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Cando penso que te fuches,
negra sombra que me asombras,

ó pé dos meus cabezales
tornas facéndome mofa.

Cando maxino que es ida,
no mesmo sol te me amostras,

i eres a estrela que brila,
i eres o vento que zoa.

Si cantan, es ti que cantas,
si choran, es ti que choras,

i es o marmurio do ŕıo
i es a noite i es a aurora.

En todo estás e ti es todo,
pra min i en min mesma moras,

nin me abandonarás nunca,
sombra que sempre me asombras.

(Rosaĺıa De Castro)
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Abstract

This work presents exact, hybrid algorithms for mixed resource Allocation and
Scheduling problems; in general terms, those consist into assigning over time
finite capacity resources to a set of precedence connected activities.

The proposed methods have broad applicability, but are mainly motivated
by applications in the field of Embedded System Design. In particular, high-
performance embedded computing recently witnessed the shift from single CPU
platforms with application-specific accelerators to programmable Multi Proces-
sor Systems-on-Chip (MPSoCs). Those allow higher flexibility, real time per-
formance and low energy consumption, but the programmer must be able to
effectively exploit the platform parallelism. This raises interest in the devel-
opment of algorithmic techniques to be embedded in CAD tools; in particular,
given a specific application and platform, the objective if to perform optimal
allocation of hardware resources and to compute an execution schedule.

On this regard, since embedded systems tend to run the same set of ap-
plications for their entire lifetime, off-line, exact optimization approaches are
particularly appealing. Quite surprisingly, the use of exact algorithms has not
been well investigated so far; this is in part motivated by the complexity of inte-
grated allocation and scheduling, setting tough challenges for “pure” combina-
torial methods. The use of hybrid CP/OR approaches presents the opportunity
to exploit mutual advantages of different methods, while compensating for their
weaknesses.

In this work, we consider in first instance an Allocation and Scheduling
problem over the Cell BE processor by Sony, IBM and Toshiba; we propose
three different solution methods, leveraging decomposition, cut generation and
heuristic guided search. Next, we face Allocation and Scheduling of so-called
Conditional Task Graphs, explicitly accounting for branches with outcome not
known at design time; we extend the CP scheduling framework to effectively
deal with the introduced stochastic elements. Finally, we address Allocation
and Scheduling with uncertain, bounded execution times, via conflict based
tree search; we introduce a simple and flexible time model to take into account
duration variability and provide an efficient conflict detection method.

The proposed approaches achieve good results on practical size problem,
thus demonstrating the use of exact approaches for system design is feasible.
Furthermore, the developed techniques bring significant contributions to com-
binatorial optimization methods.
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Chapter 1

Introduction

This work presents exact, hybrid algorithms for mixed resource Allocation and
Scheduling problems; in general terms, those consist into assigning over time
finite capacity resources to a set of precedence connected activities. Despite
the proposed methods have broad applicability, the main motivation for their
development comes from the field of embedded system design, where Allocation
and Scheduling (A&S) covers a key role.

1.1 Context

The transition in high-performance embedded computing from single CPU plat-
forms with custom application-specific accelerators to programmable Multi Pro-
cessor Systems-on-Chip (MPSoCs) is now a widely acknowledged fact; this rev-
olution is motivated by the evidence that traditional approaches to maximize
single processor performance have reached their limits. However, the multicore
promise of real time performance with limited power consumption comes at a
condition; namely, the programmer must be able to effectively exploit the ex-
posed platform parallelism. With hundred core devices being planned by major
producers for the near future, squeezing out the full performance of modern
MPSoCs is a far from straightforward task.

Virtually all key markets in data-intensive embedded computing are in des-
perate need of expressive programming abstractions and tools enabling pro-
grammers to take advantage of MPSoC architectures, while at the same time
boosting productivity. This raises interest in the development of automatic op-
timization techniques to be embedded in CAD tools. A specific optimization
problem covering a key role in the design flow of embedded systems is that of op-
timizing a given software application for a target platform; this usually requires
to optimally allocate hardware resources (such as processors, storage devices and
communication channels) and to provide an optimal execution schedule. The
actual cost metric can vary considerably: achieving minimum execution time or
minimum power consumption are among the most common design objectives.

Due to the large production numbers often involved, small design improve-
ments can result in huge savings; moreover, a typical embedded system runs the
same set of applications for its whole life time, thus allowing time consuming
analysis and improvements to be performed prior to the deployment. Those pe-
culiarities make off-line, exact optimization approaches particularly appealing.
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Quite surprisingly, the use of exact algorithms has not been well investigated
by the Embedded System community, whereas heuristic approaches are widely
employed. This is in part motivated by the complexity of integrated allocation
and scheduling problems, setting tough challenges for existing combinatorial
methods.

Part of such a high complexity is motivated by the tight integration between
the assignment and the scheduling problem component. A&S problems have
been faced by Constraint Programming (CP) as scheduling problems with al-
ternative resources. Despite effective filtering and search techniques have been
developed for pure scheduling, adding resource mapping decisions hinders con-
straint propagation and widens the search space, often making the problem
overly difficult. On the other hand, Operations Research (OR) methods are
successfully employed to solve large pure assignment problems; however, adding
the time dimension sets serious issues to the computation of efficient and tight
bounds, and counters the effectiveness of most OR approaches. In this context,
the use of hybrid CP/OR algorithms presents an opportunity to exploit the
advantages of different approaches, while compensating for their mutual weak-
nesses. It is interesting to note that, in the Embedded System community, the
opportunities offered by hybrid approaches are nearly unexploited.

A second major obstacle to the use of exact methods for Embedded System
design is the issue of predictability. Many embedded applications run under real-
time constraints, i.e. deadlines that have to be met for any possible execution;
this is the case of many safe-critical applications, such as in the automotive and
the aircraft industries. At the same time, every system naturally exhibits some
degree of randomness. On one side, failing to cope with such uncertainty may
make the use of a strong optimization algorithm simply not worth the effort,
due to the incapacity to predict the actual objective function value. On the
other hand, including probabilistic elements in the solution approach generally
increases the complexity, taking real size problems out of the reach of complete
methods.

1.2 Content

We tackle a class of mixed Allocation & Scheduling problems consisting into
(1) assigning a pool of finite capacity resource to a set of precedence connected
activities (2) computing a time and resource feasible schedule. This problem
type covers a critical step in the Hardware/Software co-design of modern em-
bedded systems, namely, optimizing an input application for a target hardware
platform. The main content in this work is articulated in three parts.

A&S over Cell BE (Chapter 3): in first instance we consider a software alloca-
tion and scheduling problem over a real platform (namely, the Cell BE processor
by Sony, IBM and Toshiba), with a makespan minimization objective. We pro-
pose an exact approach leveraging decomposition and heterogeneous techniques,
and we observe how a classic two stage decomposition approach does not per-
form adequately. Hence we recursively split the problem and solve the resulting
subparts via two ILP and a CP solver, cooperating to improve feasible solutions
until optimality is proved. The three solvers are arranged in a nested scheme and
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communicate via linear cuts, obtained through the iterative solution of relaxed
NP-hard problems.

As an alternative, we propose a CP method building upon a classical OR
heuristic algorithm and making use of no-good learning techniques. The two
realized solvers obtain nice results on complementary classes of instances; hence
a third hybrid approach is introduced, combining the advantages of the former
ones and achieving even higher scalability.

A&S of Conditional Task Graphs (Chapter 4): Next, we face allocation and
scheduling of so-called Conditional Task Graphs (CTG); those are kind of project
graphs explicitly taking into account the presence of conditional branches, and
originating alternative control flows. Since the exact outcome of the branches is
not known prior to the execution, a stochastic model must be used for off-line
optimization.

We define a framework to enable polynomial time probabilistic reasoning
over CTGs, provided a condition referred to as Control Flow Uniqueness holds
(CFU); we show how CFU is usually satisfied in many realistic settings. The
probabilistic framework is then used to devise methods for the deterministic
reduction of the stochastic problem objective; a key observation with this regard
is that the considered embedded system design problems are one-stage, i.e.
all decisions must be taken off-line and the constraints must be satisfied for
all execution scenarios. The satisfiability requirement for all possible branch
outcomes is guaranteed by introducing a novel class of conditional constraints.
We show how the proposed techniques enable up to one order of magnitude
speed ups compared to a state of the art method (scenario based optimization).

A&S with Uncertain Durations (Chapter 5): Finally, we address allocation
and scheduling with uncertain durations. In particular, we assume the execu-
tion time of the tasks to be scheduled is unknown, but a priori bounded. The
assumption goes along with an emerging trend in embedded system platform
design, allowing for the removal of some performance enhancement techniques
(e.g. caches) to improve predictability. This provides support for off-line analy-
sis tools, enabling the computation of actual worst case and best case execution
times.

We consider mapping and scheduling problems over clustered platforms with
point to point communication channels; a hybrid algorithm is devised, encom-
passing a heuristic allocation step and a complete scheduling stage. The allo-
cation is performed by casting the mapping problem to balanced graph parti-
tioning, and by using a state-of-the art partitioning heuristics. The complete
scheduling approach leverages the Precedence Constraint Posting method and
performs search by systematically identifying and resolving possible resource
conflicts.

The key step in this process (conflict detection) in a first stage is modeled
and solved via Constraint Programming; the method effectively guides search,
but requires the solution of an NP-hard problem at each node. Hence we devise
a second approach, coupling a polynomial time (complete) detection algorithm
with a local search (heuristic) conflict minimization step. The proposed solver
achieves significant results on a set of synthetic benchmarks, obtained with a
generator designed to produce realistic problems.
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1.3 Contribution

This work situates itself at the boundary between combinatorial optimization
and embedded system design. Despite algorithmic techniques (in particular
CP and OR) are with no doubt the main topic, their consistent application to
mapping and scheduling of software applications to MPSoCs brought significant
contributions to this research field as well.

Concerning Embedded System Design: All the proposed approaches target a
problem of strong practical interest; in fact, not only optimal A&S allows a
better exploitation of hardware resources, but it may enable the use of less
powerful and more energy efficient platforms (design space exploration).

In particular, the practical advantages of a mapping and scheduling approach
rely on the possibility to include the method within a CAD tool. An effective
ad hoc approach may fail to deliver its full potential, if not sufficiently flexible
to deal with the complex constraints set by the target architecture, user de-
sign choices and the need to provide accurate models. The use of Constraint
Programming and powerful integration and decomposition techniques provides
the developed approaches with the necessary flexibility. In particular, nasty
architecture dependent side constraints can be handled easily in the allocation
stage, while the use of CP allows to capture the complex temporal relations
required to have accurate models. The advantage is neat if the hybrid approach
is compared with classical OR scheduling methods, often reaching efficiency by
targeting specific cases of an extremely fine grained problem classification. In
our case, the exposed flexibility is so high that targeting user customizable ar-
chitectures via automatic ILP/CP model generation can be considered doable
on the near future.

We show that many practical size allocation and scheduling problems are
within the reach of complete solvers, thus contradicting a well established belief
in Embedded System Design. Spending considerable amount of time in perform-
ing extensive optimization is well worth the effort at system deployment time.
In case of tighter design time constraints (e.g. during application development),
all the proposed approaches can be stopped before optimality is proved and still
provide pretty good solutions; additionally, partial optimality proof (e.g. gaps)
can be returned as well.

We demonstrate that in several practical cases elements of uncertainty (con-
ditional branches and variable durations) can be taken into account without
drastically increasing problem complexity. Indeed, the very presence of hard
real time requirements and the relative simplicity of run time policies (due to
efficiency issues) often allow the use of analytical techniques to obtain deter-
ministic reductions. Usually this can be done in polynomial time, thus keeping
the design problem NP-hard (instead of P-SPACE as stochastic problems often
happen to be).

Concerning Combinatorial Optimization: Heterogeneous algorithmic techni-
ques (ILP, no-good learning, filtering, local search) can be combined to achieve
significant speed-ups. In the case at hand, hybridization allows to tackle com-
plex mixed allocation and scheduling problems, where classical CP and OR
approaches find tough difficulties. Moreover, despite the presented approaches
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mainly target mapping and scheduling problems over embedded systems, many
of the developed techniques have broader applicability.

We investigate the use of the Logic Based Benders’ Decomposition (LBD)
scheme in the context of scheduling problems with general precedence relations.
It is a common opinion that LBD approaches tend to pay off only when decou-
pling the problem allows to further split the subproblem into smaller indepen-
dent components; we show that even if this is not the case, LBD can still be
worthwhile if the decomposition simplifies the master and subproblem models
and enables their efficient solution. Most notably, this consideration led here to
a multi-stage LBD approach, where an initially very complex master problem is
further decomposed achieving orders of magnitude speed-ups. The main reason
for this effect is that the efficiency of a combinatorial algorithm for NP-hard
problems decreases non-linearly as the problem size grows.

Moreover, we show how the use of a lower bound of the overall objective as
cost function for the master problem is not a requirement for the LBD scheme;
in fact, if the subproblem relaxation subsumes any bound which could be used
in the Benders’ cuts, then replacing the classical cuts with strong no-goods and
using a more easy to optimize cost function in the master problem becomes a
better option.

Finally, we show how the cut generation procedure does not need to have
polynomial complexity in general; indeed, we exploit a no-good refinement
method requiring the repeated solution of NP-hard problems with very good
results. The key point is that the only actual requirement is to save more solv-
ing time by adding cuts than needed for their generation; as a consequence,
building cuts by solving an NP-hard problem is perfectly feasible, as long as it
is sufficiently easy. We provide empirical guidelines for tuning such a process.

We devise a framework for efficient probabilistic reasoning over conditional
graphs; in the considered case study this allows the reduction of a stochastic cost
function to a deterministic functional, thus preventing the problem complexity
from becoming P-SPACE. The proposed reduction method applies well to many
one-stage stochastic problems over conditional graphs.

Moreover, we introduce a class of so-called conditional constraints, enforcing
local consistency on a set of decision variables for every possible instantiation
of a set of random variables. In the context of scheduling problems, we devise a
conditional timetable constraint, taking advantage of the probabilistic reasoning
framework to provide efficient filtering.

Finally, similar ideas are used to devise an expected makespan constraint
(where “expected” is used in its probability theory sense); despite the expected
makespan does not admit a polynomial declarative formulation, we demonstrate
how our probabilistic framework can be used to devise a polynomial procedure
to compute valid bounds.

Perhaps counterintuitively, we show that taking into account uncertain,
bounded, durations with hard deadline constraints can be done in an efficient
manner; in particular, a simple polynomial time propagation method can be
used to enforce consistency on a temporal network with both deterministic and
stochastic constraints.

Variable durations raise however non-trivial issues at search time; namely,
providing a schedule by fixing start times is no longer an option. Conflict

5



resolution via Precedence Constrain Posting can be applied, but dealing with
the (exponential) number of task sets causing resource overusage becomes an
issue. In this context, we show how a polynomial time conflict check can be
done by solving a minimum flow problem. The outcome of the checking method
is a maximal set, which can be used as input for a refinement process or to
perform fixed parameter tractable enumeration.
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Chapter 2

Related Work

This chapter provides an overview of existing research related to allocation and
scheduling problems, with a focus on exact approaches.

As embedded system provides the main application fields for the method
discussed in this work, Section 2.1 is devoted to a discussion of the typical
optimization problems arising in their design flow. A brief discussion of the
adopted formalisms and of the existing approaches is given as well. Constraint
programming and constraint based scheduling are the algorithmic techniques
most widely used throughout this work; those are presented in Sections 2.2 and
2.3. Several of the main OR approaches to allocation and scheduling problems
are reported in Section 2.4; finally, some hybrid methods for combinatorial opti-
mization (most notably, Logic based Benders’ Decomposition) are presented in
Section 2.5. Note that more application specific references are given in Chap-
ters 3, 4 and 5.

2.1 A&S for Embedded System Design

With the term “embedded system” we refer to any information processing device
embedded into another product. In the last years their diffusion has been grow-
ing at a surprising rate: automotive control engines, mobile phones, multimedia
electronic devices are only few examples of the ubiquity of such devices. Being
widely employed in portable devices for real time applications, these systems
need both energy efficient and high performance hardware. Moreover, the large
variety of different devices calls for flexible and easily customizable platforms;
this is true despite embedded devices are not general purpose, but tend to run
a set of predefined applications during the entire system lifetime.

Mixed Hardware / Software design and Multiprocessor Systems on Chips
come as the most promising solution to the mentioned issues. In particular,
mixed HW/SW design promotes a view of dedicated hardware and software
as equally good tools to implement application specific functions. Avoiding
dedicated hardware as much as possible allows a single general purpose platform
to be used in completely different embedded systems; additionally this approach
boosts the design phase, cuts the time-to-market and reduces maintenance costs.

The drawback for the flexibility provided by a software implementation of
real time functions is the need for general purpose platforms having both high
performance and low power consumption. As a consequence, the last ten years
witnessed a shift in the design of integrated architectures from single processor
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Figure 2.1: An ARM processor based
System on Chip

Figure 2.2: Block diagram for the
ARM11 MPCore processor

systems to multiprocessors. This revolution is motivated by the evidence that
traditional approaches to maximize single processor performance have reached
their limits. Power consumption, which has stopped the race in boosting clock
frequencies for monolithic processor cores [Hor07] [HSN+02] [Mud01] [HMH01]
and design complexity are the most critical factors that limit performance scal-
ing [Bor99].

However, Moore’s law continues to enable doubling in the number of transis-
tors on a single die every 18-24 months. Consequently, designers are turning to
multicore architectures (so called Multi-Processor Systems on Chip – MPSoCs)
to satisfy the ever-growing computational needs of applications within a reason-
able power envelope [Bor07]. MPSoCs are multi core, general purpose, systems
realized on a single chip; each core has low energy consumption and limited com-
putational power: real time performance is achieved by extensive parallelization.
MPSoCs integrate on a single silicon die both the multiple core, memory, the
communication infrastructure, DMAs and input/output interfaces.

Following Moore’s law, the semiconductor industry roadmap foresees a dou-
bling in the number of core units per die with every technology generation
[Gra07]. This trend is noticeable both in mainstream [Cor02, AMD], as well as
in embedded computing [Sys, Sem, Tec, ST, NEC]. MPSoCs with previously
unseen complexity, hosting a huge number of processors to provide scalable
computational power, are planned for the near future.

On the other hand consumer applications are characterized by tight time-
to-market constraints and extreme cost sensitivity. Hence, there is a strong
need for software optimization tools that can optimally exploit the available
resources [Mar06]. The current design methodology for multicore systems on
chip is hampered by a lack of appropriate Computer Aided Design tools, lead-
ing to low efficiency and productivity (the so called Design Productivity Gap).
Software optimization is a key requirement for building cost- and power-efficient
electronic systems, while meeting tight real-time constraints and ensuring pre-
dictability and reliability, and is one of the most critical challenges in today’s
high-end computing.
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2.1.1 Optimization and Embedded System Design

Optimization problems arise in many step of the design process of an embedded
system; specifically, in this work we focus on optimally exploiting hardware
parallelism. The key to successful application deployment lies in effectively
mapping concurrency in the application to the architectural resources provided
by the platform and providing an efficient run-time execution schedule; this task
often goes under the name of mapping and scheduling problem. Once an optimal
mapping and scheduling procedure is available, investigating different platform
options becomes feasible; this is a second optimization problem, often referred
to in the literature as design space exploration. Figure 2.3 shows how a simple
design space exploration algorithm could be realized by repeatedly solving a
mapping and scheduling problem.

feasible?

Figure 2.3: Basic design space exploration algorithm

Existing mapping and scheduling methods usually assume the input appli-
cation to be described with a proper abstract formalism, explicitly exposing the
application concurrency. In particular, embedded system software may exhibit
significant concurrency at different levels of granularity; task level concurrency
(at the level of functions and procedures) is often evident in data-intensive em-
bedded applications, which motivates the focus on task-based application ab-
stractions throughout this work. Similarly, an abstract description of the target
platform is assumed to be available. In detail, the class of design problems we
consider consists in (1) optimally allocating the resources take in the hardware
description to the tasks in the application description, and (2) providing an
optimal task execution order.

Off-line vs on-line approaches The design process described above (and
adopted throughout this work) implicitly assumes an optimal mapping and
schedule are computed before the actual execution, i.e. off-line; moreover the
method requires many details about the platform and the target application
to be known a priori. With no doubt this is a drawback; nevertheless, off-line
approaches still are very appealing for embedded system design; the reason is
that such devices usually run a set of predefined applications during their entire
lifetime. Therefore it is reasonable to spend a significant amount of time in
optimizing software compilation once for all, improving the performance of the
overall system.
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Alternatively, one may focus on devising an effective policy to perform the
same operations at run-time; this leads to so called on-line approaches. In this
case, allocation and scheduling decisions must be taken upon arrival of tasks in
the system, and the employed algorithm must be extremely fast, typically con-
stant time or low-degree polynomial time. Given that multiprocessor allocation
and scheduling on bounded resources is NP-Hard [GJ+79], obviously, on-line ap-
proaches cannot guarantee optimality, but they focus on safe acceptance tests,
i.e. a schedulable task set may be rejected but a non-schedulable task set will
never be accepted.

Section outline A large variety of mapping and scheduling methods exists in
the literature; the approaches differ in the adopted application abstraction, the
application feature, the target platform and its model, the applied optimization
techniques and the problem objective. While attempting a classification is out
of the scope of the chapter, in the followings we try to mention at least the most
relevant features in the context of this work.

In particular, due to the large number and variety the existing target plat-
forms, we chose to provide the description of a few practical hardware models
directly in Chapters 3, 4 and 5. As an intuition, however, hardware is usually
abstracted as a set of renewable resources, subject to additional architecture
dependent constraints. Conversely applications models can actually be divided
into a small number of main classes; a selected number of the most relevant
ones is reported in the following Section 2.1.2.
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t6

t7

Figure 2.4: A Task Graph

t0

t1 t2

t3 t4 t5 t6

t7 t8

t9

Figure 2.5: A structured Task Graph

2.1.2 The Task Graph: definition and semantic

The target application to be executed on top of the hardware platform is of-
ten represented throughout this work as a Task Graph (TG, see Figure 2.4 for
an example). This latter [ERL90] consists of a directed acyclic graph (DAG)
pointing out the parallel structure of the program; specifically, the application
workload is partitioned into computation sub-units denoted as tasks, which are
the nodes of the graph. Graph edges connecting any two nodes indicate task
dependencies due, for example, to communication and/or synchronization. For-
mally, a TG is a pair 〈T,A〉, where T is the set of graph nodes ti (referred to
as tasks) and A is the set of graph arcs, represented as pairs (ti, tj). Tasks and
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arcs are usually annotated by attributes; typically at least a duration value is
specified for each task.

Task Graphs can be assumed to have a single starting node (a dummy node
may be inserted in case more than one source node exists), while several sink
nodes may exist. As an exception, a particular subclass of TGs (so-called struc-
tured Task Graphs) are constrained to have, for each task ti with more than
one successor (fork node), a single node tj where all the paths originating from
ti merge (join node). Figure 2.5 shows an example of structured Task Graph.
Such TGs often result from the automatic parsing of computer code.

Task Graph Semantics Task graphs are usually associated a self-timed ex-
ecution semantics, i.e. a task ti starts as soon as all input data are available.
Actual inter-task communication often occurs by writing/reading data to a com-
munication buffer in a shared memory device; in data intensive applications, ac-
cessing the communication buffer can take non-negligible time and hence require
to be be taken into account for the model to be meaningful.

