnam procedure (DP). The elimination of
a variable x in a CNF formula is computed by resolving pair-
wise each clause in Sx with every clause in S¬x. Replacing
the original clauses in Sx ∪ S¬x with the non-tautological re-
solvents S = Sx ./x S¬x gives the CNF (F \(Sx∪S¬x))∪S
that is equisatisfiable with F . To avoid exponential space
complexity, VE is bounded typically by requiring that a vari-
able x can be eliminated only if the resulting CNF formula
(F \ (Sx ∪ S¬x)) ∪ S will not contain more than ∆ more
clauses than the original formula F [Eén and Biere, 2005].

A clause C in a CNF formula F is subsumed if there is a
clause C ′ ⊂ C in F . Subsumption elimination (SE) removes
subsumed clauses. The self-subsuming resolution rule states
that, given two clauses C,D ∈ F such that (i) l ∈ C and
¬l ∈ D for some literal l, and (ii)D is subsumed by C ./l D,
D can be replaced with C ./l D in F (or, informally, ¬l can
be removed from D). A step of self-subsuming resolution
(SSR), resolving C and D on l, gives the formula (F \D) ∪
{C ./l D}.

A clause C of a CNF formula F is blocked [Kullmann,
1999] if there is a literal l ∈ C such that for every clauseC ′ ∈
F with ¬l ∈ C ′, the resolvent (C\{l})∪(C ′\{¬l}) obtained
from resolving C and C ′ on l is a tautology. Blocked clause
elimination (BCE) [Järvisalo et al., 2010] removes blocked
clauses.

Maximum Satisfiability. An instance F = (Fh, Fs, c) of
the weighted partial MaxSAT problem consists of a set Fh of
hard clauses, a set Fs of soft clauses, and a function c : Fs →
N that associates a non-negative cost (weight) with each of
the soft clauses. Any truth assignment τ that satisfies Fh is a
solution to F . The cost of a solution τ to F is

COST(F, τ) =
∑

C∈Fs

(1− τ(C)) · c(C),

i.e., the sum of the costs of the soft clauses not satisfied by
τ . A solution τ is (globally) optimal for F if COST(F, τ) ≤
COST(F, τ ′) holds for any solution τ ′ to F . The cost of
the optimal solutions of F is denoted by OPT(F). Given a
weighted partial MaxSAT instance F , the weighted partial

MaxSAT problem asks to find an optimal solution to F . From
here on, we refer to weighted partial MaxSAT instances sim-
ply as MaxSAT instances.

An unsatisfiable core of a MaxSAT instance F =
(Fh, Fs, c) is a subset F ′

s ⊆ Fs such that Fh∪F ′
s ∈ UNSAT.

An unsatisfiable core F ′
s is minimal (MUS) if Fh∪F ′′

s ∈ SAT
for all F ′′

s ⊂ F ′
s.

3 Labelled CNFs and MaxSAT
The framework of labelled CNFs (LCNFs) [Belov and
Marques-Silva, 2012; Belov et al., 2013b] allows for gen-
eralizing MaxSAT into maximum satisfiability of LCNF, as
well as for lifting SAT preprocessing techniques to MaxSAT.
Assume a countable set of labels Lbl. A labelled clause CL

consists of a clause C and a (possibly empty) set of labels
L ⊆ Lbl. A LCNF formula Φ is a set of labelled clauses. We
useCl(Φ) and Lbls(Φ) to denote the set of clauses and labels
of Φ, respectively. A LCNF formula is satisfiable iff Cl(Φ)
(which is a CNF formula) is satisfiable.

Given a LCNF formula Φ and a subset of its labels M ⊂
Lbls(Φ), the subformula Φ|M of Φ induced by M is the
LCNF formula {CL ∈ Φ : L ⊂M}, i.e., the subformula ob-
tained by removing from Φ all labelled clauses with at least
one label not in M . An unsatisfiable core of an unsatisfi-
able LCNF formula Φ is a label-set L ⊂ Lbls(Φ) such that
(i) the formula Φ|L is unsatisfiable, and (ii) if the formula
Φ|L′ is satisfiable for all L′ ⊂ L, then L is an LMUS. We
denote the set of minimal unsatisfiable cores (LMUSes) of Φ
by LMUS(Φ) A minimal correction subset (MCS) for Φ is a
label-set R ⊂ Lbls(Φ) such that (i) the formula Φ|Lbls(Φ)\R
is satisfiable, and (ii) the formula Φ|Lbls(Φ)\R′ is unsatisfiable
for all R′ ⊂ R.

In a weighted LCNF formula Φ, a positive weight wi is as-
sociated with each label in Lbls(Φ). The cost of a label-set
L ⊂ Lbls(Φ) is the sum of the weights of labels in L. Given
a weighted LCNF formula Φ such that Φ|∅ is satisfiable, any
assignment τ that satisfies Φ|∅ is a solution to the MaxSAT
problem of LCNF formulas. A solution τ is optimal if it sat-
isfies Φ|Lbls(Φ)\R for some minimum-cost MCS R of Φ. The
cost of τ is the cost of R.

From MaxSAT to Weighted LCNF MaxSAT. A MaxSAT
instance F = (Fh, Fs, c) can viewed as a weighted LCNF
MaxSAT instance ΦF by introducing (i) for each hard clause
C ∈ Fh the labelled clause C∅, and (ii) for each soft clause
C ∈ Fs the labelled clause C{lC}, where lC is a distinct label
for C with weight c(C). It is easy to see that any optimal
solution to ΦF is an optimal solution to F , and vice versa.

From Weighted LCNF MaxSAT to MaxSAT. A direct en-
coding [Belov et al., 2013b] of a weighted LCNF MaxSAT
instance Φ as a MaxSAT instance FΦ is as follows. Asso-
ciate with each label li ∈ Lbls(Φ) a distinct variable ai,
and introduce (i) for each labelled clause CL ∈ Φ a hard
clause C ∨ ∨

li∈L ai, and (ii) for each li ∈ Lbls(Φ), a soft
clause (¬ai) with cost c(ai) = wi, where wi is the weight of
the label li. The resulting instance can then be input to any
MaxSAT solver.

240

3.1 SAT Preprocessing for MaxSAT via LCNFs
Assume that we apply a SAT preprocessing technique P di-
rectly on a MaxSAT instance F , not making a distinction
between the hard and soft clauses, and perhaps adjusting
the weights of the clauses in the resulting MaxSAT instance
in some way (weight ∞ implying a hard clause). Follow-
ing [Belov et al., 2013b], a SAT preprocessing technique P is
sound for MaxSAT if there is a poly-time computable func-
tion αP such that for any MaxSAT instance F and any op-
timal solution τ of P (F), αP (τ) is an optimal solution of
F . As argued in [Belov et al., 2013b], based on the fact that
blocked clause elimination does not affect the set of MUSes
of any CNF formula [Belov et al., 2013a], it can be shown
that BCE is sound for MaxSAT. On the other hand, as shown
in [Belov et al., 2013b], directly applying bounded variable
elimination, self-subsuming resolution, or even subsumption
elimination is not sound.

As a remedy to this problem, in [Belov et al., 2013b] lift-
ings of VE, SSR, and SE to LCNF formulas were proposed.
Essentially, the techniques can be applied on LCNFs by tak-
ing into account the natural restrictions implied by the SAT-
level techniques on the label-sets of labelled clauses.

• The resolution rule is lifted to labelled clauses by defin-
ing the resolvent (x ∨ A)L1 ./x (¬x ∨ B)L2 of two
labelled clauses (x ∨ A)L1 and (¬x ∨ B)L2 as (A ∨
B)L1∪L2 . The rule is lifted to two sets Φ1 and Φ2 of
labelled clauses analogously to the CNF case.

• Eliminating a variable x then gives the LCNF (Φ\(Φx∪
Φ¬x)) ∪ Φx ./x Φ¬x, resulting a natural lifting of
bounded variable elimination for LCNFs.

• The self-subsuming resolution rule for LCNFs, given
two labelled clauses CL1

1 = (x ∨ A)L1 and CL2
2 =

(¬x ∨ B)L2 such that A ⊂ B and L1 ⊆ L2 results
in the formula (Φ \ {CL2

2 }) ∪BL2 .

• A labelled clause CL1
1 subsumes CL2

2 if both C1 ⊂ C2

and L1 ⊆ L2, which gives the redundancy property used
for subsumption elimination for LCNFs.

Here it is important to notice that, due to the resolution rule
for LCNFs, bounded variable elimination and self-subsuming
resolution can cause an increase in the size of the label-
sets of the resulting labelled clauses. In particular, consider
the encoding of MaxSAT as weighted LCNF MaxSAT. Even
though each labelled clause corresponding to a soft clause
in the original MaxSAT instance will have a singleton label-
set, after LCNF-level preprocessing some of the clauses can
have label-sets with more than one label. Direct encoding
of the preprocessed weighted LCNF MaxSAT instance as a
MaxSAT instance will then add multiple new variables, corre-
sponding to the labels of the labelled clauses, to the resulting
soft clauses. Furthermore, we note that in some cases LCNF-
level preprocessing may result in a labelled clause ∅L, i.e., a
labelled clause the actual clause of which is empty.

We further note that, when applying BCE together with
VE, SSE, and SE, it makes sense to consider a straightfor-
ward lifting of BCE to LCNF formulas to simplify the prepro-
cessing pipeline: a labelled clause CL is blocked in a LCNF

formula Φ if C is blocked in Cl(Φ). As BCE is sound for
MaxSAT, it clear that this lifting is sound for LCNF MaxSAT.

4 Lifting MaxHS to Weighted LCNFs
As discussed in [Belov et al., 2013b], SAT-based preprocess-
ing can be applied in the context of MaxSAT solving using
the following observations. (i) By viewing MaxSAT instances
as weighted LCNF MaxSAT instances, the LCNF-liftings of
VE, SSR, and SE can be soundly applied on MaxSAT in-
stances; and (ii) using the reduction from weighted LCNF
MaxSAT to MaxSAT, one can directly employ any MaxSAT
solver to obtain solutions to preprocessed weighted LCNF
MaxSAT instances, and hence also to the original MaxSAT
instances. However, part (ii) in this flow can in cases be
non-optimal, especially when applying one of the many SAT-
based MaxSAT solvers which use assumptions for switching
on and off soft clauses from one SAT solver call to another.1

An alternative, as done in this work, is to develop lift-
ings of the SAT-based MaxSAT solvers for weighted LCNF
MaxSAT. A benefit of doing so is that such liftings can use
the labels of the labelled clauses directly as assumption vari-
ables for the SAT solver calls. By doing this, one avoids both
adding the additional soft unit clauses introduced by the di-
rect encoding from weighted LCNF MaxSAT to MaxSAT, as
well as the additional layer of assumption variables added
afterwards by the MaxSAT solver to the soft clauses.

The special nature of preprocessed MaxSAT instances—
assumption variables being distributed to multiple clauses,
and individual clauses having multiple assumption
variables—requires care in how the assumptions are
used, which depends on the SAT-based MaxSAT algorithm
being lifted to weighted LCNF MaxSAT. In this work we lift
the previously proposed MaxHS [Davies and Bacchus, 2011;
2013a; 2013b] algorithm into the LCNF framework. Our mo-
tivation for this is that MaxHS—one of the best-performing
solvers in the 2014 MaxSAT Evaluation crafted weighted
partial category—heavily relies on assumption variables.
This makes it a prime candidate for integrating the idea of
re-using assumption variables from the preprocessing phase.

MaxHS. An overview of MaxHS is presented as Algorithm 1.
MaxHS is a core-guided algorithm that exploits the fact that,
when invoked on an unsatisfiable set of clauses, most CDCL
SAT solvers can output an unsatisfiable core over the as-
sumption variables used in the solver calls. During execu-
tion, MaxHS maintains a collection C of cores (over the soft
clauses) of the input MaxSAT instance F = (Fh, Fs, c). At
each iteration, a minimum-cost hitting set H over C is com-
puted. This hitting set problem is stated over the assumption
variables and solved using an IP solver. A SAT solver is then
invoked on Fh ∧ Fs with the assumption variables in H set
to 1 (and the other assumption variables to 0). If the solver
reports satisfiable, the algorithm terminates and returns the
truth assignment produced by the SAT solver, which is guar-
anteed to be an optimal solution to F . If the solver reports

1Assumptions refer to adding a distinct fresh variable ai to each
of the soft clauses Ci in the input formula. Calling the SAT solver
under the assumption ai = 1 is equivalent to removing Ci from the
instance. Similarly, the assumption ai = 0 switches the clause on.

241

Input: A MaxSAT instance F = (Fh, Fs, c)
Output: An optimal solution τ for F
C ← ∅ // set of found unsat cores of F
while true do

H ← MINCOSTHITTINGSET(C)
(result, C, τ)← SATSOLVE(Fh ∪ (Fs \H))
if result=”satisfiable” then

return τ // solver returned SAT
else
C ← C ∪ {C} // solver returned unsat core of F

end
end

Algorithm 1: The MaxHS algorithm

unsatisfiable, the algorithm obtains a new core C from the
SAT solver and reiterates. The intuition behind the algorithm
is that when the reduced formula is satisfiable, the found hit-
ting set is also a minimum-cost hitting set over all MUSes of
F . Hence removing the clauses in the hitting set removes all
sources of unsatisfiability from the formula in a minimum-
cost manner [Davies and Bacchus, 2011].

MaxHS for Weighted LCNFs. While our lifting of the
MaxHS algorithm to LCNFs, LCNF-MaxHS (Alg. 2), closely
follows the original MaxHS algorithm, it also makes a criti-
cal shift from the clause-centric view (with a single distinct
assumption variable for each soft clause) to a label-centric
view in which overlapping label-sets with more than one label
are allowed. This generalizes MaxHS to LCNFs, while still
maintaining correctness (as proven in the following). The un-
satisfiable cores on the LCNF-level are explicitly maintained
as sets of labels. On each iteration, LCNF-MaxHS checks the
satisfiability of the subformula now induced by Lbls(Φ) \ R
for some minimum-cost hitting set over the collection of iden-
tified cores L of Φ. Notice that inducing a subformula by
Lbls(Φ) \ R is analogous to removing all clauses present in
the hitting set of the original MaxHS algorithm.

4.1 Correctness
We proceed by a formal correctness proof for LCNF-MaxHS,
which relies on the hitting set duality theorem for LC-
NFs [Belov and Marques-Silva, 2012]. Recall that a hitting
set H over an arbitrary collection of sets S is irreducible if
no H ′ ⊂ H is a hitting set over S.

Theorem 1 A label-set M ⊂ Lbls(Φ) of a LCNF formula
Φ is an MCS of Φ iff it is an irreducible hitting set over
LMUS(Φ).

The correctness follows from the following.
Proposition 1 Let Φ be a LCNF formula, L ⊂ P(Lbls(Φ))
a set of its cores, and R a minimum-cost hitting set over L.
Assume τ is an assignment satisfying Φ|Lbls(Φ)\R. Then R is
a minimum-cost irreducible hitting set over LMUS(Φ).
Proof. 1) R is a hitting set over LMUS(Φ). Otherwise there
would be a LMUS M of Φ such that M ⊂ Lbls(Φ) \ R,
contradicting the assumption that Φ|Lbls(Φ)\R is satisfiable.

2) R is irreducible as any R′ ⊂ R that is a hitting set over
LMUS(Φ) is also a hitting set over L. As R′ contains fewer

Input: A weighted LCNF MaxSAT instance Φ
Output: An optimal solution τ for Φ
L ← ∅ // set of found unsat cores of Lbls(Φ)
while true do

R← MINCOSTHITTINGSET(L)
(result, L, τ)← SATSOLVE(Φ|Lbls(Φ)\R)
if result=”satisfiable” then

return τ // solver returned SAT
else
L ← L ∪ {L} // solver returned unsat core of

Lbls(Φ)
end

end
Algorithm 2: LCNF-MaxHS, lifting of MaxHS to LCNFs

labels than R, it has to be of lower cost, contradicting the
assumed minimum cost (over the hitting sets of L) of R.

3) R has minimum cost over all hitting sets of LMUS(Φ)
which follows, similarly to case 2, from the fact that any hit-
ting setR′′ over LMUS(Φ) is also a hitting set over L. Hence
R′′ has to have at least the same cost as R. �
Theorem 2 The assignment τ returned by the LCNF-MaxHS
algorithm is an optimal solution to the weighted MaxSAT
problem for LCNFs.
Proof. By Proposition 1, τ satisfies Φ|Lbls(Φ)\R for a
minimum-cost irreducible hitting set R over LMUS(Φ). By
Theorem 1, R is also a minimum-cost MCS of Φ. �

4.2 Integrating SAT-Based Preprocessing and
LCNF-MaxHS

Given a MaxSAT instance F = (Fh, Fs, c) as input, the dis-
cussed SAT-based preprocessing can be integrated with the
lifting of MaxHS to the weighted LCNF setting as follows.

1. Apply the labelled liftings of BCE, VE, SSR, and SE
on ΦF (i.e., F as a weighted LCNF MaxSAT instance),
to obtain the preprocessed LCNF Φ′

F .
2. Solve Φ′

F using LCNF-MaxHS.
In practice, the steps above can be implemented, based on

the correctness of the LCNF-MaxHS algorithm, by extending
the MaxHS algorithm to take as part of the input an explicit
listing of assumption variables and modifying the implemen-
tation to directly use these assumption variables instead of in-
strumenting the input soft clauses with new assumption vari-
ables. More precisely, we do the following:
1’. Extend each Ci ∈ Fs with a distinct new assump-

tion variable and apply BCE, VE, SSR, and SE on
Fh ∧

∧
Ci∈Fs

(Ci ∨ ai), forbiding the removal of any
ai variables during preproccessing. Divide the resulting
set of clauses into (i) “hard” clauses F ′

h which do not in-
clude any of the assumption variables ai and (ii) “soft”
clauses F ′

s which each contain at least one of the as-
sumption variables.

2’. Apply MaxHS on the MaxSAT instance (F ′
h, F

′
s, c

′),
where c′(ai) = c(Ci) for each Ci ∈ Fs, and explicitly
guide MaxHS to work on the ai variables as the assump-
tion variables.

242

Notice especially that step 2’ avoids adding the soft unit
clauses over the assumption variables—produced by the ear-
lier mentioned direct encoding—that encode the weights of
the clauses to which the assumption variables are added in
the direct encoding. This makes a difference when applying
the MaxHS algorithm, as explained in the following.

Eq-seeding was proposed in [Davies and Bacchus, 2013a]
for improving the efficiency of solving the minimum-cost hit-
ting set problems with IP. In short, eq-seeding uses the fact
that each binary clause (l ∨ ai), where ai is an assumption
variable, can actually be viewed as the logical equivalence
l ↔ ¬ai [Davies and Bacchus, 2013a]. While these logi-
cal equivalences are not added to the SAT solver, they can be
used for deriving additional linear constraints that are added
to the hitting set IPs as follows: if for each literal lj of a
clause C = (l1 ∨ · · · ∨ lm ∨ lm+1 ∨ · · · ∨ ln) in the MaxSAT
instance, either (i) lj or ¬lj is equivalent to an assumption
variable ai (i.e., (lj ↔ ai) or (¬lj ↔ ai)); or (ii) lj is an
assumption variable itself (in which case we implicitly have
(lj ↔ lj)), then replacing lj by its equivalent assumption
variable for each of the variables in C gives a linear at-least-
one constraint purely over the assumption variables. These
derived linear constraints are added to the IP solver.

An interesting observation here is that eq-seeding within
our LCNF-MaxHS implementation can in some cases de-
rive more linear constraints than when invoking the original
MaxHS algorithm on the direct encoding after preprocessing.
Example 1 Assume that, after preprocessing, we have the
LCNF formula Φ = {(∅){a1,a2}, (¬x1){a3}, (¬x2){a4}, (x1∨
x2)∅}. For LCNF-MaxHS, these labelled clauses are repre-
sented as the clauses F = {(a1 ∨ a2), (¬x1 ∨ a3), (¬x2 ∨
a4), (x1 ∨ x2)} where the ais are used as assumption vari-
ables. From (a1 ∨a2), eq-seeding infers the linear constraint
a1 +a2 ≥ 1. Furthermore, since a3 can be considered equiv-
alent to x1, and a4 to x2, eq-seeding infers a3 + a4 ≥ 1. In
contrast, consider invoking the original MaxHS algorithm on
the direct encoding of Φ, i.e., the MaxSAT instance (Fh, Fs)
with Fh = F and Fs = {(¬a1), (¬a2), (¬a3), (¬a4)}. With-
out any knowledge of the fact that the ai variables could
be used as assumptions, MaxHS will add to each unit soft
clause (¬ai) a new assumption variable bi, giving the clause
(¬ai ∨ bi), and will hence consider ai to be equivalent to bi
for each i. From this, eq-seeding can still infer b1 + b2 ≥ 1,
which is equivalent to a1 +a2 ≥ 1 inferred by LCNF-MaxHS.
However, eq-seeding in MaxHS will not be able to infer the
second linear constraint inferred by eq-seeding within LCNF-
MaxHS.
Special Cases Arising from Preprocessing. Finally, we note
an interesting special case arising purely from applying the
labelled preprocessing techniques to MaxSAT instances. As
already mentioned, in our experiments we often observed
labelled clauses of the form ∅L, which is equivalent to a
MaxSAT clause

∨
li∈L ai, i.e., a clause consisting purely of

assumption variables. In fact, in the experiments we report
on in the following, we observed that for some benchmarks,
preprocessing resulted in instances purely consisting of such
clauses. Such clauses can be directly added as the linear con-
straint

∑
li∈L ai ≥ 1 to the IP solver used for solving the

hitting set problems. This is actually done automatically by
the eq-seeding technique proposed in [Davies and Bacchus,
2013a] and implemented in our solver.

5 Implementation and Experiments
For implementing the lifting of MaxHS to weighted LCNFs
(Alg. 2), we extended our own prototype re-implementation
of the MaxHS algorithm for weighted LCNF MaxSAT. Re-
fining Algorithm 1, this re-implementation includes the SAT
solver tweaks and disjoint phase of [Davies and Bacchus,
2011], the non-optimal hitting set computations of [Davies
and Bacchus, 2013b], as well as the core minimization and
eq-seeding techniques of [Davies and Bacchus, 2013a]. Min-
iSAT 2.2.0 [Eén and Sörensson, 2003] is used as the underly-
ing SAT solver and IBM CPLEX 12.6.0 [Cpl, 2015] is used
to solve the minimum-cost hitting set IPs. We extended our
MaxHS implementation to take a list of assumption variables
as part of the solver input.

As the SAT preprocessor, we used Coprocessor 2.0 [Man-
they, 2012] that we modified to add the required assumption
variables to the soft clauses, and used its whitelisting fea-
ture to forbid removal of any occurrences of the assumption
variables during preprocessing. For the experiments reported
on, we did not yet integrate Coprocessor into our MaxHS re-
implementation. Instead, although somewhat non-optimal in
terms of time spent on preprocessing, we called Coprocessor
sepaately from the solver, applying BCE, VE, SSR, and SE.
The total preprocessing time is included in the running times
reported.

We report on experiments using the following solvers.

MHS2.5: The most recent version of the original implemen-
tation of the MaxHS algorithm (reference purposes).
MHS: our re-implementation of MaxHS.
MHS+pre: MHS with preprocessing, using the direct
encoding after preprocessing.
LMHS+pre: MHS with preprocessing, re-using the assump-
tion variables from preprocessing (i.e., LCNF-MaxHS with
preprocessing).
Eva: the best-performing solver in the weighted partial
industrial category of MaxSAT Evaluation 2014 [Narodytska
and Bacchus, 2014].
Eva+pre: Eva with preprocessing, using the direct encoding
after preprocessing.

We used all 624 instances from the weighted partial crafted
(214) and industrial (410) categories of MaxSAT Evaluation
2014 (http://www.maxsat.udl.cat/14/). Note that the weighted
partial crafted benchmark set contains 310 instances; how-
ever, 96 of the instances do not contain hard clauses. The
experiments were run on a cluster of 2.53-GHz Intel Xeon
quad core machines with 32-GB memory and Ubuntu Linux
12.04. A timeout of 1 h was enforced for solving each bench-
mark instance.

Results are presented in Figures 1 and 2. Figure 2 shows
the number of instances solved for different time limits over
all the benchmarks. For example, to solve 500 instances,
MHS needs a per-instance timeout of 1500 s, while less than

243

 1

 10

 100

 1000

 1 10 100 1000

M
H

S
+

pr
e

MHS

 1

 10

 100

 1000

 1 10 100 1000

LM
H

S
+

pr
e

MHS

 1

 10

 100

 1000

 1 10 100 1000

LM
H

S
+

pr
e

MHS+pre

Industrial
Crafted

Figure 1: Comparison of MaxHS variants with and without preprocessing, runtimes in seconds. Left: MaxHS w/o preprocessing
v MaxHS w/preprocessing using the direct encoding; middle: MaxHS w/o preprocessing v LCNF-MaxHS w/preprocessing;
right: MaxHS w/preprocessing using the direct encoding v LCNF-MaxHS w/preprocessing.

500 s suffices for LMHS+pre. Using the direct encoding after
preprocessing decreases the performance of MHS, especially
on the crafted instances. LMHS+pre clearly improves over
the direct encoding and over not using preprocessing at all.
Also note that our re-implementation of MaxHS appears to
be competitive when compared to the latest version of the
original MaxHS solver (MHS2.5), as well as Eva when com-
paring over all weighted partial instances. Figure 2 also gives
some insight into the effect of the individual preprocessing
techniques on the performance of LMHS. We ran two sets of
experiments, one only using VE, SSR, and SE (“NoBCE”)
and one only using BCE (“OnlyBCE”). The combination of
all techniques resulted in 99 timeouts for LMHS, while using
BCE only resulted in 98 and leaving out BCE in 95 timeouts.
These differences are due to industrial instances.

Figure 1 gives a pairwise comparison of MHS, MHS+pre,
and LMHS+pre. Figure 1 (right) shows that LMHS+pre (pre-
processing and re-using assumptions) improves noticeably on
MHS+pre (preprocessing and direct encoding). MHS+pre
performs noticeably worse than MHS (no preprocessing)
on the crafted instances (Figure 1 left). LMHS+pre im-

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 440 450 460 470 480 490 500 510 520 530

T
im

e
o
u
t
(s

)

Instances solved

Eva-pre

MHS2.5

MHS+pre

Eva

MHS

LMHS+pre-OnlyBCE

LMHS+pre

LMHS+pre-NoBCE

Figure 2: Cactus plot comparing the different MHS variants

proves on MHS+pre on these instances (Figure 1 right), with
performance closer to that of MHS. On the industrial in-
stances, the results between MHS+pre and MHS are incon-
clusive. LMHS+pre on the other hand improves somewhat
on MHS+pre and more on MHS. LMHS+pre timed out on 99
instances (18 crafted, 81 industrial), MHS on 111 (18, 93).
LMHS+pre timed out on only 1 (industrial) instance solved
by MHS, while MHS on 13 instances solved by LMHS+pre
(all industrial). We also conducted experiments on the un-
weighted partial crafted benchmarks from the 2014 MaxSAT
Evaluation: MHS timed out on 212, (88 of 421 crafted and
124 of 568 industrial), MHS+pre on 280 (129, 151) and
LMHS+pre on 204 (84, 120). As a comparison, MHS2.5
timed out on 200 instances (90, 110) and Open-WBO [Mar-
tins et al., 2014], one of the best-performing solvers in the
2014 partial industrial track, on 206 (122, 84).

6 Conclusions
We presented a lifting of the MaxHS algorithm to labelled
LCNFs, enabling a tighter integration of preprocessing and
MaxHS via re-using assumption variables from the prepro-
cessing step. We explained how the lifting can be imple-
mented via modifications to MaxHS, and pointed out concrete
examples of why assumption re-use can be beneficial. Ex-
periments showed that our LCNF lifting of MaxHS does im-
prove the effectiveness of preprocessing especially on crafted
weighted partial MaxSAT, and also improves on the overall
performance of MaxHS both with and without direct prepro-
cessing. For future work, an interesting question is if other
MaxSAT solvers, such as Eva, could benefit from tighter in-
tegration of preprocessing.

Acknowledgments
Work funded by Academy of Finland, grants 251170 COIN
Centre of Excellence in Computational Inference Research,
276412, and 284591; and Research Funds of the University
of Helsinki.

244

References
[Ansótegui and Gabàs, 2013] C. Ansótegui and J. Gabàs.

Solving (weighted) partial MaxSAT with ILP. In
Proc. CPAIOR, volume 7874 of LNCS, pages 403–409.
Springer, 2013.

[Ansótegui et al., 2013] C. Ansótegui, M.L. Bonet, and
J. Levy. SAT-based MaxSAT algorithms. Artificial In-
telligence, 196:77–105, 2013.

[Belov and Marques-Silva, 2012] A. Belov and J. Marques-
Silva. Generalizing redundancy in propositional
logic: Foundations and hitting sets duality. CoRR,
abs/1207.1257, 2012.

[Belov et al., 2013a] A. Belov, M. Järvisalo, and J. Marques-
Silva. Formula preprocessing in MUS extraction. In
Proc. TACAS, volume 7795 of LNCS, pages 108–123.
Springer, 2013.

[Belov et al., 2013b] A. Belov, A. Morgado, and J. Marques-
Silva. SAT-based preprocessing for MaxSAT. In
Proc. LPAR-19, volume 8312 of LNCS, pages 96–111.
Springer, 2013.

[Berg and Järvisalo, 2013] J. Berg and M. Järvisalo. Optimal
correlation clustering via MaxSAT. In Proc. 2013 IEEE
ICDM Workshops, pages 750–757. IEEE Press, 2013.

[Berg et al., 2014] J. Berg, M. Järvisalo, and B. Malone.
Learning optimal bounded treewidth bayesian networks
via maximum satisfiability. In Proc. AISTATS, volume 33,
pages 86–95. JMLR, 2014.

[Bunte et al., 2014] Kerstin Bunte, Matti Järvisalo, Jeremias
Berg, Petri Myllymäki, Jaakko Peltonen, and Samuel
Kaski. Optimal neighborhood preserving visualization by
maximum satisfiability. In Proc. AAAI, pages 1694–1700.
AAAI Press, 2014.

[Cpl, 2015] CPLEX, 2015. http://www-01.ibm.com/
software/commerce/optimization/cplex-optimizer/.

[Davies and Bacchus, 2011] J. Davies and F. Bacchus. Solv-
ing MAXSAT by solving a sequence of simpler SAT in-
stances. In Proc. CP, volume 6876 of LNCS, pages 225–
239. Springer, 2011.

[Davies and Bacchus, 2013a] J. Davies and F. Bacchus. Ex-
ploiting the power of MIP solvers in MaxSAT. In
Proc. SAT, volume 7962 of LNCS, pages 166–181.
Springer, 2013.

[Davies and Bacchus, 2013b] J. Davies and F. Bacchus.
Postponing optimization to speed up MAXSAT solving.
In Proc. CP, volume 8124 of LNCS, pages 247–262.
Springer, 2013.

[Eén and Biere, 2005] N. Eén and A. Biere. Effective pre-
processing in SAT through variable and clause elimina-
tion. In Proc. SAT, volume 3569 of LNCS, pages 61–75.
Springer, 2005.

[Eén and Sörensson, 2003] N. Eén and N. Sörensson. An ex-
tensible SAT-solver. In Proc. SAT, volume 2919 of LNCS,
pages 502–518. Springer, 2003.

[Guerra and Lynce, 2012] J. Guerra and I. Lynce. Reason-
ing over biological networks using maximum satisfiabil-
ity. In Proc. CP, volume 7514 of LNCS, pages 941–956.
Springer, 2012.

[Heras et al., 2011] F. Heras, A. Morgado, and J. Marques-
Silva. Core-guided binary search algorithms for maximum
satisfiability. In Proc. AAAI. AAAI Press, 2011.

[Heule et al., 2010] M. Heule, M. Järvisalo, and A. Biere.
Clause elimination procedures for CNF formulas. In
Proc. LPAR-17, volume 6397 of LNCS, pages 357–371.
Springer, 2010.

[Järvisalo et al., 2010] M. Järvisalo, A. Biere, and M. Heule.
Blocked clause elimination. In Proc. TACAS, volume 6015
of LNCS, pages 129–144. Springer, 2010.

[Järvisalo et al., 2012] Matti Järvisalo, Marijn Heule, and
Armin Biere. Inprocessing rules. In Proc. IJCAR, volume
7364 of LNCS, pages 355–370. Springer, 2012.

[Jose and Majumdar, 2011] M. Jose and R. Majumdar.
Cause clue clauses: error localization using maximum sat-
isfiability. In Proc. PLDI, pages 437–446. ACM, 2011.

[Koshimura et al., 2012] M. Koshimura, T. Zhang, H. Fujita,
and R. Hasegawa. QMaxSAT: A partial Max-SAT solver.
Journal of Satisfiability, Boolean Modeling and Computa-
tion, 8(1/2):95–100, 2012.

[Kullmann, 1999] O. Kullmann. On a generalization of ex-
tended resolution. Discrete Applied Mathematics, 96-
97:149–176, 1999.

[Lagniez and Marquis, 2014] J.-M. Lagniez and P. Marquis.
Preprocessing for propositional model counting. In
Proc. AAAI, pages 2688–2694. AAAI Press, 2014.

[Li and Manyà, 2009] C.M. Li and F. Manyà. MaxSAT, hard
and soft constraints. In Handbook of Satisfiability, pages
613–631. IOS Press, 2009.

[Manthey, 2012] N. Manthey. Coprocessor 2.0 - A flexible
CNF simplifier. In Proc. SAT, volume 7317 of LNCS,
pages 436–441. Springer, 2012.

[Martins et al., 2014] R. Martins, S. Joshi, V.M. Manquinho,
and I. Lynce. Incremental cardinality constraints for
MaxSAT. In Proc. CP, volume 8656 of LNCS, pages 531–
548. Springer, 2014.

[Morgado et al., 2013] A. Morgado, F. Heras, M.H. Liffiton,
J. Planes, and J. Marques-Silva. Iterative and core-guided
MaxSAT solving: A survey and assessment. Constraints,
18(4):478–534, 2013.

[Morgado et al., 2014] A. Morgado, C. Dodaro, and
J. Marques-Silva. Core-guided maxsat with soft cardinal-
ity constraints. In Proc. CP, volume 8656 of LNCS, pages
564–573. Springer, 2014.

[Narodytska and Bacchus, 2014] N. Narodytska and F. Bac-
chus. Maximum satisfiability using core-guided MaxSAT
resolution. In Proc. AAAI, pages 2717–2723, 2014.

[Zhu et al., 2011] C.S. Zhu, G. Weissenbacher, and S. Malik.
Post-silicon fault localisation using maximum satisfiability
and backbones. In Proc. FMCAD, pages 63–66, 2011.

245

Paper II II

Jeremias Berg, Paul Saikko, and Matti Järvisalo

Re-using Auxiliary Variables for MaxSAT Preprocessing

c© 2015 IEEE. Reprinted with permission from Proceedings of the IEEE
27th International Conference on Tools with Artificial Intelligence (ICTAI),
pages 813-820. IEEE Computer Society, 2015.

Re-using Auxiliary Variables for
MaxSAT Preprocessing

Jeremias Berg and Paul Saikko and Matti Järvisalo
HIIT, Department of Computer Science, University of Helsinki, Finland

Abstract—Solvers for the maximum satisfiability (MaxSAT)
problem—a well-known optimization variant of Boolean satis-
fiability (SAT)—are finding an increasing number of applica-
tions. Preprocessing has proven an integral part of the SAT-
based approach to efficiently solving various types of real-world
problem instances. It was recently shown that SAT preprocessing
for MaxSAT becomes more effective by re-using the auxiliary
variables introduced in the preprocessing phase directly in the
SAT solver within a core-based hybrid MaxSAT solver. We take
this idea of re-using auxiliary variables further by identifying
them among variables already present in the input MaxSAT in-
stance. Such variables can be re-used already in the preprocessing
step, avoiding the introduction of multiple layers of new auxiliary
variables in the process. Empirical results show that by detecting
auxiliary variables in the input MaxSAT instances can lead to
modest additional runtime improvements when applied before
preprocessing. Furthermore, we show that by re-using auxiliary
variables not only within preprocessing but also as assumptions
within the SAT solver of the MaxHS MaxSAT algorithm can alone
lead to performance improvements similar to those observed by
applying SAT-based preprocessing.

I. INTRODUCTION

Maximum satisfiability (MaxSAT) [1], [2], [3] is a
well-known optimization variant of the archetypical NP-
complete problem of Boolean satisfiability (SAT). Build-
ing on the extraordinary success of SAT solvers, exact
solvers for MaxSAT—and, especially, its weighted partial
generalization—are finding an increasing number of applica-
tions, ranging e.g. from hardware design debugging and model-
based diagnosis to bioinformatics and data analysis [4], [5],
[6], [7], [8], [9], [10], [11]. This is brought on by recent
improvements in MaxSAT solving techniques [12], [13], [14],
[15], [2], [16], [3], [17], [18].

Recently it was shown [19] that SAT-based preprocess-
ing [20], [21] for MaxSAT [22] can be made more effective
by explicitly re-using the auxiliary variables introduced in the
preprocessing phase directly as the assumption variables the
SAT solver within a core-based hybrid MaxSAT solver [23],
[14], [15]. In this work, we take this idea of re-using aux-
iliary variables further. Our idea is to automatically detect
(group detect) auxiliary variables among the variables already
present in the input MaxSAT instance. Such detected auxiliary
variables can be used already within the preprocessing step.
This avoids introducing layers of new auxiliary variables in
the preprocessing and the solving steps. A key motivation
for group detection comes from the fact that such auxiliary
variables arise naturally when encoding more complex finite-
domain soft constraints into MaxSAT via the so-called Group
MaxSAT framework [24], [25].

We observe that group detection can be achieved by simple

pattern matching, and show that this often identifies re-usable
auxiliary variables in the weighted partial MaxSAT benchmark
sets of the most recent 2014 MaxSAT Evaluation. We also
detail why variable re-use via group detection can be beneficial
in particular in conjunction with the MaxHS solver. We show
that group detection applied before SAT-based preprocessing
can bring modest runtime improvements to state-of-the-art
MaxSAT solvers.

An additional benefit of group detection is that the detected
auxiliary variables can be explicitly re-used as assumptions
throughout the whole MaxSAT solving process—not only
within SAT-based preprocessing for MaxSAT, but also in
the SAT solver within SAT-based MaxSAT algorithms—by
explicitly informing the MaxSAT solver of these variables.
Using a recently proposed generalization of MaxHS for this
purpose [19], we show that this results in overall improve-
ments over MaxHS on weighted partial 2014 MaxSAT Eval-
uation benchmarks. Furthermore, surprisingly, explicitly re-
using group detected variables alone results in similar overall
improvements as applying SAT-based preprocessing together
with variable re-use of the auxiliary variables necessary for
the preprocessing phase.

The rest of the paper is organized as follows. We start
with necessary preliminaries on MaxSAT and the group and
labelled extensions of MaxSAT (Section II) and SAT-based
preprocessing for labelled MaxSAT (Section III). We then de-
tail the proposed approach to re-using variables present in the
input MaxSAT instances via what we call group detection (Sec-
tion IV). After this, we explain why group detection could be
beneficial to apply in conjunction with a recently proposed
labelled lifting of the MaxHS approach (Section V). Before
concluding, we present results of an empirical evaluation on
the effects of integrating group detection into the MaxSAT
solving process (Section VI).

II. MAXSAT, GROUPS, AND LABELS

For a Boolean variable x, there are two literals, x and ¬x.
A clause is a disjunction (∨) of literals. A truth assignment
is a function from Boolean variables to {0, 1}. A clause C
is satisfied by a truth assignment τ (τ(C) = 1) if τ(x) = 1
for a literal x in C, or τ(x) = 0 for a literal ¬x in C. A set
F = {C1, . . . , Cm} of clauses, or equivalently, the conjunctive
normal form (CNF) formula

∧m
i=1 Ci, is satisfiable if there is

an assignment τ satisfying all clauses in F (τ(F) = 1), and
unsatisfiable (τ(F) = 0 for any assignment τ) otherwise. The
Boolean satisfiability problem (SAT) is to decide whether a
given CNF formula is satisfiable.

An instance F = (Fh, Fs, c) of the weighted partial
MaxSAT problem consists of a set Fh of hard clauses, a set

2015 IEEE 27th International Conference on Tools with Artificial Intelligence

1082-3409/15 $31.00 © 2015 IEEE

DOI 10.1109/ICTAI.2015.120

812

2015 IEEE 27th International Conference on Tools with Artificial Intelligence

1082-3409/15 $31.00 © 2015 IEEE

DOI 10.1109/ICTAI.2015.120

813

2015 IEEE 27th International Conference on Tools with Artificial Intelligence

1082-3409/15 $31.00 © 2015 IEEE

DOI 10.1109/ICTAI.2015.120

813

Fs of soft clauses, and a function c : Fs → N that associates a
non-negative cost (weight) with each of the soft clauses. Any
truth assignment τ that satisfies Fh is a solution to F . The cost
of a solution τ to F is COST(F, τ) =

∑
C∈Fs

(1−τ(C))·c(C),
i.e., the sum of the costs of the soft clauses not satisfied by
τ . A solution τ is (globally) optimal for F if COST(F, τ) ≤
COST(F, τ ′) holds for any solution τ ′ to F . Given a weighted
partial MaxSAT instance F , the weighted partial MaxSAT
problem asks to find an optimal solution to F . From here
on, we refer to weighted partial MaxSAT instances simply as
MaxSAT instances. A MaxSAT instance with c(C) = 1 for all
soft clauses C is often called unweighted.

An unsatisfiable core of a MaxSAT instance F =
(Fh, Fs, c) is a subset F ′

s ⊆ Fs such that Fh ∪ F ′
s is

unsatisfiable. An unsatisfiable core F ′
s is minimal (an MUS) if

Fh ∪ F ′′
s ∈ SAT for all F ′′

s ⊂ F ′
s.

Group MaxSAT [24], [25] extends MaxSAT by allow-
ing weights on (soft) groups of clauses. An instance F =
(Fh,Gs, c) of weighted group MaxSAT consists of a set Fh of
hard clauses, a set Gs of soft groups of clauses, and function
c : Gs → N that associates a a non-negative cost with each
group in Gs. Each group G ∈ Gs is a set of clauses. A truth
assignment τ satisfies G iff τ satisfies every clause in G. The
Group MaxSAT problem asks to find an assignment τ that
satisfies Fh and maximizes the sum of the costs of the groups
satisfied by τ .

The framework of labelled CNFs (LCNFs) [26], [22]
allows for generalizing MaxSAT and Group MaxSAT into
maximum satisfiability of LCNF, as well as for lifting SAT
preprocessing techniques to MaxSAT. Assume a countable set
Lbl of labels. A labelled clause CL consists of a clause C and
a (possibly empty) set L ⊆ Lbl of labels. An LCNF formula
Φ is a set of labelled clauses. We use Cl(Φ) and Lbls(Φ)
to denote the set of clauses and labels of Φ, respectively.
An LCNF formula is satisfiable iff Cl(Φ) (which is a CNF
formula) is satisfiable.

Given an LCNF formula Φ and a subset of its labels M ⊆
Lbls(Φ), the subformula Φ|M of Φ induced by M is the LCNF
formula {CL ∈ Φ : L ⊆ M}, i.e., the subformula obtained
by removing from Φ all labelled clauses with at least one
label not in M . An unsatisfiable core of an unsatisfiable LCNF
formula Φ is a label-set L ⊆ Lbls(Φ) such that the formula
Φ|L is unsatisfiable. An unsatisfiable core L is a LMUS iff
the formula Φ|L′ is satisfiable for all L′ ⊂ L. A minimal
correction subset (LMCS) for Φ is a label-set R ⊆ Lbls(Φ)
such that (i) the formula Φ|Lbls(Φ)\R is satisfiable, and (ii) the
formula Φ|Lbls(Φ)\R′ is unsatisfiable for all R′ ⊂ R.

An instance of the weighted LCNF-MaxSAT problem con-
sists of an LCNF formula Φ, with a positive weight wi

associated with each label in Lbls(Φ). The cost of a label-
set L ⊆ Lbls(Φ) is the sum of the weights of labels in L.
Given a weighted LCNF-MaxSAT instance Φ such that Φ|∅ is
satisfiable, any assignment τ that satisfies Φ|∅ is a solution
to the MaxSAT problem of LCNF formulas. A solution τ
is optimal if it satisfies Φ|Lbls(Φ)\R for some minimum-cost
LMCS R of Φ. The cost of τ is the cost of R. Similarly
to MaxSAT, we will from here on refer to weighted LCNF-
MaxSAT instances as LCNF-MaxSAT instances.

A MaxSAT instance F = (Fh, Fs, c) can be viewed as a

LCNF-MaxSAT instance ΦF by introducing (i) for each hard
clause C ∈ Fh the labelled clause C∅, and (ii) for each soft
clause C ∈ Fs the labelled clause C{lC}, where lC is a distinct
label for C with weight c(C). It is easy to see that any optimal
solution to ΦF is an optimal solution to F , and vice versa.

An LCNF-MaxSAT instance Φ can be viewed as a
MaxSAT instance FΦ [22] by associating with each label
li ∈ Lbls(Φ) a distinct variable ai, and introducing (i) for each
labelled clause CL ∈ Φ a hard clause C∨∨

li∈L ai, and (ii) for
each li ∈ Lbls(Φ), a soft clause (¬ai) with cost c(ai) = wi,
where wi is the weight of the label li. We call this the direct
encoding. Notice that converting a MaxSAT instance to LCNF
and then back to MaxSAT using the direct encoding introduces
new variables and clauses to the formula, as exemplified next.

Example 1: Consider the (unweighted) MaxSAT instance
Fex = (Fh, Fs) with Fh = {(x ∨ z), (¬z), (y ∨ z)} and
Fs = {(¬x), (¬y,∨¬z), (z∨y), (¬z∨y)}. We will use Fex as
a running example in this paper. The assignment τ for which
τ(x) = τ(y) = 1 and τ(z) = 0 is an optimal solution to
Fex of cost 1. The set {(¬x)} is an example of a minimal
unsatisfiable core of Fex. The LCNF-MaxSAT instance ΦFex

corresponding to Fex is

ΦFex
= {(x ∨ z)∅, (¬z)∅, (y ∨ z)∅, (¬x){l1},

(¬y,∨¬z){l2}, (z ∨ y){l3}, (¬z ∨ y){l4}}.
Now Cl(ΦFex) = Fh ∪ Fs and Lbls(ΦFex) = {l1, l2, l3, l4}.
The label-set L = {l1} is a minimal unsatisfiable core of ΦFex

as
ΦFex |L = {(x ∨ z)∅, (¬z)∅, (y ∨ z)∅, (¬x){l1}}

is unsatisfiable. L is also a minimal correction subset to ΦFex

as

ΦFex |Lbls(ΦFex)\L = {(x ∨ z)∅, (¬z)∅, (y ∨ z)∅, (¬y,∨¬z){l2},

(z ∨ y){l3}, (¬z ∨ y){l4}},
is a LCNF formula satisfied by τ . As such τ is also an optimal
solution to the LCNF-MaxSAT instance ΦFex

. Converting ΦFex

back to a MaxSAT instance using the direct encoding results
in the instance F ′ = (F ′

h, F ′
s), where

F ′
h = {(x ∨ z), (¬z), (y ∨ z), (¬x ∨ a1), (¬y,∨¬z ∨ a2),

(z ∨ y ∨ a3), (¬z ∨ y ∨ a4)} and
F ′

s = {(¬a1), (¬a2), (¬a3), (¬a4)}.

III. SAT PREPROCESSING FOR MAXSAT VIA LCNFS

Preprocessing has proven an integral part of the SAT-based
approach to efficiently solving various types of real-world
problem instances. However, to date there is only little work
on the effects of preprocessing for MaxSAT, and the benefits
of applying SAT-based preprocessing for MaxSAT still remain
somewhat unclear. In fact, as shown in [22], many of the com-
monly used SAT preprocessing techniques, including bounded
variable elimination (BVE) [20], self-subsuming resolution
(SSR), or even subsumption elimination (SE), cannot be used
directly on MaxSAT instances. As a remedy to this problem,
in [22] liftings of VE, SSR, and SE to LCNF formulas were
proposed. Essentially, the techniques can be applied on LCNFs
by taking into account the natural restrictions implied by the
SAT-level techniques on the label-sets of labelled clauses.

813814814

• LCNF-lifting of the resolution rule: The resolvent of
two labelled clauses (x ∨ A)L1 and (¬x ∨ B)L2 is
(x ∨A)L1 ��x (¬x ∨B)L2 = (A ∨B)L1∪L2 .

• LCNF-lifting of BVE: Let Φx and Φ¬x, resp., denote
the sets of labelled clauses CL that contain the literal x
and the literal ¬x, resp. The LCNF-level BVE allows
for replacing Φx∪Φ¬x with Φx ��x Φ¬x = {AL1 ��x

BL2 | A ∈ Φx, B ∈ Φ¬x, A ∨ B not tautological} as
long as the resulting formula does not contain more
clauses than the original formula.

• LCNF-lifting of SE: A labelled clause AL1 subsumes
BL2 if A ⊆ B and L1 ⊆ L2. LCNF-level SE removes
subsumed clauses until fixpoint.

