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ABSTRACT

Constrained Counting and Sampling: Bridging the Gap between Theory and

Practice

by

Kuldeep Singh Meel

Constrained counting and sampling are two fundamental problems in Computer

Science with numerous applications, including network reliability, privacy, probabilis-

tic reasoning, and constrained-random verification. In constrained counting, the task

is to compute the total weight, subject to a given weighting function, of the set of

solutions of the given constraints. In constrained sampling, the task is to sample ran-

domly, subject to a given weighting function, from the set of solutions to a set of given

constraints. Consequently, constrained counting and sampling have been subject to

intense theoretical and empirical investigations over the years. Prior work, however,

offered either heuristic techniques with poor guarantees of accuracy or approaches

with proven guarantees but poor performance in practice.

In this thesis, we introduce a novel hashing-based algorithmic framework for con-

strained sampling and counting that combines the classical algorithmic technique of

universal hashing with the dramatic progress made in combinatorial reasoning tools,

in particular, SAT and SMT, over the past two decades. The resulting frameworks for

counting ( ApproxMC2) and sampling (UniGen) can handle formulas with up to million

variables representing a significant boost up from the prior state of the art tools’ capa-

bility to handle few hundreds of variables. If the initial set of constraints is expressed



as Disjunctive Normal Form (DNF), ApproxMC2 is the only known Fully Polynomial

Randomized Approximation Scheme (FPRAS) that does not involve Monte Carlo

steps. By exploiting the connection between definability of formulas and variance

of the distribution of solutions in a cell defined by 3-universal hash functions, we

introduced an algorithmic technique, MIS, that reduced the size of XOR constraints

employed in the underlying universal hash functions by as much as two orders of

magnitude.

We demonstrate the utility of the above techniques on real-world applications

including probabilistic inference, design verification and estimating the reliability of

critical infrastructure networks during natural disasters. The high parallelizability of

our approach opens up new directions for development of artificial intelligence tools

that can effectively leverage high-performance computing resources.
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Prologue
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Chapter 1

Introduction

The paradigmatic NP-complete problem of Boolean satisfiability (SAT) solving is a

central problem in Computer Science [47]. While the mention of SAT can be traced

to early 19th century, efforts to develop practically successful SAT solvers go back to

1950s. The past 20 years have witnessed a “SAT revolution” with the development of

conflict-driven clause-learning (CDCL) solvers [22]. Such solvers combine a classical

backtracking search with a rich set of effective heuristics. While 20 years ago SAT

solvers were able to solve instances with at most a few hundred variables, modern

SAT solvers solve instances with up to millions of variables in a reasonable time [121].

Motivated by “SAT revolution”, this thesis seeks to develop algorithmic foundations

for two widely useful extensions of SAT: constrained counting and sampling.

1.1 Constrained Counting

In constrained counting, the task is to compute the total weight, subject to a given

weighting function, of the set of solutions of the given constraints. In the field of

machine learning and artificial intelligence, the problem of constrained counting is

popularly referred as the problem of discrete integration [71]. If the weight function

assigns equal weight to every assignment, the problem is referred as unweighted count-

ing. Also, if the underlying formulas are propositional formulas, then unweighted

counting problem is known as #SAT [150].
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The earliest investigations of constrained counting were primarily based on under-

standing the complexity of the problem. In his seminal paper, Valiant showed that

#SAT is #P-complete, where #P is the set of counting problems associated with NP

decision problems [150]. Theoretical investigations of #P have led to the discovery of

deep connections in complexity theory, and there is strong evidence for its hardness

[9, 148]. In particular, Toda showed that every problem in the polynomial hierarchy

could be solved by just one call to a #P oracle; more formally, PH ⊆ P#P [148].

The earliest practical approaches to constrained counting focused on algorithmic

procedures motivated by Davis-Putnam-Logemann-Loveland (DPLL) algorithm [55,

54]. These approaches, e.g. CDP [24], incrementally counted the number of solu-

tions by introducing appropriate multiplication factors for each partial solution found,

eventually covering the entire solution space. Subsequent counters such as Relsat [14],

Cachet [138], and sharpSAT [147] improved upon this by using several optimizations

such as component caching, clause learning, and the like. Techniques based on Binary

Decision Diagrams (BDD) and their variants [125, 52], have also been used to com-

pute exact counts. Although exact counters have been successfully used in small- to

medium-sized problems, scaling to the larger problem instances have posed significant

challenges. Consequently, a large class of practical applications has remained beyond

the reach of exact counters [123].

Owing to the hardness of constrained counting, efforts have focused on studying

the complexity of approximate variants of counting. In a breakthrough, Stockmeyer

provided a randomized approximation scheme for counting that makes polynomially

many invocations of NP oracle. The procedure, however, is computationally pro-

hibitive in practice and no practical tools exist based on Stockmeyer’s proposed algo-

rithmic framework. The large majority of approximate counters used in practice are
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bounding counters, which provide lower or upper bounds but do not offer guarantees

on the tightness of these bounds. Examples include SampleCount [84], BPCount [110],

MBound and Hybrid-MBound [87], and MiniCount [110]. Another category of counters

is called guarantee-less counters such as ApproxCount [156], SearchTreeSampler [73],

SE [136], and SampleSearch [82]. These counters are based on a large plethora of

sampling techniques ranging from rejection sampling, Gibbs sampling, MCMC-based

sampling techniques to variational techniques. While these counters may be efficient,

they provide no guarantees and the computed estimates may differ from the exact

counts by several orders of magnitude [85].

The problem of constrained counting has numerous applications in disciplines

ranging from machine learning and privacy to biology and physics. In particular, the

algorithmic framework developed in this thesis has been applied to problems arising

from three application domains:

Probabilistic Inference Probabilistic inference is key to reason about uncertain

and large data sets arising from medical diagnostics, weather modeling, com-

puter vision and the like. The problem of probabilistic inference requires us

to determine the probability of an event of interest given observed evidence.

This problem has been the subject of intense investigations by both theoreti-

cians and practitioners over the last few decades. A promising approach that

has emerged over the last few years is to reduce probabilistic inference to con-

strained counting queries on a finite domain knowledge base. In this thesis,

we demonstrate the effectiveness of constrained counting techniques to answer

probabilistic inference queries.

Network Reliability Modern society is increasingly reliant on the availability of
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critical facilities and utility services, such as power, telecommunications, wa-

ter, gas, and transportation among others [146]. One of the key challenging

problems is network reliability, wherein the input to the problem consists of a

network, represented as a graph, arising out of the distribution of water, power,

transportation routes and the like. The network reliability problem seeks to

measure the likelihood of two points of interest being reachable under condi-

tions such as natural disasters. In this thesis, we demonstrate the effectiveness

of the approach of reducing network reliability queries to constrained counting.

Quantified Information Flow Quantitative information flow (QIF) computation [45]

is a powerful quantitative technique to detect information leakage directly at

the code level. A specific fragment of the program (e.g., a function, or the whole

program) is modeled as an information-theoretic channel from its input to its

output. To compute the maximum amount of information that can leak from

the program fragment of interest, a constrained counter is used to determine

the number of distinct outputs of the fragment (e.g., the return values of the

function, or the outputs of the program). Consequently, the techniques devel-

oped in this provide a scalable and accurate approach to detecting information

leakage.

1.2 Constrained Sampling

In constrained sampling, the task is to sample randomly, subject to a given weight

function, from the set of solutions of input constraints. If the weight function assigns

equal weight to assignments, then the problem is referred to as uniform sampling.

Early theoretical investigations of constrained sampling led to the design of ran-
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domized polynomial time schemes given access to exact constrained counters. Owing

to the hardness of exact counters, approximate variants of sampling were studied.

Of particular interest was to understand the complexity of the problem of sampling

solutions almost-uniformly; a relaxed notion of the problem of uniform sampling.

Jerrum, Valiant, and Vazirani showed that for all self-reducible problems, generating

solutions almost uniformly is inter-reducible with approximate counting; hence, they

have similar complexity [100]. In a breakthrough, Bellare, Goldreich, and Petrank [15]

later showed that in fact, a NP-oracle suffices for generating solutions of NP prob-

lems exactly uniformly in randomized polynomial time. Unfortunately, these deep

theoretical results have not been successfully reduced to practice. Our experience in

implementing these techniques indicates that they do not scale in practice even to

the small problem instances involving few tens of variables [123].

Industrial approaches to constrained sampling [129] either rely on Binary Decision

Diagram (BDD)-based techniques [161], which scale rather poorly, or use heuristics

that offer no guarantee of performance or uniformity when applied to large problem

instances [109]. In prior academic works [74, 107, 88, 155], the focus is on heuristic

techniques including Markov Chain Monte Carlo (MCMC) methods and techniques

based on the random seeding of combinatorial solvers. These methods scale to large

problem instances, but either offer very weak or no guarantees on the uniformity of

sampling, or require the user to provide hard-to-estimate problem-specific parameters

that crucially affect the performance and uniformity of sampling [70, 71, 81, 109].

The problem of constrained sampling has numerous applications in disciplines

ranging from machine learning and verification to program synthesis. In particular,

the algorithmic framework developed in this thesis has been applied to problems

arising from three application domains:
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Functional Verification Functional verification constitutes one of the most chal-

lenging and time-consuming steps in the design of modern digital systems. The

state of simulation technology today is mature enough to allow simulation of

large designs within a reasonable time using modest computational resources.

The verification engineer declaratively specifies a set of constraints on the values

of circuit inputs. A constraint solver is then used to generate random values for

the circuit inputs satisfying the constraints. Since the distribution of errors in

the design’s behavior space is not known a priori, every solution to the set of

constraints is as likely to discover a bug as any other solution. It is therefore

important to sample the space of all solutions uniformly or almost-uniformly at

random.

Pattern Sampling Given the deluge of data, providing concise representations, also

known as patterns, of the underlying dataset has been the holy grail in the field

of data mining. Often, finding a single concise representation for a real-world

data is not possible, and as a result, researchers focus on finding a set of pat-

terns, often known as pattern mining. Recently, pattern sampling has emerged

as a promising alternative that supports a broad class of quality measures and

constraints while providing strong guarantees regarding sampling accuracy [64].

The core of state of the art pattern sampling techniques rely on constraint sam-

pler, and tools such as FLEXICS employ the constrained sampling techniques

proposed in this thesis [64].

Program Synthesis The problem of program synthesis is to synthesize programs

from the specification, which finds applications in many disciplines ranging

from computer-aided programming, aiding students in introductory program-
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ming courses to industrial tools such as FlashFill [67, 91, 140]. The runtime of

state of the art synthesis techniques crucially depends on the quality of solutions

returned by the underlying constraint solver; sometimes, leading to about two

orders of magnitude runtime variation depending on the quality of underlying

solver. The sampling techniques developed in this thesis has resulted in signifi-

cant improvement in the efficiency of the state of the art synthesis tools [67].

1.3 Contributions

Despite intense theoretical and empirical investigations over the years, the prior work

for counting and sampling offered either techniques with poor guarantees of accu-

racy or approaches with proven guarantees but poor performance in practice. The

contribution of this thesis is a novel hashing-based framework that combines the clas-

sical algorithmic technique of universal hashing with the dramatic progress made in

Boolean reasoning over the past two decades. The proposed framework has yielded

significant progress in bridging the gap between theory and practice for constrained

counting and sampling. In particular, this thesis contributes the following key results:

Constrained Counting We present hashing-based scalable approximate unweighted

counter, ApproxMC2, in which the number of oracle invocations grows logarith-

mically in the number of variables and provides rigorous (ε, δ) guarantees, i.e.,

the estimates computed by ApproxMC2 are within (1 + ε) multiplicative factor

of the true count with confidence at least 1−δ, where both ε and δ are supplied

by the user. If the initial set of constraints is expressed as Disjunctive Normal

Form (DNF), ApproxMC2 is a Fully Polynomial Randomized Approximation

Scheme (FPRAS) – the only known FPRAS scheme for DNF formulas, which

does not involve Monte Carlo steps.
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We extend the hashing-based paradigm to handle weighted distributions and

define a novel parameter, tilt, to capture the hardness of weighted counting.

We extend the hashing-based approach to bit-vector formulas and present the

first word-level approximate unweighted counter, SMTApproxMC. We apply our

hashing-based framework to construct a scalable reliability estimation frame-

work, RelNet, which, unlike the previous state of the art techniques, can scale

to real-world networks arising from cities across U.S.

Constrained Sampling We present the first scalable almost-uniform sampler, UniGen,

which requires only one call to an approximate counter vis-a-vis linear calls in

prior work. UniGen is highly parallelizable and achieves near-linear speedup in

practice. We then present WeightGen, an adaptation of UniGen, to handle the

problem of weighted sampling.

Efficient Hash Functions The performance of hashing-based techniques for con-

strained counting and sampling is primarily affected by the runtime of combi-

natorial solvers for the queries based on constraints from hash functions. We

describe a new construction of universal hash functions based on the Indepen-

dent support of the formulas and present the first algorithmic procedure and

corresponding tool, MIS, to determine minimal independent support. The hash

functions constructed using MIS achieves up to two orders of magnitude runtime

improvement in our counting and sampling techniques.

Furthermore, the algorithmic frameworks for counting and sampling have been

implemented as open source tools, which can handle formulas with up to 1 million

variables, representing a significant boost up from the prior state of the art tools’

ability to handle few tens of variables.
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1.4 Tools

The following open source tools have been developed as part of this thesis:

Constrained Counting

ApproxMC2 https://bitbucket.org/kuldeepmeel/approxmc

SMTApproxMC https://bitbucket.org/kuldeepmeel/smtapproxmc

WeightMC https://bitbucket.org/kuldeepmeel/weightmc

WeightCount https://bitbucket.org/kuldeepmeel/weightcount

Constrained Sampling

UniGen https://bitbucket.org/kuldeepmeel/unigen

WeightGen https://bitbucket.org/kuldeepmeel/weightgen

Efficient Hash Functions

MIS https://bitbucket.org/kuldeepmeel/mis

1.5 Outline

This thesis is divided into four parts. The next Chapter, i.e., Chapter 2, introduces

notations and definitions and should be treated as an index for standard concepts.

Chapter 3 discusses several applications of constrained counting and sampling in

detail.

We then move to Part II where we discuss the hashing-based framework for con-

strained counting. The first chapter of this part, i.e. Chapter 4, focuses on un-

https://bitbucket.org/kuldeepmeel/approxmc
https://bitbucket.org/kuldeepmeel/smtapproxmc
https://bitbucket.org/kuldeepmeel/weightmc
https://bitbucket.org/kuldeepmeel/weightcount
https://bitbucket.org/kuldeepmeel/unigen
https://bitbucket.org/kuldeepmeel/weightgen
https://bitbucket.org/kuldeepmeel/mis
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weighted constrained counting, i.e., UMC and presents the core algorithmic frame-

work, ApproxMC2, which is primarily based on results in [40]. In Chapter 5, we

discuss techniques to handle weighted distributions. We then discuss in Chapter 6

how hashing-based paradigm introduced in Chapter 4 can be extended to handle bit-

vector formulas. Most of the results in this chapter appear in the paper [36]. The

final chapter of this part, Chapter 7, presents a case study where we apply techniques

introduced in this part to compute reliability estimates of the power grids arising

from several cities in the USA. A preliminary version of this chapter appeared in [62].

We then move to Part III where we discuss the hashing-based framework for con-

strained sampling. The first chapter of this part, i.e., Chapter 8, focuses on the

uniform generation and introduces the core hashing-based algorithmic framework,

UniGen, which is primarily based on results in [39]. Chapter 9 then discusses how

UniGen can trade off independence for performance gains and demonstrate high par-

allelizability of our framework. This chapter is based on results reported in [35].

Chapter 10 discusses an adaptation of UniGen, called WeightGen, to handle general

weight functions. A preliminary version of this chapter appeared in [34].

And finally, we have the closing act of this thesis: Part IV. The algorithmic

techniques described in Part II and III crucially relies on the hash functions. In

Chapter 11, we describe an efficient construction of hash functions by exploiting the

connection between defianibility of formulas and the distribution of solutions. Most

of the results in this chapter appear in the paper [97]. A preliminary version of this

paper appeared in 21st International Conference on Principles and Practice of Con-

straint Programming (CP-2015) and was awarded Best Student Paper. Chapter 12

summarizes the thesis and presents an assorted list of possible directions for future

work.
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Chapter 2

Background

2.1 Standard Probability Results

We state some standard probability results that are used throughout this work. Stan-

dard textbooks [153, 68] can be consulted for detailed information.

r-wise Independence

A Set V of random variables is said to exhibit r−wise independence iff for every

subset of V size r or less, the joint probability distribution function of the subset is

equal to product of individual marginal distributions.

We write Pr [Z : P ] to denote the probability of outcome Z when sampling from

a probability space P . For brevity, we omit P when it is clear from the context. The

expected value of Z is denoted E [Z] and its variance is denoted by V [X] or σ2 [Z].

We now state three basic inequalities that are repeatedly used in this thesis.

Markov Inequality

Let Z be a nonnegative random variables and let a > 0, then

Pr[Z > a] ≤ E[Z]

a
(2.1)
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Chebyshev Inequality

Let Z be a nonnegative random variable and let β > 0, then

Pr[|Z − E[X]| ≥ βσ2[Z]] ≤ 1

β2
(2.2)

Paley-Zygmund Inequality

Let Z be a random variable with finite variance, and for 0 ≤ β ≤ 1, then

Pr(Z ≥ βE[Z]) ≥ (1− β)2E[Z]2

E[Z2]
(2.3)

2.2 Boolean Formulas

Let F be a Boolean formula and let X be the set of variables appearing in F , also

referred to as the support of F . For a variable x ∈ X, we denote the assignment of x

to true by x1 (also referred to as positive literal) and the assignment of x to false by

x0 (also referred to as negative literal). We say that a formula F is in Conjunctive

Normal Form (CNF) if F is expressed as:

F = C1 ∧ C2 ∧ · · ·Cm (2.4)

where each Ci is expressed as disjunct of literals, i.e, Ci = (l1i ∨ l2i · · · ). Similarly, a

formula F is in Disjunctive Normal Form (DNF) if F is expressed as:

F = D1 ∨D2 ∨ · · ·Dm (2.5)

where each Di is expressed as conjunct of literals, i.e. Di = (l1i ∧ l2i · · · ).

A satisfying assignment or a witness of F is an assignment of variables in X that

makes F evaluate to true. We denote the set of all witnesses of F by RF . If σ is an
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assignment of variables in X and x ∈ X, we use σ(x) to denote the value assigned to

x in σ.

For a formula F over X variables, we say that G is a Σ1
1 formula if G is expressed

as:

G := ∃SF (X) (2.6)

where S ⊆ X. Note that there is a many to one mapping between satisfying assign-

ments of F and G. In particular, for every satisfying assignment σ of F , the projection

of σ onto X − S is a satisfying assignment of G. Consequently, we interchangeably

represent a Σ1
1 formula G as a tuple (F, S) where S is referred to as the sampling set.

We denote the set of all witnesses of F by RF and the projection of RF onto S by

RF↓S. For G := ∃SF (X), we have RG = RF↓S. If S = X, then RG = RF .

2.3 Independent Support

For a given Boolean formula, Independent support is a subset of variables whose

values uniquely determine the values of the remaining variables in any satisfying

assignment to the formula. Formally, let I ⊆ X be a subset of the support such that

if two satisfying assignments σ1 and σ2 agree on I, then σ1 = σ2. In other words,

in every satisfying assignment, the truth values of variables in I uniquely determine

the truth value of every variable in X \ I. The set I is called an independent support

of F , and D = X \ I is referred to as dependent support. There may be more than

one independent support: (a ∨ ¬b) ∧ (¬a ∨ b) has three, namely {a}, {b} and {a, b}.

Clearly, if I is an independent support of F , so is every superset of I. Note that

there is a one-to-one correspondence between RF and RF↓I . The following lemma

formalizes the above discussion.
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Lemma 1. Let F (X) be a Boolean function with support X, and let I be an inde-

pendent support of F . Then there exist Boolean functions g0, g1, . . . gn−k, each with

support S such that

F (X)↔

(
g0(I) ∧

n−k∧
j=1

(xk+j ↔ gj(I))

)

Proof. Since S is an independent support of F , we have D = X \ S is a depen-

dent support of F . From the definition of a dependent support, there exist Boolean

functions g1, . . . gk, each with support S, such that F ( ~X)→
∧n−k
j=1 (xk+j ↔ gj(I)).

Let g0(I) be the characteristic function of the projection of RF on S. More for-

mally, g0(I) ≡
∨

(xk+1,...xn)∈{0,1}n−k F ( ~X). It follows that F ( ~X) → g0(I). Combining

this with the result from the previous paragraph, we get the implication F ( ~X) →(
g0(I) ∧

∧n−k
j=1 (xk+j ↔ gj(I))

)
From the definition of g0(I) given above, we have g0(I) → F (I, xk+1, . . . xn), for

some values of xk+1, . . . xn. However, we also know that F ( ~X) →
∧n−k
j=1 (xk+j ↔

gj(I)). It follows that
(
g(I) ∧

∧n−k
j=1 (xk+j ↔ gj(I))

)
→ F ( ~X).

2.4 Group-oriented Unsatisfiable Subformulas and Subsets

In the problem of group-oriented minimization of unsatisfiable subsets [116, 127], we

are given an unsatisfiable formula Ψ of the form Ψ = H1 ∧ · · · ∧ Hm ∧ Ω, and the

task is to find a subset {Hi1 , . . . , Hik} of {H1, . . . , Hm} so that Hi1 ∧ · · · ∧ Hik ∧ Ω

remains unsatisfiable. The subformulas H1, . . . , Hm are called groups (or high-level

constraints) and Ω is called the remainder. The remainder plays a special role –

it consists of non-interesting constraints that do not need to be minimized and are

always part of the formula.

If Hi1 ∧ · · · ∧ Hik ∧ Ω is unsatisfiable, we say that {Hi1 , . . . , Hik} is a (group-
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oriented) unsatisfiable subset, or equivalently that Hi1 ∧ · · · ∧Hik ∧ Ω is an unsatis-

fiable subformula of Ψ. In addition, when {Hi1 , . . . , Hik} is minimal (removal of any

Hij renders the formula satisfiable), we say that {Hi1 , . . . , Hik} is a group-oriented

minimal unsatisfiable subset (GMUS), or equivalently that Hi1 ∧ · · · ∧ Hik ∧ Ω is a

minimal unsatisfiable subformula of Ψ. (If {Hi1 , . . . , Hik} is of minimum size, that

is there is no smaller unsatisfiable subset, then we call it a minimum unsatisfiable

subset (SGMUS).)

2.5 Bit-Vector Formulas

A word (or bit-vector) is an array of bits. The size of the array is called the width of

the word. We consider here fixed-width words, whose width is a constant. It is easy

to see that a word of width k can be used to represent elements of a set of size 2k.

The first-order theory of fixed-width words has been extensively studied (see [111, 30]

for an overview). The vocabulary of this theory includes interpreted predicates and

functions, whose semantics are defined over words interpreted as signed integers,

unsigned integers, or vectors of propositional constants (depending on the function

or predicate). When a word of width k is treated as a vector, we assume that the

component bits are indexed from 0 through k − 1, where index 0 corresponds to the

rightmost bit.

2.6 Weight Function

Given a weight function W : {0, 1}n 7→ [0, 1], we use W (σ) to denote the weight of an

assignment σ. To avoid notational clutter, we overload W (·) to denote the weight of

an assignment or formula, depending on the context. Given a set Y of assignments,

we use W (Y ) to denote
∑

σ∈Y W (σ). Given a formula F and sampling set S, we
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W (F ↓ S) to denote
∑

σ∈RF↓S W (σ). If the sampling set S is an Independent support,

we use W (F ) to avoid notational clutter. For example, the formula F = (x1 ↔ ¬x2)

has two satisfying assignments: σ1 = (x1 : true, x2 : false), and σ2 = (x1 : false, x2 :

true). Thus, we have W (σ1) = W (x1
1) ·W (x0

2) and W (σ2) = W (x0
1) ·W (x1

2). The

weight of F , or W (F ), is then W (σ1) +W (σ2).

There are several representations of weight function over assignments. Of par-

ticular interest to us is literal-weight representations, in which weights are assigned

to literals, and the weight of an assignment is the product of weights of its literals.

We are yet again overloading the W (·) to represent weight of literal as well as we

will see, the context matters. For a variable x of F and a weight function W (·),

we use W (x1) and W (x0) to denote the weights of the positive and negative literals,

respectively. Adopting terminology used in [139], we assume that every variable x

either has an indifferent weight, i.e. W (x0) = W (x1) = 1, or a normal weight, i.e.

W (x0) = 1 − W (x1), where 0 ≤ W (x1) ≤ 1. Note that having a variable with a

normal weight of W (x1) = 1 (resp. W (x1) = 0) makes the variable x redundant in

computation of the weight of F , since in this case only assignments σ with σ(x) = true

(resp. σ(x) = false) can contribute to the weight of F . Thus, we can assign true

(resp. false) to x without changing the overall weight of models of the formula. This

suggests that we can further assume 0 < W (x1) < 1 for every variable x with a

normal weight.

For every variable xi with normal weight, we assume that W (x1
i ), which is a

positive fraction, is specified in binary using mi bits. Without loss of generality, the

least significant bit in the binary representation of W (x1
i ) is always taken to be 1.

Thus, the rational decimal representation of W (x1
i ) is ki/2

mi , where ki is an odd

integer in {1, . . . 2mi − 1}. It follows that W (x0
i ) is (2mi − ki)/2mi . Let NF denote
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the set of indices of variables in X that have normal weights, and let m̂ = Σi∈NFmi.

Let CF =
∏

i∈NF 2−mi = 2−m̂. Note that W (σ) /CF is a natural number for every

assignment σ; hence W (F ) /CF is a natural number as well.

2.7 Universal Hash Functions

The concept of universal hash functions is central to this thesis. For positive integers

n, m, and r, we write H(n,m, r) to denote a family of r-universal hash functions

mapping {0, 1}n to {0, 1}m. We use h
R←− H(n,m, r) to denote the probability space

obtained by choosing a hash function h uniformly at random from H(n,m, r). The

property of r-universality guarantees that:

∀α1, α2, · · ·αr and distinct y1, . . . , yr ∈ {0, 1}n

Pr[h(yi) = αi] =
1

2m
(2.7)

Pr
[
h(y1) = h(y2) = · · · = h(yr) : h

R←− H(n,m, r)
]
≤
(

1

2m

)r
. (2.8)

We use a particular class of such hash functions, denoted by Hxor(n,m), which

is defined as follows. Let h(y)[i] denote the ith component of the vector h(y). This

family of hash functions is then defined as {h | h(y)[i] = ai,0⊕ (
⊕n

k=1 ai,k · y[k]), ai,k ∈

{0, 1}, 1 ≤ i ≤ m, 0 ≤ k ≤ n}, where ⊕ denotes the XOR operation. By choosing

values of ai,k randomly and independently, we can effectively choose a random hash

function from Hxor(n,m). It was shown in [88] that this family is 3-universal.

In several of the algorithms presented in this thesis, we randomly choose one

function h from Hxor(n, n− 1), and one vector α from {0, 1}n−1. Thereafter, we use
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“prefix-slices” of h and α to obtain hm and αm for all other values of m. Formally, for

everym ∈ {1, . . . |S|−1}, themth prefix-slice of h, denoted h(m), is a map from {0, 1}|S|

to {0, 1}m, such that h(m)(y)[i] = h(y)[i], for all y ∈ {0, 1}|S| and for all i ∈ {1, . . .m}.

Similarly, the mth prefix-slice of α, denoted α(m), is an element of {0, 1}m such that

α(m)[i] = α[i] for all i ∈ {1, . . .m}. The randomness in the choices of h and α induces

randomness in the choices of hm and αm. However, the (hm, αm) pairs chosen for

different values of m are no longer independent. Specifically, hj(y)[i] = hk(y)[i] and

αj[i] = αk[i] for 1 ≤ j < k < |S| and for all i ∈ {1, . . . j}. This lack of independence

is a fundamental departure from previous design of hashing-based algorithms and

crucial for the theoretical as well as practical performance of our algorithms.

2.8 Constrained Counting and Sampling

Given a formula F , sampling set S, and a weight function W (·), the constrained

counting problem, also referred to as weighted model counting (denoted as WMC), is

to determine W (F ↓ S). If the weight function assigns equal weight to all the assign-

ments, then the problem is called unweighted counting, also referred to as unweighted

model counting (denoted as UMC).

An approximate counter is a probabilistic algorithm ApproxCount(·, ·, ·, ·, ·) that,

given a formula F , sampling set S, weight function W (·), tolerance ε > 0, and

confidence parameter δ ∈ (0, 1], guarantees that

Pr
[
W (F ↓ S) /(1 + ε) ≤ ApproxCount(F, S,W (·) , ε, δ) ≤ (1 + ε)W (F ↓ S)

]
≥ 1− δ.

(2.9)

The constrained-sampling problem is to sample a witness y randomly from RF↓S

with probability proportional to its weight, i.e. W (y). Formally, a constrained sam-
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pler, G(·, ·, ·) ensures:

Pr [Gu(F, S,W (·)) = y] ∝ W (y) (2.10)

An almost-sampler Gau(·, ·, ·, ·) guarantees that for every y ∈ RF , we have:

1

(1 + ε)W (F ↓ S)
≤ Pr [Gau(F, S,W (·) , ε) = y] ≤ 1 + ε

W (F ↓ S)
(2.11)

, where ε > 0 is a specified tolerance. Probabilistic generators are allowed to occa-

sionally “fail” in the sense that no solution may be returned even if RF is non-empty.

The failure probability for such generators must be bounded by a constant strictly

less than 1.
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Chapter 3

Applications of Counting and Sampling

In this Chapter, we discuss several applications of constrained counting and sampling.

The techniques developed in this thesis have been applied to the application domains

discussed in this Chapter.

3.1 Probabilistic Inference

Probabilistic inference is key to reason about uncertain and large data sets arising

from diverse applications including medical diagnostics, weather modeling, computer

vision and the like [10, 60, 138, 159]. In the domain of probabilistic reasoning, we

typically have a probabilistic model capturing dependencies between variables in a

system, and evidence described as a valuation of a subset of variables. The problem of

probabilistic inference requires us to determine the probability of an event of interest,

(valuations of a subset of variables) given observed evidence. (valuations of some

other subset of variables). , i.e., valuation to the variables of interest. This problem

has been the subject of intense investigations by both theoreticians and practitioners

over the last few decades.

Not surprisingly, probabilistic inference in its exact form is intractable due to

the curse of dimensionality, and it has been shown to be #P-complete for variables

with finite domains [135]. As a result, researchers have investigated approximate

techniques to solve real-world instances of this problem. Of these, the most popular



22

ones are those based on Monte Carlo Markov Chain (MCMC) methods and variational

approximations. While these techniques scale to large problem instances, they fail to

provide rigorous approximation guarantees in practice [72]. Interval propagation and

techniques based on the random seeding of combinatorial reasoning tools have also

been used by researchers to tame the problem. Unfortunately, these approaches also

suffer from the same drawback – the formal guarantees provided are either very weak

or non-existent [109].

A promising alternative approach that has emerged over the years is to reduce the

probabilistic inference problem to discrete integration or constrained counting [135,

42] on a finite domain knowledge base. For example, given a Bayesian approach, the

constrained counting approach encodes the Bayesian network into a knowledge base in

conjunctive normal form and maps the weights to literals of CNF formula to elements

in conditional probability tables. For a detailed discussion of various reductions of

probabilistic inference to constrained counting, we refer the reader to [42].

3.2 Network Reliability

Modern society is increasingly reliant on the availability of critical facilities and utility

services, such as power, telecommunications, water, gas, and transportation among

others [146]. To ensure adequate service, it is imperative to quantify system reliability,

or the probability of the system to remain functional, as well as system resilience, or

the ability of the system to quickly return to normalcy when failure is unavoidable

[29]. While resilience assessment requires human decision-making principles, it also

heavily depends on intrinsic system reliability. Hence, the recent focus on community

resilience and sustainability has spurred significant activity in engineering reliability

[165].



23

One of the key challenging problems in the area of engineering reliability is net-

work reliability, wherein the input to the problem consists of a network, represented

as a graph, arising out of the distribution of water, power, transportation routes

and the like. The problem of the network reliability seeks to measure the likelihood

of two points of interest being reachable under conditions such as natural disasters.

Early theoretical investigations showed that the problem of network reliability is #P

complete [150]. Although graph contraction strategies combined with DNF counting

provide a Fully Polynomial Randomized Approximation Scheme (FPRAS) with error

guarantees [103], implementation on practical systems does not scale well due to the

requirement of a large number of Monte Carlo steps. Consequently, recent investi-

gations have focused on advancing algorithmic strategies that build upon advanced

Monte Carlo simulation [166] and analytical approaches [117, 63]. Furthermore, in-

ventive sampling methods, such as line sampling and variance reduction schemes [76],

along with graphical models, especially Bayesian networks, provide versatile strategies

to quantify the reliability of complex engineered systems and their dynamics [21].

Despite significant progress, most techniques remain computationally expensive.

As an alternative, when invoking approximations, most methods are unable to guar-

antee the quality of the reliability estimation a priori, barring small instances where

exact methods do not time out. Therefore, the design of techniques that offer strong

theoretical guarantees on the quality of estimates and can scale to large real-world

instances remains an unattained goal across multiple disciplines.

In this thesis, we demonstrate the effectiveness of the approach of reducing network

reliability queries to constrained counting. For a detailed discussion of our approach,

we refer the reader to Chapter 7.
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3.3 Quantified Information Flow

The remarkable progress in artificial intelligence has led to data being the key com-

ponent for the new economy. This has led to unprecedented increase in the storage of

personal data, which is often accessed by software to provide a variety of services to

the end user ranging from the recommendation for consumable products to personal-

ized mortgage interest rates. Finding vulnerabilities in the programs that access data

is fundamental for guaranteeing user security and data confidentiality. Due to the

increasing complexity of software systems, automated techniques have to be deployed

to assist architects and engineers in verifying the quality of their code. Among these,

quantitative techniques have been shown to effectively detect complex vulnerabilities.

Quantitative information flow (QIF) computation [45] is a powerful quantitative

technique to detect information leakage directly at the code level. QIF leverages in-

formation theory to measure the flow of information between different functions of

the program. An unexpectedly large flow of information may characterize a poten-

tial leakage of information. In practice, this technique relies on the following: the

maximum amount of information that can leak from a function (known as channel

capacity) is the logarithm of the number of distinct outputs that the function can

produce [49].

Recently, QIF computation based on program analysis and constrained counting

has effectively analyzed codebases of tens of thousands of lines of C code [149]. This

technique proceeds as follows. A specific fragment of the program (e.g., a function, or

the whole program) is modeled as an information-theoretic channel from its input to

its output. Program analysis techniques such as symbolic execution or model check-

ing are used to explore the possible executions of the fragment. Program analysis

produces a set of constraints that characterize these executions. Afterwards, a con-
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strained counter is used to determine the number of distinct outputs of the fragment

(e.g., the return values of the function, or the outputs of the program). Finally, the

base-2 logarithm of the number of possible outputs gives us the channel capacity in

bits, which corresponds to the maximum amount of information that can flow through

the channel modeling the fragment.

3.4 Functional Verification

Functional verification constitutes one of the most challenging and time-consuming

steps in the design of modern digital systems. The primary objective of functional

verification is to expose design bugs early in the design cycle. Among various tech-

niques available for this purpose, those based on simulation overwhelmingly dominate

industrial practice. In a typical simulation-based functional verification exercise, a

gate-level or RTL model of the circuit is simulated for a large number of cycles

with specific input patterns. The values at observable outputs, as computed by the

simulator, are then compared against their expected values, and any discrepancy is

flagged as a manifestation of a bug. The state of simulation technology today is ma-

ture enough to allow simulation of large designs within reasonable time using modest

computational resources. Generating input patterns that exercise diverse corners of

the design’s behavior space, however, remains a challenging problem [20].

In recent years, constrained-random simulation (also called constrained-random

verification, or CRV) [129] has emerged as a practical approach to address the problem

of simulating designs with “random enough” input patterns. In CRV, the verification

engineer declaratively specifies a set of constraints on the values of circuit inputs.

Typically, these constraints are obtained from usage requirements, environmental

constraints, constraints on operating conditions and the like. A constraint solver is
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then used to generate random values for the circuit inputs satisfying the constraints.

Since the distribution of errors in the design’s behavior space is not known a priori,

every solution to the set of constraints is as likely to discover a bug like any other

solution. It is therefore important to sample the space of all solutions uniformly or

almost-uniformly (defined formally below) at random. Unfortunately, guaranteeing

uniformity poses significant technical challenges when scaling to large problem sizes.

This has repeatedly been noted in the literature (see, for example, [58, 133, 108]) and

also confirmed by industry practitioners∗.

Given the important of constrained-random simulation in the hardware design

process, our benchmark suite for constrained sampling has a significant fraction of

benchmarks arising from constrained-random simulation domain (See experimental

evaluation in Chapters 8 and 9).

3.5 Pattern Sampling

Given the deluge of data, providing concise representations, also known as patterns,

of the underlying dataset has been the holy grail in the field of data mining. Often,

finding a single concise representation for a real-world data is not possible, and as a

result, researchers focus on finding a set of patterns, often known as pattern mining.

The earliest approaches to pattern mining focused on the enumeration of all the

patterns, but this hindered scalability of such approaches due to a large number of

patterns. As a result, the alternate approaches such as Condensed representations,

top-k mining, pattern set mining have been proposed [27, 33, 164]. However, these ap-

proaches either result in too few patterns or too similar patterns. Recently, Dzyuba,

∗Private communication: R. Kurshan
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van Leeuwen, and De Raedt proposed FLEXICS, the first flexible pattern sampler

that supports a broad class of quality measures and constraints while providing strong

guarantees regarding sampling accuracy [64]. The core of FLEXICS relies on con-

straint sampler, and it employs the constrained sampling techniques proposed in this

thesis. Empirically, FLEXICS is shown to be highly accurate and efficient, thus lead-

ing to being the state of the art tool for pattern-based data exploration. For a detailed

discussion, we refer the reader to [64].

3.6 Program Synthesis

The problem of program synthesis is to synthesize programs from specification, which

finds applications in many disciplines ranging from computer-aided programming,

aiding students in introductory programming courses to industrial tools such as

FleshFill [67, 91, 140]. Recent breakthrough successes in program synthesis owes

to the paradigm of counter example guided inductive synthesis (CEGIS). The CEGIS

paradigm involves (i) representing space of programs using set of constraints, (ii)

modeling the learned concepts as additional constraints, and (iii) employing a con-

straint sampler to generate the learned program [142]. The runtime of CEGIS-based

techniques crucially depends on the quality of solutions returned by the underlying

constraint solver; sometimes, leading to about two orders of magnitude runtime vari-

ation depending on the quality of underlying solver. Therefore, constraint sampling

is a key step in CEGIS based techniques and the sampling techniques developed in

this thesis has resulted into significant improvement in the efficiency of CEGIS-based

tools [67].
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Part II

Constrained Counting
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This part will focus on constrained counting. The first chapter of this part, i.e.

Chapter 4, will focus on unweighted constrained counting, i.e., UMC and then in.

Chapter 5, we discuss techniques to handle weighted distributions. We then discuss

in Chapter 6 how hashing-based paradigm introduced in Chapter 4 can be extended

to handle bit-vector formulas. The final chapter of this part, Chapter 7, presents a

case study where we apply techniques introduced in this part to compute reliability

estimates of the power grids arising from several cities in USA.
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Chapter 4

Hashing-based Scalable Unweighted Counter

Complexity theoretic studies of unweighted counting, also referred to as UMC, were

initiated by Valiant, who showed that the problem is #P-complete [150]. The earli-

est approaches to UMC were based on DPLL-style SAT solvers and computed exact

counts. These approaches, e.g. CDP [24], incrementally counted the number of solu-

tions by introducing appropriate multiplication factors for each partial solution found,

eventually covering the entire solution space. Subsequent counters such as Relsat [14],

Cachet [138], and sharpSAT [147] improved upon this by using several optimizations

such as component caching, clause learning, and the like. Techniques based on Binary

Decision Diagrams (BDDs) and their variants [125], or d-DNNF formulas [52], have

also been used to compute exact counts.

Although exact counters have been successfully used in small- to medium-sized

problems, scaling to the larger problem instances have posed significant challenges.

Consequently, a large class of practical applications has remained beyond the reach of

exact counters [123]. The study of approximate model counting has therefore been an

important topic of research for several decades. Approximate counting was shown to

lie in the third level of the polynomial hierarchy in [144]. Stockmeyer’s approximate

counter crucially relies on Sipser’s technique for estimating the size of a set using

universal hash functions [141], and requires access to a Σp
2 oracle. For DNF formulas,

Karp, Luby and Madras gave a fully polynomial randomized approximation scheme

for counting models [104]. One can build on [144] and design a hashing-based probably
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approximately correct counting algorithm that makes polynomially many calls to an

NP oracle [83]. Unfortunately, this does not lend itself to a scalable implementation

because every invocation of the NP oracle (a SAT solver in practice) must reason

about a formula with significantly large, viz. O(n/ε), support.

To overcome the scalability challenge, relaxed variants of counting have been

pursued. Among them of note are bounding counters, which provide lower or up-

per bounds but do not offer guarantees on the tightness of these bounds. Exam-

ples include SampleCount [84], BPCount [110], MBound and Hybrid-MBound [87], and

MiniCount [110]. Another category of counters is called guarantee-less counters such

as ApproxCount [156], SearchTreeSampler [73], SE [136], and SampleSearch [82].. While

these counters may be efficient, they provide no guarantees and the computed esti-

mates may differ from the exact counts by several orders of magnitude [85].

In [38], a new hashing-based strongly probably approximately correct counting

algorithm, called ApproxMC, was shown to scale to formulas with hundreds of thou-

sands of variables, while providing rigorous PAC-style (ε, δ) guarantees. The core idea

of ApproxMC is to use 2-universal hash functions to randomly partition the solution

space of the original formula into “small” enough cells. The sizes of sufficiently many

randomly chosen cells are then determined using calls to a specialized SAT solver

(CryptoMiniSAT [143]), and a scaled median of these sizes is used to estimate the

desired model count. Finding the right parameters for the hash functions is crucial to

the success of this technique. ApproxMC uses a linear search for this purpose, where

each search step invokes the specialized SAT solver, viz. CryptoMiniSAT, O(1/ε2)

times. Overall, ApproxMC makes a total of O(n log(1/δ)
ε2

) calls to CryptoMiniSAT. Sig-

nificantly, and unlike the algorithm in [83], each call of CryptoMiniSAT reasons about

a formula with only n variables.
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The works of [70, 34, 35, 17] have subsequently extended the ApproxMC approach

to finite domain discrete integration. The work of [17] had experimental evaluation

on an implementation inconsistent with the algorithms presented in the work and the

revised evaluation did not support earlier claims. Furthermore, approaches based on

ApproxMC form the core of various sampling algorithms proposed recently [69, 39, 34,

35]. Therefore, any improvement in the core algorithmic structure of ApproxMC can

potentially benefit several other algorithms. in sampling and discrete integration.

Recently, Zhu and Ermon [163] proposed an approximate algorithm, named RP-

InfAlg, for approximate probabilistic inference. This algorithm does not provide (ε, δ)

approximation guarantees, and requires the use of hard-to-estimate parameters. The

computational effort required in identifying the right values of the parameters is not

addressed in their work. Furthermore, their experiments were done with setting length

of xor-constraints to 1, 2 and 4 for which the proofs are known not to hold [162].

Prior work on improving the scalability of hashing-based approximate counting

algorithms has largely focused on improving the efficiency of 2-universal linear (xor-

based) hash functions. It is well-known that long xor-based constraints make SAT

solving significantly hard in practice [86]. Researchers have therefore investigated

theoretical and practical aspects of using short xors [86, 39, 72, 162].

Recently, Ermon et al. [72] and Zhao et al. [162] attempted to show how short xor

constraints (even logarithmic in the number of variables) can be used for approximate

counting with certain theoretical guarantees. The resulting algorithms, however, do

not provide PAC-style (ε, δ) guarantees. Furthermore, their proposed technique to

obtain lower and upper bounds does not have upper bound on failure probability. In

addition, the experimental results were performed with an implementation inconsis-

tent with the algorithm for which theoretical analysis was performed in the work.
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Given the promise of hashing-based counting techniques in bridging the gap be-

tween scalability and providing rigorous guarantees for constrained counting, there

have been several recent efforts to design efficient universal hash functions [97, 36].

While these efforts certainly help push the scalability frontier of hashing-based tech-

niques for probabilistic inference, the structure of the underlying algorithms has so

far escaped critical examination. For example, all recent approaches to probabilistic

inference via hashing-based counting use a linear search to identify the right values of

parameters for the hash functions. As a result, the number of calls to the NP oracle

(SAT solver in practice) increases linearly in the number of variables, n, in the input

constraint. Since SAT solver calls are by far the computationally most expensive steps

in these algorithms [124], this motivates us to ask: Can we design a hashing-based

approximate counting algorithm that requires sub-linear (in n) calls to the SAT solver,

while providing strong theoretical guarantees?

In this chapter, we provide a positive answer to the above question. In particular:

1. We present a new hashing-based approximate counting algorithm, called ApproxMC2,

for CNF formulas, that reduces the number of SAT solver calls from linear in n

to logarithmic in n while still providing rigorous (ε, δ) guarantees.

2. Furthermore, for DNF formulas, ApproxMC2 gives a fully polynomial randomized

approximation scheme (FPRAS), which differs fundamentally from the only

known FPRAS for DNF formulas [104].

3. Extensive experiments demonstrate that ApproxMC2 outperforms the prior state

of the art tool, ApproxMC, by 1-2 orders of magnitude in running time, when

using the same family of hash functions.

We also discuss how the framework and analysis of ApproxMC2 can be lifted to
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Algorithm 1 ApproxMC2(F, S, ε, δ)

1: thresh← 1 + 9.84
(
1 + ε

1+ε

) (
1 + 1

ε

)2
;

2: Y ← BoundedSAT(F, thresh, S);

3: if (|Y | < thresh) then return |Y |;

4: t← d17 log2(3/δ)e;

5: nCells← 2; C ← emptyList; iter← 0;

6: repeat

7: iter← iter + 1;

8: (nCells, nSols)←ApproxMC2Core(F, S, thresh, nCells);

9: if (nCells 6= ⊥) then AddToList(C, nSols× nCells);

10: until (iter < t);

11: finalEstimate← FindMedian(C);

12: return finalEstimate

other hashing-based probabilistic inference algorithms [34]. Significantly, the algo-

rithmic improvements of ApproxMC2 are orthogonal to recent advances in the design

of hash functions [97], permitting the possibility of combining ApproxMC2-style al-

gorithms with efficient hash functions to boost the performance of hashing-based

probabilistic inference even further.

The remainder of the chapter is organized as follows. In Section 4.1, we present

ApproxMC2 and its analysis. We discuss our experimental methodology and present

experimental results in Section 4.2. Finally, we conclude in Section 4.3.
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4.1 The Algorithm

We now present ApproxMC2: a hashing-based approximate counting algorithm. Al-

gorithm 1 shows the pseudocode for ApproxMC2. It takes as inputs a formula F ,

a sampling set S, a tolerance ε (> 0), and a confidence 1 − δ ∈ (0, 1]. It returns

an estimate of |RF↓S| within tolerance ε, with confidence at least 1 − δ. Note that

although ApproxMC2 draws on several ideas from ApproxMC, the original algorithm

in [38] computed an estimate of |RF | (and not of |RF↓S|). Nevertheless, the idea

of using sampling sets, as described in [39], can be trivially extended to ApproxMC.

Therefore, whenever we refer to ApproxMC in this chapter, we mean the algorithm

in [38] extended in the above manner.

There are several high-level similarities between ApproxMC2 and ApproxMC. Both

algorithms start by checking if |RF↓S| is smaller than a suitable threshold (called

pivot in ApproxMC and thresh in ApproxMC2). This check is done using subroutine

BoundedSAT, that takes as inputs a formula F , a threshold thresh, and a sampling

set S, and returns a subset Y of RF↓S, such that |Y | = min(thresh, |RF↓S|). The

thresholds used in invocations of BoundedSAT lie in O(1/ε2) in both ApproxMC and

ApproxMC2, although the exact values used are different. If |Y | is found to be less

than thresh, both algorithms return |Y | for the size of |RF↓S|. Otherwise, a core

subroutine, called ApproxMCCore in ApproxMC and ApproxMC2Core in ApproxMC2, is

invoked. This subroutine tries to randomly partition RF↓S into “small” cells using

hash functions from Hxor(|S|,m), for suitable values of m. There is a small probability

that this subroutine fails and returns (⊥,⊥). Otherwise, it returns the number of cells,

nCells, into which RF↓S is partitioned, and the count of solutions, nSols, in a randomly

chosen small cell. The value of |RF↓S| is then estimated as nCells × nSols. In order

to achieve the desired confidence of (1 − δ), both ApproxMC2 and ApproxMC invoke
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their core subroutine repeatedly, collecting the resulting estimates in a list C. The

number of such invocations lies in O(log(1/δ)) in both cases. Finally, both algorithms

compute the median of the estimates in C to obtain the desired estimate of |RF↓S|.

Despite these high-level similarities, there are key differences in the ways ApproxMC

and ApproxMC2 work. These differences stem from: (i) the use of dependent hash

functions when searching for the “right” way of partitioning RF↓S within an invocation

of ApproxMC2Core, and (ii) the lack of independence between successive invocations

of ApproxMC2Core. We discuss these differences in detail below.

Subroutine ApproxMC2Core lies at the heart of ApproxMC2. Functionally,

ApproxMC2Core serves the same purpose as ApproxMCCore; however, it works differ-

ently. To understand this difference, we briefly review the working of ApproxMCCore.