In vast part of the literature tasks are assumed to have deterministic execu-
tion time; in practice, however, the duration of each function/procedure usually
depends on the input data. In some cases failing to capture this behavior may
make the TG abstraction not sufficiently accurate and compromise the effec-
tiveness of an optimization approach. An established off-line method to cope
with run time data dependencies is to replace fixed execution time with random
variables having a known probability distribution. The same type of issues mo-
tivated the proposal of so-called Conditional Task Graphs (CTG – see [XW01]),
explicitly modeling the presence of conditional branches by means of probability
theory concepts. TGs with variable durations and CTGs are taken into account
in Chapter 4.

2.1.2.1 Other Application Abstractions

Other application abstractions are commonly used in the literature; those will
be mentioned and briefly described, but not discussed in detail, as this is out of
the scope of the work. Indeed, Task Graphs happen to be the least expressive
(and more manageble) in a ranking of proposed abstractions.

Kahn Process Networks At the top of such ranking are Kahn Process Net-
works (KPN), first introduced in [Kah74] (see Figure 2.6 for an example); a
KPN consists of a directed graph (non necessarily acyclic). Nodes represent
processes, communicating through FIFO queues (represented by the arcs) and
synchronizing via a blocking-read operation. A KPN has deterministic struc-
ture, enabling the use of graph information to compute optimized partitionings
and schedules. For some examples of design approaches relying on KPNs see
[TBHH07, SZT+04].

Synchronous Data Flow Graphs A popular restriction of the KPN model
are Synchronous Data Flow Graphs (SDFG), proposed in [LM87] (see Figure 2.7
for an example). SDFGs are directed, often cyclic graphs representing commu-
nicating autonomous processes (the graph nodes, referred to as actors). Inter
process communication is explicitly represented by the graph arcs; their end-
points are labeled with integer rates. The communication is modeled through
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the exchange of homogeneous tokens (the basic data unit); rates on the source
of the arcs represent the amount of token produced by the source node when
it executes (fires), while rates on the destination of the arcs are the amount of
token required by the destination node to fire. A node can fire whenever there
are enough tokens on all its input arcs, and output tokens are produced at the
end of the execution. SDFG actors are often bound to execute as soon as it is
possible (self-timed execution); under this hypothesis, after an initial transition
time, an SDFG enters a periodic phase.

Task Graphs are a specialization both of Kahn Process Networks and SDFGs;
in particular, TGs are not well suited to model periodic behaviors, but are more
amenable for optimization and time based schedule computation.
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P2
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C

Figure 2.6: A Kahn Process Network;
both processes and FIFO queues are
named.
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Figure 2.7: A synchronous data flow
graph; rates are reported on the arc
endpoints, the solid black circles rep-
resent the tokens

2.1.3 Existing Mapping and Scheduling Approaches

The synthesis of system architectures has been extensively studied in the past.
Mapping and scheduling problems of Task Graphs on multi-processor systems
have been traditionally tackled by means of Integer Linear Programming (ILP).
In general, even though ILP is used as a convenient modeling formalism, there
is consensus on the fact that pure ILP formulations are suitable only for small
problem instances, because of their high computational cost. An early example
is represented by the SOS system, which used mixed integer linear program-
ming technique (MILP) [PP92]. A MILP model that allows to determine a
mapping optimizing a trade-off function between execution time, processor and
communication cost is reported in [Ben96].

Heuristics The complexity of pure ILP formulations for general Task Graphs
has led to the development of heuristic approaches. Those provide no guarantees
about the quality of the final solution, and many times the need to bound search
times limits their applicability to moderately small task sets. A comparative
study of well-known heuristic search techniques (Genetic Algorithms, Simulated
Annealing and Tabu Search) is reported in [Axe97]. A scalability analysis of
these algorithms for large real-time systems is introduced in [KWGS]. Many
heuristic scheduling algorithms are variants and extensions of list scheduling
[EKP+98].

Several structures of Task Graph have been considered in the literature; the
pipelined workload, typical of several real applications, has been studied, for
example in [FR97] (and in the complete approach in [BBGM05b]); in [CV02] a
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retiminig heuristic is used to implement pipelined scheduling, while simulated
annealing is used in [PBC04] (where both periodic and aperiodic task are con-
sidered).

Different platforms and Task Graphs have been considered: [Tho01] consid-
ers a multi-processor platform where the processors are dissimilar. Energy-aware
platforms have been studied in several works; the first DVS approach for sin-
gle processor systems which can dynamically change the supply voltage over a
continuous range is presented in [YDS95]. More recent works on the argument
can be found in [XMM05, JG05, ASE+04, ABB+06, BBGM06], to cite a few.
A good survey can be found in [BBDM02].

Complete off-line approaches (other than ILP) Constraint Program-
ming (CP) was applied to optimally solving mapping and scheduling problem
in [Kuc03]. The work in [SK01] is based on Constraint (Logic) Programming
to represent system synthesis problem, and leverages a set of finite domain
variables and constraints imposed on these variables. Both ILP and CP tech-
niques can claim individual successes but practical experience indicates that
neither approach dominates the other in terms of computational performance.
The development of a hybrid CP-IP solver that captures the best features of
both would appear to offer scope for improved overall performance. However,
the issue of communication between different modeling paradigms arises. One
such method is Logic Benders Decomposition (LBD), described in Section 2.5.1;
[RGB+06] presents a LBD approach in the context of MPSoC systems. The au-
thors tackle the mapping sub-problem with ILP and the scheduling one with
CP. The work considers only pipelined streaming applications and does not han-
dle Task Graphs. In order to solve the problem of allocating and scheduling a
general Task Graph onto a MPSoC, the introduction of more complex problem
models, cost functions and Benders’ cuts is needed, and is tackled for example
in [BBGM06].

On-line approaches An excellent and comprehensive description of the on-
line approach is given in [Liu00], and can be summarized as follows. When
an application (i.e. a Task Graph), enters the system, it is first partitioned
on processor clusters using a fast heuristic assignment (e.g. greedy first-fit bin
packing). Then schedulability is assessed on a processor-by-processor basis.
First, local task deadlines are assigned, based on a deadline assignment heuris-
tic (e.g. ultimate deadline), then priorities are assigned to the tasks, and finally
a polynomial-time schedulability test is performed to verify that deadlines can
be met. It is important to stress that a given Task Graph can fail the schedu-
lability test even if its execution would actually meet the deadline. This is not
only because the test is conservative, but also because several heuristic, poten-
tially sub-optimal decisions have been taken before the test which could lead to
infeasibility even if a feasible schedule does exist. One way to improve the accu-
racy of the schedulability test is to modify synchronization between dependent
tasks by inserting idle times (using techniques such as the release-guard proto-
col [SL96]) that facilitate worst-case delay analysis. Recent work has focused
on techniques for improving allocation and reducing the likelihood of failing
schedulability tests even without inserting idle times [FB06, Bar06].
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2.2 Constraint Programming

Constraint Programming is an AI (Artificial Intelligence) method designed to
solve Constraint Satisfaction Problems (CSP). Generally speaking, a CSP is a
triple 〈X,D,C〉, where X is a set of variables, D a set of domains and C a set
of constraints. Each domain Di is a set of values v which can be assumed by
the corresponding variables Xi; each constraint Cj in the set C specifies values
which can be assumed by a subset of the variables, referred to as the scope of
the constraint; the scope is denoted as S(Cj) and the constraint is said to be
posted on S(Cj). Constraints can be given either in extensional form (i.e. list
of tuples) or in intensional form (e.g. Xi ≤ Xk). A solution to the CSP is an
assignment of the problem variables, compatible with every constraint.

Filtering and propagation Similarly, a Constraint Programmingmodel con-
sists variables, domains and constraints; a filtering algorithm is associated to
each problem constraint Cj and is able to remove provably infeasible values
from the domain of variables in its scope. Note that, from a more abstract per-
spective, filtering may be seen as the process of deducing additional constraint
from existing constraints. When a domain Di gets modified by a filtering algo-
rithm, such modification has a chance to allow another constraint involving Xi

to filter out more values on the variables in its scope; such mechanism is know
as constraint propagation. Many algorithms have been proposed to efficiently
perform this propagation step (see [BC94]); the process stops when a fixpoint
is reached.

Search and Local Consistency In Constraint Programming, a CSP is usu-
ally solved via tree-search; during the process, each branching choice triggers
filtering and constraint propagation, effectively reducing the search space and
often resulting in tremendous speed-ups over complete enumeration. The use
of some kind of search technique is a requirement, for a twofold reason: in first
place, in case the problem has multiple solutions, propagation and filtering can-
not (by definition) arbitrarily discard any of them. In second place, eliminating
all infeasible values in a CSP is generally as complex as solving the problem it-
self; hence, in practice one has to resort to enforcing some kind local consistency
(see [DB05]) and use search to get to an actual solution.

Many different types of local consistency have been defined on this pur-
pose; the most widely employed ones are Arc (and Generalized Arc) Consistency
(AC), Bound Consistency (BC) and K-Consistency. Namely:

Definition 1 (Arc Consistency). A binary constraint Cj on Xi, Xk is arc con-
sistent if and only if, for each value v in Di, there exist a value w in Dj such
that the couple (v, w) is allowed (we say that v has a support in Dk). Formally:

∀Xi ∈ S(Cj), ∀v ∈ Di : ∃w ∈ Dj : (v, w) ∈ Cj

Arc Consistency can be generalized to non binary constraint, leading to Gener-
alized Arc Consistency (GAC):

Definition 2 (Generalized Arc Consistency). A constraint Cj with scope S(Cj)
(and S(Cj) = X0, . . . Xn−1) is generalized arc consistent if and only if, for every
variable Xi ∈ S(Cj), every value v ∈ Di has a support in D0 ×Di−1 ×Di+1 ×
. . . Dn−1.
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In the following, we use the notation Π [S(Cj) \Di] to denote the cartesian
product D0 ×Di−1 ×Di+1 × . . . Dn−1 (i.e. the set of all combinations of values
from the domains in the constraint scope, Xi excluded). In Bound Consistency
we assume the domain of every variable Xi is an interval defined by a minimum
and maximum value (respectively li and ui); then:

Definition 3 (Bound Consistency). A constraint Cj is bound consistent if and
only if, for each variable Xi ∈ S(Cj), both the extreme values li and ui have a
support in Π[S(Cj) \Di]. Formally:

∀Xi ∈ S(Cj) :

{

∃w̄′ ∈ Π [S(Cj) \Di] such that l ‖ w̄′ ∈ Cj

∃w̄′′ ∈ Π [S(Cj) \Di] such that u ‖ w̄′′ ∈ Cj

Where the expression v ‖ w̄ denotes the concatenation of value v with a tuple w̄.
Note that the supports w′ and w′′ are not required to be include only extreme
values for each (Dk ∈ S(Cj) \ Di). In general Bound Consistency is weaker
than (Generalized) Arc Consistency, but the equivalence holds in some practical
context (e.g. scheduling with usual precedence constraint). K-consistency is the
most complete form of consistency and requires that:

Definition 4 (K-Consistency). A constraint Cj is k-consistent if and only if,
for each variable Xi in the scope S(Cj), every tuple v̄ ∈ ΠS(Cj) \ Di has a
support w in Di. Formally:

∀Xi ∈ S(Cj), ∀v̄ ∈ Π [S(Cj) \Di] : ∃w ∈ Di such that w ‖ v̄ ∈ Cj

Briefly, in order to solve a Constraint Satisfaction Problems by means of Con-
straint Programming, one needs (1) to devise a model and (2) to specify how
search is performed. Hence the equation:

CP = model+ search

which suggests that model and search are independent in CP. More precisely, a
single CP model may be solved with several search strategies, and vice-versa a
single search strategy may be applied to several CP models.

2.2.1 Modeling in CP

Constraint Programming provides a rich and expressive language, effectively
enabling the formulation of very compact models. Variables and constraints are
basically subject to no restriction; as a consequence, in the literature one may
find, besides the usual integer and real variables, more exotic items such as set-
variables [Ger94] or interval-variables [LRS+08]. The most common situation
however, is to have variables with finite, integer domains (this combination is
often referred to as CP-FD).

Each type of variable comes with a specific pool of constraints, ranging from
simple linear constraints to much more complex relations; as an example, in the
literature one may find:

1. linear mathematical constraints, e.g. Xi ≤ Xj +Xk + 1;
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2. non-linear mathematical constraints, e.g. Xi = |X3
j − Xk|, Xi 6= Xj ,

Xi = max{Xj , Xk};

3. basic constraints related to specific domains, e.g. Xi ⊆ Xj for set vari-
ables, non overlapping(Xi, Xj) for interval variables;

4. meta-constrained or “reified” constraints, denoting a 0/1 value and used
within a mathematical or logical expression, e.g. Xi ≤ 10 × (Xj = 2), or
(Xi = 1) ≤ (Xj = 1) (which models a logical implication).

Global Constraints A particularly interesting case is that of so called global
constraints. A global constraint factorizes a set of homogeneus constraints; for
example, the well known alldiff constraint is posted on a set of variables
X0, X1 . . . and factorizes a full network of inequality constraints:

∀Xi, Xj with i 6= j : Xi 6= Xj

this has a self-evident advantage on the expressiveness side, allowing a compact
formulation of large sets of constraints. However, the main point for using global
constraints if that enforcing local consistency for the whole set is superior to
enforcing consistency for each single constraint individually. As an example,
consider the following simple CSP on finite domains:

X0 6= X1, X0 6= X2, X1 6= X2

X0, X1 ∈ {1, 2}

X2 ∈ {1, 2, 3}

By enforcing Arc Consistency on each constraint individually, no domain can
be reduced, as for each variable Xi, all values v in the domain have a support in
Xj , in the context of every single constraint Xi 6= Xj . However, by considering
all constraints at the same time, one may note that values 1 and 2 must be
assigned to X0, X1 in order to have a feasible solution, and D2 can be reduced
to D2 = {3}. The improved filtering provided by global constraints may result
in a large performance difference, in particular when solving large size problems.

Additionally, global constraints often provide efficient filtering algorithm tak-
ing into account all variables in the scope at the same time. Heterogeneous algo-
rithmic techniques may used to perform the filtering: for examples [Rég94] gives
the first polynomial time GAC algorithm for the alldiff constraint, based on
matching theory. The CP framework supports seamless integration of such a
diversity of methods. For a first state of the art on global constraint see [Sim96],
while [Rég03, HK06] provide more recent surveys and [BCR05] an exhaustive
catalog.

2.2.2 Searching in CP

Constraint Programming allows one to adopt a wide range of search schemes,
effectively casting into a CP framework algorithms devised in a completely dif-
ferent context. Many of the search strategies used in practice, however, belong to
of three main categories: Backtrack Search, Local Search and Dynamic Search;
here, the two former approaches will be briefly described, while Section 2.2.2.1
is entirely dedicated to backtrack search. For a comprehensive overview of CP
search approaches, see [Bee06].
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Local Search Local search approaches include Large Neighborhood Search
(see [Sha98] and Section 2.3.3) and the methods used in the Comet Search
Language (see [VHM05]). In the former, given an incumbent solution, CP
is used to solve a neighborhood, defined by relaxing some decisions (e.g. by
making some variables free). The Comet search language is mainly based on
the use of Soft Constraints, i.e constraints admitting some degree of violation
and providing a measure of such degree.; Comet search proceeds by trying to
minimize the total problem violation degree, until a feasible solution is found.

Dynamic Programming Dynamic Programming search (DP) for CP mainly
comprises Bucket Elimination [Dec99] and Non-Serial Dynamic Programming
[BB72]. Both methods basically propose the same idea in different flavors: as
a constraint Cj may be seen as the list of tuples it allows for the variables in
its scope S(Cj), a backtrack free search method can proceed by combining con-
straints into macro-constraints, until all problem solutions have been enumer-
ated. Unfortunately, the approach has exponential time and space complexity;
by properly ranking problem variables, however, the method is exponential only
in a parameter of the constraint network known as width (which is usually much
smaller than the number of variables).

2.2.2.1 Backtrack Search

As a matter of fact, most CP approaches are based on some variant of Backtrack
Search (BS) and Depth First Search in Particular (DFS). The main advantage of
DFS over DP is to retain polynomial space complexity. A BS approach proceeds
by posting (usually) unary constraints on variables, triggering propagation at
each step and backtracking upon failure. Basic design choices for a BS method
are the type of unary constraint posted at each search node (a.k.a. branch-
ing strategy) and the criterion to choose the actual constraint (i.e. the search
heuristic). A number of different techniques such as Backjumping and No-good
Recording, Restarts and Randomization may be adopted as well.

Branching Strategy We can refer as enumeration, to the branching strategy
consisting in choosing at each step a variable Xi and posting unary constraints
in the form Xi = v, ∀v ∈ Di. By adopting choice points in the form Xi = v,
Xi 6= v one gets so-called binary choice points; finally, domain splitting is a
branching strategy dividing at each step the domain of a variable Xi by posting
constraints Xi ≤ θ, Xi > θ. See Figure 2.8 for a pictorial description of the
three strategies.

Xi

X = vi 0 X = vi 1 X = vi 2 X = vi 3

Xi

X = vi 0 X = vi 0

Xi

X ≤ vi 0 X > vi 0

Enumera�on
Binary choice

points

Domain

spli�ng

Figure 2.8: Three of the most commonly used branchinng strategies
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Search Heuristics In all mentioned branching strategies, a criterion must be
specified to evaluate both variables and values; variable selection heuristics have
probably received so far the highest attention. A quite commonly accepted idea
is to select as soon as possible the variable where it is more likely to fail; this goes
under the name of “First-Fail Pricinple” (first appearing in [HE80]). A quite
common embodiment of such idea is the dom heuristic (see [GB65]), choosing
at each step the variable with the smallest domain. The heurstics was refined
in [Bré79], where ties in the selection are resolved by giving precedence to the
variable with the highest degree, i.e. involved in the highest number of non-
bound constraints; this is usually referred to as dom+ deg, or Brelaz heuristics.
More recently, [BR96] proposed to use the degree to weight the domain size
rather then to break ties (dom/deg).

Many modern heuristics try to gather some knowledge about the problem
prior to its solution (or during the search process itself); as an example, so-
called Impact Based Search (see [Ref04]) performs a diving step before problem
solution to evaluate the impact of each variable/value pair (Xi, v); such impact
is the relative search space reduction resulting from the assignment of v to Xi.
Alternatively, the weighted domain-degree heuristic (proposed in [BHLS04] and
referred to as dom/wdeg) builds upon dom/deg, but tries to learn constraint
weights during search.

Nogood-Learning, Backjumping Extracting information from the prob-
lem is also at the base of no-good learning and backjumping techniques. The
main underlying idea is, once a failure occurs, to analyze and deduce the cause
of failure; this is called an explanation and can be given in a pure no-good for-
mat ({Xi = v ∧Xj = w . . .}, see [Bac00]) or as a generalized one [KB05]. The
process can be performed by treating propagation as a black-box (as done in
QuickXplain [Jun04], but is usually more efficient to take exploit knowledge
about the problem constraint structure. Once a possible cause of the failure
is known, backjumping [Gas78] consists in backtracking directly to the closest
assignment invalidating the explanation.

Randomization and Restarts Perhaps counterintuitively, randomization
and restarts are powerful techniques which can be used both to boost and to
stabilize the behavior of a BS method. Randomization consists in introducing
some degree of randomness in the choice of the variable/value to branch on (e.g.
by randomly breaking ties); work [Gom04] provides a nice overview of the topic.
A randomized search method is usually restarted from time to time, to prevent
a bad choice taken in the early steps from sinking the overall performance. On
this purpose, effective universal restart strategies both with and without strong
theoretical support have been proposed (see [LSZ93, Wal99]).

Alternatives to Depth First Search Finally, BS alternatives to pure Depth
First Search have been proposed as well; as an example in Limited Discrepancy
Search [HG95], given a reference heuristics, the search space is explored by
allowing an increasing number of decisions to be taken against the heuristic.
Decomposition Based Search (see [HM04]) generalizes the previous approach
by using the reference heuristic to classify values of each variable into “good”
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and “bad”; initially, all variables are required to assume a good value, while an
increasing number of bad values is allowed as the search proceeds.

2.3 Constraint Based Scheduling

According to Baker (see [Bak74]), a scheduling problem consists in allocating
scarce resources to activities over time. We refer as Constraint-Based Schedul-
ing [BLPN01] to to the use of CP techniques to solve scheduling problems. The
equation CP = model + search is pretty much valid in this context as well;
therefore, CP contributions to scheduling can be classified into modeling tech-
niques and search strategies.

2.3.1 A CP Model for Cumulative Scheduling

Here, we mostly deal with Cumulative Non-preemptive Scheduling problems,
involving activities with general precedence relations; throughout this section,
the term “activity” and “task” will be used with the same meaning, while this
is not the case for other sections in the work. The term “cumulative” tells
that finite capacity resources are considered; resources are additive, i.e. the
resource requirement of a sets of tasks simultaneously running is the sum of
their resource requirements. Unit capacity (unary) resources are a particular
case of cumulative resources. The term “non-preemptive” means that activities
are non-interruptible once they have started.

Scheduling problems over a set of activities/tasks T = {t0, t1, . . .} and re-
sources R = {r0, r1, . . .} are classically modeled in CP by introducing for every
activity ti three integer variables (see [BLPN01]):

• Si representing the activity start time (i.e. the first time instant where
the activity is executing)

• Ei representing the activity end time (i.e. the first time instant where the
activity is not executing)

• Di representing the activity duration (i.e. the number of time instants
where the activity is executes)

“Start”, “end” and “duration” variables must satisfy the constraint Ei = Si+Di.
Quite commonly activity durations are fixed values (say di) and hence Di =
di. Bounds for the “start” and “end” variables are referred to by means of
conventional names; the detailed list follows:

min(Si) = EST (ti) (Earliest Start Time)

max(Si) = LST (ti) (Latest Start Time)

min(Ei) = EET (ti) (Earliest End Time)

max(Ei) = LET (ti) (Latest End Time)

The EST and LET value may be forced by the user, thus effectively setting a
release time and a deadline on the activity execution. Precedence constraint can
be modeled by means of simple linear constraints Ei ≤ Sj . Limitations due to
finite capacity resources are usually take into account by introducing, for each
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min: F (T )

subject to: Ei = Si + Di ∀ti ∈ T

Ei ≤ Si ∀ti ≺ tj

cumulative([Si], [Di], [rqik], Ck) ∀rk ∈ R

with: Si, Ei ∈ {0, . . . eoh}

Di = di

Figure 2.9: A CP model for cumulative, non-preemptive scheduling with fixed
durations

resource rk ∈ R a global cumulative constraint:

cumulative([Si], [Di], [rqik], Ck)

where [Si] and [Di] are the arrays of activity start and duration variables, [rqik]
tells the resource requirements of each activity ti and Ck is the capacity of
the considered resource. The cumulative constraint guarantees the resource
capacity is not exceeded at any point of time by the considered activities. For
sake of simplicity, let us assume all Si variables range between 0 and eoh (End
Of Horizon); then the constraint enforces:

∀τ = 0, . . . eoh :
∑

Si≤τ<Si+Di

rqik ≤ Ck (2.1)

In other words, for each time instant τ , the sum of the requirements rqi of ac-
tivities executing at time τ (Si ≤ τ < Si + Di) must not exceed the resource
capacity Ck. We define a solution to the scheduling problem (a.k.a. schedule)
as a feasible assignment of all Si and Ei variables. Figure 2.3.1 show a com-
plete example of a quite usual CP based model for cumulative, non-preemptive
scheduling problem with fixed durations. Note that The function F to be min-
imized has been intentionally left non-specified, as several type of objectives
could be considered; moreover, thanks to the flexibility of the CP approach, a
wide number of different scheduling problem variants can be taken into account
by simply adding side-constraints.