• LCNF-lifting of SSR:
Given labelled clauses (l ∨ A)L1 and (¬l ∨ B)L2 , if
AL1 subsumes BL2 , replace (¬l ∨B)L2 with BL2

Example 2: Eliminating z from ΦFex gives the formula

Φ1
Fex

= {(x)∅, (y)∅, (y){l3}, (x ∨ y){l3}, (¬y ∨ x){l2},

(x ∨ y){l4}, (y){l4}, (y){l3,l4}, (¬x){l1}}.
Applying labelled SE on Φ1

Fex
results in the formula

Φ2
Fex

= {(x)∅, (y)∅, (¬x){l1}}.
Eliminating x from Φ2

Fex
results in the formula

pre(ΦFex) = {(){l1}, (y)∅}.
The label-set {l1} is an LMCS of both ΦFex and pre(ΦFex).
Notice that the optimal costs of both formulas are the same.

Based on the fact that blocked clause elimination [27],
[21] (BCE) does not affect the set of MUSes of any CNF
formula [28], BCE is sound for MaxSAT. However, we note
that in combination with LCNF-level variable elimination,
self-subsuming resolution, and subsumption elimination, it is
simpler to consider a straightforward lifting of blocked clause
elimination1 to LCNFs: a labelled clause CL is blocked in an
LCNF formula Φ if C is blocked in the CNF formula Cl(Φ).
The soundness of BCE for LCNFs follows from the soundness
of BCE for MaxSAT.

Here it is important to notice that, due to the resolution rule
for LCNFs, bounded variable elimination can cause an increase
in the size of the label-sets of the resulting labelled clauses.
In particular, consider the encoding of MaxSAT as LCNF-
MaxSAT. Even though each labelled clause corresponding to
a soft clause in the original MaxSAT instance will have a
singleton label-set, after LCNF-level preprocessing some of
the clauses can have label-sets with more than one label.
Direct encoding of the preprocessed weighted LCNF-MaxSAT
instance as a MaxSAT instance will then add multiple new
variables, corresponding to the labels of the labelled clauses,
to the resulting soft clauses.

Integration of SAT-based preprocessing into the MaxSAT
solving process is outlined in Figure 1, given a weighted partial
MaxSAT instance F = (Fh, Fs, c) as input.

For the solving (Step 3), any MaxSAT solver can be used
by converting the LCNF back to standard MaxSAT.

1More generally, any monotone clause elimination procedure [28].

IV. RE-USING AUXILIARY VARIABLES

Both the assumptions used in MaxSAT solving and the
labels which enable SAT-based preprocessing require us to add
a layer of new auxiliary variables to the working formula. In
this work, we build on the idea of re-using the labels introduced
in the SAT-based preprocessing step. We propose to identify
variables in the input MaxSAT instance which could be re-used
as labels in the preprocessing step.

A. Group Detecting Auxiliary Variables

Assume that we are given a weighted partial MaxSAT
instance F = (Fh, Fs, c) as input. We observe that MaxSAT
instances may already contain variables that can be directly
re-used as labels during preprocessing and as assumptions by
a SAT solver. These variables can be easily identified from the
instances by pattern matching. Especially, when viewing F as
an LCNF-MaxSAT instance, this allows us to avoid introducing
distinct labels for those clauses which contain variables that
can be re-used as labels. In this work, we use the following
simple scheme to identify such variables. Assume that F
contains a literal2 l that fulfills the following conditions.

(i) (¬l) ∈ Fs.

(ii) ¬l /∈ C for any clause C ∈ (Fh ∪ Fs) \ {(¬l)}.
(iii) l /∈ C for any soft clause C ∈ Fs.

In words, we know that such a literal l only appears in the hard
clauses of F and the literal ¬l appears in a single soft unit
clause in F . We note that such literals can be easily detected,
and call this identification task group detection.

Example 3: Consider again the MaxSAT instance Fex

from Example 1. In this instance, the literal x satisfies the
conditions of group detection and as such can be re-used as
a label when converting Fex to an LCNF-MaxSAT instance.
This results in the formula

Φg
Fex

= {(z){x}, (¬z)∅, (y ∨ z)∅, (¬y,∨¬z){l1},

(z ∨ y){l2}, (¬z ∨ y){l3}}.

For concrete motivation for group detection, consider an
arbitrary finite-domain constraint C, and let cnf(C) =

∧k
i=1 Ci

2Note here that a literal can be either a variable or its negation.

1) View F = (Fh, Fs, c) as the LCNF-MaxSAT
instance ΦF as follows.
• For each C ∈ Fh, introduce a labelled

clause C∅.
• For each C ∈ Fs, introduce a labelled

clause C{lC} where lC is a distinct label
for C with weight c(C).

2) Apply the LCNF-liftings of BCE, VE, SSR, and
SE on ΦF to obtain the preprocessed LCNF
pre(ΦF).

3) Solve pre(ΦF).

Fig. 1. Integrating SAT preprocessing into MaxSAT solving

814815815

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

S
of

t C
la

us
es

 R
eu

se
d

(%
)

Instances (%)

Industrial
Crafted

Fig. 2. Labels detected in the weighted partial benchmarks from MaxSAT
Evaluation 2014

be a conjunctive normal form encoding of C (i.e., a rep-
resentation of C as a set {C1, . . . , Ck} of clauses). Now
assume that C is a soft constraint, with an associated weight
WC defining the cost of not satisfying C. On the level of
Group MaxSAT, the soft constraint C with weight WC can
be represented as the soft group {C1, . . . , Ck} with weight
WC . For employing a standard MaxSAT solver, a natural way
of encoding such a group-level MaxSAT representation [25] is
to introduce an auxiliary variable aC , and to consider the set
{(C1 ∨ aC), . . . , (Ck ∨ aC)} of hard clauses together with the
soft clause (¬aC) with weight WC .

While the proposed group detection procedure is simple, it
can relatively often detect variables of interest in real MaxSAT
benchmarks. Figure 2 shows the percentages of detected la-
bels out of the number of soft clauses for each instance in
the industrial and crafted weighted partial benchmarks from
MaxSAT Evaluation 2014. The instances within each of the
two categories are sorted by the percentage of detected labels.
On a significant percentage of the instances, group detection
was able to re-use all of the soft clauses in the input instance.
Notice that this is only possible if all of the soft clauses in the
input instances are unit, i.e., only contain a single literal.

B. Group Detected Variables as Labels

Group detection allows for re-using the detected “labelling”
literals as labels when viewing F as an LCNF-MaxSAT in-
stance. Concretely, we propose the computation steps outlined
in Figure 3 as a refinement of the steps outlined in Figure 1.
The essential difference here is that, instead of introducing
a new label for each soft clause in order to apply SAT
preprocessing (as in Figure 1), a new label is only introduced
for soft clauses for which Step 0 identified no re-usable
variables.

The soundness of group detection is formalized as follows.

Proposition 1: Let F = (Fh, Fs, c) be a MaxSAT instance,
ΦF the LCNF-MaxSAT instance obtained from F following
Step 1 in Figure 1, and Φg

F the LCNF-MaxSAT instance
obtained from F following Steps 0-1 in Figure 3. The cost
of the optimal solutions of ΦF and Φg

F are the same.

Proof: (Sketch) We sketch the conversion of a solution τ
of Φg

F to a solution of ΦF . Let R be an LMCS such that τ
satisfies Φg

F |Lbls(Φg
F)\R. Now construct an LMCS R′ of ΦF by

including (i) each of the labels l ∈ R∩Lbls(ΦF), and (ii) for
each label in R ∩ (Lbls(Φg

F) \ Lbls(ΦF)) (i.e., the group-
detected labels), the label of the corresponding soft clause in
ΦF . It is easy to see that R and R′ have the same cost. The fact
that R′ is an LMCS of ΦF follows by considering the cases
(i) and (ii) separately. The less obvious case (ii) follows from
each such label in R being a pure literal in ΦF |Lbls(ΦF)\R′ .

We end this section by noting that there is a connection
between group detection and the preprocessing technique of
labelled BVE. Consider again the MaxSAT instance Fex from
the previous examples. Only eliminating the variable x from
ΦFex , the direct encoding of Fex in LCNF results in the
instance

ΦFex
= {(z){l1}, (¬z)∅, (y ∨ z)∅, (¬y,∨¬z){l2},

(z ∨ y){l3}, (¬z ∨ y){l4}}.
The same LCNF-MaxSAT instance Φg

Fex
(modulo label renam-

ing) can also be obtained by encoding Fex as LCNF with group
detection.

V. MAXHS FOR WEIGHTED LCNFS

In order to more thoroughly evaluate group detection, we
make use of the LCNF-MaxHS algorithm developed in [19].
This allows us to test the impact of group detection without
preprocessing, by re-using detected variables directly within a
MaxSAT solver.

MaxHS ([23], [14], [15]) is a recent algorithm for weighted
partial MaxSAT. It is a hybrid approach that alternates between

0. Apply group detection on F = (Fh, Fs, c).
Assume that group detection is able to identify a
set L of labels associated with a subset F ′

h ⊆ Fh

of hard clauses.
1’. Convert F into an LCNF-MaxSAT instance Φg

F
as follows.
• For each C ∈ F ′

h, where L ⊆ C for some
subset L ⊆ L, introduce the labelled
clause (C \ L)L. For each label l ∈ L,
associate the weight c((¬l)) with l.

• For each C ∈ Fh \ F ′
h, introduce the

labelled clause C∅.
• For each C ∈ Fs that does not contain

any literal in L, introduce the labelled
clause C{lC}, where lC is a distinct label
for C with weight c(C).

2. Apply the labelled liftings of BCE, VE, SSR,
and SE on Φg

F to obtain the preprocessed LCNF
pre(Φg

F).
3. Solve pre(Φg

F).

Fig. 3. Combining group detection, SAT preprocessing, and LCNF-level
MaxSAT solving

815816816

a SAT solver to compute unsatisfiable cores, and an integer
programming (IP) solver to compute minimum-cost hitting sets
(MCHS) over the found cores. In short, given a set of cores
K for a formula F , MaxHS will invoke the IP solver to find
a minimum-cost hitting set hs for K, and the SAT solver to
solve the formula Fh∪(Fs\hs). If the formula is unsatisfiable,
a new core κ is derived and added to K and the process is
repeated. Otherwise, hs implicitly hits every core of F with
minimum cost, and the satisfying assignment to Fh∪(Fs \hs)
represents an optimal MaxSAT solution to F .

A. Lifting MaxHS

A lifting of the MaxHS algorithm to LCNFs, LCNF-
MaxHS (Algorithm 1), was proposed in [19]. While LCNF-
MaxHS closely follows the original MaxHS algorithm, it also
makes a critical shift from the clause-centric view (with a
single distinct auxiliary variable for each soft clause) to a label-
centric view in which overlapping label-sets with more than
one label are allowed. In more detail, LCNF-MaxHS maintains
a set L of already identified cores (explicitly maintained on the
LCNF-level as subsets of labels from Lbls(Φ)) and a MCHS
R for L. During each iteration, an IP solver is used to find a
MCHS R of L. A SAT solver is then used to determine the
satisfiability of Φ|Lbls(Φ)\R, the subformula of Φ induced by
Lbls(Φ)\R.3 If satisfiable, an optimal model was produced and
the algorithm terminates. Otherwise, a new core L is obtained
from the SAT solver, L is added to L, and then the next
iteration starts. This generalizes MaxHS to LCNFs while still
maintaining correctness [19].

The motivation for LCNF-MaxHS in [19] was to allow for
clean integration of SAT-based preprocessing for MaxSAT via
LCNFs, and, importantly, to re-use the labels introduced in the
preprocessing step directly auxiliary variables which can be
used as assumptions within MaxHS. This avoids introducing
an additional layer of variables in the SAT solver calls within
MaxHS. This is implemented by the steps outlined in Figure 1.
For Step 3, LCNF-MaxHS can be applied. In turn, LCNF-
MaxHS can be realized by extending an implementation of
the MaxHS algorithm to take as input the MaxSAT instance
created by the direct encoding of pre(ΦF). As proposed
in [19], the SAT solver within MaxHS can be altered to work
directly on the ai variables as the assumptions, without having

3Notice that inducing a subformula by Lbls(Φ) \ R is analogous to
removing all clauses present in the hitting set of the original MaxHS algorithm.

Input: An LCNF-MaxSAT instance Φ
Output: An optimal solution τ for Φ
L ← ∅ // set of found unsat cores of Lbls(Φ)
while true do

R ← MINCOSTHITTINGSET(L)
(result, L, τ) ← SATSOLVE(Φ|Lbls(Φ)\R)
if result=“satisfiable” then

return τ // solver returned SAT
else
L ← L ∪ {L} // solver returned unsat core of
Lbls(Φ)

end
end

Algorithm 1: LCNF-MaxHS, lifting of MaxHS to LCNFs

to introduce a new layer of auxiliary variables and without
having to explicitly add the soft clauses (¬ai) to the solver.
Step 2 can be implemented using a SAT preprocessor on the
direct encoding of ΦF by restricting the preprocessor from
removing any of the ai variables corresponding to labels.

B. Understanding Group Detection with MaxHS

Eq-seeding was suggested in [14] to improve the effective-
ness of the IP solver used in MaxHS. On the LCNF level,
eq-seeding takes advantage of the fact that LCNF-MaxHS
represents a unit labelled clause (l){ai} as the unit clause
(l) augmented with an auxiliary variable (ai), i.e., the clause
(l ∨ ai). In doing so, an implicit logical equivalence l ↔ ¬ai

is created [14]. These equivalences need not be added to
the SAT solver, but they can sometimes be used to derive
linear constraints which can be added to the hitting set IP
formulation of MaxHS. Let C = (l1 ∨ · · · ∨ ln) be a clause
in F . A suitable linear constraint can be derived if for every
lj ∈ C, either lj or ¬lj is equivalent to an auxiliary variable,
or lj is itself an auxiliary variable. Replacing each li with an
equivalent auxiliary literal gives a linear at-least-one constraint
equivalent to C, which can be added to the hitting set IP used
in solving the minimum-cost hitting set problems encountered
during search.

The next example demonstrates how group detection can
improve the effectiveness of eq-seeding within LCNF-MaxHS.
Encoding a MaxSAT instance F as an LCNF-MaxSAT in-
stance Φg

F with group detection (via Steps 0–1 of Figure 3) can
enable LCNF-MaxHS to derive more linear constraints during
solving compared to the direct encoding (Step 1 in Figure 1)
of F to ΦF .

Example 4: Consider the (unweighted) MaxSAT instance
F ′ = (F ′

h, F ′
s) with

F ′
h ={(g1 ∨ x1), (g1 ∨ x2), (g2 ∨ x3),

(g2 ∨ x4), (¬x1 ∨ ¬x3)} and
F ′

s ={(¬g1), (¬g2)}.

Converting F into an LCNF-MaxSAT instance Φg
F ′ using

group detection results in the LCNF-MaxSAT instance

Φg
F ′ = {(x1)

{g1}, (x2)
{g1}, (x3)

{g2}, (x4)
{g2}, (¬x1∨¬x3)

∅}.

During solving, LCNF-MaxHS will treat these labelled clauses
as the formula

{(g1 ∨ x1), (g1 ∨ x2), (g2 ∨ x3), (g2 ∨ x4), (¬x1 ∨ ¬x3)}

with auxiliary variables g1 and g2. Eq-seeding is able to infer
the constraint g1 + g2 ≥ 1 from the clause (¬x1 ∨ ¬x3) and
the equivalences x1 ↔ ¬g1 and x3 ↔ ¬g2. On the other hand,
a direct encoding of F ′ in LCNF results in the instance

{(g1 ∨ x1)
∅, (g1 ∨ x2)

∅, (g2 ∨ x3)
∅, (g2 ∨ x4)

∅,

(¬x1 ∨ ¬x3)
∅, (¬g1)

{l1}, (¬g2)
{l2}}

which will be treated by LCNF-MaxHS as the formula

{(g1 ∨ x1), (g1 ∨ x2), (g2 ∨ x3), (g2 ∨ x4),

(¬x1 ∨ ¬x3), (¬g1 ∨ l1), (¬g2 ∨ l2)}

816817817

with auxiliary variables l1 and l2. Here, eq-seeding will
identify the equivalences g1 ↔ l1 and g2 ↔ l2 but cannot
derive any linear constraints suitable for the hitting set IP.

Furthermore, the possibility of deriving more linear constraints
can in some instances decrease the number of SAT and IP
solver calls required by LCNF-MaxHS.

Example 5: Consider the LCNF-MaxSAT instances ΦFex

and Φg
Fex

from Examples 1 and 3, respectively. Notice that
eq-seeding cannot derive any constraints from ΦFex

. First we
illustrate a possible (worst-case) execution of LCNF-MaxHS
on ΦFex

. Initially, LCNF-MaxHS invokes its SAT solver on the
clauses of ΦFex

. Assume that the SAT solver returns the core
L1 = {l1, l2}. At this point, the set of identified cores only
contains L. Assume that the IP solver returns the minimum-
cost hitting set R = {l2}. Next, LCNF-MaxHS reiterates and
invokes the SAT solver on the clauses of ΦFex |Lbls(Φ)\{l2}. The
formula is still unsatisfiable. Assume that the SAT solver then
returns the core L2 = {l1, l3}. This time, the only minimum-
cost hitting set over the set of all identified cores, {L1, L2},
is {l1}. Finally, LCNF-MaxHS invokes the SAT solver on
the clauses of ΦF |Lbls(Φ)\{l1}. This formula is satisfiable so
the algorithm terminates and returns the satisfying assignment
returned by the SAT solver. In total, two SAT- and IP-solver
calls were needed. In contrast, as the constraint x = 1 can be
derived from Φg

Fex
using eq-seeding, and every unsatisfiable

core of Φg
Fex

has to include x, LCNF-MaxHS is guaranteed
to require only a single SAT and IP solver call when solving
Φg

Fex
.

Group detection allows LCNF-MaxHS to derive more
constraints using eq-seeding also in practice. Figure 4 shows
a comparison between the number of constraints derivable by
eq-seeding with and without group detection from the weighted
partial benchmarks of the MaxSAT Evaluation 2014. While no
further eq-seeding is obtained on the crafted instances, group
detection improves eq-seeding on the industrial instances. A
hypothetical explanation for the behavior on crafted instances
is offered by the number of labels detected with group de-
tection. As seen from Figure 2, on most crafted instances
group detection detects either all soft clauses or no soft

 1

 10

 100

 1000

 1 10 100 1000

W
ith

 G
ro

up
 D

et
ec

tio
n

Without Group Detection

Industrial
Crafted

Fig. 4. Comparison of the number of linear constraints derivable by
equivalence seeding with and without group detection on the weighted partial
benchmarks from MaxSAT Evaluation 2014

clauses. In fact, we observed a clear correlation between no
soft clauses detected and no extra constraints derived by eq-
seeding: whenever no soft clauses are detected, the LCNF-
MaxSAT instances created with and without group detection
are the same. For some intuition of the correlation between all
soft clauses detected and no extra constraints derived, assume
a MaxSAT instance F in which all soft clauses can be group
detected. Let Φg

F and ΦF the LCNF-MaxSAT instances created
from F with and without group detection, respectively, and
C a linear constraint derivable by eq-seeding from Φg

F but
not from ΦF . As discussed earlier, the fact that every soft
clause was detected in F means that all soft clauses of F
are unit soft clauses of form (¬li), where li is a label of Φg

F

and (¬li)
{ai} is a labelled clause of ΦF . The fact that C was

derivable from Φg
F but not from ΦF suggests that there exists

some set of labelled clauses of form (xi)
{li} and (

∨
i xi)

∅ in
Φg

F . Then, the clauses (xi)
{li} ∈ Φg

F correspond to clauses
(xi ∨ li)

∅ ∈ ΦF , explaining why C cannot be derived from Φ.
Such clauses, even though theoretically possible, would seem
to only add unnecessary complexity to MaxSAT encodings
arising from the real world. In such cases one could in the
encoding substitute the (li)’s with the xi variables in F .

VI. EXPERIMENTS

We overview results from an empirical evaluation, with the
aim of understanding the possible benefits of applying group
detection in the MaxSAT solving process.

In the evaluation, we used the 410 instances from the
weighted partial industrial category of MaxSAT Evaluation
2014 (http://www.maxsat.udl.cat/14/). The experiments were
run on 2.53-GHz Intel Xeon quad-core machines with 32-GB
RAM and Ubuntu Linux 12.04. A per-instance timeout of 1 h
and memory limit of 30 GB were enforced. As the MaxSAT
solvers, we used Eva [29], an award-winning core-based
MaxSAT solver from the industrial weighted partial track of
the 2014 MaxSAT Evaluation; and our own re-implementation
of MaxHS that also enables the lifting of MaxHS to weighted
LCNFs (Algorithm 1). This re-implementation includes the
SAT solver tweaks and disjoint phase of [23], the non-
optimal hitting set computations of [15], as well as the
core minimization and eq-seeding techniques of [14]. Min-
iSAT 2.2.0 [30] is used as the underlying SAT solver, and
IBM CPLEX 12.6.0 [31] is used to solve the minimum-cost
hitting set IPs. For realizing LCNF-MaxHS, we extended our
MaxHS implementation to take as input a list of variables
suitable for use as assumptions. As the SAT preprocessor,
we used Coprocessor 2.0 [32]. Its file parser was modified
to automatically detect literals that can be re-used as labels, to
add new auxiliary variables (labels) to the other soft clauses,
and then using its whitelisting feature to forbid removal of
all occurrences of every variable that represents a label during
preprocessing.

We report on using the following preprocessing+solver
combinations.

Eva: the Eva solver.

Eva-pre: Eva solver with preprocessing, using the direct
encoding after preprocessing.

817818818

 1

 10

 100

 1000

 1 10 100 1000

E
va

-G
-p

re

Eva

 1

 10

 100

 1000

 1 10 100 1000

E
va

-G
-p

re

Eva-pre

Fig. 5. Running times: Eva v Eva-G-pre (left); Eva-pre v Eva-G-pre (right).

Eva-G-pre: Eva solver, with group detection. Detected vari-
ables are re-used in preprocessing as labels. The direct encod-
ing is used after preprocessing.

MHS2.5: MaxHS version 2.5 by the original MaxHS authors
(http://www.maxhs.org/).

MHS: our re-implementation of MaxHS.

MHS-pre: MHS with preprocessing, using the direct encoding
after preprocessing.

MHS-G-pre: MHS-pre, with group detection. Detected vari-
ables are re-used in preprocessing as labels. The direct encod-
ing is used after preprocessing.

LMHS-G: MHS with group detection (i.e., LCNF-MaxHS
with group detection). Detected variables are re-used as as-
sumptions in the solver.

LMHS-pre: MHS with preprocessing, re-using auxiliary vari-
ables from preprocessing as assumptions in the solver.

LMHS-G-pre: MHS with group detection and preprocessing.
Group detected variables are re-used as labels in preprocessing.
Auxiliary variables from preprocessing are re-used as assump-
tions in the solver.

Result for Eva are shown in Figure 5. While no substan-
tial differences in overall performance are observed, Eva-G-
pre solves a majority of the instances faster than Eva, and
timeouts on one less instance. Comparing Eva-G-pre to Eva-
pre, i.e., looking at the additional effect of group detection in
conjunction with preprocessing, we observe again that Eva-
G-pre solves most instances slightly faster than Eva-pre, and
Eva-pre timeouts on two more instances.

Results for variants of MHS are presented in Figures 6
and 7. We note that our MaxHS re-implementation is com-
petitive with MaxHS 2.5. Second, we observe that employing
SAT preprocessing in combination with plain MHS without re-
using labels from the preprocessing step (MHS-pre) improves
performance. Adding group detection (MHS-G-pre) improves
further on MHS-pre. Perhaps the most interesting observation
is that LMHS-G, i.e., applying group detection solely (i.e.,
without preprocessing) in conjunction with LCNF-MaxHS, is
surprisingly effective; see also Figure 7. In more detail, first
note that the MHS solver in Figure 6 could equivalently be
viewed as LMHS without preprocessing or group detection,
that is, Steps 1 and 3 of the computation outlined in Figure 1.
As such, comparing the performance of MHS and LMHS-G
gives an indication of the effect group detection alone has on

MaxSAT solving. We see that group detection (LMHS-G) per-
forms noticeably better than MHS, solving 16 instances more.
One possible explanation for this performance—as discussed
earlier—is eq-seeding; eq-seeding within LMHS-G was indeed
able to derive more linear constraints than MHS on every
single one of the instances that were solvable by LMHS-G but
not MHS. Furthermore, on 92% of all benchmarks we observed
that if LMHS-G solved the instance quicker than MHS, then
it also needed fewer UNSAT cores. This further suggests that
the reason for the difference in performance between MHS and
LMHS-G is linked to the quality of the hitting sets returned
by the IP solver. The connection between group detection and
preprocessing is less clear. Comparing LMHS-G and LMHS-
pre we surprisingly observe a similar level of performance,
suggesting that group detection and preprocessing have similar
effects on MaxSAT solving—although, a slight further perfor-
mance increase is observed when combining the two (LMHS-
G-pre).

VII. CONCLUSIONS

We proposed automatically detecting auxiliary variables
from input MaxSAT instances that can be re-used in the
SAT-based preprocessing step before MaxSAT solving. This
further avoids adding unnecessary layers of auxiliary vari-
ables throughout the MaxSAT solving process both in pre-
processing and also within the SAT-solver used in MaxSAT
solvers. We empirically showed that such auxiliary variables
can indeed be detected in real MaxSAT benchmarks, and
that re-using these variables as assumptions gives—somewhat
surprisingly—similar improvements on its own as applying
SAT preprocessing on industrial weighted partial MaxSAT
instances in terms of solving efficiency. As future work, we aim
at studying ways of detecting and soundly exploiting auxiliary
variables arising from clausal encodings of more complex soft
constraints.

ACKNOWLEDGEMENTS

Work presented in this paper was funded by Academy of
Finland, grants 251170 Centre of Excellence in Computational
Inference Research, 276412, and 284591; Research Funds of
the University of Helsinki; and the Emil Aaltonen Foundation.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 260 270 280 290 300 310 320 330

T
im

eo
ut

 (
s)

Instances solved

MHS2.5
MHS-pre

MHS
MHS-G-pre
LMHS-pre

LMHS-G
LMHS-G-pre

Fig. 6. Comparison of the different MaxHS variants

818819819

 1

 10

 100

 1000

 1 10 100 1000

LM
H

S
-G

LMHS

 1

 10

 100

 1000

 1 10 100 1000
LM

H
S

-G
LMHS-pre

 1

 10

 100

 1000

 1 10 100 1000

LM
H

S
-G

-p
re

LMHS-pre

Fig. 7. Effect of group detection on runtimes: LMHS v LMHS-G (left); LMHS-G v LMHS-pre (middle); LMHS-pre v LMHS-G-Pre (right).

REFERENCES

[1] C. Li and F. Manyà, “MaxSAT, hard and soft constraints,” in Handbook
of Satisfiability. IOS Press, 2009, pp. 613–631.

[2] A. Morgado, F. Heras, M. Liffiton, J. Planes, and J. Marques-Silva,
“Iterative and core-guided MaxSAT solving: A survey and assessment,”
Constraints, vol. 18, no. 4, pp. 478–534, 2013.

[3] C. Ansótegui, M. Bonet, and J. Levy, “SAT-based MaxSAT algorithms,”
Artificial Intelligence, vol. 196, pp. 77–105, 2013.

[4] M. Jose and R. Majumdar, “Cause clue clauses: error localization using
maximum satisfiability,” in Proc. PLDI. ACM, 2011, pp. 437–446.

[5] C. Zhu, G. Weissenbacher, and S. Malik, “Post-silicon fault localisa-
tion using maximum satisfiability and backbones,” in Proc. FMCAD.
FMCAD Inc., 2011, pp. 63–66.

[6] J. Guerra and I. Lynce, “Reasoning over biological networks using
maximum satisfiability,” in Proc. CP, ser. Lecture Notes in Computer
Science, vol. 7514. Springer, 2012, pp. 941–956.

[7] J. Berg, M. Järvisalo, and B. Malone, “Learning optimal bounded
treewidth bayesian networks via maximum satisfiability,” in Proc.
AISTATS, vol. 33. JMLR, 2014, pp. 86–95.

[8] K. Bunte, M. Järvisalo, J. Berg, P. Myllymäki, J. Peltonen, and
S. Kaski, “Optimal neighborhood preserving visualization by maximum
satisfiability,” in Proc. AAAI. AAAI Press, 2014, pp. 1694–1700.

[9] J. Marques-Silva, M. Janota, A. Ignatiev, and A. Morgado, “Efficient
model based diagnosis with maximum satisfiability,” in Proc. IJCAI.
AAAI Press, 2015.

[10] P. Saikko, B. Malone, and M. Järvisalo, “MaxSAT-based cutting planes
for learning graphical models,” in Proc. CPAIOR, ser. Lecture Notes in
Computer Science, vol. 9075. Springer, 2015, pp. 345–354.

[11] J. Berg and M. Järvisalo, “Cost-optimal constrained correlation cluster-
ing via weighted partial maximum satisfiability,” Artificial Intelligence,
2015, in press.

[12] F. Heras, A. Morgado, and J. Marques-Silva, “Core-guided binary
search algorithms for maximum satisfiability,” in Proc. AAAI. AAAI
Press, 2011.

[13] M. Koshimura, T. Zhang, H. Fujita, and R. Hasegawa, “QMaxSAT: A
partial Max-SAT solver,” Journal of Satisfiability, Boolean Modeling
and Computation, vol. 8, no. 1/2, pp. 95–100, 2012.

[14] J. Davies and F. Bacchus, “Exploiting the power of MIP solvers in
MaxSAT,” in Proc. SAT, ser. Lecture Notes in Computer Science, vol.
7962. Springer, 2013, pp. 166–181.

[15] ——, “Postponing optimization to speed up MAXSAT solving,” in
Proc. CP, ser. Lecture Notes in Computer Science, vol. 8124. Springer,
2013, pp. 247–262.

[16] C. Ansótegui and J. Gabàs, “Solving (weighted) partial MaxSAT with
ILP,” in Proc. CPAIOR, ser. Lecture Notes in Computer Science, vol.
7874. Springer, 2013, pp. 403–409.

[17] A. Morgado, C. Dodaro, and J. Marques-Silva, “Core-guided MaxSAT
with soft cardinality constraints,” in Proc. CP, ser. Lecture Notes in
Computer Science, vol. 8656. Springer, 2014, pp. 564–573.

[18] R. Martins, S. Joshi, V. Manquinho, and I. Lynce, “Incremental car-
dinality constraints for MaxSAT,” in Proc. CP, ser. Lecture Notes in
Computer Science, vol. 8656. Springer, 2014, pp. 531–548.

[19] J. Berg, P. Saikko, and M. Järvisalo, “Improving the effectiveness of
SAT-based preprocessing for MaxSAT,” in Proc. IJCAI. AAAI Press,
2015.

[20] N. Eén and A. Biere, “Effective preprocessing in SAT through variable
and clause elimination,” in Proc. SAT, ser. Lecture Notes in Computer
Science, vol. 3569. Springer, 2005, pp. 61–75.

[21] M. Järvisalo, A. Biere, and M. Heule, “Blocked clause elimination,”
in Proc. TACAS, ser. Lecture Notes in Computer Science, vol. 6015.
Springer, 2010, pp. 129–144.

[22] A. Belov, A. Morgado, and J. Marques-Silva, “SAT-based preprocessing
for MaxSAT,” in Proc. LPAR-19, ser. Lecture Notes in Computer
Science, vol. 8312. Springer, 2013, pp. 96–111.

[23] J. Davies and F. Bacchus, “Solving MAXSAT by solving a sequence of
simpler SAT instances,” in Proc. CP, ser. Lecture Notes in Computer
Science, vol. 6876. Springer, 2011, pp. 225–239.

[24] J. Argelich and F. Manyà, “Exact Max-SAT solvers for over-constrained
problems,” Journal of Heuristics, vol. 12, no. 4-5, pp. 375–392, 2006.

[25] F. Heras, A. Morgado, and J. Marques-Silva, “MaxSAT-based encodings
for Group MaxSAT,” AI Communications, vol. 28, no. 2, pp. 195–214,
2015.

[26] A. Belov and J. Marques-Silva, “Generalizing redundancy in propo-
sitional logic: Foundations and hitting sets duality,” CoRR, vol.
abs/1207.1257, 2012.

[27] O. Kullmann, “On a generalization of extended resolution,” Discrete
Applied Mathematics, vol. 96-97, pp. 149–176, 1999.

[28] A. Belov, M. Järvisalo, and J. Marques-Silva, “Formula preprocessing
in MUS extraction,” in Proc. TACAS, ser. Lecture Notes in Computer
Science, vol. 7795. Springer, 2013, pp. 108–123.

[29] N. Narodytska and F. Bacchus, “Maximum satisfiability using core-
guided MaxSAT resolution,” in Proc. AAAI. AAAI Press, 2014, pp.
2717–2723.

[30] N. Eén and N. Sörensson, “An extensible SAT-solver,” in Proc. SAT,
ser. Lecture Notes in Computer Science, vol. 2919. Springer, 2003,
pp. 502–518.

[31] IBM, “CPLEX Optimizer,” 2015, http://www-
01.ibm.com/software/commerce/optimization/cplex-optimizer/.

[32] N. Manthey, “Coprocessor 2.0 - A flexible CNF simplifier,” in
Proc. SAT, ser. Lecture Notes in Computer Science, vol. 7317.
Springer, 2012, pp. 436–441.

819820820

Paper III

III

Jeremias Berg and Matti Järvisalo

Impact of SAT-Based Preprocessing on
Core-Guided MaxSAT Solving

c© 2016 Springer International Publishing AG, Cham. Reprinted with per-
mission from Proceedings of the 22nd International Conference on Princi-
ples and Practice of Constraint Programming (CP), volume 9892 of Lecture
Notes in Computer Science, pages 66-85. Springer, 2016.

Impact of SAT-Based Preprocessing
on Core-Guided MaxSAT Solving

Jeremias Berg(B) and Matti Järvisalo

Helsinki Institute for Information Technology HIIT,
Department of Computer Science, University of Helsinki, Helsinki, Finland

jeremias.berg@cs.helsinki.fi

Abstract. We present a formal analysis of the impact of Boolean sat-
isfiability (SAT) based preprocessing techniques on core-guided solvers
for the constraint optimization paradigm of maximum satisfiability
(MaxSAT). We analyze the behavior of two solver abstractions of the
core-guided approaches. We show that SAT-based preprocessing has no
effect on the best-case number of iterations required by the solvers. This
implies that, with respect to best-case performance, the potential bene-
fits of applying SAT-based preprocessing in conjunction with core-guided
MaxSAT solvers are in principle solely a result of speeding up the individ-
ual SAT solver calls made during MaxSAT search. We also show that, in
contrast to best-case performance, SAT-based preprocessing can improve
the worst-case performance of core-guided approaches to MaxSAT.

1 Introduction

Real-world applications [1–18] of maximum satisfiability (MaxSAT) [19–21], the
optimization counterpart of the famous Boolean satisfiability problem (SAT)
[22,23], are increasing in numbers as recent breakthroughs in MaxSAT solvers
[24–32] are making MaxSAT more and more competitive as a constraint opti-
mization paradigm.

A great majority of state-of-the-art MaxSAT solvers for solving optimiza-
tion problems from the real world are core-guided [20,21], heavily relying on
the power of SAT solvers as very effective means of proving unsatisfiability of
subsets of soft constraints, or unsat cores, in an iterative fashion towards an
optimal solution. Thus new breakthroughs in techniques for speeding up SAT
solvers also have the potential of directly speeding up MaxSAT solvers further.
One particularly fruitful line of research on speeding up SAT solvers has been
the development of effective preprocessing techniques [33–35], applied most typ-
ically before search, as well as most recently also as inprocessing [34], i.e., during
SAT search. Compared to SAT, preprocessing for MaxSAT has seen some but
arguably less progress so far [26,30,36–39]. Recently, ways of employing pre-
processing techniques developed for pure SAT in the context of MaxSAT have

Work supported by Academy of Finland, grants 251170 COIN, 276412, 284591; and
DoCS Doctoral School in Computer Science at the University of Helsinki.

c© Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, pp. 66–85, 2016.
DOI: 10.1007/978-3-319-44953-1 5

Impact of SAT-Based Preprocessing on Core-Guided MaxSAT Solving 67

been explored [26,30,40]. However, the impact of SAT-based preprocessing for
MaxSAT solving seems to often be somewhat more modest than in the context
of SAT solving [26,30,40]. The exact reasons for this difference are currently
unclear; specifically, we are not aware of studies towards fundamental under-
standing on the potential of SAT-based preprocessing in the context of MaxSAT.

In this paper, we aim at providing further understanding on the potential
of SAT-based preprocessing techniques in speeding up modern MaxSAT solvers.
More specifically, we formally analyze the impact of SAT-based preprocessing
techniques on the best-case and worst-case behavior of core-guided MaxSAT
solvers [41–43]. As the basis of our analysis, we focus on two abstractions of
MaxSAT solvers which together cover a number of modern core-guided MaxSAT
solvers [25,30,42]. As the formal metric, we focus on the impact of SAT-based
preprocessing on the best-case and worst-case number of iterations, which—
although not the only possible metric—is a natural choice of metric applied in
the literature for analyzing iterative SAT-based approaches in various problem
settings [41–45] and which has also been subjected to some extent to empirical
analysis for understanding specific MaxSAT solving approaches [46].

As the main contributions, considering best-case performance of the abstract
core-guided solvers, we show that SAT-based preprocessing has no effect on the
number of iterations required by the solvers. In fact, this is true regardless of
assumptions on the type of cores (guaranteed-minimal or not) the underlying
SAT solver (unsat core extractor) provides to the MaxSAT solvers; thus our
analysis also sheds light on the impact of core minimization on the performance
of the abstract core-guided solvers. Essentially, our results imply that, in terms
of best-case performance—assuming optimal search heuristics—the potential
benefits of applying SAT-based preprocessing in conjunction with core-guided
MaxSAT solvers are solely a result of speeding up the individual SAT solver calls
made during MaxSAT search. Furthermore, contrasting the results for best-case
behavior, we also show that SAT-based preprocessing does, in cases, improve
worst-case performance of core-guided MaxSAT solvers (without ever having a
negative effect on the worst-case number of iterations).

This paper is organized as follows. After preliminaries on MaxSAT and SAT-
based preprocessing for MaxSAT (Sect. 2), we detail abstractions of core-guided
MaxSAT solvers we focus on (Sect. 3). Before detailed proofs of our results (pro-
vided in Sects. 5 and 6), we present a detailed overview of the main contributions
(Sect. 4).

2 Preliminaries

Maximum satisfiability. For every Boolean variable x there are two literals:
the positive literal x and the negative literal ¬x. A clause C is a disjunction
of literals, and a CNF formula F is a conjunction of clauses. When convenient,
we treat a clause as a set of literals and a CNF formula as a set of clauses. We
denote by Var(F) the set of variables appearing in F . A truth assignment is
a function τ : Var(F) → {0, 1}. A clause C is satisfied by τ if τ(l) = 1 for a

68 J. Berg and M. Järvisalo

positive literal or τ(l) = 0 for a negative literal l ∈ C. A CNF formula F is
satisfied by τ if τ satisfies all clauses C ∈ F . A formula F is satisfiable if there
is a truth assignment that satisfies it, otherwise it is unsatisfiable.

A (weighted partial) MaxSAT instance F = (Fh, Fs, w) consists of two CNF
formulas, Fh (hard clauses) and Fs (soft clauses), together with a function
w : Fs → N assigning a positive weight w(C) to each C ∈ Fs. If w(C) = 1
for all C ∈ Fs, the instance is unweighted. An (unsatisfiable) core of a MaxSAT
instance F is a subset κ ⊆ Fs such that κ∧Fh is unsatisfiable. A core is minimal
(a MUS) if no κs ⊂ κ is a core of F . We denote the set of all MUSes of F by
mus(F). For a subset S ⊆ Fs and clause C ∈ S, C is necessary for S if Fh ∧ S
is unsatisfiable and Fh ∧ (S \ {C}) is satisfiable.

An assignment τ that satisfies Fh is a solution to a MaxSAT instance F .
For a solution τ , let cost(F, τ) =

∑
C∈Fs

w(C) · (1−τ(C)), i.e., the sum of
the weights of soft clauses in F not satisfied by τ . A solution τ is optimal if
cost(F, τ) ≤ cost(F, τ ′) for every solution τ ′; we denote the cost of F , i.e., the
value cost(F, τ) for optimal solutions τ , by cost(F). Given a MaxSAT instance
F , the MaxSAT problem asks to find an optimal solution to F .

SAT-Based Preprocessing for MaxSAT. Preprocessing is today an integral
part of SAT solving [33,34]. Consisting of applying a combination of satisfiability-
preserving simplification (or rewriting) rules on the input CNF formula F to
obtain a preprocessed CNF formula pre(F), a central aim of preprocessing is to
speed up the runtime of a SAT solver so that the combined preprocessing time
and solving time on pre(F) is shorter than the runtime of the solver on F . Sev-
eral preprocessing techniques for SAT have been proposed. In this work we will
focus on bounded variable elimination, subsumption elimination, self-subsuming
resolution, and blocked clause elimination, as perhaps the most common pre-
processing techniques in modern SAT solving.

Resolution. Given two clauses C = C1 ∨ l and D = D1 ∨ ¬l of F , the resolution
rule states that the clause C ��l D = C1∨D1, called the resolvent, can be inferred
by resolving on the literal l. This is lifted to two sets Sl ⊆ F and S¬l ⊆ F of
clauses that contain the literal l and ¬l, respectively, by Sl ��l S¬l = {C ��l D |
C ∈ Sl,D ∈ S¬l, and C ��l D is not a tautology}.

Bounded Variable Elimination (BVE) [33]. For a variable x ∈ Var(F), denote
by Fx (F¬x) the clauses of F containing the literal x (¬x). If |Fx ��x F¬x| ≤
|Fx ∪ F¬x|, the BVE rule allows converting the formula F to (F \ (Fx ∪ F¬x)) ∪
(Fx ��x F¬x).

Subsumption Elimination (SE). A clause C ∈ F subsumes another clause D ∈ F
if C ⊆ D. The SE rule allows for removing subsumed clauses from F .

Self-Subsuming Resolution (SSR). Given two clauses C,D ∈ F s.t. C = C1 ∨ l,
D = D1∨¬l for a literal l and D1 ⊆ C1, the SSR rule allows for replacing C by C1.

Blocked Clause Elimination (BCE) [47]. A clause C ∈ F is blocked if it contains
a literal l ∈ C s.t C ��l D is a tautology for all D ∈ F¬l. BCE allows removing
blocked clauses from F .

Impact of SAT-Based Preprocessing on Core-Guided MaxSAT Solving 69

Example 1. Consider the CNF formula
F = {(x ∨ y), (¬t ∨ ¬z), (¬z ∨ y), (¬y ∨ z), (z ∨ t), (x), (y ∨ t), (z ∨ t ∨ x)}. Due to
the clause (x), SE allows for removing (x ∨ y) and (z ∨ t ∨ x). After this, using
BVE to eliminate z, results in the formula pre(F) = {(¬t ∨ ¬y), (t ∨ y), (x)}.

As shown in [26], many important SAT preprocessing techniques, including
BVE, SE, and SSR, cannot be used directly on MaxSAT instances. However,
a correct lifting on these techniques for MaxSAT is enabled by the so-called
labelled CNF (LCNF) framework [26,48]. The LCNF framework enables correct
applications of SAT-based preprocessing techniques on a MaxSAT instance F =
(Fh, Fs, w) using the procedure outlined in Fig. 1. Each soft clause C ∈ Fs is
augmented with a fresh label variable lC (Step 1). Then SAT preprocessing is
applied on the CNF formula Fh ∪ F a

s (Step 2). To ensure correctness in terms
of MaxSAT, the preprocessor needs to be restricted from resolving on any of
the label variables. The hard clauses of pre(F) are the clauses output by the
SAT preprocessor on Fh ∪F a

s (Step 3). The soft clauses of pre(F) contain a unit
negation of each label variable that has not been eliminated by preprocessing;
the weight function wP assigns to each (¬lC) the same weight as was assigned
to C by w (Step 4). Finally, the procedure returns the preprocessed instance
pre(F) = (pre(F)h, pre(F)s, w

P) (Step 5). The soft clauses of pre(F) are all unit
soft clauses (¬lC) where the variable lC was added to some soft clause C ∈ Fs of
the original instance F in Step 1. Due to BVE, the variable lC might appear in
more than one hard clause of pre(F) and there might be literals that have been
eliminated entirely from the formula during preprocessing.

1. F a
s = {(C ∨ lC) | C ∈ Fs, lC is a fresh variable}.

2. Run VE, SSR, SE, and BCE on Fh ∪ F a
s until fixpoint to obtain pre (F)h.

3. pre (F)s = {(¬lC) | ∃C′ ∈ pre (F)h, lC ∈ C′}.
4. wP ((¬lC)) = w(C) for all (¬lC) ∈ pre (F)s.
5. Return pre (F) = (pre (F)h, pre (F)s, w

P) .

Fig. 1. Applying SAT-based preprocessing to MaxSAT instance F = (Fh, Fs, w).

Example 2. Let F = (Fh, Fs) be an unweighted MaxSAT instance with
Fh = {(x ∨ y), (z), (z ∨ t)} and Fs = {(¬x), (¬y), (¬t)}. Augmenting the soft
clauses with the label variables l1, l2, and l3 to form F a

s = {(¬x ∨ l1), (¬y ∨
l2), (¬t ∨ l3)}, and applying SAT-based preprocessing (BVE and SE) results in
the instance pre(F) with pre(F)h = {(l1 ∨ l2), (z)} and pre(F)s = {(¬l1), (¬l2)}.
Notice that preprocessing eliminates the label l3.

Correctness of SAT-based preprocessing for MaxSAT is summarized as fol-
lows [26].

Theorem 1 ([26]). Let F be a MaxSAT instance and pre(F) the instance result-
ing from preprocessing F according to the procedure in Fig. 1. The following

70 J. Berg and M. Järvisalo

hold: (i) cost(F) = cost(pre(F)); (ii) any optimal solution to pre(F) restricted
to Var(F) is an optimal solution to F ; and (iii) {C1, . . . , Cn} ∈ mus(F) iff
{(¬lC1

), . . . , (¬lCn
)} ∈ mus(pre(F)).

3 Core-Guided MaxSAT Algorithms

In this section we detail the two abstractions of MaxSAT algorithms we analyze
in this work: CG and HS. Both are examples of so-called core-guided MaxSAT
solvers, one of the most successful current MaxSAT solving approaches with
several variants, e.g. [28,31,42,49–52]. CG (Fig. 2 left) is the same abstrac-
tion as studied in [53]. CG works by iteratively calling a SAT solver to extract
unsatisfiable cores and ruling out each of the found cores by exploiting cardi-
nality constraints. HS (Fig. 2 right) follows the implicit hitting set approach to
MaxSAT [54,55], iteratively using a SAT solver to extract unsatisfiable cores,
and an exact minimum-cost hitting set algorithm to compute hitting sets over
the found cores.

In more detail, at each iteration i, CG checks the satisfiability of a working
formula F i

w, which initially contains all clauses in the input formula, using a SAT
solver. If F i

w is satisfiable, CG returns the satisfying assignment τ returned by the
SAT solver restricted onto the variables of F . Otherwise, the SAT solver returns
a core κi of F i

w. Finally, CG forms the next working formula F i+1
w by processing

the core κi. The exact method in which CG processes κi is left abstract. Follow-
ing [53], we consider algorithms that extend soft clauses with blocking variables
and impose hard linear (in)equalities over the blocking variables. More precisely,
CG is allowed to modify the soft clauses C ∈ F i

s by two operations: Relax(C)
and Clone(C,w).

CG:
F 1

w ← Fh ∪ Fs

for i=1. . . do
(result, κ, τ) ← SATSOLVE(F i

w)
if result=”satisfiable” then

return τ // optimal solution
else

// SAT solver returned unsat core
F i

w = (F i
w \ κ)

F i+1
w ← PROCESS(F i

w, κ)
end

end

HS:
K ← ∅ // set of found unsat cores of F
Fw ← (Fh ∪ Fs)
while true do

H ← MINCOSTHITTINGSET(K)
Fw ← Fh ∪ (Fs \ H)
(result, κ, τ) ← SATSOLVE(Fw)
if result=”satisfiable” then

return τ // optimal solution
else

// SAT solver returned unsat core
K ← K ∪ {κ}

end
end

Fig. 2. Abstractions of MaxSAT solvers: CG (left) and HS (right), given a MaxSAT
instance F = (Fh, Fs, w) as input.

Impact of SAT-Based Preprocessing on Core-Guided MaxSAT Solving 71

– Relax(C) allows replacing C by C ∨ b where b is a new blocking variable not
appearing anywhere else in the formula.

– Clone(C,w) allows adding a soft duplicate C ′ of C to the formula and relaxing
C ′ by calling Relax(C ′). The (relaxed) clone C ′ is assigned weight w, and w
is subtracted from the weight of C (C is discarded once it has weight 0).

In addition to these operations, CG is also allowed to add hard linear
(in)equalities (cardinality, or more precisely, pseudo-Boolean, constraints) over
the blocking variables. Given a cardinality constraint

∑
wi ·xi ◦K over variables

xi, constants wi, and ◦ ∈ {=, <,≤}, we denote by CNF(
∑

wi · xi ◦ K) a CNF
encoding of such a constraint. Following most core-guided MaxSAT algorithm
implementations, we place two important restrictions on how CG can process the
cores it encounters. First, the cardinality constraints are not allowed to mention
any of the variables in the initial formula F . Second, if the algorithm extracts n
cores during solving an instance F , and wi

m is the smallest weight over all clauses
in the ith core extracted, the optimum cost of F is cost(F) =

∑n
i=1 wi

m. A con-
crete example of an algorithm fitting the CG model is the WPM1 algorithm [50],
concurrently proposed as WMSU1 [51], as an extension of the classical Fu-Malik
algorithm [49] to weighted MaxSAT. Given a core κi, WPM1 first computes wi

m.
Then it calls Clone(Ci, wi

m) for each Ci ∈ κi and adds an exactly-one constraint
over the blocking variables added during the cloning operation.

