On Algorithm Selection,
with an Application to
Combinatorial Search Problems

Lars Kotthoff

This thesis is submitted in partial fulfilment for the degree of
PhD at the University of St Andrews.

15th December 2011

Abstract

The Algorithm Selection Problem is to select the most appropriate way for solving a
problem given a choice of different ways. Some of the most prominent and successful
applications come from Artificial Intelligence and in particular combinatorial search
problems. Machine Learning has established itself as the de facto way of tackling the
Algorithm Selection Problem. Yet even after a decade of intensive research, there
are no established guidelines as to what kind of Machine Learning to use and how.

This dissertation presents an overview of the field of Algorithm Selection and as-
sociated research and highlights the fundamental questions left open and problems
facing practitioners. In a series of case studies, it underlines the difficulty of doing
Algorithm Selection in practice and tackles issues related to this. The case studies
apply Algorithm Selection techniques to new problem domains and show how to
achieve significant performance improvements. Lazy learning in constraint solving
and the implementation of the alldifferent constraint are the areas in which we
improve on the performance of current state of the art systems. The case studies
furthermore provide empirical evidence for the effectiveness of using the misclassifi-
cation penalty as an input to Machine Learning.

After having established the difficulty, we present an effective technique for reduc-
ing it. Machine Learning ensembles are a way of reducing the background knowledge
and experimentation required from the researcher while increasing the robustness of
the system. Ensembles do not only decrease the difficulty, but can also increase the
performance of Algorithm Selection systems. They are used to much the same ends
in Machine Learning itself.

We finally tackle one of the great remaining challenges of Algorithm Selection —
which Machine Learning technique to use in practice. Through a large-scale empir-
ical evaluation on diverse data taken from Algorithm Selection applications in the
literature, we establish recommendations for Machine Learning algorithms that are
likely to perform well in Algorithm Selection for combinatorial search problems. The
recommendations are based on strong empirical evidence and additional statistical
simulations.

The research presented in this dissertation significantly reduces the knowledge
threshold for researchers who want to perform Algorithm Selection in practice. It
makes major contributions to the field of Algorithm Selection by investigating fun-
damental issues that have been largely ignored by the research community so far.

iii

Candidate’s declaration

I, Lars Kotthoff, hereby certify that this thesis, which is approximately 41,000 words
in length, has been written by me, that it is the record of work carried out by me
and that it has not been submitted in any previous application for a higher degree.

I was admitted as a research student in September 2008 and as a candidate for
the degree of PhD in September 2008; the higher study for which this is a record
was carried out in the University of St Andrews between 2008 and 2011.

15th December 2011, signature of candidate

Supervisor’s declaration

I hereby certify that the candidate has fulfilled the conditions of the Resolution and
Regulations appropriate for the degree of PhD in the University of St Andrews and
that the candidate is qualified to submit this thesis in application for that degree.

15th December 2011, signature of supervisor

Permission for electronic publication

In submitting this thesis to the University of St Andrews I understand that I am giv-
ing permission for it to be made available for use in accordance with the regulations
of the University Library for the time being in force, subject to any copyright vested
in the work not being affected thereby. I also understand that the title and the
abstract will be published, and that a copy of the work may be made and supplied
to any bona fide library or research worker, that my thesis will be electronically
accessible for personal or research use unless exempt by award of an embargo as
requested below, and that the library has the right to migrate my thesis into new
electronic forms as required to ensure continued access to the thesis. I have obtained
any third-party copyright permissions that may be required in order to allow such
access and migration, or have requested the appropriate embargo below.

The following is an agreed request by candidate and supervisor regarding the
electronic publication of this thesis:

Access to printed copy and electronic publication of thesis through the University
of St Andrews.

15th December 2011, signature of candidate

15th December 2011, signature of supervisor

Acknowledgements

I would like to thank my supervisors, Ian Miguel and Ian Gent, for their support
during the course of my PhD. Their feedback on my work was especially helpful
during the beginning of my studies. Derek Long provided feedback on my work in
his capacity as my SICSA supervisor and Christian Schulte as my mentor at my first
Constraint Programming conference.

I would also like to thank my colleagues and collaborators; in alphabetical order,
Andrea Rendl, Andy Grayland, Chris Jefferson, Dharini Balasubramaniam, Karen
Petrie, Lakshitha de Silva, Neil Moore, Ozgiir Akgiin, Pete Nightingale and Tom
Kelsey. Thanks go to the administrative and technical support team and especially
Angie Miguel and John McDermott.

I have had the opportunity to attend many conferences and workshops and meet
many people there. Some of them influenced my research. Kristian Kersting pointed
out SV M#struct to me. Holger Hoos, Kevin Leyton-Brown and Lin Xu discovered and
helped debug a mistake in a previous version of the evaluation of the performance
of SATzilla in Chapter 7. Jesse Hoey, James Cussens and Alan Frisch gave useful
feedback on some Machine Learning aspects.

Many reviewers evaluated and commented on my work at various venues. I thank
them for their feedback and hope that I will be able to return to them what they
have given to me.

Finally, I would like to thank everybody else at St Andrews and who I met at
conferences and workshops who improved my overall PhD experience. This goes
especially to everybody who I forgot to mention by name. Thanks to CIRCA for all
the cake.

My thesis was examined by Mark-Jan Nederhof and Ken Brown. They let me off
in time for lunch (and helped to improve this document as well).

My studies were supported by a prize studentship from the Scottish Informatics
and Computer Science Alliance (SICSA) and by EPSRC grant EP/H004092/1. For
the research presented in this dissertation, I received additional support from Ama-
zon Web Services, the School of Computer Science at the University of St Andrews,
the Association for Constraint Programming, the International Symposium on Com-
binatorial Search and the Australian National University. Without this support, this
PhD would not have happened.

Lucy Miguel called me a silly monkey and she is probably right.

vii

Fois &in, Bin wf withh mnlys wsln6lun.

Contents

1 Introduction 1

1.1
1.2

Contribution 4

Organisation 6

1.2.1 Motivation 6

1.2.2 Background 6

1.2.3 Case study 1 7

1.2.4 Case study 11 7

1.2.5 Ensemble classification 8

1.2.6 Comparison of different techniques 8
1.2.7 Conclusions 9

2 Motivation 11

21

2.2
2.3

24

2.5

2.6

3.1
3.2

3.3
3.4

3.5

Introduction 11

2.1.1 Caveat 12

Background 13

Surveyed constraint solvers 13
2.3.1 Choco 13

2.3.2 ECLiPSe 14

2.3.3 Gecode 14

2.3.4 Minion 14

Surveyed constraint problems 14
2.4.1 Amount of search 17
Results 17

2.5.1 Setup costs and scaling 21
2.5.2 Recomputation versus copying in Gecode
Summary 24

Background 25

The Algorithm Selection Problem 25
3.1.1 Terminology 28

Search problems 30

Expert systems 31

Algorithm portfolios 32

3.4.1 Static portfolios 32

3.4.2 Dynamic portfolios 33

Problem solving with portfolios 35
3.5.1 Offline and online approaches 36

22

xi

xii

3.6 Portfolio selectors 37
3.6.1 Performance models 38
3.6.2 Selector predictions 41
3.7 Features 42
3.8 Application domains 44
3.9 Methodology example — SATxzilla 44
3.9.1 Formulation 44
3.9.2 Existence 45
3.9.3 Uniqueness 45
3.9.4 Characterisation 45
3.9.5 Computation 45
3.10 Summary 46

Learning when to use lazy learning in constraint solving
4.1 Introduction and background 47
4.2 Evaluation problems 48
4.3 Problem features and their measurement 50
4.4 Constructing a problem classifier 52
4.4.1 Methodology 52
4.4.2 Selecting a feature set 53
4.4.3 Towards a simple decision tree 54
4.4.4 FEvaluation on different data 56
4.5 Classification performance 57
4.6 Understanding the problem domain 59
4.7 Summary and contributions 60

Case study for the alldifferent constraint 61
5.1 Introduction 61
5.2 Background 62
5.3 Evaluation problems 63
5.4 Problem features and their measurement 64
5.5 Learning a problem classifier 66
5.5.1 Cost model 66
5.5.2 Evolving the feature set 68
5.6 Summary and contributions 70

Ensemble classification for Algorithm Selection 73
6.1 Introduction 73

6.2 Background 74

6.3 Evaluation data sets and features 75

6.4 Learning classifiers and ensemble 75

6.5 Results 76

6.6 Summary and contributions 79

xiii

What Machine Learning technique to use? 81

7.1
7.2

7.3
7.4

7.5

7.6
7.7

Introduction 81

Algorithm Selection methodologies 82

7.2.1 Case-based reasoning 82

7.2.2 Classification 83

7.2.3 Regression 84

7.2.4 Statistical relational learning 85
Evaluation data sets 85

Methodology 87

7.4.1 Machine Learning algorithm parameters 87
Experimental results 89

7.5.1 Determining the best Machine Learning algorithm 96
Ensemble classification 98

Summary and contributions 100

Conclusions and future work 103

8.1
8.2
8.3
8.4

Summary 103
Contributions 104

Scope and limitations 106
Future work 107

Summary of relevant literature 111

Dominion — A constraint solver generator 125

B.1
B.2
B.3
BA4

B.5

B.6
B.7
B.8

B.9

Overview of the Dominion system 125

Related work 126

Challenges for the automatic generation of constraint solvers 128
Specification languages 128

B.4.1 Problem specification — Dominion Input Language 129
B.4.2 Architecture specification — Grasp 129

Configuration of a valid solver 131

B.5.1 Conditional variables and constraints 132

B.5.2 Solving the configuration problem 133

Analyser 133

Generator 134

Experimental evaluation 134

B.8.1 Results 135

Summary 139

BNF of Dominion Input Language 141

BNF of Grasp 145

Problem classes used in experiments 149

E.1

Learning when to use lazy learning in constraint solving 149

Xiv

E.2 Case study for the alldifferent constraint 151

Bibliography 153

List of Figures

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6

Figure 3.1
Figure 3.2

Figure 3.3

Figure 4.1

Figure 4.2
Figure 4.3
Figure 4.4

Figure 5.1

Figure 6.1
Figure 6.2

Figure 7.1
Figure 7.2

Figure 7.3
Figure 7.4

Figure 7.5

Figure B.1
Figure B.2

CPU time comparison for n-Queens. 19

CPU time comparison for Golomb Ruler. 19

CPU time comparison for Magic Square. 20

CPU time comparison for Social Golfers. 20

CPU time comparison for Balanced Incomplete Block Design.
CPU time for different levels of recomputation and copying
over CPU time for copying. 23

Basic model for the Algorithm Selection Problem as published
by Rice (1976). 26

Refined model for the Algorithm Selection Problem with prob-
lem features (Rice, 1976). 27

Modified Algorithm Selection model used in this dissertation.

Comparison of runtimes for Minion with and without lazy

learning. 49

Final decision tree. Y

Typical decision tree with additional subtree. 58

Typical decision tree with missing subtree. 59

Potential speedup of problem-specific implementation. 65

Performance of the individual best and ensemble classifier.
Performance of the individual best and ensemble of three clas-
sifiers. 78

Experimental results with full feature sets and training data

relative to the majority predictor. 90

Experimental results with full feature sets and training data
relative to a simple rule classifier. 91

Experimental results with reduced feature sets. 93

Experimental results with full feature sets and thinned out
training data. 94
Experimental results with ensemble classifier. 99

Overview of the Dominion system. 126
The n-Queens problem specified in the Dominion Input Lan-
guage. 129

21

29

XV

xvi

Figure B.3
Figure B.4
Figure B.5
Figure B.6

The n-Queens problem component specified in Grasp.
Performance improvements during analysing.

CPU times for Dominion and Minion.
Memory usage for Dominion and Minion.

137

138

136

131

List of Tables

Table 2.1
Table 2.2

Table 4.1

Table 5.1
Table 5.2
Table 5.3

Table 7.1
Table 7.2

Table A.1

Summary of the characteristics of the investigated solvers.
Number of variables and constraints for the investigated prob-
lems. 18

Summary of classifier performance. 55

Misclassification penalty for all classifiers on the first data set.
Summary of classifier performance. 69
Individual best and worst classifiers. 70

Probabilities for each methodology ranking at a specific place.
Probability that a particular Machine Learning algorithm per-
forms better than the majority predictor. 97

Summary of the Algorithm Selection literature. 124

67

95

xvii

Publications

The contents of this thesis have appeared in large parts in the following publications.
The contributions of the author of this thesis to jointly authored publications are
listed below the respective publication.

Lars Kotthoff. Constraint solvers: An empirical evaluation of design decisions.
CIRCA preprint 2009/7, University of St Andrews, Centre for Interdisciplinary Re-
search in Computational Algebra (CIRCA), 2009. URL http://www-circa.mcs.
st-and.ac.uk/Preprints/solver-design.pdf.

Lars Kotthoff. Dominion — A constraint solver generator. In Doctoral Program of
CP, September 2009.

Tan P. Gent, Christopher A. Jefferson, Lars Kotthoff, Tan Miguel, Neil Moore,
Peter Nightingale, and Karen E. Petrie. Learning When to Use Lazy Learning in
Constraint Solving. In 19th European Conference on Artificial Intelligence, pages
873-878, August 2010.

The contributions to this paper were,

e the experimental evaluation of the two candidate solvers on the problem in-
stances,

« the specification and extraction of features,

e the post-processing of the experimental data,

e the methodology for learning a decision tree,

e the methodology for refining the decision tree and

e the evaluation of the performance and generality of the decision tree.

Lars Kotthoff, Ian P. Gent, and Ian Miguel. Using machine learning to make
constraint solver implementation decisions. In SICSA PhD conference, 2010.

Tan P. Gent, Lars Kotthoff, lan Miguel, and Peter Nightingale. Machine learn-
ing for constraint solver design -— A case study for the alldifferent constraint. In
3rd Workshop on Techniques for implementing Constraint Programming Systems
(TRICS), pages 1325, 2010.

The contributions to these papers were,

o the experimental evaluation of the candidate algorithms on the problems,

xix

XX

the specification and extraction of features,
the post-processing of the experimental data,
the Machine Learning methodology and

the evaluation of the performance of the learned classifiers.

Lars Kotthoff, Ilan Miguel, and Peter Nightingale. Ensemble classification for con-
straint solver configuration. In 16th International Conference on Principles and
Practices of Constraint Programming, pages 321-329, September 2010.

The contributions to this paper were,

the idea of applying ensemble classification to Algorithm Selection,

the experimental evaluation of the candidate algorithms on the problems,
the specification and extraction of features,

the post-processing of experimental data,

the Machine Learning methodology and

the evaluation of the performance of the learned classifiers and the ensemble.

Lars Kotthoff, Ian P. Gent, and Ian Miguel. A Preliminary Evaluation of Machine
Learning in Algorithm Selection for Search Problems. In Fourth Annual Symposium
on Combinatorial Search, pages 84-91, July 2011.

The contributions this papers were,

the idea of performing the comparison,
the idea of applying statistical relational learning,
the selection of data sets and systems to compare with,

the experimental evaluation of the Machine Learning algorithms on the prob-
lems,

the Machine Learning methodology,
the post-processing of the experimental data,
the evaluation and analysis of the experimental data and

establishing the recommendations as to which Machine Learning algorithms
to use.

Ian P. Gent, Christopher A. Jefferson, Lars Kotthoff, ITan Miguel, and Peter
Nightingale. Specification of the Dominion Input Language Version 0.1. Technical
Report, University of St Andrews, 2009. URL http://www-circa.mcs.st-and.ac.
uk/Preprints/InLangSpec.pdf.

The contributions to this paper were,

« participation in the design of the language and

e the implementation of a parser and type checker for the language.

Tan P. Gent, Christopher A. Jefferson, Lars Kotthoff, and Tan Miguel. Modelling
Constraint Solver Architecture Design as a Constraint Problem. In Annual ERCIM
Workshop on Constraint Solving and Constraint Logic Programming, April 2011.

The contributions to this paper were,

e the encoding of the problem as a constraint problem,
e the automatic conversion into a Minion input file and

e the mapping of the solution to solver components.

Dharini Balasubramaniam, Lakshitha de Silva, Christopher A. Jefferson, Lars
Kotthoff, Ian Miguel, and Peter Nightingale. Dominion: An Architecture-driven
Approach to Generating Efficient Constraint Solvers. In 9th Working IEEE/IFIP
Conference on Software Architecture, June 2011.

The contributions to this paper were,

e participation in the design of the system,
e the implementation of parts of the system and

e the description of related work and parts of the system.

xXxi

1

Introduction

A large part of daily life involves making decisions. What should I eat? How should
I eat? Where should we have lunch? The choice can be easy if there is only one
option or a clear preference, but many decisions are difficult. Computer Science is
no different in this respect. Be it the choice of a theorem to apply to a problem,
the design of an algorithm to solve the problem or the actual implementation of the
chosen algorithm — there are always choices to make.

In Computer Science, “Algorithm Selection” is an umbrella term for decisions like
this. The Algorithm Selection Problem has been known and formally described for
decades (Rice, 1976). Given are a set of algorithms and a set of problems. Each
algorithm can be applied to solving each of the problems, but the algorithms exhibit
different behaviour when solving a problem. The task is, for each problem, to select
the algorithm with the best behaviour on that particular problem.

As an example, consider selecting a way to sort a list of numbers. There are
a number of well-established algorithms available, such as Quicksort, Heapsort and
Bubblesort. In terms of computational complexity, Heapsort would be preferred over
Quicksort, but in practice Quicksort often performs better. For a specific list to sort,
the choice of algorithm depends on various factors such as to what extent the list is
sorted already, whether the list can be sorted in place and whether the elements of
the list can be accessed at random. To select a sorting algorithm for a specific list,
all these factors would need to be considered.

The most frequently used metric for assessing the utility of an algorithm on a
problem is the time the algorithm requires to solve the problem. In this formulation,
the Algorithm Selection Problem becomes the problem of minimising the total time
required to solve all problems (e.g. Gomes and Selman (2001)). There are other
variants — instead of considering the solution time, the quality of a solution obtained
(e.g. Soares et al. (2004)), the progress towards finding a solution or other resource
requirements, such as memory (a criteria in e.g. Smith and Setliff (1992)), can be
considered.

In some cases, solving the Algorithm Selection Problem can be easy. One of the
algorithms from the set to choose from may be superior to all the other ones in every
case. The factors that affect the performance of an algorithm on a problem may be
sufficiently well known and understood that the best algorithm for a given problem
can be determined easily. A human expert may have such a deep understanding of

INTRODUCTION

the algorithms and problems that she can pick the best algorithm every time.
In practice, Algorithm Selection is hard in all but the most trivial cases. Rice
(1976) notes on this topic that,

66 We conclude that most realistic algorithm selection problems are |...]
quite complex. 29

For most applications, the choice to make is not obvious even for domain experts.
This may be due to any number of reasons — the algorithms or the problems may be
poorly understood, there may be unpredictable factors that have a significant effect
on the performance or the previously observed performance may exhibit such large
variations that an estimate of future performance cannot be made.

After decades of almost no research into it, the Algorithm Selection Problem
has recently attracted a lot of interest (e.g. Gomes and Selman (2001), Beck and
Freuder (2004), Xu et al. (2008)). The use of Machine Learning to solve this problem
is a current research topic (e.g. Gebruers et al. (2004), O’Mahony et al. (2008),
Silverthorn and Miikkulainen (2010)). This can be attributed to two main factors.

1. The performance of computers is nowadays so high that we can easily afford
to have them spend some of their time on “clerical” work. For most problems,
the performance bottleneck has shifted from the computer to the human —
humans spend more time formulating a problem in a way that the computer
can work with it than the computer requires to solve the problem. This is not
least witnessed by a vast amount of Artificial Intelligence research that enables
us to solve even complex problems within seconds (e.g. Gent et al. (2006b)).

2. The number of different algorithms or systems available for solving a given
problem is in general large. Most of these algorithms are complementary such
that the performance of one dominates the performance of another only on a
limited set of problems. There are no easy ways to assess the performance of
any of these algorithms on a problem that has not been solved before.

A good example for illustrating both points is the Milepost GCC Project (Fursin
et al., 2011), which optimises compiled code using Machine Learning techniques.
The GNU Compiler Collection (GCC) is one of the most complex pieces of software
ever written, with substantial effort invested into making the generated machine
code more efficient. Not least the dozens of different compiler flags that control
optimisation bear witness to this. Choosing the flags that give the best performance
is something of a dark art, even with the provided predefined levels of optimisation
that control groups of individual optimisation settings.

The compilation process of a programme can be a lengthy one, especially for
C++ code. In that respect, Milepost GCC is a counter-intuitive effort, because it
even increases the compilation time, in most cases disproportionally to the achieved
improvement in performance of the compiled code. The performance of modern
hardware however makes such an additional investment affordable. At the same time,

the ubiquitousness of computers in everyday life means that the piece of code that
more effort was spent on compiling will probably be run thousands, if not millions
of times such that even a small improvement in performance of the compiled code
is well worth the additional effort.

Despite decades of manual tuning and optimisation, Milepost GCC was able to
improve the efficiency of the generated code substantially by using Machine Learn-
ing techniques. One of the main factors in its success was the complexity of the
underlying problem that made it infeasible for humans to tackle in the same way
that Machine Learning did. It is however possible to explore efficiently the very large
space of possible optimisations automatically on modern hardware.

Research a few decades ago focused on building more sophisticated systems to
deliver ever improving performance. Today, we are faced with a situation where the
probability is high that the system already exists that can solve a given problem
efficiently, but choosing it from the plethora of those available is hard. This is es-
pecially true in many fields of Artificial Intelligence that deal with computationally
hard problems. The difference between making the right and the wrong choice can
be the difference between solving the problem in a matter of seconds or requiring
more time than the age of the universe.

Two areas of Artificial Intelligence that illustrate this point especially well are
Boolean satisfiability and constraint programming. In both areas, decades of re-
search have facilitated the creation of many different systems for solving these kinds
of problems. In addition to the difficulty of choosing which system to use, there are
often parameters that the user can tune to affect the performance. With the right
parameter setting, it is possible that a system that previously exhibited poor per-
formance becomes the top performer. In practice, the user base of a system often
does not extend far beyond the people who are involved with its development and
know it in detail.

Even experts in such systems often struggle to make the right choice. Especially
when confronted with a problem that seems to be unlike any problem ever seen
before, one is often reduced to merely making a guess as to the system with the
best performance. Researchers who want to apply techniques from an area that they
have no background in to their problems are in an even worse position.

Recent efforts have used Machine Learning to tackle the problem of selecting the
system with the best performance. Especially in Artificial Intelligence, this method-
ology has achieved great success. One of the most famous systems that use Machine
Learning to perform Algorithm Selection is SATzilla (Xu et al., 2008), which se-
lects from a portfolio of satisfiability solvers. The problem of proving or disproving
whether a Boolean formulae is satisfiable is the first problem known to be NP-
complete.

Apart from the performance improvements that can be achieved in practice,
SATzilla also showed that it is possible to predict the solve time of NP-complete
problems with accuracy sufficient to perform Algorithm Selection and achieve the
demonstrated improvements. This is somewhat surprising, given that the definition

INTRODUCTION

of the complexity class involves an element of non-determinism that in theory makes
the behaviour of algorithms on its problems inherently hard to predict.

Subsequent research has applied Machine Learning in many different forms to
many more application domains. Today, it has established itself as the de facto
standard way of tackling Algorithm Selection problems. Particularly in complex
application domains, such as combinatorial search problems, it is the only feasible
choice.

After many years of research into techniques for solving Algorithm Selection prob-
lems, we are faced with a similar situation to the rest of Artificial Intelligence — there
is a very high probability that there already is a method for solving a particular prob-
lem effectively and efficiently, the challenge is to find it. In a way, efforts to solve
the Algorithm Selection Problem have created another Algorithm Selection problem
instead of a solution.

This dissertation looks at ways of solving that conundrum, in particular for the
most important problem domain of combinatorial search problems. The main thread
throughout can be put in the form of the following question.

How should we do Algorithm Selection for combinatorial search problems in
practice?

The difficulty of answering this question will be demonstrated throughout this dis-
sertation.

Answering this question involves a number of different things. Apart from assessing
the suitability and performance of methods that have been used before, there is the
question of whether techniques that have not yet been applied to the Algorithm
Selection Problem would be better. It is furthermore worth investigating whether
there are general techniques that can assist with Algorithm Selection in practice.

The scope of this dissertation limits the extent to which this question can be
answered. While we aim to show the general applicability of techniques and try to
draw general conclusions, there may be cases in which the conclusions do not hold
or the techniques are not applicable. We focus the investigation on combinatorial
search problems, as they represent an important and prominent application domain,
and Algorithm Selection problems in constraint programming in particular.

The central thesis of this dissertation can be formulated as follows. There are Ma-
chine Learning techniques that can be applied to Algorithm Selection to decrease
the background knowledge required to perform it in practice and achieve good per-
formance. The thesis follows from the central question and the research presented
in this dissertation will serve to defend it.

1.1. Contribution

The contributions of this dissertation focus, in line with the main question, on prac-
tical aspects of Algorithm Selection for combinatorial search problems. The back-

CONTRIBUTION

ground of previous work both establishes the context for this dissertation as well as
highlighting the need for a guide on how to do Algorithm Selection in practice.

Two case studies of applying techniques for Algorithm Selection to problems in
specific domains illustrate the problems faced by practitioners and touch on ways
of tackling them. The case studies culminate in the application of a technique that
significantly decreases the difficulty of doing Algorithm Selection in practice and
an in-depth comparison of many different Machine Learning methods to establish
which ones are likely to yield good performance.

The main contributions of this dissertation are as follows.

e The identification of Machine Learning techniques that are likely to perform
well in the context of Algorithm Selection for combinatorial search problems
based on large-scale empirical evidence. Either linear regression to predict the
run time of an algorithm on a problem or alternating decision trees should be
used, both as implemented in the WEKA Machine Learning toolkit.

e The identification and evaluation of ensemble classification as a promising
technique for reducing the amount of Machine Learning expertise required
to perform Algorithm Selection while maintaining a high level of performance
improvements. In addition, ensembles increase the robustness in the sense that
bad performance of one constituent of the ensemble can be alleviated by the
other constituents.

o A comprehensive survey and comparison of previous approaches to solving
the Algorithm Selection Problem. Apart from establishing the context for this
work, it highlights the diversity of the area and the difficulty of choosing a
particular technique.

e The use of decision trees to improve our understanding for the issues underly-
ing an Algorithm Selection problem. Although decision trees have been used
frequently in the literature, using them for this purpose has not been described.

e The demonstration of the feasibility of making multi-level decisions that de-
pend on each other. Even when combining the output of several Machine
Learning stages, each with an associated uncertainty, the resulting system is
still effective and efficient.

e Two case studies that apply Algorithm Selection techniques to new problem
domains and raise issues that are addressed in other parts of this dissertation.

The answers to the main question can be formulated as follows.

e Systems that perform Algorithm Selection for combinatorial search problems
should use linear regression to predict the performance of each algorithm on
a problem and make the decision to choose which one based on that predic-
tion or use alternating decision trees to directly predict the best algorithm.

6

INTRODUCTION

Other techniques that will probably exhibit good performance are identified
in Chapter 7.

e These techniques can be combined in a Machine Learning ensemble to make
the Algorithm Selection system more robust.

In a nutshell, this dissertation serves to bring the power of Algorithm Selection
for combinatorial search problems within the grasp of researchers who do not have
a background in it. It identifies techniques that are likely to perform well in practice
and thus alleviates one of the major obstacles to a more widespread adoption of
Algorithm Selection — the difficulty of choosing how to do it.

1.2. Organisation

The structure of this dissertation roughly follows the contributions described above
and is centred around the main question posed earlier. Most of the chapters have
been published previously, at least in parts. Where this is the case, the respective
publication or publications are mentioned in a footnote at the beginning of the
chapter. The content of the chapters concentrates on the contributions of the author
of this dissertation; a detailed description of the contributions to the previously
published materials can be found on page xix.

1.2.1. Motivation

Chapter 2 on page 11 presents an example that reinforces some of the points made
here and provides some motivation for Algorithm Selection and evidence for its im-
portance and difficulty. A survey of four modern constraint solvers on five different
problem classes shows that not only are there significant differences in the perfor-
mance, but that it is also not obvious how to select the most appropriate solver.
Although one of the solvers provides the best performance most of the time, there
are cases in which using another solver provides better performance.

The chapter also looks at the configuration of a solver, which can be adjusted
to achieve better performance in some cases. Again it is not obvious how to arrive
at the best configuration for a specific problem; in this case the datum required to
inform this decision is only available after having solved the problem to completion.

1.2.2. Background

Chapter 3 on page 25 presents a detailed survey of the Algorithm Selection literature.
At the beginning, the Algorithm Selection Problem itself is described in its various
forms in detail. After that, the terminology and some background knowledge for the
most common application domains is given. An analysis and classification of the

ORGANISATION

literature according to specific criteria that are instrumental in Algorithm Selection
systems follows.

Over the years, many different papers have advocated many different approaches
and methodologies. Chapter 3 puts all of this work into context and contrasts and
compares the different approaches. The field of automatically finding the best con-
figuration for a system on a problem is closely related and the literature from that
field most relevant to Algorithm Selection is described as well.

A survey of the literature makes clear that there is no single best approach to
solving the Algorithm Selection problem and again reinforces the difficulty of the
decision of which technique to choose for doing Algorithm Selecting in practice. It
furthermore highlights the lack of studies that compare the behaviour of different
methods — there is only a handful that do, and even fewer provide quantitative
evidence. However, the number of different approaches shows the crucial need for
such studies.

1.2.3. Case study |

Chapter 4 on page 47 uses Algorithm Selecting techniques to tackle a problem in
a specific domain. In constraint solving, so-called lazy learning is a technique that
in some cases improves the solving performance dramatically, but slows the process
down in most cases. The problem of deciding whether to use lazy learning or not is an
obvious application for Algorithm Selecting and Machine Learning techniques, as the
factors that affect the performance on a particular problem are poorly understood.

Apart from demonstrating performance improvements by applying a series of
learned decision trees to choose lazy learning or not, the chapter employs the problem
features used in the decision trees to improve our understanding of lazy learning and
when it is effective. This is a relatively obvious use of the outcome of the Machine
Learning stage, but done very rarely in practice.

The Machine Learning methodology steps through a series of decision trees that
are refined in order to make the system more efficient and more likely to generalise
to unseen problems. A variation on an established Machine Learning technique for
estimating the generalisation error of a classifier is used to provide strong evidence
for the general applicability of the final decision tree.

1.2.4. Case study Il

Chapter 5 on page 61 presents the second case study and looks at implementation
alternatives for the alldifferent constraint. Again taken from constraint solving,
this application domain is more difficult than lazy learning because the set of options
to choose from is larger, with some of the options dependent on another option. This
characteristic establishes the need to make a series of dependent decisions instead
of a single one.

Instead of learning and manually refining a decision tree as in the previous chap-

INTRODUCTION

ter, this case study aims to automate the processes involved to a greater extent and
presents a comparison of different Machine Learning classifiers on the problem. Fol-
lowing the main thread of this dissertation, this comparison provides quantitative
evidence for the difficulty of doing Algorithm Selection in practice.

Apart from establishing and demonstrating the effectiveness of a particular Ma-
chine Learning methodology that will be used in evaluations in the remainder of
this dissertation, the case study provides evidence that making a series of decisions
instead of a single one can be done efficiently and effectively using standard Machine
Learning techniques.

1.2.5. Ensemble classification

Chapter 6 on page 73 addresses some of the issues raised especially in the second
case study and presents one of the major contributions of this dissertation. By
applying the well-established Machine Learning technique of ensemble classification
to Algorithm Selection, it shows that effectiveness and efficiency can be retained
while avoiding having to pick a particular Machine Learning technique.

Ensemble classification directly addresses the main question of this dissertation
and provides an elegant means of alleviating the difficulty of selecting a technique
for doing Algorithm Selection manually, especially for researchers without a strong
background in Algorithm Selection. An ensemble of classifiers is furthermore more
robust than a single classifier with respect to its performance across different prob-
lems and thus reduces the amount of work necessary to ensure good performance of
the learned model on new problems.

Chapter 6 does not only show the effectiveness of an ensemble of a large number
of classifiers, but also that this effectiveness is retained when reducing the size of
the ensemble significantly. The main advantage of having a small ensemble is that
the efficiency of the system is improved, as fewer classifiers have to be trained and
run on data.

1.2.6. Comparison of different techniques

Chapter 7 on page 81 presents another major contribution of this dissertation and
addresses the lack of studies comparing the performance of different Machine Learn-
ing techniques for solving the Algorithm Selection Problem. It performs a large scale
comparison of many different Machine Learning approaches and methodologies on
several Algorithm Selection data sets taken from the literature. It also applies a new
Machine Learning technology to the Algorithm Selection Problem for the first time.

The main results presented in the chapter are based on a statistical simulation
technique that estimates the performance of a particular technique in general. This,
combined with the experimental results on data sets from different and representative
application domains, suggests the general applicability of the results and establishes
the recommended Machine Learning techniques as suitable choices for Algorithm

ORGANISATION

Selection.

Apart from the main line of investigation, the chapter looks at a range of related
issues. Each one of these issues has an effect on the performance of the Algorithm
Selection system, but has not been investigated systematically in the literature.
Another measure taken that is rarely done in the literature is that the configuration
with the best performance was selected for each of the compared Machine Learning
algorithms.

The chapter addresses the question of how to do Algorithm Selection in practice
further as well as complementing the results presented in Chapter 6 — even when
using an ensemble of classifiers, there is still the question of which classifiers to use
in the ensemble. The techniques recommended in this chapter can be used either
on their own or within an ensemble to increase the robustness of the Algorithm
Selection system.

1.2.7. Conclusions

Chapter 8 on page 103 summarises the other chapters. It wraps up the dissertation
by listing the contributions and discussing the results. The scope of the work is
clarified and limitations outlined. The chapter closes by presenting an outlook on
future work and outlining promising avenues for further research.

2

Motivation

The fundamental question that arises when dealing with Algorithm Selection prob-
lems is whether it matters in practice which algorithm to choose. While it is intu-
itively plausible that there is not a single algorithm that will always be best, it is less
intuitive that Algorithm Selection would make a significant difference in practice.

In this chapter, we will provide evidence that it can indeed make a significant
difference. We compare the performance of five state of the art constraint solvers.
We chose to compare constraint solvers for several reasons. First, constraint pro-
gramming is a relatively mature area of Artificial Intelligence with many decades
of research. There are established and proven ways of solving constraint problems
and contemporary constraint solvers implement these. Second, there are several con-
straint solvers from which to choose. Most of them have been successfully used in
academic and industrial applications.

Finally, researchers in constraint programming have recognised the difficulty of
choosing a way of solving a constraint problem and there is at least one solver that
aims to provide good performance out of the box without the need for manual inter-
vention. Constraint programming also represents an important application domain
of Algorithm Selection research.

2.1. Introduction

A constraint satisfaction problem (CSP, Dechter (2003)) is a set of decision vari-
ables, each with an associated domain of potential values, and a set of constraints.
An assignment maps a variable to a value from its domain. Each constraint specifies
allowed combinations of assignments of values to a subset of the variables. A solu-
tion to a CSP is an assignment to all the variables that satisfies all the constraints.
Solutions are typically found for CSPs through systematic search of possible as-
signments to variables. During search, constraint propagation algorithms are used.
These propagators make inferences, usually recorded as domain reductions, based
on the domains of the variables constrained and the assignments that satisfy the
constraints. If at any point these inferences result in any variable having an empty

Part of the material in this chapter has been published in: Lars Kotthoff. Constraint Solvers: An
empirical evaluation of design decisions. CIRCA preprint 2009/7, University of St Andrews, 2009.
The contributions of the author of this thesis are listed on page xix et seqq.

11

12

MOTIVATION

domain then search backtracks and a new branch is considered. A constraint solver is
a software system that provides means of representing variables and constraints and
implements propagation and search algorithms that enable the user to find solutions.

Contemporary constraint solvers are very complex software systems. Each one
of the many available today has its own characteristics, its own design decisions
that the implementers made and its own philosophy. The traits of a solver that
will affect the performance for a particular problem class or instance often cannot
be determined easily. Picking a particular solver is therefore a difficult task that
requires specialist knowledge about each solver and is likely to have a significant
impact on performance. In addition, each solver has different ways of modelling
problems, i.e. of expressing an abstract problem in a way that the solver can search
for a solution. Not only do users need experience with a particular solver to model
a problem in a way that enables it to be solved efficiently, but it is also hard to
compare solvers objectively.

This chapter studies a selection of constraint solvers and assesses their performance
on problem models that were made as similar as possible. The aim is to show the
performance differences that can occur even between state-of-the-art systems. A
reasonable default choice, i.e. a solver that will always have good performance, can
be made easily, but picking the solver with the best performance for each particular
problem is much harder.

The best solver varies not only depending on the problem class, i.e. a family of sim-
ilar problems, but also depending on the problem instance, i.e. a particular problem
from a family. We also provide evidence that solvers that exhibit bad performance
on some problem instances have the potential to perform much better on other
instances.

The differences in performance between the individual solvers and the difficulty
of choosing a particular one for a given problem provide a motivation for the work
carried out in this dissertation. Without effective means of performing Algorithm
Selection, we can achieve reasonable performance, but will always fall short of achiev-
ing the best possible performance. While it is unlikely that a system will ever achieve
the best possible performance, Algorithm Selection will get us some of the way there.

The investigation was performed in 2008; the solver versions that were the most
recent at that time were used.

2.1.1. Caveat

The performance of the individual solvers in the experiments should not be taken as
a benchmark or as a suggestion of the general performance of a solver. The focus of
the experiments was to compare the solvers on models that are as similar as possible.
For any other application, the problem model will be tuned for a particular solver
to use its specific strengths which cannot be compared here. It is entirely possible
that with a carefully-tuned model a solver that performs badly in an experiment
reported here becomes much better than any other solver.

BACKGROUND
solver programming language first release modelling approach
Choco Java 1999 code with library functions
ECLiPSe C/Prolog 1990 code with library functions
Gecode C++ 2005 code with library functions
Minion C++ 2006 modelling language

Table 2.1. Summary of the characteristics of the investigated solvers.

2.2. Background

The first constraint solvers were implemented as constraint logic programming en-
vironments in logic programming languages such as Prolog in the early 1980s. The
logic programming paradigm lends itself naturally to solving constraint problems
because facilities like depth-first backtracking search and nondeterminism are al-
ready built into the host language. Related ideas also arose in Operations Research
and Artificial Intelligence. Notable developments of that time include extensions to
Prolog and the CHIP constraint programming system (Dincbas et al., 1988).

Starting in the 1990s, constraint programming found its way into procedural and
object-oriented languages, most notably C++. ILOG Solver (IBM, 2011) pioneered
this area. It became apparent that it would be beneficial to separate the solving
of constraint problems into two phases; modelling the problem and programming
search. Since then, constraint solvers have improved significantly in terms of perfor-
mance as well as in terms of ease of use.

2.3. Surveyed constraint solvers

The constraint solvers chosen for this investigation are Choco (The Choco Team,
2011), version 2.0.0.3, ECLiPSe (Aggoun et al., 2011), version 6.0_42, Gecode
(Schulte et al., 2011), version 2.2.0 and Minion (Jefferson et al., 2011), version 0.7.
The solvers were chosen because all of them are currently under active development.
Furthermore they are Open Source; implementation details not described in papers
or the manual can be investigated by looking at the source code.

Table 2.1 presents a brief summary of the solvers and their basic characteristics.

2.3.1. Choco

Choco was initially developed in the CLAIRE programming language as a national
effort of French researchers for an open constraint solver for teaching and research
purposes. Since then, it has been reimplemented in the Java programming language
and gone through a series of other changes. Version 2 is a major refactoring to
provide a better separation between modelling and solving a problem, as well as

13

14

MOTIVATION

performance improvements.