2.3.1.1 Objective Function Types

Here we give a brief description of the objective functions most commonly used
in cumulative scheduling problems. Probably, the most frequently occurring
one is the makespan (or overall completion time); this is defined as the worst
completion time among activities to be scheduled; hence:

F (T ) = max
ti∈T

(Ei)

Note that, if a single activity ti∗ with no successor exists, its completion time
indeed is the makespan value: Ei∗ = makespan. In the general case where
the are more of such activities, one may want to minimize the total weighted
completion time, defined as the weighted sum of the completion time of activities

20



end i

c
o
s
t

Comple�on

Time

A

Tardiness ‐ T(t )i

end i

c
o
s
t B

Late Job ‐ U(t )i

end i

c
o
s
t C

Figure 2.10: Basic blocks for scheduling objective functions

with no successors; formally, in this case:

F (T ) =
∑

ti with no successor

wi · Ei

where wi is the weight associated to the completion time of ti. Alternatively,
activities may be subject to deadlines dli, and incur some penalty in case such
deadlines are exceeded. Formally, we define a activity tardiness as Tr(ti) =
max(0, dli − Ei); then, one may want to minimize the maximum tardiness (see
[Jac55]):

F (T ) = max
ti∈T

(Tr(ti))

or to minimize the total weighted tardiness:

F (T ) =
∑

ti∈T

Tr(ti)

Finally, one may be interested in minimizing the number of activities ex-
ceeding the deadline (number of late jobs, see [Moo68]); formally, this can be
modeled by introducing a function U(ti), with value 1 if Ei > dli and 0 otherwise.
Then we have:

F (T ) =
∑

ti∈T

U(ti)

The presented objective functions are all regular, i.e. non decreasing in the
the end time of activities. As a general rule, CP tend to perform best when the
objective function is defined as the maximum over a set of expression (such in the
makespan of the maximum tardiness case); in this case, any constraint on to the
objective value (e.g. a global deadline) is effectively back-propagated, narrowing
the time window of all activities. Conversely, CP is much less effective on the
remaining objective function we have described, as they involve sum constraints
and those exhibit poor propagation.

2.3.2 Filtering for the cumulative constraint

Filtering algorithms for the cumulative constraint (or more in general for re-
source constraints) represent a substantial part of the research body about CP
based scheduling. In the following, the main techniques proposed in the litera-
ture and used in practice are presented (for more advanced methods one may
refer to [BCP08, BP07, Lab03]); the deduction rules characterizing each filtering
methods are shown as logical implications and described with the help of simple
examples.
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In the following, we assume activity durations to be fixed (Di = di); if
this is not that case, all the presented filtering rules still apply by assuming
di = min(Di). Note also that, when the target resource Ck is unary, all presented
techniques have specialized algorithms performing the same filtering with higher
efficiency.

2.3.2.1 Time-Table Filtering (TTB)

Time-table filtering for the cumulative constraint in the non-preemptive case
mainly consists in maintaining bound consistency on Si variable, according to
Formula (2.1).

This is done by means of a global data structure, referred to as time-table,
storing an updated best case usage profile for the current resource. More in
detail, whenever at run time for an activity ti we have LST (ti) ≤ EET (ti), then
we know the activity has to execute (and use the resource) in [LST (ti)..EET (ti))
(this is called an obligatory region); the notation [a..b] refers to the integer
interval between a (included) and b (excluded). Correspondingly, the time-
table is updated and the best case resource usage in such interval is increased
by rqik. In the following, we denote as RQ(τ) the best case usage at time τ .
As the resource consumption only changes on LST and EET , the time-table
allows access to RQ(τ) in O(log(|T |)) (by using binary search). Iterating over
the entire data structure takes O(|T |).

If during search at some time point EST (ti) there is not enough capacity left
to let ti start, we can push right the activity ti; this is done by setting EST (ti)
at the next value τ ′ after which the resource has enough residual capacity for
at least di time units. Formally, let us first define RQ(τ, ti) as the best case
resource usage at time τ in the hypothesis that activity ti is running at time τ :

RQ(τ, ti) =

{

RQ(τ) if LST (ti) ≤ τ < EET (ti)

RQ(τ) + rqik otherwise

Then, for each activity ti:

∃τ ∈ [EST (ti)..EST (ti) + di) : RQ(τ, ti) > Ck ⇒

⇒ Si ≥ min{τ | RQ(τ ′, ti) ≤ Ck, ∀τ
′ ∈ [τ..τ + di)

︸ ︷︷ ︸

(A)

} (2.2)

Condition (A) simply requires the resource to have enough capacity left to allow
ti execute between τ and τ + di (excluded). For an introduction on time-table
filtering see [BLPN01, Lab03]. Figure 2.11 shows an example of Time Table
filtering; for each activity the boundaries of the light gray region (e.g. for t2)
represent the EST and the EET , the boundaries of the dark gray region are the
LST and the LET . The duration is given by the length of the light gray region
(which is the same as the dark gray one). An even darker part (e.g. tasks t0, t1)
highlights an overlapping of the the two gray regions (i.e. an obligatory region).
Since at time 4 we have RQ(4, t2) = 3 > 2, activity t2 is pushed forward.

2.3.2.2 Disjunctive Filtering (DSJ)

Disjunctive filtering is based on the simple idea that pairs or activities which
would cause a resource over-usage cannot overlap in time. Formally, for every
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Figure 2.11: An example of Time Table filtering

pair of activities such that neither ti ≺ tj (ti preceeds tj) nor tj ≺ ti:

rqik + rqjk > Ck ⇒ Ei ≤ Sj ∨ Ej ≤ Si (2.3)

in other words, if ti and tj would exceed the resource usage, then either ti ≺
tj or tj ≺ ti. The idea can be generalized (although non-trivially) to set of
activities rather than just pairs; however, this is very uncommon, as the number
of resulting constraint is exponential in |T |.

The approach can detect some inconsistencies which are not spotted by time-
table filtering; consider for example Figure 2.12: since the activities do not have
any obligatory region, no deduction can be performed via timetabling. However,
one can check that t0 cannot start before t1, while the overall requirements of
the two activities exceeds Ck; hence, t1 is forced to come before t0. . .

Hence DSJ filtering is not dominated by TTB filtering. At the same time,
there are situations (e.g. Figure 2.11, where no two activity overuse the re-
source), where all S variables are instantiated and no inconsistency is detected:
hence TTB is not dominated by DSJ as well. For a detailed comparison among
filtering algorithms for cumulative, see [BLPN01], Chapter 4.

Figure 2.12: An example of Disjunctive filtering

2.3.2.3 Edge Finder (EFN)

Edge finder filtering performs some “energy based reasoning” to detect mutual
relations between activities. In practice, a resource may be thought as an energy
provider over time; in particular, the energy provided by rk on the interval
[t1..t2) is defined as Ck · (t2 − t1). Similarly, each activity can be considered an
energy consumer, with E(ti) = rqik · (t2 − t1) being the energy consumed in the
interval [t1..t2).

The main idea in edge finding is that, if by adding a activity ti to a consistent
set of activities Ω the overall energy consumption over the available time window
is too high, then some restriction must be applied to Si. As a first step toward
the constraint rule, note that some of the definitions introduced for activities
can be extended to a set of activities Ω. Namely:
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• EST (Ω) = minti∈Ω EST (ti)

• LST (Ω) = maxti∈Ω LST (ti)

• EET (Ω) = minti∈Ω EET (ti)

• LET (Ω) = maxti∈Ω LET (ti)

• E(Ω) =
∑

ti∈Ω E(ti)

Classical edge finder reasoning [Nui94] requires an activity ti and a set of ac-
tivities Ω; then, if by assuming ti to end before LET (Ω), the resulting time
window does not contain enough energy, we can deduce that ti has to end after
all activities in Ω. Formally:

E(Ω ∪ {ti}) > Ck · [LET (Ω)− EST (Ω ∪ {ti})] ⇒

⇒ ∀tj ∈ Ω : Ej ≤ Ei
(2.4)

By reasoning the other way round, one can get the dual implication. In case
deduction (2.4) is performed, the end time of ti can be adjusted to the first time
point after which all tj in Ω leave enough capacity:

Ei ≥ min{τ ≥ EST (Ω) | ∀τ ′ ≥ τ :
∑

tj∈Ω

Sj≤τ ′<Ej

rqjk ≤ Ck − rqi}

Unfortunately, computing such value requires to solve and NP-hard problem,
hence one has to resort to lower bounds; for more details see [BLPN01]. Fig-
ure 2.13 show an example of edge finder filtering; activities have no obligatory
region and do not pairwise exceed the capacity, hence both TTB and DSJ can-
not deduce anything. However, let the set Ω contain t1, t2, t3; then the interval
[0..7) – i.e. [EST (Ω)..LET (Ω)) – does not provide enough energy to execute
Ω ∪ t0 (requiring 15 resource units); hence t0 can be forced to end after all
activities in Ω have ended. Note finding the corresponding time instant is not
trivial: in this case it was done by hand.

0 5 10 15 0 5 10 15

C = 2 rq  = 10 rq  = 11 rq  = 12

Figure 2.13: An example of Edge Finder filtering

2.3.2.4 Not-first, not-last rules (NFL)

Not-first, not-last rules (introduced in [NA96, Nui94, NA94]) share with edge
finding the main idea to deduce mutual relations between a target activity ti
and a set of activities Ω. Compared to EFN , however, NFL has stronger
application requirements and can result in more pruning.

24



In particular, if ti can produce, together with all activities in Ω, an energy
over-usage on the interval [EST (Ω)..LST (Ω)), then ti has to start after at least
one activity in Ω. Formally, let rqer(ti,Ω) be the maximum energy consumed
by ti over the interval [EST (Ω)..LST (Ω)) in case ti is starts as soon as possible.
Then:

and

{

EST (Ω) ≤ EST (ti) < EET (Ω)

E(Ω) + rqer(ti,Ω) > Ck · [LET (Ω)− EST (Ω)]
⇒ Si ≥ EET (Ω) (2.5)

with rqer(ti,Ω) = rqik · [min(EET (ti), LET (Ω)) − EST (Ω)]; by reasoning the
other way round one can get the dual rule. As an example, consider Figure 2.14;
neither TTB nor DSJ can deduce anything. However, let Ω = {t1, t2, t3};one
can note that the time interval [0..6) does not provide enough energy to execute
Ω ∪ t0; since EST (Ω) ≤ EST (ti), then NFL can be applied instead of edge
finding; hence t0 is forced to start after EET (Ω). Note the resulting pruning is
stronger than that performed by EFN .

0 5 10 15 0 5 10 15

C = 2 rq  = 10 rq  = 11 rq  = 12

Figure 2.14: An example of Not First, Not Last filtering

2.3.2.5 Energetic Reasoning (ENR)

Additional propagation can be enabled by applying energetic reasoning on time
intervals rather than to activity sets. In particular, a technique proposed in
[ELT91, LEE92] considers selected relevant intervals and checks whether their
best case energy usage prevents some activity ti from being left-shifted (sched-
uled as soon as possible) or right-shifted (scheduled as late as possible). For-
mally, given a time interval [τ1..τ2), we provide a notation for the following
duration values:

• τ2 − τ1: the length of the time interval

• d+(ti, τ1): the amount of time by which ti executes after τ1, in case the
activity is left-shifted. Formally:
d+(ti, τ1) = max(0, di −max(0, τ1 − EST (ti))).

• d−(ti, τ2): the amount of time by which ti executes before τ2, in case the
activity is right-shifted. Formally:
d−(ti, τ2) = max(0, di −max(0, LET (ti)− τ2)).
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We can then introduce, over the interval [τ1..τ2), the minimum energy consumed
by ti and the minimum energy consumption in general. Those are:

E(ti, τ1, τ2) = rqik ·min(τ2 − τ1, d
+(ti, τ1), d

−(ti, τ2)) (2.6)

E(τ1, τ2) =
∑

ti∈T

E(ti, τ1, τ2) (2.7)

Energetic reasoning filtering then identifies time intervals [τ1..τ2) and activities
ti such that, if ti is left-shifted, an energy over-usage arises on [t1..t2); conse-
quently a time bound update can be performed. In detail:

(A)
︷ ︸︸ ︷

E(τ1, τ2)− E(ti, τ1, τ2) + rqik · p+(ti, τ1) > Ck · (τ2 − τ1) ⇒

⇒ Ei ≥ τ2 +










(B)
︷ ︸︸ ︷

E(τ1, τ2)− E(ti, τ1, τ2) + rqik · p+(ti, τ1)− Ck · (τ2 − τ1)

rqik










(2.8)

In the above implication, expression (A) denotes the energy requirement on the
time interval [τ1..τ2) obtained by replacing the minimum energy usage of ti with
the left-shift usage. In case the required energy exceeds that provided by the
resource on the same interval, then:

1. ti cannot end before τ2;

2. after τ2, an activity ti still requires an amount of energy; its minimum
value is given by expression (B) – i.e. expression (A) minus Ck · (τ2 − τ1)

The proof of the time bound can be find in [BLPN01]; the same text reports
the precise characterization of the time intervals which need to be taken into
account and show that their number is O(|T |2)). An extremely important prop-
erty of energetic reasoning is that ENR dominates all the filtering methods
described so far; the only drawback of the approach is its non trivial computa-
tional complexity.

Figure 2.15 shows an example of energetic based filtering; no inconsistency
is detected by TTB, DSJ , EFN , NFL, but one can note that the interval
[2..6) does not provide enough energy to allow the left shift of t0 (4+2+4 units
would be required, while 2 × 4 = 8 are available). Hence t0 if forced to end at
6 + (10− 8)/1 = 8.

Figure 2.15: An example of Energetic Reasoning based filtering
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2.3.2.6 Integrated Precedence/Cumulative Filtering

By extending the filtering algorithms to take into account more constraint
one can improve the filtering capabilities. In scheduing, a particularly in-
teresting case is to consider at the same time both resource constraints (the
classical cumulative) and precedence relations. Work [Lab03] takes into ac-
count this combinations and provides two main algorithms for integrated prece-
dence/cumulative filtering.

Both the proposed algorithms are based on a data structure (referred to as
precedence graph) storing all precedence information about problem activities;
in particular the graph considers precedence constraints in the initial problem
formulation, as well as discovered ones. The data structure provides efficient
computation of eight functions returning activity sets:

• PSS(ti), PSE(ti): activities Possibly Starting before Start/End of ti
• NSS(ti), NSE(ti): activities Necessarily Starting before Start/End of ti
• PES(ti), PEE(ti): activities Possibly Ending before Start/End of ti
• NES(ti), NEE(ti): activities Necessarily Ending before Start/End of ti

Precedence Energetic Reasoning Based on the provided precedence in-
formations, it is possible to cast a new energetic reasoning rule; given a set of
activities Ω constrained to end before ti starts (i.e. such that Ω ⊆ NES(ti)),
the resource must provide enough energy to let Ω execute before ti can start:

Si ≥ EET (Ω) +

⌈∑

tj∈Ω rqjk · dj

Ck

⌉

(2.9)

The key advantage over standard energetic reasoning is that some activities
may be constrained to start before ti and yet this could not be deduced by
reasoning on time windows alone; this is especially useful when the time windows
are large. Consider for example Figure 2.16, where all the filtering rule presented
so far are ineffective, due to the large time windows. However, let Ω contain
t1, t2, t3, all constrained to end before t0 starts; then by combined precedence
and energetic reasoning one can deduce that t0 has to start no earlier then
⌈0 + 9/2⌉ = 5, instead of just 3 (deduced by considering precedence constraints
only).

0 5 10 15 0 5 10 15

C = 2 rq  = 10 rq  = 11 rq  = 12

Figure 2.16: An example of Precedence Energetic filtering

Balance Constraint Additionally, the precedence graph can be used to com-
pute upper (respectively: lower) bounds on the resource availability before the

27



start (respectively: after the end) of each activity ti; this is at the base of the so
called Balance constraint (actually a filtering rule). Here, we focus on the rule
for start variables, the rule on end variables being symmetric.

In particular, an upper bound on the resource availability before the start
of ti can be computed by taking into account the usage the set Ω of activities
necessarily starting before ti (Ω ⊆ NSS(ti)) and not possibly ending before ti
(thus PES(ti) ∩ Ω = ∅ and NES(ti) ∩ Ω = ∅); in detail:

UBstart(rk, ti) = Ck −
∑

tj∈Ω

rqjk

where Ω = NSS(ti) \ [PES(tj) ∪ NES(ti)]. If UBstart(rk, ti) < 0 then the
problem is infeasible. Moreover, if the quantity Ck−

∑

tj∈NSS(ti)\NES(ti)
rqjk is

negative, then some activities in PES(ti) must end before ti, in order to release
the needed amount of resource capacity. Let this amount be reqstart(rk, ti); in
detail:

reqstart(rk, ti) = −



Ck −
∑

tj∈NSS(ti)\NES(ti)

rqjk





Now, let tj0 , tj1 , . . . the sequence of activities in PES(ti), ordered by increasing
EET . Let h∗ be the index such that:

h∗−1∑

h=0

rqjh < reqstart(rk, ti) ≤
h∗
∑

h=0

rqjh

then we know ti cannot start before EET (th∗), or not enough resource capacity
would be available for its execution. Hence we deduce Si ≥ EET (tk). The
deduction can be strengthen in case particular conditions hold: the reader can
refer to [Lab03] for details.

Figure 2.17: An example of Balance filtering

Figure 2.17 show an example of balance filtering; note none of the rule not
taking into account precedence relations can deduce anything about t0, due
to the size of the time windows; moreover, precedence energetic reasoning is
blind as well, since no activity is constrained to end before t0. However, both
t1 and t2 necessarily start before t0 (due to the precedence constraints) and
possibly end before t0. As their cumulative resource consumption is 2, one can
deduce by balance reasoning that t0 has to start after the minimum between
EET (t1), EET (t2).
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2.3.3 Search Strategies

Many search algorithm have been used to solve scheduling problems within a
CP framework, ranging from simple tree search strategies to complex hybrid
algorithms integrating OR or SAT techniques. In this section we try to outline
briefly the scheme of the most widely employed search approaches.

Schedule Or Postpone Proposed in [PVG], this is a tree-search strategy
focusing on the production of so called active schedules (see Section 2.4.3.3). At
each node of the search tree an activity ti is selected; usually, the activity with
the lowest earliest start time is chosen, while latest end times are used to break
ties. Then a choice point is opened; along the first branch ti is scheduled at
EST (ti), along the second branch ti is marked as non-selectable (i.e. postponed)
until its earliest start time is modified by propagation.

The method naturally produces schedules where no activity can be left
shifted (so called active schedules). Since, if the objective function is regular,
there always exist an optimal active schedule, the method is complete (unless
the regularity hypothesis is violated or weird precedence constraints are used).

Precedence Constraint Posting This search method (compactly referred
to as PCP) proceeds by resolving possible resource conflicts through the addition
of precedence constraints. The idea is relatively old, but was very successfully
applied in a CP framework by [Lab05, PCOS07]. In particular, the approach
proposed in [Lab05] consists in the systematic identification and resolution of
so called Minimal-Conflict-Set. A MCS for a resource rk is a set of activities
such that:

1.
∑

ti∈MCS rqik > Ck

2. ∀ti ∈ MCS :
∑

tj∈MCS\{ti}
rqjk ≤ Ck

3. ∀ti, tj ∈ MCS with i < j : Si < Ej ∨ Sj ≤ Ei is consistent with current
state of the model

where (1) requires the set to be a conflict, (2) is the minimality condition and
(3) requires activities to be possibly overlapping. A MCS can be resolved by
posting a single precedence constraint between any pair of activities in the set;
complete search can thus be performed by using MCS as choice points and
posting on each branch a precedence constraint (also referred to as resolver).
A deeper discussion on the Precedence Constraint Posting approach appears in
Section 5.3.2.

Large Neighborhood Search (LNS) This is search process is based on
interleaving relaxation and re-optimization steps; LNS was successfully applied
to scheduling problems in [COS00, MVH04, GLN05]. In the most general case,
the in the re-optimization step any algorithm could be adopted; in [GLN05],
for example, a schedule or postpone tree search is used on the purpose. LNS is
currently the default search strategy adopted ILOG CP Optimizer [LRS+08] to
solve scheduling problems.
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2.4 The RCPSP in Operations Research

The reference scheduling problem presented in Section 2.3.1 is an instance of
the well known Resoruce Constrained Project Scheduling Problem (RCPSP).
The RCPSP has been subject of deep investigation by the Operations Research
community since the 70s [DH71]. In the last 40 years a large number of problem
variants, benchmarks, optimal and heuristic algorithms have been provided.

The basic RCPSP formulation consists in scheduling (i.e. assigning a start
time) a set of activities/tasks T = {t0, t1, . . .} connected by a set of end-to-
start precedence relations A = {(ti, tj)}. The set of activities and precedence
relations forms a graph G = 〈T,A〉, usually referred to as project graph in the
literature. A set of resources R = {r0, r1, . . .} completes the problem input set;
each resource has a capacity Ck and each activity ti requires a non-negative
amount rqik of resource rk throughout its execution. The project graph usually
contains a dummy source activity (similarly to Task Graphs, see Section 2.1.2
and a dummy sink activity (unlike Task Graphs). The “standard” problem
objective is to minimize the makespan, and is the same as minimizing the end
time of the sink activity.
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t3 t4
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rq 0,0

rq 1,0
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d 3 4

d 4 1

d 5 2
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Figure 2.18: An instance of a basic RCPSP; t0 and t7 are dummy nodes.

Constraint Programming tends to provide modular algorithm design tools
(constraints, search strategies,. . . ) which can be arbitrarily composed; con-
versely, the OR approach to scheduling problems focus on providing a detailed
classification and characterization of the properties of each identified class.
Given the variety of allocation and scheduling problem in the real world, this
approach led to a pretty crowded zoo of problem types.

Covering the whole RCPSP related literature is beyond the scope of this
work; for a more complete reference the reader may however refer to the surveys
in [BDM+99, HB09, KP01] (and additionally to those in [HDRD98, YGO01,
HL05a, KH06]). Here, the focus will be on providing a schematic overview of
the considered RCPSP problem variants, the main branching rules adopted in
complete approaches and the reference ILP models.

2.4.1 RCPSP Variants

RCPSP problem variants are denoted by an extension (proposed in [BDM+99])
of the popular three-field α|β|γ Graham’s notation, introduced in [GLLK79] for
machine scheduling. Despite covering the intricacies of such notation is not an
objective of this work, it is useful to recall that the first parameter (α) refers to
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characteristic of the resources (the so-called resource environment). The second
parameters (β) refers to the activity characteristics and the adopted type of
precedence relations; finally the third parameter (γ) describes the objective
function. A similar classification scheme is be adopted here to present RCPSP
subtypes.

2.4.1.1 Resource characteristics

Several types of resources are considered in the RCPSP literature, the most
common being:

Renewable Resources: this is the simplest type of resource, exhibiting constant
capacity over time. From another (equivalent) perspective, the resource avail-
ability is renewed at each time instant. E.g. an industrial machine or a CPU,
capable of running a finite number of activities simultaneously.