Given a formula F and a sampling set S, ApproxMCCore finds a triple (m,hm, αm),

where m is an integer in {1, . . . |S| − 1}, hm is a hash function chosen randomly

from Hxor(|S|,m), and αm is a vector chosen randomly from {0, 1}m, such that

|R〈F,hm,αm〉↓S| < thresh and |R〈F,hm−1,αm−1〉↓S| ≥ thresh. In order to find such a triple,

ApproxMCCore uses a linear search: it starts from m = 1, chooses hm and αm ran-

domly and independently from Hxor(|S|,m) and {0, 1}m respectively, and checks if

|R〈F,hm,αm〉↓S| ≥ thresh. If so, the partitioning is considered too coarse, hm and αm are

discarded, and the process repeated with the next value of m; otherwise, the search

stops. Let m∗, hm∗ and αm∗ denote the values of m, hm and αm, respectively, when

the search stops. Then ApproxMCCore returns |R〈F,hm∗ ,αm∗ 〉↓S| × 2m
∗

as the estimate

of |RF↓S|. If the search fails to find m, hm and αm with the desired properties, we

say that ApproxMCCore fails.

Every iteration of the linear search above invokes BoundedSAT once to check if

|R〈F,hm,αm〉↓S| ≥ thresh. A straightforward implementation of BoundedSAT makes up
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to thresh calls to a SAT solver to answer this question. Therefore, an invocation

of ApproxMCCore makes O(thresh.|S|) SAT solver calls. A key contribution of this

chapter is a new approach for choosing hash functions that allows ApproxMC2Core

to make at most O(thresh. log2 |S|) calls to a SAT solver. Significantly, the sizes of

formulas fed to the solver remain the same as those used in ApproxMCCore; hence,

the reduction in number of calls comes without adding complexity to the individual

calls.

A salient feature of ApproxMCCore is that it randomly and independently chooses

(hm, αm) pairs for different values of m, as it searches for the right partitioning of

RF↓S. In contrast, in ApproxMC2Core, we randomly choose one function h from

Hxor(|S|, |S| − 1), and one vector α from {0, 1}|S|−1. Thereafter, we use “prefix-

slices” of h and α to obtain hm and αm for all other values of m. Formally, for

every m ∈ {1, . . . |S| − 1}, the mth prefix-slice of h, denoted h(m), is a map from

{0, 1}|S| to {0, 1}m, such that h(m)(y)[i] = h(y)[i], for all y ∈ {0, 1}|S| and for all

i ∈ {1, . . .m}. Similarly, the mth prefix-slice of α, denoted α(m), is an element of

{0, 1}m such that α(m)[i] = α[i] for all i ∈ {1, . . .m}. Once h and α are chosen

randomly, ApproxMC2Core uses h(m) and α(m) as choices of hm and αm, respectively.

The randomness in the choices of h and α induces randomness in the choices of hm

and αm. However, the (hm, αm) pairs chosen for different values of m are no longer

independent. Specifically, hj(y)[i] = hk(y)[i] and αj[i] = αk[i] for 1 ≤ j < k < |S|

and for all i ∈ {1, . . . j}. This lack of independence is a fundamental departure from

ApproxMCCore.

Algorithm 2 shows the pseudo-code for ApproxMC2Core. After choosing h and

α randomly, ApproxMC2Core checks if |R〈F,h,α〉↓S| < thresh. If not, ApproxMC2Core

fails and returns (⊥,⊥). Otherwise, it invokes sub-routine LogSATSearch to find
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Algorithm 2 ApproxMC2Core(F, S, thresh, prevNCells)

1: Choose h at random from Hxor(|S|, |S| − 1);

2: Choose α at random from {0, 1}|S|−1;

3: Y ← BoundedSAT(F ∧ h(S) = α, thresh, S);

4: if (|Y | ≥ thresh) then return (⊥,⊥);

5: mPrev← log2 prevNCells;

6: m← LogSATSearch(F, S, h, α, thresh,mPrev);

7: nSols← |BoundedSAT(F ∧ h(m)(S) = α(m), thresh, S)|;

8: return (2m, nSols);

a value of m (and hence, of h(m) and α(m)) such that |R〈F,h(m),α(m)〉↓S| < thresh

and |R〈F,h(m−1),α(m−1)〉↓S| ≥ thresh. This ensures that nSols computed in line 7 is

|R〈F,h(m),α(m)〉↓S|. Finally, ApproxMC2Core returns (2m, nSols), where 2m gives the num-

ber of cells into which RF↓S is partitioned by h(m).

An easy consequence of the definition of prefix-slices is that for all m ∈ {1, . . . |S|−

1}, we have R〈F,h(m),α(m)〉↓S ⊆ R〈F,h(m−1),α(m−1)〉↓S. This linear ordering is exploited by

sub-routine LogSATSearch (see Algorithm 3), which uses a galloping search to zoom

down to the right value of m, h(m) and α(m). LogSATSearch uses an array, BigCell, to

remember values of m for which the cell α(m) obtained after partitioning RF↓S with

h(m) is large, i.e. |R〈F,h(m),α(m)〉↓S| ≥ thresh. As boundary conditions, we set BigCell[0]

to 1 and BigCell[|S|−1] to 0. These are justified because (i) if RF↓S is partitioned into

20 (i.e. 1) cell, line 3 of Algorithm 1 ensures that the size of the cell (i.e. |RF↓S|) is at

least thresh, and (ii) line 4 of Algorithm 2 ensures that |R〈F,h|S|−1,α|S|−1〉↓S| < thresh.

For every other i, BigCell[i] is initialized to ⊥ (unknown value). Subsequently, we set

BigCell[i] to 1 (0) whenever we find that |R〈F,h(i),α(i)〉↓S| is at least as large as (smaller
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than) thresh.

Algorithm 3 LogSATSearch(F, S, h, α, thresh,mPrev)

1: loIndex← 0; hiIndex← |S| − 1; m← mPrev;

2: BigCell[0]← 1; BigCell[|S| − 1]← 0;

3: BigCell[i]← ⊥ for all i other than 0 and |S| − 1;

4: while true do

5: Y ← BoundedSAT(F ∧ (h(m)(S) = α(m)), thresh, S);

6: if (|Y | ≥ thresh) then

7: if (BigCell[m+ 1] = 0) then return m+ 1;

8: BigCell[i]← 1 for all i ∈ {1, . . .m};

9: loIndex← m;

10: if (|m−mPrev| < 3) then m← m+ 1;

11: else if (2.m < |S|) then m← 2.m;

12: else m← (hiIndex +m)/2;

13: else

14: if (BigCell[m− 1] = 1) then return m;

15: BigCell[i]← 0 for all i ∈ {m, . . . |S|};

16: hiIndex← m;

17: if (|m−mPrev| < 3) then m← m− 1;

18: else m← (m+ loIndex)/2;

In the context of probabilistic hashing-based counting algorithms like ApproxMC, it

has been observed [123] that the “right” values of m, hm and αm for partitioning RF↓S

are often such that m is closer to 0 than to |S|. In addition, repeated invocations of a
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hashing-based probabilistic counting algorithm with the same input formula F often

terminate with similar values of m. To optimize LogSATSearch using these observa-

tions, we provide mPrev, the value ofm found in the last invocation of ApproxMC2Core,

as an input to LogSATSearch. This is then used in LogSATSearch to linearly search

a small neighborhood of mPrev, viz. when |m − mPrev| < 3, before embarking on

a galloping search. Specifically, if LogSATSearch finds that |R〈F,h(m),α(m)〉↓S| ≥ thresh

after the linear search, it keeps doubling the value of m until either |R〈F,h(m),α(m)〉↓S|

becomes less than thresh, or m overshoots |S|. Subsequently, binary search is done by

iteratively bisecting the interval between loIndex and hiIndex. This ensures that the

search requires O(log2m
∗) calls (instead of O(log2 |S|) calls) to BoundedSAT, where

m∗ (usually � |S|) is the value of m when the search stops. Note also that a gallop-

ing search inspects much smaller values of m compared to a naive binary search, if

m∗ � |S|. Therefore, the formulas fed to the SAT solver have fewer xor clauses (or

number of components of h(m)) conjoined with F than if a naive binary search was

used. This plays an important role in improving the performance of ApproxMC2.

In order to provide the right value of mPrev to LogSATSearch, ApproxMC2 passes

the value of nCells returned by one invocation of ApproxMC2Core to the next invo-

cation (line 8 of Algorithm 1), and ApproxMC2Core passes on the relevant informa-

tion to LogSATSearch (lines 5–6 of Algorithm 2). Thus, successive invocations of

ApproxMC2Core in ApproxMC2 are no longer independent of each other. Note that

the independence of randomly chosen (hm, αm) pairs for different values of m, and the

independence of successive invocations of ApproxMCCore, are features of ApproxMC

that are exploited in its analysis [38]. Since these independence no longer hold in

ApproxMC2, we must analyze ApproxMC2 afresh.



41

4.1.1 Analysis

Lemma 2. For 1 ≤ i < |S|, let µi = RF↓S/2
i. For every β > 0 and 0 < ε < 1, we

have the following:

1. Pr
[
|R〈F,h(i),α(i)〉↓S| − µi| ≥ ε

1+ε
µi
]
≤ (1+ε)2

ε2µi

2. Pr
[
|R〈F,h(i),α(i)〉↓S| ≤ βµi

]
≤ 1

1+(1−β)2µi

Proof. For every y ∈ {0, 1}|S| and for every α ∈ {0, 1}i, define an indicator variable

γy,α,i which is 1 iff h(i)(y) = α. Let Γα,i =
∑

y∈RF↓S (γy,α,i), µα,i = E [Γα,i] and

σ2
α,i = V [Γα,i]. Clearly, Γα,i = |R〈F,h(i),α〉↓S| and µα,i = 2−i|RF↓S|. Note that µα,i is

independent of α and equals µi, as defined in the statement of the Lemma. From

the pairwise independence of h(i)(y) (which, effectively, is a randomly chosen function

fromHxor(|S|, i)), we also have σ2
α,i ≤ µα,i = µi. Statements 1 and 2 of the lemma then

follow from Chebhyshev inequality and Paley-Zygmund inequality, respectively.

Let B denote the event that ApproxMC2Core either returns (⊥,⊥) or returns a pair

(2m, nSols) such that 2m × nSols does not lie in the interval
[
|RF↓S |

1+ε
, |RF↓S|(1 + ε)|

]
.

We wish to bound Pr [B] from above. Towards this end, let Ti denote the event(
|R〈F,h(i),α(i)〉↓S| < thresh

)
, and let Li and Ui denote the events

(
|R〈F,h(i),α(i)〉↓S| <

|RF↓S |
(1+ε)2i

)
and

(
|R〈F,h(i),α(i)〉↓S| >

|RF↓S |
2i

(1 + ε
1+ε

)
)

, respectively. Furthermore, let m∗ denote the

integer blog2 |RF↓S| − log2

(
4.92

(
1 + 1

ε

)2
)
c.

Lemma 3. The following bounds hold:

1. Pr[Tm∗−3] ≤ 1
62.5

2. Pr[Lm∗−2] ≤ 1
20.68

3. Pr[Lm∗−1] ≤ 1
10.84
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4. Pr[Lm∗ ∪ Um∗ ] ≤ 1
4.92

The proofs follow from the definitions of m∗, thresh, µi, and from applications of

Lemma 2 with appropriate values of β.

Lemma 4. Pr [B] ≤ 0.36

Proof. For any event E, let E denote its complement. For notational convenience,

we use T0 and U|S| to denote the empty (or impossible) event, and T|S| and L|S| to

denote the universal (or certain) event. It then follows from the definition of B that

Pr [B] ≤ Pr
[⋃

i∈{1,...|S|}
(
Ti−1 ∩ Ti ∩ (Li ∪ Ui)

)]
.

We now wish to simplify the upper bound of Pr [B] obtained above. In order to

do this, we use three observations, labeled O1, O2 and O3 below, which follow from

the definitions of m∗, thresh and µi, and from the linear ordering of R〈F,h(m),α(m)〉↓S.

O1: ∀i ≤ m∗ − 3, Ti ∩ (Li ∪ Ui) = Ti and Ti ⊆ Tm∗−3,

O2: Pr[
⋃
i∈{m∗,...|S|} Ti−1∩Ti∩(Li∪Ui)] ≤ Pr[Tm∗−1∩(Lm∗∪Um∗)] ≤ Pr[Lm∗∪Um∗ ],

O3: For i ∈ {m∗ − 2,m∗ − 1}, since thresh ≤ µi(1 + ε
1+ε

), we have Ti ∩ Ui = ∅.

Using O1, O2 and O3, we get Pr[B] ≤ Pr[Tm∗−3] + Pr[Lm∗−2] + Pr[Lm∗−1] + Pr[Lm∗ ∪

Um∗ ]. Using the bounds from Lemma 3, we finally obtain Pr [B] ≤ 0.36.

Note that Lemma 4 holds regardless of the order in which the search in LogSATSearch

proceeds. Our main theorem now follows from Lemma 4 and from the count t of in-

vocations of ApproxMC2Core in ApproxMC2 (see lines 4-10 of Algorithm 1).

Theorem 5. Suppose ApproxMC2(F, S, ε, δ) returns c after making k calls to a SAT

solver. Then Pr[|RF↓S|/(1+ε) ≤ c ≤ (1+ε)|RF↓S|] ≥ 1−δ, and k ∈ O( log(|S|) log(1/δ)
ε2

).
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Note that the number of SAT solver calls in ApproxMC [38] lies in O( |S| log(1/δ)
ε2

), which

is exponentially worse than the number of calls in ApproxMC2, for the same ε and δ.

Furthermore, if the formula F fed as input to ApproxMC2 is in DNF, the subroutine

BoundedSAT can be implemented in PTIME, since satisfiability checking of DNF +

XOR is in PTIME. This gives us the following result.

Theorem 6. ApproxMC2 is a fully polynomial randomized approximation scheme

(FPRAS) for #DNF.

Note that this is fundamentally different from FPRAS for #DNF described in

earlier work, viz. [104].

4.1.2 Generalizing beyond ApproxMC

So far, we have shown how ApproxMC2 significantly reduces the number of SAT solver

calls vis-a-vis ApproxMC, without sacrificing theoretical guarantees, by relaxing inde-

pendence requirements. Since ApproxMC serves as a paradigmatic representative of

several hashing-based counting and probabilistic inference algorithms, the key ideas

of ApproxMC2 can be used to improve these other algorithms too.

PAWS [69] is a hashing-based sampling algorithm for high dimensional probability

spaces. Similar to ApproxMC, the key idea of PAWS is to find the “right” number

and set of constraints that divides the solution space into appropriately sized cells.

To do this, PAWS iteratively adds independently chosen constraints, using a linear

search. An analysis of the algorithm in [69] shows that this requires O(n log n) calls

to an NP oracle, where n denotes the size of the support of the input constraint. Our

approach based on dependent constraints can be used in PAWS to search out-of-order,

and reduce the number of NP oracle calls from O(n log n) to O(log n), while retaining

the same theoretical guarantees.
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4.2 Evaluation

To evaluate the runtime performance and quality of approximations computed by

ApproxMC2, we implemented a prototype in C++ and conducted experiments on a

wide variety of publicly available benchmarks. Specifically, we sought answers to the

following questions:

1. How does runtime performance and number of SAT invocations of ApproxMC2

compare with that of ApproxMC ?

2. How far are the counts computed by ApproxMC2 from the exact counts?

Our benchmark suite consisted of problems arising from probabilistic inference

in grid networks, synthetic grid-structured random interaction Ising models, plan

recognition, DQMR networks, bit-blasted versions of SMTLIB benchmarks, ISCAS89

combinational circuits, and program synthesis examples.

We used a high-performance cluster to conduct experiments in parallel. Each

node of the cluster had a 12-core 2.83 GHz Intel Xeon processor, with 4GB of main

memory, and each experiment was run on a single core. For all our experiments, we

used ε = 0.8 and δ = 0.2, unless stated otherwise. To further optimize the running

time, we used improved estimates of the iteration count t required in ApproxMC2 by

following an analysis similar to that in [37].

4.2.1 Performance comparison

Table 4.1 presents the performance of ApproxMC2 vis-a-vis ApproxMC over a subset of

our benchmarks∗. Column 1 of this table gives the benchmark name, while columns 2

∗The complete table is available in Appendix as Table A1
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Benchmark Vars Clauses ApproxMC2 Time ApproxMC Time ApproxMC2 SATCalls ApproxMC SATCalls

tutorial3 486193 2598178 12373.99 – 1744 –

case204 214 580 166.2 – 1808 –

case205 214 580 300.11 – 1793 –

case133 211 615 18502.44 – 2043 –

s953a 15 7 602 1657 161.41 – 1648 –

llreverse 63797 257657 1938.1 4482.94 1219 2801

lltraversal 39912 167842 151.33 450.57 1516 4258

karatsuba 19594 82417 23553.73 28817.79 1378 13360

enqueueSeqSK 16466 58515 192.96 2036.09 2207 23321

progsyn 20 15475 60994 1778.45 20557.24 2308 34815

progsyn 77 14535 27573 88.36 1529.34 2054 24764

sort 12125 49611 209.0 3610.4 1605 27731

LoginService2 11511 41411 26.04 110.77 1533 10653

progsyn 17 10090 27056 100.76 4874.39 1810 28407

progsyn 29 8866 31557 87.78 3569.25 1712 28630

LoginService 8200 26689 21.77 101.15 1498 12520

doublyLinkedList 6890 26918 17.05 75.45 1615 10647

Table 4.1 : Performance comparison of ApproxMC2 vis-a-vis ApproxMC. The runtime
is reported in seconds and “–” in a column reports timeout after 8 hours.
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and 3 list the number of variables and clauses, respectively. Columns 4 and 5 list the

runtime (in seconds) of ApproxMC2 and ApproxMC respectively, while columns 6 and 7

list the number of SAT invocations for ApproxMC2 and ApproxMC respectively. We use

“–” to denote timeout after 8 hours. Table 4.1 clearly demonstrates that ApproxMC2

outperforms ApproxMC by 1-2 orders of magnitude. Furthermore, ApproxMC2 is able

to compute counts for benchmarks that are beyond the scope of ApproxMC. The

runtime improvement of ApproxMC2 can be largely attributed to the reduced (by

almost an order of magnitude) number of SAT solver calls vis-a-vis ApproxMC.

There are some large benchmarks in our suite for which both ApproxMC and

ApproxMC2 timed out; hence, we did not include these in Table 4.1. Importantly, for

a significant number of our experiments, whenever ApproxMC or ApproxMC2 timed

out, it was because the algorithm could execute some, but not all required iterations

of ApproxMCCore or ApproxMC2Core, respectively, within the specified time limit.

In all such cases, we obtain a model count within the specified tolerance, but with

reduced confidence. This suggests that it is possible to extend ApproxMC2 to obtain

an anytime algorithm.

4.2.2 Approximation Quality

To measure the quality of approximation, we compared the approximate counts re-

turned by ApproxMC2 with the counts computed by an exact model counter, viz.

sharpSAT [147]. Figure 4.1 shows the model counts computed by ApproxMC2, and the

bounds obtained by scaling the exact counts with the tolerance factor (ε = 0.8) for a

small subset of benchmarks. Since sharpSAT can not handle Σ1
1 formulas, we ensured

that sampling set S for these subset of benchmarks is an independent support. The

y-axis represents model counts on log-scale while the x-axis represents benchmarks
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Figure 4.1 : Quality of counts computed by ApproxMC2

ordered in ascending order of model counts. We observe that for all the benchmarks,

ApproxMC2 computed counts within the tolerance. Furthermore, for each instance,

the observed tolerance (εobs) was calculated as max(AprxCount
|RF↓S |

−1, 1− |RF↓S |
AprxCount

), where

AprxCount is the estimate computed by ApproxMC2. We observe that the geometric

mean of εobs across all benchmarks is 0.021 – far better than the theoretical guarantee

of 0.8. In comparison, the geometric mean of the observed tolerance obtained from

ApproxMC running on the same set of benchmarks is 0.036.
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Discussion on Quality

While the observation that estimates computed by ApproxMC2 are better in practice

than theoretical guarantees is certainly more relieving than the alternate scenario.

These results, however, do not imply that to obtain results within a tolerance of 0.04,

one could supply ε of 0.8 to ApproxMC2. In fact, if one desired tolerance of 0.04

instead of 0.8, there is no free lunch: there is an associated cost in terms of increase

in the number of SAT calls. Note that the number of invocations to SAT oracle is

O( 1
ε2

). We discuss possible future directions of research related to dependence of

ApproxMC-esque techniques on ε in Chapter 12.

4.3 Chapter Summary

In this chapter, we presented a new approach to hashing-based counting, which allows

out-of-order-search with dependent hash functions, dramatically reducing the number

of SAT solver calls from linear to logarithmic in the size of the support of interest.

This is achieved while retaining strong theoretical guarantees and without increasing

the complexity of each SAT solver call. Extensive experiments demonstrate the prac-

tical benefits of our approach vis-a-vis state-of-the art techniques. Combining our

approach with more efficient hash functions promises to push the scalability horizon

of approximate counting further.
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Chapter 5

Handling Weighted Distributions for Counting

In the previous chapter, we discussed hashing-based paradigm for unweighted vari-

ant of constrained counting (UMC), i.e. the weight function assigns weight of 1 to

every assignment. However, many applications of constrained counting, including

probabilistic inference and network reliability, arising from real world are naturally

expressed as weighted counting problem (WMC).

Theoretical investigations into WMC were led by Roth who asserted that proba-

bilistic inference is #P-complete, which by a known connection with WMC [48, 42],

implies that WMC is also #P-complete for both CNF and DNF formulas [135]. On

the practical side, the earliest efforts at WMC such as CDP [24] were inspired from

DPLL-style SAT solvers and consisted of incrementally counting the number of solu-

tions after a partial solution was found. Subsequently, heuristics such as component

caching, clause learning, no-good learning and the like improved upon the initial ap-

proach and ensuing counters such as Relsat [14], Cachet [138], and sharpSAT [147]

have been shown to scale to larger formulas. These approaches were later manually

adapted for WMC in Cachet [139].Again, alternative approaches based on BDDs and

their variants [118, 159] have also been proposed for UMC. Similar to SAT-based ap-

proaches, the resulting solvers have also been manually adapted for WMC, resulting

in solvers like SDD [3].

In this chapter, we discuss two complementary approaches to handle WMC. In

the first half of this chapter, we discuss how hashing-based techniques introduced in
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Chapter 4 for UMC can be lifted to handle WMC. Prior hashing-based approaches to

WMC employed computationally expensive MPE oracle. In contrast, we only employ

SAT oracle. In this half of the chapter, we do not make any assumption on the weight

function. In the second half of this chapter, we discuss a complementary approach

wherein we propose an efficient reduction of WMC to UMC if the weight function is

expressed using literal-weighted representation.

5.1 Lifting Hashing-based Techniques to Weighted Counting

Let W (·) be a function that takes as input an assignment σ and yields a real number

W (σ) ∈ (0, 1] called the weight of σ. Given a set Y of assignments, we use W (Y )

to denote Σσ∈YW (σ). In this section, we make no assumptions about the nature of

the weight function, treating it as a black-box function. Three important quantities

derived from the weight function are wmax = maxσ∈RF W (σ), wmin = minσ∈RF W (σ),

and the tilt ρ = wmax/wmin. Our hashing-based algorithm requires an upper bound

on the tilt, denoted r, which is provided by the user. As tight a bound as possible

is desirable to maximize the efficiency of the algorithms. the tilt concerns weights

of only satisfying assignments, our assumption about it being bounded by a small

number is reasonable in several practical situations. For example, when solving prob-

abilistic inference with evidence by reduction to weighted model counting [42], every

satisfying assignment of the CNF formula corresponds to an assignment of values to

variables in the underlying probabilistic graphical model that is consistent with the

evidence. Furthermore, the weight of a satisfying assignment is the joint probabil-

ity of the corresponding assignment of variables in the probabilistic graphical model.

A large tilt would therefore mean existence of two assignments that are consistent

with the evidence, but one of which is overwhelmingly more likely than the other.
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In several real-world problems (see, e.g. Sec 8.3 of [59]), this is considered unlikely

given that numerical conditional probability values are often obtained from human

experts providing qualitative and rough quantitative data. The algorithms presented

in this section require an upper bound for ρ as the input. It is worth noting that

although better estimation of upper bounds improve the performance, the algorithms

are sound with respect to any upper bound estimate. While an algorithm solution to

estimation of upper bound for ρ is beyond the scope of this work, such an estimate can

be easily obtained from the designers of probabilistic models. It is easy for designers

to estimate upper bound for ρ than accurate estimation of wmax as the former does

not require precise knowledge of probabilities of all the models.

Algorithm 4 WeightMC(F, S, ε, δ, r)

1: counter← 0;C ← emptyList; wmax ← 1;

2: pivot← 2× de3/2
(
1 + 1

ε

)2e;

3: t← d35 log2(3/δ)e;

4: repeat

5: (c,wmax)← WeightMCCore(F, S, pivot, r,wmax);

6: counter← counter + 1;

7: if c 6= ⊥ then

8: AddToList(C, c · wmax);

9: until counter < t

10: finalCount← FindMedian(C);

11: return finalCount;

Our weighted counting algorithm, called WeightMC, is best viewed as an adapta-

tion of the ApproxMC algorithm. The key idea in ApproxMC is to partition the set
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Algorithm 5 WeightMCCore(F, S, pivot, r,wmax)

1: (Y,wmax)← BoundedWeightSAT(F, pivot, r,wmax, S);

2: if W (Y ) /wmax ≤ pivot then

3: return W (Y );

4: else

5: i← 0;

6: repeat

7: i← i+ 1;

8: Choose h at random from Hxor(|S|, i, 3);

9: Choose α at random from {0, 1}i;

10: (Y,wmax) ← BoundedWeightSAT(F ∧ (h(x1, . . . x|S|) =

α), pivot, ρ,wmax, S);

11: until (0 < W (Y ) /wmax ≤ pivot) or i = n

12: if W (Y ) /wmax > pivot or W (Y ) = 0 then return (⊥,wmax);

13: elsereturn (W(Y )·2i−1

wmax
,wmax);

of satisfying assignments into “cells” containing roughly equal numbers of satisfying

assignments, by employing 2-universal hash functions. For weighted counting, the

primary modification that needs to be done to ApproxMC is that instead of requiring

“cells” to have roughly equal numbers of satisfying assignments, we now require them

to have roughly equal weights of satisfying assignments. To ensure that all weights lie

in [0, 1], we scale weights by a factor of 1
wmax

. Unlike earlier works [70, 71], however,

we do not require a MPE-oracle to get wmax; instead we estimate wmax online without

incurring any additional performance cost.

WeightMC assumes access to a subroutine called BoundedWeightSAT that takes a
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Algorithm 6 BoundedWeightSAT(F, pivot, r,wmax, S)

1: wmin ← wmax/r; wtotal ← 0;Y = {};

2: repeat

3: y ← SolveSAT(F );

4: if y == UNSAT then

5: break;

6: Y = Y ∪ y;

7: F = AddBlockClause(F, y|S);

8: wtotal ← wtotal +W (y);

9: wmin ← min(wmin,W (y));

10: until wtotal/(wmin · r) > pivot;

11: return (Y,wmin · r);

CNF formula F , a “pivot”, an upper bound r of the tilt and an upper bound wmax of

the maximum weight of an assignment in RF↓S. It returns a set of satisfying assign-

ments of F such that the total weight of the returned assignments scaled by 1/wmax

exceeds pivot. It also updates the minimum weight of a satisfying assignment seen so

far and returns the same. BoundedWeightSAT accesses a subroutine AddBlockClause

that takes as inputs a formula F and a projected assignment σ|S, computes a blocking

clause for σ|S, and returns the formula F ′ obtained by conjoining F with the blocking

clause thus obtained. Finally, the algorithms assume access to an NP-oracle, which in

particular can decide SAT. Both algorithms also accept as input a positive real-valued

parameter r which is an upper bound on ρ.
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5.1.1 WeightMC Algorithm

The pseudo-code for WeightMC is shown in Algorithm 4. The algorithm takes a CNF

formula F , sampling set S, tolerance ε ∈ (0, 1), confidence parameter δ ∈ (0, 1), and

tilt upper bound r, and returns an approximate weighted model count. WeightMC in-

vokes an auxiliary procedure WeightMCCore that computes an approximate weighted

model count by randomly partitioning the space of satisfying assignments using hash

functions from the family Hxor(|S|,m, 3).. WeightMC first computes two parameters:

pivot, which quantifies the size of “small” cell and t which determines the number

of invocation of WeightMC. The particular choice of expressions to compute these

parameters is motivated by technical reasons. After invoking WeightMCCore suffi-

ciently many times, WeightMC returns the median of the non-⊥ counts returned by

WeightMCCore.

The pseudo-code for subroutine WeightMCCore is presented in 5. WeightMCCore

takes in a CNF formula F , sampling set S, parameter to quantify size of “small” cell

pivot, tilt upper bound r and current estimate of upper bound on wmax and returns

an approximate weighted model count and revised estimate of upper bound on wmax.

WeightMCCore first handles the easy case of total weighted count of F being less

than pivot in lines 1–3. Otherwise, in every iteration of the loop 6–12, WeightMCCore

randomly partitions the solution space of F using Hxor(|S|, i, 3) until a randomly

chosen cell is “small” i.e. the total weighted count of the “cell” is less than pivot.

We also refine the estimate for wmax in every iteration of the loop 6–12 using the

minimum weight of solutions seen so far (computed in calls to BoundedWeightSAT)

and the tilt. In the event a chosen cell is “small”, ApproxMCthe weighted count of

“cell” is multiplied by total number of cells to obtain the estimated total weighted

count. The estimated total weighted count along with refined estimate of wmax is
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returned in line 13.

Implementation Details

In our implementations of WeightMC, BoundedWeightSAT is implemented using Cryp-

toMiniSAT [1], a SAT solver that handles xor clauses efficiently. CryptoMiniSAT

uses blocking clauses to prevent already generated witnesses from being generated

again. Since we are only interested in determining —RF↓S—, blocking clauses can

be restricted to only variables in the set S. We implemented this optimization in

CryptoMiniSAT, leading to significant improvements in performance. We used “ran-

dom device” implemented in C++11 as source of pseudo-random numbers to make

random choices in WeightMC.

5.1.2 Analysis of WeightMC

In this section we denote the quantity log2W (RF )−log2 pivot+1 by m. For simplicity

of exposition, we assume henceforth that m is an integer. A more careful analysis

removes this restriction with only a constant factor scaling of the probabilities.

Lemma 7. Let algorithm WeightMCCore, when invoked from WeightMC, return c

with i being the final value of the loop counter in WeightMCCore. Let pi be short hand

for 1- Pr [(1 + ε)−1 ·W (F ↓ S) ≤ c ≤ (1 + ε) ·W (F ↓ S)]. Then pi ≤ e−3/2

2m−i

Proof. Referring to the pseudocode of WeightMCCore, the lemma is trivially satis-

fied if W (F ↓ S) ≤ pivot . Therefore, the only non-trivial case to consider is when

W (F ↓ S) > pivot and WeightMCCore returns from line 13. In this case, the count

returned is 2i ·W (RF,h,α), where α, i and h denote (with abuse of notation) the values

of the corresponding variables and hash functions in the final iteration of the repeat-

until loop in lines 6–11 of the pseudocode. From the pseudocode of WeightMCCore,



56

we know that pivot = de3/2(1+1/ε)2e. The lemma is now proved by showing that for

every i in {0, . . .m}, h ∈ H(n, i, 3), and α ∈ {0, 1}i, we have Pr [(1 + ε)−1 ·W (F ↓ S)

≤ 2iW (RF,h,α) ≤ (1 + ε) ·W (F ↓ S)] ≥ 1− e−3/2

2m−i
.

For every y ∈ {0, 1}n and α ∈ {0, 1}i, define an indicator variable γy,α as follows:

γy,α = W (y) if h(y) = α, and γy,α = 0 otherwise. Let us fix α and y and choose h

uniformly at random from H(n, i, 3). The random choice of h induces a probability

distribution on γy,α such that Pr [γy,α =W (y)] = Pr [h(y) = α] = 2−i, and E [γy,α] =

W (y)Pr [γy,α =W (y)] = 2−iW (y). In addition, the 3-wise independence of hash

functions chosen from H(n, i, 3) implies that for every distinct ya, yb, yc ∈ RF , the

random variables γya,α, γyb,α and γyc,α are 3-wise independent.

Let Γα =
∑

y∈RF γy,α and µα = E [Γα]. Clearly, Γα = W (RF,h,α) and µα =∑
y∈RF E [γy,α] = 2−iW (F ↓ S). Therefore, using Chebyshev’s Inequality, we have

Pr
[
W (F ↓ S)

(
1− ε

1+ε

)
≤ 2iW (RF,h,α) ≤ (1 + ε

1+ε
)W (F ↓ S)

]
≥ 1 − e−3/2

2m−i
. Simpli-

fying and noting that ε
1+ε

< ε for all ε > 0, we obtain Pr [(1 + ε)−1 ·W (F ↓ S)

≤ 2iW (RF,h,α) ≤ (1 + ε) ·W (F ↓ S)] ≥ 1− e−3/2

2m−i
.

Lemma 8. Let an invocation of WeightMCCore from WeightMC return c. Then

Pr [c 6= ⊥ ∧ (1 + ε)−1 ·W (F ↓ S) ≤ c · wmax ≤ (1 + ε) ·W (F ↓ S)] ≥ 0.6.

Proof. It is easy to see that the required probability is at least as large as

Pr [c 6= ⊥ ∧ i ≤ m ∧ (1 + ε)−1W (F ↓ S) ≤ c · wmax ≤ (1 + ε) ·W (F ↓ S)]. Dividing

by wmax and applying Lemma 7 this probability is ≥ 1 − pm − pm−1 − pm−2 ≥ 1 −

e−3/2 − e−3/2

2
− e−3/2

4
≥ 0.6.

We now turn to proving that the confidence can be raised to at least 1 − δ for

δ ∈ (0, 1] by invoking WeightMCCore O(log2(1/δ)) times, and by using the median of

the non-⊥ counts thus returned. For convenience of exposition, we use η(t,m, p) in
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the following discussion to denote the probability of at least m heads in t independent

tosses of a biased coin with Pr [heads ] = p. Clearly, η(t,m, p) =
∑t

k=m

(
t
k

)
pk(1−p)t−k.

Theorem 9. Given a propositional formula F and parameters ε (0 < ε ≤ 1) and

δ (0 < δ ≤ 1), suppose WeightMC(F, ε, δ,X, r) returns c. Then Pr
[
(1 + ε)−1W (F ↓ S))

≤ c ≤ (1 + ε) ·W (F ↓ S))] ≥ 1− δ.

Proof. Throughout this proof, we assume that WeightMCCore is invoked t times from

WeightMC, where t = d35 log2(3/δ)e (see pseudocode for ComputeIterCount in Sec-

tion 6.3). Referring to the pseudocode of WeightMC, the final count returned is the

median of the non-⊥ counts obtained from the t invocations of WeightMCCore. Let

Err denote the event that the median is not in [(1 + ε)−1 ·W (F ↓ S) , (1 + ε) ·W (F ↓ S)].

Let “#non⊥ = q” denote the event that q (out of t) values returned by WeightMCCore

are non-⊥. Then, Pr [Err] =
∑t

q=0 Pr [Err | #non⊥ = q] · Pr [#non⊥ = q].

In order to obtain Pr [Err | #non⊥ = q], we define a 0-1 random variable Zi, for

1 ≤ i ≤ t, as follows. If the ith invocation of WeightMCCore returns c, and if c is

either ⊥ or a non-⊥ value that does not lie in the interval [(1 + ε)−1 ·W (F ↓ S) , (1 +

ε) ·W (F ↓ S)], we set Zi to 1; otherwise, we set it to 0. From Lemma 8, Pr [Zi = 1] =

p < 0.4. If Z denotes
∑t

i=1 Zi, a necessary (but not sufficient) condition for event Err

to occur, given that q non-⊥s were returned by WeightMCCore, is Z ≥ (t−q+dq/2e).

To see why this is so, note that t − q invocations of WeightMCCore must return

⊥. In addition, at least dq/2e of the remaining q invocations must return values

outside the desired interval. To simplify the exposition, let q be an even integer. A

more careful analysis removes this restriction and results in an additional constant

scaling factor for Pr [Err]. With our simplifying assumption, Pr [Err | #non⊥ = q] ≤

Pr[Z ≥ (t− q + q/2)] = η(t, t− q/2, p). Since η(t,m, p) is a decreasing function of m

and since q/2 ≤ t− q/2 ≤ t, we have Pr [Err | #non⊥ = q] ≤ η(t, t/2, p). If p < 1/2,
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it is easy to verify that η(t, t/2, p) is an increasing function of p. In our case, p < 0.4;

hence, Pr [Err | #non⊥ = q] ≤ η(t, t/2, 0.4).

It follows from the above that Pr [Err] =
∑t

q=0 Pr [Err | #non⊥ = q]·Pr [#non⊥ = q]

≤ η(t, t/2, 0.4)·
∑t

q=0 Pr [#non⊥ = q] = η(t, t/2, 0.4). Since
(
t
t/2

)
≥
(
t
k

)
for all t/2 ≤

k ≤ t, and since
(
t
t/2

)
≤ 2t, we have η(t, t/2, 0.4) =

∑t
k=t/2

(
t
k

)
(0.4)k(0.6)t−k ≤(

t
t/2

)∑t
k=t/2(0.4)k(0.6)t−k ≤ 2t

∑t
k=t/2(0.6)t(0.4/0.6)k ≤ 2t ·3·(0.6×0.4)t/2 ≤ 3·(0.98)t.

Since t = d35 log2(3/δ)e, it follows that Pr [Err] ≤ δ.

Theorem 10. Given an oracle for SAT, WeightMC(F, ε, δ, S, r) runs in time polyno-

mial in log2(1/δ), r, |F | and 1/ε relative to the oracle.

Proof. Referring to the pseudocode for WeightMC, lines 1–3 take O(1) time. The

repeat-until loop in lines 4–9 is repeated t = d35 log2(3/δ)e times. The time taken for

each iteration is dominated by the time taken by WeightMCCore. Finally, computing

the median in line 10 takes time linear in t. The proof is therefore completed by

showing that WeightMCCore takes time polynomial in |F |, r and 1/ε relative to the

SAT oracle.

Referring to the pseudocode for WeightMCCore, we find that BoundedWeightSAT

is called O(|F |) times. Observe that when the loop in BoundedWeightSAT terminates,

wmin is such that each y ∈ RF whose weight was added to wtotal has weight at least

wmin. Thus since the loop terminates when wtotal/wmin > r ·pivot, it can have iterated

at most (r ·pivot)+1 times. Therefore each call to BoundedWeightSAT makes at most

(r · pivot) + 1 calls to the SAT oracle, and takes time polynomial in |F |, r, and pivot

relative to the oracle. Since pivot is in O(1/ε2), the number of calls to the SAT

oracle, and the total time taken by all calls to BoundedWeightSAT in each invocation

of WeightMCCore is polynomial in |F |, r and 1/ε relative to the oracle. The random

choices in lines 8 and 9 of WeightMCCore can be implemented in time polynomial
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in n (hence, in |F |) if we have access to a source of random bits. Constructing

F ∧ h(z1, . . . zn) = α in line 10 can also be done in time polynomial in |F |.

5.1.3 Experimental Results

To evaluate the performance of WeightMC, we built prototype implementations and

conducted an extensive set of experiments. The suite of benchmarks was made up

of problems arising from various practical domains as well as problems of theoreti-

cal interest. Specifically, we used bit-level unweighted versions of constraints arising

from grid networks, plan recognition, DQMR networks, bounded model checking of

circuits, bit-blasted versions of SMT-LIB [2] benchmarks, and ISCAS89 [26] circuits

with parity conditions on randomly chosen subsets of outputs and next-state vari-

ables [139, 102]. While our algorithms are agnostic to the weight oracle, other tools

that we used for comparison require the weight of an assignment to be the product

of the weights of its literals. Consequently, to create weighted problems with tilt

at most some bound r, we randomly selected m = max(15, n/100) of the variables

and assigned them the weight w such that (w/(1 − w))m = r, their negations the

weight 1− w, and all other literals the weight 1. To illustrate agnostic nature of our

algorithms w.r.t. to weight oracle, we also evaluated WeightMC with non-factored rep-

resentation of the weights. In our implementation of weight oracle without factored

representation, we first randomly chose a range of minimum (wmin) and maximum

(wmax) possible weights and then randomly selected 20 variables of the input formula.

We now compute weight of an assignment as wmin+(wmax − wmin ∗ x
220

), where x is

the integer value of binary representation of assignment to our randomly selected 20

variables. Unless mentioned otherwise, our experiments for WeightMC used r = 5,

ε = 0.8, and δ = 0.2.



60

To facilitate performing multiple experiments in parallel, we used a high perfor-

mance cluster, each experiment running on its own core. Each node of the cluster

had two quad-core Intel Xeon processors with 4GB of main memory. We used 2500

seconds as the timeout of each invocation of BoundedWeightSAT and 20 hours as the

overall timeout for WeightMC. If an invocation of BoundedWeightSAT timed out in

line 10 (WeightMC), we repeated the execution of the corresponding loops without

incrementing the variable i (in both algorithms). With this setup, WeightMC was

able to successfully return weighted counts and generate weighted random instances

for formulas with close to 64,000 variables.

We compared the performance of WeightMC with the SDD Package [3], a state-

of-the-art tool which can perform exact weighted model counting by compiling CNF

formulae into Sentential Decision Diagrams [44]. We also tried to compare our tools

against Cachet, WISH and PAWS but the current versions of the tools made available

to us were broken and we are yet, at the time of submission, to receive working tools.

If we get access to working tools in future, we will update our full version with the

corresponding comparisons. Our results are shown in Table 5.1, where column 1 lists

the benchmarks and columns 2 and 3 give the number of variables and clauses for

each benchmark. Column 4 lists the time taken by WeightMC, while column 5 lists

the time taken by SDD. “T” and “mem” indicate that an experiment exceeded our

imposed 20-hour and 4GB-memory limits, respectively. While SDD was generally

superior for small problems, WeightMC was significantly faster for all benchmarks

with more than 1,000 variables.

To evaluate the quality of the approximate counts returned by WeightMC, we

computed exact weighted model counts using the SDD tool for our benchmarks. Since

SDD could not compute counts for all the benchmark, we list results for the subset
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Table 5.1 : WeightMC and SDD runtimes in seconds.

Benchmark vars #clas
Weight-

MC SDD

or-50 100 266 15 0.38

or-70 140 374 771 0.83

s526 3 2 365 943 62 29.54

s526a 3 2 366 944 81 12.16

s953a 3 2 515 1297 11978 355.7

s1238a 7 4 704 1926 3519 mem

s1196a 15 7 777 2165 3087 2275

Squaring9 1434 5028 34942 mem

Squaring7 1628 5837 39367 mem

ProcessBean 4768 14458 53746 mem

LoginService2 11511 41411 322 mem

Sort 12125 49611 19303 T

EnqueueSeq 16466 58515 8620 mem

Karatsuba 19594 82417 4962 mem

TreeMax 24859 103762 34 T

LLReverse 63797 257657 1496 mem
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of benchmarks for which SDD returned an answer. Figure 5.1 shows the counts

returned by WeightMC, and the exact counts from SDD scaled up and down by

(1 + ε). The weighted model counts are represented on the y-axis, while the x-axis

represents benchmarks arranged in increasing order of counts. We observe, for all our

experiments, that the weighted counts returned by WeightMC lie within the tolerance

of the exact counts. Over all of the benchmarks, the L1 norm of the relative error

was 0.036, demonstrating that in practice WeightMC is substantially more accurate

than the theoretical guarantees provided by Theorem 54.
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Figure 5.1 : Quality of counts computed by WeightMC. The benchmarks are arranged
in increasing order of weighted model counts.

In another experiment, we studied the effect of different values of the tilt bound r

on the runtime of WeightMC. Runtime as a function r is shown for several benchmarks

in Figure 5.2, where times have been normalized so that at the lowest tilt (r = 1)

each benchmark took one time unit. Each runtime is an average over five runs on the

same benchmark. The theoretical linear dependence on the tilt shown in Theorem 10
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can be seen to roughly occur in practice.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 1  3  5  7  9  11  13  15

R
u
n
ti

m
e
 (

n
o
rm

a
liz

e
d
)

Tilt Bound

LoginService
s526_15_7
or-50-10-9

s526a
s526_3_2
blockmap

Figure 5.2 : Runtime of WeightMC as a function of tilt bound.

5.2 Handling Literal-Weighted Representation

Many applications, including probabilistic inference, of WMC arising from real-world

can be expressed by a literal-weighted representation, in which the weight of an as-

signment is the product of weights of its literals [42]. We use this representation

throughout this chapter, and use literal-weighted WMC to denote the corresponding

WMC problem. Note that literal-weighted WMC problems for both CNF and DNF

formulas arise in real-life applications; e.g., DNF formulas are used in problems arising

from probabilistic databases [51], while CNF is the de-facto form of representation for

probabilistic-inference problems [42].

Recent approaches to WMC have focused on adapting UMC techniques to work in

the weighted setting [139, 44, 34]. Such adaption requires intimate understanding of
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the implementation details of the UMC techniques, and on-going maintenance, since

some of these techniques evolve over time. In this chapter, we flip this approach

and present an efficient reduction of literal-weighted WMC to UMC. The reduction

preserves the normal form of the input formula, i.e. it provides the UMC formula in the

same normal form as the input WMC formula. Therefore, an important contribution

of our reduction is to provide a WMC-to-UMC module that allows any UMC solver,

viewed as a black box, to be converted to a WMC solver. This enables the automatic

leveraging of progress in UMC solving to progress in WMC solving.

We have implemented our WMC-to-UMC module on top of state-of-the-art exact

unweighted model counters to obtain exact weighted model counters for CNF for-

mulas with literal-weighted representation. Experiments on a suite of benchmarks

indicate that the resulting counters scale to significantly larger problem instances

than what can be handled by a state-of-the-art exact weighted model counter [44].

Our results suggest that we can leverage powerful techniques developed for SAT and

related domains in recent years to handle probabilistic inference queries for graphical

models encoded as WMC instances. Furthermore, we demonstrate that our techniques

can be extended to more general representations where weights are associated with

constraints instead of individual literals.

In this section, we adopt a different approach and propose to solve WMC by

reducing it to UMC. Our key contribution lies in showing that this reduction is

efficient and effective, thereby making it possible to solve weighted model counting

problems using any unweighted model counter as a black-box. Our reduction makes

use of chain formulas to encode each weighted variable. Interestingly, these formulas

can be viewed as adaptations of switching circuits proposed by [157] in the context

of stochastic switching networks. Chain formulas are also reminiscent of the log-
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encoding approach of encoding variables with bounded domains in the CSP literature

[66, 77, 79, 94, 154]. Indeed, a chain formula encoding a variable with weight k/2m is

logically equivalent to the constraint (X ≥ 2m − k), where X is an unsigned integer

represented using m boolean variables, as described in [79, 154]. The use of log-

encoding for exact counting weighted models of Boolean formulas is novel, to the

best of our knowledge.

The remainder of the section is organized as follows. We present our the polynomial-

time reduction from WMC to UMC in Section 5.2.1. Using our reduction, we have

implemented a literal-weighted exact model counter module called sharpWeightSAT.

In Section 5.2.6, we present results of our experiments using sharpWeightSAT on top of

state-of-the-art UMC solvers, and compare them with SDD – a state-of-the-art exact

weighted model counter. We then demonstrate, in Section 5.3, that our reduction can

be extended to more general representation of associating weights with constraints.

5.2.1 From Literal-weighted WMC to UMC

In this section, we first show how chain formulas can be used to represent normal

weights of variables. We then present two polynomial-time reductions from WMC to

UMC using chain formulas. These reductions, though related, are motivated by the

need to preserve different normal forms (CNF and DNF) of the input formula. Finally,

we discuss the optimality of our reductions with respect to number of variables in the

unweighted formula.

5.2.2 Representing Weights using Chain Formulas

The central idea of our reduction is the use of chain formulas to represent weights.

Let m > 0 be a natural number, and k < 2m be a positive odd number. Let c1c2 · · · cm
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be the m-bit binary representation of k, where cm is the least significant bit. We then

construct a chain formula ϕk,m(·) on m variables a1, . . . am as follows. For every j in

{1, . . .m− 1}, let Cj be the connector “∨” if cj = 1, and the connector “∧” if cj = 0.

Define

ϕk,m(a1, · · · am) = a1C1 (a2C2(· · · (am−1Cm−1 am) · · · ))

For example, consider k = 5 and m = 4. The binary representation of 5 using 4 bits is

0101. Therefore, ϕ5,4(a1, a2, a3, a4) = a1∧ (a2∨ (a3∧a4)). We first show in Lemma 11

that ϕk,m(·) has exactly k satisfying assignments. Next, as a simple application of

the distributive laws of Boolean algebra, Lemma 12 shows that every chain formula

can be efficiently represented in both CNF and DNF.

Lemma 11. Let m > 0 be a natural number, k < 2m , and ϕk,m as defined above.

Then |ϕk,m| is linear in m and ϕk,m has exactly k satisfying assignments.

Proof. By construction, ϕk,m(a1, · · · am) is of size linear inm. To prove that ϕk,m(a1, · · · am)

has exactly k satisfying assignments, we use induction on m. The base case (m = 1)

is trivial. For m ≥ 1, let c2 · · · cm represent the number k′ in binary, and as-

sume that a2C2(· · · (am−1Cm−1am) · · · ) has exactly k′ satisfying assignments. If c1

is 0, then on one hand k = k′, and on the other hand C1 is the connector “∧”.

Therefore, ϕk,m(a1, · · · am) is a1 ∧ (a2C2(· · · (am−1Cm−1am) · · · )), which has k′ = k

satisfying assignments. Otherwise, if c1 is 1, then on one hand k = 2m−1 + k′,

and on the other hand C1 is the connector “∨”. Therefore, ϕk,m(a1, · · · am) is a1 ∨

(a2C2(· · · (am−1Cm−1am) · · · )), which has 2m−1 + k′ = k satisfying assignments. This

completes the induction.