HS is a hybrid algorithm, instantiated in [25,55], that uses a SAT solver for
core extraction from a working formula Fw, initially all clauses of the working
formula. Given a collection K of extracted cores, HS uses an exact algorithm (an
integer programming solver in practice) to find a minimum-cost hitting set hs
over K. The working formula is then updated to contain all clauses of F except
for the soft clauses in hs, and the SAT solver invoked again. If the working
formula is satisfiable, the satisfying assignment obtained is an optimal solution
to F . Otherwise another core is obtained and the search continues with hitting
set computation.

4 Overview of Results

In this section we give an overview of the main contributions of this paper. The
algorithm-dependent formal proofs are provided after this overview in Sects. 5
and 6.

We start by first defining the metric with respect to which we perform the for-
mal analysis. The definition, intuitively matching with the number of iterations
made by the abstract MaxSAT solvers considered, relies on the concept of core
traces. Informally, a core trace T is a finite sequence of MaxSAT cores match-
ing a possible execution of a core-guided MaxSAT solver. More formally, given
a MaxSAT instance F and A ∈ {CG,HS}, a sequence (κ1, . . . , κn) of cores is an
A core trace on F if there exists an execution of A on F such that (i) the core
extracted by A at iteration i is κi; and (ii) A terminates after having encountered
all cores in the sequence (i.e., the (n+1)th SAT solver call is satisfiable). For a core

72 J. Berg and M. Järvisalo

trace T , we denote by |T | the number of cores in T , i.e., the length of T . Whenever
appropriate, we refer to A core traces on F simply as A traces on F .

As the metric under analysis, we consider both the minimum and maximum
length over all possible A traces for different choices of A. More specifically, for
A ∈ {CG,HS}, we analyze the relative minimum and maximum lengths of core
traces for the following variants of A.

– Apre: A applied after SAT-based preprocessing (recall Fig. 1).
– Amus: A using a SAT solver that is guaranteed to return a MUS when invoked

on an unsatisfiable formula (notice that an Amus trace contains only MUSes).
– Amus

pre : Amus applied after SAT-based preprocessing.

For a MaxSAT instance F , we denote by minlen(A, F) and maxlen(A, F) the
minimum and maximum length A traces on F , respectively, or in other words,
the best-case and worst-case number of iterations required by A for solving F .

A

Amus

Apre

Amus
pre

Observation 1
Proposition 2,

Proposition 6
Observation 2,

Proposition 5

Observation 2,

Proposition 5

Corollary 2,

Corollary 5

Corollary 2,

Corollary 5

Observation 1
Proposition 2,

Proposition 6

Fig. 3. Best-case performance in the number of iterations of A ∈ {CG,HS}. Here
X → Y iff minlen(X,F) ≤ minlen(Y, F) for all instances F .

Results. We provide a full characterization of the effect of preprocessing on the
maximum and minimum length of core traces on F . The results on the best-case
performance (minimum lengths of core traces) are summarized in Fig. 3 for A ∈
{CG,HS}. In the figure, an edge X → Y indicates that, for any MaxSAT instance
F , the shortest X core trace on F is at most as long as the shortest Y core trace
on F . Analogously, our results for the worst-case performance (maximum lengths
of core traces) are summarized in Fig. 4. Here the edge X → Y indicates that, for
any MaxSAT instance F , the longest X core trace on F is at most as long as the
longest Y core trace on F ; X � Y indicates that X → Y does not hold. In words,
we will provide in the following sections detailed proofs for the fact that SAT-
based preprocessing cannot lower the minimum number of iterations required
by CG or HS. For some intuition, we will show that for A ∈ {CG,HS}, one of
the shortest A core traces on any MaxSAT instance F is also a Amus trace, and
that preprocessing cannot alter the MUS structure nor the Amus traces on F .

Impact of SAT-Based Preprocessing on Core-Guided MaxSAT Solving 73

A

Amus

Apre

Amus
pre

Observation 1
Proposition 3,

Proposition 9

Observation 2

Proposition 5

Observation 2

Proposition 5

Observation 3,

Proposition 7

Proposition 3,

Proposition 8

Observation 1
Proposition 4,

Proposition 9

Fig. 4. Worst-case performance in the number of iterations of A ∈ {CG,HS}. Here
X → Y iff maxlen(X,F) ≤ maxlen(Y, F) for all F , and X � Y indicates that X → Y
does not hold.

In contrast, we will also show that preprocessing can improve the worst-case
performance of both of the algorithms. Intuitively, this is due to the fact that
preprocessing can remove soft clauses that are not members of any MUSes of
F and hence do not contribute to the unsatisfiability of F , but still might force
either algorithm to iterate unnecessarily many times.

We proceed now throughout Sects. 5 and 6 by providing formal proofs for
all of the results summarized in Figs. 3 and 4. Before the more involved proofs,
we start with an algorithm-independent observation and an auxiliary result that
makes the remaining proofs simpler by allowing us to assume MaxSAT instances
to have a specific form without loss of generality.

Observation 1. For A ∈ {CG,HS} and any MaxSAT instance F , any Amus

trace on F is also an A trace on F . Hence maxlen(Amus, F) ≤ maxlen(A, F) and
minlen(Amus, F) ≥ minlen(A, F).

Finally, in the remaining proofs, we will use the fact that Theorem 1 guar-
antees that SAT-based preprocessing does not affect the set of MUSes of F in
terms of of the mapping (¬lC) → C between the soft clauses of pre(F) and F .
In order to avoid explicitly referring to this mapping in every proof, we will
employ a technical observation from [40]. More specifically, we will assume for
the remaining part of this paper that the soft clauses C ∈ Fs of each MaxSAT
instance F have already been augmented with label variables lC to form the
hard clause C ∨ lC and the soft clause (¬lC). In other words, we will assume
that all soft clauses of F are unit negative literals (¬lC) with the variable lC not
appearing negatively in any other clause and only appearing positively among
the hard clauses. Under this assumption, the literals appearing in the soft clauses
of F can be reused as label variables while preprocessing [40], thus removing the
need of adding any new variables. Hence pre(F)s ⊆ Fs, and Theorem 1 can be
simplified.

74 J. Berg and M. Järvisalo

Corollary 1 (of Theorem 1). Let F be a MaxSAT instance and pre(F) the
instance resulting after preprocessing F . Then mus(F) = mus(pre(F)).

Most importantly, our assumption on the form of MaxSAT instances does not
affect core traces. A proof for this auxiliary result is provided in Appendix A.

Proposition 1. Let F = (Fh, Fs, w) be a MaxSAT instance, and FP = (Fh ∪F a
s ,

FP
s , wP) the MaxSAT instance with F a

s = {C ∨ lC | C ∈ Fs, lC is a fresh
variable}, FP

s = {(¬lC) | C ∈ Fs}, and wP ((¬lC)) = w(C). The following
observations hold.

1. cost(F) = cost(FP), and the optimal solutions of F are the same as the
optimal solutions of FP restricted to Var(F).

2. For A ∈ {HS,CG}, there is a one-to-one mapping between the A core traces
on F and FP of equal length.

5 Impact of Preprocessing on HS

We continue with formal proofs of our main results for HS. An essential intuition
for these proofs is that HS only extracts cores of the original instance. In other
words, an HS core trace on any F only contains cores of the original instance F .

We first analyze best-case performance. The first observation shows that
preprocessing does not affect the lengths of HS MUS traces in a significant way.

Observation 2.
For any MaxSAT instance F , minlen(HS mus, F) = minlen(HS mus

pre , F).

Proof. (Sketch) By Corollary 1 we obtain κ ∈ mus(F) iff κ ∈ mus(pre(F)). The
fact that an HSmus trace on F only contains MUSes of F implies that T is an
HSmus trace on F iff it is an HSmus

pre trace on F . �

Next we show that executions of HSmus are always shortest executions of HS.

Proposition 2.
For any MaxSAT instance F , minlen(HS, F) ≥ minlen(HS mus, F) and
minlen(HSpre, F) ≥ minlen(HSmus

pre , F).

Proof. We will show that minlen(HS, F) ≥ minlen(HSmus, F) for any F , and
thus minlen(HSpre, F) ≥ minlen(HSmus

pre , F) as well. Let T = (κ1, . . . , κn) be an
arbitrary HS core trace on F . Let hs∗ be a minimum-cost hitting set over
{κ1, . . . , κn} for which F \hs∗ is satisfiable. The statement follows by construct-
ing an HSmus trace Tm on F s.t. |Tm| ≤ |T |. As each κi ∈ T is a core of F , all
contain at least one MUS m ⊆ κi. Consider the set M of at most n MUSes of F
constructed as follows. (1) Let M1 = {m1}, where m1 is any MUS contained in
κ1; (2) let Mi = Mi−1 ∪ {mi}, where mi ⊆ κi is a MUS such that mi /∈ Mi−1

if any exist, else let Mi = Mi−1. We obtain Mn = M of size |M| = k ≤ n such
that each m ∈ M is a subset of some κi ∈ T .

Impact of SAT-Based Preprocessing on Core-Guided MaxSAT Solving 75

We show that M can be ordered to form an HSmus trace on F of length at
most k, since if a minimum-cost hitting set hs over any proper subset Ms ⊂ M
hits all m ∈ M, then hs∗ is also a minimum-cost hitting set over Ms, and HSmus

can terminate. As F \hs∗ is satisfiable, hs∗ is also a hitting set over M and over
Ms. Furthermore, as each m ∈ M is a subset of some κi ∈ T and each κi ∈ T
contains a MUS in M, hs∗ is a minimum-cost hitting set of M. Finally, as hs
is a hitting set over M the cost of hs is not less than the cost of hs∗. Hence hs∗

is a minimum-cost hitting set of Ms, so the hitting set computation could have
returned hs∗, thus allowing HSmus to terminate. �

A simple corollary is that shortest executions of HS and HSpre are of equal
length.

Corollary 2. For any MaxSAT instance F , minlen(HS, F) = minlen(HSpre, F).

Proof.
Observation 1 and Proposition 2 establish minlen(HS, F) = minlen(HSmus, F) and
minlen(HSpre, F) = minlen(HSmus

pre , F). Together with Observation 2 this implies
minlen(HS, F) = minlen(HSmus, F) = minlen(HSmus

pre , F) = minlen(HSpre, F). �

We move on to the worst-case results. Corollary 1 can be used to show that
valid executions of HSpre are also valid executions of HS on any MaxSAT instance.

Observation 3.
For any MaxSAT instance F , maxlen(HSpre, F) ≤ maxlen(HS, F).

Proof. As pre(F)s ⊆ Fs and any MUS of pre(F) is a MUS of F , any core of
pre(F) is a core of F . �

Finally for this section, we prove the three X � Y edges in Fig. 4 for HS. For
this, we need as a witness a family of MaxSAT instances F (n) and a X core
trace T on F (n) s.t. |T | > maxlen(Y, F (n)).

Proposition 3.
There is a family of MaxSAT instances F (n) with O(n) soft clauses s.t.
maxlen(HS, F (n)) ≥ n and maxlen(HSmus, F (n)) = maxlen(HSpre, F (n)) = 1.

Proof. Fix n and let F (n)h = {(x ∨ y)} ∪ {(x ∨ y ∨ zi) | i = 1, . . . , n} and
F (n)s = {(¬x), (¬y)} ∪ {(¬zi) | i = 1, . . . , n} with w((¬x)) = w((¬y)) = n and
w((¬zi)) = 1 for all i. Now cost(F (n)) = n and mus(F (n)) = {{(¬x), (¬y)}},
explaining why maxlen(HSmus, F (n)) = 1. A linear-length HS core trace on
F (n) is (κ1, . . . , κn), where κi = {(¬x), (¬y), (¬zi)}. HS cannot terminate
before extracting all n cores. To see this, consider an earlier iteration i < n.
The weight of the hitting set {(¬zj) | j = 1, . . . , i} over Ki = {κ1, . . . , κi}
is i < n = w((¬x)) = w((¬y)) and as such any minimum-cost hitting set
over Ki can not contain (¬x) or (¬y), preventing HS from terminating. Hence
maxlen(HS, F (n)) ≥ n.

76 J. Berg and M. Järvisalo

However, due to the clause (x ∨ y), SE allows the removal of the clause
(x ∨ y ∨ zi) for all i. Hence pre(F (n)) has pre(F (n))h = {(x ∨ y)} and
pre(F (n))s = {(¬x), (¬y)}. The only core of pre(F (n)) is {(¬x), (¬y)}, and thus
maxlen(HSpre, F (n)) = 1. �

Proposition 4. For any n, there is a family of MaxSAT instances F (n) with
O(n) soft clauses s.t. maxlen(HSpre, F (n)) ≥ n and maxlen(HSmus

pre , F) = 1.

Proof. Fix n and let

F (n)h = {(x1,2 ∨ x1,3 ∨ ¬x2,3), (E ∨ x2,3)} ∪ (1)
n+3⋃

i=4

{(x1,2 ∨ x2,i ∨ ¬x1,i), (x1,i ∨ x1,3 ∨ ¬x3,i), (x3,i ∨ x2,i ∨ ¬x2,3)} ∪ (2)

{(xT,x ∨ xx,y ∨ ¬xT,y), (xT,x ∨ xT,y ∨ ¬xx,y) | 1 ≤ x, y ≤ n + 3} (3)

and F (n)s = {(¬x1,2), (¬x1,3), (¬E)} ∪ {(¬x2,i) | i = 4, . . . , n + 3} with
w((¬x1,2)) = w((¬x1,3)) = w((¬E)) = n and w((¬x2,i)) = 1 for all i.
The hard clauses on row 3 are included in order to prevent preprocessing
from simplifying F (n) in any way. Intuitively, F (n) encodes hard transitiv-
ity constraints over an undirected graph with each node having degree at
least 4. Hence pre(F (n)) = F (n) at it suffices to show maxlen(HS, F (n)) ≥ n
and maxlen(HSmus, F) = 1. Both arguments are similar to Proposition 3. As
mus(F (n)) = {{(¬x1,2), (¬x1,3), (¬E)}}, it follows that maxlen(HSmus, F) = 1. A
linear-length HS core trace on F (n) is (κ1, . . . , κn), where κi = {(¬x1,2), (¬x1,3),
(¬E), (¬x2,i+3)}. �

6 Impact of Preprocessing on CG

We start the analysis for CG by linking CG core traces with optimum cost.

Observation 4. Let T = (κ1, . . . , κn) be a CG or CGmus core trace on a
MaxSAT instance F , and wi = min{w(Ci) | Ci ∈ κi}. The cost of F is
cost(F) =

∑n
i=1 wi.

An important corollary of Observation 4 is that no proper subsequence of a CG
or CGmus core trace on F can in itself be a CG or CGmus trace on F .

The proofs on CG, in contrast to HS, need to consider the fact that the ith
core κi in a CG core trace on F is not a core of F , but rather, of the working
formula F i instead. Following this, a relationship between the cores of F i and
the cores of F was derived in [53]. After necessary definitions and restatement
of the result of [53], we will prove an analogous result regarding the relationship
between the MUSes of F i and F , which proves useful for obtaining our main
results for CG.

Impact of SAT-Based Preprocessing on Core-Guided MaxSAT Solving 77

6.1 Cores and MUSes of Working Formulas of CG

We follow here definitions from [53]. Let F be a MaxSAT instance and F i the
working formula of CG on iteration i when invoked on F . Let cardi be the set
of all cardinality constraints added to F by CG during iterations 1, . . . , i. Thus
the hard clauses of F i are F i

h = Fh ∪ cardi. We denote by soln(cardi) the
set of truth assignments satisfying cardi and not assigning any of the variables
in F . Given any τ : Var(F) → {0, 1} and α ∈ soln(cardi), (τ :α) is the truth
assignment over the variables of F i that assigns all variables of F according to
τ and the rest according to α; (τ :α) is well-defined as the auxiliary cardinality
constraints are not allowed to mention variables in F . For any β ∈ soln(cardi)
and Si ⊆ F i

s , the reduction of Si wrt β, Si|β is obtained by (1) removing from
Si all clauses satisfied by β; (2) removing from each remaining clause Ci ∈ Si

all blocking variables, i.e., all literals falsified by β; and (3) setting the weights
of each Ci ∈ Si back to their original weights in F (removing duplicates). The
restriction R(Ci) ∈ Fs of a soft clause Ci ∈ F i

s is obtained by (1) removing
all added blocking variables from Ci; (2) removing all clones of Ci from the
instance; and (3) setting the weight of Ci back to its original weight in F .
Restriction is lifted to a set Si ⊆ F i

s by R(Si) = {R(Ci) | Ci ∈ Si}. Notice that
Si|β ⊆ R(Si) ⊆ Fs. With these definitions we can now restate a central result
from [53].

Theorem 2 (Adapted from [53]).
A set κi ⊆ F i

s is a core of F i iff κi|β is a core of F for all β ∈ soln(cardi).

We will now prove an analogous characterization of the MUSes of F i.

Theorem 3. A set M i ⊆ F i
s is a MUS of F i iff there is a collection Υ ⊆

mus(F) s.t.

1. R(M i) =
⋃

M∈Υ M ;

2. for each M ∈ Υ, there is an α ∈ soln(cardi) s.t. M ⊆ M i|α and M ′ �⊆ M i|α
for all other M ′ ∈ Υ; and

3. for each α ∈ soln(cardi), there is an M ∈ Υ s.t. M ⊆ M i|α.

Note that condition 3 is equivalent to the requirement of Theorem 2 for the set
M i being a core of F i, since M i|α ⊆ R(M i) and M i|α should be unsatisfiable
for all α.

Before proving Theorem 3, consider the following example for more intuition.

Example 3. Consider the unweighted MaxSAT instance F = (Fh, Fs) with
Fh = {(x1 ∨ x2 ∨ x3), (x3 ∨ x4 ∨ x5), (x5 ∨ x6 ∨ x7), (x8)} and Fs =
∪8

i=1{(¬xi)}. Invoke WPM1 [50] on F and assume that it first processes
the core {(¬x3), (¬x4), (¬x5)}. Afterwards the working formula F 2 is F 2

h =
Fh ∪ {CNF(r1 + r2 + r3 = 1)} and F 2

s = {(¬x1), (¬x2), (¬x3 ∨ r1), (¬x4 ∨
r2), (¬x5 ∨ r3), (¬x6), (¬x7)(¬x8)}. Now card2 = {CNF(r1 + r2 + r3 =

78 J. Berg and M. Järvisalo

1)} and the set soln(card2) contains three assignments αi, i = 1, . . . , 3,
assigning ri to 1 and the others to 0. By Theorem 2, the set κ2 =
{(¬x1), (¬x2), (¬x3 ∨ r1), (¬x5 ∨ r3), (¬x6), (¬x7)} is a core of F 2 as each
κ2|αi is a core of F . For example, κ2|α1 = {(¬x1), (¬x2), (¬x5), (¬x6), (¬x7)}.
In order to use Theorem 3 to show that κ2 is also a MUS of F 2, note
that R(κ2) = {(¬x1), (¬x2), (¬x3), (¬x5), (¬x6), (¬x7)} = {(¬x1), (¬x2), (¬x3)} ∪
{(¬x5), (¬x6), (¬x7)}, where {(¬x1), (¬x2), (¬x3)} and {(¬x5), (¬x6), (¬x7)} are
MUSes of F . Condition 2 of Theorem 3 follows since the only MUS in κ2|α3 is
{(¬x1), (¬x2), (¬x3)} and the only MUS in κ2|α1 is {(¬x5), (¬x6), (¬x7)}.

Next we prove Theorem 3. We begin by some lemmas. Assume for each of
them that CG is invoked on an instance F and that F i is the working formula
on iteration i.

Lemma 1. Let M i be a MUS of F i and Ci ∈ M i. There is an α ∈ soln(cardi)
s.t. R(Ci) is necessary for M i|α.

Proof. By Theorem 2, M i|α′ is a core of F for all α′ ∈ soln(cardi). Hence
it suffices to show that M i|α \ R(Ci) is not a core for some α. Consider the
assignment (τ :α) satisfying F i

h∧(M i\{Ci}), guaranteed to exist as M i is a MUS
of F i. Now τ satisfies Fh ∧ (M i \ {Ci})|α = Fh ∧ (M i|α \ R(Ci)) as required. �

Corollary 3. For any MUS M i of F i, R(M i) ⊆ ⋃
mus(F).

Corollary 4. For any MUS M i of F i, there is an irreducible Υ ⊆ mus(F)s.t.
R(M i) =

⋃
M∈Υ M.

Proof. Take Υ as the smallest collection of MUSes of F for which R(M i) ⊆⋃
M∈Υ M ; by Corollary 3 such a collection exists. We claim that

⋃
M∈Υ M ⊆

R(M i), from which irreducibility follows directly by minimality of Υ. Fix an
arbitrary Ce ∈ M in some M ∈ Υ. By minimality of Υ, there is a clause Ci ∈ M i

for which the only MUS of Υ containing R(Ci) is M . By Lemma 1, there exists
a β for which R(Ci) is necessary for M i|β . As M i|β ⊆ R(M i) ⊆ ⋃

M∈Υ M and
the only MUS in Υ containing R(Ci) is M , we have Ce ∈ M ⊆ M i|β ⊆ R(M i),
establishing Ce ∈ R(M i) and

⋃
M∈Υ M ⊆ R(M i). �

We are now ready to prove Theorem 3.

Proof (of Theorem 3). A collection Υ ⊆ mus(F) satisfying condition 1 exists
by Corollary 4. For condition 2, we use the fact that the set Υ is irreducible.
Let M ∈ Υ be arbitrary. Similarly to the proof of Corollary 4, we can find a
Ci ∈ M i ∈ Υ and α ∈ soln(cardi) s.t R(Ci) /∈ M ′ for any other M ′ ∈ Υ and
R(Ci) is necessary for M i|α, implying that the only MUS in M i|α is M . Finally,
condition 3 follows from M i being a core of F i and Theorem 2.

What remains is to show that subset M i ⊆ F i
s satisfying conditions 1–3 is

a MUS of F i. By condition 3 and Theorem 2, M i is a core of F i. Hence we
only need to show that it is minimally unsatisfiable, i.e., F i

h ∧ (M i \ {Ci}) is
satisfiable for all Ci ∈ M i. Fix Ci ∈ M i and let Υ be the collection of MUSes of

Impact of SAT-Based Preprocessing on Core-Guided MaxSAT Solving 79

F for which R(M i) =
⋃

M∈Υ M. Consider any MUS MC ∈ Υ s.t. R(Ci) ∈ MC .

By condition 2, there is an α ∈ soln(cardi) for which the only MUS (of F) in
M i|α ⊆ R(M i) is MC . For such α, Fh ∧ M i|α \ {R(Ci)} is satisfied by some τ .
Hence (τ :α) satisfies Fh ∧ cardi ∧ (M i \ {Ci}) = F i

h ∧ (M i \ {Ci}). �

Finally, we note that each condition in Theorem 3 is necessary.

Example 4. Consider again the MaxSAT instance F from Example 3. The set
{(¬x1), (¬x2), (¬x3 ∨ r1)} is an example of a non-MUS of F 1 satisfying condi-
tions 1–2 and the set {(¬x1), (¬x2), (¬x3 ∨ r1), (¬x5 ∨ r3), (¬x6), (¬x7), (¬x8)}
is an example of a non-MUS of F 1 satisfying conditions 1 and 3.

6.2 Results on Core Trace Lengths

We proceed with proofs on the number of iterations for CG. With respect to
best-case, preprocessing does not affect the lengths of CGmus traces significantly.

Proposition 5.
For any MaxSAT instance F , minlen(CGmus, F) = minlen(CGmus

pre , F).

Proof. We show that a Tm = (m1, . . . ,mn) is a CGmus trace on F iff it is a CGmus
pre

trace on F . We prove the left-to-right direction, the other is similar. We will show
that there is an execution of CGmus

pre on F for which the ith MUS extracted is mi

and which terminates only after extracting all MUSes of Tm. The termination
follows from no proper subset of a CGmus trace being a core trace in itself.

We show that each mi is a MUS of pre(F)i by induction. By Corollary 1,
m1 is a MUS of pre(F). Assume that CGmus has extracted and processed the
MUSes (m1, . . . ,mi−1) from pre(F) and consider the ith iteration. As mi is a
MUS of F i, by Theorem 3 there is an Υ ⊆ mus(F) s.t. R(mi) = ∪m∈Υm.
For mi ∈ mus(pre(F)i), we show that Υ satisfies the conditions of Theorem 3
in pre(F) as well. By Corollary 1, each m ∈ Υ is a MUS of pre(F). For the
other two conditions, note that by induction, the set of cardinality constraints
cardi

p added to pre(F) after processing the MUSes m1, . . . ,mi−1 is the same as

the set cardi added to F after processing the same sequence of MUSes. Hence
α ∈ soln(cardi

p) iff α ∈ soln(cardi), which implies the two other conditions of
Theorem 3. �

Next we show that some shortest execution of CG is also an execution of
CGmus.

Proposition 6.
For any MaxSAT instance F , minlen(CGmus, F) ≤ minlen(CG, F) and
minlen(CGmus

pre , F) ≤ minlen(CGpre, F).

Proof. (Sketch) We prove minlen(CGmus, F) ≤ minlen(CG, F); the same proof
works for minlen(CGmus

pre , F) ≤ minlen(CGpre, F) as well. Let T = (κ1, . . . , κn)

be a CG trace on F . We construct a CGmus trace Tm = (m1, . . . ,mk) on F of

80 J. Berg and M. Järvisalo

at most the same length recursively. For intuition, on each iteration i CGmus

processes a subset of the clauses CG would have processed on the ith iteration
of the execution corresponding to T . Hence, if cardi

m and cardi are the set of
cardinality constraints added to F by the ith iteration on the execution corre-
sponding to Tm and T , respectively, then any α ∈ soln(cardi

m) can be extended
to a solution to cardi by assigning the remaining variables to 0.

Let m1 be an MUS of F contained in κ1. Assume that CGmus has extracted
the MUSes mj for j = 1, . . . , i−1 s.t each mj ⊆ κj . Consider the ith iteration and
the current working formula F i

m. As κi is a core of F i, the ith working formula
on the execution corresponding to T , by Theorem 2 κi|β is a core of F for all
β ∈ soln(cardi). Hence κi|β is also a core of F for all β ∈ cardi

m. Applying
Theorem 2 gives that κi is a core of F i

m. Hence it also contains a MUS mi of F i
m.

For termination of CGmus, note that minCi∈κi{w(Ci)} ≤ minCi∈mi{w(Ci)} for
every i. Since

∑n
i=1 minCi∈κi{w(Ci)} = cost(F), termination of CGmus occurs

at the latest after n iterations on the execution corresponding Tm. �

Finally, we show that the shortest executions of CG and CGpre are of the same
length.

Corollary 5. For any MaxSAT instance F , minlen(CG, F) = minlen(CGpre, F).

Proof. Proposition 6 and Observation 1 imply minlen(CG, F) = minlen(CGmus, F)
and minlen(CGmus

pre , F) = minlen(CGpre, F). Together with Proposition 5 we obtain
minlen(CG, F) = minlen(CGmus, F) = minlen(CGmus

pre , F) = minlen(CGpre, F). �

We move on to worst-case results for CG. We begin by showing that valid exe-
cutions of CGpre are also valid executions of CG.

Proposition 7.
For any MaxSAT instance F , maxlen(CG, F) ≥ maxlen(CGpre, F).

Proof. We show that a CGpre trace T = (κ1, . . . , κn) on F is also a CG trace
on F . The termination of CG only after n iterations follows from the cost-
preserving properties of preprocessing and Observation 4. We show that each κi

is a valid core of F i by induction. The case i = 1 follows from pre(F)s ⊆ Fs

and Corollary 1. Assume next that all κj for j < i have been cores of F j and
consider κi. By Theorem 2, κi|β is a core of pre(F) for all β ∈ soln(cardi

p), where

cardi
p is the set of cardinality constraints added to pre(F) after processing cores

κ1, . . . , κi−1. By induction, this set is exactly the same as set of cardinality
constraints cardi added to F after processing the same cores. As any core of
pre(F) is a core of F , it follows that κi|β is a core of F for all β ∈ soln(cardi).
We conclude that κi is a core of F i. �

Finally, two families of instances witness the � edges in Fig. 4 for CG.

Proposition 8.
There is a family of MaxSAT instances F (n) with O(n) soft clauses s.t.
maxlen(CG, F (n)) ≥ n and maxlen(CGmus, F (n)) = maxlen(CGpre, F (n)) = 1.

Impact of SAT-Based Preprocessing on Core-Guided MaxSAT Solving 81

Proof. (Sketch) Consider again the instance F (n) constructed in the proof of
Proposition 3. We showed that maxlen(HSmus, F) = maxlen(HSpre, F) = 1.
This also holds for CG. A linear-length CG core trace (κ1, . . . , κn), on F
can be constructed iteratively as follows: κ1 = {(¬x), (¬y), (¬z1)} and κi =
{(¬x)c

i−1, (¬y)c
i−1, (¬zi)} where (¬x)c

i−1 and (¬y)c
i−1 are duplicates of the orig-

inal clauses added on iteration i − 1. The existence of such duplicates for all n
iterations follows from w((¬x)) = w((¬y)) = n and w((¬zi)) = 1. The termi-
nation of CG after the nth iteration follows from Observation 4 as the smallest
weight among the clauses in each κi is 1. �

Proposition 9. There is a family of MaxSAT instances F (n) with O(n) soft
clauses s.t. maxlen(CGpre, F (n)) ≥ n and maxlen(CGmus

pre , F) = 1.

Proof. (Sketch) F (n) is the same as for HS and the proof follows Proposition 4.
A linear-length CG core trace can be constructed similarly to Proposition 8 by
replacing clauses in the linear-length HS trace from Proposition 4 with duplicates
of original clauses where required. �

7 Conclusions

We formally analyzed the effect of SAT-based preprocessing, as well as core
minimization, on the performance of core-guided MaxSAT solvers. As a main
result, we showed that SAT-based preprocessing has no effect on the best-case
number of iterations required by the solvers but can improve on the worst-
case. In terms of best-case performance, the potential benefits of applying SAT-
based preprocessing in conjunction with core-guided MaxSAT solvers are thus in
principle—assuming optimal search heuristics—solely in speeding up individual
SAT solver calls made during MaxSAT search. Simultaneously, our analysis also
revealed an analogous result on the impact of core minimization in core-guided
MaxSAT solvers. Our results motivate further work on developing MaxSAT-
specific preprocessing techniques capable of affecting the MaxSAT algorithms
on a more general level. In contrast, SAT-based preprocessing does in cases have
a positive effect on the worst-case number of iterations. Of independent interest,
we established a formal characterization of how the underlying MUS structure
is altered by iterative revisions performed by CG solvers on MaxSAT instances
(Theorem 3), thus sharpening the main results of [53].

Appendix

A Proof of Proposition 1

(1) If an optimal solution τ to F assigns τ(C) = 0, then an optimal solution
τP to FP has to assign FP (lC) = 1. Similarly, if τ(C) = 1, then τP can assign
τP (lC) = 0.

82 J. Berg and M. Järvisalo

(2) We sketch the conversion of an A core trace TP = (κ1
P , . . . , κn

P) on FP into
a core trace T = (κ1, . . . , κn) on F , the other direction is similar. For A = HS,
every κi

P is a core of FP . The corresponding core trace of F is obtained by
exchanging each κi

P = {(¬lCi
) | i = 1, . . . , n} with κi = {Ci | i = 1, . . . , n}. Now

κi
P is a core of FP iff κi is a core of F . To see this, note that if κi is not a core of F ,

then it can be satisfied by some assignment τ . The same τ extended by setting all
lCi

variables to 0 to satisfies both κi
P and the hard clauses {C1∨lC1

, . . . , Cn∨lCn
}.

Hence κi
P is not a core of FP either. A similar argument shows the other direction.

Finally the termination of HS after n iterations follows by a similar argument
showing that F \ hs is satisfiable for some hs = {C1, . . . , Ci} iff FP \ hsP is
satisfiable for hsP = {(¬lC1

), . . . , (¬lCi
)}. Hence the trace T = (κ1, . . . , κn) is a

HS trace on F of the same length as TP .
For A = CG the argument is similar but inductive. To form a CG trace T on

F , every occurrence of a (¬lCi
) in a clause Ci ∈ κi

P is replaced by Ci to form a
core κi of F i. For i > 0, each such Ci may have been augmented with blocking
variables, i.e., Ci = (¬lCi

∨∨
b) for some set of blocking variables. However, the

substitution (¬lCi
∨ ∨

b) → Ci ∨ ∨
b is still valid as, by induction, if CG adds∨

b to (¬lCi
) on the execution corresponding to TP , then it also adds

∨
b to Ci

on the execution corresponding to T . �

References

1. Park, J.D.: Using weighted MAX-SAT engines to solve MPE. In: Proceedings of
the AAAI, pp. 682–687. AAAI Press/The MIT Press (2002)

2. Chen, Y., Safarpour, S., Veneris, A.G., Marques-Silva, J.P.: Spatial and temporal
design debug using partial MaxSAT. In: Proceedings of the 19th ACM Great Lakes
Symposium on VLSI, pp. 345–350. ACM (2009)

3. Chen, Y., Safarpour, S., Marques-Silva, J., Veneris, A.G.: Automated design debug-
ging with maximum satisfiability. IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst. 29(11), 1804–1817 (2010)

4. Argelich, J., Berre, D.L., Lynce, I., Marques-Silva, J.P., Rapicault, P.: Solving
linux upgradeability problems using boolean optimization. In: Proceedings of the
LoCoCo, EPTCS, vol. 29, pp. 11–22 (2010)

5. Lynce, I., Marques-Silva, J.: Restoring CSP satisfiability with MaxSAT. Fundam.
Inform. 107(2–3), 249–266 (2011)

6. Zhu, C., Weissenbacher, G., Malik, S.: Post-silicon fault localisation using max-
imum satisfiability and backbones. In: Proceedings of the FMCAD, pp. 63–66.
FMCAD Inc. (2011)

7. Jose, M., Majumdar, R.: Cause clue clauses: error localization using maximum
satisfiability. In: Proceedings of the PLDI, pp. 437–446. ACM (2011)

8. Morgado, A., Liffiton, M., Marques-Silva, J.: MaxSAT-based MCS enumeration.
In: Biere, A., Nahir, A., Vos, T. (eds.) HVC. LNCS, vol. 7857, pp. 86–101. Springer,
Heidelberg (2013)

9. Guerra, J., Lynce, I.: Reasoning over biological networks using maximum satis-
fiability. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 941–956. Springer,
Heidelberg (2012)

10. Zhang, L., Bacchus, F.: MAXSAT heuristics for cost optimal planning. In: Pro-
ceedings of the AAAI. AAAI Press (2012)

Impact of SAT-Based Preprocessing on Core-Guided MaxSAT Solving 83

11. Ansótegui, C., Izquierdo, I., Manyà, F., Torres-Jiménez, J.: A Max-SAT-based
approach to constructing optimal covering arrays. In: Proceedings of the CCIA,
Frontiers in Artificial Intelligence and Applications, vol. 256, pp. 51–59. IOS Press
(2013)

12. Ignatiev, A., Janota, M., Marques-Silva, J.: Towards efficient optimization in pack-
age management systems. In: Proceedings of the ICSE, pp. 745–755. ACM (2014)

13. Berg, J., Järvisalo, M., Malone, B.: Learning optimal bounded treewidth Bayesian
networks via maximum satisfiability. In: Proceedings of the AISTATS, JMLR
Workshop and Conference Proceedings, vol. 33, pp. 86–95 (2014). www.JMLR.
org

14. Fang, Z., Li, C., Qiao, K., Feng, X., Xu, K.: Solving maximum weight clique using
maximum satisfiability reasoning. In: Proceedings of the ECAI, Frontiers in Arti-
ficial Intelligence and Applications, vol. 263, pp. 303–308. IOS Press (2014)

15. Berg, J., Järvisalo, M.: SAT-based approaches to treewidth computation: an eval-
uation. In: Proceedings of the ICTAI, pp. 328–335. IEEE Computer Society (2014)

16. Marques-Silva, J., Janota, M., Ignatiev, A., Morgado, A.: Efficient model based
diagnosis with maximum satisfiability. In: Proceedings of the IJCAI, pp. 1966–
1972. AAAI Press (2015)

17. Berg, J., Järvisalo, M.: Cost-optimal constrained correlation clustering via
weighted partial maximum satisfiability. Artificial Intelligence (2015, in press)

18. Wallner, J.P., Niskanen, A., Järvisalo, M.: Complexity results and algorithms for
extension enforcement in abstract argumentation. In: Proceedings of the AAAI.
AAAI Press (2016)

19. Li, C., Manyà, F.: MaxSAT, hard and soft constraints. In: Handbook of Satisfia-
bility, pp. 613–631. IOS Press (2009)

20. Ansótegui, C., Bonet, M., Levy, J.: SAT-based MaxSAT algorithms. Artif. Intell.
196, 77–105 (2013)

21. Morgado, A., Heras, F., Liffiton, M., Planes, J., Marques-Silva, J.: Iterative and
core-guided MaxSAT solving: a survey and assessment. Constraints 18(4), 478–534
(2013)

22. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the
STOC, pp. 151–158. ACM (1971)

23. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability:
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press, Amster-
dam (2009)

24. Koshimura, M., Zhang, T., Fujita, H., Hasegawa, R.: QMaxSAT: a partial Max-
SAT solver. J. Satisfiability Boolean Model. Comput. 8(1/2), 95–100 (2012)

25. Davies, J., Bacchus, F.: Exploiting the power of mip solvers in maxsat. In:
Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 166–181.
Springer, Heidelberg (2013)

26. Belov, A., Morgado, A., Marques-Silva, J.: SAT-based preprocessing for maxsat.
In: Middeldorp, A., Voronkov, A., McMillan, K. (eds.) LPAR-19 2013. LNCS, vol.
8312, pp. 96–111. Springer, Heidelberg (2013)

27. Martins, R., Manquinho, V., Lynce, I.: Open-WBO: a modular maxsat solver.
In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 438–445. Springer,
Heidelberg (2014)

28. Narodytska, N., Bacchus, F.: Maximum satisfiability using core-guided MaxSAT
resolution. In: Proceedings of the AAAI, pp. 2717–2723. AAAI Press (2014)

29. Bjørner, N., Narodytska, N.: Maximum satisfiability using cores and correction
sets. In: Proceedings of the IJCAI, pp. 246–252. AAAI Press (2015)

84 J. Berg and M. Järvisalo

30. Berg, J., Saikko, P., Järvisalo, M.: Improving the effectiveness of SAT-based pre-
processing for MaxSAT. In: Proceedings of the IJCAI, pp. 239–245. AAAI Press
(2015)

31. Morgado, A., Dodaro, C., Marques-Silva, J.: Core-guided MaxSAT with soft cardi-
nality constraints. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 564–573.
Springer, Heidelberg (2014)

32. Ansótegui, C., Gabàs, J.: Solving (weighted) partial MaxSAT with ILP. In: Gomes,
C., Sellmann, M. (eds.) CPAIOR 2013. LNCS, vol. 7874, pp. 403–409. Springer,
Heidelberg (2013)

33. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause
elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp.
61–75. Springer, Heidelberg (2005)

34. Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Miller, D., Sattler,
U., Gramlich, B. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 355–370. Springer,
Heidelberg (2012)

35. Lagniez, J.M., Marquis, P.: Preprocessing for propositional model counting. In:
Proceedings of the AAAI, pp. 2688–2694. AAAI Press (2014)

36. Li, C.M., Manyà, F., Mohamedou, N., Planes, J.: Exploiting cycle structures
in Max-SAT. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 467–480.
Springer, Heidelberg (2009)

37. Argelich, J., Li, C.-M., Manyà, F.: A preprocessor for Max-SAT solvers. In: Kleine
Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 15–20. Springer,
Heidelberg (2008)

38. Bonet, M.L., Levy, J., Manyà, F.: Resolution for Max-SAT. Artif. Intell. 171(8–9),
606–618 (2007)

39. Heras, F., Marques-Silva, J.: Read-once resolution for unsatisfiability-based Max-
SAT algorithms. In: Proceedings of the IJCAI, pp. 572–577. AAAI Press (2011)

40. Berg, J., Saikko, P., Järvisalo, M.: Re-using auxiliary variables for maxsat pre-
processing. In: Proceedings of the ICTAI, pp. 813–820. IEEE (2015)

41. Krentel, M.W.: The complexity of optimization problems. J. Comput. Syst. Sci.
36(3), 490–509 (1988)

42. Heras, F., Morgado, A., Marques-Silva, J.: Core-guided binary search algorithms
for maximum satisfiability. In: Proceedings of the AAAI. AAAI Press (2011)

43. Ignatiev, A., Morgado, A., Manquinho, V.M., Lynce, I., Marques-Silva, J.: Pro-
gression in maximum satisfiability. In: ECAI 2014, pp. 453–458. IOS Press (2014)

44. Kullmann, O., Marques-Silva, J.: Computing maximal autarkies with few and sim-
ple oracle queries (2015). CoRR abs/1505.02371

45. Janota, M., Marques-Silva, J.: On the query complexity of selecting minimal sets
for monotone predicates. Artif. Intell. 233, 73–83 (2016)

46. Ansótegui, C., Gabàs, J., Levy, J.: Exploiting subproblem optimization in SAT-
based MaxSAT algorithms. J. Heuristics 22(1), 1–53 (2016)

47. Järvisalo, M., Biere, A., Heule, M.: Blocked clause elimination. In: Esparza, J.,
Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 129–144. Springer, Hei-
delberg (2010)

48. Belov, A., Järvisalo, M., Marques-Silva, J.: Formula preprocessing in MUS extrac-
tion. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS,
vol. 7795, pp. 108–123. Springer, Heidelberg (2013)

49. Fu, Z., Malik, S.: On solving the partial MAX-SAT problem. In: Biere, A., Gomes,
C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 252–265. Springer, Heidelberg (2006)

Impact of SAT-Based Preprocessing on Core-Guided MaxSAT Solving 85

50. Manquinho, V., Marques-Silva, J., Planes, J.: Algorithms for weighted boolean
optimization. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 495–508.
Springer, Heidelberg (2009)

51. Ansótegui, C., Bonet, M.L., Levy, J.: Solving (weighted) partial MaxSAT through
satisfiability testing. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 427–
440. Springer, Heidelberg (2009)

52. Martins, R., Joshi, S., Manquinho, V., Lynce, I.: Incremental cardinality con-
straints for MaxSAT. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 531–
548. Springer, Heidelberg (2014)

53. Bacchus, F., Narodytska, N.: Cores in core based MaxSat algorithms: an analy-
sis. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 7–15. Springer,
Heidelberg (2014)

54. Davies, J., Bacchus, F.: Postponing optimization to speed up MAXSAT solving.
In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 247–262. Springer, Heidelberg
(2013)

55. Saikko, P., Berg, J., Järvisalo, M.: LMHS: a SAT-IP hybrid MaxSAT solver. In:
Creignou, N., Le Berre, D., Le Berre, D., Le Berre, D., Le Berre, D., Le Berre,
D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 539–546. Springer, Heidelberg (2016).
doi:10.1007/978-3-319-40970-2 34

Paper IV

IV

Jeremias Berg, Paul Saikko, and Matti Järvisalo

Subsumed Label Elimination for Maximum Satisfiability

c© 2016 IOS Press. Reprinted with permission from Proceedings of the
22nd European Conference on Artificial Intelligence (ECAI), volume 285
of Frontiers in Artificial Intelligence and Applications, pages 630-638. IOS
Press, 2016.

Subsumed Label Elimination for Maximum Satisfiability
Jeremias Berg and Paul Saikko and Matti Järvisalo1

Abstract. We propose subsumed label elimination (SLE), a so-
called label-based preprocessing technique for the Boolean opti-
mization paradigm of maximum satisfiability (MaxSAT). We for-
mally show that SLE is orthogonal to previously proposed SAT-based
preprocessing techniques for MaxSAT in that it can simplify the un-
derlying minimal unsatisfiable core structure of MaxSAT instances.
We also formally show that SLE can considerably reduce the num-
ber of internal SAT solver calls within modern core-guided MaxSAT
solvers. Empirically, we show that combining SLE with SAT-based
preprocessing improves the performance of various state-of-the-art
MaxSAT solvers on standard industrial weighted partial MaxSAT
benchmarks.

1 INTRODUCTION

Maximum satisfiability (MaxSAT), the optimization counterpart of
Boolean satisfiability (SAT), is becoming a competitive approach
to solving hard optimization problems due to recent advances in
MaxSAT solving [2, 38]. As MaxSAT is finding an increasing num-
ber of applications in solving real-world optimization problems—
ranging from, e.g., inconsistency analysis, diagnosis, design debug-
ging, and fault localization [15, 14, 4, 32, 44, 30, 39, 27, 35] to fur-
ther applications in AI, combinatorics, data analysis, and bioinfor-
matics [41, 23, 43, 3, 10, 21, 8, 9, 42]—there is a high demand for
new techniques for speeding up MaxSAT solving further.

This paper focuses on improving the efficiency of solving real-
world MaxSAT instances via preprocessing the instances before call-
ing a state-of-the-art MaxSAT solver. In particular, effective pre-
processing techniques for MaxSAT have the promise of providing
solver-independent speeds-up to overall solving times, similarly to
SAT where preprocessing is today an integral part of the solving pro-
cess [20, 29]. This motivates work on MaxSAT-level preprocessing,
in hope of bridging the gap between highly successful SAT prepro-
cessing and the currently less studied and understood role of prepro-
cessing for MaxSAT [7, 11, 31, 5, 13].

One approach to MaxSAT preprocessing is to lift commonly ap-
plied SAT preprocessing techniques, such as bounded variable elim-
ination [20], self-subsuming resolution, and forms of clause elimina-
tion [26], to MaxSAT. Direct applications of such SAT preprocess-
ing techniques are not correct w.r.t. preserving the optimal solutions
of MaxSAT instances [7]. However, correct liftings to MaxSAT are
enabled by the so-called labelled conjunctive normal form (LCNF)
representation [7, 6].

A natural next goal for MaxSAT preprocessing is to go beyond
lifting well-known SAT preprocessing techniques, by developing
novel MaxSAT-specific LCNF-level preprocessing techniques that

1 Helsinki Institute for Information Technology HIIT, Department of Com-
puter Science, University of Helsinki, Finland

can be applied in conjunction with SAT-based preprocessing tech-
niques, ideally with orthogonal simplification properties. In this pa-
per, we address this challenge by proposing label-based preprocess-
ing as a form of native LCNF-level MaxSAT preprocessing. In par-
ticular, we propose the preprocessing technique of subsumed label
elimination (SLE). The main aim of SLE is, working in conjunction
with SAT-based preprocessing on labelled MaxSAT instances, to de-
tect and eliminate redundant labels, i.e., auxiliary variables that are
first added to maintain correctness under SAT-based preprocessing,
but which can be inferred to be redundant by a simple polynomial-
time deduction rule that SLE implements. Arising from deduction
rules proposed in the nineties for the so-called binate covering prob-
lem [17, 16], a key insight of SLE is that redundant labels can be
eliminated by comparing the label-sets L of clauses CL on the LCNF
level, i.e., regardless of the contents of C. While SLE is based on a
relatively simple observation, it significantly differs from the earlier
proposed SAT-based preprocessing techniques for MaxSAT. In prac-
tice it also tends to provide further speed-ups to the MaxSAT solving
process for several state-of-the-art MaxSAT solvers.

In more detail, we analyze how known LCNF-lifted SAT prepro-
cessing techniques and SLE modify key properties of MaxSAT in-
stances: the (labelled) minimal unsatisfiable cores (LMUSes) and (la-
belled) minimal correction sets (LMCSes). We show that SLE is fun-
damentally different from LCNF-lifted SAT preprocessing. In con-
trast to SAT preprocessing which is unable to simplify LMUSes and
LMCSes, SLE can effectively remove labels from LMUSes. Via a
straightforward translation of LCNFs to standard MaxSAT, this im-
plies that SLE can reduce the number of standard MUSes in the re-
sulting MaxSAT instance. This can improve the performance of so-
called core-guided MaxSAT solvers, such as [22, 25, 40, 36, 37], as
well as those based on the implicit hitting set approach [18, 19, 11].
Giving a concrete witnessing family of LCNF-MaxSAT instances,
we show that SLE has the potential to drastically decrease the num-
ber of iterations performed by various core-guided MaxSAT solvers.
Complementing the theoretical analysis, we show empirically that
by combining SLE with LCNF-lifted SAT preprocessing, noticeably
more labels (i.e. redundancies) are eliminated than without SLE on
weighted partial MaxSAT instances of the industrial track of Max-
SAT Evaluation 2015. Further, we show that the additional simplifi-
cations translate into runtime improvements for various state-of-the-
art MaxSAT solvers on industrial weighted partial instances.

This paper is organized as follows. After preliminaries on labelled
CNFs and SAT-based preprocessing for MaxSAT (Section 2), we de-
tail subsumed label elimination (Section 3), and provide a theoretical
analysis of SLE both in terms of its effects on the core structure of
MaxSAT instances (Section 4) and its potential to speed-up MaxSAT
solving (Section 5). Empirical results on simplifications provided by
SLE and the impact of SLE on the performance of MaxSAT solvers
are provided in Section 6.

