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Resum

Un problema de scheduling (programació de tasques), consisteix en decidir
quan i com s’han d’executar les activitats d’un projecte, per tal de satisfer un
seguit de requeriments. Avui en dia aquests problemes són molt presents en els
sectors de la industria i els serveis. En la majoria de casos, trobar una solució
d’un problema de scheduling és costós, especialment quan s’optimitza algun
objectiu com ara la durada del projecte. Els avenços recents en solucionar els
problemes de la Satisfactibilitat Booleana (SAT) i SAT Mòdul Teories (SMT)
han despertat interès en formular problemes combinatoris durs com a fórmules
SAT o SMT, que són resoltes amb algorismes eficients. Un dels principals
avantatges d’aquestes tècniques basades en la lògica és que poden certificar
solucions òptimes.

La contribució principal d’aquesta tesi és presentar mètodes eficients basats
en SMT per solucionar problemes de scheduling. Concretament, ataquem el
conegut Resource-Constrained Project Scheduling Problem (RCPSP), aix́ı com
diverses extensions d’aquest que presenten requeriments i reptes addicionals.
Aquestes extensions són les abastament conegudes: MRCPSP, RCPSP/t, MR-
CPSP/max i MSPSP. Les restriccions que presenten un major repte en prob-
lemes tipus RCPSP són les d’ús de recursos finits, normalment renovables,
que són compartits entre activitats. Per tal de tractar aquestes restriccions,
utilitzem codificacions a SAT de restriccions pseudo-Booleanes (PB), basades
en diagrames de decisió. Com que aquestes codificacions tenen un gran im-
pacte en els temps de solució, aprofitem restriccions col·laterals per codificar
restriccions PB de manera compacta, tot preservant bones propietats de propa-
gació. Tanmateix anem un pas més enllà, perquè creiem que aquesta tècnica
per codificar PBs pot ser útil en àmbits diferents de scheduling. Amb aquest
propòsit, dissenyem les nostres codificacions de PB de manera independent
d’on s’apliquen, i proporcionem alternatives als diagrames de decisió. Les
eines que presentem superen en rendiment les millors eines exactes existents
per solucionar els problemes de scheduling estudiats.
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Resumen

Un problema de scheduling (programación de tareas) consiste en decidir cuando
y cómo deben ejecutarse las actividades de un proyecto, con el fin de satisfacer
una lista de requerimientos. Hoy en d́ıa estos problemas son muy presentes
en sectores como la industria y los servicios. En la mayoŕıa de los casos, en-
contrar una solución de un problema de scheduling es costoso, especialmente
cuando se optimiza algún objetivo como la duración del proyecto. Las mejoras
recientes en solucionar los problemas de la Satisfacibilitad Booleana (SAT)
y SAT Módulo Teoŕıas (SMT) han suscitado interés en formular problemas
combinatorios dif́ıciles mediante fórmulas SAT o SMT, que son resueltas con
algoritmos eficientes. Una de las principales ventajas de estas técnicas lógicas
es que pueden certificar soluciones óptimas.

La contribución principal de esta tesis es presentar métodos eficientes basa-
dos en SMT para solucionar problemas de scheduling. Concretamente, ata-
camos el conocido Resource-Constrained Project Scheduling Problem (RCPSP),
aśı como extensiones de este que presentan requerimientos y retos adicionales.
Estas extensiones son las ampliamente conocidas: MRCPSP, RCPSP/t, MR-
CPSP/max y MSPSP. Las restricciones que presentan un mayor reto en prob-
lemas tipo RCPSP son las de uso de recursos finitos, normalmente renovables,
que son compartidos entre actividades. Para tratar estas restricciones, uti-
lizamos codificaciones a SAT de restricciones pseudo-Booleanas (PB), basadas
en diagramas de decisión. Ya que estas codificaciones tienen un gran im-
pacto en el tiempo de solución, aprovechamos restricciones colaterales para
codificar restricciones PB de manera compacta, mientras preservamos bue-
nas propiedades de propagación. Sin embargo, vamos un paso más allá, pues
creemos que dicha técnica para codificar PBs puede ser útil en ámbitos dis-
tintos de scheduling. Con este propósito, diseñamos nuestras codificaciones de
PB de manera independendiente de dónde se aplican, y proporcionamos alter-
nativas a los diagramas de decisión. Los sistemas que presentamos superan
en rendimiento a los mejores sistemas exactos existentes para solucionar los
problemas de scheduling estudiados.
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Abstract

A scheduling problem can be defined in a nutshell as the problem of deter-
mining when and how the activities of a project have to be run, according to
some project requirements. Such problems are ubiquitous nowadays since they
frequently appear in industry and services. In most cases the computation of
solutions of scheduling problems is hard, especially when some objective, such
as the duration of the project, has to be optimised. The recent performance
advances on solving the problems of Boolean Satisfiability (SAT) and SAT
Modulo Theories (SMT) have risen the interest in formulating hard combina-
torial problems as SAT or SMT formulas, which are then solved with efficient
algorithms. One of the principal advantages of such logic-based techniques is
that they can certify optimality of solutions.

The main contribution of this thesis is the presentation of efficient SMT-
based methods to solve scheduling problems. More precisely we tackle the
well-known Resource-Constrained Project Scheduling Problem (RCPSP) as
well as many extensions of this problem with additional requirements and
modelling challenges. Namely, we also solve the problems commonly denoted
by MRCPSP, RCPSP/t, MRCPSP/max and MSPSP. The most challenging
constraints in RCPSP-based problems are resource constraints, which specify
a limited availability of shared resources, usually renewable, that activities
cannot surpass at any time. To handle such constraints we use decision dia-
gram based SAT encodings of pseudo-Boolean (PB) constraints. Since these
encodings have a high impact on solving times, we take advantage of collateral
constraints to compactly encode PB constraints, while preserving good prop-
agation properties. However we go one step further, because we believe that
such PB encoding technique can be useful in other fields different than schedul-
ing. With this idea in mind, we design our PB encodings in an application-
independent way, and we provide many encoding alternatives different from
decision diagram representations. The systems that we present are able to
outperform the best state-of-the-art exact solvers for the studied scheduling
problems.
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Chapter 1

Introduction

1.1 Motivation

Hard combinatorial problems are ubiquitous nowadays. Such problems are
usually modelled as a set of variables with domains and some constraint over
them. These models are sometimes called Constraint Satisfaction Problems
(CSP), and solving them consists in finding values for their variables satis-
fying a set of restrictions. Also it is often required to optimise an objective
function, in which case they are referred to as Constrained Optimisation Prob-
lems. Some of the iconic CSPs that are frequently used by way of example for
academic purposes include the N -queens puzzle, sudoku or logic enigmas such
as Einstein’s problem. However, CSPs appear in a large range of domains and
have a myriad of applications in industry and services. Some examples are:
routing problems, where it has to be decided which path has to follow an item
or a set of items to reach their destination, for instance vehicle traffic control or
data network management; packing problems, where a set of items have to be
packed usually maximising a global profit, for instance loading of merchandise
or server allocation; timetabling problems, like academic calendars or business
meetings organisation.

Among CSPs we can find scheduling problems, that can be defined in a
nutshell as the problem of determining when and how the activities of a project
have to be run, according to some project requirements and limitations. The
most frequent constraints involve precedence relations between the execution of
the activities and correct allocation of shared resources with limited availabili-
ties. Scheduling problems usually require to optimise some value, for instance
minimise the total duration of the project. An example problem is to find a
schedule for a manufacturing process. In this case there would be a set of ac-
tivities, each one consisting in making an item, either from raw material or by

1



2 CHAPTER 1. INTRODUCTION

assembling other items. We cannot make an item until all its components have
already been made, hence a precedence relation appears. Also we can have
renewable resources, e.g. there is a limited number of workers and machines
which can only work in one item at a time, and non-renewable resources, e.g.
a limited amount of raw material or a budget.

Similarly to most CSPs, scheduling problems are usually NP-hard and
therefore finding a solution for them may be practically impossible for fairly
large instances —unless P=NP. Therefore, large scheduling problems require
approximate techniques to find as good as possible solutions within an accept-
able computation time for the particular application at hand. However, such
approximate methods are not able to certify the optimality of the solutions.
Nevertheless, exact solving methods —i.e. those which can find and certify
the optimality of the solutions— have evolved in the past years and can be
very efficient at solving problem instances with sizes of practical interest. One
particularly interesting approach to use these methods is model-and-solve, con-
sisting in specifying the problem at hand in a formal language, and using a
specialised solver to find a solution for this specification. This way of solving
CSPs brings the worlds of formal definition and solver development closer, and
there are many formalisms which provide efficient CSP solving. Among the
most studied we can find Mixed Integer Linear Programming (MILP), Con-
straint Programming (CP), Answer Set Programming (ASP), the problem of
Boolean Satisfiability (SAT), or its extension Satisfiability Modulo Theories
(SMT).

In particular, SAT solvers have improved dramatically during the last two
decades, with the inclusion of learning techniques in the search process [MSS99]
and very efficient implementations and search guidance heuristics [MMZ+01].
SMT solvers also benefit from these efficient techniques, since they use a SAT
solver as a core component. Moreover, SMT has the additional advantage of
being a very expressive language, supporting other kinds of logics such as linear
arithmetic or uninterpreted functions with equality. SMT solvers use efficient
and specialised solvers to handle these logics. Therefore, SMT provides a good
compromise between efficiency and expressivity.

Due to the good evolution of SAT and SMT there is a growing interest
in exploring these to model and solve CSPs [BPSV12]. The application of
SMT to solve scheduling problems has already shown to be a very efficient
approach [Suy13]. This thesis aims at pushing further in the efficiency of
exact solving of hard scheduling problems by means of using the logic-based
techniques, namely we will focus on the model-and-solve approach using SAT
and SMT.
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1.2 Objectives and Contributions

The goal of this thesis is to develop logic-based exact solvers to efficiently solve
scheduling problems. More precisely, our objectives are the following:

1. We want to provide SMT formulations for many scheduling problems.
SMT provides an expressive language as well as efficiency in solving
formulas. Therefore, we think that this formalism is very suitable to
express an solve the different kinds of constraints that are present in
scheduling problems.

2. We want to explore the use of decision diagram based SAT encodings
for resource constraints. We are aware of previous works that report
good results in SAT encodings of pseudo-Boolean constraints, and this
technique can be applied to resource constraints.

3. We want to study a new generic framework to encode pseudo-Boolean
constraints taking into account collateral constraints of the problem at
hand. We believe that this technique can be interesting by itself and
have application not only in scheduling but in many CSPs. However, we
want to deepen the application of this technique to scheduling problems,
in particular in resource constraints.

4. We want to explore different types of encodings where we can take into
account collateral constraints when encoding pseudo-Boolean constraints
to SAT.

5. We aim at providing scheduling solvers which are competitive with the
state-of-the-art exact methods.

1.3 Outline of the Thesis

In the rest of this document, we start by introducing in Chapter 2 some pre-
liminaries on the areas covered by this thesis. First, we include an overview
on types of scheduling problems, and introduce the well-known preprocessing
and modelling techniques which we will be using. After that we provide a
gentle overview on SAT and SMT solving, with basic concepts and notation.
Finally, we review basic concepts on Binary Decision Diagrams (BDDs), their
application to represent PB constraints, and different existing encodings of
them to SAT.

The first goal that we have tackled in this thesis is using SMT to solve the
Multi-mode Resource-Constrained Project Scheduling Problem (MRCPSP).
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This is a well-known scheduling problem which presents many interesting con-
straints, such as both renewable and non-renewable resource constraints, and
the appropriate selection of execution modes. This problem had already been
solved with SMT [Suy13], but there were many improvement opportunities
that we wanted to explore, such as heuristic computation of upper bounds,
and the use of SAT encodings of Binary Decision Diagrams (BDD) to deal
with resource constraints. Our results situate SMT as the state-of-the-art in
solving the MRCPSP. This initial work is presented in Chapter 3, and it was
published in [BCSV16].

The good results obtained with BDD encodings have encouraged us to push
further in this direction, since we saw the opportunity of making the encodings
much smaller by obtaining more compact decision diagram representations of
the constraints. We noticed that there appear many notions of incompatibility
in scheduling problems, and that these can be used to get more compact en-
codings of resource constraints. We developed an encoding for pseudo-Boolean
(PB) constraints which appear in conjunction with some at-most-one (AMO)
constraints. This technique let us obtain compact encodings of resource con-
straints, and efficiently solve extensions of the Resource-Constrained Project
Scheduling Problem (RCPSP). These contributions were initially published
in [BCSV17b], and we have extended them in Chapters 4, 5 and 6.

Chapter 4 is devoted to a deep analysis about how to encode of PB con-
straints which appear in conjunction with AMO constraints. We present
generic techniques that can have application to other domains different than
scheduling. In particular we introduce the idea of PB(C) constraints as a
way of compactly encoding pseudo-Boolean (PB) constraints —like resource
constraints— to SAT, taking into account collateral information of the prob-
lem at hand. We focus on PB(AMO) constraints, which apply in scenarios
where PB constraints appear in conjunction with AMO constraints. We pro-
pose a Multivalued Decision Diagram (MDD) based encoding for PB(AMO)
constraints, study its properties, and empirically evaluate its efficiency. With
this new encoding technique, we are able to generate dramatically smaller SAT
formulas, and the solving times improve remarkably. We remark that the con-
tribution of this chapter is application-independent, since we provide methods
to efficiently encode arithmetic constraints to SAT, and these methods can
have a highly beneficial effect on SAT modelling and reformulation.

In Chapter 5 we describe the integration of the generic PB(AMO) encoding
technique of Chapter 4 to SMT formulations of scheduling problems. We focus
on the RCPSP, since it is the most basic scheduling problem. We provide
efficient methods to detect incompatibilities between activities, and from there
infer AMO constraints. Using this information we provide an SMT formulation
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of the RCPSP which not only proves to be very efficient, but also is a basis
upon which to design formulations for many extensions of the RCPSP.

In Chapter 6 we tackle more challenging scheduling problems using the
methods presented in Chapter 5. We revisit the MRCPSP, already studied
in Chapter 3, to provide a better formulation, and we also consider other ex-
tensions: variability of resource demands and availabilities in different time
instants (RCPSP/t), generalised precedence relations with minimal and maxi-
mal time lags (MRCPSP/max), and assignment of resources which can perform
different skills (MSPSP). We compare our solvers with the best state-of-the-
art exact systems for each one of the problems, and we prove to be the best
alternative on most occasions. The contributions for MRCPSP and RCPSP/t
are published in [BCSV17b], and the ones of MRCPSP/max in [BCSV17a].

In Chapter 7 we revisit PB(AMO) constraints. There exist many differ-
ent SAT encoding approaches for PB constraints, different than BDD-based
ones, which have given good results. In this chapter we generalise them to
SAT encodings of PB(AMO) constraints. The experimental section reports
good results in application-independent instances, showing the potential of
this approach that could enhance SAT solving of many problem classes. These
contributions are published in [BCSV19].

In Chapter 8 we present the conclusions of the thesis, and we discuss some
further work that could give a continuation to our contributions.





Chapter 2

Preliminaries

In this chapter we introduce some preliminaries on the areas covered by this
thesis. Section 2.1 is devoted to scheduling problems. We include an overview
of types of scheduling problems, and introduce the well-known preprocessing
and modelling techniques which we will be using. In Section 2.2 we provide a
gentle overview of SAT and SMT solving, with basic concepts and notation.
Finally, in Section 2.3 we review basic concepts of Binary Decision Diagrams
(BDDs), their application to represent PB constraints, and different existing
encodings of BDDs to SAT.

2.1 Scheduling

This section contains a review of different existing classes of scheduling prob-
lems, some solving approaches, and introduces some notation and preliminar-
ies related to the thesis. For an extensive review of scheduling problems and
solving techniques the reader may refer to [ADN13].

2.1.1 A Review of Scheduling Problems

The identification of different kinds of scheduling problems and the pursue of
efficient algorithms to solve them is a very active research field that has been
drawing the attention of researchers since the 1960s. One of the first surveys
on scheduling problems was [Dav73], that distinguished three main classes of
scheduling problems: problems in which there is a trade-off between the time
dedicated to a project and the cost it represents, problems in which resource
demands are levelled, and problems with fixed resource limits. The latter type
of problems is typically represented by the paradigmatic Resource-Constrained
Project Scheduling Problem (RCPSP), which plays a central role in this thesis.

7
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The goal of RCPSP is to find a start time for each one of the activities of a
project such that the makespan is minimised. The makespan is defined as the
total duration of the project. The activities have a predefined duration and
are non-preemptive, i.e. they have to be executed without interruptions. Also,
there is a set of requested end-start precedences between pairs of activities
that have to be respected, meaning that the successor cannot start until the
predecessor has ended. Finally, there is a set of renewable resources with finite
capacity, and every activity has a certain demand on each resource while it is
running. The total demand on a resource at any particular time cannot be
greater than the resource capacity. In this thesis we mainly tackle scheduling
problems which extend the RCPSP, and therefore Section 2.1.2 is devoted to
introducing this problem in detail.

The constraints that appear in RCPSP are common in a large variety
of scheduling problems, and there exist many extensions of it. A complete
survey on different RCPSP variations and extensions is [HB10]. The authors
identify six major kinds of variations of RCPSP from the literature, either from
problems that have been defined with academic purposes or real life problems.
The following is a small collection of all the possible variations collected in
that work:

Generalised activity concepts The variations of this block change the def-
inition of what is an activity. Some variations are: preemptive activities,
i.e. their execution can be paused; variation of the resource demands
over time; resource setup times before the execution of an activity; mul-
tiple available execution modes for an activity, where properties such
as the duration or the resource demands of the activities are different
in each execution mode; different forbidden execution periods for each
activity.

Generalised temporal constraints There exist problems that do not
only require end-start precedences but also other kinds temporal con-
straints over activities: minimal and maximal time lags, which require
that the time difference between the starts of a source and a destination
activities is not smaller (minimal) or greater (maximal) than a certain
time lag; release dates and deadlines, that are minimum start time and
maximum finish times of the activities that cannot be violated, or that
can be violated at some penalty cost; time-switch constraints, enforcing
that the activities can only start at particular instants of a cycle of work,
for instance from Monday to Friday in a week.
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Generalised resource constraints The RCPSP restricts to renewable
resources that are occupied at a certain amount while an activity is
running, and this amount is recovered once the activity finishes. We can
find other variants: non-renewable resource constraints, such as a budget
or raw material; cumulative resources which can both be consumed or re-
filled on some quantity by activities; resources with continuous capacity;
resource capacities varying with the time.

Alternative objectives There exist many other optimisation criteria differ-
ent than minimising the makespan: minimising the time difference from
the desired start and end time of the activities w.r.t. the ones given
by the schedule, or minimising the penalties for not respecting the de-
sired bounds; optimising the robustness of solutions, in the sense that an
unforeseen delay does not compromise the rest of the schedule; minimis-
ing or levelling the resource consumptions; weighted combinations of the
different optimisation criteria.

Multiple projects There are some problem variations considering different
projects at a time. Having multiple project adds some challenges such
as combining different constraints or optimisation criteria, or executing
only a subset of the projects while meeting the overall constraints.

In this thesis we tackle many problems extending the RCPSP which incor-
porate some of these variations:

• The Multi-mode RCPSP. This problem incorporates multiple execution
modes (generalised activity concept) and non-renewable resource con-
straints (generalised resource constraints).

• The RCPSP with Time-Dependent Resource Capacities and Requests,
Time-Dependent Resource Capacities and Requests. In this problem,
the resource requests of activities vary during their execution (gener-
alised activity concept) and the capacity of the resources vary during
the project execution (generalised resource constraints).

• The Multi-mode RCPSP with Minimal and Maximal Time Lags. This
problem generalises the Multi-mode RCPSP, by enabling time lags of
arbitrary length between the starts of pairs of activities, either minimal
or maximal (generalised temporal constraints).

• The Multi-Skill Project Scheduling Problem. In this problem, each re-
source is specialised in performing a set of skills, and the activities re-
quire a number of resources supplying each skill (generalised resource
constraints).
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Two different works [BDM+99, HDR99] provided two nomenclatures to
identify the different possible variants of scheduling problems which support
most of the previously mentioned variants. In particular, the RCPSP is de-
noted as PS|prec|Cmax in [BDM+99] and as m, 1|cpm|Cmax in [HDR99].

Benchmark Instances

Most of the benchmark datasets that are being used nowadays to evaluate the
performance of solvers for RCPSP variants exists thanks to the work done
in [KSD95]. There the authors introduced ProGen, an instance generator for
the classical RCPSP as well as the multi-mode extension (MRCPSP). This
tool was used to create PSPLIB [KS97], the most used library of scheduling
problems. Many instances for other RCPSP variants have been created by
extending the ones in PSPLIB, and other extensions of ProGen have been de-
veloped, such as ProGen/max [Sch98], which generates instances fo the variant
with minimal and maximal time lags.

Solving Approaches

Back in the 1970s, the first exact formulations for scheduling problems were
based on 0/1 Mixed Integer Linear Programming (MILP), i.e. MILP with
variables than can only take value 0 or value 1. It was remarked by [Dav73]
that although the formulation of RCPSP as a 0/1 MILP problem was com-
mon and had the advantage of being exact, solving it directly was impractical
and unattractive due to its excessive computational requirement. For this rea-
son the predominant technique was to use heuristic approximations to solve
the problem. Nevertheless the 0/1 MILP approach was studied and many
models were proposed. In many cases the MILP models were solved with
specialised branch and bound procedures for RCPSP-like problems ([PH74,
SDK78, TP78]). As stated in the survey [ISEZ93], by the late 1970s there
were already more than 100 heuristic procedures and many exact solution
techniques available for RCPSP.

More recently, the performance of exact approaches has been substan-
tially improved, and these approaches are currently finding good results in
challenging datasets. Moreover, even if the optimal solution is not found
with a limited computation time, in many problems with size of practical
interest the exact solvers are able to provide suboptimal solutions which can
be competitive with the ones found using non-exact approaches. There is
still a large number of recent works that tackle RCPSP and variants using
MILP [BM08, KALM11, TSCS16]. However, alternative methods such as
SAT/SMT or Constraint Programming (CP) are rapidly gaining acceptance
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as a leading alternative to exact solving of CSPs and scheduling in particu-
lar. Many of the state-of-the-art last works on exact solving of RCPSP-based
problems are based in SAT and SMT [ABP+11, CV11, Suy13], CP [VLS15],
or Lazy Clause Generation (LCG) [SFS13, SFSW13]. In this thesis we com-
pare the performance of our systems with other scheduling solvers that use the
previously mentioned state-of-the-art exact solving methods. Therefore, now
we provide an overview of the leading exact solving approaches in scheduling.

Constraint Programming

Constraint Programming (CP) is a programming paradigm where the relations
between variables are stated in the form of constraints. Each variable can take
values in a given domain, and each constraint further restricts combinations of
values that a set of variables can take simultaneously. CP is devoted to solve
Constraint Satisfaction Problems CSP, which are formally defined as a triple
〈X,D,C〉:

• X = {X1, . . . , Xn} is a set of variables.

• D = {D1, . . . , Dn} is a set of domains, where Di is the domain of Xi.

• C = {C1, . . . , Cm, } is a set of constraints.

A constraint Ci ∈ C is a pair 〈Si, Ri〉, where Si ⊆ X is the subset of vari-
ables involved in the constraint (scope of the constraint), and Ri is a relation
over the variables in Si. The arity of a constraint is the size of its scope, i.e., a
constraint Ci with |Si| = k is a k-ary constraint. A relation Ri can be defined
either extensionally as a set of allowed assignments to Si, or intensionally as
an expression that states the required relation between variables in Si. An
assignment of variables X is a mapping from variable Xi to a value in its do-
main Di, for each variable Xi. A constraint Ci is satisfied if the assignment on
variables in Si satisfies relation Ri. A solution of a CSP is an assignment on
X that satisfies all constraints in C. Most CP solving approaches implement a
search procedure of the solution space which follows a backtracking scheme, in
which there are integrated many techniques to enhance the performance. The
most relevant are constraint propagation and consistency mechanisms, which
aim at removing from the domains of the variables those values that do not
have a support in some constraint, i.e., that do not belong to any assignment
satisfying that constraint. This domain pruning is done as the search evolves.

A global constraint is a constraint that captures a relation between a non-
fixed number of variables. For instance, the allDifferent(X1, . . . , Xn) global
constraint specifies that the values assigned to the variables X1, . . . , Xn must
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be pairwise distinct. Typically, a global constraint is semantically redundant
in the sense that the same relation can be expressed as the conjunction of
several simpler constraints[RVBW06]. Moreover, for some global constraints
there exist efficient specialised propagators.

In the field of scheduling, and in particular in solving RCPSP-based prob-
lems, the global constraint cumulative [AB93] is widely used. It is defined as
cumulative(S,D,R,B), where:

• S = {S1, . . . , Sn} is a set of integers denoting the start times of n activ-
ities.

• D = {D1, . . . , Dn} is a set of integers durations of the activities.

• R = {R1, . . . , Rn} is a set of integer resource requirements of the activi-
ties.

• B is the capacity of a renewable resource.

In the most common use of the constraint only S are variables and D, R, and
B are input constants, but the global constraint accepts any of the parameters
to be variables. The constraint is satisfied if the following holds for some range
of time instants (scheduling horizon) H:∑

i ∈ [1, n], s.t.
Si ≤ t < Si +Di

Ri ≤ B ∀t ∈ H (2.1)

Di ≥ 0 ∀i ∈ [1, n] (2.2)

Ri ≥ 0 ∀i ∈ [1, n] (2.3)

Among the most successful approaches to deal with the cumulative global
constraint we find time-indexed decomposition [SFSW09], that we explain in
detail un Subsection 2.1.3. Another approach that has given good results is
time-table edge finding [Vil11], which is a wise combination of time-table and
edge finding propagation techniques. The basic idea of time-table propagators
is that, when a lower bound esti and an upper bound lsti on the start Si are
found, we know for sure that activity i is running (and consuming resources)
during the time instants in the interval [lsti, esti + Di] if this interval is not
null. By aggregating these intervals, it is possible to compute a minimum
capacity profile (a timetable) which shows minimum resource usage over time,
and that can detect infeasibility. On the other hand, edge finding propagators
reason on sets of activities: given the capacity of a resource, and the duration
and resource demands of a set of activities, it can be computed the minimum
time interval required to execute the whole set of activities.
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Lazy Clause Generation

Lazy Clause Generation (LCG) is a CP solving approach [FS09]. It also
implements a backtracking scheme to explore the solution space and uses
constraint propagators to prune the search space. LCG solvers also incor-
porate a SAT solver which is mainly used as a constraint propagator, but
it can also perform other tasks such as driving the search with the vari-
able activity based heuristic commonly used in SAT solvers (VSIDS). This
can be done because finite domain variables are encoded as sets of Boolean
variables: a variable Xi with domain Di = {l, . . . , u} is represented using
Boolean variables [[Xi = l]], . . . , [[Xi = u]], and [[Xi ≤ l]], . . . , [[Xi ≤ u − 1]].
The variable [[Xi = d]] is true if and only if Xi takes the value d. Sim-
ilarly, the variable [[Xi ≤ d]] is true if and only if Xi takes a value less
than or equal to d. Moreover, consistency of the semantics of these vari-
ables is enforced with expressions of the form [[Xi ≤ d]]→ [[Xi ≤ d+ 1]], and
[[Xi = d]]↔ ([[Xi ≤ d]] ∧ ¬[[Xi ≤ d− 1]]).

In recent years, LCG solvers such as G12 [SdlBM+05] or Chuffed [Chu11]
have been used to efficiently solve scheduling problems. In [SFS13] the au-
thors presented a time-table edge finding propagator included in G12 which
closed 6 instances of the RCPSP from PSPLib. In [SS16] and [YFS17], there
were presented two CP models of the Multi-mode RCPSP and the Multi-Skill
Project Scheduling Problem respectively which were state-of-the-art regarding
performance, and also closed a number of open instances for such problems.

Failure-Directed Search

In [VLS15] there were presented CP solving approaches for many scheduling
problems. They used the IBM ILOG CPOptimizer system which includes
a search procedure specially designed for solving scheduling problems. The
authors name this search procedure Failure-Directed Search(FDS). In FDS,
the search does not operate on decision variables directly, but instead it works
on a set of binary choices. The kind of choices used in FDS do not assign
particular values to variables but split their domains (e.g. S2 ≤ 4). FDS tries
to drive the search to conflicts in order to prove that the explored branch is
infeasible resembling the fail-first principle. In this sense, it is also similar to
the VSIDS heuristic of SAT solvers, which also prioritises the exploration of
assignments which most likely will lead to a conflict. The search algorithm
maintains a rating for each choice, which is smaller for choices that quickly
lead to a conflict, and picks the choices with smallest ratios.

Using this system, the authors solved many scheduling problems, including
the RCPSP and its extensions Multi-mode RCPSP, RCPSP/max and Multi-
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Mode RCPSP/max. They were able to improve the best known bounds for
some instances of these problems, being especially remarkable the case of the
Multi-mode RCPSP/max, where they were able to close all 85 open instances.
For this last problem, the authors detected that the existing instances were
not hard regarding resource constraints, and obtained very good results by
solving a MILP relaxation of the problem as a preprocessing step.

2.1.2 RCPSP

The Resource-Constrained Project Scheduling Problem (RCPSP) can be for-
mally defined by a tuple (V, p, E,R,B, b) where:

• V = {A0, A1, . . . , An, An+1} is a set of activities. Activities A0 and An+1

are dummy activities introduced by convention, which represent the start
and the end of the schedule respectively. They don’t consume resources
and have duration 0. The set of non-dummy activities is defined by
A = {A1, . . . , An}.

• p ∈ Nn+2 is a vector of naturals, where pi is the duration of Ai.

• E is a set of pairs of activities representing end-start precedence relations.
Concretely, (Ai, Aj) ∈ E iff the execution of activity Ai must precede
that of activity Aj , i.e., activity Aj must start after activity Ai has
finished. We assume that we are given an activity-on-node precedence
graph G = (V,E) that contains no cycles, since otherwise the precedence
relation is inconsistent. By convention there is a path from A0 to any
other activity, and also a path from any activity to An+1.

• R = {R1, . . . , Rv} is a set of renewable resources.

• B ∈ Nv is a vector of naturals, where Bk is the available amount of each
resource Rk.

• b ∈ N(n+2)×v is a matrix of naturals corresponding to the resource de-
mands of activities, where bi,k represents the amount of resource Rk that
activity Ai is using per time step during its execution.

It is common in the literature to compute the transitive closure E∗ of E,
which contains a tuple (Ai, Aj , li,j) iff there is a path from Ai to Aj in G.
The time lag li,j is the critical path from Ai to Aj in G. The critical path
from Ai to Aj is the path of maximum sum of weights, where the weight of an
edge (precedence) is the duration of the predecessor activity. We will denote
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G∗ = (V,E∗) as the extended precedence graph, which has a weight li,j for each
edge (Ai, Aj) ∈ E∗.

A schedule is a vector of naturals S = (S0, S1, . . . , Sn, Sn+1) where Si
denotes the start time of activity Ai. We assume that S0 = 0. A solution of the
RCPSP is a schedule S of minimal makespan Sn+1 subject to the precedence
and resource constraints. More precisely, the constraints can be formally stated
as:

Minimise: Sn+1 (2.4)

Subject to:

Sj − Si ≥ pi ∀(Ai, Aj) ∈ E (2.5)

∑
Ai∈A

ite
(
Si ≤ t < Si + pi; bi,k; 0

)
≤ Bk

∀Rk ∈ R,∀t ∈ H (2.6)

where ite(c; e1; e2) is an if-then-else expression denoting e1 if c is true and
e2 otherwise, H = {0, . . . ,UB} is the scheduling horizon, i.e. a wide enough
time period to schedule the project. Precedence constraints (2.5) state that,
for any pair (Ai, Aj) ∈ E, activity Aj cannot start until Ai has finished. The
renewable resource constraints (2.6) state that the capacities of the renewable
resources cannot be exceeded at any time.

Figure 2.1 illustrates an example RCPSP instance with 7 non-dummy ac-
tivities and 2 resources, and Figure 2.2 shows an optimal solution for this
instance.

The RCPSP is an NP-hard problem in the strong sense [GJ75, BLK83b],
although just finding a solution that satisfies the precedence and resource
constraints can be done in polynomial time if there is no constraint over the
makespan.
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Figure 2.1: Example RCPSP instance with 7 non-dummy activities and 2
resources.
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Figure 2.2: Optimal solution of the instance of Figure 2.1, with schedule S =
(0, 0, 2, 3, 4, 4, 5, 7, 8). The capacity of the resources is never exceeded, and the
precedence relations are respected.
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2.1.3 Modelling Renewable Resource Constraints

The constraint over renewable resources in the RCPSP is the most challenging
part of this problem, and it has been widely studied. In [Suy13] we can find
examples of the principal modelling viewpoints that have been used: the Task
approach consists in checking the consumption of the resources at the start
time of every activity; a similar approach is Event, which consists in repre-
senting the schedule as a finite number of events (e.g. time instants where
the activities can start), then schedule the events, distribute the activities
among events, and finally ensure that the resource constraints are satisfied at
all events; the Flow viewpoint models a network flow that, once an activity
finishes, reassigns the resources that it is using to some other activities.

In this thesis we have focused in time-indexed models, usually known as the
Time approach [PW96], which have shown to provide good performance when
solving the different benchmark instances available in the literature [ABP+11,
SFSW09]. This approach consists in discretising the scheduling horizon H
—the period of time in which the schedule will take place— into unit intervals
from 0 to an upper bound UB , i.e. H = {0, 1, . . . ,UB}. The upper bound must
be large enough so that the optimal solution (if any) will have a makespan not
greater than UB . Then, it must be ensured that the capacity of a resource
is not exceeded at any of the time instants in H. A usual way of achieving
this purpose is to introduce an auxiliary 0/1 variable for each activity and
for each time instant. There are different semantics that can be reified to the
auxiliary time-indexed variables, leading to different constraints [Art13]. In
the formulations introduced we will be mainly using variables with (extensions
of) the following semantics:

xi,t: 0/1 variable which is true iff activity Ai is running at time t.

Then, the constraint over a resource Rk can be expressed as:∑
Ai∈V

bi,k · xi,t ≤ Bk ∀t ∈ H (2.7)

Constraints (2.7) ensure that the added demand of activities running at a
particular time t is not greater than the capacity of a particular resource Rk.

Time Windows

One of the key points of the Time approach is only introducing variables for
the time instants at which an activity can be running. This will both reduce
the number of auxiliary variables and the size of the constraints. For this
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S0 = 0 Sn+1 ≤ UB = 12

time
0 1 2 3 4 5 6 7 8 9 10 11 12

STW (A1) = [0, 6] RTW (A1) = [0, 7]

STW (A2) = [0, 7] RTW (A2) = [0, 7]

STW (A3) = [2, 8] RTW (A3) = [2, 8]

STW (A4) = [1, 8] RTW (A4) = [1, 8]

STW (A5) = [2, 8] RTW (A5) = [2, 10]

STW (A6) = [3, 9] RTW (A6) = [3, 10]

STW (A7) = [5, 11]RTW (A7) = [5, 11]

Figure 2.3: Illustration of the start and running time windows of the non-
dummy activities of Figure 2.1, with an upper bound of 12. The coloured cells
are the time instants at which the activity can be running (RTW), being the
two dark coloured rectangles the earliest and latest possible schedule of each
activity. STW is all the starts comprised between the two black arrows, which
denote earliest and latest start time.

purpose it is usual to pre-compute the time instants at which an activity can
be running (run time window) or can start (start time window). Given the
extended precedence graph G∗ and an upper bound for the makespan UB ,
we can define the earliest/latest start/close time of each activity, and its time
windows as:

ES(Ai) Earliest start time of activity Ai, equal to l0,i.

LS(Ai) Latest start time of activity Ai, equal to UB − li,n+1.

EC(Ai) Earliest close time of activity Ai, equal to l0,i + pi.

LC(Ai) Latest close time of activity Ai, equal to UB − li,n+1 + pi.

RTW (Ai) Run time window : set of time instants at which an activity can be
running, that is ES(Ai) . . . LC(Ai)− 1.

STW (Ai) Start time window : set of time instants at which an activity can
start, that is ES(Ai) . . . LS(Ai).

Figure 2.3 illustrates the time windows of the RCPSP instance of Figure 2.1.

Computation of Upper Bound

Another key point in the Time approach is being able to identify a good upper
bound for the makespan. Note that the latest start times are proportional
to the upper bound, and in consequence also the size of the time windows



2.1. SCHEDULING 19

increase with a large UB . Moreover the number of constraints like (2.7) also
depend on the scheduling horizon.