Recall from Section 2.6 that NF denotes the set of indices of normal-weighted

variables in F . For i in NF , let W (x1
i ) = ki/2

mi , where ki is a positive odd number
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less than 2mi . Additionally, let {xi,1, . . . xi,mi} be a set of mi ”fresh” variables (i.e.

variables that were not used before) for each i in NF . We call the chain formula

ϕki,mi(xi,1 · · ·xi,mi), the representative formula of xi. For notational clarity, we simply

write ϕki,mi when the arguments of the representative formula are clear from the

context.

Lemma 12. Every chain formula ψ on n variables is equivalent to a CNF (resp.,

DNF) formula ψCNF (resp., ψDNF) having at most n clauses. In addition, |ψCNF| (resp.,

|ψDNF|) is in O(n2).

Proof. We first prove the CNF case and then obtain a similar proof for DNF. The

proof is by induction on n. The base case (n = 1) is trivial. To prove the induction

step, we consider two cases. First, assume that ψ is li ∨φ, where φ is a chain formula

on n − 1 variables. By the induction hypothesis, φ is equivalent to a CNF formula

φCNF. Let φCNF be given by (φ1 ∧ · · ·φn−1), where each φj is a disjunction of literals.

Then, ψ is equivalent to li ∨ (φ1 ∧ · · ·φn−1). Distributing “∨” over “∧”, we get the

equivalent formula (li ∨ φ1) ∧ · · · (li ∨ φn−1). Since each φj is a disjunction of literals,

so is (li ∨ φj). Therefore, (li ∨ φ1) ∧ · · · (li ∨ φn−1) is the desired CNF formula ψCNF.

Next, assume that ψ is li ∧ φ, where φ is a chain formula on n− 1 variables. By the

induction hypothesis, φ is equivalent to a CNF formula φCNF. It follows immediately

that li ∧ φCNF is the desired CNF formula ψCNF. To see why |ψCNF| is in O(n2), recall

that a variable can appear only once (in negated or un-negated form) in a chain

formula. Therefore, ψCNF as constructed above has at most n clauses, each with at

most n literals.

The proof for DNF is very similar to the above one. Again, the proof is by

induction on n. The base case (n = 1) is trivial. To prove the induction step, we

consider two cases. First, assume that ψ is li ∧ φ, where φ is a chain formula on
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n − 1 variables. By the induction hypothesis, φ is equivalent to a DNF formula

φDNF. Let φDNF be given by (φ1 ∨ · · ·φn−1), where each φj is a conjunction of literals.

Then, ψ is equivalent to li ∧ (φ1 ∨ · · ·φn−1). Distributing “∧” over “∨”, we get the

equivalent formula (li ∧ φ1)∨ · · · (li ∧ φn−1). Since each φj is a conjunction of literals,

so is (li ∧ φj). Therefore, (li ∧ φ1) ∨ · · · (li ∧ φn−1) is the desired DNF formula ψDNF.

Next, assume that ψ is li ∨ φ, where φ is a chain formula on n− 1 variables. By the

induction hypothesis, φ is equivalent to a DNF formula φDNF. It follows immediately

that li ∧ φDNF is the desired DNF formula ψDNF. Again, as every variable can appear

only once (in negated or un-negated form) in a chain formula, ψDNF as constructed

above has at most n clauses, each with at most n literals. Therefore |ψDNF| is in

O(n2).

5.2.3 Polynomial-time Reductions

We now present two reductions from literal-weighted WMC to UMC. Since weighted

model count is a real number in general, while unweighted model count is a natural

number, any reduction from WMC to UMC must use a normalization constant. Given

that all literal weights are of the form ki/2
mi , a natural choice for the normalization

constant is CF =
∏

i∈NF 2−mi . Theorem 13a gives a transformation of an instance

(F,W (·)) of literal-weighted WMC to an unweighted Boolean formula F̂ such that

W (F ) = CF · |RF̂ |. This reduction is motivated by the need to preserve CNF form

of the input formula. We may also allow an additive correction term when doing

the reduction. Theorem 13b provides a transformation of (F,W (·)) to an unweighted

Boolean formula F̆ such that W (F ) = CF · |RF̆ | − 2n + 2n−|NF |. The motivation for

this reduction comes from the need to preserve DNF form of the input formula. Both

reductions take time linear in the size of F and in the number of bits required to
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represent the weights of normal-weighted variables in F .

Note that since CF = 2−m̂, computing CF · |RF̂ | (respectively, CF · |RF̆ |) amounts

to computing |RF̂ | (respectively, |RF̂ |), which is an instance of UMC, and shifting the

radix point in the binary representation of the result to the left by m̂ positions.

Theorem 13. Let (F,W (·)) be an instance of literal-weighted WMC, where F has

n variables. Then, we can construct in linear time the following unweighted Boolean

formulas, each of which has n+ m̂ variables and is of size linear in |F |+ m̂.

(a) F̂ such that W (F ) = CF · |RF̂ |.

(b) F̆ such that W (F ) = CF · |RF̆ | − 2n · (1− 2−|NF |)

Proof. Let X = {x1, · · · , xn} be the set of variables of F . Without loss of generality,

letNF = {1, · · · r} be the set of indices of the normal-weighted variables of F . For each

normal-weighted variable xi, let ϕki,mi(xi,1, · · ·xi,mi) be the representative formula, as

defined above. Let Ω = (x1 ↔ ϕk1,m1) ∧ · · · ∧ (xr ↔ ϕkr,mr).

Proof of part (a): We define the formula F̂ as follows.

F̂ = F ∧ Ω

Recalling m̂ =
∑

i∈NF mi, it is easy to see that F̂ has n + m̂, variables. From

Lemma 11, we know that ϕki,mi(xi,1, · · ·xi,mi) is of size linear in mi, for every i in NF .

Therefore, the size of Ω is linear in m̂, and the size of F̂ is linear in |F |+ m̂.

We now show that W (F ) = CF · |RF̂ |. Let W ′(·) be a new weight function,

defined over the literals of X as follows. If xi has indifferent weight, then W ′(x0
i ) =

W ′(x1
i ) = 1. If xi has normal weight with W (x1

i ) = ki/2
mi , then W ′(x1

i ) = ki and

W ′(x0
i ) = 2mi − ki. By extending the definition of W ′(·) in a natural way (as was
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done for W (·)) to assignments, sets of assignments and formulas, it is easy to see that

W (F ) = W ′(F ) ·
∏

i∈NF 2−mi = W ′(F ) · CF .

Next, for every assignment σ of variables in X, let σ1 = {i ∈ NF | σ(xi) = true}

and σ0 = {i ∈ NF | σ(xi) = false}. Then, we have W ′(σ) =
∏

i∈σ1 ki
∏

i∈σ0(2mi − ki).

Let σ̂ be an assignment of variables appearing in F̂ . We say that σ̂ is compatible with

σ if for all variables xi in X, we have σ̂(xi) = σ(xi). Observe that σ̂ is compatible

with exactly one assignment, viz. σ, of variables in X. Let Sσ denote the set of

all satisfying assignments of F̂ that are compatible with σ. Then {Sσ|σ ∈ RF} is

a partition of RF̂ . From Lemma 11, we know that there are ki witnesses of ϕki,mi

and 2mi − ki witnesses of ¬ϕki,mi . Since the representative formula of every normal-

weighted variable uses a fresh set of variables, we have from the structure of F̂ that if σ

is a witness of F , then |Sσ| =
∏

i∈σ1 ki
∏

i∈σ0(2mi−ki). Therefore |Sσ| = W ′(σ). Note

that if σ is not a witness of F , then there are no compatible satisfying assignments

of F̂ ; hence Sσ = ∅ in this case. Overall, this gives

|RF̂ | =
∑
σ∈RF

|Sσ|+
∑
σ 6∈RF

|Sσ| =
∑
σ∈RF

|Sσ|+ 0 = W ′(F ) .

It follows that W (F ) = CF ·W ′(F ) = CF · |RF̂ |. This completes the proof of part (a).

Proof of part (b): We define the formula F̆ as follows.

F̆ = Ω→ F

Clearly, F̆ has n + m̂ variables. Since the size of Ω is linear in m̂, the size of F̆ is

linear in |F |+ m̂.

We now show that W (F ) = CF · |RF̆ | − 2n · (1 − 2−|NF |). First, note that F̆ is

logically equivalent to ¬Ω ∨ (F ∧ Ω) = ¬Ω ∨ F̂ , where F̂ is as defined in part (a)

above. Since F̂ and ¬Ω are mutually inconsistent, it follows that |RF̆ | is the sum

of |RF̂ | and the number of satisfying assignments (over all variables in F̆ ) of ¬Ω.
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By definition, Ω does not contain any variable in X \ NF . Hence, the number of

satisfying assignments (over all variables in F̆ ) of ¬Ω is 2n−|NF | · |R¬Ω|. To calculate

|R¬Ω|, observe that |R(xi↔ϕki,mi )| = 2mi , and the sub-formulas (xi ↔ ϕki,mi) and

(xj ↔ ϕkj ,mj) have disjoint variables for i 6= j. Therefore, |RΩ| =
∏

i∈NF 2mi = 2m̂,

and |R¬Ω| = 2m̂+|NF |−2m̂ = 2m̂ ·(2|NF |−1). From part (a) above, we also know that

|RF̂ | = W (F ) /CF . Hence, |RF̆ | = |RF̂ |+ 2n−|NF | · |R¬Ω| = W (F ) /CF + 2n+m̂ · (1−

2−|NF |). Rearraging terms, we get W (F ) = CF ·
(
|RF̆ | − 2n+m̂ · (1− 2−|NF |)

)
. Since

CF = 2−m̂, we obtain W (F ) = CF · |RF̆ | − 2n · (1− 2−|NF |). This completes the proof

of part (b).

5.2.4 Preservation of Normal Forms

The representative formula of a normal-weighted variable is a chain formula, which

is generally neither in CNF nor in DNF. Therefore, even if the input formula F is in

a normal form (CNF/DNF), the formulas F̂ and F̆ in Theorem 13 may be neither

in CNF nor in DNF. We ask if our reductions can be adapted to preserve the normal

form (CNF/DNF) of F . Theorem 14 answers this question affirmatively.

Theorem 14. Let (F,W (·)) be an instance of literal-weighted WMC, where F is in

CNF (resp., DNF) and has n variables. We can construct in polynomial time a CNF

(resp., DNF) formula F ? such that W (F ) = CF · |RF ? | (resp., CF · |RF ? | − 2n · (1 −

2−|NF |)). Moreover, F ? has n+m̂ variables and its size is linear in (|F |+
∑

i∈NF m
2
i ).

Proof. We first prove the case of F in CNF. To this end, we first show that Ω obtained

in the proof of Theorem 13 can be transformed to a CNF formula ΩCNF. Transform

Ω by replacing every sub-formula (xi ↔ ϕki,mi) in F̂ with the equivalent sub-formula

(¬xi ∨ ϕCNF
ki,mi

) ∧ (xi ∨ (¬ϕki,mi)CNF). Note that since ϕki,mi is a chain formula, so is

¬ϕki,mi . Hence, by Lemma 12, ¬ϕki,mi can be transformed into an equivalent CNF
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formula (¬ϕki,mi)CNF. We can obtain ΩCNF (in CNF) by distributing ∨ over ∧ in each

of (¬xi ∨ ϕCNF
ki,mi

) and (xi ∨ (¬ϕki,mi)CNF). Finally F ? is simply F ∧ ΩCNF. Since F ? is

semantically equivalent to F̂ , we have |RF ?| = |RF̂ |. From Theorem 13, we also know

that W (F ) = CF · |RF̂ |. Therefore, W (F ) = CF · |RF ? |. From the above construction,

and from Lemma 12 and Theorem 13, it is also easy to see that |F ?| is linear in

(|F |+
∑

i∈NF m
2
i ). Moreover, F ? has exactly the same variables as F̂ . Hence, F ? has

n+ m̂ variables.

Next, we show how to construct in polynomial time a DNF formula if F is in

DNF. We first observe that F̆ obtained in Theorem 13 can be rewritten as ¬Ω ∨ F .

Since Ω can be transformed to ΩCNF, we have ¬ΩCNF in DNF. Therefore F ? is simply

(¬ΩCNF) ∨ F . Since F ? is semantically equivalent to F̆ , we have |RF ? | = |RF̆ |. From

Theorem 13, we know that W (F ) = CF (|RF̆ | − 2m̂+n + 2m̂). Therefore, W (F ) =

CF (|RF ?| − 2m̂+n + 2m̂). Again, from the above construction, and from Lemma 12

and Theorem 13, it is also easy to see that |F ?| is linear in (|F |+
∑

i∈NF m
2
i ). Moreover,

F ? has exactly the same variables as F̆ . Hence, F ? has n+ m̂ variables.

5.2.5 Optimality of Reductions

We now ask if there exists an algorithm that reduces literal-weighted WMC to UMC

and gives unweighted Boolean formulas that have significantly fewer variables than

F̂ or F̆ . We restrict our discussion to reductions that use CF as a normalization

constant, and perhaps use an additive correction term D(n,W (·)) that is agnostic to

F , and depends only on the number of variables in F and on the weight function. An

example of such a term is −2n · (1− 2−|NF |), used in Theorem 13b, where NF can be

determined from W (·) by querying the weights of individual literals.

Theorem 15. Let Reduce(·) be an algorithm that takes as input an instance (F,W (·))
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of literal-weighted WMC, and returns an unweighted Boolean formula F̃ such that

W (F ) = CF · |RF̃ | + D(n,W (·)), where D(·, ·) is a real-valued function and n is the

number of variables in F . Then F̃ has at least n− 1 + m̂− 2|NF | variables.

Observe that the number of variables in F̂ and F̆ in Theorem 13 differ from the

lower bound given by Theorem 15 by 2|NF |+ 1, which is independent of n as well as

the number of bits (m̂) used to represent weights.

Proof. We first show that D(·, ·) must always be non-positive. Otherwise, suppose

D(n,W (·)) > 0. Consider the instance (G,W (·)) of literal-weighted UMC, where

G = G1 ∧ G2, where G1 = x1 ∧ ¬x1 and G2 = x2 ∧ x3 ∧ . . . ∧ xn. Since G is

unsatisfiable, W (G) = 0. However, GF · |RG̃| + D(n,W (·)) is positive for every G̃

that Reduce(G,W (·)) may generate. This gives a contradiction; hence D(·, ·) must

be non-positive.

Now, let F be the formula (x1 ∧ x2 · · · ∧ xr) ∧ ¬(xr+1 ∧ · · ·xn), where NF =

{1, 2, . . . r}. Furthermore, let W (x1
i ) = 2mi−1

2mi
, for every i in NF . Clearly, W (F ) =

(2n−r − 1) ·
∏

i∈NF
2mi−1

2mi
. Factoring out CF , i.e.

∏
i∈NF 2−mi , we get W (F ) = CF ·

(2n−r−1) ·
∏

i∈NF (2mi−1). In order to have W (F ) = CF · |RF̃ |+D(n,W (·)), we must

have (2n−r−1)·
∏

i∈NF (2mi−1)−D(n,W(·))
CF

witnesses of F̃ . Since D(·, ·) ≤ 0, we need at

least (2n−r− 1) ·
∏

i∈NF (2mi− 1) witnesses of F̃ . In other words, F̃ must have at least

dlog2((2n−r−1)
∏

i∈NF (2mi−1))e variables. Noting that r = |NF | and 2m−1 ≥ 2m−1

for all m ≥ 1, we conclude that F̃ must have at least n− |NF | − 1 +
∑

i∈NF (mi − 1)

variables. Rearranging terms, we get the desired lower bound on the number of

variables.

Every Boolean formula in
∑

i∈NF (mi−1) variables is trivially of size Ω(
∑

i∈NF mi).

Now, assume that the algorithm Reduce(F,W (·)) uses the input formula F as a black
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box. Then to ensure that W (F ) = CF · |RF̃ |+D(n,W (·)), the formula F̃ generated

by Reduce(F,W (·)) must have F as a sub-formula. Otherwise, CF · |RF̃ |+D(n,W (·))

will be independent of RF . However, this cannot happen since W (F ) = CF · |RF̃ | +

D(n, |NF |). Hence F̃ must have F as a sub-formula, and the size of F̃ is at least

as large as that of F . Putting the above arguments together, the size of F̃ is in

Ω(|F |+
∑

i∈NF mi).

5.2.6 Experimental Analysis

The construction outlined in the proof of Theorem 13 naturally suggests an algorithm

for solving WMC using a UMC solver as a black-box. This is particularly important in

the context of weighted model counting, since state-of-the-art unweighted model coun-

ters (viz. sharpSAT [147]) scale to much larger problem sizes than existing state-of-the-

art weighted model counters (viz. SDD [53]). To investigate the practical advantages

of using the reduction based approach, we developed a literal-weighted model counter

module called sharpWeightSAT, that takes as input an instance (F,W (·)) of literal-

weighted WMC and reduces it to an instance F ? of UMC, as outlined in Theorem 13

and 14. The sharpWeightSAT module then invokes an underlying state-of-the-art ex-

act UMC solver, to count the witnesses of F ?. Finally, sharpWeightSAT computes

CF · |R?
F | as the weighted model count of (F,W (·)). In our experiments we employed

both sharpSAT and DSharp as the underlying exact UMC solver.

We conducted experiments on a suite of diverse CNF benchmarks to compare the

performance of sharpWeightSAT with that of SDD. We also tried to compare our tool

with the weighted variant of Cachet [139], but despite extensive efforts, we have not

been able to run this tool on our system. We focused on CNF formulas because of the

availability of CNF model counters and the lack of DNF model counters in the public-
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sharpWeightSAT SDD

Benchmark

Orig

#vars

Orig

#clas
Final
#vars

Final
#claus

Transform
time (s)

sharpSAT counting

time (s)

DSharp counting

time (s)
Overall
time (s)

case 1 b11 1 340 1026 550 1266 0.03 92.16 1059.82 64.3

s1196a 15 7 777 2165 867 2285 0.06 0.54 8.88 –

case 2 b12 2 827 2725 917 2845 0.06 34.11 714.37 735.68

squaring1 891 2839 981 2959 0.04 10.02 97.86 –

cliquen30 930 1800 2517 3821 0.11 300.86 – –

BN 63 1112 2661 1272 2853 0.04 0.68 8.68 –

BN 55 1154 2692 1314 2884 0.1 1.11 – –

BN 47 1336 3376 1406 3460 0.11 0.11 1.49 170.92

BN 61 1348 3388 1418 3472 0.05 0.2 1.77 157.88

squaring9 1434 5028 1524 5148 0.07 32.68 721.14 –

squaring16 1627 5835 1723 5963 0.07 – 2623.12 –

BN 43 1820 3806 2240 4286 0.34 8393.12 – –

BN 108 2289 8218 11028 19105 0.27 2.14 8.66 270.31

smokers 20 2580 3740 6840 8860 0.33 224.25 – –

treemax 24859 103762 26353 105754 1.5 3.93 338.16 –

BN 26 50470 93870 276675 352390 244.29 68.99 259.42 693.09

Table 5.2 : Performance comparison of sharpWeightSAT vis-a-vis SDD

domain. The suite of benchmarks used in our experiments consisted of problems

arising from probablistic inference in grid networks, synthetic grid-structured random

interaction Ising models, plan recognition, DQMR networks, bit-blasted versions of

SMTLIB benchmarks, ISCAS89 combinational circuits with weighted inputs, and

program synthesis examples. Note that normal weights of variables in our benchmarks

typically correspond to (conditional) probabilities of events in the original problem

from which the benchmark is derived. To allow specification of probabilities with a

precision of up to to two decimal places, we rounded off the weights such that all

weights were of the form k/2i (1 ≤ i ≤ 7). A uniform timeout of 5 hours was used

for all tools in our experiments.
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Table 5.2 presents the results of comparing the performances of sharpWeightSAT

and SDD on a subset of our benchmarks ∗. In this table, the benchmarks are listed

in Column 1. Columns 2 and 3 list the number of variables and clauses, respectively,

for each benchmark. Columns 4 through 8 present our experimental observations on

running sharpWeightSAT via either sharpSAT or DSharp as UMC solvers. Specifically,

columns 4 and 5 give the total number of variables and clauses of the unweighted

formula obtained after applying our reduction. Note that these numbers are larger

than the corresponding numbers in the original problem, since all normal-weighted

variables in the original problem have been replaced by their respective representative

formulas. The run-time of sharpWeightSAT via sharpSAT is the sum of the transform

time taken to reduce a WMC instance to an instance of UMC, as presented in Column

6, and the counting time taken by sharpSAT to solve an instance of UMC, as presented

in Column 7. The run-time of sharpWeightSAT via DSharp is the sum of the transform

time as presented in Column 6, and and the counting time taken by DSharp to solve

an instance of UMC, as presented in Column 8. Finally, run-time for SDD to solve

the same instance of WMC is presented in column 9. A “-” in a column indicates that

the corresponding experiment either did not complete within 5 hours or ran out of

memory.

Overall, out of 79 benchmarks for which the weighted model count could be com-

puted by either SDD or sharpWeightSAT, SDD timed/spaced out on 30 benchmarks,

sharpWeightSAT via sharpSAT timed out on 2 benchmarks, and sharpWeightSAT via

DSharp timed out on 11 benchmarks . Table 5.2 clearly shows that on most bench-

marks sharpWeightSAT via either sharpSAT or DSharp outperformed SDD in terms of

running time by 1 to 3 orders of magnitude. Moreover, sharpWeightSAT could gener-

∗The full version of Table 5.2 is available in Appendix as Table A2
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ate weighted counts for a large class of benchmarks for which SDD timed out. Thus,

our reduction helps in solving instances of literal-weighted WMC that are otherwise

beyond the reach of a state-of-the-art weighted model counter. Significantly, column

6 of Table 5.2 demonstrates that the overhead for reducing a WMC problem to a UMC

instance is very small. The comparison between sharpWeightSAT via sharpSAT and

sharpWeightSAT via DSharp is interesting but beyond the scope of this work.

To empirically study the effect of using our reduction in the context of approx-

imate WMC, we also augmented ApproxMC2 – a state-of-the-art approximate un-

weighted model counter – to obtain an approximate weighted model counter called

ApproxWeightMC. It is important to note that ApproxMC2 uses random hash functions

under-the-hood, as do several recent approximate model counters [72] that provide

strong guarantees. Surprisingly, our experiments showed that ApproxWeightMC faced

serious performance bottlenecks when run on the benchmarks in Table 5.2. A crucial

step in ApproxMC2 is the use of random xor clauses over the set of independent vari-

ables (see Chapter 4 for details) to constrain the space of witnesses of the original

problem before sampling a witness from the constrained space. The count of inde-

pendent variables crucially affects the expected size of a random xor clause, which in

turn has a significant bearing on the performance of SAT solvers used to generate a

witness of the constrained problem. Therefore, a likely explanation for the inability

of ApproxWeightMC to scale as well as sharpWeightSAT is the explosion in the size of

random xor clauses over the independent variables when we conjoin representative

formulas for all normal-weighted variables. To see why this explosion happens, recall

from Section 5.2.1 that the representative formula of a variable with weight k/2m

introduces m fresh variables; indeed, these are independent variables in the formula

obtained using our reduction.
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Overall, our experiments demonstrate that state-of-the-art UMC solvers can be

augmented with an implementation of our reduction to obtain literal-weighted model

counts on formulas with tens of thousands of variables – problems that are clearly

beyond the reach of existing weighted model counters. Significantly, our approach

requires no modification of the implementation of the UMC solver, which can there-

fore be treated as a black-box. Approximate literal-weighted WMC, however, does

not seem to benefit from our reduction due to the significant increase in the size of

random xor clauses. This underlines the need for further research on understanding

the intricacies of the reduction of literal-weighted WMC to UMC.

5.3 Beyond Literal Weights

While literal-weighted representation is typically employed in applications of WMC,

richer forms of representations of weights are increasingly used in a wide variety

of applications. Of these, associating weights to constraints instead of literals has

been widely employed in probabilistic programming, verification, and the like [4,

131]. For example, Figaro, a popular probabilistic programming framework, contains

a construct called setConstraint that associates weights with constraints. We now

demonstrate that our techniques can be generalized to handle such representations

as well.

Define ConstraintWMC to be a variant of WMC, wherein the weight of an assign-

ment is specified using a set of constraints. Specifically, given a formula F , a set

G = (G1, · · ·Gr) of Boolean constraints, and a weight function W (·) over G, the

weight of an assignment σ is defined as the product of the weights of constraints in

G that are satisfied by σ. The weight of every constraint Gi is assumed to be of the

form ki/2
mi , where ki is an odd integer between 1 and 2mi − 1. In case σ satisfies
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none of the constraints in G, the weight of σ is defined to be 1. The ConstraintWMC

problem is to compute the sum of the weights of all witnesses of F .

By an extension of the reasoning used in the proof of Theorem 13a, we can obtain

an efficient reduction from ConstraintWMC to UMC. We do not yet know how to

preserve the normal form of the input formula.

Theorem 16. Let (F,G,W (·)) be an instance of ConstraintWMC, where |G| = r

and ϕki,mi(xi,1, · · ·xi,mi) is the chain formula that describes W (Gi). Then by defining

F̂ = F ∧ (G1 → ϕk1,m1) ∧ · · · ∧ (Gr → ϕkr,mr), we get a linear-time reduction from

ConstraintWMC to UMC, such that W (F ) = CG · |RF̂ |, where CG =
∏r

i=1 2−mi.

Proof. The proof is almost identical to the proof of Theorem 13. Clearly, F̂ has

n+
∑

i≤r(ni +mi), variables. From Lemma 11, we know that ϕki,mi(xi,1, · · ·xi,mi) is

of size linear in mi, for every i in NF . Therefore, the size of F̂ is linear in (|F | +∑
i≤r(|Gi|+mi).

We now show that W (F ) = CG · |RF̂ |. Let W ′(·) be a new weight function, defined

over the constraints Gi of G as follows. If W (Gi) = ki/2
mi , then W ′(Gi) = ki, and

W ′(Gi) = 2mi . We extend the definition of W ′(·) in a natural way (as was done

for W (·)) to assignments, sets of assignments and formulas. Note that for every

assignment σ for the variables in X we have W (σ) = W ′(σ) ·
∏

i≤r 2−mi = W ′(σ) ·CG,

and therefore we have W (F ) = W ′(F ) · CG. In addition, for every assignment σ of

variables in X, Denote by G(σ) the set of indices of the constraints in G that satisfy

σ. Then we also have W ′(σ) =
∏

i∈G(σ) ki
∏

i 6∈G(σ) 2mi . Let σ̂ be an assignment of

variables appearing in F̂ . We say that σ̂ is compatible with σ if for all variables xi in

X, we have σ̂(xi) = σ(xi). Observe that σ̂ is compatible with exactly one assignment,

viz. σ, of variables in X. Let Sσ denote the set of all satisfying assignments of F̂ that

are compatible with σ. Then {Sσ|σ ∈ RF} is a partition of RF̂ . From Lemma 11, we
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know that there are ki witnesses of ϕki,mi . Since the representative formula of every

weighted constraint uses a fresh set of variables, we have from the structure of F̂ that if

σ is a witness to F then |Sσ| =
∏

i∈G(σ) ki
∏

i 6∈G(σ) 2mi . Therefore |Sσ| = W ′(σ). Note

that if σ is not a witness of F , then there are no compatible satisfying assignments

of F̂ ; hence Sσ = ∅ in this case. Overall, this gives

|RF̂ | =
∑
σ∈RF

|Sσ|+
∑
σ 6∈RF

|Sσ| =
∑
σ∈RF

|Sσ|+ 0 = W ′(F ) .

It follows that W (F ) = CG ·W ′(F ) = CG · |RF̂ |. Finally, note that CG =
∏r

i=1 2−mi =

2−
∑

1≤i≤rmi . Therefore, computing CG · |RF̂ | amounts to computing |RF̂ | (an instance

of UMC) and shifting the radix point in the binary representation of |RF̂ | left by(∑
1≤i≤rmi

)
positions.

5.4 Chapter Summary

In this chapter, we discussed two complementary approaches to handle WMC. In the

first half of this chapter, we discussed how hashing-based techniques introduced in

Chapter 4 for UMC can be lifted to handle WMC. Prior hashing-based approaches to

WMC employed computationally expensive MPE oracle. In contrast, we only employ

SAT oracle. In this half of the chapter, we do not make any assumption on the

weight function. We introduced a novel parameter, t ilt, to capture the hardness

of benchmarks with respect to hashing-based approach. In the second half of this

chapter, we discussed a complementary approach wherein we propose an efficient

reduction of WMC to UMC if the weight function is expressed using literal-weighted

representation.
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Chapter 6

Handling Bit-Vector Formulas

In a large class of probabilistic inference problems, an important case being lifted

inference on first order representations [106], the values of variables come from finite

but large (exponential in the size of the representation) domains. Data values coming

from such domains are naturally encoded as fixed-width words, where the width is

logarithmic in the size of the domain. Conditions on observed values are, in turn,

encoded as word-level constraints, and the corresponding model-counting problem

asks one to count the number of solutions of a word-level constraint. It is therefore

natural to ask if the success of approximate propositional model counters can be

replicated at the word-level.

The balance between efficiency and strong guarantees of hashing-based algorithms

for constrained counting for Boolean formulas crucially depends on two factors: (i) use

of XOR-based 2-universal bit-level hash functions, and (ii) use of state-of-the-art

propositional satisfiability solvers, viz. CryptoMiniSAT [143], that can efficiently

reason about formulas that combine disjunctive clauses with XOR clauses.

In recent years, the performance of SMT (Satisfiability Modulo Theories) solvers

has witnessed spectacular improvements [12]. Indeed, several highly optimized SMTsolvers

for fixed-width words are now available in the public domain [28, 101, 92, 56]. Nev-

ertheless, 2-universal hash functions for fixed-width words that are also amenable

to efficient reasoning by SMT solvers have hitherto not been studied. The reasoning

power of SMTsolvers for fixed-width words has therefore remained untapped for word-
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level model counting. Thus, it is not surprising that all existing work on probabilistic

inference using model counting (viz. [43, 16, 71]) effectively reduce the problem to

propositional model counting. Such approaches are similar to “bit blasting” in SMT

solvers [111].

The primary contribution of this chapter is an efficient word-level approximate

model counting algorithm SMTApproxMC that can be employed to answer inference

queries over high-dimensional discrete domains. Our algorithm uses a new class

of word-level hash functions that are 2-universal and can be solved by word-level

SMTsolvers capable of reasoning about linear equalities on words. Therefore, unlike

previous works, SMTApproxMC is able to leverage the power of sophisticated SMT

solvers.

To illustrate the practical utility of SMTApproxMC, we implemented a proto-

type and evaluated it on a suite of benchmarks. Our experiments demonstrate that

SMTApproxMC can significantly outperform the prevalent approach of bit-blasting

a word-level constraint and using an approximate propositional model counter that

employs XOR-based hash functions. Our proposed word-level hash functions embed

the domain of all variables in a large enough finite domain. Thus, one would not

expect our approach to work well for constraints that exhibit a hugely heterogeneous

mix of word widths, or for problems that are difficult for word-level SMT solvers.

Indeed, our experiments suggest that the use of word-level hash functions provides

significant benefits when the original word-level constraint is such that (i) the words

appearing in it have long and similar widths, and (ii) the SMTsolver can reason about

the constraint at the word-level, without extensive bit-blasting.
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6.1 Related Work

Over the last two decades, there has been tremendous progress in the development of

decision procedures, called Satisfiability Modulo Theories (or SMT) solvers, for com-

binations of first-order theories, including the theory of fixed-width words [13, 11].

An SMT solver uses a core propositional reasoning engine and decision procedures

for individual theories, to determine the satisfiability of a formula in the combina-

tion of theories. It is now folklore that a well-engineered word-level SMT solver

can significantly outperform the naive approach of blasting words into component

bits and then using a propositional satisfiability solver [56, 101, 31]. The power of

word-level SMT solvers stems from their ability to reason about words directly (e.g.

a+(b−c) = (a−c)+b for every word a, b, c), instead of blasting words into component

bits and using propositional reasoning.

The work of [43] tried to extend ApproxMC [38] to non-propositional domains. A

crucial step in their approach is to propositionalize the solution space (e.g. bounded

integers are equated to tuples of propositions) and then use XOR-based bit-level

hash functions. Unfortunately, such propositionalization can significantly reduce the

effectiveness of theory-specific reasoning in an SMT solver. The work of [16] used bit-

level hash functions with the propositional abstraction of an SMT formula to solve

the problem of weighted model integration. This approach also fails to harness the

power of theory-specific reasoning in SMT solvers.

Recently, [25] proposed SGDPLL(T ), an algorithm that generalizes SMT solving

to do lifted inferencing and model counting (among other things) modulo background

theories (denoted T ). A fixed-width word model counter, like the one proposed in

this Chapter, can serve as a theory-specific solver in the SGDPLL(T ) framework. In

addition, it can also serve as an alernative to SGDPLL(T ) when the overall problem
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is simply to count models in the theory T of fixed-width words, There have also

been other attempts to exploit the power of SMT solvers in machine learning. For

example, [145] used optimizing SMT solvers for structured relational learning using

Support Vector Machines. This is unrelated to our approach of harnessing the power

of SMT solvers for probabilistic inference via model counting.

6.2 Word-level Hash Function

The performance of hashing-based techniques for approximate model counting de-

pends crucially on the underlying family of hash functions used to partition the solu-

tion space. A popular family of hash functions used in propositional model counting

is Hxor, defined as the family of functions obtained by XOR-ing a random subset of

propositional variables, and equating the result to either 0 or 1, chosen randomly. The

family Hxor enjoys important properties like 2-independence and easy implementabil-

ity, which make it ideal for use in practical model counters for propositional formu-

las [71, 38]. Unfortunately, word-level universal hash families that are 2-independent,

easily implementable and amenable to word-level reasoning by SMT solvers, have not

been studied thus far. In this section, we present HSMT , a family of word-level hash

functions that fills this gap.

As discussed earlier, let sup(F ) = {x0, . . . xn−1}, where each xi is a word of width

k. We use X to denote the n-dimensional vector (x0, . . . xn−1). The space of all

assignments to words in X is {0, 1}n.k. Let p be a prime number such that 2k ≤ p <

2n.k. Consider a family H of hash functions mapping {0, 1}n.k to Zp, where each hash

function is of the form h(X) = (
∑n−1

j=0 aj ∗ xj + b) mod p, and the aj’s and b are

elements of Zp, represented as words of width dlog2 pe. Observe that every h ∈ H

partitions {0, 1}n.k into p bins (or cells). Moreover, for every ξ ∈ {0, 1}n.k and α ∈ Zp,
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Pr
[
h(ξ) = α : h

R←− H
]

= p−1. For a hash function chosen uniformly at random from

H, the expected number of elements per cell is 2n.k/p. Since p < 2n.k, every cell has

at least 1 element in expectation. Since 2k ≤ p, for every word xi of width k, we

also have xi mod p = xi. Thus, distinct words are not aliased (or made to behave

similarly) because of modular arithmetic in the hash function.

Suppose now we wish to partition {0.1}n.k into pc cells, where c > 1 and pc < 2n.k.

To achieve this, we need to define hash functions that map elements in {0, 1}n.k to

a tuple in (Zp)c. A simple way to achieve this is to take a c-tuple of hash functions,

each of which maps {0, 1}n.k to Zp. Therefore, the desired family of hash functions

is simply the iterated Cartesian product H × · · · × H, where the product is taken c

times. Note that every hash function in this family is a c-tuple of hash functions. For

a hash function chosen uniformly at random from this family, the expected number

of elements per cell is 2n.k/pc.

An important consideration in hashing-based techniques for approximate model

counting is the choice of a hash function that yields cells that are neither too large

nor too small in their expected sizes. Since increasing c by 1 reduces the expected

size of each cell by a factor of p, it may be difficult to satisfy the above requirement

if the value of p is large. At the same time, it is desirable to have p > 2k to prevent

aliasing of two distinct words of width k. This motivates us to consider more general

classes of word-level hash functions, in which each word xi can be split into thinner

slices, effectively reducing the width k of words, and allowing us to use smaller values

of p. We describe this in more detail below.

Assume for the sake of simplicity that k is a power of 2, and let q be log2 k. For

every j ∈ {0, . . . q − 1} and for every xi ∈ X, define xi
(j) to be the 2j-dimensional

vector of slices of the word xi, where each slice is of width k/2j. For example,
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the two slices in x1
(1) are extract(x1, 0, k/2− 1) and extract(x1, k/2, k − 1). Let X(j)

denote the n.2j-dimensional vector (x0
(j),x1

(j), . . .xn−1
(j)). It is easy to see that the

mth component of X(j), denoted X
(j)
m , is extract(xi, s, t), where i = bm/2jc, s = (m

mod 2j) · (k/2j) and t = s + (k/2j) − 1. Let pj denote the smallest prime larger

than or equal to 2(k/2j). Note that this implies pj+1 ≤ pj for all j ≥ 0. In order

to obtain a family of hash functions that maps {0, 1}n.k to Zpj , we split each word

xi into slices of width k/2j, treat these slices as words of reduced width, and use a

technique similar to the one used above to map {0, 1}n.k to Zp. Specifically, the family

H(j) =
{
h(j) : h(j)(X) =

(∑n.2j−1
m=0 a

(j)
m ∗X

(j)
m + b(j)

)
mod pj

}
maps {0, 1}n.k to Zpj ,

where the values of a
(j)
m and b(j) are chosen from Zpj , and represented as dlog2 pje-bit

words.

In general, we may wish to define a family of hash functions that maps {0, 1}n.k

to D, where D is given by (Zp0)c0 × (Zp1)c1 × · · ·
(
Zpq−1

)cq−1 and
∏q−1

j=0 p
cj
j < 2n.k. To

achieve this, we first consider the iterated Cartesian product of H(j) with itself cj

times, and denote it by
(
H(j)

)cj , for every j ∈ {0, . . . q− 1}. Finally, the desired fam-

ily of hash functions is obtained as
∏q−1

j=0

(
H(j)

)cj . Observe that every hash function

h in this family is a
(∑q−1

l=0 cl
)
-tuple of hash functions. Specifically, the rth compo-

nent of h, for r ≤
(∑q−1

l=0 cl
)
, is given by

(∑n.2j−1
m=0 a

(j)
m ∗X

(j)
m + b(j)

)
mod pj, where(∑j−1

i=0 ci

)
< r ≤

(∑j
i=0 ci

)
, and the a

(j)
m s and b(j) are elements of Zpj .

The case when k is not a power of 2 is handled by splitting the words xi into

slices of size dk/2e, dk/22e and so on. Note that the family of hash functions defined

above depends only on n, k and the vector C = (c0, c1, . . . cq−1), where q = dlog2 ke.

Hence, we call this family HSMT (n, k, C). Note also that by setting ci to 0 for all

i 6= blog2(k/2)c, and ci to r for i = blog2(k/2)c reduces HSMT to the family Hxor of

XOR-based bit-wise hash functions mapping {0, 1}n.k to {0, 1}r. Therefore, HSMT
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strictly generalizes Hxor.

We summarize below important properties of the HSMT |S|, k, C) class. Let D

denote (Zp0)c0 × (Zp1)c1 × · · ·
(
Zpq−1

)cq−1 , where
∏q−1

j=0 p
cj
j < 2n.k. Let C denote the

vector (c0, c1, . . . cq−1).

Lemma 17. For every X ∈ {0, 1}n.k and every α ∈ D, Pr[h(X) = α | h R←−

HSMT |S|, k, C)] =
∏|C|−1

j=0 pj
−cj

Proof. Let hr, the rth component of h, for r ≤
(∑|C|−1

j=0 cj

)
, be given by

(∑n.2j−1
m=0 a

(j)
m ∗X

(j)
m + b(j)

)
mod pj, where

(∑j−1
i=0 ci

)
< r ≤

(∑j
i=0 ci

)
, and the a

(j)
m s and b(j) are randomly and in-

dependently chosen elements of Zpj , represented as words of width dlog2 pje. Let H(j)

denote the family of hash functions of the form
(∑n.2j−1

m=0 u
(j)
m ∗X

(j)
m + v(j)

)
mod pj,

where u
(j)
m and v(j) are elements of Zpj . We use αr to denote the rth component of α.

For every choice of X, a
(j)
m s and αr, there is exactly one b(j) such that hr(X) = αr.

Therefore, Pr[hr(X) = αr|hr
R←− H(j)] = p−1

i .

Recall that every hash function h in HSMT (n, k, C) is a
(∑q−1

j=0 cj

)
-tuple of hash

functions. Since h is chosen uniformly at random from HSMT (n, k, C), the
(∑q−1

j=0 cj

)
components of h are effectively chosen randomly and independently of each other.

Therefore, Pr[h(X) = α | h R←− HSMT (n, k, C)] =
∏|C|−1

i=0 pi
−ci

Theorem 18. For every α1, α2 ∈ D and every distinct X1,X2 ∈ {0, 1}n.k, Pr[(h(X1) =

α1∧h(X2) = α2) | h R←− HSMT |S|, k, C)] =
∏|C|−1

j=0 (pj)
−2.cj . Therefore, HSMT |S|, k, C)

is pairwise independent.

Proof. We know that Pr[(h(X1) = α1∧h(X2) = α2)] = Pr[h(X2) = α2 | h(X1) = α1]×

Pr[h(X1) = α1]. Theorem 18 implies that in order to prove pairwise independence

of HSMT (n, k, C), it is sufficient to show that Pr[h(X2) = α2 | h(X1) = α1] =

Pr[h(X2) = α2].
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Since h(X) = α can be viewed as conjunction of
(∑q−1

j=0 cj

)
ordered and inde-

pendent constraints, it is sufficient to prove 2-wise independence for every ordered

constraint. We now prove 2-wise independence for one of the ordered constraints

below. Since the proof for the other ordered constraints can be obtained in exactly

the same way, we omit their proofs.

We formulate a new hash function based on the first constraint as g(X) = (
(∑n.2j−1

m=0 a
(0)
m ∗X

(0)
m + b(0)

)
mod p0, where the a

(0)
m ’s and b(0) are randomly and independently chosen elements

of Zp0 , represented as words of width dlog2 p0e. It is sufficient to show that g(X)

is 2-universal. This can be formally stated as Pr[g(X2) = α2,0 | g(X1) = α1,0] =

Pr[g(X2) = α2,0], where α2,0, α1,0 are the 0th components of α2 and α1 respectively.

We consider two cases based on linear independence of X1 and X2.

• Case 1: X1 and X2 are linearly dependent. Without loss of generality, let

X1 = (0, 0, 0, . . . 0) and X2 = (r1, 0, 0, . . . 0) for some r1 ∈ Zp0 , represented as

a word. From g(X1) we can deduce b(0). However for g(X2) = α2,0 we require

a
(0)
1 ∗ r1 + b(0) = α2,0 mod p0. Using Fermat’s Little Theorem, we know that

there exists a unique a
(0)
1 for every r1 that satisfies the above equation. There-

fore, therefore Pr[g(X2) = α2,0|g(X1) = α1,0] = Pr[g(X2) = α2,0] = 1
p0

.

• Case 2: X1 and X2 are linearly independent. Since 2k < p0, every com-

ponent of X1 and X2 (i.e. an element of {0, 1}k) can be treated as an ele-

ment of Zp0 . The space {0, 1}n.k can therefore be thought of as lying within

the vector space (Zp0)n, and any X ∈ {0, 1}n.k can be written as a linear

combination of the set of basis vectors over (Zp0)n. It is therefore sufficient

to prove pairwise independence when X1 and X2 are basis vectors. Without
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loss of generality, let X1 = (r1, 0, 0, . . . 0) and X2 = (0, r2, 0, 0, . . . 0) for some

r1, r2 ∈ Zp0 . From g(X1), we can deduce
(
a

(0)
1 ∗ r1 + b(0) = α1,0

)
mod p0. But

since a
(0)
1 is randomly chosen, therefore Pr[g(X2) = α2,0 | g(X1) = α1,0] =

Pr[(a
(0)
2 ∗r2+α1,0−a(0)

1 ∗r1 = α2,0) mod p0] = Pr[(a
(0)
2 ∗r2−a(0)

1 ∗r1 = α2,0−α1,0)

mod p0], where −a refers to the additive inverse of a in the field Zp0 . Using Fer-

mat’s Little Theorem, we know that for every choice a
(0)
1 there exists a unique

a
(0)
2 that satisfies the above requirement, given α1,0, α2,0, r1 and r2. Therefore

Pr[g(X2) = α2,0 | g(X1) = α1,0] = 1
p0

= Pr[g(X2) = α2,0].

6.2.1 Gaussian Elimination

The practical success of XOR-based bit-level hashing techniques for propositional

model counting owes a lot to solvers like CryptoMiniSAT [143] that use Gaussian

Elimination to efficiently reason about XOR constraints. It is significant that the

constraints arising from HSMT are linear modular equalities that also lend themselves

to efficient Gaussian Elimination. We believe that integration of Gaussian Elimination

engines in SMT solvers will significantly improve the performance of hashing-based

word-level model counters.

6.3 Algorithm

We now present SMTApproxMC, a word-level hashing-based approximate model count-

ing algorithm. SMTApproxMC takes as inputs a formula F in the theory of fixed-width

words, sampling set S, a tolerance ε (> 0), and a confidence 1− δ ∈ (0, 1]. It returns

an estimate of |RF↓S| within the tolerance ε, with confidence 1 − δ. The formula F
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is assumed to have n variables, each of width k, in its support. The central idea of

SMTApproxMC is to randomly partition the solution space of F into “small” cells of

roughly the same size, using word-level hash functions from HSMT (|S|, k, C), where

C is incrementally computed. The check for “small”-ness of cells is done using a

word-level SMT solver. The use of word-level hash functions and a word-level SMT

solver allows us to directly harness the power of SMT solving in model counting.

The pseudocode for SMTApproxMC is presented in Algorithm 7. Lines 1– 3 ini-

tialize the different parameters. Specifically, pivot determines the maximum size of a

“small” cell as a function of ε, and t determines the number of times SMTApproxMCCore

must be invoked, as a function of δ. The value of t is determined by technical argu-

ments in the proofs of our theoretical guarantees, and is not based on experimental

observations Algorithm SMTApproxMCCore lies at the heart of SMTApproxMC. Each

invocation of SMTApproxMCCore either returns an approximate model count of F , or

⊥ (indicating a failure). In the former case, we collect the returned value, m, in a list

M in line 8. Finally, we compute the median of the approximate counts in M , and

return this as FinalCount.

The pseudocode for SMTApproxMCCore is shown in Algorithm 8. This algorithm

takes as inputs a word-level SMT formula F , a threshold pivot, and the width k

of words in sup(F ). We assume access to a subroutine BoundedSMT that accepts

a word-level SMT formula ϕ, sampling set S, and a threshold pivot as inputs, and

returns pivot+1 solutions of ϕ if |Rϕ↓S| > pivot; otherwise it returns Rϕ. In lines 1– 2

of Algorithm 8, we return the exact count if |RF | ≤ pivot. Otherwise, we initialize

C by setting C[0] to 0 and C[1] to 1, where C[i] in the pseudocode refers to ci in the

previous section’s discussion. This choice of initialization is motivated by our exper-

imental observations. We also count the number of cells generated by an arbitrary
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Algorithm 7 SMTApproxMC(F, ε, δ, k)

1: counter← 0;M ← emptyList;

2: pivot← 2× de−3/2
(
1 + 1

ε

)2e;

3: t← d35 log2(3/δ)e;

4: repeat

5: m← SMTApproxMCCore(F, pivot, k);

6: counter← counter + 1;

7: if m 6= ⊥ then

8: AddToList(M,m);

9: until (counter < t)

10: FinalCount← FindMedian(M);

11: return FinalCount;

hash function from HSMT (|S|, k, C) in numCells. The loop in lines 6–20 iteratively

partitions RF into cells using randomly chosen hash functions from HSMT (|S|, k, C).

The value of i in each iteration indicates the extent to which words in the support of

F are sliced when defining hash functions in HSMT (|S|, k, C) – specifically, slices that

are dk/2ie-bits or more wide are used. The iterative partitioning of RF continues until

a randomly chosen cell is found to be “small” (i.e. has ≥ 1 and ≤ pivot solutions),

or the number of cells exceeds 2n.k, rendering further partitioning meaningless. The

random choice of h and α in lines 7 and 8 ensures that we pick a random cell. It is

important to note that while the choice of h and α is random but not independent for

different iterations of the loop. In particular, if (h1, α1), and (h2, α2) are choice of h

and α in two different iterations, then either h1 is a prefix of h2 and α1 is a prefix of

α2 or h2 is a prefix of h1 and α2 is a prefix of α1. The call to BoundedSMT returns at
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most pivot + 1 solutions of F within the chosen cell in the set Y . If |Y | > pivot, the

cell is deemed to be large, and the algorithm partitions each cell further into pi parts.

This is done by incrementing C[i] in line 11, so that the hash function chosen from

HSMT (|S|, k, C) in the next iteration of the loop generates pi times more cells than

in the current iteration. On the other hand, if Y is empty and pi > 2, the cells are

too small (and too many), and the algorithm reduces the number of cells by a factor

of pi+1/pi (recall pi+1 ≤ pi) by setting the values of C[i] and C[i + 1] accordingly

(see lines15 –17). If Y is non-empty and has no more than pivot solutions, the cells

are of the right size, and we return the estimate |Y | × numCells. In all other cases,

SMTApproxMCCore fails and returns ⊥.
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Algorithm 8 SMTApproxMCCore(F, pivot, k)

1: Y ← BoundedSMT(F, pivot);

2: if |Y | ≤ pivot) then return |Y |;

3: else

4: C ← emptyVector; C[0]← 0; C[1]← 1;

5: i← 1; numCells← p1;

6: repeat

7: Choose h at random from HSMT (|S|, k, C);

8: Choose α at random from
∏i

j=0

(
Zpj
)C[j]

;

9: Y ← BoundedSMT(F ∧ (h(X) = α), pivot);

10: if (|Y | > pivot) then

11: C[i]← C[i] + 1;

12: numCells← numCells× pi;

13: if (|Y | = 0) then

14: if pi > 2 then

15: C[i]← C[i]− 1;

16: i← i+ 1; C[i]← 1;

17: numCells← numCells× (pi+1/pi);

18: else

19: break;

20: until ((0 < |Y | ≤ pivot) or (numCells > 2n.k))

21: if ((|Y | > pivot) or (|Y | = 0)) then return ⊥;

22: else return |Y | × numCells;
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6.4 Analysis of SMTApproxMC

Similar to the analysis of ApproxMC [38], the current theoretical analysis of SMTApproxMC

assumes that for some C during the execution of SMTApproxMCCore, log |RF | −

log(numCells) + 1 = log(pivot). We leave analysis of SMTApproxMC without above

assumption to future work.