2.3.2. ECLiPSe

ECLiPSe is one of the oldest constraint programming environments still being used
and in active development. It was initially developed at the European Computer-
Industry Research Centre in Munich and then at IC-Parc, Imperial College London,
until the end of 2005 when it became Open Source. It is implemented in Prolog and
therefore provides a higher level of abstraction than the other systems.

2.3.3. Gecode

Gecode is a C++ environment for developing constraint-based systems and appli-
cations. It is developed by researchers in Sweden, Germany and Belgium. It aims
to be simple and accessible. One of its key features is the availability of extensive
documentation in the form of manuals, tutorials and academic publications.

2.3.4. Minion

Minion was implemented to be a solver that requires only an input file to run and
no written code. This way the solver could be made fast by not being extensible
or programmable and fixing the design decisions. There are options that can be
adjusted through command line switches, but the main intention for it is to be a
black box solver that aims to provide good performance on a wide range of problems
in the spirit of the “Model and Run” paradigm (Puget, 2004).

2.4. Surveyed constraint problems

Five classes of constraint problems were investigated. They are the n-Queens, Golomb
Ruler, Magic Square, Social Golfers and Balanced Incomplete Block Design prob-
lems. Most of the problems are described in CSPLib (Gent and Walsh, 1999). Their
characteristics are,

n-Queens Place n queens on an n x n chessboard such that no queen is attacking
another queen.

Golomb Ruler (CSPLib problem 6)
For a given m, a Golomb ruler is defined as a set of m integers 0 = a1 < a2 <
... < am, such that the w differences a; — a;,1 < i < j < m are distinct.
Such a ruler is said to contain m marks and is of length a,,, i.e. the position

of the last mark. The length is to be minimised.

Magic Square (CSPLib problem 19)

SURVEYED CONSTRAINT PROBLEMS

An order n magic square is a n x n matrix containing the numbers 1 to n?,
2
with each row, column and main diagonal equal the same sum M
Social Golfers (CSPLib problem 10)
In a golf club where m groups of n golfers play over p weeks, schedule the
groups such that no golfer plays in the same group as any other golfer twice.

Balanced Incomplete Block Design (CSPLib problem 28)
A Balanced Incomplete Block Design (BIBD) is defined as an arrangement of
v distinct objects into b blocks such that each block contains exactly k£ distinct
objects, each object occurs in exactly r different blocks, and every two distinct
objects occur together in exactly A blocks. v, b, 7, k and A are given, although
b and r can be derived from the other parameters.

For each problem class, several different instances were chosen. This choice was
purely based on the time required to solve the problems to be able to compare both
long and short runs. The instances selected were,

n-Queens n = {20, 21,22, 23,24, 25,26, 27, 28,29}
Golomb Ruler m = {9,10,11,12,13}
Magic Square n = {4,5,6}

Social Golfers (p,m,n) = {(2,4,4),(2,5,4),(2,6,4),(2,7,4),(2,8,4),
(2,9,4),(2,10,4)}

BIBD (v, k,\) = {(7,3,10), (7,3,20), (7,3,30), (7,3,40) , (7,3,50) , (7,3, 60) ,
(7,3,70)}

The models were derived from the examples included with the distributions of the
solvers. For some solvers and some problems the example model was simply adapted
to match the models for the other solvers, in other cases the problem was modelled
from scratch. The models are described below.

n-Queens The problem was modelled with n variables, one for each queen and one
auxiliary variable for each pair of rows holding the difference of the column po-
sitions of the queens in those rows. These auxiliary variables were constrained
to not be equal to the difference in rows or the negative thereof to enforce the
constraint that no two queens can be on the same diagonal. The n decision
variables were constrained by an alldifferent constraint, which requires all
variables in its scope to have a value that is different from the values assigned
to any of the other variables.

Golomb Ruler The Golomb Ruler model had m variables, one for each tick, and one
auxiliary variable for each pair of ticks to hold the difference between them.
Additional constraints set the value of the first tick to be 0 and enforced an

15

16

MOTIVATION

increasing monotonic ordering on the ticks. The auxiliary variables holding the
differences between the ticks were constrained by an alldifferent constraint.
An alldifferent constraint requires all variables that it constrains to have
distinct values and is a more powerful way of expressing binary not-equals
constraints over a set of variables. The optimisation constraint minimised the
value of the last tick, which is equivalent to the length a,.

Magic Square There were n? variables, one for each of the cells of the magic square.

The constraints required all those variables to be different and all rows, columns
and diagonals to sum to the magic sum. Additionally, four constraints were
introduced to require the value in the top left square to be less than or equal
to the values in the other corners of the square and the top right value to be
less than or equal to the bottom left value.

Social Golfers The model of the Social Golfers problem used a p x m x (n-m) matrix
of decision variables. The first dimension represented the weeks, the second the
groups and the third the players by group. The constraints required that each
player plays exactly once per week, the sum of the players in each group is
equal to the number of players per group specified and each pair of players
meets at most once. For the last constraint, one auxiliary variable for each
pair of players by group times weeks times groups was introduced. Additional
ordering constraints were introduced among weeks, groups and players to pro-
hibit different solutions that merely swap two weeks, groups or players and
thus reduce the search space.

Balanced Incomplete Block Design The BIBD model introduced a matrix of v x b
decision variables. The rows were constrained to sum to r, the columns to k
and the scalar product between each pair of rows was constrained to equal A.
For the last constraint, one auxiliary constraint per pair of rows times b was
introduced. Ordering constraints were put on each pair of rows and each pair
of columns.

All models except the BIBD and Social Golfers used variables with integer do-
mains. The models of BIBD and Social Golfers used Boolean variables in the solvers
that provide specialised Boolean variables — Choco, Gecode and Minion. For all mod-
els, the same variable and value ordering was specified. The solutions the different
solvers found for each problem instance were the same.

This set of benchmarks covers a variety of different constraint problems, such
as optimisation problems and problems usually modelled with integer and Boolean
variable domains. The models involve binary constraints, i.e. constraints on two
variables, as well as global constraints, i.e. constraints on two or more variables.

Table 2.2 on page 18 lists the number of variables, their domains and constraints
for each problem instance. If the domains of the auxiliary variables are different
from the domains of the main variables, they are given in parentheses. Minion does
not provide a sum equals constraint; it can however be emulated by combining a

RESULTS

sum less than and sum greater than constraint. This results in a higher number of
constraints for Minion; this number is given in parentheses.

The purpose of this investigation is to compare the solvers on equivalent models to
be able to assess how the design decisions they have made affect their performance.
The models of the problems are in no case the optimal model for the particular solver
or the particular problem. The results cannot be seen as providing a performance
comparison of the solvers in general, as for such a comparison the models would have
to be tailored to each solver to achieve the best performance. For such a comparison,
see for example Lecoutre et al. (2008).

The evaluation only takes the CPU time each solver requires to solve the problem
into account. Other measures, such as elapsed time or required memory, are not
considered.

2.4.1. Amount of search

The amount of search each solver does on each problem instance is roughly the
same. This was ensured by comparing the node counts for each instance for the
solvers which provide node counts, visually inspecting the search tree for solvers
that provide visualisation tools and manually comparing the decisions made at each
node of the search tree for smaller instances.

2.5. Results

The following figures show the performance of the solvers for each problem class and
instance.

All experiments were conducted on a dual quad-core Intel Xeon 2.66 GHz with
16 GB of memory running CentOS Linux 5. The CPU time was measured with the
time command line tool. The numbers reported as CPU time are the sum of user
and system time. Each problem was solved five times by each solver; we report the
median of those runs. The coefficient of variation” was less than 10% in general.
Instances where it was larger are discussed below.

Figure 2.3 on page 20 shows that for the Magic Square problem models, Gecode has
the best performance. For the Golomb Ruler problem models (Figure 2.2 on page 19),
Gecode and Minion show a very similar performance. For n-Queens (Figure 2.1 on
page 19), Gecode and Minion both win on different problem instances. For the other
problem models, Minion was fastest.

The best choice for a default solver with reasonable performance in all cases would,
based on these results, be Minion. There is a significant number of cases however
where Gecode is faster, sometimes substantially.

Figure 2.1 on page 19 shows that the relative differences in CPU time between
the solvers stays approximately the same across different instances, except for very

“The coefficient of variation is the standard deviation divided by the mean.

17

18 MOTIVATION

problem instance variables domains constraints
n-Queens 20 210 {0..19} ({—19..19}) 571 (761)

21 231 {0..20} ({—20..20}) 631 (841)

22 253 {0..21} ({—21..21}) 694 (925)

23 276 {0..22} ({—22..22}) 760 (1013)

24 300 {0..23} ({—23..23}) 829 (1105)

25 325 {0..24} ({—24..24}) 901 (1201)

26 351 {0..25} ({—25..25}) 976 (1301)

27 378 {0..26} ({—26..26}) 1054 (1405)

28 406 {0..27} ({—27..27}) 1135 (1513)

29 435 {0..28} ({—28..28}) 1219 (1625)
Golomb Ruler 9 45 {0..81} 46 (82)

10 55 {0..100} 56 (101)

11 66 {0..121} 67 (122)

12 78 {0..144} 79 (145)

13 91 {0..169} 92 (170)
Magic Square 4 16 {1..16} 15 (25)

5 25 {1..25} 17 (29)

6 36 {1..36} 19 (33)
Social Golfers 2,44 1088 {0..1} 1133 (1293)

2,54 2100 {0..1} 2161 (2401)

2,6,4 3600 {0..1} 3679 (4015)

2,7,4 5684 {0..1} 5783 (6231)

2,8,4 8448 {0..1} 8569 (9145)

2,9,4 11988 {0..1} 12133 (12853)

2,104 16400 {0..1} 16571 (17451)
BIBD 7,3,10 1960 {0..1} 1643 (1741)

7,3,20 3920 {0..1} 3253 (3421)

7,3,30 5880 {0..1} 4863 (5101)

7,3,40 7840 {0..1} 6473 (6781)

7,3,50 9800 {0..1} 8083 (8461)

7,3,60 11760 {0..1} 9693 (10141)

7,3,70 13720 {0..1} 11303 (11821)

Table 2.2. Number of variables and constraints for the investigated problems.

CPU time [seconds]

CPU time [seconds]

+ + +
R :
' + + x 2
+ x * S %
100 o , ¢ A AR o
5.0 — X X
% A > K <>; <
S A
1.0 +
0.5 &
> Q A choco X gecode
0.1 — % + eclipse < minion
I [[[[[I I I [
20 21 22 23 24 25 26 27 28 29
Problem instance
Figure 2.1. CPU time comparison for n-Queens.
+
A
&
10000 —
+ A
&
A
100 + %
4 A
A hd A choco X gecode
1 de + eclipse < minion
I I I I I
09 10 11 12 13

Problem instance

Figure 2.2. CPU time comparison for Golomb Ruler.

RESULTS

19

20 MOTIVATION

+
10000.00 — A
— R
<
=}
o
© 100.00 —
L2,
)
e
S 100 &
O g o
X A choco X gecode
0.01 — % =+ eclipse < ‘minion
[[[
4 5 6

Problem instance

Figure 2.3. CPU time comparison for Magic Square.

= 1000.0 £>'<§

=

? o

% A <o

E X o

O ﬁ X o

o A choco X gecode

¢ + eclipse © minion
I

0.1 T T T T T T

2,044 2,054 2064 2074 2084 2,094 2104

Problem instance

Figure 2.4. CPU time comparison for Social Golfers.

RESULTS

+
+
10000 — +
£ * X
g + A
2 2
o 100 — 4
: I o °
2 A o
@) X X <o
1 - o A choco - X gecode
o o + eclipse © minion

[[[[[[[
73,10 7320 73,30 7,340 73,50 73,60 73,70

Problem instance

Figure 2.5. CPU time comparison for Balanced Incomplete Block Design.

small problems where the setup cost contributes the largest share of the CPU time
(cf. Section 2.5.1). The same effect is even stronger for the Golomb Ruler problem
(Figure 2.2 on page 19), where the total CPU times are larger.

Figure 2.3 on the facing page suggests a slightly different behaviour for the Magic
Square problem. However, there are not enough data points to draw definitive con-
clusions. This problem was only run up to instances of size 6 because instances of
size 7 took too long.

The coefficient of variation between the five runs for the 2,10,4 Social Golfers
instance for Gecode was about 20%. Even considering the large variation, the key
point — ECLiPSe performs better than Gecode, which is roughly the same as Choco
— remains valid.

2.5.1. Setup costs and scaling

In all of the experiments except the Golomb Ruler, Gecode is the fastest solver for
the smallest problem instances in terms of solve time. For instances that take longer
to solve, its relative position changes and other solvers are faster.

Both Choco and ECLiPSe run in abstract machines that incur some setup cost
when starting up. Minion reads an input file, parses it and constructs the problem
to solve from that. The overhead incurred because of these issues accounts for the
difference to Gecode for the smallest problems. For the Golomb Ruler problem, the
CPU time Gecode takes to solve the smallest problem is equal to the time Minion
takes. This is because the CPU time required to solve this instance is large compared

21

22

MOTIVATION

to the CPU required for the smallest instances of the other problem classes — it takes
roughly a second whereas for other problem classes the smallest instance is solved
in a fraction of a second. The overhead Minion incurs for parsing the input file is
small and only accounts for a small fraction of the total CPU time in this case.

Figure 2.4 on page 20 shows that for the Social Golfers problem, ECLiPSe scales
better than the other solvers with respect to the increase in CPU time with increasing
problem size. Starting with the 2,7,4 instance, it is faster than Choco and for the
largest instance it is faster than Gecode as well. Extrapolating past the end of
the graph, it is possible that for very large instances ECLiPSe could be faster than
Minion. Figure 2.5 on the preceding page on the other hand shows a different picture.
Here the increase in CPU time for ECLiPSe and Gecode with increasing problem
size is significantly larger than that of Choco and Minion. For the 7,3,60 problem
instance, Choco is faster than Gecode despite being slower before.

These factors constitute a further difficulty for choosing the best overall solver.
Apart from different performance on different problem classes, the performance
across different instances of the same problem class also varies. In particular, the
performance of the solvers scales differently as the size of the problem instance to
solve increases. If we chose Minion as the solver to use but only solve very small
problems, Gecode would have given a much better performance. Similarly, if we only
solve very large problems, it is possible that another solver would have been a better
choice.

2.5.2. Recomputation versus copying in Gecode

In addition to choosing a solver, there are also parameters for each solver which
may increase or decrease performance on a particular problem instance. Choosing
the best values for those parameters is similar to choosing the solver with the best
performance — it is relatively easy to choose a default that will give good perfor-
mance on almost all problems, but there is space for improvement by adapting the
parameter values to particular problems.

Gecode provides parameters to tune the ratio of copying to recomputation. Setting
this parameter will serve as an example for the difficulty of setting the value and to
demonstrate that a default setting will not give the best performance on all problem
instances. The n-Queens problem, the Social Golfers problem and the BIBD problem
were rerun with recomputation distances of 1 (full copying — the same behaviour as
Minion), 8 (the default), 16 and 32. The adaptive recomputation distance was left
at the default value of 2 (cf. Schulte (2002)). These particular problem classes were
chosen because both Magic Square and Golomb Ruler have a relatively small number
of variables. Therefore the search tree is comparatively shallow and the effects of
changing this parameter setting are not as pronounced as for the chosen problems.

The results were compared with the Kruskal-Wallis one-way analysis of variance
test. The differences are not statistically significant because of the large variation
among the CPU times for the problem instances; however when comparing the dif-

RESULTS

1.2 @ﬁ O BIBD
A A & golfers
1.0 - A A queens
* 8
+ 16
0.8 — X 32

0.6 g A g

Recomputation/copying over copying

[[[[[[[
200 500 2000 5000 20000 100000 500000

Number of backtracks

Figure 2.6. CPU time for different levels of recomputation and copying over CPU
time for copying for Gecode. Shapes denote problem classes, crosshairs
denote recomputation distances. Values less than 1 denote that copying
and recomputation is faster than copying at every node.

ferences between doing a full copy at each node (recomputation distance 1) and the
other recomputation distances with the Wilcoxon test, the differences were statisti-
cally significant at the 0.05 level.

Figure 2.6 shows the results for all the problems and recomputation distances.
Note that the default recomputation distance in Gecode is 8, i.e. the results shown
in Figures 2.1 on page 19, 2.4 on page 20, and 2.5 on page 21 are not the CPU times
that the other CPU times are divided by.

For all instances and recomputation distances of the n-Queens problem, making
a full copy at every node of the search tree performs better than a recomputation
distance > 1. For problems with only few variables, it might be better always to
copy. The performance improvement is only up to about 22% though.

The default value for the recomputation distance achieves the best performance
in most of the cases. The recomputation distance appears to be proportional to the
number of backtracks — for the lowest number of backtracks, copying at every node
(i.e. a recomputation distance of 1) is fastest, whereas for the largest number of
backtracks 16 is better than 8.

23

24

MOTIVATION

2.6. Summary

The results in this chapter show that the performance differences between different
solvers can be significant. If performance is something to be considered, there is a
clear need to evaluate different solvers and choose based on results such as the ones
presented in this chapter.

But even when making such a decision based on empirical evidence, there will
be room for performance improvements in some cases. Choosing a single solver
will give suboptimal performance for some problems because of the nature of that
problem and assumptions that the designers of the chosen solver made that may not
necessarily be true in this particular case.

Algorithm Selection provides a way of improving on this situation. Instead of
manually selecting a solver to tackle all problems with, it allows us to choose the
best solver from the list of candidates to achieve better performance on individual
problems. But making this decision is not straightforward. In the results presented
here, the decision of which solver to choose often depends on the size of the problem
— how long will it take to solve it or how many backtracks will the solver need?

These are of course questions that we can only answer once the problem has
been solved. At that point the information we could get from the answers is useless
however — we already solved the problem, there is no need to do that again, even
if we knew how to do it faster. We need a way of choosing the best solver before
solving the problem.

This is exactly what Algorithm Selection is concerned with. Given a problem,
examine it and, depending on its characteristics, make the decision of what solver
to use. Being able to do so efficiently does not only make it easier for humans to
solve problems because the right way of solving it is selected automatically, but also
more efficient because the most appropriate solver is selected on a case-by-cases basis
instead of relying on a default choice giving good performance in general.

Background

Algorithm Selection is not a new problem. Researchers recognised long ago that a
single algorithm will not give the best performance across all problems one may
want to solve and that selecting the most appropriate method is likely to improve
the overall performance. Empirical evaluations like the one in the previous chapter
have provided compelling evidence for this (e.g. Aha (1992)).

The Algorithm Selection Problem has, in many forms and under different names,
cropped up in many areas of research in the last few decades. Today there exists a
large amount of literature on it. Most publications are concerned with new ways of
tackling this problem and solving it efficiently in practice. This chapter surveys the
available literature and describes how research has progressed.

3.1. The Algorithm Selection Problem

The original paper describing the Algorithm Selection Problem was published in
Rice (1976). The basic model described in the paper is very simple — given a space
of problems and a space of algorithms, map each problem-algorithm pair to its
performance. This mapping can then be used to select the best algorithm for a
given problem. The original figure illustrating the model is reproduced in Figure 3.1
on the next page. As Rice states,

46 The objective is to determine S(z) [the mapping of algorithms to prob-
lems] so as to have high algorithm performance. 29

He identifies the following four criteria for the selection process.

1. Best selection for all mappings S(x) and problems x. For every problem, an
algorithm is chosen to give maximum performance.

2. Best selection for a subclass of problems x’ C x. A single algorithm is chosen to
apply to each of a subclass of problems such that the performance degradation
compared to choosing from all algorithms is minimised.

25

26

BACKGROUND
zEP 5() Ac A p(4,z) pER
Probl E—— Aleorith — P> | Performance
roblem space Selection SOTIVAM SPACE | Performance | measure space
mapping mapping
Norm
mapping

lp|| = Algorithm
performance

Figure 3.1. Basic model for the Algorithm Selection Problem as published by Rice
(1976).

3. Best selection from a subclass of mappings S’ C S. Choose the selection map-
ping from a subset of all mappings from problems to algorithms such that the
performance degradation is minimised.

4. Best selection from a subclass of mappings and problems S’(z’). Choose a
single algorithm from a subset of all algorithms to apply to each of a subclass
of problems such that the performance degradation is minimised.

The first case is clearly the most desirable one. In practice however, the other cases
are more common — we might not have enough data about individual problems or
algorithms to select the best mapping for everything.

Rice (1976) lists five main steps for solving the problem.

46 Formulation Determination of the subclasses of problems and mappings
to be used.

Existence Does a best selection mapping exist?
Uniqueness Is there a unique best selection mapping?

Characterization What properties characterize the best selection map-
ping and serve to identify it?

Computation What methods can be used to actually obtain the best
selection mapping? 29

This framework is taken from the theory of approximation of functions. The ques-
tions for existence and uniqueness of a best selection mapping are usually irrelevant
in practice. As long as a good performance mapping is found and improves upon
the current state of the art, the question of whether there is a different mapping
with the same performance or an even better mapping is secondary. While it is easy
to determine the theoretically best selection mapping on a set of given problems,
casting this mapping into a generalisable form that will give good performance on

THE ALGORITHM SELECTION PROBLEM

reP

Problem space

Feature
extraction
S(f(x p(A, x pER?
f(z) e F=R™ —|>((=) A €A —|>(: Performance
Feature space Selection Algorithm space | performance measure space
mapping mapping

llp|| = Algorithm
performance

Figure 3.2. Refined model for the Algorithm Selection Problem with problem fea-
tures (Rice, 1976).

new problems or even into a form that can be used in practice is hard. Guo and Hsu
(2004) and Cook and Varnell (1997) compare different Algorithm selection models
and select not the one with the best performance, but one that is easy to understand,
for example. Vrakas et al. (2003) select their method of choice for the same reason.
Similarly, Xu et al. (2008) choose a model that is cheap to compute instead of the
one with the best performance. They note that,

66 All of these techniques are computationally more expensive than ridge
regression, and in our previous experiments we found that they did not
improve predictive performance enough to justify this additional cost. 97

Rice continues by giving practical examples of where his model applies. He refines
the original model to include features of problems that can be used to identify the
selection mapping. The original figure depicting the refined model is given in Figure
3.2.

This model already contains all the elements we need for this dissertation. Features
of each problem in a given set are extracted. The aim is to use these features to
produce the mapping that selects the algorithm with the best performance for each
problem. The actual performance mapping for each problem-algorithm pair is usually
of less interest as long as the individual best algorithm can be identified.

Rice poses additional questions about the determination of features.

e« What are the best features for predicting the performance of a specific algo-
rithm?

27

28

BACKGROUND

o« What are the best features for predicting the performance of a specific class
of algorithms?

e« What are the best features for predicting the performance of a subclass of
selection mappings?

He also states that,

66 The determination of the best (or even good) features is one of the most
important, yet nebulous, aspects of the algorithm selection problem. 29

He refers to the difficulty of knowing the problem space. Many problem spaces are
not well known and often a sample of problems is drawn from them to evaluate
experimentally the performance of the given set of algorithms. If the sample is not
representative, or the features do not achieve a good separation of the problems in
the feature space, there is little hope of finding the best or even a good selection
mapping.

Tsang et al. (1995) perform one of the earliest experimental investigations into
Algorithm Selection. The main point of the paper is to show that there is no algo-
rithm that is universally the best when solving constraint problems. The authors also
demonstrate that the best algorithm-heuristic combination is not what one might
expect for some of the surveyed problems. This provides an important motivation
for research into Algorithm Selection. They close by noting that,

66 ..research should focus on how to retrieve the most efficient [algorithm-
heuristic|] combinations for a problem. 29

In order to learn the performance mapping from problems to algorithms, we use ex-
perimentally obtained training data. The accordingly modified version of the model
of the Algorithm Selection Problem that will be used in the remainder of this dis-
sertation is shown in Figure 3.3 on the facing page.

The original model from Rice (1976) is modified to take a training phase into
account, where the selection mapping is learned as a model of the performance space.
For a sample of the problem space, the features are extracted and the performance of
the algorithm space is evaluated experimentally. Using this training data, the model
is created by Machine Learning. The term model is used only in the loosest sense
here; it can be as simple as a representation of all the training data without any
further analysis.

3.1.1. Terminology

Algorithm Selection is a very general concept and as such has cropped up frequently
in various lines of research. Often however a different terminology is used.

Borrett et al. (1996) use the term algorithm chaining to mean switching from one
algorithm to another while the problem is being solved. This is an instance of online

THE ALGORITHM SELECTION PROBLEM

P CP
Problem space A
Algorithm space
sample
Feature extraction experimental evaluation
’I’Ll n
Feature space > eriormance
measure space
sample
sample
I
|
training Machlne‘;eammg
reP Performance Algorithm
....... > [>
Problem space model performance

Figure 3.3. Modified Algorithm Selection model used in this dissertation.

29

30

BACKGROUND

Algorithm Selection. Lobjois and Lemaitre (1998) call Algorithm Selection selection
by performance prediction. Vassilevska et al. (2006) use the term hybrid algorithm
for the combination of a set of algorithms and an Algorithm Selection model (what
they term selector).

In Machine Learning today, Algorithm Selection is usually referred to as meta-
learning. This is because Algorithm Selection models learn when to use which
method of Machine Learning. The earliest approaches however also spoke of hybrid
approaches, e.g. Utgoff (1988). Aha (1992) proposes rules for selecting a Machine
Learning algorithm that take the characteristics of a data set into account. He uses
the term meta-learning. Brodley (1993) introduces the notion of selective superiority.
This concept refers to a particular algorithm being best on some, but not all tasks.

In heuristics research, Algorithm Selection is called meta-heuristic or hyper-heuristic.
An Algorithm Selection model can be seen as a heuristic that decides when to use
one of a set of heuristics. The term hyper-heuristic was first used by Cowling et al.
(2001). The term meta-heuristic is part of Artificial Intelligence folklore and it is
hard to trace its exact origins. The first mention of the term was probably in the
paper that proposed Tabu search (Glover, 1986).

In addition to the many terms used for the process of Algorithm Selection, re-
searchers have also used different terminology for the models of what Rice calls
the performance measure space. Allen and Minton (1996) call them runtime per-
formance predictors. Leyton-Brown et al. (2002), Hutter et al. (2006), Xu et al.
(2007a), Leyton-Brown et al. (2009) coined the term Empirical Hardness model.
This stresses the reliance on empirical data to create these models and introduces
the notion of “hardness” of a problem. The concept of hardness takes into account
all performance considerations and does not restrict itself to runtime performance
for example. In practice however, the described empirical hardness models only take
runtime performance into account. In all cases, the predicted measures are used to
select an algorithm.

3.2. Search problems

Most of the research on Algorithm Selection focuses on combinatorial search prob-
lems. The terminology associated with this kind of problem will be used throughout
this dissertation. This section reviews and explains the necessary concepts.

A combinatorial search problem is one where an initial state is to be transformed
into a goal state by application of a series of operators or assignment of values
to variables. The space of possible states is exponential in the size of the input and
finding a solution is N'P-hard. Applying an operator to a state or is called expansion
of the state. The space of possible states forms a tree; the children of a node are
the states that are reachable from it by applying one of the operators. Similarly,
assigning a value to a variable changes the state.

During the solution process, the search tree is built by expanding the nodes. At
certain points, it may become necessary to unapply operators to revert to an earlier

EXPERT SYSTEMS

state. This is usually the case when no operators can be applied to the current search
state and it is not the goal state. This process is referred to as backtracking.

A heuristic is a strategy that determines which operators to apply to which nodes.
Heuristics are not necessarily complete or deterministic, i.e. they are not guaranteed
to find a solution if it exists or to always make the same decision in the same
circumstances.

A large part of the literature relevant to this dissertation is concerned with search
problems in different domains. Explanations of all the relevant techniques and con-
cepts are beyond the scope of and not necessary for this dissertation. An overview
of the field of satisfiability (SAT) is given by Biere et al. (2009). An introduction
to constraint programming is given by Dechter (2003) and the reference handbook
(Rossi et al., 2006). Automated planning is described by Ghallab et al. (2004). A
general overview of Artificial Intelligence search can be found in Russell and Norvig
(2009). An introduction to and overview of the relevant Machine Learning techniques
is given by Bishop (2007), Witten et al. (2011).

3.3. Expert systems

The earliest Algorithm Selection systems appeared in the context of so-called expert
systems. The idea behind them was to make the power of complex libraries available
to the non-expert user. As such, the problem domain that those systems deal with
usually require a lot of expert knowledge, such as differential equations in Mathe-
matics. The user would set out to solve such a problem and, with the help of the
expert system, select the appropriate steps for doing so. In this context, Algorithm
Selection is not only used to improve the performance of the system, but also to
make solving the problem possible at all.

Algorithm Selection is only a part of the systems described in this section. They
are nevertheless mentioned here because they set the context for later systems. Even
though the Algorithm Selection Problem was described several decades ago, it did
not emerge as an independent area of research until relatively recently.

The level of user interaction during the solving process varies. Some systems only
assist the user while others require the user to only specify the problem to solve. All
systems incorporate some kind of expert knowledge; either in terms of explicitly given
rules and transformations to apply to a problem or implicitly learned operations.

The ODEXPERT system (Kamel et al., 1993) helps the user with the selection
of a numerical solver for initial value ordinary differential equations. It uses both
explicitly given expert knowledge in the form of rules and decision trees and implicit
knowledge derived from past decisions. It relies on a mixture of user-specified and
automatically determined characteristics of input problems.

Similarly, PYTHIA (Dyksen and Gritter, 1989, Weerawarana et al., 1996, Joshi
et al.,, 1996) automatically selects from a portfolio of algorithms to solve elliptic
partial differential equations from the //ELLPACK system (Houstis et al., 1990).
It contains human expert knowledge and maintains performance profiles of the al-

31

32

BACKGROUND

gorithms. In addition to the problem to solve, the user can specify requirements on
the time to find the solution and quality of the solution as well.

The system ALEX (Neves, 1985) (Algebra example learner) on the other hand
is mostly autonomous and does not require the expert knowledge to be specified
explicitly. It learns rules to apply to algebraic equations and the context in which
to apply a learned rule from examples of solving algebraic equations.

3.4. Algorithm portfolios

The idea behind expert systems was taken further under the topic of algorithm
portfolios. The idea of having a portfolio was taken from Economics, where portfo-
lios are used to maximise utility while minimising the associated risk as described
by Huberman et al. (1997). Applied to algorithms, the utility to maximise is the
performance of the algorithm or the quality of the solution to a problem.

Algorithm portfolios and expert systems share some of their aims. Expert systems
put more emphasis on assisting the user to make a difficult decision while algorithm
portfolios focus on improving the performance of the solving process. In that sense,
they are two ways of looking at the same thing. Hough and Williams (2006) investi-
gate selecting from a portfolio of optimisation algorithms for example. They stress
that existing optimisation software is hard to use for non-expert users because of
the number of algorithms and options available. Their approach misses most of the
components usually found in expert systems, but is very similar to other portfolio
systems described in the literature.

For stochastic algorithms and hard combinatorial problems, the idea of algorithm
portfolios was first explored in Gomes and Selman (1997a,b) and formalised and
investigated further in subsequent publications, e.g. Gomes and Selman (2001). The
technique itself however had been described under different names by other authors
at about the same time in different contexts, e.g. Tsang et al. (1995), Allen and
Minton (1996), Borrett et al. (1996), Lobjois and Lemaitre (1998).

3.4.1. Static portfolios

The most common kind of algorithm portfolio is a static portfolio. It contains a
fixed number of algorithms or systems, each with their own performance charac-
teristics. The algorithms and their parameters are not modified. This approach is
used for example in SATzilla (Nudelman et al., 2004, Xu et al., 2007b, 2008), AQME
(Pulina and Tacchella, 2007, 2009), CPhydra (O’Mahony et al., 2008), ARGOSMART
(Nikoli¢ et al., 2009) and BUS (Howe et al., 1999).

As the algorithms in the portfolio do not change, their selection is crucial for
its success. Ideally, the algorithms will complement each other such that good per-
formance can be achieved on a wide range of different problems. Samulowitz and
Memisevic (2007) use a portfolio of heuristics for solving quantified Boolean formu-

ALGORITHM PORTFOLIOS

lae problems that have specifically been crafted to be orthogonal to each other. Wu
and van Beek (2007) approach the problem from another direction — they evaluate
all possible portfolios and select the one with the best performance and largest dis-
tance from a badly-performing portfolio. In most cases however, this is made less
explicit. The systems mentioned in the previous paragraph use portfolios of solvers
that have performed well in solver competitions with the implicit assumption that
they have complementing strengths and weaknesses.

3.4.2. Dynamic portfolios

Rather than relying on a priori properties of the algorithms in the portfolio, dy-
namic portfolios adapt the algorithms depending on the problem to be solved. One
approach is to have a portfolio of algorithmic building blocks that are put together.
An example of this is the Adaptive Constraint Engine (ACE) (Epstein and Freuder,
2001, Epstein et al., 2002). The building blocks are so-called advisors, which char-
acterise variables of constraint problem and give recommendations as to which one
to process next. ACE combines these advisors into more complex ones. Fukunaga
(2002, 2008) proposes a similar system, CLASS, which combines heuristic building
blocks to form composite heuristics for solving SAT problems.

Closely related is the concept of specialising generic building blocks for the problem
to solve. This approach is taken in the SAGE system (Strategy Acquisition Governed
by Experimentation) (Langley, 1983b,a). It starts with a set of general operators
that can be applied to a search state. These operators are refined by making the
preconditions more specific based on their utility for finding a solution. The MULTI-
TAC (Multi-tactic Analytic Compiler) system (Minton, 1993b,a, 1996) specialises a
set of generic heuristics for the constraint problem to solve.

There can be complex restrictions on how the building blocks can be combined.
RT-Syn (Smith and Setliff, 1992) for example uses a preprocessing step to determine
the possible combinations of algorithms and data structures to solve a software spec-
ification problem and then selects the most appropriate combination using simulated
annealing.

Another approach is to modify the parameters of parameterised algorithms in the
portfolio. This is usually referred to as automatic tuning and not only applicable in
the context of algorithm portfolios, but also for single algorithms. The HAP system
(Vrakas et al., 2003) automatically tunes the parameters of a planning system de-
pending on the problem to solve. Horvitz et al. (2001) dynamically modify algorithm
parameters during search based on statistics collected during the solving process.

Automatic tuning

Automatic tuning and portfolio selection can be treated separately, as done in the
Hydra portfolio builder (Xu et al., 2010). Hydra uses ParamILS (Hutter et al., 2007,
2009b) to automatically tune algorithms in a SATzilla portfolio. ISAC (Kadioglu

33

34

BACKGROUND

et al., 2010) uses GGA (Ansétegui et al., 2009) to automatically tune algorithms for
clusters of problem instances.

The area of automatic parameter tuning has attracted a lot of attention in recent
years. This is because algorithms have an increasing number of parameters that are
difficult to tune even for experts and also because of research into dynamic algorithm
portfolios that benefits from automatic tuning.

Minton (1996) automatically selects the most promising configuration of heuristics
to solve constraint problems. All possible configurations are enumerated and the
most promising one is selected using a hill climbing technique. Coy et al. (2001)
take a more structured approach and systematically explore the space of possible
configurations while avoiding running all of those configurations. They fit regression
models to parameter values to interpolate between the extreme values. Terashima-
Marin et al. (1999), Fukunaga (2002), Gagliolo et al. (2004), Ansétegui et al. (2009)
use genetic algorithms to evolve promising configurations. Birattari et al. (2002)
use a racing approach that uses statistical significance tests to determine whether a
current best configuration is improved by a candidate. Racing is an idea developed
in the Machine Learning community and described in more detail by Maron and
Moore (1997).

Adenso-Diaz and Laguna (2006) propose the CALIBRA system. It uses factorial
experimental design and local search techniques to find good configurations, but is
not guaranteed to do so. The number of parameters that can be tuned is limited
to five and interactions between parameters are not taken into account. Sequential
parameter optimisation (Preuss and Bartz-Beielstein, 2007, Hutter et al., 2009a)
also uses factorial experimental design techniques and fits a response surface model
and uses this to determine the next promising parameter configuration to explore.
Its main limitation is that parameters can only be optimised for a single problem.

The systems described so far are only of limited suitability for dynamic algorithm
portfolios. They either take a long time to find good configurations or are restricted
in the number or type of parameters. Few of the approaches mentioned above take
interaction between the parameters into account. More recent approaches have fo-
cused on overcoming these limitations.

The ParamILS system (Hutter et al., 2007, 2009b) uses techniques based on lo-
cal search to identify parameter configurations with good performance. The authors
address over-confidence (overestimating the performance of a parameter configura-
tion on a test set) and over-tuning (determining a parameter configuration that is
too specific). Ansétegui et al. (2009) use genetic algorithms to discover favourable
parameter configurations for the algorithms being tuned. The authors use a racing
approach to avoid having to run all generated configurations to completion. They
also note that one of the advantages of the genetic algorithm approach is that it is
inherently parallel.

Both of these approaches are capable of tuning algorithms with a large number
of parameters and possible values as well as taking interactions between parameters
into account. They are used in practice in the Algorithm Selection systems Hydra

PROBLEM SOLVING WITH PORTFOLIOS

and ISAC, respectively.

Dynamic portfolios are in general a more fruitful area for Algorithm Selection
research because of the large space of possible decisions. Static portfolios are usually
relatively small and the decision space is amenable for human exploration. This is
not a feasible approach for dynamic portfolios though. Minton (1996) notes that

66 MULTI-TAC turned out to have an unexpected advantage in this arena,
due to the complexity of the task. Unlike our human subjects, MULTI-
TAC experimented with a wide variety of combinations of heuristics. Our
human subjects rarely had the inclination or patience to try many alter-
natives, and on at least one occasion incorrectly evaluated alternatives
that they did try. 29

3.5. Problem solving with portfolios

There are different ways in which a portfolio can be used to solve a given problem.
All of the algorithms can be used or just a subset; they can be switched during the
solving process or alternated.

A common case is to select the best algorithm from a portfolio and use it to solve
the problem completely. This approach is used for example in SATzilla (Nudelman
et al., 2004, Xu et al., 2007b, 2008), ARGOSMART (Nikoli¢ et al., 2009), SALSA
(Demmel et al., 2005) and EUREKA (Cook and Varnell, 1997).

In contrast to this approach, Arbelaez et al. (2009) select the best search strategy
at every checkpoint in the search tree. Similarly, Brodley (1993) recursively parti-
tions the problem to be solved and potentially selects different algorithms for each
partition. In this approach, a lower-level decision can lead to changing the decision
at the level above. More fine-grained approaches select the best way to proceed at
every node of the search tree. The PRODIGY system (Carbonell et al., 1991) for
example selects the next operator to apply in order to reach the goal state of a plan-
ning problem at each node. Similarly, Langley (1983a) learn weights for operators
that can be applied at each search state and select from among them accordingly.

Closely related is the work by Lagoudakis and Littman (2000, 2001), which parti-
tions the search space into recursive subtrees and selects the best candidate from the
portfolio for every subtree. Samulowitz and Memisevic (2007) also select heuristics
for solving sub-problems.

Other approaches monitor the performance of an algorithm after it has been se-
lected. Fink (1998) investigates setting a time bound for the algorithm that has
been selected. More sophisticated systems furthermore adjust their selection if such
a bound is exceeded. Borrett et al. (1996) try to detect behaviour during search
that indicates that the algorithm is performing badly, for example visiting nodes
in a subtree of the search that clearly do not lead to a solution. If such behaviour
is detected, they propose switching the currently running algorithm according to a

35

36

BACKGROUND

fixed replacement strategy. Sakkout et al. (1996) explore the same basic idea. They
switch between two algorithms for solving constraint problems that achieve different
levels of consistency and show that their approach achieves the same level of con-
sistency as the more expensive algorithm. The cost is significantly lower however as
they switch to the cheaper algorithm when it achieves the same level of consistency.
Stergiou (2009) also investigates switching propagation methods during solving.