In the RCPSP there is no constraint on how late an activity can start
if the schedule is not limited by a maximum makespan. Therefore a trivial
upper bound can be obtained from a schedule in which only one activity runs
at a time and there are no periods of inactivity. If the problem instance is
not inconsistent, in the sense that there are no cycles in the precedence graph
and there is no activity requiring more units of a resource than its availability,
then a schedule can be easily constructed with a breadth first traversal of
the precedence graph. In any such schedule, the makespan is the sum of the
durations: ∑

Ai∈A
pi (2.8)

This is a valid value for UB , but it will generally be very far from the optimal
makespan. To overcome this issue, in this thesis we will be using a fast greedy
heuristic to get a first schedule from which we can infer a first UB , which
will be much smaller than the trivial upper bound (2.8). This heuristic is
the Parallel Scheduling Generation Scheme (PSGS) proposed in [Kel63] and
described in [Kol96]. Given a project of n activities, this method requires at
most n stages to find a schedule, and at each stage a subset of the activities
are scheduled. Each stage s has associated a schedule time ts (where ts′ ≤ ts,
for s′ ≤ s). There are three activity sets that are updated as the algorithm
runs:

• Complete set C: activities already scheduled and completed up to the
schedule time ts.

• Active set A: activities already scheduled, but still active at the schedule
time ts.

• Decision set D: activities not yet scheduled which are available for
scheduling with start time ts, w.r.t. precedence and resource constraints.

Each stage consists of two steps:

1. Defining the new ts as the earliest completion time of activities in the
active set A —the first stage starts at t0 = 0. The activities with a finish
time equal to the new ts are removed from A and put into C. This may
place new activities into D.



20 CHAPTER 2. PRELIMINARIES

2. One activity from D is selected by some priority rule —we will be using
input order—, and scheduled to start at ts, being removed from D and
added to A. Then set D is recomputed. This step is repeated until D
becomes empty.

The method terminates when all activities are scheduled.

2.2 Boolean Satisfiability (Modulo Theories)

In this section we give an overview on basic concepts on Boolean Satisfiability
(SAT) and its extension Satisfiability Modulo Theories (SMT). The reader
can refer to [BHvMW09] for deeper concepts covering this area. First, in
Section 2.2.1 we present SAT with all the notation and definitions that we will
be using hereinafter, as well as the basic algorithms involved in SAT solving.
Then we introduce its extension to SMT in Section 2.2.2.

2.2.1 SAT

A Boolean variable is a variable than can take truth values 0 (false) and 1
(true). A literal is a Boolean variable x or its negation x. A clause is a
disjunction of literals l1∨· · ·∨ ln, which can also be presented in the equivalent
form l1 ∧ · · · ∧ lm → lm+1 ∨ · · · ∨ ln. A propositional formula in conjunctive
normal form (CNF), in short a Boolean formula hereinafter, is a conjunction of
clauses c1∧· · ·∧cn. Clauses are usually seen as sets of literals, and formulas as
sets of clauses. A Boolean formula represents a Boolean function f : {0, 1}n →
{0, 1}.

An assignment or interpretation of a formula is a mapping of Boolean
variables to truth values; it can also be seen as a set of literals (e.g., {x =
1, y = 0, z = 0} is usually denoted {x, y, z}). A total assignment has a truth
value mapped to all variables of the formula, while a partial assignment maps
a proper subset of the variables. A satisfying assignment or model of a formula
is an assignment that makes it evaluate to 1. In particular, an assignment A
satisfies a formula F in CNF if at least one literal of each clause in F belongs
to A.

Definition 2.2.1. The problem of Boolean Satisfiability (SAT) is the prob-
lem of determining if there exists a satisfying assignment for a given Boolean
formula.

Given two Boolean formulas F and G, we say that G is a logical conse-
quence of F , written F |= G, iff every model of F is also a model of G. We say
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that two Boolean formulas F and G are logically equivalent, denoted F ≡ G,
if F |= G and G |= F . An assignment can also be seen as a conjunction of
literals and therefore a Boolean Formula. Hence, if an assignment A is a model
of a formula F , it is denoted as A |= F .

We say that a formula G is an encoding of a Boolean function F if the
following holds: given an assignment A over the variables of F , A satisfies F
iff A can be extended to a satisfying assignment of G.

In this thesis we often deal with constraints on Boolean variables. A con-
straint C on a set of Boolean variables X can be defined extensionally as a
set of assignments on X that satisfy C, or intentionally as a Boolean formula
on X. Therefore a constraint on Boolean variables represent a Boolean func-
tion, which evaluates to true if and only if the constraint is satisfied with
the given assignment. Therefore, we define the encoding of a constraint on
Boolean variables as the encoding of the Boolean function represented by such
constraint.

The Resolution Rule

The Resolution is an inference rule which, given two clauses c1, c2 containing
complementary literals, produces a new clause which is a logical consequence
of c1 ∧ c2. Two literals are said to be complements if one is the negation of
the other (in the following p is taken to be the complement of p).

Example 1. Consider the two clauses p ∨ q1 ∨ · · · ∨ qn and p ∨ r1 ∨ · · · ∨ rn.
As they have complementary literals, we can apply the resolution rule:

p ∨ q1 ∨ · · · ∨ qn p ∨ r1 ∨ · · · ∨ rn
q1 ∨ · · · ∨ qn ∨ r1 ∨ · · · ∨ rn

and produce the clause q1 ∨ · · · ∨ qn ∨ r1 ∨ · · · ∨ rn.

The produced clause is called a resolvent, and the dividing line stands for
logical entailment.

When coupled with a complete search algorithm [DP60], the resolution
rule yields a sound and complete algorithm for deciding the satisfiability of a
propositional formula in CNF. Although modern SAT solvers are not based in
this approach the resolution rule still plays an important role, as we will see
in the when Conflict Driven Clause Learning is explained.

Model Search Based Algorithms

The basic procedure behind the algorithms for SAT solving which are used
currently is a backtracking scheme. The search for the solution consists in try-
ing to construct an assignment which satisfies all the clauses. Therefore there
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is a partial assignment which is modified as the search evolves, and the algo-
rithm finishes when either a model is found, i.e. the formula is satisfiable, or
it has been checked that no assignments is a model, i.e. the formula is unsatis-
fiable. A key point for the efficiency of this approach is avoiding enumerating
all possible assignments by applying different deduction techniques.

Unit Propagation

Unit propagation (UP) is the core deduction mechanism in modern SAT solvers.
It can be applied whenever given an assignment a clause has all the literals
but one assigned with false, and the remaining one is unassigned. In this case,
UP sets the remaining literal to true as it is the only way of satisfying the
clause.

Example 2. Consider the clause p∨ q ∨ r and the assignment {p, r}. UP will
extend the assignment as {p, r} ∪ {q}.

When constructing encodings of constraints on Boolean variables it is cru-
cial that the resulting formula lets UP make strong deductions such as main-
taining Generalised Arc Consistency (GAC).

Definition 2.2.2. An encoding E of a constraint C on Boolean variables is
said to UP-maintain GAC if it satisfies the following property: given a partial
assignment A, if a variable x of C is true (respectively false) in every extension
of A satisfying C, then unit propagating A on E will extend A to A ∪ {x}
(respectively A ∪ {x}) [BBR09].

The Davis-Putnam-Logemann-Loveland Algorithm

Since SAT is an NP-complete problem [Coo71], only algorithms with expo-
nential worst-case complexity are known to solve it. The Davis-Putnam-
Logemann-Loveland (DPLL) procedure [DLL62] is a procedure to decide if
a CNF is satisfiable, and if it is, it provides satisfying assignment. This algo-
rithm implements a backtracking scheme which starts with an empty assign-
ment. It extends the assignment with UP until a fix point is reached, and
then it branches (does a decision) on an unassigned literal (branching literal)
and recursively repeats the process. The number of decisions that have been
taken at a point of the search receives the name of decision level. If a clause
becomes unsatisfied during the search (conflict), the algorithm backtracks to
the last branching and tries the search negating the branching literal. If there
is no backtrack point before a conflict, i.e. if the search decision level is 0,
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Algorithm 1 DPLL

Input: F : CNF formula, A : partial assignment
Output: unsatisfiable or a model of F
1: A← Unit-Propagation(F ,A)
2: if hasUnsatisfiedClause(F ,A) then
3: return unsatisfiable
4: else if allClausesSatisfied(F ,A) then
5: return A
6: end if
7: l← PickBranchingLiteral(F,A)
8: A′ ← DPLL(F , A ∪ {l})
9: if A′ is a model then

10: return A′

11: else
12: A′ ← DPLL(F , A ∪ {l})
13: if A′ is a model then
14: return A′

15: else
16: return unsatisfiable
17: end if
18: end if

it is proved that the formula is unsatisfiable. Algorithm 1 shows the DPLL
procedure, whose first call should receive an empty assignment as input.

The weak point of DPLL is that it does not memorise if a substructure
of the search tree have lead to a conflict, and the same dead-ended set of
choices can be explored multiple times. The Conflict-Driven Clause-Learning
algorithm incorporates learning techniques to overcome this weakness.

The Conflict-Driven Clause-Learning Algorithm

The main improvement of Conflict-Driven Clause-Learning (CDCL) algorithm
with respect to DPLL is that it keeps track of the reason why each one of the
literals in the partial assignment have been assigned, that can be either the
result of a decision, or the application of UP on a particular clause. When the
algorithm reaches a conflict, this information can be used to perform a conflict
analysis: a chain of resolution steps is applied starting from the conflicting
clause to derive a lemma, that is a clause which explains the reason of the con-
flict. The lemma is added to the formula (clause learning) to prevent repeat-
ing the same conflicting assignments. Then a non-chronological backtracking
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Algorithm 2 CDCL

Input: F : CNF formula
Output: unsatisfiable or a model of F
1: A← {}
2: while not AllVariablesAssigned(F ,A) do
3: A← Unit-Propagation(F ,A)
4: if HasUnsatisfiedClause(F ,A) then
5: decision level←ConflictAnalysisAndLearning(F ,A)
6: if decision level < 0 then
7: return unsatisfiable
8: else
9: NonChronologicalBacktrack(F ,A,decision level)

10: end if
11: else if not AllVariablesAssigned(F ,A) then
12: l← PickBranchingLiteral(F,A)
13: A← A ∪ {l}
14: end if
15: end while
16: return A

is performed , i.e. it does not only undo the last decision but continues the
backtrack until the derived lemma is no longer falsified. Therefore, the search
can step back many decision levels after a conflict.

Non-chronological backtracking was originally proposed as a technique for
solving CSPs [SS77], and it was successfully incorporated in SAT
solvers [MSS99]. The conflict analysis implementation which has shown to
be most successful, and that modern SAT solvers implement, is the one of
finding the first unique implication point (1UIP) [MMZ+01]. Algorithm 2
shows the structure of the typical CDCL algorithm.

Many other features have been added to CDCL to improve the performance
of SAT solvers. Among the most important we can identify the use of the effi-
cient branching heuristic VSIDS and the inclusion restart policies [MMZ+01].
The Variable State Independent Decaying Sum (VSIDS) is a heuristic to pick
the branching variables in CDCL. Each literal has an activity value associ-
ated, which is increased when the literal is involved in a conflict, and the
solver branches on the most active variables. Moreover, all the activity values
are periodically divided by a constant. This way, the search is guided to decide
on literals which have been involved in recent conflicts. Regarding restarts,
they consist in forgetting all the current assignments and then start the search
again at the root of the search tree. After a restart some information is pre-
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served, most notably the previously learned conflict-driven clauses and the
activity values. Intuitively, restarting prevents the solver from being stuck in
an area of the search space that contains no solution.

2.2.2 Satisfiability Modulo Theories

Satisfiability Modulo Theories (SMT) is an extension of SAT, where the
satisfiability of a first order logic formula has to be determined. This for-
mula can contain not only Boolean variables, but also Boolean predicates with
predefined interpretations from background theories, or theory atoms. The
following is an example formula which contains atoms of the theory of Linear
Integer Arithmetic (LIA):

(x ≥ 3 ∨ q) ∧ (y = 4 ∨ p)

where x and y are integers, while p and q are Boolean variables.

Definition 2.2.3. A theory is a set of first-order formulas closed under logical
consequence. A theory T is said to be decidable if there is an effective method
for determining whether arbitrary formulas are included in T .

Definition 2.2.4. A formula F is T -satisfiable or T -consistent if T ∪ {F} is
satisfiable in the first-order sense. Otherwise, it is called T -unsatisfiable or
T -inconsistent.

Definition 2.2.5. If A is a T -consistent partial truth assignment and F is a
formula such that A |= F , i.e., A is a (propositional) model of F , then we say
that A is a T -model of F .

Definition 2.2.6. The SMT problem for a theory T is the problem of deter-
mining, given a formula F , whether F is T -satisfiable.

Theories

The Satisfiability Modulo Theories Library (SMT-LIB) [BST10] has the goal
of establishing a common standard for the specification of benchmarks and of
background theories, as well as to establish a library of benchmarks for SMT.
Currently the widely accepted standard SMT language is SMT-LIB2. Some
of the theories supported by SMT-LIB2 are:
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• The theory of Equality and Uninterpreted Functions (QF EUF, or sim-
ply QF UF). It is the quantifier-free fragment of first order logic with
equality and no restrictions on the signature (hence the name UF for Un-
interpreted Functions). Uninterpreted functions have no other property
than its name and arity, and are only subject to the following axiom:
x1 = x′1 ∧ · · · ∧ xn = x′n → f(x1, . . . , xn) = f(x′1, . . . , x

′
n).

• Linear Arithmetic over the integers (QF LIA) or the reals (QF LRA). It
comprises quantifier-free formulas with Boolean combinations of inequa-
tions between linear polynomials of the form

∑n
i=1 aixi#c, where ai and

c are integer (or real) constants, xi integer (or real) variables and # any
relational operator of {<,>,≤,≥,=}. An example formula in QF LIA
is (3x + 4y ≥ 7) → (z = 3), where x, y and z are integer variables.
Many SMT solvers use specialised Simplex like algorithms [DdM06b] to
deal with satisfiability checks of conjunctions of LIA atoms (for instance
Yices 2 [Dut14]).

• Difference Logic over the integers (QF IDL) or the reals (QF RDL).
It is an efficiently solvable fragment of linear arithmetic. Here atoms
are restricted to have the form x − y#k, where x and y are numeric
(integer or real) variables, k is a numeric (integer or real) constant and
# ∈ {=, <,>,≤,≥}.

The Lazy SMT Approach

There are two principal types of procedures for solving SMT, the so-called
eager and lazy approaches. In the eager approach, the input formula is
fully translated into a propositional CNF formula, whose satisfiability is then
checked by a SAT solver. Sophisticated ad-hoc translations have been de-
veloped for several theories, but still on many practical problems either the
translation process or the SAT solver run out of time or memory [dMR04].
On the contrary, the lazy approach consists in integrating a T -solver, i.e. a
decision procedure for the given theory T , in a SAT solver. Currently most suc-
cessful SMT solvers are essentially based on a lazy approach. In this approach,
while the SAT solver is in charge of the Boolean component of reasoning, the
T -solver deals with conjunctions of literals that belong to T . It is named lazy
because the theory information is only used when checking the consistency of
the truth assignment against the theory T . The basic idea is to let the T -solver
analyse the partial truth assignment that the SAT solver is building, and warn
about conflicts with the theory T (T -inconsistency). This idea combines the
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Algorithm 3 Lazy Bool+T Algorithm

Input: F : SMT formula
Output: Satisfiability of F
1: αp ← T2B(Atoms(F ));
2: F p ← T2B(F );
3: while Bool -satisfiable(F p) do
4: Ap ← pick total assignment(αp, F p);
5: A← B2T (Ap);
6: (ρ, π)← T -satisfiable(A);
7: if ρ = sat then
8: return sat;
9: else

10: F p ← F p ∧ T2B(π);
11: end if ;
12: end while
13: return unsat;

efficiency of the SAT solver and special-purpose algorithms inside the T -solver
for non-Boolean reasoning.

Algorithm 3 shows a simplified enumeration-based T -satisfiability pro-
cedure (from [BCF+06]), where the T -consistency is only checked for total
Boolean assignments. The reader is referred to [Seb07] for a survey on the
lazy SMT approach. The algorithm enumerates the Boolean models of the
propositional abstraction of the SMT formula F and checks for their satisfia-
bility in the theory T .

• The function Atoms takes a quantifier-free SMT formula F and returns
the set of atoms which occur in F , where an atom is either a propositional
variable or an expression of theory T .

• The function T2B maps propositional variables to themselves, and ground
atoms into fresh propositional variables. It is homomorphic with respect
to Boolean operators and set inclusion.

• F p is initialised to be the propositional abstraction of F using T2B.

• The function B2T is the inverse of T2B.

• Ap denotes a propositional assignment as a set (conjunction) of propo-
sitional literals.
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• The function pick total assignment returns a total assignment to the
propositional variables in F p. In particular, it assigns a truth value to
all variables in αp.

• The function T -satisfiable checks if a set of conjuncts A is T -satisfiable,
i.e., if there is a model for T ∪ A, returning (sat,∅) in the positive case
and (unsat,π) otherwise, being π ⊆ A a T -unsatisfiable set (the theory
conflict set). Note that the negation of the propositional abstraction of
π is added to F p in case of unsat (learning).

In the approach presented so far, the T -solver provides information only
after a T -inconsistent total assignment has been generated. In this sense, the
T -solver is used only to validate the search a posteriori, not to guide it a priori.
In order to overcome this limitation, the T -solver could also be used to detect
literals l occurring in F such that M |=T l, where M is a partial assignment
of F . This is called theory propagation. The propagation capability is a very
important aspect of theory solvers, since getting more general explanations
(conflict sets) from the theory solver is essential in order to keep the learned
lemmas as short as possible and will allow for more pruning in general. In
practice, the enumeration of Boolean models is carried out by means of efficient
implementations of the CDCL algorithm [ZM02], where partial assignments Ap

are incrementally built. On the other hand, the T -solver checks the consistency
of the assigned literals of the theory. These systems benefit of the spectacular
progress in performance from SAT solvers in the last decade, achieved thanks
to better implementation techniques and conceptual enhancements.

2.3 Pseudo-Boolean Constraints and Decision
Diagrams

In this section we first present basic notions and notation about pseudo-
Boolean constraints. Since decision diagram based SAT encodings of pseudo-
Boolean constraints are a core subject of this thesis, we also devote a section
on preliminaries of Binary Decision Diagrams, and another section to review
the state-of-the-art on decision diagram based SAT encodings.

2.3.1 Pseudo-Boolean Constraints

Definition 2.3.1. A pseudo-Boolean (PB) constraint is a Boolean function
of the form

∑n
i=1 qixi#K, where # ∈ {<,≤,=,≥, >}, q1, . . . , qn and K are

integer constants, and x1, . . . , xn are 0/1 variables.
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By the scope of a constraint, we mean the set of variables appearing in the
constraint.

Checking the satisfiability of PB constraints with = operator is harder
than doing so with constraints with other operators (unless P=NP), since
the subset sum problem, which is NP-complete, is polynomially reducible to
the former constraints. In fact, an equality PB constraint is equivalent to
the conjunction of two inequality PB constraints, i.e. (

∑n
i=1 qixi = K) ≡

(
∑n

i=1 qixi ≥ K ∧
∑n

i=1 qixi ≤ K). By contrast, deciding the satisfiability of
PB constraints with operators <,≤,≥, > is trivial. For instance, a constraint
of the form

∑n
i=1 qixi ≤ K will be satisfiable if and only if the assignment

{xi | i ∈ 1..n, qi < 0} ∪ {xi | i ∈ 1..n, qi ≥ 0} is a model of it. In this thesis
we mainly deal with PB constraints expressing inequalities. Therefore, unless
otherwise stated, the different definitions and statements over PB constraints
hereinafter refer to inequality PB constraints, and might not apply to equality
PB constraints.

A particular case of PB are cardinality constraints, whose satisfiability is
trivially decidable also for = operator.

Definition 2.3.2. A cardinality constraint is a Boolean function of the form∑n
i=1 xi#K, where # ∈ {<,≤,=,≥, >}, K is an integer constant, and

x1, . . . , xn are 0/1 variables.

Among cardinality constraints we define at-most-one (AMO), at-least-one
(ALO), and exactly-one (EO) constraints.

Definition 2.3.3. An at-most-one (AMO) constraint is a Boolean function
of the form

∑n
i=1 xi ≤ 1, where all xi are 0/1 variables.

Definition 2.3.4. An at-least-one (ALO) constraint is a Boolean function of
the form

∑n
i=1 xi ≥ 1, where all xi are 0/1 variables.

Definition 2.3.5. An exactly-one (EO) constraint is a Boolean function of
the form

∑n
i=1 xi = 1, where all xi are 0/1 variables. It can be defined as the

conjunction of an AMO constraint and an ALO constraint.

PB constraints can always be normalised to the form
∑n

i=1 qixi ≤ K,
where qi ≥ 0 [ES06]. Most existing SAT encodings of PB constraints require
the input PB to be in this normal form. The normalisation procedure is the
following:

• Strict inequalities are converted to non-strict by adding/subtracting 1 to
K.
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•
∑n

i=1 qixi ≥ K is converted to
∑n

i=1−qixi ≤ −K.

• Negative coefficients are removed by substituting xi for 1−xi, and mod-
ifying K accordingly.

Note that after the normalisation a PB may not only contain variables but
also negations of variables, as literals. For simplicity we assume w.l.o.g.
that PB constraints contain variables, since a literal also can take values 0/1
(false/true), and a literal x could be rewritten as a variable x′ ↔ x.

A normalised PB constraint is a tautology if
∑n

i=1 qi ≤ K, and it is unsat-
isfiable if K < 0. Also, it is a monotonic decreasing function, meaning that
given any assignment which satisfies the constraint, it will still be a model
after changing to false the value of any variable assigned with true.

PB constraints appear frequently in formulations of CSPs, especially when
a bound is required on the added cost of a set of Boolean choices. For instance,
in knapsack problems [HLS10] a choice has to be made about whether an
item is packed, in which case it will occupy some of the limited space of the
knapsack. Another example is routing problems [Lap92], where deciding to
go from one location to another increases in a particular amount the total
travelled distance. As seen in Section 2.1, PB constraints appear in scheduling
problems when formulating resource constraints.

2.3.2 Binary Decision Diagrams for Pseudo-Boolean
Constraints

A PB constraint expressed in the form
∑n

i=1 qixi#K naturally fits in some
modelling languages such as Mixed Integer Linear Programming (MILP) or
Constraint Programming (CP). However, if they are to be included in a SAT
formulation, a CNF encoding of the constraint needs to be provided.

A well-known approach to translate PB constraints to CNF is by means of
Binary Decision Diagrams (BDD) [Bry86, ES06, ANO+12]. A BDD is a data
structure that can represent the evaluation of all the possible assignments
of any given Boolean function, in particular of a PB constraint. Then, the
encoding is obtained by generating a set of clauses which model the semantics
of the diagram.

Definition 2.3.6. A Binary Decision Diagram (BDD) is a rooted, directed,
acyclic graph which represents a Boolean function. BDDs have two terminal
nodes, namely F-terminal and T -terminal. Each non-terminal node has an
associated variable ( selector), and has two outgoing edges, representing the
true and the false assignment of the selector. Every truth assignment of the
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variables follows a path from the root to the T -terminal when it satisfies the
formula, or to the F-terminal otherwise.

A BDD is ordered if different variables appear in the same order on all
paths from the root. A BDD is said to be reduced if it satisfies the following
two conditions:

• It contains no isomorphic sub-BDDs.

• There is no node whose true and false children are the same.

A Reduced Ordered Binary Decision Diagram (ROBDD) is canonical (i.e.
unique) for a particular Boolean function and variable order [ANO+12].

Figure 2.4 contains a non-reduced ordered BDD representation of the PB
constraint C : 2x1+3x2+4x3+6x4 ≤ 7 with the variable order x1 ≺ x2 ≺ x3 ≺
x4. Figure 2.5 shows the ROBDD representation of the same PB constraint
and variable order. As seen in the pictures, an ordered BDD can be organised
in different layers, where at each layer a different selector is considered. For
instance, in all the nodes of the second layer we choose whether to set x2 to 1
or to 0.

x4 x4 x4 x4 x4 x4 x4 x4

x3 x3 x3 x3

x2 x2

x1

F T

1 0

1 0 1 0

1 0 1 0 1 0 1 0

1
0

1

0

1
0

1 0 1 0

1
0

1

0

1
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Figure 2.4: Non-reduced Ordered BDD for the PB constraint 2x1 +3x2 +4x3 +
6x4 ≤ 7 with order x1 ≺ x2 ≺ x3 ≺ x4.

No polynomial time algorithm is known to construct ROBDDs representing
Boolean functions in general, but when the diagram represents a PB constraint
it can be constructed in polynomial time w.r.t. the size of the final ROBDD
by means of dynamic programming [ANO+12]. There exist PB constraints
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Figure 2.5: ROBDD for the PB constraint 2x1 + 3x2 + 4x3 + 6x4 ≤ 7 with
order x1 ≺ x2 ≺ x3 ≺ x4.

which only have ROBDD representations of exponential size in the number
of variables [HTY94], and hence the construction time can be exponential in
the number of variables of the PB in the worst case. However this is not an
issue in many practical applications, because the number of nodes of ROBDD
representing a PB constraint of the form

∑n
i=1 qixi ≤ K is also O(nK). This

means that, in order to get a ROBDD with exponential size, it is required on
the one hand that K is exponential w.r.t. n, and on the order hand

∑n
i=1 qi

must be greater than K and therefore also exponential w.r.t. n, otherwise
the constraint would be trivially true and its ROBDD representation would
collapse to the T -terminal node.

2.3.3 SAT Encodings of Decision Diagrams

There exist many works in the literature on the encoding of PB constraints into
SAT, not only based on BDDs, but also on adder networks, sorting networks
and other approaches [ES06, BBR09, ANO+12, HMS12, TBS13, JMM15]. The
most important among these encodings will be revisited and extended in Chap-
ter 7, where we propose generalised versions of them to deal with another
constraint that generalises PB constraints.

A recent work comparing different PB SAT encodings is that of [PS15].
That paper introduces the PBLIB, a library to translate PB constraints into
CNF formulas which includes fifteen different encodings of PB constraints from
the literature. In the experiments performed in that paper, the BDD-based
approach clearly outperforms the other encodings in terms of solving time.

The use of BDDs to encode PB constraints to SAT was firstly considered
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in [ES06]. The approach consists in, first of all, representing the PB constraint
as a BDD, then treating the BDD as a circuit of if-then-else gates, and finally
translating this circuit to clauses by the Tseitin transformation. More pre-
cisely, an auxiliary variable has to be added for each node of the BDD, which
is constrained to be true with a given assignment of the variables of the PB iff
the Boolean function represented for the BDD rooted at this node evaluates
to true. Then, for each non-terminal node of the BDD, the following clauses
are added:

vf ∧ x→ v (2.9)

vf ∧ x→ v (2.10)

vt ∧ x→ v (2.11)

vt ∧ x→ v (2.12)

vt ∧ vf → v (2.13)

vt ∧ vf → v (2.14)

where x is the selector of the node, v is the auxiliary variable of the node, and
vt and vf are the auxiliary variables of the true and false children respectively.
Also, the unary clauses

r (2.15)

t (2.16)

f (2.17)

need to be added, where r t and f are the auxiliary variables of the root,
T -terminal and F-terminal nodes respectively. Therefore this encoding intro-
duces one fresh variable and six ternary clauses per node. Clauses (2.13) and
(2.14) are not necessary, but they increase the strength of unit propagation.

At the same time, in [BBR06] an encoding was introduced which, although
it is not thought to be derived from an explicit BDD, in essence it is encoding
a BDD as proposed in [ES06], with two main differences. The first difference
is that the encoding procedure that they proposed cannot guarantee that the
implicitly generated BDD is reduced. The second difference is that, by assum-
ing decreasing monotonicity of the PB constraints, it is only required to add
clauses (2.15),(2.16),(2.17) as well as the following four clauses for each node,
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and there is no loss of consistency nor propagation strength:

vf ∧ x→ v (2.18)

vf → v (2.19)

vt → v (2.20)

vt ∧ x→ v (2.21)

It was however shown later in [ANO+12] that this encoding can be made
still much smaller in the case of monotonic PB constraints, since only the
following two clauses need to be introduced in addition to clauses (2.15), (2.16),
(2.17):

vf → v (2.22)

vt ∧ x→ v (2.23)

This last encoding changes the semantics of the auxiliary variables, since they
are only constrained to be false whenever the Boolean function represented by
the node evaluates to false, but it is still consistent and maintains GAC by
UP.

All the previously presented encodings introduce a number of clauses and
fresh variables linear in the size of the ROBDD and therefore can be expo-
nential w.r.t. the number of variables of the PB constraint in the worst case.
However it has already been argued in Section 2.3.2 that this is not an issue
in most practical applications.

There exist polynomial size encodings of PB constraints [HMS12]. It was
proved in [ANO+12] that all PB constraints whose coefficients are powers of
two have a polynomial size ROBDD representation. Using the fact that any
PB constraint can be reduced to a set of equalities plus a PB constraint whose
coefficients are all powers of two, the authors of [ANO+12] provide a GAC
polynomial encoding of PB constraints which makes use of BDDs.

Some other related works can been found on SAT encodings of decision di-
agrams. In [AS14] a generalisation of the two-clause encoding from [ANO+12]
is presented. This more generic encoding uses Multi-valued Decision Diagrams
(MDD) [SHMB90] to represent Linear Integer Arithmetic (LIA) constraints,
and a generalisation of the algorithm in [ANO+12] to construct such MDDs.
An MDD is essentially a generalisation of a BDD in which the selectors of
the nodes are multi-valued variables, and the nodes have a child for each pos-
sible value of the variable. This MDD encoding is revisited in [AGMES16],
where also some other encodings of MDDs representing LIA constraints are
introduced. These do not try to model the truth value of every node of the dia-
gram, but they introduce auxiliary variables modelling whether an assignment
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follows a particular path in the MDD. These path-based encodings introduce
fresh variables and clauses both for the nodes and the edges of the MDD, and
all of them are of linear size with respect to the size of the MDD.





Chapter 3

LIA and BDD-Based SAT
Encodings of Resource
Constraints: Application to
MRCPSP

The works [ABP+11, Suy13] presented an SMT based system to tackle the
RCPSP, concluding that SMT is competitive with state-of-the art solvers for
this problem. These results encourage us to tackle other scheduling prob-
lems using SMT, and in this chapter we in particular solve the Multi-mode
Resource-Constrained Project Scheduling Problem (MRCPSP), which is a
generalisation of the RCPSP. This problem is denoted as MPS|prec|Cmax

in [BDM+99] and as m, 1T |cpm, disc.mu|Cmax in [HDR99].

In the MRCPSP every activity has a number, greater or equal to 1, of
execution modes. Each activity mode is described with a pair, formed by
the duration of the activity and a vector of resource demands in this mode.
Also, in the MRCPSP one distinguishes between renewable resources and non-
renewable resources: renewable resources are replenished at each time unit —
as in RCPSP—, while for non-renewable ones, resource usage is accumulated
across the entire project. For example, a renewable resource could be number
of workers, or the capacity of a machine, while a non-renewable resource could
be a budget, or some kind of stock. The objective of the MRCPSP is to find a
mode and a start time for each activity, such that the makespan is minimised
and the schedule is feasible with respect to the precedence and (renewable and
non-renewable) resource constraints.

The MRCPSP is NP-hard [BLK83a]. Several exact and heuristic ap-

37
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proaches to solve the MRCPSP have been proposed in recent years. The
most common exact approaches for solving this problem are based on branch-
and-bound [SD98, ZBY06] and mixed-integer linear programming (MILP) for-
mulations [ZHR08, KKG12, CSE14]. There exists a non-exact hybrid method
that uses MILP and SAT [CV11]. In [VLS15] we found an exact hybrid sys-
tem using large neighbourhood search and failure-directed search which was,
as far as we know, the one closing more MRCPSP instances. In [Suy13] it was
presented an SMT formulation for the MRCPSP, that we revisit and improve
in this chapter.

The purpose of this chapter is twofold. On one hand, we want to study
the efficiency of SMT to solve the MRCPSP and provide a comparison with
the state of the art of MRCPSP solving. It is worth noting that the MRCPSP
contains many disjunctions introduced by the choice of execution modes, and
this can be naturally modelled into the SMT language. Moreover, modern
SMT solvers are specifically designed to efficiently deal with Boolean combi-
nations of arithmetic predicates. Hence, we can use an off-the-shelf SMT solver
without modifying it. On the other hand, we study an encoding approach for
resource constraints in SMT alternative to the one presented in [Suy13]. There,
the LIA theory was used to handle resource constraints, and now we compare
this same approach against another one consisting of using BDD-based SAT
encodings of PB constraints. In this second approach the only theory left is
IDL, which is easier to decide than LIA. The use of BDD-based encodings of
PB constraints has already given good results in solving many Constrained
Optimisation Problems [BPSV14]. The two formulations that we present are
based on the Time approach described in Section 2.1.3.

A number of preprocessing steps are performed to obtain lower and up-
per bounds, and to narrow the time windows of the activities. We also use
a preprocessing step that allows us to reduce the demand of non-renewable
resources for each activity and a simplified method for checking infeasibility.
We also define an ad-hoc minimisation procedure, which consists in iteratively
running the SMT solver on decisional checks while bounding the cost function,
until the optimum is found. This procedure also tries to reformulate the SMT
formula by narrowing the time windows of activities after each iterative step as
the search advances. The reformulation preserves the internal search state of
the SMT solver between successive calls, thus taking advantage of the learning
capabilities of the CDCL(T) SMT solvers.

In order to show the efficiency of the presented solution, we report very
good results of the experiments conducted on the most challenging MRCPSP
instances from the PSPLib [KS97] and on some more challenging instances
from MMLIB [VPV14]. Namely, in Section 3.5 we report the results on the j30



3.1. MRCPSP 39

set, because that is the only one with open instances in PSPLib and that our
system is unable to completely close, and on the MMLIB50 set from MMLIB,
which contains harder instances and many of them remain open. We compare
our results with [VLS15] which, to the best of our knowledge, was the state-
of-the-art of solving MRCPSP when we did this work.

The work presented in this chapter has been published in [BCSV16]. This
work is related to the objectives number 1, 2 and 5 of this thesis. The rest of
this chapter is organised as follows:

• In Section 3.1 we formally define the MRCPSP.

• In Section 3.2 we describe different preprocessing steps.

• In Section 3.3 we describe our SMT formulations for the MRCPSP.

• In Section 3.4 we describe our optimisation algorithm.

• In Section 3.5 we provide an experimental evaluation of our formulations.

• In Section 3.6 we summarise the contributions of this chapter.

3.1 The Multi-mode Resource-Constrained Project
Scheduling Problem

The Multi-mode Resource-Constrained Project Scheduling Problem (MRCPSP)
is defined by a tuple (V,M, p,E,R,B, b) where :

• V = {A0, A1, . . . , An, An+1} is a set of activities. Activities A0 and An+1

are dummy activities representing, by convention, the start and the end
of the schedule, respectively. The set of non-dummy activities is defined
by A = {A1, . . . , An}.

• M ∈ Nn+2 is a vector of naturals, with Mi being the number of modes
that activity Ai can execute in, with M0 = Mn+1 = 1 and Mi ≥ 1,∀Ai ∈
A.

• p is a vector of vectors of naturals, with pi,o being the duration of activity
Ai using mode o, with 1 ≤ o ≤ Mi. For the dummy activities, p0,1 =
pn+1,1 = 0, and pi,o > 0, ∀Ai ∈ A, 1 ≤ o ≤Mi .

• E is a set of pairs of activities representing end-start precedence relations.
Concretely, (Ai, Aj) ∈ E iff the execution of activity Ai must precede



40 CHAPTER 3. LIA AND BDD-BASED ENCODING OF MRCPSP

that of activity Aj , i.e., activity Aj must start after activity Ai has
finished.

We assume that we are given a precedence activity-on-node graph G =
(V,E) that contains no cycles, since otherwise the precedence relation is
inconsistent. We assume that E is such that A0 is a predecessor of all
other activities and An+1 is a successor of all other activities.

• R = {R1, . . . , Rv−1, Rv, Rv+1, . . . , Rq} is a set of resources. The first v
resources are renewable, and the last q − v resources are non-renewable.

• B ∈ Nq is a vector of naturals, with Bk being the available amount of
each resource Rk. The first v resource availabilities correspond to the
renewable resources, while the last q − v ones correspond to the non-
renewable resources.

• b is a three-dimensional matrix of naturals corresponding to the resource
demands of activities per mode. Value bi,k,o represents the amount of
resource Rk used during the execution of activity Ai in mode o. Note
that b0,k,1 = 0 and bn+1,k,1 = 0,∀k ∈ {1, . . . , q}.