Non-renewable Resources: this type of resource has a starting availability and is
consumed throughout the whole scheduling horizon, until it is depleted. Project
budget is a good example of non-renewable resource. In [NS03], so-called cumu-
lative resource are also considered; those are basically non-renewable resources
which can be refilled by some activities at schedule execution time. This type
of resource is well known in the CP community as reservoir.

Partially Renewable Resources: this type of resource requires the specification
of a list of sub-periods Π = {π0, π1, . . .} (not necessarily having the same length);
the resource is renewed at the beginning of each sub-period. Note this is a
generalization of both renewable and non-renewable resources.

2.4.1.2 Activity characteristics

Among the most relevant activity characteristics described in the literature, we
consider:

Single Mode Activities: those are the “standard”, fixed duration, non preemp-
tive activities used as a reference in Section 2.3. Single mode activities are the
most often encountered in practical problem models and solution methods.

Multi Mode Activities: this type of activity (introduced in [Elm77]) may ex-
ecute in one of a set of modes; each mode can define a different duration and
different resource usage. Multiple modes may arise (for example) when the
project responsible can afford spending more money on an activity to make
it finish earlier (time-cost tradeoff problems – see [DDRH00] for the single re-
source case, and [RDRK09] for multiple renewable resources); for this reason
multi-mode activities are traditionally associated with non-renewable resources.

Multi mode activities can also be used to introduce a resource allocation
step in a RCPSP framework (see [VUPB07]); this is done by defining, for each
activity, modes using different renewable resources, while there is no need to
take into account a non-renewable resource. Somehow surprisingly, this problem
setting is extremely uncommon in the OR literature.
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Preemptive Activities: by preemption, we mean that an activity may be in-
terrupted at some point of time and recovered later on. An activity ti may
be preempted to give priority to a second, more urgent, task using the same
resource; alternatively, preemption can be a side-effect of having “holes” in re-
source availability (e.g. due to vacation time, week-ends, etc.). Preemption is
never considered with multiple modes.

From the point of view of this work, non-preemptive single and multi-mode
activities with renewable resources are the most interesting RCPSP setting.

2.4.1.3 Precedence Relation Types

The β parameter in the three field classification refers to the precedence rela-
tion features; besides traditional end-to-start arcs, the most relevant classes of
precedence constraints include:

Generalized Precedence Relations: in this case end-to-start relations are gen-
eralized by introducing start-to-start, end-to-end and start-to-end precedence
constraints. Note that, as one may intuitively realize, all this precedence rela-
tion types can be converted to some extent one into another, as described in
[BMR88]. Note however that the conversion cannot be applied in multi-mode
scheduling.

Minimal and Maximal Time Lags: minimal and maximal time lags may label
the precedence constraints so that, by referring as Si and Ei to the start and end
time of activity ti, the produced schedule must satisfy δmin ≤ Ej − Si ≤ δmax;
where δmin, δmax respectively are the the minimum and maximum time lag
labeling arc (ti, tj).

Minimal time lags are a useful modeling tool when resource requires setup
time between specific sequences of activities; for example, if activities ti and tj
have to be processed at different temperatures on an industrial oven, some setup
time will be required between ti and tj to allow the temperature to change. From
a computational point of view, basically every approach dealing with common
precedence relations can be extended to take into account minimal time lags.
For some recent works taking into account minimal time lags, see [HB09].

Maximal time lags, however, are another pair of shoes, as they introduce
relative deadlines on the activity execution; as a consequence, finding a feasible
schedule becomes NP-complete; conversely, in the basic RCPSP formulation a
trivially feasible schedule can always be found by serializing all activities. This
modification hinders most of the algorithms devised for the RCPSP without
maximal time lags.

An interesting point is to note that a maximal time lag on an arc (ti, tj) can
be converted into a negative minimal time lag on the complementary arc (tj , ti)
(see [BDM+99]). The resulting network contains a feasible schedule if and only
if no cycle with positive length exists (see [BMR88]); this further stresses the
analogy between project graph with time lags and Simple Temporal Networks
in Artificial Intelligence (see [DMP91]), for which analogous results have been
produced. Finally, note that fixed release dates and deadline on each activity ti
can be set by posting precedence constraints with time lags between the dummy
start node and ti.
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Logical Dependencies: so far we have implicitly assumed that an activity tj
destination of more arcs (tik , tj) must execute after all the predecessor nodes.
From a logical standpoint, let S(ti) the predicate “activity ti has started” and
let E(ti) be “activity ti has ended”; the set of precedence constraint enforces
the following logical relation:

S(tj) ⇒
∧

E(tik)

hence, the set of arcs can be seen as a single AND hyper-arc; by generalizing
the idea, one may have OR hyper-arcs as well (often referred to as disjunctive
arcs in the literature), forcing a tj to execute after at least one predecessor
tik . This is especially handful in case a precedence based branching schema is
adopted, as described in the forthcoming Section 2.4.3.1. Note however that
due to disjunctive arcs the feasible region is no longer convex, but a union of
convex polyhedra (see [Sch98]); this prevent the application of some techniques:
most notably, Bound Consistency on precedence relations is no longer equivalent
Generalized Arc Consistency.

2.4.1.4 Objective Functions Types

Some of the objective functions considered in Resource Constrained Project
Scheduling have already been presented in Section 2.3.1.1; in particular, all the
objective presented so far (completion time, tardiness, number of late jobs. . . )
can be classified as time based objectives and are the most frequently occurring
in practical problems. Nevertheless, many other type of functions appear in the
RCPSP literature; some of them are recalled in the followings; for an extended
list see [HB09].

Resource Based Objectives: those include all function measuring a resource
related cost. In particular, there may be a cost to pay to provide resource
capacity; this leads to objective in the form

∑

k cost(Ck), where cost is any non-
decreasing function of the resource capacity Ck. The resulting RCPSP variant
goes under the name of resource investment problem. Alternatively, the price to
pay could be associated to capacity variations; this leads to objectives such as
the minimization of the maximum change, or the sum of changes; the resulting
RCPSP settings takes the name or resource leveling problem. A comprehensive
list of resource related objective functions can be found in [NSZ95]. Note that
design space exploration (see Section 2.1.1) can be though as very peculiar
problem with resource dependent objective.

Net-Present Value Based Objectives: the last class of objective functions men-
tioned in this work are based on the net present value. Basically, in many project
scheduling problems a cost is associated to the execution of each activity (or
some other project subpart); similarly, a reward can be associated to the end
of the activities. To limit the project cost, one may be interested in minimizing
the maximum value on the project graph at execution time. Many variants of
such objective exist in the literature; for a list see [HB09].

2.4.2 Representations, models and bounds

This section covers some of the adopted representations, models and bounds
for the RCPSP. Basically, representations tend to suggest models and models
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in turn serve as a base for bound computation; hence it was quite natural to
group all those aspects in a single section.

2.4.2.1 RCPSP representations

Typically, RCPSPs are described by means of graph-based representations. Dif-
ferent mappings between the problem concepts and the graph objects lead to
different formulations; the most common choices respectively map activities to
nodes and activities to arcs, and are referred to through the acronyms AON
(Activity On Node) and AOA (Activity On Arc).

As an alternative, one may rely on a specific deterministic scheduling tech-
nique to provide a more compact representation; for example, it is quite common
in RCPSP heuristics to encode a schedule as an activity list; this can be turned
in an actual start time assignment (in linear time) by a priority rule schedul-
ing algorithm. In the following, all the mentioned representations are briefly
discussed; the content of this section is mainly based on [KP01].

Activity on Node representation: the AON representation is the most fre-
quently adopted; each activity/task corresponds to a graph node; dummy source
nodes and sink nodes are usually added to model project start/end. AON is
quite a natural mapping choice, leads to compact representations and lets one
easy model single and multi mode activities (by annotation of nodes), time lags
(by annotation of arcs), classical time and resource based objectives. However,
AON has some difficulties in modeling generalized precedence constraints (such
as start-to-start) and net value based objectives; in fact, annotating nodes with
both costs ad rewards fails to model the fact that necessary expenses occur
before the reward is achieved.

Activity on Arc representation: in this representation type, graph nodes rep-
resent events (such as an activity start or end) and arcs represent activities.
Dummy nodes are usually added to model the project start/end and dummy
activities (arcs) are used to model precedence relations. Compared to the previ-
ous approach, AOA representations support generalized precedence constraints
in a straightforward fashion.

AOA representations actually come in two flavors, depending on whether
node events are related to (A) single activities or to (B) multiple activities.
Case (B) allows a more compact representation (usually as compact as AON
models) but generally fails to model correctly net value based objectives; the
reason is that, if costs or rewards related to multiple activities are mapped on
the same event, it is impossible to trace back exactly the activity they refer
to. One may easily circumvent the issue by associating nodes to single activity
events (namely “start” and “end”), with the drawback of doubling the number
of nodes; this may become a problem in large projects.

Activity List Representation: here the main idea is to represent a schedule (not
a project) as the input for a reference algorithm; priority rule based scheduling
(see forthcoming Section 2.4.3.3) is often used on this purpose, as it requires
the specification of a single priority value for each activity (at least in the basic
version). This allows one to represent a whole schedule as a list of numbers,
or a simple list of activities (sorted by their priority). The compactness and
the simplicity of this representation make it an appealing choice for heuristic
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approaches such as genetic algorithms or local search, by making easier the
definition of the required operators.

Gantt Charts: Gantt Charts are mentioned here as they are a well known tool
to represent project schedules, as well as the underlying representation for many
commonly used RCPSP models. A Gantt Chart is table-like diagram where each
row refers to an activity and each column to a time point; a cell i, j is either
filled if activity i is running at time j, or blank otherwise.

2.4.2.2 RCPSP Reference Models

An overwhelming number of different solution approaches can be found in the
RCPSP related literature; some of them are based on clear declarative models,
some are not. Despite covering the whole range of adopted formulation would be
impossible, many of the used models actually origin from a very limited number
of basic schemes; the main ones according to the author are presented in the
followings.

Time Point Based Model Time point based models have roots in graphical
representations of the project network. The main idea is to introduce for each
node in the graph (either activity or event) a real or integer variable telling the
time instant where the event occurs; for example, one may introduce a start
variable Si for each activity ti.

Time-valued variables allow for straightforward modeling of precedence re-
lations; for example a simple precedence relation (ti, tj) can be represented as
Si + di ≤ Sj , in the hypothesis that all activities have fixed durations di. In
order to trace resource usage in time we can assume to have access to a T (τ)
function denoting the set of activities executing at time τ :

T (τ) = {ti ∈ T | Si ≤ τ < Si + di}

Then a time point based model for a basic RCPSP problem (single mode, time-
based objective, renewable resources) can be formulated as follows:

(M0) min: F (S) (2.10)

subject to: Sj − Si ≥ di ∀(ti, tj) ∈ A (2.11)
∑

tj∈T (Si)

rqjk ≤ Ck ∀rk ∈ R, ∀ti ∈ T (2.12)

with: Si ∈ N+ ∀ti ∈ T (2.13)

where T is the set of project task/activities ti, A is the set of precedence con-
straints, R is the set of resources rk with capacity Ck; rqik is the amount of
resource rk required by activity ti for its execution. Set N+ is assumed to con-
tain element 0. Despite its simplicity, model (M0) serves as a basis for many
practical models. From a classical OR perspective, M0 presents two major
problems:

1. the T (τ) function is strongly non linear

2. the argument of T (τ) in constraints (2.12) is a variable (namely, Si)

Generally, we can say that the key difficulty with time point based models is to
deal with resource constraints. This provides motivation for the class of time
indexed models.
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Bounds: the LP relaxation of time point based models allows trivial access to
the longest path on the project graph (a.k.a. critical path), providing a simple
but effective lower bound on the makespan. More advanced bounding techniques
try to partially take into account resources in the bound computation; an early
example can be found in [SDK78], for more recent makespan bounds based on
the critical path, see [BJK93, BC09a].

Time Indexed Model Gantt charts are the implicit foundation of time in-
dexed models; here the main idea is to have binary variables assessing the pres-
ence of each activity ti at each time index (see [PWW69] for an early reference).
For example (see [BC09b]), let us assumes to have for each activity a variable
Siτ , (telling whether tihas started at time τ) and a variable Ei, telling whether ti
has ended at time τ . Some basic constraints can be used to enforce meaningful
assignment of the S, E variables:

Si,τ−1 ≤ Si,τ ∀ti ∈ T, ∀τ = 1, . . . eoh (2.14)

Ei,τ−1 ≤ Ei,τ ∀ti ∈ T, ∀τ = 1, . . . eoh (2.15)

Ei,τ ≤ Si,τ ∀ti ∈ T, ∀τ = 0, . . . eoh (2.16)

intuitively, once an activity starts, the corresponding S variable cannot assume
the value 0 (constraints (2.14)); a similar restriction holds of course for end
variables (constraints (2.15)). Basically, constraints (2.14) and (2.15) force “1”
values to be contiguous. Finally, an activity cannot end if it has not yet started
(constraints 2.16). Activity durations can be modeled as follows:

eoh∑

τ=0

Siτ −
eoh∑

τ=0

Eiτ = di ∀ti ∈ T (2.17)

where eoh (End Of Horizon) is an upper bound on the length of a feasible
schedule. Constraints 2.17 require the number of S variables set to 1 to exceed
the number of E variables set to 1 by at least di units. Constraints to enforce
resource capacity limits are immediately formulated as:

∑

ti∈T

rqik (Siτ − Eiτ ) ≤ Ck ∀rk ∈ R (2.18)

in practice, at every time index τ the sum of the requirements of the currently
running activities must not exceed the resource capacity. Activities currently in
execution are identified as they have started and have not yet ended. A simple
precedence relation (ti, tj) with no minimum time lag can be modeled as:

Sjτ ≤ Eiτ ∀τ = 0, . . . eoh (2.19)

that is, tj can start only once ti has ended. Minimum and maximum time lags
can be introduced by quantitatively reasoning on S and E variables, analogously
to duration constraints. A simple time indexed model may therefore look as
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follows:

(M1) min: F (S, E)

subject to: Si,τ−1 ≤ Ei,τ ∀ti ∈ T, ∀τ = 1, . . . eoh

Ei,τ−1 ≤ Ei,τ ∀ti ∈ T, ∀τ = 1, . . . eoh

Ei,τ−1 ≤ Si,τ ∀ti ∈ T, ∀τ = 0, . . . eoh

eoh∑

τ=0

Siτ −
eoh∑

τ=0

Eiτ = di ∀ti ∈ T

∑

ti∈T

rqik (Siτ − Eiτ ) ≤ Ck ∀rk ∈ R

with: Siτ , Eiτ ∈ {0, 1} ∀ti ∈ T, ∀τ = 0, . . . eoh

where we assume the objective function is time based. Once again, this relatively
simple model outlines the main ideas behind many practical approaches. From
a computational standpoint, (M1) presents two major issues:

1. the number of variables depends on the time horizon;

2. the LP relaxation can be very weak

Bounds: makespan bounds based on time indexed models are usually obtained
through the applications of relaxation techniques. In particualar, for the pre-
sented model, the LP relaxation provides quite a weak bound; as an alternative,
a lagrangian relaxation based bound is proposed in [BC09b]. Better results are
obtained in [MMRB98] by allowing preemption, partially relaxing precedence
constraints and, most notably, by scheduling sets of activities not exceeding the
resource capacities instead of single activities; those are referred to as feasible
sets. The resulting problem has an exponential number of variables and can be
solved via column-generation. The technique is improved in [BK00] with the
addition of constraint programming based pre-processing and by taking into
account time windows. Both in [MMRB98] and [BK00] pure time indexed vari-
ables are replaced by variables telling the number of time units each feasible set
executes.

2.4.3 Algorithmic Techniques

Covering the whole set of algorithms used to tackle the Resource Constrained
Project Scheduling Problem is far out of the scope of this chapter. Nevertheless,
it is worthwhile to look through some specific techniques often used as low level
components of more complex algorithms. In particular, in the following we will
cover branching schemes, dominance rules and priority rule based scheduling.

2.4.3.1 Branching Schemes

Many Branch and Bound have been proposed for the RCPSP, adopting each
different branching strategies. The following is an attempt to provide a fairly
comprehensive overview of the main ideas. Most of the material for this section
comes from [BDM+99].
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Precedence Tree Branching: this branching strategy, first defined in [PSTW89]
consists in scheduling at each step of the search tree an activity whose predeces-
sors have all been scheduled. Each node of the search tree is associated with a
set of activities eligible for scheduling; on backtrack, different activities are cho-
sen, so that each path from the root of the search tree to the leaves corresponds
to a possible linearization of the partial order induced on T by the precedence
graph.

Delay Alternatives: in this branching method, introduced in [CAVT87, DH92],
each node of the search ree is associated to a time instant τ . A clear distinction
is then made between completed activities at time τ (say CT (τ)) and activities
in process (say PT (τ)); eligible activities for scheduling are those whose prede-
cessors have all completed execution. Then an attempt is made to schedule all
eligible activities, so that they are all added to the set of activities in process.
Of course this may cause a conflict; in such a case the method branches by
withdrawing from execution so called delay alternatives. Those are:

1. activities in process (that is, in PT (τ)),

2. such that, if they are removed, no resource conflict occurs

This method differs from the precedence tree based one in two regards: (1)
one branches on sets of activities and (2) scheduled activities may be withdraw
from execution. The applicability of the approach requires some hypothesis (e.g.
constant resource capacity).

Extension Alternatives: this method, proposed in [SDK78], closely resembles
the previous one as each search node corresponds to a time instant τ , for which
sets CT (τ) and PT (τ) are identified. However, the idea here is to branch on
sets of activities which can be started without violating resource constraints (so
called extension alternatives).

Scheduling Schemes: an interesting branching scheme proposed in [BKST98] is
based on the idea to branch on pairs of activities ti, tj , by forcing them to follow
a specific scheduling scheme. This can be either parallel execution (in notation
ti‖tj), or one of the two possible sequential executions (ti → tj or tj → ti).

Minimal Forbidden Sets: the idea of Minimal Forbidden Sets was introduced in
[IR83b, IR83a]; those are minimal size sets of activities causing a resource over-
usage in case they overlap. Minimal Forbidden Sets are known in Constraint
Programming as Minimal Critical Sets [Lab05], or Minimal Conflict Sets (see
Section 2.3.3). Once an MCS is identified a basic branching strategy consists in
enumerating all possible resolvers (i.e. pairwise precedence relations). A more
advanced strategy, proposed in [Sch98] consists in posting disjunctive precedence
constraints, i.e. an activity ti in the conflict set has to come after any another
activity in the set; this greatly reduces the size of the search tree, at the price of
altering the problem structure (see Section 2.4.1.3) and making it less amenable
for propagation.

2.4.3.2 Dominance Rules

Scheduling problems quite often happen to have more than one optimal solution;
it is indeed quite common to have large numbers of equivalent solutions in terms
of optimality. Dominance rules exploit this property to narrow the search space
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by forcing the selection of a specific schedule. Devising such a rule requires to
prove that among the set of optimal solutions, there exist a schedule satisfying
a specific property; such property is usually in the form of an implication (e.g.
A(S) ⇒ B(S), where S is the set of start time variables) and can then be posted
as a new problem constraint. For example, the three schedules in Figure 2.19
all have the same makespan; one can see that restricting the attention to the
rightmost one (where thereis no “hole” between t2 and t3) would be sufficient.

Many dominance rules have been proposed in the scheduling literature; for
some examples see [BDM+99, HD98, SD98, DH92, BP00]. Several of such tech-
niques can in fact be assimilated to constraint propagation; in the following,
we summarize some of the rules which are not subsumed by existing filtering
algorithms.

0 5 10 15

C = 2 rq  = 10 rq  = 11 rq  = 12

Figure 2.19: Three schedules having the same makespan

Left Shift Rule: If an activity that has been started at the current level of the
branch and bound tree can be left-shifted, then the current partial schedule
need not to be completed; note this rule effectively solves the issue highlighted
in Figure 2.19. This rules is often implicitly embedded in many CP search
algorithms for scheduling problems.

Order Swap Rule: Consider a scheduled activity the finish start of which is
less than or equal to any start time that may be assigned when completing the
current partial schedule. If an order swap on this activity together with any of
those activities that finish at its start time can be performed, then the current
partial schedule needs not to be completed.

Cutset Rule: This rule is introduced in [SD98] and is based on the definition
of a cutset (CS(σ)) as the set of activities scheduled in a given partial schedule
σ. The cutset rule consists in memorizing evaluated partial schedules during
search; if at any point of time a partial schedule σ is built such that:

1. the cutset of σ is the same as that of a stored partial schedule σ̄

2. the minimal time τ at which an activity can be scheduled in σ is grater
or equal than the maximal finish time of activities in σ̄

3. all the leftover capacities in σ are lower or equal than those in σ̄

then the current partial schedule needs not to be completed. One can note how
the cutset rule is actually a form of no-good learning (see Section 2.2.2.1).

Incompatible Set Decomposition Rule: This rule was presented by [BP00] in
the context of a CP scheduling algorithm. The rule generalizes the single in-
compatibility rule introduced in [DH92] and requires the definition of a directed
graph 〈T,A〉 as follows:

• T is the set of tasks/activities
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• both arcs (ti, tj) and (tj , ti) are in A if ti is compatible with tj (i.e. they can
execute in parallel according to both precedence and resource constraints).

• arc (ti, tj) is in A is ti comes before tj

then all connected components Ti in 〈T,A〉 are identified; it can be shown that
they form a partially ordered set and hence can be “sequenced” in a number of
ways, thus obtaining total orders. Let a valid total order be T0, T1, . . .; then the
rule states that all activities in Ti must end before any activity in Ti+1 starts.
If applicable, the rule defines a very strong problem decomposition.

2.4.3.3 Priority Rule Based Scheduling

Priority rule based scheduling is the oldest class of RCPSP heuristics to appear;
nevertheless, it still retains a lot of importance. This is due to three main
reasons:

1. the method is intuitive, easy to use, to tune and to implement; this makes
it a very popular algorithm, especially when solving a scheduling problem
is not the core problem tackled.

2. the method is computationally fast, making it an ideal choice for integra-
tion within complex AI/OR approaches or metaheuristics.

3. the method is effective (in particular in its multi-pass version); this is
especially true when the project graph contains many precedence relations.

A priority rule based scheduling approach is made up of two components, a
schedule generation scheme and a priority rule. While a huge number of priority
rules (either generic or problem specific) has been proposed in the literature,
basically two main scheduling schemes can be distinguished: the so called serial
and the parallelmethod. Both generate a schedule by extending a feasible partial
schedule (i.e. a schedule where only some activities are given a start time) in a
stage-wise fashion. At each stage the priority rule is used to choose an activity
to perform the extension.

In the following, we briefly present the two possible schedule generation
schemes; for a more detailed description of the priority based approach see
[Kol96]. The same paper proves the the serial method produces so called active
schedules (see Section 2.3.3), while the parallel methods results in non-delay
schedules [SKD95]; note that if a regular objective function is minimized (see
Section 2.3.1.1) the set of active schedules is guaranteed to contain an active
schedule, but not necessarily a non-delay schedule. For more general survey of
scheduling heuristics and metaheuristics the reader may refer to [KH06].

The Serial Method: The serial method was proposed in [Kel63]; each stage here
is characterized by a set of scheduled activities and a decision set, containing
activities whose predecessors have all been scheduled. The priority rule is used
to select an activity from the decision step; this is scheduled at earliest possible
precedence and resource feasible time. Then, the process is reiterated. The
serial method is known in many contexts as list scheduling (see Section 2.1.3).