For a given h and α, we use RF,h,α to denote the set RF ∩ h−1(α), i.e. the set

of solutions of F that map to α under h. Let E[Y ] and V[Y ] represent expectation

and variance of a random variable Y respectively. The analysis below focuses on the

random variable |RF,h,α| defined for a chosen α. We use µ to denote the expected

value of the random variable |RF,h,α| whenever h and α are clear from the context.

The following lemma based on pairwise independence of HSMT (|S|, k, C) is key to our

analysis.

Lemma 19. The random choice of h and α in SMTApproxMCCore ensures that for

each ε > 0, we have Pr
[
(1− ε

1+ε
)µ ≤ |RF,h,α| ≤ (1 + ε

1+ε
)µ
]
≥ 1− (1+ε)2

ε2 µ
, where µ =

E[|RF,h,α|]

Proof. For every y ∈ {0, 1}n.k and for every α ∈
∏|C|−1

i=0 (Zpi)C[i], define an indicator

variable γy,α as follows: γy,α = 1 if h(y) = α, and γy,α = 0 otherwise. Let us

fix α and y and choose h uniformly at random from HSMT (|S|, k, C). The 2-wise

independence HSMT (|S|, k, C) implies that for every distinct y1, y2 ∈ RF , the random

variables γy1 , γy2 are 2-wise independent. Let |RF,h,α| =
∑

y∈RF γy,α, µ = E [|RF,h,α|]

and V[|RF,h,α|] = V[
∑

y∈RF γy,α]. The pairwise independence of γy,α ensures that

V[|RF,h,α|] =
∑

y∈RF V[γy,α] ≤ µ. The result then follows from Chebyshev’s inequality.

Let Y be the set returned by BoundedSMT(F ∧ (h(X) = α), pivot) where pivot is
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as calculated in Algorithm 7.

Lemma 20. Let an invocation of SMTApproxMCCore from SMTApproxMC return m.

Then Pr [(1 + ε)−1|RF | ≤ m ≤ (1 + ε)|RF |] ≥ 0.6

Proof. For notational convenience, we use (numCellsl) to denote the value of numCells

when i = l in the loop in SMTApproxMCCore. As noted earlier, we assume, for some

i = `∗, log |RF | − log(numCells`∗) + 1 = log(pivot). Furthermore, note that for all

i 6= j and numCellsi > numCellsj, numCellsi/numCellsj ≥ 2. Let Fl denote the event

that |Y | < pivot and (|Y | > (1 + ε)|RF | ∨ |Y | < |RF |
(1+ε)

) for i = l. Let `1 be the

value of i such that numCells`1 < numCells`∗/2 ∧ ∀j, numCellsj < numCells`∗/2 =⇒

numCells`1 ≥ numCellsj. Similarly, let `2 be the value of i such that numCells`2 <

numCells`∗/4 ∧ ∀j, numCellsj < numCells`∗/4 =⇒ numCells`2 ≥ numCellsj

Then, ∀i|numCellsi<numCells`∗/4, Fi ⊆ F`2 . Therefore, the probability of

Pr [(1 + ε)−1|RF | ≤ m ≤ (1 + ε)|RF |] is at least 1− Pr[F`2 ]− Pr[F`1 ]− Pr[F`∗ ] = 1−
e−3/2

4
− e−3/2

2
− e−3/2 ≥ 0.6 .

Now, we apply standard combinatorial analysis on repetition of probabilistic

events and prove that SMTApproxMC is (ε, δ) model counter.

Theorem 21. Suppose an invocation of SMTApproxMC(F, ε, δ, k) returns FinalCount.

Then Pr [(1 + ε)−1|RF | ≤ FinalCount ≤ (1 + ε)|RF |] ≥ 1− δ

Proof. Throughout this proof, we assume that SMTApproxMCCore is invoked t times

from SMTApproxMC, where t = d35 log2(3/δ)e in Section 6.3). Referring to the pseu-

docode of SMTApproxMC, the final count returned by SMTApproxMC is the median of

non-⊥ counts obtained from the t invocations of SMTApproxMCCore. Let Err denote
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the event that the median is not in [(1 + ε)−1 · |RF |, (1 + ε) · |RF |]. Let “#non⊥ = q”

denote the event that q (out of t) values returned by SMTApproxMCCore are non-⊥.

Then, Pr [Err] =
∑t

q=0 Pr [Err | #non⊥ = q] · Pr [#non⊥ = q].

In order to obtain Pr [Err | #non⊥ = q], we define a 0-1 random variable Zi, for

1 ≤ i ≤ t, as follows. If the ith invocation of SMTApproxMCCore returns c, and if c is

either ⊥ or a non-⊥ value that does not lie in the interval [(1+ε)−1 ·|RF |, (1+ε)·|RF |],

we set Zi to 1; otherwise, we set it to 0. From Lemma 20, Pr [Zi = 1] = p < 0.4. If

Z denotes
∑t

i=1 Zi, a necessary (but not sufficient) condition for event Err to occur,

given that q non-⊥s were returned by SMTApproxMCCore, is Z ≥ (t − q + dq/2e).

To see why this is so, note that t− q invocations of SMTApproxMCCore must return

⊥. In addition, at least dq/2e of the remaining q invocations must return values

outside the desired interval. To simplify the exposition, let q be an even integer. A

more careful analysis removes this restriction and results in an additional constant

scaling factor for Pr [Err]. With our simplifying assumption, Pr [Err | #non⊥ = q] ≤

Pr[Z ≥ (t− q + q/2)] = η(t, t− q/2, p). Since η(t,m, p) is a decreasing function of m

and since q/2 ≤ t− q/2 ≤ t, we have Pr [Err | #non⊥ = q] ≤ η(t, t/2, p). If p < 1/2,

it is easy to verify that η(t, t/2, p) is an increasing function of p. In our case, p < 0.4;

hence, Pr [Err | #non⊥ = q] ≤ η(t, t/2, 0.4).

It follows from above that Pr [Err] =
∑t

q=0 Pr [Err | #non⊥ = q] ·Pr [#non⊥ = q]

≤ η(t, t/2, 0.4)·
∑t

q=0 Pr [#non⊥ = q] = η(t, t/2, 0.4). Since
(
t
t/2

)
≥
(
t
k

)
for all t/2 ≤

k ≤ t, and since
(
t
t/2

)
≤ 2t, we have η(t, t/2, 0.4) =

∑t
k=t/2

(
t
k

)
(0.4)k(0.6)t−k ≤(

t
t/2

)∑t
k=t/2(0.4)k(0.6)t−k ≤ 2t

∑t
k=t/2(0.6)t(0.4/0.6)k ≤ 2t ·3·(0.6×0.4)t/2 ≤ 3·(0.98)t.

Since t = d35 log2(3/δ)e, it follows that Pr [Err] ≤ δ.

Theorem 22. SMTApproxMC(F, ε, δ, k) runs in time polynomial in |F |, 1/ε and

log2(1/δ) relative to an NP-oracle.
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Proof. Referring to the pseudocode for SMTApproxMC, lines 1– 3 take time no more

than a polynomial in log2(1/δ) and 1/ε. The repeat-until loop in lines 4– 9 is repeated

t = d35 log2(3/δ)e times. The time taken for each iteration is dominated by the time

taken by SMTApproxMCCore. Finally, computing the median in line 10 takes time

linear in t. The proof is therefore completed by showing that SMTApproxMCCore

takes time polynomial in |F | and 1/ε relative to the SAT oracle.

Referring to the pseudocode for SMTApproxMCCore, we find that BoundedSMT is

called O(|F |) times. Each such call can be implemented by at most pivot + 1 calls

to a NP oracle (SMT solver in case), and takes time polynomial in |F | and pivot + 1

relative to the oracle. Since pivot + 1 is in O(1/ε2), the number of calls to the NP

oracle, and the total time taken by all calls to BoundedSMT in each invocation of

SMTApproxMCCore is a polynomial in |F | and 1/ε relative to the oracle. The random

choices in lines 7 and 8 of SMTApproxMCCore can be implemented in time polynomial

in |S|.k (hence, in |F |) if we have access to a source of random bits. Constructing

F ∧ (h(X) = α) in line 9 can also be done in time polynomial in |F |.

6.5 Experimental Methodology and Results

To evaluate the performance and effectiveness of SMTApproxMC, we built a proto-

type implementation and conducted extensive experiments. Our suite of benchmarks

consisted of more than 150 problems arising from diverse domains such as reasoning

about circuits, planning, program synthesis and the like.

For purposes of comparison, we also implemented a state-of-the-art bit-level hashing-

based approximate model counting algorithm for bounded integers, proposed by [43].

Henceforth, we refer to this algorithm as CDM, after the authors’ initials. Both model

counters used an overall timeout of 12 hours per benchmark, and a BoundedSMT
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Benchmark Total Bits Variable Types # of Operations

SMTApproxMC

time(s)
CDM

time(s)

squaring27 59 {1: 11, 16: 3} 10 – 2998.97

squaring51 40 {1: 32, 4: 2} 7 3285.52 607.22

1160877 32 {8: 2, 16: 1} 8 2.57 44.01

1160530 32 {8: 2, 16: 1} 12 2.01 43.28

1159005 64 {8: 4, 32: 1} 213 28.88 105.6

1160300 64 {8: 4, 32: 1} 1183 44.02 71.16

1159391 64 {8: 4, 32: 1} 681 57.03 91.62

1159520 64 {8: 4, 32: 1} 1388 114.53 155.09

1159708 64 {8: 4, 32: 1} 12 14793.93 –

1159472 64 {8: 4, 32: 1} 8 16308.82 –

1159115 64 {8: 4, 32: 1} 12 23984.55 –

1159431 64 {8: 4, 32: 1} 12 36406.4 –

1160191 64 {8: 4, 32: 1} 12 40166.1 –

Table 6.1 : Runtime performance of SMTApproxMC vis-a-vis CDM

timeout of 2400 seconds per call. Both used Boolector, a state-of-the-art SMT solver

for fixed-width words [28]. Note that Boolector (and other popular SMT solvers for

fixed-width words) does not yet implement Gaussian elimination for linear modular

equalities; hence our experiments did not enjoy the benefits of Gaussian elimination.

We employed the Mersenne Twister to generate pseudo-random numbers, and each

thread was seeded independently using the Python random library. All experiments

used ε = 0.8 and δ = 0.2. Similar to ApproxMC, we determined value of t based on

tighter analysis offered by proofs. For detailed discussion, we refer the reader to Sec-

tion 6 in [38]. Every experiment was conducted on a single core of high-performance

computer cluster, where each node had a 20-core, 2.20 GHz Intel Xeon processor,

with 3.2GB of main memory per core.

We sought answers to the following questions from our experimental evaluation:

1. How does the performance of SMTApproxMC compare with that of a bit-level
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hashing-based counter like CDM?

2. How do the approximate counts returned by SMTApproxMC compare with exact

counts?

Our experiments show that SMTApproxMC significantly outperforms CDM for a large

class of benchmarks. Furthermore, the counts returned by SMTApproxMC are highly

accurate and the observed geometric tolerance(εobs) = 0.04.

6.5.1 Performance Comparison

Table 6.1 presents the result of comparing the performance of SMTApproxMC vis-a-vis

CDM on a subset of our benchmarks∗. In Table 6.1, column 1 gives the benchmark

identifier, column 2 gives the sum of widths of all variables, column 3 lists the number

of variables (numVars) for each corresponding width (w) in the format {w : numVars}.

To indicate the complexity of the input formula, we present the number of operations

in the original SMT formula in column 4. The runtimes for SMTApproxMC and CDM

are presented in columns 5 and column 6 respectively. We use “–” to denote timeout

after 12 hours. Table 6.1 clearly shows that SMTApproxMC significantly outperforms

CDM (often by 2-10 times) for a large class of benchmarks. In particular, we observe

that SMTApproxMC is able to compute counts for several cases where CDM times out.

Benchmarks in our suite exhibit significant heterogeneity in the widths of words,

and also in the kinds of word-level operations used. Propositionalizing all word-level

variables eagerly, as is done in CDM, prevents the SMT solver from making full use

of word-level reasoning. In contrast, our approach allows the power of word-level

reasoning to be harnessed if the original formula F and the hash functions are such

∗An extended version of Table 6.1 is available in Appendix as Table A3
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that the SMT solver can reason about them without bit-blasting. This can lead to

significant performance improvements, as seen in Table 6.1. Some benchmarks, how-

ever, have heterogenous bit-widths and heavy usage of operators like extract(x, n1, n2)

and/or word-level multiplication. It is known that word-level reasoning in modern

SMT solvers is not very effective for such cases, and the solver has to resort to bit-

blasting. Therefore, using word-level hash functions does not help in such cases. We

believe this contributes to the degraded performance of SMTApproxMC vis-a-vis CDM

in a subset of our benchmarks. This also points to an interesting direction of future

research: to find the right hash function for a benchmark by utilizing SMT solver’s

architecture.

6.5.2 Quality of Approximation

To measure the quality of the counts returned by SMTApproxMC, we selected a subset

of benchmarks that were small enough to be bit-blasted. We set the sampling set

was set to all the variables in the formula and fed to sharpSAT [147] – a state-of-

the-art exact model counter. Figure 6.1 compares the model counts computed by

SMTApproxMC with the bounds obtained by scaling the exact counts (from sharpSAT)

with the tolerance factor (ε = 0.8). The y-axis represents model counts on log-scale

while the x-axis presents benchmarks ordered in ascending order of model counts.

We observe that for all the benchmarks, SMTApproxMC computes counts within the

tolerance. Furthermore, for each instance, we computed observed tolerance ( εobs)

as count
|RF |
− 1, if count ≥ |RF |, and |RF |

count
− 1 otherwise, where |RF | is computed by

sharpSAT and count is computed by SMTApproxMC. We observe that the geometric

mean of εobs across all the benchmarks is only 0.04 – far less (i.e. closer to the exact

count) than the theoretical guarantee of 0.8.
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Figure 6.1 : Quality of counts computed by SMTApproxMC vis-a-vis exact counts
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6.6 Chapter Summary

Hashing-based constrained counting has emerged as a promising approach for prob-

abilistic inference on graphical models. While real-world examples naturally have

word-level constraints, state-of-the-art approximate model counters effectively reduce

the problem to propositional model counting due to lack of non-bit-level hash func-

tions. In this work, we presented, HSMT , a word-level hash function and used it to

build SMTApproxMC, an approximate word-level model counter. Our experiments

show that SMTApproxMC can significantly outperform techniques based on bit-level

hashing.

Our study also presents interesting directions for future work. For example, the

performance of SMTApproxMC seems to be closely related to how the SMT solver

handles the original constraint and the hashing constraints. adapting SMTApproxMC

to be aware of SMT solving strategies, and augmenting SMT solving strategies to effi-

ciently reason about hash functions used in counting, are exciting directions of future

work. Second, the performance of SMTApproxMC is expected to improve significantly

with the integration of Gaussian Elimination in SMT solvers.

Our work goes beyond serving as a replacement for other approximate count-

ing techniques. SMTApproxMC can also be viewed as an efficient building block for

more sophisticated inference algorithms [25]. The development of SMT solvers has

so far been primarily driven by the verification and static analysis communities. Our

work hints that probabilistic inference could well be another driver for SMT solver

technology development.
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Chapter 7

Case Study: Reliability for Power-Transmission

Networks

Modern society is increasingly reliant on the availability of critical facilities and utility

services, such as power, telecommunications, water, gas, and transportation among

others [146]. To ensure adequate service, it is imperative to quantify system reliability,

or the probability of the system to remain functional, as well as system resilience, or

the ability of the system to quickly return to normalcy when failure is unavoidable

[29]. While resilience assessment requires human decision making principles, it also

heavily depends on intrinsic system reliability. Hence, the recent focus on community

resilience and sustainability has spurred significant activity in engineering reliability

[165].

One of the key challenging problems in the area of engineering reliability is net-

work reliability, wherein the input to the problem consists of a network, represented

as a graph, arising out of distribution of water, power, transportation routes and

the like. The problem of the network reliability seeks to measure the likelihood of

two points of interest being reachable under conditions such as natural disasters.

Early theoretical investigations showed that the problem of network reliability is #P

complete [150]. Although graph contraction strategies combined with DNF counting

provide a Fully Polynomial Randomized Approximation Scheme (FPRAS) with error

guarantees [103], implementation on practical systems does not scale well due to the

requirement of a large number of Monte Carlo steps. Consequently, recent investi-
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gations have focused on advancing algorithmic strategies that build upon advanced

Monte Carlo simulation [166] and analytical approaches [117, 63]. In addition, inven-

tive sampling methods, such as line sampling and variance reduction schemes [76],

along with graphical models, especially Bayesian networks, provide versatile strategies

to quantify the reliability of complex engineered systems and their dynamics [21].

Despite significant progress, most techniques remain computationally expensive.

As an alternative, when invoking approximations, most methods are unable to guar-

antee the quality of the reliability estimation a priori, barring small instances where

exact methods do not time out. Therefore, design of techniques that offer strong

theoretical guarantees on the quality of estimates and can scale to large real world

instances remains an unattained goal across multiple disciplines.

A promising alternative approach to answer #P queries is to reduce a #P prob-

lem to a #SAT problem, where #SAT denotes the problem of computing the number

of solutions for a given SAT formula. This motivates us to ask: Can we design a

counting-based framework that can take advantage of progress in hashing-based tech-

niques in this thesis to provide theoretically sound estimates for the network reliability

problem?

In this Chapter, we provide a positive answer to the above question. We present

a counting-based framework, called RelNet, that reduces the problem of computing

reliability for a given network to counting the number of satisfying assignments of a Σ1
1

formula, which is amenable to recent hashing-based techniques developed for counting

satisfying assignments of SAT formula. RelNet significantly outperforms state of the

art techniques and in particular, allowed us to obtain the first theoretically sound

estimates of reliability for ten networks representing different cities in the U.S.
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7.1 Preliminaries

For a set A, Ā denotes the complement of the set A.Let G = (V,E) be a graph, where

V is set of the vertices, also referred as nodes, and E is set of edges. For every edge

e ∈ E from u to v, we define start(e) = u and end(e) = v. Note that we allow multiple

edges between pairs of nodes.

We say that π = (u,w1, · · ·wk−1, v) is a path of length k that connects u and v if

∀i < k − 1, wi ∈ V and ∃e (u = start(e) ∧ w1 = end(e))∧ ∃e (wk−1 = start(e) ∧ v =

end(e))∧ ∀i < k−2,∃e (wi = start(e)∧wi+1 = end(e)). We use Tπ to denote set of all

edges in π. For every subset σ ⊆ E, we say u and v are connected under σ, denoted

by (u, v) |= σ, if ∃π, k such that π is a path of length k that connects u and v and

Tπ ⊆ σ. For a given graph G, we use ΓG,u,v to denote the set of all subsets σ of E

that make u and v connected, i.e ΓG,u,v = {σ ⊆ E|(u, v) |= σ}.

For a given graph G = (V,E) and nodes u and v, we use e(u, v) ∪ G to denote

the augmented graph G′ obtained by putting an edge e such that u = start(e) and

v = end(e). Note that if G has i edges from u to v, then G′ has i + 1 edges from u

to v. In this Chapter, we focus on probabilistic variant of graphs, where probability

function is associated to edges in E. For every edge e ∈ E, we use e1 to denote the

event that edge e does not fail and e0 to denote the the event that edge e fails. We

have Pr[e0] + Pr[e1] = 1. As discussed in Section 7.3, the failure of edge corresponds

to event in real life when an existing edge is broken due to events such as natural

disasters. We assume all e1
i to be independent. Without loss of generality, the least

significant bit in the representation of Pr[e1
i ] is always taken to be 1. We call a graph as

unweighted if for all edges e ∈ E, we have Pr[e0] = 1/2, otherwise the graph is called

weighted. Therefore for σ ⊆ E, Pr[σ] =
∏

ei∈σ Pr(e
1
i )×

∏
ej /∈σ Pr(e

0
j). Furthermore, we

have Pr[ΓG,u,v] =
∑

σ∈ΓG,u,v
Pr[σ]. For a given graph G, source node u and terminal
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node v, the reliability of u→ v is defined as Pr[ΓG,u,v]. In this Chapter, we consider

the problem of estimating r(u, v) = 1− Pr[ΓG,u,v]

In this chapter, we employ a special class of graphs, called chain graphs, which

are inspired from the work on chain formulas discussed in Chapter 5. Similar to

every edge, every chain graph has start and end node defined as follows. Every edge

e is a chain graph, say G, such that u = start(G) if u = start(e) and v = end(G)

if v = end(e), and we represented G as G := (u ∨ v). In addition, if G = (V,E)

is a chain graph and e is an edge such that (i) u = start(e) = start(G) ∈ V and

v = end(e) = end(G) ∈ V , we say that e ∪ G is a chain formula, represented by

(u ∨G) or (ii) u = start(e) /∈ V and v = end(e) = start(G) ∈ V , then e ∪G is a chain

formula, represented by (u ∧G). Every chain graph G over nodes a1, a2, ...am and n

edges can be represented as (b1C1(b2C2(· · · (bnCnbn+1) · · · )), where Ci = ∨ or ∧ and

performing a many to one mapping from {b1, · · · bn+1} to {a1, a2, · · · am} such that (i)

b1 7→ a1 ∧ bn+1 7→ am, and (ii) ∀i < m− 1, bi 7→ aj ∧ bi+1 7→ al → j < l if Ci = ∧ and

j = l, otherwise.

7.2 Prior Work

The problem of computing r(u, v) for a given graph G was shown to be #P-complete

by Valiant [150]. Consequently, there has been focus on development of approximate

techniques for r(u, v). In his seminal Chapter, Karger [103] provided the first Fully

Polynomial Randomized Approximation Scheme (FPRAS) such that returned esti-

mate satisfies (ε, δ) guarantees while the runtime of algorithm (referred as Karger’s

algorithm in rest of the Chapter) is polynomial in the |G|, log(1/δ), 1/ε. Our exper-

iments demonstrate that the high requirement of Monte Carlo samples in the above

algorithm is a major bottleneck and for our benchmarks, Karger’s algorithm times
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out.

The recent investigations into network reliability have focused on advancing al-

gorithmic strategies that build upon advanced Monte Carlo simulation [166] and

analytical approaches [117, 63]. In particular, statistical learning techniques when

combined with numerical simulation afford the reliability assessment of complex en-

gineered systems, while unraveling component importance and sensitivities [95]. Also,

successful strategies in data science, such as hierarchical clustering, provide novel tools

for reliability and risk assessment [160, 89]. Also, state space partition strategies and

optimization allow for analytical modeling of system reliability, which also offers, as

a by-product, insights on the geometry of the failure space [8, 61]. Classical univer-

sal generating functions but combined with optimization also offer fresh alternatives

to quantify system reliability approximately [41]. Besides, inventive sampling meth-

ods, such as line sampling and variance reduction schemes [76], along with graphical

models, especially Bayesian networks, provide versatile strategies to quantify the re-

liability of complex engineered systems and their dynamics [21].

With the advent of resilience engineering, analytical methods are highly regarded

in engineering reliability as they provide accurate estimates or, in more challeng-

ing instances, they yield lower and upper bounded estimates with 100% confidence.

Furthermore, we can classify analytical network reliability methods in two groups

based on their algorithmic approach. The first uses prior enumeration of cut sets

(or path sets) or boolean algebra to account for non-disjoint events [7, 5], whereas

the latter uses recursive or iterative decompositions of disjoint events [61, 134, 130].

The latter group has proven more practical due to its online decomposition capabil-

ities while not relying on the prior cut (or path) set enumeration and applications

of the inclusion-exclusion principle, both NP-hard problems. In particular, research
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that builds upon the work by Dotson et al. has found wide technical application

for medium-size networks [113, 117] and in this Chapter we use the Selective path

based Recursive Decomposition Algorithm (S-RDA) as a representative approach of

state-of-the-art analytical reliability methods for civil infrastructure systems. Herein,

we refer to the gap between upper and lower bound estimates of reliability as the gap

error. S-RDA aims at shrinking the gap error as much as possible by finding disjoint

path sets that contain the shortest path of maximum likelihood at every decomposi-

tion step while prioritizing partitioning subsets of larger likelihood as well allowing it

to provide anytime approximation guarantee.

7.3 Datasets

In this Chapter we use as benchmark 10 power-transmission networks powering small

to medium size cities in the states of Texas (TX), Florida (FL), California (CA),

Tennessee (TN), Georgia (GA), and South Carolina(SC). Such states are susceptible

to extreme natural disasters such as flooding, hurricanes, or earthquakes. These cities

have populations in the order of tens to hundreds of thousands and the grids connect

generators and substations with 110-765 kV transmission-level power lines. Also, as

shown in Table 7.3, networks’ size go from 47 to 112 nodes and the number of edges

are of the same order. The raw network data was obtained in GIS format from the

“Platts” repository for maps and geospatial data ∗.

Transmission-line outages due to random failures are not uncommon in power

transmission systems during regular operation. The annualized probability of such

failures depends on technical characteristics such as length of lines, supply/demand,

temperature, etc. Typical values for ten-hour line outages, based on their annual

∗http://www.platts.com/products/gis-data.

http://www.platts.com/products/gis-data.
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Index City Name |V | |E|

G1 Amarillo, TX 47 62

G2 Lakeland, FL 50 69

G3 El Paso, TX 52 65

G4 San Luis Obispo, CA 57 69

G5 Eureka, CA 61 70

G6 Bulls Gap, TN 62 91

G8 Memphis, TN 66 83

G12 Lubbock, TX 85 106

G22 Athens, GA 103 116

G27 Sumter, SC 112 139

Table 7.1 : Test power networks.

occurrence rate, range from 60% to 98% for lines of length 50 and 200 kilometers

respectively [23]. Although these values may appear high, such contingencies can

be managed relatively easily. In contrast, extensive and complete damage due to

natural disasters have smaller occurrence probabilities but are much more difficult

to manage due to increased time of repairs. Even though the likelihood of such

extreme natural events is small, conditioned on their occurrence, the probability of

failures with significant damage for power transmission lines and facilities can be

much larger as is typically depicted in fragility curves that encode probabilities of

failure conditioned on some hazard intensity level (Fig. 7.1, source: [93]). For our

experiments, we consider failure probability of 0.125 – a value that is attainable in

practice by wide range of extreme natural events.
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Figure 7.1 : Probability of exceeding a given damage state (DS) for Medium/Large
Generation Facilities with Anchored Components as a function of the peak ground
acceleration intensity after an earthquake.

7.4 From Network Reliability to Constrained Counting

In this section, we first discuss how weighted graphs can be reduced to unweighted

graphs. We then discuss how the problem of computing reliability for an unweighted

graph can be reduced to constrained unweighted counting. We then discuss our

proposed framework, RelNet, that combines the two reductions and employs hashing-

based techniques to compute reliability for arbitrary graphs.

7.4.1 From Weighted to Unweighted Graph

The central idea of our reduction is usage of chain graphs to represent weights, which

is closely related to usage of chain formulas for weighted counting(c.f., Chapter 5).

Let m > 0 be a natural number, and k < 2m be a positive odd number. Let c1c2 · · · cm
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be the m-bit binary representation of k, where cm is the least significant bit. Let z

be the number of zeros in the representation of k. Define

ψk,m(b1, · · · bm+1) = (b1C1(b2C2 · · · (bmCmbm+1) · · · ))

where Ci = ∨ if ci = 1 and ∧ otherwise. We now construct chain graph φk,m(a1, · · · az+2)

by performing a many to one mapping between {b1, · · · bm+1} and {a1, a2, · · · az+2}

such that (i) b1 7→ a1 ∧ bm+1 7→ az+2, and (ii) ∀i < m − 1, (bi 7→ aj ∧ bi+1 7→

al) → j < l if Ci = ∧ and j = l, otherwise. Note that there is one to one cor-

respondence between ψk,m(b1, · · · bm+1) and φk,m(a1, · · · az+2) For example, consider

k = 3 and m = 3. The binary representation of 3 using 3 bits is 011 and z = 1.

Therefore, we have ψ3,3(b1, b2, b3, b4) = ( b1 ∧ (b2 ∨ (b3 ∨ b4)))), which gives us

ϕ3,3(a1, a2, a3) = (a1 ∧ (a2 ∨ (a2 ∨ a3)))). We now first show that |ϕk,m| is of linear

size and then discuss the relationship between k, m and ΓG,a1,az+2 .

Lemma 23. Let m > 0 be a natural number, k < 2m , z and ϕk,m as defined above.

Then |ϕk,m| is linear in m. Furthermore |Γϕk,m,a1,az+2| = k

Proof. By construction, ϕk,m(a1, · · · az+2) is of size linear inm. To prove that |Γϕk,m,a1,az+2 |

is of exactly size k, we use induction on m. We apply induction on ψk,m since

ψk,m and ϕk,m have 1-1 correspondence. The base case (m = 1) is trivial. For

m ≥ 1, let c2 · · · cm represent the number k′ in binary, and assume that ψk′,m−1 =

(b2 · · ·Cmbm+1) · · · ) has corresponding chain graph ϕk′,m−1 such that |Γϕk′,m−1,u,v
| =

k′, where u = start(ϕk′,m−1) and v = end(ϕk′,m−1). If c1 is 0, then on one hand k = k′,

and on the other hand we have, ϕk,m ≡ e ∪ ϕk′,m−1, where a1 = start(e), end(e) =

start(ϕk′m−1) which has |Γϕk,m,a1,az+2| = k . Otherwise, if c1 is 1, then on one

hand k = 2m−1 + k′, and on the other hand C1 is the connector “∨”. There-

fore, ϕk,m ≡ e ∪ ϕk′,m−1 where a1 = start(e), end(e) = end(ϕk′m−1), which has
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|Γϕk,m,a1,az+2| = 2m−1 + k′ = k. This completes the induction.

7.4.2 From Graphs to Σ1
1 Formulas

In this section, we discuss how for a given graph G = (V,E) and nodes u and v,

and associated probability function such that Pr[e1|e ∈ E] = 1/2, we can reduce the

problem of computing r(u, v) to the problem of computing |RF | wherein F is a Σ1
1

formula.

The central idea of our reduction is based on usage of transitive closure for con-

nectivity. Our reduction has close connection to previously proposed formulations

for s-t connectivity (See [46] for related survey). Let R(u, v) denote the event that

∃ path π such that π connects u and v. If R(u, v) occurs and there exists an edge

e ∈ E, such that v = start(e) ∧ w = end(e), then R(u,w) must occur. For a given

graph G = (V,E) and pair of nodes u and v, the goal is to create a Σ1
1 formula F

such that every satisfying assignment to F has one to one correspondence with σ ⊆ E

such that u and v are not connected under σ. To this end, we define a propositional

variables pu and qe for every node u ∈ V and every edge e ∈ E respectively. Define,

Ce = (pu ∧ qe → pv)

S = {pu|u ∈ V }

Fu,v = ∃S(pu ∧ ¬pv ∧
∧
e∈E

Ce)

Lemma 24. For a given graph G = (V,E) and nodes u and v, let Fu,v be as defined

above. Then, |RFu,v | = |ΓG,u,v|. Furthermore if ∀e ∈ E, we have Pr[e1] = 1
2
, then

r(u, v) =
|RFu,v |

2|E|
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Proof. We prove |RFu,v | = |ΓG,u,v| by constructing a bijective mapping from ΓG,u,v to

RFu,v . Note that for A,B such that |A|+ |A| = |B|+ |B|, we have |A| = |B| iff there

is a bijective mapping from A to B. (Notice the change in complement signs). For

every σ ⊆ E, if (u, v) |= σ, let π = uw1w2 · · ·wk−1v be path of length k between u

and v under σ. Define truth assignment τσ : qe|e ∈ E → {0, 1} as follows: τσ(qe) = 1

if e ∈ σ and 0 otherwise. Note that pu = 1 and we have τσ(e1) = 1, where e1 is

edge between u and w1. Furthermore, constraint Ce1 forces pw1 = 1. By inductively

applying this implication for every node appearing in the graph, we observe that p(v)

is forced to be 1, which is a contradiction. Note that definition of Fu,v has unit clause

(¬pv). Therefore, τσ is not a satisfying assignment of Fu,v. Similarly, if τ is not a

satisfying assignment, then we have στ = {e|τ(qe) = 1}. Following similar arguments

as above, we can show that if τ is not a satisfying assignment, στ /∈ ΓG,u,v.

7.4.3 RelNet

We now describe how the above reductions can be employed to design a counting-

based framework, called RelNet, for the problem of network reliability. For a given

graph G = (V,E), source node u and sink node v and a probability space Ω over the

edges, RelNet consists of the following three steps:

Step 1: We obtain a transformed graph G′ by replacing every ei ∈ E with φk,m if

Pr[e1
i ] = ki

2mi
. Let M =

∑
ei∈Emi where Pr[e1

i ] = ki
2mi

.

Step 2: Construct Fu,v as described above for the transformed graph G′, source node u

and sink node v

Step 3: Invoke ApproxMC2 estimate |RFu,v |
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The following theorem proves the correctness of our framework

Theorem 25. For a given Graph G, source node u and sink node v, and probability

space Ω over the edges, r(u, v) =
|RFu,v |

2M

Proof. The proof follows directly from Lemmas 23 and 24.

7.5 Evaluation

Since the primary objective of this project was to compute connectivity reliability

of power transmission grid networks across different cities in U.S., we compared the

effectiveness of RelNet vis-a-vis state of the art techniques. Specifically, we sought to

answer the following questions:

1. How does the runtime performance of RelNet compare to that of the state-of-the

art techniques on real world power transmission networks?

2. How do estimates computed by RelNet compare to the exact estimates of relia-

bility for networks that could be handled by exact techniques?

7.5.1 Experimental Methodology

We sought to compute reliability between every pair of nodes for all the ten cities

discussed in Section 7.3. We implemented a Python prototype of RelNet, which

invokes ApproxMC2 to perform counting over Σ1
1 formulas as required by Step 3 of

the RelNet. For all our experiments, we used ε = 0.8 and δ = 0.2 as parameters for

ApproxMC2, which is consistent with previously reported studies of using hashing-

based counting techniques.

For comparison purposes, we considered: (i) Karger’s FPRAS algorithm [103], (ii)

a recently proposed MCMC-based technique [166] and (iii) selective path based RDA
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(S-RDA), one of the current state of the art techniques employed by the reliabil-

ity engineering community. For all our benchmarks, S-RDA outperformed Karger’s

FPRAS algorithm and the above stated MCMC technique, therefore we omit further

discussion of these two techniques in the rest of the section.

Each experiment consisted of running a given tool on a given graph for a pair of

nodes termed as source and sink. The timeout for each experiment was set to 1,000

seconds.

7.5.2 Results

The analysis of runtime performance of S-RDA and RelNet shows that RelNet dra-

matically outperforms S-RDA. First of all, RelNet can compute r(u, v) for each pair

of source (u) and terminal (v) for all the ten cities while S-RDA could handle only

G5 and G27 and timed out for almost every pair for rest of the cities. It is worth

reiterating before RelNet, no theoretically sound estimates were, to the best of our

knowledge, a priori available for rest of the eight cities. Figure 7.2 presents heat-maps

for both S-RDA and RelNet for cities G1, G2, and G3. For every city Gi, the corre-

sponding heatmap is labeled by either Gi (S-RDA) if it presents runtime results for

S-RDA or Gi (RelNet), otherwise. For every heat-map, the y-axis represent source

node while the x-axis represents terminal node. For every pair of source and terminal,

the runtime for the corresponding tool is represented by the color as specified by the

scale next to each heat-map. Overall, the closer the color of the point is to blue,

better the method is.

The heat-maps clearly show that while RelNet can compute estimates within few

tens of seconds for each pair, S-RDA fails for almost every pair. In this context, it is

worth mentioning that runtime of RelNet is very consistent across different pairs of
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(b) G1 (RelNet)
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(c) G2 (S-RDA)
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(d) G2 (RelNet)

Figure 7.2 : CPU time in seconds using RDA and RelNet for every source and terminal
pair
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Figure 7.3 : s-t reliability estimates for G1 and G5 using RelNet for every pair.
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Figure 7.4 : Observed tolerance (εobs) for all pairs of city G5
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source and sink nodes.

As an illustration, Figure 7.3 shows heat-maps of reliability estimates between all

pairs of nodes for cities G1 and G5 as computed by RelNet. Similar to performance

comparison heatmaps, the y-axis of every plot refers to source node while the x-axis

refers to sink node. The reliability for (u, v) is represented by the color as per the

mapping presented on the right. Looking at these plots, one might wonder about

the accuracy of reported results. While RelNet provides theoretical guarantees of

accuracy, we sought to measure the quality of our estimates in practice. Given that

S-RDA is an exact technique, we use the estimates from S-RDA on G5 to measure the

quality of estimates of RelNet. For each pair, the observed tolerance εobs was calculated

as max(C
f
−1, f

C
−1) where C is the estimate from RelNet and f is the exact estimate

computed by S-RDA. Figure 7.4 shows the heat-map of observed tolerance εobs for

each pair of G5. First of all, for every pair the observed tolerance is less than 0.14

– far better than the theoretical guarantee of 0.8. Furthermore, the geometric mean

of observed tolerance is just 0.01951; almost an order of magnitude better than the

theoretical guarantee. This highlights conservative nature of theoretical guarantees

and the need to strengthen the analysis as part of future work. As this work is part of

larger project, where estimates of reliability are required to support decision making

for community resilience, the above observations are quite significant as they show

how emerging computational algorithms could support analysis and management of

infrastructure under uncertainty.

7.6 Chapter Summary

Estimation of network reliability is crucial for decision making to ensure availability

and resilience of critical facilities. Despite significant interest and long history of prior
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work, the current state of the art techniques fail to either provide sound theoretical

estimates or scale to large networks. In this chapter, we discussed how progress in

the development of hashing-based techniques described in this Part can be utilized to

construct a scalable reliability estimation framework, RelNet. Furthermore, unlike the

current state of the art techniques, RelNet can scale to real world networks arising from

cities across U.S., especially when exact reliability computations are not affordable.



120

Part III

Constrained Sampling
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The first chapter of this part, i.e. Chapter 8, focuses on uniform generation

and introduced the core hashing-based algorithmic framework, UniGen. Chapter 9

then discusses how UniGen can trade off independence for performance gains and

demonstrate high parallelizability of our framework. Chapter 10 discusses adaptation

of UniGen, called WeightGen, to handle general weight functions.
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Chapter 8

Hashing-based Almost Uniform Generator

Marrying scalability with strong guarantees of uniformity has been the holy grail of

algorithms that sample from solutions of constraint systems. The literature bears

testimony to the significant tension between these objectives when designing random

generators of SAT witnesses. Earlier work in this area either provide strong theoretical

guarantees at the cost of scalability, or remedy the scalability problem at the cost of

guarantees of uniformity. More recently, however, there have been efforts to bridge

these two extremes.

Bellare, Goldreich and Petrank [15] showed that a provably uniform generator of

SAT witnesses can be designed in theory to run in probabilistic polynomial time rela-

tive to an NP oracle. Unfortunately, it was shown in [37] that this algorithm does not

scale beyond formulae with few tens of variables in practice. Weighted binary decision

diagrams (BDD) have been used in [161] to sample uniformly from SAT witnesses.

However, BDD-based techniques are known to suffer from scalability problems [108].

Adapted BDD-based techniques with improved performance were proposed in [112];

however, the scalability was achieved at the cost of guarantees of uniformity. Random

seeding of DPLL SAT solvers [126] has been shown to offer performance, although

the generated distributions of witnesses can be highly skewed [108].

Markov Chain Monte Carlo methods (also called MCMC methods) [108, 156] are

widely considered to be a practical way to sample from a distribution of solutions.

Several MCMC algorithms, such as those based on simulated annealing, Metropolis-
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Hastings algorithm and the like, have been studied extensively in the literature [119].

While MCMC methods guarantee eventual convergence to a target distribution under

mild requirements, convergence is often impractically slow in practice. The work

of [156, 108] proposed several such adaptations for MCMC-based sampling in the

context of constrained-random verification. Unfortunately, most of these adaptations

are heuristic in nature, and do not preserve theoretical guarantees of uniformity.

constraints, thereby increasing constraint-solving time. Sampling techniques based

on interval-propagation and belief networks have been proposed in [57, 80, 98]. The

simplicity of these approaches lend scalability to the techniques, but the generated

distributions can deviate significantly from the uniform distribution, as shown in [109].

Sampling techniques based on hashing were originally pioneered by Sipser [141],

and have been used subsequently by several researchers [15, 88, 37]. The core idea

in hashing-based sampling is to use r-wise independent hash functions (for a suitable

value of r) to randomly partition the space of witnesses into “small cells” of roughly

equal size, and then randomly pick a solution from a randomly chosen cell. The

algorithm of Bellare et al. referred to above uses this idea with n-wise independent

algebraic hash functions (where n denotes the size of the support of F ). As noted

above, their algorithm scales very poorly in practice. Gomes, Sabharwal and Selman

used 3-wise independent linear hash functions in [88] to design XORSample′, a near-

uniform generator of SAT witnesses. Nevertheless, to realize the guarantee of near-

uniformity, their algorithm requires the user to provide difficult-to-estimate input

parameters. Although XORSample′ has been shown to scale to constraints involving

a few thousand variables, Gomes et al. acknowledge the difficulty of scaling their

algorithm to much larger problem sizes without sacrificing theoretical guarantees [88].

Recently, Chakraborty, Meel and Vardi [37] proposed a new hashing-based SAT
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witness generator, called UniWit, that represents a small but significant step to-

wards marrying the conflicting goals of scalability and guarantees of uniformity. Like

XORSample′, the UniWit algorithm uses 3-wise independent linear hashing functions.

Unlike XORSample′, however, the guarantee of near-uniformity of witnesses generated

by UniWit does not depend on difficult-to-estimate input parameters. In [37], UniWit

has been shown to scale to formulas with several thousand variables. In addition,

Chakraborty et al proposed a heuristic called “leap-frogging” that allows UniWit to

scale even further – to tens of thousands of variables [37]. Unfortunately, the guaran-

tees of near-uniformity can no longer be established for UniWit with “leap-frogging”.

More recently, Ermon et al. [69] proposed a hashing-based algorithm called PAWS for

sampling from a distribution defined over a discrete set using a graphical model but

fails to provide guarantees of almost-uniformity. PAWS faces the same scalability hur-

dles as UniWit, and does not scale beyond a few thousand variables without heuristic

adapatations that compromise its guarantees.

In this Chapter, we propose an algorithm called UniGen, which is the first algo-

rithm to provide strong guarantees of almost-uniformity, while scaling to problems

involving hundreds of thousands of variables. We also improve upon the success prob-

ability of the earlier algorithms significantly, both in theory and as evidenced by our

experiments.

8.1 The UniGen Algorithm

The new algorithm, called UniGen, shares some features with earlier hashing-based

algorithms such as XORSample′ [88], UniWit [37] and PAWS [69], but there are key

differences that allow UniGen to significantly outperform these earlier algorithms, both

in terms of theoretical guarantees and measured performance.
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The effectiveness of a hashing-based probabilistic generator depends on its ability

to quickly partition the set RF into “small” and “roughly equal” sized random cells.

This, in turn, depends on the parameter m used in the choice of the hash function

family H(n,m, r). A high value of m leads to skewed distributions of sizes of cells,

while a low value of m leads to cells that are not small enough. The best choice of

m depends on |RF |, which is not known a priori. Different algorithms therefore use

different techniques to estimate a value of m. In XORSample′, this is achieved by

requiring the user to provide some difficult-to-estimate input parameters. In UniWit,

the algorithm sequentially iterates over values of m until a good enough value is found.

The approach of PAWS comes closest to our, although there are crucial differences.

In both PAWS and UniGen, an approximate model counter is first used to estimate

|RF | within a specified tolerance and with a specified confidence. This estimate, along

with a user-provided parameter, is then used to determine a unique value of m in

PAWS. Unfortunately, this does not facilitate proving that PAWS is an almost-uniform

generator. Instead, Ermon, et al. show that PAWS behaves like an almost-uniform

generator with probability greater than 1−δ, for a suitable δ that depends on difficult-

to-estimate input parameters. In contrast, we use the estimate of |RF | to determine

a small range of candidate values of m. This allows us to prove that UniGen is

almost-uniform generator with confidence 1.

The pseudocode for UniGen is shown in Algorithm 9. UniGen takes as inputs a

Boolean CNF formula F , a tolerance ε (> 1.71, for teachnical reasons explained in

the Appendix) and a set S of sampling variables. It either returns a random witness

of F or ⊥ (indicating failure). The algorithm assumes access to a source of random

binary numbers, and to two subroutines: (i) BoundedSAT(F,N), which, for every

N > 0, returns min(|RF |, N) distinct witnesses of F , and (ii) an approximate model
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counter ApproxModelCounter(F, ε′, 1− δ′).

UniGen first computes two quantities, “pivot” and κ, that represent the expected

size of a “small” cell and the tolerance of this size, respectively. The specific choices of

expressions used to compute κ and “pivot” in ComputeKappaPivot are motivated by

technical reasons explained in the Appendix. The values of κ and “pivot” are used to

determine high and low thresholds (denoted “hiThresh” and “loThresh” respectively)

for the size of each cell. Lines 5– 7 handle the easy case when F has no more

than “hiThresh” witnesses. Otherwise, UniGen invokes ApproxModelCounter to obtain

an estimate, C, of |RF | to within a tolerance of 0.8 and with a confidence of 0.8.

Once again, the specific choices of the tolerance and confidence parameters used in

computing C are motivated by technical reasons explained in the Appendix. The

estimate C is then used to determine a range of candidate values for m. Specifically,

this range is {q − 4, . . . q}, where q is determined in line 10 of the pseudocode. The

loop in lines 14– 17 checks whether some value in this range is good enough for m,

i.e., whether the number of witnesses in a cell chosen randomly after partitioning RF

using Hxor(|S|,m, 3), lies within “hiThresh” and “loThresh”. If so, lines 21– 22 return

a random witness from the chosen cell. Otherwise, the algorithm reports a failure in

line 19.

An probabilistic generator is likely to be invoked multiple times with the same in-

put constraint in constrained-random verification. Towards this end, note than lines

1–11 of the pseudocode need to executed only once for every formula F . Generating

a new random witness requires executing afresh only lines 12–22. While this opti-

mization appears similar to “leapfrogging” [37, 38], it is fundamentally different since

it does not sacrifice any theoretical guarantees, unlike “leapfrogging”.
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Algorithm 9 UniGen(F, ε, S)

/*Assume S = {x1, . . . x|S|} is an independent support of F , and ε > 1.71 */

1: (κ, pivot)← ComputeKappaPivot(ε);

2: hiThresh← 1 + (1 + κ)pivot;

3: loThresh← 1
1+κ

pivot;

4: Y ← BoundedSAT(F, hiThresh);

5: if (|Y | ≤ hiThresh) then

6: Let y1, . . . y|Y | be the elements of Y ;

7: Choose j at random from {1, . . . |Y |}; return yj;

8: else

9: C ← ApproxModelCounter(F, 0.8, 0.8);

10: q ← dlogC + log 1.8− log pivote;

11: i← q − 4;

12: Choose h at random from Hxor(|S|, n, 3);

13: Choose α at random from {0, 1}n;

14: repeat

15: i← i+ 1;

16: Y ← BoundedSAT(F ∧ (hi(x1, . . . x|S|) = αi), hiThresh);

17: until (loThresh ≤ |Y | ≤ hiThresh) or (i = q)

18: if (|Y | > hiThresh) or (|Y | < loThresh) then

19: return ⊥

20: else

21: Let y1, . . . y|Y | be the elements of Y ;

22: Choose j at random from [|Y |] and return yj;
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Algorithm 10 ComputeKappaPivot(tε)

1: Find κ ∈ [0, 1) such that ε = (1 + κ)(2.23 + 0.48
(1−κ)2 )− 1 ;

2: pivot← d3e1/2(1 + 1
κ
)2e;

3: return (κ, pivot)

8.2 Implementation Issues

In our implementation of UniGen, BoundedSAT is implemented using CryptoMin-

iSAT [1] – a SAT solver that handles xor clauses efficiently. CryptoMiniSAT uses

blocking clauses to prevent already generated witnesses from being generated again.

Since the independent support of F determines every satisfying assignment of F ,

blocking clauses can be restricted to only variables in the set S. We implemented this

optimization in CryptoMiniSAT, leading to significant improvements in performance.

ApproxModelCounter is implemented using ApproxMC [38]. We disable “leapfrogging”

optimization since it nullifies the theoretical guarantees of ApproxMC [38]. We use

“random device” implemented in C++ as the source of pseudo-random numbers in

lines 7, 14, 15 and 22 of the pseudocode, and also as the source of random numbers

in ApproxMC.

8.3 Analysis

Following notations introduced in Chapter 2, let RF↓S denote set of witnesses of the

Boolean formula F projected on the sampling set S. For convenience of analysis,

we assume that log(|RF↓S| − 1)− log pivot is an integer, where pivot is the quantity

computed by algorithm ComputeKappaPivot (see Section 8.1). A more careful analysis

removes this assumption by scaling the probabilities by constant factors. Let us
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denote log(|RF | − 1) − log pivot by m. The expression used for computing pivot in

algorithm ComputeKappaPivot ensures that pivot ≥ 17. Therefore, if an invocation of

UniGen does not return from line 7 of the pseudocode, then |RF | ≥ 18. Note also that

the expression for computing κ in algorithm ComputeKappaPivot requires ε ≥ 1.71 in

order to ensure that κ ∈ [0, 1) can always be found.

The following lemma shows that q, computed in line 10 of the pseudocode, is a

good estimator of m.