A schedule is a vector of naturals S = (S0, S1, . . . , Sn, Sn+1) where Si
denotes the start time of activity Ai. We assume that S0 = 0. A schedule
of modes is a vector of naturals SM = (SM 0,SM 1, . . . ,SM n,SM n+1) where
SM i, satisfying 1 ≤ SM i ≤ Mi, denotes the mode of each activity Ai. A
solution of the MRCPSP problem is a schedule of modes SM and a feasible
schedule S of minimal makespan Sn+1. The MRCPSP can hence be formally
stated as:

Minimise: Sn+1 (3.1)

Subject to:

(SM i = o)→ (Sj − Si ≥ pi,o) ∀(Ai, Aj) ∈ E,∀o ∈ [1,Mi] (3.2)

1 ≤ SM i ≤Mi ∀Ai ∈ A (3.3)

∑
Ai∈A

∑
o∈[1,Mi]

ite
(
(SM i = o) ∧ (Si ≤ t < Si + pi,o); bi,k,o; 0

)
≤ Bk

∀Rk ∈ {R1, . . . , Rv},∀t ∈ H (3.4)
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∑
Ai∈A

∑
o∈[1,Mi]

ite(SM i = o; bi,k,o; 0) ≤ Bk

∀Rk ∈ {Rv+1, . . . , Rq} (3.5)

where ite(c; e1; e2) is an if-then-else expression denoting e1 if c is true and
e2 otherwise, H = {0, . . . ,UB} is the scheduling horizon, and UB (the length
of the scheduling horizon) is an upper bound for the makespan.

A solution is feasible if it satisfies the precedence constraints (3.2), the
execution mode correctness constraints (3.3), the renewable resource con-
straints (3.4) and the non-renewable resource constraints (3.5). An example
is shown in Figure 3.1.

A problem instance has no feasible schedules if and only if some of the
following conditions holds:

• There exists a cycle in the precedences graph (i.e., an activity is forced
to start after it finishes).

• There exists some activity whose demand on a resource in all execution
modes is greater than its capacity.

• There is no schedule of modes such that all the non-renewable resource
constraints (3.5) are satisfied.

The two first conditions are verifiable in polynomial time. These are typ-
ically satisfied in the benchmark instances available in the literature. Hence,
having checked them, we propose in Section 3.2.3 to focus on the third condi-
tion to detect the infeasibility of an instance.

3.2 Preprocessing

We perform standard preprocessing steps to compute the extended precedence
set, a lower and an upper bound for the makespan, and time windows for
each activity. We also use a preprocessing technique from [Suy13] called non-
renewable resource demand reduction, which allows us to reduce the size of
the constraints related to non-renewable resources. All these preprocesses are
implemented in order to extract some features that will allow us to reduce the
size of the SMT formulas and the search space.

3.2.1 Extended Precedence Set

Similarly to the RCPSP, it is possible to compute the transitive closure on
the precedence graph to get an extended precedence graph. However, in that
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Instance:

A0 A1 A2 A3 A4 A5 A6 A7 A8

pi,1 0 2 4 3 1 3 3 2 0
bi,1,1 0 3 1 1 2 2 1 2 0
bi,1,2 - 1 1 1 1 1 1 2 -
pi,2 - 4 1 1 1 1 2 1 -
bi,2,1 0 1 3 2 1 0 0 3 0
bi,2,2 - 3 0 1 2 4 2 0 -

A0

A1

A2

A3

A4

A5

A6

A7

A8

Solution:

A0 A1 A2 A3 A4 A5 A6 A7 A8

Si 0 0 2 3 4 4 5 7 8
SMi 1 1 2 2 2 1 2 2 1

A1 A2
A3

A4

A5
A7

3

2

1

0 time

Renewable resource 1, B1 = 3 Non-renewable resource 2, B2 = 8

0 + 1 + 0 + 1 + 2 + 1 + 2 + 0 + 0 ≤ 8

Figure 3.1: An MRCPSP instance and its solution. The first table contains the
durations and the resource demands (one renewable and one non-renewable)
for each activity mode. The graph represents the precedences. The second
table contains an optimum schedule makespan = 8. Finally, the diagram
represents the schedule and the validity of the resource usage.

case it has to be taken into account that an activity can have different du-
ration depending on the execution mode. In order to compute the extended
precedences, we use the Floyd-Warshall algorithm on the graph defined by the
precedence relation E, where each arc (Ai, Aj) is labeled with the duration
mino∈{1,...,Mi}(pi,o). This extended precedence set is named E∗ and contains,
for each pair of activities Ai and Aj such that Ai precedes Aj , a tuple of the
form (Ai, Aj , li,j) where li,j is the length of the longest path from Ai to Aj .
Note that this longest path length is minimal with respect to the different ac-
tivity modes. Note also that, if (Ai, Ai, li,i) ∈ E∗ for some Ai and li,i > 0, then
there is a cycle in the precedence relation and therefore the problem instance
is inconsistent.
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In fact the demands on renewable resources let us go one step further.
Note that any activity Ak such that (Ai, Ak, li,k) ∈ E∗∧(Ak, Aj , lk,j) ∈ E∗ will
be completely executed in the time interval [Si + min

o∈{1,...,Mi}
(pi,o), Sj ]. Hence,

this interval must be wide enough to run all such Ak without exceeding the
availability of any renewable resource. This time interval gives, for every
resource r ∈ {1, . . . , v}, a lower bound (RLBi,j,r) of the time difference between
the end of Ai and the start of Aj :

RLBi,j,r = d 1

Br
∗

∑
Ak∈A

(Ai,Ak,li,k)∈E∗
(Ak,Aj ,lk,j)∈E∗

min
o∈{1,...,Mk}

(pk,o ∗ bk,r,o)e

So we can update the extended precedence set as:

l′i,j = max(li,j , min
o∈{1,...,Mi}

(pi,o) + max
r∈{1,...,v}

(RLBi,j,r))

∀(Ai, Aj , li,j) ∈ E∗

where li,j is the value obtained by transitivity on the precedence set, and l′i,j
is the updated value. Note that an increase of a single extended precedence
can be propagated to other precedences in E∗. We achieve this propagation
with a new execution of the Floyd-Warshall algorithm. This preprocessing
resembles the energy based reasoning used by some constraint propagators
(see [ADN13]).

3.2.2 Lower Bound

A lower bound LB for the makespan is a lower bound for the start time of
activity An+1. The critical path (i.e. the maximum length path) between the
initial activity A0 and the final activity An+1 in the precedence graph is a
lower bound for the makespan. Note that we can easily know the length of
this path if we have already computed the extended precedence set, since it
corresponds to the value l0,n+1 in the tuple (A0, An+1, l0,n+1) ∈ E∗.

For instance, in Figure 3.1 the critical path is [A0, A1, A3, A6, A7, A8] with
modes 1, 1, 2, 2, 2, 1, respectively, and its length is 6. Hence, we have LB = 6.

Moreover, there exists the possibility that l′0,n+1 has been increased due to
the renewable resource demands, thus obtaining a better lower bound.
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3.2.3 Upper Bound

As stated in Section 2.1.3, it is desired to find a small scheduling horizon
H = {0, . . . ,UB}, since it will have a direct impact on the size of the time
windows and therefore the number of variables, the number of constraints and
the size of the constraints of our SMT formulas. We compute an upper bound
UB for the makespan in two steps.

The first step consists in finding a feasible schedule of modes for the in-
stance, i.e. a schedule of modes that satisfies non-renewable resource con-
straints (3.5) and the correctness of modes (3.3). This is achieved by a single
call to the SMT solver to find a schedule of modes satisfying these constraints.
The particular SMT formula that we construct will be indicated in Section 3.3
together with the full problem formulations. As pointed out in Section 3.1, it
is a necessary condition that we can find such a feasible schedule of modes,
otherwise an instance does not have a feasible solution. If we succeed in this
first check, and having tested the other trivial feasibility conditions exposed
in Section 3.1, we can conclude that the instance has feasible solutions.

In the second step, given a feasible schedule of modes, we fix the durations
and resource demands of the activities according to the schedule of modes, and
run the fast greedy PSGS algorithm for the RCPSP explained in Section 2.1.3.
It will find a (presumably non-optimal) solution, and we then use its makespan
as the upper bound in the scheduling horizon.

3.2.4 Time Windows

We can reduce the domain of each variable Si (start time of activity Ai),
that otherwise would be {0 ..UB −mino∈{1,...,Mi}(pi,o)}, by computing its ear-
liest/latest start/close times and time windows similarly to how we explained
in Section 2.1.3. It has to be taken into account that the time lags from A0

and to An+1 are computed as explained in Section 2.1.3:

ES(Ai) = l0,i

EC(Ai) = ES(Ai) + min
o∈{1,...,Mi}

(pi,o)

LS(Ai) = UB − li,n+1

LC(Ai) = LS(Ai) + min
o∈{1,...,Mi}

(pi,o)

With these values we can compute the start time window STW (Ai) and run
time window RTW (Ai) as explained in Section 2.1 For instance, in the example
of Figure 3.1, there is a trivial UB equal to 20, given by the sum of the
maximum durations of all the activities. Considering this UB , and having
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l4,8 = 4, the activity A4 has start time window [1, 16] and run time window
[1, 16].

3.2.5 Non-Renewable Resource Demand Reduction

This preprocessing step was presented in [Suy13] and consists in reducing
the demand of non-renewable resources in a sound way. As we will see, this
will allow us to save SMT literals in the constraints related to those kind of
resources.

Let us introduce it through an example. In the example of Figure 3.1, the
non-renewable resource R2 has 8 units available and activity A6 has two modes:
mode 1 requires 1 unit of resource R2, while mode 2 requires 2 units of the
same resource. This problem can be transformed into an equivalent one, where
the availability of resource R2 is 7, and activity A6 has a demand of 0 units of
resource R2 in mode 1, and of 1 unit in mode 2. Since in mode 1 the demand is
of 0 units for this activity, it is not necessary to add any literal considering this
mode in the constraints on non-renewable resources. Roughly, following the
example, what could be done is to subtract from the availability of resource R2,
and from the different demands of activity A6 for resource R2 in each mode,
the minimum amount of resource R2 that activity A6 needs. However, one
could go one step further and, instead of subtracting the minimum demand
value, subtract the demand value which most frequently occurs. This of course
will lead to negative availabilities and demands. But, interestingly, it allows
to reduce the size of the constraints even more (since more demands become
zero), while keeping soundness. Details are given below.

For this preprocess, we construct a new vector B′ of resource availabilities
and a new matrix b′ of resource demands. For each non-renewable resource
Rk and activity Ai, let maxk,i denote the demand value over resource Rk with
more occurrences in the different modes of activity Ai (and, in case of a tie,
the smallest one). Then we state:

b′i,k,o = bi,k,o −maxk,i ∀Ai ∈ A,∀o ∈ {1, . . . ,Mi}

B′k = Bk −
∑
Ai∈A

maxk,i ∀Rk ∈ {Rv+1, . . . , Rq}

Note that vector B′ and matrix b′ range now over integers instead of over
naturals, i.e., they can contain some negative values. The zero b′i,k,o values
—whose number is maximal thanks to the fact that we subtract the demand
value with most occurrences— allow us to simplify the constraints on non-
renewable constraints, see Equations (3.14) and (3.16) below.
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3.3 Formulations

We propose two different SMT formulations for the MRCPSP: ITE, which
uses the theory of LIA, and BDD, which uses the theory of IDL. The differ-
ence between the two encodings is in the formulation of the constraints over
resources: ITE contains summations of if-then-else expressions, while BDD
uses PB constraints which are encoded into CNF using the BDD-based encod-
ing from [ANO+12] described in Chapter 2.

We also introduce some refinements on the encodings considering the pre-
processing steps described in Section 3.2 (extended precedences, non-renewable
resource demand reduction, etc.)

We introduce the set of integer variables {S0, S1, . . . , Sn, Sn+1} to denote
the start time of each activity. We encode the schedule of modes with the set
of Boolean variables {smi,o |, 0 ≤ i ≤ n + 1, 1 ≤ o ≤ Mi}, with smi,o being
true if and only if activity Ai is executed in mode o.

The objective function (3.1) will be minimised with the iterative process
detailed in Section 3.4. We introduce the following constraints in both formu-
lations:

S0 = 0 (3.6)

Si ≥ ES(Ai) ∀Ai∈{A1, . . . , An+1} (3.7)

Si ≤ LS(Ai) ∀Ai∈{A1, . . . , An+1} (3.8)

smi,o → Sj − Si ≥ pi,o ∀(Ai, Aj) ∈ E,
∀o ∈ {1, . . . ,Mi} (3.9)

Sj − Si ≥ li,j ∀(Ai, Aj , li,j) ∈ E∗ (3.10)∨
1≤o≤Mi

smi,o ∀Ai∈V (3.11)

smi,o ∨ smi,o′ ∀Ai∈ V , 1 ≤ o < Mi,

o < o′ ≤Mi (3.12)

where (3.7) and (3.8) encode the time windows, (3.9) encodes the precedences,
(3.10) encodes the extended precedences and (3.11) and (3.12) ensure that
each activity runs in exactly one mode.

Constraints (3.4) and (3.5) on resources are differently handled in each
of the two formulations, as described below. However, in both cases, for the
constraints over renewable resources, we introduce the Boolean variables xi,t,
which are constrained to be true iff activity Ai is running at time t as follows:



3.3. FORMULATIONS 47

smi,o → (xi,t ↔ (Si ≤ t) ∧ (t < Si + pi,o))

∀Ai ∈ A, ∀o ∈ {1, . . . ,Mi},∀t ∈ RTW (Ai)
(3.13)

3.3.1 ITE

This formulation makes use of if-then-else (ite) expressions in the constraints
over resources, which are supported by the theory of LIA. The constraints over
the non-renewable resources are the following:

∑
Ai∈A

∑
o∈{1,...,Mi}

ite
(
smi,o; b

′
i,k,o; 0

)
≤ B′k

∀Rk ∈ {Rv+1, . . . , Rq}
(3.14)

Notice that the ite expression can be removed in the cases where b′i,k,o = 0
(recall Section 3.2.5). When using the ITE formulation, we will use Con-
strains (3.14), Constraints (3.11) and Constraints (3.12) to find a schedule of
modes —i.e. an assignment on variables smi,o— that let us compute an UB
as described in Section 3.2.3.

The demands on renewable resources are constrained as follows:

∑
Ai ∈ A, s.t. :
t ∈ RTW (Ai)

∑
o∈{1,...,Mi}

ite
(
smi,o ∧ xi,t; b′i,k,o; 0

)
≤ B′k

∀Rk ∈ {R1, . . . , Rv}, ∀t ∈ H (3.15)

3.3.2 BDD

This formulation expresses the constraints over resources using PB constraints
that will be then translated into CNF. We can define the constraints over non-
renewable resources as:

∑
Ai∈A

∑
o∈{1,...,Mi}

b′i,k,o · smi,o ≤ B′k

∀Rk ∈ {Rv+1, . . . , Rq}
(3.16)

Similarly to the ITE formulation, note that we can remove from the sum the
terms where b′i,k,o = 0 to take advantage of the non-renewable resource demand
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reduction. When using the BDD formulation, we will use Constraints (3.16),
Constraints (3.11) and Constraints (3.12) to find an assignment on variables
smi,o that lets us compute a scheduling horizon as described in Section 3.2.3.

To encode the constraints over renewable resources, we are going to define
Boolean variables xi,t,o which are true if and only if Ai runs in mode o at time
t:

xi,t,o ↔ (smi,o ∧ xi,t) ∀Ai ∈ A, ∀t ∈ RTW (Ai),

∀o ∈ {1, . . . ,Mi} (3.17)

The constraint over the renewable resources is:

∑
Ai ∈ A, s.t. :
t ∈ RTW (Ai)

∑
o∈{1,...,Mi}

b′i,k,o · xi,t,o ≤ B′k

∀Rk ∈ {R1, . . . , Rv}, ∀t ∈ H (3.18)

We translate these constraints into CNF using the encoding presented
in [ANO+12] and defined in Section 2.3.2 which only introduces two clauses
per node of the BDD, but requires the encoded PB to be monotonic decreasing.
The monotonicity requirement only lets us use the reformulation suggested in
Subsection 3.2.5 if we remove the minimum resource demand over modes of
an activity instead of the resource demand occurring more times. If we were
removing the resource demand occurring more times, we could get negative
resource demands and the PB constraint would contain negative coefficients,
resulting in a not monotonic decreasing function.

Notice also that with this encoding of the resources constraints, the only
arithmetic predicates remaining in the BDD encoding are the ones express-
ing precedences, namely (3.9) and (3.10), or bounds for integer variables in
(3.7), (3.8) and (3.13). Hence, the remaining arithmetic constraints are IDL
expressions. In fact, in the BDD encoding, all resource constraints are fully
controlled by the SAT component of the solver. We argue in the Section 3.5
that this is a key point in the good performance obtained with BDD.

3.4 Optimisation

Our system uses the Yices 2.4.2 [Dut14] SMT solver’s API to check the satis-
fiability of the encodings. Yices 2 has shown to be a competitive SMT solver
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when considering LIA [DdM06b]. The solving process of our system is pre-
sented in Algorithm 4. It basically consists of the following steps:

1. Compute the preprocessed data.

2. Detect infeasibility and end the process, or find a feasible schedule of
modes.

3. Use the obtained schedule of modes to compute an UB with PSGS heuris-
tic and narrow the time windows.

4. Find the optimum makespan.

Algorithm 4 solve MRCPSP

Output: Optimum makespan if feasible. Otherwise return infeasible.
INS ← read MRCPSP instance()
// INS contains instance data (V,A,M, p,E,R,B, b)
PREP ← preprocessing()
// PREP contains preprocessed data (E∗, ES, LS,B′, b′)
ENC ← encode MRCPSP SAT (INS, PREP )
(SAT,MODEL) ← smt check(ENC) // Check feasibility, and give a
model if any
if SAT then
LB ← l0,n+1 // Trivial lower bound
SM ← get schedule of modes(MODEL)
UB ← parallelSGS(INS, SM) // Heuristic solution
OPT ← optimise feasible(LB,UB , INS, PREP )
return OPT

else
return INFEASIBLE

end if

Recall from Section 3.2.3 that we only encode the constraints of correct
mode assignment and non-renewable resource constraints for feasibility check
(step 2). This is denoted as encode MRCPSP SAT in Algorithm 4. For the
last step of computing the optimum makespan, we have implemented a search
procedure, namely optimise feasible, which calls the SMT solver successively
constraining the value of the variable Sn+1 to be smaller or equal to UB . It
is described in Algorithm 5. This optimisation algorithm is based on a linear
search schema starting from a feasible UB . Every time a feasible schedule is
found, UB is updated to take its makespan minus one, and the SMT solver
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Algorithm 5 optimise feasible

Input: LB, UB , feasible instance data (INS), preprocessed data (PREP ).
Output: Optimum makespan
ENC ← encode MRCPSP (LB ,UB , INS, PREP )
smt assert encoding(ENC)
SAT ← smt check()
if SAT then
MODEL← smt get model()
MAKESPAN ← smt get makespan(MODEL)
UB ←MAKESPAN − 1

end if
while SAT and UB ≥ LB do
smt assert(Sn+1 ≤ UB) // Bound the makespan
smt compress TW (UB , PREP ) // Optional
SAT ← smt check()
if SAT then
MODEL← smt get model()
MAKESPAN ← smt get makespan(MODEL)
UB ←MAKESPAN − 1

end if
end while
if SAT then

return UB
else

return UB + 1
end if

is called again. This procedure is repeated until we find the biggest infeasible
UB . Moreover we compress the time windows at each iterative step of the
optimisation process. On the one hand, we assert new single atom clauses
of the form Si ≤ LS(Ai) with the updated latest start times for the current
UB , therefore bounding the value of Si. On the other hand, we also assert
(xi,t) for the time instants t that are excluded from the time window of Ai,
thus avoiding the solver the work of propagating these values that become
trivial. This compression corresponds to the instruction smt compress TW,
and is not mandatory for consistency. However, we explain in Section 3.5
that the compression gives a noticeable speedup in the solving process. Notice
that, since we decrease UB linearly, we never find an infeasible UB until the
optimum is detected, so that we do not have to retract any constraint and we
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can maintain the learning of the SMT solver.

3.5 Results

We have run our experiments on a 8GB Intel R© Xeon R© E3-1220v2 machine
at 3.10 GHz. In all experiments we use Yices 2.4.2 as the core SMT solver,
and the timeout is 3600 seconds. Our system is available at the website of
the Logic and Programming research group [LAP]. Our executions are made
on the j30 [KS97] and MMLIB50 [VPV14] sets of instances. Both sets con-
tain instances with 3 execution modes per activity and 2 renewable and 2
non-renewable resources. There are 552 feasible instances and 88 infeasible
instances in j30, each one with 30 activities, and 540 feasible instances of
50 activities in MMLIB50. We provide comparative results with the system
presented in [VLS15], which uses a failure directed search for a Constraint Pro-
gramming optimiser (we refer to this system as FDS ). To our best knowledge
this system had reported the best results of a exact solver for MRCPSP when
we ran these experiments.

In both ITE and BDD settings we will be using the non-renewable resource
demand reduction described in Section 3.2.5, since it provides a very noticeable
time performance improvement. In Figure 3.2 we illustrate a scenario where
this technique has a highly positive impact, that is on the feasible instances
of j30 set and for ITE. A total of 102 more instances were solved with ITE
thanks to including this new preprocessing in it. We have also observed an
important speedup with BDD, although not as high as with ITE. Also, looking
at Figure 3.2 we can see that there are some instances highly benefited from
this preprocessing and some others that are not affected at all. We have
observed that the most benefited instances are the ones whose activities have
the highest demands on the resources.

In Table 3.1 we analyse the time required to determine the infeasibility of
the infeasible instances of j30. We show the performance of simplifying the ITE
and BDD encodings for feasibility checks as explained in Subsection 3.2.3 (i.e.
only finding a schedule of modes which satisfies the non-renewable resource
constraints). We also include in Table 3.1 the time required if we use the full
ITE and BDD encodings, and finally the time required by FDS. It can be
seen that our system is better than FDS in any case for proving infeasibility,
having three orders of magnitude of difference when using the simplified BDD
encoding. It is specially noticeable the performance improvement achieved by
simplifying the encoding, since the computation time is reduced two orders of
magnitude both for ITE and BDD.
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Figure 3.2: Comparison of solving time (in seconds) with the ITE encoding
using the non-renewable resource demand reduction (axis x) and without using
it (axis y) on the j30 set.

solver 25% median 75% max mean solved

ITE simp. 0.11 0.2 0.52 8.83 0.57 88

ITE full 7.55 14.6 28.44 416.68 27.49 88

BDD simp. 0.03 0.05 0.08 0.58 0.09 88

BDD full 1.39 1.97 2.75 5.63 2.23 88

FDS 27.15 53.07 107.12 462.7 91.48 88

Table 3.1: Solving times in seconds and number of instances solved of the
infeasible instances of j30 set.

We have evaluated on the feasible instances of j30 how invoking the pro-
cedure smt compress TW of Algorithm 5 helps to boost the solving process.
Using the compression in ITE lets us solve 4 more instances than not us-
ing it, and the solving time is in average reduced a 55.22% (considering only
the instances solved in both cases). Regarding the BDD encoding, we have
observed that this compression does not suppose a clear improvement of the
solving time as happens with ITE (neither a worsening), what suggests that
BDD propagates better the implications of reducing the upper bound.

Figure 3.3 reflects the performance differences between ITE and BDD,
based on the satisfiable instances of j30 and the instances of MMLIB50. The
computation of the Binary Decision Diagrams requires some time, and it is
penalising the overall performance of the easiest to solve instances, which
makes ITE clearly the best option for the easiest instances. Regarding the
hardest instances, BDD supposes an important speedup, and it is able to solve
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Figure 3.3: Comparison of solving time (in seconds) with the ITE encoding
and the BDD encoding for the feasible instances of j30 set (left) and MMLIB50
set (right).

set solver Q1 median Q3 mean solved

j30
(feasible)

ITE 0.50 0.91 2.25 141.92 535
BDD 1.42 2.80 5.08 89.48 544
FDS 0.02 0.04 0.86 98.17 543

MMLIB50
ITE 1.37 7.56 timeout 1251.03 359
BDD 3.93 9.87 155.79 692.17 445
FDS 0.05 1.34 1028.94 894.20 415

Table 3.2: Solving times in seconds and number of instances solved of the
feasible instances of j30 set and of MMLIB50 set. The unsolved instances
have been counted as 3600 seconds.

9 more instances than ITE. An indicator of the performance of the encodings is
the number of conflicts encountered during the solving process. With ITE, the
average number of conflicts encountered by the theory solver during the last
optimisation iteration was 31964, while with BDD was 216 (only considering
the instances solved in both cases). It is not surprising that BDD has few
theory conflicts, since the constraints over resources are fully encoded with
Boolean formulas. But despite this fact, the number of Boolean conflicts is
also significantly smaller with BDD (24813) compared to ITE (87227), which
may suggest that with BDD the lemmas learned from the conflicts achieve a
better prune of the search space. It can be seen in Table 3.2 how the advantage
of BDD in front of ITE is still greater in MMLIB50 set.

Table 3.2 also contains results comparing our system and FDS in j30 and
MMLIB50 sets. It can be seen that, although FDS goes faster in the easiest
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instances, we scale better using BDD and are able to solve more instances
than them in both sets. In j30, we solve one instance more than FDS (only
8 remain unsolved), and the mean solving time is slightly smaller. But the
advantage of BDD is specially noticeable in MMLIB50, which is the hardest
set, having a third quartile around one order of magnitude smaller, a mean
solving time a 22,6% smaller, and solving 30 more instances.

Looking at each instance in particular in j30, BDD closes 2 instances that
FDS is unable to solve within the given timeout, and FDS solves one that
BDD does not. Regarding MMLIB50, the best results reported until now
were achieved by [Gei13] using metaheuristics. With BDD, which is an exact
method, we have been able to certify the optimality of 445 instances, and
we have improved the upper bound of a total of 51 instances with respect
to [Gei13]. On the other hand, the number of instances solved by BDD and
not solved by FDS is 33, and 3 instances are solved by FDS and not by BDD.

3.6 Chapter Summary

We have shown in this chapter that SMT is a competitive approach for the
MRCPSP. With some classical and a new preprocessing methods, using two
SMT encodings, and using an off-the-shelf SMT solver as a decision procedure,
we have developed a robust and exact MRCPSP solver. The principal prepro-
cessing methods that we use are a thorough computation of time windows, a
reduction of the size of non-renewable resource constraints, and a pre-solving
check of feasibility that also let us rapidly compute an upper bound of the
makespan. Our results show that a combination of Boolean encoding for con-
straints over resources and IDL encoding for constraints over precedences is
specially competitive in solving hard instances. It is worth noting that SMT
provides not only efficiency, but also an expressive language for this kind of
problems.



Chapter 4

Using Collateral Constraints
to Compactly Encode PB
Constraints to SAT

PB constraints appear frequently in formulations of CSP. Sometimes, there are
also other constraints imposed on the Boolean variables of a PB constraint. A
frequent case is that of the AMO constraint, which states that at most one of
the Boolean variables in a set can be assigned true. For example, in routing
problems [MTZ60, DR59, Lap92], the length of paths can be represented using
PB constraints, where each variable encodes if the path is joining two partic-
ular points. Since it is usually required that Hamiltonian paths are followed,
only one variable among the ones which represent going from a particular point
to any other can be set to true. Also, in combinatorial auctions the objective
function is usually a PB constraint [DVV03, BBMV13], where each Boolean
variable represents whether a certain bid has been selected. The PB constraint
contains all the possible bids, but many bids can contain a same product, and
therefore at most one among them can be selected. In the general context of
scheduling, PB constraints are a natural way to express constraints over the
use of shared resources. An example is the MRCPSP formulation provided
in Chapter 3, where many notions of incompatibility between activities arise:
there can be precedences between activities, and must be chosen a single run-
ning mode for each activity. In all the example problems mentioned it is also
usual to find EO constraints, in which case assigning all variables to false is
also disallowed.

It is well known that the search for small SAT encodings is a useful tech-
nique to achieve better solving times [BW03, EB05]. As we explained in Sec-

55
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tion 2.3.3, a commonly used approach is to represent a PB constraint as a
BDD, and then encode the BDD to SAT. Finding small BDD representations
is crucial, since the size of the generated SAT formula is proportional to the
size of the BDD. In this chapter we show how to reduce the size of the deci-
sion diagram representations of PB constraints, taking into account the AMO
constraints that are also present (either explicitly or implicitly) in the prob-
lem. The overall idea is to remove from the decision diagrams the paths whose
corresponding variable assignments are already forbidden by the AMO con-
straints. This way, the decision diagrams do not represent such inconsistent
assignments, i.e., they only cover the subset of the assignments that are con-
sistent with the AMO constraints, and hence the decision diagrams can be
much smaller.

In summary, we propose to obtain small SAT encodings of PB constraints
by taking into account that some assignments are forbidden due to other con-
straints. We introduce the general notion of PB(C) constraint, which is defined
as the conjunction of a PB constraint with a set of constraints C. In partic-
ular, we focus on PB(AMO) constraints, defined as the conjunction of a PB
constraint and a set of AMO constraints. We use a compact decision dia-
gram representation for the PB constraints, taking into account the AMO
constraints imposed. Finally, by encoding such compact diagrams to SAT,
together with the rest of constraints, we are able to obtain very small SAT
encodings of PB(AMO) constraints. As we show in the experimental section,
the small size of the encodings obtained with our treatment has a dramatic
impact on the solving time of some well-known problems.

A preliminary version of the work presented in this chapter was published in
[BCSV17b]. There, we introduced the PB(AMO) technique slightly differently
than how is presented here, and also explained how to use this approach to
encode scheduling problems. In this thesis we have decoupled the technique of
PB(AMO) from its particular application to scheduling. First, in this chapter
we introduce all the concepts related to PB(AMO) and some theoretical prop-
erties, and evaluate the performance of this technique on the decisional version
of scheduling problems without entering into formulation details. Then, how
to apply this technique in scheduling problems will be explained in more detail
in Chapters 5 and 6.

This chapter is related to the objectives 3 and 4 of this thesis. The rest of
the chapter is organised as follows:

• In Section 4.1 we introduce PB(C) constraints and the particular case of
PB(AMO) constraints.

• In Section 4.2 we present AMO-MDDs, a Multi-valued Decision Diagram
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representation for PB constraints under the assumption of AMO con-
straints, and provide an algorithm to construct reduced ordered AMO-
MDDs.

• In Section 4.3 we provide an AMO-MDD based SAT encoding of mono-
tonic decreasing PB(AMO) constraints. We prove its correctness and
that it UP-maintains GAC.

• In Section 4.4 we present some reformulation techniques that allow us to
reduce other PB(C) constraints to monotonic decreasing PB(AMO) con-
straints, namely (i) PB(EO) constraints; (ii) not monotonic decreasing
PB(AMO) constraints; (iii) PB constraints with implication chains.

• In Section 4.5 we provide an experimental evaluation of the impact of
the presented technique on the size of the encodings and on solving time.
contributions.

• In Section 4.6 we summarise the contributions of this chapter.

4.1 Conjunctions of Pseudo-Boolean Constraints with
Other Constraints

Given a constraint P of the form P ∧ C1 ∧ · · · ∧ Cm, where P is a PB con-
straint and C1, . . . , Cm are any other constraints, a straightforward approach
to encode it is to generate a formula E(P ) ∧ E(C1 ∧ · · · ∧ Cm), where E(P )
is an encoding of P , and E(C1 ∧ · · · ∧ Cm) is an encoding of C1 ∧ · · · ∧ Cm.
We propose to relax the encoding of P by only considering assignments that
satisfy C1 ∧ · · · ∧ Cm, since the remaining assignments falsify P.

Let us develop this idea with a motivating example.

Example 3. Consider a constraint P : P ∧ C1 ∧ C2 over Boolean variables
x1, x2, x3. Let us suppose that P, P , C1 and C2 have the following truth table,
with all the possible assignments labelled A0, . . . , A7:
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x1 x2 x3 P C1 C2 P ∧ C1 ∧ C2

A0 0 0 0 0 1 0 0

A1 0 0 1 1 1 1 1

A2 0 1 0 1 1 0 0

A3 0 1 1 0 0 1 0

A4 1 0 0 1 1 1 1

A5 1 0 1 0 0 0 0

A6 1 1 0 0 1 1 0

A7 1 1 1 1 0 1 0

The straightforward approach to encode the constraint is to generate two
formulas E(P ), E(C1∧C2) which are encodings of P and C1∧C2 respectively,
so that E(P )∧E(C1∧C2) is an encoding of P. Note that the assignments A0,
A2, A3, A5 and A7 are not extendable to a model of E(C1 ∧ C2), regardless
of the satisfiability of E(P ) under these assignments. Therefore, E(P ) could
be replaced by a formula F such that A1 and A4 are extendable to a model
of F , and A6 is not. For such formula F , independently of its evaluation
on assignments A0, A2, A3, A5 and A7, we have that F ∧ E(C1 ∧ C2) is an
encoding of P. The potential of this idea is that F can be substantially smaller
than E(P ), and this can have a positive impact on the solving time.

Definition 4.1.1. Let P be a PB constraint and C = {C1, . . . , Cm} be a set
of constraints over the variables of P . We will refer to the formula P ∧ C1 ∧
· · · ∧ Cm as a PB(C) constraint, and call it a PB modulo C constraint.

Following the idea of Example 3, we propose to encode PB(C) constraints in
a combined way. On the one hand we will encode the conjunction of constraints
in C in the usual way, i.e., by encoding each of them separately and using the
conjunction of all the resulting clauses. On the other hand, we will translate
the PB constraint P into set of clauses that is equisatisfiable assuming that the
accompanying constraints C are already enforced. This way, the set of clauses
for P can be significantly smaller than an encoding of the PB constraint alone.

The following lemma trivially follows from the definition of encoding (see
Chapter 2):

Lemma 4.1.2. Let P ∧ C1 ∧ · · · ∧ Cm be a PB(C) constraint, and E(C1 ∧
· · · ∧ Cm) an encoding of C1 ∧ · · · ∧ Cm. Let F be a formula such that any
assignment A satisfying C1 ∧ · · · ∧ Cm can be extended to a model of F iff
A |= P . Then, F ∧ E(C1 ∧ · · · ∧ Cm) is an encoding of P ∧ C1 ∧ · · · ∧ Cm.

We can go a bit further in the idea of encoding a relaxation of a pseudo-
Boolean constraint. In the context of a bigger formula, some constraints C can
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be logically implied. We can take into account those implied constraints C to
relax the encoding of a PB constraint. Moreover, there is no need to encode
the implied constraints.

Lemma 4.1.3. Let P be a PB constraint, B any Boolean function and E(B)
an encoding of B. Let C = {C1, . . . , Cm} be a set of constraints such that
B |= C1 ∧ · · · ∧Cm. Let F be a formula such that any assignment A satisfying
C1 ∧ · · · ∧Cm can be extended to a model of F iff A |= P . Then, F ∧E(B) is
an encoding of P ∧B.

In this work we focus in the encoding PB(AMO) constraints, a particular
case of PB(C) constraints defined as the conjunction of a PB constraint and a
set of AMO constraints.

Definition 4.1.4. By PB(AMO) constraint we refer to a constraint of the
form P ∧M1 ∧ · · · ∧Mm, where P is a PB constraint, and M1, . . . ,Mm are
AMO constraints.

We will assume that the AMO constraints in a PB(AMO) constraint have
disjoint scopes, and that the scope of M1∧· · ·∧Mm is the same as the scope of
P , in other words, that {scope(M1), . . . , scope(Mm)} is a partition of scope(P).

Note that a variable x can always be included in a single-variable AMO
constraint of the form x ≤ 1. Therefore, PB constraints are a particular case
of PB(AMO) constraints.

4.2 MDD-Based Representation of PB Constraints
with AMO Relations

In this section we show how to represent PB constraints under the assumption
of AMO constraints using Multi-valued Decision Diagrams (MDD). In their
classical definition, MDDs can be seen as a generalization of BDDs which
have a multi-valued selector variable in each node instead of just a Boolean
variable [SHMB90], and each possible value corresponds to a different decision.
However, and especially in the context of SAT encodings of MDDs, a set
of Boolean variables can be used as selectors, each variable representing a
different decision. We introduce the following variant of MDD.