The Parallel Method: The schedule generation scheme usually referred to as
“parallel” is introduced in [BB82]. In such method, each generation stage is as-
sociated to a time instant τ , at which the set of completed tasks CT (τ) and the
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set of processing tasks PT (τ) can be identified. The decision set contains ac-
tivities which are both precedence and resource feasible at time τ ; among those
activities a single one is selected by means of the priority rule. The main differ-
ence compared to the previous approach is that resources and limited capacities
are taken into account to build the decision set, rather then in determining the
start time to be assigned.

2.5 Hybrid Methods for A&S Problems

Mixed resource allocation and scheduling problems, such as those treated in this
work, are well known to be tough to deal with. Pure OR and CP approaches can
claim individual successes on specific cases, but neither of the approaches clearly
wins on more general problems. This is a consequence of the intrinsically hybrid
nature of resource allocation and scheduling, resulting from the combination of
an assignment and a scheduling subproblems. While MILP models stand out as
natural candidates for the assignment part, CP is much more effective in dealing
with the large domain variables and complex non-linear constraints often found
in scheduling.

This raises interest in hybrid algorithmic techniques, to take advantage of
the mutual strengths of heterogeneous methods and compensate for their weak-
nesses. Constraint Programming in particular offers an ideal framework for the
development of hybrid algorithms, for a threefold reason:

1. typical CP engines support easy development of many types of search
algorithms; in fact, the only usual requirement for the search method is
to proceed in stepwise fashion by posting new constraints to the model.
The actual implementation of each step is left to the user, as well as the
decision whether to take advantage or not of the available backtracking
support.

2. the neat separation between search and model allows one to exploit filtering
and propagation, whatever the search method is.

3. constraints have a declarative definition and a procedural implementation;
this is made possible by allowing them to interact in modular fashion
through the variable domains (the so-called domain store); hence each
constraint can perform filtering by using any type of algorithm.

Integration within a CP Framework Global constraints based on match-
ing theory [Rég94] and network flow algorithms [Rég96] have made their appear-
ance since the early establishment of CP. More recently, optimization constraints
[FLM02b] were introduced; those make wide use of OR techniques (algorithms
and models) to enforce bound consistency on a cost variable and/or perform fil-
tering based on reduced costs [FLM99]; reduced cost can be used to guide search
as well [MH04]. The effectiveness of the approach is showcased in [FLM02a].

Moreover, lazy clause generation is worth mentioning in this context; this
consists in embedding a SAT solver (as a constraint) within a CP framework
[FS09]; CP filtering algorithms, beside pruning variable domains, act as clause
generators for the SAT model. The ability of the SAT solver to identify and
record no-goods is used to perform filtering, backjumping and to guide the CP
search. The approach proved very effective on scheduling problems [SFSW09].
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This work is entirely dedicated to practical applications of hybrid allocation
and scheduling methods. In particular, in many of the presented case studies
the integration between heterogeneous approaches is realized via a technique
known as Logic Based Benders’ Decomposition (LBD), described in detail in
the following section.

2.5.1 Logic Based Benders’ Decomposition

Logic Based Benders’ Decomposition (formalized by Hooker in [HO03]), is a
generalization of Benders’ Decomposition (BD, see [Ben62]). This is a classic
OR technique, based on the idea of learning from one’s mistakes; namely, the
method solves a problem by enumerating values of a subset of the variables
(so called primary variables). For each set of values enumerated, it solves the
subproblem that results from fixing the primary variables to these values. The
solution of the subproblem is used to generate a Benders’ cut that the primary
variables must satisfy in all subsequent solutions enumerated. The classical
Benders’ cut is a linear inequality based on Lagrange multipliers obtained from
a solution of the subproblem dual. The next set of values for the primary
variables is obtained by solving the master problem, which contains all the
Benders cuts so far generated. The process continues until the master problem
and subproblem converge in value.

Master Problem

assignment of

primary variables

Subproblem

z, yz = β*

β*

op�mal subproblem

solu�on

z ≥ β (y)
y

Benders' cut

no

yesOp�mal

solu�on

Figure 2.20: Structure of the Logic based Benders’ Decomposition Approach

The generalization of the subproblem dual, used for cut generation, is the
key step to enable the application the classical Benders’ scheme to a broader
class of problems and to non-LP techniques. This is done in [HO03] by observing
that the solution of the dual problem in BD is just a mean to infer a bound
from the constraints. This leads to the definition of a so-called inference dual,
not requiring the linearity of the subproblem.

The Inference Dual Formally, let us consider a general optimization problem
in the form:

(P0) min: f(x) (2.20)

subject to: x ∈ S (2.21)

with: x ∈ D (2.22)

where f(x) is a generic function of the set x of variables, whileD is their domain.
The constraints are given by simply requiring x to belong to a set S ⊆ D. Then,
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stating an inference dual requires to define an implication rule on the domain

D. Let this be P
D
→ Q, then the inference dual is:

(D0) max: β (2.23)

subject to: x ∈ S
D
→ f(x) ≥ β (2.24)

The dual seeks the largest β for which f(x) ≥ β can be inferred from the
constraint set. In other words, the dual problem is to find the strongest possible
bound on the objective function value. The optimal value of the inference dual
is the same as the original problem (i.e. strong duality holds). Classical LP
duality if a specific case of inference duality.

Structure of the LBD approach Benders decomposition views elements of
the feasible set as pairs (x, y) of objects that belong respectively to domains
Dx, Dy. Problem (P0) can then be stated:

(P1) min: f(x, y) (2.25)

subject to: (x, y) ∈ S (2.26)

with: x ∈ Dx, y ∈ Dy (2.27)

A general LBD approach (see Figure 2.20) begins by fixing y to some value
ȳ ∈ Dy, for example by means of an initial heuristic (the master problem,
reported in the figure, will be introduced later). This immediately leads to the
following subproblem:

(SP ) min: f(x, ȳ) (2.28)

subject to: (x, ȳ) ∈ S (2.29)

with: x ∈ Dx (2.30)

Rather than solving the subproblem directly, one can focus on the corresponding
inference dual (known to have the same optimal value).

(DP ) max: β (2.31)

subject to: (x, ȳ) ∈ S
D
→ f(x, ȳ) ≥ β

(2.32)

The dual problem is to find the best possible lower bound β∗ on the optimal cost
that can be inferred from the constraints, assuming y is fixed to ȳ. Basically,
due to strong duality, the optimal value of the (primal) subproblem is the same
as the tightest bound on f(x, ȳ) which can be inferred from the constraint. Once
such a value β∗ is available, the key step of the process is to identify a bounding
function βȳ(y) such that:

βȳ(y) =

{

β∗ if y = ȳ

β′(y) ≤ f(x, y) otherwise

the subscript ȳ of the bounding function denotes the y values used for its con-
struction; βȳ(y) equals the tightest lower bound when y = ȳ, otherwise it pro-
vides a valid (likely more loose) bound. If the subproblem is infeasible, the dual
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is unbounded and β∗ = ∞, which prevents the method from proposing again
the same ȳ value. By using the bounding functions built iteration by iteration,
a master problem can be defined:

(MP ) min: z (2.33)

subject to: z ≥ βȳk
∀k = 0, 1, . . . (2.34)

with: y ∈ Dy (2.35)

where ȳ0, ȳ1 . . . are the trial values hitherto obtained. Let the solution of the
master problem be (z̄, ȳ), then the ȳ value can be used to prime the following
subproblem iteration. The method ends when the master problem and subprob-
lem value converge, that is z̄ = β∗.

Discussion and References The outlined method is complete, i.e. guar-
anteed to provide the optimal solution. Provided Dy is finite, convergence is
necessarily achieved in a finite number of steps. The LBD method has two
major advantages inherited from BD, namely:

1. breaking the dependence between the master and subproblem variables
(respectively, y and x) can be done by taking advantage of the structure
of the problem. This can greatly simplify the problem model, or break
global constraints and enable the decoupling of the subproblem.

2. Properly devised cuts can clear a wide portion of the search space, thus
boosting convergence.

Furthermore, a peculiar advantage of Logic Based Benders’ Decomposition is
the possibility to use heterogeneous techniques to solve the master and the
subproblem. This broadens the applicability of the method (as linear models are
no longer a requirement) and may enable impressive speed-ups. In the literature,
LBD has been applied to 0-1 programming and SAT [HO03], circuit verification
[HY94], automated vehicle dispatching [DLRV03], steel production planning
[HG01], real time multiprocessor scheduling [CHD+04], batch scheduling in a
chemical plant [MG04].

Most notably, the Logic based Benders Decomposition approach has been
used so solve allocation and scheduling problems [JG01, HG02, Hoo05b, Hoo05a,
Hoo07]. Here the whole problem is usually decoupled into an allocation master
problem and a scheduling subproblem; LBD allows the use of MILP for the
master and CP for the subproblem, so that each technique is effectively employed
for what it is best for.

LBD has of course a fundamental drawback; in fact, by decomposing the
problem in two stages one incurs the risk of loosing valuable information (e.g. if
master and problem variables are connected by tight constraints); hence, extra
care should be put in breaking the problem in a proper manner. As a partial
solution to this issue, a subproblem relaxation may be embedded in the master
problem; in the context of the abstract framework described above, such a
relaxation may be inserted as bounding function g(y) on the objective variable
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z in the master problem; therefore, (MP) becomes:

(MP ) min: z (2.36)

subject to: z ≥ βȳk
∀k = 0, 1, . . . (2.37)

z ≥ g(y) (2.38)

with: y ∈ Dy (2.39)

where constraint (2.38) is the subproblem relaxation; the actual formulation has
to be given case by case; quite often for example, the subproblem relaxation is
given as a constraint not involving the objective function. Such a relaxation
can have a deep impact on the performance (see [Hoo05b]) and enables the use
of the master problem to compute also the y variable assignment ȳ at the first
iteration.
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Chapter 3

Hybrid A&S methods in a Deterministic

Environment

3.1 Introduction

This chapter tackles Allocation and Scheduling problems in a deterministic en-
vironment; having controlled activity durations, resource capacity and graph
structure is a feasible hypothesis whenever actual variations have limited ex-
tent, or when conservative assumptions can be made. As a matter of fact,
deterministic approaches are very often used in practice, last but not least for
their (much) higher tractability compared to stochastic models.

In particular, here we tackle a specific problem, namely optimal mapping
and scheduling of software applications on the Cell BE processor. Cell BE is
multicore CPU by Sony, IBM and Toshiba, providing both scalable computation
power and flexibility; it is already being adopted for many computational inten-
sive applications like aerospace, defense, medical imaging and gaming. Despite
of its merits, it also presents many challenges, as it is now widely known that is
very difficult to program the Cell BE in an efficient manner. Hence, the creation
of an efficient software development framework is becoming the key challenge
for this computational platform.

Contribution Efficient programming requires to explicitly manage the re-
sources available to each core, as well as the allocation and scheduling of activ-
ities onto them, the storage resources, the movement of data and synchroniza-
tions, etc. Our aim is to provide optimization methods to take care of several of
such decision, thus setting the programmer free from their burden. We describe
three approaches designed to deal with mapping and scheduling over Cell. In
the first one, Logic Based Benders’ Decomposition is used to achieve a robust
and flexible hybrid solver; in particular, we investigate the recursive applica-
tion of decomposition to allow the efficient solution of otherwise overly complex
subproblems. Moreover, the use of NP-hard relaxations in the cut generation
step is introduced, and motivated with empirical consideration and experimen-
tal results. The second proposed approach is CP based and leverages Priority
Based Scheduling Ideas in the search strategy. Finally, we present a hybrid
solver combining the former two to complement their strength.
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Outline For the above mentioned allocation and scheduling problem we have
developed three different approaches: each of them proved to have advantages
and disadvantages for different classes of instances. In the following, we pre-
sente a solver based on a three-stage Logic based Benders Decomposition (LBD,
section 3.3) and a pure CP one (section 3.4); a third hybrid algorithm follows
(section 3.5) which tries to combine the strengths of the two approaches. Ex-
perimental results are reported in Section 3.6, while concluding remarks are in
Section 3.7.

Publications This work is part of the CellFlow tool prototype developed
by the MICREL lab, at University of Bologna, and has bee published in the
conference papers [BLM+08, BLMR08, RLMB08]; a latter publication has been
accepted for publication on the international journal “Annals of Operations
Research”.

3.2 Context and Problem Statement

We focus on a well-known multicore platform, namely the IBM Cell BE pro-
cessor; Cell has already demonstrated impressive performance ratings in com-
putationally intensive applications and kernels mainly thanks to its innovative
architectural features [PFF+07, BAM07, OYS+07, LkKC+06]. In particular,
here we address the problem of allocating and scheduling its processors, commu-
nication channels and memories. The application that runs on top of the target
platform is abstracted as a Task Graph. Each task is labeled with its execution
time, memory and communication requirements. The optimization metric we
take into account is the application execution time that should be minimized.
The Cell BE architecture is described in more details in Section 3.2.1, while
Section 3.2.2 is devoted to the target application and Section 3.2.3 concludes
with the problem statement.

3.2.1 CELL BE Architecture

In this section we give a brief overview of the Cell hardware architecture, fo-
cusing on the features that are most relevant for our optimization problem.
Cell is a non-homogeneous multicore processor [PAB+05] which includes a 64-
bit PowerPC processor element (PPE) and eight synergistic processor elements
(SPEs), connected by an internal high bandwidth Element Interconnect Bus
(EIB) [KPP06]. Figure 3.1 shows a pictorial overview of the Cell Broadband
Engine Hardware Architecture.

The PPE is dedicated to the operating system and acts as the master of
the platform, while the eight synergistic processors are optimized for compute-
intensive applications. The PPE is a multi-threaded core and has two levels
of on-chip cache, however, the main computing power of the Cell processor
is provided by the eight SPEs. The SPE is a compute-intensive coprocessor
designed to accelerate media and streaming workloads [FAD+05]. Each SPE
consists of a synergistic processor unit (SPU) and a memory flow controller
(MFC). The MFC includes a DMA controller, a memory management unit
(MMU), a bus interface unit, and an atomic unit for synchronization with other
SPUs and the PPE.
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Figure 3.1: Cell Broadband Engine Hardware Architecture.

Efficient SPE software should heavily optimize memory usage, since the
SPEs operate on a limited on-chip memory (only 256 KB local store) that
stores both instructions and data required by the program. Additional data
can be stored on a larger on-chip DRAM. The local memory of the SPEs is
not coherent with the PPE main memory, and data transfers to and from the
SPE local memories must be explicitly managed by using asynchronous coherent
DMA commands. PPE-SPE and SPE-SPE communication takes place through
a four ring Element Interconnected Bus; moreover, each ring supports multiple
transactions, provided the two source-to-destination paths do not overlap (e.g.
data transfers SPE0-SPE2 and SPE4-SPE7 can occur simultaneously). The
whole EIB provides extremely high communication bandwidth.

The abstract platform A good architecture abstraction should take into
account all (and only) the platform features which set non trivial constraints on
the application execution. Failing to model a relevant element results in poor
predictive performance, while taking into account negligible factors introduces
unnecessary complication.

In the case at hand, since the core of the Cell computation performance
is provided by the SPEs, the PPE is neglected in our abstract architecture
description. The on-chip DRAM, having typically sufficient capacity to store
all application data, can be disregarded as well. The single-thread SPUs within
the SPEs are effectively modeled by renewable unary resources (let those be
SPE = spe0, spe1, . . .); the limited size local storage in this specific case is
statically partitioned prior to the execution and can therefore be modeled by a
finite capacity reservoir (with an exception, described later); the capacity of the
device is referred to in the following as MCk. The Element Interconnected Bus
is disregarded, due to the very high provided bandwidth, and due to the choice
to focus (for this work) on computation intensive applications. The presence of
DMA controllers is not taken into account, but we plan to relax this restriction
in the near future.
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3.2.2 The Target Application

A target application to be executed on top of the hardware platform consists of
a set of interdependent processes (tasks); in particular, task dependencies are
due to data communications, performed by writing/reading a shared queue (in
practice a FIFO buffer). Tasks can handle several input/output queues and we
assume no cyclic dependence exists within a single iteration of the application.

Task execution is structured in three phases (see Figure 3.2): all input com-
munication queues are read (Input Reading), task computation activity is per-
formed (Task Execution) and finally all output queues are written (Output
Writing). Each operation consists of an atomic activity and read operations are
blocking, i.e. the task hangs on a reading operation if input data are not yet
available; during the resulting idle time the processor is not released. Queues
are read and written in a fixed order.

Figure 3.2: Three phases behavior of Tasks.

Each task ti has an associated memory requirement representing storage
locations required for computation data and for processor instructions. Such
data can be either allocated on the local storage of the SPE where ti runs, or
in the shared memory (DRAM in figure 3.1). Clearly the duration of each task
execution is related to the corresponding program data allocation; in particular,
a local allocation results in lower execution time as accessing the DRAM has
higher latency and requires the use of the EIB. Similarly, communication buffers
can be allocated either on a local storage or on the on chip DRAM; in particular,
in case of local allocation the buffer must be on the memory device of a SPE
where either the producer or the consumer task run. Accessing the local storage
of an SPEj from a different SPEi requires the use of the bus, but is nevertheless
faster than accessing the on chip DRAM.

Note that, due to implementation issues, in case of DRAM allocation, when
a task executes both the input/output buffers and the computation data must
be temporary copied on the local memories. Such devices must therefore have
enough free space for the copies; this is the aforementioned exception to the
otherwise fully static partitioning of the local storage.

The Abstract Application The target application can be abstracted as
a Task Graph 〈T,A〉 (see Section 2.1.2). In particular, it is natural to map
each process to graph node/task ti, while acyclic dependencies due to data
communication are captured by the arcs ah = (ti, tj). Figure 3.3 shows a sample
Task Graph, representing a software radio application.

Correctly modeling the three phase behavior is crucial for the accuracy of
the model, and requires to split each task into a set of activities (with the
meaning the term has in scheduling – see Sections 2.3.1 and 2.4). In detail,
we introduce an activity exi for the execution phase and one activity for each
queue read/write operation (rdh, wrh – see Figure 3.4).

As queues are read/written in fixed order, we assume the queue correspond-
ing to arc ah will be accessed before arc ah+1 and so on. In order to model the
blocking read semantic, different rdh activities are connected by loose standard
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Figure 3.3: Task graph for a software radio application

end-to-start constraint; the execution activity is constrained to start after the
last read operation and the write operations must follow immediately. The fact
that the processor is not released in the (possible) idle time between read op-
erations is modeled by introducing a dummy activity cvi starting with the first
read operation and ending with the last write operation; cvi is the only activity
actually requiring the SPE resource.

t1t0

t2

t3 t4

ex2

Model of task t

rd0

2

a0 a1

a2 a3

rd1 wr2 wr3

cv2

Figure 3.4: Model of the three phase behavior

We denote as mem(ti) the computation memory requirement of task ti and
as comm(ah) the size of the communication buffer associated to arc ah. The
impact of memory allocation choices on the durations can be taken into account
by measuring the execution time corresponding to each mapping configuration;
consequently we have for the execution activity a minimum duration d(exi) in
case the computation data are on the device store of the SPE where ti runs
(let this be spe(ti)); conversely, the duration is maximum (say D(exi)) in case
of DRAM allocation. Similarly, read and write activities corresponding to arc
ah = (ti, tj) are associated with three duration values, namely:

1. a minimum value d(rdh) (resp. d(wrh)) in case the buffer is on spe(tj)
(resp. spe(ti)).

2. an intermediate value d+(rdh) (resp. d+(wrh)) in case the buffer is on
spe(ti) (resp. spe(tj)).

3. a maximum value D(rdh) (resp. D(wrh)) in case the buffer is on the
DRAM

3.2.3 Problem definition

The mapping and scheduling problem can now be formally stated; specifically,
given:
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1. an input application, described by a Task Graph 〈T,A〉 labeled with the
attributes as in Section 3.2.2,

2. a target instantiation of the Cell platform, described by the number of
available spes (denoted as |SPE|) and by the capacity of each local storage
(denoted as MCk),

the problem consist in mapping each task ti ∈ T to a SPE spek and providing
a schedule (i.e. an assignment of start times to activities rdh, exi, wrh). Tasks
are not subject to specific deadlines (although those can be easily introduced)
and the objective is to minimize the application completion time (makespan).
Of course memory capacity constraints cannot be violated at any point of time.

3.3 A Multistage LBD Approach

The problem we have to solve is a scheduling problem with alternative resources
and allocation dependent durations. A good way of facing these kind of problems
is via Benders Decomposition, and its Logic-based extension, as described in
Section 2.5.1. In the Logic based Benders’ Decomposition (LBD) approach
the problem at hand is first decomposed into a master problem (MP) and a
subproblem (SP); then the method works by iteratively solving MP and feeding
SP with the partial solution fromMP. If such partial solution cannot be extended
to a complete one a cut (Benders’ cut) is generated forcing MP to yield a different
partial solution. In case the extension is successful we have a feasible solution:
this is stored and (possibly different) cuts are generated to guide MP towards a
better partial solution. The efficiency of the technique greatly depends on the
possibility to generate strong cuts.

Previous papers have shown the effectiveness of the method for similar prob-
lems (see Section 2.5.1). The allocation is in general effectively solved through
Integer Linear Programming, while scheduling is better faced via Constraint
Programming. In our case, the scheduling problem cannot be divided into dis-
joint single machine problems since we have precedence constraints linking tasks
allocated on different processors, which also makes it much more difficult to
compute effective Benders’ cuts.

Effectiveness of Pure LBD Following this idea, in [BLM+08], we have im-
plemented a Logic Based Benders’ Decomposition based approach, similarly to
[BBGM05b, BBGM06] (see figure 3.5A). In this case the master problem is the
allocation of tasks to SPEs and memory requirements to storage devices (SPE
& MEM stage), and the subproblem is computing a schedule with fixed resource
assignment and fixed task durations (SCHED stage). We have experimentally
experienced a number of drawbacks, the main one being the fact that for the
problem at hand a two stage decomposition produces two unbalanced compo-
nents. The allocation part is extremely difficult to solve while the scheduling
part is indeed easier: on a test bench of 290 instances the average solution time
ratio ranges between 103 to 104. Mainly due to that reason, the approach scales
poorly on our problem.

The Multi-stage Approach We therefore have experimented a multi-stage
decomposition, which is actually a recursive application of standard Logic based
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Figure 3.5: Solver architecture: (A) Standard LBD approach; (B) Two level
Logic based Benders’ Decomposition; (C) Schedulability test added

Benders’ Decomposition (LBD), that aims at obtaining balanced and lighter
components. The allocation part should be decomposed again in two subprob-
lems, each part being easily solvable.

In figure 3.5B, at level one, the SPE assignment problem (SPE stage) acts as
the master problem, while memory device assignment and scheduling as a whole
are the subproblem. At level two (the dashed box in figure 3.5B) the memory
assignment (MEM stage) is the master and the scheduling (SCHED stage) is the
corresponding subproblem. In particular, the first step of the solution process is
the computation of a task-to-SPE assignment; then, based on that assignment,
in the second step (MEM stage) allocation choices for all memory requirements
are taken. Deciding the allocation of tasks and memory requirements univocally
defines execution and communication durations. Finally, a scheduling problem
(SCHED stage) with fixed resource assignments and fixed durations is solved.