Lemma 26. Pr[q − 3 ≤ m ≤ q] ≥ 0.8

Proof. Recall that in line 9 of the pseudocode, an approximate model counter is

invoked to obtain an estimate, C, of |RF↓S| with tolerance 0.8 and confidence 0.8. By

the definition of approximate model counting, we have Pr[ C
1.8
≤ |RF↓S| ≤ (1.8)C] ≥

0.8. Thus, Pr[logC − log(1.8) ≤ log |RF↓S| ≤ logC + log(1.8)] ≥ 0.8. It follows

that Pr[logC − log(1.8) − log pivot − log( 1
1−1/|RF↓S |

) ≤ log(|RF↓S| − 1) − log pivot ≤

logC− log pivot+log(1.8)− log( 1
1−1/|RF↓S |

)] ≥ 0.8. Substituting q = dlogC+log 1.8−

log pivote, m = log(|RF↓S| − 1)− log pivot , log(1.8) = 0.85 and log( 1
1−1/|RF↓S |

) ≤ 0.12

(since |RF↓S| ≥ 18 on reaching line 10 of the pseudocode), we get Pr[q − 3 ≤ m ≤

q] ≥ 0.8.

The next lemma provides a lower bound on the probability of generation of a wit-

ness. Let wi,y,α denote the probability Pr
[

pivot
1+κ
≤ |RF,h,α| ≤ 1 + (1 + κ)pivot and h(y) = α

: h
R←− Hxor(n, i, 3)

]
. The proof of the lemma also provides a lower bound on wm,y,α.

Lemma 27. For every witness y of F , Pr[y is output] ≥ 0.8(1−e−1)
(1.06+κ)(|RF↓S |−1)

Proof. If |RF↓S| ≤ 1 + (1 + κ)pivot, the lemma holds trivially (see lines 5–7 of the

pseudocode). Suppose |RF↓S| ≥ 1 + (1 + κ)pivot and let U denote the event that
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witness y ∈ RF↓S is output by UniGen on inputs F , ε and X. Let pi,y denote the

probability that we return from line 17 for a particular value of i with y in RF,h,α,

where α ∈ {0, 1}i is the value chosen in line 15. Then, Pr[U ] = ∪qi=q−3
1
|Y |pi,y, where

Y is the set of witnesses returned by BoundedSAT in line 16 of the pseudocode. Let

fm = Pr[q − 3 ≤ m ≤ q]. From Lemma 48, we know that fm ≥ 0.8. From the

design of the algorithm, we also know that 1
1+κ

pivot ≤ |Y | ≤ 1 + (1 + κ)pivot.

Therefore, Pr[U ] ≥ 1
1+(1+κ)pivot

· pm,y · fm. The proof is now completed by showing

pm,y ≥ 1
2m

(1 − e−1). This gives Pr[U ] ≥ 0.8(1−e−1)
(1+(1+κ)pivot)2m

≥ 0.8(1−e−1)
(1.06+κ)(|RF↓S |−1)

. The last

inequality uses the observation that 1/pivot ≤ 0.06.

To calculate pm,y, we first note that since y ∈ RF↓S, the requirement “y ∈

RF,h,α” reduces to “y ∈ h−1(α)”. For α ∈ {0, 1}n, we define wm,y,α as Pr
[

pivot
1+κ

≤ |RF,h,α| ≤ 1 + (1 + κ) pivot and h(y) = α : h
R←− Hxor(n,m, 3)

]
. Therefore, pm,y

= Σα∈{0,1}m (wm,y,α.2
−m). The proof is now completed by showing that wm,y,α ≥

(1− e−1)/2m for every α ∈ {0, 1}m and y ∈ {0, 1}n.

Towards this end, let us first fix a random y. Now we define an indicator variable

γz,α for every z ∈ RF↓S \ {y} such that γz,α = 1 if h(z) = α, and γz,α = 0 otherwise.

Let us fix α and choose h uniformly at random from Hxor(n,m, 3). The random

choice of h induces a probability distribution on γz,α such that E[γz,α] = Pr[γz,α =

1] = 2−m. Since we have fixed y, and since hash functions chosen from Hxor(n,m, 3)

are 3-wise independent, it follows that for every distinct za, zb ∈ RF↓S \ {y}, the

random variables γza,α, γzb,α are 2-wise independent. Let Γα =
∑

z∈RF↓S\{y} γz,α and

µα = E[Γα]. Clearly, Γα = |RF,h,α|−1 and µα =
∑

z∈RF↓S\{y} E[γz,α] =
|RF↓S |−1

2m
. Also,

Pr[pivot
1+κ
≤ |RF,h,α| ≤ 1 + (1 + κ)pivot] = Pr[pivot

1+κ
− 1 ≤ |RF,h,α| − 1 ≤ (1 + κ)pivot]

≥ Pr[pivot
1+κ
≤ |RF,h,α| − 1 ≤ (1 + κ)pivot]. Using the expression for pivot, we get 2 ≤

be−1/2(1 + 1/ε)2 · |RF↓S |−1

2m
c. Therefore using Chebyshev’s Inequality and substituting
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pivot = (|RF↓S| − 1)/2m, we get Pr[pivot
1+κ
≤ |RF,h,α| − 1 ≤ (1 + κ)pivot] ≥ 1 − e−1.

Therefore, Pr[pivot
1+κ

≤ |RF,h,α| ≤ 1 + (1 + κ)pivot] ≥ 1 − e−1 Since h is chosen at

random from Hxor(n,m, 3), we also have Pr[h(y) = α] = 1/2m. It follows that

wm,y,α ≥ (1− e−1)/2m.

The next lemma provides an upper bound of wi,y,α and pi,y.

Lemma 28. For i < m, both wi,y,α and pi,y are bounded above by 1
|RF↓S |−1

1

(1− 1+κ

2m−i )
2 .

Proof. We will use the terminology introduced in the proof of Lemma 27. Clearly,

µα =
|RF↓S |−1

2i
. Since each γz,α is a 0-1 variable, V [γz,α] ≤ E [γz,α]. Therefore,

σ2
z,α ≤

∑
z 6=y,z∈RF↓S E [γz,α] ≤

∑
z∈RF↓S E [γz,α] = E [Γα] = 2−m(|RF↓S| − 1). So

Pr[pivot
1+κ
≤ |RF,h,α| ≤ 1 + (1 + κ)pivot] ≤ Pr[|RF,h,α| − 1 ≤ (1 + κ)pivot]. From Cheby-

shev’s inequality, we know that Pr [|Γα − µz,α| ≥ κσz,α] ≤ 1/κ2 for every κ > 0.

By choosing κ = (1 − 1+κ
2m−i

)µz,α
σz,α

, we have Pr[|RF,h,α| − 1 ≤ (1 + κ)pivot] ≤ Pr[
|(|RF,h,α| − 1)− |RF↓S |−1

2i
| ≥ (1− 1+κ

2m−i
)
|RF↓S |−1

2i

]
≤ 1

(1− (1+κ)

2m−i )
2 · 2i

|RF↓S |−1
. Since h is

chosen at random from Hxor(n,m, 3), we also have Pr[h(y) = α] = 1/2i. It follows

that wi,y,α ≤ 1
|RF↓S |−1

1

(1− 1+κ

2m−i )
2 . The bound for pi,y is easily obtained by noting that

pi,y = Σα∈{0,1}i (wi,y,α.2
−i).

Lemma 29. For every witness y of F , Pr[y is output] ≤ 1+κ
|RF↓S |−1

(2.23 + 0.48
(1−κ)2 )

Proof. We will use the terminology introduced in the proof of Lemma 27. Pr[U ] =

∪qi=q−3
1
|Y |pi,y ≤

1+κ
pivot

∑q
i=q−3 pi,y. We can sub-divide the calculation of Pr[U ] into three

cases based on the range of the values m can take.

Case 1 : q − 3 ≤ m ≤ q.

Now there are four values that m can take.
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1. m = q − 3. We know that pi,y ≤ Pr[h(y) = α] = 1
2i

. Pr[U |m = q − 3] ≤
1+κ
pivot
· 1

2q−3
15
8

. Substituting the value of pivot and m, we get Pr[U |m = q − 3] ≤
15(1+κ)

8(|RF↓S |−1)
.

2. m = q − 2. For i ∈ [q − 2, q] pi,y ≤ Pr[h(y) = α] = 1
2i

Using Lemma 39, we get

pq−3,y ≤ 1
|RF↓S |−1

1

(1− 1+κ
2 )

2 . Therefore, Pr[U |m = q − 2] ≤ 1+κ
pivot

1
|RF↓S |−1

( 1
1− 1+κ

2

) +

1+κ
pivot

1
2q−2

7
4
. Noting that pivot =

|RF↓S |−1

2m
> 10, Pr[U |m = q − 2] ≤ 1+κ

|RF↓S |−1
(7

4
+

0.4
(1−κ)2 )

3. m = q − 1. For i ∈ [q − 1, q], pi,y ≤ Pr[h(y) = α] = 1
2i

. Using Lemma 39,

we get pq−3,y + pq−2,y ≤ 1
|RF↓S |−1

(
1

(1− 1+κ

22 )
+ 1

(1− 1+κ
2 )

2

)
. Therefore, Pr[U |m =

q − 1] ≤ 1+κ
pivot

(
1

|RF↓S |−1

(
1

(1− 1+κ

22 )
2 + 1

(1− 1+κ
2 )

2

)
+ 1

2q−1
3
2

)
. Noting that pivot =

|RF↓S |−1

2m
> 10 and κ ≤ 1, Pr[U |m = q − 1] ≤ 1+κ

|RF↓S |−1
(1.9 + 0.4

(1−κ)2 ).

4. m = q, pq,y ≤ Pr[h(y) = α] = 1
2q

. Using Lemma 39, we get pq−3,y + pq−2,y +

pq−1,y ≤ 1
|RF↓S |−1

(
1

(1− 1+κ

23 )
2

1

(1− 1+κ

22 )
2 + 1

(1− 1+κ
2 )

2

)
. Therefore, Pr[U |m = q] ≤

1+κ
pivot

(
1

|RF↓S |−1

(
1

(1− 1+κ

23 )
2 + 1

(1− 1+κ

22 )
2 + 1

(1− 1+κ
2 )

2

)
+ 1

)
. Noting that pivot =

|RF↓S |−1

2m
> 10, Pr[U |m = q] ≤ 1+κ

|RF↓S |−1
(1.58 + 0.4

(1−κ)2 ).

Pr[U |q − 3 ≤ m ≤ q] ≤ maxi(Pr[U |m = i]). Therefore, Pr[U |q − 3 ≤ m ≤ q] ≤

Pr[U |m = q − 1] ≤ 1+κ
|RF↓S |−1

(1.9 + 0.4
(1−κ)2 ).

Case 2 : m < q− 3. Pr[U |m < q− 3] ≤ 1+κ
pivot
· 1

2q−3
15
8

. Substituting the value of pivot

and maximizing m− q + 3, we get Pr[U |m < q − 3] ≤ 15(1+κ)
16(|RF↓S |−1)

.

Case 3 : m > q. Using Lemma 39, we know that Pr[U |m > q] ≤ 1+κ
|RF↓S |−1

2m

|RF↓S |−1∑q
i=q−3

1
1− 1+κ

2m−i
. The R.H.S. is maximized when m = q + 1. Hence Pr[U |m >

q] ≤ 1+κ
|RF↓S |−1

2m

|RF↓S |−1

∑q
i=q−3

1
1− 1+κ

2q+1−i
. Noting that pivot =

|RF↓S |−1

2m
> 10 and

expanding the above summation Pr[U |m > q] ≤ 1+κ
|RF↓S |−1

1
10

(
1

(1− 1+κ

24 )2 + 1
(1− 1+κ

23 )2 +
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1
(1− 1+κ

22 )2 + 1
(1− 1+κ

21 )2

)
. Using κ ≤ 1 for the first two summation terms, Pr[U |m > q] ≤

1+κ
|RF↓S |−1

· 1
10
· (7.1 + 4

(1−κ)2 )

Summing up all the above cases, Pr[U ] = Pr[U |m < q − 3] × Pr[m < q − 3] +

Pr[U |q − 3 ≤ m ≤ q] × Pr[q − 3 ≤ m ≤ q] + Pr[U |m > q] × Pr[m > q]. Using

Pr[m < q − 1] ≤ 0.2, Pr[m > q] ≤ 0.2 and Pr[q − 3 ≤ m ≤ q] ≤ 1. Therefore,

Pr[U ] ≤ 1+κ
|RF↓S |−1

(2.23 + 0.48
(1−κ)2 )

Combining Lemma 27 and 29, the following theorem is obtained.

Theorem 30. For every witness y of F , if ε > 1.71,

1

(1 + ε)(|RF↓S| − 1)
≤ Pr [UniGen(F, ε,X) = y] ≤ (1 + ε)

1

|RF↓S| − 1
.

Proof. The proof is completed by using Lemmas 27 and 29 and substituting (1+ε) =

(1 + κ)(2.23 + 0.48
(1−κ)2 ). To arrive at the results, we use the inequality 1.06+κ

0.8(1−e−1)
≤

(1 + κ)(2.23 + 0.48
(1−κ)2 ).

Theorem 31. Algorithm UniGen succeeds (i.e. does not return ⊥) with probability at

least 0.62.

Proof. If |RF↓S| ≤ 1 + (1 + κ)pivot, the theorem holds trivially. Suppose |RF↓S| >

1 + (1 + κ)pivot and let Psucc denote the probability that a run of the algorithm

UniGen succeeds. Let pi, such that (q− 3 ≤ i ≤ q) denote the conditional probability

that UniGen (F , ε, X) terminates in iteration i of the repeat-until loop (line 11-16)

with pivot
1+κ
≤ |RF,h,α| ≤ 1 + (1 + κ)pivot, given |RF↓S| > 1 + (1 + κ)pivot. Therefore,

Psucc =
∑q

i=q−3 pi
∏i

j=q−3(1 − pj). Let fm = Pr[q − 3 ≤ m ≤ q]. Therefore, Psucc ≥

pmfm ≥ 0.8pm. The theorem is now proved by using Chebyshev’s Inequality to show
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that pm ≥ 1− e−3/2 ≥ 0.77.

For every y ∈ {0, 1}n and for every α ∈ {0, 1}m, define an indicator variable νy,α

as follows: νy,α = 1 if h(y) = α, and νy,α = 0 otherwise. Let us fix α and y and

choose h uniformly at random from Hxor(n,m, 3). The random choice of h induces

a probability distribution on νy,α, such that Pr[νy,α = 1] = Pr[h(y) = α] = 2−m

and E[νy,α] = Pr[νy,α = 1] = 2−m. In addition 3-wise independence of hash functions

chosen from Hxor(n,m, 3) implies that for every distinct ya, yb, yc ∈ RF↓S, the random

variables νya,α, νyb,α and νyc,α are 3-wise independent.

Let Γα =
∑

y∈RF↓S νy,α and µα = E [Γα]. Clearly, Γα = |RF,h,α| and µα =∑
y∈RF↓S E [νy,α] = 2−m|RF↓S|. Since |RF↓S| > pivot and i − l > 0, using the ex-

pression for pivot , we get 3 ≤
⌊
e−1/2(1 + 1

ε
)−2 · |RF↓S |

2m

⌋
. Therefore, using Chebyshev’s

Inequality, Pr
[
|RF↓S |

2m
.
(
1− κ

1+κ

)
≤ |RF,h,α| ≤ (1 + κ)

|RF↓S |
2m

]
> 1 − e−3/2. Simplifying

and noting that κ
1+κ

< κ for all κ > 0, we obtain Pr
[
(1 + κ)−1 · |RF↓S |

2m
≤ |RF,h,α|

≤ (1 + κ) · |RF↓S |
2m

]
> 1 − e−3/2. Also, pivot

1+κ
= 1

1+κ

|RF↓S |−1

2m
≤ |RF↓S |

(1+κ)2m
and 1 + (1 +

κ)pivot = 1 +
(1+κ)(|RF↓S |−1)

2m
≥ (1+κ)|RF↓S |

2m
. Therefore, pm = Pr[pivot

1+κ
≤ |RF,h,α| ≤

1+(1+κ)pivot] ≥ Pr
[
(1 + κ)−1 · |RF↓S |

2m
≤ |RF,h,α| ≤ (1 + κ) · |RF↓S |

2m

]
≥ 1−e−3/2.

The guarantees provided by Theorem 30 are significantly stronger than those pro-

vided by earlier generators that scale to large problem instances. Specifically, neither

XORSample′ [88] nor UniWit [37] provide strong upper bounds for the probability of

generation of a witness. PAWS [69] offers a probabilistic guarantee that the probabil-

ity of generation of a witness lies within a tolerance factor of the uniform probability,

while the guarantee of Theorem 30 is not prbabilistic. The success probability of

PAWS, like that of XORSample′, is bounded below by an expression that depends

on difficult-to-estimate input parameters. Interestingly, the same parameters also

directly affect the tolerance of distribution of the generated witnesses. The success
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probability of UniWit is bounded below by 0.125, which is significantly smaller than

the lower bound of 0.62 guaranteed by Theorem 30.

8.4 Trading scalability with uniformity

The tolerance parameter ε provides a knob to balance scalability and uniformity in

UniGen. Smaller values of ε lead to stronger guarantees of uniformity (by Theorem 30).

Note, however, that the value of “hiThresh” increases with decreasing values of ε,

requiring BoundedSAT to find more witnesses. Thus, each invocation of BoundedSAT

is likely to take longer as ε is reduced.

8.5 Experimental Results

To evaluate the performance of UniGen, we built a prototype implementation and con-

ducted an extensive set of experiments. Industrial constrained-random verification

problem instances are typically proprietary and unavailable for published research.

Therefore, we conducted experiments on CNF SAT constraints arising from several

problems available in the public-domain. These included bit-blasted versions of con-

straints arising in bounded model checking of circuits and used in [37], bit-blasted

versions of SMTLib benchmarks, constraints arising from automated program synthe-

sis, and constraints arising from ISCAS89 circuits with parity conditions on randomly

chosen subsets of outputs and next-state variables.

To facilitate running multiple experiments in parallel, we used a high-performance

cluster and ran each experiment on a node of the cluster. Each node had two quad-

core Intel Xeon processors with 4 GB of main memory. Recalling the terminology

used in the pseudocode of UniGen (see Section 8.1), we set the tolerance ε to 6, and the

sampling set S to an independent support of F in all our experiments. Independent
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supports (not necessarily minimal ones) for all benchmarks were easily obtained from

the providers of the benchmarks on request. We used 2, 500 seconds as the timeout

for each invocation of BoundedSAT and 20 hours as the overall timeout for UniGen,

for each problem instance. If an invocation of BoundedSAT timed out in line 16 of the

pseudocode of UniGen, we repeated the execution of lines 14–16 without incrementing

i. With this set-up, UniGen was able to successfully generate random witnesses for

formulas having up to 486, 193 variables.

For performance comparisons, we also implemented and conducted experiments

with UniWit – a state-of-art near-uniform generator [37]. Our choice of UniWit as a

reference for comparison is motivated by several factors. First, UniGen and UniWit

share some commonalities, and UniGen can be viewed as an improvement of UniWit.

Second, XORSample′ is known to perform poorly vis-a-vis UniWit [37]; hence, compar-

ing with XORSample′ is not meaningful. Third, the implementation of PAWS made

available by the authors of [69] currently does not accept CNF formulae as inputs.

It accepts only a graphical model of a discrete distribution as input, making a direct

comparison with UniGen difficult. Since PAWS and UniWit share the same scalability

problem related to large random xor-clauses, we chose to focus only on UniWit. Since

the “leapfrogging” heuristic used in [37] nullifies the guarantees of UniWit, we disabled

this optimization. For fairness of comparison, we used the same timeouts in UniWit

as used in UniGen, i.e. 2, 500 seconds for every invocation of BoundedSAT, and 20

hours overall for every invocation of UniWit.

Table 8.1 presents the results of our performance-comparison experiments for a

subset of benchmarks∗. Column 1 lists the CNF benchmark, and columns 2 and 3

give the count of variables and size of independent support used, respectively. The

∗The full version of Table 8.1 is available in Appedix as Table A4
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results of experiments with UniGen are presented in the next 3 columns. Column 4

gives the observed probability of success of UniGen when generating 1, 000 random

witnesses. Column 5 gives the average time taken by UniGen to generate one witness

(averaged over a large number of runs), while column 6 gives the average number of

variables per xor-clause used for randomly partitioning RF . The next two columns

give results of our experiments with UniWit. Column 7 lists the average time taken

by UniWit to generate a random witness, and column 8 gives the average number of

variables per xor-clause used to partition RF . A “−” in any column means that the

corresponding experiment failed to generate any witness in 20 hours.

It is clear from Table 8.1 that the average run-time for generating a random wit-

ness by UniWit can be two to three orders of magnitude larger than the corresponding

run-time for UniGen. This is attributable to two reasons. The first stems from fewer

variables in xor-clauses and blocking clauses when small independent supports are

used. Benchmark “tutorial3” exemplifies this case. Here, UniWit failed to gener-

ate any witness because all calls to BoundedSAT in UniWit, with xor-clauses and

blocking clauses containing numbers of variables, timed out. In contrast, the calls

to BoundedSAT in UniGen took much less time, due to short xor-clauses and block-

ing clauses using only variables from the independent support. The other reason for

UniGen’s improved efficiency is that the computationally expensive step of identifying

a a good range of values for m (see Section 8.1 for details) needs to be executed only

once per benchmark. Subsequently, whenever a random witness is needed, UniGen

simply iterates over this narrow range of m. In contrast, generating every witness in

UniWit (without leapfrogging) requires sequentially searching over all values afresh to

find a good choice for m. Referring to Table 8.1, UniWit requires more than 20, 000

seconds on average to find a good value for m and generate a random witness for
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Table 8.1 : Runtime performance comparison of UniGen and UniWit

UniGen UniWit

Benchmark |X| |S|
Succ
Prob

Avg

Run Time (s)

Avg

XOR leng

Avg

Run Time (s)

Avg

XOR len
Succ
Prob

Squaring7 1628 72 1.0 2.44 36 2937.5 813 0.87

squaring8 1101 72 1.0 1.77 36 5212.19 550 1.0

Squaring10 1099 72 1.0 1.83 36 4521.11 550 0.5

s1196a 7 4 708 32 1.0 6.9 16 833.1 353 0.37

s1238a 7 4 704 32 1.0 7.26 16 1570.27 352 0.35

s953a 3 2 515 45 0.99 12.48 23 22414.86 257 *

EnqueueSeqSK 16466 42 1.0 32.39 21 – – –

LoginService2 11511 36 0.98 6.14 18 – – –

LLReverse 63797 25 1.0 33.92 13 3460.58 31888 0.63

Sort 12125 52 0.99 79.44 26 – – –

Karatsuba 19594 41 1.0 85.64 21 – – –

tutorial3 486193 31 0.98 782.85 16 – – –

A “*” entry indicates insufficient data for estimating success probability

benchmark “s953a 3 2”. Unlike in UniGen, there is no way to amortize this large

time over multiple runs in UniWit, while preserving the guarantee of near-uniformity.

Table 8.1 also shows that the observed success probability of UniGen is almost

always 1, much higher than what Theorem 30 guarantees and better than those from

UniWit. It is clear from our experiments that UniGen can scale to problems involving

almost 500K variables, while preserving guarantees of almost uniformity. This goes

much beyond the reach of any other random-witness generator that gives strong

guarantees on the distribution of witnesses.
Theorem 30 guarantees that the probability of generation of every witness lies

within a specified tolerance of the uniform probability. In practice, however, the

distribution of witnesses generated by UniGen is much more closer to a uniform dis-

tribution. To illustrate this, we implemented a uniform sampler, henceforth called

US, and compared the distributions of witnesses generated by UniGen and by US for
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some representative benchmarks. Given a CNF formula F , US first determines |RF |

using an exact model counter (such as sharpSAT). To mimic generating a random

witness, US simply generates a random number i in {1 . . . |RF |}. To ensure fair com-

parison, we used the same source of randomness in both UniGen and US. For every

problem instance on which the comparison was done, we generated a large number

N (= 4 × 106) of sample witnesses using each of US and UniGen. In each case, the

number of times various witnesses were generated was recorded, yielding a distribu-

tion of the counts. Figure 8.1 shows the distributions of counts generated by UniGen

and by US for one of our benchmarks (case110) with 16, 384 witnesses. The horizon-

tal axis represents counts and the vertical axis represents the number of witnesses

appearing a specified number of times. Thus, the point (242, 450) represents the fact

that each of 450 distinct witnesses were generated 242 times in 4× 106 runs. Observe

that the distributions resulting from UniGen and US can hardly be distinguished in

practice. This holds not only for this benchmark, but for all other benchmarks we

experimented with. Overall, our experiments confirm that UniGen is two to three

orders of magnitude more efficient than state-of-the-art random witness generators,

has probability of success almost 1, and preserves strong guarantees about the uni-

formity of generated witnesses. Furthermore, the distribution of generated witnesses

can hardly be distinguished from that of a uniform sampler in practice.

8.6 Chapter Summary

Marrying scalability with strong guarantees of uniformity has been the holy grail of

sampling algorithms. Despite long history of theoretical as well as practical interest,

prior work in this area either provided strong theoretical guarantees at the cost of

scalability, or remedy the scalabilty problem at the cost of guarantees of uniformity.
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Figure 8.1 : Uniformity comparison between Uniform Sampler (US) and UniGen on
benchmark ‘case110’

In this chapter, we took a step towards design of scalable algorithms with strong

theoretical guarantees. Building on the ideas introduced in the previous part, we

designed a new hashing-based algorithm called UniGen, which is the first algorithm

to provide guarantees of almost-uniformity, while scaling to the problems involving

hundreds of thousands of variables. As a mark of departure from previous hashing-

based approach, UniGen first invokes an approximate model counting routine to get an

estimate of the number of cells that it should divide the space of solutions into. Then,

UniGen employs SAT solver to enumerate all the solutions for a randomly chosen cell

that passes the check for “smallness”. In order to design efficient SAT queries, we

introduced the notion of sampling set of the variables which allows construction of

sparser hash functions. Consequently, UniGen is able to scale to problems involving

hundreds of thousands of variables where the sampling set is small.

While UniGen significantly outperforms prior state of the art, it should be viewed
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as the first step towards design of scalable sampling techniques with rigorous formal

guarantees. The next two chapters will discuss several ways to push the scalability

barrier further. In particular, we employ parallelism and sacrifice of independence to

obtain performance gain in the following Chapter.
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Chapter 9

Parallelization

Since the end of Dennard scaling, there has been a strong revival of interest in par-

allelizing a wide variety of algorithms to achieve improved performance [75]. While

simulation-based verification typically involves running in parallel many simulations

with different input stimuli, the generation of these stimuli is often done sequen-

tially. This is because existing approaches to stimulus generation are not efficiently

parallelizable without degrading guarantees of uniformity. One of the main goals in

parallel-algorithm design is to achieve a speedup nearly linear in the number of pro-

cessors, which requires the avoidance of dependencies among different parts of the

algorithm [65]. Most of the sampling algorithms used for uniform witness generation

fail to meet this criterion, and are hence not easily parallelizable. For example, ap-

proaches based on random seeding of a SAT solver maintain information about which

regions of the solution space have already been explored, since the random seed often

is not enough to steer the solver towards new regions of the solution space [109].

Different threads generating solutions must therefore communicate with each other,

impeding efficient parallelization. In MCMC-based approaches, to generate indepen-

dent samples in parallel each thread has to take a walk until a stationary distribution

is reached. This often takes exponential time in the case of hard combinatorial spaces

with complex internal structure [69]. Heuristics to speed up MCMC-based techniques

destroy guarantees of uniformity even in the sequential case [109]. Methods based on

random walks on WBDDs are amenable to parallelization, but they are known not to
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scale beyond a few hundred variables. The lack of techniques for sampling solutions

of constraints in parallel while preserving guarantees of effectiveness in finding bugs

is therefore a major impediment to high-performance CRV.

The algorithm UniGen2 presented in this Chapter takes a step forward in address-

ing the above problem. It has an initial preprocessing step that is sequential but

low-overhead, followed by inherently parallelizable sampling steps. It generates sam-

ples (stimuli) that are provably almost as effective as those generated by a uniform

sampler for purposes of detecting a bug. Furthermore, our experiments demonstrate

that a parallel implementation of UniGen2 achieves a near-linear speedup in the num-

ber of processor cores. Given that current practitioners are forced to trade guarantees

of effectiveness in bug hunting for scalability, the above properties of UniGen2 are sig-

nificant. Specifically, they enable a new paradigm of CRV wherein parallel stimulus

generation and simulation can provide the required runtime performance while also

providing theoretical guarantees.

9.1 Algorithm

Our algorithm, named UniGen2, bears some structural similarities with the UniGen

algorithm proposed earlier in [39]. Nevertheless, there are key differences that allow

UniGen2 to outperform UniGen significantly. Like UniGen, UniGen2 takes a CNF for-

mula F , a sampling set S and a tolerance ε (that is chosen to be at least 6.84 for

technical reasons). Note that the formula F and set S uniquely define the solution

set RF↓S.

Similarly to UniGen, UniGen2 works by partitioning RF↓S into “cells” using random

hash functions, then randomly selecting a cell by adding appropriate constraints to
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F . If the chosen cell has the right size (where the acceptable size range depends

on the desired tolerance ε), we can enumerate all the solutions in it and return a

uniform random sample from among them. Unlike UniGen, however, UniGen2 samples

multiple times from the same cell. This decreases the generation time per sample by

a large factor (about 10× in our experiments), while preserving strong guarantees of

effectiveness of the samples in finding bugs.

Algorithm 11 EstimateParameters(F, S, ε)

/* Returns (hashBits, loThresh, thresh) as required by GenerateSamples */

1: Find κ ∈ (0, 1) such that ε = (1 + κ)(7.44 + 0.392
(1−κ)2 )− 1

2: pivot←
⌈
4.03

(
1 + 1

κ

)2
⌉

3: thresh←
⌈
1 +
√

2(1 + κ)pivot
⌉
; loThresh←

⌊
1√

2(1+κ)
pivot

⌋
4: i← 0

5: while i < n do

6: i← i+ 1

7: Choose h at random from Hxor(|S|, i)

8: Choose α at random from {0, 1}i

9: Y ← BoundedSAT(F ∧ (h(S) = α), 61, S)

10: if 1 ≤ |Y | ≤ 60 then

11: return (round (log |Y |+ i+ log 1.8− log pivot) , loThresh, thresh)

12: return ⊥

UniGen2 is an algorithmic framework that operates in two stages: the first stage,

EstimateParameters (Algorithm 11), performs low-overhead one-time preprocessing

for a given F , S, and ε to compute numerical parameters ‘hashBits’, ‘loThresh’, and

‘thresh’. The quantity hashBits controls how many cells RF↓S will be partitioned
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Algorithm 12 GenerateSamples(F, S, hashBits, loThresh, thresh)

1: Pick an order V of the values {hashBits− 2, hashBits− 1, hashBits}

2: Choose h at random from Hxor(|S|, hashBits)

3: Choose α at random from {0, 1}hashBits

4: for i ∈ V do

5: Y ← BoundedSAT(F ∧ (hi(S) = αi), thresh, S)

6: if (loThresh ≤ |Y | < thresh) then

7: return loThresh distinct random elements of Y

8: return ⊥

into, while loThresh and thresh delineate the range of acceptable sizes for a cell. In

the second stage, GenerateSamples (Algorithm 12) uses these parameters to generate

loThresh samples. If more samples are required, GenerateSamples is simply called again

with the same parameters. Theorem 33 below shows that invoking GenerateSamples

multiple times does not cause the loss of any theoretical guarantees. We now explain

the operation of the two subroutines in detail.

Lines 1–3 of EstimateParameters compute numerical parameters based on the tol-

erance ε which are used by GenerateSamples. The variable ‘pivot’ can be thought

of as the ideal cell size we are aiming for, while as mentioned above ‘loThresh’ and

‘thresh’ define the allowed size range around this ideal. For simplicity of exposition,

we assume that |RF↓S| > max(60, thresh). If not, there are very few solutions and we

can do uniform sampling by enumerating all of them as in UniGen [39].

Lines 4–11 of EstimateParameters compute ‘hashBits’, an estimate of the number

of hash functions required so that the corresponding partition of RF↓S (into 2hashBits

cells) has cells of the desired size. This is done along the same lines as in UniGen,
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which used an approximate model counter such as ApproxMC [38]. The procedure

invokes a SAT solver through the function BoundedSAT(φ,m, S). This returns a set,

consisting of models of the formula φ which all differ on the set of variables S, that

has size m. If there is no such set of size m, the function returns a maximal set. If the

estimation procedure fails, EstimateParameters returns ⊥ on line 12. In practice, it

would be called repeatedly until it succeeds. Theorem 41 below shows that on average

few repetitions are needed for EstimateParameters to succeed, and this is borne out in

practice.

The second stage of UniGen2, GenerateSamples, begins on lines 1–4 by picking

a hash count i close to hashBits, then selecting a random hash function from the

family Hxor(|S|, i) on line 2. On line 3 we pick a random output value α, so that the

constraint h(S) = α picks out a random cell. Then, on line 5 we invoke BoundedSAT

on F with this additional constraint, obtaining at most hiThresh elements Y of the

cell. If |Y | < thresh then we have enumerated every element of RF↓S in the cell,

and if |Y | ≥ loThresh the cell is large enough for us to get a good sample. So if

loThresh ≤ |Y | < thresh, we randomly select loThresh elements of Y and return them

on line 7.

If the number of elements of RF↓S in the chosen cell is too large or too small, we

choose a new hash count on line 4. Note that line 1 can pick an arbitrary order for the

three hash counts to be tried, since our analysis of UniGen2 does not depend on the

order. This allows us to use an optimization where if we run GenerateSamples multiple

times, we we choose an order which starts with the value of i that was successful in

the previous invocation of GenerateSamples. Since hashBits is only an estimate of

the correct value for i, in many benchmarks on which we experimented, UniGen2

initially failed to generate a cell of the right size with i = hashBits − 2, but then
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succeeded with i = hashBits− 1. In such scenarios, beginning with i = hashBits− 1

in subsequent iterations saves considerable time. This heuristic is similar in spirit

to “leapfrogging” in ApproxMC [38] and UniWit [37], but does not compromise the

theoretical guarantees of UniGen2 in any way.

If all three hash values tried on line 4 fail to generate a correctly-sized cell,

GenerateSamples fails and returns ⊥ on line 8. We show below that this happens

with probability at most 0.38. Otherwise, UniGen2 completes by returning loThresh

samples.

9.2 Parallelization

As described above, UniGen2 operates in two stages: EstimateParameters is initially

called to do one-time preprocessing, and then GenerateSamples is called to do the

actual sampling. To generate N samples, we can invoke EstimateParameters once,

and then GenerateSamples N/loThresh times, since each of the latter calls generates

loThresh samples (unless it fails). Furthermore, each invocation of GenerateSamples is

completely independent of the others. Thus if we have k processor cores, we can just

perform N/(k · loThresh) invocations of GenerateSamples on each. There is no need for

any inter-thread communication: the “leapfrogging” heuristic for choosing the order

on line 1 can simply be done on a per-thread basis. This gives us a linear speedup

in the number of cores k, since the per-thread work (excluding the initial preprocess-

ing) is proportional to 1/k. Furthermore, Theorem 33 below shows that assuming

each thread has its own source of randomness, performing multiple invocations of

GenerateSamples in parallel does not alter its guarantees of uniformity. This means

that UniGen2 can scale to an arbitrary number of processor cores as more samples are
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desired, while not sacrificing any theoretical guarantees.

9.3 Analysis of UniGen2

Theorem 32. EstimateParameters and GenerateSamples return ⊥ with probabilities

at most 0.009 and 0.38 respectively.

Proof. By Lemmas 44 and 42 below respectively.

Theorem 33. For given F , S, and ε, let L be the set of samples generated using

UniGen2 with a single call to GenerateSamples. Then for each y ∈ RF↓S, we have

loThresh

(1 + ε)|RF↓S|
≤ Pr[y ∈ L] ≤ 1.02 · (1 + ε)

loThresh

|RF↓S|
.

Proof. By Lemma 41 below.

Theorem 34. For given F , S, and ε, and for hashBits, loThresh, and thresh as

estimated by EstimateParameters, let GenerateSamples be called N times with these

parameters in an arbitrary parallel or sequential interleaving. Let Ey,i denote the

event that y ∈ RF↓S is generated in the ith call to GenerateSamples. Then the events

Ey,i are (l, u)-a.a.d. with l = loThresh
(1+ε)|RF↓S |

and u = 1.02·(1+ε)loThresh
|RF↓S |

.

Proof. Different invocations of GenerateSamples use independent randomness for the

choices on lines 2, 3, and 7. Therefore the only part of GenerateSamples which can be

affected by earlier invocations is the ordering heuristic used on line 1. But Lemma

41 shows that the probability that GenerateSamples returns a particular witness is

between l and u regardless of the order used. Therefore l ≤ Pr[Ey,i] ≤ u even if

conditioned on the results of previous invocations, and so the events Ey,i are (l, u)-

a.a.d..
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Theorem 35. There exists a fixed constant λ = 40 such that for every F , S, and ε,

the expected number of SAT queries made by UniGen2 per generated sample is at most

λ.

Proof. A successful invocation of GenerateSamples produces loThresh samples and

makes at most 3·hiThresh SAT queries (at most hiThresh for each call to BoundedSAT).

Since by Theorem 32 GenerateSamples succeeds with probability at least 0.62, the ex-

pected number of SAT queries per generated sample is at most (3 · hiThresh)/(0.62 ·

loThresh). Optimization shows that hiThresh/loThresh < 8.2, so the expected num-

ber of queries per sample is less than 40.

Finally, we bound the probability of generating a given witness with multiple calls

to GenerateSamples.

Theorem 36. Given F , S, and ε as above, let UniGen2 generate N samples in a list

L (by running GenerateSamples N/loThresh times). Then for each y ∈ RF↓S,

0.93 ·N
(1 + ε)|RF↓S|

≤ Pr[y ∈ L] ≤ 1.02(1 + ε)
N

|RF↓S|
.

Proof. By Theorem 33, ifR is the set returned by a single invocation of GenerateSamples

we have

loThresh

(1 + ε)|RF↓S|
≤ Pr[y ∈ R] ≤ 1.02 · loThresh(1 + ε)

|RF↓S|

regardless of the results of any prior invocations. Therefore

Pr[y ∈ L] = 1− Pr[y 6∈ L] ≥ 1−
(

1− loThresh

(1 + ε)|RF↓S|

)N/loThresh

.

Now noting that

loThresh

(1 + ε)|RF↓S|
· N

loThresh
=

N

(1 + ε)|RF↓S|
≤ 1

7.84
,
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applying the binomial theorem and observing that the sum of the cubic and higher

order terms is positive, we have

Pr[y ∈ L] ≥ N

(1 + ε)|RF↓S|

(
1− 1

2! · 7.84

)
=

0.93 ·N
(1 + ε)|RF↓S|

.

For the upper bound, a similar argument shows that

Pr[y ∈ L] ≤ 1−
(

1− 1.02(1 + ε)loThresh

|RF↓S|

)N/loThresh

≤ 1.02(1 + ε)N

|RF↓S|
.

9.3.1 Analysis of GenerateSamples

Throughout this section, we use the notations RF |S and RF |S,h,α introduced in Chap-

ter 2. We denote by Uy the event that witness y ∈ RF↓S is output by GenerateSamples

when called with the parameters calculated by EstimateParameters on inputs F , S,

and ε. We are interested in providing lower and upper bounds for Pr[Uy]. The proofs

presented here follow the structure of the proofs in [39].

Let us denote round(log(|RF↓S| − 1)− log pivot) by m, where ‘pivot’ is the quan-

tity computed on line 2 of EstimateParameters. The expression used for computing

pivot ensures that pivot ≥ 17. Also, as mentioned in Section 9.1, for simplicity we

assume that |RF↓S| > max(60, hiThresh) (in practice this can be checked by simply

enumerating up to max(60, hiThresh) witnesses). Finally, note that the expression

for computing κ on line 1 of EstimateParameters requires ε ≥ 6.84 in order to ensure

that κ ∈ [0, 1) can always be found.

The next lemma provides a lower bound on the probability of generation of a wit-

ness. Let wi,y,α denote the probability Pr
[

pivot√
2(1+κ)

≤ |RF |S,h,α| ≤ 1+
√

2(1 + κ)pivot and h(y) = α : h
R←− Hxor(n, i)

]
.

The proof of the lemma also provides a lower bound on wm,y,α. Let pi,y denote

the probability that GenerateSamples returns on line 7 with a particular value of i
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and with y in RF |S,h,α, where α ∈ {0, 1}i is the value chosen on line 3. Also let

fm = Pr[q − 2 ≤ m ≤ q], where q is shorthand for the quantity hashBits computed

by EstimateParameters.

Lemma 37. Regardless of the order chosen on line 1 of GenerateSamples, we have

1
4
· loThresh

hiThresh
· fm · pm,y ≤ Pr[Uy] ≤ loThresh

|Y |
∑q

i=q−2 pi,y for each y ∈ RF↓S.

Proof. Pr[Uy] ≥ loThresh
hiThresh

· 1
2q−m

· pm,y · fm ≥ loThresh
hiThresh

· 1
4
· pm,y · fm. The upper bound

follows from the definition of Uy.

All subsequent results in this section will bound Pr[Uy] using Lemma 37, so they

also hold regardless of the order of hash counts. For notational simplicity we do not

always mention this fact in the lemma statements.

Lemma 38. For every y ∈ RF↓S, Pr[Uy] ≥ 0.7(1−e−3/2)
4(1.05+κ)(|RF↓S |−1)

Proof. From Lemma 37, we have Pr[Uy] ≥ loThresh
hiThresh

· fm · 1
4
· pm,y. Therefore, Pr[Uy] ≥

loThresh
1+
√

2(1+κ)pivot
· pm,y · fm. By Lemma 47, fm > 0.7. The proof is now completed by

showing pm,y ≥ 1//2m(1− 1
(κ/(1+κ))2(|RF |−1)

). This gives Pr[Uy] ≥ 0.7(1−e−3/2)loThresh

4(1+
√

2(1+κ)pivot)2m
≥

0.7(1−e−3/2)loThresh
4(1.05+κ)(|RF↓S |−1)

. The last inequality uses the observation that 1/(
√

2 ·pivot) ≤ 0.05.

To calculate pm,y, we first note that since y ∈ RF↓S, the requirement “y ∈

RF |S,h,α” reduces to “y ∈ h−1(α)”. For α ∈ {0, 1}n, we define wm,y,α as Pr
[

pivot√
2(1+κ)

≤ |RF |S,h,α| ≤ 1+
√

2(1 + κ) pivot and h(y) = α : h
R←− Hxor(n,m)

]
. Therefore, pm,y

= Σα∈{0,1}m (wm,y,α · 2−m). The proof is now completed by showing that wm,y,α ≥

(1− e−3/2)/2m for every α ∈ {0, 1}m and y ∈ {0, 1}n.

Towards this end, let us first fix a random y. Now we define an indicator variable

γz,α for every z ∈ RF \ {y} such that γz,α = 1 if h(z) = α, and γz,α = 0 otherwise.

Let us fix α and choose h uniformly at random from Hxor(n,m). The random choice
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of h induces a probability distribution on γz,α such that E[γz,α] = Pr[γz,α = 1] = 2−m.

Since we have fixed y, and since hash functions chosen from Hxor(n,m, 3) are 3-

wise independent, it follows that for every distinct za, zb ∈ RF \ {y}, the random

variables γza,α, γzb,α are 2-wise independent. Let Γα =
∑

z∈RF \{y} γz,α and µα = E[Γα].

Clearly, Γα = |RF |S,h,α| − 1 and µα =
∑

z∈RF \{y} E[γz,α] = |RF |−1
2m

. Also, Pr[ pivot√
2(1+κ)

≤

|RF |S,h,α| ≤ 1 +
√

2(1 + κ)pivot] = Pr[ pivot√
2(1+κ)

− 1 ≤ |RF |S,h,α| − 1 ≤
√

2(1 + κ)pivot]

≥ Pr[ pivot√
2(1+κ)

≤ |RF |S,h,α|−1 ≤
√

2(1+κ)pivot]. Using the expression for pivot, we get

2 ≤ be−1/2(1 + 1/ε)2 · |RF |−1
2m
c. Therefore using Chebyshev Inequality and substituting

pivot = (|RF | − 1)/2m, we get Pr[ pivot√
2(1+κ)

≤ |RF |S,h,α| − 1 ≤
√

2(1 + κ)pivot] ≥

1 − 1
(κ/(1+κ))2(|RF |−1)/2m

. Therefore, Pr[ pivot√
2(1+κ)

≤ |RF |S,h,α| ≤ 1 +
√

2(1 + κ)pivot] ≥

1 − 1
(κ/(1+κ))2(|RF |−1)/2m

Since h is chosen at random from Hxor(n,m), we also have

Pr[h(y) = α] = 1/2m. It follows that wm,y,α ≥ (1− 1
(κ/(1+κ))2(|RF |−1)

)/2m

The next lemma provides an upper bound on wi,y,α and pi,y.

Lemma 39. For i < m−1, both wi,y,α and pi,y are bounded above by 1
|RF↓S |−1

1

(1− 2(1+κ)

2m−i )
2 .

Proof. We will use the terminology introduced in the proof of Lemma 38. Clearly,

µα =
|RF↓S |−1

2i
. Since each γz,α is a 0-1 variable, V [γz,α] ≤ E [γz,α]. Therefore, σ2

z,α

≤
∑

z 6=y,z∈RF↓S E [γz,α] ≤
∑

z∈RF↓S E [γz,α] = E [Γα] = 2−i(|RF↓S| − 1). So Pr[ pivot√
2(1+κ)

≤

|RF |S,h,α| ≤ 1+(1+κ)
√

2pivot] ≤ Pr[|RF |S,h,α|−1 ≤ (1+κ)
√

2pivot] ≤ Pr[|RF |S,h,α|−

1 ≤ 2(1 + κ)
|RF↓S |−1

2m
]. From Chebyshev’s inequality, we know that Pr [|Γα − µz,α| ≥

λσz,α] ≤ 1/λ2 for every κ > 0. By choosing λ = (1− 2(1+κ)
2m−i

)µz,α
σz,α

(Note that λ > 0 for

i < m−1), we have Pr[|RF,h,α|−1 ≤ (1+κ)2
|RF↓S |−1

2m
] ≤ Pr

[
|(|RF,h,α| − 1)− |RF↓S |−1

2i
|

≥ (1− 2(1+κ)
2m−i

)
|RF↓S |−1

2i

]
≤ 1

(1− 2(1+κ)

2m−i )
2 · 2i

|RF↓S |−1
. Since h is chosen at random from

Hxor(n,m), we also have Pr[h(y) = α] = 1/2i. It follows that wi,y,α ≤ 1
|RF↓S |−1

1

(1− 2(1+κ)

2m−i )
2 .

The bound for pi,y is easily obtained by noting that pi,y = Σα∈{0,1}i (wi,y,α · 2−i).
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This allows us to give an upper bound for Pr[Uy].

Lemma 40. For every y ∈ RF↓S, Pr[Uy] ≤ 1+κ
|RF↓S |−1

(7.55 + 0.29
(1−κ)2 ).

Proof. We will use the terminology introduced in the proof of Lemma 38. The

proof below uses the inequality 2m × pivot ≤ |RF↓S−|√
2

at several points. Also, From

Lemma 37, we have Pr[Uy] ≤
∑q

i=q−2
loThresh
|Y | pi,y ≤

√
2(1+κ)loThresh

pivot

∑q
i=q−2 pi,y. We can

sub-divide the calculation of Pr[Uy] into three cases based on the range of the values

m can take.

Case 1 : q − 2 ≤ m ≤ q.

Now there are three values that m can take.

1. m = q − 2. We know that pi,y ≤ Pr[h(y) = α] = 1
2i

. Therefore, Pr[Uy|m =

q − 2] ≤
√

2(1+κ)loThresh
pivot

· 1
2q−2

7
4
. Substituting the value of pivot and m, we get

Pr[Uy|m = q − 2] ≤ 7(1+κ)loThresh
2(|RF↓S |−1)

.

2. m = q − 1. For i ∈ [q − 2, q] pi,y ≤ Pr[h(y) = α] = 1
2i

. Pr[Uy|m = q − 1] ≤
√

2(1+κ)loThresh
pivot

· 1
2q−2

7
2
. Substituting the value of pivot and m, we get Pr[Uy|m =

q − 2] ≤ 7(1+κ)loThresh
|RF↓S |−1

.

3. m = q. For i ∈ [q − 1, q] pi,y ≤ Pr[h(y) = α] = 1
2i

.. Using Lemma 39, we

get pq−2,y ≤ 1
|RF↓S |−1

(
1

(1− 1+κ
2 )

2

)
. Therefore, Pr[Uy|m = q] ≤

√
2(1+κ)loThresh

pivot(
1

|RF↓S |−1

(
1

(1− 1+κ
2 )

2 + 3
2q

))
. Noting that pivot ≥ 17 and κ ≤ 1, Pr[Uy|m =

q] ≤ (1+κ)loThresh
|RF↓S |−1

(6 + 0.333
(1−κ)2 ).

Pr[Uy|q − 2 ≤ m ≤ q] ≤ maxi(Pr[Uy|m = i]). Therefore, Pr[Uy|q − 2 ≤ m ≤ q] ≤

Pr[Uy|m = q] ≤ (1+κ)loThresh
|RF↓S |−1

(6.667 + 0.333
(1−κ)2 ).

Case 2 : m < q − 2. Pr[Uy|m < q − 3] ≤
√

2(1+κ)
pivot

· 1
2q−3

7
4
. Substituting the value of
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pivot and maximizing m = q + 3, we get Pr[Uy|m < q − 2] ≤ 7(1+κ)loThresh
4(|RF↓S |−1)

.