Definition 4.2.1. An At-Most-One Multi-Decision Diagram (AMO-MDD) is
a generalisation of a BDD. It is a rooted, directed, acyclic multigraph which has
two terminal nodes, namely F-terminal and T -terminal. Each non-terminal
node has associated a set of Boolean selector variables x1, . . . , xl and has an
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outgoing edge for each variable. Moreover, there is an additional outgoing
edge, which we denote as the else edge. Each one of the l + 1 outgoing edges
corresponds to a different decision, namely assigning exactly one of the xi to
true, for i ∈ 1..l, or assigning all of them to false, hence choosing the else
edge. The definitions of ordered and reduced can be also applied to AMO-
MDDs, producing AMO-ROMDDs.

Given a PB(AMO) constraint of the form P ∧M1 ∧ · · · ∧Mm, such that
Xi = scope(Mi) for i ∈ 1..m and {X1, . . . , Xm} is a partition of scope(P ), we
will represent its PB constraint P by an AMO-MDD where Xi will be the
set of selectors of the nodes in layer i. This way, all paths from the root to
a terminal node will choose (assign to 1) at most one of the variables in the
scope of each Mi and, therefore, the AMO-MDD will cover all the assignments
that satisfy M1 ∧ · · · ∧Mm. In this representation, every one of those truth
assignments will follow a path from the root to the T -terminal if it satisfies P ,
or to the F-terminal otherwise. Note that assignments which do not satisfy
M1∧· · ·∧Mm (i.e., assigning more than one variable to 1 in the scope of some
Mi) are not represented in this AMO-MDD.

As said, unlike ROBDDs representing PB constraints where the i-th layer
deals with a single variable xi, the i-th layer of an AMO-ROMDD deals with
a set of variables Xi. Hence, the order of the AMO-ROMDD is defined on sets
of selector, i.e., the AMO-ROMDD representation is subject to an ordered
partition of the variables of the PB constraint. Figure 4.1 shows the AMO-
ROMDD representation of P : 2x1 + 3x2 + 4x3 + 6x4 ≤ 7 with the ordered
partition {x1, x2} ≺ {x3, x4}. Notice the significant reduction in size with
respect to the respective ROBDD representation of P . In particular, the AMO-
ROMDD has only 2 non-terminal nodes and 6 edges instead of the 6 non-
terminal nodes and 12 edges of the ROBDD, and the number of layers is
reduced from 5 to 3.

4.2.1 AMO-ROMDD Construction

[ANO+12] introduced an algorithm to construct a ROBDD representing a
PB constraint with a given order, whose running time is polynomial w.r.t.
the size of the resulting ROBDD. Here we present a generalisation of that
algorithm to construct an AMO-ROMDD for a PB constraint with a given
ordered partition X of its variables. Before describing the algorithm, we adapt
the idea of interval for a PB constraint with an associated partition X .

Definition 4.2.2. Let P :
∑n

i=1 qixi ≤ K be a PB constraint and let X be a
partition of its variables. The interval of P with the partition X includes all the
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Figure 4.1: Left: ROBDD for the PB constraint 2x1 +3x2 +4x3 +6x4 ≤ 7 with
order x1 ≺ x2 ≺ x3 ≺ x4. Right: AMO-ROMDD for 2x1 +3x2 +4x3 +6x4 ≤ 7,
with ordered partition {x1, x2} ≺ {x3, x4}.

integers K ′ such that
∑n

i=1 qixi ≤ K ′, interpreted as a Boolean function, has
the same evaluation as P for any assignment A such that A |=

∑
xj∈Xi

xj ≤ 1,

for all Xi ∈ X . The set of such K ′ is always an interval that we denote
by [β, γ], as also happens with intervals of PB constraints [ANO+12]. The
difference is that in our case the equivalence among the values of the interval
only holds on the set of assignments satisfying the AMOs.

Example 4. The interval of the PB constraint x1 + 5x2 + 4x3 + 4x4 ≤ 6
with the partition {{x1, x2, x3}, {x4}} is [5, 7], because its truth table, limited
to the assignments satisfying x1 +x2 +x3 ≤ 1 and x4 ≤ 1, is the same for any
K ′ ∈ [5, 7], and different for K ′ = 4 and K ′ = 8.

The AMO-ROMDD representation for a given PB constraint and ordered
partition of its variables is the same for any K ′ in its interval. Note also that
every node of an AMO-ROMDD is the root of an AMO-ROMDD, and hence
it also has its corresponding interval. In particular, every node at layer i is the
root of an AMO-ROMDD representing the PB constraint

∑m
j=i

∑
xk∈Xj

qkxk ≤
K ′ with ordered partition Xi ≺ · · · ≺ Xm, with a different K ′ at each
node. The algorithm presented below maintains a set Li of tuples of the
form ([β, γ],M) for each layer i of the AMO-ROMDD, where M is an AMO-
ROMDD and [β, γ] is its corresponding interval. By means of dynamic pro-
gramming, the AMO-ROMDD representation of a particular PB is constructed
only once, it is inserted in Li together with its interval, and it is reused as the
representation of any other PB of the same layer with the same interval.
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Algorithm 6 Construction of AMO-ROMDD algorithm

Input: list Π : p1, . . . , pm, integer K
Output: returns M the AMO-ROMDD of (Π,K)
1: for all i ∈ 1..m+ 1 do

2: Li ←

{
((−∞,−1],F) , ([

∑
j∈i..m

max
qkxk∈pj

(qk),∞), T )

}
3: end for
4: L ← 〈L1, . . . , Lm+1〉
5: ([β, γ],M)←MDDBuild(1,Π,K,L)
6: return M

Algorithm 7 Procedure MDDBuild

Input: integer i ∈ [1,m+ 1], list Π : pi, . . . , pm, integer K,
input/output list L

Output: returns [β, γ] interval of (Π,K), and M its AMO-ROMDD
1: ([β, γ],M)← search(K,Li)
2: if [β, γ] 6= ∅ then
3: return ([β, γ],M)
4: else
5: let pi = q1x1, . . . , qlxl
6: for all j ∈ 1..l do
7: ([βj , γj ],Mj)←MDDBuild(i+ 1, 〈pi+1, . . . , pm〉,K − qj ,L)
8: end for
9: ([βelse, γelse],Melse)←MDDBuild(i+ 1, 〈pi+1, . . . , pm〉,K,L)

10: α← argmax(q1, . . . , ql)
11: if [βα, γα] = [βelse, γelse] then
12: // This is a long edge
13: M←Mα

14: [β, γ]← [βα + qα, γα]
15: else
16: // This is a new node
17: M←mdd(〈x1, . . . , xl〉, 〈M1, . . . ,Ml〉,Melse)
18: [β, γ]← [βelse, γelse] ∩

⋂
j∈1..l

[βj + qj , γj + qj ]

19: end if
20: insert(([β, γ],M), Li)
21: return ([β, γ],M)
22: end if
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The main procedure is described in Algorithm 6. In order to simplify the
notation of recursive calls, the algorithm receives as input a PB constraint
P :

∑n
i=1 qixi ≤ K and an ordered partition X1 ≺ · · · ≺ Xm of its variables,

represented by a pair (Π,K). Here, Π = p1, . . . , pm is a list of sets of mono-
mials, such that every set pi contains the monomials qjxj for each variable
xj ∈ Xi, i ∈ 1..m. The algorithm starts by inserting the T -terminal and the
F-terminal AMO-ROMDDs to every layer, with the corresponding interval in
that layer. Then, it calls the recursive procedure MDDBuild (Algorithm 7).
Figure 4.2 shows an example of the contents of each Li after the construction
of an AMO-ROMDD.

Algorithm 7 uses the following functions:

search(K,Li): If there is a tuple (I,M) in Li, such that K ∈ I, it is returned.
Otherwise, an empty interval is returned in the first component of the
tuple.

insert((I,M), Li): Inserts (I,M) into the set Li.

argmax(q1, . . . , ql): Returns the index of the maximum coefficient in the list
q1, . . . , ql.

mdd(〈x1, . . . , xl〉, 〈M1, . . . ,Ml〉,Melse): Constructs an AMO-ROMDD with a
new node as root, Mj as child for each selector variable xj , and Melse

as the else child.

The algorithm in [ANO+12] runs in polynomial time with respect to the
size of the generated ROBDD. We argue that Algorithm 6, which is a generali-
sation for the case of AMO-ROMDDs, preserves the polynomial running time.
All the searches and insertions in L in Algorithm 7 can be done in logarithmic
time. Algorithm 7 is called once for the root node of the AMO-ROMDD, and
O(h · l) times for each edge of the AMO-ROMDD, being h the length of the
edge, and l = maxpi∈Π |pi|.

4.3 An AMO-MDD based SAT Encoding of Mono-
tonic Decreasing PB(AMO) Constraints

In this section we present an adaptation of the encoding for monotonic de-
creasing functions from [ANO+12] presented in Section 2.3.3 which is the
smallest known BDD-based encoding and UP-maintains GAC on monotonic
decreasing PB constraints. Our adaptation deals with PB(AMO) constraints
P : P ∧M1 ∧ · · · ∧Mm, where P is a monotonic decreasing PB constraint,
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Figure 4.2: Content of L at the end of the construction of the AMO-ROMDD
for 8x1 + 2x2 + 3x3 + 2x4 + x5 + 6x6 + 2x7 ≤ 7 with the ordered partition
{x1, x2, x3} ≺ {x4, x5} ≺ {x6, x7}.
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i.e. P is of the form
∑n

i=1 qixi ≤ K, with positive coefficients. We propose a
method for obtaining a set of clauses F for P such that in conjunction with
an encoding of M1 ∧ · · · ∧Mm gives us an encoding of P.

Though the generated set of clauses F is not exactly an encoding of P ,
we refer to it as the Minimal Encoding, due to its resemblance to the MDD
encoding for Linear Integer expressions presented in [AGMES16], also named
Minimal. Corollary 4.3.2 below gives the exact Boolean function encoded by
the Minimal Encoding.

Minimal Encoding. The encoding adds a fresh auxiliary Boolean variable
v for each node of the AMO-MDD M at hand. If the root of M is the T -
terminal node (i.e., it represents a tautology) the encoding only adds the clause
vr, with vr being the auxiliary variable of the root node. On the other hand,
if the root ofM is the F-terminal node (i.e., it represents a contradiction) the
encoding adds the clauses vr and vr. Finally, if the root ofM is not a terminal
node, the clauses vr, vT and vF are included in the formula, where vr, vT , vF ,
are the auxiliary variables of the root, the T -terminal and the F-terminal
nodes respectively, and the following clauses are added for each non-terminal
node with set of selector variables Xi:

vj ∨ xj ∨ v ∀xj ∈ Xi s.t. vj 6= v0 (4.1)

v0 ∨ v (4.2)

Here v is the auxiliary variable of the node, vj is the auxiliary variable of
the child node corresponding to selector xj , and v0 is the auxiliary variable of
the else child. Notice that a node can have more than one selector variable
pointing to the same child. In particular, if the edge of a selector xj points
to the else child, there is no need to add the clause for the selector variable,
because v0 ∨ v implies v0 ∨ xj ∨ v.

Theorem 4.3.1. Let P : q1x1 + · · · + qnxn ≤ K be a monotonic decreasing
PB constraint and X = {X1, . . . , Xm} be a partition of its variables. Let F
be the Minimal Encoding of an AMO-MDD representation for P and X, and
vr the auxiliary variable of its root node. Let A be any total assignment over
{x1, . . . , xn}, and let G denote the constraint

∑m
i=1 maxxj∈Xi (qj · xj) ≤ K.

Then the following holds:

• If A is a model of G, then A can be extended to a model of F .

• If A is not a model of G, then there exists an extension of A that satisfies
F \ {vr}, and any such extension sets vr to false.
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Proof. We proceed by induction on the number of summands of G. Note that
G has one summand for each set Xi.

Base case: In the base case, G is of the form 0 ≤ K, and so is P .

• Assume that we have an assignment A over the variables of P
(in fact, an empty assignment) satisfying G, i.e., K ≥ 0. In this
case, the AMO-MDD representation for P and X is simply the T -
terminal node. Hence, its Minimal Encoding F contains only the
unit clause vr, and A ∪ {vr} is trivially a model of F .

• Assume the contrary, i.e., that we have an assignment A over the
variables of P not satisfying G, i.e., A is empty and K < 0. In
this case, the AMO-MDD representation of P and X is simply the
F-terminal node. Hence, its Minimal Encoding F consists of the
two unit clauses vr, vr. In this case, A ∪ {vr} is the only extension
of A satisfying F \ {vr}.

Inductive step: In this case G is of the form
∑m

i=1 maxxj∈Xi (qj · xj) ≤ K,
with m ≥ 1, and P can be written as

∑m
i=1

∑
xj∈Xi

qjxj ≤ K.

LetM be an AMO-MDD representation for P and X, and F its Minimal
Encoding. Let X1 be of the form {x1, . . . , xs} and assume, w.l.o.g., that
qi ≤ qi+1 for all i ∈ {1, . . . , s− 1}.
In order to ease the proof, we define q0 = 0, a neutral coefficient for
the else case, and introduce the Boolean constant x0 = true, which we
assume belongs to any assignment, and allows us to replace the clause
v0 ∨ vr in F by v0 ∨ x0 ∨ vr.
Since all coefficients in P are positive, we know that q0 ≤ q1. For all
k ∈ {0, . . . , s}, we define the following terms:

• Pk is
∑m

i=2

∑
xj∈Xi

qjxj ≤ K − qk, i.e., the constraint resulting of
assigning xk = true in P .

• Gk is
∑m

i=2 maxxj∈Xi (qj · xj) ≤ K−qk, i.e., the constraint resulting
of assigning xk = true in G.

• Fk is the Minimal Encoding for the subgraph of M which corre-
sponds to Pk and the partition {X2, . . . , Xm}.
• F ′k = Fk \ {vk}, which fulfills F ′k ⊂ F .

If the root node ofM does not have 〈x1, . . . , xs〉 as selector variables, this
means that M is also the AMO-MDD representation of all P0, . . . , Ps,
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and hence F = F0 = · · · = Fs. In this case the theorem trivially holds
by induction hypothesis, taking P = P0, F = F0 and G = G0.

From now on, we assume that the root node of M has 〈x1, . . . , xs〉 as
selector variables. By the definition of Minimal Encoding, we have F =
F ′0 ∪ · · · ∪ F ′s ∪ {v0 ∨ x0 ∨ vr, . . . , vs ∨ xs ∨ vr, vr}.

• Assume that we have an assignment A over the variables of P sat-
isfying G. Then, there is an index max ∈ 0..s such that max = 0
or xmax ∈ A, xj 6∈ A ∀j∈max+1..s, and A satisfies G0, . . . , Gmax.
We can construct an assignment B ⊃ A satisfying F as follows:
B = A ∪ B0 ∪ · · · ∪ Bs ∪ {vr}, where each Bk ⊃ A|vars(Gk) is an
assignment satisfying F ′k as we show below. Note that several Bk
can share auxiliary node variables, because the corresponding F ′k
may share such variables (i.e., the child AMO-MDDs of the root
of M may not be disjoint). However, in this proof we show a way
to deterministically construct the assignment B, and the same pro-
cedure can be applied in the construction of all Bk. This means
that B can be consistently constructed, in the sense that a same
auxiliary node variable does not have two different values in two
different Bk.

First of all, we have that vr must be in B to satisfy the clause vr.
By definition of max, A is a model of G0, . . . , Gmax, and there-
fore by induction hypothesis there exist assignments B0, . . . , Bmax
satisfying F ′0 ∪ {v0}, . . . , F ′max ∪ {vmax}, respectively. Then, B
also satisfies the formulas F ′0, . . . , F

′
max and the clauses v0 ∨ x0 ∨

vr, . . . , vmax ∨ xmax ∨ vr. We also know by definition of xmax that
xj ∈ A ⊂ B for all j ∈ max + 1..s, and therefore B satisfies the
clauses vmax+1 ∨ xmax+1 ∨ vr, . . . , vs ∨ xs ∨ vr. Finally, we have to
consider the remaining formulas F ′max+1, . . . , F

′
s. For i in max+1..s

we distinguish the following cases:

A |= Gk: By induction hypothesis, let Bk be an assignment satis-
fying F ′k ∪ {vk}.

A 6|= Gk: By induction hypothesis, let Bk be an assignment satis-
fying F ′k such that vk ∈ Bk.

AssignmentsBmax+1, . . . , Bs satisfy F ′max+1, . . . , F
′
s respectively, and

therefore also does B.

• Assume that we have an assignment A over the variables of P
not satisfying G. Then there is an index max ∈ 0..s such that
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max = 0 or xmax ∈ A, xj 6∈ A ∀j∈max+1..s, and A does not satisfy
Gmax, . . . , Gs.

We will show that there exists an assignment B ⊃ A that satisfies
F \ {vr}, and any such assignment must assign vr to false. This
assignment is B = A ∪ B0 ∪ · · · ∪ Bs ∪ {vr}, where each Bk ⊃
A|vars(Gk) is an assignment satisfying F ′k as we show below. Again,
the coherence of the shared variables in different Bk is guaranteed.

Since A is not a model of Gmax, . . . , Gs, by induction hypothesis let
Bmax, . . . , Bn be assignments respectively satisfying
F ′max, . . . , F

′
s, and therefore respectively assigning vmax, . . . , vs to

false. We have that xmax ∈ B because either xmax ∈ A, or max = 0
and x0 = true by assumption, and we also have that vmax ∈ B
since vmax ∈ Bmax. Therefore, vr must be false in B in order
to satisfy the clause vmax ∨ xmax ∨ vr. In consequence all clauses
v0∨x0∨vr, . . . , vs∨xs∨vr are also satisfied. Finally, we have two pos-
sible cases for each one of the remaining formulas F ′0, . . . , F

′
max−1:

A |= Gk: By induction hypothesis, let Bk be an assignment satis-
fying F ′k ∪ {vk}.

A 6|= Gk: By induction hypothesis, let Bk be an assignment satis-
fying F ′k such that vk ∈ Bk.

Such assignmentsB0, . . . , Bmax−1 satisfy F ′0, . . . , F
′
max−1 respectively

and therefore also does B.

Corollary 4.3.2. Let F be a Minimal Encoding for a PB constraint of the
form

∑n
i=1 qixi ≤ K with positive coefficients and partition {X1, . . . , Xm} of

its variables. Then F is also an encoding of
∑m

i=1 maxxj∈Xi (qj · xj) ≤ K.

The following corollary states how to use the Minimal Encoding to encode
a PB(AMO) constraint.

Corollary 4.3.3. Let P be a PB(AMO) constraint of the form P ∧M1∧ · · · ∧
Mm with positive coefficients in P . Let F be a Minimal Encoding for P and
partition {X1, . . . , Xm}, where Xi = scope(Mi). Let E(M1 ∧ · · · ∧Mm) be an
encoding of M1 ∧ · · · ∧Mm. Then, F ∧E(M1 ∧ · · · ∧Mm) is an encoding of P.

Proof. The corollary follows from Lemma 4.1.2 and Corollary 4.3.2.

The following theorem states that we can generate an UP-maintaining
GAC encoding of a PB(AMO) constraint using the Minimal Encoding.
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Theorem 4.3.4. Let P be a PB(AMO) constraint of the form P ∧M1 ∧ · · · ∧
Mm with positive coefficients in P . Let F be a Minimal Encoding for P and
partition {X1, . . . , Xm}, where Xi = scope(Mi). Let E(M1 ∧ · · · ∧Mm) be a
UP-maintaining GAC encoding of M1∧· · ·∧Mm. Then, F ∧E(M1∧· · ·∧Mm)
is an UP-maintaining GAC encoding of P.

Proof. Consider any partial assignment A over the variables of P that can
be extended to a model of P. We need to show that for every variable x
of P such that x is not assigned in A, if A ∪ {x} cannot be extended to a
satisfying assignment of P, then x will be set to false by unit propagating A
on F ∧ E(M1 ∧ · · · ∧Mm). Note that, due to the monotonicity of P and of
M1, . . . ,Mm, A ∪ {x} can always be extended to a satisfying assignment, so
we do not need to consider this case.

First note that, if A ∪ {x} could be extended to a model of M1, . . . ,Mm,
and could also be extended to a model of P then, due to monotonicity, A∪{x}
could be extended to a model of P by setting the remaining variables of P to
false. Therefore, since we assume that A∪{x} cannot be extended to a model
of P, we only need to analyse the following two reasons why A ∪ {x} cannot
be extended:

• A ∪ {x} falsifies some AMO constraint. In such case, the assumption
that E(M1 ∧ · · · ∧Mm) UP-maintains GAC will unit-propagate x.

• A ∪ {x} can be extended to satisfy M1 ∧ · · · ∧Mm but A ∪ {x} falsifies
P. In this case, the proof is a trivial generalisation of Theorem 23 in
[ANO+12].

4.4 Other PB(C) Constraints

In this section we present other instances of PB modulo C constraints, and
propose how to encode them.

4.4.1 PB(EO) Constraints

In many applications there appear conjunctions of PB constraints with exactly-
one (EO) constraints over their variables. A particular case where this happens
is when encoding LIA constraints as pseudo-Boolean constraints with a direct
encoding of the integer variables.
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Definition 4.4.1. By PB(EO) constraint we refer to a constraint of the form
P ∧E1∧· · ·∧Em, where P is a PB constraint, E1, . . . , Em are EO constraints,
and {scope(E1), . . . , scope(Em)} is a partition of scope(P).

Since an EO constraint implies an AMO constraint, by Lemma 4.1.3 we
can use the presented AMO-MDD based encoding to encode a PB(EO), which
by itself is a noticeable improvement with respect to a naive encoding of a
PB(EO) constraint.

However, we can do better, by reducing the number of variables of the
PB constraint. By subtracting the same integer from all the coefficients of a
set of variables holding an EO constraint, as well as to the right hand side of
the inequality, we can make some coefficients become zero, and then remove
those zero coefficient variables. For example, let P be the PB constraint
2x1 + 3x2 + 4x3 + 3x4 + 4x5 + 5x6 ≤ 7, and suppose we want to encode
P ∧ x1 + x2 + x3 = 1 ∧ x4 + x5 + x6 = 1. Then we can replace P by
(2−2)x1 + (3−2)x2 + (4−2)x3 + 3x4 + 4x5 + 5x6 ≤ 7−2, because exactly one
of x1, x2 and x3 will be set to 1 in any assignment satisfying x1 +x2 +x3 = 1,
and therefore 2 will be subtracted exactly once in the left hand side of the
inequality. Similarly, we can subtract 3 to the coefficients of x4, x5 and x6,
obtaining P ′ : x2 + 2x3 + x5 + 2x6 ≤ 2. We have that P ∧ x1 + x2 + x3 =
1∧ x4+x5+x6 = 1 is equivalent to P ′ ∧ x1+x2+x3 = 1 ∧ x4+x5+x6 = 1, with
the advantage that P ′ has a smaller ROBDD representation. Notice that this
reduction technique is in fact an abstraction of the non-renewable resource
demand reduction that we applied in non-renewable resource constraints in
Section 3.2.5. However we can make still more powerful use of the technique,
because x1 + x2 + x3 = 1 |= x2 + x3 ≤ 1 and x4 + x5 + x6 = 1 |= x5 + x6 ≤ 1,
and therefore by Lemma 4.1.3 we can still use the AMO-MDD based encoding
of P ′.

4.4.2 PB(EO) and PB(AMO) Constraints with Negative Co-
efficients

As stated before, most existing encodings of PB constraints to SAT are de-
signed for constraints of the form

∑n
i=i qixi ≤ K, with non-negative qi, since

other cases can be easily transformed to this one. Also the encoding that we
have presented in Section 7.1 requires this normalisation. The usual way of
getting rid of negative coefficients [ES06] is by using the equality x = 1−x, e.g.
−2x1+6x2 ≤ 5 ≡ 2x1+6x2 ≤ 7. Then, if we want to encode a constraint of the
form

∑n
i=i qixi ≥ K, we can simply replace it by −

∑n
i=i qixi ≤ −K and get rid

of the negative coefficients. However, this rewriting might not be applicable
to PB(AMO) constraints. We will illustrate the situation with an example.
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Consider the PB(AMO) constraint P ∧x1 +x2 +x3 ≤ 1∧x4 +x5 +x6 ≤ 1, with
P : −x1− 3x2− 4x3− 2x4− 3x5− 5x6 ≤ −6. If we remove the negative coeffi-
cients we obtain P ′ : x1 +3x2 +4x3 +2x4 +3x5 +5x6 ≤ 12. The problem now is
that x1 +x2 +x3 ≤ 1 (similarly x4 +x5 +x6 ≤ 1) no longer imposes AMO con-
straints on the literals of P ′, and therefore P ′∧x1+x2+x3 ≤ 1∧x4+x5+x6 ≤ 1
is not a PB(AMO) constraint. We could still use any existing PB encoding
to encode P ′ without taking the AMO constraints into account, but we would
not be using the simplification potential of PB(AMO) constraints.

To overcome this weakness, we present another rewriting procedure to get
rid of negative coefficients, which does not require to negate the variables of
the original PB constraint, and hence still allows us to take into account the
AMO constraints. Moreover, this procedure lets us choose the polarity in the
PB of any variable by using x = 1 − x, even if the substitution introduces a
negative coefficient, because it will be dealt with in the rewriting. Hence it is
possible to make use not only of AMOs between the literals of the PB, but
also of AMOs between literals of any polarity.

The first step is, for each AMO constraint of the form xi1 + · · ·+ xil ≤ 1,
define a fresh variable yi as yi ↔ xi1 ∧ · · · ∧ xil . Then, all the auxiliary
yi variables can be included in the PB constraint with coefficient 0. In the
previous example, from:

x1 − 3x2 − 4x3 − 2x4 − 3x5 − 5x6 ≤ −6 ∧ x1 + x2 + x3 ≤ 1 ∧ x4 + x5 + x6 ≤ 1

we get : 0y1 − x1 − 3x2 − 4x3 + 0y2 − 2x4 − 3x5 − 5x6 ≤ −6

∧x1 + x2 + x3 ≤ 1 ∧ x4 + x5 + x6 ≤ 1

∧(y1 ↔ x1 ∧ x2 ∧ x3) ∧ (y2 ↔ x4 ∧ x5 ∧ x6)

Notice that what we have achieved with this first step is to implicitly introduce
an EO constraint for each AMO constraint, because we have that xi1 + · · ·+
xil ≤ 1 ∧ yi ↔ xi1 ∧ · · · ∧ xil |= yi + xi1 + · · ·+ xil = 1. If we are normalising
a PB(EO) constraint instead of a PB(AMO) constraint this first step is not
necessary, because the variables of the PB constraint are already partitioned
into EO constraints.

After that, for each AMO constraint xi1 + · · ·+xil ≤ 1, choose any integer
Ii such that Ii ≥ −qij , for all 1 ≤ j ≤ l. For any Ii, it is true that Iiyi+Iixi1 +
· · ·+Iixil = Ii. By adding these equalities to the PB constraint, all the negative
coefficients become non-negative, due to the values of Ii that we have chosen.
The size of the constraint will not increase if we choose I = −minni=1(qi), since
we will be cancelling at least one coefficient of each AMO.
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In our example, we get:

(4 + 0)y1 + (4− 1)x1 + (4− 3)x2 + (4− 4)x3

+(5 + 0)y2 + (5− 2)x4 + (5− 3)x5 + (5− 5)x6 ≤ −6 + 4 + 5

∧x1 + x2 + x3 ≤ 1 ∧ x4 + x5 + x6 ≤ 1

∧ (y1 ↔ x1 ∧ x2 ∧ x3) ∧ (y2 ↔ x4 ∧ x5 ∧ x6)

that is: 4y1 + 3x1 + x2 + 5y2 + 3x4 + 2x5 ≤ 3

∧x1 + x2 + x3 ≤ 1 ∧ x4 + x5 + x6 ≤ 1

∧ (y1 ↔ x1 ∧ x2 ∧ x3) ∧ (y2 ↔ x4 ∧ x5 ∧ x6)

Finally, since yi + xi1 + · · · + xil = 1 |= yi + xi1 + · · · + xil ≤ 1, and being F
the Minimal Encoding of 4y1 + 3x1 + x2 + 5y2 + 3x4 + 2x5 ≤ 3 with partition
{{y1, x1, x2}, {y2, x4, x5}}, we can encode the constraint as:

x1 + x2 + x3 ≤ 1 ∧ x4 + x5 + x6 ≤ 1

∧ (y1 ↔ x1 ∧ x2 ∧ x3) ∧ (y2 ↔ x4 ∧ x5 ∧ x6)

∧F

Note that this procedure to rewrite PB(AMO) constraints is a generali-
sation of the usual procedure to rewrite PB constraints, since in the case of
single-variable AMO constraints of the form x ≤ 1, instead of defining a fresh
variable y ↔ x we can directly use x for the transformation and we obtain the
same result.

4.4.3 PB(IC) Constraints

[AMES15] introduced an MDD-based encoding for PB constraints with impli-
cation chains over their variables. An implication chain (IC) is a constraint of
the form x1 ← x2 ∧ x2 ← x3 ∧ · · · ∧ xn−1 ← xn, denoted x1 ⇐ x2 ⇐ x3 ⇐
· · · ⇐ xn. A PB constraint with a set of implication chains can be seen as
another kind of PB(C) constraint, that we will denote by PB(IC).

Definition 4.4.2. By PB(IC) constraint we refer to a constraint of the form
P ∧ IC1∧ · · · ∧ ICm, where P is a PB constraint, and IC1, . . . , ICm are impli-
cation chains. We assume that every variable in P occurs exactly in one ICi
(a variable x is by itself a single-variable chain).
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As shown in [AMES15], by adding a set of channelling clauses, a PB(IC)
encoding can also be used in cases where there is a PB constraint in conjunc-
tion with AMO constraints. Although not stated in these terms, they are
essentially introducing a different encoding of PB(AMO) constraints. There-
fore, we will also evaluate experimentally that encoding in Section 4.5. In that
encoding, the AMO constraints have to be encoded with the encoding known
as regular [AM05], or ladder [GN04]. The auxiliary variables introduced by
this encoding are involved in an implication chain, and the PB constraint can
be reformulated in terms of the new auxiliary variables.

Here we show how to do the translation the other way round, i.e., by adding
a set of channelling clauses, a PB(AMO) encoding can be used to encode a
PB(IC).

Let the PB(IC) at hand be of the form q1x1 + · · ·+qnxn ≤ K∧IC1∧· · ·∧
ICm. For each ICi of the form xi1 ⇐ · · · ⇐ xili , we add a set of fresh variables

yi1, . . . , y
i
li

, and the following clauses:

yij ↔ xij ∧ xij+1 1 ≤ j < li (4.3)

yili ↔ xili (4.4)

Finally, we have to encode the PB(AMO) constraint
∑m

i=1

∑li
j=1 q

′i
jy
i
j ≤ K,

where q′i1 = qi1, and q′ij = qij + q′ij−1, for 1 < j ≤ li.
For instance, the PB(IC) constraint 2x1 +3x2 +4x3 +6x4 +3x5 ≤ 7∧x1 ⇐

x2 ∧ x3 ⇐ x4 ⇐ x5 can be encoded as:

x1 ⇐ x2 ∧ x3 ⇐ x4 ⇐ x5

∧ ( y1 ↔ x1 ∧ x2) ∧ (y2 ↔ x2)

∧ (y3 ↔ x3 ∧ x4) ∧ (y4 ↔ x4 ∧ x5)

∧ (y5 ↔ x5) ∧ F

where F is the Minimal Encoding for 2y1 + 5y2 + 4y3 + 10y4 + 13y5 ≤ 7 with
partition {{y1, y2}, {y3, y4, y5}}. Note that the two following facts hold:

(y1 ↔ x1 ∧ x2) ∧ (y2 ↔ x2) ∧ x1 ⇐ x2 |= y1 + y2 ≤ 1

(y3 ↔ x3∧x4)∧ (y4 ↔ x4∧x5)∧ (y5 ↔ x5)∧x3 ⇐ x4 ⇐ x5 |= y3 +y4 +y5 ≤ 1

Hence, we can use the Minimal Encoding.
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4.5 Results

In this section we analyse which is the gain in using the presented MDD-
based encoding for PB(AMO) constraints instead of a standard BDD-based
encoding, when solving hard combinatorial problems. On one hand, we study
the impact on the size of the decision diagrams, and hence on the size of the
encodings both in number of variables and clauses. On the other hand, we
study the impact on the solving time.

The experiments are run on the MRCPSP and the Resource-Constrained
Project Scheduling Problem with Time-Dependent Resource Capacities and
Requests (RCPSP/t) [Har13]. We have already seen in Section 2.1.3 that
we can encode resource constraints using PBs. We will show in Chapters 5
and 6 that in fact these resource constraints can be formulated as PB(AMO)
constraints, the detailed formulations will be shown in those chapters. Here we
focus on an experimental comparison between PB and PB(AMO) constraints.
We have generated a set of SMT formulas encoding the decision version of the
MRCPSP and the RCPSP/t. The PB(AMO) constraints have been encoded
in different ways, which we compare:

BDD: All PB constraints are encoded to SAT using the Minimal Encoding
of a ROBDD representation, i.e., not taking into account the AMO con-
straints to simplify the PB encoding. No reduction is done in PB(EO)
constraints.

MDD: All PB constraints are encoded to SAT using the Minimal Encoding
of an AMO-ROMDD representation. No reduction is done in PB(EO).

BDDred and MDDred : The same as BDD and MDD , respectively, but
applying the reduction of Subsection 4.4.1 to all PB(EO) constraints.
Only MRCPSP instances have such constraints.

IC : The implication chain based technique to encode PB(AMO) constraints
proposed in [AMES15], which we denote by IC . The EO reduction is
also applied in the instances of MRCPSP.

Using these settings, we have encoded different benchmark instances of
the MRCPSP and the RCPSP/t problems from the PSPLIB [KS97] and the
MMLIB [VPV14] libraries. We have only used instances for which the optimal
makespan is known, hence being able to generate two tight decision cases for
every instance, one satisfiable (with an upper bound equal to the optimal
makespan) and one unsatisfiable (with an upper bound equal to the optimal
makespan minus one). Table 4.1 contains a summary of the different sets
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problem dataset acts. name size PB(AMO) PB(EO)

MRCPSP

j30 30
m30sat 545 36132 1090

m30unsat 545 35037 1090

MMLIB50 50
m50sat 456 32229 912

m50unsat 456 31314 912

MMLIB100 100
m100sat 309 23660 618

m100unsat 309 23042 618
total 2620 181414 5240

RCPSP/t

j30 30
t30sat 2826 854900 0

t30unsat 2826 842328 0

j120 120
t120sat 2210 1273847 0

t120unsat 2210 1263954 0
total 10072 4235029 0

Table 4.1: Generated sets of formulas. The columns contain, in this order:
the encoded problem; the original dataset; the number of activities in the
instances of this dataset; the name of the generated set, terminated with sat
if the formulas are satisfiable for the given UB, and with unsat otherwise; the
number of instances taken (i.e., size of the generated dataset); the total number
of PB(AMO) constraints and PB(EO) constraints in the dataset (considering
all the formulas).

of formulas created for each setting. The formulas have been generated and
solved using the C++ API of Yices 2.4.2 [DdM06a]. All experiments have
been run on a 8GB Intel R© Xeon R© E3-1220v2 machine at 3.10 GHz, with a
timeout of 600 seconds in each execution.

We use scatter plots to make pair-wise comparisons of the different settings
both for the MRCPSP and the RCPSP/t. In the plots each point corresponds
to the value of the same metric in the two compared settings, one in the x
axis and the other in the y axis. More precisely, in the left scatter plot of
each figure we compare the solving time, where each point corresponds to
a different instance, time is in seconds, and we use logarithmic axes. The
other plots compare the encoding size in number of variables (middle) and
clauses (right), where each point corresponds to a different PB constraint of a
different instance, and the values of the axes are in thousands. We also provide
a summarised numeric comparison of time and sizes in Tables 4.2 and 4.3.