When the SCHED problem is solved (no matter if a solution has been found),
one or more cuts (A-cuts in figure 3.5B) are generated to forbid (at least) the
current memory device allocation and the process is restarted from the MEM
stage; in addition, if the scheduling problem is feasible, an upper bound on the
value of the next solution is also posted. When the MEM & SCHED subproblem
ends (either successfully or not), more cuts (B-cuts) are generated to forbid the
current task-to-SPE assignment. When the SPE stage becomes infeasible the
process is over, converging to the optimal solution for the problem overall.

A First Difference with Classical LBD Note that the mentioned termi-
nation condition differs from that given in Section 2.5.1, requiring the master
problem objective z̄ to equal the corresponding subproblem optimal value β∗.
Observe however that unlike in classical LBD, in the present approach, at every
SP-feasible iteration a new MP constraint (an upper bound) is posted, requiring
the next solution to improve the best one so far:

z < β∗ (3.1)

where we remind the NP is a minimization problem. One can see that z̄ = β∗

and constraint (3.1) imply a failure. Conversely, if β∗ is not optimal, adding
(3.1) keeps the MP feasible (as z is a lower bound on f(x, y) and hence z ≤ β∗).
Therefore, if the subproblem finds a solution with value β∗, we have:

β∗ optimal ⇔ next MP iteration infeasible
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which motivates our termination condition. If no solution is found by SP, no
new constraint is added and the method behave as classical LBD. Indeed our
scheme presents a second major difference compared to classical LBD, but this
is described later on in Section 3.3.1.2.

Schedulability Test We found that quite often the SPE allocation choices are
by themselves very relevant: in particular, a bad SPE assignment is sometimes
sufficient to make the scheduling problem infeasible. Thus, after the task to
processor allocation, we can perform a first schedulability test as depicted in
figure 3.5C. In practice, if the given allocation with minimal durations is already
infeasible for the scheduling component, then it is useless to complete it with
a memory assignment that cannot lead to any feasible solution overall. In this
case a cutting plane (C-cuts) is generated to avoid the generation of the same
task-to-SPE assignment in the next iterations.

In the following each step of the multi-stage process is described in detail.

3.3.1 SPE Allocation

The computation of a task-to-SPE assignment is tackled by means of Integer
Linear Programming (ILP). Given the Task Grah graph 〈T,A〉 and the platform
with SPE = {spe0, spe1, . . .} the ILP model we adopted is very simple: this is
a first visible advantage of the multi-stage approach. We introduce a decisional
variable Tik ∈ {0, 1} such that Tik = 1 if task i is assigned to SPE k. Then, the
model to be solved is:

min: z

subject to: z ≥
∑

ti∈T

Tik ∀spek ∈ SPE (3.2)

∑

spek∈SPE

Tik = 1 ∀ti ∈ T (3.3)

with: Tik ∈ {0, 1} ∀ti ∈ T, spek ∈ SPE

Constraints (3.3) state that each task can be assigned to a single SPE; con-
straints (3.2) are needed to express the objective function. Note that the actual
makespan depends both on the resource allocation and on the decisions that
will be taken in the scheduling stage; hence, here we adopt an easy to optimize
objective function that tends to spread tasks as much as possible on different
SPEs, which often provides good makespan values pretty quickly. Constraints
(3.2) force the objective variable z to be greater than the number of tasks allo-
cated on any PE.

The allocation model also features quite standard symmetry breaking or-
dering constraints to remove permutations of SPE having the same memory
capacity MCk.

3.3.1.1 Subproblem Relaxation

Constraints on the total duration of tasks on a single SPE were also added to a
priori discard trivially infeasible solutions; this methodology in the LBD context
is often referred to as “adding a subproblem relaxation” (see Section 2.5.1), and
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is crucial for the performance of the method. In practice the model also contains
the constraints:

∑

ti∈T

d(ti) · Tik < mk∗ ∀spek ∈ SPE (3.4)

where d(i) is the minimum possible duration of task i (reading and writing
phases included), and mk∗ is initially ∞ and the updated regularly to store the
makespan value of the best solution found. Basically, this is a packing based
bound, obtained by disregarding all precedence constraint and the considering
minimum durations.

The longest path bound (see Section 2.4.2.2) provides a second, easy to plug,
relaxation, obtained by disregarding resources. However, since the length of the
critical path with no resource constraints is not affected by the SPE allocation,
the longest path relaxation is employed in a pre-processing step.

3.3.1.2 A Second Difference with Classical LBD

A second relevant difference with the standard LBD scheme is given by the
choice of the MP objective function, which in the SPE stage is not a lower
bound on the overall problem objective. In principle, such a modification poses
some issue for two steps of the iterative process, namely:

1. the termination condition z̄ = β∗,

2. the Benders’ cut z ≥ βȳ(y)

as for issue (1), the introductory part of Section 3.3 has already pointed out
how the termination condition can be replaced by an equivalent one, not based
on the equality of the MP and the SP objective. In order to show how we dealt
with issue (2), we first recall the structure of the bounding function βȳ(y) used
in classical LBD:

βȳ(y) =

{

β∗ if y = ȳ

β′(y) ≤ f(x, y) otherwise

Now, the conjunction z ≥ βȳ(y)∧z < β∗ has the effect of forbidding ȳ and every
y such that β′(y) ≥ β∗; additionally, the provided bound β′(y) may cut more
solutions in the subsequent iterations. If we forgo the latter point, we could use
a no-good constraint to forbid the y assignments removed by z ≥ βȳ(y)∧z < β∗.
Consequently, as the no-good does not need to involve the objective, any cost
function can be used in MP. Note that the method remains complete as long
as the assignment ȳ is forbidden. In case SP is infeasible, the same reasoning
holds by setting β∗ = ∞.

The method described has a main advantage and a main disadvantage:

pro: any type of cost function (e.g. providing better initial solutions, or easier
to optimize) can be used in the Master Problem

con: no lower bound β′(y) is posted together with the cut

In the case at hand, the high level of decomposition (three stages) and the
presence of general precedence constraints make it very hard to devise good
bounding functions (see Section 2.4.2.2). In particular, most of the bounds one
can think of are subsumed by the considered subproblem relaxation. In such a
situation, the cost of loosing β′(y) is negligible, while the advantages of a free
choice of the MP objective can still be enjoyed.

55



Discussion The use of multistage Benders decomposition enables the com-
plex resource allocation problem to be split into drastically smaller SPE and
MEM components. However, adding a decomposition step hinders the defini-
tion of high quality heuristics in the allocation stages and makes the coordina-
tion between the subproblems a critical task. We tackle these issues by devising
effective Benders’ cuts and using poorly informative, but very fast to optimize,
objective functions in the SPE and MEM stages. In practice the solver moves
towards promising part of the search space by learning from its mistakes, rather
than taking very good decisions in the earlier stages. Experimental results (re-
ported in Section 3.6) show how in our case this choice pays off in terms of
computation time, compared to using higher quality (but harder to optimize)
heuristic objective functions, or less expensive (but weaker) cuts.

3.3.2 Schedulability test

We modified the solver architecture by inserting a schedulability test between
the SPE and the MEM stage, as depicted in figure 3.5C. In practice, once a SPE
assignment is computed, the system checks the existence of a feasible schedule
using the model described in section 3.3.4, with all activity durations (execution,
read, write) set to their minimum. If no schedule is found, then cuts (C-cuts
in in figure 3.5C) that forbid at least the last SPE assignment are generated.
Once a feasible schedule is found, the task-to-SPE assignment is passed to the
memory allocation component.

3.3.3 Memory device allocation

Once tasks are assigned to processing elements, their memory requirements and
communication buffers must be properly allocated to storage devices. Again we
tackled the problem by means of Integer Linear Programming.

Given a task-to-SPE assignment we have that each ti is assigned to a SPE,
also referred to as spe(ti). For each task we introduce a boolean variable Mi
such that Mi = 1 if computation data of ti are on the local memory of spe(ti).
Similarly, for each arc/communication queue ah = (ti, tj), we introduce two
boolean variables Wh and Rh such that Wh = 1 if the communication buffer is
allocated on the SPE spe(ti) (that of the producer), while Rh = 1 if the buffer
is allocated on the SPE spe(tj) (that of the consumer).

Mi ∈ {0, 1} ∀ti ∈ T

Wh ∈ {0, 1}, Rh ∈ {0, 1} ∀ah ∈ A

Note that, if for an arc ah = (ti, tj) it holds spe(ti) 6= spe(tj), then either the
communication buffer is allocated on the remote DRAM memory, or it is local
to the producer or local to the consumer; if instead spe(ti) = spe(tj), than the
communication buffer is either on the DRAM, or it is local to both the producer
and the consumer. More formally, for each arc ah = (ti, tj):

Rh + Wh ≤ 1 if spe(ti) 6= spe(tj) (3.5)

Rh = Wh if spe(ti) = spe(tj) (3.6)

Constraints on the capacity of local memory devices can now be defined in terms
of M, W and R variables. In order to do it we first take into account the memory
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needed to store all data permanently allocated on the local device of SPE k, by
defining:

base(spek) =
∑

ah=(ti,tj)
spe(tj)=spek

comm(h) · Rh +
∑

spe(ti)=spek

mem(i) · Mi +
∑

ah=(ti,tj)
spe(ti)=k

spe(ti) 6=spe(tj)

comm(h) · Wh

where mem(i) is the amount of memory required to store internal data of task
ti and comm(r) is the size of the communication buffer associated to arc ar.

Due to implementation issues, however, during execution of task ti all its
data should be locally transferred on spe(ti) even if they are permanently allo-
cated on the remote DRAM. Therefore, beside the “base usage” base(spek) we
need to allocate space for transferring data for executing the task. We take into
account this behavior by posting, ∀spek ∈ SPE and ∀ti such that spe(ti) = k,
the constraints:

base(spek) +
∑

ah=(tj ,ti)

(1− Rh) · comm(ah)+

(1− Mi) ·mem(ti) +
∑

ah=(ti,tj)

(1− Wh) · comm(ah) ≤ MCk

(3.7)

Constraints (3.7) force to spare on the local memory of each SPE enough stor-
age to enable the execution of the task copying the largest amount of data.
Reductions due to already locally allocated data are taken into account.

3.3.3.1 Cost Function and Subproblem Relaxation

The objective function to be minimized is a lower bound on the makespan, given
by the subproblem relaxation. The basic idea is once again (see Section 3.3.1.1)
to use a packing and a path based bound. More in detail, we observe that (1)
the length of the longest path and (2) the total duration of tasks on a single
SPE must be lower than the best makespan found so far. Both the mentioned
features are affected by memory allocation choices.

We first define for each task ti a real valued variable EDi representing its
execution time, and for each arc ah two variables RDh and WDh representing
the time needed to read and to write the corresponding buffer. In particular,
∀ti ∈ T :

EDi = D(exi)− [D(exi)− d(exi)] · Mi

Where we remember that D(exi) is the duration of the execution phase of ti
when the computation data are allocated on remote memory, and d(exi) is the
duration with local data. Also for each arc ah = (ti, tj) we introduce:

RDh =







D(rdh)− [D(rdh)− d(rdh)] · Rh if spe(ti) = spe(tj)

D(rdh)− [D(rdh)− d+(rdh)] · Wh+

− [D(rdh)− d(rdh)] · Rh
if spe(ti) 6= spe(tj)

(3.8)

WDh =







D(wrh)− [D(wrh)− d(wrh)] · Wh if spe(ti) = spe(tj)

D(wrh)− [D(wrh)− d+(wrh)] · Rh+

− [D(wrh)− d(wrh)] · Wh
if spe(ti) 6= spe(tj)

(3.9)
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Figure 3.6: Schema of path based scheduling relaxation in MEM stage

Where for each ah the values D(rdh), d
+(rdh) and d(rdh) are the time needed

to read the associated buffer in case it is allocated on remote memory (Rh =
Wh = 0), on the local memory of another SPE (Rh = 0, Wh = 1), or on the local
memory of current SPE (Rh = 1). Values D(wrh), d

+(wrh) and d(wrh) have
the same meaning with regard to writing the buffer.

We use the introduced duration variables to define two scheduling relax-
ations, respectively based on the a packing problem obtained by disregarding
precedence relations, and on the longest path obtained by disregarding resource
constraints. Both relaxations set lower bounds on an additional variable MK

representing the value of the makespan approximation, and constrained to be
lower than the best actual makespan found to far:

MK < mk∗

Minimizing MK is the objective of the memory allocation stage. The packing
based relaxation consists in a constraint for each spej ∈ SPE; in practice, the
total duration of the tasks on each processor sets a bound on the makespan
relaxation (as those tasks must execute sequentially):

∑

ti∈T

EDi +
∑

ah=(ti,tj)
spe(ti)=spek

WDh +
∑

ah=(ti,tj)
spe(tj)=spek

RDh ≤ MK

The second scheduling relaxation sets a on MK a lower bound based on the
length of the path on the graph. On computation purpose, we introduce real
valued “end” variables for each execution phase (EXENDi, see figure 3.6) and
buffer writing operation (WRENDh). Each task reads and writes buffers in a
pre-specified fixed ordered, and thus each EXENDi variable is constrained to be
greater than the maximum of (see Figure 3.6):

• the WRENDh variable of each predecessor arc ah,

• plus the time required to read the corresponding buffer (given by RDh),

• plus the time to perform all the read operations after the hth one (given
by the respective RD variables),

• plus the task duration (given by EDi)

Figure 3.6 shows the variables taking part to the longest path based relax-
ation; in particular, duration variables are reported under the activities, while
end variables are above the corresponding ex and wr activities; the path cor-
responding to the constraints setting a lower bound on the end variables are
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shown as dashed arrows. The EXENDi variables further constrain the makespan
lower bound MK:

∀ti ∈ T : EXENDi ≤ MK

The MK variable, being the objective of a minimization problem, will be set by
the optimizer to the maximum between the length of the longest path and the
maximum total duration of tasks allocated on a single SPE.

3.3.4 Scheduling subproblem

Once SPE and memory allocation choices have been made, the problem reduces
to disjunctive scheduling (as all resource are unary and renewable) with gen-
eral precedence constraints. We adopt quite a conventional CP model (with
start/end variables for each activity – ses Section 2.3.1), based on the decom-
position of each task in set of activities shown in Section 3.2.2.

Variables: We introduce for each activity exi, rdh, wrh start and end variables,
namely XSi, XEi, RSh, REh, WSh, WEh (where “X” refers to eXecution, “R” to read
and “W” to write). All variables are in the integer range [0..eoh), where the
end of horizon eoh is set to the sum of the worst case execution time at the first
iteration, and to the best makespan value mk∗ afterwards.

Finally, start / end variables are introduced for the macro activities cv,
namely CSi, CEi covering the whole task execution; moreover those macro activ-
ities have non-fixed duration, modeled by using a variable CDi, lower bounded
by the sum of the durations of activities related to ti and with no upper bound
(in practice eoh is used). The objective function to minimize is the makespan.

Temporal Constraints: Read and write operations are performed in a fixed
sequece; let rdh0

. . . rdhr−1
be the sequence of reading activities for task ti and

wrrr , . . . , wrhk−1
the sequence of writing activities, then:

∀j = 0, . . . , r − 2 REhj
= RShj+1

REhr−1
= XSi

XEi = WShr

∀j = r, . . . , k − 2 WEhj
= WShj+1

Each communication buffer must be written before it can be read. Thus, for
each precedence constraint ah = (ti, tj) in the Task Graph, we post:

∀ah = (ti, tj) ∈ A WEh ≤ RSh

All activities (except for the macro activities) have fixed durations, assigned
during the SPE and memory allocation stages. Moreover, the macro activity
must cover the whole extent of task ti execution; this is enforced by posting,
∀ti ∈ T :

CSi = RSh0
CEi = WEhk−1

(3.10)
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Resource Constraints: Processing elements are modeled as unary resources, by
means of cumulative constraints; in particular, let [RQ(k)] be an array such
that RQ(k)i = 1 if spe(ti) = spek, otherwise RQ(k)i = 0; then we can post:

cumulative( [CSi] , [CDi], [RQ(k)], 1) ∀spek ∈ SPE (3.11)

where [CSi] is an array with the start variables of the macro activity correspond-
ing to taks ti and [CDi] is the array with their duration variables. Time-table
and precedence based energetic reasoning are the adopted filtering techniques
(see Section 2.3.2).

3.3.5 Benders’ Cuts

Benders cuts are used in the Logic based Benders Decomposition schema to con-
trol the iterative solution method and are extremely important for the success
of the approach. In a multi stage Benders Decomposition approach we have
to define Benders cuts for each level; as discussed in section 3.3.1 we chose to
focus on generating strong valid cuts, rather than on trying to devise a tight
makespan approximation in the early allocation stages. In the followings, both
level 1 and level 2 cuts are specified.

Level 2 Cuts Let σ be a solution of the MEM stage, that is an assignment
of memory requirements to storage devices. If X is a variable, we denote as σ(X)
the value it takes in σ. The level 2 cuts we used are:

∑

σ(Mi)=0

Mi +
∑

σ(Rh)=0

Rh +
∑

σ(Wh)=0

Wh ≥ 1 (3.12)

This forbids the last solution σ and all solutions one can obtain from σ by
remotely allocating one or more requirements previously allocated locally: this
would only yield longer task durations and worse makespan. In practice we ask
for at least one previously remote memory requirement to be locally allocated.

Level 1 Cuts Similarly, level 1 cuts (B-cuts in figure 3.5B), between the SPE
and the MEM & SCHED stage must forbid (at least) the last proposed SPE
assignment. Again, let σ be a solution to the SPE allocation problem. A valid
B-cut is in the form:

∑

σ(Tik)=1

(1− Tik) ≥ 1 (3.13)

Note, that since the processing elements are symmetric resources, we can forbid
both the last assignment and all its permutations. This can be done by replacing
cut (3.13) with a family of cuts, which are used in the solver. For each processing
element spek we introduce a variable TSk ∈ {0, 1} such that TSk = 1 iff all and
only the tasks assigned to SPE k in σ are on a single SPE in a new solution.
This is enforced by the constraints:

∀spek, sper ∈ SPE
∑

σ(Tir)=1

(1− Tir) +
∑

σ(Tir)=0

Tir + TSk ≥ 1
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We can then forbid the assignment σ and all its permutations by posting the
constraint:

∑

spek∈SPE

TSk ≤ |SPE| − 1 (3.14)

With the aid of auxiliary variables a polynomial number of constraints is suffi-
cient to forbid all permutations of the last assignment.

3.3.5.1 Cut refinement

The level 1 and level 2 cuts we have just presented are sufficient for the method
to work, but they are too weak to make the solution process efficient enough; we
therefore need stronger cuts. For this purpose we have devised a refinement pro-
cedure (described in Algorithm 1) aimed at identifying a subset of assignments
which are responsible for the infeasibility. We apply this procedure to (3.12)
and (3.13). The described cut refinement method has some analogies with the
one proposed in Cambazard and Jussien [CJ05], where explanations are used to
generate logic based Benders cuts; many similarities finally exist between this
algorithm and those described in [dSNP88] and [Jun04].

Algorithm 1: Refinement procedure

Data: the set of all master problem decision variables in the original cut
(let this be Xik)

Result: an index lb such that variables Xi0 , . . . Xilb are responsible for the
infesibility

sort the X set in non-increasing order according to a relevance score

set lb = 0, ub = |X|, n = lb+ ⌊ub−lb
2 ⌋

while ub > lb do
feed subproblem with current MP solution
relax subproblem constraints linked to variables Xin , . . . Xi|X|−1

solve subproblem to feasibility
if feasible then

set lb = n+ 1
else

set ub = n

restore relaxed subproblem constraints

return lb

Algorithm 1 refines a cut produced for the master problem, given that the cor-
respondent subproblem is infeasible with the current master problem solution.
Note that in the proposed LBD approach, one may add the makespan upper
bound (makespan < mk∗) to the subproblem to obtain a valid infeasible SP
(as mk∗ < mk∗ produces a failure).

An sample algorithm execution is shown in Figure 3.7, where Xi0, . . . Xi5
are variables involved in the Benders cut we want to refine. In first place, all
master problem variables in the original cut (let them be in the X set) are sorted
according to some relevance criterion: least relevant variables are at the end of
the sequence (Figure 3.7-1). The algorithm iteratively updates a lower bound
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(lb) and an upper bound (ub) on the number of decision variables which are
responsible for the infeasibility; initially lb = 0, ub = |X|. At each iteration an
index n is computed and all subproblem constraints linked to decision variables
of index greater or equal to n are relaxed; in Figure 3.7-1 it is n = 0+⌊ 0+6

2 ⌋ = 3.
Then, the subproblem is solved: if a feasible solution is found we know that at
least variables from Xi0 to Xin are responsible of the infeasibility and we set
the lower bound to n + 1 (figure 3.7-2). If instead the problem is infeasible
(see figure 3.7-3), we know that variables from Xi0 to Xin−1

are sufficient for the
subproblem to be infeasible, and we can set the upper bound to n. The process
stops when lb = ub. At that point we can restrict the original cut to variables
from Xi0 to Xin−1

.

Cut Refinment Specification In order to apply Algorithm 1 to an actual
cut one must specify (i) the variables in the X set; (ii) the relevance criterion to
sort the X set; (iii) how to relax constraints related to a variable in X.

In case of level 2 cuts, the X set contains all M, R and W variables in the current
cut (3.12); the relevance score is the difference between the current duration
of the activity they refer to in the scheduling subproblem (resp. execution,
buffer reading/writing) and the minimum possible duration of the same activity.
Relaxing constraints linked to M, R and W variables means to set the duration of
the corresponding activities to their minimum value.

Level 1 cuts are handled similarly. In that case the X set contains variables
Tik such that Tik = 1 in the current solution; the relevance score is the inverse of
the task duration, since the longer the task, the less likely it is discarded by the
refinement procedure. Relaxing the constraints linked to a Tik means to relax
all the consequences of the assignment, that is:

a. the duration of all reading, writing and execution activities related to task
ti must be set to the minimum possible value

b. buffer allocation constraints of type (3.5) and (3.6) related to ti must be
removed (as ti is no longer assigned to a SPE)

c. all types of memory requirements of the task (buffers and computation
data) must be set to 0 (as task ti is no longer using the storage device of
any SPE)

Xi0

LB

Xi1
Xi2

Xi3
Xi4

Xi5

UB

FEASIBLE

Xi0

LB

Xi1
Xi2

Xi3
Xi4

Xi5

UB

INFEASIBLE

Xi0

n=LB

Xi1
Xi2

Xi3
Xi4

Xi5

UB

FEASIBLE

Xi0

LB=UB

Xi1
Xi2

Xi3
Xi4

Xi5
END

1

2

3

4

Figure 3.7: Refinement procedure: an example
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Note that the refinement of level 2 cuts requires to repeatedly solve (relaxed)
scheduling problems, which are by themselves NP-hard; the situation is even
worse for level 1 cuts, since the subproblem is in this case MEM & SCHED,
which is iteratively solved. This is expensive, but still perfectly reasonable as
long as the time to solve the master problem (let this be TM ) is higher than the
time to solve the subproblem (TS), and the time spent to produce cuts saves
many master problem iterations. For example, if TM = α · TS holds, we can
reasonably solve TS up to α times in the worst case (i.e. if only one iteration
is saved). In [BLM+08] we have experimentally found that the effort spent in
strengthening the cuts actually pays off.