Case 3 : m > q.Pr[Uy|m > q] ≤ Pr[Uy|m = q + 1] =
√

2(1+κ)loThresh
pivot

( 2
2m

+

1
|RF↓S |−1

(
∑q−1

i=q−2
1

1− 2(1+κ)

2m−i
)). Noting that pivot ≥ 17 and expanding the summation,

Pr[Uy|m > q] ≤ (1+κ)loThresh
|RF↓S |−1

(
4 +

√
2

17

(
1

(1− 2(1+κ)

23 )2
+ 1

(1− 2(1+κ)

22 )2

))
. Using κ < 1 for

the first term, Pr[Uy|m > q] ≤ (1+κ)loThresh
|RF↓S |−1

(4.333 + 0.333
(1−κ)2 )

Summing up all the above cases, Pr[Uy] = Pr[Uy|m < q − 2] × Pr[m < q − 2] +

Pr[Uy|q − 2 ≤ m ≤ q] × Pr[q − 2 ≤ m ≤ q] + Pr[Uy|m > q] × Pr[m > q]. From

Lemma 46, we have Pr[m < q − 1] + Pr[m > q] ≤ 0.177 and Pr[q − 3 ≤ m ≤ q] ≤ 1.

Also, Pr[Uy|m < q − 2] ≤ Pr[Uy|m > q]. Therefore, Pr[Uy|m < q − 2] × Pr[m <

q − 2] + Pr[Uy|m > q] × Pr[m > q] ≤ 0.177 × Pr[Uy|m > q] Therefore, Pr[Uy] ≤
(1+κ)loThresh
|RF↓S |−1

(7.44 + 0.392
(1−κ)2 ).

Combining Lemmas 38 and 40, the following lemma is obtained.

Lemma 41. Regardless of the order chosen on line 1 of GenerateSamples, for every

y ∈ RF↓S and ε > 6.84 we have

loThresh

(1 + ε)|RF↓S|
≤ Pr[Uy] ≤ 1.02(1 + ε)

loThresh

|RF↓S|
.

Proof. The proof is completed by using Lemmas 38 and 40 and substituting (1+ε) =

(1 + κ)(7.44 + 0.392
(1−κ)2 ). To arrive at the results, we use the inequality 4(1.05+κ)

0.7(1−e−3/2)
≤

(1 + κ)(7.44 + 0.392
(1−κ)2 ). Furthermore, we use loThresh

(1+ε)|RF↓S |
< loThresh

(1+ε)(|RF↓S |−1)
. Also, since

we assume |RF↓S| − 1 ≥ 60, we have (1+ε)loThresh
|RF↓S |−1

< 1.02(1+ε)loThresh
|RF↓S |

.

Lemma 42. GenerateSamples succeeds (i.e. does not return ⊥) with probability at

least 0.62.
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Proof. As mentioned above, we are assuming |RF↓S| > 1 +
√

2(1 + κ)pivot. Let Psucc

denote the probability that GenerateSamples succeeds. Let pi with q − 2 ≤ i ≤ q

denote the conditional probability that the condition on line 6 of GenerateSamples

evaluates to true with pivot√
2(1+κ)

≤ |RF |S,h,α| ≤ 1 +
√

2(1 + κ)pivot, given that |RF↓S| >

1 +
√

2(1 + κ)pivot. Let fm = Pr[q − 2 ≤ m ≤ q]. Therefore as shown in Lemma 37,

Psucc ≥ pmfm ≥ 0.7pm. The theorem is now proved by using Chebyshev’s Inequality

to show that pm ≥ 1− e−3/2 ≥ 0.77.

For every y ∈ {0, 1}n and for every α ∈ {0, 1}m, define an indicator variable νy,α

as follows: νy,α = 1 if h(y) = α, and νy,α = 0 otherwise. Let us fix α and y and

choose h uniformly at random from Hxor(n,m). The random choice of h induces a

probability distribution on νy,α, such that Pr[νy,α = 1] = Pr[h(y) = α] = 2−m and

E[νy,α] = Pr[νy,α = 1] = 2−m. In addition 3-wise independence of hash functions

chosen from Hxor(n,m) implies that for every distinct ya, yb, yc ∈ RF↓S, the random

variables νya,α, νyb,α and νyc,α are 3-wise independent.

Let Γα =
∑

y∈RF↓S νy,α and µα = E [Γα]. Clearly, Γα = |RF,h,α| and µα =∑
y∈RF↓S E [νy,α] = 2−m|RF↓S|. Since |RF↓S| > pivot and i − l > 0, using the ex-

pression for pivot we get 3 ≤
⌊
e−1/2(1 + 1

κ
)−2 · |RF↓S |

2m

⌋
. Therefore, by Chebyshev’s

Inequality, Pr
[
|RF↓S |

2m
.
(
1− κ

1+κ

)
≤ |RF |S,h,α| ≤ (1 + κ)

|RF↓S |
2m

]
> 1 − e−3/2. Simplify-

ing and noting that κ
1+κ

< κ for all κ > 0, we obtain Pr
[
(1 + κ)−1 · |RF↓S |

2m
≤ |RF |S,h,α|

≤ (1 + κ) · |RF↓S |
2m

]
> 1− e−3/2. Also, pivot√

2(1+κ)
≤ 1

1+κ

|RF↓S |−1

2m
≤ |RF↓S |

(1+κ)2m
and 1 +

√
2(1 +

κ)pivot ≥ 1 +
(1+κ)(|RF↓S |−1)

2m
≥ (1+κ)|RF↓S |

2m
. Therefore, pm = Pr[ pivot√

2(1+κ)
≤ |RF |S,h,α| ≤

1 +
√

2(1 + κ)pivot] ≥ Pr
[
(1 + κ)−1 · |RF↓S |

2m
≤ |RF |S,h,α| ≤ (1 + κ) · |RF↓S |

2m

]
≥ 1 −

e−3/2.
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9.3.2 Analysis of EstimateParameters

In this section we define ` = log(60)− 1 and µ = E [[] |RF |S,h,α|] = 2−i|RF↓S|. Putting

HC(x) = round(log x+log 1.8− log pivot), we show that the value hashBits computed

by EstimateParameters is a good estimate of HC(|RF↓S|) with high probability.

The following property of pairwise independent hash functions is the main tool in

our analysis.

Lemma 43. With h and α chosen as in EstimateParameters, for each γ > 0 we have

Pr[(1− γ)µ ≤ |RF |S,h,α| ≤ (1 + γ)µ] ≥ 1− 1

γ2µ
.

Proof. By pairwise independence, the variance of |RF |S,h,α| is at most µ. The result

then follows from Chebyshev’s inequality.

Lemma 44. Given |RF↓S| > 60, the probability that EstimateParameters returns non-

⊥ with i+ ` ≤ log2 |RF↓S|, is at least 0.991.

Proof. Let us denote log2 |RF↓S| − ` = log2 |RF↓S| − (blog2(60)c − 1) by m. Since

|RF↓S| > 60 as noted above and |RF↓S| ≤ 2n, we have ` < m+` ≤ n. Let pi (` ≤ i ≤ n)

denote the conditional probability that EstimateParameters terminates in iteration i

of its loop with 1 ≤ |RF |S,h,α| ≤ 60, given |RF↓S| > 60. Since the choice of h and

α in each iteration of the loop are independent of those in previous iterations, the

conditional probability that EstimateParameters returns non-⊥ with i ≤ log2 |RF↓S| =

m + l, given |RF↓S| > 60, is p` + (1 − p`)p`+1 + · · · + (1 − p`)(1 − p`+1) · · · (1 −

pm+`−1)pm+`. Let us denote this sum by P . Thus, P = p` +
∑m+`

i=`+1

∏i−1
k=`(1− pk)pi ≥(

p` +
∑m+`−1

i=`+1

∏i−1
k=`(1− pk)pi

)
pm+` +

∏m+`−1
s=` (1 − ps)pm+` = pm+`. The lemma is

now proved by showing that pm+` ≥ 0.991. Applying Lemma 43 with γ = 1 − 1/30

and i = m = log2 |RF↓S| − `, and noting that µ = 2−i|RF↓S| = 2` = 30, we have

Pr[1 ≤ |RF |S,h,α| ≤ 59] ≥ 0.991.
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Lemma 45. Let EstimateParameters return a hashBits value of c, with i being the

final value of its loop counter. Let pi be a shorthand for

1− Pr [HC((1.8)−1 · |RF↓S|) ≤ c ≤ HC(1.8 · |RF↓S|)]. Then pi ≤ 0.169

2
log2 |RF↓S |−l−i

.

Proof. Since c 6= ⊥, by line 11 of the pseudocode we have c = HC(2i·|RF |S,h,α|), where

α, i and h denote (with abuse of notation) the values of the corresponding variables in

the final iteration of the loop. As mentioned above, we are assuming that |RF↓S| > 60.

We have µ = 30

2
log2 |RF↓S |−l−i

. Applying Lemma 43 with γ = 0.8/(1 + 0.8) < 0.8,

we obtain Pr[(1.8)−1 · 2−i|RF↓S| ≤ |RF |S,h,α| ≤ (1.8) · 2−i|RF↓S|] ≥ 1 − 5.0625
µ
≥

1− 0.169

2
log2 |RF↓S |−l−i

.

Now we can establish that EstimateParameters provides a good estimate ofHC(|RF↓S|).

Lemma 46. With hashBits computed by EstimateParameters, we have

Pr
[
HC((1.8)−1 · |RF↓S|) ≤ hashBits ≤ HC((1.8) · |RF↓S|)

]
> 0.823.

Proof. Let k∗ = log2 |RF↓S| − l It follows that Pr [HC((1.8)−1 · |RF↓S|) ≤ hashBits

≤ HC((1.8) · |RF↓S|)] ≥ 1− pk∗ − pk∗−1 − pk∗−2 ≥ 1− 0.169− 0.169
2
− 0.169

4
≥ 0.7

This in turn means that hashBits is a good estimate of the quantity m used in

the analysis of GenerateSamples.

Lemma 47. Let m = round(log(|RF↓S|−1)− log pivot) be defined as in Section 9.3.1.

For the value hashBits computed by EstimateParameters, we have

Pr[hashBits− 2 ≤ m ≤ hashBits] > 0.7.

Proof. Straightforward computation from Lemma 46, noting that |RF↓S| > 60.
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9.4 Evaluation

To evaluate the performance of UniGen2, we built a prototype implementation in

C++ that employs the solver CryptoMiniSAT [1] to handle CNF-SAT augmented

with XORs efficiently ∗. We conducted an extensive set of experiments on diverse

public domain benchmarks, seeking to answer the following questions:

1. How does UniGen2’s runtime performance compare to that of UniGen, a state-

of-the-art almost-uniform SAT sampler?

2. How does the performance of parallel UniGen2 scale with the # of cores?

3. How does the distribution of samples generated by UniGen2 compare with the

ideal distribution?

4. Does parallelization affect the uniformity of the distribution of the samples?

Our experiments showed that UniGen2 outperforms UniGen by a factor of about 20×

in terms of runtime. The distribution generated by UniGen2 is statistically indis-

tinguishable from that generated by an ideal uniform sampler. Finally, the runtime

performance of parallel UniGen2 scales linearly with the number of cores, while its

output distribution continues to remain uniform.

9.4.1 Experimental Setup

We conducted experiments on a heterogeneous set of benchmarks used in earlier re-

lated work [39]. The benchmarks consisted of ISCAS89 circuits augmented with parity

conditions on randomly chosen subsets of outputs and next-state variables, constraints

arising in bounded model checking, bit-blasted versions of SMTLib benchmarks, and

∗The tool (with source code) is available at https://bitbucket.org/kuldeepmeel/unigen

https://bitbucket.org/kuldeepmeel/unigen
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problems arising from automated program synthesis. For each benchmark, the sam-

pling set S was either taken to be the independent support of the formula or was

provided by the corresponding source. Experiments were conducted on a total of

200+ benchmarks. We present results for only a subset of representative benchmarks

here. A detailed list of all the benchmarks is available in the Appendix.

For purposes of comparison, we also ran experiments with UniGen [39], a state-of-

the-art almost-uniform SAT witness generator. We employed the Mersenne Twister to

generate pseudo-random numbers, and each thread was seeded independently using

the C++ class random device. Both tools used an overall timeout of 20 hours, and

a BoundedSAT timeout of 2500 seconds. All experiments used ε = 16, corresponding

to loThresh = 11 and hiThresh = 64. The experiments were conducted on a high-

performance computer cluster, where each node had a 12-core, 2.83 GHz Intel Xeon

processor, with 4GB of main memory per core.

9.4.2 Runtime performance

We compared the runtime performance of UniGen2 with that of UniGen for all our

benchmarks. For each benchmark, we generated between 1000 and 10000 samples

(depending on the size of the benchmark) and computed the average time taken to

generate a sample on a single core. The results of these experiments for a representa-

tive subset of benchmarks are shown in Table 9.1. The columns in this table give the

benchmark name, the number of variables and clauses, the size of the sampling set, the

success probability of UniGen2, and finally the average runtime per sample for both

UniGen2 and UniGen in seconds. The success probability of UniGen2 was computed

as the fraction of calls to GenerateSamples that successfully generated samples.

Table 9.1 clearly shows that UniGen2 significantly outperforms UniGen on all types
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UniGen2 UniGen

Benchmark #vars #clas |S|
Succ.
Prob Runtime(s) Runtime(s)

s1238a 3 2 686 1850 32 1.0 0.3 7.17

s1196a 3 2 690 1805 32 1.0 0.23 4.54

s832a 15 7 693 2017 23 1.0 0.04 0.51

case 1 b12 2 827 2725 45 1.0 0.24 6.77

squaring16 1627 5835 72 1.0 4.16 79.12

squaring7 1628 5837 72 1.0 0.79 21.98

doublyLinkedList 6890 26918 37 1.0 0.04 1.23

LoginService2 11511 41411 36 1.0 0.05 0.55

Sort 12125 49611 52 1.0 4.15 82.8

20 15475 60994 51 1.0 19.08 270.78

enqueue 16466 58515 42 1.0 0.87 14.67

Karatsuba 19594 82417 41 1.0 5.86 80.29

lltraversal 39912 167842 23 1.0 0.18 4.86

llreverse 63797 257657 25 1.0 0.73 7.59

diagStencil new 94607 2838579 78 1.0 3.53 60.18

tutorial3 486193 2598178 31 1.0 58.41 805.33

demo2 new 777009 3649893 45 1.0 3.47 40.33

Table 9.1 : Runtime performance comparison of UniGen2 and UniGen (on a single
core).

of benchmarks, even when run on a single core†. Over the entire set of 200+ bench-

marks, UniGen2’s runtime performance was about 20× better than that of UniGen

on average (using the geometric mean). The observed performance gain can be at-

tributed to two factors. First, UniGen2 generates loThresh (11 in our experiments)

samples from every cell instead of just 1 in the case of UniGen. This provides a

speedup of about 10×. Second, as explained in Section 9.1, UniGen2 uses “leapfrog-

ging” to optimize the order in which the values of i in line 4 of Algorithm 12 are

chosen. In contrast, UniGen uses a fixed order. This provides an additional average

†The full version of Table 9.1 is available in Appendix as Table A5.
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speedup of 2× in our experiments. Note also that the success probability of UniGen2

is consistently very close to 1 across the entire set of benchmarks.

9.4.3 Parallel speedup

To measure the effect of parallelization on runtime performance, we ran the parallel

version of UniGen2 with 1 to 12 processor cores on our benchmarks. In each exper-

iment with C cores, we generated 2500 samples per core, and computed the C-core

resource usage as the ratio of the average individual core runtime to the total number

of samples (i.e. C× 2500). We averaged our computations over 7 identical runs. The

speedup for C cores was then computed as the ratio of 1-core resource usage to C-core

resource usage. Figure 9.1 shows how the speedup varies with the number of cores

for a subset of our benchmarks. The figure illustrates that parallel UniGen2 generally

scales almost linearly with the number of processor cores.

To obtain an estimate of how close UniGen2’s performance is to real-world re-

quirements (roughly 10× slowdown compared to a simple SAT call), we measured the

slowdown of UniGen2 (and UniGen) running on a single core relative to a simple SAT

call on the input formula. The (geometric) mean slowdown for UniGen2 turned out

to be 21 compared to 470 for UniGen. This shows that UniGen2 running in parallel on

2–4 cores comes close to matching the requirements of CRV in industrial practice.

9.4.4 Uniformity comparison

To measure the quality of the distribution generated by UniGen2 and parallel UniGen2

in practice, we implemented an ideal sampler, henceforth denoted as IS. Given a

formula F , the sampler IS first enumerates all witnesses in RF↓S, and then picks

an element of RF↓S uniformly at random. We compared the distribution generated
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Figure 9.1 : Effect of parallelization on the runtime performance of UniGen2.

by IS with that generated by UniGen2 run sequentially, and with that generated by

UniGen2 run in parallel on 12 cores. In the last case, the samples generated by all

the cores were aggregated before comparing the distributions. We had to restrict

the experiments for comparing distributions to a small subset of our benchmarks,

specifically those which had less than 100, 000 solutions. We generated a large number

N (≥ 4×106) of samples for each benchmark using each of IS, sequential UniGen2, and

parallel UniGen2. Since we chose N much larger than |RF↓S|, all witnesses occurred

multiple times in the list of samples. We then computed the frequency of generation

of individual witnesses, and grouped witnesses appearing the same number of times

together. Plotting the distribution of frequencies — that is, plotting points (x, y) to



163

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 180  200  220  240  260  280  300

O
cc

u
rr

e
n
ce

s

Solution Count

Ideal Sampler (IS)
UniGen2

Parallel UniGen2

Figure 9.2 : Uniformity comparison between an ideal sampler (IS), UniGen2, and
parallel UniGen2. Results from benchmark ‘case110’ with N = 4 · 106.

indicate that each of x distinct witnesses were generated y times — gives a convenient

way to visualize the distribution of the samples. Figure 9.2 depicts this for one

representative benchmark (case110, with 16,384 solutions).

It is clear from Figure 9.2 that the distribution generated by UniGen2 is practically

indistinguishable from that of IS. Furthermore, the quality of the distribution is not

affected by parallelization. Similar observations also hold for the other benchmarks

for which we were able to enumerate all solutions. For the example shown in Fig. 9.2,

the Jensen-Shannon distance between the distributions from sequential UniGen2 and

IS is 0.049, while the corresponding figure for parallel UniGen2 and IS is 0.052. These

small Jensen-Shannon distances make the distribution of UniGen2 (whether sequential
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or parallel) indistinguishable from that of IS.

9.5 Chapter Summary

In this Chapter, we introduced an adaptation of UniGen, UniGen2, that addresses key

performance deficiencies of UniGen. Significantly, we showed that UniGen2 achieves a

near-linear speedup with the number of cores, without any degradation of uniformity

either in theory or in practice. This suggests a new high-performance paradigm for

generating (near-)uniformly distributed solutions of a system of constraints. Specif-

ically, it is no longer necessary to gain performance by sacrificing uniformity in a

sequential sampler.

In this part, we have introduced a hashing-based paradigm that provides rigorous

guarantees of almost-uniformity while scaling to large formulas. Furthermore, the

approach is highly parallelizing. Now, let us not lose sight of the forest for the

trees. Remember, the problem of sampling as defined in Chapter 2 included a weight

function and that weight function was not necessarily uniform!. Can the sampling

framework introduced in this part be generalized to handle general weight? We will

find out in the next Chapter.
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Chapter 10

Handling Weighted Distributions for Sampling

In this chapter, we seek to answer whether the hashing-based framework introduced

in the previous two chapters can be extended to handle general sampling problems

where the weight distribution of interest is not necessarily uniform. To this end,

we introduce a novel parameter, tilt, which is the ratio of the maximum weight of a

satisfying assignment to the minimum weight of a satisfying assignment, to categorize

hardness of sampling problem and to provide an affirmative answer to the above

question when tilt is small. Specifically, we show that UniGen can be adapted to work

in the setting of weighted assignments, using only a SAT solver (NP-oracle) and a

black-box weight function w(·) when tilt is small.

Our assumption about tilt being bounded by a small number is reasonable in

several practical situations. For example, when solving probabilistic inference with

evidence by reduction to weighted model counting [42], every satisfying assignment of

the CNF formula corresponds to an assignment of values to variables in the underlying

probabilistic graphical model that is consistent with the evidence. Furthermore, the

weight of a satisfying assignment is the joint probability of the corresponding assign-

ment of variables in the probabilistic graphical model. A large tilt would therefore

mean existence of two assignments that are consistent with the evidence, but one of

which is overwhelmingly more likely than the other. In several real-world problems

(see, e.g. Sec 8.3 of [59]), this is considered unlikely given that numerical conditional

probability values are often obtained from human experts providing qualitative and
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rough quantitative data. The algorithms presented in this section require an upper

bound for ρ as the input. It is worth noting that although better estimation of upper

bounds improve the performance, the algorithms are sound with respect to any up-

per bound estimate. While an algorithm solution to estimation of upper bound for ρ

is beyond the scope of this work, such an estimate can be easily obtained from the

designers of probabilistic models. It is easy for designers to estimate upper bound for

ρ than accurate estimation of wmax as the former does not require precise knowledge

of probabilities of all the models.

The remainder of the Chapter is organized as follows. Section 10.1 presents an

adaptation of UniGen, called WeightGen, that works with small-tilt weight functions.

Results of experimenting with a suite of large benchmarks are presented in Sec-

tion 10.3. Finally, we conclude in Section 10.4.

10.1 Algorithm

We assume access to a subroutine called BoundedWeightSAT that takes a CNF formula

F , a “pivot”, an upper bound r of the tilt and an upper bound wmax of the maximum

weight of a satisfying assignment in the sampling set set S. It returns a set of satisfy-

ing assignments of F such that the total weight of the returned assignments scaled by

1/wmax exceeds pivot. It also updates the minimum weight of a satisfying assignment

seen so far and returns the same. We discussed BoundedWeightSAT in Chapter 5 but

for ease of readability, we repeat the discussion here. BoundedWeightSAT accesses a

subroutine AddBlockClause that takes as inputs a formula F and a projected assign-

ment σ|S, computes a blocking clause for σ|S, and returns the formula F ′ obtained by

conjoining F with the blocking clause thus obtained. Finally, the algorithms assume

access to an NP-oracle, which in particular can decide SAT. Both algorithms also
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accept as input a positive real-valued parameter r which is an upper bound on ρ.

The pseudo-code for WeightGen is presented in Algorithm 14. WeightGen takes

in a CNF formula F , tolerance ε > 6.84, tilt upper bound r, and sampling set

S and returns a random (approximately weighted-uniform) satisfying assignment.

WeightGen can be viewed as adaptation of UniGen to weighted domain.

Algorithm 13 BoundedWeightSAT(F, pivot, r,wmax, S)

1: wmin ← wmax/r; wtotal ← 0;Y = {};

2: repeat

3: y ← SolveSAT(F );

4: if y == UNSAT then

5: break;

6: Y = Y ∪ y;

7: F = AddBlockClause(F, y|S);

8: wtotal ← wtotal +W (y);

9: wmin ← min(wmin,W (y));

10: until wtotal/(wmin · r) > pivot;

11: return (Y,wmin · r);
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Algorithm 14 WeightGen(F, ε, r, S)

/*Assume ε > 6.84 */

1: wmax ← 1; Samples = {};

2: (κ, pivot)← ComputeKappaPivot(ε);

3: hiThresh← 1 +
√

2(1 + κ)pivot;

4: loThresh← 1√
2(1+κ)

pivot;

5: (Y,wmax)← BoundedWeightSAT(F, hiThresh, r,wmax, S);

6: if (W (Y ) /wmax ≤ hiThresh) then

7: Choose y weighted-uniformly at random from Y ;

8: return y;

9: else

10: (C,wmax)← WeightMC(F, 0.8, 0.2);

11: q ← dlogC − log wmax + log 1.8− log pivote;

12: i← q − 4;

13: Choose h at random from Hxor(|S|, q)

14: Choose α at random from {0, 1}q

15: repeat

16: i← i+ 1;

17: (Y,wmax)← BoundedWeightSAT(F ∧ (hi(S) = αi), hiThresh, r,wmax, S);

18: W ← W (Y ) /wmax

19: until (loThresh ≤ W ≤ hiThresh) or (i = q)

20: if (W > hiThresh) or (W < loThresh) then

21: return ⊥

22: else Choose y weighted-uniformly at random from Y ;

23: return y;
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Algorithm 15 ComputeKappaPivot(ε)

1: Find κ ∈ [0, 1) such that ε = (1 + κ)(7.55 + 0.29
(1−κ)2 )− 1

2: pivot← d4.03
(
1 + 1

κ

)2e; return (κ, pivot)

WeightGen first computes κ and pivot and uses them to compute hiThresh and

loThresh, which quantify the size of a “small” cell. The easy case of the weighted

count being less than hiThresh is handled in lines 6–9. Otherwise, WeightMC is

called to estimate the weighted model count, which is used to estimate the range

of candidate values for m. The choice of parameters for WeightMC is motivated by

technical reasons. The loop in 15– 19 terminates when a small cell is found and a

sample is picked weighted-uniformly at random. Otherwise, the algorithm reports a

failure.

Implementation Details

Similar to WeightMC, our implementation of WeightGen, BoundedWeightSAT is imple-

mented using CryptoMiniSAT [1], a SAT solver that handles xor clauses efficiently.

CryptoMiniSAT uses blocking clauses to prevent already generated witnesses from

being generated again. Since we are interested in only the assignments to sampling

set S, blocking clauses can be restricted to only variables in the set S. We used “ran-

dom device” implemented in C++11 as source of pseudo-random numbers to make

random choices in WeightGen.

10.2 Analysis of WeightGen

For convenience of analysis, we assume that log(W (F ↓ S)− 1)− log pivot is an inte-

ger, where pivot is the quantity computed by algorithm ComputeKappaPivot. A more
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careful analysis removes this assumption by scaling the probabilities by constant fac-

tors. Let us denote log(W (F ↓ S) − 1) − log pivot by m. The expression used for

computing pivot in algorithm ComputeKappaPivot ensures that pivot ≥ 17. There-

fore, if an invocation of WeightGen does not return from line 8 of the pseudocode,

then W (F ↓ S) ≥ 18. Note also that the expression for computing κ in algorithm

ComputeKappaPivot requires ε ≥ 1.71 in order to ensure that κ ∈ [0, 1) can always be

found.

In the case where W (F ↓ S) ≤ 1 + (1 + κ)pivot, BoundedWeightSAT returns all

witnesses of F and WeightGen returns a perfect weighted-uniform sample on line 8.

So we restrict our attention in the lemmas below to the other case, where as noted

above we have W (F ↓ S) ≥ 18. The following lemma shows that q, computed in line

11 of the pseudocode, is a good estimator of m.

Lemma 48. Pr[q − 3 ≤ m ≤ q] ≥ 0.8

Proof. Recall that in line 10 of the pseudocode, an approximate weighted model

counter is invoked to obtain an estimate, C, of W (RF ) with tolerance 0.8 and con-

fidence 0.8. By the definition of approximate weighted model counting, we have

Pr[ C
1.8
≤ W (RF ) ≤ (1.8)C] ≥ 0.8. Defining c = C/wmax, we have Pr[log c− log(1.8) ≤

logW (F ↓ S) ≤ log c+ log(1.8)] ≥ 0.8. It follows that Pr[log c− log(1.8)− log pivot−

log( 1
1−1/W(F↓S)

) ≤ log(W (F ↓ S) − 1) − log pivot ≤ log c − log pivot + log(1.8) −

log( 1
1−1/W(F↓S)

)] ≥ 0.8. Substituting q = dlogC − log wmax + log 1.8 − log pivote =

dlog c + log 1.8 − log pivote, and using the bounds wmax ≤ 1, log 1.8 ≤ 0.85, and

log( 1
1−1/W(F↓S)

) ≤ 0.12 (since W (F ↓ S) ≥ 18 at line 10 of the pseudocode, as noted

above), we have Pr[q − 3 ≤ m ≤ q] ≥ 0.8.

The next lemma provides a lower bound on the probability of generation of a wit-
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ness. Let wi,y,α denote the probability Pr
[
pivot
1+κ
≤ W (RF,h,α) ≤ 1 + (1 + κ)pivot ∧ h(y) = α

]
,

with h
R←− Hxor(n, i, 3). The proof of the lemma also provides a lower bound on wm,y,α.

Lemma 49. For every witness y ∈ RF , Pr[y is output] ≥ 0.8(1−e−3/2)W(y)
(1.06+κ)(W(F↓S)−1)

Proof. Let U denote the event that witness y ∈ RF is output by WeightGen on

inputs F , ε, r, and X. Let pi,y denote the probability that we exit the loop at

line 19 with a particular value of i and y ∈ RF,h,α, where α ∈ {0, 1}i is the value

chosen on line 14. Then, Pr[U ] = ∪qi=q−3
W(y)
W(Y )

pi,y, where Y is the set returned by

BoundedWeightSAT on line 17. Let fm = Pr[q−3 ≤ m ≤ q]. From Lemma 48, we know

that fm ≥ 0.8. From line 20, we also know that 1
1+κ

pivot ≤ W (Y ) ≤ 1+(1+κ)pivot.

Therefore, Pr[U ] ≥ W(y)
1+(1+κ)pivot

· pm,y · fm. The proof is now completed by showing

pm,y ≥ 1
2m

(1 − e−3/2), as then we have Pr[U ] ≥ 0.8(1−e−3/2)
(1+(1+κ)pivot)2m

≥ 0.8(1−e−3/2)
(1.06+κ)(W(F↓S)|−1)

.

The last inequality uses the observation that 1/pivot ≤ 0.06.

To calculate pm,y, we first note that since y ∈ RF , the requirement “y ∈ RF,h,α” re-

duces to “y ∈ h−1(α)”. For α ∈ {0, 1}n, we define wm,y,α = Pr
[
pivot
1+κ
≤ W (RF,h,α) ≤ 1 + (1 + κ)

pivot ∧ h(y) = α : h
R←− Hxor(n,m, 3)

]
. Then we have pm,y = Σα∈{0,1}m (wm,y,α · 2−m).

So to prove the desired bound on pm,y it suffices to show that wm,y,α ≥ (1− e−3/2)/2m

for every α ∈ {0, 1}m and y ∈ {0, 1}n.

Towards this end, let us first fix a random y. Now we define an indicator variable

γz,α for every z ∈ RF \{y} such that γz,α =W (z) if h(z) = α, and γz,α = 0 otherwise.

Let us fix α and choose h uniformly at random from Hxor(n,m, 3). The random choice

of h induces a probability distribution on γz,α such that E[γz,α] = W (z)Pr[γz,α =

W (z)] = W (z)Pr[h(z) = α] = W (z) /2m. Since we have fixed y, and since hash

functions chosen from Hxor(n,m, 3) are 3-wise independent, it follows that for every

distinct za, zb ∈ RF \ {y}, the random variables γza,α, γzb,α are 2-wise independent.

Let Γα =
∑

z∈RF \{y} γz,α and µα = E[Γα]. Clearly, Γα = W (RF,h,α) − W (y) and
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µα =
∑

z∈W(F↓S)\{y} E[γz,α] = (W (F ↓ S) −W (y))/2m. Since pivot = (W (F ↓ S) −

1)/2m ≤ (W (F ↓ S)−W (y))/2m, we have Pr[pivot
1+κ
≤ W (RF,h,α) ≤ 1+(1+κ)pivot] ≥

Pr[W(F↓S)−W(y)
(1+κ)2m

≤ W (RF,h,α) ≤ 1 + (1 +κ)W(F↓S)−1
2m

] ≥ Pr[W(F↓S)−W(y)
2m(1+κ)

≤ W (RF,h,α)−

W (y) ≤ (1 + κ) (W(F↓S)−W(y))
2m

]. Since pivot = de3/2(1 + 1/κ)2e and the variables γz,α

are 2-wise independent and in the range [0, 1], we apply Chebyshev’s Inequality to

obtain Pr[pivot
1+κ

≤ W (RF,h,α) ≤ 1 + (1 + κ)pivot] ≥ 1 − e−3/2. Since h is chosen

at random from Hxor(n,m, 3), we also have Pr[h(y) = α] = 1/2m. It follows that

wm,y,α ≥ (1− e−3/2)/2m.

The next lemma provides an upper bound of wi,y,α and pi,y.

Lemma 50. For i < m, both wi,y,α and pi,y are bounded above by 1
W(F↓S)−1

1

(1− 1+κ

2m−i )
2 .

Proof. We will use the terminology introduced in the proof of Lemma 49. Clearly,

µα = W(F↓S)−W(y)
2i

. Since each γz,α takes values in [0, 1], V [γz,α] ≤ E [γz,α]. Therefore,

σ2
z,α ≤

∑
z 6=y,z∈RF E [γz,α] ≤

∑
z∈RF E [γz,α] = E [Γα] ≤ 2−m(W (F ↓ S) −W (y)). So

Pr[pivot
1+κ
≤ W (RF,h,α) ≤ 1+(1+κ)pivot] ≤ Pr[W (RF,h,α)−W (y) ≤ (1+κ)pivot]. From

Chebyshev’s inequality, we know that Pr [|Γα − µz,α| ≥ λσz,α] ≤ 1/λ2 for every λ > 0.

Pr[W (RF,h,α)−W (y) ≤ (1+κ) (W(F↓S)−W(y))
2i

]≤ Pr
[
|(W (RF,h,α)−W (y))− W(F↓S)−1

2i
|

≥ (1− 1+κ
2m−i

)W(F↓S)−W(y)
2i

]
≤ 1

(1− (1+κ)

2m−i )
2 · 2i

W(F↓S)−1
. Since h is chosen at random from

Hxor(n,m, 3), we also have Pr[h(y) = α] = 1/2i. It follows that wi,y,α ≤ 1
W(F↓S)−1

1

(1− 1+κ

2m−i )
2 .

The bound for pi,y is easily obtained by noting that pi,y = Σα∈{0,1}i (wi,y,α · 2−i).

Lemma 51. For every witness y ∈ RF , Pr[y is output] ≤ (1+κ)W(y)
W(F↓S)−1

(2.23 + 0.48
(1−κ)2 )

Proof. We will use the terminology introduced in the proof of Lemma 49. Using

pivot
1+κ
≤ W (Y ), we have Pr[U ] = ∪qi=q−3

W(y)
W(Y )

pi,y ≤ 1+κ
pivot
W (y)

∑q
i=q−3 pi,y. Now we

subdivide the calculation of Pr[U ] into three cases depending on the value of m.
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Case 1 : q − 3 ≤ m ≤ q.

Now there are four values that m can take.

1. m = q − 3. We know that pi,y ≤ Pr[h(y) = α] = 1
2i

, so Pr[U |m = q − 3] ≤
1+κ
pivot
· W(y)

2q−3
15
8

. Substituting the values of pivot and m gives Pr[U |m = q − 3] ≤
15(1+κ)W(y)
8(W(F↓S)−1)

.

2. m = q − 2. For i ∈ [q − 2, q] pi,y ≤ Pr[h(y) = α] = 1
2i

Using Lemma 50, we get

pq−3,y ≤ 1
W(F↓S)−1

1

(1− 1+κ
2 )

2 . Therefore, Pr[U |m = q−2] ≤ 1+κ
pivot
W (y) 1

W(F↓S)−1
4

(1−κ)2 +

1+κ
pivot
W (y) 1

2q−2
7
4
. Noting that pivot = W(F↓S)−1

2m
> 10, we obtain Pr[U |m =

q − 2] ≤ (1+κ)W(y)
W(F↓S)−1

(7
4

+ 0.4
(1−κ)2 )

3. m = q− 1. For i ∈ [q− 1, q], pi,y ≤ Pr[h(y) = α] = 1
2i

. Using Lemma 50, we get

pq−3,y + pq−2,y ≤ 1
W(F↓S)−1

(
1

(1− 1+κ

22 )
2 + 1

(1− 1+κ
2 )

2

)
= 1

W(F↓S)−1

(
16

(3−κ)2 + 4
(1−κ)2

)
.

Therefore, Pr[U |m = q − 1] ≤ 1+κ
pivot
W (y)

(
1

W(F↓S)−1

(
16

(3−κ)2 + 4
(1−κ)2

)
+ 1

2q−1
3
2

)
.

Since pivot = W(F↓S)−1
2m

> 10 and κ ≤ 1, Pr[U |m = q − 1] ≤ (1+κ)W(y)
W(F↓S)−1

(1.9 +

0.4
(1−κ)2 ).

4. m = q. We have pq,y ≤ Pr[h(y) = α] = 1
2q

, and using Lemma 50 we get

pq−3,y + pq−2,y + pq−1,y ≤ 1
W(F↓S)−1

(
1

(1− 1+κ

23 )
2 + 1

(1− 1+κ

22 )
2 + 1

(1− 1+κ
2 )

2

)
=

1
W(F↓S)−1

(
64

(7−κ)2 + 16
(3−κ)2 + 4

(1−κ)2

)
. So Pr[U |m = q] ≤ 1+κ

pivot
W (y)

(
1

W(F↓S)−1

(
64

(7−κ)2 + 16
(3−κ)2 + 4

(1−κ)2

)
+ 1
)

.

Using pivot = W(F↓S)−1
2m

> 10 and κ ≤ 1, we obtain Pr[U |m = q] ≤ (1+κ)W(y)
W(F↓S)−1

(1.58+

0.4
(1−κ)2 ).

Since Pr[U |q − 3 ≤ m ≤ q] ≤ maxq−3≤i≤q(Pr[U |m = i]), we have Pr[U |q − 3 ≤ m ≤

q] ≤ 1+κ
W(F↓S)−1

(1.9 + 0.4
(1−κ)2 ) from the m = q − 1 case above.

Case 2 : m < q − 3. Since pi,y ≤ Pr[h(y) = α] = 1
2i

, we have Pr[U |m < q − 3] ≤
1+κ
pivot
W (y) · 1

2q−3
15
8

. Substituting the value of pivot and maximizing m− q+ 3, we get
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Pr[U |m < q − 3] ≤ 15(1+κ)W(y)
16(W(F↓S)−1)

.

Case 3 : m > q. Using Lemma 50, we know that Pr[U |m > q] ≤ 1+κ
pivot

W(y)
W(F↓S)−1∑q

i=q−3
1

(1− 1+κ

2m−i )
2 . The R.H.S. is maximized when m = q + 1. Hence Pr[U |m > q] ≤

1+κ
pivot

W(y)
W(F↓S)−1

×
∑q

i=q−3
1

(1− 1+κ

2q+1−i )
2 . Noting that pivot = W(F↓S)−1

2m
> 10 and expand-

ing the above summation we have Pr[U |m > q] ≤ (1+κ)W(y)
W(F↓S)−1

1
10

(
256

(15−κ)2 + 64
(7−κ)2 + 16

(3−κ)2 + 2
(1−κ)2

)
.

Using κ ≤ 1 for the first three summation terms, we obtain Pr[U |m > q] ≤ (1+κ)W(y)
W(F↓S)−1

(0.71+

0.4
(1−κ)2 )

Summing up all the above cases, Pr[U ] = Pr[U |m < q − 3] × Pr[m < q − 3] +

Pr[U |q−3 ≤ m ≤ q]×Pr[q−3 ≤ m ≤ q]+Pr[U |m > q]×Pr[m > q]. From Lemma 48

we have Pr[m < q− 1] ≤ 0.2 and Pr[m > q] ≤ 0.2, so Pr[U ] ≤ (1+κ)W(y)
W(F↓S)−1

(2.23 + 0.48
(1−κ)2 )

Combining Lemmas 49 and 51, the following lemma is obtained.

Lemma 52. For every witness y ∈ RF , if ε > 1.71, then

W(y)
(1+ε)W(RF )

≤ Pr [WeightGen(F, ε, r,X) = y] ≤ (1 + ε) W(y)
W(RF )

.

Proof. In the case where W (F ↓ S) ≤ 1 + (1 + κ)pivot, the result holds because

WeightGen returns a perfect weighted-uniform sample. Otherwise, using Lemmas 49

and 51 and substituting (1+ε) = (1+κ)(2.36+ 0.51
(1−κ)2 ) = 18

17
(1+κ)(2.23+ 0.48

(1−κ)2 ), via the

inequality 1.06+κ
0.8(1−e−3/2)

≤ 18
17

(1 + κ)(2.23 + 0.48
(1−κ)2 ) we have the bounds W(y)

(1+ε)(W(F↓S)−1)
≤

Pr [WeightGen(F, ε, r,X) = y] ≤ 18
17

(1 + ε) W(y)
W(F↓S)−1

. Using W (F ↓ S) ≥ 18, we obtain

the desired result.

Lemma 53. Algorithm WeightGen succeeds (i.e. does not return ⊥) with probability

at least 0.62.

Proof. IfW (F ↓ S) ≤ 1+(1+κ)pivot, the theorem holds trivially. SupposeW (F ↓ S) >

1 + (1 + κ)pivot and let Psucc denote the probability that a run of the algorithm suc-
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ceeds. Let pi with q − 3 ≤ i ≤ q denote the conditional probability that WeightGen

(F , ε, r, X) terminates in iteration i of the repeat-until loop (lines 15–19) with

pivot
1+κ
≤ W (RF,h,α) ≤ 1 + (1 + κ)pivot, given that W (F ↓ S) > 1 + (1 + κ)pivot. Then

Psucc =
∑q

i=q−3 pi
∏i

j=q−3(1 − pj). Letting fm = Pr[q − 3 ≤ m ≤ q], by Lemma 48

we have Psucc ≥ pmfm ≥ 0.8pm. The theorem is now proved by using Chebyshev’s

Inequality to show that pm ≥ 1− e−3/2 ≥ 0.776.

For every y ∈ {0, 1}n and α ∈ {0, 1}m, define an indicator variable νy,α as follows:

νy,α = W (y) if h(y) = α, and νy,α = 0 otherwise. Let us fix α and y and choose

h uniformly at random from Hxor(n,m, 3). The random choice of h induces a prob-

ability distribution on νy,α, such that Pr[νy,α = W (y)] = Pr[h(y) = α] = 2−m and

E[νy,α] = W (y)Pr[νy,α = 1] = 2−mW (y). In addition 3-wise independence of hash

functions chosen from Hxor(n,m, 3) implies that for every distinct ya, yb, yc ∈ RF , the

random variables νya,α, νyb,α and νyc,α are 3-wise independent.

Let Γα =
∑

y∈RF νy,α and µα = E [Γα]. Clearly, Γα = W (RF,h,α) and µα =∑
y∈RF E [νy,α] = 2−mW (F ↓ S). Since pivot = de3/2(1+1/ε)2e, we have 2−mW (F ↓ S) ≥

e3/2(1 + 1/ε)2, and so using Chebyshev’s Inequality with β = κ/(1 + κ) we ob-

tain Pr
[
W(F↓S)

2m
.
(
1− κ

1+κ

)
≤ W (RF,h,α) ≤ (1 + κ

1+κ
)W(F↓S)

2m

]
> 1− e−3/2. Simplifying

and noting that κ
1+κ

< κ for all κ > 0, we have Pr
[
(1 + κ)−1 · W(F↓S)

2m
≤ W (RF,h,α)

≤ (1 + κ) · W(F↓S)
2m

]
> 1 − e−3/2. Also, pivot

1+κ
= 1

1+κ
W(F↓S)−1

2m
≤ W(F↓S)

(1+κ)2m
and 1 + (1 +

κ)pivot = 1 + (1+κ)(W(F↓S)−1)
2m

≥ (1+κ)W(F↓S)
2m

. Therefore, pm = Pr[pivot
1+κ
≤ W (RF,h,α) ≤

1 + (1 + κ)pivot] ≥ Pr
[
(1 + κ)−1 · W(F↓S)

2m
≤ W (RF,h,α) ≤ (1 + κ) · W(F↓S)

2m

]
≥ 1 −

e−3/2.

By combining Lemmas 52 and 53, we get the following:

Theorem 54. . Given a CNF formula F , tolerance ε > 1.71, tilt bound r, and sam-
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pling set S, for every y ∈ RF we have W(y)
(1+ε)W(RF )

≤ Pr [WeightGen(F, ε, r,X) = y] ≤

(1 + ε) W(y)
W(RF )

. Also, WeightGen succeeds (i.e. does not return ⊥) with probability at

least 0.62.

Theorem 55. Given an oracle for SAT, WeightGen(F, ε, r, S) runs in time polynomial

in r, |F | and 1/ε relative to the oracle.

Proof. Referring to the pseudocode for WeightGen, the runtime of the algorithm is

bounded by the runtime of the constant number (at most 5) of calls to BoundedWeightSAT

and one call to WeightMC (with parameters δ = 0.2, ε = 0.8). As shown in Theorem

9, the call to WeightMC can be done in time polynomial in |F | and r relative to

the oracle. Every invocation of BoundedWeightSAT can be implemented by at most

(r ·pivot)+1 calls to a SAT oracle (as in the proof of Theorem 10), and the total time

taken by all calls to BoundedWeightSAT is polynomial in |F |, r and pivot relative to

the oracle. Since pivot = O(1/ε2), the runtime of WeightGen is polynomial in r, |F |

and 1/ε relative to the oracle.

10.3 Experimental Results

To evaluate the performance of WeightGen, we built prototype implementation and

conducted an extensive set of experiments ∗. The suite of benchmarks was made up

of problems arising from various practical domains as well as problems of theoretical

interest. Specifically, we used bit-level unweighted versions of constraints arising from

grid networks, plan recognition, DQMR networks, bounded model checking of circuits,

bit-blasted versions of SMT-LIB [2] benchmarks, and ISCAS89 [26] circuits with

parity conditions on randomly chosen subsets of outputs and next-state variables [139,

∗The tool (with source code) is available at https://bitbucket.org/kuldeepmeel/weightgen

https://bitbucket.org/kuldeepmeel/weightgen
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102]. While WeightGen is agnostic to the weight function, other tools that we used for

comparison require the weight of an assignment to be the product of the weights of its

literals. Consequently, to create weighted problems with tilt at most some bound r, we

randomly selected m = max(15, n/100) of the variables and assigned them the weight

w such that (w/(1−w))m = r, their negations the weight 1−w, and all other literals

the weight 1. To illustrate agnostic nature of our algorithms w.r.t. to weight oracle,

we also evaluated WeightGen with non-factored representation of the weights. In our

implementation of weight oracle without factored representation, we first randomly

chose a range of minimum (wmin) and maximum (wmax) possible weights and then

randomly selected 20 variables of the input formula. We now compute weight of

an assignment as wmin+(wmax − wmin ∗ x
220

), where x is the integer value of binary

representation of assignment to our randomly selected 20 variables. Unless mentioned

otherwise, our experiments used r = 5 and ε = 16.

To facilitate performing multiple experiments in parallel, we used a high perfor-

mance cluster, each experiment running on its own core. Each node of the cluster

had two quad-core Intel Xeon processors with 4GB of main memory. We used 2500

seconds as the timeout of each invocation of BoundedWeightSAT and 20 hours as the

overall timeout for WeightGen. If an invocation of BoundedWeightSAT timed out in

line 17 (WeightGen), we repeated the execution of the corresponding loops without

incrementing the variable i (in both algorithms). With this setup, WeightGen was able

to successfully generate weighted random samples for formulas with close to 64,000

variables.

Since a probabilistic generator is likely to be invoked many times with the same

formula and weights, it is useful to perform the counting on line 10 of WeightGen only

once, and reuse the result for every sample. Reflecting this, column 6 in Table 5.1
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Table 10.1 : SDD and WeightGen runtimes in seconds.

Benchmark vars #clas SDD
Weight-

Gen

or-50 100 266 0.38 0.14

or-70 140 374 0.83 13.37

s526 3 2 365 943 29.54 0.85

s526a 3 2 366 944 12.16 1.1

s953a 3 2 515 1297 355.7 21.14

s1238a 7 4 704 1926 mem 19.52

s1196a 15 7 777 2165 2275 19.59

Squaring9 1434 5028 mem 110.37

Squaring7 1628 5837 mem 113.12

ProcessBean 4768 14458 mem 418.29

LoginService2 11511 41411 mem 3.45

Sort 12125 49611 T 140.19

EnqueueSeq 16466 58515 mem 165.64

Karatsuba 19594 82417 mem 193.11

TreeMax 24859 103762 T 2.0

LLReverse 63797 257657 mem 88.0
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Figure 10.1 : Uniformity comparison for case110

lists the time, averaged over a large number of runs, taken by WeightGen to generate

one sample given that the weighted model count on line 10 has already been found. It

is clear from Table 5.1 that WeightGen scales to formulas with thousands of variables.

To measure the accuracy of WeightGen, we implemented an Ideal Sampler, hence-

forth called IS, and compared the distributions generated by WeightGen and IS for

a representative benchmark. Given a CNF formula F , IS first generates all the sat-

isfying assignments, then computes their weights and uses these to sample the ideal

distribution. We then generated a large number N (= 6 × 105) of sample witnesses

using both IS and WeightGen. In each case, the number of times various witnesses

were generated was recorded, yielding a distribution of the counts. Figure 10.1 shows

the distributions generated by WeightGen and IS for one of our benchmarks (case110)

with 16,384 solutions. The almost perfect match between the distribution generated

by IS and WeightGen held also for other benchmarks. Thus, as was the case for

WeightMC, the accuracy of WeightGen is better in practice than that established by
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Theorem 54.

10.4 Chapter Summary

In this Chapter, we considered adaptation of UniGen to handle the problem of distri-

bution aware sampling. For approximation techniques that provide strong theoretical

two-way bounds, a major limitation is the reliance on potentially-expensive most

probable explanation (MPE) queries. We identify a novel parameter, tilt, to catego-

rize weighted counting and sampling problems for SAT. We showed how to remove

this reliance on MPE queries, while retaining strong theoretical guarantees. Exper-

imental results demonstrate the effectiveness of this approach in practice when the

tilt is small.

The experimental results presented in this Chapter are promising but indicate that

this work is still a first step in the design of scalable sampling algorithms that can han-

dle arbitrary distribution while providing rigorous formal guarantees. Chakraborty

et al [34] present an extension of WeightGen that can handle large tilt if the weight

function is white box. The resulting algorithm, however, employs Pseudo Boolean

solvers, which are less scalable as compared to SAT solvers. As a result, the proposed

algorithm faces significant scalability hurdles. An interesting direction of future work

would be to propose extension of WeightGen that requires SAT solvers instead of

Pseudo-Boolean solvers.