A different line of research computes explicit schedules for running (a subset of)
the algorithms in the portfolio. Roberts and Howe (2006) rank algorithms in order
of expected performance and allocate time according to this ranking. Pulina and
Tacchella (2009) determine a schedule according to predefined strategies. O’Mahony
et al. (2008) try to optimise the computed schedule instead of following predefined
strategies. Petrik (2005) also computes an optimal schedule. Kadioglu et al. (2011)
propose an efficient approach for computing optimal schedules.

Howe et al. (1999) propose a round-robin schedule that contains all algorithms
in the portfolio, but varies their order and how much time is allocated to each one.
Gerevini et al. (2009) compute round-robin schedules for subsets of all algorithms
and choose the best one based on the results of performance simulations. Roberts and
Howe (2007) explore different strategies for allocating time to algorithms. Streeter
et al. (2007) compute a schedule with the aim of improving the average-case perfor-
mance. In later work, they compute theoretical guarantees for the performance of
their schedule (Streeter and Smith, 2008).

Cicirello and Smith (2005) investigate a model that allocates resources to an algo-
rithm proportional to the number of times it has been successful. In particular, they
note that the allocated resources should grow doubly exponentially in the number of
successes. Wu and van Beek (2007) approach scheduling the chosen algorithms in a
different way and assume a fixed limit on the amount of resources an algorithm can
consume while solving a problem. They then compute the optimal schedule based
on this.

Petrik and Zilberstein (2006) propose to run the selected algorithms in parallel
instead of according to a sequential schedule in what they call a parallel portfolio.
Despite the name, the authors assume that the portfolio will be run on a single pro-
cessor and compute shares of compute time to allocate to each one of the algorithms.

In one of the original papers investigating algorithm portfolios, Gomes and Selman
(2001) examine the effects of running the portfolio algorithms sequentially and in
parallel without computing schedules that govern the resource allocation to each
one.

3.5.1. Offline and online approaches

In addition to whether they choose a single algorithm or compute a schedule, existing
approaches can also be distinguished by whether they operate before the problem is
being solved (offline) or while the problem is being solved (online).

Examples of the approaches that only make offline decisions include Xu et al.

PORTFOLIO SELECTORS

(2008), Minton (1996), Smith and Setliff (1992), O’Mahony et al. (2008). One of the
problems is that if the chosen algorithm turns out to have bad performance, there
is no way of mitigating this. Purely offline approaches are inherently vulnerable to
bad predictions.

The approaches that make decisions during the search (e.g. at every node of the
search tree) are necessarily online systems. Examples include Langley (1983a), Ar-
belaez et al. (2009), Carbonell et al. (1991), Lagoudakis and Littman (2000), Samu-
lowitz and Memisevic (2007). A different class of online systems monitors the perfor-
mance of a chosen method and makes a new decision if the actual performance does
not match the expected performance. Examples of this approach include Borrett
et al. (1996), Sakkout et al. (1996), Stergiou (2009).

A third class of systems not only dynamically updates the decisions made, but also
adjusts the Algorithm Selection model based on the observed performance. Pulina
and Tacchella (2009) retrain the prediction engine if the actual run time is much
longer than the predicted runtime. Gagliolo et al. (2004), Gagliolo and Schmidhuber
(2005, 2006b) take this approach to the extreme and learn the Algorithm Selection
model only dynamically while the problem is being solved. Armstrong et al. (2006)
also rely exclusively on an online selection model.

There are a number of approaches that combine an offline selection step and an
online monitoring/adaption step. An example for this is Pulina and Tacchella (2009),
but also Horvitz et al. (2001) where the offline selection of an algorithm is combined
with the online adjusting of its parameters. Carchrae and Beck (2004) train different
models for selecting the best algorithm to start with offline and predicting whether
to switch the algorithm online.

3.6. Portfolio selectors

The key component of an algorithm portfolio is the mechanism to select a subset
of the algorithms for solving a particular problem. Apart from accuracy, one of the
main requirements for such a selector is that it is relatively cheap to run — if selecting
an algorithm for solving a problem is more expensive than solving the problem, there
is no point in doing so. Vassilevska et al. (2006) explicitly define the selector as “an
efficient (polynomial time) procedure”. They also note that,

66 While it seems that restricting a heuristic to a special case would likely
improve its performance, we feel that the ability to partition the problem
space of some NP-hard problems by efficient selectors is mildly surpris-
ing. 29

There are technical challenges associated with making selectors efficient as well.
Algorithm Selection systems that analyse the problem to be solved, such as SATzilla,
need to take steps to ensure that the analysis does not become too expensive. Two
such measures are the running of a pre-solver and the prediction of the time required

37

38

BACKGROUND

to analyse a problem (Xu et al., 2008). The idea behind the pre-solver is to choose
an algorithm with reasonable general performance from the portfolio and use it to
start solving the problem before starting to analyse it. If the problem happens to be
very easy, it will be solved even before the results of the analysis are available. After
a fixed time, the pre-solver is terminated and the results of the Algorithm Selection
system are used. Predicting the analysis time is a closely related idea designed to
lift the limitation of having a fixed time for running the pre-solver. If the predicted
required analysis time is too high, a default algorithm with reasonable performance
is chosen and run on the problem. This technique is particularly important in cases
where the problem is hard to analyse, but easy to solve.

There are many different approaches to how such selectors operate. It is not neces-
sarily an explicit part of the system. Minton (1996) compiles the Algorithm Selection
system into a LISP programme for solving the original constraint problem. The se-
lection rules are part of the programme logic. Fukunaga (2008), Garrido and Riff
(2010) evolve selectors and combinators of heuristic building blocks using genetic
algorithms.

3.6.1. Performance models

The way the selector operates is closely linked to the way the performance model of
the algorithms in the portfolio is built. In early approaches, the performance model
was usually not learnt but given in the form of human expert knowledge. Borrett
et al. (1996), Sakkout et al. (1996) use hand-crafted rules to determine whether
to switch the solution method during solving. Allen and Minton (1996) also have
hand-crafted rules for estimating the runtime performance of an algorithm. Modern
approaches sometimes use only human knowledge as well. Tolpin and Shimony (2011)
for example model the performance space using statistical methods and use this
hand-crafted model to select a heuristic for solving constraint problems.

A more common approach today is to automatically learn performance models
using Machine Learning on training data. The portfolio algorithms are run on a set
of representative problems and based on these experimental results, performance
models are built. This approach is used by Xu et al. (2008), Pulina and Tacchella
(2007), O’'Mahony et al. (2008), Kadioglu et al. (2010), Guerri and Milano (2004),
to name but a few examples. A drawback of this approach is that the training time
is usually large. Gagliolo and Schmidhuber (2006a) investigate ways of mitigating
this problem by using censored sampling, which introduces an upper bound on the
runtime of each experiment.

In some cases, no explicit performance models are used at all. Caseau et al. (1999)
and Minton (1996) run the candidate heuristics on a set of test problems and select
the one with the best performance that way for example.

PORTFOLIO SELECTORS

Per-portfolio models

Automated approaches learn a performance model of the entire portfolio based on
training data. This is used for example by O’Mahony et al. (2008), Cook and Varnell
(1997), Pulina and Tacchella (2007), Nikoli¢ et al. (2009), Guerri and Milano (2004).
Again there are different ways of doing this. Lazy approaches do not learn an explicit
model, but use the set of training examples as a case base. For new problems,
the closest problem in the case base is determined and decisions made accordingly.
Wilson et al. (2000), Pulina and Tacchella (2007), O’Mahony et al. (2008), Nikolié¢
et al. (2009), Gebruers et al. (2004) for example use nearest-neighbour classifiers
to achieve this. Explicitly-learned models try to identify the concepts that affect
performance for a given problem. This acquired knowledge can be made explicit
to improve the understanding of the researchers of the problem domain. Carbonell
et al. (1991), Gratch and DeJong (1992), Brodley (1993), Vrakas et al. (2003) learn
classification rules that guide the selector. Vrakas et al. (2003) note that the decision
to use a classification rule learner was not so much guided by the performance of
the approach, but the easy interpretability of the result. Langley (1983a), Epstein
et al. (2002), Nareyek (2001) learn weights for decision rules. Cook and Varnell
(1997), Guerri and Milano (2004), Guo and Hsu (2004), Roberts and Howe (2006),
Bhowmick et al. (2006) go one step further and learn decision trees. Guo and Hsu
(2004) again note that the reason for choosing decision trees was not primarily the
performance, but the understandability of the result.

Some approaches learn probabilistic models that take uncertainty and variability
into account. Gratch and DeJong (1992) use a probabilistic model to learn control
rules. Demmel et al. (2005) learn multivariate Bayesian decision rules. Carchrae and
Beck (2004) learn a Bayesian classifier to predict the best algorithm after a certain
amount of time. Stern et al. (2010) consider algorithm portfolios in a framework
of Bayesian models. Domshlak et al. (2010) learn decision rules using naive Bayes
classifiers. Lagoudakis and Littman (2000), Petrik (2005) learn performance models
based on Markov Decision Processes.

Other approaches include support vector machines (Hough and Williams, 2006,
Arbelaez et al., 2009), reinforcement learning (Armstrong et al., 2006), neural net-

works (Gagliolo and Schmidhuber, 2005), decision tree ensembles (Hough and Williams,

2006), boosting (Bhowmick et al., 2006), multinomial logistic regression (Samulowitz
and Memisevic, 2007) and clustering (Stamatatos and Stergiou, 2009, Stergiou, 2009,
Kadioglu et al., 2010). Streeter et al. (2007) compute schedules for running the
algorithms in the portfolio based on a statistical model of the problem instance
distribution.

Per-algorithm models

A different approach is to learn performance models for the individual algorithms of
the portfolio. The performance predicted on a problem can then be compared and
the selector can proceed based on this. Models for each algorithm in the portfolio are

39

40

BACKGROUND

used for example by Xu et al. (2008), Howe et al. (1999), Allen and Minton (1996),
Lobjois and Lemaitre (1998), Gagliolo and Schmidhuber (2006b).

A common way of doing this is to use regression to predict the performance of
each algorithm. This is used by Xu et al. (2008), Howe et al. (1999), Leyton-Brown
et al. (2002), Haim and Walsh (2009), Roberts and Howe (2007). Silverthorn and
Miikkulainen (2010) learn latent class models of unobserved variables. Weerawarana
et al. (1996) use Bayesian belief propagation and neural nets to predict the runtime
of a particular algorithm on a particular problem. Sillito (2000) uses sampling meth-
ods to estimate the cost of solving constraint problems. Watson (2003) models the
behaviour of local search algorithms with Markov chains.

Another common approach is to build statistical models of an algorithm’s perfor-
mance based on past observations. Fink (1998) computes the expected gain for time
bounds based on past success times. The computed values are used to choose the
algorithm and the time bound for running it. Brazdil and Soares (2000) compare
algorithm rankings based on different past performance statistics. Similarly, Leite
et al. (2010) maintain a ranking based on past performance. Cicirello and Smith
(2005) propose a bandit problem model that governs the allocation of resources to
each algorithm in the portfolio. Gerevini et al. (2009) use the past performance
of algorithms to simulate the performance of different algorithm schedules and use
statistical tests to select one of the schedules.

Hierarchical models

There are some approaches that combine several models into a hierarchical perfor-
mance model. Xu et al. (2007a) use sparse multinomial logistic regression to predict
whether a SAT problem instance is satisfiable and, based on that prediction, use a
logistic regression model to predict the runtime of each algorithm in the portfolio.
Haim and Walsh (2009) take the same approach with a portfolio of algorithms of
different types.

Hierarchical models are only applicable in a limited number of scenarios, which
explains the comparatively small amount of research into them. For many application
domains, only a single property needs to be predicted.

Selection of model learner

As described in the previous sections, there are many different ways of learning
algorithm performance models. Some of the research mentioned compared different
methods of doing so.

Xu et al. (2008) mention that, in addition to the chosen ridge regression for predict-
ing the runtime, they explored using lasso regression, support vector machines and
Gaussian processes. Cook and Varnell (1997) compare different decision tree learners,
a Bayesian classifier, a nearest neighbour approach and a neural network. Leyton-
Brown et al. (2002) compare several versions of linear and non-linear regression. Guo
and Hsu (2004) explore using decision trees, naive Bayes rules, Bayesian networks

PORTFOLIO SELECTORS

and meta-learning techniques. Gebruers et al. (2005) compare nearest neighbour
classifiers, decision trees and statistical models. Hough and Williams (2006) use
decision tree ensembles and support vector machines. Bhowmick et al. (2006) in-
vestigate alternating decision trees and various forms of boosting, while Pulina and
Tacchella (2007) use decision trees, decision rules, logistic regression and nearest
neighbour approaches. Roberts and Howe (2007) use 32 different Machine Learning
algorithms to predict the runtime of algorithms and probability of success. They at-
tempt to provide explanations for the performance of the methods they have chosen
in Roberts et al. (2008). Silverthorn and Miikkulainen (2010) compare the perfor-
mance of different latent class models.

However, only Guo and Hsu (2004), Gebruers et al. (2005), Hough and Williams
(2006), Pulina and Tacchella (2007), Silverthorn and Miikkulainen (2010) quantify
the differences in performance of the methods they used. The other comparisons
give only qualitative evidence.

3.6.2. Selector predictions

Apart from many different ways of creating performance models of the portfolio,
there are also different predictions the performance model can make to inform the
decision of the selector of a subset of the portfolio algorithms. The prediction can
be a single categorical value — the algorithm to choose. This type of prediction is
made for example by O’Mahony et al. (2008), Cook and Varnell (1997), Pulina and
Tacchella (2007), Nikoli¢ et al. (2009), Guerri and Milano (2004).

A different approach is to predict the runtime of the individual algorithms in the
portfolio. For example Horvitz et al. (2001), Petrik (2005), Silverthorn and Miikku-
lainen (2010) do this. Xu et al. (2008) do not predict the runtime itself, but the
logarithm of the runtime. They note that,

66 In our experience, we have found this log transformation of runtime
to be very important due to the large variation in runtimes for hard
combinatorial problems. 29

Allen and Minton (1996) estimate the runtime by proxy by predicting the number of
constraint checks. Lobjois and Lemaitre (1998) estimate the runtime by predicting
the number of search nodes to explore and the time per node. Lagoudakis and
Littman (2000) talk of the “cost” of selecting a particular algorithm, Nareyek (2001)
of the “utility” and Tolpin and Shimony (2011) of the “value of information” of
selecting an algorithm. Xu et al. (2009) predict the penalized average runtime score,
a measure that combines runtime and possible timeouts.

Borrett et al. (1996), Sakkout et al. (1996), Carchrae and Beck (2004) predict when
to switch the algorithm used to solve a problem. Brazdil and Soares (2000), Soares
et al. (2004), Leite et al. (2010) produce rankings of the portfolio algorithms. Howe
et al. (1999), Gagliolo et al. (2004), Gagliolo and Schmidhuber (2006b), Roberts
and Howe (2006), O’Mahony et al. (2008) predict schedules. The primary selection

41

42

BACKGROUND

criteria for Soares et al. (2004) and Leite et al. (2010) is the quality of the solution
an algorithm produces.

In addition to the primary selection criteria, a number of approaches predict sec-
ondary criteria as well. Howe et al. (1999), Fink (1998), Roberts and Howe (2007)
predict the probability of success for each algorithm. Weerawarana et al. (1996)
predict the quality of a solution. Another kind of prediction is not concerned with
the selection of a subset of the portfolio algorithms, but their runtime behaviour.
Horvitz et al. (2001) and Hutter et al. (2006) predict parameter values to use for
the chosen algorithm. Predictions can be made for other things in the context of
Algorithm Selection. Gebruers et al. (2005), Little et al. (2002), Borrett and Tsang
(2001) consider selecting the most appropriate model of a constraint problem. Smith
and Setliff (1992), Brewer (1995), Wilson et al. (2000) predict algorithms and data
structures to be used in a software system.

3.7. Features

Algorithm Selection systems employ problem features to inform the decision which
subset of the portfolio to use for solving a given problem. The most general feature
is the performance of an algorithm observed on a set of past problems. Cicirello and
Smith (2005), Streeter et al. (2007), Silverthorn and Miikkulainen (2010) use only
this feature. Other approaches use more fine-grained measures of past performance,
for example Langley (1983b), Minton (1996).

Most approaches learn models for the performance on particular problems and do
not use past performance as a feature, but to inform the prediction to be made.
They consider features of the problem to be solved, for example O’Mahony et al.
(2008), Pulina and Tacchella (2007), Weerawarana et al. (1996), Howe et al. (1999),
Xu et al. (2008). Other sources of features include the domain of the problem to be
solved (Carbonell et al., 1991), the generator that produced the problem to be solved
(Horvitz et al., 2001), the runtime environment (Armstrong et al., 2006), structures
derived from the problem such as the primal graph of a constraint problem (Gebruers
et al., 2004, Guerri and Milano, 2004), specific parts of the model such as variables
(Epstein and Freuder, 2001) or the algorithms in the portfolio themselves (Hough
and Williams, 2006). Gerevini et al. (2009) rely on the problem domain as the only
problem-specific feature and select based on past performance data for that domain.
Beck and Fox (2000) consider not only the values of features of a problem, but the
changes of those values while the problem is being solved. Smith and Setliff (1992)
consider features of abstract representations of the algorithms.

The features based on the problem to be solved and similar things can be computed
statically, i.e. before an algorithm is selected. Another common approach is to probe
the search space and derive features from the observations made. Examples for this
semi-static approach are Allen and Minton (1996), Cook and Varnell (1997), Lobjois
and Lemaitre (1998), Beck and Freuder (2004), Stamatatos and Stergiou (2009). The
probing usually requires a preprocessing phase where parts of the problem are being

FEATURES

explored by one or more algorithms.

A third class of features is computed dynamically after an algorithm has been
selected during solving. Approaches that rely purely on such features are for exam-
ple Borrett et al. (1996), Sakkout et al. (1996), Nareyek (2001), Stergiou (2009),
Domshlak et al. (2010).

The type of feature used determines how the portfolio selector is used for solving
problems (cf. Section 3.5 on page 35). Many Algorithm Selection systems use several
different types of features, for an overview see Table A.1 on page 124.

The features used for learning the Algorithm Selection model are crucial to its
success. Uninformative features might prevent the model learner from recognising
the real correlation between problem and performance or the most important feature
might be missing. Many researchers have recognised this problem.

Howe et al. (1999) manually select the most important features. They furthermore
take the unique approach of learning one model per feature for predicting the prob-
ability of success and combine the predictions of the models. Leyton-Brown et al.
(2002), Xu et al. (2008) perform automatic feature selection by greedily adding fea-
tures to an initially empty set. In addition to the basic features, they also use the
pairwise products of the features. Pulina and Tacchella (2007) also perform auto-
matic greedy feature selection, but do not add the pairwise products. Wilson et al.
(2000) use genetic algorithms to determine the importance of the individual features.
Petrovic and Qu (2002) evaluate subsets of the features they use and learn weights
for each of them. Roberts et al. (2008) consider using a single feature and automatic
selection of a subset of all features. Guo and Hsu (2004) and Kroer and Malitsky
(2011) also use techniques for determining the most predictive subset of features.

Beck and Freuder (2004), Carchrae and Beck (2004, 2005) explicitly focus on
features that do not require a lot of domain knowledge. Beck and Freuder (2004)
note that,

66 While existing algorithm selection techniques have shown impressive re-
sults, their knowledge-intensive nature means that domain and algorithm
expertise is necessary to develop the models. The overall requirement for
expertise has not been reduced: it has been shifted from algorithm selec-
tion to predictive model building. 29

Their approach uses a number of features that are applicable across a wide range of
problems and require no expert knowledge of the specific domain.

It is not only important to use informative features, but also features that are
cheap to compute. If the cost of computing the features and making the decision is
too high, the performance improvement from selecting the best algorithm might be
eroded. Xu et al. (2009) predict the feature computation time for a given problem
and fall back to a default selection if it is too high to avoid this problem. Bhowmick
et al. (2009) consider the computational complexity of calculating problem features
when selecting the features to use. They show that while achieving comparable
accuracy to the full set of features, their method is significantly cheaper.

43

44

BACKGROUND

3.8. Application domains

Over the years, Algorithm Selection systems have been used in many different appli-
cation domains. These range from Mathematics, e.g. differential equations (Kamel
et al., 1993, Weerawarana et al., 1996), linear algebra (Demmel et al., 2005) and
linear systems (Bhowmick et al., 2006, Kuefler and Chen, 2008), to the selection of
algorithms and data structures in software design (Smith and Setliff, 1992, Brewer,
1995, Wilson et al., 2000). The most common application domain by far however is
search problems such as SAT (Xu et al., 2008, Lagoudakis and Littman, 2001, Sil-
verthorn and Miikkulainen, 2010), constraints (Minton, 1996, Epstein et al., 2002,
O’Mahony et al., 2008), quantified Boolean formulae (Pulina and Tacchella, 2009,
Stern et al., 2010), planning (Carbonell et al., 1991, Howe et al., 1999, Vrakas et al.,
2003), scheduling (Beck and Fox, 2000, Beck and Freuder, 2004, Cicirello and Smith,
2005), combinatorial auctions (Leyton-Brown et al., 2002, Gebruers et al., 2004,
Gagliolo and Schmidhuber, 2006b) and general search algorithms (Langley, 1983b,
Cook and Varnell, 1997, Lobjois and Lemaitre, 1998).

Less common applications include Machine Learning (Soares et al., 2004, Leite
et al., 2010), genetic algorithms (Gagliolo et al., 2004, Gagliolo and Schmidhuber,
2005) and the most probable explanation problem (Guo and Hsu, 2004).

Most of the techniques presented in papers are not limited to the application
domains that they are evaluated on. In some cases however, researchers have tai-
lored their approach to the domain they applied it to; for example in the case of
hierarchical models for SAT (cf. Section 3.6.1 on page 40).

3.9. Methodology example — SATzilla

There is a lot of literature and different approaches to solving the Algorithm Selection
Problem. One of the most prominent ones is SATzilla (Xu et al., 2008, 2009). To
illustrate the basic process, SATzilla’s approach is recast in the framework for solving
Algorithm Selection problems described by Rice (1976) below (cf. Section 3.1 on
page 26).

3.9.1. Formulation

Determination of the subclasses of problems and mappings to be used.

SATzilla is an algorithm portfolio selector for SAT problems. The space of all SAT
problems is further manually partitioned into random, hand-crafted and industrial
problems. The mapping is from SAT solver in the static portfolio to performance
score on a particular problem instance. There are 19 solvers in the portfolio, but
smaller subsets are chosen manually for each category of problems.

METHODOLOGY EXAMPLE — SATZILLA

3.9.2. Existence

Does a best selection mapping exist?

There is a best selection mapping that always chooses the portfolio solver that
has the best performance on a given problem. Given the runtime performance of
each solver on each problem, this mapping can be determined easily. The runtime
performance can be determined easily as well as SATzilla uses a static portfolio.
For unseen problems, the best mapping cannot be determined without running each
solver, but nevertheless this mapping obviously exists.

3.9.3. Uniqueness

Is there a unique best selection mapping?

Not necessarily. Several solvers could have the same performance on a problem and
that performance could be the best. However, this question is irrelevant for SATzilla
— if two solvers have the same performance on a problem, both are equally valid
choices.

3.9.4. Characterisation

What properties characterise the best selection mapping and serve to identify
it?

Like many other approaches, SATzilla uses Machine Learning to identify the map-
ping. It employs 91 features to characterise a problem to solve. The number of
features is increased by quadratic feature expansion, where new features are formed
by multiplying pairs of feature values for all possible pairs. The most predictive sub-
set of this large set of features is selected by greedily adding features to an initially
empty set until the predictive accuracy does not improve any more.

3.9.5. Computation

What methods can be used to actually obtain the best selection mapping?

SATzilla learns a ridge regression model of the solver performance. The model focuses
on hard problems and disregards problems that are solved in less than a second. A
pre-solver has the task of solving those problems. The rationale behind this approach
is that feature extraction and performance prediction would take more time than
actually solving the problem for these small problems. To mitigate this problem,
SATxzilla also predicts the time required to compute the features of a given problem
and falls back to a manually chosen solver from the portfolio if it is too high.

The ridge regression model for each solver is learned offline from training data

45

46

BACKGROUND

taken from SAT competitions, where SAT solvers try to solve as many problems
from a given set as quickly as possible. At runtime, the learned model is used to
predict the performance score of each candidate solver. A single solver to run on the
problem is chosen based on these predictions. The predictions are not checked for
correctness and the model is not adjusted online.

3.10. Summary

A survey of the literature shows that over the years there have been many approaches
to solving the Algorithm Selection Problem. Most of the time, these involve some
kind of Machine Learning. This is not a surprise, as the relationship between an
algorithm and its performance is often complex and hard to describe formally. In
many cases, even the designer of an algorithm does not have a general model of its
performance.

Smith-Miles (2009) presents a comprehensive survey on Machine Learning efforts
to tackle the Algorithm Selection Problem. She takes a different perspective on
Algorithm Selection and the literature relevant to this dissertation is mentioned in
this chapter. Nevertheless the survey presents interesting additional information,
such as an overview of the number of algorithms and the size of data sets of many
approaches.

Table A.1 on page 124 presents more detail for each individual paper surveyed in
this chapter. The table summarises and classifies the papers according to the criteria
used in the previous sections. It serves as an overview as well as a reference for the
literature on Algorithm Selection.

A researcher who wants to do Algorithm Selection for their purposes is faced with
a plethora of different ways and methods that have been explored previously. It is
not clear what the most suitable one or the one with the best performance is. There
is also a lack of detailed evaluation of the different approaches — how likely is a
system to make costly selection mistakes?

In many practical applications, it may not even be clear whether effective and
efficient Algorithm Selection can be performed at all. Perhaps the underlying rela-
tionship between the characteristics of the problem and performance of an algorithm
is too complicated to be learned or represented. The features of a problem may be
so expensive to compute that then being able to determine the best algorithm might
not yield a performance benefit at all.

The next two chapters look at case studies that explore exactly this problem. Can
we perform Algorithm Selection for a problem in a specific domain effectively and
efficiently and if so, how?

Learning when to use lazy learning in constraint
solving

After surveying the Algorithm Selection literature in the previous chapter, we select
a subset of the proposed techniques and apply them to a specific scenario — selecting
whether to use lazy learning in constraint solving or not. This is a simple, binary
decision that should be relatively easy to make. This case study serves as an entry
point into the investigations into Algorithm Selection presented in this dissertation
and touches on the challenges that are tackled.

4.1. Introduction and background

In constraint programming, propagation is used as a means of reducing the search
space and finding a solution faster. Instead of exploring a search path, the solver
can reason about it and decide that it is futile to explore because it cannot be part
of a solution. Consider for example a set of three variables, each of which can be
assigned one of two distinct values. If the constraints require each variable to have
an assignment different from the other variables, propagation can rule out this part
of the search tree as there cannot be such an assignment. It is not necessary to try
assigning all possible values to each variable to see if a constraint is violated.

Search can be further improved by the use of a lazy learning algorithm (Katsire-
los, 2009, Katsirelos and Bacchus, 2003, 2005, Gent et al., 2010), where previously
unknown constraints are uncovered during search and used to speed up search sub-
sequently. It is extremely efficient on some types of problems, but has a negative
effect on others. Therefore, it is desirable to know beforehand whether or not lazy
learning is expected to be useful.

Learning in constraints is a means of discovering new constraints during search
whenever the solver reaches a state where it cannot proceed further. The decisions

The material in this chapter has been published previously in: Ian Gent, Chris Jefferson, Lars
Kotthoff, Tan Miguel, Neil Moore, Peter Nightingale, and Karen Petrie. Learning When to Use
Lazy Learning in Constraint Solving. In 19th Furopean Conference on Artificial Intelligence, pages
873-878, August 2010.

The contributions of the author of this dissertation are listed on page xix et seqq.

47

48

LEARNING WHEN TO USE LAZY LEARNING IN CONSTRAINT SOLVING

and propagation performed earlier in the search are analysed and a constraint that
prohibits the variable assignments and disassignments that lead to the current failure
are added. Lazy learning adds such constraints as late as possible during search
instead of as soon as the failure occurs to improve the overall efficiency. The power
of constraint learning comes from the combination of the learned constraints — while
each individual constraint will only save a small amount of work in cases where a
dead end similar to a previous one is encountered, the set of learned constraints can
dramatically increase the amount of search that propagation can rule out. For more
details on lazy learning in constraint solving, see Moore (2011).

This is a typical Algorithm Selection Problem. We have the choice between a stan-
dard constraint solver and a constraint solver that does lazy learning and, for each
problem to be solved, are to select the most appropriate one. Our aim in this chapter
is, apart from achieving performance improvements, to further our understanding
of the relatively new technique of lazy learning. To this end, we employ a decision
tree learner to distinguish between problems where lazy learning performs well and
where not.

Decision trees are used in many approaches to the Algorithm Selection Problem
because they are simple and easy to understand, e.g. by Guerri and Milano (2004)
and Guo and Hsu (2004).

4.2. Evaluation problems

The training and test data for the decision tree to decide whether or not to use
lazy learning comprises a set of 2028 constraint problem instances from 46 different
problem classes. A complete list of problem classes can be found in Appendix E
on page 149. The set has been chosen to include as many problems as possible,
regardless of our expectations as to whether lazy learning will perform well.

For our experiments, we used the lazy learning variant of Minion, which we call
Minion-lazy. The reference constraint solver used is Minion (Gent et al., 2006a)
version 0.9. A comparison of performance between Minion and Minion-lazy is given
in Figure 4.1 on the facing page. We used binaries compiled with g++ version
4.4.1 and Boost version 1.38.0. The experiments were run on machines with dual
quad-core Intel E5430 2.66 GHz, 8 GB RAM running CentOS with Linux kernel
2.6.18-164.6.1.el5 64 Bit.

We imposed a time limit of 5000 seconds per problem for solving. On 11 problems,
Minion-lazy ran out of memory (>4 GB) before it was able to solve the problem or
reach the time limit. The total number of problems that neither solver could solve
because of a time out or memory issues was 255. Both solvers took the same time
on 4 problems that they could both solve.

The problems, the binaries to run them, and everything else required to reproduce
our results is available at http://www.cs.st-andrews.ac.uk/~larsko/ecai2010/
learning.tar.bz2.

EVALUATION PROBLEMS

Minion solve time over Minion-lazy solve time

O © [e)
10000.0000 — o o
(]
O
o]
O o]
&° °
100.0000 —| o 23

1.0000

0.0100

0.0001

T T T T T
0.1 1.0 10.0 100.0 1000.0

Minion solve time [s]

Figure 4.1. Runtime comparison for Minion-lazy vs Minion. Each point is a result
for a single CSP. The z-axis is the solve time for Minion. The y-axis
gives the speedup from using Minion-lazy instead of Minion. A ratio of
1 means they were the same, above 1 means Minion-lazy was faster and
below 1 that Minion was faster.

49

50

LEARNING WHEN TO USE LAZY LEARNING IN CONSTRAINT SOLVING

4.3. Problem features and their measurement

We measured 85 features of the problem instances. They describe a wide range of
properties, such as the number of constraints and variables used, a breakdown of
the individual constraint and variable types and a number of features based on the
primal graph. The primal graph g = (V, E) of a constraint problem has a vertex
for every variable and two vertices are connected by an edge if and only if the two
variables are in the scope of a constraint together.

Not all the features are likely to be useful for predicting what choice of solver to
make. We describe the features that reflect the structure of a constraint problem
below. In particular those features do not depend on particular solver properties or
are specific to problem classes.

Edge density The number of edges in g divided by the number of pairs of distinct
vertices.

Clustering coefficient For a vertex v, the set of neighbours of v is n(v). The edge
density among the vertices n(v) is calculated. The clustering coefficient is the
mean average of this local edge density for all v (Watts and Strogatz, 1998).
It is intended to be a measure of the local cliqueness of the graph.

Normalised degree The normalised degree of a vertex is its degree divided by |V|.
The mean and median normalised degree were used.

Normalised standard deviation of degree The standard deviation of vertex degree
is normalised by dividing by |V|.

Width of ordering Each of our problems has an associated variable ordering. The
width of a vertex v in an ordered graph is its number of parents (i.e. neighbours
that precede v in the ordering). The width of the ordering is the maximum
width over all vertices (Dechter (2003), Chapter 4). The width of the ordering
and the width normalised by the number of vertices were used.

Width of graph The width of a graph is the minimum width over all possible or-
derings. The width of the graph and the width normalised by the number of
vertices were used.

Multiple shared variables The proportion of pairs of constraints that share more
than one variable.

Normalised mean constraints per variable For each variable, we count the number
of constraints on the variable. The mean average is taken, and this is normalised
by dividing by the number of constraints.

Normalised SAC literals The number of literals pruned by singleton arc consistency
preprocessing (Debruyne and Bessiere, 1997), as a proportion of all literals. En-
forcing singleton arc consistency is a way of removing the variable assignments
that cannot be part of a solution.

PROBLEM FEATURES AND THEIR MEASUREMENT

Ratio of auxiliary variables to other variables Auxiliary variables are introduced
by decomposition of expressions in order to be able to express them in the
language of the solver. We used the ratio of auxiliary variables to other vari-
ables.

Mean tightness The tightness of a constraint is the proportion of variable assign-
ments that are not part of a solution to the total possible variable assignments.
It is estimated by sampling 1000 random variable assignments (that are valid
w.r.t. variable domains) and testing if they satisfy the constraint. The mean
tightness over all constraints was used.

Literal tightness To measure the tightness of a literal (a variable-value pair) w.r.t. a
particular constraint, we sample 100 random variable assignments containing
the literal and test if it satisfies the constraint. The tightness of a literal is the
mean of its tightness in all constraints on that literal. The mean literal tightness
—the mean average of the tightness for each literal — and the standard deviation
of the literal tightness divided by the mean literal tightness were used (a.k.a.
the coefficient of variation).

Proportion of interchangeable variables In many CSPs, the variables form equiv-
alence classes where the number and type of constraints a variable is in are
the same. For example in the CSP 1 X 9 = x3, x4 X 5 = x¢, 1, T2, T4, T are
all interchangeable, as are x3 and xg. The first stage of the algorithm used by
Nauty (McKay, 1981) detects this property. Given a partition of n variables
generated by this algorithm, we transform this into a number between 0 and
1 by taking the proportion of all pairs of variables which are in the same part
of the partition.

The features used in addition to the ones described in detail above are the number
of variables, the number of Boolean variables, the number of discrete variables, the
number of bound variables, the number of sparse bound variables, the mean value
and the Oth, 25th, 50th, 75th and 100th percentile of the variable domains, the ratio
of discrete to Boolean variables, the ratio of variables with domain size equal to 2
to variables with domain size not equal to 2, the number of auxiliary variables, the
number of other variables, the number of constraints, the mean, the normalised mean
and the Oth, 25th, 50th, 75th and 100th percentile of constraint arities, the absolute
number and proportion of the individual constraints and the number and proportion
of nullary, unary, binary and ternary constraints. Some of the additional features
are based on the ones described in detail and include non-normalised versions or
percentiles of those.

Wherever possible, we normalised features that would be specific to problem in-
stances of a particular size, such as the number of variables. This is based on the
intuition that similar problems of different sizes are likely to behave similarly with
lazy learning. We also included non-normalised features to capture effects related to
the size of a problem instance however.

51

52

LEARNING WHEN TO USE LAZY LEARNING IN CONSTRAINT SOLVING

Of the 2028 problems from the problem set, 93 problems could not be analysed
because of insufficient memory or another error in the analyser.

4.4. Constructing a problem classifier

The training data was used to induce a decision tree offline for classifying a given
problem. After having constructed and evaluated an initial decision tree, we pro-
ceeded to tune the inducer to learn simpler trees. While the performance of the
classifier decreases, it is more likely to perform well on unseen problems and easier
to understand. As one of the aims of this investigation is to gain a better under-
standing of the factors that affect the performance of lazy learning, this last point
was crucial for us.

4.4.1. Methodology

The experimental data were post-processed in several ways to mitigate two main
problems.

e Empirical runtime data is inherently noisy. If the observed difference between
the two solvers is too small, we cannot be sure which solver was faster.

e On some problems, the difference between making the right and wrong de-
cision affects performance very significantly. We want those problems to be
more important when inducing the decision tree as the penalty for getting the
decision wrong is high.

To achieve this, we did the following. First, we calculated the misclassification
penalty as the absolute difference in solve time between the two solvers for each
problem. Instances where both solvers timed out were not considered. For problems
where one of the solvers timed out, we used the timeout (5000 seconds) as the time
for that solver, and calculated the misclassification penalty as before. The resulting
value is an underestimate of the true misclassification penalty.

Second, we determined which solver to use for each problem. If the difference
between both solvers was less than 20% of the time that Minion took, we set the
value to “don’t know”. This was simply to account for differences in run time that
were caused by external effects. For the problems where Minion-lazy ran out of
memory, we set the value to “use Minion”. Based on this, we were able to choose
one of the two solvers for 1012 problems.

Fach problem was then weighted by the misclassification penalty. We did this to
bias the Machine Learning algorithms towards the problems where we can gain or
lose a lot — if the penalty for choosing the wrong solver is low, we do not care as much
if we make the wrong decision. To achieve this kind of cost-sensitive classification,
it is standard practice in Machine Learning to duplicate instances in the training data

(Witten et al., 2011). We duplicated each problem [log,(misclassification penalty)]

CONSTRUCTING A PROBLEM CLASSIFIER

times. This means that problems with a misclassification penalty of less than 2 sec-
onds appear once and ones with a penalty of 5000 seconds (the maximum) appear
13 times. We chose this particular function because we did not want problems with
a very high penalty to have too much effect and we did want each problem to appear
at least once in the data set. The problems where Minion-lazy ran out of memory
were not duplicated.

These data were used as input for the WEKA Machine Learning suite (Hall et al.,
2009) to learn a classifier that, given a problem, tells us which solver to use. For
problems where we did not have values for all features or some of them were unclear,
for example when we were not able to make a decision between choosing Minion and
Minion-lazy, we used a question mark. This designates an unknown value in WEKA.

The WEKA decision tree inducer we used was J48. It implements the well-
established C4.5 algorithm (Quinlan, 1993). We did not tune the parameters of
J48 unless noted otherwise, as the default values learned a decision tree with good
performance already. In all cases we trained the classifiers to predict the binary
decision of whether to use Minion or Minion-lazy.

We evaluated the learned classifiers on the entire set of problems, making the
decision which solver to use for each one. If we were unable to make a decision
because of missing features, we selected Minion as the default solver. The results of
this evaluation are different from the ones we get in WEKA because we use the data
set that contains each problem only once — we train and test on the data set that is
biased towards problems where a lot can be gained or lost and we evaluate on the
unbiased original set. The results are summarised in Table 4.1 on page 55.

4.4.2. Selecting a feature set

Finding a small and appropriate set of features is crucial to the efficiency of classi-
fying an instance. The values of all features must be computed. Some feature values
are expensive to compute and may not contribute much to the predictive power of
the whole set. We describe four classifiers built with progressively smaller sets of
features. We demonstrate that the final classifier, learned with a set of only three
features, is almost as accurate as the first one, learned with the full set of 85 features.

Classifier 1 — initial classifier

We built a decision tree using the whole data set with 85 features as described above.
The tree had 61 nodes and we achieved 99.7% correctly classified problems with a
precision of 99.7% and a recall of 99.7%. For comparison, always using standard
Minion gives 86.3% correctly classified problems, a precision of 74.4% and a recall
of 86.3%.

The performance of the learned classifier on the set of all problem instances is
shown in Table 4.1 on page 55 in the row labelled “Classifier 1”. This demonstrates
the feasibility of our approach for this Algorithm Selection Problem.

53

54

LEARNING WHEN TO USE LAZY LEARNING IN CONSTRAINT SOLVING

Classifier 2 — reduced number of features

Based on the encouraging results we achieved with classifier 1, we removed all but the
17 features we believe to reflect the structure of the underlying constraint problem
described in detail in Section 4.3 on page 50 and reran the decision tree inducer.
Computing a large number of features for each instance is expensive and might
outweigh the benefit of having a classifier and being able to select the faster solver.
We also want to eliminate the influence of features which are specific to Minion, a
problem class, or a particular problem size.