Finally, the described refinement procedure finds the minimum set of con-
secutive variables in X which cause the infeasibility of the subproblem, without
changing the order of the sequence. Note however that it is possible that some
of the variables from Xi0 to Xin−1

are not actually necessary for the infeasibil-
ity. To overcome this limitation Algorithm 1 is used within an iterative conflict
detection procedure, such as the one described in [dSNP88] or [Jun04] (Quick-

Xplain), to find a minimum conflict set. In particular, we implemented the
iterative method proposed in [dSNP88] and used the refinement procedure de-
scribed above to speed up the process: this enables the generation of even
stronger (but more time consuming) cuts, used in the experiments reported in
section 3.6.

3.4 A Pure CP Approach

The effectiveness of Priority Based Scheduling (or list scheduling, see Sec-
tion 2.4.3.3) on many Embedded System scheduling problem provided moti-
vation for the development of a second approach. Ideally, we wish to exploit the
ability of PRB to produce pretty good solutions in a fraction of second, while
retaining completeness at the same time. We came up with a CP solver adopt-
ing a PRB like search strategy, interleaving allocation and scheduling decisions.
The possible allocation choices are modeled by means of the following variables:

TPEi ∈ {0, . . . |SPE| − 1} ∀ti ∈ T

Mi ∈ {0, 1} ∀ti ∈ T

APEr ∈ {−1, . . . , ...|SPE| − 1} ∀ah ∈ A

TPEi is the processing element assigned to task ti. Similarly, if APEh = k then the
communication buffer related to arc ah is on the local memory of the processing
element spek, while if APEh = −1 the communication buffer is allocated on the
remote memory. Finally, Mi is 1 if program data of task ti are allocated locally
to the same processor of task ti. The architectural constraints on the allocation
of the buffer for arc ah connecting tasks ti and tj translate to:

APEh = TPEi ∨ APEh = TPEj ∨ APEh = −1

that is, a communication buffer can be allocated either on the local memory of
the source task, or that of the target task, or on the remote memory. In order to
improve propagation, the following set of redundant constraints is also posted:

TPEi 6= k ∧ TPEj 6= k ⇒ APEh 6= k ∀spek ∈ SPE
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From a scheduling standpoint, the model is very similar to the one presented in
section 3.3.4. A set of execution (exi), reading (rdr) and writing (wrr) activities
are used to model the execution phases of each task and a corresponding starting
time variable is defined for each of them; however, here activity durations have
to be decided during search. Hence the CP model has the following set of
variables:

XSi, XEi ∈ [0..eoh] ∀ti ∈ T

RSh, REh ∈ [0..eoh] ∀ah ∈ A

WSh, WEh ∈ [0..eoh] ∀ah ∈ A

EDi ∈ [d(exi)..D(exi)] ∀ti ∈ T

RDh ∈ [d(rdh)..D(rdh)] ∀ah ∈ A

WRh ∈ [d(wrh)..D(wrh)] ∀ah ∈ A

where XSi, XEi are the start and end variable of exi, while RSh, REh, WSh, WEh the
start and end variables respectively for rdh and wrh. Variable EDi represents
the duration of the execution of task ti, WDh and RDh respectively are the time
needed to write and read buffer h. Durations are linked to the allocation choices;
this is modeled by the following constraints:

∀ti ∈ T : EDi = d(exi) + [D(exi)− d(exi)] · (1− Mi)

∀ah ∈ A :
WDi = d(wrh) + [D(wrh)− d+(wrh)] · (APEh = −1)+

+ [d+(wrh)− d(wrh)] · (APEh 6= TPEi)

∀ah ∈ A :
RDi = d(rdh) + [D(rdh)− d+(rdh)] · (APEh = −1)+

+ [d+(rdh)− d(rdh)] · (APEh 6= TPEj)

where the source of each arc is referred to as ti ad the destination as tj . The
precedence constraints are the same described in Section 3.3.4; in particular the
reading operations are performed before the execution, and all writing opera-
tions start immediately after. All resource constraints are triggered when the
TPE allocation variables are assigned; in particular if TPEi = k, then the macro
activity cvi requires 1 unit of spek. The resource capacity constraint is enforced
by timetabling and precedence energetic filtering, as in Section 3.3.4.

3.4.1 Search strategy

The model is solved by means of a dynamic search strategy where resource
allocation and scheduling decisions are interleaved.

We chose this approach since most resource filtering methods are not able
to effectively prune start and end variables as long as the time windows are
large and no task (or just a few of them) has an obligatory region: in particular
it is difficult, before scheduling decisions are taken, to effectively exploit the
presence of precedence relations and makespan bounds. In our approach, tasks
are scheduled immediately after they are assigned to a processing element, this
triggers updates to the time windows for all tasks linked by precedence relations.
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A considerable difficulty in our specific case is set by the need to assign each
task and arc both to a processing element and to a storage device: this makes
the number of possible choices too big to completely define the allocation of
each task before it is scheduled. Therefore we chose to postpone the memory
allocation stage after the main scheduling decisions are taken, as depicted in
figure 3.8A.

Figure 3.8: A: Structure of the dynamic search strategy; B: Operation schema
for phase 1

Since task durations directly depend on memory assignment, scheduling de-
cisions taken in phase 1 of Figure 3.8 had to be relaxed to enable the construction
of a fluid schedule with variable durations. In practice we adopted a Precedence
Constraint Posting approach (see Section 2.3.3), by just adding precedence re-
lations to fix the order of tasks at the time they are assigned to SPEs: they will
be given a start time (phase 3 in figure 3.8A) only once the memory devices are
assigned. Note this time setting step has polynomial complexity, since the task
order is already decided. Figure 3.9B shows an example of fluid schedule for
activities in figure 3.9A; tasks have variable durations and precedence relations
have been added to fix the order of the tasks on each SPE; Figure 3.9D shows a
corresponding schedule where all durations are decided (a grey box means the
minimum duration is used, a white box means the opposite).

Phase 1 In deeper detail, the SPE allocation and scheduling phase operates
according to the schema of figure 3.8B: first, the task with minimum start time
is selected (ties are broken looking a the lowest maximum end time). Second,
the SPEs are sorted according to the minimum time at which the chosen task
could be scheduled on them (let spe0 be the first in the sequence, where the
task can be scheduled at its minimum start time, and so on). Then a choice
point is open, with a branch for each SPE.

Along each branch the task is bound to the corresponding resource and a
rank or postpone decision is taken: we try to rank the task immediately after
the last activity on the selected resource, otherwise the task is postponed and
not considered until its minimum start time changes due to propagation (see
Section 2.3.3). The process is reiterated as long as there are unranked tasks.

Phase 2 In phase 2, memory requirements are allocated to storage devices;
this is done implicitly by choosing for each activity (exi, rdr, wrr) one of the
possible duration values. In particular at each step the activity with the highest
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Figure 3.9: A: initial state of activities of a Task Graph; B: a fluid schedule; C:
EET ordering; D: a possible fixed time schedule

earliest end time (EET) is selected, which intuitively is most likely to cause a
high makespan value. For example in figure 3.9C the activity t2 is considered
first, followed by t1, t4, t3 and t0. Then a choice point is open. Let the activity
be act and its duration variable DUR; the choice point is in the form:

DUR = min(DUR) OR DUR > min(DUR) (3.15)

where the two sides of the disjunction correspond to two distinct search bran-
ches; the assignment DUR = min(DUR) implicitly sets a memory allocation vari-
able (due to propagation). For example in figure 3.9 tasks t2, t4, t0 are assigned
their minimum duration (which implies local data allocation), while the remain-
ing activities are set to their maximum.

Phase 3 In phase 3 a start time is assigned to each task; this is done in
polynomial time without backtracking, since all resource constraint are already
solved and duration variables are assigned.

Since the processing elements are symmetric resources the procedure embeds
quite standard symmetry breaking techniques [GS00] to prevent the generation
of useless branches in the search tree.

To further prevent trashing due to early bad search choices, we modified
the search procedure just outlined by adding randomization (see Section 2.2.2)
and restarts. In particular, phase 1 is modified by performing each time a few
random permutations in the order SPEs are assigned to tasks: the task to be
mapped and scheduled is instead still selected in a deterministic fashion; phase
2 is randomized by inverting each time the order of branching choices in (3.15)
with a certain probability (< 0.5). Some restarts are introduced by performing
binary search on the makespan variable.

The main drawback of list scheduling-like search is that an early bad choice is
likely to lead to thrashing, due to the size of the search space resulting from the
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mixture of allocation and scheduling decisions; a more conventional two phase
allocation and scheduling approach, with all the allocation variables assigned
before any scheduling decision is taken, would be able to recover faster from
such a situation. Preliminary tests were performed on a set of realistic instances
in order to compare the mixed schedule-and-allocate strategy against a pure two
phase one; they showed how the mixed strategy was definitely better whenever
the graph has a sufficient amount of precedence relations, as it happens in many
cases of practical interest.

3.5 A Hybrid CP-LBD Approach

The experiments performed on a set of instances with different characteristics
(see section 3.6) showed how the two solvers proposed in this chapter (MS-LBD
and CP) have somehow complementary strengths. In particular, the decompo-
sition based solver is effective in dealing with resource allocation choices, being
able to significantly narrow the search space by generating strong cuts. On
the other hand, the main drawback of the approach are the structural lack of
good SPE allocation heuristics and the loose links between variables in different
decomposition stages; this results into a poor ability of finding good solutions
quickly, as hinted to by figure 3.10, which shows the distribution of the ratio
between the iteration when the best solution is found and the total number of
iterations (out of a sample of 200 instances). As one can see, in most cases the
best solution is found close to the end of the search process.

Figure 3.10: Distribution of the ratio between the iteration when the best solu-
tion if found and the total number of iterations for the MS-LBD solver

On the contrary, the CP approach (especially if some kind of restart strategy
is introduced) is much faster in producing quite good solutions, but has diffi-
culties in handling memory allocation choices, thus making hard for the solver
to find the optimal solutions and prove optimality.

This complementarity motivated the introduction of a hybrid solver, that
counters the shortcomings of one approach with the strengths of the other. The
basic idea is to iterate between the CP solver and the decomposition based one,
feeding MS-LBD with the solutions found by CP and injecting in the CP model
the cuts generated by the LBD solver; at each step, the solvers are required to
find a solution better than the best one found so far. Finally, the CP solver
underwent some modifications to be better exploited in the new approach.
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Figure 3.11: Structure of the hybrid approach

The working scheme for the hybrid solver is depicted in figure 3.11, where
steps 2 and 3 run with a time limit and form the main loop. In particular,
the modified CP solver is always run with a fixed time limit, while the time
limit for the MS-LBD approach is dynamically adjusted and stretched whenever
the solver does not have enough time to generate at least one cut. Finally, a
bootstrapping stage (step 1) is added to start the MS-LBD solver with a solution
as good as possible.

Note that the CP and the MS-LBD approaches are complete solvers: in
case they terminate within the time limit either they find the optimal solution
or they prove infeasibility. In both cases the process can be terminated; if an
infeasibility is reported, either the last solution found by any of the two solvers is
the optimal one, or the problem is actually infeasible (if no solution was found so
far). In case the maximum solution time is hit at any solution step, the partial
result obtained (the generated cuts for the MS-LBD solver, the solution found
for the CP solver) is used to prime the subsequent solution step. Overall, the
hybrid process is convergent, provided at least a cut per iteration is generated:
the proof follows trivially from the completeness of the MS-LBD solver.

3.5.1 The modified CP solver

In order to build the hybrid system, we devised and used a specialized version
of the CP solver. Namely the approach described in section 3.4 was modified 1)
by adopting a more aggressive restart policy and 2) by adding a cut generation
step, similarly to the MS-LBD approach. Binary search is no longer employed.

In particular, the CP solver is run with a (quite low) fail limit and restarted
whenever this limit is met; at each restart the fail limit is increased, so that the
method remains complete. This modification increases the chance to quickly
find good solutions, but makes even more difficult to prove optimality.

To overcome this difficulty and to better guide the CP solver away from
bad quality or infeasible solutions, cuts are periodically generated after some
restarts as follows. First a complete resource allocation is computed (SPEs
and memory devices), without taking any scheduling decision. Then schedul-
ing is attempted, thus checking the given allocation for feasibility; in case the
allocation is infeasible it provides a nogood:

[
∨

ti∈T

TPEi 6= σ(TPEi)

]

∨




∨

σ(Mi)=1

Mi = 0



 ∨

[
∨

ah∈A

APEr 6= σ(APEh)

]
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where σ(X) denotes the value variable X assumes in the allocation; the nogood
is then refined by means of the QuickXplain algorithm, described in [Jun04],
similarly to what is done in the MS-LBD solver. Such strengthened nogoods
narrow the allocation search space, making the restart based solver more effec-
tive.

In the hybrid system the CP solver is first used to perform a bootstrap (see
figure 3.11, step 1); it is then invoked at each iteration with the main objective of
improving the best solution so far (and possibly proving optimality). Executions
the CP solver alternate with those of the MS-LBD solver, which has the aim
to further reduce the allocation search space via the generated cuts, to prove
optimality and possibly to improve the solution. We chose to turn off the cut
generation within the CP solver during the bootstrap, as this tends to produce
good solutions more quickly and to provide a better “warm start” for the MS-
LBD solver; CP cuts are enabled once the hybrid enters the main loop, when
the CP solver becomes helpful in proving optimality as well.

3.6 Experimental results

The three approaches were implemented using the state of the art solvers ILOG
Cplex 10.1 and Scheduler/Solver 6.3. We ran experiments on 90 real world
instances, (modeling a synthetic benchmark running on CELL BE) and 200
random graphs, generated by means of a specific instance generator designed to
produce realistic Task Graphs [GLM07].

The first group of 90 instances (let this be group 1) is coming from the actual
execution of multi tasking programs on a CELL BE architecture; in particular,
in the chosen benchmark application the amount of data to be exchanged is so
small that it can be considered negligible: in practice all data communication
and execution activities for those graphs have fixed durations.

The 200 random, real-like instances are instead divided into two groups:
in the first 100 graphs (group 2) durations of data communications can be
considered fixed, but the impact of memory allocation on the length of the
execution of each task is not negligible. Finally in the last 100 graphs (group
3) memory allocation choices have a significant impact on the duration of all
activities.

Group 1 and 2 are representative of high computational intensive applica-
tions in general, like many signal processing kernels. In this scenario the overall
task duration is dominated by the data computation section, while the variabil-
ity induced by different memory allocations is negligible. On the other hand,
group 3 is representative of more communication intensive applications. In this
case, the overall task duration can be drastically affected by different memory
allocations. Several video and image processing algorithms are good examples
of applications which fit in this category.

Finally a last set of experiments was performed to test the impact of the
cut refinement procedures. All instances feature high parallelism and complex
precedence relations. The Cell configuration we used for the tests has 6 available
SPEs. All experiments were performed on a Pentium IV 2GHz, 1GB ram.
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3.6.1 Results for group 1

Table 3.1 show the results for group 1, containing three sets of 30 tasks graphs
with variable number of tasks (15, 25, 30). Each row of the table reports results
for 15 instances, listing the number of tasks and the minimum and maximum
number of arcs (columns tasks and arcs). The table reports result for the Multi-
Stage (referedd to as MS-LBD), for the pure CP solver (referred to as CP)
and for the hybrid solver presented in Section 3.5 (referred to as HYB). For
each approach we report the average solution time (when the time limit is not
exceeded, column time), the number of timed out instances (> TL) and the
distance from the best solution found by any of the solvers (in case the optimal
one is not found, column diff).

MS-LBD CP HYB

tasks arcs time > TL diff. time > TL diff. time > TL diff.

15 9-14 0.42 0 — 0.01 0 — 0.01 0 —
15 14-27 0.57 0 — 0.02 0 — 0.01 0 —
25 30-56 80.88 1 3% 0.10 0 — 0.13 0 —
25 56-66 274.39 2 3% 0.05 0 — 0.08 0 —
30 47-72 354.81 5 4% 1.25 2 13% 34.46 0 —
30 73-83 280.02 7 3% 0.12 0 — 0.42 0 —

Table 3.1: Results for group 1

As one can see, for this first group the CP solver is much faster than the MS-
LBD based one. The hybrid has comparable performance, due to the embedded
CP search step, and has very good stability, achieved by means of cut generation.
The CP solver on the contrary, though extremely fast (usually a little more than
the hybrid), exhibits a more erratic behavior (hence the two timed out instances
for one of the 30 tasks group).

While both CP and the hybrid are often able to find the optimal solution
in a fraction of second, the process is much slower for TD; nevertheless the
convergence is very steady: the solver is able to provide very good solutions
even when the time limit is exceeded, while for example the quality of solutions
provided by CP in case of timeout is poorer. Nevertheless, the CP solver usually
succeeds in improving very quickly the solution.

Overall, this first group of experiments shows that the either the proposed
CP approach or the hybrid one are most likely the best choice if the impact
of memory allocation choices is negligible, either completely or in part. We
observed however that the relative number of arcs in the instances seems to
have a strong effect on the efficiency of the solver, penalizing the CP and the
hybrid solvers more than the MS-LBD one; investigating this correlation is left
for future work.

3.6.2 Results for group 2

The 100 instances in group 2 have fixed duration for all data write/read ac-
tivities, and execution duration depending on where computation data are allo-
cated. Table 3.2 shows the results for this kind of instances, grouped by number
of tasks, 10 instances per row. The reported statistics are the same of table 3.1.
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MS-LBD CP HYB

tasks arcs time > TL diff. time > TL diff. time > TL diff.

10-11 6-14 0.21 0 — 0.02 0 — 0.01 0 —
12-13 8-15 1.16 0 — 0.03 0 — 0.02 0 —
14-15 12-19 1 0 — 0.03 0 — 0.03 0 —
16-17 15-22 10.89 0 — 0.11 0 — 0.95 0 —
18-19 17-24 48.92 0 — 0.05 0 — 0.08 0 —
20-21 21-29 116.1 1 0% 27.29 1 14% 36.66 0 —
22-23 21-30 69.16 1 0% 2.41 2 26% 3.69 0 —
24-25 24-35 269.57 3 22% 27.95 1 20% 49.65 0 —
26-27 27-39 88.67 7 12% 62.57 5 27% 133.62 2 36%
28-29 32-43 310 8 3% 15.03 6 16% 255.01 3 4%

Table 3.2: Results for group 2

As it can be seen, when memory allocation becomes significant, the effective-
ness of the CP approach gets worse: while the average solution time is still the
best among the three approaches, the number of timed out instances is higher.
Once again the MS-LBD solver is the slowest one, but is still often able to find
good solutions even when the time limit is exceeded (see the diff column); on
the converse, the CP solver, while still able to find quickly a pretty good solu-
tion, has difficulties in improving it on the instances when a timeout is reported:
this most likely occurs due to the importance of memory allocation choices to
achieve the best makespan on such instances. The best solver as for the stability
is the hybrid one, which reports the lowest number of timed out instances: this
is a nice example of how a hybrid approach combining different methods can
actually have a better performance than each of them.

Overall, the best choices for this type of instances are most likely the CP
solver and the hybrid one, depending on what is most important for the practical
problem at hand: either having a prompt solution or stability.

3.6.3 Results for group 3

For the instances in group 3, both the duration of the execution phase and that
of the data transfers are sensible to memory allocation choices. Results for this
group are reported in table 3.3, ordered by number of tasks and grouped by 10
instances per row. The statistics are once again the same as table 3.1.

When buffer allocation choices do matter the pure CP solver becomes defi-
nitely impractical. Note that with this kind of instances the MS-LBD approach
is competitive, especially w.r.t. the average solution time; interestingly, the
quality of solutions provided when the time limit is exceeded gets worse, right
on the instance group where the impact of memory allocation on the overall
makespan is highest: as in general the MS-LBD approach exhibits a better be-
havior w.r.t memory allocation, this phenomenon needs to be better investigated
in the future. As for robustness, the hybrid approach once again has the best
results both as for the number of timed out instances, and as for the quality of
the solutions provided in case of timeout; it is worth mentioning that, within
the hybrid approach, the CP solver seems to give most of its contribution in
the first few iterations, getting less effective as the solution processes goes on.
Improving the CP model and search strategy to cope with this issue is left for
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future research.
Overall, both MS-LBD and the hybrid solvers report good results when

durations of data transfers are strongly affected by memory allocation choices.
The CP solver is definitely not the method of choice in this case.

MS-LBD CP HYB

tasks arcs time > TL dif. time > TL diff. time > TL diff.

10-11 4-12 4.01 0 — 44.60 1 7% 8.03 0 —
12-13 8-15 6.32 0 — 85.04 4 15% 6.38 0 —
14-15 10-16 5.54 0 — 0.04 6 19% 6.79 0 —
16-17 11-18 28.35 0 — 2.05 5 13% 9.22 0 —
18-19 13-20 105.50 0 — 1.95 8 10% 54.12 0 —
20-21 17-23 210.89 1 33% 170.00 9 14% 456.46 0 —
22-23 19-26 388.00 2 23% 41.00 9 28% 669.20 0 —
24-25 20-30 268.57 3 9% — 10 18% 387.50 0 —
26-27 23-29 375.00 4 20% — 10 21% 462.94 2 7%
28-29 25-36 528.00 5 20% 0.15 9 21% 825.13 3 10%

Table 3.3: Results for group 3

3.6.4 Refined vs. non refined cuts

As the proposed cut refinement technique requires to repeatedly solve relaxed
NP-hard subproblems, we designed a last set of experiments aimed to test
whether the approach is worth using for the problem at hand, in particular
for the MS-LBD solver. We remind for that solver each no-good is processed
by two refining procedure; in particular: 1) a custom binary search based algo-
rithm is repeatedly invoked by 2) an explanation minimization procedure. We
hence tried to solve the smallest instances in group 3 by just applying the first
refinement step: this results in weaker cuts, but avoids solving a large number
of relaxed subproblems.

Results for this last set of experiments are reported in table 3.4, which shows
the number of SPE and MEM iterations, the solution time and the number of
timed out instances for both cases. As one can see, the strength of generated
cuts has a dramatic impact on the solver performance, drastically reducing the
number of required SPE and MEM iterations and the solution time.

Without 2nd ref. step With 2nd ref. step

ntasks SPE it. MEM it. time > TL SPE it. MEM it. time > TL

10-11 192 90 497.90 5 12 13 4.01 0
12-13 386 295 1144.21 11 17 15 6.32 0
14-15 410 539 1181.24 12 19 28 5.54 0

Table 3.4: Performance of the MS-LBD solver with and without strong cut
refinement

More in detail, the behavior can be explained as follows. As all variables
contained in a cut are binary, the strength of a cut can be roughly measured
in terms of its size. In particular the relation is exponential: a cut containing
all problem variables (i.e. a basic no-good) forbids a single solution; a cut
containing all but one variable will likely remove 2 solutions (as all problem
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variables are binary) and so on; more formally, a cut containing n variables will
approximately clear out 1

2n of the search space. Now, figure 3.12 shows the size
distribution of cuts generated by applying both refinement procedures (figure
3.12A) or just the first one (figure 3.12B). The number of variables in the cuts
is on the X axis, while the number of times a cut of that size is generated is
reported in the Y axis. Ideally, we would like cuts to be as small (i.e. strong)
as possible, hence the distribution peaks to be located close to the origin.

As one can see, B-cuts in particular (i.e. those injected into the SPE stage)
are massively improved by the second refinement step. This largely explain the
performance drop-off and gives some guidelines about how the refinement effort
could be tuned: for example one could think of investigating the effect of turning
on the strong refinement for B-cuts only.