This is the final chapter of Part III. Let us take a moment to summarize what

we accomplished in this Part. Given the practical as well as theoretical significance

of the problem of sampling, the design of scalable sampling algorithms with rigorous

formal guarantees have been a central problem for past three decades. The prior

work, however, allows the end user to choose only one between theoretical guarantees
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and scalability. In this Part, we introduced a hashing-based paradigm that provides

strong theoretical guarantees and promises scalability. Furthermore, the approach is

highly parallelizable and achieves near linear speedup in practice. UniGen framework

introduced in this part opens up several interesting directions of future research, which

are discussed in detail in Chapter 12.
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Part IV

Epilogue
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Chapter 11

On Computing Minimal Independent Support

The hashing-based techniques for sampling and counting presented in this thesis cru-

cially relies on choose a hash function randomly from Hxor(n,m), which consists of

conjunction of parity constraints, i.e. XOR, each of average density of 1/2. Con-

sequently, a cell is represented as a conjunction of input constraints and XOR con-

straints. Since combinatorial reasoning tools are invoked to search for solutions of

the conjunction of input constraints and XOR-based universal hash functions, one

might wonder if there is any relationship between runtime performance of combi-

natorial search techniques and features of XOR-constraints? It has been observed

that lower density XORs are easy to reason in practice and runtime performance of

solvers greatly enhances with the decrease in the density of XOR-constraints [85].

This has led to recent work focused on designing hash functions with low density

XOR-constraints [72] but such hash functions provide very weak guarantees of uni-

versality that did not translate to scalable algorithms for counting and sampling.

In Chapter 2, we introduced the notion of an independent support of a Boolean

formula [39]: a subset of variables whose values uniquely determine the values of the

remaining variables in any satisfying assignment to the formula. Formally, let I ⊆ X

be a subset of the support such that if two satisfying assignments σ1 and σ2 agree on

I, then σ1 = σ2. In other words, in every satisfying assignment, the truth values of

variables in I uniquely determine the truth value of every variable in X \ I. The set

I is called an independent support of F , and D = X \ I is referred to as dependent
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support. Note that there is a one-to-one correspondence between RF and RF↓I . There

may be more than one independent support: (a ∨ ¬b) ∧ (¬a ∨ b) has three, namely

{a}, {b} and {a, b}. Clearly, if I is an independent support of F , so is every superset

of I.

Next, note that Hxor(X, ·) can be constructed by picking variables from the I

alone. In particular, The hashing-based algorithms for sampling and counting pre-

sented in this paper take in sampling set S as parameter. Therefore, when S = X

is supplied, we substitute S with I if I is unknown. The importance of this obser-

vation comes from the fact that for many important classes of problems the size of

an independent support is typically one to two orders of magnitude smaller than the

number of all variables, which in turn leads to XOR constraints of typical density of

1/200 to 1/20, i.e. one to two orders of magnitude smaller than that of the traditional

hash functions. We emphasize that unlike recent work of Ermon et al. [72], these hash

functions still preserve the strong guarantees of universality and therefore can be used

as replacement for traditional hash functions in recent hashing-based techniques for

sampling and counting.

The notion of independent support is closely related to the concept of functional

dependency in the context of relational databases; it is essentially equivalent to the

concept of a key in a relation [120]. The difference is that in the context of rela-

tional databases, relations are represented explicitly, while here the relation RF is

represented implicitly by means of the formula F . Thus, algorithmic techniques from

relational-database theory do not scale to the setting considered here. In the con-

text of combinational logic circuits, there has been some work that constructs a logic

circuit whose Tseitin-encoding corresponds to the given Boolean formula [78]. The

primary inputs of this constructed circuit form the independent support of the given
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Boolean formula. This construction is based on pattern matching the formula to find

sub-formulas corresponding to commonly used gates. This technique is not guaran-

teed to be complete and unlikely to succeed if the formulas did not originate from

combinational circuits.

The variables that are not part of an independent support can be considered as

redundant, and there is extensive research related to redundancy in propositional

logic in general [114, 18]. In our context, a particular problem of importance is

that of computing a concise reason of inconsistency of an over-constrained Boolean

formula. Significant recent research focuses on efficiently computing a minimal unsat-

isfiable subformula (MUS) of a Boolean formula [122] and its extension on computing

a group-oriented (also called high-level) minimal unsatisfiable subformula (GMUS) of

an explicitly partitioned Boolean formula [116, 127]. In addition, there are highly

optimized algorithms and off-the-shelf implementations for computing MUSes and

GMUSes, such as MUSer2 [19]. Even more recent research focuses on computing a

smallest (i.e., minimum-sized) MUS of a Boolean formula (SMUS) [115, 96], which

in general is a significantly more computationally-intensive task. Similarly, one can

consider a smallest GMUS of an explicitly partitioned Boolean formula (SGMUS).

The tool Forqes described in [96] can compute SMUSes and SGMUSes.

In this chapter, we present an algorithmic procedure to determine minimal and

minimum independent supports. The key idea of this algorithmic procedure is the

reduction of the problem of minimizing an independent support of a Boolean formula

to (S)GMUS. In this reduction, each independent subset of variables naturally cor-

responds to an unsatisfiable subformula of the total formula, and in particular the

problems of finding a minimal independent support, or a minimum-sized independent

support, or all minimal or minimum-sized independent supports, can be naturally
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translated to the corresponding problems in the MUS framework. For future refer-

ence, we denote by MIS the tool that computes a minimal independent support of

a Boolean formula by employing the above translation and MUSer2, and we denote

by SMIS the tool that computes a minimum independent support that uses Forqes

instead.

An experimental comparison of MIS and SMIS highlights an important tradeoff

between the performance and the sizes of computed independent supports. In partic-

ular, while MIS scales to larger formulas, SMIS computes even smaller independent

supports for a subset of benchmarks that are within its reach. We illustrate the prac-

tical gains of MIS by augmenting the state of the art sampler and counter with the

new hashing scheme that uses the computed minimal independent supports.

11.1 Computing Minimal/Minimum Independent Supports

In this section, we first discuss how computation of minimal/minimum independent

supports can be reduced to computation of minimal/minimum unsatisfiable subsets.

Building on our reduction, we propose the first algorithmic procedure, MIS, to com-

pute a minimal independent support for a given formula. We then discuss how MIS

can make efficient usage of information from users. We also discuss a variant SMIS

that computes a minimum independent support. Finally, we discuss how minimal

and minimum independent supports computed by MIS and SMIS can be applied to

hashing-based approximate techniques for counting and sampling.

11.1.1 Reduction to Group-oriented Minimal Unsatisfiable Subsets

For a given Boolean formula F and S ⊆ X, we know that S is an independent

support of F whenever every two satisfying assignments σ1, σ2 to F that agree on S,
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must be identical. We formalize this as follows. We introduce additional variables

Y = {y1, . . . , yn}, and let F (y1, . . . , yn) be obtained from F (x1, . . . , xn) by replacing

every occurrence of a variable in X by the corresponding variable in Y . The definition

of independence is captured by the following formula:

F (x1, . . . , xn) ∧ F (y1, . . . , yn) ∧
∧

i∈Ind(S)

(xi = yi) =⇒
∧

j∈Ind(X\S)

(xj = yj),

where Ind(S) and Ind(X \ S), respectively, denote the index sets of S and X \ S.

Since it obviously holds that
∧
i∈Ind(S)(xi = yi) ⇒

∧
i∈Ind(S)(xi = yi), we can replace

the right-hand side of the above formula by
∧
j∈Ind(X)(xj = yj). Finally, define the

Boolean function QF,S(x1, . . . , xn, y1, . . . , yn) by

QF,S = F (x1, . . . , xn) ∧ F (y1, . . . , yn) ∧
∧

i∈Ind(S)

(xi = yi) ∧ ¬

 ∧
j∈Ind(X)

(xj = yj)

 .

Proposition 1. S in an independent support for F if and only if QF,S is unsatisfiable.

From Proposition 1 we obtain the following upper bound.

Theorem 56. The problem of deciding whether S is a minimal independent support

of F is in DP, where DP = {A−B|A,B ∈ NP}.

Proof. Checking that S is independent support of F is reducible to unsatisfiability of

QF,S, which is in co-NP. To check minimality, we can select each variable x ∈ S and

check that QF,S−{x} is satisfiable.

We offer the following lower bound conjecture:

Conjecture 1. The problem of deciding whether S is a minimal independent support

of F is DP-complete.
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Proposition 1 leads to algorithms for computing a minimal independent support

of F . One possible approach is to start with S = X and the obviously unsatisfi-

able formula QF,X , and then remove variables xi from S (corresponding to conjuncts

xi = yi in QF,S) as long as QF,S remains unsatisfiable. Instead, we observe that the

problem of minimizing independent support can be restated as the problem of mini-

mizing unsatisfiable subsets, and hence we can benefit from the full variety of different

algorithms and various important optimizations developed in the latter context. We

now pursue this direction.

Using notation from Section 2.4, define H1, . . . , Hn and Ω as follows:

H1 = {x1 = y1}, . . . , Hn = {xn = yn},

Ω = F (x1, . . . , xn) ∧ F (y1, . . . , yn) ∧
∨

i∈Ind(X)

(xi 6= yi).

To obtain a CNF representation, suppose that the original formula F is given in

CNF. Then we let Hi = {(¬xi ∨ yi) ∧ (xi ∨ ¬yi)} for i = 1, . . . , n. For Ω, the terms

F (x1, . . . , xn) and F (y1, . . . , yn) are already in CNF. To encode
∨n
i=1(xi 6= yi), we

introduce additional variables b1, . . . , bn, add clauses (¬xi ∨¬yi ∨ bi), (xi ∨ yi ∨ bi) for

i = 1, . . . , n, and add the clause (¬b1 ∨ · · · ∨ ¬bn).

The following proposition follows immediately from the construction and Propo-

sition 1:

Proposition 2. The formula H1 ∧ · · · ∧ Hn ∧ Ω is unsatisfiable. Moreover, for a

subset S ⊆ X: S is an independent support of F if and only if {Hi|i ∈ Ind(S)} is a

group-oriented unsatisfiable subset of {H1, . . . , Hn}.

It immediately follows that problems of computing independent support can be

reduced to analogous problems of finding group oriented unsatisfiable subsets. Specifi-
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cally, computing a minimal independent support can be reduced to computing a mini-

mal unsatisfiable subset; computing a minimum independent support can be reduced

to computing a minimum unsatisfiable subset; computing all minimal independent

supports can be reduced to computing all minimal unsatisfiable subsets; and so on.

11.1.2 Handling Under- and Over- Approximations

In Section 11.1.3 we describe a light-weight technique for detecting a set of variables

that is dependent on the remaining variables in the formula, thus allowing us to

restrict the search for a minimal independent support by excluding the dependent

variables. Furthermore, in some of our applications (see Section 11.1.6), the user

has the additional freedom to specify which variables should or should not be in the

independent support. In both cases, we can think of the set of variables that should to

be included as specifying an under-approximation of the independent support, and we

can think of complement of the set of variables that should be excluded as specifying

an over-approximation of the independent support.

Due to these considerations, we introduce the following extension of the independent-

support problem. Let U ⊆ V ⊆ X and suppose that V is an independent support of

F . Let us say that an independent support of F relative to an under-approximation

U and an over-approximation V is a set S such that U ⊆ S ⊆ V and S is an in-

dependent support of F . Further, let us say that a minimal independent support of

F relative to U and V is a minimal S with these properties. Note that S does not

need to be a minimal independent support of F (as U itself might have dependent

variables). Also note the explicit requirement that V is an independent support (if

V is not an independent support, then no subset of V is an independent support).

The reduction to group-oriented unsatisfiable subset described in Section 11.1.1
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can be easily extended to handle this more general problem. Given F , U and V

as above, let Hi = {xi = yi} for i ∈ Ind(V \ U), and let Ω = F (x1, . . . , xn) ∧

F (y1, . . . , yn) ∧
∧
i∈Ind(U)(xi = yi) ∧

∨
i∈Ind(X)(xi 6= yi).

Proposition 3. The following statements are true:

1. The formula Ω ∧
∧
i∈Ind(V \U) Hi is unsatisfiable.

2. For a subset W ⊆ V \ U : {Hi | i ∈ Ind(W )} is a group-oriented unsatisfiable

subset of {Hi | i ∈ Ind(V \U)} if and only if U ∪W is an independent support

of F relative to U and V .

3. {Hi | i ∈ Ind(W )} is a minimal group-oriented unsatisfiable subset of {Hi | i ∈

Ind(V \U)} if and only if U ∪W is a minimal independent support of F relative

to U and V .

We, henceforth, denote this reduction as TranslateToGMUS(F,U, V ). Note that

when U = ∅ and V = X the definition of an independent support relative to U and V

corresponds to the standard definition of independent support, and TranslateToGMUS(F,U, V )

coincides with the reduction given in Section 11.1.1. In what follows, we omit “rel-

ative to an under-approximation U” when U = ∅, and we omit “relative to an over-

approximation V ” when V = X.

11.1.3 Exploiting Local Dependencies

In various important contexts, a variable x ∈ X can be shown to be dependent on

other variables, either purely syntactically or by analyzing only a small subset of

all clauses. An especially important case is when the formula F encodes a circuit, in

which case many variables can be detected to be dependent simply from their defining

clauses.
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Example 1 Suppose that F contains the following clauses (among oth-

ers): (¬x ∨ y ∨ b), (x ∨ ¬y), (x ∨ ¬b). It can be readily seen that in every

satisfying assignment to F we have that x = y ∨ b, and so x is dependent

on {y, b}.

Intuitively, the variables that are locally dependent on other variables do not need

be considered for independent support. We need, however, to avoid cyclic reasoning,

such as when F := (¬x∨ y)∧ (x∨¬y), x depends on y and that y also depends on x.

Algorithm 16 FindLocalDependencies(F, V)

Input: CNF formula F ; set V ⊆ X

Output: A subset Z ⊆ V of dependent variables.

1: Z = ∅

2: for x ∈ V do

3: G = SelectLocalClauses(F, x)

4: W = Vars(G) /*Vars(G) denotes the support of G */

5: if QG,W\{x} is UNSAT then

6: Z = Z ∪ {x}

7: F = F \G

8: return Z

We propose Algorithm 16 to detect a set of non-cyclic locally dependent variables.

The algorithm accepts a formula F in CNF and a set V of candidate variables to

consider, and returns a set Z ⊆ V of variables that are (non-cyclically) dependent

on the remaining variables. Initially, Z is empty. In the algorithm we iteratively

select a variable x ∈ V and call SelectLocalClauses to select a set of clauses of F
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“around” x. These should include at least all the clauses of F involving x, but more

generally can correspond to a larger neighborhood of x in the primal graph (the graph

with vertexes Vars(F ), and an edge between x1 and x2 whenever F contains a clause

involving both x1 and x2). Next we check whether x can be shown to be dependent

on the remaining variables in G: this could be either a purely syntactic check or

involve a SAT invokation. When x is indeed dependent, then x is added to Z, and

moreover all the clauses involved into showing this dependency are removed from F

(for simplicity in the algorithm we remove all clauses of G, but a more refined analysis

is also possible). This step is important to avoid cyclic dependencies.

Proposition 4. Let Z be an outcome of Algorithm 16. Then X \Z is an independent

support for F . Moreover, let S be a minimal independent support of F relative to the

over-approximation X \ Z. Then S is also a minimal independent support of F .

The first part of Proposition 4 summarizes the correctness of Algorithm 16. The

second part shows that the output of the algorithm can be used to obtain an over-

approximation of a minimal independent support – and thus it can be viewed as a

preprocessing step for computing minimal independent support.

11.1.4 Combined Algorithm

Algorithm MIS (Algorithm 17) presents our combined approach to compute a minimal

independent support. The algorithm accepts a formula F in CNF, and both an under-

approximation U and an over-approximation V . We require that U ⊆ V and that

V is an independent support for F . As the first step, we call FindLocalDependencies

described in Section 11.1.3 to compute a set of (locally) dependent variables, which

is essentially used to further refine the over-approximation V . Next, following the

description in Section 11.1.2, we translate the problem into a GMUS computation.
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The call to ComputeGMUS refers to a state-of-the-art algorithm to compute GMUSes

(in our experiments, we use MUSer2). The independent support returned by the al-

gorithm consists of the variables in the under-approximation U and the variables that

correspond to the groups in the minimal group-unsatisfiable subset. The correctness

of this algorithm follows from Proposition 3.

Algorithm 17 MIS(F, U, V)

Input: CNF formula F ; sets U ,V such that U ⊆ V ⊆ Vars(F ) and V is independent

support for F

Output: Minimal S with the property that U ⊆ S ⊆ V and S is an independent

support for F

1: Z = FindLocalDependencies(F, V )

2: {Ω, H1, . . . , Hn} = TranslateToGMUS(F,U, V \ Z)

3: {Hi1 , . . . , Hin} = ComputeGMUS({Ω, H1, . . . , Hn})

4: S = U ∪ {xi1 , . . . , xin}

5: return S

Given the computationally expensive nature of GMUS computation, it may hap-

pen that ComputeGMUS exceeds a specified time-limit. However, it is important

to note that MUSer2 still returns a sound over-approximation of a minimal group-

unsatisfiable subset in case of a time-out (as it employs a variant of the deletion-based

approach described in [122]). In this case the support consisting of the variables in

U and the variables in the computed over-approximation returned by ComputeGMUS

is still an independent support. Therefore, MIS behaves as an anytime algorithm;

that is, it always returns a sound independent support for a given time budget. Our

experiments indicate that this anytime behavior is useful in computing independent
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supports – even if these are not minimal, they are significantly smaller than the sup-

port of F and improve performance of sampling and counting tools by 2-3 orders of

magnitude.

11.1.5 Computation of Minimum Independent Support

Since the problem of computing a minimum-sized independent support can be re-

duced to that of computing minimum-sized group-unsatisfiable subset, we can extend

MIS to compute a minimum-sized independent support, by following the two mod-

ifications below. First, we remove the call to FindLocalDependencies – as this is a

greedy heuristic that provide guarantees of minimality but not of mimum size. Sec-

ond, we replace the call to compute minimal group-unsatisfiable subset with the call

to compute minimum group-unsatisfiable subset. We use SMIS to denote the resulting

algorithm. Our experimental comparison of MIS and SMIS, discussed in Section 11.2,

shows that MIS scales to larger formulas, while SMIS computes even smaller sized

independent supports for a subset of benchmarks that are within its reach.

11.1.6 Handling User Input

In some of our applications the user is allowed to additionally provide a set of variables

W that is believed to form an independent support of F , and the task is to minimize

this set. There are two interesting scenarios associated with this. If W is indeed an

independent support of F , as can be checked by checking satisfiability of QF,W , then

W can be used an as over-approximation of an independent support, that is, one can

look for a minimal independent support relative to the over-approximation prescribed

by W . It is possible, however, that W is not really an over-approximation. In our

experience, in these cases the user input is still “close” to being correct, and so we
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suggest the following two-step approach. First, we treatW as an under-approximation

and find a minimal set U such that W ∪ U forms an independent support. Second,

we treat W ∪U as an over-approximation and find a minimal subset of W ∪U . In our

experience, not only does this scheme results in a minimal independent support that

is close to the user input, but is also significantly faster than computing a minimal

independent support from scratch

11.2 Evaluation

To evaluate the performance and impact of MIS, we built a prototype implementation∗

in C++ and conducted an extensive set of experiments on diverse set of public-domain

problem instances. In these experiments, a typical instance is a formula F , with set

of support X, and independent support I computed by MIS. The main objectives of

our experimental set up was to seek answers for the following questions:

1. How do MIS and SMIS scale to large formulas and how do sizes of I computed

by MIS and SMIS compare to X?

2. How does the performance and size of computed I vary with the user input?

3. How does employingHxor on I instead ofX affect the performance of ApproxMC,

the state-of-the-art counting tool?

4. How do new provable bounds on the size of XORs required for approximate

model counting techniques compare with previously known bounds?

In summary, we observe that MIS scales to large formulas with tens of thousands

of variables, and the minimal independent support computed by MIS are typically of

∗The tool along with source code is available at http://bitbucket.org/kuldeepmeel/mis

http://bitbucket.org/kuldeepmeel/mis
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1/10 to 1/100 the size of support of the formulas. Furthermore, utilizing user input

even when the initial user input is only an under-approximation, MIS can compute

minimal independent supports significantly faster than without user input. Finally,

by utilizing I computed by MIS and SMIS, we provide the first theoretically proven

bounds on size of XOR constraints that are close to empirically observed bounds.

11.2.1 Experimental Setup

We conducted experiments on a heterogeneous suite of benchmarks used in earlier

works on sampling and counting [39]. The benchmark suite employed in the experi-

ments consisted of problems arising from probabilistic inference in grid networks, syn-

thetic grid-structured random interaction Ising models, plan recognition, DQMR net-

works, bit-blasted versions of SMTLIB benchmarks, ISCAS89 combinational circuits

with weighted inputs, and program synthesis examples. We employed MUSer2 [19]

for group minimal group-unsatisfiable subset computation and forqes [96] for group

minimum-unsatisfiable subset computation. We used a high-performance cluster to

conduct multiple experiments in parallel. Each node of the cluster had a 12-core 2.83

GHz Intel Xeon processor, with 4GB of main memory, and each of our experiments

was run on a single core. We employed the Mersenne Twister to generate pseudo-

random numbers, and each thread was seeded independently using the C++ class

random device. Since different runs of MIS compute different minimal independent

supports depending on the input from pseudo-random generator, we compute up to

five independent supports for each benchmark and report the median of corresponding

statistics.
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11.2.2 Runtime Performance of MIS and SMIS

Table 11.1 presents the runtime of MIS and SMIS for our benchmark suite. The names

of the benchmarks are specified in column 1, while columns 2 and 3 list the number

of variables and clauses for each benchmark. Column 4 and 6 list the median runtime

and median size of minimal independent supports (I) computed by MIS. Column 6

lists the ratio of the number of variables to |I|. Column 7 and 8 list the runtime and

size of a minimum-sized independent support (Im). The ratio of |Im| to |I| is presented

in column 9. The results demonstrate that MIS scales to fairly large formulas, and the

minimal independent supports computed by MIS are one to two orders of magnitude

compared to the overall support. The comparison of MIS vis-a-vis SMIS highlights

a tradeoff in performance. In particular, while MIS scales to larger formulas, SMIS

computes even smaller independent supports for a subset of benchmarks that are

within its reach (and in some cases removes up to 40% additional variables).

11.2.3 Impact of User Input on MIS

To study the impact of user input on MIS, we experimented with the suite of bench-

marks for which independent support was provided by the sources. Table 11.2 presents

the result of our experiments. Column 1 lists the benchmark while columns 2 and 3

list the number of variables and clauses for each benchmark. Columns 4 and 5 list

the runtime and the median size of computed I by MIS without user input. Columns

6–9 report statistics when the user input is provided to MIS. Column 6 lists the size

of I provided by the user while column 7 and 8 present the runtime and the size of

computed I by MIS. Column 9 lists the fraction of ratio of intersection of computed

I and user-provided I to the computed I. We use “U” and ”O” to denote that the

input provided by user was an under-approximation and over-approximation of an
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Benchmark #vars #clas
MIS

time(s) |I| #vars
|I|

SMIS
time(s) |Im| |Im|

|I|

squaring4 891 2839 868.71 55 16.05 1174.46 36 0.65

s953a 15 7 602 1657 7.48 48 12.41 11.03 45 0.93

squaring30 1031 3693 192.14 30 34.37 144.82 29 0.97

case 2 b12 1 427 1385 1.42 34 12.56 16.52 30 0.88

scenarios llreverse 1096 4217 59.8 81 13.45 205.0 46 0.56

squaring10 1099 3632 3321.29 56 19.45 1609.63 40 0.71

TR ptb 1 linear 1969 6288 1297.77 122 16.07 768.37 106 0.87

s1488 7 4 872 2499 11.38 24 36.33 – – –

s5378a 15 7 3766 8732 1990.1 227 16.59 – – –

lssBig 12438 149909 536.88 46 270.39 – – –

blockmap 10 02.net 12562 26022 2637.74 78 161.05 – – –

lss 13373 156208 971.24 45 297.18 – – –

blockmap 10 03.net 13786 28826 13442.28 125 110.29 – – –

20 13887 60046 40.29 51 272.29 14.6 50 0.98

scenarios tree insert search 16573 61922 18000 943 17.57 – – –

blockmap 15 01.net 33035 67424 781.94 49 674.18 – – –

blockmap 20 01.net 78650 160055 2513.32 67 1173.88 – – –

Table 11.1 : Runtime performance of MIS and SMIS
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independent support respectively.

Table 11.2 shows that user-provided input are not necessarily minimal and are

sometimes under approximation of an independent support. Since several minimal

independent supports exist, it does not necessarily imply that size of an under-

approximation would be smaller than every minimal independent support; e.g., for

benchmark “Pollard”, while oen of the independent supports is of size 48, the inpt

with size 50 is not an independent support and is, therefore, an under-approximation

of some other independent support. Table 11.2 clearly demonstrates that MIS is

able to take advantage of user input, even when the initial user input is only an un-

der approximation, and can compute I significantly faster than without user input.

Since initial user input is only an under approximation in several cases and therefore,

algorithmic techniques such as MIS are required to compute a sound independent

support.

11.2.4 Impact on Performance of Sampling and Counting Techniques

Since Hxor constructed over an independent support I, denoted HIxor, is 3-universal.

Therefore, hashing-based counting techniques can be augmented with HIxor. We com-

pared the performance of ApproxMC with IApproxMC, where IApproxMC is ApproxMC

augmented with HIxor. We used an overall timeout of 5 hours, and the tolerance

(ε) and confidence (1 − δ) were set to 0.8 and 0.8, respectively, for ApproxMC and

IApproxMC. The parameter values were chosen to match the corresponding values

in previously published works on ApproxMC [38]. In summary, ApproxMC timed out

on 36 out of 112 benchmarks, IApproxMC were able to count respectively on all the

benchmarks. Since we computed up to five independent supports for each benchmark,

we also computed range of runtime for IApproxMC.
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Without
User Input With User Input

Benchmark #vars #clas
MIS

time(s) |I| User |I|
MIS

time(s)

Computed

|I| Type

TR b14 2 linear 1570 4963 243.65 136 204 234.0 103 O

squaring7 1628 5837 12329.2 58 72 4404.22 40 O

55 1874 8384 0.1 38 46 0.24 38 U

TR b12 1 linear 1914 6619 5963.92 73 99 1559.43 60 U

TR b12 2 linear 2426 8373 15505.02 79 107 1779.25 64 O

TR device 1 even linear 2447 7612 612.19 176 281 338.06 158 O

case 1 b12 even1 2681 8492 4507.71 155 150 1534.94 147 O

case 2 b12 even1 2681 8492 4249.56 149 150 2008.88 147 O

scenarios tree insert insert 2797 10427 837.14 101 84 725.08 85 U

Pollard 2800 49543 1211.4 179 50 543.94 48 U

56 2801 9965 2.23 37 38 1.84 37 U

ProcessBean 3130 11689 172.64 305 166 92.44 156 U

scenarios tree delete2 3411 12783 444.61 179 138 389.79 137 U

lss harder 3465 62713 1727.77 116 21 1690.61 22 U

s5378a 15 7 3766 8732 1990.1 227 214 559.06 214 O

listReverseEasy 4092 15867 16715.34 144 121 1959.57 99 U

reverse 9485 535676 25.03 201 262 24.2 195 U

lss 13373 156208 971.24 45 20 665.22 20 U

110 15316 60974 9.2 80 88 9.08 80 U

Table 11.2 : Impact of User Input on MIS. ”U” and ”O” denote that the input pro-
vided by user was an under-approximation and over-approximation of an independent
support respectively.
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Table 11.3 presents the comparison of runtimes of ApproxMC and IApproxMC for

a subset of the benchmarksColumn 1 lists the benchmarks, while column 2 report

the number of variables for each benchmark. Column 3 lists the runtime of MIS to

compute I. Column 4 lists the runtime of ApproxMC, while the median runtime and

range of runtimes for IApproxMC are listed in columns 5 and 6. (We generated 100

samples for each benchmark, and sampling time is amortized per sample.) We use

‘–’ to denote the timeout (5 hours).

Table 11.3 clearly demonstrates that employing 3-universal hash functions Hxor

over I resulted in 2-3 orders of magnitude performance improvement for both counting

and sampling. It is worth noting that for the case of “squaring14”, MIS times out, but

the over-approximation returned by MIS still allows IApproxMC to sample and count,

while UniGen2 and ApproxMC timed out. Furthermore, the considerably smaller range

of runtimes for most of the benchmarks illustrate the dominating effect of minimal

independent supports on the runtime performance. This observation is, however, not

always true and we observe that there are cases where the range is considerably large

– a detailed analysis is beyond the scope of this work and is left for future work.

11.2.5 Impact on XOR Size Bounds for Model Counting Techniques

Since approximation techniques for model counting only requires weaker guarantees of

universality [38], several techniques have been proposed on employing shorter XORs

for model counting [85, 72]. The investigations into shorter XORs [85, 72] empirically

demonstrated that short XORs, surprisingly, perform quite well for wide variety of

benchmarks, even without a theoretical guarantee, but have failed to obtain provable

bounds on adequate size of XOR constraints that are close to empirical observations.

By computing the size of XOR constraints based on the size of minimal indepen-
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MIS ApproxMC IApproxMC

Benchmark #vars time(s) time (s)
Median
time (s)

Range

time(s)

squaring4 891 868.71 – 1550.04 986.47

s953a 15 7 602 7.48 – 1221.22 250.72

squaring30 1031 192.14 29974.19 89.82 42.23

case 2 b12 1 427 1.42 1449.15 212.82 82.42

squaring10 1099 3321.29 – 3135.01 3800.54

s1196a 7 4 708 35.44 – 314.21 167.29

s1238a 7 4 704 47.59 – 404.54 93.32

case 0 b12 2 827 34.87 – 1528.17 4418.18

case 1 b12 2 827 23.87 – 1541.06 399.75

scenarios llreverse 1096 59.8 – 17109.1 10040.38

case 2 b12 2 827 25.32 – 1228.28 872.1

lss harder 3465 1727.77 13116.78 120.46 301.58

BN 57 1154 103.22 – 517.27 1118.89

BN 59 1112 104.85 – 484.79 236.62

BN 65 925 29.64 – 1322.17 261.33

squaring1 891 718.78 – 1480.99 296.37

squaring8 1101 3453.48 – 2061.31 4970.9

Table 11.3 : Runtime comparison of ApproxMC vis-a-vis IApproxMC

dent support and then applying Theorem 3 of [72], we provide the first theoretically

proven bounds on adequate size of XOR constraints that are very close to empirically

observed bounds.

Table 11.4 presents the comparison of new theoretical bounds with previously

known best theoretical and empirical bounds for benchmarks reported in previous

works [85, 72]. Column 1 lists the benchmarks, while column 2 and 3 report the

number of variables and clauses for each benchmark. Column 4 and 5 present pre-

viously known theoretical and empirical bounds on size of XORs [72]. Finally, the

new theoretical bounds based on computation of independent supports is presented

in column 6. Table 11.4 clearly shows that new bounds obtained based on minimal
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independent supports computed by MIS greatly improve on the previously reported

theoretical bounds. Furthermore, the bounds are very close to empirically observed

bounds. In fact, in one case we obtain theoretical bound that is better than the best

known empirical bounds. (It is worth noting that previous results [85, 72] on shorter

XORs do not extend to sampling techniques as sampling requires stronger guarantees

of universality.)

Previous Bounds New Bounds

Benchmark #vars #clas Theoretical Empirical Theoretical

ls7R34med 119 622 46 3 12

ls7R35med 136 745 53 3 16

ls7R36med 149 870 56 3 18

log.c.red 352 1933 112 28 9

2bitmax 6 252 766 26 8 21

blk-50-3-10-20 50 30 10 5 5

blk-50-10-3-20 50 30 8 3 5

Table 11.4 : Comparison of bounds on shorter XORs for model counting

11.3 Chapter Summary

The performance of hashing-based techniques presented in this thesis is primarily

affected by the runtime of combinatorial solvers for the queries that are typically

expressed as conjunction of CNF and constraints from hash functions. Furthermore,

it has been observed that lower density XORs are easy to reason in practice and

runtime performance of solvers greatly enhances with the decrease in the density of
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XOR-constraints [85]. In this context, it is important to note that hash functions

constructed over Independent Support still retains the same theoretical guarantees

with respect to universality. The importance of this observation comes from the fact

that for many important classes of problems the size of an independent support is

typically one to two orders of magnitude smaller than the number of all variables,

which in turn leads to XOR constraints of typical density of 1/200 to 1/20, i.e. one

to two orders of magnitude smaller than that of the traditional hash functions.

In this Chapter, we presented the first algorithmic procedure and corresponding

tool, MIS, to determine minimal independent support via reduction to Group MUS.

The experimental evaluation over an extensive suite of benchmarks demonstrate that

MIS scales to large formulas. Furthermore, the minimal independent supports com-

puted by MIS lead to 2-3 orders of magnitude improvement in the performance of

UniGen2 and ApproxMC. Finally, construction of XORs over independent support

allows us to obtain tight theoretical bounds on the size of XOR constraints for ap-

proximate model counting – in some cases, even better than previously observed

empirical bounds.
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Chapter 12

Conclusion and Future Work

Constrained sampling and counting are two fundamental problems in artificial in-

telligence. In constrained sampling, the task is to sample randomly from the set of

solutions of input constraints while the problem of constrained counting is to count

the number of solutions. Both problems have numerous applications, including in

probabilistic reasoning, machine learning, planning, statistical physics, inexact com-

puting, and constrained-random verification [10, 99, 129, 135]. For example, prob-

abilistic inference over graphical models can be reduced to constrained counting for

propositional formulas [48, 135]. In addition, approximate probabilistic reasoning re-

lies heavily on sampling from high-dimensional probabilistic spaces encoded as sets

of constraints [69, 99]. Both constrained sampling and counting can be viewed as

aspects of one of the most fundamental problems in artificial intelligence: exploring

the structure of the solution space of a set of constraints [137].

Constrained sampling and counting are known to be computationally hard [150,

100, 148]. To bypass these hardness results, approximate versions of the problems have

been investigated. Despite strong theoretical and practical interest in approximation

techniques over the years, there is still an immense gap between theory and practice

in this area. Theoretical algorithms offer guarantees on the quality of approximation,

but do not scale in practice, whereas practical tools achieve scalability at the cost of

offering weaker or no guarantees.

The hashing-based approach introduced in this thesis has yielded significant progress
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in this area. By combining the ideas of using constraint solvers as an oracle and the re-

duction of the solution space via universal hashing, we have developed highly scalable

algorithms that offer rigorous approximation guarantees.

In the context of constrained counting, we presented a new approach to hashing-

based unweighted counting, which allows out-of-order-search with dependent hash

functions, dramatically reducing the number of SAT solver calls from linear to loga-

rithmic in the size of the support of interest. This is achieved while retaining strong

theoretical guarantees and without increasing the complexity of each SAT solver call.

We then discussed how our hashing-based techniques can be lifted to handle weighted

counting. Prior hashing-based approaches to WMC employed computationally ex-

pensive MPE oracle. In contrast, we only employ NP oracle. We introduced a novel

parameter, t ilt, to capture the hardness of benchmarks with respect to hashing-based

approach. We then presented a complementary approach wherein we propose an effi-

cient reduction of weighted to unweighted counting if the weight function is expressed

using literal-weighted representation. To handle word-level constraints, we presented,

HSMT , a word-level hash function and employed it to build SMTApproxMC, an ap-

proximate word-level model counter.

We employed hashing-based counting framework to estimate reliability of power-

grid networks, which is crucial for decision making to ensure availability and resilience

of critical facilities. Our counting-based reliability estimation framework, RelNet, un-

like the current state of the art techniques, can scale to real world networks arising

from cities across U.S., especially when exact reliability computations are not afford-

able.

In the context of constrained sampling, we designed a new hashing-based algo-

rithm called UniGen, which is the first algorithm to provide guarantees of almost-
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uniformity, while scaling to the problems involving hundreds of thousands of vari-

ables. As a mark of departure from previous hashing-based approach, UniGen first

invokes an approximate model counting routine to get an estimate of the number

of cells that it should divide the space of solutions into. Then, UniGen employs NP

oracle to enumerate all the solutions for a randomly chosen cell that passes the check

for “smallness”. In order to design efficient NP queries, we introduced the notion

of sampling set of the variables which allows construction of sparser hash functions.

Consequently, UniGen is able to scale to problems involving hundreds of thousands

of variables where the sampling set is small. We then introduced an adaptation

of UniGen, UniGen2, that addresses key performance deficiencies of UniGen. Signifi-

cantly, we showed that UniGen2 achieves a near-linear speedup with the number of

cores, without any degradation of uniformity either in theory or in practice. This sug-

gests a new high-performance paradigm for generating (near-)uniformly distributed

solutions of a system of constraints. Specifically, it is no longer necessary to gain

performance by sacrificing uniformity in a sequential sampler.

Finally, we considered adaptation of UniGen to handle the problem of distribution

aware sampling. For approximation techniques that provide strong theoretical two-

way bounds, a major limitation is the reliance on potentially-expensive most probable

explanation (MPE) queries. We identify a novel parameter, tilt, to categorize weighted

counting and sampling problems for SAT. We showed how to remove this reliance on

MPE queries, while retaining strong theoretical guarantees. Experimental results

demonstrate the effectiveness of this approach in practice when the tilt is small.

The performance of hashing-based techniques presented in this thesis is primarily

affected by the runtime of combinatorial solvers for the queries that are typically

expressed as conjunction of CNF and constraints from hash functions. Furthermore,
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it has been observed that lower density XORs are easy to reason in practice and

runtime performance of solvers greatly enhances with the decrease in the density of

XOR-constraints [85]. In this context, it is important to note that hash functions

constructed over Independent Support still retains the same theoretical guarantees

with respect to universality. The importance of this observation comes from the fact

that for many important classes of problems the size of an independent support is

typically one to two orders of magnitude smaller than the number of all variables,

which in turn leads to XOR constraints of typical density of 1/200 to 1/20, i.e. one

to two orders of magnitude smaller than that of the traditional hash functions.

In Chapter 11, we presented the first algorithmic procedure and corresponding

tool, MIS, to determine minimal independent support via reduction to Group MUS.

The experimental evaluation over an extensive suite of benchmarks demonstrate that

MIS scales to large formulas. Furthermore, the minimal independent supports com-

puted by MIS lead to 2-3 orders of magnitude improvement in the performance of

UniGen2 and ApproxMC. Finally, construction of XORs over independent support

allows us to obtain tight theoretical bounds on the size of XOR constraints for ap-

proximate model counting – in some cases, even better than previously observed

empirical bounds.

Overall, we were able to take the first step in bridging the gap between theory

and practice in constrained sampling and counting.

12.1 Future Work

The hashing-based framework introduced in this thesis is just the first step in bridging

the gap between theory and practice in constrained counting and sampling. Inspired

by the success of SAT solving and in the hope of creating a similar counting and



209

sampling revolution, we end with a list of several open directions that, we believe,

would be crucial to achieve the “promised” revolution:

12.1.1 Dependence on ε

The hashing-based counting algorithms proposed in this thesis provide (ε, δ) guaran-

tees and make O(log n log(1
δ
)( 1
ε2

)) calls to SAT oracle. While in practice the quality

of approximations are significantly better than the theoretical guarantees, we are still

gazing at a wide gap between theory and practice (c.f. discussion in Section 4.2.2).

In particular, invoking the hashing-based algorithms with very small ε would imply

impractical running times. ApproxMC2 requires O( 1
ε2

) invocation of the underlying

NP oracle. This presents significant challenges when ε is very small. Approaches

based on Stockmeyer’s hashing-based approach [144] lead to O(1
ε
) dependence but

fail to scale to large instances. Therefore, a promising direction of future research

would be to design techniques that would provide O(1
ε
) dependence on ε and scale to

large instances.

12.1.2 Weighted to Unweighted Reductions

The proposed reductions in Chapter 5 open up new research directions. While we fo-

cused on exact WMC in Chapter 5, the computational difficulty of exact inferencing in

complex graphical models has led to significant recent interest in approximate WMC.

In this context, it is worth noting that the reduction proposed in Theorem 13a allows

us to lift approximation guarantees from the unweighted to the weighted setting for

CNF formulas. Unfortunately, this is not the case for the reduction proposed in The-

orem 13b, which is required for DNF formulas. The question of whether there exists

an approximation-preserving reduction from WMC to UMC that also preserves DNF
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is open. The practical feasibility of solving approximate WMC problems by reduc-

ing them to their unweighted counterpart, even in the case of CNF formulas, requires

further detailed investigation. This is particularly challenging since the current reduc-

tions introduce extra variables, which is known to adversely affect XOR-hashing-based

state-of-the-art approximation techniques [39, 72].

Another interesting direction of research is CNF/DNF-preserving reductions from

ConstraintWMC to UMC. Investigations in this direction can lead to improvements in

both modeling and inferencing techniques in probabilistic programming frameworks.

The design of practically efficient unweighted DNF model counters is also a fruitful

line of research, since our reduction allows us to transform any such tool to a weighted

DNF model counter.

12.1.3 Eager and Lazy SMT

The fundamental idea underlying our approach is the use of 3-universal hash functions

(see ealier discussion) to partition the space of solutions into small cells. We express

hashing constraints by means of random XOR constraints over a subset of sampling

variables. The resulting formula is, consequently, the input CNF formula augmented

with random XOR constraints. While XOR constraints by themselves are solvable

efficiently using Gaussian elimination, CNF formulas augmented with random XOR

clauses are very hard to solve by traditional SAT solvers. In our work, we use Cryp-

toMiniSAT, a specialized solver for CNF formulas augmented with XOR constraints.

CryptoMiniSAT can be viewed as a lazy SMT solver. This means that solving CNF

constraints and XOR constraints is separated. Generally, lazy SMT solvers interleave

iterations focusing on CNF constraints, using standard SAT techniques, with iter-

ations focusing on theory constraints, using theory-specific techniques. Unlike lazy
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solvers, eager SMT solvers do not separate propositional and theory constraints. For

example, eager SMT(BV) (bit-vector constraints) solvers rely on efficient CNF en-

coding of the input problem, leveraging solely the power of SAT solvers, e.g. [28]. It

is not, however, clear that the lazy approach is necessarily superior to eager approach

for solving CNF formulas augmented with random XOR constraints. While random

XOR constraints on their own have been thoroughly studied, cf. [6], the combination

of CNF constraints with random XOR constraints is yet to be studied. Therefore,

an interesting direction of future research would be to study the tradeoff between

eager and lazy SMT solving in this context; particularly, in our study of sampling

and counting for SMT(BV), building on recent comparisons of the eager and lazy

approaches in SMT solving [92].

12.1.4 Sampling for SMT

The problems of sampling of propositional formulas generalize naturally to the cor-

responding problems for formulas in richer first-order theories. Of particular interest

are SMT (Satisfiability Modulo Theories) formulas that arise in program verification

and testing, probabilistic-program analysis, quantitative-information flow, word-level

hardware verification, constrained-random verification, probabilistic databases, and

the like [50, 56, 90, 128, 132, 158].

The hash function, HSMT only provides guarantees of 2-universality while the pro-

posed hashing-based approach, UniGen2, requires 3-universal hash fucntions. There-

fore, an extension of hashing-based technique would requires us to design 3-universal

hash functions. While XOR constraints are excellent choices for 3-universal hash func-

tions when reasoning about propositional constraints, the existence of richer operators

and domains in first-order theories provides an opportunity for using alternative hash
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functions, which lend themselves to increased computational efficiency in practice,

while still providing guarantees of 3-universality.