The classifier learned from this data set showed a similar performance to the
first one. The decision tree had 57 nodes and 99.6% of the problems were classified
correctly. Precision and recall were 99.6% again as well. Table 4.1 on the facing page
however shows that the overall performance is lower than the one of the previous
classifier, although the difference is small. We concluded that we could reduce the
number of features used in making the decision without a significant decrease in
quality.

Classifier 3 — most predictive features

The J48 decision tree learner does not necessarily use all the features in the learned
decision tree. None of the previous classifiers used all the features. We decided to
further reduce the number of features used in the decision tree by using the WEKA
AttributeSelectedClassifier meta-learning algorithm with CfsSubsetEval and
exhaustive search.

Each feature was assessed with respect to its predictive ability and the degree of
redundancy within the current set of features. This evaluation was performed for all
subsets of the set of 17 features used in classifier 2. After this step, only three features
remained — normalised width of ordering (NWO), normalised mean constraints per
variable (NMCV) and mean tightness (MT).

The decision tree built with these three features had 79 nodes, 99.6% correctly
classified problems and precision and recall of 99.6%. As Table 4.1 on the next page
shows, the performance is similar to classifier 3.

4.4.3. Towards a simple decision tree

The decision tree of classifier 3 has 79 nodes, even though it uses only three features.
The interactions between the features and their effect on performance are not easy to
understand. Furthermore, the decision tree appears to be overfitted. For most paths
from the root to a leaf node, it switches several times on a single feature. On one
branch, it matches the intervals [0, 6.79%](6.79%, 6.81%)](6.81%, 23.59%](23.59%, 100%)
of mean tightness (MT) to decisions Minion-lazy, Minion, Minion-lazy, Minion re-
spectively. The interval (6.79%, 6.81%] is a clear case of overfitting — it is very narrow
and contains only one problem from the original data set. The problem occurs 4 times
in the training set because of its misclassification penalty.

CONSTRUCTING A PROBLEM CLASSIFIER

solved total time accuracy > 20% penalty compute
[s] difference [s] features
misclas- [s]
sification
oracle 1,773 194,372 - 0 0 -
anti-oracle 1,485 1,805,732 - 1,046 1,611,360 -
Minion 1,736 360,949 86.3% 292 166,577 0
Minion- 1,522 1,639,155 13.7% 754 1,444,783 0
lazy
Classifier 1 1,769 201,726 99.7% 30 7,354 126,917
Classifier 2 1,767 207,327 99.6% 50 12,955 124,918
Classifier 3 1,767 214,176 99.6% 75 19,804 11,285
Classifier 4 1,765 231,531 96.8% 97 37,159 11,285

Table 4.1. Summary of classifier performance. “accuracy” denotes the average per-

centage of correctly classified problems during ten-fold cross-validation.
The oracle classifier always makes the right decision and the anti-oracle
always the wrong decision. Minion always picks the standard solver and
Minion-lazy always the lazy learning solver. The time to compute the fea-
tures is the total time for all the 1,935 problems that could be analysed.
The total time is the time taken to process (compute features, make deci-
sion and solve) all 1,773 problems which either solver can solve, including
5,000 seconds for each instance that a given classifier fails to solve. We
exclude the 255 problems where both solvers time out, which would add
1,275,000 seconds to each classifier. An instance is misclassified if at least
one solver solves it within the time limit and the solver that was not se-
lected takes less time. The penalty is the number of seconds the specific
classifier took longer than the oracle takes. All times are rounded to the
nearest second.

55

56

LEARNING WHEN TO USE LAZY LEARNING IN CONSTRAINT SOLVING

Classifier 4 — final classifier

We adjust the parameters of the J48 decision tree inducer to perform more pruning
of the learned tree and eliminate the overfitting to the set of problems that we train
on. Specifically, we reduced the confidence threshold for pruning from 25% to 1%
and increased the minimum number of instances permissible at a leaf from 2 to 50.
The decision tree generated with these parameters has only 13 nodes and is depicted
in Figure 4.2 on the facing page. The classifier evaluated 96.8% of problems correctly
and had a precision of 96.8% and a recall of 96.8%. As Table 4.1 on the previous page
shows, the performance clearly suffers. However, as we discuss in detail in Section 4.5
on the facing page, the losses in practical performance are small compared to the
win over using standard Minion, and with a classifier that is much less likely to be
overfitted.

4.4.4. Evaluation on different data

The decision tree of classifier 4 is both easy to understand and the feature values it
requires are cheap to compute. However, the question that remains is whether it is
applicable for new problems. We have to consider two cases. The new problem could
belong to a problem class that is contained in our data set and that classifier 4 was
trained on. In this case, we are confident that our decision tree will give good results
because of its high accuracy on the existing problem set. In the more interesting case,
a new problem belongs to a problem class of which no representatives are contained
in our set.

To evaluate the performance of the decision tree on unknown problem classes, we
use the well-established technique of leave-one-out cross-validation and apply it to
the set of problem classes. In n-fold cross-validation, the original data set is split
into n parts of roughly equal size. Each of the n partitions is in turn used for testing.
The remaining n — 1 partitions are used for training. In the end, every instance in
the original data set will have been used for both training and testing in different
runs (Kohavi, 1995). Leave-one-out cross-validation is n-fold cross-validation where
n is the size of the data set — each part contains only a single datum.

Each part of the original data set that we use has one particular problem class
removed. The idea is that if the J48 decision tree inducer, using the same methodol-
ogy as described above, learns the same decision tree as shown in Figure 4.2 on the
next page for subsets of the problem classes, then it is likely to be problem class-
independent. Unfortunately, not all of the problem classes contain problem instances
where lazy learning is both faster and slower. Leaving one of these problem classes
out may not have any effect on the learned decision tree, as they may not contribute
to the knowledge how to distinguish between the two solvers. On the other hand,
problems from an unknown problem class may have the same characteristic. For 24
out of 46 problem classes, the problems can be split into ones where lazy learning is
faster and ones where it is slower.

CLASSIFICATION PERFORMANCE

<0124/ \124444

NMCV
<0. 002899/ \ > 0.002899 < 0. 9/ \0 975
NMCV NMCV

/ > 0 001843 > 96.4021739% \
< 0.001843 < 96.4021739% < 0.046612 > 0.046612

Figure 4.2. Final decision tree (classifier 4) to predict the faster solver for a given
problem. NWO stands for normalised width of ordering, NMCV for nor-
malised mean constraints per variable and MT for mean tightness.

Out of the 46 generated parts, exactly the same tree as shown in Figure 4.2 was
learned for 24. 18 of those parts were created by removing a problem class that has
no instances where Minion-lazy is faster. For all of the decision trees, the feature
at the root node of the tree was the same as in Figure 4.2 and for all but one of
them the value was the same as well. For 15 out of the 22 decision trees that were
different, the only modification was the addition or deletion of a single subtree.
Typical trees that were generated several times are shown in Figures 4.3 on the next
page and 4.4 on page 59. They are still very similar to the decision tree in Figure 4.2;
the differences are highlighted with dashed lined. For all but two of the generated
trees, the proportion of correctly classified problems was higher than 95% and higher
than 90% for all of them.

4.5. Classification performance

The performance of the final decision tree shown in Figure 4.2 improves significantly
over simply running standard Minion on all of the problems, as shown in Table 4.1
on page 55. In particular, it achieves 29 more problems solved in 129,418 seconds
less, compared to a maximum possible gain of 37 more problems in 166,577 seconds
less for the perfect oracle classifier.

Calculating the features the classifier requires takes approximately 6 seconds per
instance and we gain more than 70 seconds on average by using the classifier. The
decision tree itself is very simple and the time required to make the decision which

o7

58 LEARNING WHEN TO USE LAZY LEARNING IN CONSTRAINT SOLVING

NWO
< 0_1244/ \.1244444

NMCV
\> 0.002899
< 0.002899 < 0.975 > 0.975
NMCV NMCV

> 0. 001843 > 96.4021739% \> 0.046612
<0. 001843 < 96.4021739% < 0.046612

< 0.315789 \\> 0.315789
/ \
/ - T T T~
NMCV « Minion)
AN —-
/ \
/ \
< 0.052632 7 >__Q.052632
- = —/~ M mon?\
¢ Mlnlon)

- \ lazy !

Figure 4.3. Typical decision tree with an additional subtree that was generated dur-
ing cross-validation with data sets with one problem class left out. The
added subtree is highlighted with dashed lines.

UNDERSTANDING THE PROBLEM DOMAIN

< 0.124444 Nw@m
/7 N\
/ \
/ \
// N
< 0.00276 / N> 000276 <0. 5/ > 0.975
- /" Minion-\

(:Minion:) |) NMCV

R \ lazy
A \\ //
I\ -
A\ \> 96.4021739% \
F < 96.4021739% < 0.046612 > 0.046612
! \
! \

Figure 4.4. Typical decision tree with a subtree pruned that was generated during
cross-validation with data sets with one problem class left out. The miss-
ing subtree is highlighted with dashed lines. Note that also the attribute
that is switched on above the pruned subtree is different.

solver to use once all features values are known is negligible. We are therefore left with
a net win over the whole problem set of approximately 39 hours for a total run time
of approximately 422 hours. This is almost 85% of the best possible improvement
— the oracle classifier gives a win of about 46 hours, assuming that it required no
features and made its decision in zero time.

4.6. Understanding the problem domain

The features used in the decision tree of classifier 4 provide some insight into the
performance characteristics of lazy learning. One of them is the mean tightness of the
constraints. If it is above a certain value, Minion-lazy is faster. The mean tightness
is a measure of the proportion of possible assignments to the constrained variables
that the constraint disallows. Its use in the decision tree indicates that lazy learning
is successful in identifying such disallowed assignments and pruning the search tree
accordingly. The threshold value is quite high and indicates that the propagators for
the existing constraints are unsurprisingly able to prune large parts of the search
already and that the overhead of lazy learning is high compared to pure propagation.

Another feature used in the decision tree is the normalised mean constraints per
variable. Minion-lazy is chosen when the value is either particularly low or partic-
ularly high. This indicates that for few constraints per variable, not enough propa-
gation is achieved, while for many constraints per variable the interactions between

59

60

LEARNING WHEN TO USE LAZY LEARNING IN CONSTRAINT SOLVING

those constraints are not sufficiently captured by propagating individual constraints.
In both cases, lazy learning is able to mitigate the problem.

It is unclear why the normalised width of ordering affects the performance of lazy
learning. A possible explanation for its importance is that it serves as a proxy for a
closely related feature that we did not consider but that has a strong effect on the
performance of Minion-lazy.

4.7. Summary and contributions

This chapter showed how to use a decision tree learner to decide whether to use
lazy learning in constraint solving. It demonstrated that we can successfully apply
techniques for solving the Algorithm Selection Problem in this scenario. We cannot
only improve the performance of constraint solving significantly, but also improve
our understanding of the problem domain by inspecting the learned decision tree.

Through a series of decision trees, we showed that the number of features used
in the tree can be reduced significantly while maintaining good classification per-
formance. There are several benefits to such a reduction. First, fewer feature values
need to be computed when classifying a problem and thus the overhead cost is
reduced. Second, the learned decision tree is smaller and easier to understand.

We demonstrated the general applicability of the final decision tree through cross-
validation across many different classes of constraint problems and are confident
that it can be used to solve the Algorithm Selection Problem for this application
domain in general. We hope that this will assist with the adoption of the powerful
technique of lazy learning in constraint solving.

The main contributions of this chapter are as follows.

e The application of Machine Learning techniques to solve the Algorithm Selec-
tion Problem in a new domain.

e The use of decision trees to further the understanding of the factors that affect
the performance of algorithms in the application domain.

e The use of cross-validation across problem classes to demonstrate the general
applicability of a learned decision tree.

We selected the Machine Learning technique to use by hand and manually refined
the learned decision tree by tweaking the used features and parameters. In general,
it is desirable to do this automatically. The next chapter presents a case study for a
different scenario and takes steps towards solving the Algorithm Selection Problem
automatically.

Case study for the alldifferent constraint

This chapter looks at a case study for a different scenario. Instead of making a simple
binary decision, there are now more options to choose from and some of these options
depend on each other. Furthermore, we will try to automate the manual decisions
that lead to the final decision tree in the previous chapter.

As mentioned before, selecting the Algorithm Selection technique to use is a prob-
lem for researchers without a strong background in the area because of the vast
number of different approaches in the literature (cf. Chapter 3). This chapter looks
at a number of different ways.

5.1. Introduction

The alldifferent constraint is a so-called global constraint that operates on at
least two variables at the same time. It requires each variable in its scope to have a
value that is different from the values of all other variables in its scope. The power
of global constraints comes from the ability to consider larger parts of the problem
together rather than small parts individually.

Consider for example a problem with five variables that are constrained by the
same alldifferent constraint. If the potential values for each of the set of variables
are the same four numbers, the alldifferent constraint can deduce that there is
no satisfying assignment without any search — there are only four distinct values for
five variables that have to be different. This requirement could also be enforced by
a set of constraints that requires each pair of variables to be different. In this case
however, additional search is necessary, as for each individual constraint there is an
assignment of values to the two variables in its scope such that they are different.

The implementation and how to propagate the alldifferent constraint repre-

The material in this chapter has been published previously in: Lars Kotthoff, lan Gent, and Ian
Miguel. Using machine learning to make constraint solver implementation decisions. In SICSA PhD
conference, 2010.

and: Ian Gent, Lars Kotthoff, lan Miguel, and Peter Nightingale. Machine learning for constraint
solver design -— A case study for the alldifferent constraint. In 3rd Workshop on Techniques for
implementing Constraint Programming Systems (TRICS), pages 13-25, 2010.

The contributions of the author of this dissertation are listed on page xix et seqq.

61

62

CASE STUDY FOR THE ALLDIFFERENT CONSTRAINT

sents only one of many decisions to make when implementing a constraint solver. It
is a much more fine-grained decision than the one in the case study in the previous
chapter, where only one high-level binary decision needs to be made. In addition
to having more choices, the decision can be made for every single instance of the
constraint instead of globally for all instances.

In this chapter, we investigate choosing the most suitable implementation for
all instances of the alldifferent constraint in a problem to solve. The potential
performance improvement is smaller than that for making the decision per instance
of the constraint, but the problem becomes much easier to solve. We use standard
Machine Learning techniques to learn classifiers on a set of training problems.

We demonstrate that even in this case we can achieve significant performance im-
provements without tuning of the Machine Learning techniques. In particular, we

make a series of multi-level decisions to choose the implementation of the alldifferent

constraint for a particular problem.

5.2. Background

The alldifferent constraint requires all pairs of variables from the set of variables
that it is imposed on to be different. For example alldiff (x1, x2, x3) enforces x; #
o, T1 75 T3 and) 75 xIs3.

There are many different ways to implement the alldifferent constraint. First,
there is a choice of whether to decompose the constraint or consider it as a whole. The
decomposition enforces disequality on each pair of variables in the alldifferent
constraint. More sophisticated versions (e.g. by Régin (1994)) consider the constraint
as a whole and are able to do more propagation. Further variants are discussed by
van Hoeve (2001). This decision is the first in the sequence.

The second decision to be made determines the actual implementation of the cho-
sen version of the constraint. It depends on the previous decision of whether to de-
compose the constraint or not. While the implementation of disequality constraints
required for the decomposition is trivial, there are many different ways to imple-
ment the holistic alldifferent constraint. For an in-depth survey of the different
versions, see Gent et al. (2008).

We choose from nine different versions of the alldifferent constraint. They are,

e the version equivalent to the decomposition into binary not-equal constraints,
e the standard version implemented in Minion,

e the standard version without staged propagation,

o the standard version without incremental matching,

« the standard version with the Hopcroft-Karp algorithm (Hopcroft and Karp,
1973) to compute a matching instead of the Ford-Fulkerson algorithm (Ford
and Fulkerson, 1956),

EVALUATION PROBLEMS

e the standard version without exploitation of strongly connected components,
e the standard version without a priority queue,

e the standard version with domain size checks and

e the standard version without assignment optimisation.

The features turned on and off in the individual versions are described in detail
in Gent et al. (2008). The default choice reflected in the standard implementation
achieves good performance on a wide range of problems.

The idea of using Machine Learning to make a series of decisions instead of a
single one in Algorithm Selection has been used by Xu et al. (2007a) and Haim and
Walsh (2009). They decide whether a SAT problem is satisfiable or not before, based
on that decision, making the choice as to the most suitable algorithm. The crucial
difference from the approach in this chapter is that they predict a feature of the
problem that cannot be computed easily while we are predicting a partial solution
to the Algorithm Selection Problem.

Our approach represents an important step towards making a series of algorithm
selections that depend on each other. The problem in this form has not been consid-
ered before in the literature. While approaches that evolve a basic algorithm (e.g.
Minton (1996)) implicitly take dependencies into account, this information is not
used in the performance models. Research more relevant to this has been done in
the automatic tuning community, where parameters often depend on each other and
their values cannot be selected without taking the interactions into account or some
parameters have to be set before the possible values for others are known (e.g. Hut-
ter et al. (2009b)). The crucial difference however is that we make such decisions
in the context of Algorithm Selection systems instead of tuning. Earlier decisions
not only restrict the space of possible later decisions, but also affect the way we are
choosing from among those.

5.3. Evaluation problems

We evaluated the performance of the different versions of the alldifferent con-
straint on two different sets of problems. The first one was used for learning classi-
fiers, the second one only for the evaluation of the learned classifiers.

The training set consisted of 277 problems from 14 different problem classes. The
set to evaluate the learned classifiers consisted of 1036 problems from 2 different
problem classes that were not present in the set we used for Machine Learning. We
chose this set for evaluation because the low number of different problem classes
makes it unsuitable for training. A complete list of problem classes can be found in
Appendix E on page 149.

The reference constraint solver used is Minion version 0.9 and its default imple-
mentation of the alldifferent constraint gacalldiff. The experiments were run

63

64

CASE STUDY FOR THE ALLDIFFERENT CONSTRAINT

with binaries compiled with g4+ version 4.4.3 and Boost version 1.40.0 on ma-
chines with 8 core Intel E5430 2.66GHz, 8GB RAM running CentOS with Linux
kernel 2.6.18-164.6.1.el5 64Bit.

We imposed a time limit of 3600 seconds for each problem. The total number of
problems that no solver could solve within that limit was 66 for the first set and
26 for the second set. We took the median CPU time of 3 runs for each problem to
mitigate noise inherent in empirical data.

As Figure 5.1 on the next page shows, adapting the implementation decision to
the problem instead of always choosing a standard implementation has the potential
to achieve significant speedups on some problems of the first set of problems and
still noticeable speedups on the second set.

We ran the problems with 9 different versions of the alldifferent constraint
— the naive version which is operationally equivalent to the binary decomposition
and the 8 different implementations of the more sophisticated version described in
Section 5.2 on page 62. The amount of search done by the 8 versions which implement
the more sophisticated algorithm is the same. The variables and values were searched
in the order they were specified in in the model of the problems.

5.4. Problem features and their measurement

We measured 37 features of the problems. They describe a wide range of features
such as constraint and variable statistics and a number of features based on the
primal graph. The features edge density, clustering coefficient, normalised standard
deviation of degree, multiple shared variables, normalised mean constraints per vari-
able, ratio of auxiliary variables and proportion of symmetric variables were used in
exactly the same way as in the previous chapter. Features used in a different way
and additional features are described below. Detailed descriptions of the features
used before can be found in Section 4.3 on page 50.

Normalised degree The minimum, maximum, mean and median normalised degree
were used.

Width of ordering The width of the ordering normalised by the number of vertices
was used.

Width of graph The width of the graph normalised by the number of vertices was
used.

Variable domains The quartiles and the mean value over the domains of all vari-
ables.

Constraint arity The quartiles and the mean of the arity of all constraints (the num-
ber of variables constrained by it), normalised by the number of constraints.

PROBLEM FEATURES AND THEIR MEASUREMENT 65

speedup of best over default variant

X
50 X x
X
20 —
X
10
5 X
X X X
2 - XX X
X &
X X
I I I I I
0.1 1.0 10.0 100.0 1000.0

default variant solve time [s]

Figure 5.1. Potential speedup a problem-specific implementation could achieve over
always using the default implementation. The crosses represent the prob-
lems of the first data set, the pluses the problems of the second data set.
A speedup of one means that the default version of alldifferent is
the fastest version, a speedup of two means that the fastest version of
alldifferent is twice as fast as the default version. Overall, the perfor-
mance improvement we can achieve on the first set is much bigger than
what we can achieve on the second set.

66

CASE STUDY FOR THE ALLDIFFERENT CONSTRAINT

Tightness The tightness quartiles and the mean tightness over all constraints were
used.

Alldifferent statistics The size of the union of all variable domains in an alldifferent

constraint divided by the number of variables. This is a measure of the ratio
of possible to satisfying assignments. We used the quartiles and the mean over
all alldifferent constraints.

Computing the features took 27 seconds per problem on average.

5.5. Learning a problem classifier

Before using Machine Learning on the set of training problems, we annotated each
problem with the alldifferent implementation that had the best performance on
it according to the following criteria. If the naive alldifferent implementation
took less CPU time than all the other ones, it was chosen, else the implementation
that had the best performance in terms of search nodes per second was chosen. All
implementations except the naive one explore the same search space. If no solver
was able to solve the problem, we assigned a “don’t know” annotation.

We used the WEKA (Hall et al., 2009) Machine Learning software through the
R (Team, 2011) interface to learn classifiers. We used a wide range of the WEKA
classifiers that were applicable to our problem — algorithms which generate deci-
sion rules, decision trees, Bayesian classifiers, nearest neighbour and neural net-
works. Our selection is broad and includes most major Machine Learning method-
ologies. We used a Bayesian classifier (BayesNet), a nearest neighbour classifier
(IBk), a neural network classifier (MultilayerPerceptron), rule-based classifiers
(ConjunctiveRule, DecisionTable, JRip, OneR and PART), decision tree learners
(FT, LADTree, J48, J48graft, BFTree, NBTree, RandomForest, RandomTree and
REPTree) and the HyperPipes classifier. All of the implementations are described
in Witten et al. (2011). For all of these algorithms, we used the default parameters
provided by WEKA.

The performance of the learned classifiers was measured in terms of misclassifica-
tion penalty. The misclassification penalty is the additional CPU time we require to
solve a problem when choosing to solve it with a solver that is not the fastest one.
If the selected solver was not able to solve the problem, we assumed the timeout of
3600 seconds minus the CPU time the fastest solver took to be the misclassification
penalty. This only gives a lower bound for the true misclassification penalty.

5.5.1. Cost model

We again decided to assign the maximum misclassification penalty, or the maximum
possible gain (cf. Figure 5.1 on the preceding page), as a cost to each problem to
bias the WEKA learners towards the problems we care about most. We used the

LEARNING A PROBLEM CLASSIFIER 67

misclassification penalty [s]

classifier learner all equal cost model
default decision 2304 2304
BayesNet 1493 106
BFTree 249 1
ConjunctiveRule 1433 1580
DecisionTable 396 14
FT 250 8
HyperPipes 863 863
IBk 1 1
J48 244 1.3
J48graft 244 1.3
JRip 249 1.2
LADTree 13 1.3
MultilayerPerceptron 1045 8.5
NBTree 396 1.2
OneR 61 4.3
PART 4 1.1
RandomForest 1.2 1
RandomTree 1 1
REPTree 402 1.4

Table 5.1. Misclassification penalty for all classifiers with and without cost model
on the first data set. All numbers are rounded.

common technique of duplicating instances (Witten et al., 2011), similar to the
methodology used in the previous chapter. Each problem appeared in the new data
set 1 + [logy(cost)]| times. The particular formula to determine how often each
problem occurs was chosen empirically such that problems with a low cost are not
disregarded completely, but problems with a high cost are much more important.
Each problem will be in the data set used for training the Machine Learning classifiers
at least once and at most 13 times for a theoretic maximum cost of 3600.

First, we make the decision whether to use the alldifferent version equivalent
to the binary decomposition or the holistic one. Then, based on the previous deci-
sion, we decide which specific version of the alldifferent constraint to use. Each
individual classifier below is a combination of classifiers that make this series of
decisions.

Table 5.1 shows the total misclassification penalty for all classifiers with and with-
out instance duplication on the first data set. It clearly shows that our cost model
improves the performance significantly in terms of misclassification penalty for al-
most all classifiers.

68

CASE STUDY FOR THE ALLDIFFERENT CONSTRAINT

The performance of each classifier was evaluated using stratified three-fold cross-
validation. The original data set is split into three parts of roughly equal size. Each
of the three partitions is in turn used for testing. The remaining two partitions are
used for training. In the end, every problem will have been used for both training
and testing in different runs (Kohavi, 1995). Stratified cross-validation ensures that
the ratio of the different classification categories in each subset is roughly equal to
the ratio in the whole set. If, for example, about 50% of all problem in the whole
data are solved fastest with the naive implementation, it will be about 50% of the
problems in each subset as well.

5.5.2. Evolving the feature set

The time required to compute the features was 27 seconds per problem instance on
average, and it took 0.2 seconds per problem instance on average to run the clas-
sifiers and combine their decisions. This overhead would make our system slower
than always using the default implementation. This is mostly because of the cost of
computing all the features required to make the decision. Most of the time required
to make the decision is spent computing the features that the classifiers need. We re-
moved the most expensive features — all the properties of the primal graph described
in Section 5.4 on page 64 apart from edge density.

The problem with using cross-validation to estimate the performance of a classifier
is that instead of a single classifier that can easily be applied to another data set,
there are several classifiers. One possible solution is to discard the classifiers used
to estimate the performance and train a new one on the entire data set. However,
this carries the risk of overfitting to the training data set. Instead, we decided to
keep all classifiers created during cross-validation and use them as an ensemble. We
combine the decisions of the individual classifiers by majority vote. The technique of
combining the decisions of several classifiers was introduced by Freund and Schapire
(1995) and formalised by Dietterich (2000). Each individual classifier is again a com-
bination that makes the series of decisions required, but now also for each individual
decision an ensemble of the three classifiers trained during cross-validation.

The results for both feature and data sets are shown in Table 5.2 on the next
page. The performance with only the features that are cheap to compute is not
significantly worse and sometimes even better. The time required to compute all
those features is only about 3 seconds per problem. On the first set of problems, we
solve each problem on average 8 seconds faster using our system (misclassification
penalty of default decision minus that of our system divided by the number of
problems in the set). We are therefore left with a performance improvement of an
average of 5 seconds per problem. On the second set, we cannot reasonably expect
a performance improvement — the perfect oracle classifier only achieves about 0.2
seconds per problem on average.

The results also show that the classifiers we have learned on a data set that contains
problems from many problem classes can be applied to a different data set with

LEARNING A PROBLEM CLASSIFIER 69

misclassification penalty [s]

problem set 1 problem set 2
classifier all features cheap features all features cheap features
anti-oracle 19993 19993 47144 47144
default decision 2304 2304 223 223
BayesNet 106 62 284 186
BFTree 1 1 220 220
ConjunctiveRule 1580 1580 218 218
DecisionTable 1.4 1.5 223 221
FT 8 8.5 575 220
HyperPipes 863 863 468 468
1Bk 1 1 131 505
J48 1.3 1.2 604 569
J48graft 1.3 1.2 603 603
JRip 1.2 1 607 607
LADTree 1.3 1.4 621 610
MultilayerPerceptron 8.5 8.5 236 220
NBTree 1.2 1.2 516 228
OneR 4.3 4.3 219 219
PART 1.1 1.2 602 605
RandomForest 1 1 223 221
RandomTree 1 1 605 506
REPTree 14 1.4 234 234

Table 5.2. Summary of classifier performance on both sets of problems in terms of
total misclassification penalty in seconds. We first evaluated the perfor-
mance using the full set of features described in Section 5.4 on page 64,
then using only the cheap features. The anti-oracle always makes the worst
possible decision. The “default decision” classifier always makes the same
decision. Three-fold cross-validation was used. All numbers are rounded.

70

CASE STUDY FOR THE ALLDIFFERENT CONSTRAINT

data set 1 data set 2
all features cheap features all features cheap features
best IBk BFTree IBk BayesNet
worst ConjunctiveRule ConjunctiveRule LADTree LADTree

Table 5.3. Individual best and worst classifiers for the different data and feature sets
for the numbers presented in Table 5.2 on the previous page.

problems from different classes and still achieve a performance improvement in terms
of selecting the best algorithm. Unfortunately, the overhead of doing Algorithm
Selection on the second set of problems devours the improvement. Note also that
the classifier that performs best on one data set is not necessarily the best performer
on the other data set. The same observation can be made for the classifier with the
worst performance on one data set. This means that we cannot simply choose “the
best” classifier or discard “the worst” for a given set of training problems. Table 5.3
summarises this result. The individual best and worst classifiers vary not only with
the data set, but also with the set of features used.

5.6. Summary and contributions

This chapter presented the selection of the implementation of the alldifferent
constraint as a case study for using Machine Learning to solve the Algorithm Selec-
tion Problem. In addition to using techniques described in the literature, we made
a series of decisions that depend on each other to arrive at the most suitable imple-
mentation for solving a given problem. We presented empirical data that showed the
effectiveness of a cost model that assigns a weight to each problem and that using a
reduced feature set does not affect performance negatively in general.

During the evaluation of the performance of the learned classifiers, we noticed
that the performance varies by several orders of magnitude. It is furthermore not
clear which technique is the best — the ones with good performance in one scenario
exhibit bad performance in others and vice versa. While the cost model is a way of
improving the performance in general, it does not affect the performance of some of
the classification learners and is even detrimental in one case.

Our system achieved performance improvements even taking into account the time
it takes to compute the features and run the learned classifiers. For atypical sets of
problems, where always making the default decision is the right choice in almost all
of the cases, we were not able to compensate for this overhead, but we are confident
that we can achieve a real speedup on average in general.

We showed conclusively that a series of decisions that depend on each other can
be made in practice and improve the performance over always making a default

SUMMARY AND CONTRIBUTIONS

decision. This is an important contribution because the total prediction error is the
product of the prediction errors of all the individual decisions. Even small errors at
each step can lead to a large overall error that would make the system useless in
practice.

The main contributions of this chapter are as follows.

e Providing quantitative evidence for the effectiveness of a cost model to bias
the classification learners towards important instances as used in the previous
chapter.

e The demonstration of the feasibility of making multi-level decisions that de-
pend on each other with accuracy sufficient to achieve performance improve-
ments.

e The demonstration of the variability of classification learner performance across
different data and feature sets.

This chapter established that selecting a good classification learner is crucial to the
effectiveness of an Algorithm Selection system. We are now faced with a dilemma — in
order to solve the Algorithm Selection Problem effectively, we have to solve another
Algorithm Selection Problem, namely the selection of the best classification learner.
We could of course use one of the many techniques described in the literature to do
that, but then the question arises of whether this chosen technique is the best one.

Selecting the best way of solving the Algorithm Selection Problem is clearly as
hard as solving the Algorithm Selection Problem itself. The next chapter focuses
on ensemble classification, a technique that provides an elegant solution to this
dilemma. Ensemble classification was introduced earlier in this chapter as a means
of combining the classifiers learned during different stages of a cross-validation. It
enables us to perform Algorithm Selection effectively, even without having to decide
directly on a best technique.

71

Ensemble classification for Algorithm Selection

The results of the previous chapter demonstrate that there is a high level of un-
certainty attached to the performance of an individual technique for solving the
Algorithm Selection Problem. Good performance in one scenario does not imply
good performance in another scenario and similarly for bad performance.

Choosing the best technique can be crucial for the feasibility of the system, but
it is not straightforward to do this. In fact, this is yet another instance of the Algo-
rithm Selection Problem. This chapter applies a technique borrowed from Machine
Learning, ensemble classification, to this problem.

6.1. Introduction

A review of the Algorithm Selection literature (cf. Chapter 3) shows that there is
no general consensus as to the best Machine Learning techniques. The choice of a
particular Machine Learning technique is usually justified by the performance of the
system. Only in a few cases do the authors compare different methods and choose
the one with the best performance. But has the technique that will provide the best
performance in general been chosen?

This chapter investigates a means by which we can avoid having to choose the best
technique. Instead of choosing a single best Machine Learning algorithm, we use an
ensemble of several Machine Learning algorithms. We show that the performance
of the ensemble is as good as and sometimes better than the performance of the
best individual technique in a given scenario while at the same time being more
predictable and stable.

We used ensemble classification in the previous chapter already as a means of
combining the different classifiers that are learned during the stages of a cross-
validation. This chapter promotes the technique from merely addressing a technical
issue to making Algorithm Selection more accessible and providing a more robust

The material in this chapter has been published previously in: Lars Kotthoff, Ian Miguel, and
Peter Nightingale. Ensemble classification for constraint solver configuration. In 16th International
Conference on Principles and Practices of Constraint Programming, pages 321-329, September
2010.

The contributions of the author of this dissertation are listed on page xix et seqq.

73

74

ENSEMBLE CLASSIFICATION FOR ALGORITHM SELECTION

performance.

6.2. Background

In Machine Learning, combining several classifiers is a well-established technique.
It was first introduced by Freund and Schapire (1995) and formalised by Dietterich
(2000). An ensemble is a set of classifiers that have all been trained to make the
same kind of decision. The ensemble makes a decision for a given problem by getting
decisions from all of its classifiers or a subset and combining those decisions.

Consider for example an ensemble of three classifiers. The first classifier was
learned using a decision tree inducer, the second is a naive Bayes classifier and
the third a neural net. All three were trained using the same data, but the models
they learn from that data are quite different. Apart from the different representa-
tions, the learned concept could be different as well. The strengths and weaknesses
of these classifiers potentially lie in different areas of the training data, such that for
example the decision tree might classify an example correctly that the neural net
does not.

Given new data, all three classifiers are asked for their decision. The returned
classifications are not necessarily going to be the same. An intuitive way of selecting
one of those classifications is to choose the one that occurs most often. If two or more
classifications occur with the same frequency, a way of breaking this tie is needed.

There are many different methods for creating different classifiers and combining
their predictions. The ensemble can consist of classifiers that have been trained
independently or it can be engineered to contain classifiers that complement each
other — in situations where one classifier is known to have bad performance, other
classifiers are specifically trained to compensate. One way to achieve this is to use
different subsets of the training data for each classifier in the ensemble. Another
technique is to train the same classification learner on different feature subsets.
More details can be found in e.g. Dietterich (2000), Witten et al. (2011).

An obvious advantage of ensemble classification is that there is no need to choose
a single best classifier. Apart from that, the ensemble is more likely to be robust
with respect to different input data. Another observation however is that in some
cases the performance of the ensemble is better than the performance of its best
constituent classifier (Dietterich, 2000).

The problem of selecting the most suitable Machine Learning technique for a
given problem is an area of active research in the Machine Learning community (cf.
Chapter 3). In addition to selecting the best algorithm, it has also been recognised
that the difference between different parameter settings for the same algorithms
can have a more profound effect than choosing a different algorithm (Lavesson and
Davidsson, 2006). Chen and Jin (2007) propose a general framework for solving this
problem in the context of Machine Learning. Ensemble classification is an effective
means of mitigating this problem.

EVALUATION DATA SETS AND FEATURES

6.3. Evaluation data sets and features

The data sets are taken from the previous two chapters. For one, we select between
two different versions of the Minion constraint solver — with and without lazy learn-
ing. For the other data set, we select one of nine different implementations of the
alldifferent constraint, also in the context of the Minion constraint solver.

The problem features we used are described in Section 5.4 in the previous chapter.
For the first data set, we did not use the statistics for the alldifferent constraint
as they are not applicable. For the second data set, we did not use the number of
literals pruned by singleton arc consistency preprocessing (cf. Section 4.3 on page 50)
for the same reason.

6.4. Learning classifiers and ensemble

The methodology we used in this chapter is the same as described in the previous
two chapters. In contrast to the previous chapter however, we do not make a series
of decisions for the implementation of the alldifferent constraint, but flatten the
tree of decisions — the set of leaves constitutes the set of possible decisions. This
simplifies the evaluation and makes the results comparable with the ones achieved
on the other data set.

We used the WEKA (Hall et al., 2009) Machine Learning software through the
R (Team, 2011) interface to learn classifiers. The specific classifiers we used are the
same as in the previous chapter; BayesNet, BFTree, ConjunctiveRule, DecisionTable,
FT, HyperPipes, IBk, J48, J48graft, JRip, LADTree, MultilayerPerceptron, NBTree,
OneR, PART, RandomForest, RandomTree and REPTree.

Again we used the misclassification penalty as a performance measure of the
learned classifiers and attached the maximum classification penalty as a weight to
the individual problems.

We aggregate the decisions of the individual classifiers in the ensemble by majority
vote; we take the predictions of each classifier for an individual problem and choose
the one that occurs most often. Ties are broken by selecting a label according to
the alphanumeric ordering. A thorough investigation by Bauer and Kohavi (1999)
showed that majority voting performs better in general than other techniques for
combining decisions in classifier ensembles.

For both data sets, we generated separate partitions for training and test data
as follows. First, we removed the instances of a randomly selected problem class.
Then we removed about 33% of the remaining instances at random. The remaining
data was used for training and the removed instances for testing. We generated 10
different partitions of approximately equal size for each data set in this manner.

We ran each Machine Learning algorithm on each training partition and evaluated
its performance in terms of misclassification penalty through stratified 10-fold cross-
validation (Kohavi, 1995). The median of the 10 folds is our performance estimate

76

ENSEMBLE CLASSIFICATION FOR ALGORITHM SELECTION

for unseen data. The performance on the corresponding test set is evaluated by using
all of the 10 classifiers trained during cross-validation as an ensemble. The absolute
misclassification penalties are normalised and scaled to be comparable across the
different data sets.

The most important issue we are addressing is the generality of the learned classi-
fier — given its performance on the data set we are using for testing, will it perform
equally well on unknown data? There are two different cases. The unknown data
could contain new instances from a problem class that the classifier has seen before
or the data could consist of unknown instances from unknown problem classes. We
address both scenarios by removing individual problem classes and random prob-
lems from the original data set. Using this method, we test for overfitted classifiers
at the same time.

6.5. Results

Figure 6.1 on the facing page shows the performance on the different partitions.
It becomes clear that the performance on one set of data, even when using cross-
validation, is not a good predictor of the performance on another set of data in this
scenario. This is demonstrated by the length of the arrows. In only one of twenty
cases, the classifier that has the best performance on the training set also exhibits
the best performance on the test set. In two cases, the best classifier becomes the
worst on new data. In absolute terms, the difference between the best and the worst
individual classifiers is up to several orders of magnitude.

It also becomes clear that this effect is attenuated by using the ensemble classifier
— in almost all cases, the performance differences on different sets of data are less
pronounced, as denoted by the lengths of the arrows starting at the crosses (ensemble
classifier) versus the ones starting at the circles (single classifier). The ensemble
classifier is more robust in that its performance does not vary as much. The algorithm
with the best average performance over all the data was BFTree. The ensemble
classifier was within 1% of its performance.

On eight data sets, the performance of the ensemble classifier is better on the test
data than on the training data relative to the other classifiers. While the single best
classifier is always better than the ensemble on the training data, there are seven
cases where the ensemble performs better than the single best classifier on the test
data. This observation provides further evidence for the robustness of the ensemble
approach.

The ensemble classifier does not have to contain a large number of classifiers to
achieve the performance shown in Figure 6.1. Figure 6.2 on page 78 shows the re-
sults for just three classifiers — BayesNet, MultilayerPerceptron (a neural network
algorithm) and J48 (an implementation of the well-known C4.5 algorithm (Quinlan,
1993)). The improvements over using a single classifier are comparable to the ones
shown in Figure 6.1. In this case, the performance of the ensemble is sometimes
better than that of the single best classifier on both training and test data.