ECAI 2016
G.A. Kaminka et al. (Eds.)

© 2016 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-672-9-630

630

2 PRELIMINARIES
Throughout this paper, we work with labelled CNFs (LCNFs) [7, 6]
which allow for generalizing MaxSAT and provide a convenient for-
malism for describing correct liftings of SAT preprocessing tech-
niques to MaxSAT. For an intuitive reading, in LCNF a set of labels is
associated with each clause. An empty label-set denotes that the cor-
responding clause is hard, while a non-empty label-set implies that
the corresponding clause is soft. Furthermore, key concepts such as
maximum satisfiability, minimal unsatisfiable subsets and minimal
correction sets, are defined over the label-sets L of LCNF clauses
CL instead of the clauses C.

Before the formal definitions, consider the MaxSAT instance with
three unweighted soft clauses shown in Figure 1 (1). As argued in
[7], in order to apply e.g. bounded variable elimination (VE) [20]
and still maintain the set of optimal solutions, each soft clause Ci

needs to be attached an auxiliary fresh variable li, resulting in the
instance (Figure 1, 2a). On the level of LCNFs [6], the resulting in-
stance is shown in Figure 1 (2b). Restricting VE from eliminating
any of the added variables allows for sound application of most SAT
preprocessing techniques in terms of MaxSAT. As an example, first
eliminating the variable x and then y gives (possibly among others;
here ��x denotes resolving on x) the clause shown in Figure 1 (3a).
Notice how the original one-to-one mapping between the clauses and
labels vanishes, as after VE a clause may contain multiple labels. To
solve the MaxSAT instance after preprocessing, the clauses obtained
by preprocessing are then considered hard, and for each li the unit
soft clause (¬li) with weight inherited from Ci is added into the in-
stance. On the LCNF level, labelled VE [7] results equivalently in
the LCNF instance (3b), explicitly separating original variables and
the labels in each of the clauses.

(1) MaxSAT instance:
C1 = (x ∨ y ∨ z), C2 = (¬x ∨ ¬a ∨ y), C3 = (¬y ∨ ¬a ∨ ¬b)

(2a) After adding labels:
C1 = (x ∨ y ∨ z ∨ l1)
C2 = (¬x ∨ ¬a ∨ y ∨ l2)
C3 = (¬y ∨ ¬a ∨ ¬b ∨ l3)
. . .

(3a) After variable eliminating
x and y:
((C1 ��x C2) ��y C3)
= (¬a ∨ ¬b ∨ z ∨ l1 ∨ l2 ∨ l3)
. . .

(2b) LCNF representation:
C

{l1}
1

C
{l2}
2

C
{l3}
3

. . .

(3b) After labelled variable
elimination on x and y:
((C

{l1}
1 ��x C

{l2}
2) ��y C

{l3}
3)

= (¬a ∨ ¬b ∨ z){l1,l2,l3}

. . .

Figure 1: Example of SAT-based preprocessing on the CNF and LCNF level.

2.1 Labelled CNFs and MaxSAT
Assume a countable set Lbl of labels. A labelled clause CL consists
of a clause C and a (possibly empty) set L ⊆ Lbl of labels. A LCNF
formula Φ is a set of labelled clauses. Cl(Φ) and Lbls(Φ) denote the
set of clauses and labels of Φ, respectively, and LCl(Φ, l) = {CL |
CL ∈ Φ, l ∈ L} the set of labelled clauses in Φ that have l in their
label-set. A LCNF formula is satisfiable iff Cl(Φ) (a CNF formula)
is satisfiable.

Given a LCNF formula Φ and a subset M ⊆ Lbls(Φ) of its labels,
the subformula Φ|M of Φ induced by M is {CL ∈ Φ | L ⊆ M},
i.e., the LCNF formula obtained by removing from Φ all labelled

clauses with at least one label not in M ; notice that Φ|Lbls(Φ)\M =
{CL ∈ Φ | L∩M = ∅}. The removal REMOVE(Φ, K) of the label-
set K ⊆ Lbls(Φ) from Φ gives {CL\K | CL ∈ Φ}, i.e, the LCNF
formula obtained by removing all labels from Φ that are in K (note
that removal does not remove clauses).

A (labelled) unsatisfiable core of an unsatisfiable LCNF formula
Φ is a label-set L ⊆ Lbls(Φ) such that Φ|L is unsatisfiable. An
unsatisfiable core L is minimal (a LMUS) iff Φ|L′ is satisfiable for
all L′ ⊂ L. We denote the set of minimal unsatisfiable cores of Φ
by LMUS(Φ). A (labelled) minimal correction subset (LMCS) of Φ
is a label-set R ⊆ Lbls(Φ) such that (i) Φ|Lbls(Φ)\R is satisfiable,
and (ii) Φ|Lbls(Φ)\R′ is unsatisfiable for all R′ ⊂ R. We denote the
set of LMCSes of Φ by LMCS(Φ). Hitting set duality, formalizing a
connection between LMUSes and LMCSes, is useful in this work.

Theorem 1 (Hitting set duality [6]) A label-set R ⊆ Lbls(Φ) of a
LCNF formula Φ is a LMCS of Φ iff R is an irreducible hitting set
over LMUS(Φ), i.e., iff R is a hitting set over LMUS(Φ) and no
R′ ⊂ R is a hitting set of LMUS(Φ).

A LCNF-MaxSAT instance consists of a LCNF formula Φ, and a
weight function w : Lbls(Φ) → N assigning a positive weight w(l)
to each label l ∈ Lbls(Φ). The cost of a label-set L ⊆ Lbls(Φ) is
the sum of the weights of the labels in L. Given a LCNF-MaxSAT
instance Φ such that Φ|∅ is satisfiable, any assignment τ that satisfies
Φ|∅ is a solution to the LCNF-MaxSAT instance. A solution τ is
optimal if it satisfies Φ|Lbls(Φ)\R for some minimum-cost LMCS R
of Φ. The cost of τ is the cost of R. We treat the MaxSAT problem
for LCNFs as the problem of computing R. In the rest of the text
we will always assume that solutions to (Φ, w) exist, i.e., that Φ|∅ is
satisfiable.

A (standard/non-labelled) MaxSAT instance F = (Fh, Fs, w)
consists of a set Fh of hard and a set Fs of soft clauses, together with
a function w : Fs → N assigning a positive weight w(C) to each soft
clause C ∈ Fs. A (standard) minimal correction set (MCS) of F is
a subset-minimal subset of Fs whose removal from Fs makes the in-
stance satisfiable. Similarly, a (standard) minimal unsatisfiable core
(MUS) of F is a subset-minimal subset F ′

s for which Fh ∪ F ′
s is an

unsatisfiable set of clauses. Given a non-labelled MaxSAT instance
F , any truth assignment τ satisfying all hard clauses is a solution to
the instance. A solution τ is optimal if the sum of the weights of the
soft clauses τ satisfies is the maximum over all solutions. Notice that
the soft clauses falsified by an optimal solution form a minimum-cost
MCS of F .

A MaxSAT instance F = (Fh, Fs, w) can be viewed as a LCNF-
MaxSAT instance (ΦF , w) by introducing (i) for each hard clause
C ∈ Fh the labelled clause C∅, and (ii) for each soft clause C ∈ Fs

the labelled clause C{lC}, where lC is a distinct label for C with
weight w(lC) = w(C). It is easy to see that any optimal solution
to ΦF is an optimal solution to F , and vice versa. An essential intu-
ition is that LMCSes of (ΦF , w) correspond exactly to the MCSes of
(Fh, Fs, w) in that for any MCS {C1, . . . , Ck} there is a correspond-
ing LMCS {lC1 , . . . , lCk} (and vice versa). Similarly, LMUSes of
(ΦF , w) correspond to MUSes of (Fh, Fs, w).

To the other direction, a LCNF-MaxSAT instance (Φ, w) can be
viewed as a MaxSAT instance FΦ by associating with each label
li ∈ Lbls(Φ) a distinct variable ai, and introducing (i) for each la-
belled clause CL ∈ Φ a hard clause C ∨ ∨

li∈L ai, and (ii) for each
li ∈ Lbls(Φ), a soft clause (¬ai) with weight w((¬ai)) = w(li),
where w(li) is the weight of the label li. Again, using this reduction,
LMUSes and LMCSes of (Φ, w) correspond exactly to the MUSes

J. Berg et al. / Subsumed Label Elimination for Maximum Satisfiability 631

and MCSes of FΦ. Importantly for this work, especially the discus-
sion in Section 5, this reduction allows one to treat any standard Max-
SAT solver as a LCNF-MaxSAT solver.

Example 2 Consider the MaxSAT instance Fex = (Fh, Fs, w) with
w(C) = 1 for all C ∈ Fs, Fh = {(x ∨ y), (¬t ∨ ¬z), (¬z ∨
y), (¬y∨z), (z∨t)}, and Fs = {(¬x), (x), (y∨t), (z∨t∨x)}. The
assignment τ for which τ(t) = τ(x) = 0 and τ(y) = τ(z) = 1 is
an optimal solution to Fex with cost 1. The LCNF-MaxSAT instance
ΦFex corresponding to Fex is

ΦFex = {(x ∨ y)∅, (¬t ∨ ¬z)∅, (¬z ∨ y)∅, (¬y ∨ z)∅, (z ∨ t)∅,

(¬x){l1}, (x){l2}, (y ∨ t){l3}, (z ∨ t ∨ x){l4}}

with w(li) = 1 for i = 1..4. Now Cl(ΦFex) = Fh ∪ Fs and
Lbls(ΦFex) = {l1, l2, l3, l4}. The label-set L = {l1, l2} is an
LMUS of ΦFex as

ΦFex |L ={(x ∨ y)∅, (¬t ∨ ¬z)∅, (¬z ∨ y)∅, (¬y ∨ z)∅,

(z ∨ t)∅, (¬x){l1}, (x){l2}}

is unsatisfiable. The sets R1 = {l1} and R2 = {l2} are examples of
(minimum-cost) LMCSes of ΦFex . The fact that τ is an optimal solu-
tion to the LCNF-MaxSAT instance ΦFex can be verified by checking
that τ satisfies ΦFex |Lbls(ΦFex)\R2

. Converting ΦFex back to Max-
SAT results in the instance F ′ = (F ′

h, F ′
s, w) with

F ′
h = {(x ∨ y), (¬t ∨ ¬z), (¬z ∨ y), (¬y ∨ z), (z ∨ t),

(¬x ∨ a1), (x ∨ a2), (y ∨ t ∨ a3), (z ∨ t ∨ x ∨ a4)}
and F ′

s = {(¬a1), (¬a2), (¬a3), (¬a4)}.

2.2 SAT-based Preprocessing for LCNFs
A motivation for viewing MaxSAT instances as LCNF in [7] was
to develop sound applications of SAT preprocessing techniques for
MaxSAT. Many important SAT preprocessing techniques, including
bounded variable elimination (VE) [20], self-subsuming resolution
(SSR), and subsumption elimination (SE), cannot be used directly
on MaxSAT instances [7]. However, the techniques can be applied
on LCNFs by taking into account the natural restrictions implied by
the SAT-level techniques on the label-sets of labelled clauses. With
this intuition, the following LCNF-liftings of VE, SSR, and SE were
proposed [7].

• LCNF-lifting of the resolution rule: The resolvent of two labelled
clauses (x ∨ A)L1 and (¬x ∨ B)L2 w.r.t. x is (x ∨ A)L1 ��x

(¬x ∨ B)L2 = (A ∨ B)L1∪L2 .
• LCNF-lifting of VE (LVE): Let Φx and Φ¬x, resp., denote the

sets of labelled clauses that contain the literal x and the literal
¬x, resp. LVE allows for replacing Φx ∪ Φ¬x with Φx ��x

Φ¬x = {AL1 ��x BL2 | AL1 ∈ Φx, BL2 ∈ Φ¬x, A ∨
B non-tautological} given that |Φx ��x Φ¬x| ≤ |Φx ∪ Φ¬x|.

• LCNF-lifting of SE (LSE): A labelled clause AL1 subsumes BL2

if A ⊆ B and L1 ⊆ L2. LSE allows for removing subsumed
clauses.

• LCNF-lifting of SSR (LSSR):
Given labelled clauses (l∨A)L1 and (¬l∨B)L2 , if AL1 subsumes
BL2 , LSSR allows for replacing (¬l ∨ B)L2 with BL2 .

Blocked clause elimination (BCE) [28] is sound for MaxSAT [7],
and could as such be directly applied on MaxSAT instances. How-
ever, for a uniform presentation, it makes sense to consider a straight-
forward lifting of BCE.

• LCNF-lifting of BCE (LBCE): A labelled clause CL is blocked in
Φ if C is blocked in Cl(Φ). LBCE allows for removing blocked
clauses.

Example 3 Consider the LCNF-MaxSAT instance ΦFex from Exam-
ple 2. Applying LSE to remove (z ∨ t ∨ x){l4} and LVE to eliminate
x and t results in the formula

{(y){l1}, (¬z ∨ y)∅, (¬y ∨ z)∅, (){l1,l2}, (y ∨ ¬z){l3}}.

Removing (y ∨ ¬z){l3} by LSE and eliminating z by LVE results in
the preprocessed formula Φpre

Fex
= {(y){l1}, (){l1,l2}}.

LVE, LSSR, LSE, and LBCE are correct due to the following.

Proposition 4 ([7]) Let Φ be a LCNF-MaxSAT instance and Φpre the
LCNF-MaxSAT instance resulting from an application of LVE, LSSR,
LSE, and LBCE on Φ. Then LMUS(Φ) = LMUS(Φpre) and, by The-
orem 1, LMCS(Φ) = LMCS(Φpre).

3 SUBSUMED LABEL ELIMINATION
We propose and analyze subsumed label elimination (SLE), a label-
based preprocessing technique for MaxSAT. The primary goal of
SLE is to provide further simplifications when applied in conjunction
with SAT-based preprocessing; SLE focuses on removing labels from
non-singleton label-sets (produced starting from non-labelled Max-
SAT instances mainly by LVE). Before a formal definition of SLE,
we begin with an example to illustrate some of the shortcomings of
SAT-based preprocessing for MaxSAT that SLE seeks to address.

Example 5 Consider the MaxSAT instance F = (Fh, Fs, w) with
w(C) = 1 for all C ∈ Fs and

Fh = {(x ∨ y)} and Fs = {(¬x), (¬y)}.

Converting F to LCNF gives the instance ΦF = {(x ∨
y)∅, (¬x){l1}, (¬y){l2}}. Applying LVE to eliminate both x and y
results in the LCNF-MaxSAT instance pre(ΦF) = {(){l1,l2}}. Fi-
nally, converting pre(ΦF) back to MaxSAT gives the MaxSAT in-
stance F ′ = (F ′

h, F ′
s, w) with

F ′
h = {(a1 ∨ a2)} and F ′

s = {(¬a1), (¬a2)},

i.e., the exact same instance as F modulo variable naming. In other
words, LVE (or LSSR, LSE, and LBCE) is unable to simplify F . Fur-
thermore, notice that F contains exactly one MUS: {(¬x), (¬y)}.
As the clauses (¬x) and (¬y) occur in exactly the same MUSes, no
optimal solution to F falsifies both of them. As an alternative view,
no MCS of F contains both (¬x) and (¬y), which means that either
clause could be hardened, i.e., changed to a hard clause, without re-
moving all of the optimal solutions of the instance. As we will see,
SLE captures this simplification on the LCNF-level.

More concretely, consider a LCNF-MaxSAT instance Φ. SLE is
based on the following observation. Consider two labels l1, l2 ∈
Lbls(Φ) such that w(l1) ≤ w(l2), and l1 appears in at least the
same LMUSes of Φ as l2. Then l2 is redundant in that l2 can be re-
placed by l1 in any LMCS R of Φ without increasing the cost of
R. Hence l2 can be removed from Φ while maintaining at least one
minimum-cost LMCS. This is more formally stated as Theorem 6.

Theorem 6 Let l1, l2 ∈ Lbls(Φ) and Φpre = REMOVE(Φ, {l2}).
Assume that, for all L ∈ LMUS(Φ), l2 ∈ L implies l1 ∈ L. Then
∅ �= LMCS(Φpre) ⊆ LMCS(Φ).

J. Berg et al. / Subsumed Label Elimination for Maximum Satisfiability632

Proof. Φpre|Lbls(Φpre)\R = Φ|Lbls(Φ)\R for any label-set
R ⊆ Lbls(Φpre). Hence it suffices to show that there is an R ∈
LMCS(Φ) s.t. R ⊆ Lbls(Φpre). This can be verified by viewing
R as an irreducible hitting set of LMUS(Φ). If R �⊆ Lbls(Φpre),
then l2 ∈ R. By assumption, R′ = (R \ {l2}) ∪ {l1}, a subset
of Lbls(Φpre), is also an irreducible hitting set of LMUS(Φ) and
hence a LMCS of Φ. �

While the assumption in Theorem 6 is likely not checkable in poly-
nomial time, a stricter, easier-to-check version of the assumption, for-
malized in Proposition 7, gives the basis for SLE. In words, let L be
any label-set and CL′

any labelled clause of Φ. If L′ contains labels
l1 and l2 such that l2 ∈ L but l1 /∈ L, then CL′

is not a member of
the formula Φ|L. This is specifically true for any LMUS of Φ.

Proposition 7 Let l1, l2 ∈ Lbls(Φ) and LCl(Φ, l2) ⊆ LCl(Φ, l1).
Then, for all L ∈ LMUS(Φ), l2 ∈ L implies l1 ∈ L.

Proof. Let L be a label-set such that l2 ∈ L and l1 /∈ L. We show
that L is not a LMUS of Φ. From the assumption LCl(Φ, l2) ⊆
LCl(Φ, l1) it follows that, if CL′

is a labelled clause for which
l2 ∈ L′, then l1 ∈ L′. Thus CL′

/∈ Φ|L, and hence Φ|L = Φ|L\{l2}.
As such L /∈ LMUS(Φ) as either Φ|L is satisfiable or Φ|L1 is unsat-
isfiable for L1 = L \ {l2} ⊂ L. �

The final part in the formalization of SLE ensures that the removal
of l2 preserves at least one minimum-cost LMCS of the instance. This
follows by adding an assumption on the weights of l1 and l2.

Proposition 8 Let l1, l2 ∈ Lbls(Φ) and Φpre =
REMOVE(Φ, {l2}). Assume that, for all L ∈ LMUS(Φ), l2 ∈ L
implies l1 ∈ L, and w(l1) ≤ w(l2). Then all minimum-cost LMCSes
of Φpre are also minimum-cost LMCSes of Φ.

Proof. Following the proof of Theorem 6 let R′ = (R\{l2})∪{l1}
be the LMCS of Φ constructed in order to replace the LMCS R �⊆
Lbls(Φpre). The extra assumption on the weights guarantees that the
cost of R′ is not higher than the cost of R. �

Putting these results together gives SLE. Informally, SLE re-
moves subsumed labels l2, or, more formally, converts Φ into
REMOVE(Φ, {l2}).

Definition 9 (Subsumed Label Elimination (SLE)) Let Φ be a
LCNF-MaxSAT instance and l1, l2 ∈ Lbls(Φ). We say that l1 sub-
sumes l2 if (i) LCl(Φ, l2) ⊆ LCl(Φ, l1), and (ii) w(l1) ≤ w(l2).
SLE allows for removing subsumed labels from LCNF-MaxSAT in-
stances.

Example 10 Consider the LCNF-MaxSAT instance

Φ ={(xi ∨ yj)
∅ | i, j = 1..4} ∪

{(¬xi ∨ ¬x3)
∅, (¬xi ∨ ¬x4)

∅ | i = 1, 2} ∪
{(¬yi)

{l,li}, (¬yi)
{l,ti} | i = 1..4}

with w(l) = 1 and w(li) = w(ti) = 2 for all i. First note that
LVE, LSSR, LSE, and LBCE cannot simplify Φ. Specifically, as every
variable appears both negatively and positively at least twice and
no produced resolvents are tautologies, LVE cannot eliminate any
variables. However, l subsumes all of the other labels, and hence
applying SLE gives

{(xi ∨ yj)
∅ | i, j = 1..4} ∪

{(¬xi ∨ ¬x3)
∅, (¬xi ∨ ¬x4)

∅ | i = 1, 2} ∪
{(¬yi)

{l} | i = 1..4}.

Each yi appears negatively only in a single clause and can hence be
eliminated by LVE, resulting in

{(xi)
{l} | i = 1..4} ∪ {(¬xi ∨ ¬x3)

∅, (¬xi ∨ ¬x4)
∅ | i = 1, 2}.

Now each xi only appears positively in a single clause. LVE then
gives Φpre = {(){l}}.

Remark 1 While the main focus of this work is on understanding
the effect of SLE on the core structure of MaxSAT instances and
the potential of SLE to speed up state-of-the-art MaxSAT solvers,
we note that SLE (for MaxSAT) can be viewed as the counterpart
of the so-called dominance rule proposed in the early 90s in con-
junction with branch-and-bound approaches for the so-called binate
covering problem [17, 16] with applications in logic synthesis. More
details on this connection are provided in Appendix A. To the best
of our knowledge, however, SLE has not been previously proposed,
analyzed, or empirically evaluated in the context of MaxSAT.

4 EFFECTS OF SLE
We continue by analyzing SLE in terms of how it simplifies LCNFs.
We show that SLE is orthogonal to the LCNF-lifted SAT-based pre-
processing techniques in terms of the LMUSes and LMCSes—and
hence MaxSAT solutions—preserved under simplification.

We start with relatively simple corollaries of the definition. First,
we observe that subsumed labels remain subsumed after applications
of SAT-based preprocessing.

Proposition 11 Let l ∈ Lbls(Φ) and assume that SLE can eliminate
l from Φ. Let Φpre be Φ after applying LVE, LSSR, LSE, or LBCE.
Then SLE can eliminate l from Φpre.

Proof. Let l1 be a label that subsumes l in Φ. It suffices to
show that the preconditions of SLE are satisfied in Φpre. First,
the precondition w(l1) ≤ w(l) is trivially satisfied as none of
the techniques alter the weights of labels. For the second pre-
condition, LCl(Φpre, l) ⊆ LCl(Φpre, l1), the non-trivial case is
LCl(Φpre, l) �= ∅. As LCl(Φ, l) ⊆ LCl(Φ, l1), it is enough to ver-
ify that none of the SAT-based preprocessing techniques introduce a
labelled clause CL ∈ Φpre with l ∈ L and l1 /∈ L. This is trivially
true for LSE and LBCE as they only remove clauses. This is also true
for LSSR as it only removes literals, not labels. Finally, LVE cannot
produce resolvents which contain l but not l1, since there are no la-
belled clauses CL′

in Φ with l ∈ L′ and l1 /∈ L′. Thus the label-set
of any resolvent produced by LVE, which is a union of label-sets in
Φ, contains either both or neither of l1 and l. �

Thus it makes sense to incorporate SLE into the preprocessing
loop together with LVE, LSSR, LSE, and LBCE.

In analogy with Proposition 11, subsumed labels remain subsumed
also under SLE steps quite generally. An exception comes from cases
in which two labels l1 and l2 subsume each other, i.e., when l1 and
l2 occur in exactly the same label-sets and w(l2) = w(l1). Note
also that, generally, if l1 subsumes l2, and l2 subsumes l3, then l1
subsumes l3.

Turning to comparing SLE and SAT-based preprocessing, Propo-
sitions 4 and 12 together illustrate fundamental differences between
SLE and LVE, LSSR, LSE, and LBCE. By Proposition 4, LVE,
LSSR, LSE, and LBCE preserve the LMUSes of LCNF-MaxSAT
instances. This is not true for SLE. Instead, SLE guarantees (only)
that at least one minimum-cost (optimal) LMCS and, as such, that at
least one optimal solution of the instance is preserved.

J. Berg et al. / Subsumed Label Elimination for Maximum Satisfiability 633

Proposition 12 SLE does not in general preserve LMUSes (or
LMCSes) of LCNF-MaxSAT instances.

Proof. Consider the instances Φ and Φpre from Example 10. The
sets {l, li} and {l, ti} are LMUSes of Φ for all i but not of Φpre. �

An alternative way of stating Proposition 12 is that applying SLE
does not in general preserve all optimal solutions to LCNF-MaxSAT
instances. For a simple example, consider the LCNF-MaxSAT in-
stance Φ = {(x){l1}, (¬x){l2}} with unit-weighted labels. There
are two optimal solutions to Φ: τ1(x) = 1 satisfying Φ|Lbls(Φ)\{l2},
and τ2(x) = 0 satisfying Φ|Lbls(Φ)\{l1}. However, by LVE we can
simplify Φ to {(){l1,l2}} and by SLE further to {(){l1}}. The only
LMCS of the simplified instance is {l1}, corresponding to the solu-
tion τ2.

Instead of preserving LMUSes, SLE could be seen as a form of
LMUS minimization in the sense that all LMUSes remaining after
SLE are projections of LMUSes of the original LCNF onto the re-
maining set of labels.

Theorem 13 Let Φ be a LCNF-MaxSAT instance and l ∈ Lbls(Φ)
a subsumed label. Let Φpre = REMOVE(Φ, {l}), i.e., the formula
after eliminating l by SLE from Φ. Then all LMUSes Lp of Φpre are
of the form Lp = L ∩ Lbls(Φpre) for some LMUS L of Φ.

Proof. First notice that Φ|Lp ⊆ Φpre|Lp as the restriction operator
only removes labels from label-sets, not clauses. If Φ|Lp = Φpre|Lp ,
then the same will be true for any Lp

s ⊆ Lp, so Lp itself is an LMUS
of Φ. Otherwise, the reason for a labelled clause CL to be in Φpre|Lp

but not in Φ|Lp is that the eliminated label l was in L, i.e., CL /∈ Φ
but CL∪{l} ∈ Φ. Hence Φ|Lp∪{l} = Φpre|Lp , and Lp ∪ {l} is a
LMUS of Φ. �

For further differences between SLE and LVE, LSSR, LSE, and
LBCE, consider a MaxSAT instance F and a soft clause C ∈ Fs.
Let ΦF be the LCNF-MaxSAT instance corresponding to F and lC
the label for which C{lc} ∈ ΦF . A simple application of Theorem 4
gives that if lC is removed from ΦF by LVE, LSSR, LSE, or LBCE,
then any optimal solution to ΦF , which is also an optimal solution to
F , will satisfy C.

Proposition 14 Let Φpre
F be the instance resulting after an applica-

tion of LVE, LSSR, LSE, or LBCE on ΦF . If lC /∈ Lbls(Φpre
F), then

any optimal solution τ to ΦF , which is also an optimal solution to
F , will satisfy C.

Proof. Since τ is optimal, it satisfies ΦF |Lbls(ΦF)\R for some
minimum-cost LMCS R of ΦF . By Theorem 4, lC /∈ R, and thus
C ∈ Cl(ΦF |Lbls(ΦF)\R). �

Informally, it could be said that SAT-based preprocessing can only
remove labels that are “uninteresting” in terms of LMCS computa-
tion. In contrast, elimination of lC by SLE means that some (but not
necessarily all) optimal solutions of F satisfy C, as shown next.

Proposition 15 Let Φpre
F be the instance resulting from an appli-

cation of SLE on ΦF . If lC /∈ Lbls(Φpre), then there is an optimal
solution τ to ΦF and F that satisfies C. Furthermore, there may exist
optimal solutions to ΦF that do not satisfy C.

Proof. By the assumption that lC is subsumed, it follows from The-
orem 6 and Proposition 8 that there is a minimum-cost LMCS R of
ΦF for which lC /∈ R. The first part of the claim follows by observ-
ing that ΦF |Lbls(ΦF)\R is satisfiable and C ∈ Cl(ΦF |Lbls(ΦF)\R).
For the second part of the claim, consider the discussion following
Proposition 12. �

5 SLE AND CORE-GUIDED SOLVERS

We now show that SLE has the potential to considerably lower the
number of iterations made by so-called core-guided MaxSAT solvers,
one of the most successful current MaxSAT solving approaches.
The core-guided approach has several variants, e.g. [2, 38, 22, 25,
40, 36, 37, 18, 19]. In this work, we study the effect of SLE on
two different types of core-guided solvers through generic abstrac-
tions. The first one, CG-MaxSAT (Algorithm 1), iteratively employs
a SAT solver to extract unsatisfiable cores and rules out each of the
found cores from the formula by a clause replication and relaxation
step. Several algorithms that fit the CG-MaxSAT abstraction have
been proposed [22, 25, 40, 36, 37]. The second one, MaxHS (Algo-
rithm 2), is an abstraction of the implicit hitting set approach to Max-
SAT [18, 19], iteratively using a SAT solver to extract unsatisfiable
cores, and an exact minimum-cost hitting set algorithm to compute
hitting sets over the found cores.

In more detail, at each iteration i, CG-MaxSAT invokes a SAT
solver on the clauses of a working formula F i

w (initialized as all
clauses of the MaxSAT instance viewed as hard). If the working for-
mula is satisfiable, CG-MaxSAT terminates and returns the satisfying
assignment returned by the SAT solver. Otherwise, the SAT solver re-
turns an unsatisfiable core κ of F i

w. CG-MaxSAT then duplicates the
clauses in κ to create two sets κr and κr̄ . Both sets contain exactly
the same clauses as κ; each clause C ∈ κ is duplicated into two:
Cr ∈ κr and C r̄ ∈ κr̄ . The weight of Cr is set to wm, the min-
imum weight over the clauses in the core, and the weight of C r̄ to
w(C) − wm. The clauses of κr̄ are added to the working formula
unaltered. Finally, the working formula is updated by relaxing the
clauses in κr . The method of relaxation varies between core-guided
solvers. For our analysis, the important consequences of relaxation
are that the (possibly altered) clauses of κr do not appear as a core in
future iterations, and that the optimal cost of F i+1

w (when viewed as a
MaxSAT instance) is exactly wm lower than the optimal cost of F i

w.
Termination of CG-MaxSAT is guaranteed by the fact that wm > 0
on all iterations and that a MaxSAT instance of cost 0 is satisfiable
as a SAT instance. For a concrete example of a relaxation step, con-
sider the classical Fu-Malik algorithm [22] and its extensions to the
weighted case [33, 1]. These algorithms augments each Ci ∈ κr

with a fresh relaxation variable ri, creating the clause Ci ∨ ri, and
additionally adds a hard exactly-one constraint

∑
ri = 1 over the

relaxation variables. The intuition behind this step is that assign-
ing a relaxation variable to 1 effectively removes the corresponding
clause from the formula, hence removing the core κr . Additionally,

Input: MaxSAT instance F = (Fh, Fs, w).
Output: An optimal solution τ for F .
F 0

w ← Fh ∪ Fs

for i=0,. . . do
(result, κ, τ) ← SATSOLVE(F i

w)
if result=”satisfiable” then

return τ // optimal solution
else

F i
w = (F i

w \ κ) // SAT solver returned unsat core
wm ← min{w(C) | C ∈ κ}
(κr, κr̄) ← CLAUSEREPLICATE(κ, wm)
F i

w ← F i
w ∪ κr̄

F i+1
w ← RELAX(F i

w, κr)
end

end
Algorithm 1: CG-MaxSAT

J. Berg et al. / Subsumed Label Elimination for Maximum Satisfiability634

Input: MaxSAT instance F = (Fh, Fs, w).
Output: An optimal solution τ for F .
K ← ∅ // set of found unsat cores of F
Fw ← (Fh ∪ Fs)
while true do

H ← MINCOSTHITTINGSET(K)
Fw ← Fh ∪ (Fs \ H)
(result, κ, τ) ← SATSOLVE(Fw)
if result=”satisfiable” then

return τ // optimal solution
else

K ← K ∪ {κ} // SAT solver returned unsat core
end

end
Algorithm 2: MaxHS

the exactly-one constraint ensures that the cost is lowered exactly by
wm.

MaxHS is a hybrid algorithm that uses a SAT solver for core ex-
traction over a working formula Fw (initialized as all clauses of the
input instance viewed as hard). Given a collection K of extracted
cores, MaxHS uses an exact algorithm (integer programming solver
in practice) to find a minimum-cost hitting set hs over K. The work-
ing formula is then updated to contain all clauses of F except for
the soft clauses in hs, and the SAT solver is invoked again. If the
working formula is satisfiable, the satisfying assignment obtained is
an optimal solution to F . Otherwise another core is obtained and the
search continues again with hitting set computation.

The main result of this section is that there are families of LCNF-
MaxSAT instances on which SLE can significantly decrease the num-
ber of SAT solver calls and clause replication when subsequently
solving the instances with CG-MaxSAT or MaxHS.

Proposition 16 For A ∈ {CG-MaxSAT, MaxHS}, there is a fam-
ily of LCNF-MaxSAT instances ΦN , with Θ(N) different labels, on
which

(i) A requires Θ(N) calls to its SAT solver, and, for A = CG-
MaxSAT, A requires Θ(N) clause replication steps, on Θ(N !)
different executions; while

(ii) A is guaranteed to require only two (one unsatisfiable and one
satisfiable) SAT solver calls if SLE is applied on ΦN before A

under the assumption that the internal SAT solver is guaranteed to
return minimal unsatisfiable cores.

Proof. The family of LCNF-MaxSAT instances witnessing the claim
is the same for CG-MaxSAT and MaxHS. Let N be sufficiently large
and define

ΦN :=

2N−2⋃

i=1

Pi ∪
N−1⋃

i=1

Hi, where

Pi =

N⋃

j=1

{(¬pj
i ∨ ¬pj

k)∅ | k = (i + 1)..(2N − 1)} and

Hi =

⎧
⎨
⎩

(
N∨

j=1

pj
k

){l,li} ∣∣∣∣ k = i..(N + i)

⎫
⎬
⎭ ,

with w(l) = w(lN−1) = N and w(li) = 1 for all other labels li.
Notice that ΦN contains N − 1 LMUSes of the form {l, li} for all
1 ≤ i ≤ N − 1. Hence, the only minimum-cost LMCS of ΦN is

{l}. Furthermore, refuting any of the LMUSes requires proving the
unsatisfiability of the formula ΦN |{l,li}, which corresponds to an
instance of the pigeonhole principle; meaning that the extraction any
of the LMUSes of ΦN requires an exponentially long SAT solver
call [24]. Next we sketch the executions of both CG-MaxSAT and
MaxHS that require Θ(N) SAT-solver calls when solving ΦN .

Conversion of ΦN to MaxSAT results in the formula F =
(Fh, Fs, w), where

Fh =

2N−2⋃

i=1

N⋃

j=1

{(¬pj
i ∨ ¬pj

k) | k = i..(2N − 1)}

∪
N−1⋃

i=1

{(
al ∨ ai ∨

N∨

j=1

pj
k

) ∣∣∣∣ k = i..(N + i)

}

and Fs = {(¬al), (¬a1), . . . , (¬aN−1)}
with w((¬al)) = w((¬aN−1)) = N and w(C) = 1 for all other
C ∈ Fs. The MUSes of F correspond exactly to the LMUSes of ΦN

and are of the form {(¬al), (¬ai)} for all i = 1..N −1. For an intu-
ition on the executions requiring a linear number of SAT solver calls
of both algorithms, notice that both can terminate immediately and
only after encountering and processing the MUS {(¬al), (¬aN−1)}
corresponding to the the LMUS {l, lN−1}.

For A = MaxHS, assume that the internal SAT solver returns the
MUSes of in any order with {(¬al), (¬aN−1)} last. Then the hitting
set hs computed by MaxHS will not contain the clause (¬al) before
the (N − 1)th iteration and as such MaxHS can not terminate as
F \ hs will always contain the MUS {(¬al), (¬aN−1)}. There are
a total of (N − 2)! executions in which the MUS {(¬al), (¬aN−1)}
is returned last.

For A = CG-MaxSAT, the long executions are similar. Assume
that the first MUS returned by the SAT-solver in CG-MaxSAT is
{(¬al), (¬a1)}. The smallest weight wm of the clauses in the core
is 1, so CG-MaxSAT proceeds by replicating the clause (¬al) into
two clauses Cr = (¬al) and C2 = (¬al), setting w(Cr) = 1
and w(C2) = N − 1, adding C2 back into the working formula,
relaxing the core {Cr, (¬a1)}, and reiterating. Assume that CG-
MaxSAT proceeds similarly by processing the cores {(¬al)

i, (¬ai)}
for i = 1..N − 2 during the first N − 2 iterations where (¬al)

i

is the copy of the clause (¬al) produced in the previous itera-
tion. Finally on the (N − 1)th iteration CG-MaxSAT encounters
the core {(¬al)

N−2, (¬aN−1)}. At this point w((¬al)
N−2) = 2

and w((¬aN−1)) = N , so CG-MaxSAT replicates (¬aN−1) and
relaxes the core before invoking its SAT solver one final time in
order to find the current working formula satisfiable. In total, CG-
MaxSAT performs N SAT solver calls and N −1 clause replications.
A similar argument can be made for any ordering of the MUSes with
{(¬al), (¬aN−1)} last.

Part (ii) of the proposition follows by noting that SLE can remove
lN−1 due to l, resulting in the formula

pre(ΦN) :=

2N−2⋃

i=1

Pi ∪
N−2⋃

i=1

Hi ∪
⎧
⎨
⎩

(
N∨

j=1

pj
k

){l} ∣∣∣∣ k = (N − 1)..(2N − 1)

⎫
⎬
⎭ .

The only LMUS of the preprocessed formula is {l}, which is why
both algorithms are guaranteed to need only a single unsatisfiable
and a single satisfiable SAT-solver call, and furthermore, why CG-
MaxSAT needs no clause replication steps, during solving. �

J. Berg et al. / Subsumed Label Elimination for Maximum Satisfiability 635

6 EXPERIMENTS

Complementing the theoretical analysis, we evaluate the practi-
cal effects of SLE on the 2015 MaxSAT Evaluation benchmarks
(http://www.maxsat.udl.cat/15/). We observe that SLE is beneficial
especially on industrial weighted partial benchmark instances. When
applying SLE in conjunction with the LCNF-lifted SAT-based pre-
processing techniques (LVE, LSSR, LSE, LBCE), noticeably more
labels can be removed than without applying SLE. Furthermore, SLE
improves the overall performance of various state-of-the-art Max-
SAT solvers on industrial weighted partial benchmarks.

All reported solving times include the time spent in preprocess-
ing as well as in the actual MaxSAT solving. The experiments were
run on 2.53-GHz Intel Xeon quad-core machines with 32-GB RAM
under Linux. A per-instance timeout of 1800 seconds and a memory
limit of 30 GB were enforced.

We implemented SLE by extending the Coprocessor 2.0 SAT pre-
processor [34] in the following way. Given a MaxSAT instance as
input, we convert the instance to LCNF, apply Coprocessor to pre-
process the LCNF, and then convert the preprocessed LCNF back to
a MaxSAT instance. LVE, LSSR LSE, LSSR, and LBCE are realized
by representing a labelled clause CL as C ∨ ∨

li∈L ai in Copro-
cessor, applying the existing implementations of VE, SSR, SE and
BCE, while forbidding the elimination of any of the ai variables cor-
responding to the labels.

A simple way of implementing SLE consists of explicitly check-
ing for each label l whether or not l is subsumed. A potentially more
efficient way of implementing SLE would be to track the resolvents
produced by LVE and only check labels that have appeared in re-
solvents produced. However, as shown in Figure 3, even the simple
implementation appears to be sufficient; we did not observe any sig-
nificant increase in total preprocessing time (w/pre+SLE) compared
to not using SLE (w/pre). We also note that SLE does not increase
overall memory consumption wrt SAT-based preprocessing.

The fraction of labels (i.e. soft clauses) remaining after prepro-
cessing with and without SLE (applying in both cases LVE, LSSR,
LSE, and LBCE) is shown in Figure 2 for both unweighted and
weighted partial industrial and crafted instances. SLE is effective in
removing additional labels in particular on the industrial weighted
partial instances. For example, for one third of the instances (x =
0.3), with SLE close to 80% of the labels are eliminated (y ≈ 0.2,
i.e., some 20% of the labels remain afterwards); in comparison, with-
out SLE only ≈ 45% are eliminated. As a side-note, when examin-
ing the instance families in more detail, we found that out of the 172
industrial benchmarks in which no labels were removable by prepro-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

F
ra

c
ti
o
n
 o

f
la

b
e
ls

 r
e
m

a
in

in
g

 a
ft
e
r

p
re

p
ro

c
e
s
s
in

g

Fraction of Instances

PMS-NoSLE
PMS-SLE

WPMS-NoSLE
WPMS-SLE

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Fraction of Instances

WPMS-NoSLE
WPMS-SLE

PMS-NoSLE
PMS-SLE

Figure 2: Fraction of labels remaining in industrial (left) and crafted (right)
unweighted (PMS) and weighted (WPMS) benchmarks after preprocessing
with and without SLE.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0.001 0.01 0.1 1 10 100 1000

w
/P

re
 +

 S
L
E

w/Pre

Figure 3: Influence of SLE on preprocessing time

cessing, 151 were new instances in the 2015 evaluation. In fact, when
preprocessing the 2014 evaluation instances—which are a subset of
the 2015 evaluation instances—using SLE, at least 80% of the labels
are eliminated from over 50% of the instances. This suggests that, in
terms of SLE, the instances added for 2015 are structurally different
from the ones from 2014.

Table 1: Number of solved industrial weighted partial benchmarks and total
time spent on solved instances without preprocessing (default), with SAT-
based preprocessing (w/pre), and with both SAT-based preprocessing and
SLE (w/pre+SLE).

Solved instances (total running time over solved in seconds)
config. Eva LMHS Open-WBO Primal-Dual
default 379 (22,543) 354 (50,981) 331 (15,762) 390 (18,423)
w/pre 384 (20,613) 368 (46,525) 369 (12,345) 391 (15,267)
w/pre+SLE 386 (19,138) 389 (48,277) 369 (11,739) 392 (13,925)

The additional simplifications obtained via SLE are also reflected
in the total number of solved instances and solver runtimes on indus-
trial weighted partial instances. Results are shown in Table 1 for the
state-of-the-art MaxSAT solvers Eva [40], core-guided, best indus-
trial weighted partial solver in 2014; LMHS [11], one of the best
crafted and industrial weighted partial solvers in 2015, a labelled
lifting of the SAT-IP hybrid MaxSAT solver MaxHS [18]; Open-
WBO [36], one of the best industrial unweighted solvers in 2015;
and Primal-Dual [12], a new core-guided solver from 2015. SAT-
based preprocessing together with SLE results in the highest num-
ber of solved instances for each of the solvers. The increase in the
number of solved instances is especially noticeable for LMHS. SLE
also decreases the total runtime over all solved instances for each of
the solvers. For example, for both Eva and Primal-Dual, using SLE
improves further on applying only SAT-based preprocessing by de-
creasing the total runtime by approximately 10%, at the same time
enabling Primal-Dual and Eva to solve one and two more instances,
respectively. Finally, Figure 4 shows a comparison the running times
of the individual instances with the solvers are presented in the or-
der LMHS (first column), Eva (second), Open-WBO (third), and
Primal-Dual (fourth column). For each solver, we compare runtimes
on logscale when applying SLE together with LVE, LSSR, LSE, and
LBCE (’w/pre+SLE’) to (i) without preprocessing (left), and (ii) pre-
processing only with LVE, LSSR, LSE, and LBCE (’w/pre”, right).
For a majority of the instances, SLE improves the total solving time
of each of the solvers both compared to using no preprocessing, and
only using LVE, LSSR, LSE and LBCE.

J. Berg et al. / Subsumed Label Elimination for Maximum Satisfiability636

 1

 10

 100

 1000

 1 10 100 1000

w
/p

re
+

SL
E

LMHS

 1

 10

 100

 1000

 1 10 100 1000

w
/p

re
+

SL
E

Eva

 1

 10

 100

 1000

 1 10 100 1000

w
/p

re
+

SL
E

OpenWBO

 1

 10

 100

 1000

 1 10 100 1000

w
/p

re
+

SL
E

PrimalDual

 1

 10

 100

 1000

 1 10 100 1000

w
/p

re
+

SL
E

LMHS w/pre

correlation-clustering
upgradeability-problem
haplotyping-pedigrees
preference_planning
railway-transport
hs-timetabling
wcsp_spot5_log
wcsp_spot5_dir
timetabling
packup-wpms
BTBNSL

 1

 10

 100

 1000

 1 10 100 1000

w
/p

re
+

SL
E

Eva w/pre

 1

 10

 100

 1000

 1 10 100 1000

w
/p

re
+

SL
E

OpenWBO w/pre

 1

 10

 100

 1000

 1 10 100 1000

w
/p

re
+

SL
E

PrimalDual w/pre

Figure 4: Effect of SLE on runtimes without (top) and with (bottom) other preprocessing on industrial weighted partial instances.

7 CONCLUSIONS
We proposed subsumed label elimination (SLE) as a MaxSAT pre-
processing technique that is beneficial to apply in conjunction with
SAT-based preprocessing techniques before MaxSAT solving. SLE
is orthogonal to SAT-based preprocessing in that SLE can eliminate
redundant auxiliary variables (labels) from clauses irrespective of the
original variables occurring in clauses. On the level of labelled CNFs,
this accounts to removing redundant labels from LMUSes, thereby
resulting in cases in a decrease in the number and sizes of MUSes of
MaxSAT instances. Furthermore, SLE has the potential to drastically
reduce the number of iterations performed by core-guided MaxSAT
solvers, currently one of the important classes of MaxSAT solvers.
Applying SLE further improves the running times of various state-
of-the-art MaxSAT solvers on standard industrial weighted partial
benchmarks. For future work, we aim to study more general notions
of redundancies over labels in LCNFs to obtain further label-based
preprocessing techniques for MaxSAT, as well as to study potential
applications in MUS extraction.

ACKNOWLEDGEMENTS
This work has been funded by Academy of Finland, grants 251170
COIN, 276412, and 284591; and Doctoral School in Computer Sci-
ence DoCS and Research Funds of the University of Helsinki.

A SLE and Dominance in Binate Covering
SLE (for MaxSAT) can be viewed as the counterpart of the so-called
dominance rule proposed in the early 90s in conjunction with branch-
and-bound approaches for the so-called binate covering problem [17,
16] with applications in logic synthesis. In short, in the binate cover-
ing problem, we are given a Boolean function f : {0, 1}n → {0, 1}
over the variables x1, . . . , xn, and a function cost : {1..n} → N
assigning a non-negative cost cost(i) to each variable xi. The task
is to find a truth assignment τ over x1, . . . , xn that minimizes∑n

i=1 τ(xi) · cost(i) subject to f(τ(x1), . . . , τ(xn)) = 1. The
dominance rule for binate covering is described in [17] for the so-
called modified covering matrix representation of binate covering for
Boolean functions in CNF. We interpret the rule directly on the defi-
nition as follows: variable xi dominates xj if (i) the literal xi occurs
in a clause C whenever the literal xj occurs in C; (ii) ¬xj occurs in a
clause C whenever ¬xi occurs in C; and (iii) cost(xi) ≤ cost(xj).
A dominated variable can be assigned to 0.

A LCNF-MaxSAT instance (Φ, w) can be viewed as an instance
of binate covering by viewing each labelled clause CL ∈ Φ as the
clause C ∨ L, and letting cost(l) = w(l) for each l ∈ Lbls(Φ)
and cost(x) = 0 for each variable in

⋃
Cl(Φ). After this reduction,

one can observe that, for any label l ∈ Lbls(Φ), it holds that l is
dominated in the resulting binate covering instance if and only if
SLE can eliminate l from (Φ, w).

J. Berg et al. / Subsumed Label Elimination for Maximum Satisfiability 637

REFERENCES
[1] Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy, ‘Solving

(weighted) partial MaxSAT through satisfiability testing’, in Proc. SAT,
volume 5584 of Lecture Notes in Computer Science, pp. 427–440.
Springer, (2009).

[2] Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy, ‘SAT-based
MaxSAT algorithms’, Artificial Intelligence, 196, 77–105, (2013).

[3] Carlos Ansótegui, Idelfonso Izquierdo, Felip Manyà, and José Torres-
Jiménez, ‘A Max-SAT-based approach to constructing optimal covering
arrays’, in Proc. CCIA, volume 256 of Frontiers in Artificial Intelli-
gence and Applications, pp. 51–59. IOS Press, (2013).

[4] Josep Argelich, Daniel Le Berre, Inês Lynce, João P. Marques-Silva,
and Pascal Rapicault, ‘Solving linux upgradeability problems using
boolean optimization’, in Proc. LoCoCo, volume 29 of EPTCS, pp. 11–
22, (2010).

[5] Josep Argelich, Chu Min Li, and Felip Manyà, ‘A preprocessor for
Max-SAT solvers’, in Proc. SAT, volume 4996 of Lecture Notes in
Computer Science, pp. 15–20. Springer, (2008).

[6] Anton Belov and Joao Marques-Silva, ‘Generalizing redundancy in
propositional logic: Foundations and hitting sets duality’, CoRR,
abs/1207.1257, (2012).

[7] Anton Belov, Antonio Morgado, and Joao Marques-Silva, ‘SAT-based
preprocessing for MaxSAT’, in Proc. LPAR-19, volume 8312 of Lecture
Notes in Computer Science, pp. 96–111. Springer, (2013).

[8] Jeremias Berg and Matti Järvisalo, ‘SAT-based approaches to treewidth
computation: An evaluation’, in Proc. ICTAI, pp. 328–335. IEEE Com-
puter Society, (2014).