Figure 4.3 compares the BDD and MDD settings for all the MRCPSP
formulas, and Figure 4.4 shows the same comparison for all the RCPSP/t
formulas. In both problems there is a significant reduction in the solving time
when using the MDD approach, which is up to one order of magnitude in the
RCPSP/t, and up to three orders of magnitude in the MRCPSP. For instance,
there are formulas which are solved in less than one second with MDD , whereas
with BDD they time out getting lost in the search tree, which contains an order
of magnitude more variables. It can be seen that in both problems there is a
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setting Q1 med Q3 avg to

MRCPSP

BDD 0.15 0.70 26.24 119.86 473
BDDred 0.10 0.25 0.97 22.35 44
MDD 0.06 0.20 0.79 17.71 37
MDDred 0.05 0.14 0.49 10.27 18
IC 0.05 0.14 0.52 9.83 17

RCPSP/t
BDD 0.24 0.88 3.39 11.92 57
MDD 0.07 0.33 1.53 4.29 2
IC 0.09 0.40 1.78 6.24 11

Table 4.2: Solving times for each problem. Columns contain first quartile
(Q1), median (med) and third quartile (Q3) of the solving times, average
solving time (avg) counting timeouts as 600 seconds, and number of time outs
(to).

variables clauses
setting Q1 med Q3 max avg Q1 med Q3 max avg

MRCPSP
BDD 0.13 0.39 0.92 102.45 1.37 0.26 0.78 1.84 204.90 2.74
BDDred 0.13 0.39 0.90 23.42 0.90 0.26 0.78 1.80 46.84 1.79
MDD 0.02 0.07 0.15 13.12 0.21 0.06 0.29 0.79 52.16 0.89
MDDred 0.02 0.07 0.15 10.87 0.18 0.06 0.29 0.78 26.96 0.76
IC 0.04 0.10 0.20 11.01 0.22 0.10 0.36 0.91 27.19 0.85

RCPSP/t
BDD 0.09 0.49 1.62 43.96 1.68 0.18 0.98 3.23 87.91 3.36
MDD 0.00 0.04 0.18 2.34 0.16 0.03 0.33 1.56 40.74 1.80
IC 0.01 0.10 0.31 2.93 0.25 0.08 0.46 1.91 42.51 2.06

Table 4.3: Number of variables and clauses, in thousands, of the encodings
of PB constraints. Columns contain first quartile (Q1), median (med), third
quartile (Q3), maximum (max) and average (avg) of the sizes of all PB(AMO)
and PB(EO) constraints of a problem.

significant reduction in size, which in a large number of constraints is of one
order of magnitude. Due to the properties of the encoded problems, there are
different clusters of points in the size plots. This is especially noticeable in the
plots of the MRCPSP. Each cluster corresponds to PB constraints modelling
a particular kind of constraint in a family of instances. There are a subset
of constraints in the MRCPSP which have a dramatic size reduction of more
than order of magnitude. This subset is in fact the set of PB(EO) constraints,
which are the largest PB constraints. In particular, in each of the instances
of the MRCPSP dataset that we consider there are two PB(EO) constraints.
Since those are the largest PB constraints, we do not observe any impact in
the first quartile and median in Table 4.3 when applying the reduction.
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Figure 4.3: Time in seconds (left), number of variables in thousands (middle)
and number of clauses in thousands (right) comparison of the MDD and BDD
settings to solve the MRCPSP.

Figure 4.4: Time in seconds (left), number of variables in thousands (middle)
and number of clauses in thousands (right) comparison of the MDD and BDD
settings to solve the RCPSP/t.

Figure 4.5 depicts the comparison between MDD and MDDred in MRCPSP
formulas. We observe a further reduction in size, with encodings that are
between twice and ten times smaller in most of the cases, and a reduction of
the solving time of one order of magnitude.

Figure 4.6 shows the improvement achieved by combining the use of the
AMO-MDD based encoding and the reductions by EO constraints (MDDred),
with respect to the standard BDD-based encoding (BDD). In fact, the EO
reduction by itself gives a huge improvement, as can be seen in Figure 4.7,
which compares the BDD and the BDDred settings.

When comparing the BDD and the MDD approaches, the reduction in the
number of variables is always strictly higher than the reduction in the number
of clauses. This happens because the Minimal Encoding introduces one clause
per edge and one variable per node, and the reduction in the number of nodes
is higher than the reduction in the number of edges: while the nodes of BDDs
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Figure 4.5: Time in seconds (left), number of variables in thousands (middle)
and number of clauses in thousands (right) comparison of the MDDred and
MDD settings to solve the MRCPSP.

Figure 4.6: Time in seconds (left), number of variables in thousands (middle)
and number of clauses in thousands (right) comparison of the MDDred and
BDD settings to solve the MRCPSP.

Figure 4.7: Time in seconds (left), number of variables in thousands (middle)
and number of clauses in thousands (right) comparison of the BDDred and
BDD settings to solve the MRCPSP.
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Figure 4.8: Time in seconds (left), number of variables in thousands (middle)
and number of clauses in thousands (right) comparison of the MDDred and
IC settings to solve the MRCPSP.

have two outgoing edges, the nodes of AMO-MDDs can have a larger number
of edges. Despite this fact, the results show that the number of clauses in the
MDD approach is noticeably smaller than those in the BDD approach.

The reduction in size is directly attributable to the fact that the AMO-
MDDs only cover a subset of the possible truth assignments for the variables of
the original PB constraints, while the BDDs cover all of them. It is especially
noticeable that there are decision diagrams with size 1 in the MDD approach,
and with size up to 10,000 in the BDD approach. The decision diagrams
of size 1 correspond to the T -terminal node. This means that there are PB
constraints which are trivially true under the assignments that satisfy an AMO
constraint on the selector variables of the AMO-MDD nodes.

The depth of the AMO-MDDs is also significantly smaller than the depth
of the BDDs. In the considered instances, in most of the cases we are able to
include at least three selector variables in each AMO-MDD node, which means
that the depth of the AMO-MDDs is at most the depth of the BDDs divided
by three. In a large number of cases we are able to get depth reductions of up
to seven times, and in few cases the reduction is more than ten times.

Figures 4.8 (MRCPSP) and 4.9 (RCPSP/t) compare the solving times and
encoding sizes of the encoding we presented against the IC approach. The
results suggest that in the MRCPSP both approaches behave similarly, but in
the RCPSP/t the AMO-MDD based encoding performs better. The reason
may be due to the fact that the RCPSP/t contains bigger AMO constraints,
and the IC approach needs to explicitly encode the AMOs using a particular
encoding that introduces additional Boolean variables and clauses. Size results
show this increment, which is only remarkable in the RCPSP/t.
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Figure 4.9: Time in seconds (left), number of variables in thousands (middle)
and number of clauses in thousands (right) comparison of the MDD and IC
settings to solve the RCPSP/t.

We have run a paired t-test to determine if there is a significant difference
in the average run time between the IC and MDD/MDDred approaches, which
is not clear apparently in the case of the MRCPSP. We get a p-value of 0.4665
in the MRCPSP, and therefore there is no evidence that one approach is better
than the other. Regarding the RCPSP/t, MDD is significantly better than IC ,
with a p-value smaller than 2.2e− 16.

4.6 Chapter Summary

With the goal of finding efficient SAT encodings for PB constraints we define
PB(C) constraints, which are conjunctions of PB constraints and a set of other
constraints C between subsets of the variables of the PB constraint. Then, we
propose a framework to encode the PB constraints by assuming that the ac-
companying constraints are already enforced. We implement this idea in the
SAT encoding of PB constraints in presence of AMO relations, by using a
specialised and compact type of decision diagrams (AMO-MDD). We provide
a UP-maintaining GAC encoding for monotonic decreasing PB(AMO) con-
straints based on AMO-MDDs. About this encoding, we also state and prove
the semantics of the clauses obtained by encoding a PB constraint under the
assumption that some AMO constraints hold. Moreover, we show how to con-
vert any PB(AMO) constraint to a monotonic decreasing form, and we tackle
other PB(C), namely PB(EO) and PB(IC) constraints.

We report a huge impact in the size of the encodings as well as in the
solving time when using our encoding approach. The presented techniques are
a new and efficient way of handling PB constraints with SAT. Encoding PB(C)
constraints in the combined way that we propose, may allow reasonably sized
SAT encodings that otherwise could be too big for a SAT solver.



Chapter 5

Identifying Collateral AMO
Constraints in Scheduling
Problems: Application to
Efficient SMT Formulations of
RCPSP

In the previous chapters of this thesis we have introduced many separate tech-
niques in the line of efficiently solving scheduling problems. In Chapter 3
we proposed a system to solve the MRCPSP, which is a generalisation of the
RCPSP whose research interest and applicability is widely acknowledged. We
proposed an SMT formulation which was able to outperform the state-of-the-
art when solving hard instances. The reason for our success was the combined
use of the cheap theory of IDL to specify the precedence relations, and BDD-
based SAT encodings of PB constraints to deal with resource constraints. In
Chapter 4 we have observed that the existence of AMO constraints in con-
junction with PB constraints, i.e. PB(AMO) constraints, can be used to make
the translations of the PB constraints into SAT much smaller. Now, in this
chapter we show how to integrate all these techniques in order to solve, even
more efficiently, RCPSP-based scheduling problems.

The contributions of this chapter are two-fold: on the one hand we show
how to efficiently solve the RCPSP using SMT, and on the other hand, we
present a template that can be specialised to solve many extensions of the
RCPSP, as we will see in Chapter 6. More precisely, we show that in RCPSP-
based scheduling problems there naturally appear PB(AMO) constraints. The

81
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PB are the resource constraints, and the accompanying AMO constraints arise
from mutual exclusions between the executions of the activities, due to prece-
dence relations. Taking that into account, we propose an SMT formulation
where the theory of IDL is used to deal with precedence relations, and SAT
encodings of PB(AMO) constraints are used to handle resource constraints
using the Time approach. Also, we propose to use a basic and generic ad-hoc
exact optimisation algorithm which maintains the learning of the background
solver through the search. The result is a state-of-the-art system to solve the
RCPSP.

The work presented in this chapter has been partially published in
[BCSV17b]. This work is related to the objectives number 1, 3 and 5 of
this thesis. The rest of this chapter is organised as follows:

• In Section 5.1 we reproduce the formal RCPSP definition from Sec-
tion 2.1 to ease the readability of the chapter.

• Section 5.2 explains how to efficiently extract AMO constraints from
the precedence graph so that resource constraints can be formulated as
PB(AMO) constraints.

• Section 5.3 contains a full SMT formulation of the decision version of
the RCPSP.

• Section 5.4 describes a procedure to optimise the makespan of an instance
of an RCPSP-based problem.

• Section 5.5 contains an experimental evaluation of our RCPSP formula-
tion.

• In Section 5.6 we summarise the contributions of this chapter.

5.1 RCPSP Definition

The Resource-Constrained Project Scheduling Problem can be formally de-
fined by a tuple (V, p, E,R,B, b) where:

• V = {A0, A1, . . . , An, An+1} is a set of activities. Activities A0 and An+1

are dummy activities introduced by convention, which represent the start
and the end of the schedule respectively. They don’t consume resources
and have duration 0. The set of non-dummy activities is defined by
A = {A1, . . . , An}.
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• p ∈ Nn+2 is a vector of naturals, where pi is the duration of Ai. For the
dummy activities, p0 = pn+1 = 0, and pi > 0, ∀Ai ∈ A.

• E is a set of pairs of activities representing end-start precedence relations.
Concretely, (Ai, Aj) ∈ E iff the execution of activity Ai must precede
that of activity Aj , i.e., activity Aj must start after activity Ai has
finished. We assume that we are given an activity-on-node precedence
graph G = (V,E) that contains no cycles, since otherwise the precedence
relation is inconsistent. By convention there is a path from A0 to any
other activity, and also a path from any activity to An+1.

• R = {R1, . . . , Rv} is a set of renewable resources.

• B ∈ Nv is a vector of naturals, where Bk is the available amount of each
resource Rk.

• b ∈ N(n+2)×v is a matrix of naturals corresponding to the resource de-
mands of activities, where bi,k represents the amount of resource Rk that
activity Ai is using per time step during its execution.

We will denote by G∗ = (V,E∗) the extended precedence graph, which has a
weight li,j for each edge (Ai, Aj) ∈ E∗, with li,j being the critical path from
Ai to Aj in G. Having computed G∗, and given a scheduling horizon H =
{0, . . . ,UB}, the different data related with time windows can be obtained as
explained in Section 2.1.3: ES(Ai), LS(Ai) and RTW (Ai).

A schedule is a vector of naturals S = (S0, S1, . . . , Sn, Sn+1) where Si
denotes the start time of activity Ai. We assume that S0 = 0. A solution of the
RCPSP is a schedule S of minimal makespan Sn+1 subject to the precedence
and resource constraints. More precisely, the constraints can be formally stated
as:

Minimise: Sn+1 (5.1)

Subject to:

Sj − Si ≥ pi ∀(Ai, Aj) ∈ E (5.2)

∑
Ai∈A

ite
(
Si ≤ t < Si + pi; bi,k; 0

)
≤ Bk

∀Rk ∈ R,∀t ∈ H (5.3)
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where ite(c; e1; e2) is an if-then-else expression denoting e1 if c is true and
e2 otherwise. Precedence constraints (5.2) state that, for any pair (Ai, Aj) ∈
E, activity Aj cannot start until Ai has finished. The renewable resource
constraints (5.3) state that the capacities of the renewable resources cannot
be exceeded at any time by the demands of the activities running at that time.

5.2 Extracting AMO Constraints from Precedences

As we explained in Chapter 2 in this thesis we will be using formulations of
scheduling problems which are based on the Time approach. We have already
used this approach in Chapter 3 to formulate renewable resource constraints,
either using LIA atoms or encoding PB expressions to SAT. Recall that the
basic idea behind this approach is to discretise the time in unit intervals in the
scheduling horizon H = {0, . . . ,UB}, and check that the resource constraints
are satisfied at every time. If we want to express a resource constraint as a
PB expression, we can be introduce an auxiliary Boolean variable xi,t for each
activity Ai and each time t ∈ H, and impose that xi,t is true iff an activity Ai is
running at time t. Then, for a resource Rk, the renewable resource constraint
of the RCPSP can be stated as:∑

Ai∈V
bi,k · xi,t ≤ Bk ∀t ∈ H (5.4)

Moreover, this expression can be made more compact if we take into account
the time windows of the activities.

Now we show that the variables of the PB renewable resource constraint
in RCPSP have AMO relations between them. Therefore Constraint (5.4)
can be stated as a PB(AMO) constraint, and hence its translation to SAT
can be made much smaller. The key point in efficiently using an encoding of
PB(AMO) constraints is being able to identify AMO constraints in the problem
at hand. We introduce a technique to identify such AMO constraints in the
precedence graph. This method can be used as a basis for formulating resource
constraints in many extensions of the RCPSP, as we will see in Chapter 6.

Note that a precedence (Ai, Aj) ∈ E, denoting that Aj cannot start until
Ai has finished, introduces an incompatibility between these two activities, i.e.
they can never be running at the same time. It is also the case for any pair
of activities connected by a path in the precedence graph G, i.e. for any pair
of activities with an edge in G∗. Hence the precedence relations ensure that,
at any time instant, at most one of the activities of a path of G∗ is running.
From this information we will infer implicit AMO constraints on variables xi,t.
For this purpose we will be using path covers:
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Definition 5.2.1. A path cover of a graph G = (V,E) is a partition of the
vertices in V into a set of sequences {P1, ..., Pl}, such that each Pi for 1 ≤ i ≤ l
is a path of G. Note that Pi can contain a single vertex. We restrict to vertex-
disjoint path covers, i.e. each vertex belongs exactly to one path.

Definition 5.2.2. A minimum path cover of a graph G = (V,E) is a path
cover {P1, . . . , Pl} such that there does not exist any path cover {P ′1, . . . , P ′l′}
such that l′ < l.

We will compute a path cover P = {P1, . . . , Pl} from G∗ and then, as we
will see in Section 5.3, we will extract an AMO constraint from each Pi. In
order to obtain small encodings, a good heuristic is to cover the graph with as
few paths of activities as possible. This way, we will minimise the number of
parts in which we split the variables of the encoded PB resource constraints.
Consequently we will be minimising the number of layers of the AMO-MDD
representing the resource constraint, hence obtaining small diagrams. For this
reason we will compute P to be a minimum path cover.

Note the importance of computing the minimum path cover inG∗ instead of
G. Figure 5.1a depicts a minimum path cover of a precedence graph of a project
with 7 activities, and Figure 5.1b shows a minimum path cover of the extended
precedence graph. For the sake of simplicity, the extended precedence graph
does not show all the additional extended precedences but only (A2, A5) ∈ E∗.
Thanks to this extended edge, we can find P = {(A1, A3, A4), (A0, A2, A5, A6)}
which only has 2 paths. Otherwise, using the non-extended precedence graph
a minimum path cover would contain 3 paths.

Computing a minimum path cover is generally an NP-hard problem, no-
tice that a cover of just one path is a Hamiltonian path. However in directed
acyclic graphs (DAG) —like the precedence graph— it can be done in poly-
nomial time. A way to compute the minimum path cover of a DAG is by
reducing the problem to finding a maximum cardinality matching of a bipar-
tite graph [NH79].

Definition 5.2.3. A maximum cardinality matching of a graph G = (V,E) is
a subset of E such that no two edges share a same node, and that there does
not exist any other subset of higher cardinality satisfying this property.

The reduction from a DAG G = (V,E) can be achieved with the following
steps:

1. Create a bipartite graph G′ = (L ∪ R,E′), where all nodes from V are
duplicated so that they appear once in L (left partition) and one in
R (right partition). For every edge (Vi, Vj) ∈ E, introduce and edge
(Li, Rj) in E′.
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Figure 5.1: Minimum path cover of the precedence graph (a) and the extended
precedence graph (b) of a project.

2. Find a maximum cardinality matching.

3. Every selected edge will be part of the path cover. The number of un-
matched nodes in either partition L or R is equal to the number of paths
of the cover, i.e. every unmatched node in L is the end of a path, and
every unmatched node in R is the beginning of a path.

The maximum cardinality matching of a bipartite graph G = (V,E) can be
solved in O(|E|

√
|V |) time using the Hopcroft-Karp algorithm [HK73]. Fig-

ure 5.2 illustrates the reduction from the extended precedence graph in Fig-
ure 5.1b to a maximum cardinality matching.

The minimum path cover yields a way of extracting AMO between variables
xi,t, since given a time t, all the variables for activities of a same path satisfy
an AMO constraint. If the time windows are taken into account, we can focus
only on the subgraph containing activities that can be running at a particular
time instant t, and probably get smaller covers on G∗. The procedure is the
following. For some time instant t:

1. Compute G∗(t) the subgraph from G∗ that contains all the nodes of the
activities Ai such that t ∈ RTW (Ai), i.e., G∗(t) = (V (t), E∗(t)), where:

V (t) = {Ai |Ai ∈ V, s.t. : t ∈ RTW (Ai)}
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Figure 5.2: Solution of the reduction of the minimum path cover of Figure 5.1b
to a maximum cardinality matching in a bipartite graph.

E∗(t) = {(Ai, Aj) | (Ai, Aj) ∈ E∗, s.t. : Ai ∈ V (t) ∧Aj ∈ V (t)}

2. Compute a minimum path cover P(t) = {P1, ..., Pl} of G∗(t).

3. Formulate the renewable resource constraint as a PB(AMO), where the
AMOs are extracted from each Pi ∈ P(t).

There may be minor differences in these steps depending on the RCPSP variant
at hand, and in particular in the ones considered in this paper. The most
important is that the set of AMO constraints obtained in the third step has
some differences in RCPSP variants. These differences will be described when
presenting the formulation of each particular problem.

5.3 SMT Formulation of RCPSP

We provide an SMT formulation for the decision version of the RCPSP, and
minimisation of the makespan will be achieved as we explain later in Sec-
tion 5.4. Therefore, apart from a particular RCPSP instance, we receive as
input a precomputed scheduling horizon H = {0, . . . ,UB}, where UB is the
upper bound for the makespan that we want to satisfy. Our SMT formulation
of the RCPSP has two sets of variables:

Si: Integer variables denoting the start time of activity Ai, for all Ai ∈ V .
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xi,t: Boolean variables which are true iff activity Ai is running at time t, for
all Ai ∈ A and for all t ∈ RTW (Ai).

The constraints that we add are the following:

S0 = 0 (5.5)

Si ≥ ES(Ai) ∀Ai∈{A1, . . . , An+1} (5.6)

Si ≤ LS(Ai) ∀Ai∈{A1, . . . , An+1} (5.7)

Sj − Si ≥ pi ∀(Ai, Aj) ∈ E (5.8)

Sj − Si ≥ li,j ∀(Ai, Aj , li,j) ∈ E∗ (5.9)

xi,t ↔ Si ≤ t ∧ t < Si + pi ∀Ai ∈ A, ∀t ∈ RTW (Ai) (5.10)∑
Ai ∈ A, s.t. :
t ∈ RTW (Ai)

bi,k · xi,t ≤ Bk ∀Rk ∈ R,∀t ∈ H (5.11)

Constraint (5.5) ensures that the initial dummy activity starts at time 0. Con-
straints (5.6) and (5.7) bound the start time variables using the time win-
dows. In particular, Constraint (5.7) is the one bounding the makespan, since
LS(An+1) = UB . Constraints (5.8) and (5.9) enforce the precedences and the
extended precedences respectively. Constraints (5.10) give to variables xi,t the
appropriate behaviour according to their semantics. Constraints (5.11) define
the renewable resource constraints.

The following constraints are not explicitly imposed, but note that they
are logically implied by Constraints (5.8) and (5.10):∑

Aj∈Pi

xj,t ≤ 1 ∀t ∈ H, ∀Pi ∈ P(t) (5.12)

These constraints state that two activities belonging to the same path in
P(t) cannot run at the same time. Therefore Constraints (5.11) and Con-
straints (5.12) compose a set of PB(AMO) constraints. We will use the Mini-
mal Encoding to encode Constraints (5.11), using the partition of the variables
of the PB defined by the AMO constraints (5.12).

5.4 Optimising the Makespan

For RCPSP, as well as the different problems tackled in Chapter 6, we achieve
the minimisation of the makespan by making iterative satisfiability checks on
the decision version of the problem at hand on a backend SMT solver, while
bounding the makespan until the optimum is certified. This procedure is
described in Algorithm 8. The most important functions here are:
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Algorithm 8 Minimise makespan

Input: Problem instance I
Output: Optimum makespan if satisfiable. Otherwise return unsatisfiable.
H ← compute Horizon(I)
LB ← compute Lower Bound(I)
ENC ← smt encode(I,H)
(SAT,MODEL)← smt check(ENC)
if SAT then
MAKESPAN ← get makespan(ENC,MODEL)
UB ←MAKESPAN − 1

else
return unsat

end if
while SAT and UB ≥ LB do
ENC ← ENC ∪ {Sn+1 ≤ UB}
(SAT,MODEL)← smt check(ENC)
if SAT then
MAKESPAN ← get makespan(ENC,MODEL)
UB ←MAKESPAN − 1

end if
end while
return MAKESPAN

compute Horizon(I): given an instance I of the problem at hand, it computes
a schedule horizon H which is an upper bound of the optimum makespan.
For this purpose we use PSGS method, that we described in Section 2.1.3.
PSGS is suitable not only for RCPSP, but with few modifications is also
suitable for many extensions. In particular, we also use this algorithm
for MRCPSP in Section 6.1, RCPSP/t in Section 6.2 and MSPSP in
Section 6.4.

compute Lower Bound(I) : given an instance I of the problem at hand, it
returns a lower bound for the makespan. We will be using the earliest
start time of the last dummy activity, i.e. ES(An+1).

smt encode(I,H): given an instance I of the problem at hand and a schedul-
ing horizon H, it returns an SMT formula representing the problem
instance within horizon H.
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smt check(ENC): checks using an SMT solver whether ENC is satisfiable.
Returns (true,MODEL) ifMODEL is a model of ENC, and (false, {})
otherwise.

get makespan(MODEL): retrieves the value of the makespan from a model
MODEL of the SMT formula ENC.

It is worth noting that currently there exist many extensions of SAT and
SMT which allow to formulate an optimisation problem, and make a single call
to a solver that will either provide the optimal solution or prove unsatisfiability.
To deal with optimisation in SAT the principal approach is (Weighted) Partial
MaxSAT [LM09, ABL13]. In Partial MaxSAT we can distinguish between hard
clauses and soft clauses in a formula in CNF, where all the hard clauses must be
satisfied as usual, but the soft clauses may be unsatisfied. Then, the problem
consists of finding a solution which violates the minimum possible number of
clauses. In Weighted Partial MaxSAT there is an associated violation cost
for each soft clause. In the SMT setting we can apply Optimisation Modulo
Theories (OMT) [ST12], an extension of SMT which allows to directly specify
an objective function that the solver will optimise.

Nevertheless, we have conducted some experiments on MRCPSP to evalu-
ate which SMT solver performs better in our system, considering also solvers
which offer optimisation capabilities, such as OptiMathSAT [ST15] and Z3 [dMB08].
Yices has given the best performance even though it requires us to implement
an ad-hoc optimisation procedure like the one we have described. We have
not observed a big reduction on the number of timeouts, but the solving times
were generally smaller. Probably using an ad-hoc optimisation algorithm is
fast due to the fact that we are optimising a simple objective function regard-
ing expressivity, which can be bounded with just one unit clause of the form
Sn+1 ≤ UB . Moreover, just adding an upper bound on the makespan enables
unit and theory propagation to reduce domains of all start-time variables and
time-active variables. It is also very relevant that we are integrating the back-
end solver using its API, which allows the solver to keep the learning between
different calls.

5.5 Results

In this section we test the performance of our system by solving the most
widely used benchmark datasets, that are the j30, j60, j90 and j120 datasets
from PSPLib [KS97]. These sets contain instances with 30, 60, 90 and 120
non-dummy activities respectively, and 4 resources. All the sets contain 480
instances except j120, which contains 600 instances.
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The two best exact solving approaches that we are aware of are:

• The system presented in [VLS15]. This system implements a search pro-
cedure for CP in the IBM ILOG CPOptimizer which is specially designed
for scheduling problems. The authors name this technique Failure Di-
rected Search (FDS), and it resembles the VSIDS heuristic of SAT solvers
in the sense that it prioritises the exploration of the configurations that
will lead to a conflict. In this paper the authors solved many extensions of
the RCPSP, more precisely MRCPSP, RCPSP/max and MRCPSP/max.
We contacted the authors, who kindly shared with us their solvers for
the different problems. We will refer to this system as FDS.

• The system presented in [SFS13]. In that paper the authors develop
a time-table-edge-finding propagator for cumulative constraints which
is integrated into a Lazy Clause Generation solver. The authors report
very good results which are available in https://people.eng.unimelb.

edu.au/pstuckey/rcpsp/. We contacted the authors of that system,
and they kindly shared with us some tools and instructions for solvers
of other problems different than RCPSP. However they were unable to
give us the system for RCPSP that they used in [SFS13], and therefore
we have been unable to run their system in our machine for an accurate
comparison. We only include the number of timeouts that they report
in Table 5.1. They used a machine with a X86-64 architecture running
GNU/Linux and a Intel R© Core

TM
i7 CPU processor at 2.8GHz, with the

same timeout as us, 600 seconds. We refer to this system as LCG.

We have run FDS and our system, that we refer to as SMT, in a same machine.
It is a 8GB Intel R© Xeon R© E3-1220v2 machine at 3.10 GHz.We use Yices
2.4.2 [DdM06a] as the core SMT solver of our system. Our system is available
at the website of the Logic and Programming research group [LAP]. The
results are given in Table 5.1.

Looking at the table we can see a clear difference of behaviour between
soft instances and hard instances. In all datasets, FDS is getting smaller
solving times than SMT for the first three quartiles, which have very low
times never exceeding 2 seconds. This can be explained by the fact that SMT
is penalised from the construction time of the SMT formula, which contains a
lot of clauses related with resource constraints. Also related with the size, the
easiest instances may not involve a lot of search and backtracks to be solved,
but the number of variables to be assigned is very large in SMT. On the other
hand, SMT is performing better on the hard instances. The average solving
time is always strictly smaller in SMT, and the number of timeouts is smaller
in j60 and j90, and equal in j120.

https://people.eng.unimelb.edu.au/pstuckey/rcpsp/
https://people.eng.unimelb.edu.au/pstuckey/rcpsp/
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set tool Q1 med. Q3 avg. t.o.

j30
FDS 0.01 0.01 0.03 0.93 0
LCG — — — — 0
SMT 0.02 0.03 0.06 0.21 0

j60
FDS 0.01 0.02 0.18 67.44 50
LCG — — — — 48
SMT 0.05 0.12 0.47 62.87 47

j90
FDS 0.02 0.03 0.39 106.95 81
LCG — — — — 80
SMT 0.15 0.36 1.49 104.41 80

j120
FDS 0.05 t.o. t.o. 322.52 315
LCG — — — — 317
SMT 1.25 t.o. t.o. 320.23 315

Table 5.1: Solving time results for the instances of RCPSP. All values are
in seconds. We give a timeout of 600 seconds to each execution. The first
column contains the name of the dataset. Column 2 specifies, for each row,
the tool used to solve the instances of the dataset. Columns Q1, med. and Q3
specify the first, second, and third quartile of the running times of a dataset
(t.o. means timeout for that quartile, and dash — means no data available).
Column avg. contains the average run time, counting timeouts as 600 seconds.
The last column contains the number of instances that timed out without
having found an optimal solution and proven its optimality.

5.6 Chapter Summary

In this chapter we have provided an SMT formulation of the RCPSP. It uses
IDL expressions to deal with precedence constraints, and it uses a Time-
indexed approach to express resource constraints. We have also provided a
mechanism to detect implicit AMO constraints over the variables of resource
constraints, based on the precedence relations. These AMOs let us encode the
resource constraints with compact SAT encodings of PB(AMO) constraints.
Minimisation of the makespan is efficiently achieved by integrating a back-
end SMT solver in an optimisation procedure that increasingly constrains the
makespan, and maintains the learning of the solver between calls. Most im-
portantly, the techniques and the formulation presented in this chapter are a
basis upon which extensions of the RCPSP can be formulated. Our results
show that our system is state-of-the-art in exact solving the hardest instances
from PSPLIB of the RCPSP.



Chapter 6

Efficiently Encoding
RCPSP-Based Problems to
SMT

In this chapter we introduce SMT formulations for four different extensions
of the RCPSP which different peculiarities each one. We devote a section to
each problem, namely the Multi-mode RCPSP (MRCPSP), the RCPSP with
Time-Dependent Resource Capacities and Requests (RCPSP/t), the Multi-
mode RCPSP with Minimal and Maximal Time Lags (MRCPSP/max) and
the Multi-Skill Project Scheduling Problem (MSPSP). Following the structure
of Chapter 5, in each section we first introduce a problem, then we describe it
formally, we present our formulations, and finally we provide an experimental
section. Since the different problems we consider are extensions of the RCPSP,
there are many coincidences in the problem definitions and SMT formulations
with those of the RCPSP. However each problem presents completely differ-
ent variations. Therefore, for the sake of readability we make every section
self-contained, and there might be some overlapping with Chapter 5. We will
remark the most important peculiarities of each RCPSP extension. Moreover,
for some problems we include additional subsections with further contents,
as we made other relevant contributions in the problem treated in that sec-
tion. Regarding experiments, we evaluate the performance of our systems on
benchmark instances from the literature, and we compare with the best ex-
isting exact solvers, up to our knowledge. Our systems are available at the
website of the Logic and Programming research group [LAP]. We run all the
solvers on identical machines to get fair comparisons. This has been possi-
ble thanks to the authors of the works we compare with, who have kindly
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shared their systems and results either in open access platforms or directly
with us upon request. Also, they have solved our doubts so that we were
able to run their tools using the right configuration, i.e. the one which gave
them the best results. We express our sincere gratitude, to all the authors
of [Har13, VLS15, SH16, SS16, YFS17].

Since the problems presented in this chapter are extensions of the RCPSP,
we will adapt some of the techniques introduced in Chapter 5 to solve them.
In particular, there are two main points which we would like to draw attention
to:

• We will be using PB(AMO) constraints to formulate resource constraints.
In most cases the different problems will be using the pre-computation
of P(t) presented in Section 5.2, i.e. the path cover on a time instant,
as a basis to extract implicit AMO constraints. However, each problem
may present modifications either in the computation and use of P(t) or
in the PB(AMO) constraint obtained from there.

• We use the generic optimisation procedure described in Section 5.4 to
optimise the makespan. We will describe some differences in this proce-
dure in some problems, most notably related with the computation of a
scheduling horizon.

The work presented in this chapter has been partially published in two
different works. Namely the the work related to MRCPSP and RCPSP/t is
partially published in [BCSV17b], and the work related to MRCPSP/max is
partially published in [BCSV17a]. This chapter is related to the objectives
number 1, 3 and 5 of this thesis. The rest of this chapter is organised as
follows.

• In Section 6.1 we provide an SMT formulation for the MRCPSP, which
is an improved version of the BDD-based one presented in Chapter 3.

• In Section 6.2 we provide an SMT formulation for the RCPSP/t which,
up to our knowledge, is the first exact method that solves this problem.

• In Section 6.3 we provide an SMT formulation for the MRCPSP/max.
Also we provide some new benchmark instances, since the existing ones
were not very hard regarding resource constraints.

• In Section 6.4 we provide an SMT formulation for the MSPSP, as well
as an algorithm that is integrated to the PSGS method to compute a
scheduling horizon.

• In Section 6.5 we summarise the contributions of this chapter.
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6.1 MRCPSP

In Chapter 3 we already presented two formulations for the MRCPSP which
handle resource constraints differently, one using the theory of LIA, and the
other one using BDD-based SAT encodings of PB constraints. In this section
we present a new formulation for the MRCPSP somewhat similar to the BDD-
based one that we introduced in Chapter 3, but with some improvements. In
particular we do not introduce variables xi,t but only variables xi,t,o, which
are now more easily defined. Most importantly, we use SAT encodings of
PB(AMO) constraints to deal with resource constraints, instead of SAT en-
codings of PB constraints. This technique lets us mitigate the effect that the
multiple mode choice has over the size of resource PB constraints. This has a
huge impact on the solving time performance, as we will see in Section 6.1.3.

We keep using the optimisation procedure from Chapter 3, which is a spe-
cialisation for MRCPSP of the algorithm described in Section 5.4. Therefore
the formulation we provide is for the decision MRCPSP, given a pre-computed
scheduling horizon H = {0, . . . ,UB}. Recall that the most notorious pecu-
liarities when optimising MRCPSP affect the feasibility determination of the
instances, and the computation of the scheduling horizon:

• First of all we solve a relaxed problem in which we only find a schedule of
modes which satisfy the non-renewable resource constraints. With this
we can certify whether the instance is satisfiable.

• If a schedule of modes has been found in the first step, then we fix these
modes to get an instance of the RCPSP, and then we apply the PSGS
heuristic to find a scheduling horizon H = {0, . . . ,UB}.

We include again the problem description for completeness and to ease the
readability of the formulation given in Section 6.1.2.

6.1.1 Problem Description

The Multi-mode Resource-Constrained Project Scheduling Problem can be
defined by a tuple (V,M, p,E,R,B, b), where:

• V = {A0, A1, . . . , An, An+1} is a set of activities. Activities A0 and An+1

are dummy activities representing, by convention, the start and the end
of the schedule, respectively. The set of non-dummy activities is defined
by A = {A1, . . . , An}.
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• M ∈ Nn+2 is a vector of naturals, with Mi being the number of modes
that activity Ai can execute in, with M0 = Mn+1 = 1 and Mi ≥ 1,∀Ai ∈
A.

• p is a vector of vectors of naturals, with pi,o being the duration of activity
Ai using mode o, with 1 ≤ o ≤ Mi. For the dummy activities, p0,1 =
pn+1,1 = 0, and pi,o > 0, ∀Ai ∈ A, 1 ≤ o ≤Mi .

• E is a set of pairs of activities representing end-start precedence relations.
Concretely, (Ai, Aj) ∈ E iff the execution of activity Ai must precede
that of activity Aj , i.e., activity Aj must start after activity Ai has
finished.

We assume that we are given a precedence activity-on-node graph G =
(V,E) that contains no cycles, since otherwise the precedence relation is
inconsistent. We assume that E is such that A0 is a predecessor of all
other activities and An+1 is a successor of all other activities.

• R = {R1, . . . , Rv−1, Rv, Rv+1, . . . , Rq} is a set of resources. The first v
resources are renewable, and the last q − v resources are non-renewable.

• B ∈ Nq is a vector of naturals, with Bk being the available amount of
each resource Rk. The first v resource availabilities correspond to the
renewable resources, while the last q − v ones correspond to the non-
renewable resources.

• b is a three-dimensional matrix of naturals corresponding to the resource
demands of activities per mode. bi,k,o represents the amount of resource
Rk used during the execution of activity Ai in mode o. Note that b0,k,1 =
0 and bn+1,k,1 = 0, ∀k ∈ {1, . . . , q}.

We will denote by G∗ = (V,E∗) the extended precedence graph, which has a
weight li,j for each edge (Ai, Aj) ∈ E∗, being li,j the critical path from Ai to Aj
in G. In the multi-mode case, the weight of an edge (precedence) is the smallest
duration among modes of the predecessor activity. Having computed G∗, and
given a scheduling horizon H = {0, . . . ,UB}, the different data related with
time windows can be obtained as explained in Section 2.1.3: ES(Ai), LS(Ai)
and RTW (Ai).