RESULTS 7

relative misclassification penalty
1.0

0.8

0.6

0.4

0.2

on Xl*o* xo| ¥ 0 l

0.0 o

lazy learning

relative misclassification penalty
1.0

0.8
0.6
0.4

o m“ﬁ vlw lv@

0.0 ®

alldifferent

Figure 6.1. Classifier performance on the different partitions. The misclassification
penalties were normalised by that of the best classifier across all parti-
tions and scaled between best and worst classifier to make the different
data sets comparable (i.e. the best classifier is now 0 and the worst 1).
The black circles show the performance of the classifier that performed
best on the training set. The larger, grey circles show the performance
of the classifier that was the best one on the test partition. The cross de-
notes the performance of the ensemble classifier on the training set. The
ends of the arrows denote the performance on the test partition for best
individual and ensemble classifiers. The length of the arrow is a measure
of the uncertainty of the prediction of the performance of the classifier in
general from its cross-validation performance during the training phase.

78 ENSEMBLE CLASSIFICATION FOR ALGORITHM SELECTION

relative misclassification penalty
1.0

0.8
0.6
0.4

0.2

o,ovoilx ?ﬁofl*ﬁ@? %OI 0

lazy learning

relative misclassification penalty
1.0

0.8

0.6

0.4

0.2
¥

0.0 x0s %00 l@ @ To lo xoe Yoo xoo

alldifferent

Figure 6.2. Classifier performance for three different classifiers. Note that in five
cases the performance of the ensemble classifier was better than that of
an individual best one on both training and test data. That is, both the
cross and the tip of the arrow originating at the cross are lower than the
black circle and the larger grey circle, respectively.

SUMMARY AND CONTRIBUTIONS

The performance of the ensemble of course depends on the performance of its
constituent classifiers. The approach is more robust with respect to classifiers with
bad performance though — if one of the classifiers in the ensemble performs badly,
the other ones can compensate for this. The three Machine Learning algorithms we
chose for the smaller ensemble were selected because they represent different Machine
Learning methodologies and not because of their performance on our Algorithm
Selection data. Most notably, we did not include the classifier with the best overall
performance, BFTree.

In terms of solve time, the ensemble classification approach improves over always
making a default decision. The improvement is substantial for lazy learning and
marginal for alldifferent, similar to the results reported in the previous two chapters.

6.6. Summary and contributions

This chapter presented an investigation into the variability of the performance of
different Machine Learning techniques on two Algorithm Selection Problems. Ap-
plying ensemble classification, a first in the context of Algorithm Selection, is an
efficient means of reducing this variability and ensuring good performance across a
range of different scenarios.

We based our investigation on experimental results for a large number of diverse
problems and a large number of different Machine Learning techniques. Our results
demonstrated that the performance of a Machine Learning algorithm varies a lot
across different data sets. Predictions of its performance on new data cannot be made
without investing significant effort into substantiating these claims. In particular, a
classifier that exhibits good performance may perform badly on other data and a
classifier with bad performance that would appear unsuitable may exhibit much
better performance on new data.

We showed conclusively that ensemble classification, a technique borrowed from
Machine Learning, is an effective way of mitigating this problem. An ensemble of
classifiers whose decisions are combined by majority vote exhibits not only much
more robust and predictable performance, but also performance that is equal to
that of well-performing individual classifiers. We furthermore showed that the per-
formance of the ensemble can even exceed the performance of the best individual
classifier. While these results have been known in the Machine Learning community
for supervised learning problems, we have shown that they also apply in the context
of the Algorithm Selection Problem. We used explicit ensembles of classifiers for
Algorithm Selection for the first time.

While combining several classifiers adds significant overhead in the offline phase
when more classifiers need to be learned, the overhead in the online phase when
new problems are classified was negligible in our experiments. The time required
to compute the problem features was much higher than the time to run the addi-
tional classifiers and combine their predictions in all cases. In particular, running an
individual classifier on a single problem only takes a few milliseconds on average.

79

80

ENSEMBLE CLASSIFICATION FOR ALGORITHM SELECTION

We provided convincing evidence that even with an ensemble consisting of only a
small number of classifiers, the advantages of ensembles still apply. The performance
of the ensemble improved over the performance of an individual classifier even more
often in this case. A smaller ensemble can reduce both the offline training time as
well as the time spent classifying a given problem significantly.

One major advantage of ensemble classification is that individual Machine Learn-
ing algorithms can be combined without intrinsic knowledge of each individual one.
The level of Machine Learning expertise required is reduced significantly without
affecting the results negatively.

The main contributions of this chapter are as follows.

e The application of Machine Learning ensembles to the Algorithm Selection
Problem.

e The demonstration of the improvements in robustness and performance the
ensemble achieves over a single classifier.

¢ The demonstration of the effectiveness of even an ensemble with a small num-
ber of classifiers.

e The reduction of the Machine Learning knowledge required to tackle Algorithm
Selection through the use of ensembles.

Ensemble classification is an efficient means of avoiding having to select the best
technique for solving the Algorithm Selection Problem. This does not mean however
that solving Algorithm Selection problems is now a straightforward matter — if all the
classifiers in the ensemble exhibit bad performance, so will the ensemble. While this
chapter presented a way of alleviating the difficulty of selecting the individual best
technique, there is still a need to identify techniques with at least good performance.

This can be done with relatively little experience in Algorithm Selection, but
researchers with no background in the area will still struggle to achieve good per-
formance without significant trial and error. The next chapter addresses this final
problem by identifying Machine Learning techniques that exhibit good performance
across a representative sample of Algorithm Selection problems.

What Machine Learning technique to use?

The previous chapter presented the technique of Machine Learning ensembles, which
can be used to avoid the problem of having to decide on a particular Machine
Learning technique to use for Algorithm Selection. While this is an effective way of
achieving good performance without having to worry too much about the Machine
Learning algorithms, it does not address the fundamental problem — which Machine
Learning algorithms and techniques should be used for Algorithm Selection?

7.1. Introduction

Approaches in the literature usually justify their choice of a Machine Learning
methodology (or a combination of several) with the performance improvement they
achieve over a system that does not perform Algorithm Selection. The majority of
researchers do not compare with other Machine Learning techniques. A large per-
centage also does not critically assess the real performance — could we do as well or
even better by using just a single algorithm instead of having to deal with portfolios
and complex Machine Learning?

Researchers wishing to use Algorithm Selection techniques and Machine Learning
are faced with several dilemmas. First, the sheer number of different Machine Learn-
ing approaches in the literature (cf. Chapter 3) makes it very hard to decide which
one to choose. Second, presented approaches may not be evaluated critically when
they are proposed, thus creating a misleading impression of their real performance.
In particular, even though a system achieves significant performance improvements,
there may be another Machine Learning technique that achieves even greater im-
provements, but that has not been considered for comparison.

This chapter presents a comprehensive comparison of Machine Learning paradigms

Most of the material in this chapter has been published previously in: Lars Kotthoff, Ian P. Gent,
and Tan Miguel. A Preliminary Evaluation of Machine Learning in Algorithm Selection for Search
Problems. In Fourth Annual Symposium on Combinatorial Search, pages 84-91, July 2011.

and: Lars Kotthoff, Ian P. Gent, and Ian Miguel. An Evaluation of Machine Learning in Algorithm
Selection for Search Problems. Submitted to AI Communications.

The first paper won the Best Student Paper Award.

The contributions of the author of this dissertation are listed on page xix et seqq.

81

82

WHAT MACHINE LEARNING TECHNIQUE TO USE?

and techniques for tackling the Algorithm Selection Problem. It evaluates the perfor-
mance of a large number of different techniques on data sets used in systems from
the literature. It also compares the results with existing systems and to a simple
“winner-takes-all” approach where the best overall algorithm is always selected — an
approach that performs surprisingly well in practice. The chapter closes by giving
recommendations as to which Machine Learning techniques should be considered
when performing Algorithm Selection.

7.2. Algorithm Selection methodologies

In an ideal world, we would know enough about the algorithms in a portfolio to for-
mulate rules to select a particular one based on certain characteristics of the problem
to solve. In practice, this is not possible except in trivial cases. For complex algo-
rithms and systems, we do not understand the factors that affect the performance
of a specific algorithm on a specific problem well enough to make the decisions the
Algorithm Selection Problem requires with confidence.

As outlined before, a common approach to overcoming these difficulties is to use
Machine Learning. Several Machine Learning methodologies are applicable here. We
present the most prevalent ones below. In addition to these and like in the evaluations
in previous chapters, we use a simple majority predictor that always predicts the
algorithm from the portfolio that has the best performance most often on the set
of training instances (“winner-takes-all” approach) for comparison purposes. This
provides an evaluation of the real performance improvement over manually picking
the best algorithm from the portfolio. We use the WEKA (Hall et al., 2009) ZeroR
classifier implementation for this purpose.

7.2.1. Case-based reasoning

Case-based reasoning informs decisions for unseen problems with knowledge about
past problems. An introduction to the field can be found in Riesbeck and Schank
(1989). The idea behind case-based reasoning is that instead of trying to construct a
theory of what characteristics affect the performance, examples of past performance
are used to infer performance on new problems.

The main part of a case-based reasoning system is the case base. We use the
WEKA IBk nearest-neighbour classifier with 1, 3, 5 and 10 nearest neighbours as
our case-based reasoning algorithms. The case base consists of the problem instances
we have encountered in the past and the best algorithm from the portfolio for each of
them — the set of training instances and labels. Each case is a point in n-dimensional
space, where n is the number of attributes each problem has. The nearest neighbours
are determined by calculating the Fuclidean distance. While this is a very weak form
of case-based reasoning, we simply do not have more information about the problems
and algorithms from the portfolio that we could encode in the reasoner.

ALGORITHM SELECTION METHODOLOGIES

The attraction of case-based reasoning, apart from its conceptual simplicity, is the
fact that the true relationship between attributes and performance can be arbitrarily
complex. As long as the training data is representative (i.e. the case base contains
problems similar to the ones we want to tackle with it), the approach will achieve
good performance — all it needs to do is match new data with old data.

We use the AQME system (Pulina and Tacchella, 2009) as a reference system that
uses case-based reasoning to compare with.

7.2.2. Classification

Intuitively, Algorithm Selection is a simple classification problem — label each prob-

lem instance with the algorithm from the portfolio that should be used to solve it.

We can solve this classification problem by learning a classifier that discriminates

between the algorithms in the portfolio based on the characteristics of the problem.
We use the WEKA classifiers

e AdaBoostMi,

e BayesNet,

e BFTree,

e ConjunctiveRule,

e DecisionTable,

o FT,

e HyperPipes,

o J48,

e J48graft,

« JRip,

e LADTree,

o LibSVM (with radial basis and sigmoid function kernels),
e MultilayerPerceptron,
¢ (OneR,

e PART,

e RandomForest,

e RandomTree and

83

84

WHAT MACHINE LEARNING TECHNIQUE TO USE?

e REPTree.

Our selection is large and inclusive and contains classifiers that learn all major types
of classification models. In addition to the WEKA classifiers, we used a custom
classifier that assumes that the distribution of the class labels for the test set is
the same as for the training set and samples from this distribution without taking
features into account.

We consider the classifier presented in Chapter 4 as a reference system to compare
with.

7.2.3. Regression

Instead of considering all algorithms from the portfolio together and selecting the
one with the best performance, we can also try to predict the performance of each
algorithm on a given problem independently and then select the best one based on
the predicted performance measures. The downside is that instead of running the
Machine Learning once per problem, we need to run it for each algorithm in the
portfolio for a single problem.

The advantage of this approach is that instead of trying to learn a model of a
particular portfolio, the learned models only apply to individual algorithms. This
means that changing the portfolio (i.e. adding or removing algorithms) can be done
without having to retrain the models for the other algorithms. Furthermore, the
performance model for a single algorithm might be not as complex and easier to
learn than the performance model of a portfolio.

Regression is usually performed on the runtime of an algorithm on a problem. Xu
et al. (2008) predict the logarithm of the runtime because they

66 ..have found this log transformation of runtime to be very important due
to the large variation in runtimes for hard combinatorial problems. %9

We use the WEKA

e GaussianProcesses,

LibSVM (e and v),

LinearRegression,

REPTree and

SMOreg

learners to predict both the runtime and the logarithm of the runtime. Again we
have tried to be inclusive and add as many different regression learners as possible
regardless of our expectations as to their suitability or performance.

We use a modified version of SATzilla (Xu et al., 2008) (denoted SATzilla') as a
reference system to compare with.

EVALUATION DATA SETS

7.2.4. Statistical relational learning

Statistical relational learning is a relatively new discipline of Machine Learning that
attempts to predict complex structures instead of simple labels (classification) or
values (regression) while also addressing uncertainty. An introduction can be found
in Getoor and Taskar (2007). For Algorithm Selection, we try to predict the perfor-
mance ranking of the algorithms from the portfolio on a particular problem.

We consider this approach promising because it attempts to learn the model that
is conceptually closest to the model a human would create given perfect knowledge.
In the context of algorithm portfolios, we do not care about the performance of
individual algorithms, but the relative performance of the algorithms in the portfolio.
While this is not relevant for selecting the single best algorithm, many approaches
use predicted performance measures to compute schedules according to which to
run the algorithms in the portfolio (e.g. Gerevini et al. (2009), Pulina and Tacchella
(2009), O’Mahony et al. (2008)). We also expect a good model of this sort to be
much more robust with respect to the inherent uncertainty of empirical performance
measurements.

We use the support vector machine SV M7 instantiation” of SV M struct (Joachims,

2006). It was designed to predict ranking scores. Instances are labelled and grouped
according to certain criteria. The labels are then ranked within each group. We can
use the system unmodified for our purposes and predict the ranking score for each
algorithm on each problem. We used a value of 0.1 for the tolerance ¢ that controls
the accuracy of the approximation of the optimal solution where the learned model
predicts the training data perfectly modulo a certain amount of slack. In cases where
the model learner was not able to find such an approximation within one hour, we
set € = 0.5.

To the best of our knowledge, statistical relational learning has never before been
applied to Algorithm Selection.

7.3. Evaluation data sets

We evaluate and compare the performance of the approaches mentioned above on five
data sets of hard Algorithm Selection problems from the literature. We take three
sets from the training data for SATzilla 2009 (Xu et al., 2009). These data come from
the area of satisfiability (SAT), where the task is to find a set of assignments to the
Boolean variables in a logic formula in conjunctive normal form such that the formula
is true or prove that no such set can exist. A logic formula in conjunctive normal
form consists only of conjunctions of disjunctions. They consist of SAT instances
from three categories — hand-crafted, industrial and random and contain 1181, 1183
and 2308 instances, respectively. The authors use 91 attributes for each instance and

“http://www.cs.cornell.edu/People/tj/svm_light/svm_rank.html

85

86

WHAT MACHINE LEARNING TECHNIQUE TO USE?

select a SAT solver from a portfolio of 19 solvers’. We compare the performance of
each of our methodologies with a modified version of SATzilla that only outputs the
predictions for each problem without running a presolver or doing any of the other
optimisations (SATzilla"). Some of the timeout values in the training data available
on the website do not reflect the actual values used in the experiments and after
consultation with the authors of SATzilla, we adjusted all timeout values to 3600
seconds.

The fourth data set comes from the Quantified Boolean Formulae (QBF) Solver
Evaluation 2010%. A quantified Boolean formula consists of a formula in propositional
logic and quantifiers over this formula. The task is again to find a set of assignments
that makes the formula true or prove that no such set can exist. The data set consists
of 1368 QBF instances from the main, small hard, 2QBF and random tracks. 46
attributes are calculated for each instance and we select from a portfolio of 5 QBF
solvers. Each solver was run on each instance for at most 3600 CPU seconds. If the
solver ran out of memory or was unable to solve an instance, we assumed the timeout
value for the runtime. The experiments were run on a machine with a dual 4 core
Intel E5430 2.66 GHz processor and 16 GB RAM. We compare the performance to
that of the AQME system, which was trained on parts of this data.

Our last data set is taken from Chapter 4 and selects from a portfolio of two
solvers for a total of 2028 constraint problem instances from 46 problem classes with
17 attributes each. We compare our performance with the classifier described in
Chapter 4.

For each data set, some of the attributes are cheap to compute while others are
extremely expensive. In practice, steps are usually taken to avoid the expensive
attributes, such as explicitly excluding them (cf. Chapter 4). Each attribute can be
used for each methodology; there is no particular Machine Learning algorithm that
requires expensive or allows cheap attributes to be used in particular. More details
can be found in the publications that describe the systems with which we compare.

We chose the data sets because they represent Algorithm Selection problems from
three areas where the technique of algorithm portfolios has attracted a lot of at-
tention recently. For all sets, reference systems exist with which we can compare.
Furthermore, the number of algorithms in the respective portfolios for the data sets
is different.

It should be noted that the systems we are comparing against are given an unfair
advantage. They have been trained on at least parts of the data that we are using
for the evaluation, i.e. not all the data we are using is new to them. The Machine
Learning algorithms we use however are given disjoint sets of training and test
instances.

"http://www.cs.ubc.ca/labs/beta/Projects/SATzilla/
*http://www.qbflib.org/index_eval.php

METHODOLOGY

7.4. Methodology

The focus of our evaluation is the performance of the Machine Learning algorithms.
Additional factors that would impact the performance of an Algorithm Selection
system in practice are not taken into account. These factors include the time to
calculate problem features and additional considerations for selecting algorithms,
such as memory requirements.

We measured the performance of the learned models in terms of misclassification
penalty, as in the previous chapters. For the classification learners, we attached the
maximum misclassification penalty as a weight to the respective problem instance
during the training phase.

The handling of missing attribute values was left up to the specific Machine Learn-
ing system. We estimated the performance of the learned models using ten-fold strat-
ified cross-validation (Kohavi, 1995). The performance on the whole data set was
estimated by summing the misclassification penalties of the individual folds.

For each data set, we used two sets of features — the full set and the subset of
the most predictive features. We used WEKA’s CfsSubsetEval attribute selector
with the BestFirst search method with default parameters to determine the most
predictive features for the different Machine Learning methodologies. We treated
SV M7 as a black box algorithm and therefore did not determine the most pre-
dictive features for it.

We performed a full factorial set of experiments where we ran each Machine Learn-
ing algorithm of each methodology on each data set. We also evaluated the perfor-
mance with thinned out training data. We randomly deleted 25%, 50% and 75% of
the problem-algorithm pairs in the training set. We thus simulated partial training
data where not all algorithms in the algorithm portfolio had been run on all problem
instances.

To evaluate the performance of the Algorithm Selection systems we compare with,
we ran them on the full, unpartitioned data set. The misclassification penalty was
calculated in the same way as for the Machine Learning algorithms.

7.4.1. Machine Learning algorithm parameters

We tuned the parameters of all Machine Learning algorithms to achieve the best
performance on the given data sets. Because of the very large space of possible
parameter configurations, we focussed on the subset of the parameters that is likely
to affect the generalisation error, for example parameters to control the pruning of
a learned decision tree, the minimum amount of data that is still split in a decision
rule learner or the number of folds in internal cross-validations. Tuning the values
of all parameters would be prohibitively expensive. The total number of evaluated
configurations was 19,032.

Our aim was to identify the parameter configuration with the best performance
on all data sets. Configurations specific to a particular data set would prevent us

87

88

WHAT MACHINE LEARNING TECHNIQUE TO USE?

from drawing conclusions as to the performance of the particular Machine Learning
algorithm in general. It is very likely that the performance on a particular data set
can be improved significantly by carefully tuning a Machine Learning algorithm to
it (cf. Chapter 4), but this requires significant effort to be invested in tuning for each
data set.

Our intention for the results presented in this chapter is twofold. First, the al-
gorithms that we demonstrate to have good performance can be used with their
respective configurations as-is by researchers wishing to build an Algorithm Selec-
tion system for search problems. Second, these algorithm configurations can serve as
a starting point for tuning them to achieve the best performance on a particular data
set. The advantage of the former approach is that a Machine Learning algorithm
can be chosen for a particular task with quantitative evidence for its performance
already available.

In many approaches in the literature, Machine Learning algorithms are not tuned
at all if the performance of the Algorithm Selection system is already sufficient
with default parameters. Many researchers who use Machine Learning for Algorithm
Selection are not Machine Learning experts.

We used the same methodology for tuning as for the other experiments. For each
parameter configuration, the performance in terms of misclassification penalty with
the full set of parameters on each data set was evaluated using ten-fold stratified
cross-validation. We determined the best configurations by calculating the intersec-
tion of the set of best configurations on each individual data set. For four algorithms,
this intersection was empty and we used the configurations with the best overall per-
formance, but not necessarily the best performance on an individual data set. This
was the case for the classification algorithms BFTree, DecisionTable, JRip and
PART. For all other algorithms, there was at least one configuration that achieved
the best performance on all data sets.

We found that for most of the Machine Learning algorithms that we used, the
default parameter values already gave the best performance across all data sets.
Furthermore, most of the parameters had very little or no effect; only a few made
a noticeable difference. For SV M we found that only a very small number of
parameter configurations were valid across all data sets — in the majority of cases, the
configuration would produce an error because of invalid combinations of parameters
or unimplemented functionality. We decided to change the parameter values from
the default for the nine case-based reasoning and classification algorithms below.

AdaBoostM1 We used the -Q flag that enables resampling.

DecisionTable We used the -E acc flag that uses the accuracy of a table to evaluate
its classification performance.

IBk with 1, 3, 5 and 10 neighbours We used the -I flag that weights the distance
by its inverse.

J48 We used the flags -R -N 3 for reduced error pruning.

EXPERIMENTAL RESULTS

JRip We used the -U flag to prevent pruning.

PART We used the -P flag to prevent pruning.

We were surprised that the use of pruning decreased the performance on unseen
data. Pruning is a way of preventing a learned classifier from becoming too spe-
cific to the training data set and generalising poorly to other data. One possible
explanation for this behaviour is that the concept that the classifier learns is suffi-
ciently pronounced in even relatively small subsets of the original data and pruning
over-generalises the learned model and causes a reduction in performance.

7.5. Experimental results

We first present and analyse the results for each Machine Learning methodology
and then take a closer look at the individual Machine Learning algorithms and their
performance.

The misclassification penalty in terms of the majority predictor for all methodolo-
gies and data sets is shown in Figure 7.1. The results range from a misclassification
penalty of less than 10% of the majority predictor to almost 650%. In absolute
terms, the difference from always picking the best overall algorithm can be from an
improvement of more than 28 minutes per problem to a decrease in performance of
more than 41 minutes per problem.

At first glance, no methodology seems to be inherently superior. The “No Free
Lunch” theorems, in particular the one for supervised learning (Wolpert, 2001),
suggest this result. We were surprised by the good performance of the majority
predictor, which in particular delivers excellent performance on the industrial SAT
data set. The SV M7 relational approach is similar to the majority predictor when
it delivers good performance.

Many approaches do not compare their performance with the majority predictor,
thus creating a misleading impression of the true performance. As our results demon-
strate, always choosing the best algorithm from a portfolio without any analysis or
Machine Learning can significantly outperform more sophisticated approaches.

Figure 7.2 shows the misclassification penalty in terms of a classifier that learns
a simple rule (OneR in WEKA) — the data is the same as in Figure 7.1, but the
reference is different. This evaluation was inspired by Holte (1993), who reports
good classification results even with simple rules. On the QBF and SAT-IND data
sets, there is almost no difference. On the CSP data set, a simple rule is not able to
capture the underlying performance characteristics adequately — it performs worse
than the majority predictor, as demonstrated by the improved relative performance
of the other approaches. On the remaining two SAT data sets, learning a simple
classification rule improves over the performance of the majority predictor.

The reason for including this additional comparison was to show that there is
no simple solution to the problem. In particular, there is no single attribute that

89

WHAT MACHINE LEARNING TECHNIQUE TO USE?

90

penalty relative
to majority predictor

10.00 —
5.00 —

.......... ._OO|
0.50 —

0.10 —
0.05 —

0.01 —
CSP QBF SAT-HAN SAT-IND SAT-RAN

Figure 7.1. Experimental results with full feature sets and training data across all methodologies and data sets. The plots
show the Oth (bottom line), 25th (lower edge of box), 50th (thick line inside box), 75th (upper edge of box) and
100th (top line) percentile of the performance of the Machine Learning algorithms for a particular methodology (4
Machine Learning algorithms for case-based reasoning, 19 for classification, 6 for regression and 1 for statistical
relational learning). The boxes for each data set are, from left to right, case-based reasoning, classification,
regression, regression on the log and statistical relational learning. The performance is shown as a factor of the
simple majority predictor, which is shown as a dotted line. Numbers less than 1 indicate that the performance is
better than that of the majority predictor. The solid lines for each data set show the performance of the systems
we compare with (the classifier from Chapter 4 for the CSP data set, Pulina and Tacchella (2009) for the QBF
data set and SATzilla' for the SAT data sets).

91

EXPERIMENTAL RESULTS

“10901paad o[ni syduuts o1 jo 1eyy
uey) 10339q ST oouruLIofod o) Jer) 9)edIPUI T URY) SSO[SIOQUITN ‘OUI[PIJIOP ® SB UMOYS ST UIYM ‘(VIHA\ Ul
youQ) o[nl o[duwis & SUIRS] JRI[} IOYISSR[D ® JO I0J0R] ® S UMOYS ST 9oURULIOJOd 9], "SUIULIRS] [RUOIIR[OI [@DIISIIRIS
pue 30[o} UO UOISSI3aI ‘UOISSOIFII ‘UOIPROYISSL[O ‘SUITOSLII PIse(-9sed ‘JUSLI 0} 1Jo] WOIJ ‘DIe J9S BIRP [ORS I0J
SOXO(| 9T, 'S10S ®JRP PUR SOISO[OPOYJOUW [[€ SSOIOR RIRP SUIUIRI) PUR S19S 9INJRdJ [[NJ YIM SINSOI [RjuswLIodxH

NYH-1VS ANI—1vS NYH-1VS 490 dSO

'L omSLg

100

G00
0L0

0G0
QO

00°G
000t

Jo1oipaid ajnJ ajdwis 0}
anleal Ajeuad

92

WHAT MACHINE LEARNING TECHNIQUE TO USE?

adequately captures the performance characteristics and could be used in a simple
rule to reliably predict the best solver to use. On the contrary, the results suggest
that considering only a single attribute in a rule is an oversimplification that leads
to a deterioration of overall performance. The decrease in performance compared to
the majority predictor on some of the data sets bears witness to this.

To determine whether regression on the runtime or on the log of the runtime is
better, we estimated the performance with different data by choosing 1000 bootstrap
samples from the set of data sets and comparing the performance of each Machine
Learning algorithm for both types of regression. Regression on the runtime has a
higher chance of better performance — with a probability of ~67% it will be better
than regression on the log of the runtime on the full data set. With thinned out
training data the picture is different however and regression on the log of the runtime
delivers better performance. We therefore show results for both types of regression
in the remainder of this chapter.

Figure 7.3 shows the results for the set of the most predictive features. The results
are very similar to the ones with the full set of features. A bootstrapping estimate
as described above indicated that the probability of the full feature set delivering
results better than the set of the most important features is ~69%. Therefore, we
only consider the full set of features in the remainder of this chapter — it is better than
the selected feature set with a high probability and does not require the additional
feature selection step. In practice, most of the Machine Learning algorithms ignore
features that do not provide relevant information anyway — either explicitly like J48
by not including them in the generated decision tree, or implicitly like the regression
techniques that set the factors for those features to zero.

The effects of thinning out the training data were different across the data sets and
are shown in Figure 7.4. On the industrial and random SAT data sets, the perfor-
mance varied seemingly at random; sometimes increasing with thinned out training
data for one Machine Learning methodology while decreasing for another one on
the same data set. On the hand-crafted SAT and QBF data sets, the performance
decreased across all methodologies as the training data was thinned out while it
increased on the CSP data set. Statistical relational learning was almost unaffected
in most cases.

There is no clear conclusion to be drawn from these results as the effect differs
across data sets and methodologies. They however suggest that, as we are dealing
with inherently noisy data, deleting a proportion of the training data may reduce the
noise and improve the performance of the Machine Learning algorithms. At the very
least, not running all algorithms on all problems because of resource constraints is
unlikely to have a large negative impact on performance as long as most algorithms
are run on most problems.

The size of the algorithm portfolio did not have a significant effect on the perfor-
mance of the different Machine Learning methodologies. Our intuition was that as
the size of the portfolio increases, classification would perform less well because the
learned model would be more complex. At the same time, we expected the perfor-

93

EXPERIMENTAL RESULTS

"Po709[9s aIoMm SaIN)ed] 9AT)IIPaId JSoul 9} ‘)9S BIeP [O®d IO "9UI] POIIOP B S© UMOYS ST YOIYM ‘T0jo1paid Ajrroleun
orduurs o1} Jo 1030®] & Se UMOTS ST d0urWIOfIod oY T, "SUIUIBS] [RUOIR[OI [RIIISIIB)S I0] Saanjed] oA130Ipald jsoul o)
JO 39S 9} SUIULIDIOP J0U PIP dA\ “S0[9} UO UOISSOIZoI PUR UOISSAIZ0I ‘UOIJedIssed ‘SUIUOSeal Paseq-osed ‘usLl
09 1Jo[WOIJ ‘OIe 198 BIRP [OBd I0] SOX0q OYJ, "SIOS BIBP [[B SSOIOR S19S OIN}ed] PIONpal M SHNSaI [ejuawiiodxs] "¢/, 9InSIg

NYH-1VS

ANI—1VS

NVYH-1VS

490

dSO
— 0

— ¢ 0

— G0
.............. |O—.

- Loz
- H

— 0°G

— 00}
Jojoipaid Aiolew o}
anneal Ajeuad

WHAT MACHINE LEARNING TECHNIQUE TO USE?

94

case—based

penalty relative .
reasoning

to majority predictor e
10000 — e classification

.................... _\OD_\mmm_OD
............... regression-log

statistical
relational A
10.0 — learning

0.1 = 0% 50%
25% 75% deleted training data

CSP QBF SAT-HAN SAT-IND SAT-RAN

Figure 7.4. Experimental results with full feature sets and thinned out training data across all methodologies and data sets.
The lines show the median penalty (thick line inside the box in the previous plots) for 0%, 25%, 50% and 75% of
the training data deleted. The performance is shown as a factor of the simple majority predictor which is shown
as a grey line. Numbers less than 1 indicate that the performance is better than that of the majority predictor.

EXPERIMENTAL RESULTS

rank with full better than rank 1 with deleted

training data majority training data
methodology 1 2 3 predictor 25% 50% 75%
case-based reasoning 52% 29% 25% 80% 80% 70% 39%
classification 2% 3% 5% 60% 6% 8% 14%
regression 33% 32% 28% 67% 3% ™% 35%
regression-log 8% 19% 24% 75% 1% 15% 6%
statistical relational 6% 16% 18% 0% 10% 0% 5%

learning

Table 7.1. Probabilities for each methodology ranking at a specific place with re-
spect to the median performance of its algorithms and probability that
this performance will be better than that of the majority predictor. We
also show the probabilities that the median performance of the algorithms
of a methodology will be the best for thinned out training data. All prob-
abilities are rounded to the nearest percent. The highest probabilities for
each rank are in bold.

mance of regression to increase because the difficulty of the learned models does not
necessarily increase. In practice however the opposite appears to be the case — on
the CSP data set, where we select from only 2 solvers, classification and case-based
reasoning perform worse compared with the other methodologies than on the other
data sets. As we compared only three different portfolio sizes, there is not enough
data from which to draw definitive conclusions.

As it is not obvious from the results which methodology is the best, we again used
bootstrapping to estimate the probability of being the best performer for each one.
We sampled, with replacement, from the set of data sets and for each methodology
from the set of Machine Learning algorithms used and calculated the ranking of the
median performances across the different methodologies. Repeated 1000 times, this
gives us the likelihood of an average algorithm of each methodology being ranked
1st, 2nd and 3rd. We chose to compare the median performance because there was no
Machine Learning algorithm with a clearly better performance than all of the others
and algorithms with a good performance on one data set would perform much worse
on different data. We used the same bootstrapping method to estimate the likeli-
hood that an average Machine Learning algorithm of a certain methodology would
perform better than the simple majority predictor. The probabilities are summarised
in Table 7.1.

Based on the bootstrapping estimates, case-based reasoning is the methodology
most likely to give the best performance and the methodology most likely to deliver
good performance in terms of being better than the majority predictor. Regression
on the log of the runtime is also very likely to perform better than the majority

95

96

WHAT MACHINE LEARNING TECHNIQUE TO USE?

predictor. In terms of the rankings however, regression on the runtime without the
log transformation is more likely to be second to case-based reasoning.

We observe that the majority classifier still has a non-negligible chance of being
as least as good as sophisticated Machine Learning approaches. Its advantages over
all the other approaches are its simplicity and that no problem features need to be
computed, a task that can further impact the overall performance negatively because
of the introduced overhead.

7.5.1. Determining the best Machine Learning algorithm

When using Machine Learning for Algorithm Selection in practice, one has to decide
on a specific Machine Learning algorithm rather than methodology. Looking at Fig-
ure 7.1, we notice that individual algorithms within the classification and regression
methodologies have better performance than case-based reasoning. While having es-
tablished case-based reasoning as the best overall Machine Learning methodology,
the question remains whether an individual Machine Learning algorithm can improve
on that performance.

The GaussianProcesses algorithm to predict the runtime has most wins. But
how likely is it to perform well in general? Our aim is to identify Machine Learning
algorithms that will perform well in general rather than concentrating on the top
performer on one data set only to find that it exhibits bad performance on different
data. It is unlikely that one of the best algorithms here will be the best one on
new data, but an algorithm with good performance on all data sets is likely to
exhibit good performance on unseen data. We performed a bootstrap estimate of
the probability of an individual Machine Learning algorithm being better than the
majority predictor by sampling from the set of data sets as described above. The
results are summarised in Table 7.2.

The results confirm our intuition — the two algorithms that always perform better
than the majority predictor are never the best algorithms while the algorithms that
have the best performance on at least one data set — GaussianProcesses predicting
the runtime and RandomForest and LibSVM with radial basis function for classifica-
tion — have a significantly lower probability of performing better than the majority
predictor.

Some of the Machine Learning algorithms within the classification and regression
methodologies outperform the majority predictor with a probability of less than
50% and do not appear in Table 7.2 at all. It is likely that the bad performance
of these algorithms contributed to the relatively low rankings of their respective
methodologies compared with case-based reasoning, where all Machine Learning
algorithms exhibit good performance. The fact that the individual algorithms with
the best performance do not belong to the methodology with the highest chances
of good performance indicate that choosing the best individual Machine Learning
algorithm regardless of methodology is likely to result in better overall performance.

The good performance of the case-based reasoning algorithms was expected based

EXPERIMENTAL RESULTS

Machine Learning

better than

methodology algorithm majority predictor
classification LADTree 100%
regression LinearRegression 100%
case-based reasoning IBk with 1 neighbour 81%
case-based reasoning IBk with 5 neighbours 81%
case-based reasoning IBk with 3 neighbours 80%
case-based reasoning IBk with 10 neighbours 80%
classification DecisionTable 80%
classification FT 80%
classification Jas 80%
classification JRip 80%
classification RandomForest 80%
regression GaussianProcesses 80%
regression-log GaussianProcesses 80%
regression-log SMOreg 80%
regression-log LibSVM ¢ 80%
regression-log LibSVM v 80%
classification REPTree 61%
classification LibSVM radial basis function 61%
regression REPTree 61%
regression SMOreg 61%
classification AdaBoostM1 60%
classification BFTree 60%
classification ConjunctiveRule 60%
classification PART 60%
classification RandomTree 60%
regression-log LinearRegression 60%
regression-log REPTree 60%
classification J48graft 59%
regression LibSVM v 59%

Table 7.2. Probability that a particular Machine Learning algorithm will perform
better than the majority predictor on the full training data with the full
feature sets. We only show algorithms with a probability higher than 50%,
sorted by probability. All probabilities are rounded to the nearest percent.

97

98

WHAT MACHINE LEARNING TECHNIQUE TO USE?

on the results presented in Table 7.1. All of the algorithms of this methodology
have a very high chance of beating the majority predictor. The nearest-neighbour
approach appears to be robust with respect to the number of neighbours considered.

The good results of the two best algorithms seem to contradict the expectations
of the “No Free Lunch” theorems. It has been shown however that the theorems
do not necessarily apply in real-world scenarios because the underlying assumptions
may not be satisfied (Rao et al., 1995). In particular, the distribution of the best
algorithms from the portfolio to problems is not random — it is certainly true that
certain algorithms in the portfolio are the best on a much larger number of problems
than others. Xu et al. (2008) for example explicitly exclude some of the algorithms
in the portfolio from being selected in certain scenarios.

7.6. Ensemble classification

The results in Chapter 6 showed that using an ensemble of several classifiers is an
effective means of increasing the robustness of an Algorithm Selection system while
maintaining a high level of performance. The main question left unanswered in the
investigation into ensemble classification was which classifiers to use in the ensemble.

The results presented in this chapter enable us to answer this question. Based on
the probabilities given in Table 7.2 on the previous page, we can choose classifiers to
use in an ensemble. As an example, we choose the three classifiers LADTree, FT and
IBk with 5 neighbours. The decision to include LADTree was motivated by its perfor-
mance while the other classifiers were chosen to have a variety of different Machine
Learning techniques in the ensemble. Other classifiers with a similar probability of
being better than the majority predictor would have been reasonable choices, too.
We include only three algorithms in the ensemble to limit the overhead introduced
by training and running additional classifiers, as in Chapter 6.

The performance the example ensemble classifier and its constituent Machine
Learning algorithms achieve is shown in Figure 7.5 on the facing page. The en-
semble is always better than the majority predictor and on two of five data sets
outperforms its constituent classifiers. On the other hand, its performance is worse
than that of any of the individual classifiers on two other data sets. Overall, it does
provide better performance than the LADTree classifier however, the only Machine
Learning algorithm in the ensemble that is always better than the majority predictor.

The results confirm those presented in Chapter 6. Using an ensemble of classifiers
instead of a single one increases the robustness and achieves good performance in
general. As mentioned before, the choice of classifiers in the ensemble is crucial to
its success. The results presented in this chapter, namely the probabilities of being
better than the majority predictor in Table 7.2 on the previous page, equip us with
the empirical evidence to make an informed decision as to the composition of an
ensemble and be confident of its performance in practice.

99

ENSEMBLE CLASSIFICATION

-10901pa1d Ajrrofew
oY} JO Jey) Uey) I9930Q SI oouruLIo}Iod o} Jey) 9JeIIPUL T URYY) SSO] SIOQUINN "OUI] Po1IOp B SB UMOYS ST YOI M
10%01pa1d Ajrrofewr odwirs o) JO J030R] ® SB UMOYS SI 90URULIOJIDd oY, "O[qUIaSUo o[} JO dourUWLIONOd o) SMOUS
QUI[PI[OS oY], "A[oA1po0dsol ‘sInoquIou ¢ Yim fgI pue L4 ‘@eIlqyT JO oouruLIofod o) MOUS SO[OII0 pue sosnyd
‘S9SS0ID 91 T, ‘oourULIOfIOd POOS [IIM SIOYISSR[D 90911} JO SUI)SISUOD JOYISSB[O S[UIOSUD o7} YIIM SISO [RIUWILIodX] *G), 9IN31]

NVYH-1VS ANI—1VvS NYH-1VS 490 dSO
— L0

— G0

... c._.x._.xlov
— 0'¢

— 0°G

— 00}
J0jo1paid Ajuolfew oy
anielal Ajeuad

100

WHAT MACHINE LEARNING TECHNIQUE TO USE?

7.7. Summary and contributions

In this chapter, we investigated the performance of five different Machine Learn-
ing methodologies and many different Machine Learning algorithms for Algorithm
Selection on five data sets from the literature. We compared the performance not
only among these methodologies and algorithms, but also with existing Algorithm
Selection systems. To the best of our knowledge, we presented the first large-scale,
quantitative comparison of Machine Learning methodologies and algorithms appli-
cable to Algorithm Selection. We furthermore applied statistical relational learning
to Algorithm Selection for the first time.