[9] Jeremias Berg and Matti Järvisalo, ‘Cost-optimal constrained correla-
tion clustering via weighted partial maximum satisfiability’, Artificial
Intelligence, (2015). in press.

[10] Jeremias Berg, Matti Järvisalo, and Brandon Malone, ‘Learning opti-
mal bounded treewidth Bayesian networks via maximum satisfiability’,
in Proc. AISTATS, volume 33, pp. 86–95. JMLR, (2014).

[11] Jeremias Berg, Paul Saikko, and Matti Järvisalo, ‘Improving the effec-
tiveness of SAT-based preprocessing for MaxSAT’, in Proc. IJCAI, pp.
239–245. AAAI Press, (2015).

[12] Nikolaj Bjørner and Nina Narodytska, ‘Maximum satisfiability using
cores and correction sets’, in Proc. IJCAI, pp. 246–252. AAAI Press,
(2015).

[13] Maria Luisa Bonet, Jordi Levy, and Felip Manyà, ‘Resolution for Max-
SAT’, Artificial Intelligence, 171(8-9), 606–618, (2007).

[14] Yibin Chen, Sean Safarpour, João Marques-Silva, and Andreas G.
Veneris, ‘Automated design debugging with maximum satisfiability’,
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 29(11), 1804–1817, (2010).

[15] Yibin Chen, Sean Safarpour, Andreas G. Veneris, and João P. Marques-
Silva, ‘Spatial and temporal design debug using partial MaxSAT’, in
Proc. 19th ACM Great Lakes Symposium on VLSI, pp. 345–350. ACM,
(2009).

[16] Olivier Coudert, ‘On solving covering problems’, in Proc. DAC, pp.
197–202. ACM Press, (1996).

[17] Olivier Coudert and Jean Christophe Madre, ‘New ideas for solving
covering problems’, in Proc. DAC, pp. 641–646. ACM Press, (1995).

[18] Jessica Davies and Fahiem Bacchus, ‘Exploiting the power of MIP
solvers in MaxSAT’, in Proc. SAT, volume 7962 of Lecture Notes in
Computer Science, pp. 166–181. Springer, (2013).

[19] Jessica Davies and Fahiem Bacchus, ‘Postponing optimization to speed
up MAXSAT solving’, in Proc. CP, volume 8124 of Lecture Notes in
Computer Science, pp. 247–262. Springer, (2013).

[20] Niklas Eén and Armin Biere, ‘Effective preprocessing in SAT through
variable and clause elimination’, in Proc. SAT, volume 3569 of Lecture
Notes in Computer Science, pp. 61–75. Springer, (2005).

[21] Zhiwen Fang, Chu-Min Li, Kan Qiao, Xu Feng, and Ke Xu, ‘Solv-
ing maximum weight clique using maximum satisfiability reasoning’,
in Proc. ECAI, volume 263 of Frontiers in Artificial Intelligence and
Applications, pp. 303–308. IOS Press, (2014).

[22] Zhaohui Fu and Sharad Malik, ‘On solving the partial MaxSAT prob-
lem’, in Proc. SAT, volume 4121 of Lecture Notes in Computer Science,
pp. 252–265. Springer, (2006).

[23] Joao Guerra and Ines Lynce, ‘Reasoning over biological networks using
maximum satisfiability’, in Proc. CP, volume 7514 of Lecture Notes in
Computer Science, pp. 941–956. Springer, (2012).

[24] Armin Haken, ‘The intractability of resolution’, Theoretical Computer
Science, 39, 297–308, (1985).

[25] Federico Heras, Antonio Morgado, and Joao Marques-Silva, ‘Core-
guided binary search algorithms for maximum satisfiability’, in
Proc. AAAI. AAAI Press, (2011).

[26] Marijn Heule, Matti Järvisalo, Florian Lonsing, Martina Seidl, and
Armin Biere, ‘Clause elimination for SAT and QSAT’, Journal of Arti-
ficial Intelligence Research, 53, 127–168, (2015).

[27] Alexey Ignatiev, Mikolás Janota, and João Marques-Silva, ‘Towards ef-
ficient optimization in package management systems’, in Proc. ICSE,
pp. 745–755. ACM, (2014).

[28] Matti Järvisalo, Armin Biere, and Marijn Heule, ‘Blocked clause elim-
ination’, in Proc. TACAS, volume 6015 of Lecture Notes in Computer
Science, pp. 129–144. Springer, (2010).

[29] Matti Järvisalo, Marijn Heule, and Armin Biere, ‘Inprocessing rules’,
in Proc. IJCAR, volume 7364 of Lecture Notes in Computer Science,
pp. 355–370. Springer, (2012).

[30] Manu Jose and Rupak Majumdar, ‘Cause clue clauses: error localiza-
tion using maximum satisfiability’, in Proc. PLDI, pp. 437–446. ACM,
(2011).

[31] Chu Min Li, Felip Manyà, Nouredine Ould Mohamedou, and Jordi
Planes, ‘Exploiting cycle structures in Max-SAT’, in Proc. SAT, volume
5584 of Lecture Notes in Computer Science, pp. 467–480. Springer,
(2009).

[32] Inês Lynce and João Marques-Silva, ‘Restoring CSP satisfiability with
MaxSAT’, Fundam. Inform., 107(2-3), 249–266, (2011).

[33] Vasco M. Manquinho, João P. Marques-Silva, and Jordi Planes, ‘Algo-
rithms for weighted boolean optimization’, in Proc. SAT, volume 5584
of Lecture Notes in Computer Science, pp. 495–508. Springer, (2009).

[34] Norbert Manthey, ‘Coprocessor 2.0 - A flexible CNF simplifier’, in
Proc. SAT, volume 7317 of Lecture Notes in Computer Science, pp.
436–441. Springer, (2012).

[35] Joao Marques-Silva, Mikolas Janota, Alexey Ignatiev, and Antonio
Morgado, ‘Efficient model based diagnosis with maximum satisfiabil-
ity’, in Proc. IJCAI, pp. 1966–1972. AAAI Press, (2015).

[36] Ruben Martins, Saurabh Joshi, Vasco M. Manquinho, and Ines Lynce,
‘Incremental cardinality constraints for MaxSAT’, in Proc. CP, volume
8656 of Lecture Notes in Computer Science, pp. 531–548. Springer,
(2014).

[37] Antonio Morgado, Carmine Dodaro, and Joao Marques-Silva, ‘Core-
guided MaxSAT with soft cardinality constraints’, in Proc. CP, volume
8656 of Lecture Notes in Computer Science, pp. 564–573. Springer,
(2014).

[38] Antonio Morgado, Federico Heras, Mark H. Liffiton, Jordi Planes, and
Joao Marques-Silva, ‘Iterative and core-guided MaxSAT solving: A
survey and assessment’, Constraints, 18(4), 478–534, (2013).

[39] António Morgado, Mark H. Liffiton, and João Marques-Silva,
‘MaxSAT-based MCS enumeration’, in Revised Selected Papers of
HVC 2012, volume 7857 of Lecture Notes in Computer Science, pp.
86–101. Springer, (2013).

[40] Nina Narodytska and Fahiem Bacchus, ‘Maximum satisfiability using
core-guided MaxSAT resolution’, in Proc. AAAI, pp. 2717–2723. AAAI
Press, (2014).

[41] James D. Park, ‘Using weighted MAX-SAT engines to solve MPE’, in
Proc. AAAI, pp. 682–687. AAAI Press / The MIT Press, (2002).

[42] Johannes Peter Wallner, Andreas Niskanen, and Matti Järvisalo, ‘Com-
plexity results and algorithms for extension enforcement in abstract ar-
gumentation’, in Proc. AAAI, pp. 1088–1094. AAAI Press, (2016).

[43] Lei Zhang and Fahiem Bacchus, ‘MAXSAT heuristics for cost optimal
planning’, in Proc. AAAI. AAAI Press, (2012).

[44] Charlie S. Zhu, Georg Weissenbacher, and Sharad Malik, ‘Post-silicon
fault localisation using maximum satisfiability and backbones’, in
Proc. FMCAD, pp. 63–66. FMCAD Inc., (2011).

J. Berg et al. / Subsumed Label Elimination for Maximum Satisfiability638

Paper V

V

Jeremias Berg and Matti Järvisalo

Cost-Optimal Constrained Correlation Clustering via
Weighted Partial Maximum Satisfiability

c© 2017 Elsevier. Reprinted with permission from Artificial Intelligence.
244:110-142, Elsevier, 2017.

Artificial Intelligence 244 (2017) 110–142

Contents lists available at ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

Cost-optimal constrained correlation clustering via weighted

partial Maximum Satisfiability ✩

Jeremias Berg, Matti Järvisalo ∗

Helsinki Institute for Information Technology HIIT, Department of Computer Science, University of Helsinki, Finland

a r t i c l e i n f o a b s t r a c t

Article history:
Received in revised form 18 June 2015
Accepted 3 July 2015
Available online 9 July 2015

Keywords:
Boolean optimization
Boolean satisfiability
Maximum satisfiability
Correlation clustering
Cost-optimal clustering
Constrained clustering

Integration of the fields of constraint solving and data mining and machine learning has
recently been identified within the AI community as an important research direction
with high potential. This work contributes to this direction by providing a first study
on the applicability of state-of-the-art Boolean optimization procedures to cost-optimal
correlation clustering under constraints in a general similarity-based setting. We develop
exact formulations of the correlation clustering task as Maximum Satisfiability (MaxSAT),
the optimization version of the Boolean satisfiability (SAT) problem. For obtaining cost-
optimal clusterings, we apply a state-of-the-art MaxSAT solver for solving the resulting
MaxSAT instances optimally, resulting in cost-optimal clusterings. We experimentally
evaluate the MaxSAT-based approaches to cost-optimal correlation clustering, both on the
scalability of our method and the quality of the clusterings obtained. Furthermore, we
show how the approach extends to constrained correlation clustering, where additional
user knowledge is imposed as constraints on the optimal clusterings of interest. We show
experimentally that added user knowledge allows clustering larger datasets, and at the
same time tends to decrease the running time of our approach. We also investigate the
effects of MaxSAT-level preprocessing, symmetry breaking, and the choice of the MaxSAT
solver on the efficiency of the approach.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Integration of the fields of constraint solving and data mining and machine learning has recently been identified within
the AI community as an important research direction with high potential. This work contributes to this direction by studying
the applicability of Boolean optimization to cost-optimal correlation clustering under constraints.

A common problem setting in data analysis is a set of data points together with some information regarding their
pairwise similarities from which some interesting underlying structure needs to be discovered. One way of approaching the

✩ This work is supported by Academy of Finland (grants 276412, 284591, and 251170 Finnish Centre of Excellence in Computational Inference Research
COIN), Doctoral Program in Computer Science DOCS, Research Funds of the University of Helsinki, and Finnish Funding Agency for Technology and Innovation
(project D2I: From Data to Intelligence). The authors thank Jessica Davies for providing the MaxHS solver version used in the experiments. A preliminary
version of this work appeared as [1] and was presented at the 2013 ICDM workshops. This article thoroughly revises and extends the earlier workshop paper
considerable, for example by addressing the problem in a more general weighted setting, by introducing a third improved MaxSAT encoding, by extended
experiments including comparisons with quadratic integer programming and several approximative algorithms, application of SAT-based preprocessing,
symmetry breaking, and a MaxSAT solver comparison, as well as inclusion of full formal proofs and extended background and discussions.

* Corresponding author. Tel.: +358 50 3199 248; fax: +358 9 1915 1120.
E-mail addresses: jeremias.berg@cs.helsinki.fi (J. Berg), matti.jarvisalo@cs.helsinki.fi (M. Järvisalo).

http://dx.doi.org/10.1016/j.artint.2015.07.001
0004-3702/© 2015 Elsevier B.V. All rights reserved.

J. Berg, M. Järvisalo / Artificial Intelligence 244 (2017) 110–142 111

problem is to attempt to divide the data into subgroups in a meaningful way, for example, so that data points in the same
group are more similar to each other than to data points in other groups [2]. Discovering an optimal way of making such a
division is in most settings computationally challenging and an active area of research [3]. A general term for problems of
this kind is clustering: the groups the data is partitioned into are called clusters, and a partitioning of the dataset is called a
clustering of the data.

In this work, we study the correlation clustering paradigm [4] in a general similarity-based setting. Correlation clustering
is a well-studied [5–9] NP-hard problem. Given a labeled undirected graph with each edge labeled with either a positive
or a negative label, the objective of correlation clustering is to cluster the nodes of the graph in a way which minimizes
the number of positive edges between different clusters and negative edges within clusters. Taking a more general view
to correlation clustering, we study the problem setting of weighted correlation clustering, in which each edge is associated
with a weight (instead of merely a negative or positive label), indicating our confidence in that label. In the more general
weighted case, the objective of correlation clustering is to minimize the sum of the weights of the positive edges between
different clusters and the negative edges within clusters.

The correlation clustering paradigm is geared towards classifying data based on qualitative similarity information—as
opposed to quantitative information—of pairs of data points. In contrast to other typical clustering paradigms, correlation
clustering does not require the number of clusters as input. This makes it especially well-suited for settings in which the
true number of clusters is unknown—which is often the case when dealing with real-world data. As a concrete example,
consider the problem of clustering documents by topic without any prior knowledge on what those topics might be, based
only on similarity information (edges) between pairs of different documents [4,10]. Indeed, correlation clustering has various
applications in biosciences [11], social network analysis and information retrieval [12–14]. Furthermore, the related problem
of consensus clustering [15], with recent applications in bioinformatics and in particular microarray data analysis [16–19],
can also be naturally cast as correlation clustering.

Due to NP-hardness of correlation clustering [4], most algorithmic work on the problem has been heuristic, focusing on
local search and approximative algorithms. While strong approximation algorithms have been proposed [4–6,9]—providing
up to constant-factor approximations in restricted settings—these algorithms are unable to provide actual cost-optimal
solutions in general. In this work, we take a different approach: we study the applicability of state-of-the-art Boolean
optimization techniques to cost-optimally solving real-world instances of the correlation clustering problem. A baseline mo-
tivation for this work are the recent advances in applying constraint programming for developing generic approaches to
common data analysis problems [20–25]. In a constraint programming based approach, the data analysis problem is stated
in a declarative fashion within some constraint language, and then a generic solver for that language is used for solving the
resulting instance.

Harnessing constraint solving for data analysis tasks has two key motivations. Firstly, declarative optimization systems
allow for finding provably cost-optimal solutions. While heuristic approaches allow for scaling to very large datasets, quickly
obtaining some hopefully meaningful clustering, the provably cost-optimal solutions obtained by the declarative approach
can result in notably better clusterings which provide better insights into the data. This can be valuable especially when
working on smaller scientific datasets which have taken years to collect [26]. Secondly, the declarative approach allows for
easily integrating various types of additional constraints over the solution space at hand. This way, a user (domain data
expert) may specify properties of solutions that are of interest to the user, without needing to extend available specialized
algorithms in a non-trivial way to cope with such additional constraints. A constraint-based framework for clustering prob-
lems is well-suited for problem instances where some form of domain specific knowledge might be required in order to
obtain meaningful clusterings. The paradigm for clustering problems of this type is known as constrained clustering [27–29].
Recently, Boolean satisfiability (SAT) [30] based approaches to solving constrained clustering within other clustering prob-
lems have been proposed [23,31], However, to the best of our knowledge the only work done on constrained correlation
clustering is the linear programming based approach of [10]; this work is the first study on the applicability of Maximum
Satisfiability (MaxSAT) [32], a well-known optimization version of SAT, to correlation clustering under constraints. The prob-
lem definition we study covers correlation clustering with additional constraints that, e.g., either force or forbid a pair of
points from being assigned to the same cluster; known as must-link and cannot-link constraints [27].

1.1. Contributions

We present a novel and extensible MaxSAT-based approach to optimal correlation clustering. Using propositional logic as
the declarative language, we formulate the correlation clustering task in an exact fashion as weighted partial MaxSAT [32]
and apply a state-of-the-art MaxSAT solver to solve the resulting MaxSAT instance optimally. To our best knowledge this is
the first practical approach to exactly solving correlation clustering for finding cost-optimal clusterings, i.e., optimal cluster-
ings w.r.t. the actual objective function of the problem, for real-world datasets with hundreds of elements. In contrast, most
of the previous work on correlation clustering has mainly focused on approximation algorithms and greedy local-search
techniques which cannot in general find optimal clusterings.

At the core of the approach, we present three different MaxSAT formulations of correlation clustering, and provide formal
proofs for their correctness. We experimentally evaluate our approach on real-world datasets and compare the approach to
both two alternative exact approaches, based on linear and quadratic integer programming [5,33], and two approximation
algorithms [5,34]. The results show that our approach can provide cost-optimal solutions and scales better than competing

112 J. Berg, M. Järvisalo / Artificial Intelligence 244 (2017) 110–142

exact integer and quadratic programming formulations. Furthermore, our approach performs especially well in terms of so-
lution cost on sparse datasets (with many missing similarity entries), outperforming approximative methods even when the
approximative methods are given full similarity information. Our approach easily extends to the task of constrained correla-
tion clustering, which allows for the user to specify the clusterings of one’s interest by imposing hard user-defined constraints
over the search space of clusterings. We explain how different types of constraints can be handled within a MaxSAT-based
approach to cost-optimally solving constrained correlation clustering instances. While approaches to constrained clustering
have been proposed previously for different clustering paradigms [27–29,35,36,23], the only previous work on constrained
correlation clustering that we know of is [10]. However, their approach is approximative and the experiments are done on
smaller datasets. In contrast, we show experimentally that added user knowledge allows clustering on larger datasets as
it tends to notably decrease the running time of the approach. We also provide experimental results on MaxSAT-specific
aspects of solving the correlation clustering instances, considering the effects of MaxSAT-level preprocessing, symmetry
breaking, as well as the choice of the MaxSAT solver used on the efficiency of the approach.

1.2. Paper organization

In Section 2 we provide a generic problem definition for correlation clustering that is used throughout this article. Our
definition covers both correlation clustering and constrained correlation clustering. We also demonstrate how a symmetric
similarity measure simplifies the objective function of the clustering problem and show that a similarity measure can always
be assumed to be symmetric. In Sections 3 and 4 we overview previously proposed linear and quadratic integer programs
for solving correlation clustering exactly. In Section 5 we provide necessary background on Maximum Satisfiability. The
MaxSAT encodings of correlation clustering are detailed in Sections 6, 7 and 8, respectively. Extensive experimental results
are provided in Section 9. Finally, we present a short survey on related work in Section 10 and give some concluding
remarks in Section 11. Formal proofs of the theorems presented in the paper are given in Appendix A.

2. Problem setting

In this section, we present the general similarity-based problem setting under which we study correlation clustering in
both unconstrained and constrained settings.

2.1. Problem definition

Let R = R ∪{∞, −∞}, V = {v1, . . . , v N } a set of N data points that we wish to cluster, and W ∈ RN×N a similarity matrix.
We denote the element on row i column j in W by W (i, j). This input can be viewed as a weighted graph, as demonstrated
by the following example.

Example 1. Let V = {v1, v2, v3, v4} be a set of data points and consider the similarity matrix W given in Fig. 1 on the
left. We can view this input as a directed graph G = (V , E) where (vi, v j) ∈ E if W (i, j) �= 0, and the weight of each edge
(vi, v j) is equal to W (i, j). Fig. 1(right) illustrates the graph corresponding to W . In case the similarity matrix is symmetric,
i.e., W (i, j) = W (j, i) for all i and j, the graph underlying W is essentially undirected.

Fig. 1. An example similarity matrix and its graph presentation.

The intuition behind the similarity matrix is that it expresses preferences on whether or not two points vi and v j should
be assigned to the same cluster; a positive value indicates that vi and v j should be assigned to the same cluster, a negative
value that they should not. We say that points vi and v j are similar if W (i, j) ∈ R and W (i, j) > 0. If W (i, j) < 0 and
W (i, j) ∈ R, we say that vi and v j are dissimilar. In the most general setting, neither the requirement of assigning pairs of
points to the same (different) cluster(s) nor the notion of pairs of points being (dis)similar are required to be symmetric
relations.

Any function cl: V → N is a solution to the clustering problem, representing a clustering of the data points into clusters
indexed with natural numbers. We say that two points vi and v j are co-clustered if cl(vi) = cl(v j). Note that our formulation

J. Berg, M. Järvisalo / Artificial Intelligence 244 (2017) 110–142 113

Input: A set of N data points V = {v1 . . . v N } and a symmetric similarity matrix W ∈ RN×N .

Output: A function cl∗: V → N such that cl∗ ∈ argmincl::V →N(H(W , cl)).

Fig. 2. The constrained correlation clustering problem.

allows forcing two points to the same or different clusters. If W (i, j) = ∞ for some i and j, then vi and v j have to be
co-clustered. Analogously, if W (i, j) = −∞, then vi and v j are not allowed to be co-clustered. If the infinite values are
in conflict with each other, the problem instance is infeasible. These additional hard constraints are commonly referred to
as must-link (ML) and cannot-link (CL) constraints [27]. We will use the following definition to incorporate the intended
semantics of the infinite values onto the possible clusterings. Given a similarity matrix W , we say that a clustering cl
respects the infinite values of W , if cl(vi) = cl(v j) whenever W (i, j) = ∞ and cl(vi) �= cl(v j) whenever W (i, j) = −∞.

Given a cost function G such that G(W , cl) ∈ R for every solution cl, we say that a clustering cl (of V) is optimal under
W as measured by G , if cl respects the infinite values of W and G(W , cl) ≤ G(W , cl′) holds for any clustering cl′ (of V)
that respects the infinite values of W . The definition is sufficient for all purposes as we can always turn a function G we
wish to maximize into a minimization problem by considering the function −G . For a given similarity matrix W we use
argmincl(G(W , cl)) to denote the set of optimal clusterings under W as measured by G .

In this work we focus on the cost function of correlation clustering with additional must-link and cannot-link constraints.
In correlation clustering [4,9] we are given a pairwise similarity measure over a set of data points. The task is then to cluster
the nodes in a way that maximizes the number of similar points co-clustered and minimizes the number of dissimilar points
co-clustered. More formally, given a symmetric similarity matrix W , the task is to find a clustering which minimizes the
cost function

H(W , cl) =
∑

cl(vi)=cl(v j)

i< j

(I[−∞ < W (i, j) < 0] · |W (i, j)|) +
∑

cl(vi) �=cl(v j)

i< j

(I[∞ > W (i, j) > 0] · W (i, j)) (1)

where I[b] is an indicator function which takes the value 1 if the condition b is true, else I[b] = 0. Fig. 2 gives a precise
formulation of constrained correlation clustering used throughout this work.

This definition covers all variants of correlation clustering that we are aware of. For example, the definition of [4] where
the input consists of a complete graph with each edge labeled by a + or − is equivalent to restricting the input similarity
matrix to only contain values from {−1, 1} and specifically not to contain infinite values. Furthermore, the assumption of
symmetric input can be made without loss of generality, as detailed in Section 2.2.

Example 2. Let V = {v1, v2, v3, v4} be a set of data points and consider the similarity matrix given in Fig. 3 on the left.
Fig. 3(right) illustrates one possible solution cl to the correlation clustering problem for this input data. In described solution,
cl(v1) = cl(v2) = cl(v3) �= cl(v4). The cost of cl is

H(W , cl) = (I[W (1,2) < 0] · |W (1,2)| + I[W (1,3) < 0] · |W (1,3)| + I[W (2,3) < 0] · |W (2,3)|) +
(I[W (1,4) > 0] · W (1,4) + I[W (2,4) > 0] · W (2,4) + I[W (3,4) > 0] · W (3,4))

= |W (1,2)| + W (3,4) = 3.3.

Fig. 3. An example similarity matrix and the graphical representation of a solution to the correlation clustering problem.

In contrast to many other clustering problems, deciding the number of clusters is in the most general case part of the
correlation clustering problem. However, as every point is assigned to exactly one cluster, in practice it is enough to search
over all functions cl: V → {1, . . . , N}.

2.2. On the assumption of symmetric similarities

We will now show that the assumption of symmetric similarity matrices in our problem definition (Fig. 2) can be done
without loss of generality. Correlation clustering is often defined with 2 positive weights w+

i j and w−
i j for each pair of data

114 J. Berg, M. Järvisalo / Artificial Intelligence 244 (2017) 110–142

points vi , v j as the input [5]. The intuition behind these weights is that they give a separate measure for the costs of not
assigning vi and v j to the same (w+

i j) and to different (w−
i j) cluster(s). A straightforward method of modeling this in terms

of our clustering setting would be to use a cost function such as

H ′(W , cl) =
∑

cl(vi)=cl(v j)

(I[−∞ < W (i, j) < 0] · |W (i, j)|) +
∑

cl(vi) �=cl(v j)

(I[∞ > W (i, j) > 0] · W (i, j)) , (2)

and letting W (i, j) = w+
i j and W (j, i) = −w−

i j for all i < j. However, this turns out to be unnecessary.

Theorem 1. Let V = {v1 . . . v N} be a set of data points and W an asymmetric similarity matrix over V . Assume that for all i and j,
W (i, j) = ∞ implies W (j, i) �= −∞ (from which it also follows that W (i, j) = −∞ implies W (j, i) �= ∞). Then there is a symmetric
similarity matrix W S such that

argmincl(H(W S , cl)) = argmincl(H ′(W , cl)).

We note that the assumption in the theorem is minor. The condition can be checked in polynomial time, and if it does
not hold, there are no feasible solutions to the constrained problem. A detailed proof of Theorem 1 is provided in Ap-
pendix A. The simpler objective function H simplifies the exact declarative formulations considered in this work.

2.3. Constrained clustering

In the clustering domain, the concept of a constraint is fairly abstract and the exact types of constraints that are feasible
depend on the particular domain. A typical categorization of different types of constraints are instance-level constraints and
cluster-level constraints [37]. Cluster-level constraints [36] deal with relationships between clusters. Examples of cluster-level
constraints include constraints which enforce a predefined lower bounds for the similarity (distance) over clusters or a
predefined upper bound on the dissimilarity of points within the clusters, as well as constraints requiring that the clustering
contains at most/exactly/at least some fixed number of clusters or that all clusters contain at least a certain number of data
points. Instance-level constraints deal with relationships between points. Two very well known examples are the already
discussed ML and CL constraints. ML and CL constraints are have been shown to be flexible in the sense that many different
types of constraints can be expressed in terms of them [37].

2.4. Consensus clustering

As detailed in [15], another problem closely related to correlation clustering is consensus clustering. In consensus clus-
tering we are given a set V of data points and K different clusterings of V . The task is then to find a single consensus
clustering which agrees as well as possible with the input clusterings. Consensus clustering fits into our problem definition
by the following construction. For each pair of points vi, v j ∈ V let si j be the number of clusterings in which vi and v j
are co clustered and dij = K − si j be the number of clusterings in which they are not. Now construct a similarity matrix
W by assigning W (i, j) = si j and W (j, i) = −dij for each pair of data points and apply Theorem 1 to obtain the equiva-
lent (in terms of correlation clustering) symmetric similarity matrix. Then an optimal solution to the resulting correlation
clustering problem corresponds to an optimal solution to the consensus clustering problem. Consensus clustering is indeed
also NP-hard [38]. Recently the problem has received more attention due to applications in bioinformatics and in particular
microarray data analysis [16–19].

3. Correlation clustering as integer linear programming

An exact integer linear programming (ILP) formulation of correlation clustering has been proposed in [5,10]. We will
now restate this integer linear programming formulation in terms of our generic problem setting.

Given a set V = {v1, . . . , v N } of N data points and a symmetric similarity matrix W , the integer program involves
binary variables xij ∈ {0, 1}, where 1 ≤ i < j ≤ N . The intended interpretation of these variables is that xij = 1 iff vi and
v j are co-clustered in any clustering. We note that the variables are only required whenever i < j. However, for notational
convenience, we use xij and x ji to denote the same variable. Using these variables, the set of optimal solutions to the
following integer linear program represents the set of optimal clusterings of V under W [5].

Minimize

∑
−∞<W (i, j)<0

i< j

(
xij · |W (i, j)|) −

∑
∞>W (i, j)>0

i< j

(
xij · W (i, j)

)

subject to: xij + x jk ≤ 1 + xik for all distinct i, j,k
xij = 1 for all W (i, j) = ∞
xij = 0 for all W (i, j) = −∞

xij ∈ {0,1} for all i, j.

(3)

J. Berg, M. Järvisalo / Artificial Intelligence 244 (2017) 110–142 115

The purpose of the transitivity constraint xi j + x jk ≤ 1 + xik is to ensure a well-defined clustering; for any (vi, v j, vk) ∈
V × V × V , each of the points vi, v j, vk must belong to exactly one cluster, and hence it follows that if points vi, v j are
assigned to the same cluster and points v j, vk are assigned to the same cluster, by transitivity then points vi, vk should also
be assigned to the same cluster. Stated as a linear constraint we require that if xij + x jk = 2 then xik = 1, which is exactly
what the transitivity constraint in the integer program demands. The purpose of the two other constraints is to ensure that
the solution clustering respects the infinite values of W . Whenever W (i, j) = ∞, vi and v j have to be co-clustered, which
in terms of the integer program is equivalent to xij = 1. Analogously, W (i, j) = −∞ is equivalent to xij = 0. This formulation
consists of O(N2) variables and O(N3) constraints. In terms of practical considerations, this suggests poor scalability for
larger datasets.

4. Correlation clustering as quadratic integer programming

A quadratic integer programming formulation of correlation clustering was proposed in [33]. In addition to the number of
data points N , the quadratic integer programming (QIP) formulation requires one additional parameter K , an upper limit for
the number of clusters that the solution clustering should contain. The formulation allows K = N in which case the set of
possible solutions to the quadratic program exactly matches the set of possible solutions to the integer linear programming
formulation of correlation clustering and our general definition of correlation clustering (recall Fig. 2). We next restate the
quadratic program in terms of our generic problem setting and the parameter K .

Given a set V = {v1, . . . , v N} of N data points, an upper bound on the number of clusters K , and a symmetric similarity
matrix W , the quadratic program involves binary variables yk

i ∈ {0, 1}, where 1 ≤ i ≤ N and 1 ≤ k ≤ K . The intended inter-
pretation of the variables is that yk

i = 1 iff data point vi is assigned to cluster k. Using these variables, the set of optimal
solutions to the following quadratic integer program represents the set of optimal clusterings of V under W [33].

Minimize

∑
−∞<W (i, j)<0

i< j

(
K∑

k=1

(
yk

i yk
j

)
· |W (i, j)|

)
−

∑
∞>W (i, j)>0

i< j

(
K∑

k=1

(
yk

i yk
j

)
· W (i, j)

)

subject to:
K∑

k=1

yk
i = 1 for all i

K∑
k=1

(
yk

i yk
j

)
= 1 for all W (i, j) = ∞

K∑
k=1

(
yk

i yk
j

)
= 0 for all W (i, j) = −∞

yk
i ∈ {0,1} for all i,k.

(4)

For some intuition, note that the sum
∑K

k=1

(
yk

i yk
j

)
is equal to 1 only if points vi and v j are assigned to the same cluster

in the solution clustering. The purpose of the
∑K

k=1 yk
i = 1 for all i constraint is to ensure that the solution to the quadratic

program corresponds to a well-defined clustering of the data. As all the variables used are binary, the constraint forces
exactly one of the variables y1

i , . . . , y
K
i to 1 for all i, which in turn ensures that the corresponding data point vi is assigned

to exactly one cluster, as required for a well-defined clustering. This non-convex QIP consists of O(N K) variables and
O(N + I) constraints where I is the number of infinite values in the input similarity matrix. We note that the non-convexity
of the quadratic program can follow both from the integrality constraints as well as the similarity values themselves, as
demonstrated by the following example.

Example 3. Consider the set V = {v1, v2, v3} of data points and the following similarity matrix over V :

W =
[∞ −1 −10

−1 ∞ 1
−10 1 ∞

]
.

For this similarity matrix and K = N = 3, the QIP in matrix form is

Minimize
1
2 (y)T W(y)

subject to: Ay = b
y ∈ {0,1}9,

116 J. Berg, M. Järvisalo / Artificial Intelligence 244 (2017) 110–142

where

y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1
1

y2
1

y3
1

y1
2

y2
2

y3
2

y1
3

y2
3

y3
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0 10 0 0
0 0 0 0 1 0 0 10 0
0 0 0 0 0 1 0 0 10
1 0 0 0 0 0 −1 0 0
0 1 0 0 0 0 0 −1 0
0 0 1 0 0 0 0 0 −1

10 0 0 −1 0 0 0 0 0
0 10 0 0 −1 0 0 0 0
0 0 10 0 0 −1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

with A and b chosen to fit the constraints
∑K

k=1 yk
i = 1 for all i. For this instance of correlation clustering, the matrix W is

indefinite. To see this, observe that it has both negative and positive eigenvalues, for example 10 and −5 − 3
√

3. Hence the
objective function of the quadratic program in itself is not convex.

5. Maximum Satisfiability

Before describing our MaxSAT formulations of correlation clustering, we review necessary basic concepts related to Max-
imum Satisfiability.

5.1. Syntax and semantics

For a Boolean variable x, there are two literals, x and ¬x. A clause is a disjunction (∨, logical OR) of literals and a truth
assignment is a function from Boolean variables to {0, 1}. A clause C is satisfied by a truth assignment τ (τ (C) = 1) if
τ (x) = 1 for a literal x in C , or τ (x) = 0 for a literal ¬x in C . A set F of clauses is satisfiable if there is an assignment τ
satisfying all clauses in F (τ (F) = 1), and unsatisfiable (τ (F) = 0 for any assignment τ) otherwise.

An instance F = (Fh, Fs, c) of the weighted partial MaxSAT problem consists of two sets of clauses, a set Fh of hard clauses
and a set Fs of soft clauses, and a function c : Fs → R+ that associates a non-negative cost with each of the soft clauses.1

Any truth assignment τ that satisfies Fh is a solution to F . The cost cost(F , τ) of a solution τ to F is defined as

cost(F , τ) =
∑
C∈Fs

c(C) · (1 − τ (C)),

i.e., as the sum of the costs of the soft clauses not satisfied by τ . A solution τ is (globally) optimal for F if cost(F , τ) ≤
cost(F , τ ′) holds for any solution τ ′ to F . The cost of the optimal solutions of F is denoted by opt(F). Given a weighted
partial MaxSAT instance F , the weighted partial MaxSAT problem asks to find an optimal solution to F . For simplicity, we
will from here on drop the term “weighted partial” when referring to weighted partial MaxSAT instances, and simply refer
to them as MaxSAT instances.

Example 4. As an example of modeling problems with MaxSAT, consider the 3-coloring problem for the graph in Fig. 4.
The coloring problem can be modeled with MaxSAT by forming a MaxSAT instance F = (Fh, Fs, c) using a set of 15 boolean
variables, {ri, bi, gi | i = 1..5}. The intended semantics of a variable rx is that the node x is colored red, similarly for gx

(green) and bx (blue). The hard clauses in F restrict each node to be colored with exactly one color and the soft clauses
represent the constraints forcing each pair of nodes sharing an edge to be colored with different colors. As clauses, this
corresponds to

Fig. 4. An example graph together with one of its 3-colorings. (For interpretation of the colors in this figure, the reader is referred to the web version of
this article.)

1 Our definition for the function c is more general than the standard c : Fs → N+ , which restricts the costs of soft clauses to be integral.

J. Berg, M. Järvisalo / Artificial Intelligence 244 (2017) 110–142 117

Fh = {(r1 ∨ b1 ∨ g1), (r2 ∨ b2 ∨ g2), (r3 ∨ b3 ∨ g3), (r4 ∨ b4 ∨ g4), (r5 ∨ b5 ∨ g5),

(¬r1 ∨ ¬g1), (¬r1 ∨ ¬b1), (¬b1 ∨ ¬g1), (¬r2 ∨ ¬g2), (¬r2 ∨ ¬b2), (¬b2 ∨ ¬g2),

(¬r3 ∨ ¬g3), (¬r3 ∨ ¬b3), (¬b3 ∨ ¬g3), (¬r4 ∨ ¬g4), (¬r4 ∨ ¬b4), (¬b4 ∨ ¬g4),

(¬r5 ∨ ¬g5), (¬r5 ∨ ¬b5), (¬b5 ∨ ¬g5)}
and

Fs = {(¬r1 ∨ ¬r2), (¬b1 ∨ ¬b2), (¬g1 ∨ ¬g2), (¬r1 ∨ ¬r3), (¬b1 ∨ ¬b3), (¬g1 ∨ ¬g3),

(¬r1 ∨ ¬r4), (¬b1 ∨ ¬b4), (¬g1 ∨ ¬g4), (¬r2 ∨ ¬r3), (¬b2 ∨ ¬b3), (¬g2 ∨ ¬g3),

(¬r2 ∨ ¬r4), (¬b2 ∨ ¬b4), (¬g2 ∨ ¬g4), (¬r3 ∨ ¬r4), (¬b3 ∨ ¬b4), (¬g3 ∨ ¬g4),

(¬r3 ∨ ¬r5), (¬b3 ∨ ¬b5), (¬g3 ∨ ¬g5), (¬r4 ∨ ¬r5), (¬b4 ∨ ¬b5), (¬g4 ∨ ¬g5)}
with c(w) = 1 for all w ∈ Fs . An optimal solution τ to F is τ (r1) = τ (r3) = τ (b5) = τ (b2) = τ (g4) = 1 and τ (x) = 0 for all
other variables. The cost of this solution is 1, proving that any 3-coloring of the graph in Fig. 4 has to assign the same color
to at least one pair of nodes sharing an edge.

5.2. Solving MaxSAT

Recent advances in MaxSAT solvers make MaxSAT a viable approach to finding globally (cost-)optimal solutions to vari-
ous optimization problems with successful real-world applications such as hardware design debugging [39], post-silicon and
C-code fault localization [40,41], reasoning over biological networks [42], and optimal Bayesian network structure learn-
ing [43]. As both SAT solvers and MaxSAT solvers continue improving, it is becoming commonly accepted that large problems
can be solved in practice [44] and that the computational time is very much an empirical question and often not domi-
nated by theoretical worst-case complexity. Indeed, MaxSAT is an active area of research [45–49]. We next provide a short
overview of MaxSAT solvers. For a more comprehensive discussion, we refer the reader to [50,51].

Many of the state-of-the-art MaxSAT solvers aimed at efficiently solving real-world instances in practice make use of a
SAT solver as a subroutine. By relaxing the soft clauses in the input formula, the MaxSAT solver can linearly search for the
optimal solution to the instance by querying the SAT solver for the existence of a truth assignment (not) satisfying at least
(at most) k soft clauses for different values of k. Intuitively, k can then either be an upper [46] or a lower bound [52,53] for
the optimal solution. Another often used search strategy is binary search [49,47]. This basic idea of the algorithm has been
improved by exploiting the fact that whenever invoked on an unsatisfiable set of clauses, a modern SAT-solver can produce
proof of unsatisfiability in the form of a (small) subset of the input clauses that in itself is unsatisfiable. These subsets
are commonly referred to as unsatisfiable cores [52,47,54]. By using the information provided by the cores, MaxSAT solver
can relax soft cores on demand, instead of having to relax all of them upfront. Solvers following this strategy are referred
to as core-guided solvers. Other proposed methods for MaxSAT solving include incorporating integer linear programming
techniques, either as one part of the solving algorithm [55] or by directly encoding the MaxSAT instance as an instance of
integer linear programming [56].

In this work, we extend the application domains of MaxSAT to correlation clustering by presenting three different encod-
ings for finding optimal solutions to the correlation clustering problem. Given a symmetric similarity matrix W over a set V
of data points (recall Section 2.1), the basic idea behind all of our MaxSAT formulations of correlation clustering is that hard
clauses are used to enforce that any solution to the MaxSAT instance represents a well-defined clustering (i.e., a mapping
cl: V → N). The soft clauses are used to encode the cost function in a faithful way, so that each solution to the MaxSAT
instance can be mapped into a clustering with exactly the same cost. In this way the optimal solution of the created MaxSAT
instance can be mapped into the optimal clustering of the correlation clustering problem. Next we will present all three
encodings in detail.

6. A MaxSAT formulation of correlation clustering: transitive encoding

Our first MaxSAT formulation, the transitive encoding, of correlation clustering can be viewed as a simple reformulation
of the integer linear programming formulation (recall Section 3) in terms of MaxSAT.

Similarly as in the ILP formulation, we use boolean variables xij , where 1 ≤ i < j ≤ N , with the interpretation that xij = 1
iff points vi and v j are co-clustered.2 We again adopt the notational convenience xij = x ji . Now the transitive encoding
forms the MaxSAT instance F 1 = (F 1

h , F 1
s , c) summarized in Fig. 5.

We next describe the different parts of F 1 in detail.

2 Unlike the two other MaxSAT encodings considered in this work, the transitive encoding does not directly allow for enforcing an upper bounds of less
than N on the number of clusters.

118 J. Berg, M. Järvisalo / Artificial Intelligence 244 (2017) 110–142

Hard Clauses F 1
h : (¬xij ∨ ¬x jk ∨ xik) for all (vi , v j , vk) ∈ V 3

where i, j,k are distinct

Must-Link (xij) for all i < j s.t. W (i, j) = ∞
Cannot-Link (¬xij) for all i < j s.t. W (i, j) = −∞

Soft Clauses F 1
s : (xij) for all similar vi , v j s.t. i < j

(¬xij) for all dissimilar vi , v j s.t. i < j

Cost c of soft clauses c((xij)) = W (i, j) for all similar vi , v j s.t. i < j

c((¬xij)) = |W (i, j)| for all dissimilar vi , v j s.t. i < j

Fig. 5. MaxSAT instance F 1 = (F 1
h , F 1

s , c) produced by the transitive encoding.

6.1. Hard clauses

The hard clauses F 1
h of the transitive encoding are a clausal formulation of the transitivity constraints (xij + x jk ≤

1 + xik for all distinct i, j, k) of the ILP formulation. In terms of propositional logic, these can be stated as (xij ∧ x jk) → xik ,
which in clausal form corresponds to

(¬xij ∨ ¬x jk ∨ xik
)
.

6.2. Soft clauses

The soft clauses F 1
s encode the cost function. Each dissimilar pair of points vi and v j (−∞ < W (i, j) < 0) that are

co-clustered corresponds to exactly one unsatisfied soft clause with weight −W (i, j), and similarly, each similar pair of
points vi and v j (∞ > W (i, j) > 0) that are assigned to different clusters corresponds to one unsatisfied soft clause with
weight W (i, j). These conditions are captured by the unit soft clauses (¬xij) and (xij), respectively, with weights set to
|W (i, j)|.

6.3. Encoding constrained clustering

The transitive encoding extends naturally to constrained correlation clustering with ML and CL constraints. For each
W (i, j) = ∞, vi and v j are forced to be co-clustered. This is achieved with the hard clause (xij). Similarly, for each
W (i, j) = −∞, points vi and v j are forced to different clusters, which is achieved by the hard clause (¬xij). In addition to
ML and CL, various types of other constraints can be expressed.

Example 5 (Running example of further constraints). We will use a running example of encoding additional constraints under
the three MaxSAT encodings considered in the work, highlighting some of the differences between the encodings. As an
example, consider the constraint NotCoClustered(i, j, t) forbidding a triple of points vi , v j and vt from being co-clustered.
Under the transitive encoding, this constraint can be encoded as a single clause NotCoClustered(i, j, t) := (¬xij ∨ ¬x jt ∨
¬xit). As another example, consider the cluster-level constraint AtMostInAll(k) requiring each cluster to contain at most k
data points. This constraint can be reformulated as requiring that each data point vi is co-clustered with at most k −1 other
data points. For a fixed data point vi the latter formulation can be encoded as a cardinality constraint

∑
j={1,...,N}\{i} xij ≤

(k − 1) requiring at most k − 1 of the variables xi1, . . . xiN to be set to true, which can further be encoded with hard clauses
using one of the several compact cardinality constraints; see e.g. [57,58]. The whole AtMostInAll(k) constraint decomposes
in to a conjunction of such cardinality constraints over i.

6.4. Constructing a clustering from a MaxSAT solution to the transitive encoding

Any solution τ to F 1 represents a valid clustering clτ of V , constructed in an iterative manner as follows.

While there still are unassigned points left:

1. Let i be the smallest index for which clτ (vi) is not defined yet and let j be the iteration number (j = 1...).
2. Assign clτ (vi) = j.
3. Assign clτ (vk) = j for all still unassigned vk for which τ (xik) = 1.

The fact that clτ is well-defined follows from the observation that each point gets assigned to at most one cluster and each
iteration of the procedure assigns at least one point to a cluster. Furthermore, the hard transitivity constraints in F 1 ensure
that the intended semantics of the xij variables hold in clτ . Hence it follows that the optimal solutions of F 1 correspond to
the optimal clusterings of V . The correctness of the transitive encoding can be formalized as follows.

J. Berg, M. Järvisalo / Artificial Intelligence 244 (2017) 110–142 119

Hard Clauses F 2
h : ExactlyOne(i) for all vi ∈ V

HardSimilar(i, j,k) for all similar vi , v j s.t. i < j

and 1 ≤ k ≤ K

HardDissimilar(i, j,k) for all dissimilar vi , v j s.t. i < j

and 1 ≤ k ≤ K

Must-Link ML
U (vi , v j) for all i < j s.t. W (i, j) = ∞

Cannot-Link CL
U (vi , v j) for all i < j s.t. W (i, j) = −∞

Soft Clauses F 2
s : SoftSimilar(i, j) for all similar vi , v j s.t. i < j

SoftDissimilar(i, j) for all dissimilar vi , v j s.t. i < j

Cost c of soft clauses c(SoftSimilar(i, j)) = W (i, j) for all similar vi , v j s.t. i < j

c(SoftDissimilar(i, j)) = |W (i, j)| for all dissimilar vi , v j s.t. i < j

Fig. 6. MaxSAT instance F 2 = (F 2
h , F 2

s , c) produced by the unary encoding.

Theorem 2. Given a set V of data points and a symmetric similarity matrix W over V , let F 1 be the MaxSAT instance produced by the
transitive encoding on W . The clustering clτ ∗ : V → N constructed from an optimal solution τ ∗ to F 1 is an optimal clustering of V .

A detailed proof of the theorem is given in Appendix A.
We note that the transitive encoding does not require a predefined number of clusters. This is avoided by the definition

of the xij variables, interpreted as pairwise indicator variables for two data points vi, v j being assigned to the same cluster.
However, the encoding is not very compact. Its size is similar to the ILP presented earlier, O(N2) variables and O(N3)

clauses, suggesting that also this encoding does not scale well. Next we will present a unary encoding of correlation clustering
into MaxSAT, which to some extent addresses the compactness issue of the transitive encoding.

7. An unary encoding of correlation clustering into MaxSAT

We now consider a more compact unary encoding, which to some extent resembles the quadratic integer programming
formulation presented in Section 4. Similarly to the QIP, the unary encoding allows an upper bound K on the number of
available clusters. By letting K = N , the set of clusterings produced by the unary encoding is exactly the same as for the
transitive encoding. The size of the unary encoding is O(E · K + N · K) variables and O(E · K) clauses where E is the number
of non-zero values in the input similarity matrix W . Due to the dependence on E , in practice the unary encoding is more
compact than the transitive encoding whenever the input matrix contains 0-entries or K < N .

The unary encoding involves N · K boolean variables yk
i , where i = 1..N (the number of data points) and k = 1..K

(the number of clusters). The intended interpretation of these variables is that yk
i = 1 iff point vi belongs to cluster k.

Furthermore, the encoding employs two types of auxiliary variables.

• Ak
ij , where i = 1..N , j = 2..N , i < j, W (i, j) > 0, and k = 1..K , with the interpretation Ak

ij = 1 iff points vi and v j are
both assigned to cluster k.

• Dij , where i = 1..N , j = 2..N , i < j, and W (i, j) < 0, with the interpretation that if Dij = 0, then points vi and v j are
assigned to different clusters.

These variables are used for compactly encoding the similarity and dissimilarity constraints. We will next present details
on the clauses used in the unary encoding. As with the transitive encoding, the hard clauses limit the set of solutions to
well-defined clusterings, and the soft clauses encode the cost function in a faithful way. However, the hard and soft clauses
differ significantly from the clauses in the transitive encoding. Most notably, both hard and soft clauses are included in the
unary encoding for encoding the similarity and dissimilarity constraints.

Concretely, the unary encoding forms the MaxSAT instance F 2 = (F 2
h , F 2

s , c) summarized in Fig. 6.
We next describe the different parts of F 2 in detail.

7.1. Ensuring well-defined clusterings

The hard constraints ExactlyOne(i) constrain the search to well-defined clusterings by enforcing that each data point vi

is assigned into exactly one cluster k. In terms of the variables in the encoding this means that, for each i, exactly one of
the variables y1

i , . . . , y
K
i should be assigned to 1, i.e.,

ExactlyOne(i) :=
K∑

k=1

yk
i = 1.

120 J. Berg, M. Järvisalo / Artificial Intelligence 244 (2017) 110–142

A number of different encodings of this cardinality constraint as clauses have been previously developed [59]. In our ex-
periments, we used the so-called sequential encoding [60] which is linear, or more precisely, introduces 3K − 4 clauses and
K − 1 auxiliary variables for each i. We refer the interested reader to [60] for a detailed description of this encoding.