12.1.5 Application to PAC Learning

We expect our efficient constrained sampling and counting algorithms to have broad

applications. For example, our techniques may have an interesting application in PAC

(probably approximately correct) learning [105, 151]. Bshouty et al. [32] showed that

any class of Boolean functions that can be learned from membership queries with

unlimited computational power can also be learned in probabilistic polynomial time

with an NP oracle (BPPNP) using membership queries. The technique relies on the

probabilistic estimation of threshold functions, which employs almost-uniform sam-

pling. So far, this widely cited result has been considered of pure theoretical interest

due to the perceived infeasibility of almost-uniform sampling, but it may now become

practical. More generally, sampling is a very fundamental basic operation in many

computational-learning algorithms, cf. [152]. Therefore, an interesting direction of

future research would be to study how hashing-based framework can enable reduction

to practice of PAC-learning algorithms that have been studied only theoretically until

now.
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APPENDIX

Table A1 : Extended Table of Performance Comparison of ApproxMC vis-a-vis ApproxMC2

Benchmark Vars Clauses ApproxMC2 Time ApproxMC Time ApproxMC2 SATCalls ApproxMC SATCalls

case106 204 509 133.92 – 2377 –

case35 400 1414 215.35 – 1809 –

case146 219 558 4586.26 – 1986 –

tutorial3 486193 2598178 12373.99 – 1744 –

case202 200 544 149.56 – 1839 –

case203 214 580 165.17 – 1800 –

case205 214 580 300.11 – 1793 –

s953a 15 7 602 1657 161.41 – 1648 –

s953a 7 4 533 1373 16218.67 – 1832 –

case 1 b14 1 238 681 132.47 – 1814 –

case 2 b14 1 238 681 129.95 – 1805 –

case119 267 787 906.88 – 2044 –

case133 211 615 18502.44 – 2043 –

case 3 b14 1 238 681 125.69 – 1831 –

case204 214 580 166.2 – 1808 –

case136 211 615 9754.08 – 2026 –

llreverse 63797 257657 1938.1 4482.94 1219 2801

lltraversal 39912 167842 151.33 450.57 1516 4258

karatsuba 19594 82417 23553.73 28817.79 1378 13360

enqueueSeqSK 16466 58515 192.96 2036.09 2207 23321

20 15475 60994 1778.45 20557.24 2308 34815

77 14535 27573 88.36 1529.34 2054 24764

sort 12125 49611 209.0 3610.4 1605 27731

LoginService2 11511 41411 26.04 110.77 1533 10653

81 10775 38006 158.93 10555.13 2220 33954

17 10090 27056 100.76 4874.39 1810 28407

29 8866 31557 87.78 3569.25 1712 28630

LoginService 8200 26689 21.77 101.15 1498 12520

19 6993 23867 126.23 11051.95 1827 31352

Pollard 7815 41258 12.8 16.55 1023 695

7 6683 24816 84.1 5332.76 2062 31195

doublyLinkedList 6890 26918 17.05 75.45 1615 10647

tree delete 5758 22105 8.87 33.84 1455 7647

35 4915 10547 77.53 6074.75 2028 32096

80 4969 17060 76.88 5039.37 2389 30294

ProcessBean 4768 14458 213.78 15558.75 2296 33493

56 4842 17828 126.96 1024.36 2218 22988

Continued on next page
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Benchmark Vars Clauses ApproxMC2 Time ApproxMC Time ApproxMC2 SATCalls ApproxMC SATCalls

70 4670 15864 68.18 1026.99 2307 23902

ProjectService3 3175 11019 190.98 19626.24 1715 36762

32 3834 13594 49.86 1102.68 1882 21835

55 3128 12145 90.33 7623.13 1810 28322

51 3708 14594 86.9 1538.87 2091 22115

109 3565 14012 77.69 917.19 1752 21104

NotificationServiceImpl2 3540 13425 22.2 74.76 2265 15186

aig insertion2 2592 10156 13.18 120.56 2412 16729

53 2586 10747 32.29 248.26 1885 17680

ConcreteActivityService 2481 9011 6.01 33.56 1619 13072

111 2348 5479 42.49 567.25 1884 20383

aig insertion1 2296 9326 24.91 127.94 2416 16779

case 3 b14 2 270 805 90.88 18114.84 2028 31194

ActivityService2 1952 6867 2.74 13.09 1542 9700

IterationService 1896 6732 3.39 16.74 1572 10570

squaring7 1628 5837 323.58 8774.17 1791 29298

ActivityService 1837 5968 2.39 11.62 1633 9606

10 1494 2215 135.04 4759.18 2020 30270

case 2 b14 2 270 805 90.17 13479.3 2002 31179

PhaseService 1686 5655 2.45 12.03 1617 9649

squaring9 1434 5028 308.34 6131.25 1718 29324

case 1 b12 2 827 2725 129.03 9964.91 1808 29328

UserServiceImpl 1509 5009 1.49 7.1 1480 7707

27 1509 2707 34.96 130.23 1885 17489

squaring8 1101 3642 250.2 9963.56 1784 29386

case 2 b12 2 827 2725 122.64 7967.12 1803 29342

case 1 b14 2 270 805 89.69 10777.71 2038 31187

case 0 b12 2 827 2725 134.65 8362.19 1808 29340

IssueServiceImpl 1393 4319 2.48 13.37 1589 10469

squaring10 1099 3632 290.64 6208.98 1773 29391

squaring11 966 3213 324.63 11111.49 1795 29280

s953a 3 2 515 1297 165.81 11968.07 1826 33920

squaring29 1141 4248 135.4 1290.88 2002 18662

squaring3 885 2809 281.29 8836.68 1802 27618

squaring28 1060 3839 129.46 1164.31 2091 18685

squaring6 885 2809 233.72 5799.3 1753 27580

s1196a 15 7 777 2165 73.26 2577.71 1938 23097

squaring30 1031 3693 117.53 1134.18 2006 18668

squaring1 891 2839 227.03 5145.1 1787 27557

squaring4 891 2839 274.71 6094.24 1774 27646

squaring2 885 2809 240.35 5112.72 1805 27577

squaring5 885 2809 352.17 6477.17 1819 27559

GuidanceService 988 3088 3.59 17.08 1632 13115

case 1 b14 3 304 941 109.46 7432.67 1829 28444

s1488 15 7 941 2783 1.57 5.02 1553 5867

squaring26 894 3187 102.08 787.16 1997 17569

case 3 b14 3 304 941 104.65 6821.33 1815 28424

Continued on next page
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Benchmark Vars Clauses ApproxMC2 Time ApproxMC Time ApproxMC2 SATCalls ApproxMC SATCalls

case201 200 544 221.78 16171.04 1814 32970

squaring25 846 2947 110.25 791.63 2074 17437

tree delete3 795 2734 46.39 562.39 1595 20763

s1488 7 4 872 2499 1.46 5.43 1523 6891

squaring27 837 2901 110.1 714.37 2028 17337

s1488 3 2 854 2423 1.8 6.51 1501 5527

case 2 b14 3 304 941 114.36 6643.4 1815 28443

s1238a 15 7 773 2210 66.87 713.17 1841 22792

case 0 b11 1 340 1026 123.65 6398.95 1777 29323

s1196a 7 4 708 1881 76.44 917.27 1800 22442

s1196a 3 2 690 1805 62.64 827.91 1711 22177

s1238a 7 4 704 1926 66.48 716.53 1813 22545

case 1 b11 1 340 1026 124.08 5754.05 1810 29352

s1238a 3 2 686 1850 77.88 895.66 1848 23171

GuidanceService2 715 2181 2.37 15.56 1605 13252

squaring23 710 2268 74.37 429.83 2358 15911

squaring22 695 2193 71.75 466.91 2357 15891

squaring20 696 2198 78.24 466.67 2357 15813

squaring21 697 2203 81.89 460.94 2451 15877

squaring24 695 2193 80.76 462.12 2363 15849

s832a 15 7 693 2017 6.01 29.68 1608 14808

s820a 15 7 685 1987 2.52 12.0 1483 12488

s832a 7 4 624 1733 2.47 11.66 1543 12713

s832a 3 2 606 1657 1.26 6.71 1717 11449

s820a 7 4 616 1703 2.41 9.83 1435 12328

s820a 3 2 598 1627 1.19 5.75 1646 10746

case34 409 1597 124.7 2665.47 1818 27561

s420 15 7 366 994 81.34 2011.14 2060 24871

case6 329 996 113.94 3233.94 2043 25750

s420 new 15 7 351 934 73.18 1897.5 2054 24885

case131 432 1830 76.96 1293.21 1852 24230

s420 7 4 312 770 82.7 2373.55 2049 24887

s420 new1 15 7 366 994 79.42 1732.28 2053 24868

case121 291 975 112.0 3046.07 1809 29418

case 0 b12 1 427 1385 67.81 914.84 1880 22212

squaring50 500 1965 31.92 190.39 2388 16703

squaring51 496 1947 37.45 230.85 2094 16804

case 1 b12 1 427 1385 66.94 866.66 1894 22152

case 2 b12 1 427 1385 63.55 797.71 1882 22206

s420 new1 7 4 312 770 85.19 2045.89 2061 24869

case125 393 1555 86.17 1324.85 2306 23975

case123 267 980 58.88 1625.83 2250 23066

case143 427 1592 71.83 696.46 2139 19449

s420 new 7 4 312 770 74.5 1485.23 2054 24887

case105 170 407 227.36 7361.33 2330 32045

case114 428 1851 24.83 151.71 1854 17679

case115 428 1851 29.09 173.42 1888 17659

Continued on next page
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Benchmark Vars Clauses ApproxMC2 Time ApproxMC Time ApproxMC2 SATCalls ApproxMC SATCalls

case116 438 1881 31.59 156.56 1897 17636

s526a 15 7 453 1304 20.35 67.56 1887 15811

s526 15 7 452 1303 17.69 58.43 1898 15861

case126 302 1129 74.05 1312.09 2316 23068

s420 new 3 2 294 694 88.48 1577.85 2052 24925

s420 new1 3 2 294 694 93.87 1590.05 2053 24485

s420 3 2 294 694 97.18 1399.45 2052 24933

s526a 7 4 384 1020 13.39 46.53 1805 15711

case57 288 1158 57.97 703.78 1647 21193

s444 15 7 377 1072 8.43 26.74 1634 14897

case62 291 1165 71.35 833.88 1973 22174

s526 7 4 383 1019 20.55 44.41 1820 15200

s526 3 2 365 943 7.66 24.51 1964 14977

s526a 3 2 366 944 12.45 26.09 1772 15219

s382 15 7 350 995 22.29 67.46 1763 16207

registerlesSwap 372 1493 0.42 0.33 1018 685

s510 15 7 340 948 20.59 56.42 1840 16558

s510 7 4 316 844 18.06 73.38 1842 16622

case117 309 1367 0.75 3.44 1712 8665

case122 314 1258 17.59 67.53 1963 16806

case111 306 1358 0.62 2.86 1519 7686

case118 309 1367 0.84 3.44 1933 8650

case113 309 1367 0.93 3.77 1972 8624

s510 3 2 298 768 15.14 74.08 1871 16667

s349 15 7 285 829 13.18 76.65 1906 15850

s444 7 4 308 788 18.25 62.97 1766 16260

s298 15 7 292 870 0.86 4.08 1756 9569

case2 296 1116 10.08 39.7 1662 14956

s344 15 7 284 824 12.76 60.94 1887 15837

case3 294 1110 11.52 40.84 1648 14935

case110 287 1263 0.69 2.74 1776 7771

s444 3 2 290 712 6.48 18.76 1601 14909

s382 7 4 281 711 7.83 28.86 1538 14832

s382 3 2 263 635 5.33 21.47 1624 14915

case109 241 915 5.53 24.43 1711 13172

case132 236 708 22.7 94.67 1683 14076

s298 7 4 223 586 0.67 3.42 1690 9492

case135 236 708 19.74 68.81 1659 13858

case56 202 722 1.84 10.02 1676 13176

s298 3 2 205 510 0.59 2.92 1747 8670

case108 205 800 0.87 4.15 1731 9554

s344 7 4 215 540 14.53 47.24 1875 15887

case54 203 725 2.49 10.56 1679 13197

case5 176 518 72.42 474.93 2103 18572

case1 187 681 0.73 3.8 1726 10331

case46 176 660 0.64 3.53 1726 9572

case44 173 651 0.61 3.52 1754 9548

Continued on next page
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Benchmark Vars Clauses ApproxMC2 Time ApproxMC Time ApproxMC2 SATCalls ApproxMC SATCalls

case124 133 386 66.62 653.36 1730 20333

s344 3 2 197 464 12.37 38.68 1896 15915

s349 7 4 216 545 41.0 39.31 1893 15854

case68 178 553 1.12 5.25 1744 10430

s349 3 2 198 469 18.26 40.07 1862 15841

case8 160 525 9.68 37.17 1883 15874

case53 132 395 0.67 4.18 1741 11410

case55 149 442 2.18 8.88 1667 13128

case51 132 395 0.66 3.76 1740 11220

case38 143 568 0.34 1.31 1641 5956

case112 137 520 0.5 2.17 1975 8668

case52 132 395 0.85 3.83 1743 11357

case22 126 411 0.27 1.22 1516 6856

case21 126 411 0.28 1.2 1526 6808

case47 118 328 1.11 5.47 1756 11378

case45 116 421 0.29 1.49 1496 7662

case7 116 365 0.57 2.83 1739 10475

case43 116 421 0.31 1.54 1517 7726

case11 105 371 0.28 1.48 1458 7719

case4 103 316 0.37 1.71 1900 8515

case63 96 299 0.36 1.75 1630 8621

case64 93 285 0.4 1.85 1927 8748

case58 96 299 0.42 1.79 1884 8704

case59 93 285 0.39 1.75 1927 8723

case59 1 93 285 0.39 1.69 1972 8642

case134 60 146 0.37 2.34 1710 11336

case101 72 178 2.12 10.02 1666 14100

case100 72 178 2.0 8.73 1675 14072

case23 77 235 0.22 0.7 1604 5034

case17 77 235 0.22 0.69 1608 5069

case137 60 146 0.52 2.43 1779 11219

case32 52 146 0.15 0.76 1372 4106

case25 68 195 0.18 0.44 1323 3266

case30 68 195 0.18 0.43 1341 3259

case26 53 148 0.16 0.55 1352 4120

case36 64 208 0.15 0.34 1338 2426

case27 52 146 0.15 0.51 1369 4156

case31 53 148 0.16 0.52 1374 4125

case29 65 190 0.15 0.28 1181 2360

case24 65 190 0.17 0.28 1227 2267

case33 51 143 0.18 0.52 1369 4199

case28 51 143 0.18 0.48 1316 4153

case103 32 86 0.12 0.24 1233 2349

case102 34 92 0.15 0.25 1215 2357

squaring12 1507 5210 – 8419.06 423 31880

squaring16 1627 5835 – 9926.56 423 31778

squaring14 1458 5009 – 13892.48 423 31842
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Table A2 : Extended Table of Runtime Performance comparison of
sharpWeightSAT vis-a-vis SDD

sharpSAT + Reduction = sharpWeightSAT DSharp SDD

Benchmark

Orig

#vars

Orig

#clas
Final
#vars

Final
#claus

Transform
time(s)

Counting

time(s)

Counting

time(s) time(s)

fs-01.net 32 38 242 278 0.38 0.04 0.01 0.01

or-50-10-10-UC-40 100 272 310 512 0.12 0.06 0.05 0.2

or-50-10-10-UC-30 100 264 190 384 0.02 0.06 0.05 0.49

or-50-10-1-UC-40 100 273 310 513 0.02 0.06 0.05 0.32

or-50-20-10-UC-30 100 267 310 507 0.03 0.15 0.45 3.92

or-50-20-10-UC-40 100 274 190 394 0.02 0.02 0.14 1.05

or-50-10-1-UC-30 100 266 190 386 0.02 0.07 0.06 0.39

or-50-20-1-UC-40 100 272 190 392 0.02 0.08 0.07 0.98

or-50-10-9-UC-40 100 264 190 384 0.04 0.15 0.08 0.67

or-50-10-1-UC-20 100 262 190 382 0.03 0.08 0.09 0.98

or-50-10-10-UC-20 100 261 310 501 0.16 0.09 0.04 0.78

cliquen10 110 200 276 411 0.06 0.34 – 11.26

or-60-5-2-UC-40 120 323 330 563 0.03 0.01 0.05 0.53

or-70-10-3-UC-40 140 383 230 503 0.03 0.01 0.06 –

or-70-10-3-UC-30 140 374 350 614 0.05 0.09 0.07 0.85

or-70-5-7-UC-40 140 381 350 621 0.06 0.09 0.05 0.57

or-70-20-9-UC-30 140 374 350 614 0.03 0.02 0.05 1.16

or-70-5-2-UC-30 140 371 350 611 0.11 0.06 0.05 1.43

or-70-5-7-UC-30 140 370 350 610 0.03 0.02 0.06 1.05

or-70-20-9-UC-40 140 383 230 503 0.02 0.07 0.07 0.73

or-70-5-2-UC-40 140 378 350 618 0.02 0.01 0.05 0.59

or-70-10-6-UC-40 140 391 230 511 0.02 0.01 0.05 0.37

or-70-20-6-UC-40 140 375 350 615 0.05 0.02 0.15 1.28

or-70-10-6-UC-30 140 379 230 499 0.02 0.06 0.08 1.21

5step 177 475 267 595 0.02 0.09 0.02 4.49

or-100-20-9-UC-50 200 557 290 677 0.04 0.03 0.07 1.17

or-100-20-9-UC-60 200 561 410 801 0.05 0.11 0.05 1.34

or-100-20-6-UC-60 200 564 290 684 0.04 0.06 0.05 0.95

cliquen15 240 450 617 932 0.02 11.29 – 536.85

case121 291 975 381 1095 0.04 0.12 12.46 6.6

BN 104 294 537 914 1307 0.03 0.07 0.31 0.73

case 1 b11 1 340 1026 550 1266 0.03 92.16 1059.82 64.3

Continued on next page
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sharpSAT + Reduction = sharpWeightSAT DSharp SDD

Benchmark

Orig

#vars

Orig

#clas
Final
#vars

Final
#claus

Transform
time(s)

Counting

time(s)

Counting

time(s) time(s)

s526 3 2 365 943 455 1063 0.02 0.22 0.62 –

s526a 3 2 366 944 456 1064 0.04 0.17 1.79 –

case35 400 1414 490 1534 0.03 0.54 18.66 76.35

cliquen20 420 800 1750 2320 0.62 21.49 – –

s526 15 7 452 1303 542 1423 0.03 0.94 5.75 –

s953a 3 2 515 1297 605 1417 0.03 0.1 1.08 –

BN 112 541 1443 2187 3489 0.05 0.08 0.6 3.46

lang12 576 13584 786 13824 0.06 334.5 1276.3 –

BN 110 620 1568 3966 5392 0.46 0.08 0.48 9.74

BN 106 630 1692 2607 4155 0.07 0.14 0.25 3.6

cliquen25 650 1250 1742 2642 0.05 260.06 – –

s1238a 3 2 686 1850 896 2090 0.04 0.45 6.94 –

s1196a 3 2 690 1805 780 1925 0.04 0.34 10.53 –

s1238a 7 4 704 1926 914 2166 0.11 0.63 6.54 –

s1196a 7 4 708 1881 798 2001 0.07 0.61 7.28 –

s1238a 15 7 773 2210 863 2330 0.05 0.56 10.2 –

s1196a 15 7 777 2165 867 2285 0.06 0.54 8.88 –

case 2 b12 2 827 2725 917 2845 0.06 34.11 714.37 735.68

squaring1 891 2839 981 2959 0.04 10.02 97.86 –

BN 67 925 2063 1240 2423 0.07 0.38 2.11 3239.31

BN 65 925 2063 1150 2333 0.05 0.11 1.52 –

cliquen30 930 1800 2517 3821 0.11 300.86 – –

rbm 20 960 1760 4546 6226 0.1 1231.3 – –

squaring10 1099 3632 1189 3752 0.1 43.08 998.32 –

squaring8 1101 3642 1191 3762 0.06 21.41 392.11 –

BN 59 1112 2661 1272 2853 0.21 0.68 12.07 820.8

BN 63 1112 2661 1272 2853 0.04 0.68 8.68 –

BN 53 1154 2692 1314 2884 0.07 1.23 8.5 1425.19

BN 57 1154 2692 1378 2948 0.05 0.64 10.89 523.0

BN 55 1154 2692 1314 2884 0.1 1.11 – –

BN 47 1336 3376 1406 3460 0.11 0.11 1.49 170.92

BN 51 1336 3376 1434 3488 0.09 0.09 1.08 185.71

BN 49 1336 3376 1434 3488 0.09 0.24 – 1296.78

BN 61 1348 3388 1418 3472 0.05 0.2 1.77 157.88

Continued on next page
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sharpSAT + Reduction = sharpWeightSAT DSharp SDD

Benchmark

Orig

#vars

Orig

#clas
Final
#vars

Final
#claus

Transform
time(s)

Counting

time(s)

Counting

time(s) time(s)

blockmap 05 01.net 1411 2737 1501 2857 0.04 0.13 1.05 11.75

squaring9 1434 5028 1524 5148 0.07 32.68 721.14 –

squaring14 1458 5009 1548 5129 0.07 68.75 2152.41 –

squaring12 1507 5210 1597 5330 0.06 79.02 1305.58 –

squaring16 1627 5835 1723 5963 0.07 – 2623.12 –

squaring7 1628 5837 1724 5965 0.13 40.31 1383.83 –

blockmap 05 02.net 1738 3452 1976 3724 0.09 0.08 2.35 15.45

BN 43 1820 3806 2240 4286 0.34 8393.12 – –

BN 108 2289 8218 11028 19105 0.27 2.14 8.66 270.31

smokers 20 2580 3740 6840 8860 0.33 224.25 – –

BN 38 3938 7661 8027 12800 – – – 5760.54

treemax 24859 103762 26353 105754 1.5 3.93 338.16 –

BN 26 50470 93870 276675 352390 244.29 68.99 259.42 693.09
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Table A3 : Extended Runtime performance of
SMTApproxMC vis-a-vis CDM

Benchmark Total Bits Variable Types # of Operations
SMTApproxMC

time(s)
CDM

time(s)

squaring27 59 {1: 11, 16: 3} 10 – 2998.97

1159708 64 {8: 4, 32: 1} 12 14793.93 –

1159472 64 {8: 4, 32: 1} 8 16308.82 –

1159115 64 {8: 4, 32: 1} 12 23984.55 –

1159520 64 {8: 4, 32: 1} 1388 114.53 155.09

1160300 64 {8: 4, 32: 1} 1183 44.02 71.16

1159005 64 {8: 4, 32: 1} 213 28.88 105.6

1159751 64 {8: 4, 32: 1} 681 143.32 193.84

1159391 64 {8: 4, 32: 1} 681 57.03 91.62

case1 17 {1: 13, 4: 1} 13 17.89 65.12

1159870 64 {8: 4, 32: 1} 164 17834.09 9152.65

1160321 64 {8: 4, 32: 1} 10 117.99 265.67

1159914 64 {8: 4, 32: 1} 8 230.06 276.74

1159064 64 {8: 4, 32: 1} 10 69.58 192.36

1160493 64 {8: 4, 32: 1} 8 317.31 330.47

1159197 64 {8: 4, 32: 1} 8 83.22 176.23

1160487 64 {8: 4, 32: 1} 10 74.92 149.44

1159606 64 {8: 4, 32: 1} 686 431.23 287.85

case100 22 {1: 6, 16: 1} 8 32.62 89.69

1160397 64 {8: 4, 32: 1} 70 126.08 172.24

Continued on next page
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Benchmark Total Bits Variable Types # of Operations
SMTApproxMC

time(s)
CDM

time(s)

1160475 64 {8: 4, 32: 1} 67 265.58 211.16

case108 24 {1: 20, 4: 1} 7 37.33 100.2

case101 22 {1: 6, 16: 1} 12 44.74 90

1159244 64 {8: 4, 32: 1} 1474 408.63 273.57

case46 20 {1: 8, 4: 3} 12 16.95 76.4

case44 20 {1: 8, 4: 3} 8 13.69 72.05

case134 19 {1: 3, 16: 1} 8 5.36 54.22

case137 19 {1: 3, 16: 1} 9 10.98 56.12

case68 26 {8: 3, 1: 2} 7 34.9 67.48

case54 20 {1: 16, 4: 1} 8 50.73 103.91

1160365 64 {8: 4, 32: 1} 286 98.38 99.74

1159418 32 {8: 2, 16: 1} 7 3.73 43.68

1160877 32 {8: 2, 16: 1} 8 2.57 44.01

1160988 32 {8: 2, 16: 1} 8 4.4 44.64

1160521 32 {8: 2, 16: 1} 7 4.96 44.52

1159789 32 {8: 2, 16: 1} 13 6.35 43.09

1159117 32 {8: 2, 16: 1} 13 5.55 43.18

1159915 32 {8: 2, 16: 1} 11 7.02 45.62

1160332 32 {8: 2, 16: 1} 12 3.94 44.35

1159582 32 {8: 2, 16: 1} 8 5.37 43.98

1160530 32 {8: 2, 16: 1} 12 2.01 43.28

1160482 64 {8: 4, 32: 1} 36 153.99 120.55

Continued on next page
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Benchmark Total Bits Variable Types # of Operations
SMTApproxMC

time(s)
CDM

time(s)

1159564 32 {8: 2, 16: 1} 12 7.36 41.77

1159990 64 {8: 4, 32: 1} 34 71.17 97.25

case7 18 {1: 10, 8: 1} 12 17.93 51.96

case56 20 {1: 16, 4: 1} 12 41.54 109.3

case43 15 {1: 11, 4: 1} 12 8.6 37.63

case45 15 {1: 11, 4: 1} 12 9.3 35.77

case53 19 {1: 7, 8: 1, 4: 1} 9 53.66 69.96

case4 16 {1: 12, 4: 1} 12 8.42 35.49

1160438 64 {8: 4, 32: 1} 2366 199.08 141.84

case109 29 {1: 21, 4: 2} 12 171.51 179.98

case38 13 {1: 9, 4: 1} 7 6.21 30.27

case11 15 {1: 11, 4: 1} 8 7.26 33.75

1158973 64 {8: 4, 32: 1} 94 366.6 270.17

case22 14 {1: 10, 4: 1} 12 5.46 26.03

case21 14 {1: 10, 4: 1} 12 5.57 24.59

case52 19 {1: 7, 8: 1, 4: 1} 9 45.1 70.72

case23 12 {1: 8, 4: 1} 11 2.29 12.84

case51 19 {1: 7, 8: 1, 4: 1} 12 40 67.22

case17 12 {1: 8, 4: 1} 12 2.75 11.09

case33 11 {1: 7, 4: 1} 12 1.7 9.66

case30 13 {1: 5, 4: 2} 13 1.41 8.69

case28 11 {1: 7, 4: 1} 12 1.66 8.73

Continued on next page
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Benchmark Total Bits Variable Types # of Operations
SMTApproxMC

time(s)
CDM

time(s)

case25 13 {1: 5, 4: 2} 12 1.39 8.27

case27 11 {1: 7, 4: 1} 12 1.69 8.57

case26 11 {1: 7, 4: 1} 12 1.68 8.35

case32 11 {1: 7, 4: 1} 12 1.46 8.16

case31 11 {1: 7, 4: 1} 12 1.64 7.64

case29 12 {1: 4, 4: 2} 8 0.67 5.16

case24 12 {1: 4, 4: 2} 12 0.77 4.94

1160335 64 {8: 4, 32: 1} 216 0.31 0.54

1159940 64 {8: 4, 32: 1} 94 0.17 0.04

1159690 32 {8: 2, 16: 1} 8 0.12 0.04

1160481 32 {8: 2, 16: 1} 12 0.13 0.03

1159611 64 {8: 4, 32: 1} 73 0.2 0.09

1161180 32 {8: 2, 16: 1} 12 0.11 0.04

1160849 32 {8: 2, 16: 1} 7 0.1 0.03

1159790 64 {8: 4, 32: 1} 113 0.15 0.04

1160315 64 {8: 4, 32: 1} 102 0.17 0.04

1159720 64 {8: 4, 32: 1} 102 0.17 0.05

1159881 64 {8: 4, 32: 1} 102 0.16 0.04

1159766 64 {8: 4, 32: 1} 73 0.15 0.03

1160220 64 {8: 4, 32: 1} 681 0.17 0.03

1159353 64 {8: 4, 32: 1} 113 0.16 0.04

1160223 64 {8: 4, 32: 1} 102 0.17 0.04

Continued on next page
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Benchmark Total Bits Variable Types # of Operations
SMTApproxMC

time(s)
CDM

time(s)

1159683 64 {8: 4, 32: 1} 102 0.17 0.03

1159702 64 {8: 4, 32: 1} 102 0.19 0.04

1160378 64 {8: 4, 32: 1} 476 0.17 0.04

1159183 64 {8: 4, 32: 1} 172 0.17 0.03

1159747 64 {8: 4, 32: 1} 322 0.18 0.03

1159808 64 {8: 4, 32: 1} 539 0.17 0.03

1159849 64 {8: 4, 32: 1} 322 0.18 0.03

1159449 64 {8: 4, 32: 1} 540 0.3 0.05

case47 26 {1: 6, 8: 2, 4: 1} 11 81.5 80.25

case2 24 {1: 20, 4: 1} 10 273.91 194.33

1159239 64 {8: 4, 32: 1} 238 1159.32 449.21

case8 24 {1: 12, 8: 1, 4: 1} 8 433.2 147.35

1159936 64 {8: 4, 32: 1} 238 5835.35 1359.9

squaring51 40 {1: 32, 4: 2} 7 3285.52 607.22

1159431 64 {8: 4, 32: 1} 12 36406.4 –

1160191 64 {8: 4, 32: 1} 12 40166.1 –
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Table A4 : Extended Table of Runtime performance comparison of UniGen and
UniWit

UniGen UniWit

Benchmark #Variables |S|
Succ
Prob

Avg

Run Time (s)

Avg

XOR len

Avg

Run Time (s)

Avg

XOR len

Case121 291 48 1.0 0.19 24 56.09 145

Case1 b11 1 340 48 1.0 0.2 24 755.97 170

Case2 b12 2 827 45 1.0 0.33 22 – –

Case35 400 46 0.99 11.23 23 666.14 199

Squaring1 891 72 1.0 0.38 36 – –

Squaring8 1101 72 1.0 1.77 36 5212.19 550

Squaring10 1099 72 1.0 1.83 36 4521.11 550

Squaring7 1628 72 1.0 2.44 36 2937.5 813

Squaring9 1434 72 1.0 4.43 36 4054.42 718

Squaring14 1458 72 1.0 24.34 36 2697.42 728

Squaring12 1507 72 1.0 31.88 36 3421.83 752

Squaring16 1627 72 1.0 41.08 36 2852.17 812

s526 3 2 365 24 0.98 0.68 12 51.77 181

s526a 3 2 366 24 1.0 0.97 12 84.04 182

s526 15 7 452 24 0.99 1.68 12 23.04 225

s1196a 7 4 708 32 1.0 6.9 16 833.1 353

s1196a 3 2 690 32 1.0 7.12 16 451.03 345

s1238a 7 4 704 32 1.0 7.26 16 1570.27 352

s1238a 15 7 773 32 1.0 7.94 16 136.7 385

s1196a 15 7 777 32 0.97 8.98 16 133.45 388

s1238a 3 2 686 32 0.99 10.85 16 1416.28 342

s953a 3 2 515 45 0.99 12.48 23 22414.86 257

TreeMax 24859 19 1.0 0.52 10 49.78 12423

LLReverse 63797 25 1.0 33.92 13 3460.58 31888

LoginService2 11511 36 0.98 6.14 18 – –

EnqueueSeqSK 16466 42 1.0 32.39 21 – –

ProjectService3 3175 55 1.0 71.74 28 – –

Sort 12125 52 0.99 79.44 26 – –

Karatsuba 19594 41 1.0 85.64 21 – –

ProcessBean 4768 64 0.98 123.52 32 – –

tutorial3 4 31 486193 31 0.98 782.85 16 – –
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Table A5 : Extended Runtime performance comparison of UniGen2 and UniGen
(on a single core)

UniGen2 UniGen

Benchmark #vars #clas |S|
Succ.
Prob Runtime(s) Runtime(s)

109 new 60 55 36 1.0 0.14 19.35

32 new 60 49 38 1.0 0.12 22.66

70 new 62 49 40 1.0 0.13 16.34

29 new 69 55 45 1.0 0.12 6.05

case100 72 178 24 1.0 0.01 0.2

case101 72 178 24 1.0 0.01 0.2

10 new 103 135 46 1.0 0.14 2.18

case47 118 328 28 1.0 0.01 0.08

case124 133 386 31 1.0 0.12 3.43

case55 149 442 26 1.0 0.01 0.15

case8 160 525 26 1.0 0.04 0.96

lltraversal new 163 359 41 1.0 0.19 9.73

case105 170 407 59 1.0 0.3 7.07

case5 176 518 36 1.0 0.65 5.09

treemin new 177 451 29 1.0 0.12 2.55

s344 3 2 197 464 24 1.0 0.12 1.38

s349 3 2 198 469 24 1.0 0.12 1.46

case201 200 544 45 1.0 0.17 5.46

case202 200 544 45 1.0 0.18 5.44

case56 202 722 23 1.0 0.01 0.17

case54 203 725 23 1.0 0.01 0.17

case106 204 509 60 1.0 0.35 8.61

19 new 211 594 48 1.0 0.11 6.76

case133 211 615 42 0.98 136.04 1330.62

case136 211 615 42 0.98 128.91 1710.95

case203 214 580 49 1.0 0.13 5.22

case205 214 580 49 1.0 0.13 5.24

case204 214 580 49 1.0 0.13 5.23

tree delete3 new 215 521 44 0.99 0.27 2.81

s344 7 4 215 540 24 1.0 0.2 1.66

s349 7 4 216 545 24 1.0 0.2 1.58

case146 219 558 64 1.0 24.22 386.47

Continued on next page
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UniGen2 UniGen

Benchmark #vars #clas |S|
Succ.
Prob Runtime(s) Runtime(s)

case145 219 558 64 1.0 17.49 478.73

case132 236 708 41 1.0 0.14 2.04

case135 236 708 41 1.0 0.15 2.02

case 1 b14 1 238 681 45 1.0 0.16 5.47

case 2 b14 1 238 681 45 1.0 0.15 5.28

case 3 b14 1 238 681 45 1.0 0.18 5.26

case109 241 915 31 1.0 0.03 0.39

case14 247 649 67 1.0 108.11 2675.16

s382 3 2 263 635 24 1.0 0.04 0.41

case123 267 980 34 1.0 0.4 5.22

case119 267 787 59 1.0 1.21 39.86

case 1 b14 2 270 805 43 1.0 0.17 5.38

case 2 b14 2 270 805 43 1.0 0.16 5.34

case 3 b14 2 270 805 43 1.0 0.18 5.59

case9 279 753 67 1.0 91.03 4632.83

s382 7 4 281 711 24 1.0 0.04 0.47

case61 282 753 66 1.0 103.77 1964.81

s344 15 7 284 824 24 1.0 0.08 1.27

case120 284 851 61 1.0 4.18 198.08

s349 15 7 285 829 24 1.0 0.09 1.23

case57 288 1158 32 1.0 0.85 4.88

s444 3 2 290 712 24 1.0 0.04 0.4

case121 291 975 48 1.0 0.17 5.5

case62 291 1165 33 1.0 0.21 5.59

s420 3 2 294 694 34 1.0 0.36 7.38

s420 new1 3 2 294 694 34 1.0 0.35 7.41

s420 new 3 2 294 694 34 1.0 0.24 6.2

case3 294 1110 26 1.0 0.04 0.84

case2 296 1116 26 1.0 0.05 0.83

s510 3 2 298 768 25 1.0 0.1 1.27

case126 302 1129 34 1.0 0.24 4.88

case 1 b14 3 304 941 40 1.0 0.18 5.61

case 2 b14 3 304 941 40 1.0 0.18 5.62

case 3 b14 3 304 941 40 1.0 0.18 5.76

Continued on next page
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UniGen2 UniGen

Benchmark #vars #clas |S|
Succ.
Prob Runtime(s) Runtime(s)

s444 7 4 308 788 24 0.99 0.13 1.28

s420 new1 7 4 312 770 34 1.0 0.22 5.79

s420 new 7 4 312 770 34 1.0 0.17 5.81

s420 7 4 312 770 34 1.0 0.24 5.79

case122 314 1258 27 1.0 0.07 1.46

s510 7 4 316 844 25 1.0 0.1 1.21

case6 329 996 52 1.0 0.2 6.96

case 0 b11 1 340 1026 48 1.0 0.21 6.06

case 1 b11 1 340 1026 48 1.0 0.23 6.16

s510 15 7 340 948 25 1.0 0.09 1.23

s382 15 7 350 995 24 1.0 0.14 1.41

s420 new 15 7 351 934 34 1.0 0.16 5.31

s526 3 2 365 943 24 1.0 0.04 0.87

s420 15 7 366 994 34 1.0 0.18 5.3

s420 new1 15 7 366 994 34 1.0 0.19 5.37

s526a 3 2 366 944 24 1.0 0.06 0.6

s444 15 7 377 1072 24 1.0 0.06 0.84

s526 7 4 383 1019 24 1.0 0.09 0.86

77 new 384 2171 44 1.0 0.12 26.92

s526a 7 4 384 1020 24 1.0 0.08 0.98

case125 393 1555 35 1.0 0.44 6.48

case35 400 1414 46 1.0 0.27 8.88

case34 409 1597 39 1.0 0.2 5.78

case143 427 1592 48 1.0 0.2 5.24

case 0 b12 1 427 1385 37 1.0 0.17 4.41

case 2 b12 1 427 1385 37 1.0 0.18 4.39

case 1 b12 1 427 1385 37 1.0 0.19 4.57

case115 428 1851 28 1.0 0.11 2.44

case114 428 1851 28 1.0 0.1 2.43

case131 432 1830 36 1.0 0.26 2.97

case116 438 1881 28 1.0 0.09 2.4

s526 15 7 452 1303 24 1.0 0.07 1.4

s526a 15 7 453 1304 24 1.0 0.07 1.37

isolateRightmost new 483 1498 64 1.0 0.28 18.56

Continued on next page
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UniGen2 UniGen

Benchmark #vars #clas |S|
Succ.
Prob Runtime(s) Runtime(s)

squaring51 496 1947 42 1.0 0.13 2.86

squaring50 500 1965 42 1.0 0.14 2.86

s953a 3 2 515 1297 45 1.0 0.67 11.6

s953a 7 4 533 1373 45 1.0 22.42 1303.7

s953a 15 7 602 1657 45 1.0 0.49 10.64

s820a 7 4 616 1703 23 1.0 0.01 0.15

s832a 7 4 624 1733 23 1.0 0.01 0.12

s820a 15 7 685 1987 23 1.0 0.01 0.11

s1238a 3 2 686 1850 32 1.0 0.3 7.17

s1196a 3 2 690 1805 32 1.0 0.23 4.54

s832a 15 7 693 2017 23 1.0 0.04 0.51

squaring24 695 2193 61 1.0 0.29 6.98

squaring22 695 2193 61 1.0 0.28 6.89

squaring20 696 2198 61 1.0 0.29 6.96

squaring21 697 2203 61 1.0 0.27 6.78

s1238a 7 4 704 1926 32 1.0 0.23 3.11

s1196a 7 4 708 1881 32 1.0 0.29 3.3

squaring23 710 2268 61 1.0 0.28 7.05

GuidanceService2 715 2181 27 1.0 0.02 0.34

s1238a 15 7 773 2210 32 1.0 0.21 3.55

s1196a 15 7 777 2165 32 1.0 0.18 4.87

tree delete3 795 2734 32 1.0 0.2 3.64

case 0 b12 2 827 2725 45 1.0 0.25 6.74

case 2 b12 2 827 2725 45 1.0 0.24 6.72

case 1 b12 2 827 2725 45 1.0 0.24 6.77

squaring27 837 2901 61 1.0 0.36 6.39

squaring25 846 2947 61 1.0 0.35 6.66

squaring3 885 2809 72 1.0 0.58 15.94

squaring2 885 2809 72 1.0 0.6 17.15

squaring6 885 2809 72 1.0 0.76 15.81

squaring5 885 2809 72 1.0 0.58 15.49

squaring1 891 2839 72 1.0 0.69 16.0

squaring4 891 2839 72 1.0 0.66 15.49

squaring26 894 3187 61 1.0 0.4 6.92

Continued on next page
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UniGen2 UniGen

Benchmark #vars #clas |S|
Succ.
Prob Runtime(s) Runtime(s)

squaring11 966 3213 72 1.0 0.85 18.53

GuidanceService 988 3088 27 1.0 0.02 0.23

squaring30 1031 3693 61 1.0 0.55 15.3

squaring28 1060 3839 61 1.0 0.46 15.67

llreverse new 1096 4217 47 1.0 0.18 10.1

squaring10 1099 3632 72 1.0 0.73 20.65

squaring8 1101 3642 72 1.0 0.76 19.64

squaring29 1141 4248 61 1.0 0.65 19.42

79 new 1217 4034 40 1.0 2.93 21.24

IssueServiceImpl 1393 4319 30 1.0 0.01 0.1

squaring9 1434 5028 72 1.0 1.03 20.35

squaring14 1458 5009 72 1.0 2.62 48.73

10 1494 2215 46 1.0 0.33 85.45

squaring12 1507 5210 72 1.0 3.25 62.44

27 1509 2707 32 1.0 0.22 6.37

squaring16 1627 5835 72 1.0 4.16 79.12

squaring7 1628 5837 72 1.0 0.79 21.98

PhaseService 1686 5655 27 1.0 0.01 0.18

27 new 1792 6717 32 1.0 0.38 13.45

ActivityService 1837 5968 27 1.0 0.01 0.17

55 new 1874 8384 46 1.0 3.05 146.83

IterationService 1896 6732 27 1.0 0.01 0.23

ActivityService2 1952 6867 27 1.0 0.01 0.19

aig insertion1 2296 9326 60 1.0 0.18 3.57

111 2348 5479 36 1.0 0.48 15.79

ConcreteActivityService 2481 9011 28 1.0 0.02 0.36

53 2586 10747 32 1.0 0.26 6.96

aig insertion2 2592 10156 60 1.0 0.18 3.54

55 3128 12145 46 1.0 31.11 178.17

ProjectService3 3175 11019 55 1.0 0.68 17.32

NotificationServiceImpl2 3540 13425 36 1.0 0.12 1.34

109 3565 14012 36 1.0 0.88 12.99

51 3708 14594 38 1.0 0.52 18.77

32 3834 13594 38 1.0 0.47 19.39

Continued on next page
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UniGen2 UniGen

Benchmark #vars #clas |S|
Succ.
Prob Runtime(s) Runtime(s)

70 4670 15864 40 1.0 0.78 24.58

ProcessBean 4768 14458 64 1.0 0.8 32.2

56 4842 17828 38 1.0 0.61 15.98

35 4915 10547 52 1.0 1.33 65.12

80 4969 17060 48 1.0 0.98 181.87

tree delete 5758 22105 30 1.0 0.02 0.35

7 6683 24816 50 1.0 1.69 160.65

doublyLinkedList 6890 26918 37 1.0 0.04 1.23

19 6993 23867 48 1.0 3.34 52.28

LoginService 8200 26689 34 1.0 0.08 0.9

29 8866 31557 45 1.0 8.19 100.46

17 10090 27056 45 1.0 35.0 526.58

parity new 10137 44830 50 1.0 4.09 41.08

81 10775 38006 51 1.0 15.19 285.7

LoginService2 11511 41411 36 1.0 0.05 0.55

Sort 12125 49611 52 1.0 4.15 82.8

77 14535 27573 44 1.0 11.33 38.54

20 15475 60994 51 1.0 19.08 270.78

enqueue 16466 58515 42 1.0 0.87 14.67

Karatsuba 19594 82417 41 1.0 5.86 80.29

lltraversal 39912 167842 23 1.0 0.18 4.86

LLReverse 63797 257657 25 1.0 0.73 7.59

diagStencil new 94607 2838579 78 1.0 3.53 60.18

demo4 new 381129 1801463 45 1.0 4.01 74.68

tutorial3 486193 2598178 31 1.0 58.41 805.33

demo2 new 777009 3649893 45 1.0 3.47 40.33

demo3 new 865935 3509158 45 1.0 6.36 87.12
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Table A6 : Comparison of MIS vs SMIS. “TO” indicates timeout after 18000
seconds

Benchmark #vars #clas MIS time(s) I
Min
Time MinSize

Ratio
size (s)

s298 3 2 205 510 0.29 17 2.13 15 0.88

s298 7 4 223 586 0.26 18 2.19 16 0.89

blasted case132 236 708 0.44 21 1.36 21 1.0

s382 7 4 281 711 0.46 23 3.36 22 0.94

s344 15 7 284 824 0.61 25 4.28 24 0.94

s349 15 7 285 829 0.64 27 5.26 24 0.89

blasted case110 287 1263 0.91 15 2.01 14 0.9

s444 3 2 290 712 0.66 26 5.95 22 0.85

s298 15 7 292 870 0.45 17 6.63 16 0.94

blasted case3 294 1110 1.81 25 5.49 22 0.88

blasted case2 296 1116 1.7 25 7.85 22 0.88

blasted case111 306 1358 0.84 16 1.3 14 0.85

s444 7 4 308 788 0.67 27 5.12 24 0.89

blasted case117 309 1367 0.99 22 1.56 15 0.68

blasted case118 309 1367 0.97 23 1.63 15 0.65

blasted case122 314 1258 0.89 26 1.8 24 0.92

s510 7 4 316 844 0.52 28 2.82 25 0.89

s510 15 7 340 948 0.57 29 4.64 25 0.85

s526 3 2 365 943 1.61 26 17.32 22 0.85

s526a 3 2 366 944 1.29 30 7.06 24 0.8

s420 new1 15 7 366 994 0.86 33 7.48 33 0.99

s420 15 7 366 994 1.33 34 7.29 33 0.97

registerlesSwap 370 1090 0.5 24 1.9 15 0.62

s444 15 7 377 1072 1.48 27 13.46 23 0.85

s526 7 4 383 1019 1.53 30 9.6 24 0.8

s526a 7 4 384 1020 1.47 28 8.85 24 0.86

blasted case125 393 1555 1.93 34 3.81 32 0.94

blasted case34 409 1597 2.38 37 8.41 36 0.97

blasted case143 427 1592 4.71 38 12.4 27 0.71

blasted case 0 b12 1 427 1385 1.89 34 17.11 30 0.87

blasted case 1 b12 1 427 1385 2.18 33 16.97 30 0.91

blasted case 2 b12 1 427 1385 1.42 34 16.52 30 0.88

blasted case115 428 1851 3.6 35 8.53 25 0.71

Continued on next page
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Benchmark #vars #clas MIS time(s) I
Min
Time MinSize

Ratio
size (s)

blasted case131 432 1830 2.51 35 7.37 33 0.94

blasted case116 438 1881 3.47 33 10.03 25 0.76

scenarios treemax 452 1637 0.66 32 2.52 26 0.81

s526 15 7 452 1303 2.78 27 14.4 23 0.85

s526a 15 7 453 1304 3.04 28 16.48 24 0.84

isolateRightmost 483 1498 1.37 47 6.79 45 0.96

blasted squaring51 496 1947 50.82 38 45.19 24 0.62

blasted squaring50 500 1965 50.04 39 47.45 24 0.61

s953a 3 2 515 1297 5.89 47 10.78 45 0.95

s953a 7 4 533 1373 8.64 49 10.48 45 0.92

s641 15 7 576 1399 1.93 54 20.6 54 1.0

s713 15 7 596 1477 2.64 54 18.58 54 1.0

s820a 3 2 598 1627 0.46 20 0.95 19 0.95

s953a 15 7 602 1657 7.48 48 11.03 45 0.93

s832a 3 2 606 1657 0.64 20 1.41 19 0.93

s832a 7 4 624 1733 0.92 23 3.82 20 0.87

blasted case130 644 2056 7.27 53 24.05 49 0.92

s820a 15 7 685 1987 1.23 25 3.47 21 0.84

s1238a 3 2 686 1850 41.93 48 65.22 32 0.67

s1196a 3 2 690 1805 27.3 41 2522.76 32 0.78

s832a 15 7 693 2017 3.94 31 48.62 23 0.73

blasted squaring22 695 2193 11.09 27 25.57 23 0.85

blasted squaring24 695 2193 11.08 25 27.05 23 0.9

blasted squaring20 696 2198 12.81 26 29.37 23 0.87

blasted squaring21 697 2203 11.62 25 32.23 23 0.9

s1238a 7 4 704 1926 47.59 49 232.6 32 0.65

s1196a 7 4 708 1881 35.44 45 TO – –

blasted squaring23 710 2268 12.64 27 36.03 23 0.85

blasted case12 737 2310 97.48 65 TO – –

s1238a 15 7 773 2210 90.89 52 181.59 32 0.61

s1196a 15 7 777 2165 67.1 47 TO – –

blasted case 2 b12 2 827 2725 25.32 42 TO – –

blasted case 0 b12 2 827 2725 34.87 43 TO – –

blasted case 1 b12 2 827 2725 23.87 43 TO – –

blasted squaring27 837 2901 34.83 27 82.78 27 0.98

Continued on next page



235

Benchmark #vars #clas MIS time(s) I
Min
Time MinSize

Ratio
size (s)

blasted case50 843 3288 19.88 65 40.55 62 0.95

blasted squaring25 846 2947 42.86 28 71.81 27 0.95

s1488 3 2 854 2423 5.6 20 TO – –

blasted case211 869 2929 25.21 81 55.19 80 0.98

blasted case210 872 2937 28.15 83 48.99 80 0.96

s1488 7 4 872 2499 11.38 24 TO – –

blasted squaring5 885 2809 957.48 62 TO – –

blasted squaring6 885 2809 782.16 58 TO – –

blasted squaring2 885 2809 739.63 57 2916.58 36 0.63

blasted squaring3 885 2809 796.04 56 3590.09 36 0.64

blasted squaring1 891 2839 718.78 60 TO – –

blasted squaring4 891 2839 868.71 55 1174.46 36 0.65

blasted squaring26 894 3187 85.11 30 70.17 27 0.9

BN 65 925 2063 29.64 48 80.24 45 0.94

s1488 15 7 941 2783 8.65 22 TO – –

blasted case 2 ptb 1 963 3027 32.35 79 51.0 77 0.97

blasted case 1 ptb 1 966 3035 29.81 79 52.26 77 0.97

blasted squaring30 1031 3693 192.14 30 144.82 29 0.97

BN 46 1039 2265 28.13 41 TO – –

blasted squaring28 1060 3839 217.91 29 133.42 29 0.98

scenarios llreverse 1096 4217 59.8 81 205.0 46 0.56

blasted squaring10 1099 3632 3321.29 56 1609.63 40 0.71

blasted squaring8 1101 3642 3453.48 54 799.63 40 0.74

BN 59 1112 2661 104.85 48 593.78 32 0.67

BN 63 1112 2661 115.64 44 887.17 32 0.72

BN 55 1154 2692 126.32 43 1643.1 32 0.74

BN 57 1154 2692 103.22 43 TO – –

BN 53 1154 2692 120.55 42 1966.96 32 0.75

blasted case209 1189 3477 57.83 94 79.62 88 0.93

blasted case212 1189 3477 56.15 97 77.34 88 0.91

GuidanceService2 1192 4362 22.94 91 103.44 65 0.71

scenarios aig insertion2 1194 4304 10.86 92 11.56 73 0.79

scenarios aig insertion1 1195 4301 8.96 93 13.8 73 0.78

79 1217 4034 0.91 40 1.08 39 0.97

blasted TR device 1 linear 1249 3927 121.44 100 TO – –

Continued on next page
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Benchmark #vars #clas MIS time(s) I
Min
Time MinSize

Ratio
size (s)

SetTest 1252 5411 4.52 23 95.4 19 0.83

blasted case 2 b14 even 1304 4057 24.66 118 TO – –

blasted case 1 b14 even 1304 4057 20.33 118 TO – –

blasted case3 b14 even3 1304 4057 22.06 120 TO – –

blasted case1 b14 even3 1318 4093 22.26 123 TO – –

BN 49 1336 3376 37.0 26 TO – –

BN 47 1336 3376 30.65 25 TO – –

BN 51 1336 3376 33.92 25 TO – –

BN 61 1348 3388 37.18 27 TO – –

blockmap 05 01.net 1411 2737 0.39 14 432.48 14 1.0

blasted squaring9 1434 5028 6396.02 60 1319.6 40 0.67

blasted squaring14 1458 5009 18000 100 TO – –

blasted squaring12 1507 5210 18000 102 TO – –

blasted case 0 ptb 1 1507 4621 212.13 95 299.17 88 0.92

blasted case49 1510 6505 233.45 68 228.76 61 0.9

blasted case 3 4 b14 even 1532 4761 32.45 139 TO – –

blasted case 1 4 b14 even 1532 4761 36.5 140 TO – –

blasted TR b14 2 linear 1570 4963 243.65 136 TO – –

blasted squaring16 1627 5835 18000 142 TO – –

blasted squaring7 1628 5837 12329.2 58 TO – –

blockmap 05 02.net 1738 3452 11.68 39 2.63 37 0.95

27 1792 6717 0.62 32 0.15 32 1.0

NotificationServiceImpl2 1816 6614 87.68 126 218.0 88 0.7

BN 44 1820 3806 150.49 61 TO – –

BN 43 1820 3806 149.31 62 TO – –

BN 45 1820 3806 118.24 63 TO – –

55 1874 8384 0.1 38 0.09 38 1.0

blasted TR b12 1 linear 1914 6619 5963.92 73 TO – –

blasted TR ptb 1 linear 1969 6288 1297.77 122 768.37 106 0.87

tutorial2 2022 17764 0.84 31 3.15 12 0.38

LoginService2 2024 7382 111.7 148 3284.69 102 0.69

doublyLinkedList 2038 7962 455.48 117 TO – –

blockmap 05 03.net 2055 4143 16.33 62 14.35 60 0.97

compress2 2134 9106 12.17 188 186.61 71 0.38

blasted TR b12 2 linear 2426 8373 15505.02 79 TO – –

Continued on next page
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Benchmark #vars #clas MIS time(s) I
Min
Time MinSize

Ratio
size (s)

blasted TR device 1 even linear 2447 7612 612.19 176 TO – –

blasted case 1 b12 even2 2669 8460 4440.45 149 TO – –

blasted case 2 b12 even2 2669 8460 4459.44 147 TO – –

blasted case 0 b12 even2 2669 8460 4418.07 150 TO – –

blasted case 1 b12 even1 2681 8492 4507.71 155 TO – –

blasted case 2 b12 even1 2681 8492 4249.56 149 TO – –

scenarios tree insert insert 2797 10427 837.14 101 TO – –

Pollard 2800 49543 1211.4 179 TO – –

56 2801 9965 2.23 37 2.97 37 1.0

ProcessBean 3130 11689 172.64 305 TO – –

scenarios tree delete2 3411 12783 444.61 175 2352.19 137 0.78

lss harder 3465 62713 1727.77 116 1212.93 22 0.19

s5378a 3 2 3679 8372 945.05 225 TO – –

s5378a 7 4 3697 8448 1599.65 228 TO – –

s5378a 15 7 3766 8732 1990.1 227 TO – –

scenarios tree delete 4038 16142 56.94 27 76.69 21 0.78

listReverseEasy 4092 15867 16715.34 121 3397.65 99 0.81

71 5314 11254 11.48 66 35.35 62 0.94

36 5627 24717 0.61 72 0.37 72 1.0

scenarios tree delete4 6198 23509 18000 574 TO – –

107 7679 36225 14.29 83 13.08 80 0.96

reverse 9485 535676 25.03 200 7.1 195 0.97

54 9691 39993 422.65 99 2560.42 93 0.94

blockmap 10 01.net 11328 23175 44.56 35 TO – –

30 12022 50532 42.85 76 69.6 74 0.97

lssBig 12438 149909 536.88 46 TO – –

blockmap 10 02.net 12562 26022 2637.74 78 TO – –

lss 13373 156208 971.24 45 TO – –

blockmap 10 03.net 13786 28826 13442.28 125 TO – –

20 13887 60046 40.29 51 14.6 50 0.98

110 15316 60974 9.2 80 8.71 80 1.0

scenarios tree insert search 16573 61922 18000 943 TO – –

blockmap 15 01.net 33035 67424 781.94 49 TO – –

blockmap 20 01.net 78650 160055 2513.32 67 TO – –
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[62] Leonardo Dueñas-Osorio, Kuldeep S. Meel, Roger Paredes, and Moshe Y. Vardi.

Sat-based connectivity reliability estimation for power transmission grids. Tech-

nical report, Rice University, 2017.



245
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