We used the performance of the simple majority predictor as a baseline and eval-
uated the performance of everything else in terms of it. This is a less favourable
evaluation than found in many publications, but gives a better picture of the real
performance improvement of algorithm portfolio techniques over just using a sin-
gle algorithm. This method of evaluation clearly demonstrates that sophisticated
(and computationally expensive) approaches can have inferior performance com-
pared with simply choosing the best individual algorithm in all cases.

Our evaluation also

e showed the performance in terms of a simple rule learner,

« evaluated the effects of using only the set of the most predictive features instead
of all features,

e looked at the influence the size of the algorithm portfolio has on the relative
performance of the Machine Learning methodologies

« and quantified performance changes caused by thinning out the set of training
data.

We demonstrated that methodologies and algorithms that have the best perfor-
mance on one data set do not necessarily have good performance on all data sets.
A non-intuitive result of our investigation is that deleting parts of the training data
can help improve the overall performance, presumably by reducing some of the noise
inherent in the empirical runtime data.

Based on a statistical simulation with bootstrapping, we gave recommendations
as to which algorithms are likely to have good performance. We identified linear
regression and alternating decision trees as implemented in WEKA as particularly
promising types of Machine Learning algorithms. In the experiments done for this
chapter, they always outperform the majority predictor. We focussed on identifying
Machine Learning algorithms that deliver good performance in general. It should
be noted that neither of these algorithms exhibited the best performance on any of
the data sets, but the Machine Learning algorithms that did performed significantly
worse on other data.

We furthermore demonstrated that case-based reasoning algorithms are very likely
to achieve good performance and are robust with respect to the number of past cases

SUMMARY AND CONTRIBUTIONS

considered for any given new datum. Combined with the conceptual simplicity of
nearest-neighbour approaches, it makes them a good starting point for researchers
who want to use Machine Learning for Algorithm Selection, but are not Machine
Learning experts themselves.

We showed that the default parameters of the Machine Learning algorithms in
WEKA already achieve very good performance and in most cases no tuning is re-
quired. While we were able to improve the performance in a few cases, finding the
better configuration carried a high computational cost. In practice, few researchers
will be willing or able to expend lots of resources to achieve small improvements.

Finally, we confirmed the benefit of using an ensemble of classifiers as demon-
strated in Chapter 6 by using the presented empirical evidence to compose an en-
semble of three classifiers that achieves good performance on all data sets.

The main contributions of this chapter are as follows.

e The first large-scale performance comparison of Machine Learning algorithms
on several Algorithm Selection data sets.

o An investigation of the effects different ways of preprocessing data (like de-
termining the set of the most predictive features) have on the performance in
practice.

e The application of statistical relational learning to Algorithm Selection.

¢ Demonstrating the relatively good performance of the simple majority predic-
tor.

e The identification of linear regression, alternating decision trees and nearest-
neighbour classifiers as Machine Learning algorithms that are likely to achieve
good performance on Algorithm Selection problems.

e The confirmation of the benefits of ensemble classification and the demon-
stration of good performance of an ensemble consisting of Machine Learning
algorithms recommended here.

101

Conclusions and future work

In this dissertation, we presented several contributions to the field of Algorithm
Selection in general and Algorithm Selection for combinatorial search problems in
particular. We have given some motivation for Algorithm Selection, presented a
detailed survey of the literature on Algorithm Selection and immediately related
fields. We have also presented case studies that apply Algorithm Selection techniques
to new problem domains and bring out some of the difficulties often encountered
when doing Algorithm Selection in practice.

The material presented throughout this dissertation is centred around the question
posed in the introduction,

How should we do Algorithm Selection for combinatorial search problems in
practice?

We have established the importance of this question and the difficulty of answering
it. We have investigated it in detail in two specific contexts. We have proposed ways
of answering or helping to answer it and shown the effectiveness of these ways.

Starting from the central question of this dissertation, the thesis defended can be
formulated as follows. There are Machine Learning techniques that can be applied
to Algorithm Selection to decrease the background knowledge required to perform
it in practice and achieve good performance.

In this chapter, we will provide concrete answers to the central question. This
chapter summarises the contents of the dissertation, reiterates the contributions,
draws conclusions and presents an outlook on future work.

8.1. Summary

Chapter 2 presented an investigation that gave quantitative evidence for the need
for Algorithm Selection. Comparing several state of the art constraint solvers, the
differences in performance were found to be significant. Although there was a solver
that had the best performance most of the time, there was clearly scope for improve-
ment by selecting a different solver in some situations. However, it was not obvious
how to make this decision.

103

104

CONCLUSIONS AND FUTURE WORK

Chapter 3 had a look at the vast amount of literature available on Algorithm
Selection. It classified and analysed dozens of publications according to specific cri-
teria. One of its contributions was to establish the diversity of approaches in the
literature and that there is no approach that is agreed to be the best one, making
it hard to choose in practice.

Chapter 4 presented a case study for a specific problem domain and used a decision
tree learner to decide whether to use lazy learning in constraint solving. It demon-
strated steps that can be taken to ensure that an Algorithm Selection system is
effective and efficient. It also showed that we can not only improve the performance
of constraint solving significantly in this context, but also improve our understanding
of the problem domain by inspecting the learned decision tree.

Chapter 5 employs the selection of the implementation of the alldifferent con-
straint as another case study for using Machine Learning to solve the Algorithm
Selection Problem. In addition to using techniques described in the literature, it
made a series of decisions that depend on each other to arrive at the most suit-
able implementation for solving a given problem. It furthermore presented empirical
data that shows the effectiveness of a cost model that assigns a weight to each prob-
lem and that using a reduced feature set does not affect performance negatively in
general.

Chapter 6 showed that ensemble classification, a technique borrowed from Machine
Learning, is an effective way of mitigating the problem of having to choose the best
way to do Algorithm Selection. As alluded to earlier, this is one of the biggest
obstacles to be overcome when using Algorithm Selection in practice. An ensemble
of classifiers whose decisions are combined by majority vote exhibits not only much
more robust and predictable performance, but also performance that is equal to
that of well-performing individual classifiers. In some cases, the performance of the
ensemble even exceeded the performance of the best individual classifier.

Chapter 7 investigated the performance of five different Machine Learning method-
ologies and many Machine Learning algorithms for Algorithm Selection on five data
sets from the literature. It addressed the crucial lack of such a comparison in the
available literature and complements Chapter 6, which shows ways of avoiding to
select an individual best technique, but still requires the selection of a few. Chap-
ter 7 also takes a look at several issues related to the selection of a Machine Learning
technique. It gives recommendations as to which techniques should be considered
for Algorithm Selection based on extensive empirical evidence. Finally, it presents
empirical evidence that the proposed Machine Learning algorithms with good per-
formance can be used in a classifier ensemble to achieve the benefits demonstrated
in Chapter 6.

8.2. Contributions

The main contributions of this dissertation are as follows.

CONTRIBUTIONS 105

e The identification of Machine Learning techniques that are likely to perform
well in the context of Algorithm Selection problems based on large-scale em-
pirical evidence (Chapter 7). Either linear regression to predict the run time of
an algorithm on a problem or alternating decision trees should be used, both
as implemented in the WEKA Machine Learning toolkit.

e The identification and evaluation of ensemble classification as a promising
technique for reducing the amount of Machine Learning expertise required to
perform Algorithm Selection while maintaining a high level of performance
improvements (Chapters 6 and 7). In addition, ensembles increase the robust-
ness in the sense that bad performance of one constituent can be alleviated by
the other constituents.

e The first large-scale survey and evaluation of Machine Learning techniques
applicable for performing Algorithm Selection for combinatorial search prob-
lems. Chapter 3 shows the large variety of techniques in the literature on one
hand and the almost complete lack of comparisons of different techniques on
the other.

e The use of decision trees to improve our understanding of the issues underlying
an Algorithm Selection problem (Chapter 4). Although decision trees have
been used frequently in the literature, using them for this purpose has not
been described.

e The demonstration of the feasibility of making multi-level decisions that de-
pend on each other (Chapter 5). Even when combining the output of several
Machine Learning stages, each with an associated uncertainty, the resulting
system is still effective and efficient.

o Two case studies (Chapters 4 and 5) that apply Algorithm Selection techniques
to new problem domains and raise issues that are addressed in other parts of
this dissertation.

Apart from these main contributions, the following ones have been made.

e The establishing of a cost model that weights training examples according
to their importance in Machine Learning for Algorithm Selection. Although
similar models have been used in the literature, their effectiveness has never
been evaluated in a publication.

e The evaluation of the generality of a decision tree through cross-validation
across problem classes. This technique complements traditional cross-validation,
which partitions at random. Partitioning by problem class enables us to esti-
mate the generalisation error more realistically.

106

CONCLUSIONS AND FUTURE WORK

e The use of bootstrapping to determine the probability of a certain performance
level of a technique used for Algorithm Selection. Bootstrapping leverages the
empirical evidence to provide estimates of performance in general.

« The application of statistical relational learning to Algorithm Selection. There
is no previous application of this relatively new field of Machine Learning in
the literature. Although the results lag behind other techniques, statistical
relational learning is, not least because of the higher information content of
its predictions, a promising technique.

The focus of this dissertation has been not so much on presenting yet another
technique that improves the state of the art in a specific Algorithm Selection scenario,
but to address the fundamental problem that many researchers face.

We are now in a position to answer the central question of this dissertation, based
on the research presented in the previous chapters.

e Systems that perform Algorithm Selection for combinatorial search problems
should use linear regression to predict the performance of each algorithm on a
problem and make the decision to choose which one based on that prediction or
use alternating decision trees to directly predict the best algorithm. Nearest-
neighbour classifiers are also a reasonable choice. The exact choice of method
will depend on other factors such as what information is required to decide.

o These techniques or the other ones recommended in Chapter 7 can be combined
in a Machine Learning ensemble to make the Algorithm Selection system more
robust. While the performance of one of the constituents of the ensemble can
be better than that of the ensemble in some cases, the empirical evidence
presented in Chapters 6 and 7 suggests that over large sets of diverse data the
performance of the ensemble is better than that of an individual constituent.

8.3. Scope and limitations

There are a lot of factors that affect the performance of Algorithm Selection systems
and a lot of different methods that can be applied to tackle the Algorithm Selection
Problem. Chapter 3 explores the vast amount of literature and reinforces this point.
Not all of the different techniques can be investigated in this dissertation; its scope
is necessarily limited to a selection of issues and techniques.

The selection of issues and techniques was motivated by their relevance to Algo-
rithm Selection as demonstrated by the available literature. Combinatorial search
problems are the dominant application domain for Algorithm Selection. Most of the
techniques investigated here have been used in this or a similar form. They also cover
a broad range of different Machine Learning techniques. The aim of the selection
was to present research that will be useful in many different scenarios and contexts.

This dissertation focusses on the practical aspects of Algorithm Selection and
empirical evidence for improvements. This is partly because this is where the focus

FUTURE WORK

of research over the last decades has been, but mostly because there is no theoretical
framework suitable for an evaluation of the performance of different techniques for
Algorithm Selection. The main question of this dissertation was, as alluded to earlier,
motivated by the fact that it is very difficult to select a technique to use in a specific
scenario based on the available literature.

The automatic tuning of algorithms is relevant to Algorithm Selection and some
of the literature has been described in Chapter 3. It is however not one of the
foci of this dissertation. The concentration on algorithms that have not been tuned
automatically does not necessarily incur a loss of generality for the results though.
Taking the selection of the most appropriate implementation of the alldifferent
constraint as an example (Chapter 5), the different versions could be seen as different
settings for a parameter. Similarly, different parameter configurations could be seen
as different algorithms to be selected from. An Algorithm Selection system would
implicitly perform the tuning by selecting the algorithm with the most appropriate
configuration.

The only case that is not covered is when the space of possible configurations is
too large to be represented in this manner. There are however systems such as Hydra
(Xu et al., 2010) and ISAC (Kadioglu et al., 2010) that deal with this scenario.

8.4. Future work

One of the main avenues for future work is the implementation and use of the
techniques described in this dissertation in a real system. Appendix B describes a
framework for the automatic generation of constraint solvers that are specialised for
a given problem. There exists a preliminary implementation that already shows a
lot of promise.

A major part of the described framework is an Algorithm Selection system to
choose the most appropriate implementations of components of the target constraint
solver. An implementation of this part can draw on the material presented in this
dissertation — a series of decisions that depend on each other will have to be made (cf.
Chapter 5), specific Machine Learning techniques will have to be used (Chapter 7)
and the system should be robust (Chapter 6).

Generating a constraint solver is a difficult task that requires many interdependent
decisions to be made with respect to the algorithms and data structures to use. It is
possible that it is infeasible to apply traditional Algorithm Selection techniques in
this context. If this problem arose, a possible solution would be to employ statistical
relational learning, which has been investigated in Chapter 7.

Applying more sophisticated Machine Learning techniques to Algorithm Selection
is another major research direction. This may be necessary in order to be able to
perform Algorithm Selection in scenarios such as the one described above at all, or
may be able to provide significantly higher performance than current state of the
art systems.

The automatic generation of constraint solvers tailored to a specific problem will

107

108

CONCLUSIONS AND FUTURE WORK

be a major step forward in Algorithm Selection systems. The potential for practi-
cal performance improvements is much higher than in existing Algorithm Selection
systems because of the much more fine-grained decision making. Efficiently and ef-
fectively exploring the very large space of possible solvers is novel and challenging.
Analysing problems to solve with regards to a wide range of diverse implementation
decisions will require the modification and extension of existing techniques.

Apart from this main extension of the present work, there are a number of other
directions that could be explored. Even though this dissertation makes major con-
tributions to basic Algorithm Selection research, there is still plenty of scope for
additional work.

Chapter 7 establishes a number of Machine Learning algorithms likely to exhibit
good performance in Algorithm Selection scenarios. There is however no explanation
for this that could provide pointers as to what factors have an effect on the perfor-
mance. While the results are based on extensive empirical evidence, investigating
the underlying issues may provide pointers how to improve the performance even
further or how to modify techniques for this purpose.

As established throughout this dissertation, there is plenty of empirical evidence
for the difficulty of doing Algorithm Selection in practice. There is however no no-
tion of the difficulty or “hardness” of an Algorithm Selection problem. Is it difficult
because the problem domains are mostly drawn from applications with a high com-
plexity class? Do the features we use for Machine Learning carry enough information
for us to make a decision? Or is there another factor that we have not considered
yet?

One of the major contributions of this dissertation was to show that ensemble
classification is a technique whose application to Algorithm Selection has several
benefits. There are other techniques in Machine Learning for which this could be
true, for example boosting to complement ensemble classification or principal com-
ponent analysis as a preprocessing step. Investigating to what extent such techniques
can be applied to improve Algorithm Selection is another promising avenue for future
research.

Another challenge is how to compose ensembles. Ideally, the constituent Machine
Learning algorithms would complement each other such that in cases where one
delivers poor performance, the ensemble can compensate for it. This is a problem
similar to constructing portfolios for Algorithm Selection itself and some of the
techniques used there may be applicable in this case as well.

Beyond this, the current work could be extended by applying Algorithm Selection
to new problem domains. Similarly, new techniques could be developed to make Al-
gorithm Selection decisions. Statistical relational learning in particular is a promising
direction to pursue because of the richer prediction output that could enable new
approaches.

In conclusion, there are many promising avenues for further research. The research
presented in this dissertation has started exploring some of them as well as uncover-
ing new directions. The results described in the previous chapters are immediately

FUTURE WORK 109

applicable not only to practical Algorithm Selection systems, but also to researchers
pushing the boundaries of the field.

Summary of relevant literature

The literature overview in the table below is sorted chronologically for lack of a more
meaningful order. Cutting out the individual entries and rearranging them according
to some other criteria would probably be informative, but is entirely unnecessary as
the modern interwebs provide us with ways of doing so that do not involve scissors.
A version of this table that can be sorted according to various criteria is available
at http://www.cs.st-andrews.ac.uk/~larsko/thesis/.

111

SUMMARY OF RELEVANT LITERATURE

112

98ed 9xou UO paNUIIUOD

S2INYeSJ

wopqoxd pue (€661)

so[n.I 9OURULIOJ suorjenba Te 19

SYURCATS QuIpjo poyrId-puRy wyyode -1od sed [RIJUDIDHIP [ourey]
SoINnYed]

S19SNS SAISINIDI W}LI03. sururea] (€661)

o19898 QUIfJjO so[nI 10 WYjLIOZe 1s9q pue wajqoid QUIYDRIA Aa[poig

SO} sururea|

o19R98 QUIfJO SO[NI POULIBd] WIILIOSe 159 -BoJ weqod ourpr]N (g661) ®UVY
uory

-ejuosordar (2661)

guipesu SOINJONIS BIEP 1oRIISqR udls pIres pue

BYURCATS ouIjo -um pojenuwuls pue SwWIOS[R JO SOINJBd] -9p OIemijos yywg
sonysIpe)s
yoIeas pue

soInyeoy (266T)

UOI}ONIISUOD urewop suoro(g

OTWRUAD our[uo oI onsIfiqeqord SO[ILI [OIJU0D werqoxd surtuuerd pue yojern)
SO1)S1YR)S
YoIeds pue

UOI}ONIISUOD SoINYes] (1661)

o1 poseq Uurewop e 19

OTUIRUAD auI[uo -uoryeur[dxa SO[TLI [OIJU0D warqoxd guruurerd [[euoqIe))

ouITuO SO[ILI POULIEd] gouRw (e‘qEe86T)

OTWRUAD PpURSUIPJO PUR PIYRII-PURY osLmay -Iojed gsed [oIeds Aor3ue]

orjojyrod odAy Moy jorpaxd reym jorpaad SoIn)es] urewop UOIYRIID

113

o8ed 1xXoUu UO PONUIIUOD

(9661)

SO13819R)S ‘Te 19

o13e9s QUI[UO O[NI PoYRIO-PULY jUWYILIOS[R [OIIMS oIRoS SHUIRIISUOD Moy es

(9661)

Q0URW UOJUIIA]

o1)RYS QUI[UO J[NI pajjeIO-puRy -I0jIod QWIJUILI 8urqoid Tyg/sjurerjsuod pue ULy

TopIo (9661)

orjess SOTISTYR)S T® 1

‘o19818 QUI[UO O[ILI PoYRIDO-PURY jUWYILIOS[R [OIIMS oIeas SHUTRIISUOD 139110¢]

(9661)

‘' 3o Iysor

S}0U [eINOU “(9661)

pue uorjyegedoxd Jourw soIny suorjenbo ‘e 19

o13R1S QUIJO JoI[oq uriseAeqg -10j1od owjunl -esj worqoid [RTIUDISJIP RURICMRINOAN
s1ofjowrered I0Y)

pue SOIMIONI)S B)Rp ugIs (6661)

o1)RYS QUIJO [opoW [edI)sIje)s ejep ‘Sw)LIO3[e QWU -9p 9IRMIJOS Jomaig

soImy (¢66T)

o1)RYS - - - -eoy wdqoxd SJUTRIISUOD ‘e 10 SurS],

ose(q o3parmouy| SOIMIONI)S B)RP soIn) u3is (7661)

o1)eYS QUIO poseq-owrely pue SwyjLIos[e -eoy wo[qoid -Op 9IRMIJOS eD

(9661

o19.)8 SO[NLI POULIed] 90URBULIOJ “R‘qe66T1)

-TUI9S QUIJO PUe poyeId-puey onsumoy -Iod owrjuILl SIUTRIISUOD UOJUTA]

orjoj3rod odAy moq jorpaxd reym jorpaad SoInjes] urewop uoI)eId

SUMMARY OF RELEVANT LITERATURE

114

o8ed 1xoUu UO PoONUIUOD

S9INYBOJ (6661)
PIULEIS W)L oIReS pue ‘7€ 90 ULIeIy
TS QUIJO -03[® PIUEDIEY:] OT9SLINOY weqoxd SUINPeYDS -RUWIYSRIY]T,
QouRW
-10jrod ouaryuNLI
U0 Paseq IMpayds soIny (6661)
o13R9S OUIJO UOISSOISOI IRdUl| urqoI-punol -eof worqord Sutuue[d ‘Te j0 oMOH
(6661)
Suru 9OUBULIOJ woqoxd Te 10
o11e)s ourggo -wreagoad d1jouULS onsLneY -Iod oWIUNI SUIINOL S[OTYOA neose)
(8661)
9IjIeW|
douRwW punoq pue
o1yels QUI[UO J[NI pojjeId-puey -Iojrod owIjuUNI gsuiqoxd pue ouRIq stolqorp
oz1s weqoid
UO UOISSoI301 pue douew
QUI[UO PUB SUI[JO ompeyds -10j1od jsed (8661
o19R)S OUI[JO [OpPOW [BOIISIJR)S Ul SPUNO] OWI} JO SOIISIIR)S Suruuerd ‘2661) YUl
19U [eInau
pue 1noqusou
189189 RETIIS (2661)
-Se[d ueIsoAey Sordojer)s [[eUIRA
o19R98 QUI[UO ‘S99I) UOISIPP [oIBGS JO 39S gurqord yoiees [o[eied pue Yoo
('qL66T)
o13R9S oouew URW[OG
-TuIes QUI[JO [oPOW [ROIISIIRIS osumey 4soq -10j1ed gsed SJUIRIISUOD PUR SOUIOK)
orjojyrod odAy Moy jorpaxd reym jorpaad SoIn)es] urewop UOIYRIID

115

98ed 9xou UO poNUIIUOD

spySom (T007)
pouIes] pue oyl SO} ‘Te 10
o1ye)s ouI[uo poyeId-puey OIISLINDY 1s9q -B9J wd[qoxd surmpeyos SuIM0))
sururersd
-oxd 10807ul (1002)
B ULEILS Q0URW POXIW pue URT[OG
-TuIos QUIJO [opOW [BOIISIIeIS onysumay 3soq -1oy10d gsed SJUIRIJSUOD PUR SOUWIOL)
wopqoxd (0002)
o1ye)s QUIJO [opoW [eOI)sIje)s SJUIA[OS JO 1S0D surqoad SIUTRIISUOD OIS
(000¢)
UBWIHT
weqoxd-qns yoeoa SO} guryios pue pue
o19R)S ouIuo JdAIN 107 9800 Sururewol -e9f Wd[qoId UOIJI9[ES IOPIO S epnoser]
(0002)
[opowt douew SoIe0g pur
o1ye)s QUIJO UoNqLIIsIp sunuer -1oyred gsed UOI}ROYISSR[D [Ipzerg
oIeas
surmp
KLorjod Sur seSueyo oIny Surmpayps (0007) Xod
o11e)s QUI[UO O[ILI PAjJRIO-PURY -[Npayos wyjLiose -eoj wwqoxd doys qol pue 3oog
SUI0)SAS (0002)
Inoq soIn) IedUI] I0j USIS ‘e 19
o1ye)s QUIJO -UYSOU SoIRelU SOINJONI)S BIRP -B9J wv[qoxd -Op oIeM)JOS UOS[IA\
orjoj3rod odAy moq jorpaxd reym jorpaad SoInjes] urewop uoI)eId

SUMMARY OF RELEVANT LITERATURE

116

o8ed }Xou UO PoONUIUO0D

SO1ISI)R)S
oIees pue (Tooz)
Ppe 0} sjureI)s SoIN)edJ suesy, pue
- QUIJO O[NI POJJRIO-PURY -UO0D JUBPUNPII wapqoxd SIUTRIISUOD 139110¢]
SOTISI)R)S
oI9S
‘seanjyes)
s1ojowreIed I01eI9U03 (1002)
ouIUuO pue oouruLIo] we[qord pue Te 19
OIJe)S PURSQUIPJO S[OPOW ueIsafey -I1od QWU werqoxd SJUTRIISUOD ZYIAIOF]
S Srom
Jjo SurwIes]
QuI[uO TUOWDDIOJUTOT OIISLINOY SOI9)SI1R)S (1002)
OI1e)S puR QUIPO Areuorjye)s-uou Jjo An pejoadxs oIeos uorjestwr}do MoAoreN
(1002)
UBWHT
werqoid-qns goes soIny so[na gur pue
o13R9S ouI[uO JdAIN 107 9500 Fururewal -eof wofqoid -ypouriq TTJ(SDH{epnose
(2002)
‘e 90 uegs
-dg *(1002)
SO sony Jopnalg
o13R9S ouIuO poyeId-puRy -SLI990RIeYD pue
-[WSS pUe QUIPO pue SIYSToM OTISLINOY 9[qeLIeA SHUTRIISUOD ureysdy
orjojyrod odAy Moy jorpaxd reym jorpaad SoIn)es] urewop UOIYRIID

117

o8ed 1xoU UO PONUIUOD

SonsIe)s
yoleos pue
ouIuO WYL SoIN)ed] surmpoyos (€002)
OI1R)S PUR QUIPJO [OPOW [BOIISIIRIS -OF[€ [OIRdS [BOO] werqoxd doys-qofl UOSYRA\
SurwIes]
-ejou ‘SI0M
-jou uersodeg QoULISJUL
‘safeq 9ATRU soIny onysifiqeqoad
o198)S ouUI[go ‘0019 UOISIDOP WIS 150 -eoJ wo[qoid pue Sunuos (g00g) onx
(€002)
SO[ILI UOIPRIDOS SO} ‘Te 10
OTWRUAD QUIJO -SB UOI}ROYISSB[O siojowrered -eoj worqoid Suruuerd SeyRIA
$o1 (8002
o1peYs suru -SLI9)ORIRYD ‘2002)
-TuIos ourggo -wreisord o1jeus OIISLINOY o[qerLreA LVS B3eUN N,
(2002)
wo[e 10
UOISSaI1301 samn} -qoid uorjyeurua UMOIg]
o1ye)s QUI[JO JO SULIO] [BIGADS ssoupdey we[qold -eej we[qoid -I9jep IsuULM -u0j4or]
(2002)
suruos Soam) ng) pue
o198} OUIJO -BOI POSB]-9SBD OIISLINOY -eof wefqold surmpeyos O1A0I)9J
90URBULIOJ
-tod ewjunI 10§ Soam)
Inoq suoryewiojsuel) -edy ydeid (2002)
- QUIJO -YSIou 1SoIedU [opow wepqoad wepqoxd so[zznd O1301 ‘T® 30 O[N]
orjoj3rod odAy moq jorpaxd reym jorpaad SoInjes] urewop uoI)eId

SUMMARY OF RELEVANT LITERATURE

118

o8ed }Xou UO PoONUIUO0D

(v002)

Imoq SU)PIM [OULIOY SO} surureo] e 10

o19R)S OUIJO -YSoU 3soIeou JNAS JOo Sumuer -eoj werqod QUIYORIA SoIR0G

Furures] (g00¢

JUOWOOIONUI j WIYILIOB e [YOIIMS SOTISI)R)S ‘7002)

ouI[uoO -oI pue IAYIs pue oseyd UOIRI T[DOIBIS puUR surnpeyps ooy pue

OI1R)S pURQUIJO -se[o urisedeg -o[dxo 10 T)SU9[gurqoxd doys qofl orRITDIR))

(8002

'9L002)

sossao1d e 1 1Y

werssne) ‘SPAS {(¥002)

‘UoIssoI3al 0sse| douRW Soamny TR 19

PIULEIS QUIJO ‘UoISsaIgor o3pHl -10j1od owunI -edj warqold ILVS uewepnN

(v002)

so[nI Iapnalg

O11R)S QUIO poyeId-puRy w}LIo3[e 189q gurqoad sunpeyps pue Yooy
SOIN RO

qdeis wol (7007)

wjose pue -qoxd pue waqoxd OUR[IIN

PIULEIS QUIJO SO0I) UOISIOOP POYIeW UOIN[OS worqord uorjen[eAs pIq purR LLIONY)
SoIN)ed]

qdeis wo (7007)

mnoq -qoad pue woeqoxd e 19

PIULEIS QUIJO -USU soIRelU poyjeur UorIn[os wepqoad uoryen[eas piq SIOTLICRL)

orjojyrod odAy Moy jorpaxd reym jorpaad SoIn)es] urewop UOIYRIID

119

o8ed 1xoU UO PONUIUOD

(002)

Joqny

-praayog

QoUW ST)L pue

o198 ouIuo Sjou [eInou ompeyps -1ojrod jsed -03[e O1joULS ofor3er)

(5002)

[epowt JIpueRq QouRw g pue

o199 QUI[UO PoULIB-Y Xeu o1)SHIM_Y 3s9q -10j10d 3sed surmpayos O[[III)

auITUuO JJIN ewrjuni pajorpaid gouew (6002)

OIye)S pUR SUIPJO puUB ojA[eue UO poseq ompayds -10jiad jsed IVS pIROER
[eon

-SIJe)S PUB S99I) £391e198 (5002)

UOISIOdP ‘Inoq uommnjos 94s9q pue soImy ‘Te 19

BIULATS QUI[Jo -Y3Iou 1S0IB9U [OpPOW worqord -eay werqoid SHUIRIISUOD SIONIQOX)

A[ILI UOTS (500z)

-109p ueIsoAey soIny ‘Te 19

o1)RYS QUIJO 9YeLIRAI} U wyjLIose -eoj wo[qold rIqOS[R IeaUl] |ElLsiveTg)

(¥002)

QouRUI 10000 (A S 19

o13e98 ouI[uo [opowt Jeaul| ompoyos -10j10d 9sed -03[e OrjoULT ofo13en)
sonbru
-09} Surures|
-RJOU ‘SYIOMIOU

soAegq ‘so[na werqoad

soAeq QAIRU soIny uorpeue[dxe ($00g) NSH

o1)R)S QUI[JO ‘S00I1) UOISIDOP WILIoZ[e 159 -eoJ wo[qoad soiqeqoid jsowr pue onx)

orjoj3rod odAy moq jorpaxd reym jorpaad SoInjes] urewop uoI)eId

SUMMARY OF RELEVANT LITERATURE

120

98ed 9xou UO paNUIIUOD

UOISS91301 93PLL

pue UOISsoI3a1 ouewt
OIISI30] [erwou -I1ojod QUIIUILI soIny (®2002)
o1ye)s QUIJO -Tynwt osteds pue Aiqegsiyes -eo woqord ILVS ‘' 1 nyx
s1ojourered IVS (9002)
o13R9S pue 9OURULIOJ SoIN} Ul YOILdS [eI0] ‘[e 19
-TuIos QUIJO UOoISs0I801 o3pLr -10d owunI -eof woarqord O11SRYDOIS IYNH
$991) UOISIOOP (9002)
Suryeuo)e soIny ‘Te 19
o1ye)s QUIJo pue gurysooq WILIOS[R® -BdJ Wo[qOoId SWOISAS IeoUl] Yorumoyy

SoIN)ed]

SINAS JUOUIUOIIAUD (9002)
pue SedI) UOISIO puR wW)}LI03 SUIRTTI AN
PIULEIS QUI[JO -9p JO SO[qUIdSUD wyoge e ‘wesqord uorpestuiydo pue YsSnoy
(9002)
a[npayos soImy OMOH pue
o13R9S QUIJO SOOI UOISIOOP urqoI-punol -eof worqord suruued S110q0Y
(49002)
wsqoxd Taqny
UOI}RUIULIO)OP -pruryog
[epouwt Q0URWL IoUUIM uor) pue
o1ye)s ouruo w[qord jIpuUR(ompeyds -1ojred gsed -one pur VS ofor3exr)
(9002)
SuruIe9| 9OURULIOJ ‘Te 19
PIULEIS QuI[uO JUOWIODIOJUIST jWIILIOS[R Yoims -Iod swrguni s[[ed ainpooold Suorjswry
orjojyrod odAy Moy jorpaxd reym jorpaad SoIn)es] urewop UOIYRIID

121

98ed 9xou UO pANUIIUOD

Suruuerd (8007)

QuI[uO som) ‘Surumersord gjwg pue

OI1R)S PUR SUIPJO S[OPOW [BOIISI)RIS ompeayds -eof wefqold I98eIur ‘TS 1910011G

(8002)

‘Te 19

S319q0Y

“(L002)

ST $S900NS JO AR sIn) OMOH pue

o1)eYS QUIJO -03[R JUDIOYIP g& -qoid pue ownjuni -eoj worqord suruued S119q0Y

(2002)

ouIuO 20uUBW ‘Te 19

OI1R)S PUR QUIPJO S[OPOW [BOIISI)RIS ompoyds -1o110d gsed Suruuerd 1910011G
oulfpeap

M SwIy)LI03 (L002)

suruos -k SuBpPRIPNORq yoog — uea

OTWRUAD QUIJO -BOI POSB(-9SBD JO orjoyyrod - surmpeyps pue A\

(200)

OIAS

ouI[uo UOTSSOISOI OI)SI8 SON[BA 9OUPYUOD sIN) -TWON pue

OI1e)S PUR QUIJO -O[[RIWOUN MW puR DISLINOY 1S0q -voJ wofqod AgO zyumomureg

moqu3nu

JsoIedOU puR UOIS (6002

-s91801 OI3SIS0] 2002)

QUI[UO ‘SAYILI UOISIO9P s9IM) R[OYDOR],

OI1R)S PpUR QUIPJO ‘S90I1) UOISIOdP o[mpeyds -edf wejqoid 490 pue eugng

orjoj3rod odAy moq jorpaxd reym jorpaad SoInjes] urewop uoI)eId

SUMMARY OF RELEVANT LITERATURE

122

o8ed }Xou UO PoONUIUO0D

UOISSa13 (6002)

-o1 O19sI130] pue AY[1qeYSIyes pue soIng USTeAM

219898 OUI[JO UOISSoISal oFpLl ABojer)s Iejsol -eoj worqod IVS pue wreq
SOI)SIIBYS

(pIeds pue (6002)

SoIN9ed] ‘Te 19

BIULATS ouI[uo SINAS A303e1)s yoreos wepqoxd SHUTRIISUOD ZoR[oqIy

poyjeut SOTISIYRYS (6002)

o188 ouI[uo Surmsnd uorjededoid oIeas SIUTRIISUOD NOoI310G

(600g) nots

potjeuwt -199G pue

PIGLELTS ouIfjo SurmsnO uorjesdedoxd surqoad SJUTRIISUOD SOJRIRUIRIG

(600¢)

Imoq soIny ‘Te 19

o1)R)S ouUIo -ySou 189189U ALorjod yoares -eoj worqoad IVS JI[ONIN

SO1IS1YRIS (8002)

BIULETS QUI[UO NI PaYJeId-puULy OTISLINAY YoIeas IVS B 70 M
SOT)S1)B)S

yoIess pue (8002)

Surures| SoIN)eaJ uoy)) pue

o19e)8 ouIuO IO IOJUTT W}LI0T®. worqord Sw)SAS Ieaul] Iogeny[

(8002)

Imoq SoINny ‘Te 19

o19®)S QUIJO -YSIou 1S918aU ompoayps -edy werqoid sjureIjsuod AUOyRIN, O

orjojyrod odAy Moy jorpaxd reym jorpaad SoIn)es] urewop UOIYRIID

123

o8ed 1xXoUu UO PONUIIUOD

(0102)
IoYIS SOI)SIYR)S ‘Te 10
o1ye)s QUI[UO -SB[D SoAR(OAIRU OT9SLINOY oIe9s suruuerd R[USWO(]
sory wopqoad (0107)
SWYII -SLINOY [9AJ[-MO[Q0UBULIO] SUIINOI OPIY JIY pue
OIWRUAD ouruo -03[e orPues Jo uorjyeurquiod -1od owUNI -9A OTWRUAD OpLLIRY)
SoIN)edJ Suor}
oUI[UO wjLIos[e -one [eLIojRUI] (0102)
OIJR)S pUR QUIPJO [opowr ueIsoAeg WILIOZ[e 150 pue wo[qoid -wod pur JO©) € 10 WIS
(0102)
uaurenyyI
SIE] QoUW douew -TIN pue
o1ye)s QUIoO -pouwr sse[o jusje] -1ojrd ewrjunt -1opred gsed ILVS UWIOULISA[IS
surqoad
ouI[uo SWI}LIOS[R UOI}RD puUR QoUW surureary (0102)
OI)B)S PUR OUIJJO [OPOW [eJIISIJe)s -TISse[d Jo Sumyuel -1ojrod jsed QUIYDRIN B 10 9}107]
SO[NPATS JUAIOJ o[npotos (6002)
-JIp I0J SUOIJR[N UIGOI-PUNOI pUR douew ‘Te 10
O13e98 QUIJO -wuIs douruLIojIdd suoroe omew -1oyed jsed Suruuerd TUIADION)
INAS ‘sodeq
OAIBU ‘S991} UOIS
-100p SuryeUIO)E (6002)
‘moquseu soamn) ‘Te 19
o1ye)s QUIJO -}soreau WILIOS[R® -BdJ WO[qOoId SWOISAS IeaUul] Yorumoyyq
orjoj3rod odAy moq jorpaxd reym jorpaad SoInjes] urewop uoI)eId

SUMMARY OF RELEVANT LITERATURE

124

"9INJRIS)I] UOIIOS[OG WIILIOZ[Y oY) Jo Arewrmung 1y 9[qe],

(1102)

soIny sjurer)s ASTRIN

oreusp ouIfjo SurmsnO W)LIos[e 189q -veJ ww[qord -uod pue JyYS pue IS0l
(1102)

moq soIny ‘Te 19

o1ye)s QUIJO -UYSU }S0IROU ompoyps -edy wejqord IVS nrsorpey|
(1102)

Inoq SO} ‘Te 19

o1ye)s QUIJO -UYSOU soIeolu WIILIOZR 50 -BoJ woqoxd ILVS ASHTRIN
(1102)

SOI9SIYR)S Auowryg

o19R9S8 QUI[UO O[NI PaYJeId-puLy OTISLINOY oIedS sjurerjsuod pue urd[of,
(0102)

soIn) SULIOA0D 198 'Te 19

OTWRUAD QUIO SULIDYSTI]O WIILIoS[e 9s9q -eej wv(qoxd pue JIN ‘TLVS nrsorpey|
orjojyrod odAy Moy jorpaxd reym jorpaad SoIn)es] urewop UOIYRIID

Dominion — A constraint solver generator

This appendix presents Dominion, a framework for the automatic generation of
constraint solvers tailored to the problem they are to solve. The implementation
efforts completed so far are described. The system is still in an early stage and not
all of the components are present or complete.

B.1. Overview of the Dominion system

There are two main parts that make up the Dominion system — the analyser and
the generator. Roughly speaking, the analyser takes the specification of a constraint
problem to be solved and generates a solver architecture specification that is then
synthesised into a constraint solver by the generator. A high-level overview of the
system, its components and how they work together is given in Figure B.1 on the
next page.

The constraint problem to be solved is specified in the Dominion Input Language
and transformed into a problem component. The main task of the problem com-
ponent is to specify the other constraint solver components required to solve the
problem. To achieve this, component specifications from a component library are
consulted. The problem component, along with the original problem specification, is
passed to the analyser, which decides the most suitable implementations for the in-
dividual components of the target solver. The resulting solver architecture is passed
to the solver generator, which, taking the specified implementations from the com-
ponent library, synthesises a constraint solver tailored to the analysed problem. The

Parts of the material here have been published previously in: Ian P. Gent, Christopher A. Jefferson,
Lars Kotthoff, and Ian Miguel. Modelling Constraint Solver Architecture Design as a Constraint
Problem. In Annual ERCIM Workshop on Constraint Solving and Constraint Logic Programming,
2011.

and: Dharini Balasubramaniam, Lakshitha de Silva, Christopher A. Jefferson, Lars Kotthoff, Ian
Miguel, and Peter Nightingale. Dominion: An Architecture-driven Approach to Generating Efficient
Constraint Solvers. In 9th Working IEEE/IFIP Conference on Software Architecture, June 2011.
Parts also appear in: Dharini Balasubramaniam, Ian P. Gent, Christopher A. Jefferson, Lars Kot-
thoff, Tan Miguel, and Peter Nightingale. An Automated Approach to Generating Efficient Con-
straint Solvers. In 84th International Conference on Software Engineering, June 2012.

The contributions of the author of this dissertation are listed on page xix et seqq.