7.2. Encoding similarity

For a similar pair of data points vi and v j , the constraints HardSimilar(i, j, k) for each k = 1..K and SoftSimilar(i, j)
together enforce the requirement that vi and v j are assigned to the same cluster whenever the soft constraint
SoftSimilar(i, j) is satisfied. In terms of propositional logic, this requirement can be expressed as the formula

(y1
i ∧ y1

j) ∨ (y2
i ∧ y2

j) ∨ . . . ∨ (yK
i ∧ yK

j).

In order to the express this propositional formula as clauses, we employ the auxiliary variables Ak
ij and define the semantics

of these to be τ (Ak
ij) = 1 iff τ (yk

i ∧ yk
j) = 1. In terms of propositional logic, the defining constraint is Ak

ij ↔ (yk
i ∧ yk

j), which
can be expressed as

HardSimilar(i, j,k) := {(¬Ak
ij ∨ yk

i), (¬Ak
ij ∨ yk

j), (Ak
ij ∨ ¬yk

i ∨ ¬yk
j)}.

We note that the definitions of the auxiliary variables do not yet enforce points vi and v j to be assigned to cluster k.
Instead, the clauses HardSimilar(i, j, k) state that the variable Ak

ij is set to true if and only if points vi and v j are both
assigned to cluster k. This must hold in every solution to F 2, hence the clauses are hard.

Using the auxiliary variables, the soft constraint expressing that the points vi and v j are assigned to the same cluster
can be encoded as the clause

SoftSimilar(i, j) := (A1
i j ∨ · · · ∨ AK

ij) with weight c(SoftSimilar(i, j)) = W (i, j).

For some intuition, we note that if this clause is satisfied in a solution τ , then for some k, τ (Ak
ij) = 1. Since all hard clauses

are satisfied in any solution, it follows that points vi and v j will be assigned to cluster k, exactly as required. Similarly, if
points vi and v j are not assigned to the same cluster, then due to the hard constraints we have τ (Ak

ij) = 0 for all k, and
the soft clause will not be satisfied. Each unsatisfied clause must increase the cost of a MaxSAT solution according to the
similarity values of the corresponding points, which is why the weight of the clause is set to W (i, j).

7.3. Encoding dissimilarity

For a dissimilar pair of data points vi and v j , the clauses HardDissimilar(i, j, k) for each k = 1..K and SoftDissimilar(i, j)
together enforce the requirement that vi and v j are assigned to different clusters. This can be expressed by requiring for
each cluster that at least one of vi and v j should not be assigned to that cluster, which in clausal form is expressed by
(¬yk

i ∨ ¬yk
j) for a cluster k. The whole constraint enforcing vi and v j to be assigned to different clusters is hence

(¬y1
i ∨ ¬y1

j) ∧ . . . ∧ (¬yK
i ∨ ¬yK

j). (5)

Equation (5) is already in clausal form. However, we want to make sure that breaking any of the individual clauses cor-
responds to a cost of |W (i, j)|. To achieve this, we use the auxiliary variables Dij , and define them in terms of propositional
logic as ¬Dij → (¬yk

i ∨ ¬yk
j) for each cluster k = 1..K . That is, if τ (Dij) = 0 for some solution τ to F 2, then vi and v j are

not assigned to the same cluster.3 The defining constraint can be expressed as the hard clauses

HardDissimilar(i, j,k) := (Dij ∨ ¬yk
i ∨ ¬yk

j).

The auxiliary variable Dij makes it possible to express the soft constraint requiring vi and v j to not be co-clustered simply
as

SoftDissimilar(i, j) := (¬Dij) with weight c(SoftDissimilar(i, j)) = |W (i, j)|.
For some intuition, we have that if the clause (¬Dij) is satisfied in a solution to F 2, then the clauses (¬yk

i ∨¬yk
j) also have

to be satisfied for all k. Hence points vi and v j are not assigned to the same cluster. On the other hand, if vi and v j are
assigned to the same cluster k, then the solution has to assign Dij = 1 in order to satisfy the hard clause (Dij ∨ ¬yk

i ∨ ¬yk
j),

resulting in one unsatisfied clause with weight |W (i, j)|, exactly as required for representing the correlation clustering cost
function faithfully.

3 The formalism behind grouped soft clauses like the ones in Equation (5) is known as group-MaxSAT. An exact treatment of group-MaxSAT is beyond
the scope of this work, we refer the interested reader to [61].

J. Berg, M. Järvisalo / Artificial Intelligence 244 (2017) 110–142 121

7.4. Encoding constrained clustering

By noticing that for each k = 1..K we need to enforce that cl(vi) = k iff cl(v j) = k, the must-link constraint over vi and
V j can be encoded under the unary encoding as

ML
U (vi, v j) := {(¬y1

i ∨ y1
j), (y1

i ∨ ¬y1
j), . . . , (¬yK

i ∨ yK
j), (yK

i ∨ ¬yK
j)},

where the clauses (¬yk
i ∨ yk

j) and (yk
i ∨ ¬yk

j) correspond to yk
i ↔ yk

j . For some intuition, in any solution τ we have that,
whenever τ (yk

i) = 1, the solution has to assign τ (yk
j) = 1 in order to satisfy (¬yk

i ∨ yk
j). Furthermore, based on the other

hard clauses, we know that there exists exactly one k = 1..K for which τ (yk
i) = 1, and hence τ (yk′

i) = 0 for all k′ �= k. Thus
τ has to assign τ (yk′

j) = 0 in order to satisfy the clause (yk′
i ∨ ¬yk′

j); hence the points are assigned to the same cluster.
The benefit of encoding the must-link constraint in this way compared to the similarity constraint presented earlier

is the elimination of the auxiliary variables Ak
ij and hence a decrease in the number of clauses generated. On the other

hand, similarity constraints cannot be encoded directly in this way since they are soft. Furthermore, whenever a similarity
constraint is not satisfied, the cost added to a MaxSAT solution should be exactly the corresponding similarity value, which
is controlled in a simple way with the Ak

ij variables.
Cannot-link constraints in the unary encoding can also be encoded more compactly than the dissimilarity constraints.

The variable Dij in the encoding is used to ensure that an unsatisfied dissimilarity constraint corresponds exactly to cost
|W (i, j)|. If we know that the dissimilarity constraint has to be satisfied (making it a hard cannot-link constraint), we
can simply leave out the extra variable. The intuition between the cannot-link clauses is that for each k = 1..K and any
solution τ , either τ (yk

i) = 0 or τ (yk
j) = 0. Stated as clauses, we have

CL
U (vi, v j) := {(¬y1

i ∨ ¬y1
j), . . . , (¬yK

i ∨ ¬yK
j)}.

Example 6 (Running example of further constraints continued). Under the unary encoding, the NotCoClustered(i, j, t) con-
straint, forbidding all three of the points vi , v j and vt from being co-clustered, can be encoded with a set of K
clauses

NotCoClustered(i, j, t) := {(¬y1
i ∨ ¬y1

j ∨ ¬y1
t), . . . , (¬yK

i ∨ ¬yK
j ∨ ¬yK

t)}.
The constraint includes one clause for each cluster s = 1..K , each forbidding all three points from being assigned to cluster s.
The constraint AtMostInAll(k), requiring each cluster to contain at most k data points, can be encoded as a conjunction of
K cardinality constraints, namely, by enforcing

∑N
i=1 y j

i ≤ k over each cluster index j.

7.5. Constructing a clustering from a MaxSAT solution to the unary encoding

Given a solution τ to F 2, we can easily construct a corresponding well-defined clustering clτ of the data points by
assigning each point vi into the cluster k for which τ (yk

i) = 1. Due to the hard constraints F 2
h , in any solution τ there

is exactly one such k for every i. Especially, the clustering constructed from an optimal solution to F 2 will be an optimal
clustering of the data, minimizing the correlation clustering objective function. This correctness of the unary encoding can
be formalized as follows.

Theorem 3. Given a set V of data points with |V | = N, a symmetric similarity matrix W over V , and an upper limit K on the available
clusters such that 1 ≤ K ≤ N, let F 2 be the MaxSAT instance produced by the unary encoding on W . The clustering clτ ∗ : V → {1, . . . K }
constructed from an optimal solution τ ∗ to F 2 is an optimal clustering of V over all clusterings cl: V → {1, . . . K }. In other words, clτ ∗
is optimal over all clusterings of V that use at most K clusters.

Intuitively, the theorem follows from the already discussed connections between cost incurred by a clustering and the
weight of unsatisfied soft clauses in the unary encoding. A proof of Theorem 3 is provided in Appendix A.

8. A binary encoding of correlation clustering into MaxSAT

As the third encoding, we describe a binary encoding of correlation clustering as MaxSAT, which is essentially a bitwise
reformulation of the unary encoding. Similarly to the unary encoding, the binary encoding allows an upper limit K on the
available clusters. As is often the case with SAT and MaxSAT encodings, the binary encoding is more compact than both the
unary and the transitive encoding, regardless of the input similarity matrix or the value of K . An instance formed by the
binary encoding contains O(E + N · log2 K) variables and O(E · log2 K) clauses, where E is the number of non-zero values
in the input similarity matrix W .

For simplicity, we first assume that K is a power of 2, more precisely K = 2a for some a ∈ N. From this it follows
that log2 K = a is an integer. The encoding also works if this is not the case; we will describe the required adaptations in

122 J. Berg, M. Järvisalo / Artificial Intelligence 244 (2017) 110–142

Hard Clauses F 3
h : Equality(i, j,k) for all W (i, j) ∈ R \ {0}

SameCluster(i, j) for all W (i, j) ∈ R \ {0}
Must-Link ML

B (vi , v j) for all i < j s.t. W (i, j) = ∞
Cannot-Link CL

B (vi , v j) for all i < j s.t. W (i, j) = −∞
If K �= N and K �= 2a for any a ClustersLessThan(i, K) for all vi ∈ V

Soft Clauses F 3
s : (Sij) for all similar vi , v j s.t. i < j

(¬Sij) for all dissimilar vi , v j s.t. i < j

Cost c of soft clauses c((Sij)) = W (i, j) for all similar vi , v j s.t. i < j

c((¬Sij)) = |W (i, j)| for all dissimilar vi , v j s.t. i < j

Fig. 7. MaxSAT instance F 3 = (F 3
h , F 3

s , c) produced by the binary encoding.

Section 8.5. The encoding uses a variables bk
i where 1 ≤ k ≤ a for each point vi . The intended semantics of these variables

is that point vi is assigned to cluster index ba
i ..b

1
i , interpreted as a binary number with the least significant bit to the right.

Additionally, we employ two types of auxiliary variables.

• EQk
ij , where 1 ≤ i < j ≤ N , W (i, j) ∈ R \ {0}, and 1 ≤ k ≤ a. The intended semantics of EQk

ij is EQk
ij = 1 iff bk

i = bk
j .

• Sij , where 1 ≤ i < j ≤ N and W (i, j) ∈ R \ {0}. Sij = 1 iff points vi and v j are co-clustered. (Note the equivalence: also,
if Sij = 0, then points vi and v j are not assigned to the same cluster.)

An instance F 3 produced by the binary encoding is summarized in Fig. 7. This time, the only hard clauses required are
the clauses defining the auxiliary variables. This is due to the fact that any MaxSAT solution has to assign all the variables bk

i
in some unique way, and hence any solution will represent a well-defined clustering. We next describe the binary encoding
in more detail.

8.1. Hard clauses

As the bk
i variables form the bit-representation of the cluster index of point vi , the question of whether two points vi

and v j are assigned to the same cluster is equivalent to whether the values of bk
i and bk

j are equal for all 1 ≤ k ≤ a. In order
to reason about the equality of individual bits, the binary encoding uses a “equality” variables EQk

ij for each pair of points
vi and v j for which i < j and W (i, j) ∈ R \ {0}. These variables are defined to be equivalent to τ (bk

i) = τ (bk
j) when τ is a

solution to F 3. In terms of propositional logic, the defining constraint is EQk
ij ↔ (bk

i ↔ bk
j), which corresponds to the set of

clauses

Equality(i, j,k) := {(EQk
ij ∨ bk

i ∨ bk
j), (EQk

ij ∨ ¬bk
i ∨ ¬bk

j), (¬EQij ∨ ¬bk
i ∨ bk

j), (¬EQij ∨ bk
i ∨ ¬bk

j)}.
Encoding the semantics of the Sij variables is straightforward using the equality variables. Two points vi and v j are

assigned to the same cluster iff the values at each bit-position in the bit representation of their cluster indices are the
same. Stated in propositional logic, we have Sij ↔ (EQ1

i j ∧ . . . ∧ EQa
ij), which corresponds to

SameCluster(i, j) := {(¬Sij ∨ EQ1
i j), . . . , (¬Sij ∨ EQa

ij), (Sij ∨ ¬EQ1
i j ∨ . . . ∨ ¬EQa

ij)}.

8.2. Soft clauses

As the variable Sij has the exact same semantics as the variable xij in the transitive encoding, it can be used to formulate
the soft clauses of the binary encoding in a very similar manner as the soft clauses in the transitive encoding. For every
similar pair of points vi and v j , the cost of the clustering should increase by W (i, j) whenever the points are not assigned
to the same cluster. This condition is encoded by the unit soft clause (Sij) with weight c((Sij)) = W (i, j). Analogously, for
every dissimilar pair the instance includes the soft clause (¬Sij) with weight c((¬Sij)) = |W (i, j)|.

8.3. Encoding constrained clustering

For compactly encoding the must-link constraint in the binary encoding, we simplify the similarity constraint. We need
to ensure that τ (bk

i) = τ (bk
j) for all bits k = 1..a and all MaxSAT solutions τ . For a fixed k, this can be stated as (bk

i ↔ bk
j),

which as clauses is expressed by (¬bk
i ∨ bk

j), (b
k
i ∨ ¬bk

j). Hence the whole must-link constraint is

ML
B(vi, v j) := {(¬b1

i ∨ b1
j), (b

1
i ∨ ¬b1

j), . . . , (¬ba
i ∨ ba

j), (b
a
i ∨ ¬ba

j)}.

J. Berg, M. Järvisalo / Artificial Intelligence 244 (2017) 110–142 123

The cannot-link constraint can be seen as a simplified dissimilarity constraint. The variable EQk
ij and the clauses defining it

are still required for all bits. However, the cannot-link constraint can be stated as a single clause: we simply require that
there exists a bit-position k such that the values bk

i and bk
j differ. The whole cannot-link constraint is

CL
B(vi, v j) := {Equality(i, j,1), . . . ,Equality(i, j,a), (¬EQ1

i j ∨ . . . ∨ ¬EQa
ij)}.

Example 7 (Running example of further constraints continued). Due to the similar semantics of the Sij variables of the binary
encoding and the xij variables of the transitive encoding, both of our example constraints can be encoded very similarly to
the transitive encoding. The NotCoClustered(i, j, t) constraint, forbidding all three of the points vi , v j and vt from being
co-clustered, can be encoded by a single clause NotCoClustered(i, j, t) := (¬Sij ∨ ¬Sit ∨ ¬S jt), i.e., more compactly than
in the unary encoding directly. Also, the AtMostInAll(k) constraint can be encoded similarly to the transitive encoding
by using for each vi , a cardinality constraint forbidding vi from being co-clustered with mode than k − 1 other points: ∑

j={1...N}\{i} Sij ≤ k − 1.

8.4. Constructing a clustering from a MaxSAT solution to the binary encoding

Given a solution τ to F 3, there is again a very natural way of constructing a clustering of V . For each data point vi , let
τ (ba

i)τ (ba−1
i) . . . τ (b1

i) = c, where the left hand side is interpreted as a binary number, and assign clτ (vi) = c + 1. Since the
number of available bits is log2 K , it follows that 0 ≤ c ≤ K − 1, and hence 1 ≤ clτ (vi) ≤ K holds for all vi . The clustering
constructed from an optimal solution to F 3 is optimal amongst all clusterings using at most K clusters.

Theorem 4. Given a set V of data points with |V | = N, a symmetric similarity matrix W over V , and an upper limit K on the available
clusters such that 1 ≤ K ≤ N, let F 3 be the MaxSAT instance produced by the binary encoding on W . The clustering clτ ∗ : V → {1, . . . K }
constructed from an optimal solution τ ∗ to F 3 is an optimal clustering of V under W over all clusterings cl: V → {1, . . . K }. In other
words, clτ ∗ is optimal over all clusterings of W that use at most K clusters.

A proof of this theorem is provided in Appendix A.

8.5. The binary encoding for general K

So far we have assumed that the upper limit on the available clusters is a power of 2, or, more precisely, that K = 2a for
some a. This assumption simplifies the binary encoding since the values representable in binary with a bits are exactly 0 to
2a − 1. It is also possible to constraint K to an arbitrary value. A simple approach would be to encode a separate constraint
for each point vi and each value j ∈ {K , K + 1, . . . , 2a − 1} forbidding the value of the bit variables ba

i , . . . , b
1
i (interpreted as

a binary number) from being equal to j. However, this would result in O(N2 · log2 N) clauses, the same as the worst-case
size of the whole encoding.

A more compact formulation can be obtained by observing that, for each data point we only need to encode a single
constraint stating that the value of its assigned cluster index should be less than K . For a given K , let K j denote the
value of the jth bit in the binary representation of K . Note that as 2a−1 < K ≤ 2a , there are exactly a bits in the binary
representation of K . For any set of bit variables ba

i , . . . , b
1
i , denote the value represented by these variables in binary by

(ba
i . . .b1

i)2. For a given datapoint vi we can encode the constraint (ba
i . . .b1

i)2 < K recursively using the observation that a
binary number (ba

i . . .b1
i)2 is less than another binary number (K a . . . K 1)2 iff

• K a = 1 and ba
i = 0, or

• K a = ba
i and (ba−1

i . . .b1
i)2 < (K a−1 . . . K 1)2.

This formulation of inequality between binary numbers follows directly from the properties of binary numbers. We encode
it as MaxSAT by introducing a fresh variables B j

i , 1 ≤ j ≤ a, and adding clauses defining them recursively as

DefB(i,1) := B1
i ↔

(
¬b1

i ∧ (K 1 = 1)
)

,

DefB(i, j) := B j
i ↔

(
(¬b j

i ∧ (K j = 1)) ∨ ((b j
i ↔ K j) ∧ B j−1

i)
)

. (6)

As the value of K is known, we can simplify the definition accordingly when adding the clauses to the encoding. Using
these variables, the whole constraint limiting the number of clusters is enforced by the clauses defining the semantics of
the B j

i variables, together with N unit clauses, one for each data point:

ClustersLessThan(i, K) := {DefB(i,1), . . . ,DefB(i,a) | i = 1..N} ∪ {(Ba
1), . . . , (Ba

N)}.
The size of this formulation is O(N · log2(N)).

124 J. Berg, M. Järvisalo / Artificial Intelligence 244 (2017) 110–142

Table 1
Number of data points in datasets considered.

Dataset Number of points

Ecoli 327
Ionosphere 351
ORL 400
Prot3 567
Umist 575
Prot2 586
Prot4 654
Prot1 669
Breastcancer 683
Diabetes 768
Vowel 990

9. Experimental evaluation

We will now describe an experimental evaluation of our MaxSAT-based approach to correlation clustering.

9.1. Benchmarks

We experiment on real-world datasets consisting of similarity values between amino-acid sequences of different pro-
teins [62], as well as similarity matrices we obtained from standard UCI benchmark datasets. For each of the obtained
similarity matrices, we normalized the matrix entries to the range [−0.5, 0.5].

9.1.1. Protein sequence datasets
We obtained four protein sequence datasets from http :/ /www.paccanarolab .org /scps. The data consists of similarity val-

ues between amino-acid sequences, originally computed using BLAST [63]. All values were originally in the range [0, 1.0].
Normalization of the similarity information to the range [−0.5, 0.5] was done by subtracting 0.5 from each entry. Table 1
shows the number of data points for each data set.

9.1.2. UCI datasets
In addition to the protein sequence datasets, we produced similarity matrices based on the following UCI datasets.

• ORL: the AT&T ORL database of images of faces, each of size 92 × 112. Obtained from http :/ /www.cl .cam .ac .uk /research /
dtg /attarchive /facedatabase .html.

• Ionosphere: the UCI ionosphere dataset, for classification of radar returns from the ionosphere, originally with 34 at-
tributes. Obtained from http :/ /archive .ics .uci .edu /ml/.

• Umist: the Sheffield (previously UMIST) Face Database, each face image of size 92 × 112. Obtained from http :/ /www.
sheffield .ac .uk /eee /research /iel /research /face.

• Breastcancer: the LIBSVM breast-cancer dataset, originally named “Wisconsin Breast Cancer in UCI”. The set contains 10
features. Obtained from http :/ /www.csie .ntu .edu .tw /~cjlin /libsvmtools /datasets/.

• Diabetes: the LIBSVM diabetes dataset, originally from UCI, containing 8 features. Obtained from http :/ /www.csie .ntu .
edu .tw /~cjlin /libsvmtools /datasets/.

• Ecoli: the UCI Ecoli dataset, containing protein localization sites, with 8 features. Obtained from http :/ /archive .ics .uci .
edu /ml/.

• Vowel: the LIBSVM Vowel dataset, originally from UCI, with 10 features. Obtained from http :/ /www.csie .ntu .edu .tw /
~cjlin /libsvmtools /datasets/.

For these datasets, we first calculated the normalized Euclidean distance between each pair of points, and directly inter-
preted the distances as similarity values by linear inverse mapping to the range [−0.5, 0.5]. In order to simulate incomplete
similarity information, we finally modified all similarity values in the range [−0.25, 0.25] to be 0. The size of each dataset
is reported in Table 1.

9.1.3. Setup
For solving the MaxSAT instances resulting from our encodings, we used the academic off-the-shelf MaxSAT solver

MaxHS [64,55,65] (MaxSAT evaluation 2013 version) obtained from the authors. MaxHS implements a hybrid approach to
MaxSAT solving, combining the logical reasoning power of a SAT solver with the arithmetic reasoning power of an integer
linear programming solver. During its execution, MaxHS maintains a set of unsatisfiable cores (recall Section 5.2). At each
iteration, the ILP solver is used for finding a minimum-cost hitting set over the soft clauses in the current set of cores. Clauses
in the hitting set are then temporarily removed from the instance and the SAT solver is invoked again. MaxHS terminates
when the working formula is satisfiable, at which point the assignment returned by the SAT solver is an optimal solution

J. Berg, M. Järvisalo / Artificial Intelligence 244 (2017) 110–142 125

to the MaxSAT instance. We note that MaxHS is by no means the only possible choice for a MaxSAT solver to use. We also
report on a comparison of different state-of-the-art MaxSAT solvers in Section 9.4.3, the results of which motivate the use
of MaxHS.

We compare the MaxSAT-based approach with exactly solving the integer linear programming and the quadratic integer
programming formulations of correlation clustering (recall Sections 3 and 4, respectively). We used the commercial state-
of-the-art integer programming solvers IBM CPLEX (version 12.6) and Gurobi Optimizer (version 6.0) for solving the integer
linear programs, and additionally, the non-commercial SCIP [66] framework for solving the quadratic integer programs. Fur-
thermore, we also compare to two approximative algorithms in terms of the cost of solutions obtained: the approximation
algorithm KwickCluster (KC) proposed in [5] and further considered in [67], and the SDPC approach based on a semi-
definite relaxation of the quadratic integer programming formulation, proposed in [34]. More details on these algorithms
are provided in Section 10.1. For solving the semi-definite programs, we used the Matlab package SeDuMi 1.3 [68].

On the protein data we also experimented with the algorithms described in [62], available from http :/ /www.paccanarolab .
org /scps, which are specialized algorithms for correlation clustering protein sequences. The authors provide two algorithms
that allow an unrestricted number of clusters by default. One is based on spectral clustering (SCPS) and the other on
connected component analysis (CCA).

In addition to the comparative results, we also report on MaxSAT-specific experiments on the effect of MaxSAT-level
preprocessing (in Section 9.4.1) and symmetry breaking (in Section 9.4.2) on solving times. We employed MaxSAT prepro-
cessing in all experiments due to its positive impact on solving times. As for symmetry breaking on the MaxSAT-level in the
other experiments, we only applied partial symmetry breaking to all formulas by enforcing the point with the lowest index
to always be assigned to the first cluster.

A timeout of 8 hours and a memory limit of 30 GB were enforced on each individual run of a solver. The experiments
were run under Linux on eight-core Intel Xeon E5440 2.8-GHz cluster nodes each with 32 GB of RAM. In order to ensure
repeatable results, only a single algorithm on a single benchmark instance was executed on each cluster node at each time.

9.2. Experiments on unconstrained correlation clustering

We first focus on unconstrained correlation clustering, i.e., correlation clustering under the assumption that there are no
infinite values in the input similarity matrices.

9.2.1. Comparison of algorithms providing optimal solutions
We start with a comparison of the exact approaches to correlation clustering: our three MaxSAT encodings, the integer

linear programming formulation (ILP), and the quadratic integer programming formulation (QIP). As the size of the transitive
encoding and the integer linear program does not depend on the number of non-zero elements in the similarity matrix, for
these experiments we created instances by varying the number of points n ≥ 50 in the four protein datasets (Prot1, Prot2,
Prot3 and Prot4) by considering only the n first rows and columns of the original similarity matrix of each data set.

The results are shown in Fig. 8. The reason for the absence of the QIP approach from the plot is that neither CPLEX,
Gurobi, nor SCIP was able to solve any of the quadratic programs exactly within the time limit. For example, SCIP was
able to solve the instances when using 20 points within seconds, but was unable to solve 50 points within 8 hours. While
we do not have a definitive explanation for this poor behavior, one possible explanation may deal with the non-convexity
(recall Section 4) of the QIP formulation of correlation clustering.4 The transitive and the unary MaxSAT encodings, as well
as the ILP approach, are competitive with the binary encoding only when the number of points is small. However, all three
MaxSAT encodings scale better than ILP and QIP. Both CPLEX and Gurobi ran out of memory on the ILP formulation for
instances larger than 300 points, suggesting it will fail to solve larger instance irrespective of the timeout. Furthermore, the
encodings for which the size of the instance is not dependent on the number of non-zero entries in the similarity matrix
cannot benefit from any sort of pruning that one might be able to do on the similarity values of the input data.

Based on these observations, for the MaxSAT-based approach we focus on the binary encoding in the rest of the experi-
ments.

9.2.2. Performance on sparse data
Next we simulate a setting in which the input data is sparse, that is, situations in which the similarity information

available is incomplete. For p ∈ {0.05, 0.10, . . . , 1}, we created instances from a given similarity matrix W by independently
setting each non-zero element W (i, j) to 0 with a probability 1 − p. This results in a matrix W ′ where the expected number
of non-zero entries is p · 100% of the number of non-zero entries in W .

We ran each of the approximative algorithms 100 times on each instance, and report the best values returned by them.
We note that a single run of any of the approximative algorithms is very short, at most one minute for SDPC and within
10 seconds for the others.

Figs. 9, 10 and 11 summarize the result of solving the sparse instances. A sparser matrix results in MaxSAT instances
which are faster to solve. More importantly, however, we notice that MaxSAT is fairly robust when it comes to dealing with

4 This would be inline with behavior observed in other problem domains as well, see e.g. [69].

126 J. Berg, M. Järvisalo / Artificial Intelligence 244 (2017) 110–142

Fig. 8. Point scalability of the exact approaches. Top left: Prot1, top right: Prot2, bottom left: Prot3, bottom right: Prot4.

sparse data and the cost of the solution clustering. We experimentally compare the robustness of the different algorithms
by calculating the cost H(W , cl) for clusterings cl which were obtained with W ′ as input. This simulates a setting where
there is some “true” objective function value that we would like the algorithms to optimize, but the amount of information
available to the algorithms is limited/noisy. The cost of clusterings produced by the binary encoding is significantly lower
than the other generic correlation clustering algorithms KwickCluster and SDPC for all values of p solvable by MaxSAT.
For p > 0.4, the solutions obtained with MaxSAT have a clearly lower cost than the solutions provided by two algorithms
specialized for clustering protein sequences. Perhaps the most significant observation here is that, whenever the dataset was
not solvable within the timeout, the clusterings obtained by MaxSAT on the highest value of p still solvable had in general a
lower cost than any of the approximative algorithms at p = 1.0. This suggests that one can prune away a significant number
of the non-zero entries in a matrix, hence speeding up MaxSAT solving, and still obtain clusterings of lower cost than those
obtained with the approximative algorithms. We hypothesize that a more sophisticated method of pruning, perhaps taking
into account the structure of the input matrix, could further improve the results. Comparing KwickCluster with SDPC, we
observe that semi-definite programming performs slightly better on extremely sparse instances. However, when the density
of the underlying graph increases, the performance of KwickCluster improves while the performance of SDPC remains fairly
constant. One possible explanation for this could be that the relaxation of a quadratic program into a semi-definite program
(see Section 10.1 for details) has a similar effect to the quality of the obtained clustering as pruning similarity information
from the matrix.

9.3. Constrained correlation clustering

We now turn our attention to MaxSAT-based constrained correlation clustering.

9.3.1. Instance-level constraints
We first consider a situation in which an oracle, for example a domain expert, provides domain specific knowledge in

the form of a set of must-link and cannot-link constraints the solution clusterings are expected to satisfy. By running several
tests with an increasing number of constraints, we simulate a setting in which the current solution clustering is shown to
the oracle, who is then allowed to add more constraints to the clustering algorithm in order to further restrict the set of

J. Berg, M. Järvisalo / Artificial Intelligence 244 (2017) 110–142 127

Fig. 9. Top: Evolution of running times. Bottom: Cost of the clusterings obtained on sparse matrices. Bottom left: Prot1, bottom right: Prot2.

acceptable clusterings. An iterative setting like this has previously been studied for example in [70,71] and has been shown
to greatly increase the clustering accuracy in other clustering problems [70,71,27].

We simulate this setting with the help of a (human created) “golden” clustering supplied with each of the datasets.
Given the similarity matrix W based on a dataset, the golden clustering can be seen as a symmetric similarity matrix G W

of the same dimension where each element is either ∞ or −∞. To simulate this iterative setting, we sampled an increasing
number of pairs of indices i < j, and modify W by assigning W (i, j) = G W (i, j). Added x% user knowledge (UK) means
that x% of available pairs of indices i < j were sampled. This results in a setting in which at each iteration the MaxSAT
algorithm has an increasing amount of information on the golden clustering. We note that, to the best of our knowledge, the
considered approximative algorithms cannot handle such a constrained correlation clustering setting directly. Even though
additional constraints could be included into the semi-definite program solved with SDPC, there are no guarantees that the
clustering obtained after the rounding procedure within SDPC respects the added constraints (see Section 10.1 for more
details). This is why all the values reported for those are for 0% added UK.

In these tests the performance of our encoding is evaluated using the well-known rand index [72] designed for measuring
the similarity of two clusterings.

Definition 1. Given a dataset V = {v1 . . . v N}, a clustering cl of V , and an example clustering g , let

TP = ∣∣{(vi, v j) | cl(vi) = cl(v j) ∧ g(vi) = g(v j)}
∣∣

denote the number of pairs of points i < j that are co-clustered in both cl and g (true positives). Let

TN = ∣∣{(vi, v j) | cl(vi) �= cl(v j) ∧ g(vi) �= g(v j)}
∣∣

denote the number of pairs of points i < j that are assigned to different clusters in both cl and g (true negatives). The rand
index of cl and g is then

R(cl, g) = TP + TN(N
2

) = 2 · (TP + TN)

N · (N − 1)
.

Note that the denominator is the total number of unordered pairs of points over N data points.

128 J. Berg, M. Järvisalo / Artificial Intelligence 244 (2017) 110–142

Fig. 10. Top: evolution of running times. Bottom: cost of the clusterings obtained on sparse matrices. Bottom left: Prot3, Bottom right: Prot4. For the
unsolvable MaxSAT instances we report the cost of the highest value of p still solvable.

As discussed in Section 2.3, ML and CL constraints are a non-trivial addition to the correlation clustering problem. Local
search style clustering algorithms tend to suffer from over-constrainment in the sense that adding too many constraints
can prevent such algorithms from converging. In contrast, the running time of the MaxSAT solver decreases with added
constraints, see Fig. 12.5 As a consequence, using UK several additional datasets could be fully clustered with MaxSAT.

Finally, we demonstrate that added UK constraints steer the clusterings produced by our MaxSAT encoding effectively
towards the golden clustering. Fig. 13 shows how the rand index increases as ML and CL constraints are added to the
original similarity matrix. The number of extra constraints required for our algorithm to achieve rand indexes over 0.95 is
for most datasets fairly small. The results suggest that extra constraints are highly beneficial and user knowledge should be
taken advantage of whenever available.

9.3.2. Cluster-level constraints
To illustrate that the MaxSAT-based approach also enables obtaining optimal solutions which are guaranteed to satisfy

cluster-level constraints, we consider a Cluster Dissimilarity constraint CL-DIS(k), closely related to constraints previously
studied in distance-based clustering. Informally, a clustering cl satisfies the CL-DIS(k) constraint if no pair of points that are
“more similar” than the threshold k are assigned to different clusters. More precisely, we require that W (i, j) < k whenever
cl(vi) �= cl(v j). This constraint is similar to the δ constraint in [37], where it was enforced by observing that the constraint
can be decomposed into a set of ML constraints: whenever W (i, j) > k, we add a ML constraint over vi and v j .

Fig. 14 demonstrates the running time of MaxHS on the four protein datasets (without any pruning) and an added
CL-DIS(k) constraint for different threshold values k. Recall that all values in the benchmark similarity matrices were nor-
malized to be between −0.5 and 0.5, which explains why we experimented with the threshold values 0.02, 0.04, . . . , 0.5.
Note that k = 0.5 means that we are solving the original instance. All in all, the results show that the running time of
MaxHS decreased drastically already for values only slightly below 0.5, all such instances being solvable in under a second.

5 Note that, especially when using a MaxSAT solver which searches bottom-up in the cost function (such as MaxHS), adding more constraints could also
have a negative effect on the running times of the solver.

J. Berg, M. Järvisalo / Artificial Intelligence 244 (2017) 110–142 129

Fig. 11. Evolution of running times (top left) and the cost of the clusterings obtained on sparse matrices. Top right: orl, bottom left: ionosphere, bottom
right: umist. For the unsolvable MaxSAT instances we report the cost of the highest value of p still solvable.

Fig. 12. Evolution of running times of the MaxSAT solver with increasing amount of user knowledge added to the matrices.

9.4. MaxSAT-specific experiments

For the rest of this section, we will focus more MaxSAT-specific questions. We will consider the effects of MaxSAT-level
preprocessing and symmetry breaking, as well as the performance of different state-of-the-art MaxSAT solvers, under the
best-performing binary encoding. For these experiments we used the same set of benchmarks as in Section 9.2.2. We begin
by considering preprocessing.

130 J. Berg, M. Järvisalo / Artificial Intelligence 244 (2017) 110–142

Fig. 13. Evolution of the Rand index with increasing amount of user knowledge added to the matrices. The datasets from the top, left to right are: Prot1,
Prot2, Prot3, Prot4, Breastcancer/Diabetes, Ecoli/Ionosphere/Vowel.

9.4.1. Effects of MaxSAT preprocessing
Preprocessing is today an essential part of SAT solving. However, to date there has been few studies on MaxSAT prepro-

cessing [73,74]. As such, MaxSAT preprocessing is a relatively recent area of research, possibly due to the fact that not all
popular SAT preprocessing techniques can be directly applied in the context of MaxSAT [73]. However, one recently pro-
posed way of using SAT preprocessing on MaxSAT instances is through the so-called labeled-CNF framework [75,73] which
we also apply here.

We preprocess a given MaxSAT instance F = (Fh, Fs, c) with N soft clauses in the following way.

1. Form the CNF formula F SAT = Fh ∪ Fr , where Fr = {(wi ∨ ¬ri) | wi ∈ Fs, i = 1..N}, with each of the variables ri not
appearing anywhere in F SAT except the clause (wi ∨ ¬ri), thus obtaining the so-called labeled-CNF [75].

2. Apply the Coprocessor 2.0 [76] SAT preprocessor on F SAT , obtaining the CNF formula F ′SAT . Coprocessor implements
a large range of modern SAT preprocessing techniques, including unit propagation, variable elimination [77], clause

J. Berg, M. Järvisalo / Artificial Intelligence 244 (2017) 110–142 131

Fig. 14. Running time of the MaxSAT solver with CL-DIS(k) constraint for different values of k.

Fig. 15. Effect of preprocessing MaxSAT instances. The percentage in the instance name is the expected number of non-zero entries (compared to the full
instance). Solving times reported for MaxHS and the binary encoding.

elimination [78,79], binary clause reasoning [80], etc. We used the white-listing option of Coprocessor to disable the
preprocessor from removing any occurrences of any of the ri variables. This is critical for ensuring correctness on the
MaxSAT-level [75].

3. Finally, we constructed the MaxSAT instance F PRE = (F PRE
h , F PRE

s , cPRE) where F PRE
h = F ′SAT , F PRE

s = {(ri) | i = 1..N} and
cPRE(ri) = c(wi). Now opt(F) = opt(F PRE) and any solution τ to F PRE can be extended into a solution for F of equal cost
in polynomial (negligible) time, similarly as when applying SAT preprocessing on the SAT-level [81].

The preprocessing time of MaxSAT instances resulting from the binary encoding was negligible, less than 10 seconds for
each instance.

Fig. 15 demonstrates the difference in running time with and without preprocessing on instances consisting of 50% and
100% of the non-zero values of the datasets. On a majority of 94 out of 140 instances, preprocessing lowered the running
time of the MaxSAT solver enough to compensate for the extra time spent on preprocessing. Furthermore, all instances that
were solved without preprocessing were also solved after applying preprocessing. However, we did also observe instances
on which preprocessing had a negative impact on the running time, exemplified in Fig. 15 by the Prot1 dataset.

9.4.2. Effect of symmetry breaking
The solution space of correlation clustering is highly symmetric: given any clustering cl: V → {1 . . . |V |} of a set of data

points, the cluster indices can be arbitrarily permuted without affecting the actual partitioning of the data points and hence
its cost. This leads to the question of whether MaxSAT solving could be sped-up by breaking some of these symmetries on
the MaxSAT-level.

Full symmetry breaking seems unlikely to be beneficial, due to the fact that a very large number of clauses—going far
beyond the size of the binary encoding—would be needed. More formally, define a relation ≡ over the set of possible
clusterings of V by cl ≡ cl′ if cl = σ ◦ cl′ for some permutation σ . It is simple to see that the relation ≡ is an equivalence

132 J. Berg, M. Järvisalo / Artificial Intelligence 244 (2017) 110–142

relation. Full symmetry breaking corresponds to adding constraints that forbid all but one member out of each equivalence
class of ≡. A straightforward approach to achieve this would require clauses that identify some representative point (e.g.,
the smallest) assigned to each cluster in a clustering and enforce an ordering over these points. This could be done by
encoding constraints stating If vi is not co-clustered with v j for any j < i, then cl(vi) > cl(vk) for all k < i. Such a constraint
can be encoded into MaxSAT by techniques similar to the ones presented in Section 8. However, as there can be up to N
clusters, this would introduce O(N3) new clauses, which would evidently deteriorate the performance of a MaxSAT solver.
As a related observation, note that the cubic transitive MaxSAT encoding breaks all symmetries, but does not perform as
well as the binary encoding (without symmetry breaking).

Even though full symmetry breaking seems infeasible, we might still be able to boost solver performance by applying
partial symmetry breaking to our encoding. Partial symmetry breaking refers to including clauses that remove (only) some
symmetric solutions. As a simple example and the baseline in our experiments, we have the already mentioned the very
simple first point into the first cluster constraint that can be enforced with log2 N unit clauses of the form (¬bi

1), 1 ≤ i ≤ log2 N .
A more involved symmetry breaking constraint we consider is the ClustersLessThan(i, N) presented in Section 8.5.

Without enforcing a limit on the number of clusters, the constraints ClustersLessThan(i, N) are not required in order
for the encoding to be correct. However, including them does prune away a significant number of symmetric solutions.
Furthermore, the constraints are relatively compact, in total only O(N · log2(N)) new clauses need to be added. In our
experiments we call this type of symmetry breaking RemoveSlack.

A further form of symmetry breaking deals with symmetries induced by the possibility of empty clusters. As an instance
created by the binary encoding allows (at least) N different cluster indices for every point, the placement of empty clusters
can potentially introduce symmetries into the solution space. Assume for example that some optimal clustering cl contains
C clusters. Then cl is equivalent to at least

(N
N−C

)
other clusterings, depending on which of the N cluster indices are empty.

We can remove some of these symmetries by forcing the empty clusters to occupy indices C + 1, . . . N , or, more generally,
the largest (or equivalently, the smallest) available indices. We next describe the encoding of this constraint in terms of the
binary encoding.

Assume that we are using a bits to represent the cluster indices in the binary encoding. We introduce new variables
E1 . . . E(2a) , with the intended interpretation τ (E j) = 1 iff c(v) �= j for all v ∈ V , that is, cluster j is empty. Using these
variables, the empty cluster indices are propagated with constraints of the form Ei → Ei+1 which inductively require that
the clusters of higher index than an empty cluster are also empty, and that all clusters of lower index than a non-empty
cluster are also non-empty. To define the E j variables for a given cluster j and data point vi , let bt∗

i denote the literal
corresponding to the value of bit t of j, i.e., bt

i if bit t of j is 1, and ¬bt
i otherwise. Now the E j variable can be de-

fined as

E j ↔
N∨

i=1

(
b1∗

i ∧ . . . ∧ ba∗
i

)
,

which can be compactly represented as clauses by introducing N new auxiliary variables C j
1, . . . , C

j
N and defining them as

C j
i ↔ (

b1∗
i ∧ . . . ∧ ba∗

i

)
. Similar constraints are introduced for all of the Ei variables. We call this type of symmetry break-

ing PropagateEmpty. Compared to RemoveSlack, the PropagateEmpty constraint breaks more symmetries. In particular,
symmetries broken by PropagateEmpty include all of the symmetries broken by RemoveSlack. However, PropagateEmpty is
more costly in terms of encoding size. In total, the constraints introduce O(N2 · log2 N) new clauses. Recall that the total size
of the binary encoding is O(E · log2 N) where E is at most of order N2, which means that enforcing the PropagateEmpty

constraint might significantly increase the number of clauses on sparse instances.
Fig. 16 demonstrates the effect of the RemoveSlack constraint compared to the baseline. The PropagateEmpty constraint

is missing from the figure due to the fact that, when enforcing it, no instances could be solved within the timeout. We
hypothesize that the reason for this is the significant number of clauses required for encoding it. As a concrete example, the
preprocessed Prot1 dataset with 100% of the non-zero values present contains 323 301 clauses without PropagateEmpty and
6 427 796 clauses when enforcing PropagateEmpty. However, as can be seen in Fig. 16, the RemoveSlack constraint actually
does improve solver performance on most instances.6

9.4.3. A comparison of MaxSAT solvers
In the main experiments reported in this work, we used the MaxHS MaxSAT solver, which has shown very good perfor-

mance especially in the “crafted” category of the recent MaxSAT Evaluations.7 Here we report on the performance of other
state-of-the-art MaxSAT solvers, using the following solvers.

• Eva500 solver [82], obtained from http :/ /www.maxsat .udl .cat /14 /solvers/.
• MsUnCore bcd2 version [49,48] obtained from http :/ /www.csi .ucd .ie /staff /jpms /soft /soft .php.

6 We remind the reader that, apart from the first point into the first cluster constraint, symmetry breaking was not applied in the other experiments
reported on in this article.

7 http://www.maxsat.udl.cat/14/results/index.html#wpms-crafted.

J. Berg, M. Järvisalo / Artificial Intelligence 244 (2017) 110–142 133

Fig. 16. Effect of different symmetry breaking techniques on the solving time of MaxSAT. The percentage in the instance name is the expected number of
non-zero entries (compared to the full instance). Solving times reported for MaxHS and the binary encoding.

Table 2
Comparison of MaxSAT solvers.

Solver Number of solved instances Number of timeouts

MaxHs 121 19
Eva500 65 75
ILP2013 7 133
MsUnCore 7 133
OpenWBO 0 140

• OpenWBO [83,84] version 1.1.1. obtained from http :/ /sat .inesc-id .pt /open-wbo/.
• The ILP2013 solver [56]. We implemented the conversion to an integer program ourselves and used CPLEX to solve the

resulting instances.

The first three in the list are core guided solvers (recall Section 5.2). Eva500 uses the identified cores and a restricted
form of MaxSAT resolution [85] to relax the MaxSAT instance in a controlled way. MsUnCore performs binary search over
the cost function and also maintains a set of already identified disjoint cores and relaxes each core separately whenever
a new one is found. OpenWBO uses an incremental approach that allows it to pertain the state of the internal SAT solver
more efficiently between the iterations. ILP2013 encodes the whole MaxSAT instances as an integer linear program and
then calls an ILP solver. Since MsUnCore, OpenWBO and Eva500 accept only integral weights, for running these solvers we
multiplied all similarity values by 1013 (the highest possible multiplier with which the trivial cost upper bound required
as input by the solvers still stays within the 263 range) and rounded afterwards to integers. Table 2 gives a performance
comparison of the solvers. MaxHS scales significantly better than the other solvers. All in all, MaxHS solved 121 instances
within the timeout while the second-best performing Eva500 solved 65. The other solvers in the comparison timed out on
most instances. Note that, apart from the first point into the first cluster constraint, symmetry breaking was not applied in this
experiment.

10. Related work

We continue with a survey on related work.

10.1. Correlation clustering

While the notion of producing good clusterings under inconsistent advice first appeared in [11], the formal defini-
tion of correlation clustering was proposed in [4] and shown to be NP-hard on complete graphs with each edge labeled
with + or −; or, in terms of the general problem definition considered in this work, on symmetric similarity matrices W
where W (i, j) = {−1, 1} for all i and j. NP-hardness motivated early work on approximative algorithms for the problem.
Approximation algorithms for correlation clustering typically address one of three different objectives for the problem: min-
imizing disagreements, maximizing agreements, or maximizing correlation. Given a similarity matrix W over a set of data points

134 J. Berg, M. Järvisalo / Artificial Intelligence 244 (2017) 110–142

V = {v1, . . . , v N}, minimizing disagreements refers to minimizing the number of point pairs vi , v j whose cluster assignment
does not agree with their similarity value W (i, j), or more precisely, to finding a clustering cl minimizing∑

i< j
∞>W (i, j)>0

I[cl(vi) �= cl(v j)]W (i, j) +
∑
i< j

−∞<W (i, j)<0

I[cl(vi) = cl(v j)]|W (i, j)|. (7)

Maximizing agreements refers to maximizing the number of pairs of points vi , v j whose cluster assignment agrees with
their similarity value W (i, j), or more precisely, to finding a clustering cl maximizing∑

i< j
∞>W (i, j)>0

I[cl(vi) = cl(v j)]W (i, j) +
∑
i< j

−∞<W (i, j)<0

I[cl(vi) �= cl(v j)]|W (i, j)|. (8)

Maximizing correlation refers to maximizing the difference between agreements and disagreements, i.e., using the objective
function obtained by substracting Equation (7) from Equation (8).

A polynomial-time approximation scheme for maximizing agreements on complete symmetric matrices with {−1, 1}
similarity values was presented in [4]. No such scheme is likely to exist for minimizing disagreements as the problem is
APX-hard [86]. On general matrices, maximizing agreements is also APX-hard [6], except for when the ratio between the
smallest and largest absolute value in the matrix is bounded by a constant [33]. To the best of our knowledge, the SDPC
algorithm proposed in [34] and detailed below is the best known approximation algorithm for maximizing correlation.

The two approximative algorithms for correlation clustering we experimented with in this work are based on different
techniques. KwickCluster [5] is a greedy combinatorial approximation algorithm that at each iteration picks one of the
still unassigned nodes to be the pivot node, and forms a new cluster containing the pivot node and all still unassigned
nodes that are similar to the pivot node (recall that nodes vi and v j are similar if W (i, j) > 0 in the similarity matrix
under consideration). The algorithm terminates when all points have been assigned to some cluster. The same algorithm
also appears in [67] under the name PivotAlg. As shown in [5,67], KwickCluster is a factor-3 approximation algorithm
for minimizing disagreements under the assumption that W (i, j) ∈ {−1, 1} for all i and j, and a factor-5 approximation
algorithm under the assumption that −1 ≤ W (i, j) ≤ 1 for all i, j.8

SDPC [34] is based on rounding solutions to a semi-definite program that itself is a relaxation of the quadratic program-
ming formulation of correlation clustering restricted to two clusters. Restricting the correlation clustering problem search
space to clusterings only containing two clusters, the quadratic program in Equation (4) (recall Section 4) can be formulated
equivalently as

Maximize

N∑
i=1

N∑
j=i+1

(
W (i, j)zi z j

)
subject to: zi ∈ {−1,1} for all i,

(9)

where N is the number of data points, and the value in the solution of the variable zi indicates whether point vi is assigned
to cluster 1 or −1. This quadratic program can be relaxed into the semi-definite program

Maximize

N∑
i=1

N∑
j=i+1

(
W (i, j)ui · u j

)

subject to:
|ui| = 1 for all i

ui ∈ RN for all i,

(10)

where each zi binary variable from Equation (9) is represented by a vector ui on the unit sphere in RN . The relaxation of
the quadratic program (Equation (9)) into the semi-definite program (Equation (10)) is standard, being similar to the SDP
relaxation for MaxCut presented in [87].

In [34] an algorithm that rounds a solution obtained to Equation (10) into a well-defined clustering is presented and
shown to achieve an �

(
log(N)−1

)
approximation factor for maximizing correlation. The algorithm compares clusterings

obtained from rounding the semi-definite program with the (unique) cost of the trivial clustering in which all data points
are assigned to different clusters, and returns the better solution out of these two.