A schedule is a vector of naturals S = (S0, S1, . . . , Sn, Sn+1) where Si
denotes the start time of activity Ai. We assume that S0 = 0. A schedule of
modes is a vector of naturals SM = (SM 0,SM 1, . . . ,SM n,SM n+1) where SM i,
satisfying 1 ≤ SM i ≤ Mi, denotes the mode of each activity Ai. A solution
of the MRCPSP is a schedule of modes SM and a schedule S of minimal
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makespan Sn+1. It has to respect a correct assignment of execution modes,
precedence constraints and renewable and non-renewable resource constraints.
More precisely, the constraints can be formally stated as:

Minimise: Sn+1 (6.1)

Subject to:

(SM i = o)→ (Sj − Si ≥ pi,o) ∀(Ai, Aj) ∈ E,∀o ∈ [1,Mi] (6.2)

1 ≤ SM i ≤Mi ∀Ai ∈ V (6.3)

∑
Ai∈A

∑
o∈[1,Mi]

ite
(
(SM i = o) ∧ (Si ≤ t < Si + pi,o); bi,k,o; 0

)
≤ Bk

∀Rk ∈ {R1, . . . , Rv},∀t ∈ H (6.4)

∑
Ai∈A

∑
o∈[1,Mi]

ite(SM i = o; bi,k,o; 0) ≤ Bk

∀Rk ∈ {Rv+1, . . . , Rq} (6.5)

Precedence constraints (6.2) state that, for any pair (Ai, Aj) ∈ E, activity Aj
cannot start until Ai has finished. Constraints (6.3) state that each activity has
to run in one of the available modes. The renewable resource constraints (6.4)
state that the capacities of the renewable resources cannot be exceeded by
the activities running at any particular time. The non-renewable resource
constraints (6.5) require that the total demand on a non-renewable resource
cannot exceed its availability.

6.1.2 Formulation

Our SMT formulation for the MRCPSP has three sets of variables:

Si: Integer variables denoting the start time of activity Ai, for all Ai ∈ V .

smi,o: Boolean variables which are true iff activity Ai runs in mode o, for all
Ai ∈ V , and for all o ∈ [1,Mi].

xi,t,o: Boolean variables which are true iff activity Ai is running at time t in
mode o, for all Ai ∈ A, for all t ∈ RTW (Ai), and for all o ∈ [1,Mi].



98 CHAPTER 6. SMT FORMULATIONS FOR SCHEDULING

Then, having precomputed a scheduling horizon H = {0, . . . ,UB}, the
problem is formulated as follows:

S0 = 0 (6.6)

Si ≥ ES(Ai) ∀Ai∈{A1, . . . , An+1} (6.7)

Si ≤ LS(Ai) ∀Ai∈{A1, . . . , An+1} (6.8)

smi,o → Sj − Si ≥ pi,o ∀(Ai, Aj) ∈ E,
∀o ∈ [1,Mi] (6.9)

Sj − Si ≥ li,j ∀(Ai, Aj , li,j) ∈ E∗ (6.10)∨
o∈[1,Mi]

smi,o ∀Ai∈V (6.11)

smi,o ∨ smi,o′ ∀Ai∈ V ,
∀o ∈ [1,Mi − 1],

∀o′ ∈ [o+ 1,Mi] (6.12)

xi,t,o ↔ Si ≤ t ∧ t < Si + pi,o ∧ smi,o ∀Ai ∈ A, ∀o ∈ [1,Mi],

∀t ∈ RTW (Ai) (6.13)∑
Ai ∈ A, s.t. :
t ∈ RTW (Ai)

∑
o∈[1,Mi]

bi,k,o · xi,t,o ≤ Bk
∀Rk ∈ R1, . . . , Rv,
∀t ∈ H (6.14)

∑
Ai∈A

∑
o∈[1,Mi]

bi,k,o · smi,o ≤ Bk ∀Rk ∈ Rv+1, . . . , Rq (6.15)

Constraint (6.6) ensures that the initial dummy activity starts at time 0. Con-
straints (6.7) and (6.8) bound the start time variables using the time windows,
and by doing that is bounded the makespan Sn+1. Constraints (6.9) define the
precedence relations, relative to which is the execution mode of the predecessor,
and (6.10) define the extended precedences. Constraints (6.11) and (6.12) en-
sure that each activity runs in exactly one execution mode. Constraints (6.13)
give to variables xi,t,o the appropriate behaviour according to their semantics.
Constraints (6.14) and (6.15) define the renewable and non-renewable resource
constraints respectively.

Similarly as it happens with RCPSP, we can find AMO constraints be-
tween the variables of the resource constraints based on precedences. In the
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MRCPSP we have a third subindex in variables xi,t,o that is the selected execu-
tion mode. However, we can only choose one execution mode per activity, and
this introduce additional AMOs. In particular, we have the following implicit
constraints in our formulation:∑

Aj∈Pi

∑
o∈[1,Mj ]

xj,t,o ≤ 1 ∀t ∈ H, ∀Pi ∈ P(t) (6.16)

Intuitively, the implicit Constraints (6.16) state that over all activities con-
nected by a precedence path, at most one of them will be running at a par-
ticular time, and in at most one execution mode. These AMO constraints
are logically implied by Constraints (6.9), (6.10), (6.12) and (6.13). There-
fore, Constraints (6.14) will be encoded using the Minimal Encoding, using
the partition of the variables of the PB defined by the implicit AMO con-
straints (6.16).

Note the great simplification power of using PB(AMO) constraints. For
instance, in a project where all activities have three execution modes, the
number of variables xi,t,o in a renewable resource constraint would be three
times the number that we would get in the single-mode case. However, the
number of AMO constraints that we get for each time instant t is exactly
the same that we get in the single mode version (cf. Constraints (5.12)), i.e.
there is an AMO for each path of the path cover. Therefore, even though the
number of variables is increased by a constant factor w.r.t. the single-mode
case, the number of layers of the AMO-MDD representation of the constraint
will be exactly the same. The number of layers would be otherwise increased
if we used a BDD representation of the constraint.

Similarly, Constraints (6.15) compose a PB(EO) constraint together with
Constraints (6.11) and (6.12), since the two latter enforce that each activity
is running in exactly one mode, i.e. they encode the following constraint:∑

o∈[1,Mi]

smi,o = 1 ∀Ai ∈ V (6.17)

Therefore we apply the technique to encode PB(EO) constraints explained
in Section 4.4.1, i.e. we use the EO reduction to Constraints (6.15) before
encoding it with a PB(AMO) encoding. Notice that in practice it is the same
as applying the non-renewable demand reduction explained in Section 3.2.5 as
a preprocessing step, and then using a PB(AMO) encoding.

6.1.3 Results

We compare our system with the other two best exact systems in the literature
(up to our knowledge), which are the following:
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set tool Q1 med. Q3 avg. t.o.

j30

FDS 0.03 0.07 6.4 38.6 15
LCG 0.11 0.21 0.6 29.6 25
PB 1.04 2.00 4.4 23.7 14
PB(AMO) 0.33 0.49 0.8 14.7 9

MMLIB50

FDS 0.04 1.33 t.o. 173.4 140
LCG 0.59 6.59 338.0 162.4 115
PB 3.35 7.94 127.3 143.1 105
PB(AMO) 1.07 1.93 24.2 108.2 88

Table 6.1: Solving time results for the instances of MRCPSP. All values are in
seconds. We give a timeout of 600 seconds to each execution. The first column
contains the name of the dataset. Column 2 specifies, for each row, the tool
used to solve the instances of the dataset. Columns Q1, med. and Q3 specify
the first, second, and third quartile of the running times of a dataset (t.o.
means timeout for that quartile). Column avg. contains the average run time,
counting timeouts as 600 seconds. The last column contains the number of
instances that timed out without having found an optimal solution and proven
its optimality.

• The system presented in [VLS15], that we also used to solve RCPSP in
Chapter 5. We will refer to this system as FDS.

• The system presented in [SS16]. It consists of a MiniZinc model for the
MRCPSP which uses the global constraint cumulative to handle resource
constraints, follows a specialised search heuristic, and is solved using a
Lazy Clause Generation solver. We refer to this system as LCG.

We refer to the results obtained with our SMT formulation as PB(AMO).
As stated before the experiments were published in [BCSV17b], and there we
also included the results without using MDD-based PB(AMO) encodings for
resource constraints but classical BDD-based PB encodings. Also having these
results, we can reproduce the decision experiments of Chapter 4 now in the
optimisation scenario, and we think that is worthwhile to include them. It is
also a way of comparing the improvement of our MRCPSP formulation w.r.t.
the one in Chapter 3. We label this setting as PB.

We have run all the systems on identical same machines. It is a 8GB
Intel R© Xeon R© E3-1220v2 machine at 3.10 GHz. In all experiments we use
Yices 2.4.2 [DdM06a] as the core SMT solver. As we did in Chapter 3, we
have tested our proposal on the hard datasets j30 from PSPLib [KS97] and
MMLIB50 from MMLIB [VPV14]. These results are given in Table 6.1.
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PB(AMO) is able to optimally solve within the given timeout a significantly
larger amount of instances than the other approaches, especially for MMLIB50,
which is the hardest set. In this set, the third quartile of solving times is
one order of magnitude smaller than the one of the other approaches. It is
also remarkable the improvement w.r.t. using the BDD-based encoding for
resource constraints, with many fewer timeouts and smaller solving times. In
fact, PB is the most penalised approach for the first two quartiles. This can
be attributed to the time required to build the BDDs and the big size of the
encoding. In Chapter 3 we concluded that our formulation was the best only
for hard instances, but thanks to the use of PB(AMO) constraints, now our
approach is also very competitive for easy instances.

6.2 RCPSP/t

The Resource-Constrained Project Scheduling Problem with Time-Dependent
Resource Capacities and Requests (RCPSP/t) is an extension of RCPSP where
the demands over resources and the availability of those may vary over time.
Although the possibility of having time-dependent demands or availabilities
had already been discussed [Har99], it is in [Har13] where the RCPSP/t is
introduced, together with a first heuristic solving approach. More precisely,
this problem generalises the RCPSP in two aspects. The first one is that
the renewable resources can have a different availability at every time instant.
The second one is that the resource demands of an activity are not neces-
sarily always the same, but they can take different values at each instant of
their execution. This variant of the RCPSP handles periods of interruption
of the schedule by setting the capacity of one resource to 0 and making this
resource necessary for all the activities. Similarly, it can simulate an interrup-
tion of an activity by defining all the resource demands to 0 in some interval
of its execution period. These extensions may be hard to handle in some
modelling frameworks, but they perfectly fit in a Time formulation as we will
see in Section 6.2.2. Similarly to what happened with the MRCPSP, the use
of encodings of PB(AMO) constraints will mitigate the size increase of the
encodings of resource constraints due to the variability of requests.

6.2.1 Problem Description

The Resource-Constrained Project Scheduling Problem with Time-Dependent
Resource Capacities and Requests (RCPSP/t) can be defined by a tuple
(V,H, p,E,R,B, b) where:
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• V = {A0, A1, . . . , An, An+1} is a set of activities. Activities A0 and An+1

are dummy activities representing, by convention, the start and the end
of the schedule, respectively. The set of non-dummy activities is defined
by A = {A1, . . . , An}.

• H = {0, . . . ,UB} is the scheduling horizon.

• p is a vector of naturals, with pi being the duration of activity Ai . For
the dummy activities, p0 = pn+1 = 0, and pi > 0, ∀Ai ∈ A.

• E is a set of pairs of activities representing end-start precedence relations.
Concretely, (Ai, Aj) ∈ E iff the execution of activity Ai must precede
that of activity Aj , i.e., activity Aj must start after activity Ai has
finished.

Again, we assume that we are given a precedence activity-on-node graph
G = (V,E) that contains no cycles. We also assume that A0 is a prede-
cessor of all other activities and An+1 is a successor of all other activities.

• R = {R1, . . . , Rv} is a set of renewable resources.

• B ∈ Nv×(UB+1) is a matrix of naturals, with Bk,t being the available
amount of resource Rk at time t. The resources can have a different
availability for each time instant in H, and they have an undefined avail-
ability in any other time outside the scheduling horizon.

• b is a three-dimensional matrix of naturals corresponding to the resource
demands of activities over their execution. bi,k,t represents the amount
of resource Rk that activity Ai is occupying during the t-th time in-
stant relative to its start time. Therefore an activity Ai has a vector of
demands resource Rk that is bi,k,0, . . . , bi,k,pi−1.

We will denote by G∗ = (V,E∗) the extended precedence graph, which has a
weight li,j for each edge (Ai, Aj) ∈ E∗, with li,j being the critical path from
Ai to Aj in G. Having computed G∗, the different data related with time
windows can be obtained as explained in Section 2.1.3: ES(Ai), LS(Ai) and
RTW (Ai). For this problem we will also use the start time windows STW (Ai),
also explained in Section 2.1.3.

A schedule is a vector of naturals S = (S0, S1, . . . , Sn, Sn+1) where Si
denotes the start time of activity Ai. We assume that S0 = 0. A solution of
the RCPSP/t is a schedule S of minimal makespan Sn+1. It has to respect
precedence and resource constraints. More precisely, the constraints can be
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formally stated as:

Minimise: Sn+1 (6.18)

Subject to:

Sj − Si ≥ pi ∀(Ai, Aj) ∈ E (6.19)

∑
Ai∈A

∑
e∈[0,pi−1]

ite
(
(Si = t− e); bi,k,e; 0

)
≤ Bk

∀Rk ∈ R,∀t ∈ H (6.20)

Precedence constraints (6.19) state that, for any pair (Ai, Aj) ∈ E, activity Aj
cannot start until Ai has finished. The renewable resource constraints (6.20)
state that the capacities of the renewable resources cannot be exceeded at any
time.

6.2.2 Formulation

In the RCPSP and the MRCPSP formulations, we have been using the Time
approach with Boolean variables of the type xi,t which indicate whether an
activity Ai is running at time t. However, in the RCPSP/t we need to know
not only if an activity is running at a particular time but also for how long
it has been running at that time, since the amounts of resource consumptions
depend on this. Therefore, just with variables xi,t we cannot formulate the
resource constraints of the RCPCP/t. In order to overcome this issue, we use
another kind of time-indexed variables with different semantics [Art13]:

yi,t: 0/1 variable which is true iff activity Ai starts at time t.

As we will see in Constraints (6.27), renewable resource constraints can be
stated using variables yi,t. When these variables are used the size of the PB
constraints increase, because we have to consider all the possible start times
which imply that an activity will be running at a certain time. In particular,
given a time t, the range of time instants at which an activity Ai can have
started so that it is running at time t is [t− pi + 1, t]. However, the advantage
of using variables yi,t is that we are able to identify for how long an activity
has been running at a particular time instant. As said, this information is
required for the RCPSP/t.
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The other main difference with respect the RCPSP is that the availability
of the resources can be different at any time instant, but this characteristic
naturally fits in our time based formulation of the resource constraints, as will
be seen in Constraints (6.27). In fact, in the RCPSP/t the scheduling horizon
H is part of the definition of an instance, since it contains the time instants
for which the availabilities are defined. Nevertheless, we will still compute a
tighter UB of the makespan using the PSGS heuristic for the RCPSP, which is
also suitable for the RCPSP/t. The are only minor implementation differences
with respect to an implementation of PSGS for RCPSP, since it has to be taken
into account that the availabilities and requests are not constant.

Our formulation for the RCPSP/t has two sets of variables:

Si: Integer variables denoting the start time of activity Ai, for all Ai ∈ V .

yi,t: Boolean variables which are true iff activity Ai starts at time t, for all
Ai ∈ A, for all t ∈ STW (Ai).

Then, the problem is formulated as:

S0 = 0 (6.21)

Si ≥ ES(Ai) ∀Ai∈{A1, . . . , An+1} (6.22)

Si ≤ LS(Ai) ∀Ai∈{A1, . . . , An+1} (6.23)

Sj − Si ≥ pi ∀(Ai, Aj) ∈ E (6.24)

Sj − Si ≥ li,j ∀(Ai, Aj , li,j) ∈ E∗ (6.25)

yi,t ↔ Si = t ∀Ai ∈ A, ∀t ∈ STW (Ai) (6.26)

∑
Ai ∈ A, s.t. :
t ∈ RTW (Ai)

∑
e ∈ [0, pi − 1] s.t. :
t− e ∈ STW (Ai)

bi,k,e · yi,t−e ≤ Bk,t ∀Rk ∈ R,
∀t ∈ H

(6.27)

Constraint (6.21) ensures that the initial dummy activity starts at time 0. Con-
straints (6.22) and (6.23) bound the start time variables using the time win-
dows, and by doing that it is bounded the makespan Sn+1. Constraints (6.24)
and (6.25) define the precedence and the extended precedence relations re-
spectively. Constraints (6.26) give to variables yi,t the appropriate behaviour
according to their semantics. Constraints (6.27) define the renewable resource
constraints.
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Equally to what happens with variables xi,t for the RCPSP, the precedence
relations introduce implicit AMO constraints over variables yi,t. Intuitively,
if an activity Ai starts at time t, an activity Aj connected by a path in the
precedence graph cannot start at time t. Moreover, we know that an activity
will only start at one particular time instant, and therefore there is an AMO
constraint over all variables yi,t of a same activity Ai. This last AMO is
enforced by the channelling between yi,t and the integer start variables Si, in
equation (6.26). Therefore we have the following implicit constraints, which
are logically implied by Constraints (6.24) and (6.26):∑

Aj∈Pi

∑
e ∈ [0, pj − 1], s.t. :
t− e ∈ STW (Aj)

yj,t−e ≤ 1 ∀t ∈ H, ∀Pi ∈ P(t) (6.28)

The implicit Constraints (6.28) impose that over all activities connected by a
path, at most one of them will be running at a particular time, and among all
the time instants t − e at which this activity Ai could have started, at most
one of yi,t−e can be true. Therefore, Constraints (6.27) will be encoded using
the Minimal Encoding, using the partition of the variables of the PB defined
by the AMO constraints (6.28).

Similarly to what happens with MRCPSP, the impact on encoding size
of having many demand values for a same activity and resource is mitigated
by the use of AMO-MDD representations. Note that the number of layers of
an AMO-MDD representing a resource constraint (6.27) subject to the AMO
constraints (6.28) will be equal to the number of paths in the path cover P(t).
Therefore, the depth of the AMO-MDDs will be the same than the ones of an
RCPSP instance of the same characteristics. This would not be the case with
classical BDD-based encodings of PB constraints.

6.2.3 Results

To the best of our knowledge, no exact method has been proposed to solve
this problem, but only heuristic procedures in [Har13] and [Har15].

We published our RCPSP/t formulation and results in [BCSV17b] together
with the ones of the MRCPSP. We reported there a comparison between using
AMO-MDD based SAT encoding of PB(AMO) resource constraints to solve the
RCPSP/t, against using BDD-based SAT encodings. This is the application to
the optimisation scenario of the experiments for the RCPSP/t that we reported
in Chapter 4. Now we show these results, comparing these approaches that
we label as PB(AMO) and PB.

We have run our experiments on a 8GB Intel R© Xeon R© E3-1220v2 machine
at 3.10 GHz. In all experiments we use Yices 2.4.2 [DdM06a] as the core
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set tool Q1 med. Q3 avg. t.o.

j30
PB 0.26 1.04 3.1 3.1 0
PB(AMO) 0.05 0.16 0.4 0.4 0

j120
PB 29.61 t.o. t.o. 368.1 2085
PB(AMO) 7.16 56.18 t.o. 253.8 1390

Table 6.2: Solving time results for the instances of RCPSP/t. All values are
in seconds. We give a timeout of 600 seconds to each execution. The first
column contains the name of the dataset. Column 2 specifies, for each row,
the tool used to solve the instances of the dataset. Columns Q1, med. and Q3
specify the first, second, and third quartile of the running times of a dataset
(t.o. means timeout for that quartile). Column avg. contains the average
run time, counting timeouts as 600 seconds. The last column contains the
number of instances that timed out without having found an optimal solution
and proven its optimality.

SMT solver. We have tested our proposal on the benchmark datasets that are
available in PSPLib [KS97]. These instances were generated in [Har13] and are
the only existing ones that we are aware of. They were generated by modifying
the j30 and j120 instances sets of the RCPSP. The resource demands of the
activities among their durations, and the capacities of the resources over time,
were modified using different settings. At the end they obtained two datasets:

j30: It contains 2880 instances with 30 non-dummy activities and 4 resources
each.

j120: It contains 3600 instances with 120 non-dummy activities and 4 re-
sources each.

The resource availabilities are only specified for the time instants of the schedul-
ing horizon, and therefore any availability for a time outside the horizon is un-
defined. Some of these instances in the considered datasets do not have feasible
schedules within the scheduling horizon specified in the instance files. In these
cases, we have considered the instance to be unsatisfiable. The experimental
results are contained in Table 6.2.

We are able to close the whole j30 dataset with both approaches, with
an average computation time of 0.4 seconds with PB(AMO). The performance
difference in j120 dataset is very significant, having only 38.6% of the instances
timing out with PB(AMO) compared to 57.9% with PB. With respect to the
best results obtained with heuristic methods in [Har13] and [Har15], we have
certified the optimality, or infeasibility within the specified scheduling horizon,
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of 5090 instances, and improved the best solution of 1763 instances with respect
to the heuristic results.

6.3 MRCPSP/max

In this section we tackle the Multi-mode Resource-Constrained Project
Scheduling Problem with Minimal and Maximal Time Lags (MRCPSP/max).
This problem is denoted MPS|temp|Cmax in [BDM+99] and m, 1|gpr|Cmax
in [HDR99]. It is also known as the Multi-mode RCPSP with Generalised
Precedence Relations. This problem is an extension of the MRCPSP which
includes the minimal and maximal time lags from RCPSP/max [DRH99]. Like
in MRCPSP, the goal is to determine a start time and an execution mode for
each activity, in order to obtain a schedule which satisfies all the resource and
precedence constraints, and which has minimum makespan. The difference in
this problem is that the precedence relations are not the MRCPSP end-start
relations, but they define an arbitrary integer time lag between the starts of
two activities. A positive time lag is referred to as a minimal time lag, because
it can be used to specify minimal time differences between start times. On
the other hand, the negative values are referred to as maximal time lags, and
are used to specify maximal time differences between starts. The value of the
time lag between a pair of activities depends both on the execution mode of
the predecessor and the execution mode of the successor.

Most of the recent works on MRCPSP/max have been evaluated using
the benchmark datasets created in [Sch98]. However, in [VLS15] it was ob-
served that in those instances the resource constraints are not the hardest
component. In this section, apart of proposing an SMT formulation for this
problem, we further analyse the reason why the resource constraints seem not
to play an important role in those instances, concluding that such constraints
are trivially satisfied in many cases. Therefore we have crafted new instance
sets, where resource constraints take a more important role. We provide ex-
periments showing that our SMT approach is state of the art among existing
exact methods on instances with tight resource constraints.

6.3.1 Problem Description

The MRCPSP/max is defined by a tuple (V,M, p,E, g,R,B, b) where:

• V = {A0, A1, . . . , An, An+1} is a set of non-preemptive activities. A0

and An+1 are dummy activities representing the start and the end of
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the schedule, respectively. The set of non-dummy activities is defined as
A = {A1, . . . , An}.

• M ∈ Nn+2 is a vector of naturals, with Mi being the number of modes in
which activity Ai can be executed. M0 = Mn+1 = 1 and Mi ≥ 1,∀Ai ∈
A.

• p is a vector of vectors of naturals, with pi,o being the duration of activity
Ai when is executed in mode o, with 1 ≤ o ≤Mi, p0,1 = pn+1,1 = 0.

• E is a set of pairs of activities which have a time lag defined.

• g is a four dimensional vector of naturals, being gi,j,o,o′ the time lag (or
generalised precedence relation) from activity Ai in mode o to activity
Aj in mode o′. If gi,j,o,o′ >= 0, it is a minimum time lag, and means that
if Ai is running in mode o and Aj is running in mode o′, then Aj must
start at least gi,j,o,o′ units of time after the start of Ai. If gi,j,o,o′ < 0, it
is a maximum time lag, and means that Ai must start at most |gi,j,o,o′ |
units of time after the start of Aj , if modes o and o′ are chosen.

• R = {R1, . . . , Rv−1, Rv, Rv+1, . . . , Rq} is a set of resources. The first v
resources are renewable, and the last q − v resources are non-renewable.

• B ∈ Nq is a vector of naturals, with Bk being the capacity of resource
Rk.

• b is a matrix of naturals corresponding to the resource demands of activ-
ities per mode: bi,k,o represents the amount of resource Rk required by
activity Ai in mode o, b0,k,1 = 0 and bn+1,k,1 = 0, ∀k ∈ {1, . . . , q}. For
renewable resources, this is the required amount per time step, whilst for
non-renewable resources, it is the total amount required by the activity
during its execution.

We will denote by G∗ = (V,E∗) the extended precedence graph, which has a
weight li,j for each edge (Ai, Aj) ∈ E∗, being li,j the critical path from Ai to
Aj in G. In order to compute the critical path, we only consider the edges
(Ai, Aj) ∈ E such that all time lags gi,j,o,′o are positive, and in that case
the weight of the edge is the smallest of the time lags. Otherwise the graph
could contain negative cycles. Having computed G∗, and given a scheduling
horizon H = {0, . . . ,UB}, the different data related with time windows can
be obtained as explained in Section 2.1.3: ES(Ai), LS(Ai) and RTW (Ai).

A schedule is a vector of naturals S = (S0, . . . , Sn+1) where Si denotes the
start time of activity Ai, S0 = 0, and Sn+1 is the makespan. A schedule of
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modes is a vector of naturals SM = (SM 0, . . . ,SM n+1) where SM i, satisfying
1 ≤ SM i ≤ Mi, denotes the mode of each activity Ai. A solution of the MR-
CPSP/max problem is a schedule of modes SM and a schedule S of minimal
makespan Sn+1. It has to respect a correct assignment of execution modes,
generalised precedence constraints and renewable and non-renewable resource
constraints. More precisely, the constraints can be formally stated as:

Minimise: Sn+1 (6.29)

Subject to:

(
(SM i = o) ∧ (SM j = o′)

)
→ (Sj − Si ≥ gi,j,o,o′) ∀(Ai, Aj) ∈ E

∀o ∈ [1,Mi]

∀o′ ∈ [1,Mj ] (6.30)

1 ≤ SM i ≤Mi ∀Ai ∈ V (6.31)

∑
Ai∈A

∑
o∈[1,Mi]

ite
(
(SM i = o) ∧ (Si ≤ t < Si + pi,o); bi,k,o; 0

)
≤ Bk

∀Rk ∈ {R1, . . . , Rv}, ∀t ∈ H (6.32)

∑
Ai∈A

∑
o∈[1,Mi]

ite(SM i = o; bi,k,o; 0) ≤ Bk

∀Rk ∈ {Rv+1, . . . , Rq} (6.33)

Precedence constraints (6.30) state that, for any pair (Ai, Aj) ∈ E, the time
difference between the starts of these activities cannot be smaller than the
defined time lag for the selected execution modes. Note that minimal and
maximal time lags can be stated equally because of the negative sign of max-
imal time lags. Constraints (6.31) state that each activity has to run in one
of the available modes. The renewable resource constraints (6.32) state that
the capacities of the renewable resources cannot be exceeded by the activities
running at any particular time. The non-renewable resource constraints (6.33)
require that the total demand on a non-renewable resource cannot exceed its
availability.
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6.3.2 Formulation

Similarly to RCPSP, MRCPSP and RCPSP/t, the SMT formulation that we
provide here is for a decisional version of the MRCPSP/max, and optimisation
will be achieved by implementing an ad-hoc algorithm for this problem that
is described in Section 6.3.3. We also describe there how to pre-compute an
initial scheduling horizon.

The formulation that we now introduce is very similar to the one presented
for the MRCPSP in Section 6.1. The main observable difference is in Con-
straints (6.37), that now are generalised precedence relations depending on
the execution modes of the two activities involved in the precedence relation.
Thanks to the high expressivity of SMT we are able to define this conditioned
precedence value with a simple logic expression. However, the generalised
precedence relations require us to modify the definition of the precedence path
cover P(t), since now a generalised precedence relation (Ai, Aj) ∈ E is not
an end-start relation, and does not necessarily imply that the two involved
activities do not run in parallel. We will be able to detect that two activities
Ai, Aj cannot overlap according to the generalised precedence relations if one
of the following holds:

• (Ai, Aj) ∈ E, and gi,j,o,o′ ≥ pi,o, for all execution modes o and o′.

• (Ai, Aj , li,j) ∈ E∗, and li,j ≥ pi,o, for all execution modes o.

Hence, P(t) has to be a path cover of the graph G′∗(t) = (V (t), E′∗(t)), where
E′∗(t) ⊆ E∗(t) contains only pairs of activities (Ai, Aj) which cannot overlap.

Our formulation for the MRCPSP/max has the same three sets of variables
than the MRCPSP:

Si: Integer variables denoting the start time of activity Ai, for all Ai ∈ V .

smi,o: Boolean variables which are true iff activity Ai runs in mode o, for all
Ai ∈ V , and for all o ∈ [1,Mi].

xi,t,o: Boolean variables which are true iff activity Ai is running at time t in
mode o, for all Ai ∈ A, for all t ∈ RTW (Ai), and for all o ∈ [1,Mi].
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Then, the problem is formulated as:

S0 = 0 (6.34)

Si ≥ ES(Ai) ∀Ai∈{A1, . . . , An+1} (6.35)

Si ≤ LS(Ai) ∀Ai∈{A1, . . . , An+1} (6.36)

(smi,o ∧ smj,o′)→ (Sj − Si ≥ gi,j,o,o′) ∀(Ai, Aj) ∈ E,
∀o ∈ [1,Mi],∀o′ ∈ [1,Mj ] (6.37)

Sj − Si ≥ li,j ∀(Ai, Aj , li,j) ∈ E∗ (6.38)∨
o∈[1,Mi]

smi,o ∀Ai∈V (6.39)

smi,o ∨ smi,o′ ∀Ai ∈ V, ∀o ∈ [1,Mi − 1],

∀o′ ∈ [o+ 1,Mi] (6.40)

xi,t,o ↔ (Si ≤ t ∧ t < Si + pi ∧ smi,o) ∀Ai ∈ A, ∀o ∈ [1,Mi],

∀t ∈ RTW (Ai) (6.41)∑
Ai ∈ A, s.t. :
t ∈ RTW (Ai)

∑
o∈[1,Mi]

bi,k,o · xi,t,o ≤ Bk
∀Rk ∈ R1, . . . , Rv,
∀t ∈ H (6.42)

∑
Ai∈A

∑
o∈[1,Mi]

bi,k,o · smi,o ≤ Bk ∀Rk ∈ Rv+1, . . . , Rq (6.43)

Constraint (6.34) ensures that the initial dummy activity starts at time 0.
Constraints (6.35) and (6.36) bound the start time variables using the time
windows, and by doing that the makespan Sn+1 is bounded. Constraints (6.37)
define the generalised precedence relations, relative to which is the execution
mode of the two involved activities, and (6.38) define the extended precedences.
Constraints (6.39) and (6.40) ensure that each activity runs in exactly one
execution mode. Constraints (6.41) give to variables xi,t,o the appropriate
behaviour according to their semantics. Constraints (6.42) and (6.43) define
the renewable and non-renewable resource constraints respectively.

Similarly to MRCPSP, we have the two following implicit constraints:∑
Aj∈Pi

∑
o∈[1,Mj ]

xj,t,o ≤ 1 ∀t ∈ H, ∀Pi ∈ P(t) (6.44)

∑
o∈[1,Mi]

smi,o = 1 ∀Ai ∈ V (6.45)
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Therefore we will encode the resource constraints (6.42) and (6.43) with a
PB(AMO) and PB(EO) encoding respectively.

6.3.3 Optimisation

We achieve minimisation of the makespan by applying iterative procedures
like the one described in Algorithm 8. However, the generalised precedence
relations again make an important difference with respect to the scheduling
problems we have considered so far, this time due to the maximal time lags.
Let us consider an example time lag gi,j,o,o′ = −3 for some pair of activities
(Ai, Aj) ∈ E and modes o, o′. This means that, in these modes, activity Aj
must start at least -3 time units after Ai. This can also be read as activ-
ity Ai cannot start more than 3 time units after Aj , and this is why this is
called a maximal time lag. The PSGS greedy heuristic assumes that there is
no restriction on how late an activity can start, but the maximal time lags
break this property, and make the PSGS heuristic invalid. Therefore, we will
compute a first upper bound of the makespan using a different approach. One
possible UB could be obtained by trying to make a schedule in which no two
activities run at a same time, considering the highest duration for each activ-
ity. In order to satisfy minimum time lags in such schedule, after the start of
each activity Ai, we can define an inactivity period greater or equal than all
the minimal time lags from Ai to any other activity Aj . Even though such
a schedule might be inconsistent w.r.t. maximal time lags or non-renewable
resource constraints, the optimal makespan will be within the UB defined by
this schedule. We refer to this bound as the trivialUB, and it takes the value:

trivialUB =
∑
Ai∈A

max
o∈[1,Mi]

max

pi,o, max
(Ai, Aj) ∈ E,
o′ ∈ [1,Mj ]

gi,j,o,o′


 (6.46)

The trivialUB might be very far from the optimum makespan, and this can
penalise a Time formulation. Hence, the trivialUB is not a good candidate
from which to start our search. To overcome this issue, we implement an
optimisation procedure inspired in the one presented in [VLS15], which consists
of three-steps:

1. Find a LB of the makespan. We minimise a relaxed version of
the MRCPSP/max which does not include renewable resource Con-
straints (6.42), by following a top-bottom search like the one of Algo-
rithm 8 starting from trivialUB. Note that with this relaxation, it is
not required to include variables xi,t,o nor Constraints (6.41), and the
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number of variables and constraints is independent from the scheduling
horizon. Therefore we can start the search from a large UB .

2. Find a UB of the makespan. We optimise a single-mode version of the
MRCPSP/max, by enforcing the execution modes to be the ones of the
optimal solution found in step 1 —note that now Constraints (6.43) can
be ignored because the selected modes already satisfy them. We perform
a bottom-top search, i.e. we try increasing upper bounds, starting from
LB , until a model is found, or trivialUB is reached. The solution found in
this step (if any) is a valid solution of the original problem, and therefore
its makespan is a valid UB . If no solution is found, we use trivialUB as
UB .

3. Solve MRCPSP/max. This last step is only required when UB > LB ,
because otherwise the solution found in the second step is already the
optimum of the original problem. If UB > LB , we follow the top-bottom
search of Algorithm 8.

Steps 1 and 2 are in fact a substitution for the PSGS algorithm, i.e. they
let us obtain a first solution whose makespan can be used as UB . There
are two main differences with respect to the algorithm from [VLS15]. The
first one is that in [VLS15], in step 1 it uses a MIP formulation in which the
renewable resource constraints are relaxed using energetic reasoning —instead
of completely ignoring them. The second difference is that in [VLS15] built-in
optimisation methods are used in all three steps.

6.3.4 New Hard MRCPSP/max Instances

Most of the recent approaches on solving the MRCPSP/max have been evalu-
ated on the datasets generated in [Sch98] and available in the PSPLib [KS97].
In particular there are three datasets, each with 270 problem instances, namely
mm30, mm50 and mm100 (instances have 30, 50 and 100 non-dummy activ-
ities). The number of execution modes ranges from 3 to 5, and there are 3
renewable and 3 non-renewable resources in each instance. In [VLS15] it was
pointed out that, in the previously mentioned instances, resource constraints
are not the hardest part of the problem. They used the relaxations on re-
source constraints mentioned in Section 6.3.3 to find a LB and an UB and it
turned out that, in most of the cases, these bounds were equal and therefore
an optimal solution was found without the need of encoding the whole original
problem.

We have studied why the resources play such a minor role in those datasets.
For 1432 out of the total 2430 non-renewable resources constraints, counting
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all instances of all datasets, it is trivially true that the demands do not ex-
ceed the capacity of the resource, i.e., any assignment of modes satisfies Con-
straint (6.42) for these resources. We have also checked if the relaxed optimal
solutions obtained in step 1 of our optimisation procedure satisfy the renew-
able resource constraints, which are not enforced in the relaxation of step 1.
We have observed that the relaxed optimal solutions found for 593 out of the
810 instances indeed satisfy the renewable resource constraints although they
were not encoded, and hence the solutions are also optimal solutions of the
original problem. This number may be larger because some instances timed
out without having found the optimal solution of the relaxation, and therefore
have not been counted.