125

126

DOMINION — A CONSTRAINT SOLVER GENERATOR

Component
library

Component implementations

v

Component specifications

Problem Problem]
: component Solver " Generated
generator solver
generator
/
[r ,
y
Solver architecture /S
7
| 7
_ 7

| Analyser ‘ <+ Execution information

Figure B.1. Overview of the Dominion system.

execution of this solver can be monitored and information about it passed back
to the analyser. Based on this information, the analyser can decide to change the
implementation of components to create a more efficient solver.

The analyser is the part that this dissertation is most relevant to. Given a con-
straint problem, the task of the analyser is to determine the solver configuration
that is most efficient for solving the problem. In addition to assessing the suitability
of individual components, the analyser also has to take into account the complex
restrictions on how components can be connected. The choice of a particular im-
plementation for a component may impact the entire solver configuration — it may
require or preclude the use of other components elsewhere in the solver, which in
turn may impose similar restrictions. The task of finding a valid configuration for a
constraint solver from a set of components is a non-trivial task.

B.2. Related work

A lot of the literature that is relevant to Dominion has already been examined in
Chapter 3. Only some of the more important approaches are mentioned here again
and put in the specific context of Dominion. Furthermore, there is some literature
relevant to the automatic generation of software in general and constraint solver or
constraint solver components in particular that deserves mentioning.

One of the earliest examples of a system that attempts to generate constraint
solvers tailored to a specific problem is MULTI-TAC (Minton, 1996), which configures
and compiles a constraint solver for a specific set of problems. It is written in LISP
and performs ad-hoc customisation of a base constraint solver limited to a few
characteristics.

RELATED WORK

KIDS (Smith, 1990) is a more general system that also uses LISP to synthesise
efficient algorithms from an initial specification. The approach is knowledge-based,
i.e. the user supplies the knowledge required to generate an efficient algorithm for
the specific problem. Refinements of the initial specification are limited to a number
of generic transformation operations. The Dominion approach is more general and,
crucially, relies on almost no background knowledge. Westfold and Smith (2001)
use KIDS to synthesise efficient constraint solvers. They rely on reformulation and
specialisation of the constraints however and do not consider the other components
of a solver. Srivastava and Kambhampati (1998) use KIDS to synthesise planners,
but rely on explicitly-specified domain knowledge to do so.

RT-Syn (Smith and Setliff, 1992) uses simulated annealing to select the best from
a set of abstract data structures and algorithms and synthesises a programme from
the selected abstract descriptions. First, all algorithms and data structures that meet
the requirements specified by the problem to solve are chosen. Then RT-Syn analyses
all candidates and greedily selects the best one. The analysis is based purely on the
abstract representation.

Cahill (1994) builds a knowledge base to aid with the construction of numerical
algorithms from subcomponents. He models dependencies between components, but
relies (at least partially) on knowledge input manually by human experts and does
not report any results demonstrating the effectiveness of the system.

Brewer (1995) builds statistical models to select data layout and sorting algorithm
for iterative partial differential equation solvers. He also automatically tunes the
parameters of the selected algorithms. Dominion follows the same general idea, but
is not restricted to a small number of decisions and takes dependencies of components
into account. It selects implementations for every component for which more than
one implementation is available and models the ramifications of that choice on the
rest of the software.

There are a number of approaches that do not do Algorithm Selection, but in-
vestigate the automatic generation of algorithms from high-level descriptions. The
EasySyn++ system (Di Gaspero and Schaerf, 2007) automatically generates stochas-
tic local search algorithms from a number of templated components. Again the syn-
thesis is limited to a number of key components and does not encompass all aspects
of the solver. Aeon (Monette et al., 2009) is a similar system for the automated
generation of scheduling algorithms.

Van Hentenryck and Michel (2007) describe how to generate efficient implemen-
tations from high-level descriptions of local search procedures. They focus on the
high-level choices and abstract from low-level details. Elsayed and Michel (2010)
propose a framework that uses rules written by human experts to determine the
implementation for particular components. Schulte and Tack (2008) describe how
to automatically generate variations of specific solver components.

127

128

DOMINION — A CONSTRAINT SOLVER GENERATOR

B.3. Challenges for the automatic generation of constraint
solvers

A simple constraint solver is not a fundamentally complex piece of software. The nec-
essary components are a representation of variables, a representation of constraints,
a search engine that decides heuristically what decisions to make, a propagation
engine that allows constraints to act on the consequences of those decisions and a
state maintenance facility that allows changes as a result of search and propagation,
and reverses those changes on backtracking.

Each of these components can be implemented in a simple way — state maintenance
for example can be as simple as copying all data structures before changes are made
and then copying them back on backtracking. Certain propagation engines may
be algorithmically complex to obtain optimal performance, but this need not be a
problem for the construction of solvers from components.

The main source of complexity in constraint solver design comes from the need
to optimise the target solver for efficiency. First, the ramifications of an individ-
ual choice can be large because of restrictions it places on other choices. Second,
a constraint problem can require thousands of variables and many constraints per
variable. There may be different optimal choices for different variable or constraint
components; we can either make a compromise choice for all of those implemen-
tations and accept the possibility of suboptimal performance, or allow for many
different component implementations and accept a greatly increased overall com-
plexity. While it is possible to provide a fine-grained level of choice for algorithmic
parts in static software that is not assembled from components for each problem,
this flexibility comes at the expense of inefficiencies.

These inefficiencies can be as simple as unnecessary code being in an executable,
but more important ones arise where time and memory are used to maintain su-
perfluous data structures which are needed only to support component choices not
currently being used. While for an individual component the performance penalty
incurred because of this may be small, the overall impact in a constraint solver that
calls this component thousands of times per second would be significant. The nature
of constraint solving, and indeed solving any NP-complete problem, is such that
the difference between an optimal and suboptimal solver can be as pronounced as
finding a solution in a matter of seconds or in more than a lifetime.

For an investigation into the impact some implementation choices have on perfor-
mance, see Chapter 2.

B.4. Specification languages

The development of the Dominion system involved the specification and implemen-
tation of two languages — one to specify constraint problems to solve and one to
specify the architecture of constraint solvers. Both are described below; the reader

SPECIFICATION LANGUAGES

language Dominion 0.1
given n: int {3..}

dim queens[n]: int
find queens[..]: int {1..n}
such that

alldifferent alldiff(queens|[..])

diagonalsl [sumneq([queens[j], j—i], queens[i]) |
in {0..0—-2}, j in {i+1..n— 1}]

diagonals2 | sumneq([queens[j], i—j], queens[i]) |
in {0..n—-2}, j in {i+1..n— 1}]

Figure B.2. The n-Queens problem specified in the Dominion Input Language.

is referred to the cited publications for more detail. Backus-Naur-Form specifications
of the languages can be found in Appendices C and D.

The n-Queens problem, introduced in Chapter 2, will be used as an example for
illustrating how the languages are used in practice.

B.4.1. Problem specification — Dominion Input Language

The Dominion Input Language is modelled on Essence (Frisch et al., 2008). There
are a number of important differences however, particularly in the way arrays are
handled. Furthermore, the Dominion Input Language supports set and list compre-
hensions, a feature that Essence does not have.

In brief, the main constructs of the language are parameters, constants, decision
variables and constraints. Parameters are supplied externally and instantiate prob-
lems to solve where the specification depends on parameters. Constants are names
given to specific values. Decision variables are given a domain that the generated
constraint solver draws assignments from. The constraints restrict the possible as-
signments of domain values to decision variables. Parameters, constants and decision
variables can be defined as matrices. All of the language constructs but parameters
can be part of a comprehension.

An example of a constraint problem specification in the Dominion Input Language
is given in Figure B.2.

The complete specification of the Dominion Input Language can be found in Ap-
pendix C. The language is described in detail by Gent et al. (2009).

B.4.2. Architecture specification — Grasp

Grasp is a generic software architecture description language. The advantages of
using a generic architecture description language include available tools for checking

129

130

DOMINION — A CONSTRAINT SOLVER GENERATOR

architecture descriptions for consistency and that people without a background in
constraint programming are able to work with it.

The elements of the language that are relevant to this appendix are described
below.

templates Templates are the high-level elements of the language that describe com-
ponents. A single template can describe a memory manager for example. Tem-
plates may take parameters when they are instantiated to customise their
behaviour further.

requires/provides Describe things a template needs and offers for other templates
to use. A memory manager for example provides a facility for storing and
retrieving data. This facility could be required by a variable to keep track of
its domain.

properties Properties characterise components beyond the generic facilities they
provide. A Boolean variable for example would have the property that the size
of the domain is at most two.

checks Check statements model the interdependencies between components and re-
strictions of customisations of a component. A component that implements a
specific constraint would place restrictions on the parameters it can be cus-
tomised with (i.e. the variables that it constrains) by limiting the domain size
for example.

The check statements of Grasp provide much power and flexibility. Only a small
subset is required to model the architecture of a constraint solver though. The rele-
vant parts are explained below.

A subsetof B Asserts that set B contains all the elements of set A. It is used to en-
sure that a certain implementation has a specific set of properties and provides
a specific set of facilities. It can also be used to ensure that an implementation
does not have a property or facility.

A accepts B Asserts that B is accepted as A, e.g. if A is the parameter given to the
implementation of a constraint and B is a variable implementation, it makes
sure that the constraint can be put on variables of that type.

Apart from the components that describe the building blocks of a solver, there is
a top-level component that describes the problem to be solved. It specifies the types
of variables and constraints needed and which constraint implementation needs to
work with which variable implementation.

The description of the constraint solver consists of a library of solver component
implementations and the problem component. The library of solver component im-
plementations is not specific to any constraint problem to be solved by the generated
solver and describes the space of possible implementations for the components of any

CONFIGURATION OF A VALID SOLVER

@Dominion (Filename="../../ models/queens.dominion.hpp”)
@Dominion (Classname = ”"DominionProblemClassFactory”)
template DominionProblem () {
provides IProblemClassFactory;
requires IConstraintStoreFactory csf;
requires IPropagatorFactory_ alldiff alldifferent ;
requires IPropagatorFactory_sumneq diagonalsl;
requires IPropagatorFactory_ sumneq diagonals2;
requires IDiscreteVarFactory queens;

check queens.properties() subsetof [(DomainType, ’bound’)];
check alldifferent .param(1l) accepts (queens +
[(DomainType, ’bound’)]);

check diagonalsl.param(1l) accepts (queens

[(DomainType, ’bound’)]);
check diagonalsl.param(2) accepts (queens

[(DomainType, ’bound’)]);
check diagonals2.param (1) accepts (queens

[(DomainType, ’bound’)]);
check diagonals2.param(2) accepts (queens

[(DomainType, ’bound’)]);

Figure B.3. The n-Queens problem component specified in Grasp.

solver. The problem component encodes the requirements for solving a particular
constraint problem.
Figure B.3 gives an example of the specification of a problem component in Grasp.
The complete specification of Grasp can be found in Appendix D. The language
is described in detail by Balasubramaniam and de Silva (2011).

B.5. Configuration of a valid solver

The synthesis of a constraint solver from components is a configuration problem. One
of the earliest approaches to solving configuration problems as constraint problems
is by Mittal and Falkenhainer (1990) and proposes dynamic constraint problems
that introduce new variables as the requirements for configured components become
known. They require special constraints that express whether a variable is still rel-
evant to the partially solved problem based on the assignments made so far.

Sabin and Freuder (1996) propose solving configuration problems as composite
constraint satisfaction problems where values for variables can be constraint prob-
lems themselves. Stumptner et al. (1998) introduce the constraint-based configu-
ration system COCOS. It requires several extensions of the standard constraint
paradigm as well. Mailharro (1998) proposes a constraint formulation that inte-

131

132 DOMINION — A CONSTRAINT SOLVER GENERATOR

grates concepts from object-oriented programming. His approach relies on many
of the concepts introduced in earlier work and infinite-sized domains for variables.
Hinrich et al. (2004) use object-oriented constraint satisfaction for modelling con-
figuration problems. They then transform the constraint model into first order logic
sentences and find a solution using a theorem solver.

The requirements of a component naturally map to variables in a constraint prob-
lem that we want to find assignments for. The domain of each of those variables
consists of the components that provide the facility required, i.e. the possible im-
plementations. Each implementation variable has a set of provides and properties
attached to it. The set of provides is necessary because an implementation may pro-
vide more than the one main facility that would be required by another component.
If a variable is assigned a value that determines its implementation, it must provide
all the facilities and have all the properties that this implementation provides and
has and it must not provide any other facilities or have any other properties. We
therefore add constraints to ensure that a component variable has a certain property
or provide if and only if it is assigned an implementation that has this property or
provide.

There are several cases we need to consider for converting the check statements of
Grasp into constraints. The first case is of the form 1ist subsetof properties/provides.
This requires a component implementation to provide a list of facilities or have a set
of properties. The translation into constraints is straightforward; we simply require
the things in 1ist to be in the set of properties/provides. The second case of
the form properties/provides subsetof list. This is the opposite of the pre-
vious case and forbids the properties/provides that are not listed explicitly. The
translation into constraints is analogous to the previous case.

The final case deals with the accepts. The general requirement encoded is that
if a parameter to an implementation requires a certain property or facility, the
implementation of the parameter must provide it. The corresponding constraints
are implications that require properties and provides of an implementation that
might be used as a parameter to be set if they are set for the parameter.

B.5.1. Conditional variables and constraints

The variables and constraints mentioned so far are only valid at the top level, i.e.
for the problem component. We need additional constructs that encode the require-
ments that arise if a component is implemented in a certain way. The variables and
constraints to encode the requirements take the same form as above, but they have
prerequisites that need to be true in order for them to become relevant.

We chose an explicit representation of the prerequisites where the conditional
variables encode them in their names. The names of the variables that model the
requirements for an implementation of a component not at the top level are prefixed
by the implementation choices for the top-level components. The constraints on these
variables can be encoded as an implication, e.g. if component x is implemented as

ANALYSER

an A, its first parameter needs to have property Y. The name of the variable that
models this first parameter would have a prefix that indicates that the superior
component x is implemented as an A. The left-hand side of the implication is a
conjunction of the implementation decisions made in the prerequisites.

B.5.2. Solving the configuration problem

The constraint formulation of the configuration problem is solved using the Minion
(Gent et al., 2006a) solver. Despite the large number of variables and constraint
generated even for relatively simple architectures, Minion is able to find a solution
to the problem within a fraction of a second. Most of the constraints and variables
are not relevant in large parts of the search space because they depend on specific
assignments to other variables.

The solution of the constraint problem is mapped to the chosen implementations
for components based on the variable names and domain values. The resulting com-
plete solver architecture describes a valid solver, but not necessarily an efficient
one.

B.6. Analyser

The analyser in its current implementation performs a basic analysis of the problem
to solve. It constructs symbolic expressions that describe the features of the problem.
These symbolic expressions are simplified with the DoCon computer algebra system
(Mechveliani, 2001). Performing the analysis in this manner enables us to analyse
both constraint problem instances and problem classes that depend on parameters
whose value is not known at the time of analysis.

Determining the features of a problem constitutes a first step towards using Ma-
chine Learning to make decisions as to which component implementations to use.
Almost all Machine Learning approaches rely on some kind of feature of the input
problem to make their predictions.

The current implementation of the analyser however relies only on features based
on execution information to make the decision which implementation to choose for
which component and uses a hill climbing approach in the space of candidate solver
specifications. Given a current state A, we search the neighbourhood of A in a
random order. As soon as a state B that is better than A is found, the hill climber
moves to state B and starts exploring its neighbourhood.

Section B.5 describes the process of creating a valid solver specification by solving
a constraint problem using the Minion solver. The hill climbing algorithm sits above
this and adjusts the variable and value ordering of the constraint problem to guide
Minion towards different valid solver specifications.

For each candidate specification, a solver is generated, compiled and run on a set
of problems with a time limit. A solver is considered better than a previously found

133

134

DOMINION — A CONSTRAINT SOLVER GENERATOR

solver if it either solved more problems within the time limit or the same number of
problems in less time.

B.7. Generator

The solver architecture chosen by the analyser is passed to the generator. It finds the
specified component implementations in the component library using the location
and file name attached to each component specification. It then

¢ includes the component files required by the chosen architecture,
o instantiates the included components and parameters as appropriate and

o generates code to read runtime parameters, perform initialisations and begin
the execution of the solver.

The translation from the Grasp solver architecture to a solver implementation is
straightforward given the component-based design of the system and the decisions
made and information recorded by other parts of the Dominion system earlier in the
process.

B.8. Experimental evaluation

In this section, we compare the performance of solvers generated by the Dominion
framework to Minion version 0.12. The experiments were run on an 8-core Intel Xeon
E5430 server with a clock speed of 2.66GHz. We used the six problem classes below.
Some of them are described in CSPLib (Gent and Walsh, 1999) and some of them
have been used for the evaluation of the impact of design decisions on performance in
Chapter 2. For problems that are not described in either of those places, a reference
is given.

e n-Queens The n-Queens problem (cf. Chapter 2).
o BIBD The Balanced Incomplete Block Design problem (CSPLib problem 28).

e Golomb Ruler The problem of proving optimality of known optimal Golomb
Rulers (a variation of CSPLib problem 6).

o Graceful Graphs The problem of finding graceful labellings of graphs (Petrie
and Smith, 2003).

e NMR The problem of finding non-monochromatic rectangles (Fenner et al.,
2010).

o Magic Square The problem of finding magic squares (CSPLib problem 19).

EXPERIMENTAL EVALUATION

For all problems with the exception of Graceful Graphs, we exit after finding the
first solution. For Graceful Graphs, we searched for all solutions. We compared a
Dominion-generated solver with Minion on several instances of the above problem
classes. We chose a range of parameter settings where both solvers would finish
within one hour of CPU time. In total, we compared Dominion to Minion on 12 n-
Queens problem instances, 8 BIBD instances, 5 Golomb Ruler instances, 3 Graceful
Graph instances, 5 NMR instances and 3 Magic Square instances.

For each problem class, we ran the hill climbing analyser 10 times. For n-Queens,
NMR and Graceful Graphs, each run produced a solver that was able to solve at
least one instance of the training set within the imposed time limit of 10 CPU
seconds. For Golomb Ruler and Magic Square, 9 of the 10 runs produced such a
solver. However for BIBD only 4 of the 10 runs produced a solver that was able to
solve at least one instance. Improving this process to find good solvers faster and
with a higher probability is a direction of current research.

Figure B.4 summarises the behaviour of hill climbing analyser runs on the n-
Queens problem. The analyser is able to incrementally improve upon the solver found
at the random starting point and finds a solver that solves all instances quickly. Flat
sections of a line show the analyser iterating though parts of the neighbourhood
where the generated solvers perform no better than the current best.

B.8.1. Results

Figure B.5 compares the times taken by Dominion and Minion. Overall, Dominion
shows promising speed improvements of up to several orders of magnitude. Fig-
ure B.6 shows the memory usage for Dominion and Minion as determined by the
maximum resident set size. Here Dominion improves over Minion across all problem
instances.

For both n-Queens and Magic Square, the times measured for the Dominion solver
were zero except on the two largest instances of n-Queens. The largest instance of
n-Queens was solved by Dominion in 0.01 seconds and by Minion in 1459 seconds —
an improvement of five orders of magnitude. For both problem classes, Minion used
between 35.6 MiB and 37 MiB memory. Dominion on the other hand used signif-
icantly less; between 3.5 MiB and 5.7 MiB memory. Dominion is also consistently
faster than Minion on BIBDs, with increasing performance gains as problem size
increases. Dominion again improves over Minion in terms of memory use. For the
largest instance of Golomb Ruler, Dominion was slightly more than 2.5 times faster
than Minion and Minion used over 6 times the memory. The picture for the other
Golomb Ruler instances was similar. The Graceful Graph instances showed almost
identical performance of both solvers in terms of CPU time, but Dominion used
significantly less memory.

NMR is the only class where the Dominion-generated solver is slower than Minion.
On the largest instance, Minion is 1.51 times faster. Dominion is substantially more
efficient in terms of memory however, requiring 760 MiB whereas Minion takes 2909

135

136 DOMINION — A CONSTRAINT SOLVER GENERATOR

time [s]

80

70—

60 —]

o et— W T

40—

30 —

o |

10 I ——— T

0_

[I I I I I |
0 50 100 150 200 250 300

Iteration step

Figure B.4. Performance improvements achieved during analyser runs on n-Queens.
The y-axis shows total time for solving the given set of problems, in-
cluding the timeout if a problem was not solved within the allocated
time. The z-axis shows iterations of the hill climbing analyser. Each line
shows the progress of a different analyser run.

EXPERIMENTAL EVALUATION

1000.000 — o BIBD
o Golomb Ruler
A Graceful Graph
Dominion + Magic Square
x NMR o
& n—Queens
10.000 Minion better
O
O
O
[}
0.100 —
S O
0.001 -
© OO 1S CONRCY O] +
I T T I
time [s] 0.001 0.100 10.000 = 1000.000
Minion

Figure B.5. CPU times for Dominion and Minion on the benchmark problems. The
reported times are the median of three runs. The diagonal line denotes
the boundary of equal performance for both solvers.

137

138 DOMINION — A CONSTRAINT SOLVER GENERATOR

5000_Dom|n|on
O BIBD
o Golomb Ruler
A Graceful Graph
1000 + Magic Square %
| x NMR «
500 < n-Queens X
X
100
50 Minion better
10
5 § Dominion better
1 |
I T T T T T T I
1 . 5 10 50 500 5000
memory [MiB] Minion

Figure B.6. Memory usage for Dominion and Minion on the benchmark problems.
The reported memory numbers are the median of three runs. The diag-
onal line denotes the boundary of equal performance for both solvers.

SUMMARY

MiB and using consistently less memory on all instances.

These results demonstrate that the Dominion framework, even in its current pre-
liminary implementation, is capable of achieving substantial performance improve-
ments over a state of the art traditional solver, using no domain-specific knowledge.

B.9. Summary

This appendix introduced a framework for the automatic generation of constraint
solvers tailored to solving a particular problem. It described the implementation
efforts to date and presented the results of a preliminary experimental evaluation.

The Dominion approach represents a significant advancement of the current state
of the art. Algorithm portfolios were introduced as a means of combining the strengths
of different algorithms and alleviate their weaknesses. This idea was combined with
the automated tuning of the algorithms in the portfolio to improve the performance
even further. Dominion is the next step — algorithms are synthesised from a li-
brary of building blocks and tailored to the problem to solve. This, similar to the
introduction of automatic tuning, significantly increases the potential performance
improvements.

Instead of limiting the improvements to high-level decisions that are controlled
through parameters, Dominion enables improvements to be gained by low-level im-
plementation decisions and eliminates the overhead introduced by a highly config-
urable static architecture. While the automated generation of software is consider-
ably more complex than tuning parameters, the potential benefits are much higher
as well.

Despite the preliminary and incomplete nature of the implementation of the sys-
tem, it is already capable of achieving performance improvements over a state of the
art constraint solver. One of the areas where the current implementation is most
lacking is the analyser, which uses only execution information at the moment. The
research results presented in the rest of this thesis will provide the basis for more so-
phisticated implementations that are able to efficiently determine the most suitable
constraint solver implementation for a given problem.

139

BNF of Dominion Input Language

<DominionModel> ::= <Preamble> <Constraints>

<Preamble> ::= "language" "Dominion" <Version>
(<Given> | <Letting> | <Find> |
<LetFindAliasComprehension> | <Dim> |
<Alias>)*
[<Minimizing> | <Maximizing>]

<Version> ::= <Integer> "." <Integer>

<Dim> ::= "dim" <IdentifierString> <SizeMatrixExpr> ":" ["alias"]
["Const"] [Ilset n "of ||] llintﬂ

<Given> ::= "given" <IdentifierString> [<SizeMatrixExpr>]
" ["set" "of"] "int" ["{" <UnboundedSetOfRanges> "}" |
<AtomicId>]
<Letting> ::= "letting" <RangeVariableId> "=" (<ArithExpr> | <SetExpr>)
<Find> ::= "find" <RangeVariableld>

" ["set" "of"] "int" <BoundedConstantSet>

<Alias> ::= "alias" <IdentifierString> [<SizeMatrixExpr>] "="
<AliasExpr>
<AliasExpr> ::= "flatten" "(" <AliasExpr> ")" |

<Function> " (" <AliasExpr> "," <ArithExpr> LD
<IdentifierString> <SizeMatrixExpr>

<Minimizing> ::= ("minimizing" | "minimising") <AtomicId>
<Maximizing> ::= ("maximizing" | "maximising") <AtomicId>
<BoundedConstantSet> ::= ("{" <BoundedSetOfRanges> "}" |

141

142 BNF OF DOMINION INPUT LANGUAGE

<AtomicId>)

<LetFindAliasComprehension> ::= "[" (<Letting> | <Find> | <Alias>)
"|" <CompParamsAndConditions> "]"

<CtComprehension> ::= "[" <ConstraintExpression> "|"
<CompParamsAndConditions> "]"
<SetComprehension> ::= "{" <ArithExpr> "|" <CompParamsAndConditions> "}"
<CompParamsAndConditions> ::= <RangeList> ["," <ConditionList>] |
<ConditionList>
<Rangelist> ::= <ParameterRange> ["," <RangeList>]
<ParameterRange> ::= <IdentifierString> "in" <BoundedConstantSet>
<ConditionList> ::= <ComprehensionCondition> ["," <ConditionList>]
<ComprehensionCondition> ::= <ArithExpr>
(n!=n | ngn | nsn l ng=n l ny=n l n==u)
<ArithExpr>
<Constraints> ::= "such that" (<Constraint>)=*
<Constraint> ::= <IdentifierString> (<CtComprehension> |
<ConstraintExpression>)
<ConstraintExpression> ::= <IdentifierString> " ("
[<ConstraintArg>["," <ConstraintArg>]] ")"
<ConstraintArg> ::= <IdList> | <ConstraintList>
<IdList> ::= (<Id> | "[" [<Id> ("," <Id>)*] "1")
<ConstraintList> ::= (<Constraint> | "[" [<Constraint>

("," <Constraint>)*] "]")

<ArithExpr> ::= "(" <ArithExpr> ")" |
<Integer> | <AtomicId> |
<ArithExpr> (u*u I nyn I n_n I u/n) <ArithEXpr> |
"-" <ArithExpr>
<Integer> ::= "0" | <DigitNonZero> (<Integer>)*
<DigitNonZero> o= NqM | non | n3n l ngn | ngn | ngn l n7n | ngn | ngn
<SetExpr> ::= "{" <BoundedSetOfRanges> "}" | <SetComprehension>

<UnboundedSet0fRanges> ::= <OpenRange> ("," <OpenRange>)*

143

<MatrixIndexRanges> ::= <OpenRange> ("," <OpenRange>)*
<BoundedSetOfRanges> ::= <ClosedRange> ("," <ClosedRange>)*

<ClosedRange> | ".." | <ArithExpr> ".." |
".." <ArithExpr>
<ArithExpr> [".." <ArithExpr>]

<OpenRange>

<ClosedRange>

<Id> ::= <AtomicId> | <MatrixExpr> | <ArithExpr>
<AtomicId> ::= <IdentifierString> [<DerefMatrixExpr>]
<RangeVariableId> ::= <IdentifierString> ["[" <MatrixIndexRanges> "]"]

<IdentifierString> ::= ("a".."z" | "A".."Z") <AlNum>
<AINum> ::= [(uau.'nzu I LA | non ., ngn I n—n) <A1Num>]

<MatrixExpr> ::= "flatten" "(" <MatrixExpr> ")" |
<Function> " (" <MatrixExpr> "," <ArithExpr> ")" |
<IdentifierString> "[" <MatrixIndexRanges> "]"

<Function> ::= "mult" | "add"

<SizeMatrixExpr> ::= "[" <ArithExpr> ("," <ArithExpr>)* "]"
<DerefMatrixExpr> ::= "[" <ArithExpr> ("," <ArithExpr>)* "]"
<Comment> ::= "$" (<Anything>)* <Newline>

<Newline> ::= "\n" | "\r"

BNF of Grasp

<architecture_statement> ::= <annotation>* "architecture" <IDENTIFIER>
"{" (<template_statement> | <system_statement>)* "1}"

<template_statement> ::= <annotation>* "template" <IDENTIFIER>
"(" <parameter_list>?7 ")" "{" <statement>x "}"

<system_statement> ::= <annotation>* "system" <IDENTIFIER>
"{" <statement>* "}"

<component_statement> ::= <annotation>* "component" <IDENTIFIER>
"=" <IDENTIFIER> "(" <argument_list>? ")" ";"

<provides_statement> ::= <annotation>* "provides" <IDENTIFIER>
("{" <property_statement>* "}" | ";")

<requires_statement> ::= <annotation>* "requires" <IDENTIFIER>
<variable_list>? ("{" <property_statement>* "}" | ";")

<check_statement> ::= <annotation>* "check" <expression> ";"

<property_statement> ::= <annotation>* "property" <IDENTIFIER>
("=" <expression>)? ";"

<link_statement> ::= <annotation>* "link" <member_expression> "to"
<member_expression> ("{" <check_statement>* "}" | ";")

<annotation> ::= "@" <IDENTIFIER>? " (" <annotation_node>
("," <annotation_node>)* ")"

<annotation_node> ::= <IDENTIFIER> "=" <expression>

<expression> ::= <subsetof_expression>

<subsetof_expression> ::= <logicalOr_expression> SUBSETOF

145

146

BNF OF GRASP

<logicalOr_expression>

<logicalOr_expression> ::= <logicalAnd_expression> DIS
<logicalAnd_expression>

<logicalAnd_expression> ::= <bitwiseOr_expression> CON
<bitwiseOr_expression>

<equality_expression> ::= <relational_expression> (EQL | NEQ)
<relational_expression>

<relational_expression> ::= <acceptance_expression>
(GIN | GTE | LTN | LTE) <acceptance_expression>

<acceptance_expression> ::= <augmentation_expression> ACCEPTS
<augmentation_expression>

<augmentation_expression> ::= <additive_expression> (AUG | NAG)
<additive_expression>

<additive_expression> ::= <multiplicative_expression> (ADD | SUB)
<multiplicative_expression>

<multiplicative_expression > ::= <unary_expression> (MUL | DIV | MOD)
<unary_expression>

<unary_expression> ::= NOT <unary_expression> | <primary_expression>

<primary_expression> ::= "(" <expression> ")" | member_expression

| <literal>

<member_expression> ::= <member_part> DOT <member_part>)*

<member_part> ::= <IDENTIFIER> "(" <argument_list>? ")" | <IDENTIFIER>

<literal> ::= <INTEGER_LITERAL> | <REAL_LITERAL> | <BOOLEAN_LITERAL>

| <STRING_LITERAL> | <set_literal>

<set_literal> ::= "[" <set_element list>?7 "]"

<set_element_list> ::= <set_element> ("," <set_element>)*

<set_element> ::= <literal> | "(" <set_pair> ")" | <IDENTIFIER>

<set_pair> ::= <IDENTIFIER> "," <literal>

<parameter_list> ::= <IDENTIFIER> ("," <IDENTIFIER>)x*

<variable_list> ::= <IDENTIFIER> ("," <IDENTIFIER>)*

<argument_list> ::= <expression> ("," <expression>)*

<statement> ::= <component_statement> | <requires_statement>
| <provides_statement> | <link_statement> | <check_statement>
| <property_statement>

<INTEGER_LITERAL> ::= "-"?7 <DECIMAL_DIGIT>+

<REAL_LITERAL> ::= "-"7? <DECIMAL_DIGIT>* "." <DECIMAL_DIGIT>+

<BOOLEAN _LITERAL> ::= "true" | "false"
<STRING_LITERAL> ::= "\"" <ALPHANUMERIC_CHAR>* "\""
<IDENTIFIER> ::= (<ALPHA CHAR> | "_") (<ALPHANUMERIC_CHAR>

<ALPHANUMERIC_CHAR> ::= : <ALPHA_CHAR> | <DECIMAL_DIGIT>
<ALPHA_CHAR> ::= "a".."z" | "A".."Z"
<DECIMAL_DIGIT> ::= "O".."9"

ll_ll)*

147

Problem classes used in experiments

E.1. Learning when to use lazy learning in constraint solving

o fullins/insertions
o abb313GPIA
e aim

e ash331GPIA
o bf

« Black Hole
e bqwh

e composed

e Costas Array
e cril

e crossword

e driverlog

e dsjc

e dubois

e ehi

o frb

e geo

e geom

149

150 PROBLEM CLASSES USED IN EXPERIMENTS

e hanoi

e hole

e jnh

e langford

e lard

o large

o Latin Square
o le

e lemma

e Magic Square
e mug

e myciel

e Non-monochromatic Rectangles
« ortholatin

e Peg Solitaire
o Pigeon Hole Problem
e pret

* qcp

e n-Queens

e qwh

e random

e renault

¢ Golomb Ruler
e series

e Social Golfers
e Ssa

e tsp

o willl199GPIA

CASE STUDY FOR THE ALLDIFFERENT CONSTRAINT 151

E.2. Case study for the alldifferent constraint

e adt

e Black Hole

e bgwh

e contrived

o Costas Array

e Golomb Ruler

e langford

e Latin Square

e Magic Square

» ortholatin

o Pigeon Hole Problem
e Quasigroup existence
e n-Queens

e qwh

e Social Golfers

e Sports Scheduling

Bibliography

Belarmino Adenso-Diaz and Manuel Laguna. Fine-Tuning of Algorithms Using Frac-
tional Experimental Designs and Local Search. Oper. Res., 54(1):99-114, 2006.
Cited on page 34.

Abderrahamane Aggoun, David Chan, Pierre Dufresne, Eamon Falvey, Hugh Grant,
Warwick Harvey, Alexander Herold, Geoffrey Macartney, Micha Meier, David
Miller, Shyam Mudambi, Stefano Novello, Bruno Perez, Emmanuel van Rossum,
Joachim Schimpf, Kish Shen, Periklis A. Tsahageas and Dominique H. de Vil-
leneuve. FECLiPSe User Manual. July 2011. URL http://www.eclipse-clp.
org/. Cited on page 13.

David W. Aha. Generalizing from Case Studies: A Case Study. In Proceedings of the
Ninth International Workshop on Machine Learning, pages 1-10, San Francisco,
CA, USA, 1992. Morgan Kaufmann Publishers Inc. Cited on pages 25, 30, and 112.

John A. Allen and Steven Minton. Selecting the Right Heuristic Algorithm: Runtime
Performance Predictors. In The FEleventh Biennial Conference of the Canadian

Society for Computational Studies of Intelligence, pages 41-53. Springer-Verlag,
1996. Cited on pages 30, 32, 38, 40, 41, 42, and 113.

Carlos Ansétegui, Meinolf Sellmann and Kevin Tierney. A Gender-Based Genetic
Algorithm for the Automatic Configuration of Algorithms. In CP, pages 142-157,
2009. Cited on page 34.

Alejandro Arbelaez, Youssef Hamadi and Michele Sebag. Online Heuristic Selection
in Constraint Programming. In Symposium on Combinatorial Search, 2009. Cited
on pages 35, 37, 39, and 122.

Warren Armstrong, Peter Christen, Eric McCreath and Alistair P. Rendell. Dynamic
Algorithm Selection Using Reinforcement Learning. In International Workshop on
Integrating Al and Data Mining, pages 18-25, December 2006. Cited on pages 37,
39, 42, and 120.

Dharini Balasubramaniam and Lakshitha de Silva. Grasp Language Refer-
ence Manual Version 1.0. Technical Report, University of St Andrews,
March 2011. URL http://www.cs.st-andrews.ac.uk/ dharini/reports/
GraspManual.pdf. Cited on page 131.

Eric Bauer and Ron Kohavi. An Empirical Comparison of Voting Classification
Algorithms: Bagging, Boosting, and Variants. Machine Learning, 36(1-2):105-139,
1999. Cited on page 75.

153

154

J. Christopher Beck and Mark S. Fox. Dynamic problem structure analysis as a
basis for constraint-directed scheduling heuristics. Artificial Intelligence, 117(1):
31-81, 2000. Cited on pages 42, 44, and 115.

J. Christopher Beck and Eugene C. Freuder. Simple Rules for Low-Knowledge Al-
gorithm Selection. In CPAIOR, pages 50—-64. Springer, 2004. Cited on pages 2,
42, 43, 44, and 118.

Sanjukta Bhowmick, Victor Eijkhout, Yoav Freund, Erika Fuentes and David Keyes.
Application of Machine Learning in Selecting Sparse Linear Solvers. Technical
Report, Columbia University, 2006. Cited on pages 39, 41, 44, and 120.

Sanjukta Bhowmick, Brice Toth and Padma Raghavan. Towards Low-Cost, High-
Accuracy Classifiers for Linear Solver Selection. In Proceedings of the 9th Inter-
national Conference on Computational Science, ICCS ’09, pages 463-472, Berlin,
Heidelberg, 2009. Springer-Verlag. Cited on pages 43 and 123.

Armin Biere, Marijn Heule, Hans van Maaren and Toby Walsh. Handbook of Satis-
fiability, Volume 185 of Frontiers in Artificial Intelligence and Applications. 10S
Press, 2009. Cited on page 31.

Mauro Birattari, Thomas Stiitzle, Luis Paquete and Klaus Varrentrapp. A Racing
Algorithm for Configuring Metaheuristics. In Proceedings of the Genetic and
Evolutionary Computation Conference, pages 11-18. Morgan Kaufmann, 2002.
Cited on page 34.

Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2nd
Edition, 2007. Cited on page 31.

James E. Borrett and Edward P. K. Tsang. A Context for Constraint Satisfaction
Problem Formulation Selection. Constraints, 6(4):299-327, October 2001. Cited
on pages 42 and 116.

James E. Borrett, Edward P. K. Tsang and Natasha R. Walsh. Adaptive Constraint
Satisfaction: The Quickest First Principle. In FCAI pages 160-164, 1996. Cited
on pages 28, 32, 35, 37, 38, 41, 43, and 113.

Pavel Brazdil and Carlos Soares. A Comparison of Ranking Methods for Classifi-
cation Algorithm Selection. In Proceedings of the 11th European Conference on
Machine Learning, ECML 00, pages 63-74, London, UK, 2000. Springer-Verlag.
Cited on pages 40, 41, and 115.

Eric A. Brewer. High-Level Optimization via Automated Statistical Modeling. In
Proceedings of the Fifth ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPOPP 95, pages 80-91, New York, NY, USA, 1995.
ACM. Cited on pages 42, 44, 113, and 127.

Carla E. Brodley. Addressing the Selective Superiority Problem: Automatic Algo-
rithm/Model Class Selection. In ICML, pages 17-24, 1993. Cited on pages 30, 35,
39, and 112.

Eamonn Cahill. Knowledge-based algorithm construction for real-world engineering
PDEs. Mathematics and Computers in Simulation, 36(4-6):389-400, 1994. Cited
on pages 113 and 127.

Jaime Carbonell, Oren Etzioni, Yolanda Gil, Robert Joseph, Craig Knoblock, Steve
Minton and Manuela Veloso. PRODIGY: An Integrated Architecture for Planning
and Learning. SIGART Bull., 2:51-55, July 1991. Cited on pages 35, 37, 39, 42,
44, and 112.

Tom Carchrae and J. Christopher Beck. Low-Knowledge Algorithm Control. In
AAAIL pages 49-54, 2004. Cited on pages 37, 39, 41, 43, and 118.

Tom Carchrae and J. Christopher Beck. Applying Machine Learning to Low-
Knowledge Control of Optimization Algorithms. Computational Intelligence, 21
(4):372-387, 2005. Cited on pages 43 and 118.

Yves Caseau, Francois Laburthe and Glenn Silverstein. A Meta-Heuristic Factory
for Vehicle Routing Problems. In Proceedings of the 5th International Conference
on Principles and Practice of Constraint Programming, pages 144-158, London,
UK, 1999. Springer-Verlag. Cited on pages 38 and 114.

Feilong Chen and Rong Jin. Active Algorithm Selection. In Proceedings of the 22nd
National Conference on Artificial Intelligence, pages 534-539. AAAI Press, 2007.
Cited on page 74.