In [33] the authors develop a PTAS for maximizing agreements on general matrices under the assumption that the ratios
between weights in the input matrices are bounded by a constant, which implies that the matrices cannot contain 0-entries,
i.e. the available similarity information has to be complete. The PTAS is developed by using the smooth polynomial program-
ming technique on the QIP formulation, which results in strong approximation bounds for the maximization problem on
matrices satisfying the assumption.

8 Recall that a factor α approximation algorithm on a minimization (maximization) problem is guaranteed to return a solution of cost lower (higher)
than α times the cost of the optimal solution.

J. Berg, M. Järvisalo / Artificial Intelligence 244 (2017) 110–142 135

In [88] a more restricted version of the approximative correlation clustering algorithm of [4] is presented, with exper-
iments on identifying and resolving noun co-reference in texts. In [89] a greedy randomized adaptive search procedure
(GRASP) based approximative algorithm is presented, with the motivation that the obtained solutions can be used as a
criterion for determining the balance in social networks. Also, in [10] correlation clustering is used for crosslingual link
detection between google news groups. The authors build on the results of [86] and present an algorithm based on relaxing
the ILP formulation of correlation clustering into a linear program and then using region growing techniques for rounding of
the solution of the linear program. As such, their algorithm is also approximative in nature and, in contrast to our approach,
cannot provide optimality guarantees. The authors also provide some results on exactly solving the ILP with added must-
link and cannot-link constraints.9 As noted in [10] and supported by our experiments, the ILP-based approach to correlation
clustering suffers from the fact that the number of constraints is cubic in the number of data points, leading to memory
problems in practice. The authors of [10] approach the issue by splitting the LP into smaller chunks and processing the
chunks separately. In contrast, our experimental results suggest that using MaxSAT for solving correlation clustering is more
memory-efficient without extra tuning. There has also been some work done on a variant of correlation clustering in which
the search is further restricted to cl: V → {1, . . . K } for some K < N [8]. As explained in Sections 7 and 8, both the binary
and the unary encoding can be used in this setting as well.

A few generalizations of correlation clustering have been proposed. In [12] the authors experiment with correlation
clustering allowing overlapping clusters. The proposed solution to overlapping correlation clustering is a local search al-
gorithm that locally adjusts the solution clustering as long as the cost function decreases. Out of the MaxSAT encodings
presented in this work, the unary encoding extends naturally to overlapping clustering by changing the cardinality con-
straint ExactlyOne(i) of each point to a more general

∑K
k=1 yk

i ≤ p, where p is the maximum number of clusters a single
point can be assigned to. The resulting encoding can be shown to produce globally optimal solutions to the overlapping
clustering problem. Another proposed generalization to correlation clustering is chromatic correlation clustering [13]. In the
basic form of correlation clustering, there are two possible relationships between pairs of data points. A pair of data points
can either be similar, dissimilar (or neither). Chromatic correlation clustering generalizes this by allowing more than two
different categories of relationships. This can be visualized as an undirected graph in which each edge is colored. The task
is then to find a clustering that maximizes color purity of edges within clusters. Our MaxSAT encodings can be extended to
cover Chromatic Correlation Clustering by introducing variables which represent the principal color of each cluster.

10.2. Constrained clustering

As exemplified in Section 9.3, the MaxSAT-based approach allows for obtaining solution which are guaranteed to sat-
isfy additional hard constraints on the clusterings of interest. This includes both instance-level and, as exemplified in
Section 9.3.2, even some distance-based cluster-level constraints which have been previously studied in the context of
constrained clustering [90,23]. The idea of adding constraints to the clustering problem was first introduced in [27,28]. The
introduction of constraints to the clustering problem allows the addition of domain knowledge to the problem and has been
shown to increase clustering accuracy [27]. Much of the early work on constrained clustering concentrated on modifying
existing heuristics and clustering algorithms in order to allow the addition of constraints. Examples include k-means and
COB-WEB [27,28], EM [91], hierarchical [92] and spectral clustering [93]. The problem of deciding if there exists a clustering
satisfying a given set of must and cannot-link constraints was shown to be NP hard in [37]. In fact, many of the modified
approximative algorithms are not even guaranteed to return a clustering satisfying all user constraints. The algorithms also
have difficulties in handling too many extra constraints, they are easily over-constrained, preventing the algorithms from
converging at all [37].

An alternative approach to constrained clustering is to cast the task as a constraint optimization problem, allowing for
a very natural incorporation of added constraints. This is the approach which we employ in this work. A similar idea was
proposed in [23] in a different clustering setting. The authors show that a satisfiability-based framework is well-suited for
constrained clustering in the sense that constraints are easily added, the solutions returned are guaranteed to be globally
optimal and satisfy all given constraints, and the search algorithm is not as easily over-constrained. Our approach to solving
constrained correlation clustering is similar, but more generic as we do not restrict ourselves to only allowing two distinct
clusters, which is a polynomial time special case of the general clustering problem. Furthermore, our encoding are on the
MaxSAT-level (optimization instead of pure SAT), and employ a MaxSAT solver instead of a pure SAT solver.

Constrained clustering has also been approached via integer programming. In [94,95] a variety of different possible
constraints and optimization functions are considered. However, in practice their approach might be difficult to use as
it requires a predetermined set of candidate clusters from which the algorithm searches for the best subset. In [90,96]
the authors use an integer programming and column generation based approach in order to exactly solve the minimum
sum of squares clustering problem. Constrained clustering has also been approached, again in a different clustering setting,
by constraint programming (CP) [97,24].10 In [97] different optimization criteria for clustering are studied and solved by
casting the clustering problems as constraint programming problems. A SAT-based framework of constrained clustering has

9 Unfortunately, the authors were unable to provide an implementation of their algorithm.
10 The term constraint programming refers here to the declarative language as opposed to a general term of the paradigm.

136 J. Berg, M. Järvisalo / Artificial Intelligence 244 (2017) 110–142

also been proposed for example in [31], but optimization criteria are not applied in their experiments. In [24] a general
framework for K-pattern set mining under constraints is introduced. The authors present a general framework and explore the
strengths and limitations of using constraint programming. Yet another recent example of using declarative programming in
the context of clustering is [26], in which an ILP formulation of hierarchical clustering, with an explicit objective function
that is globally optimized, was presented; that approach would similarly allow for satisfying hard constraints over the
solution space.

11. Conclusions

This work contributes to the research direction of harnessing constraint solving for developing novel types of generic
data analysis techniques. The focus of our study is the applicability of state-of-the-art Boolean optimization procedures
to cost-optimal correlation clustering in both unconstrained and constrained settings. To this end, we presented a novel
MaxSAT-based framework for solving correlation clustering. Our approach is based on casting the clustering problem declar-
atively as weighted partial maximum satisfiability, and using a generic MaxSAT solver for finding cost-optimal clusterings.
We studied three different encodings of correlation clustering as MaxSAT, and reported on an experimental evaluation, com-
paring both the time required to solve the resulting MaxSAT instances, and the quality of the clusterings obtained. We
compared the MaxSAT-based approach to previously proposed both exact (integer linear and quadratic programming based)
and approximative (specialized local search and approximation algorithms and semi-definite programming) approaches
on real-world datasets. The MaxSAT approach scales better than the exact integer linear and quadratic programming ap-
proaches, and provides clusterings of significantly lower cost than the approximative algorithms, especially when the input
data is sparse. Due to the intrinsic computational hardness of correlation clustering, we acknowledge that a potential issue
with our approach is scalability, especially scaling the MaxSAT-based approach to very large datasets (with tens of thou-
sands of data points). Nevertheless, the approach can provide cost-optimal clusterings on real-world datasets with close to
a thousand points. The approach is also flexible when it comes to satisfying user-specified constraints, i.e., in constrained
correlation clustering. The running times of the approach can notably decrease in a constrained setting, allowing for solving
larger datasets faster compared to the non-constrained setting. This is in stark contrast with local search algorithms which
easily suffer from over-constraining in constrained settings. It is conceivable that our approach can be improved also by
foreseeable improvements to generic MaxSAT solvers and by developing domain-specific parallelization schemes, as well
as by specialized constraint optimization techniques and heuristics for the problem domain. Yet another interesting direc-
tion would be to study the applicability of Large Neighborhood Search which combine local search strategies for fixing a
subspace of the search space to which to apply exact search techniques.

Appendix A. Proofs

We provide detailed proofs of the fact that any similarity matrix can be symmetrized without affecting the set of optimal
clusterings, as discussed in Section 2.2, and the correctness of the three encodings of correlation clustering as MaxSAT,
presented in Sections 6, 7 and 8.

A.1. Proof of Theorem 1

Assume that V = {v1 . . . v N} is a set of N data points and W ∈ RN×N is an asymmetric similarity matrix. Let H ′ be the
non-simplified cost function of correlation clustering (Equation (2)) and H the simplified cost function (Equation (1)). We
will assume w.l.o.g. that none of the considered matrices include contradicting infinite values.

The proof of Theorem 1 consists of considering the two different possible sources of asymmetries. The first are pairs of
indices i and j for which W (i, j) < 0 < W (j, i). Any such pair will always incur a cost of at least min(|W (i, j)|, W (j, i)) to
any clustering. Thus the absolute value of both W (i, j) and W (j, i) can be decreased by this minimum without affecting
the set of optimal clusterings. Notice that after this either W (i, j) = 0 or W (j, i) = 0. This observation is formalized in
Lemma 1.

Based on the above, we can assume that all pairs W (i, j) and W (j, i) have the same sign. Now the existence of the
symmetric W S follows from the following observations. If both W (i, j) and W (j, i) are non-positive, the points vi and v j
either incur a cost of |W (i, j)| + |W (j, i)| or 0 to H ′(W , cl) under any clustering cl. Analogously, if both are non-negative,
then the points either incur a cost of W (i, j) + W (j, i) or 0. Hence, by letting W S (i, j) = W (i, j) + W (j, i), cl will incur the
same cost under W S (as measured by H) as under W (as measured by H ′). This discussion is formalized in the proof of
Theorem 1 given after the proof of Lemma 1.

Lemma 1. There is a similarity matrix W T such that W T (i, j) · W T (j, i) ≥ 0 (i.e., both have the same sign) for all i and j and
argmincl(H ′(W , cl)) = argmincl(H ′(W T , cl)).

Proof. W T can be constructed by repeatedly applying Lemma 2 to each pair of indices corresponding to elements of op-
posing signs in W . �

J. Berg, M. Järvisalo / Artificial Intelligence 244 (2017) 110–142 137

Lemma 2. Let i and j be any pair of indices for which W (i, j) < 0 < W (j, i). There exists a similarity matrix W t for which W t(i, j) ·
W t(j, i) = 0 and argmincl(H ′(W , cl)) = argmincl(H ′(W t , cl)).

Proof. Construct W t as

W t(i, j) = W (i, j) + min(|W (i, j)|, W (j, i)),

W t(j, i) = W (j, i) − min(|W (i, j)|, W (j, i)) and

W t(i′, j′) = W (i′, j′) whenever i �= i′ or j �= j′.
Now either W t(i, j) = 0 or W t(j, i) = 0, and hence W t(i, j) · W t(j, i) = 0. Notice also that W t includes exactly the same
infinite values as W . This means that the set of feasible clusterings is the same for both matrices. We prove the second part
of the lemma by showing that

H ′(W , cl) = H ′(W t, cl) + min(|W (i, j)|, W (j, i)) (A.1)

for any feasible clustering cl of V . The fact that the set of optimal clusterings under W is the same as under W t follows
from min(|W (i, j)|, W (j, i)) being independent of cl.

First, if either W (i, j) or W (j, i) is infinite, then it is infinite in W t . Furthermore, the other element is 0 in W t . Hence
the pair i, j will incur cost min(|W (i, j)|, W (j, i)) under W and 0 under W t . As all other elements are equal in both
matrices, we have H ′(W , cl) = H ′(W t , cl) + min(|W (i, j)|, W (j, i)).

Assume now that both W (i, j) and W (j, i) are finite. As the transformation from W to W t maintains signs of all
elements, Equation (A.1) is equivalent to

I[cl(vi) = cl(v j)] · |W (i, j)| + I[cl(v j) �= cl(vi)] · W (j, i)

= I[cl(vi) = cl(v j)] · |W t(i, j)| + I[cl(v j) �= cl(vi)] · W t(j, i) + min(|W (i, j)|, W (j, i)).

This can be verified by considering the possible cases separately. �
Proof of Theorem 1. By Lemma 1 we can assume that W (i, j) · W (j, i) ≥ 0 for all i and j. Let W S (i, j) = W (i, j) + W (j, i).
It is clear that W S is symmetric. It remains to be shown that argmincl(H(W S , cl)) = argmincl(H ′(W , cl)). First note that
W S (i, j) = ±∞ iff either W (i, j) = ±∞ or W (j, i) = ±∞, so the set of feasible clusterings is the same for both matrices.

Let i < j and cl be any feasible clustering of V . We show that H(W S , cl) = H ′(W , cl). By decomposing both H and H ′ as
in the proof of Lemma 1, is enough to show that

I[−∞ < W (i, j) < 0] · |W (i, j)| + I[−∞ < W (j, i) < 0] · |W (j, i)|
= I[−∞ < W S(i, j) < 0] · |W S(i, j)|

and

I[∞ > W (i, j) > 0] · W (i, j) + I[∞ > W (j, i) > 0] · W (j, i)

= I[∞ > W S(i, j) > 0] · W S(i, j),

corresponding to the two possible scenarios, cl(vi) = cl(v j) and cl(vi) �= cl(v j), respectively. Both equations follow from the
fact that the transformation from W to W S preserves the signs of all elements. Thus |W S (i, j)| = |W (i, j) + W (j, i)|. �
A.2. Correctness of the MaxSAT encodings

Next we move on to prove the correctness of the three MaxSAT encodings presented in this work, in other words, we
prove Theorems 2, 3 and 4. Again, let V = {v1, . . . v N } be a set of data points, W ∈ RN×N a symmetric similarity matrix,
and K an upper bound on the available clusters. Note that we allow K = N , so the proofs presented here cover the problem
definition of [4,12] and [9] as well as [8]. We first consider general conditions for correct MaxSAT encodings of correlation
clustering. Recall that H is the cost function, Equation (1), of correlation clustering under minimization.

Proposition 1. Let F be a MaxSAT instance and assume that a clustering clτ : V → {1 . . . K } can be constructed from any solution τ
to F . Further assume the following.

1. clτ is well-defined for all solutions τ to F .
2. For each solution τ to F , clτ respects the infinite values of W .
3. For each clustering cl that respects the infinite values of W , there exists some solution τ to F for which H(W , cl) = H(W , clτ).
4. cost(F , τ) = H(W , clτ) for any solution τ to F .

Now, if τ ∗ is an optimal solution to F , then clτ ∗ is an optimal clustering of V .

138 J. Berg, M. Järvisalo / Artificial Intelligence 244 (2017) 110–142

Proof. First note that Condition 1 ensures that clτ ∗ is well-defined and Condition 2 ensures that clτ ∗ is indeed a solution
to the constrained problem. Now let cl be any clustering that respects the infinite values of W . Then by Condition 3 there
exists a solution τ to F such that H(W , clτ) = H(W , cl). By the optimality of τ ∗ and condition Condition 4 it follows that

H(W , cl) = H(W , clτ) = cost(F , τ) ≥ cost(F , τ ∗) = H(W , clτ ∗),

and hence clτ ∗ is optimal. �
Next we prove Theorems 2, 3 and 4 by showing that the instances generated with the transitive, unary and binary

encodings fulfill the assumptions of Proposition 1.

A.2.1. Correctness of the transitive encoding
Let F 1 = (F 1

h , F 1
s , c) be a MaxSAT instance generated by the transitive encoding, and clτ be the clustering constructed

from a solution τ to F 1 by the procedure described in Section 6.4. The proof of Theorem 2, i.e., the fact that the transitive
encoding produces optimal clusterings, follows from the following lemmas.

Lemma 3. For any solution τ to F 1 and any i < j, we have τ (xij) = 1 ⇔ clτ (vi) = clτ (v j).

Proof. Assume clτ (vi) = k. The lemma follows from the two possible scenarios that can occur when constructing clτ at
iteration k.

(i) i is the smallest not yet assigned index. Then clearly τ (xij) = 1 ⇔ clτ (vi) = k = clτ (v j).
(ii) Some other index t < i for which τ (xti) = 1 is the smallest non-assigned index. Now τ (xij) = 1 ⇔ τ (xt j) = 1 ⇔

clτ (vi) = k = clτ (v j). The first equivalence follows from τ being a solution to F 1. Thus τ ((¬xij ∨ ¬xti ∨ xt j)) = 1, implying
τ (xij) = 1 ⇒ τ (xt j) = 1, and τ ((¬xti ∨ ¬xt j ∨ xij)) = 1, implying τ (xij) = 0 ⇒ τ (xt j) = 0. �
Lemma 4 (Condition 1 of Proposition 1). clτ is well-defined for all solutions τ to F 1 .

Proof. Trivial, as each point is assigned to at most one cluster by the procedure in Section 6.4 and the procedure only
terminates after all points have been assigned to a cluster. �
Lemma 5 (Condition 2 of Proposition 1). clτ respects the infinite values of W for all solutions τ to F 1 .

Proof. First notice that, due to the hard unit clauses (xij) and (¬xij), τ (xij) = 1 for all W (i, j) = ∞, and τ (xij) = 0 for all
W (i, j) = −∞. The rest follows from Lemma 3. �
Lemma 6 (Condition 3 of Proposition 1). For each clustering cl that respects the infinite values of W there exists some solution τ to F
for which H(W , cl) = H(W , clτ).

Proof. We construct such a τ as follows:

τ (xij) =
{

1 if cl(vi) = cl(v j)

0 else.

Notice that τ satisfies all hard transitivity clauses since cl is well-defined. Furthermore, τ satisfies all unit hard clauses since
cl respects the infinite values of W . Finally, the claim H(W , cl) = H(W , clτ) follows from Lemma 3 and the construction of
τ as cl(vi) = cl(v j) ⇔ τ (xij) = 1 ⇔ clτ (vi) = clτ (v j). �
Lemma 7 (Condition 4 of Proposition 1). cost(F 1, τ) = H(W , clτ) holds for any solution τ to F 1 .

Proof. We consider the part H(W , clτ) ≤ cost(F 1, τ). The other direction is almost identical. A similar pair of points vi and
v j incurs a cost W (i, j) to H(W , clτ) iff clτ (vi) �= clτ (v j). By Lemma 3, τ (xij) = 0, and hence τ does not satisfy the unit soft
clause (xij) of weight W (i, j). Similarly, a dissimilar pair of points vi , v j incurring a cost W (i, j) to H(W , clτ) corresponds
to one unsatisfied soft clause (¬xij) of the same weight. �
A.2.2. Correctness of the unary encoding

Let F 2 be a MaxSAT instance generated with the unary encoding and, given a solution τ to F 2, let clτ be the clustering
constructed form τ by the procedure described in Section 7.5. The proof of Theorem 3 follows from the following lemmas.

Lemma 8 (Condition 1 of Proposition 1). clτ is a well-defined clustering.

J. Berg, M. Järvisalo / Artificial Intelligence 244 (2017) 110–142 139

Proof. Follows directly from the fact that, for any point vi , τ (ExactlyOne(i)) = 1, and hence there exists exactly one 1 ≤
k ≤ K for which τ (yk

i) = 1. �
Lemma 9 (Condition 2 of Proposition 1). clτ respects the infinite values of W for all solutions τ to F 2 .

Proof. Let vi be an arbitrary data point. Assume clτ (vi) = k. It follows that τ (yk
i) = 1. The hard clause (¬yk

i ∨ yk
j) for each j

s.t. W (i, j) = ∞ implies τ (yk
j) = 1 and clτ (v j) = k = clτ (vi). The hard clause (¬yk

i ∨ ¬yk
j) for each j s.t. W (i, j) = −∞

implies τ (yk
j) = 0 and clτ (v j) �= k = clτ (vi). �

Lemma 10 (Condition 3 of Proposition 1). Let cl: V → {1, 2, . . . , K } be any clustering of V that respects the infinite values of W . There
is a solution τ to F 2 such that cl = clτ .

Proof. We construct such a τ . For each 1 ≤ i ≤ N and 1 ≤ k ≤ K , let

τ (yk
i) =

{
1 if cl(vi) = k
0 else,

τ (Ak
ij) =

{
1 if cl(vi) = cl(v j) = k
0 else

and

τ (Dij) =
{

1 if cl(vi) = cl(v j)

0 else.

Clearly cl = clτ as long as τ is a solution to F 2. We show that it is by considering the different types of hard constraints
present in F 2.

1. Since cl is well-defined, there is exactly one k for which cl(vi) = k for each vi . Hence τ (ExactlyOne(i)) = 1 for all
vi ∈ V .

2. By construction τ (Ak
ij) = τ (yk

i ∧ yk
j) for all similar vi , v j and k. Hence τ (HardSimilar(i, j, k)) = 1.

3. If τ (yk
i) = 0 or τ (yk

j) = 0 for a dissimilar pair of points vi , v j , then τ (¬yk
i ∨ ¬yk

j ∨ Dij) = 1. If τ (yk
i) = τ (yk

j) = 1,
then cl(vi) = cl(v j). Hence τ (Dij) = 1 and τ (¬yk

i ∨¬yk
j ∨ Dij) = 1. Thus τ (HardDissimilar(i, j, k)) = 1 for all dissimilar

vi, v j and k.
4. For all W (i, j) = ∞, we have that cl(vi) = cl(v j). Hence there exists a k for which τ (yk

i) = τ (yk
j) = 1. Since

τ (ExactlyOne(vi)) = τ (ExactlyOne(v j)) = 1, τ (yk′
i) = τ (yk′

j) = 0 for all other k′ . Hence τ (yk
i ↔ yk

j) = 1 holds for all k
and τ (ML

U (vi, v j)) = 1.
5. For all W (i, j) = −∞ we have that cl(vi) �= cl(v j). Hence either cl(vi) �= k or cl(v j) �= k for all k. By the construction of

τ it follows that τ (¬yk
i ∨ ¬yk

j) = 1 and τ (CL
U (vi, v j)) = 1. �

Lemma 11 (Condition 4 of Proposition 1). cost(F 2, τ) = H(W , clτ) for any solution τ to F 2 .

Proof. We consider the part H(W , clτ) ≤ cost(F 2, τ). The other direction is almost identical. A similar pair of points vi , v j

incurs a cost W (i, j) to H(W , clτ) iff clτ (vi) �= clτ (v j). Either τ (yk
i) = 0 or τ (yk

j) = 0 (or both) for all k, and hence τ (Ak
ij) = 0

for all k. Thus τ does not satisfy the soft clause SoftSimilar(i, j) with weight W (i, j). Similarly a dissimilar pair of points
vi v j incurs cost |W (i, j)| to H(W , clτ) iff clτ (vi) = clτ (v j). There is a k for which τ (yk

i ∧ yk
j) = 1. Thus τ does not satisfy

the unit soft clause (¬Dij) with weight |W (i, j)|. �
A.2.3. Correctness of the binary encoding

Let F 3 be a MaxSAT instance generated with the binary encoding and, given a solution τ to F 3, let clτ be the clustering
constructed from τ by the procedure described in Section 8.4. We prove the correctness of the binary encoding for an
arbitrary K . Let k = ⌈

log2 K
⌉

and assume that the encoding contains k bit variables for each data point. For any number
a ∈ N, let an denote the nth bit in the bit representation of a. For any set of bits bk, . . . , b1, denote by (bk . . .b1)2 the value of
the bit vector interpreted as a binary number, least significant bit to the right. Finally, let bn∗

i = bn
i if K n = 1 and bn∗

i = ¬bn
i

if K n = 0. The proof of Theorem 4, i.e., of the fact that the binary encoding produces optimal clusterings, follows from the
following lemmas.

Lemma 12 (Condition 1 of Proposition 1). clτ is a well-defined clustering.

Proof. Follows from the fact that for any point vi , τ has to assign all the values τ (bk
i), . . . , τ (b1

i) in some unique way.
Hence the value clτ (vi) is uniquely defined. What remains to be shown is that 1 ≤ clτ (vi) ≤ K . Assume for contradiction
that clτ (vi) = A for some A > K . Then K − 1 < A − 1 = (τ (bk

i), . . . , τ (b1
i))2. Based on the properties of binary numbers, we

140 J. Berg, M. Järvisalo / Artificial Intelligence 244 (2017) 110–142

know that (A − 1) j = 1 and (K − 1) j = 0 at the most significant bit j where the values differ. As τ (DefB(i, j′)) = 1, we have
τ (Bk

i) = 0, a contradiction. �
Lemma 13 (Condition 2 of Proposition 1). clτ respects the infinite values of W for all solutions τ to F 3 .

Proof. If W (i, j) = ∞, then τ has to assign τ (bn
i) = τ (bn

j) for each n = 1..k in order to satisfy the hard clauses corresponding
to bn

i ↔ bn
j . Hence τ (bn

i) = τ (bn
j) for all bits and clτ (vi) = clτ (v j). If W (i, j) = −∞, then τ (EQn

ij) = 0 for some n = 1..k due
to the hard clause (¬EQ1

i j ∨ . . . ∨ ¬EQk
ij). It follows that τ (bn

i ↔ bn
j) = 0. Thus τ (bn

i) �= τ (bn
j) and clτ (vi) �= clτ (v j). �

Lemma 14 (Condition 3 of Proposition 1). Let cl: V → {1, 2, . . . , K } be any clustering of V that respects the infinite values of W . There
is a solution τ to F 3 such that cl = clτ .

Proof. Construct such τ as

τ (bn
i) = (cl(vi) − 1)n

τ (EQn
ij) =

{
1 if (cl(vi) − 1)n = (cl(v j) − 1)n

0 else

τ (Sij) =
{

1 if (cl(vi) − 1)t = (cl(v j) − 1)t for all 1 ≤ t ≤ k
0 else

τ (B1
i) =

{
1 if K 1 = 1 and (cl(vi) − 1)1 = 0
0 else

τ (Bn
i) =

{
1 if K n = 1, (cl(vi) − 1)n = 0 or (cl(vi) − 1)m = K m and τ (Bn−1

i) = 1
0 else .

Clearly clτ = cl as long as τ is a solution to F 3, so it remains to be shown that τ (F 3
h) = 1. Consider the different types of

hard constraints present in F 3.

1. For any vi ∈ V and any bit n, the fact that τ (DefB(i, n)) = 1 follows directly from the definition given in Equation (6),
recalling that (cl(vi) − 1)n = τ (bn

i). Furthermore, cl(vi) ≤ K ⇔ cl(vi) − 1 < K . Hence there is a bit position n for which
K n = 1, (cl(vi) − 1)n = 0 and (cl(vi) − 1)m = K m for all n < m ≤ k. Thus τ (Bn

i) = 1 and τ (ClustersLessThan(i, K)) = 1.
2. For any W (i, j) < ∞, W (i, j) �= 0, and any bit n position, it holds that

τ (EQn
ij) = 1 ⇔ (cl(vi) − 1)n = (cl(v j) − 1)n ⇔ τ (bn

i) = τ (bn
j).

Hence τ (Equality(i, j, m)) = 1.
3. For any W (i, j) �= 0 and W (i, j) ∈ R, it holds that

τ (Sij) = 1 ⇔ τ (bt
i) = (cl(vi) − 1)t = (cl(v j) − 1)t = τ (bt

j) 1 ≤ t ≤ k ⇔
τ (EQt

i j) = 1 1 ≤ t ≤ k.

Hence τ (SameCluster(i, j)) = 1.
4. For all W (i, j) = ∞, cl(vi) = cl(v j), and hence cl(vi) − 1 = cl(v j) − 1. By the construction of τ , we have τ (bn

i) = τ (bn
j)

for all n. Thus τ (yn
i ↔ yn

j) = 1 for all bit positions, and τ (ML
B(vi, v j)) = 1.

5. For all W (i, j) = −∞, cl(vi) �= cl(v j) and cl(vi) − 1 �= cl(v j) − 1. Hence there is a bit position n for which (cl(vi) − 1)n �=
(cl(v j) − 1)n . By the construction of τ , τ (EQn

ij) = 0 and τ (¬EQ1
i j ∨ . . . ∨ ¬EQk

ij) = 1. As we already demonstrated that
τ (Equality(i, j, m)) = 1 holds for all m, we conclude that τ (CL

B(vi, v j)) = 1. �
Lemma 15 (Condition 4 of Proposition 1). cost(F 3, τ) = H(W , clτ) for any solution τ to F 3 .

Proof. As the semantics of the Sij variables exactly match the xij variables from the transitive encoding, the proof of this
lemma is almost identical to the proof of the corresponding result for the transitive encoding. The key observation is that
any pair of points vi and v j increases the cost of a MaxSAT solution by |W (i, j)| iff it also increases the cost of clτ by
|W (i, j)|. �

J. Berg, M. Järvisalo / Artificial Intelligence 244 (2017) 110–142 141

References

[1] J. Berg, M. Järvisalo, Optimal correlation clustering via MaxSAT, in: Proc. 2013 IEEE ICDM Workshops, IEEE Press, 2013, pp. 750–757.
[2] D.H. Fisher, Knowledge acquisition via incremental conceptual clustering, Mach. Learn. 2 (2) (1987) 139–172.
[3] A.K. Jain, M.N. Murty, P.J. Flynn, Data clustering: a review, ACM Comput. Surv. 31 (3) (1999) 264–323.
[4] N. Bansal, A. Blum, S. Chawla, Correlation clustering, Mach. Learn. 56 (1–3) (2004) 89–113.
[5] N. Ailon, M. Charikar, A. Newman, Aggregating inconsistent information: ranking and clustering, J. ACM 55 (5), Article No. 23.
[6] M. Charikar, V. Guruswami, A. Wirth, Clustering with qualitative information, J. Comput. Syst. Sci. 71 (3) (2005) 360–383.
[7] R. Shamir, R. Sharan, D. Tsur, Cluster graph modification problems, Discrete Appl. Math. 144 (1–2) (2004) 173–182.
[8] I. Giotis, V. Guruswami, Correlation clustering with a fixed number of clusters, Theory Comput. 2 (1) (2006) 249–266.
[9] E.D. Demaine, D. Emanuel, A. Fiat, N. Immorlica, Correlation clustering in general weighted graphs, Theor. Comput. Sci. 361 (2–3) (2006) 172–187.

[10] J.V. Gael, X. Zhu, Correlation clustering for crosslingual link detection, in: Proc. IJCAI, 2007, pp. 1744–1749.
[11] A. Ben-Dor, R. Shamir, Z. Yakhini, Clustering gene expression patterns, J. Comput. Biol. 6 (3/4) (1999) 281–297.
[12] F. Bonchi, A. Gionis, A. Ukkonen, Overlapping correlation clustering, in: Proc. ICDM, IEEE, 2011, pp. 51–60.
[13] F. Bonchi, A. Gionis, F. Gullo, A. Ukkonen, Chromatic correlation clustering, in: Proc. KDD, ACM, 2012, pp. 1321–1329.
[14] N. Cesa-Bianchi, C. Gentile, F. Vitale, G. Zappella, A correlation clustering approach to link classification in signed networks, in: Proc. COLT, in: J. Mach.

Learn. Res. Workshop Conf. Proc., vol. 23, JMLR.org, 2012, pp. 34.1–34.20.
[15] P. Bonizzoni, G.D. Vedova, R. Dondi, T. Jiang, Correlation clustering and consensus clustering, in: Proc. ISAAC, in: Lecture Notes in Computer Science,

vol. 3827, Springer, 2005, pp. 226–235.
[16] V. Filkov, S. Skiena, Integrating microarray data by consensus clustering, Int. J. Artif. Intell. Tools 13 (4) (2004) 863–880.
[17] V. Filkov, S. Skiena, Heterogeneous data integration with the consensus clustering formalism, in: Proc. DILS, in: Lecture Notes in Computer Science,

vol. 2994, Springer, 2004, pp. 110–123.
[18] R. Giancarlo, F. Utro, Speeding up the consensus clustering methodology for microarray data analysis, Algorithms Mol. Biol. 6 (2011) 1.
[19] Z. Yu, H.-S. Wong, H.-Q. Wang, Graph-based consensus clustering for class discovery from gene expression data, Bioinformatics 23 (21) (2007)

2888–2896.
[20] T. Guns, S. Nijssen, L.D. Raedt, Itemset mining: a constraint programming perspective, Artif. Intell. 175 (12–13) (2011) 1951–1983.
[21] S. Nijssen, T. Guns, L.D. Raedt, Correlated itemset mining in ROC space: a constraint programming approach, in: Proc. KDD, ACM, 2009, pp. 647–656.
[22] L.D. Raedt, T. Guns, S. Nijssen, Constraint programming for data mining and machine learning, in: Proc. AAAI, AAAI Press, 2010.
[23] I. Davidson, S.S. Ravi, L. Shamis, A SAT-based framework for efficient constrained clustering, in: Proc. SDM, SIAM, 2010, pp. 94–105.
[24] T. Guns, S. Nijssen, L.D. Raedt, K-pattern set mining under constraints, IEEE Trans. Knowl. Data Eng. 25 (2) (2013) 402–418.
[25] B. Négrevergne, A. Dries, T. Guns, S. Nijssen, Dominance programming for itemset mining, in: Proc. ICDM, IEEE, 2013, pp. 557–566.
[26] S. Gilpin, S. Nijssen, I.N. Davidson, Formalizing hierarchical clustering as integer linear programming, in: Proc. AAAI, AAAI Press, 2013.
[27] K. Wagstaff, C. Cardie, Clustering with instance-level constraints, in: Proc. ICML, Morgan Kaufmann, 2000, pp. 1103–1110.
[28] K. Wagstaff, C. Cardie, S. Rogers, S. Schrödl, Constrained K-means clustering with background knowledge, in: Proc. ICML, Morgan Kaufmann, 2001,

pp. 577–584.
[29] I. Davidson, S.S. Ravi, Intractability and clustering with constraints, in: Proc. ICML, ACM, 2007, pp. 201–208.
[30] A. Biere, M.J.H. Heule, H. van Maaren, T. Walsh (Eds.), Handbook of Satisfiability, IOS Press, 2009.
[31] J.-P. Métivier, P. Boizumault, B. Crémilleux, M. Khiari, S. Loudni, Constrained clustering using SAT, in: Proc. IDA, in: Lecture Notes in Computer Science,

vol. 7619, Springer, 2012, pp. 207–218.
[32] C.M. Li, F. Manyà, MaxSAT, hard and soft constraints, in: Handbook of Satisfiability, IOS Press, 2009, pp. 613–631.
[33] P. Bonizzoni, G.D. Vedova, R. Dondi, T. Jiang, On the approximation of correlation clustering and consensus clustering, J. Comput. Syst. Sci. 74 (5) (2008)

671–696.
[34] M. Charikar, A. Wirth, Maximizing quadratic programs: extending Grothendieck’s inequality, in: Proc. FOCS, IEEE Computer Society, 2004, pp. 54–60.
[35] D. Klein, S.D. Kamvar, C.D. Manning, From instance-level constraints to space-level constraints: making the most of prior knowledge in data clustering,

in: Proc. ICML, Morgan Kaufmann, 2002, pp. 307–314.
[36] I. Davidson, S.S. Ravi, Clustering with constraints: feasibility issues and the k-means algorithm, in: Proc. SDM, SIAM, 2005, pp. 138–149.
[37] I. Davidson, S.S. Ravi, The complexity of non-hierarchical clustering with instance and cluster level constraints, Data Min. Knowl. Discov. 14 (1) (2007)

25–61.
[38] M. Kr̆ivánek, J. Morávek, NP-hard problems in hierarchical-tree clustering, Acta Inform. 23 (3) (1986) 311–323.
[39] Y. Chen, S. Safarpour, J. Marques-Silva, A.G. Veneris, Automated design debugging with maximum satisfiability, IEEE Trans. Comput.-Aided Des. Integr.

Circuits Syst. 29 (11) (2010) 1804–1817.
[40] C.S. Zhu, G. Weissenbacher, S. Malik, Post-silicon fault localisation using maximum satisfiability and backbones, in: Proc. FMCAD, FMCAD Inc., 2011,

pp. 63–66.
[41] M. Jose, R. Majumdar, Cause clue clauses: error localization using maximum satisfiability, in: Proc. PLDI, ACM, 2011, pp. 437–446.
[42] J. Guerra, I. Lynce, Reasoning over biological networks using maximum satisfiability, in: Proc. CP, in: Lecture Notes in Computer Science, vol. 7514,

Springer, 2012, pp. 941–956.
[43] J. Berg, M. Järvisalo, B. Malone, Learning optimal bounded treewidth Bayesian networks via maximum satisfiability, in: Proc. AISTATS, vol. 33, JMLR,

2014, pp. 86–95.
[44] M. Järvisalo, D. Le Berre, O. Roussel, L. Simon, The international SAT solver competitions, AI Mag. 33 (1) (2012) 89–92.
[45] C.M. Li, F. Manyà, N.O. Mohamedou, J. Planes, Exploiting cycle structures in Max-SAT, in: Proc. SAT, in: Lecture Notes in Computer Science, vol. 5584,

Springer, 2009, pp. 467–480.
[46] M. Koshimura, T. Zhang, H. Fujita, R. Hasegawa, QMaxSAT: a partial Max-SAT solver, J. Satisf. Boolean Model. Comput. 8 (1/2) (2012) 95–100.
[47] J. Marques-Silva, J. Planes, Algorithms for maximum satisfiability using unsatisfiable cores, in: Proc. DATE, IEEE, 2008, pp. 408–413.
[48] A. Morgado, F. Heras, J. Marques-Silva, Improvements to core-guided binary search for MaxSAT, in: Proc. SAT, in: Lecture Notes in Computer Science,

vol. 7317, Springer, 2012, pp. 284–297.
[49] F. Heras, A. Morgado, J. Marques-Silva, Core-guided binary search algorithms for maximum satisfiability, in: Proc. AAAI, AAAI Press, 2011.
[50] C. Ansótegui, M.L. Bonet, J. Levy, SAT-based MaxSAT algorithms, Artif. Intell. 196 (2013) 77–105.
[51] A. Morgado, F. Heras, M.H. Liffiton, J. Planes, J. Marques-Silva, Iterative and core-guided MaxSAT solving: a survey and assessment, Constraints 18 (4)

(2013) 478–534.
[52] Z. Fu, S. Malik, On solving the partial MaxSAT problem, in: Proc. SAT, in: Lecture Notes in Computer Science, vol. 4121, Springer, 2006, pp. 252–265.
[53] V.M. Manquinho, J.P.M. Silva, J. Planes, Algorithms for weighted boolean optimization, in: Proc. SAT, in: Lecture Notes in Computer Science, vol. 5584,

Springer, 2009, pp. 495–508.
[54] A. Morgado, C. Dodaro, J. Marques-Silva, Core-guided MaxSAT with soft cardinality constraints, in: Proc. CP, in: Lecture Notes in Computer Science,

vol. 8656, Springer, 2014, pp. 564–573.

142 J. Berg, M. Järvisalo / Artificial Intelligence 244 (2017) 110–142

[55] J. Davies, F. Bacchus, Exploiting the power of MIPs solvers in MaxSAT, in: Proc. SAT, in: Lecture Notes in Computer Science, vol. 7962, Springer, 2013,
pp. 166–181.

[56] C. Ansótegui, J. Gabàs, Solving (weighted) partial MaxSAT with ILP, in: Proc. CPAIOR, in: Lecture Notes in Computer Science, vol. 7874, Springer, 2013,
pp. 403–409.

[57] J.P. Marques-Silva, I. Lynce, Towards robust CNF encodings of cardinality constraints, in: Proc. CP, in: Lecture Notes in Computer Science, vol. 4741,
Springer, 2007, pp. 483–497.

[58] I. Abío, R. Nieuwenhuis, A. Oliveras, E. Rodríguez-Carbonell, A parametric approach for smaller and better encodings of cardinality constraints, in: Proc.
CP, vol. 8124, Springer, 2013, pp. 80–96.

[59] S. Prestwich, CNF encodings, in: Handbook of Satisfiability, IOS Press, 2009, pp. 75–97, Ch. 2.
[60] C. Sinz, Towards an optimal CNF encoding of boolean cardinality constraints, in: Proc. CP, in: Lecture Notes in Computer Science, vol. 3709, 2005,

pp. 827–831.
[61] F. Heras, A. Morgado, J. Marques-Silva, An empirical study of encodings for group MaxSAT, in: Proc. Canadian Conference on AI, in: Lecture Notes in

Computer Science, vol. 7310, Springer, 2012, pp. 85–96.
[62] T. Nepusz, R. Sasidharan, A. Paccanaro, SCPS: a fast implementation of a spectral method for detecting protein families on a genome-wide scale, BMC

Bioinform. 11 (2010) 120.
[63] S. Altschul, W. Gish, W. Miller, E. Myers, D. Lipman, Basic local alignment search tool, J. Mol. Biol. 215 (3) (1990) 403–410.
[64] J. Davies, F. Bacchus, Solving MaxSAT by solving a sequence of simpler SAT instances, in: Proc. CP, in: Lecture Notes in Computer Science, vol. 6876,

Springer, 2011, pp. 225–239.
[65] J. Davies, F. Bacchus, Postponing optimization to speed up MAXSAT solving, in: Proc. CP, in: Lecture Notes in Computer Science, vol. 8124, Springer,

2013, pp. 247–262.
[66] T. Achterberg, T. Berthold, T. Koch, K. Wolter, Constraint integer programming: a new approach to integrate CP and MIP, in: Proc. CPAIOR, in: Lecture

Notes in Computer Science, vol. 5015, Springer, 2008, pp. 6–20.
[67] A. Wirth, Correlation clustering, in: Encyclopedia of Machine Learning, Springer, 2010, pp. 227–231.
[68] J. Sturm, Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones, Optim. Methods Softw. 11–12 (1999) 625–653, version 1.05

available from http://fewcal.kub.nl/sturm.
[69] C. Buchheim, M.D. Santis, L. Palagi, A fast branch-and-bound algorithm for non-convex quadratic integer optimization subject to linear constraints

using ellipsoidal relaxations, Oper. Res. Lett. 43 (4) (2015) 384–388.
[70] D. Cohn, R. Caruana, A. McCallum, Semi-supervised clustering with user feedback, Tech. rep., 2003.
[71] I. Davidson, S.S. Ravi, M. Ester, Efficient incremental constrained clustering, in: P. Berkhin, R. Caruana, X. Wu (Eds.), KDD, ACM, 2007, pp. 240–249.
[72] W. Rand, Objective criteria for the evaluation of clustering methods, J. Am. Stat. Assoc. 66 (336) (1971) 846–850.
[73] A. Belov, A. Morgado, J. Marques-Silva, SAT-based preprocessing for MaxSAT, in: Proc. LPAR, in: Lecture Notes in Computer Science, vol. 8312, Springer,

2013, pp. 96–111.
[74] J. Berg, P. Saikko, M. Järvisalo, Improving the effectiveness of SAT-based preprocessing for MaxSAT, in: Proceedings of the 24th International Joint

Conference on Artificial Intelligence, IJCAI 2015, AAAI Press, 2015.
[75] A. Belov, M. Järvisalo, J. Marques-Silva, Formula preprocessing in MUS extraction, in: Proc. TACAS, in: Lecture Notes in Computer Science, vol. 7795,

Springer, 2013, pp. 108–123.
[76] N. Manthey, Coprocessor 2.0 – a flexible CNF simplifier (tool presentation), in: Proc. SAT, in: Lecture Notes in Computer Science, vol. 7317, Springer,

2012, pp. 436–441.
[77] N. Eén, A. Biere, Effective preprocessing in SAT through variable and clause elimination, in: Proc. SAT, in: Lecture Notes in Computer Science, vol. 3569,

Springer, 2005, pp. 61–75.
[78] M. Järvisalo, A. Biere, M. Heule, Blocked clause elimination, in: Proc. TACAS, in: Lecture Notes in Computer Science, vol. 6015, Springer, 2010,

pp. 129–144.
[79] M. Heule, M. Järvisalo, A. Biere, Clause elimination procedures for CNF formulas, in: Proc. LPAR, in: Lecture Notes in Computer Science, vol. 6397,

Springer, 2010, pp. 357–371.
[80] M. Heule, M. Järvisalo, A. Biere, Efficient CNF simplification based on binary implication graphs, in: Proc. SAT, in: Lecture Notes in Computer Science,

vol. 6695, 2011, pp. 201–215.
[81] M. Järvisalo, A. Biere, Reconstructing solutions after blocked clause elimination, in: Proc. SAT, in: Lecture Notes in Computer Science, vol. 6175, Springer,

2010, pp. 340–345.
[82] N. Narodytska, F. Bacchus, Maximum satisfiability using core-guided MaxSAT resolution, in: Proc. AAAI, AAAI Press, 2014, pp. 2717–2723.
[83] R. Martins, V.M. Manquinho, I. Lynce, Open-WBO: a modular MaxSAT solver, in: Proc. SAT, in: Lecture Notes in Computer Science, vol. 8561, Springer,

2014, pp. 438–445.
[84] R. Martins, S. Joshi, V.M. Manquinho, I. Lynce, Incremental cardinality constraints for MaxSAT, in: Proc. CP, in: Lecture Notes in Computer Science,

vol. 8656, Springer, 2014, pp. 531–548.
[85] J. Larrosa, F. Heras, Resolution in Max-SAT and its relation to local consistency in weighted CSPs, in: Proc. IJCAI, Professional Book Center, 2005,

pp. 193–198.
[86] E.D. Demaine, N. Immorlica, Correlation clustering with partial information, in: Proc. RANDOM-APPROX, in: Lecture Notes in Computer Science,

vol. 2764, Springer, 2003, pp. 1–13.
[87] M.X. Goemans, D.P. Williamson, Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming,

J. ACM 42 (6) (1995) 1115–1145.
[88] A. McCallum, B. Wellner, Conditional models of identity uncertainty with application to noun coreference, in: Proc. NIPS, 2004, pp. 905–912.
[89] L. Drummond, R. Figueiredo, Y. Frota, M. Levorato, Efficient solution of the correlation clustering problem: an application to structural balance, in: Proc.

OTM Workshops, in: Lecture Notes in Computer Science, vol. 8186, Springer, 2013, pp. 674–683.
[90] B. Babaki, T. Guns, S. Nijssen, Constrained clustering using column generation, in: Proc. CPAIOR, in: Lecture Notes in Computer Science, vol. 8451,

Springer, 2014, pp. 438–454.
[91] A. Bar-Hillel, T. Hertz, N. Shental, D. Weinshall, Learning distance functions using equivalence relations, in: Proc. ICML, AAAI Press, 2003, pp. 11–18.
[92] I. Davidson, S.S. Ravi, Using instance-level constraints in agglomerative hierarchical clustering: theoretical and empirical results, Data Min. Knowl.

Discov. 18 (2) (2009) 257–282.
[93] T. Coleman, J. Saunderson, A. Wirth, Spectral clustering with inconsistent advice, in: Proc. ICML, ACM, New York, NY, USA, 2008, pp. 152–159.
[94] M. Mueller, S. Kramer, Integer linear programming models for constrained clustering, in: Proc. DS, in: Lecture Notes in Computer Science, vol. 6332,

Springer, 2010, pp. 159–173.
[95] J. Schmidt, E.M. Brändle, S. Kramer, Clustering with attribute-level constraints, in: Proc. ICDM, IEEE, 2011, pp. 1206–1211.
[96] D. Aloise, P. Hansen, L. Liberti, An improved column generation algorithm for minimum sum-of-squares clustering, Math. Program. 131 (1–2) (2012)

195–220.
[97] T.-B.-H. Dao, K.-C. Duong, C. Vrain, A declarative framework for constrained clustering, in: Proc. ECML-PKDD, 2013, pp. 419–434.

Paper VI

VI

Jeremias Berg, Matti Järvisalo, and Brandon Malone

Learning Optimal Bounded Treewidth Bayesian Networks via
Maximum Satisfiability

c© 2014 The authors. Reprinted from Proceedings of the 17th International
Conference on Artificial Intelligence and Statistics (AISTATS), volume 33
of JMLR Workshop and Conference Proceedings, pages 86-95. JMLR, 2014.

Learning Optimal Bounded Treewidth Bayesian Networks
via Maximum Satisfiability

Jeremias Berg and Matti Järvisalo and Brandon Malone
HIIT & Department of Computer Science, University of Helsinki, Finland

Abstract

Bayesian network structure learning is the
well-known computationally hard problem
of finding a directed acyclic graph struc-
ture that optimally describes given data.
A learned structure can then be used for
probabilistic inference. While exact infer-
ence in Bayesian networks is in general
NP-hard, it is tractable in networks with
low treewidth. This provides good motiva-
tions for developing algorithms for the NP-
hard problem of learning optimal bounded
treewidth Bayesian networks (BTW-BNSL).
In this work, we develop a novel score-based
approach to BTW-BNSL, based on casting
BTW-BNSL as weighted partial Maximum
satisfiability. We demonstrate empirically
that the approach scales notably better than
a recent exact dynamic programming algo-
rithm for BTW-BNSL.

1 INTRODUCTION

Bayesian networks are an important and widely-used
class of probabilistic graphical models for representing
joint probability distributions, i.e., probabilistic rela-
tionships among a set of variables of interest (Pearl,
1988). A Bayesian network consists of a network struc-
ture, represented as an acyclic directed graph (DAG),
and the parameters associated with each node (i.e.,
variable) in the DAG. Most often, a Bayesian network
that represents given data well is not known a priori,
and hence needs to be learned from data. Given a
network structure and complete data, determining the
parameters of the variables is simple, whereas learn-
ing the DAG structure, i.e., the Bayesian network

Appearing in Proceedings of the 17th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2014, Reykjavik, Iceland. JMLR: W&CP volume 33. Copy-
right 2014 by the authors.

structure learning problem (BNSL), is computation-
ally challenging.