These characteristics, in addition to the fact that all the mentioned in-
stances have been closed, suggest us that there is a need for new and more
challenging datasets, in particular regarding the hardness of resource con-
straints. The reason why most renewable and non-renewable resources barely
constrain the instances is because the capacities are large enough to supply
the demands of the activities in a large amount of the possible combinations of
mode assignments. For this reason, we propose to use as a basis the same in-
stances, but shrinking the capacities of the resources to amounts which make
them non-dummy. For the case of the renewable resources, we have con-
ducted some experiments to see approximately which capacity is needed to
make the optimal makespan of an instance increase. We have observed that,
given the original demand values and precedence network topologies, for ca-
pacities smaller than 30, rarely any instance has an optimal makespan equal
to the optimal of the MRCPSP/max without resource constraints. Regarding
the non-renewable resources, the original dataset was created with demands
ranging from 1 to 10. In the case that all activities required the intermediate
amount of 5 units for each non-renewable resource, a capacity of 5n would
be needed to supply the demands, n being the number of activities of the
instance. Considering these facts, we have generated two new versions of each
one of the mm30, mm50 and mm100 datasets, namely mm{30,50,100} 1 and
mm{30,50,100} 2. They are the result of replacing the resource capacities as
stated in Table 6.3. The new mm{30,50,100} 2 datasets are intended to be
highly constrained by resources. This is indeed the case, since we have not been
able to find any relaxed solution satisfying the renewable resource constraints,
and no non-renewable resource constraint is dummy. Sets mm{30,50,100} 1
are a bit easier regarding renewable resources.
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Set name mm30 1 mm50 1 mm100 1

Renewable capacity [30,39] [30,39] [30,39]

Non-renewable capacity [135,164] [235,264] [485,514]

Set name mm30 2 mm50 2 mm100 2

Renewable capacity [20,29] [20,29] [20,29]

Non-renewable capacity [135,164] [235,264] [485,514]

Table 6.3: Resource capacities of the new datasets. The capacity of each
resource of each instance have been generated uniformly and independently at
random in the interval indicated in the corresponding cell of the table.

6.3.5 Results

We compare our system, which we refer to as SMT, with the other two best
exact systems in the literature (up to our knowledge), which are the following:

• The system presented in [VLS15], that we also used to solve RCPSP and
MRCPSP. We will refer to this system as FDS.

• The system presented in [SH16]. It uses a handler for an extension of the
cumulative constraint for the MRCPSP/max integrated into the SCIP
optimisation framework. We will refer to this system as SCIP.

We have run all three solvers on both the old and the new datasets on identical
machines. It is a 8GB Intel R© Xeon R© E3-1220v2 machine at 3.10 GHz. SMT
uses Yices 2.4.2 [DdM06a] as the core SMT solver. The results are contained
in Table 6.4.

FDS is doubtlessly the best solver for the original datasets, with only 3
timeouts in the hardest dataset (mm100) and average runtimes one order of
magnitude lower than the other approaches. This is because its MIP relaxation
works extremely well with generalised precedence relations. It must be noted
that SCIP does not start by solving a relaxed MRCPSP/max with respect to
resources, which penalises this approach in these datasets. On the other hand
we can see that, in the new datasets, which are more constrained by resources,
SMT is able to solve more instances than the other approaches in all cases
except for the mm100 1 dataset. We remark that 2 out of the only 3 instances
that FDS solves in this dataset are optimally solved already in the relaxation
solving steps.
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set tool Q1 med. Q3 avg. t.o.

mm30
FDS 0.12 0.19 0.32 0.48 0
SCIP 1.91 2.69 4.68 17.13 1
SMT 0.52 0.68 0.97 0.87 0

mm50
FDS 0.27 0.49 0.99 1.31 0
SCIP 6.61 10.89 22.23 78.11 24
SMT 2.55 3.11 4.16 7.15 0

mm100
FDS 1.25 3.53 10.80 21.69 3
SCIP 69.91 187.52 t.o. 289.70 90
SMT 28.25 43.53 527.07 196.05 65

mm30 1
FDS 3.37 8.24 21.76 30.39 1
SCIP 18.19 49.94 358.43 182.11 49
SMT 2.64 5.41 12.68 18.55 1

mm50 1
FDS 56.84 271.80 t.o. 324.17 113
SCIP t.o. t.o. t.o. 496.72 206
SMT 40.73 249.27 t.o. 312.23 108

mm100 1
FDS t.o. t.o. t.o. 593.74 267
SCIP t.o. t.o. t.o. 600.00 270
SMT t.o. t.o. t.o. 600.00 270

mm30 2
FDS 12.43 33.81 130.96 119.77 24
SCIP 135.56 t.o. t.o. 420.63 155
SMT 7.01 19.01 68.71 78.61 12

mm50 2
FDS t.o. t.o. t.o. 517.08 216
SCIP t.o. t.o. t.o. 584.68 257
SMT 473.73 t.o. t.o. 491.52 192

mm100 2
FDS t.o. t.o. t.o. 600.00 270
SCIP t.o. t.o. t.o. 600.00 270
SMT t.o. t.o. t.o. 600.00 270

Table 6.4: Solving time results for the instances of MRCPSP/max. All values
are in seconds. We give a timeout of 600 seconds to each execution. The first
column contains the name of the dataset. Column 2 specifies, for each row,
the tool used to solve the instances of the dataset. Columns Q1, med. and Q3
specify the first, second, and third quartile of the running times of a dataset
(t.o. means timeout for that quartile). Column avg. contains the average
run time, counting timeouts as 600 seconds. The last column contains the
number of instances that timed out without having found an optimal solution
and proven its optimality.
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6.4 MSPSP

The different scheduling problems that we have tackled so far in this chapter
are generalisations of the RCPSP, and therefore an RCPSP instance can be
stated as an instance of the more generic problem. In this section we tackle
the Multi-Skill Project Scheduling Problem (MSPSP), which also generalises
the RCPSP but presents an essential redefinition of the concept of resource
constraints. Like the RCPSP, the MSPSP consists of a project with a set of
non-preemptive activities to schedule, there are end-start precedence relations
to respect, and the makespan has to be minimised. However, in the MSPSP
the activities do not directly ask for resources but they ask for skills. These
skills are supplied by renewable resources, and every resource is specialised
to master a subset of the skills. A clear example is that the resources are
workers. A worker can master many skills, and he/she can perform a different
skill on each activity. The resource constraints state that one resource (worker)
can only work at one skill of one activity at a time, and that a resource can
only supply skills that it masters. The resources are unary, i.e. they can only
supply one unit of skill at a time, but the activities may require many units
of each skill. Also, the set of resources that an activity is using cannot change
at any moment of execution, i.e. the resource usage of the activities is also
non-preemptive.

The MSPSP is also known as Project Scheduling with Flexible Resources
[CLSdG12]. It was argued in [BM08] that an instance of the MSPSP can also
be stated as an instance of the MRCPSP, by simulating the different combina-
tions of resource assignments to an activity as execution modes. However, the
resulting number of execution modes can become very large due to the com-
binatorial explosion. Therefore, the MSPSP is usually tackled with specific
techniques for this problem. Some MILP models have been studied to solve
this problem [BM08, Cas12, CLSdG12], with the Time-based ones being espe-
cially efficient. In the latter it was proposed to use a set of cumulative cuts on
the MILP model, which are similar to the renewable resource constraints of the
RCPSP. This gives a very important speedup of the solving process. [YFS17]
proposed a CP model together with a search strategy, which was then solved
using a LCG solver. There, the authors also take advantage of the cumulative
cuts, which in the CP setting can be seen as implied or redundant constraints.

In this section we propose an SMT formulation for the MSPSP. We also
take into account the cumulative implied constraints from [Cas12], that in
our formulation can be expressed as PB(AMO) constraints, and therefore we
can compactly encode them to SAT. Our results show that the presented
formulations are state-of-the-art in exact solving for the MSPSP.
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6.4.1 Problem Description

The Multi-Skill Project Scheduling Problem (MSPSP) is defined by a tuple
(V, p, E,R,L,m, b) where:

• V = {A0, A1, . . . , An, An+1} is a set of activities. Activities A0 and An+1

are dummy activities representing, by convention, the start and the end
of the schedule, respectively. The set of non-dummy activities is defined
by A = {A1, . . . , An}.

• p is a vector of naturals, with pi being the duration of activity Ai . For
the dummy activities, p0 = pn+1 = 0, and pi > 0, ∀Ai ∈ A.

• E is a set of pairs of activities representing end-start precedence relations.
Concretely, (Ai, Aj) ∈ E iff the execution of activity Ai must precede
that of activity Aj , i.e., activity Aj must start after activity Ai has
finished.

Again we assume that we are given a precedence activity-on-node graph
G = (V,E) that contains no cycles, that A0 is a predecessor of all other
activities and An+1 is a successor of all other activities.

• R = {R1, . . . , Rv} is a set of unary renewable resources.

• L = {L1, . . . , Ls} is a set of skills.

• m ∈ Bv×s is a matrix of Booleans, with mk,l being true iff resource Rk
masters skill Ll.

• b ∈ N(n+2)×s is a matrix of naturals, where bi,l represents the number of
resources mastering skill Ll that activity Ai requires during its execution.
The start and end dummy activities do not require skills, i.e. b0,l and
bn+1,l are 0 for any skill Ll.

We will denote by G∗ = (V,E∗) the extended precedence graph, which has a
weight li,j for each edge (Ai, Aj) ∈ E∗, being li,j the critical path from Ai to Aj
in G. Having computed G∗, and given a scheduling horizon H = {0, . . . ,UB},
the different data related with time windows can be obtained as explained in
Section 2.1.3: ES(Ai), LS(Ai) and RTW (Ai).

A schedule is a vector of naturals S = (S0, S1, . . . , Sn, Sn+1) where Si de-
notes the start time of activity Ai. A resource assignment RA is a matrix of
three dimensions of Booleans, where RAi,k,l is true iff activity Ai uses resource
Rk to perform skill Ll. A solution of the MSPSP is a schedule S of minimal
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makespan Sn+1 and a resource assignment RA subject to the following con-
straints:

Minimise: Sn+1 (6.47)

Subject to:

Sj − Si ≥ pi ∀(Ai, Aj) ∈ E (6.48)

mk,l → RAi,k,l ∀Ai ∈ A, ∀Rk ∈ R, ∀Ll ∈ L (6.49)∑
Rk∈R

RAi,k,l = bi,l ∀Ai ∈ A, ∀Ll ∈ L (6.50)

∑
Ll∈L

∑
Ai∈A

ite
(
(Si ≤ t < Si + pi); RAi,k,l; 0

)
≤ 1

∀Rk ∈ R,∀t ∈ H (6.51)

Precedence constraints (6.48) state that, for any pair (Ai, Aj) ∈ E, activity
Aj cannot start until Ai has finished. Constraints (6.49) state that a resource
cannot perform a skill that it does not master. Constraints (6.50) state that
each activity must have the required number of resources covering each one of
the skills. Constraints (6.51) state that a resource can only work at one skill
of one activity at a time.

Figure 6.1 shows an example MSPSP instance with 7 non-dummy activi-
ties, 7 resources and three skills. An optimal solution of this instance is shown
in Figure 6.2.

6.4.2 Formulation

As stated in the introduction of this section, we will use a set of cumula-
tive implied constraints proposed in [Cas12]. These constraints state that the
number of activities running at a particular time cannot be greater than the
number of resources required to supply their skills requirements. These im-
plied constraints can be stated for any subset of the skills. Considering the
example instance of Figure 6.1, the number of resources mastering skill L1 is
3. Therefore, any subset of activities requiring more than 3 units of skill L1

cannot run in parallel at any time. Using an RCPSP-like Time formulation,
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A0

A1

0

A2

0

A3

2

A4
1

A5
2

A6
1

1

A7
3

2

A8

1

A0 A1 A2 A3 A4 A5 A6 A7 A8

L1 0 2 1 2 0 1 0 1 0
L2 0 2 0 1 2 1 0 1 0
L3 0 2 1 1 1 0 1 1 0

R1 R2 R3 R4 R5 R6 R7

L1 0 0 0 1 0 1 1
L2 1 1 1 0 1 1 1
L3 0 0 0 0 1 1 1

Figure 6.1: Example MSPSP instance with 7 non-dummy activities, 3 skills
and 7 resources. At the top: precedence graph, where the edge weight is the
duration of the predecessor activity. In the middle, transposed demand matrix
b. At the bottom, transposed mastery matrix m.
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Figure 6.2: Optimal solution of the instance of Figure 6.1, with schedule
S = (0, 0, 3, 2, 4, 3, 5, 7, 8). Each box shows the period in which a resource
is supplying a skill for an activity.
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with activity xi,t denoting whether activity Ai runs at time t, we could state
that: ∑

Ai∈A
bi,1 · xi,t ≤ 3 ∀t ∈ H

Note that we could apply the same reasoning not only to L1, but also to any
subset of L. For instance, we know that the number of resources that master
one of {L1, L2} is 7. Hence, we can state that:

∑
Ai∈A

xi,t · ∑
Ll∈{L1,L2}

bi,l

 ≤ 7 ∀t ∈ H

Let us denote by PW(L) the power set of L, and by RL(L′) the set of resources
that master at least one of the skills in L′, with L′ ∈ PW(L). In general, the
following must hold:

∑
Ai∈A

xi,t · ∑
Ll∈L′

bi,l

 ≤ |RL(L′)| ∀L′ ∈ PW(L), ∀t ∈ H

The number of these implied constraints can become very large in cases where
there is a large number of skills. However, in [Cas12] it was observed that
most of these constraints become dominated by others, and can be removed.
In particular, they were able to remove between 60% and 90% of the constraints
in most instances. We will illustrate this dominance analysis continuing with
our example of Figure 6.1. The number of resources mastering some skill in L is
7, exactly the same that the resources mastering some of {L1, L2}. Therefore,
the following implied constraint is stronger that the one we obtained with
{L1, L2}: ∑

Ai∈A

xi,t ·∑
Ll∈L

bi,l

 ≤ 7 ∀t ∈ H

We will say that L′ is dominated by L′′, iff L′ ⊂ L′′ ∧ |RL(L′)| = |RL(L′′)|.
Then, we denote by PWR(L) the subset of PW(L) that contains all subsets
of L not dominated by any other set of skills in PW(L). We will only encode
implied constraints for sets of skills in PWR(L).

Now we present a Time-based SMT formulation for the MSPSP. Again, it
is a decision version which will be optimised using Algorithm 8 described in
Section 5.4. In order to compute a first solution to get a good UB , we use an
adaptation of the PSGS that we describe in Section 6.4.3.
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We will use many sets of variables with combined semantics, with the aim
of reducing the number of clauses and the size of those. We define the following
two additional functions that we use to reduce the number of variables and
clauses of the formulation.

R(Ai): This is the subset of resources that master at least one of the skills
demanded by activity Ai.

L(Ai): This is the subset of skills that activity Ai demand, i.e. the skills Ll
such that bi,l > 0.

The sets of variables that we introduce are the following:

Si: Integer variables denoting the start time of activity Ai, for all Ai ∈ V .

xi,t: Boolean variables which are true iff activity Ai is running at time t, for
all Ai ∈ A, and for all t ∈ RTW (A).

ari,k: Boolean variables which are true iff activity Ai uses resource Rk, for all
Ai ∈ A, and for all Rk ∈ R(Ai).

arsi,k,l: Boolean variables which are true iff activity Ai uses resource Rk for
skill Ll, for all Ai ∈ A, for all Rk ∈ R(Ai), and for all Ll ∈ L(Ai) such
that mk,l, i.e. such that resource Rk masters skill Ll.

arti,k,t: Boolean variables which are true iff activity Ai uses resource Rk at
time t, for all Ai ∈ A, for all Rk ∈ R(Ai), and for all t ∈ RTW (Ai).
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Using these variables we can define our SMT formulation:

S0 = 0 (6.52)

Si ≥ ES(Ai) ∀Ai∈{A1, . . . , An+1} (6.53)

Si ≤ LS(Ai) ∀Ai∈{A1, . . . , An+1} (6.54)

Sj − Si ≥ pi ∀(Ai, Aj) ∈ E (6.55)

Sj − Si ≥ li,j ∀(Ai, Aj , li,j) ∈ E∗ (6.56)

ari,k ↔
∨

Ll ∈ L(Ai),
s.t. : mk,l

arsi,k,l ∀Ai ∈ A, ∀Rk ∈ R(Ai) (6.57)

xi,t ↔ Si ≤ t ∧ t < Si + pi ∀Ai ∈ A,
∀t ∈ RTW (Ai) (6.58)

arti,k,t ↔ ari,k ∧ xi,t ∀Ai ∈ A, ∀Rk ∈ R(Ai),

∀t ∈ RTW (Ai) (6.59)∑
Rk ∈ R,
s.t. : mk,l

arsi,k,l = bi,l ∀Ai∈A, ∀Ll ∈ L(Ai) (6.60)

∑
Ll ∈ L(Ai),
s.t. : mk,l

arsi,k,l ≤ 1 ∀Ai ∈ A, ∀Rk ∈ R(Ai) (6.61)

∑
Ai ∈ A, s.t. :
t ∈ RTW (Ai),
Rk ∈ R(Ai)

arti,k,t ≤ 1 ∀Rk ∈ R, ∀t ∈ H (6.62)

∑
Ai ∈ A, s.t. :
t ∈ RTW (Ai)

xi,t · ∑
Ll∈L′

bi,l

 ≤ |RL(L′)| ∀L′ ∈ PWR(L), ∀t ∈ H (6.63)

Constraint (6.52) ensures that the initial dummy activity starts at time 0. Con-
straints (6.53) and (6.54) bound the start time variables using the time win-
dows, and by doing that it is bounded the makespan Sn+1. Constraints (6.55)
and (6.56) define the precedences and the extended precedences respectively.
Constraints (6.57), (6.58) and (6.59) are channelling constraints defining the
semantics of variables ari,k, xi,t and arti,k,t respectively. Constraints (6.60)
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ensure that each activity has enough resources to cover each one of its skills.
Note that it is implicitly forbidden that a resource Rk performs a skill Ll that
it does not master, since the corresponding variable arsi,k,l is not introduced.
These are cardinality constraints that we encode to SAT using the sorting
network based encoding from [ANORC13]. Constraints (6.61) state that a re-
source can contribute with at most one skill in one activity. Constraints (6.62)
ensure that a resource does not contribute to more than one activity at a time.
Both Constraints (6.61) and (6.62) are AMO constraints, that we encode into
SAT using pairwise mutual exclusions between variables, i.e. clauses of the
form x∨ y for any pair of variables in the AMO constraint. Constraints (6.63)
are the cumulative implied constraints, taking into account time windows.

Note that Constraints (6.63) are PB, and they contain variables xi,t with
the same semantics as resource constraints in RCPSP. Therefore there are
implicit AMO constraints over variables introduced by precedences. The fol-
lowing implicit AMO constraints are logical consequence of Constraints (6.55)
, (6.56) and (6.58): ∑

Aj∈Pi

xj,t ≤ 1 ∀t ∈ H, ∀Pi ∈ P(t) (6.64)

We will use the Minimal Encoding for PB(AMO) constraints to encode Con-
straints (6.63) with the variable partitions given by AMO Constraints (6.64).

6.4.3 UB Computation

In order to compute an UB for the makespan we use the PSGS method,
tuned to also deal with resource assignments. Recall that PSGS, described in
Section 2.1.3, greedily constructs a schedule by trying to set the start time of
as much activities as possible at time t, respecting precedence and resource
constraints. When no more activities can be placed at time t, it moves to
a greater time instant and continues the procedure. Therefore, one of the
sub-problems contained in this procedure is to determine whether an activity
can start at a given time t, taking into account that a (possibly empty) set of
activities have already been scheduled and are running at time t, and therefore
some amount of the resources are being used. In the RCPSP it is trivially
checkable if there is enough free capacity of the resources. However this is not
straightforward in the MSPSP, since we have to make sure that the resource
assignment of an activity remains the same during its execution.

For this purpose we have implemented Algorithm 9, which receives: a
vector of skill requirements of an activity β = b1, . . . , bs; a set of free resources
FR ⊆ R; the mastery matrix m; an input/output set U of pairs of the form
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Algorithm 9 FindResAssignment

Input: vector β : b1, . . . , bs, set FR of free resources, mastery matrix m of
size v × s, input/output set of unfeasible U

Output: returns (α, true) if an assignment α can be constructed, ({}, false)
otherwise

1: if
∑s

l=1 bl = 0 then return ({}, true) end if
2: if

∑s
l=1 bl ≤ |FR| then

3: Rk ← getF irst(FR)
4: FR′ ← FR \ {Rk}
5: for all l ∈ 1..s do
6: if mk,l and bl > 0 then
7: β′ ← decreaseBy1 (β, l)
8: if (β′, FR′) /∈ U then
9: (α, feas)← FindResAssignment(β′, FR′,m,U)

10: if feas then
11: return (α ∪ {(Rk, Ll)}, true)
12: end if
13: end if
14: end if
15: end for
16: if (β, FR′) /∈ U then
17: (α, feas)← FindResAssignment(β, FR′,m,U)
18: if feas then
19: return (α, true)
20: end if
21: end if
22: end if
23: U ← U ∪ {(β, FR)}
24: return ({}, false)
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(β′, FR′), where (β′, FR′) ∈ U means that it is not possible to satisfy the
demand vector β′ with the free resources FR′. If it is possible to find a
resource assignment using resources in FR that covers the skill requirements
β, the algorithm returns (α, true). Here α is a resource assignment expressed
as a set of pairs (Rk, Ll), meaning that resource Rk will perform skill Ll. If it is
not possible to find an assignment satisfying the skill demands, the algorithm
returns ({}, false). The auxiliary method getFirst(FR) returns the resource of
FR that first occurs in the list of all resources R1, . . . , Rv, hence the backtrack
tree explores the resources in the same order in all paths. The auxiliary method
decreaseBy1 (β, l) returns β but replacing bl by bl − 1. Algorithm 9 follows
a backtracking scheme that explores all the possibilities. Each call of the
algorithm considers a resource, that is either assigned to a skill (line 9), or not
used (line 17). By means of dynamic programming the algorithms avoids to
look twice for an assignment of a particular resource set FR and skill demand
vector β. This is achieved by storing into set U the already tried pairs (β, FR).
This way, the algorithm is called only once for each possible pair, and the
number of calls is:

O(|FR| ·
s∏
l=1

(bl + 1))

This bound is acceptable for the instances that are currently tackled with exact
solving methods, and therefore we use Algorithm 9 as an oracle in the PSGS
method. More precisely, when we try to place the start of an activity Ai at
time t, we call Algorithm 9 with β = bi,1, . . . , bi,s, with FR being the subset
of the resources that are not yet occupied at time t, and U being the empty
set in the first call. The contents of U are kept between different calls.

6.4.4 Results

In this section we evaluate our formulation using the same sets that were used
in [YFS17] and that the authors made publicly available. There are 5 datasets
with the following name and properties:

set-1a: It contains 216 instances with 20 non-dummy activities, 4 skills and
between 10 and 30 resources.

set-1b: It contains 216 instances with 40 non-dummy activities, 4 skills and
between 20 and 60 resources.

set-2a: It contains 110 instances with between 18 and 49 non-dummy activi-
ties, between 2 and 8 skills, and between 5 and 14 resources.
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set tool Q1 med. Q3 avg. t.o.

set-1a
LCG 0.43 0.59 1.46 3.48 0
SMT 0.16 0.27 0.50 4.08 0

set-1b
LCG t.o. t.o. t.o. 564.63 199
SMT 51.41 t.o. t.o. 384.23 123

set-2a
LCG 2.08 22.30 t.o. 244.31 40
SMT 0.37 4.76 t.o. 195.87 30

set-2b
LCG 0.55 3.44 287.85 161.33 18
SMT 0.13 1.29 16.44 90.00 10

set-2c
LCG 0.24 0.62 2.90 7.02 0
SMT 0.09 0.24 0.64 10.44 1

Table 6.5: Solving time results for the instances of MSPSP. All values are in
seconds. We give a timeout of 600 seconds to each execution. The first column
contains the name of the dataset. Column 2 specifies, for each row, the tool
used to solve the instances of the dataset. Columns Q1, med. and Q3 specify
the first, second, and third quartile of the running times of a dataset (t.o.
means timeout for that quartile). Column avg. contains the average run time,
counting timeouts as 600 seconds. The last column contains the number of
instances that timed out without having found an optimal solution and proven
its optimality.

set-2b: It contains 77 instances with between 30 and 60 non-dummy activi-
ties, between 9 and 15 skills, and between 5 and 19 resources.

set-2c: It contains 91 instances with between 20 and 30 non-dummy activities,
between 3 and 12 skills, and between 4 and 15 resources.

Sets set-1a and set-1b were originally created in [CLSdG12, ACSdG16], but
although we did our best to contact the authors and obtain the datasets, we
did not succeed. We have also been unable to obtain their exact solvers. The
authors of [YFS17] had the same difficulties, and they reproduced the datasets
from scratch using the same parameters, and these are the sets that we use
in our experiments. Sets set-2a, set-2b and set-2c were originally created
in [MBMPR14].

We compare our system with the one presented in [YFS17], which has
shown to be the best exact system for these sets. It consists of a CP model
which is solved with the LCG solver chuffed. That system reports the best
results when using a variable decision strategy named priority search, which
allows them to organise the variables by groups. For each activity, they create
a group containing a variable representing its start time, and also all the
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variables representing the resource assignments for that activity. Then, the
search procedure assigns all the variables in a same group consecutively before
branching on variables of another group. We will refer to this system as LCG,
and to our system as SMT.

We have run both LCG, and SMT on identical machines. It is a 8GB
Intel R© Xeon R© E3-1220v2 machine at 3.10 GHz. In all experiments we use
Yices 2.6.1 [DdM06a] as the core SMT solver. The results are presented in
Table 6.5. It can be appreciated our system is able to solve a substantial
number of instances more than LCG, and the percentiles and average of the
solving time are also smaller in most cases. The improvement in set-1b is
especially significant, and this set turns to be the hardest one. SMT is able to
solve a considerable number of instances more than LCG. Only in set-2c LCG
has solved one instance more than SMT, although SMT has a smaller third
quartile solving time.

6.5 Chapter Summary

In this chapter we have proposed methods and SMT formulations to efficiently
solve different RCPSP extensions. Each of the tackled problems presents ad-
ditional constraints which we can naturally handle with our formulations. For
the MRCPSP we deal with multiple execution modes by representing each
mode choice with a Boolean variable. Then, this variable is used to define
conditional values on the precedence constraints and identify what is the ef-
fective resource consumption of each activity. For the RCPSP/t, the Time-
indexed approach let us naturally deal with the time-dependency of resource
availabilities and requests. Regarding MRCPSP/max, the generalised prece-
dences can be defined by setting the appropriate values (possibly negative) in
IDL expressions that specify the minimum time difference between the starts
of two activities. For the MSPSP, we formulate the resource constraints by
introducing many variables with combined semantics. Using these variables,
we are able to identify what resources are used by every activity, and whether
a resource is performing a particular activity at a particular time instant.

One of the core components of all formulations is the use of SAT encodings
of PB(AMO) constraints. We use the precedence relations to detect incom-
patibilities between activities, and from there we can detect AMO constraints.
In the different considered problems, there appear further AMO constraints,
due to having multiple execution modes or due to the variability of requests
over time.

We have provided solutions to perform a quick computation of an upper
bound for the makespan, in most cases based on the PSGS method. Comput-
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ing a good upper bound let us mitigate the potential drawback of Time-indexed
formulations, that is having long scheduling horizons. It is particularly rele-
vant the computation of the upper bound of the MSPSP, for which we provide
an algorithm to find resource assignments to activities that can be integrated
in PSGS. The only case in which we do not use PSGS is the MRCPSP/max,
where the maximal time lags make the method not suitable. Instead, in MR-
CPSP/max we first compute a lower bound of the makespan, by solving a
relaxation of the problem which is not penalised by long scheduling horizons.
Then we compute an upper bound by solving an over-constrained problem.
This method let us optimally solve a large number of the existing benchmark
instances without the need of solving an SMT formula representing the whole
original problem. Moreover we provide new and more challenging datasets for
the MRCPSP/max, which are not optimally solvable only with relaxations.

We evaluate our systems experimentally by solving the most relevant bench-
mark instances of the different problems from the literature. Also, we compare
with state-of-the-art exact solvers for each one of the problems. Our results
show that in most cases our systems give the best performance, both in solving
times and number of solved instances.





Chapter 7

New SAT Encodings of
PB(AMO) Constraints

There exist many works on encoding PB constraints to SAT that are not
based in decision diagrams [PS15]. The most powerful are based on Sequen-
tial Weight Counters [HMS12], Generalized Totalizers [JMM15], and Polyno-
mial Watchdog schemes [BBR09, MPS14]. In these works it is shown that
in some occasions these encodings can perform better than BDD-based ones.
In Chapter 4 we proposed an MDD-based SAT encoding of PB constraints
under the assumption that there exist some AMO relations on disjoint subsets
of variables, i.e. a specialised encoding for the PB constraint in a PB(AMO)
constraints. These results encourage us to address the question of whether
other SAT encodings of PB constraints not based on decision diagrams can
be improved in the presence of AMOs. In this chapter we revisit many state-
of-the-art SAT encodings of PB constraints and propose improved versions of
those encodings for PB(AMO) constraints. More precisely, we provide modi-
fications of the Sequential Weight Counter, Generalized Totalizer, and Global
Polynomial Watchdog encodings for encoding PB(AMO) constraints. We also
show that the new encodings preserve the propagation properties that the orig-
inal ones have for encoding PBs. Our experimental results show again that
the size of the SAT encodings of PB constraints can be dramatically reduced
thanks to taking the AMO constraints into account, and that there can be
a huge time performance improvement when using the new encodings. We
provide datasets which contain AMO constraints and PB constraints with dif-
ferent configurations, and we show that some encodings are better than others
for particular kinds of PB.

The work presented in this chapter has been published in [BCSV19]. This
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work is related to the objective number 4 of this thesis. The rest of this chapter
is organised as follows:

• Section 7.1 recalls the general idea of our encoding approach, and spec-
ifies some assumptions that we make.

• In Section 7.2 we introduce the Generalized Sequential Weight Counter
encoding.

• In Section 7.3 we introduce the Generalized Generalized Totalizer en-
coding.

• In Section 7.4 we introduce the Generalized Global Polynomial Watchdog
encoding, and explain how to adapt it to the Generalized Binary Merger
Encoding.

• Section 7.5 contains an experimental evaluation of the proposed encod-
ings.

• In Section 7.6 we summarise the contributions of this chapter.

7.1 Encoding Idea and Assumptions

Similarly to what we did in Chapter 4, the encodings that we propose in this
chapter encode PB(AMO)s of the form P ∧ M1 ∧ · · · ∧ MN in a combined
way. On the one hand we encode the conjunction of AMO constraints in
the usual way, i.e. we encode each Mi separately and use the conjunction of
all the resulting clauses. On the other hand we encode the PB constraint
P assuming that the accompanying AMO constraints are already enforced in
some way. This is precisely what will let us reduce the size of the encoding
of the PB constraint. We do not restrict to a particular encoding for the
AMO constraints. Even more, in the context of a bigger formula, if the AMO
constraints are logically implied by the formula at hand, then the encoding of
the PB constraint will suffice to obtain a correct encoding of the PB(AMO)
constraint (see Lemma 4.1.3).

We start each of the following sections giving an intuitive explanation of
an already existing encoding of PB constraints. Then, we propose a general-
ized version of it in order to encode PB(AMO) constraints. Since PB(AMO)
constraints generalize PB constraints, we follow the convention of naming the
new encodings after the original encoding, prefixing them with the word Gen-
eralized, e.g., from the Sequential Weight Counter (SWC) encoding we provide
the Generalized Sequential Weight Counter (GSWC) encoding.
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We make the following assumptions on the PB(AMO) constraint P ∧M1∧
· · ·∧MN at hand: (i) unless otherwise stated, P is of the form

∑n
i=1 qixi ≤ K,

with qi ≥ 0, i.e. it is monotonic decreasing (w.l.o.g., see Section 4.4.2); (ii) P
is neither trivially true nor false (i.e., we assume that 0 ≤ K <

∑n
i=1 qi); (iii)

no variable is trivially removable (i.e., 0 < qi ≤ K).
Our goal is to encode a PB(AMO) constraint of the form P ∧M1∧· · ·∧MN

in the already mentioned way, that is generating a set of clauses that behave as
an encoding of P for assignments satisfying the AMOs M1, . . . ,MN . Therefore,
similarly to what we do with the Minimal Encoding in Chapter 4, for each one
of the new encodings we receive as input the PB constraint P and a partition
X = {X1, . . . , XN} of the variables of P , such that Xi = scope(Mi).

7.2 Sequential Weight Counter Encoding

The Sequential Weight Counter (SWC) encoding for PB constraints was intro-
duced in [HMS12]. The idea is to encode the PB constraint by a circuit that
sequentially sums from left to right the coefficients (a.k.a. weights) qi whose
variable xi is set to true. Specifically, given a PB constraint

∑n
i=1 qixi ≤ K,

there is a sequence of n counters of K inputs and K outputs, where the i-th
counter is associated to variable xi. Each counter receives as input a vector of
Boolean variables, which is the unary representation of an integer value, and
adds the weight qi to the output, which is also a unary representation, if the
associated variable xi is set to true. Therefore, the i-th counter receives as
input

∑i−1
j=1 qjxj and outputs

∑i
j=1 qjxj . Note that the output of the counter

number i− 1 is the input of the i-th counter.
An example of a sequence of counters is shown in Figure 7.1. The encoding

introduces n ·K variables, denoted si,j , with 1 ≤ i ≤ n, 1 ≤ j ≤ K, where si,j
is the j-th output of the i-th counter and also the j-th input of the (i+ 1)-th
counter. The encoding introduces the clauses:

si−1,j ∨ si,j 2 ≤ i < n, 1 ≤ j ≤ K (7.1)

xi ∨ si,j 1 ≤ i < n, 1 ≤ j ≤ qi (7.2)

si−1,j ∨ xi ∨ si,j+qi 2 ≤ i < n, 1 ≤ j ≤ K − qi (7.3)

si−1,K+1−qi ∨ xi 2 ≤ i ≤ n (7.4)

where s0,j is the constant 0 for all j, to represent the input of the first counter
which is the empty sum. Clauses (7.1) state that

∑i
j=1 qjxj ≥

∑i−1
j=1 qjxj .

Clauses (7.2) and (7.3) enforce that if a variable xi is true then its coefficient
is added to the input of the next counter. Finally, Clauses (7.4) enforce that
the sum never exceeds K. Note that the output of the last circuit is not defined
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Figure 7.1: At the top: high level circuit representation of SWC (2x1 +
3x2 + 4x3 + 7x4 ≤ 8). At the bottom: high level circuit representation of
GSWC (2x1 + 3x2 + 4x3 + 7x4 ≤ 8, {{x1, x2}, {x3, x4}}).

by Clauses (7.1), (7.2) and (7.3) —i.e. clauses are not added for i = n— since
this is not necessary to encode the PB constraint. However, such clauses can
be added if it is desired to get a unary representation of

∑n
i=1 qixi as the

output of the circuit.

7.2.1 Generalized Sequential Weight Counter (GSWC)

We define the GSWC encoding by, instead of associating a single product
qixi from the PB constraint to each counter, associating a set of products to
each of them. In our generalization, given a partition X = {X1, . . . , XN} of
the variables of the PB constraint, the resulting formulation will have just
N counters, where the i-th counter will handle all the products qlxl for the
variables xl in Xi. If the variables in each set Xi are subject to an AMO
constraint then, given an assignment satisfying those constraints, at most one
coefficient ql will be added by each counter, and the output of the whole circuit
will correspond to the value of the left hand side sum of the PB constraint,
i.e.,

∑n
i=1 qixi. Analogously as in the original encoding, we will enforce that

it is not reached a sum that exceeds K. The GSWC encoding introduces the



7.2. SEQUENTIAL WEIGHT COUNTER ENCODING 135

following clauses:

si−1,j ∨ si,j 2 ≤ i < N, 1 ≤ j ≤ K (7.5)

xl ∨ si,j 1 ≤ i < N, xl ∈ Xi, 1 ≤ j ≤ ql (7.6)

si−1,j ∨ xl ∨ si,j+ql 2 ≤ i < N, xl ∈ Xi, 1 ≤ j ≤ K − ql (7.7)

si−1,K+1−ql ∨ xl 2 ≤ i ≤ N, xl ∈ Xi (7.8)

Clauses (7.5) propagate the accumulated sum in the same way as Clauses (7.1).
Clauses (7.6) and (7.7) enforce Si ≥ Si−1 +qlxl, for all xl ∈ Xi, where Si−1 and
Si are respectively the input and output value of the i-th counter. Clauses (7.8)
enforce that the sum never exceeds K. A high level circuit representation of
a GSWC encoding is shown in Figure 7.1.

The main difference between the SWC and GSWC encodings is that the
latter has only N counters, instead of n, and therefore introduces less fresh
variables (assuming N < n). Also, when N < n the number of Clauses (7.5) in
the GSWC encoding is smaller than the number of Clauses (7.1) in the SWC
encoding. The SWC encoding requires O(nK) auxiliary variables and O(nK)
clauses, while the GSWC encoding requires O(NK) auxiliary variables and
O(nK) clauses.