Vincent A. Cicirello and Stephen F. Smith. The Max K-Armed Bandit: A New
Model of Exploration Applied to Search Heuristic Selection. In Proceedings of the
20th National Conference on Artificial Intelligence, pages 1355-1361. AAAI Press,
2005. Cited on pages 36, 40, 42, 44, and 119.

Diane J. Cook and R. Craig Varnell. Maximizing the Benefits of Parallel Search
Using Machine Learning. In Proceedings of the 14th National Conference on Arti-
ficial Intelligence AAAI-97, pages 559-564. AAAI Press, 1997. Cited on pages 27,
35, 39, 40, 41, 42, 44, and 114.

Peter Cowling, Graham Kendall and Eric Soubeiga. A Parameter-Free Hyperheuris-
tic for Scheduling a Sales Summit. In Proceedings of the 4th Metaheuristic Inter-
national Conference, MIC 2001, pages 127-131, 2001. Cited on pages 30 and 115.

Steven P. Coy, Bruce L. Golden, George C. Runger and Edward A. Wasil. Using
Experimental Design to Find Effective Parameter Settings for Heuristics. Journal
of Heuristics, 7:77-97, 2001. Cited on page 34.

155

156

Romuald Debruyne and Christian Bessiere. Some Practicable Filtering Techniques
for the Constraint Satisfaction Problem. In Proceedings of 1JCAI pages 412-417,
1997. Cited on page 50.

Rina Dechter. Constraint Processing. Morgan Kaufmann, 1st Edition, 2003. Cited
on pages 11, 31, and 50.

James Demmel, Jack Dongarra, Victor Eijkhout, Erika Fuentes, Antoine Petitet,
Richard Vuduc, R. Clint Whaley and Katherine Yelick. Self-Adapting Linear Al-
gebra Algorithms and Software. Proceedings of the IEEE, 93(2):293-312, February
2005. Cited on pages 35, 39, 44, and 119.

Luca Di Gaspero and Andrea Schaerf. EasySyn—++: A Tool for Automatic Synthesis
of Stochastic Local Search Algorithms. In Proceedings of the 2007 International
Conference on Engineering Stochastic Local Search Algorithms: Designing, Im-
plementing and Analyzing Effective Heuristics, SLS’07, pages 177-181, Berlin,
Heidelberg, 2007. Springer-Verlag. Cited on page 127.

Thomas G. Dietterich. Ensemble Methods in Machine Learning. In Proceedings of
the First International Workshop on Multiple Classifier Systems, Volume 1857 of
Lecture Notes In Computer Science, pages 1-15. Springer-Verlag, 2000. Cited on
pages 68 and 74.

Mehmet Dincbas, Pascal van Hentenryck, Helmut Simonis, Abderrahamane Aggoun
and Alexander Herold. The CHIP system: Constraint handling in Prolog. In Ewing
Lusk and Ross Overbeek, editors, 9th International Conference on Automated
Deduction, Volume 310 of Lecture Notes in Computer Science, pages 774-775.
Springer Berlin / Heidelberg, 1988. Cited on page 13.

Carmel Domshlak, Erez Karpas and Shaul Markovitch. To Max or Not to Max:
Online Learning for Speeding Up Optimal Planning. In AAAI 2010. Cited on
pages 39, 43, and 123.

Wayne R. Dyksen and Carl R. Gritter. Ellipic Expert: An Expert System for Elliptic
Partial Differential Equations. Mathematics and Computers in Simulation, 31(4-
5):333-342, 1989. Special Double Issue. Cited on page 31.

Samir A. Mohamed FElsayed and Laurent Michel. Synthesis of Search Algorithms
from High-level CP Models. In Proceedings of the 9th International Workshop on
Constraint Modelling and Reformulation, September 2010. Cited on page 127.

Susan L. Epstein and Eugene C. Freuder. Collaborative Learning for Constraint
Solving. In CP ’01: Proceedings of the 7th International Conference on Princi-
ples and Practice of Constraint Programming, pages 46—60, London, UK, 2001.
Springer-Verlag. Cited on pages 33, 42, and 116.

Susan L. Epstein, Eugene C. Freuder, Richard Wallace, Anton Morozov and Bruce
Samuels. The Adaptive Constraint Engine. In Principles and Practice of Con-
straint Programming, pages 525-540. Springer, 2002. Cited on pages 33, 39, 44,
and 116.

Stephen Fenner, William Gasarch, Charles Glover and Semmy Purewal. Rectangle
Free Coloring of Grids. Technical Report 1005.3750v1, arXiv, May 2010. URL
http://arxiv.org/abs/1005.3750v1. Cited on page 134.

Eugene Fink. Statistical Selection Among Problem-Solving Methods. Technical
Report CMU-CS-97-101, Carnegie Mellon University, 1997. Cited on page 114.

Eugene Fink. How to Solve It Automatically: Selection Among Problem-Solving
Methods. In Proceedings of the Fourth International Conference on Artificial In-
telligence Planning Systems, pages 128-136. AAAI Press, 1998. Cited on pages 35,
40, 42, and 114.

Lester R. Ford and Delbert R. Fulkerson. Maximal flow through a network. Canadian
Journal of Mathematics, 8:399-404, 1956. Cited on page 62.

Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line
learning and an application to boosting. In EuroCOLT ’95: Proceedings of the
Second Furopean Conference on Computational Learning Theory, pages 23-37,
London, UK, 1995. Springer-Verlag. Cited on pages 68 and 74.

Alan M. Frisch, Warwick Harvey, Christopher A. Jefferson, Bernadette Martinez-
Hernéndez and Ian Miguel. Essence: A constraint language for specifying combi-
natorial problems. Constraints, 13(3):268-306, 2008. Cited on page 129.

Alex S. Fukunaga. Automated Discovery of Composite SAT Variable-Selection
Heuristics. In FEighteenth National Conference on Artificial Intelligence, pages
641-648, Menlo Park, CA, USA, 2002. American Association for Artificial Intelli-
gence. Cited on pages 33, 34, and 117.

Alex S. Fukunaga. Automated Discovery of Local Search Heuristics for Satisfiability
Testing. Evol. Comput., 16:31-61, 2008. Cited on pages 33, 38, and 117.

Grigori Fursin, Yuriy Kashnikov, Abdul Memon, Zbigniew Chamski, Olivier Temam,
Mircea Namolaru, Elad Yom-Tov, Bilha Mendelson, Ayal Zaks, Eric Courtois,
Francois Bodin, Phil Barnard, Elton Ashton, Edwin Bonilla, John Thomson,
Christopher Williams and Michael O’Boyle. Milepost GCC: Machine Learning
Enabled Self-tuning Compiler. International Journal of Parallel Programming, 39
(3):296-327, 2011. Cited on page 2.

Matteo Gagliolo and Jiirgen Schmidhuber. A Neural Network Model for Inter-
Problem Adaptive Online Time Allocation. In Artificial Neural Networks: Formal
Models and Their Applications - ICANN 2005, 15th International Conference,
pages 7—12. Springer, 2005. Cited on pages 37, 39, 44, and 119.

157

158

Matteo Gagliolo and Jiirgen Schmidhuber. Impact of Censored Sampling on the
Performance of Restart Strategies. In CP, pages 167-181, 2006a. Cited on page 38.

Matteo Gagliolo and Jiirgen Schmidhuber. Learning Dynamic Algorithm Portfolios.
Ann. Math. Artif. Intell., 47(3-4):295-328, 2006b. Cited on pages 37, 40, 41, 44,
and 120.

Matteo Gagliolo, Viktor Zhumatiy and Jiirgen Schmidhuber. Adaptive Online Time
Allocation to Search Algorithms. In FCML, pages 134-143. Springer, 2004. Cited
on pages 34, 37, 41, 44, and 119.

Pablo Garrido and Maria Riff. DVRP: a hard dynamic combinatorial optimisation
problem tackled by an evolutionary hyper-heuristic. Journal of Heuristics, 16:
795-834, 2010. Cited on pages 38 and 123.

Cormac Gebruers, Alessio Guerri, Brahim Hnich and Michela Milano. Making
Choices Using Structure at the Instance Level within a Case Based Reasoning
Framework. In CPAIOR, pages 380-386, 2004. Cited on pages 2, 39, 42, 44,
and 118.

Cormac Gebruers, Brahim Hnich, Derek Bridge and Eugene Freuder. Using CBR
to Select Solution Strategies in Constraint Programming. In Proc. of ICCBR-05,
pages 222-236, 2005. Cited on pages 41, 42, and 119.

Tan P. Gent and Toby Walsh. CSPLib: a benchmark library for constraints. Technical
Report 9, APES, 1999. Cited on pages 14 and 134.

Ian P. Gent, Christopher A. Jefferson and Ian Miguel. MINION: A Fast, Scalable,
Constraint Solver. In FCAI, pages 98-102, Amsterdam, The Netherlands, The
Netherlands, 2006a. I0S Press. Cited on pages 48 and 133.

Ian P. Gent, Christopher A. Jefferson and Ian Miguel. Watched Literals for Con-
straint Propagation in Minion. In Proceedings of the 12th International Con-
ference on Principles and Practice of Constraint Programming, pages 182-197,
2006b. Cited on page 2.

Jan P. Gent, Ian Miguel and Peter Nightingale. Generalised Arc Consistency for the
AllDifferent Constraint: An Empirical Survey. Artif. Intell., 172(18):1973-2000,
December 2008. Cited on pages 62 and 63.

Ian P. Gent, Christopher A. Jefferson, Lars Kotthoff, Ian Miguel and Peter Nightin-
gale. Specification of the Dominion Input Language Version 0.1. Technical Report,
University of St Andrews, 2009. URL http://www-circa.mcs.st-and.ac.uk/
Preprints/InLangSpec.pdf. Cited on page 129.

Ian P. Gent, Ian Miguel and Neil C. A. Moore. Lazy Explanations for Constraint
Propagators. In PADL’10, pages 217-233, 2010. Cited on page 47.

Alfonso E. Gerevini, Alessandro Saetti and Mauro Vallati. An Automatically Con-
figurable Portfolio-based Planner with Macro-actions: PbP. In Proceedings of the
19th International Conference on Automated Planning and Scheduling (ICAPS-
09), pages 350-353, 2009. Cited on pages 36, 40, 42, 85, and 123.

Lise Getoor and Ben Taskar. Introduction to Statistical Relational Learning. The
MIT Press, 2007. Cited on page 85.

Mark Ghallab, Dana Nau and Paolo Traverso. Automated Planning: Theory & Prac-
tice. The Morgan Kaufmann Series in Artificial Intelligence. Morgan Kaufmann,
2004. Cited on page 31.

Fred Glover. Future Paths for Integer Programming and Links to Artificial Intelli-
gence. Comput. Oper. Res., 13(5):533-549, 1986. Cited on page 30.

Carla P. Gomes and Bart Selman. Algorithm Portfolio Design: Theory vs. Practice.
In UAI pages 190-197, 1997a. Cited on pages 32 and 114.

Carla P. Gomes and Bart Selman. Practical Aspects of Algorithm Portfolio Design.
In Proc. of Third ILOG International Users Meeting, 1997b. Cited on pages 32
and 114.

Carla P. Gomes and Bart Selman. Algorithm Portfolios. Artificial Intelligence, 126
(1-2):43-62, 2001. Cited on pages 1, 2, 32, 36, and 115.

Jonathan Gratch and Gerald DeJong. COMPOSER: A Probabilistic Solution to the
Utility Problem in Speed-Up Learning. In AAAI pages 235-240, 1992. Cited on
pages 39 and 112.

Alessio Guerri and Michela Milano. Learning Techniques for Automatic Algorithm
Portfolio Selection. In ECAI pages 475-479, 2004. Cited on pages 38, 39, 41, 42,
48, and 118.

Haipeng Guo. Algorithm Selection for Sorting and Probabilistic Inference: A Machine
Learning-Based Approach. PhD thesis, Kansas State University, 2003. Cited on
page 117.

Haipeng Guo and William H. Hsu. A Learning-Based Algorithm Selection Meta-
reasoner for the Real-Time MPE Problem. In Australian Conference on Artificial
Intelligence, pages 307-318, 2004. Cited on pages 27, 39, 40, 41, 43, 44, 48, and 119.

Shai Haim and Toby Walsh. Restart Strategy Selection Using Machine Learning
Techniques. In SAT ’09: Proceedings of the 12th International Conference on
Theory and Applications of Satisfiability Testing, pages 312-325, Berlin, Heidel-
berg, 2009. Springer-Verlag. Cited on pages 40, 63, and 122.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann
and Tan H. Witten. The WEKA Data Mining Software: An Update. SIGKDD
Ezplor. Newsl., 11(1):10-18, November 2009. Cited on pages 53, 66, 75, and 82.

159

160

Tim Hinrich, Nathaniel Love, Charles Petrie, Lyle Ramshaw, Akhil Sahai and Sharad
Singhal. Using Object-Oriented Constraint Satisfaction for Automated Configu-
ration Generation. In DSOM, 2004. Cited on page 132.

Robert C. Holte. Very Simple Classification Rules Perform Well on Most Commonly
Used Datasets. Mach. Learn., 11:63-90, April 1993. Cited on page 89.

John E. Hopcroft and Richard M. Karp. An ns Algorithm for Maximum Matchings
in Bipartite Graphs. SIAM J. Comput., 2(4):225-231, 1973. Cited on page 62.

Eric Horvitz, Yongshao Ruan, Carla P. Gomes, Henry A. Kautz, Bart Selman and
David M. Chickering. A Bayesian Approach to Tackling Hard Computational
Problems. In UAI ’01: Proceedings of the 17th Conference in Uncertainty in
Artificial Intelligence, pages 235—-244, San Francisco, CA, USA, 2001. Morgan
Kaufmann Publishers Inc. Cited on pages 33, 37, 41, 42, and 116.

Patricia D. Hough and Pamela J. Williams. Modern Machine Learning for Automatic
Optimization Algorithm Selection. In Proceedings of the INFORMS Artificial
Intelligence and Data Mining Workshop, November 2006. Cited on pages 32, 39,
41, 42, and 120.

Elias N. Houstis, John R. Rice, Nikos P. Chrisochoides, Haralambos C. Karathanasis,
Panayiotis N. Papachiou, Meletis K. Samartzis, Emmanuel A. Vavalis, Ko Y. Wang
and Sanjiva Weerawarana. //ELLPACK: A Numerical Simulation Programming
Environment for Parallel MIMD Machines. SIGARCH Comput. Archit. News, 18
(3b):96-107, June 1990. Cited on page 31.

Adele E. Howe, Eric Dahlman, Christopher Hansen, Michael Scheetz and Anneliese
von Mayrhauser. Exploiting Competitive Planner Performance. In Proceedings of
the Fifth European Conference on Planning, pages 62-72. Springer, 1999. Cited
on pages 32, 36, 40, 41, 42, 43, 44, and 114.

Bernardo A. Huberman, Rajan M. Lukose and Tad Hogg. An Economics Approach to
Hard Computational Problems. Science, 275(5296):51-54, 1997. Cited on page 32.

Frank Hutter, Youssef Hamadi, Holger H. Hoos and Kevin Leyton-Brown. Perfor-
mance Prediction and Automated Tuning of Randomized and Parametric Algo-
rithms. In CP, pages 213-228, 2006. Cited on pages 30, 42, and 120.

Frank Hutter, Holger H. Hoos and Thomas Stiitzle. Automatic Algorithm Config-
uration based on Local Search. In Proceedings of the 22nd National Conference
on Artificial Intelligence, pages 1152-1157. AAAT Press, 2007. Cited on pages 33
and 34.

Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown and Kevin P. Murphy. An
Experimental Investigation of Model-Based Parameter Optimisation: SPO and

161

Beyond. In Proceedings of the 11th Annual Conference on Genetic and Fvolu-
tionary Computation, GECCO ’09, pages 271-278, New York, NY, USA, 2009a.
ACM. Cited on page 34.

Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown and Thomas Stiitzle. ParamILS:
An Automatic Algorithm Configuration Framework. J. Artif. Int. Res., 36(1):
267-306, 2009b. Cited on pages 33, 34, and 63.

IBM. ILOG Solver User’s Manual. 2011. Cited on page 13.

Christopher A. Jefferson, Lars Kotthoff, Neil C.A. Moore, Peter Nightingale,
Karen E. Petrie and Andrea Rendl. The Minion Manual. 2011. URL http:
//minion.sourceforge.net/. Cited on page 13.

Thorsten Joachims. Training linear SVMs in linear time. In Proceedings of the 12th
ACM SIGKDD international conference on Knowledge discovery and data mining,
KDD ’06, pages 217-226, New York, NY, USA, 2006. ACM. Cited on page 85.

Anupam Joshi, Sanjiva Weerawarana, Narendran Ramakrishnan, Elias N. Houstis
and John R. Rice. Neuro-Fuzzy Support for Problem-Solving Environments: A
Step Toward Automated Solution of PDEs. IEEE Comput. Sci. Eng., 3(1):44-56,
March 1996. Cited on pages 31 and 113.

Serdar Kadioglu, Yuri Malitsky, Meinolf Sellmann and Kevin Tierney. ISAC —
Instance-Specific Algorithm Configuration. In ECAT 2010: 19th European Confer-
ence on Artificial Intelligence, pages 751-756. IOS Press, 2010. Cited on pages 33,
38, 39, 107, and 124.

Serdar Kadioglu, Yuri Malitsky, Ashish Sabharwal, Horst Samulowitz and Meinolf
Sellmann. Algorithm Selection and Scheduling. In 17th International Conference
on Principles and Practice of Constraint Programming (CP), pages 454-469, 2011.
Cited on pages 36 and 124.

Mohamed S. Kamel, Wayne H. Enright and K. S. Ma. ODEXPERT: An Expert
System to Select Numerical Solvers for Initial Value ODE Systems. ACM Trans.
Math. Softw., 19(1):44—62, March 1993. Cited on pages 31, 44, and 112.

George Katsirelos. Nogood processing in CSPs. PhD thesis, University of Toronto,
January 2009. Cited on page 47.

George Katsirelos and Fahiem Bacchus. Unrestricted Nogood Recording in CSP
search. In CP, pages 873-877. Springer, 2003. Cited on page 47.

George Katsirelos and Fahiem Bacchus. Generalized NoGoods in CSPs. In AAAI
pages 390-396. AAAI Press, 2005. Cited on page 47.

Ron Kohavi. A Study of Cross-Validation and Bootstrap for Accuracy Estimation
and Model Selection. In IJCAI pages 1137-1143. Morgan Kaufmann, 1995. Cited
on pages 56, 68, 75, and 87.

162

Christian Kroer and Yuri Malitsky. Feature Filtering for Instance-Specific Algorithm
Configuration. In Proceedings of the 23rd International Conference on Tools with
Artificial Intelligence, 2011. Cited on pages 43 and 124.

Erik Kuefler and Tzu-Yi Chen. On Using Reinforcement Learning to Solve Sparse
Linear Systems. In Proceedings of the 8th International Conference on Computa-
tional Science, ICCS 08, pages 955-964, Berlin, Heidelberg, 2008. Springer-Verlag.
Cited on pages 44 and 122.

Michail G. Lagoudakis and Michael L. Littman. Algorithm Selection using Rein-
forcement Learning. In ICML ’00: Proceedings of the Seventeenth International
Conference on Machine Learning, pages 511-518, San Francisco, CA, USA, 2000.
Morgan Kaufmann Publishers Inc. Cited on pages 35, 37, 39, 41, and 115.

Michail G. Lagoudakis and Michael L. Littman. Learning to Select Branching Rules
in the DPLL Procedure for Satisfiability. In LICS/SAT, pages 344-359, 2001.
Cited on pages 35, 44, and 116.

Pat Langley. Learning Effective Search Heuristics. In IJCAI, pages 419-421, 1983a.
Cited on pages 33, 35, 37, 39, and 112.

Pat Langley. Learning Search Strategies through Discrimination. International
Journal of Man-Machine Studies, pages 513-541, 1983b. Cited on pages 33, 42,
44, and 112.

Niklas Lavesson and Paul Davidsson. Quantifying the Impact of Learning Algorithm
Parameter Tuning. In Proceedings of the 21st National Conference on Artificial
Intelligence, pages 395-400. AAAI Press, 2006. Cited on page 74.

Christophe Lecoutre, Olivier Roussel and Marc R. C. van Dongen. Third Interna-
tional CSP Solver Competition. Technical Report, 2008. Cited on page 17.

Rui Leite, Pavel Brazdil, Joaquin Vanschoren and Francisco Queiros. Using Active
Testing and Meta-Level Information for Selection of Classification Algorithms. In
3rd PlanLearn Workshop, August 2010. Cited on pages 40, 41, 42, 44, and 123.

Kevin Leyton-Brown, Fugene Nudelman and Yoav Shoham. Learning the Empirical
Hardness of Optimization Problems: The Case of Combinatorial Auctions. In CP
’02: Proceedings of the 8th International Conference on Principles and Practice
of Constraint Programming, pages 556-572, London, UK, 2002. Springer-Verlag.
Cited on pages 30, 40, 43, 44, and 117.

Kevin Leyton-Brown, Eugene Nudelman and Yoav Shoham. Empirical Hardness
Models: Methodology and a Case Study on Combinatorial Auctions. J. ACM, 56:
22:1-22:52, July 2009. Cited on page 30.

James Little, Cormac Gebruers, Derek Bridge and Eugene Freuder. Capturing Con-
straint Programming Experience: A Case-Based Approach. In Modref, 2002. Cited
on pages 42 and 117.

Lionel Lobjois and Michel Lemaitre. Branch and Bound Algorithm Selection by
Performance Prediction. In AAAI "98/IAAI °98: Proceedings of the Fifteenth
National/Tenth Conference on Artificial Intelligence/Innovative Applications of
Artificial Intelligence, pages 353358, Menlo Park, CA, USA, 1998. American As-
sociation for Artificial Intelligence. Cited on pages 30, 32, 40, 41, 42, 44, and 114.

Daniel Mailharro. A classification and constraint-based framework for configuration.
Artif. Intell. Eng. Des. Anal. Manuf., 12:383-397, September 1998. Cited on
page 131.

Yuri Malitsky, Ashish Sabharwal, Horst Samulowitz and Meinolf Sellmann. Non-
Model-Based Algorithm Portfolios for SAT. In Theory and Applications of Satis-
fiability Testing (SAT), pages 369-370, 2011. Cited on page 124.

Oded Maron and Andrew Moore. The Racing Algorithm: Model Selection for Lazy
Learners. In Artificial Intelligence Review, Volume 11, pages 193-225, 1997. Cited
on page 34.

Brendan D. McKay. Practical Graph Isomorphism. In 10th Manitoba Conf., Con-
gressus Numerantium 30, pages 45-87, 1981. Cited on page 51.

Sergey D. Mechveliani. Computer algebra with Haskell: applying functional-
categorial-lazy programming. In Proceedings of International Workshop CAAP,
Dubna, Russia, 2001. Cited on page 133.

Steven Minton. An Analytic Learning System for Specializing Heuristics. In IJ-
CAI’93: Proceedings of the 13th International Joint Conference on Artifical In-
telligence, pages 922-928, San Francisco, CA, USA, 1993a. Morgan Kaufmann
Publishers Inc. Cited on pages 33 and 113.

Steven Minton. Integrating Heuristics for Constraint Satisfaction Problems: A Case
Study. In AAAI: Proceedings of the Eleventh National Conference on Artificial
Intelligence, pages 120-126, 1993b. Cited on pages 33 and 113.

Steven Minton. Automatically Configuring Constraint Satisfaction Programs: A
Case Study. Constraints, 1:7-43, 1996. Cited on pages 33, 34, 35, 37, 38, 42, 44,
63, 113, and 126.

Sanjay Mittal and Brian Falkenhainer. Dynamic Constraint Satisfaction Problems.
In AAAI pages 25-32, 1990. Cited on page 131.

Jean-Noél Monette, Yves Deville and Pascal van Hentenryck. Aeon: Synthesiz-
ing Scheduling Algorithms from High-Level Models. In Operations Research and
Cyber-Infrastructure, pages 43-59. 2009. Cited on page 127.

163

164

Neil C.A. Moore. Improving the efficiency of learning CSP solvers. PhD thesis,
University of St Andrews, 2011. Cited on page 48.

Alexander Nareyek. Choosing Search Heuristics by Non-Stationary Reinforcement
Learning. In Metaheuristics: Computer Decision-Making, pages 523-544. Kluwer
Academic Publishers, 2001. Cited on pages 39, 41, 43, and 116.

David M. Neves. Learning procedures from examples and by doing. In Proceed-
ings of the 9th International Joint Conference on Artificial Intelligence, pages
624-630, San Francisco, CA, USA, 1985. Morgan Kaufmann Publishers Inc. Cited
on page 32.

Mladen Nikoli¢, Filip Mari¢ and Predrag Janici¢. Instance-Based Selection of Policies
for SAT Solvers. In Proceedings of the 12th International Conference on Theory and
Applications of Satisfiability Testing, SAT ’09, pages 326-340, Berlin, Heidelberg,
2009. Springer-Verlag. Cited on pages 32, 35, 39, 41, and 122.

Eugene Nudelman, Kevin Leyton-Brown, Holger H. Hoos, Alex Devkar and Yoav
Shoham. Understanding Random SAT: Beyond the Clauses-to-Variables Ratio. In
Mark Wallace, editor, Principles and Practice of Constraint Programming — CP
2004, Volume 3258 of Lecture Notes in Computer Science, pages 438—452. Springer
Berlin / Heidelberg, 2004. Cited on pages 32, 35, and 118.

Eoin O’Mahony, Emmanuel Hebrard, Alan Holland, Conor Nugent and Barry
O’Sullivan. Using Case-based Reasoning in an Algorithm Portfolio for Constraint
Solving. In Proceedings of the 19th Irish Conference on Artificial Intelligence
and Cognitive Science, 2008. Cited on pages 2, 32, 36, 37, 38, 39, 41, 42, 44, 85,
and 122.

Karen E. Petrie and Barbara M. Smith. Symmetry Breaking in Graceful Graphs.
In CP, Volume 2833 of LNCS, pages 930-934. Springer, 2003. Cited on page 134.

Marek Petrik. Statistically Optimal Combination of Algorithms. In Local Proceedings
of SOFSEM 2005, 2005. Cited on pages 36, 39, 41, and 119.

Marek Petrik and Shlomo Zilberstein. Learning Parallel Portfolios of Algorithms.
Annals of Mathematics and Artificial Intelligence, 48(1-2):85-106, 2006. Cited on
page 36.

Sanja Petrovic and Rong Qu. Case-Based Reasoning as a Heuristic Selector in
Hyper-Heuristic for Course Timetabling Problems. In KES, pages 336-340, 2002.
Cited on pages 43 and 117.

Mike Preuss and Thomas Bartz-Beielstein. Sequential Parameter Optimization Ap-
plied to Self-Adaptation for Binary-Coded Evolutionary Algorithms. In Fernando
Lobo, Claudio Lima and Zbigniew Michalewicz, editors, Parameter Setting in
Evolutionary Algorithms, Studies in Computational Intelligence, pages 91-120.
Springer, 2007. Cited on page 34.

Jean-Francois Puget. Constraint Programming Next Challenge: Simplicity of Use.
In CP, pages 5-8, 2004. Cited on page 14.

Luca Pulina and Armando Tacchella. A multi-engine solver for quantified Boolean
formulas. In Proceedings of the 13th International Conference on Principles and
Practice of Constraint Programming, CP’07, pages 574-589, Berlin, Heidelberg,
2007. Springer-Verlag. Cited on pages 32, 38, 39, 41, 42, 43, and 121.

Luca Pulina and Armando Tacchella. A self-adaptive multi-engine solver for quan-
tified Boolean formulas. Constraints, 14(1):80-116, 2009. Cited on pages 32, 36,
37, 44, 83, 85, 90, and 121.

J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1st
Edition, January 1993. Cited on pages 53 and 76.

R. Bharat Rao, Diana Gordon and William Spears. For Every Generalization Action,
Is There Really An Equal And Opposite Reaction? Analysis of the Conservation
Law for Generalization Performance. In Proceedings of the Twelfth International
Conference on Machine Learning, pages 471-479. Morgan Kaufmann, 1995. Cited
on page 98.

Jean-Charles Régin. A filtering algorithm for constraints of difference in CSPs. In
Proceedings of the Twelfth National Conference on Artificial Intelligence, Volume 1
of AAAI ’9/, pages 362-367, Menlo Park, CA, USA, 1994. American Association
for Artificial Intelligence. Cited on page 62.

John R. Rice. The Algorithm Selection Problem. Advances in Computers, 15:65—118,
1976. Cited on pages xv, 1, 2, 25, 26, 27, 28, and 44.

Christopher K. Riesbeck and Roger C. Schank. Inside Case-Based Reasoning. L.
Erlbaum Associates Inc., Hillsdale, NJ, USA, 1989. Cited on page 82.

Mark Roberts and Adele E. Howe. Directing a Portfolio with Learning. In AAAT
2006 Workshop on Learning for Search, 2006. Cited on pages 36, 39, 41, and 120.

Mark Roberts and Adele E. Howe. Learned Models of Performance for Many Plan-
ners. In ICAPS 2007 Workshop Al Planning and Learning, 2007. Cited on
pages 36, 40, 41, 42, and 121.

Mark Roberts, Adele E. Howe, Brandon Wilson and Marie desJardins. What Makes
Planners Predictable? In ICAPS, pages 288-295, 2008. Cited on pages 41, 43,
and 121.

Francesca Rossi, Peter van Beek and Toby Walsh. Handbook of Constraint Program-
ming. Elsevier Science Inc., New York, NY, USA, 2006. Cited on page 31.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Pren-
tice Hall, 3rd Edition, 2009. Cited on page 31.

165

166

Daniel Sabin and Eugene C. Freuder. Configuration as Composite Constraint Satis-
faction. Proceedings of the 1st Artificial Intelligence and Manufacturing Research
Planning Workshop, pages 153-161, January 1996. Cited on page 131.

Hani EI Sakkout, Mark G. Wallace and E. Barry Richards. An Instance of Adaptive
Constraint Propagation. In Proc. of CP96, pages 164-178. Springer Verlag, 1996.
Cited on pages 36, 37, 38, 41, 43, and 113.

Horst Samulowitz and Roland Memisevic. Learning to Solve QBF. In Proceedings
of the 22nd National Conference on Artificial Intelligence, pages 255-260. AAAI
Press, 2007. Cited on pages 32, 35, 37, 39, and 121.

Christian Schulte. Programming Constraint Services, Volume 2302 of Lecture Notes
in Artificial Intelligence. Springer-Verlag, 2002. Cited on page 22.

Christian Schulte and Guido Tack. Perfect Derived Propagators. In CP, Volume
5202 of LNCS, pages 571-575. Springer, 2008. Cited on page 127.

Christian Schulte, Guido Tack and Mikael Lagerkvist. Modeling and Programming
with Gecode. 2011. URL http://www.gecode.org/. Cited on page 13.

Jonathan Sillito. Improvements to and Estimating the Cost of Solving Constraint
Satisfaction Problems. Master’s thesis, University of Alberta, 2000. Cited on
pages 40 and 115.

Bryan Silverthorn and Risto Miikkulainen. Latent Class Models for Algorithm Port-
folio Methods. In Proceedings of the Twenty-Fourth AAAI Conference on Artificial
Intelligence, 2010. Cited on pages 2, 40, 41, 42, 44, and 123.

Douglas R. Smith. KIDS - A Knowledge-Based Software Development System. In
Automating Software Design, pages 483-514. MIT Press, 1990. Cited on page 127.

Tobiah E. Smith and Dorothy E. Setliff. Knowledge-Based Constraint-Driven Soft-
ware Synthesis. In Knowledge-Based Software Engineering Conference, pages
1827, September 1992. Cited on pages 1, 33, 37, 42, 44, 112, and 127.

Kate A. Smith-Miles. Cross-Disciplinary Perspectives on Meta-Learning for Al-
gorithm Selection. ACM Comput. Surv., 41:6:1-6:25, January 2009. Cited on
page 46.

Carlos Soares, Pavel B. Brazdil and Petr Kuba. A Meta-Learning Method to Select
the Kernel Width in Support Vector Regression. Mach. Learn., 54(3):195-2009,
March 2004. Cited on pages 1, 41, 42, 44, and 118.

Biplav Srivastava and Subbarao Kambhampati. Synthesizing Customized Plan-
ners from Specifications. J. Artif. Int. Res., 8(1):93-128, March 1998. Cited on
page 127.

Efstathios Stamatatos and Kostas Stergiou. Learning How to Propagate Using Ran-
dom Probing. In CPAIOR ’09: Proceedings of the 6th International Conference on
Integration of AI and OR Techniques in Constraint Programming for Combina-
torial Optimization Problems, pages 263-278, Berlin, Heidelberg, 2009. Springer-
Verlag. Cited on pages 39, 42, and 122.

Kostas Stergiou. Heuristics for Dynamically Adapting Propagation in Constraint
Satisfaction Problems. AI Commun., 22(3):125-141, 2009. Cited on pages 36, 37,
39, 43, and 122.

David H. Stern, Horst Samulowitz, Ralf Herbrich, Thore Graepel, Luca Pulina and
Armando Tacchella. Collaborative Expert Portfolio Management. In AAAI pages
179-184, 2010. Cited on pages 39, 44, and 123.

Matthew J. Streeter and Stephen F. Smith. New Techniques for Algorithm Portfolio
Design. In UAIL pages 519-527, 2008. Cited on pages 36 and 121.

Matthew J. Streeter, Daniel Golovin and Stephen F. Smith. Combining Multiple
Heuristics Online. In Proceedings of the 22nd National Conference on Artificial
Intelligence, pages 1197-1203. AAAI Press, 2007. Cited on pages 36, 39, 42,
and 121.

Markus Stumptner, Gerhard FE. Friedrich and Alois Haselbock. Generative
constraint-based configuration of large technical systems. Artif. Intell. Eng. Des.
Anal. Manuf., 12:307-320, September 1998. Cited on page 131.

R Development Core Team. R: A Language and Environment for Statistical Comput-
ing. Vienna, Austria, 2011. URL http://www.R-project.org/. ISBN 3-900051-
07-0. Cited on pages 66 and 75.

Hugo Terashima-Marin, Peter Ross and Manuel Valenzuela-Rendén. Evolution of
Constraint Satisfaction Strategies in Examination Timetabling. In Proceedings
of the Genetic and Ewvolutionary Computation Conference (GECCO0Y99), pages
635-642. Morgan Kaufmann, 1999. Cited on pages 34 and 114.

The Choco Team. Choco: an Open Source Java Constraint Programming Library.
July 2011. URL http://www.emn.fr/z-info/choco-solver/. Cited on page 13.

David Tolpin and Solomon E. Shimony. Rational Deployment of CSP Heuristics. In
1JCAI pages 680-686, 2011. Cited on pages 38, 41, and 124.

Edward P. K. Tsang, James E. Borrett and Alvin C. M. Kwan. An Attempt to Map
the Performance of a Range of Algorithm and Heuristic Combinations. In Proc.
of AISB’95, pages 203-216. IOS Press, 1995. Cited on pages 28, 32, and 113.

Paul E. Utgoff. Perceptron Trees: A Case Study In Hybrid Concept Representations.
In National Conference on Artificial Intelligence, pages 601-606, 1988. Cited on
page 30.

167

168

Pascal van Hentenryck and Laurent Michel. Synthesis of Constraint-Based Local
Search Algorithms from High-Level Models. In Proceedings of the 22nd National
Conference on Artificial Intelligence, pages 273-278. AAAI Press, 2007. Cited on
page 127.

Willem-Jan van Hoeve. The Alldifferent Constraint: A Survey. 2001. Cited on
page 62.

Virginia Vassilevska, Ryan Williams and Shan L. M. Woo. Confronting Hardness
Using a Hybrid Approach. In Proceedings of the Seventeenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’06, pages 1-10, New York, NY, USA,
2006. ACM. Cited on pages 30 and 37.

Dimitris Vrakas, Grigorios Tsoumakas, Nick Bassiliades and Ioannis Vlahavas.
Learning Rules for Adaptive Planning. In Proceedings of the 13th International
Conference on Automated Planning and Scheduling (ICAPS), pages 82-91, 2003.
Cited on pages 27, 33, 39, 44, and 117.

Jean-Paul Watson. Empirical modeling and analysis of local search algorithms for the
job-shop scheduling problem. PhD thesis, Colorado State University, Fort Collins,
CO, USA, 2003. Cited on pages 40 and 117.

Duncan J. Watts and Steven H. Strogatz. Collective dynamics of ”small-world”
networks. Nature, 393(6684):440-442, 1998. Cited on page 50.

Sanjiva Weerawarana, Elias N. Houstis, John R. Rice, Anupam Joshi and Cather-
ine E. Houstis. PYTHIA: A Knowledge-Based System to Select Scientific Algo-
rithms. ACM Trans. Math. Softw., 22(4):447-468, 1996. Cited on pages 31, 40,
42, 44, and 113.

Wanxia Wei, Chu Min Li and Harry Zhang. Switching among Non-Weighting, Clause
Weighting, and Variable Weighting in Local Search for SAT. In Proceedings of
the 14th International Conference on Principles and Practice of Constraint Pro-
gramming, pages 313-326, Berlin, Heidelberg, 2008. Springer-Verlag. Cited on
page 122.

Stephen J. Westfold and Douglas R. Smith. Synthesis of Efficient Constraint Satis-
faction Programs. Knowl. Eng. Rev., 16(1):69-84, 2001. Cited on page 127.

David Wilson, David Leake and Randall Bramley. Case-Based Recommender Com-
ponents for Scientific Problem-Solving Environments. In Proc. of the 16th Interna-
tional Association for Mathematics and Computers in Simulation World Congress,
2000. Cited on pages 39, 42, 43, 44, and 115.

lTan H. Witten, Eibe Frank and Mark A. Hall. Data Mining: Practical Machine
Learning Tools and Techniques. The Morgan Kaufmann Series in Data Manage-
ment Systems. Morgan Kaufmann, 3rd Edition, 2011. Cited on pages 31, 52, 66,
67, and 74.

David H. Wolpert. The Supervised Learning No-Free-Lunch Theorems. In Proc.
6th Online World Conference on Soft Computing in Industrial Applications, pages
25—42, 2001. Cited on page 89.

Huayue Wu and Peter van Beek. On Portfolios for Backtracking Search in the
Presence of Deadlines. In ICTAI ’07: Proceedings of the 19th IEEE International
Conference on Tools with Artificial Intelligence, pages 231-238, Washington, DC,
USA, 2007. IEEE Computer Society. Cited on pages 33, 36, and 121.

Lin Xu, Holger H. Hoos and Kevin Leyton-Brown. Hierarchical Hardness Models
for SAT. In CP, pages 696711, 2007a. Cited on pages 30, 40, 63, and 120.

Lin Xu, Frank Hutter, Holger H. Hoos and Kevin Leyton-Brown. SATzilla-07: The
Design and Analysis of an Algorithm Portfolio for SAT. In CP, pages 712-727,
2007b. Cited on pages 32, 35, and 118.

Lin Xu, Frank Hutter, Holger H. Hoos and Kevin Leyton-Brown. SATzilla: Portfolio-
based Algorithm Selection for SAT. J. Artif. Intell. Res. (JAIR), 32:565-606, 2008.
Cited on pages 2, 3, 27, 32, 35, 36, 38, 40, 41, 42, 43, 44, 84, 98, and 118.

Lin Xu, Frank Hutter, Holger H. Hoos and Kevin Leyton-Brown. SATzilla2009: An
Automatic Algorithm Portfolio for SAT. In 2009 SAT Competition, 2009. Cited
on pages 41, 43, 44, and 85.

Lin Xu, Holger H. Hoos and Kevin Leyton-Brown. Hydra: Automatically Config-
uring Algorithms for Portfolio-Based Selection. In Twenty-Fourth Conference of
the Association for the Advancement of Artificial Intelligence (AAAI-10), pages
210-216, 2010. Cited on pages 33 and 107.

169

This work is licensed under a Creative Commons
‘@ @ @ Attribution-ShareAlike 3.0 Unported License.

http://creativecommons.org/licenses/by-sa/3.0/