In this work we focus on the BNSL problem within
the widely studied score-based framework, in which
a score is assigned to each DAG structure, and the
goal is to find a best-scoring network. The structure
learning problem is NP-complete in general (Chick-
ering, 1996), which justified the fact that most early
work on BNSL focused on local search algorithms, such
as greedy hill climbing in the space of DAGs (Hecker-
man, 1998), equivalence classes of DAGs (Chickering,
2002), or over variable orderings (Teyssier and Koller,
2005), and local searching over constraint optimization
formulations of BNSL (Cussens, 2008).

After learning a Bayesian network, the network is typ-
ically used for probabilistic inference tasks, such as
determining the most likely joint assignments of a set
of variables under given evidence. In order to accu-
rately answer such queries, it is important to learn a
network that explains the input data well. Through-
out the last decade, there has been increasing interest
in developing algorithms for optimally solving BNSL,
and a variety of algorithms which are guaranteed to
find a network structure with optimal score have been
proposed (Ott and Miyano, 2003; Koivisto and Sood,
2004; Silander and Myllymäki, 2006; Cussens, 2011;
Yuan and Malone, 2013).

While exact Bayesian inference is in general NP-
hard (Cooper, 1990), for bounded (fixed) treewidth net-
works exact inference becomes tractable (Lauritzen
and Spiegelhalter, 1988). This motivates the study
of algorithms for the problem of learning optimal
bounded treewidth Bayesian networks (BTW-BNSL).
Despite the recent progress in practical algorithms
for optimally solving BNSL without treewidth con-
straints, very few practical algorithms have been pro-
posed for learning network structures under restric-
tions on the treewidth of the networks (Elidan and
Gould, 2008; Korhonen and Parviainen, 2013); the
only approach learning optimal bounded treewidth
network structures is the recent exact dynamic pro-
gramming algorithm of Korhonen and Parviainen

86

Learning Bounded Treewidth Bayesian Networks via MaxSAT

(2013).

Much like the general BNSL problem, BTW-BNSL is
NP-hard (Korhonen and Parviainen, 2013): more pre-
cisely, BTW-BNSL(W), the problem of finding an op-
timal Bayesian network structure of treewidth at most
W , is NP-hard for any fixed W ≥ 2 (DAGs withW = 1
being trees). Indeed, the restriction on the treewidth
of the DAG structures is a non-trivial additional con-
straint over the general BNSL problem, which poses
challenges for developing algorithms for BTW-BNSL.

In this work, we develop a novel score-based approach
to learning optimal bounded treewidth Bayesian net-
work structures. Our approach is based on casting
BTW-BNSL for a given bound W on the treewidth
of the DAG structures of interest as an abstract
combinatorial optimization problem. More precisely,
we present an intricate encoding of BTW-BNSL as
weighted partial Maximum Satisfiability (MaxSAT in
short). The encoding ensures that the optimal solu-
tions of the MaxSAT instance encoding an arbitrary
instance of BTW-BNSL(W) correspond to optimal
DAG structures wrt a given scoring function. For find-
ing optimal structures using the MaxSAT encoding, we
employ a state-of-the-art MaxSAT solver extended to
real-valued costs for exactly encoding the local scores.
We demonstrate empirically that our approach scales
notably better than the recent exact dynamic pro-
gramming algorithm for BTW-BNSL (Korhonen and
Parviainen, 2013) on standard BNSL benchmarks and
for different values ofW . Furthermore, in view of prac-
tical efficiency, our approach can benefit from foresee-
able future improvements in state-of-the-art MaxSAT
solver technology. The approach is applicable un-
der any decomposable scoring function (Heckerman,
1998), i.e., scoring functions in which the score for
an entire network is the sum of the local scores for
the chosen parent sets for the individual variables in
the network, including e.g. the commonly used scoring
functions MDL (Lam and Bacchus, 1994), BD (Cooper
and Herskovits, 1992; Heckerman et al., 1995), and
fNML (Silander et al., 2008).

2 PRELIMINARIES

In order to formally define the problem of learning op-
timal bounded treewidth Bayesian network structures,
we first define necessary concepts related to treewidth
and tree-decompositions. We also give necessary back-
ground on MaxSAT.

2.1 Treewidth

The treewidth of an undirected graph G is defined in
terms of the tree-decompositions of G.

Definition 1 A tree-decomposition of an undirected
graph G = (V,E) is a tree T over a set {V1, . . . , Vm}
of nodes, where Vi ⊆ V , with the following properties.

1. ∪mi=1Vi = V .

2. If {u, v} ∈ E, then u, v ∈ Vi for some i ∈
{1, . . . ,m}.

3. For all i, j, k ∈ {1, . . . ,m}, the following holds:
if Vj is on the (unique) path from Vi to Vk in T ,
then Vi ∩ Vk ⊆ Vj.

The width of a tree-decomposition is maxmi=1 |Vi| − 1.

Definition 2 The treewidth tw(G) of an undirected
graph G = (V,E) is the minimum width over all tree-
decompositions of G.

It is well-known that, for any undirected graph G =
(V,E), any linear ordering of the nodes V of G defines
a tree-decomposition of G, and that there is always
an “optimal” linear ordering of V defining an optimal
tree-decomposition, i.e., a tree-decomposition of width
tw(G) (Dechter, 1999; Bodlaender, 2005). Further-
more, without needing to explicitly construct the cor-
responding optimal tree-decomposition, the treewidth
of G can be determined based on an optimal linear
ordering ≺ of V . A node vi ∈ V is a predecessor of
vj ∈ V under ≺ if i ≺ j and {vi, vj} ∈ E; vi is a suc-
cessor of vj under ≺ if j ≺ i and {vi, vj} ∈ E. Given
a linear ordering ≺ of V , the width of the correspond-
ing tree-decomposition is determined by applying the
following triangulation procedure on G under ≺: For
each pair vi, vj of nodes in V , add the edge {vi, vj} to
E if vi and vj have a common predecessor. Repeat this
as long as new edges can be added to E. We denote
the resulting edge-relation by ∆(E,≺), defining the
triangulation ∆(G,≺) = (V,∆(E,≺)) of G under ≺.
Orienting the edges of ∆(G,≺) according to ≺ gives
the directed edge-relation

~∆(E,≺) = {(vi, vj) | {vi, vj} ∈ ∆(E,≺), i ≺ j}

defining the ordered graph ~∆(G,≺) = (V, ~∆(E,≺)) of
G under ≺. Now, the width of the tree-decomposition
defined by ≺ is

max
vi∈V

|{(vi, vj) ∈ ~∆(E,≺)}|, (1)

i.e., the maximum number of successors over all nodes
in ∆(E,≺). The treewidth tw(G) of G is then

min
≺

max
vi∈V

|{(vi, vj) ∈ ~∆(E,≺)}|, (2)

over all linear orderings ≺ of the nodes V of G.

Before a concrete example of triangulation and ordered
graphs, we proceed by defining the treewidth for the
DAG structures of Bayesian networks.

87

Jeremias Berg, Matti Järvisalo, Brandon Malone

X4

X2

X1

X3

X5

X6

(a)

X2

X4 X5

X6

X3

X1

(b)

X1

X2

X4 X5

X3

X6

(c)

X2

X1

X3

X5X4

X6

(d)

Figure 1: Example: (a) a DAG G = (X = {X1, . . . , X6}, E); (b) the moralized graph Moral(G) = (X,M(E))
of G; (c) the triangulation ∆(Moral(G),≺) of the moralized graph under the linear ordering X6 ≺ X2 ≺ X4 ≺
X1 ≺ X3 ≺ X5; (d) the ordered graph ~∆(Moral(G),≺).

2.2 Bounded Treewidth Bayesian Network
Structure Learning

Given a set X = {X1, . . . , XN} of nodes (representing
random variables), an element of Pi = 2X\{Xi} is a
candidate parent set of Xi. For a given DAG G =
(X,E), the parent set of node Xi is {Xj | (Xj , Xi) ∈
E}, i.e., consists of the parents of Xi in G. Picking
a single Pi ∈ Pi for each Xi gives rise to the (not
necessarily acyclic) graph in which, for each Xi, there
is an edge (Xj , Xi) iff Xj ∈ Pi.

The treewidth of a Bayesian network structure is de-
fined as the treewidth of the moralized graph induced
by the DAG structure of the network. This is moti-
vated by the fact that Bayesian inference is tractable
in structures whose moralized graph has bounded
treewidth, forming the basis for exact join-tree infer-
ence algorithms (Lauritzen and Spiegelhalter, 1988).

Definition 3 Given a DAG G = (X,E), the moral-
ized graph Moral(G) = (X,M(E)) induced by G is
an undirected graph defined by the edge relation

M(E) = {{Xi, Xj} | (Xi, Xj) ∈ E} ∪
{{Xi, Xj} | ∃k s.t. (Xi, Xk), (Xj , Xk) ∈ E}.

In words, the moralized graph contains an undirected
version of each edge in the DAG, and an edge between
every pair of nodes which have a common child in the
DAG.

The treewidth of the DAG structure G of any Bayesian
network can be determined by finding a linear order-
ing ≺ that minimizes Eq. 1 for the ordered graph
~∆(Moral(G),≺) of the moralization Moral(G) of
G under ≺. We denote by tw(W) the class of DAGs
having treewidth at most W .

As an example, Figure 1 illustrates for (a) a given DAG
G = (X,E) (b) the moralized graph Moral(G), and,

for a given linear ordering ≺ of the nodes X, (c) the
triangulation ∆(Moral(G),≺) and (d) the ordered

graph ~∆(Moral(G),≺). For this ordering ≺, Eq. 1
evaluates to 2, and hence G ∈ tw(2). In fact, it
can be checked that this ≺ defines an optimal tree-
decomposition of G, minimizing Eq. 2, which implies
that tw(G) = 2.

With these definitions, we can formally state the
bounded treewidth Bayesian network structure learn-
ing problem (BTW-BNSL) as follows1.

The BTW-BNSL Problem

Input: A set X = {X1, . . . , XN} of nodes, an
integer W , and for each Xi a non-negative
local score (cost) si(Pi) for each Pi ∈ Pi.

Task: Find a DAG G∗ such that

G∗ ∈ arg min
G∈tw(W)

N∑
i=1

si(Pi), (3)

where Pi is the parent set of Xi in G.

Note that the Pis can be assumed to contain only par-
ent sets Pi with |Pi| ≤ W , since the treewidth of any
DAG containing a node having more than W parents
is greater than W . However, the opposite does not
hold, i.e., the treewidth of a DAG with at most W
parents for each node can still be greater than W .

2.3 Maximum Satisfiability

We shortly review necessary background on Maximum
satisfiability (Li and Manyà, 2009).

For a Boolean variable x, there are two literals, x and

1The problem can equivalently be defined as a maxi-
mization problem under non-positive local scores.

88

Learning Bounded Treewidth Bayesian Networks via MaxSAT

¬x. A clause is a disjunction (∨, logical OR) of lit-
erals. A truth assignment is a function from Boolean
variables to {0, 1}. A clause C is satisfied by a truth
assignment τ (τ(C) = 1) if τ(x) = 1 for a literal x
in C, or τ(x) = 0 for a literal ¬x in C. A set F of
clauses is satisfiable if there is an assignment τ sat-
isfying all clauses in F (τ(F) = 1), and unsatisfiable
(τ(F) = 0 for any assignment τ) otherwise. An in-
stance F = (Fh, Fs, c) of the weighted partial MaxSAT
problem consists of two sets of clauses, a set Fh of
hard clauses and a set Fs of soft clauses, and a func-
tion c : Fs → R+ that associates a non-negative cost
with each of the soft clauses.2 Any truth assignment
τ that satisfies Fh is a solution to F . The cost of a
solution τ to F is

cost(F, τ) =
∑
C∈Fs:
τ(C)=0

c(C),

i.e., as the sum of the costs of the soft clauses not sat-
isfied by τ . A solution τ is (globally) optimal for F if
cost(F, τ) ≤ cost(F, τ ′) holds for any solution τ ′ to
F . The cost of the optimal solutions of F is denoted
by opt(F). Given a weighted partial MaxSAT in-
stance F , the weighted partial MaxSAT problem asks
to find an optimal solution to F . From here on, we
refer to weighted partial MaxSAT instances simply as
MaxSAT instances.

Due to recent advances in MaxSAT solvers, i.e., al-
gorithms for (optimally) solving MaxSAT, MaxSAT
is a viable approach to finding globally optimal so-
lutions to various optimization problems. In general,
the MaxSAT-based approach has two steps. First, a
MaxSAT encoding of the problem is developed. For
any instance I of the problem, the encoding produces
a MaxSAT instance FI such that any optimal solu-
tion to FI can be mapped to an optimal solution of I.
Then, an off-the-shelf MaxSAT solver is used to find
an optimal solution to the MaxSAT instance. As SAT
solvers continue improving, larger and larger problems
can be solved in practice (Järvisalo et al., 2012).

3 BTW-BNSL as MaxSAT

We will now describe an encoding of BTW-BNSL as
(weighted partial) MaxSAT.

For the following, we assume an arbitrary input in-
stance of BTW-BNSL, consisting of a set X =
{X1, . . . , XN} of nodes, a treewidth bound W , and

2Our definition for the function c is more general than
the more standard c : Fs → N+, which restricts the costs
of soft clauses to be integral. However, in this work we
employ a recent MaxSAT solver which allows for assigning
real-valued costs to soft clauses.

for each Xi a non-negative local score (cost) si(Pi) for
each Pi ∈ Pi with |Pi| ≤ W . Given (X,W, {si}Ni=1),
our encoding will produce a weighted partial MaxSAT
instance F (X,W, {si}Ni=1) = (Fh, Fs, c) such that any
optimal solution to F corresponds to a DAG G∗

that is an optimal solution the BTW-BNSL instance
(X,W, {si}Ni=1), and vice versa.

3.1 Overview

In order to exactly represent the BTW-BNSL instance
as a weighted partial MaxSAT instance, we will encode
the following constraints:

1. For each Xi, exactly one parent set Pi ∈ Pi is
chosen.

2. The graph G∗, corresponding to the choice of a
parent set Pi for each i, is acyclic.

3. The moralized graph Moral(G∗) of G∗ has
treewidth tw(Moral(G∗)) ≤W .

4. G∗ is an optimal solution of the BTW-BNSL in-
stance, i.e., G∗ ∈ arg minG∈tw(W)

∑N
i=1 si(Pi).

Constraints 1 and 2 together enforce that any choice of
a single parent set Pi for each variable Xi corresponds
to a DAG G∗. Constraint 3 is the most intricate one,
and enforces that G∗ has treewidth at most W . Con-
straint 4 represents the objective function (Eq. 3) of
BTW-BNSL.

The main variables used in the encoding are summa-
rized in Table 1.

• The variables PSi represent for each node Xi the
chosen parent set S ∈ Pi.
• The variables Mij represent the edges in the mor-

alized graph Moral(G∗) of G∗.

• The variables ordij represent a linear ordering ord
of the nodes of G∗.

• The variables Oij represent the successors Xj of
node Xi in the ordered graph of Moral(G∗) un-
der ord.

3.2 Details

We will now detail the MaxSAT encoding of Con-
straints 1–4, i.e., our MaxSAT encoding of BTW-
BNSL. For clarity, we present the various parts of the
encoding using propositional logic, instead of directly
presenting the corresponding individual clauses.

1: Enforcing Exactly One Parent Set. For each
node Xi, exactly one parent set from Pi must be cho-
sen. This is enforced by introducing for each node Xi

the cardinality constraint∑
S∈Pi

PSi = 1. (4)

89

Jeremias Berg, Matti Järvisalo, Brandon Malone

Table 1: The main variables used in the MaxSAT encoding of the BTW-BNSL problem.
Boolean variables Interpretation Indices

PS
i represent the parent set of each node in G∗:

PS
i = 1 iff S is the parent set of node Xi in G∗ for all i = 1..N and S ∈ Pi

Mij represent the moralized graph of G∗:
Mij = 1 iff Moral(G∗) contains the edge {Xi, Xj} for all i, j = 1..N such that i < j

ordij represent a linear ordering ord of the nodes of G∗:
ordij = 1 iff node Xi is a predecessor of node Xj for all i, j = 1..N such that i < j

in the linear ordering

Oij represent the ordered graph ~∆(Moral(G∗), ord) :
Oij = 1 iff the ordered graph of Moral(G∗) under ord for all i, j = 1..N such that i 6= j

contains the edge (Xi, Xj)

Many different ways of representing such special types
of cardinality constraints, often called exactly-one con-
straints, as (hard) clauses have been proposed in the
literature. Here we use the so-called improved sequen-
tial counter encoding for representing Eq.(4) as a set
of hard clauses; for details on the improved sequential
counted encoding, see (Samer and Veith, 2009).

2: Enforcing Acyclicity. For ruling out cyclic
graphs, i.e., for ensuring that any solution to the
MaxSAT encoding corresponds to a DAG, we apply
the idea of associating a unique, pair-wise different
level number from {1, . . . , N} with each node Xi, and
enforce that, given that a parent set S ∈ Pi is chosen
for Xi, the level number of Xi is greater than the level
number of each Xj ∈ S.3

We use a binary encoding of the level numbers of
the nodes. For each node Xi, log2N Boolean vari-

ables b1i , . . . , b
log2N
i form the binary representation

b
log2N
i . . . b1i of the level number of Xi. For a com-

pact encoding, we also use auxiliary variables EQkij
and GT kij , with the interpretations that EQkij = 1 iff

bki = bkj , and GT kij = 1 iff bik = 1, bjk = 0, and EQk
′

ij = 1
for all k′ > k (i.e., the kth bit is the most significant
bit in which the level numbers of Xi and Xj differ, and
the level number of Xi is greater than that of Xj). Us-
ing these variables, the unique level numbers for the
nodes are enforced as follows.

The fact that each node gets a different level number
from {1, . . . , N} is enforced by stating that for each
pair of distinct nodes Xi, Xj , the level number of Xi

is different from that of Xj . This is enforced by

log2N∨
k=1

¬EQkij , (5)

i.e., there is a bit-position k in which the binary rep-
resentations of the level numbers of Xi and Xj differ.

3Variations of the same idea have been applied for en-
forcing acyclicity with linear integer constraints in differ-
ent contexts, under e.g. the terms level rankings (Niemelä,
2008) and generation numbers (Cussens et al., 2013).

Furthermore, if parent set S ∈ Pi \ {∅} is chosen for
node Xi, then for each Xj ∈ S, there is a bit position
k which is the most significant bit in which the level
numbers of Xi and Xj differ, and the level number of
Xi is greater than that of Xj :

PSi →
log2N∨
k=1

GT kij for all j s.t. Xj ∈ S. (6)

The semantics of the variables GT kij and EQkij are en-
coded as

GT kij ↔ bki ∧ ¬bkj ∧
log2N∧
k′=k+1

EQk
′

ij , (7)

EQkij ↔
(
bki ↔ bkj

)
. (8)

While Eqs. 5–8 together with Eq. 4 ensure that any
solution corresponds to a DAG, we also include a single
additional redundant clause, stating the fact that a
DAG has at least one root node, i.e., a node Xi with
the empty parent set ∅:

N∨
i=1

P ∅i . (9)

While this clause is redundant in that it does not
change the set of solutions, it turned out that in prac-
tice adding this clause speeds up MaxSAT solving.

3: Enforcing the Treewidth Bound. The most
intricate part of the MaxSAT encoding deals with
mapping parent sets to the moralized graph of a DAG
G∗ corresponding to the parent sets, and then enforc-
ing that the moralized graph Moral(G∗) of G∗ has
treewidth tw(Moral(G∗)) ≤W .

(i) From Parent Sets to the Moralized Graph. We di-
rectly connect the choices of parent sets, represented
by the PSi variables, with the edges in the correspond-
ing moralized graph, represented by the variables Mij .
The encoding follows closely the definition of moral-
ized graphs (Def. 3). Eq. 10 enforces that, if a partic-
ular parent set S ∈ Pi is chosen, then in the moral-
ized graph there is (i) an edge between Xi and each

90

Learning Bounded Treewidth Bayesian Networks via MaxSAT

Xj ∈ S, and (ii) an edge between each pair of distinct
nodes Xj , Xk ∈ S.

PSi →
∧
Xj∈S

Mij ∧
∧

Xj ,Xk∈S
Mjk. (10)

The opposite direction is encoded as Eq. 11: if there is
an edge in the moralized graph between nodes Xi and
Xj , it must hold that: (i) Xj is in the parent set of Xi,
(ii) Xi is in the parent set of Xj , or (iii) both Xi and
Xj are in the parent set of some Xk ∈ X \ {Xi, Xj}.

Mij →
∨

S:Xj∈S
PSi ∨

∨
S:Xi∈S

PSj ∨
∨

Xk∈X\{Xi,Xj}
S:Xi,Xj∈S

PSk (11)

Notice that, with this encoding, we do not need to
introduce explicit Boolean variables for explicitly rep-
resenting the actual edges of the DAG corresponding
to the choice of parent sets.

(ii) Encoding Linear Orderings. For enforcing
the treewidth bound on the moralized graphs, we
follow—with minor modifications—a SAT encoding of
treewidth in undirected graphs presented in (Samer
and Veith, 2009). Following Samer and Veith
(2009), we do not encode the construction of a tree-
decomposition of Moral(G∗) explicitly. Instead, our
encoding enforces the condition that for any G∗, there
needs to be a linear ordering ord of X under which the
maximum number of successors over all nodes in the
ordered graph of Moral(G∗) is at most W .

The choice of a linear ordering of X is represented by
the ordij variables. For notational convenience, let

ord∗ij =

{
ordij if i < j

¬ordji else
.

Transitivity of linear orderings is enforced in the en-
coding by stating for all distinct i, j, k = 1..N

ord∗ij ∧ ord∗jk → ord∗ik. (12)

(iii) Bounding Treewidth via Triangulation. Recall
that the treewidth of the tree-decomposition corre-
sponding to a linear ordering ≺ is maxvi∈V |{{vi, vj} ∈
E : i ≺ j}|, where E is the edge-relation of the trian-
gulated moralized graph; and that the variableOij rep-
resents the fact that the ordered graph of Moral(G∗)
under the linear ordering ≺ (represented by the ordij
variables) contains the edge (Xi, Xj). It follows that
enforcing the cardinality constraint∑

j 6=i

Oij ≤W (13)

for each i = 1..N is equivalent to the requirement
maxvi∈V |{{vi, vj} ∈ E | i ≺ j}| ≤ W . Again, dif-
ferent ways of representing such general cardinality
constraints as clauses have been proposed in the lit-
erature. Since here the interesting cases are when W
takes values greater than one, we use a compact encod-
ing based on so-called cardinality networks (Aśın et al.,
2011; Ab́ıo et al., 2013) for representing the constraints
as hard clauses.

What remains is the definition of the Oij variables,
i.e., encoding of the ordered graph induced by a linear
ordering.

–If the moralized graph contains an edge {Xi, Xj},
then the triangulation of the moralized graph also con-
tains the edge {Xi, Xj}, and hence the ordered graph
contains either the edge (Xi, Xj) or the edge (Xj , Xi).
This is enforced by

Mij → (Oij ∨Oji) for all i < j. (14)

–If nodes Xi and Xj have a common predecessor in the
moralized graph, then the triangulation of the mor-
alized graph contains the edge {Xi, Xj}, and hence
the ordered graph contains either the edge (Xi, Xj)
or the edge (Xj , Xi). This is enforced for all distinct
i, j, k = 1..N by

(Oki ∧Okj)→ (Oij ∨Oji). (15)

Finally, in both Eqs. 14 and 15, the choice of which
of the edges (Xi, Xj) or (Xj , Xi) occur in the ordered
graph depends on the linear ordering ord. Essentially,
Oij must be consistent with ordij in that, if i comes
before j in ord, then the edge (Xj , Xi) does not occur
in the ordered graph under ord:

ord∗ij → ¬Oji. (16)

4: Encoding the Objective Function. We en-
code the BTW-BNSL objective function (Eq. 3) using
soft clauses. Accordingly, choosing a specific parent
set S ∈ Pi for node Xi should incur a cost equal to
the local score si(S). Thus, we introduce for each Xi

and each S ∈ Pi the soft clause

(¬PSi) (17)

and associate the local score si(S) as the weight of this
soft clause by defining

c((¬PSi)) = si(S). (18)

3.3 Summary of the Encoding

Assume an arbitrary instance (X,W, {si}Ni=1) of BTW-
BNSL, consisting of a set X = {X1, . . . , XN} of

91

Jeremias Berg, Matti Järvisalo, Brandon Malone

nodes, a treewidth bound W , and for each Xi a non-
negative local score (cost) si(Pi) for each Pi ∈ Pi
with |Pi| ≤ W . The weighted partial MaxSAT in-
stance F (X,W, {si}Ni=1) = (Fh, Fs, c) consists of the
hard clauses corresponding to Eqs. 4–16 and the soft
clauses corresponding to Eq. 17 with weights assigned
according to Eq. 18.

Given an arbitrary solution τ to F (X,W, {si}Ni=1), the
choice of the parent set S for each node Xi is given
by the Boolean variable PSi for which τ(PSi) = 1. We
denote by Gτ the DAG corresponding to this choice S
of a parent set for each node Xi.

Theorem 1 For any solution τ to F (X,W, {si}Ni=1)
= (Fh, Fs, c), let Gτ be the DAG corresponding to τ . It
holds that τ is an optimal solution to F (X,W, {si}Ni=1)
if and only if Gτ is an optimal solution the BTW-
BNSL instance (X,W, {si}Ni=1).

Proof. (sketch) Eq. 4 ensures that for each node Xi,
τ(PSi) = 1 for exactly one parent set S ∈ Pi, i.e., a
single parent set for Xi is chosen. Eqs. 5–8 ensure that
Gτ is a DAG. Eqs. 10–11 ensure that the Mij variables
with τ(Mij) correspond exactly to the moralization of
Gτ . Eq. 12 ensures that any assignment to the ordij
variables corresponds to the linear ordering ord over X
for which i comes before j iff τ(ordij) = 1. Eqs. 14–15
encode exactly the conditions for an edge to be present
in the triangulation of Gτ under ord, and Eq. 16 en-
forces the edge-directions of the triangulation accord-
ing to ord, corresponding exactly to the ordered graph
(consisting of the edges (Xi, Xj) for which τ(Oij) = 1)
of Gτ under ord. Eq. 13 is satisfied iff there is a lin-
ear ordering ord, i.e., an assignment over the variables
ordij , such that the maximum number of successors
in the ordered graph represented by the Oij variables
is at most W . Finally, Eqs. 17–18 encode exactly the
objective function of BTW-BNSL. �

4 EXPERIMENTS

We present results on the efficiency of optimally solv-
ing the BTW-BNSL problem via our MaxSAT en-
coding using a state-of-the-art MaxSAT solver. As
the MaxSAT solver we used MaxHS (Davies and Bac-
chus, 2013)4. For comparing to the recent exact ap-
proach to BTW-BNSL based on dynamic program-
ming, we used the best-w-tree implementation avail-
able from the authors at http://www.cs.helsinki.

fi/u/jazkorho/aistats-2013/.

The experiments were performed on a cluster of 2.8-
GHz Intel Xeon quad core machines with 32-GB mem-

4The developers of MaxHS provided a version which
allows for assigning real-values as costs on soft clauses.

ory and Ubuntu Linux 10.04. A timeout of 8 h (28 800
seconds) and a memory limit of 30 GB were enforced
on the solvers on the individual benchmark instances.

As benchmark data, we used a set of well-known UCI
dataset with 9–29 variables. We used the MDL scor-
ing function (Lam and Bacchus, 1994) for computing
the local scores of parent sets from the datasets. Fur-
thermore, we included as benchmarks the two datasets
(Adult, Housing) made available by Korhonen and
Parviainen (2013) with pre-computed local scores, giv-
ing a total of 10 datasets. As treewidth bounds, we
used the values W = 2, 3, 4, resulting in a total of
30 benchmark instances. We pruned candidate par-
ent sets using the following well-known pruning rule
that maintains the set of optimal solutions: Given two
parent sets S, S′ ∈ Pi, if S′ ⊂ S and si(S

′) ≤ si(S),
then S can be pruned away from consideration. We
observed that applying this pruning rule had a posi-
tive effect on the running times of both the MaxSAT
solver and the dynamic programming approach. The
pruning of a particular candidate parent set S ∈ Pi is
reflected in the MaxSAT encoding by the fact that the
corresponding Boolean variable PSi is not introduced.

Results are presented in Table 2 under treewidth
bounds W = 2, 3, 4. For each bound, the best run-
ning time to find an optimal solution is highlighted in
boldface.

We observe that the dynamic programming approach
(DP) is competitive with our MaxSAT-approach only
for the smallest dataset with 9 variables. Apart from
the multiple timeouts (“> 28 800”), we observe that
DP most often runs out of memory (“mo”) on the
datasets with more variables, especially for treewidth
bounds greater than 2; memoryouts can be consid-
ered more critical than timeouts since they imply that
the algorithm cannot give a solution however much
time it is given. In contrast, the MaxSAT-approach
(MS) timeouts on only two instances, and, especially,
does not suffer from memouts. For a clear 2/3 ma-
jority of the instances, MS produces an optimal solu-
tion within half-an-hour; and for half of the instances
within around 10 minutes.

5 RELATED WORK

Cussens (2008) formulated BNSL without treewidth
restrictions as MaxSAT. Our encoding is more in-
volved: we enforce a strict treewidth bound, and apply
a more intricate encoding of the acyclicity constraint.
Cussens used at-the-time state-of-the-art local search
MaxSAT solvers, and was hence unable to find optimal
networks, and also used integer-rounded local scores
for candidate parent sets; in contrast we use a current
state-of-the-art complete MaxSAT solver which pro-

92

Learning Bounded Treewidth Bayesian Networks via MaxSAT

Table 2: Running times in seconds of our MaxSAT-based approach (MS) and the dynamic programming (DP)
approach (Korhonen and Parviainen, 2013) for different UCI datasets and treewidth bounds W = 2, 3, 4. Expla-
nations: “mo” denotes a memory out; N denotes the number of variables (nodes); #fails denotes the number
of times the memory or time limit was exceeded.

treewidth ≤ 2 treewidth ≤ 3 treewidth ≤ 4 #fails
Dataset N MS (s) DP (s) MS (s) DP (s) MS (s) DP (s) MS DP

Abalone 9 64 7 166 57 215 536 0 0
Housing 14 2 226 6 927 2 329 > 28 800 2 991 mo 0 2
Wine 14 27 6 924 22 > 28 800 171 mo 0 2
Adult 15 998 > 28 800 1 623 > 28 800 1 782 mo 0 3
Voting 17 22 909 > 28 800 26 419 mo > 28 800 mo 1 3
Zoo 17 410 > 28 800 412 mo 105 mo 0 3
Hepatitis 20 315 mo 100 mo 1 164 mo 0 3
Heart 23 1 198 mo 2 186 mo 41 mo 0 3
Horse 28 192 mo > 28 800 mo 544 mo 1 3
Flag 29 1 418 mo 11 148 mo 1 356 mo 0 3

#fails: 0 7 1 9 1 9 2 25

vides provably optimal solutions, and use the actual
(non-integer) local scores without rounding.

Korhonen and Parviainen (2013) proposed an exact al-
gorithm for BTW-BNSL based on dynamic program-
ming. Their algorithm is also to our best knowledge
the only approach for learning guaranteed-optimal
bounded treewidth Bayesian network structures. We
provide in this paper an empirical comparison: our
MaxSAT-based approach scales both to larger num-
bers of variables and larger treewidth bounds than the
dynamic programming approach.

Elidan and Gould (2008) proposed a greedy search
strategy for learning Bayesian networks under
treewidth constraints. Their algorithm relies on a
search operator which is guaranteed to increase the
treewidth of the current solution by at most one.
Their approximation algorithm is polynomial-time in
the number of variables and treewidth. However, due
to the local search strategy, no bounds on the quality
of the learned network can be guaranteed.

Ordyniak and Szeider (2013) consider the problem of
learning and optimal network structure given a super-
structure of bounded treewidth, and show that this
problem is fixed parameter tractable in the treewidth
of the super-structure. The treewidth of the super-
structure does not, in general, bound the treewidth of
the network, and hence does not ensure efficient exact
inference after learning the network.

Integer-linear programming (ILP) provides another
constrained optimization approach to BNSL, as stud-
ied by Jaakkola et al. (2010); Studený et al. (2010);
Cussens (2011); Bartlett and Cussens (2013).

Finally, algorithms for learning undirected graph-
ical models, especially, classes of Markov net-
works (Malvestuto, 1991; Bach and Jordan, 2001;
Karger and Srebro, 2001; Srebro, 2003; Narasimhan

and Bilmes, 2004; Chechetka and Guestrin, 2007;
Gogate et al., 2010; Szántai and Kovács, 2012; Ku-
mar and Bach, 2013) which enable fast inference by
e.g., bounding the treewidth of the underlying tree-
decompositions (often referred to as junction trees)
have been developed. To our understanding, none of
these algorithms guarantee to learn globally optimal
structures.

6 CONCLUSIONS

Exact inference in low-treewidth Bayesian networks is
tractable, which motivates the development of prac-
tical approaches to learning bounded treewidth net-
works. However, few practical algorithms have been
proposed for learning networks under treewidth con-
straints. In this paper, we presented an approach to
learning bounded treewidth Bayesian network struc-
tures that is guaranteed to provide optimal structures.
Our approach is based on encoding the structure learn-
ing problem as weighted partial Maximum satisfiabil-
ity, and then using a state-of-the-art MaxSAT solver
for solving the resulting MaxSAT instances, i.e., for
finding optimal bounded treewidth Bayesian network
structures. We showed that our non-trivial MaxSAT
encoding results in notably better performance com-
pared to an implementation of a recently proposed
dynamic programming algorithm for optimal bounded
treewidth Bayesian network structure learning.

Acknowledgements

Work supported by Academy of Finland (COIN Cen-
tre of Excellence in Computational Inference Research,
grant #251170) and Finnish Funding Agency for Tech-
nology and Innovation (project D2I). The authors
thank Jessica Davies for providing the MaxHS version
used in the experiments.

93

Jeremias Berg, Matti Järvisalo, Brandon Malone

References

Ignasi Ab́ıo, Robert Nieuwenhuis, Albert Oliveras, and
Enric Rodŕıguez-Carbonell. A parametric approach
for smaller and better encodings of cardinality con-
straints. In Proc. CP, volume 8124 of LNCS, pages
80–96. Springer, 2013.

Roberto Aśın, Robert Nieuwenhuis, Albert Oliveras,
and Enric Rodŕıguez-Carbonell. Cardinality net-
works: a theoretical and empirical study. Con-
straints, 16(2):195–221, 2011.

Francis Bach and Michael Jordan. Thin junction trees.
In Proc. NIPS, pages 569–576. MIT Press, 2001.

Mark Bartlett and James Cussens. Advances in
Bayesian network learning using integer program-
ming. In Proc. UAI, pages 182–191. UAUI Press,
2013.

Hans L. Bodlaender. Discovering treewidth. In
Proc. SOFSEM, volume 3381 of LNCS, pages 1–16.
Springer, 2005.

Anton Chechetka and Carlos Guestrin. Efficient prin-
cipled learning of thin junction trees. In Proc. NIPS,
pages 273–280. MIT Press, 2007.

David Maxwell Chickering. Learning Bayesian net-
works is NP-complete. In Learning from Data: Ar-
tificial Intelligence and Statistics V, pages 121–130.
Springer-Verlag, 1996.

David Maxwell Chickering. Learning equivalence
classes of Bayesian-network structures. Journal of
Machine Learning Research, 2:445–498, 2002.

Gregory F. Cooper. The computational complexity
of probabilistic inference using Bayesian belief net-
works. Artificial Intelligence, 42(2-3):393 – 405,
1990.

Gregory F. Cooper and Edward Herskovits. A
Bayesian method for the induction of probabilistic
networks from data. Machine Learning, 9:309–347,
1992.

James Cussens. Bayesian network learning by com-
piling to weighted MAX-SAT. In Proc. UAI, pages
105–112. AUAI Press, 2008.

James Cussens. Bayesian network learning with cut-
ting planes. In Proc. UAI, pages 153–160. AUAI
Press, 2011.

James Cussens, Mark Bartlett, Elinor M. Jones, and
Nuala A. Sheehan. Maximum likelihood pedigree re-
construction using integer linear programming. Ge-
netic Epidemiology, 37(1):69–83, 2013.

Jessica Davies and Fahiem Bacchus. Exploiting the
power of MIP solvers in Maxsat. In Proc. SAT, vol-
ume 7962 of LNCS, pages 166–181. Springer, 2013.

Rina Dechter. Bucket elimination: A unifying frame-
work for reasoning. Artificial Intelligence, 113(1-2):
41–85, 1999.

Gal Elidan and Stephen Gould. Learning bounded
treewidth bayesian networks. Journal of Machine
Learning Research, 9:2699–2731, 2008.

Vibhav Gogate, William Webb, and Pedro Domingos.
Learning efficient Markov networks. In Proc. NIPS,
pages 748–756. MIT Press, 2010.

David Heckerman. A tutorial on learning with
Bayesian networks. In Learning in Graphical Mod-
els, volume 89 of NATO ASI Series, pages 301–354.
Springer, 1998.

David Heckerman, Dan Geiger, and David M. Chicker-
ing. Learning Bayesian networks: The combination
of knowledge and statistical data. Machine Learn-
ing, 20:197–243, 1995.

Tommi Jaakkola, David Sontag, Amir Globerson, and
Marina Meila. Learning Bayesian network structure
using LP relaxations. In Proc. AISTATS, 2010.

Matti Järvisalo, Daniel Le Berre, Olivier Roussel, and
Laurent Simon. The international SAT solver com-
petitions. AI Magazine, 33(1):89–92, 2012.

David Karger and Nathan Srebro. Learning Markov
networks: maximum bounded tree-width graphs. In
Proc. SODA, pages 392–401. SIAM, 2001.

Mikko Koivisto and Kismat Sood. Exact Bayesian
structure discovery in Bayesian networks. Journal
of Machine Learning Research, pages 549–573, 2004.

Janne H. Korhonen and Pekka Parviainen. Exact
learning of bounded tree-width Bayesian networks.
In Proc. AISTATS, pages 370–378, 2013.

K. S. Sesh Kumar and Francis Bach. Convex re-
laxations for learning bounded-treewidth decompos-
able graphs. In Proc. ICML, pages 525–533, 2013.

Wai Lam and Fahiem Bacchus. Learning Bayesian be-
lief networks: An approach based on the MDL prin-
ciple. Computational Intelligence, 10:269–293, 1994.

Steffen L. Lauritzen and David J. Spiegelhalter. Lo-
cal computations with probabilities on graphical
structures and their application to expert systems.
Journal of the Royal Statistical Society. Series B
(Methodological), 50(2):157–224, 1988.

Chu Min Li and Felip Manyà. MaxSAT, hard and
soft constraints. In Handbook of Satisfiability, vol-
ume 185 of Frontiers in Artificial Intelligence and
Applications, chapter 19, pages 613–631. IOS Press,
2009.

Francesco M. Malvestuto. Approximating discrete
probability distributions with decomposable mod-
els. IEEE Transactions on Systems, Man, and Cy-
bernetics, 21(5), 1991.

94

Learning Bounded Treewidth Bayesian Networks via MaxSAT

Mukund Narasimhan and Jeff Bilmes. PAC-learning
bounded tree-width graphical models. In Proc. UAI,
pages 410–417. AUAI Press, 2004.

Ilkka Niemelä. Stable models and difference logic. An-
nals of Mathematics and Artificial Intelligence, 53
(1-4):313–329, 2008.

Sebastian Ordyniak and Stefan Szeider. Parameter-
ized complexity results for exact Bayesian network
structure learning. Journal of Artificial Intelligence
Research, 46:263–302, 2013.

Sascha Ott and Satoru Miyano. Finding optimal gene
networks using biological constraints. Genome In-
formatics, 14:124–133, 2003.

Judea Pearl. Probabilistic reasoning in intelligent sys-
tems: networks of plausible inference. Morgan Kauf-
mann Publishers Inc., 1988.

Marko Samer and Helmut Veith. Encoding treewidth
into SAT. In Proc. SAT, volume 5584 of LNCS,
pages 45–50. Springer, 2009.

Tomi Silander and Petri Myllymäki. A simple ap-
proach for finding the globally optimal Bayesian net-
work structure. In Proc. UAI, pages 445–452. AUAI
Press, 2006.

Tomi Silander, Teemu Roos, Petri Kontkanen, and
Petri Myllymaki. Factorized normalized maximum
likelihood criterion for learning Bayesian network
structures. In Proc. PGM, pages 257–272, 2008.

Nathan Srebro. Maximum likelihood bounded tree-
width Markov networks. Artificial Intelligence, 143
(1):123 – 138, 2003.

Milan Studený, Jiŕı Vomlel, and Raymond Hemmecke.
A geometric view on learning bayesian network
structures. International Journal of Approximate
Reasoning, 51(5):573–586, 2010.

Tamás Szántai and Edith Kovács. Hypergraphs as a
mean of discovering the dependence structure of a
discrete multivariate probability distribution. An-
nals of Operations Research, 193(1), 2012.

Marc Teyssier and Daphne Koller. Ordering-based
search: A simple and effective algorithm for learning
Bayesian networks. In Proc. UAI, pages 584–590.
AUAI Press, 2005.

Changhe Yuan and Brandon Malone. Learning opti-
mal Bayesian networks: A shortest path perspec-
tive. Journal of Artificial Intelligence Research, 48:
23–65, 2013.

95

TIETOJENKÄSITTELYTIETEEN LAITOS DEPARTMENT OF COMPUTER SCIENCE
PL 68 (Gustaf Hällströmin katu 2 b) P.O. Box 68 (Gustaf Hällströmin katu 2 b)
00014 Helsingin yliopisto FI-00014 University of Helsinki, Finland

JULKAISUSARJA A SERIES OF PUBLICATIONS A

Reports are available on the e-thesis site of the University of Helsinki.

A-2012-2 J. Wessman: Mixture Model Clustering in the Analysis of Complex Diseases. 118 pp.
(Ph.D. Thesis)

A-2012-3 P. Pöyhönen: Access Selection Methods in Cooperative Multi-operator Environments
to Improve End-user and Operator Satisfaction. 211 pp. (Ph.D. Thesis)

A-2012-4 S. Ruohomaa: The Effect of Reputation on Trust Decisions in Inter-enterprise Col-
laborations. 214+44 pp. (Ph.D. Thesis)

A-2012-5 J. Sirén: Compressed Full-Text Indexes for Highly Repetitive Collections. 97+63 pp.
(Ph.D. Thesis)

A-2012-6 F. Zhou: Methods for Network Abstraction. 48+71 pp. (Ph.D. Thesis)

A-2012-7 N. Välimäki: Applications of Compressed Data Structures on Sequences and Struc-
tured Data. 73+94 pp. (Ph.D. Thesis)

A-2012-8 S. Varjonen: Secure Connectivity With Persistent Identities. 139 pp. (Ph.D. Thesis)

A-2012-9 M. Heinonen: Computational Methods for Small Molecules. 110+68 pp. (Ph.D.
Thesis)

A-2013-1 M. Timonen: Term Weighting in Short Documents for Document Categorization,
Keyword Extraction and Query Expansion. 53+62 pp. (Ph.D. Thesis)

A-2013-2 H. Wettig: Probabilistic, Information-Theoretic Models for Etymological Alignment.
130+62 pp. (Ph.D. Thesis)

A-2013-3 T. Ruokolainen: A Model-Driven Approach to Service Ecosystem Engineering. 232 pp.
(Ph.D. Thesis)

A-2013-4 A. Hyttinen: Discovering Causal Relations in the Presence of Latent Confounders.
107+138 pp. (Ph.D. Thesis)

A-2013-5 S. Eloranta: Dynamic Aspects of Knowledge Bases. 123 pp. (Ph.D. Thesis)

A-2013-6 M. Apiola: Creativity-Supporting Learning Environments: Two Case Studies on
Teaching Programming. 62+83 pp. (Ph.D. Thesis)

A-2013-7 T. Polishchuk: Enabling Multipath and Multicast Data Transmission in Legacy and
Future Interenet. 72+51 pp. (Ph.D. Thesis)

A-2013-8 P. Luosto: Normalized Maximum Likelihood Methods for Clustering and Density
Estimation. 67+67 pp. (Ph.D. Thesis)

A-2013-9 L. Eronen: Computational Methods for Augmenting Association-based Gene Map-
ping. 84+93 pp. (Ph.D. Thesis)

A-2013-10 D. Entner: Causal Structure Learning and Effect Identification in Linear Non-Gaussian
Models and Beyond. 79+113 pp. (Ph.D. Thesis)

A-2013-11 E. Galbrun: Methods for Redescription Mining. 72+77 pp. (Ph.D. Thesis)

A-2013-12 M. Pervilä: Data Center Energy Retrofits. 52+46 pp. (Ph.D. Thesis)

A-2013-13 P. Pohjalainen: Self-Organizing Software Architectures. 114+71 pp. (Ph.D. Thesis)

A-2014-1 J. Korhonen: Graph and Hypergraph Decompositions for Exact Algorithms. 62+66 pp.
(Ph.D. Thesis)

A-2014-2 J. Paalasmaa: Monitoring Sleep with Force Sensor Measurement. 59+47 pp. (Ph.D.
Thesis)

A-2014-3 L. Langohr: Methods for Finding Interesting Nodes in Weighted Graphs. 70+54 pp.
(Ph.D. Thesis)

A-2014-4 S. Bhattacharya: Continuous Context Inference on Mobile Platforms. 94+67 pp.
(Ph.D. Thesis)

A-2014-5 E. Lagerspetz: Collaborative Mobile Energy Awareness. 60+46 pp. (Ph.D. Thesis)

A-2015-1 L. Wang: Content, Topology and Cooperation in In-network Caching. 190 pp. (Ph.D.
Thesis)

A-2015-2 T. Niinimäki: Approximation Strategies for Structure Learning in Bayesian Networks.
64+93 pp. (Ph.D. Thesis)

A-2015-3 D. Kempa: Efficient Construction of Fundamental Data Structures in Large-Scale
Text Indexing. 68+88 pp. (Ph.D. Thesis)

A-2015-4 K. Zhao: Understanding Urban Human Mobility for Network Applications. 62+46 pp.
(Ph.D. Thesis)

A-2015-5 A. Laaksonen: Algorithms for Melody Search and Transcription. 36+54 pp. (Ph.D.
Thesis)

A-2015-6 Y. Ding: Collaborative Traffic Offloading for Mobile Systems. 223 pp. (Ph.D. Thesis)

A-2015-7 F. Fagerholm: Software Developer Experience: Case Studies in Lean-Agile and Open
Source Environments. 118+68 pp. (Ph.D. Thesis)

A-2016-1 T. Ahonen: Cover Song Identification using Compression-based Distance Measures.
122+25 pp. (Ph.D. Thesis)

A-2016-2 O. Gross: World Associations as a Language Model for Generative and Creative Tasks.
60+10+54 pp. (Ph.D. Thesis)

A-2016-3 J. Määttä: Model Selection Methods for Linear Regression and Phylogenetic Recon-
struction. 44+73 pp. (Ph.D. Thesis)

A-2016-4 J. Toivanen: Methods and Models in Linguistic and Musical Computational Creativ-
ity. 56+8+79 pp. (Ph.D. Thesis)

A-2016-5 K. Athukorala: Information Search as Adaptive Interaction. 122 pp. (Ph.D. Thesis)

A-2016-6 J.-K. Kangas: Combinatorial Algorithms with Applications in Learning Graphical
Models. 66+90 pp. (Ph.D. Thesis)

A-2017-1 Y. Zon: On Model Selection for Bayesian Networks and Sparse Logistic Regression.
58.61 pp. (Ph.D. Thesis)

A-2017-2 Y. Hsieh: Exploring Hand-Based Haptic Interfaces for Mobile Interaction Design.
79+120 pp. (Ph.D. Thesis)

A-2017-3 D. Valenzuela: Algorithms and Data Structures for Sequence Analysis in the Pan-
Genomic Era. 74+78 pp. (Ph.D. Thesis)

A-2017-4 A. Hellas: Retention in Introductory Programming. 68+88 pp. (Ph.D. Thesis)

A-2017-5 M. Du: Natural Language Processing System for Business Intelligence. 78+72 pp.
(Ph.D. Thesis)

A-2017-6 A. Kuosmanen: Third-Generation RNA-Sequencing Analysis: Graph Alignment and
Transcript Assembly with Long Reads. 64+69 pp. (Ph.D. Thesis)

A-2018-1 M. Nelimarkka: Performative Hybrid Interaction: Understanding Planned Events
across Collocated and Mediated Interaction Spheres. 64+82 pp. (Ph.D. Thesis)

A-2018-2 E. Peltonen: Crowdsensed Mobile Data Analytics. 100+91 pp. (Ph.D. Thesis)

A-2018-3 O. Barral: Implicit Interaction with Textual Information using Physiological Signals.
72+145 pp. (Ph.D. Thesis)

A-2018-4 I. Kosunen: Exploring the Dynamics of the Biocybernetic Loop in Physiological Com-
puting. 91+161 pp. (Ph.D. Thesis)