By GSWC (P,X ) we denote the set of clauses derived from a PB constraint
P and a partition X , as described above.

Lemma 7.2.1. Let P be a PB(AMO) of the form P ∧M1 ∧ · · · ∧MN , with
P of the form

∑n
i=1 qixi ≤ K, and X = {X1, . . . , XN} be a partition of the

variables of P , such that Xi = scope(Mi). The conjunction of GSWC (P,X )
with an encoding of M1 ∧ · · · ∧MN is an encoding of P.

In [HMS12] it is proved that the SWC encoding UP-maintains GAC. The
GSWC encoding preserves this property.

Theorem 7.2.2. Let P be a PB(AMO) of the form P ∧M1 ∧ · · · ∧MN , with
P of the form

∑n
i=1 qixi ≤ K, and X = {X1, . . . , XN} be a partition of the

variables of P , such that Xi = scope(Mi). The conjunction of GSWC (P,X )
with an UP-maintaining GAC encoding of M1 ∧ · · · ∧MN is UP-maintaining
GAC.

Proof. Let S denote the conjunction of GSWC (P,X ) with a UP-maintaining
GAC encoding of M1∧· · ·∧MN . Let A be a partial assignment of the variables
of S, which is extendible to a satisfying assignment of P. Therefore, no AMO
constraint Mi is violated under A. We need to show that for every variable x of
P such that x is not assigned in A, if A∪{x} cannot be extended to a satisfying
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assignment of P, then x is set to false by unit propagating A on S (note that
A ∪ {x} can always be extended to a satisfying assignment, so we don’t need
to consider this case). W.l.o.g., assume that x1 ∈ X1 is such variable. If
A ∪ {x1} cannot be extended to a satisfying assignment of M1 ∧ · · · ∧ MN

then, by the assumption that S contains an UP-maintaining GAC encoding of
M1∧· · ·∧MN , we have that x1 is set to false by unit propagation. Assume now
the contrary, i.e., that A ∪ {x1} can be extended to an assignment satisfying
the AMOs. In this case, the reason why UP should set x1 to false is that
A ∪ {x1} cannot be extended to satisfy P . Since A ∪ {x1} does not violate
M1 ∧ · · · ∧MN , at most one variable in Xi is true in A, for 2 ≤ i ≤ N , and
no variable in X1 is true in A. Let us construct a PB constraint P ′ from P by
picking one variable xji from each set Xi, 2 ≤ i ≤ N , as follows: if Xi contains
a variable which is true in A, then this is the variable to be picked up from Xi,
otherwise pick up any variable. We define P ′ : q1x1 +

∑N
i=2 qjixji ≤ K. Since

P ′ contains all the variables which are true in A, and due to the monotonicity
of P , we have that q1x1 +

∑N
i=2 qjixji is equisatisfiable to

∑n
i=1 qixi under

the assignment A ∪ {x1}. Therefore A ∪ {x1} can neither be extended to a
model of P ′. It is not hard to see that GSWC (P,X ) contains all the clauses
of SWC (P ′), and it is already proved that the SWC encoding UP-maintains
GAC. Therefore, all the clauses required to set x1 to false by UP are contained
in S.

7.3 Generalized Totalizer Encoding

The Generalized Totalizer (GT) encoding was presented in [JMM15] as a gen-
eralization of the Totalizer encoding for cardinality constraints [BB03]. The
overall idea of GT is to represent a PB constraint

∑n
i=1 qixi ≤ K as a binary

tree. Every node of the tree has associated a distinct label and an attribute
vars which consists of a set of Boolean variables. Each variable xi of the PB
constraint is placed into the attribute vars of a different leaf node, and is re-
named after the label of the node and its associated coefficient qi (e.g., given
the product 3x1, if the variable x1 is inserted into a leaf node labelled by letter
O, then the variable is named o3). The attribute vars of any non-leaf node
labelled O contains a variable ow iff there is a subset of the underlying leaves
which sums exactly w, for values of w in the range [1,K], taking i for the value
of each leaf node L with variable li. Also, vars contains a variable oK+1 iff
any of the sums is larger than K. Figure 7.2 illustrates the binary tree of a
PB constraint.

The clauses of the encoding enforce that each non-leaf variable ow is set to
true if the underlying variables which sum w (or more than K for w = K + 1)
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H : h2 I : i2 J : j3 K : k5 L : l3 M : m4 N : n4 O : o6

D : d2, d4 E : e3, e5, e8 F : f3, f4, f7 G : g4, g6, g8

B : b2, b3, b4, b5, b7, b8 C : c3, c4, c6, c7, c8

A : a2, a3, a4, a5, a6, a7, a8
=

x1

=

x2
=

x3

=

x4

=

x5

=

x6

=

x7

=

x8

B : b2, b3, b5 C : c3, c4, c6

A : a2, a3, a4, a5, a6, a7, a8

→

x1

←

x2

=

x3

=

x4

=

x5

→

x6

←

x7

=

x8

Figure 7.2: At the top: binary tree of GT (2x1 + 2x2 + 3x3 + 5x4 + 3x5 + 4x6 +
4x7 + 6x8 ≤ 7). At the bottom: binary tree of GGT (2x1 + 2x2 + 3x3 + 5x4 +
3x5 + 4x6 + 4x7 + 6x8 ≤ 7, {{x1, x2, x3, x4}, {x5, x6, x7, x8}}).

are set to true. Moreover it is enforced, at the root node, that the variable
representing a sum larger than K is false. The GT encoding introduces the
following clauses for each non-leaf node O with children L and R:

lw1 ∨ rw2 ∨ ow3 lw1 ∈ L.vars, rw2 ∈ R.vars,

w3 = min(w1 + w2,K + 1) (7.9)

tw ∨ ow tw ∈ L.vars ∪R.vars (7.10)

It also introduces the unary clause

ak+1 (7.11)

where A is the root node of the tree and ak+1 ∈ A.vars. Note that vari-
able ak+1 will exist, since otherwise the constraint would be trivially satisfied.
Clauses (7.9) enforce that the variable ow3 will be set to true by UP if there
exists a pair of variables lw1 , rw2 from the children nodes that are set to true
and such that w3 = min(w1 + w2,K + 1). Clauses (7.10) enforce that the
variable ow will be set to true by UP if some child has a variable tw set to
true. Finally, Clause (7.11) states that the sum of the tree (i.e., the value of
the left hand side expression of the PB constraint) cannot be greater than K.

7.3.1 Generalized Generalized Totalizer (GGT)

In our generalization of the GT encoding, we will use the same definition of the
binary tree, but the leafs will be instantiated differently. Instead of introducing
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a leaf node for each variable of the PB constraint, what we do is to introduce
a leaf node for each of the sets in the partition X . The leaf node O associated
to set Xi will contain a variable oql in its vars attribute for each different
coefficient ql such that xl ∈ Xi. If there is a single occurrence of coefficient
ql, then xl is renamed as oql and placed in O.vars, as in the GT encoding. If
there are multiple occurrences of a coefficient ql, we introduce a fresh variable
oql . The following clauses relate the fresh leaf variables with the variables of
the PB constraint:

xl ∨ oql Xi ∈ X , xl ∈ Xi, |{xl′ ∈ Xi | ql′ = ql}| ≥ 2 (7.12)

Now the attribute vars of the leaf nodes can contain more than one variable,
and the attribute vars of a non-leaf node O contains a variable ow iff some
combination of the leaf nodes, taking at most one variable of each leaf node,
sums exactly w —again, only for values of w in the range [1,K], taking i for
the value of a varialbe li in a leaf node L.

The GGT encoding introduces Clauses (7.9), (7.10) and (7.11) as in the
GT encoding, and Clauses (7.12). Figure 7.2 depicts the binary tree of a
GGT encoding. Note that assuming that an AMO constraint over each set
Xi is satisfied, at most one of the variables in each leaf node will be true,
and therefore the encoding correctly evaluates

∑n
i=1 qixi ≤ K. GT encoding

requires O(nK) auxiliary variables and O(nK2) clauses, while GGT encoding
requires O(NK) auxiliary variables and O(NK2) clauses.

By GGT (P,X ) we denote the set of clauses derived from a PB constraint
P and a partition X , as described above.

Lemma 7.3.1. Let P be a PB(AMO) of the form P ∧M1 ∧ · · · ∧MN , with
P of the form

∑n
i=1 qixi ≤ K, and X = {X1, . . . , XN} be a partition of the

variables of P , such that Xi = scope(Mi). The conjunction of GGT (P,X )
with an encoding of M1 ∧ · · · ∧MN is an encoding of P.

In [JMM15] it is proved that the GT encoding UP-maintains GAC. The
GGT encoding preserves this property.

Theorem 7.3.2. Let P be a PB(AMO) of the form P ∧M1 ∧ · · · ∧MN , with
P of the form

∑n
i=1 qixi ≤ K, and X = {X1, . . . , XN} be a partition of the

variables of P , such that Xi = scope(Mi). The conjunction of GGT (P,X )
with an UP-maintaining GAC encoding of M1 ∧ · · · ∧MN is UP-maintaining
GAC.

The proof is analogous to the proof of Theorem 7.2.2.
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7.4 Global Polynomial Watchdog Encoding

The Global Polynomial Watchdog (GPW) encoding was presented in
[BBR09]. It uses as basis a polynomial watchdog formula, denoted by PW (P ),
which is associated with a PB constraint P . The formula PW (P ) has a vari-
able named the output variable, denoted w, which is set to 1 by UP as soon
as P is falsified.

The GPW encoding is defined for PB constraints of the form
∑n

i=1 qixi <
K, i.e., with a strict inequality instead of a non-strict one. The first step is
to normalise the constraint to the form T +

∑n
i=1 qixi < m2p, where p, T and

m are defined as follows: p = blog2(maxi=1..n(qi))c is the index of the most
significant bit in the binary representation of the largest coefficient qi, being
0 the index of the least significant bit. In other words, p+ 1 is the number of
bits needed to represent qi in binary notation; T is the smallest non-negative
integer such that K + T is a multiple of 2p; m = (K + T )/2p.

Once the constraint is expressed in this form, it is computed a set Br of
variables of P (called bucket) for each bit 0 ≤ r ≤ p. We denote by br(qi) the
r-th bit of the binary representation of the integer qi. Bucket Br contains all
the variables xi such that br(qi) = 1. Bucket Br also contains a 1 constant if
br(T ) = 1.

Example 5. The following is the transformation to apply to the PB constraint
2x1 + 3x2 + 4x3 + 7x4 < 9. We have that p = 2, and T = 3 is the smallest
integer such that T + K = 12 is a multiple of 2p, with m = 3. Therefore, the
constraint is expressed as 3 + 2x1 + 3x2 + 4x3 + 7x4 < 12. The content of
buckets B0, B1 and B2 is illustrated in Figure 7.3.

The idea is to decompose each coefficient in its binary representation and
sum each bit having the same weight.

The formula PW (P ) can be represented as a circuit, as can be seen in
Figure 7.3 corresponding to Example 5. We denote by 〈Br〉 a vector with an
arbitrary order containing the elements of bucket Br. The formula PW (P )
uses two main components: the formulas φ(V ) and ψ(V1, V2). The formula
φ(V ) has as input a vector of Boolean variables V , and has as output a vector of
|V | variables named U(V ). The formula φ(V ) enforces that U(V ) is the unary
representation of the sum of the input variables. The formula ψ(V1, V2), has as
input two vectors of variables V1 and V2, which are the unary representation of
two integers, and has as output a vector of |V1|+ |V2| variables named S. The
formula ψ(V1, V2) enforces that S is the unary representation of V1 + V2. In
the definition of PW (P ), we denote by Sr the output of the ψ formula related
with bucket Br, for 1 ≤ r ≤ p, and we define S0 = U(〈B0〉). Half of the value
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φ(〈B0〉) φ(〈B1〉) φ(〈B2〉)

ψ(U(〈B1〉), S1/2
0 ) ψ(U(〈B2〉), S1/2

1 )

1 x2 x4B0 : 〈 〉
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S
1/2
0
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S
1/2
1S1

x3 x4B2 : 〈 〉

w
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w

U(〈B2〉)

S2

Figure 7.3: At the top: circuit representation of PW (2x1 + 3x2 + 4x3 + 7x4 <
9). At the bottom: circuit representation of PW (2x1 + 3x2 + 4x3 + 7x4 <
9, {{x1, x2}, {x3, x4}}).

of Sk, for a weight 2k, is computed with operator 1
2 and integrated in the sum

for weight 2k+1. Then, the formula PW (P ) is defined as the conjunction of
these two formulas:

φ(〈Br〉) 0 ≤ r ≤ p (7.13)

ψ(U(〈Br〉), S1/2
r−1) 1 ≤ r ≤ p (7.14)

The GPW encoding is then defined as

PW (P ) ∧ w (7.15)

where PW (P ) encodes φ with a totalizer, and ψ with an adder of unary
numbers. For further correctness proofs and detailed explanations we refer
the reader to the original work introducing Polynomial Watchdogs [BBR09].
The basic idea is that the m-th bit of Sp, represented with variable w, is set
to 1 by UP if the sum of the constraint is greater or equal than m2p = T +K.
If w is set to 1 the encoding is not satisfied.
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7.4.1 Generalized Global Polynomial Watchdog (GGPW)

We define the GGPW encoding by using a generalized polynomial watchdog for-
mula PW (P,X ) instead of the original polynomial watchdog formula. Again,
P has to be normalised to the form T +

∑n
i=1 qixi < m2p in the same way

as in PW (P ). For each set Xi, PW (P,X ) will contain a vector of variables
Yi = 〈yi,p, yi,p−1, . . . , yi,0〉.

Yi is interpreted as binary number, where (at least) the bits corresponding
to the binary representation of ql, for all xl ∈ Xi such that xl is true, are set
to one. Therefore, when exactly one xl is true, Yi will be greater than or equal
to ql. The following clauses define the variables Yi:

xl ∨ yi,r 0 ≤ r ≤ p, 1 ≤ i ≤ N, xl ∈ Xi, br(ql) = 1 (7.16)

In this case the bucket Br, for each bit 0 ≤ r ≤ p, will contain the variables
y1,r, y2,r, . . . , yN,r. Bucket Br will also contain a 1 constant if br(T ) = 1.

The formula PW (P,X ) is defined as the conjunction of (7.13), (7.14)
and (7.16). Some considerations can be taken into account on Clauses (7.16)
in order to optimise the encoding:

• If there is no xl ∈ Xi such that br(ql) = 1, and therefore the variable yi,r
does not appear in any clause of (7.16), then this variable is not created
nor included in any bucket.

• If there is only one variable xl ∈ Xi such that br(ql) = 1, then the
variable yi,r is the variable xl itself, and Clause (7.16) is not added for
yi,r.

• Otherwise, yi,r is indeed a fresh variable and Clause (7.16) is added.

Figure 7.3 contains a circuit representation of PW (P,X ). The GGPW
encoding is defined as

PW (P,X ) ∧ w (7.17)

where PW (P,X ) encodes φ with a totalizer, and ψ with an adder of unary
numbers. Similarly as in the other newly introduced encodings, given an
assignment that satisfies an AMO constraint over each Xi ∈ X , this encoding
represents the PB constraint

∑n
i=1 qixi < K in a more compact way.

The GPW encoding introduces O(n log(n) log(qmax)) fresh variables and
O(n2 log(n) log(qmax)) clauses, while the GGPW encoding introduces
O(N log(N) log(qmax)) fresh variables and O(N2 log(N) log(qmax)) clauses,
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where qmax = maxni=1 qi. This follows from the fact that a totalizer φ with
n input variables requires O(n log(n)) auxiliary variables and O(n2 log(n))
clauses, and an adder ψ of unary numbers with n input variables requires
O(n) auxiliary variables and O(n2) clauses; see [BBR09].

Lemma 7.4.1. Let P be a PB(AMO) of the form P ∧M1 ∧ · · · ∧MN , with
P of the form

∑n
i=1 qixi < K, and X = {X1, . . . , XN} be a partition of the

variables of P , such that Xi = scope(Mi). The conjunction of GGPW (P,X )
with an encoding of M1 ∧ · · · ∧MN is an encoding of P.

In [BBR09] it is shown that the GPW encoding does not UP-maintain
GAC. As stated earlier, a PB(AMO) constraint with only AMO constraints
of one variable is indeed a PB constraint. In this case the GGPW and GPW
encodings would be identical. Therefore, the GGPW encoding does neither
UP-maintain GAC.

7.4.2 Generalized Binary Merger (GBM)

The Binary Merger (BM) encoding was introduced in [MPS14]. This encoding
is essentially another implementation of the GPW encoding. The difference
in BM encoding is that the formulas φ and ψ are respectively implemented
using sorters and odd-even mergers [ANOR11]. This way, the BM encoding is
asymptotically smaller in the number of clauses and slightly bigger in the num-
ber of variables than the GPW encoding. The BM encoding can be generalized
to the Generalized Binary Merger encoding, in order to deal with PB(AMO)
constraints, in the same way as GPW encoding. However, we have not ob-
served significant differences between the BM and GPW based encodings, and
therefore we do not provide detailed results for BM encoding.

7.5 Results

In this section we report a clean comparison between the different encodings
for PB(AMO) constraints, and also between those and the classical encodings
for PB constraints. For this purpose, we craft and use benchmark sets of
problems consisting on conjunctions of AMO constraints and PB constraints.
Each instance is defined by four parameters which have a direct influence on
the size complexity of the encodings: L is the number of PB constraints, N
is the number of AMO constraints, M is the number of Boolean variables
in each AMO constraint, and Q is the maximum coefficient of a variable in
a PB constraint. The variables of the AMO constraints will be disjoint, so
there is a total of n = N ·M Boolean variables in each instance. The PB
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constraints contain all n variables. The j-th variable in the i-it AMO constraint
is named xi,j . The coefficients in the PB constraints are generated uniformly
and independently at random in the range [1, Q]. The resulting instance has
the following constraints:

N∑
i=1

M∑
j=1

qi,j,k · xi,j ≤ Kk 1 ≤ k ≤ L (7.18)

M∑
j=1

xi,j ≤ 1 1 ≤ i ≤ N (7.19)

M∑
j=1

xi,j ≥ 1 1 ≤ i ≤ N (7.20)

The conjunction of PB and AMO constraints (7.18) and (7.19) is not a hard
problem, since a trivial solution is to set all the variables xi,j to 0. For this
reason we add at-least-one Constraints (7.20), which require that at least one
variable in each AMO group is set to true. Essentially, this set of constraints
is a decision version of the Multi-Choice Multidimensional Knapsack Problem
(MMKP), which is NP-complete. Therefore, we have generated the bench-
marks using the MMKP instance generator from [HLS10].

We provide three different datasets with different parameters, with the aim
of showing which encoding is better suited for each kind of PB constraint. The
instances in a dataset are distributed in families, and every family has values
of Kk randomly distributed around a different mean in the range [1,M · Q].
The values of Kk are proportional to the values of the coefficients, because
otherwise the PB constraints would be trivially satisfied or unsatisfied. We
choose different values of Kk to ensure that in the datasets there are instances
of different hardness, and that approximately half the instances are satisfiable:

Set1 100 families of 5 instances, with L = 10, N = 15, M = 10, Q = 1000.
The families have increasing Kk values from family 1 (capacities of about
1000) to family 100 (capacities of about 14000).

Set2 100 families of 5 instances, with L = 10, N = 15, M = 10, Q = 60.
The families have increasing Kk values from family 1 (capacities of about
100) to family 100 (capacities of about 800).

Set3 20 families of 20 instances, with L = 50, N = 15, M = 5, Q = 10. The
values of Kk increase in each family, ranging between 65 and 100.
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All the instances have been encoded to SAT using the presented encodings for
PB(AMO) constraints. The AMO Constraints (7.19) have been encoded with
the well-known UP-maintaining GAC encoding referred as regular in [AM05]
and ladder in [GN04], which only introduces a number of clauses and variables
linear in the number of variables of the AMO constraint. Constraints (7.20)
have been encoded with clauses xi,1 ∨ · · · ∨ xi,M , for all 1 ≤ i ≤ N . We have
used the Glucose 4.1 SAT solver [AS18] to solve the instances, on a 8GB,
3.10GHz Intel R© Xeon R© E3-1220v2.

The results are contained in Table 7.1. The evaluated encodings are the
ones introduced in this paper, and their counterpart original ones. For com-
pleteness we also report results on the MDD-based Minimal Encoding from
Chapter 4 (MDD), and its version without taking AMOs into account (BDD),
from [ANO+12]. For each encoding we report solving times on each dataset
and the average size required to encode a PB(AMO) constraint. The size re-
sults do not include the number of variables and clauses introduced by AMO
constraints (7.19), which is the same for all encodings and negligible.

In summary, it can be observed a dramatic decrease in size, and hence
in generation time, as well a significant decrease in solving time, in all the
generalized encodings for PB(AMO)s w.r.t. the original encodings for PBs. In
most of cases the size and solving time reduction is of one order of magnitude.
Even in Set3, which is the one with smallest AMO constraints (only 5 variables
per AMO) the reduction is notable. The GPW encoding is the smallest, and
the one which is less reduced when using the AMO constraints.

In Set1, which contains instances with large coefficients, the best approach
is GGPW. Although this encoding do not UP-maintain GAC, the number of
clauses and variables is remarkably small compared to the other encodings,
whose size is proportional to K. In particular this dataset is prohibitive for
GT and GGT encodings, which require a number of clauses quadratic in the
value of K.

Set2 is similar to Set1 but it contains instances with small coefficients. In
this case, the best approaches are MDD and GSWC, whose sizes are reasonably
smaller than the ones in Set1. The GGT encoding introduces the largest
number of clauses in this dataset, and has the worst time performance.

Instances in Set3 contain more PB constraints than the other datasets, and
the values of K are distributed around the transition value from unsatisfiable
instances to satisfiable instances. We have observed empirically that it is in
this transition where the instances become harder. In this case, GGPW has
the worst time performance although it still has a smaller size than the other
encodings. This may be because GGPW is the only one which does not UP-
maintain GAC.
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enc. Q1 med Q3 avg t.o. v. cl. g.t.

S
et

1

BDD 14.00 17.59 t.o. 219 158 857 1714 35.6
SWC 10.51 14.12 t.o. 199 144 1100 2177 17.2
GT — — — — — — — —
GPW 0.93 0.97 23 114 85 5.9 77 0.8

MDD 3.89 14.78 73 131 87 25 266 3.71
GSWC 4.50 5.92 277 158 112 105 1076 10.01
GGT — — — — — — — —
GGPW 0.04 0.04 5.54 93 67 1.0 4.4 0.05

S
et

2

BDD 4.29 5.65 133 141 96 57 115 2.0
SWC 4.10 5.41 138 140 95 68 135 1.3
GT 5.33 6.94 182 154 110 10 1640 18.0
GPW 0.46 0.48 11 108 77 3.5 42 0.4

MDD 0.21 0.41 1.42 74 53 2.1 21 0.28
GSWC 0.58 0.62 1.09 71 52 6.4 66 0.62
GGT 2.42 8.83 53 132 95 1.9 120 1.53
GGPW 0.02 0.03 3.36 89 65 0.6 2.5 0.03

S
et

3

BDD 215 t.o. t.o. 423 218 4.8 9.6 0.7
SWC 247 t.o. t.o. 429 227 6.0 12 0.6
GT 240 t.o. t.o. 427 223 1.3 31 1.6
GPW 172 t.o. t.o. 415 229 0.8 5.1 0.3

MDD 16.2 78.6 525 221 97 0.4 2.6 0.17
GSWC 17.5 87.3 597 225 100 1.1 6.5 0.32
GGT 70.8 281 t.o. 322 152 0.4 4.6 0.25
GGPW 133 t.o. t.o. 407 226 0.3 1.2 0.07

Table 7.1: From left to right: first quartile (Q1), median (med) and third
quartile (Q3) of solving times (in seconds); average solving time in seconds
(avg) counting time outs as 600 seconds; number of instances that timed out
before being solved (t.o.); in thousands, average number of auxiliary variables
(v.) and clauses (cl.) needed to encode one of the Constraints (7.18); in
seconds, average time required to generate the CNF formula of an instance
(g.t.). Solving time out (t.o.) is set to 600 seconds. Long dash (—) means
that the resulting formulas are too large and their generation either run out of
memory or did not finish in less than 600 seconds (in these instances we have
been able to identify constraints requiring 33,000,000 clauses).
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7.6 Chapter Summary

In this chapter we have provided different SAT encodings of PB(AMO)s, i.e.,
conjunctions of PB and AMO constraints. Namely, the new encodings are
the Generalized Sequential Weight Counter encoding, the Generalized Gener-
alized Totalizer encoding, and the Generalized Global Polynomial Watchdog
encoding. These new encodings have been defined by generalising existing
state-of-the-art SAT encodings of PB constraints, in a way that the size is
highly reduced thanks to assuming that the AMO constraints are already en-
forced. Moreover, the propagation properties of the original encodings are
preserved in the new ones. Our results show that all the new encodings are
dramatically smaller and more efficient than their counterpart PB encodings.
We have observed size reductions of an order of magnitude and solving time
improvements of 1 or 2 orders of magnitude in many cases.

We have also shown that there is no best encoding for PB(AMO)s but it
depends on the characteristics of the instances at hand. The datasets that we
provide expose some strengths and weaknesses of the different encodings.



Chapter 8

Conclusions and Future Work

Scheduling problems are of substantial interest in the research community.
On the one hand they have a myriad of practical application in industry and
services. On the other hand, scheduling problems are usually hard, and con-
tain challenging constraints that motivate the pursuit of efficient solving tech-
niques. In this thesis we have provided new techniques for solving scheduling
problems which are state-of-the-art among the exact solving approaches. Our
techniques consist of using SMT to formulate scheduling problems for which we
find solutions using an SMT solver as an oracle. We have also identified some
opportunities to use collateral constraints to improve existing SAT encodings
of PB constraints. Therefore, new compact encodings have been presented for
them. Although these PB constraints play a central role in our scheduling
formulations, the new encodings can have application to problems other than
scheduling ones. Summing up, the different objectives that we had in this the-
sis have been accomplished. Now we summarise and present our conclusions
on the different research outputs derived from this thesis.

Using BDDs to encode resource constraints

We have explored encoding PB constraints to SAT formulas as a way of deal-
ing with resource constraints. Using the MRCPSP, we have reported that this
option provides a high performance, with a remarkable improvement in com-
parison to using LIA expressions for such constraints. Here we can appreciate
the high efficiency of modern SAT solvers, which contain very optimised imple-
mentations of Unit Propagation, powerful learning mechanisms and efficient
search heuristics. These implementations combine with the good propagation
properties of BDD-based encodings of PB constraints, leading to fast solving
procedures.

147



148 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

Encode PB constraints taking into account collateral constraints

Whereas it is true that SAT encodings of PB constraints can be efficiently
handled by SAT solvers, they risk leading to very large SAT formulas when
the constraints involve a large number of variables. Therefore it is of critical
importance to make the SAT representations of the constraints as small as
possible. We have introduced PB modulo C constraints, PB(C) in short, as
a way of denoting PB constraints that appear in conjunction with —either
explicit or implicit— collateral constraints over the variables of the PB. We
propose to deal with PB(C) in a new way, consisting on first encoding the set
of constraints C if needed, and then encoding a relaxation of the PB constraint
where it is assumed that the accompanying C constraints hold. This approach
is highly interesting in settings where the set of constraints C are logically
implied, since we can then obtain potentially much smaller encodings of PB
constraints.

We have provided SAT encodings for the particular setting of PB(AMO)
constraints, i.e. conjunctions of PB and AMO constraints. First of all we have
focused on improving BDD-based encodings, and we have provided an encod-
ing —the Minimal Encoding— for PB(AMO) constraints based on specialised
MDDs. We show that encoding the PB constraints of PB(AMO) constraints
using our Minimal Encoding can give much smaller formulas than using clas-
sical BDD-based encodings, with a reduction of two orders of magnitude in
some cases. This size reduction comes with no penalisation on the propagation
strength of the MDD-based encoding, since it UP-maintains GAC on the en-
coded PB(AMO) constraints, assuming that the AMO constraints are encoded
using some UP-maintaining GAC encoding. Also, we propose methods to deal
with other PB(C) constraints, in particular PB(EO) and PB(IC) constraints.
Still related with PB(AMO) constraints, we provide a new normalisation pro-
cedure to express the PB constraint in a PB(AMO) with all coefficients positive
and a less-than-or-equal operator, but maintaining any desired polarity on the
variables of the PB constraint. This is essential because our encodings require
the constraints to be normalised in this form. Moreover, thanks to this it is
possible to use collateral AMO constraints between literals of the variables of
the PB constraints with any polarity.

We have provided additional encodings of PB(AMO) constraints that are
not based on decision diagrams. Namely, we provide the Generalized Sequen-
tial Weight Counter (GSWC) encoding, the Generalized Generalized Totalizer
(GGT) encoding, and the Generalized Global Polynomial Watchdog (GGPW)
encoding. All these encodings are interesting since they provide different size
complexities, which let to chose the better one for the problem at hand. GSWC
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and GGT UP-maintain GAC, while GGPW does not but can create small SAT
formulas even for PB constraints with large coefficients. The potential benefit
of using such encodings of PB(AMO) constraints instead of their counterpart
version for PB constraints is made evident by our results in solving application-
independent sets of constraints. Therefore, we expect that these encodings can
have a high impact on many different applications.

SMT provides high expressivity as well as efficiency

Using SMT we have been able to provide intuitive and easily readable formu-
lations for many scheduling problems with different peculiarities. Taking the
RCPSP as a basis, we easily represent a schedule by an integer variable for
each activity, denoting its start time. Then, using IDL expressions we can
easily express precedence constraints as differences between start times. The
other main component of the RCPSP, the resource constraints, are formulated
following a Time-indexed approach. We introduce Boolean variables to indi-
cate whether an activity is running at a particular time instant, and then we
express the renewable resource constraints with one PB(AMO) constraint for
each time instant and resource. After reasoning on the effect of the prece-
dence relations over parallel resource consumption of the activities, we have
been able to provide a quick procedure to find implicit AMO relations between
the variables of resource constraints. By using minimum path covers on the
extended precedence graph, we are able to find a small cardinality partition of
the variables of the PB resource constraints. We have shown that this mech-
anism can be used as a basis to find AMO constraints in scheduling problems
involving precedence relations, like the RCPSP.

We overcome the potential drawback of Time-indexed formulations, that is
dealing with long scheduling horizons, by finding a good upper bound for the
makespan with fast greedy algorithms. The makespan is represented as a start
time of a dummy finishing activity, and we minimise the corresponding integer
variable by increasingly constrained calls to a back-end solver, and keeping all
the learning between calls.

We tackle many extensions of the RCPSP which present further formulat-
ing challenges, but again the high expressivity of SMT lets us obtain intuitive
formulations. In the MRCPSP, the inclusion of many execution modes is dealt
with Boolean variables representing whether an activity runs in a particular
mode. This lets us make the time lag of precedence relations conditional on the
selected execution mode. Similarly, in the MRCPSP/max we can generalise
the precedence relation to define any time lag, either positive or negative and
not necessarily equal to the duration of the predecessor activity. In the multi-
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mode variants there are many possible resource consumption values for the
same activity, depending on the selected execution mode. This fact introduces
more variability in PB resource constraints, which translates to having more
variables in those constraints than the ones we would have with single modes.
Nevertheless, the use of our MDD-based encoding for PB(AMO) constraints
mitigates the effect that this variability would have over the depth of classi-
cal BDD-based representations of the constraint, since the number of layers
required to represent a resource constraint is the same as in the single-mode
case of the same constraint. It is worth noting that the other PB(AMO) en-
codings that we have presented have similar benefits: in the GSWC encoding,
the number of weight counters of a particular resource constraint remains the
same as in the single-mode case; in the GGT encoding, the size of the binary
tree is the same; in the GGPW encoding, the maximum number of entries per
bucket is not increased. In the RCPSP/t, the Time approach naturally deals
with the variability of resource availabilities during the project execution, and
again PB(AMO) encodings let us mitigate the effect that the time-dependency
of the resource requirements have over the encoding size. In the MSPSP there
is the additional challenge of finding a resource assignment for each activity
as well as a start time. We introduce several sets of variables with combined
semantics that let us naturally express the resource constraints using cardi-
nality constraints. We also import a set of cumulative cuts from an existing
MILP formulation to define a powerful set of implied constraints. These con-
straints are PB(AMO) constraints, and therefore we can obtain compact SAT
encodings.

Our systems to solve scheduling problems have proven to be extremely com-
petitive. We make them available in the web page of our research group [LAP].
We have compared the performance of our systems with that of the exact
solvers for each considered problem that, to the best of our knowledge, have
recently reported the best results. We always run all the experiments on iden-
tical machines for a clean comparison. In all the problems considered in this
thesis our solvers are the best approach for most datasets. SAT and SMT
currently arise inspire much interest in the Artificial Intelligence community,
and new solvers will be developed that will probably enhance the performance
of our formulations. However it is still not very common to find the use of SAT
and SMT in Operations Research. We think that our results, as well as the
large number of fine works on problem solving with SAT and SMT that are
being published, make evident the need to regard SAT and SMT as efficient
approaches to take into account.
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8.1 Future Work

One of the most relevant contributions of this thesis is that we do not simply
provide ad-hoc solutions for specific problems, but we introduce new methods
and encodings that can be exported not only to other scheduling problems but
to CSPs of different domains. Therefore, we think that this thesis motivates
interesting further research with high probability of being fruitful.

It would be very interesting to study how our formulations can be
adapted to deal with other variations of scheduling problems. For instance,
we could tackle problems dealing with different objective functions such as
minimisation of resource consumption, minimisation of delay penalisations, or
maximisation of profits. Some of these objectives may be pseudo-Boolean,
and also there may be collateral AMO constraints. In these cases it would
be interesting to consider the use of BDD-based encodings. Also, we think
that SMT could be explored to tackle real-life scheduling problems, either to
achieve exact solving in instances of reasonable complexity, or as an embedded
component of a heuristic solving system.

We have focused on a Time-indexed approach, which traditionally has
provided the best results in solving the existing benchmark sets of the problems
we consider. It would be interesting to explore encodings based on other
approach. For instance, the most used alternative to the Time approach is the
Task approach, which checks for every pair of activities (Ai, Aj) whether Aj
is running when Ai starts. Then, for every resource and every activity Ai it is
imposed that the activities that are running when Ai starts do not exceed the
resource availability. These constraints can be expressed as PB constraints.
We have noticed that, similarly to what happens in the Time formulations, the
precedence relations introduce AMO constraints over the variables of the PB
constraints. Moreover the multi-mode and time-dependent requests extensions
could also produce PB(AMO) constraints in the Task approach.

We also think that it is worthwhile to consider pure SAT formulations
for scheduling problems, i.e. replace the start time integer variables and IDL
precedence constraints by Boolean variables and clauses. It is interesting to
explore in what situations using a specialised IDL solver is the best option, or
on the contrary when a pure SAT solver can be more efficient.

It is also interesting to further investigate in the use PB(C) constraints.
From our point of view, PB(C) can be seen as a new global constraint applicable
to many domains, which is interesting by itself and it can be handled with
different solving approaches. Many other cases could be interesting in some
applications, for instance the use of collateral cardinality constraints different
than AMO and EO. At first sight do not seem obvious how to generalise
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the PB(AMO) SAT encodings that we have presented to deal with collateral
cardinality constraints, and it might be necessary to design novel fine-grained
encodings.

We have focused on the compact encoding of PB constraints and therefore
we tackle PB(C) constraints. However, we think that many other challenging
constraints could be handled by taking into account collateral constraints.
This could lead to new efficient encodings or specific propagators for different
kinds of constraints.

Regarding PB(AMO) constraints, we have used them in the domain of
scheduling, where we have designed a procedure to efficiently detect large
AMO constraints. The detection of a good set of AMO constraints is the key
point to get small SAT formulas. Some work could be done to automatically
detect AMO constraints not only in scheduling problems but also in CSPs in
general. Here, it is interesting to see if automatic methods could be better
than the path cover method we have provided, and also to what extent the
PB(AMO) constraints are useful in other domains.

Many of the exact systems that we compare with implement specific solv-
ing procedures for scheduling, like branching heuristics or global constraint
propagators. However, our systems use the SMT solver as a black box which
implements application-independent solving procedures. It is interesting to
explore the integration of particular techniques for scheduling problems in the
solving mechanisms of the SMT solver, such as specialised branching heuris-
tics. Analysing the trace of the solver when solving scheduling problems could
shed some light on the low-level reasons of the efficiency of SMT solvers. With
a better understanding of the actual solving process, we could detect new
improvement opportunities.
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