Figure 3.12: A) Size distribution of B-cuts (to SPE stage) and A-cuts (to MEM
stage) after the second refinement; B) Size distribution of the same cuts after
the first refinement

3.7 Conclusion and future works

In this chapter we have shown how to optimally solve allocation and scheduling
of embedded streaming applications modeled as Task Graphs on the Cell BE
architecture. We have proposed three different approaches, namely one based on
Multi-Stage Logic based Benders’ Decomposition, a Constraint Programming
approach based on list scheduling ideas, and a second hybrid approach developed
to combine the complementary strength of the former two.

Experimental results show how each of the approaches has different pecu-
liarities and performance, depending on the graph features. The choice of the
best approach depends therefore on the problem instance at hand and on the
specific user needs: we gave qualitative considerations to guide such decision.

The proposed algorithms were devised to be a component of the CellFlow
framework, developed at Micrel (University of Bologna), which has the aim
to ease the implementation of efficient programs for Cell platforms. Also the
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adopted execution model reflects that of CellFlow; as the framework evolves, it
requires an evolution of the optimization methods as well: future developments
include taking into account DMA transfers, handling multiple repetitions of an
application and minimizing throughput.

We are finally planning to apply machine learning techniques to better un-
derstand how specific instance features, such as the variability of duration or
the relative number of precedence constraints, influence the performance of each
solver. The objective is to devise quantitative rules to automatically choose the
best approach for a given instance.
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Chapter 4

Hybrid methods for A&S of Conditional

Task Graphs

4.1 Introduction

Conditional Task Graphs (CTG) are directed acyclic graphs whose nodes rep-
resent activities/tasks, linked by arcs representing precedence relations. Some
of the activities are branches and are labeled with a condition; at run time,
only one of the successors of a branch is chosen for execution, depending on the
occurrence of a condition outcome labeling the corresponding arc. The truth
or the falsity of those condition outcomes is not known a priori: this sets a
challenge for any off-line design approach, which should take into account the
presence of such elements of uncertainty. A natural answer to this issue is adopt-
ing a stochastic model. Each activity has a release date, a deadline and needs
a resource to be executed. The problem is to find a resource assignment and
a start time for each task such that the solution is feasible whatever the run
time scenario is and such that the expected value of a given objective function is
optimized. We take into account different objective functions: those depending
on the resource allocation of tasks and those depending on the scheduling side
of the problem.

CTG are ubiquitous to a number of real life problems. In compilation of
computer programs [FFY01], for example, CTGs are used to explicitly take
into account the presence of conditional instructions. CTG may be used also
in the Business Process Management (BPM) [vdAHW03] and in workflow man-
agement [RHEvdA05], as a mean of describing operational business processes
with alternative control paths.

Most relevantly in the context of this work, CTGs are used in the field
of system design [XW01] to describe applications with if-then-else statements;
taking into account branches in the mapping and scheduling problem allows
better resource usage, and thus lower costs.

Contribution For solving the allocation and scheduling problem of CTG we
need to extend the traditional constraint based techniques with two ingredients.
First, to compute the expected value of the objective function, we need an
efficient method for reasoning on task probabilities in polynomial time. For
example, we have to compute the probability a certain task executes or not, or,
more in general, the probability of a given set of scenarios with uniform features
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(e.g. the same objective function value). Second, we need to extend traditional
constraints to take into account the feasibility in all scenarios.

On this purpose, we define a data structure called Branch/Fork graph - BFG.
We show that if the CTG satisfies a property called Control Flow Uniqueness -
CFU, the above mentioned probabilities can be computed in polynomial time.
CFU is a property that holds in a number of interesting applications, such as
for example the compilation of computer programs, embedded system design
and in structured business processes.

Outline The chapter is organized as follows: Section 4.2 presents some appli-
cations where CTG is a convenient representation of problem entities and their
relations; in Section 4.3 we provide some preliminary notions on Constraint-
Based Scheduling. Section 4.4 introduces the concept of Conditional Task
Graphs, Control Flow Uniqueness, sample space and scenarios and defines the
scheduling and allocation problem we consider. In Section 4.5 we define the
data structure used for implementing efficient probabilistic reasoning, namely
the Branch/Fork Graph and related algorithms. In Section 4.6 we use these al-
gorithms for efficiently computing the expected value of three objective function
types, while in Section 4.7 we exploit the BFG for implementing the conditional
variant of the timetable global constraint. Section 4.8 discusses related work
and Section 4.9 shows experimental results and a comparison with a scenario
based approach.

Publications Part of the work at the base of this chapter has been published
to international conferences in [LM06, LM07]; an extended version is to appear
on Artificial Intelligence with title Allocation and Scheduling of Conditional
Task Graphs.

4.2 Applications of CTGs

Conditional Task Graphs can be used as a suitable data structure for repre-
senting activities and their temporal relations in many real life applications. In
these scenarios, CTG allocation and scheduling becomes a central issue.

In compilation of computer programs [FFY01], for example, CTGs are used
to explicitly take into account the presence of conditional instructions. For in-
stance, Figure 4.1 shows a simple example of pseudo-code and a natural transla-
tion into a CTG; here each node corresponds to an instruction and each branch
node to an “if” test; branch arcs are label with the outcome they represent. In
this case, probabilities of condition outcomes can be derived from code profiling.
Clearly, computer programs may contain loops that are not treated in CTGs,
but modern compilers adopt the loop unrolling [KA01] technique that can be
used here for obtaining cycle free task graphs.

Similarly, in the field of embedded system design [XW01] a common model
to describe a parallel application is the task graph. The task graph has a
structure similar to a data flow graph, except that the tasks in a task graph
represent larger units of functionality. However, a task graph model that has no
control dependency information can only capture data dependency in the system
specification. Recently, some researchers in the co-synthesis domain have tried
to use conditional task graph to capture both data dependencies and control
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if a = 0 then
return error

else
if b < 0 then
b = b+ 1

end if
end if
return a · b

Figure 4.1: Some pseudo-code and a its translation into a CTG

dependencies of the system specification [WAHE03b, KW03]. Once a hardware
platform and an application is given, to design a system amounts to allocate
platform resources to processes and to compute a schedule; in this context,
taking into account branches allows better resource usage, and thus lower costs.
However, the presence of probabilities makes the problem extremely complex
since the real time and quality of service constraints should be satisfied for any
execution scenario. Embedded system design applications will be used in this
chapter to experimentally evaluate the performance and quality of our approach.

CTG appear also in Business Process Management (BPM) [vdAHW03] and
in workflow management [RHEvdA05] as a mean of describing operational busi-
ness processes with alternative control paths. Workflows are instances of work-
flow models, that are representations of real-world business processes [Wes07].
Basically workflow models consist of activities and the ordering amongst them.
They can serve different purposes: they can be employed for documentation of
business processes or can be used as input to a Workflow Management System
that allows their machine-aided execution.

One of the most widely used systems for representing business processes is
BPEL [ftAoSISO]. BPEL is a graph-structured language and allows to define a
workflow model using nodes and edges. The logic of decisions and branching is
expressed through transition conditions and join conditions. Transition condi-
tions and join conditions are both Boolean expressions. As soon as an activity
is completed, the transition conditions on their outgoing links are evaluated.
The result is set as the status of the link, which is true or false. Afterwards,
the target of each link is visited. If the status of all incoming links is defined,
the join condition of the activity is evaluated. If the join condition evaluates
to false, the activity is called dead and the status of all its outgoing links is set
to false. If the join condition evaluates to true, the activity is executed and
the status of each outgoing link is evaluated. CTGs behave exactly in the same
fashion and can be used to model BPEL workflow models. In addition CTG
provide probabilities on branches. Such numbers, along with task durations and
resource consumption and availability can be extracted from process event logs.
The CTG allocation and scheduling proposed in this chapter can be used in the
context of workflow management as a mean to predict the completion time of
the running instances, as done in [vdASS], or for scheduling tasks to obtain the
minimal expected completion time.
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4.3 Preliminaries on Constraint-Based Scheduling

In this chapter we show how to extend constraint-based scheduling techniques
for dealing with probabilistic information and with conditional task graphs.
For some preliminaries on Constraint-Based Scheduling, see Section 2.3; here,
we just recall that Scheduling problems over a set of activities are classically
modeled in CP by introducing for every activity three variables representing
the start time (S), end time (E) and duration (D). In this context a solution
(or schedule) is an assignment of all S and E variables. “Start”, “end” and
“duration” variables must satisfy the constraint E = S+ D.

Activities require a certain amount of resources for their execution. We
consider in this chapter both unary resources and discrete (or cumulative) re-
sources. Unary resources have capacity equal to one and two tasks using the
same unary resource cannot overlap in time, while cumulative resources have
finite capacity that cannot be exceeded at any point in time.

Scheduling problems often involve precedence relations and alternative re-
sources; precedence relations are modeled by means of constraints between the
start and end variables of different activities, while special resource constraints
guarantee the capacity of each resource is never exceeded in the schedule; a num-
ber of different propagation algorithms for temporal and resource constraints
[BP00, Lab03] enable an effective reduction of the search space. Finally, special
scheduling oriented search strategies [BLPN01] have been devised to efficiently
find consistent schedules or to prove infeasibility.

4.4 Problem description

The problem we consider is the scheduling of Conditional Task Graphs (CTG)
in presence of unary and cumulative alternative resources. In the following, we
introduce the definitions needed in the rest of the chapter. In Section 4.4.1 we
provide some notions about Conditional Task Graphs, Section 4.4.2 concerns
Control Flow Uniqueness, a CTG property that enables the definition of poly-
nomial time CTG algorithms, Section 4.4.3 introduces the concept of sample
space and scenarios while Section 4.4.4 describes the scheduling and allocation
problem considered in the chapter.

4.4.1 Conditional Task Graph

A CTG is a directed acyclic graph, where nodes are partitioned into branch
and fork nodes. Branches in the execution flow are labeled with a condition.
Arcs rooted at branch nodes are labeled with condition outcomes, representing
what should be true in order to traverse that arc at execution time, and their
probability. Intuitively, fork nodes originate parallel activities, while branch
nodes have mutually exclusive outgoing arcs.

More formally:

Definition 5 (Conditional Task Graph). A CTG is a directed acyclic graph
that consists of a tuple 〈T,A,C, P 〉, where

• T = TB ∪ TF is a set of nodes; ti ∈ TB is called a branch node, while
ti ∈ TF is a fork node. TB and TF partition set T , i.e., TB ∩ TF = ∅.
Also, if TB = ∅ the graph is a deterministic task graph.
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Figure 4.2: A: Example of CTG; B: Probabilities of condition outcomes

• A is a set of arcs as ordered pairs ah = (ti, tj).

• C is a set of pairs 〈ti, ci〉 for each branch node ti ∈ TB. ci is the condition
labeling the node.

• P is a set of triples 〈ah, Out, Prob〉 each one labeling an arc ah = (ti, tj)
rooted in a branch node ti. Out = Outij is a possible outcome of condition
ci labeling node ti, and Prob = pij is the probability that Outij is true
(pij ∈ [0, 1]).

The CTG always contains a single root node (with no incoming arcs) that
is connected (either directly or indirectly) to each other node in the graph. For
each branch node ti ∈ TB with condition ci every outgoing arc (ti, tj) is labeled
with one distinct outcome Outij such that

∑

(ti,tj)
pij = 1.

Intuitively, at run time, only a subgraph of the CTG will execute, depending
on the branch node condition outcomes. Each time a branch node is executed,
its condition is evaluated and only one of its outgoing arcs is evaluated to true.
In Figure 4.2A if condition a is true at run time, then arc (t1, t2) status is true
and node t2 executes, while arc (t1, t5) status is false and node t5 does not
execute. Without loss of generality, all examples throughout this chapter target
graphs where every condition, say a, has exactly two outcomes, a = true or
a = false. However, we can model multiple alternative outcomes, say a = 1 or
a = 2 or a = 3 provided that they are mutually exclusive (i.e., only one of them
is true at run time).

In Figure 4.2A t0 is the root node and it is a fork node that always executes
at run time. Arcs (t0, t1) and (t0, t12) rooted in an executing fork node are
always evaluated to true. Node t1 is a branch node, labeled with condition a.
With an abuse of notation we have omitted the condition in the node and we
have labeled arc (t1, t2) with the outcome a meaning a = true and (t1, t5) with
¬a meaning a = false. The probability of a = true is 0.5 and the probability
of a = false is also 0.5.

Let A+(ti) be the set of outgoing arcs of node ti, that is A+(ti) = {ah ∈
A | ah = (ti, tj)}; similarly let A−(ti) be the set of ingoing arcs of node ti,
i.e., A−(ti) = {ah ∈ A | ah = (tj , ti)}. Then ti is a said to be a root node if

79



|A−(ti)| = 0 (ti has no ingoing arc), ti is a tail node if |A+(ti)| = 0 (ti has no
outgoing arc).

Without loss of generality, we restrict our attention to CTGs such that every
node ti with two or more ingoing arcs (|A+(ti)| > 1) is either an and-node or
an or-node. The concept of and/or-nodes, that of executing node and the arc
status can be formalized in a recursive fashion:

Definition 6. (Run Time Execution of Nodes, Arc Status, And/or Node)

• The root node always executes.

• The status of arc (ti, tj) rooted in a fork node ti ∈ TF is true if node ti
executes.

• The status of arc (ti, tj) rooted in a branch node ti ∈ TB is true if node ti
executes and the outcome Outij labeling the arc is true.

• A node ti with |A−(ti)| > 1 is an or-node if either none or only one of the
ingoing arcs status can be true at run-time.

• An or-node ti executes if any arc in A+(ti) has a status equal to true.

• A node ti with |A−(ti)| ≥ 1 is an and-node if it is possible that all the
ingoing arcs status are true at run time.

• An and-node executes if all arcs in A−(ti) have a status equal to true.

Note that the definition is recursive: deciding whether a node ti with |A+(ti)|
is an and/or-node depends on whether its predecessors can execute, and deciding
whether a node can execute requires to know whether the predecessors are
and/or-nodes. The system is however consistent as both concepts only depend
on information concerning the predecessors of the considered node ti; as the
root node by definition always executes and the CTG contains no cycle, both
the concept of and/or-node and that of executing node/status of an arc are well
defined.

Observe that ingoing arcs in an or-node are always mutually exclusive; mixed
and/or-nodes are not allowed but can be modeled by combining pure (possibly
fake) and-nodes and or-nodes. Note also that nodes with a single ingoing arc are
classified as and-nodes. Again, for the sake of simplicity in the chapter we have
used examples with only two ingoing arcs in and/or-nodes, but the presented
results are valid in general and apply for any number of ingoing arcs.

In Figure 4.2A t15 is an or-node since at run time either the status of (t14, t15)
or the one of (t13, t15) is true (depending on the outcome of condition d); t21 is
an and-node since, if condition a has outcome false, arc (t20, t21) is true and arc
(t10, t21) status is true if the outcome c = true holds. Therefore, it is possible
that both incoming arcs are true at run time. t15 executes if any of the ingoing
arcs status is true, while t21 executes only if both the ingoing arc status evaluate
to true.

4.4.1.1 Activation event of a node

For modeling purposes, it is useful to express the combination of outcomes
determining the execution of a node as a compact expression. As outcomes are
logical entities (either they are true or false at run time) it is convenient to
formulate such combination of outcomes as a logical expression, referred here
to as activation event.
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The activation event of a node ti is denoted as ε(ti) and can be obtained in
a recursive fashion, similarly to definition of executing node and and/or-nodes.
In practice:

ε(ti) =







true if |A−(ti)| = 0 (ti is the root node)
∨

ah=(tj ,ti)∈A−(ti)

ε(ah) if ti is an or-node

∧

ah=(tj ,ti)∈A−(ti)

ε(ah) if ti is an and-node or if |A−(ti)| = 1

and ε(ah) is the activation event of an arc ah and is defined as follows:

ε(ah = (ti, tj)) =

{
ε(ti) if ti is a fork
ε(ti) ∧Outij if ti is a branch

For example, the activation event of task t2 in Figure 4.2A is ε(t2) = a,
while the activation event of t21 is ε(t21) = ((¬a ∧ b) ∨ (¬a ∧ ¬b)) ∧ (¬a ∧ c) =
(¬a ∧ b ∧ c) ∨ (¬a ∧ ¬b ∧ c) = ¬a ∧ c ∧ (b ∨ ¬b) = ¬a ∧ c.

In general we need to express activation events in Disjunctive Normal Form
(DNF), that is a disjunction of one or more conjunctions of one or more literals.

4.4.2 Control Flow Uniqueness

Even if many of the definitions and algorithms we present in this chapter work
in the general case, we are interested in specific CTG satisfying a property called
Control Flow Uniqueness (CFU)1. Intuitively, CFU is satisfied if no node ti in
the graph requires for its execution the occurrence of two outcomes found on
separated paths from the root to ti. More formally:

Definition 7 (Control Flow Uniqueness). A CTG satisfies the CFU if for each
and-node ti, there is a single arc a ∈ A−(ti) such that, for all other incoming
arcs a′ ∈ A−(ti):

status of arc a is true ⇒ status of arc a′ is true

where the symbol “⇒” denotes the logical implication. Intuitively a single
ingoing arc a ∈ A−(ti) is logically responsible of the execution of the and-node
ti; if the status of such arc becomes true at some point of time, the status of all
other ingoing arcs will become (or have become) true as well. Note the actual
run time execution of ti only occurs once all ingoing arcs have become true. As
a consequence there is also only one path from the root to the and-node that is
logically responsible for the execution of that node. More formally:

Corollary: If a CTG satisfies CFU, then for each task ti each conjunction of
condition outcomes in its activation event ε(ti) (in DNF) can be derived by
collecting condition outcomes following a single path from the root node to ti.

For example in Figure 4.3A, task t8 is an and-node; its activation event is
ε(t8) = (a∧ b)∨ (¬a∧ b) = b, thus CFU holds. Conversely, in Figure 4.3B both
¬a and b are strictly required for the execution of t7 and they do not appear in
sequence along any path from the root to t7; hence CFU is not satisfied.

1In the rest of the chapter, we will explicitly underline which algorithms/properties need
the CFU.
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Figure 4.3: A: a CTG which satisfies CFU — B: a CTG which does not satisfy
CFU

In many practical cases CFU is not a restrictive assumption; for example,
when the graph results from the parsing of a computer program written in a
high level language (such as C++, Java, C#) CFU is quite naturally enforced by
the scope rules of the language, or can be easily made valid by proper modeling.
For example, consider again the pseudo-code in Figure 4.1. One can easily check
that 1) CFU is satisfied and 2) there exist no simple translation of the pseudo
code violating CFU as each conditional instruction (if) has a collector node (end
if).

Moreover, in some application domains (e.g., business process management,
embedded system design), a common assumption is to consider so called struc-
tured graphs, i.e., graphs with a single collector node for each conditional branch.
In this case, the CFU is trivially satisfied. Note how a structured graph cannot
model early exits (e.g. in case of error), as the one reported in Figure 4.1.

4.4.3 Sample Space and Scenarios

On top of a CTG we define the sample space S.

Definition 8 (Sample Space). The sample space of a CTG is the set of events
occurring during all possible executions of a CTG, each event being a set of
condition outcomes.

For example, the sample space defined on top of the CTG in Figure 4.2A
can be computed by enumerating all possible graph executions and contains 20
events. Again using an abuse of notation we refer to the outcome a = true
with a and to the outcome a = false with ¬a. Also, for sake of clarity we
have removed the logical conjunctions among conditions: the term a∧ b∧ e has
been simplified in abe. Therefore, the sample space associated to the CTG in
Figure 4.2A is the following.

S = {ade, ad¬e, a¬de, a¬d¬e,¬abcde,¬abc¬de,¬abcd¬e,

¬abc¬d¬e,¬a¬bcde,¬a¬bc¬de,¬a¬bcd¬e,¬a¬bc¬d¬e,

¬ab¬cde,¬ab¬c¬de,¬ab¬cd¬e,¬ab¬c¬d¬e,¬a¬b¬cde,

¬a¬b¬c¬de,¬a¬b¬cd¬e,¬a¬b¬c¬d¬e}

We need now to associate a probability to each element of the sample space.

∀s ∈ S p(s) =
∏

Outij∈s

pij
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Figure 4.4: The deterministic task graph associated with the run time scenario
a = true, d = true and e = false, for the CTG of Figure 4.2

.

For instance, with reference to Figure 4.2A, the probability of event ade is
0.5 ∗ 0.3 ∗ 0.7 = 0.105.

Each event in the sample space of the CTG is associated to a scenario. A
scenario corresponds to a deterministic task graph containing the set of nodes
and arcs that are active in the scenario. We have to define how to build such a
task graph. This task graph is defined recursively.

Definition 9 (Task Graph for a Scenario). Given a CTG=〈T,A,C, P 〉, and an
event s ∈ S the deterministic task graph TG(s) associated with s is defined as
follows:

• The CTG root node always belongs to the TG(s)

• A CTG arc (ti, tj) belongs to TG(s) if either

– ti is a fork node and ti belongs to TG(s) or

– ti is a branch node, Outij ∈ s and ti belongs to TG(s).

• A CTG node ti belongs to TG(s) if it is an and-node and all arcs ah ∈
A−(ti) are in TG(s) or if it is an or-node and any arc ah ∈ A−(ti) is in
TG(s)

TG(s) is called scenario associated with the event s.

With an abuse of notation, in the following we refer to the event s also as
scenario. The deterministic task graph derived from the CTG in Figure 4.2A
associated to the run time scenario a = true, d = true and e = false (or
equivalently ad¬e) is depicted in Figure 4.4.

Often we are interested in identifying a set of scenarios, such as for instance
all scenarios where a given task executes. We have to start by identifying the
events associated to scenarios where task ti executes. This set is defined as
Si = {s ∈ S|ti ∈ TG(s)}. The probability that a node ti executes (let this
be p(ti)) can then be computed easily: p(ti) =

∑

s∈Si
p(s). For example, let

us consider task t2 in Figure 4.2A; then S(t2) = {ade, ad¬e, a¬de, a¬d¬e}
and p(t2) = 0.5 · 0.3 · 0.7 + 0.5 · 0.3 · 0.3 + 0.5 · 0.7 · 0.7 + 0.5 · 0.7 · 0.3 = 0.5.
Alternatively, the probability p(ti) can be computed starting from the activation
event; for example, ε(t2) = a, hence p(t2) = p(a) = 0.5, or ε(t8) = ¬a∧ b, hence
p(t8) = p(¬a) · p(b) = 0.5 · 0.4 = 0.2.

For modeling purposes, we also define for each task an activation function
fti(s); this is a stochastic function fti : S → {0, 1} such that
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fti(s) =

{
1 if ti ∈ TG(s)
0 otherwise

Finally, we need to define the concept of mutually exclusive tasks:

Definition 10 (Mutually Exclusive Tasks). Two tasks ti and tj are said to be
mutually exclusive (i.e. “mutex (ti, tj)”) iff there is no scenario TG(s) where
both tasks execute, i.e., where ti ∈ TG(s) and tj ∈ TG(s) or equivalently,
fti(s) = ftj (s) = 1.

4.4.4 A&S on CTGs: Problem definition and model

The allocation and scheduling problem we face is defined on a conditional task
graph whose nodes are interpreted as activities (also referred to as tasks) and
arcs are precedence relations between pairs of activities. The CTG is annotated
with a number of activity features, such as duration, due and release dates,
alternative resource sets and resource consumption. We have to schedule tasks
and assign them resources from the alternative resource set such that all tem-
poral and resource constraints in any run time scenario are satisfied and the
expected value of a given objective function is optimized. More formally:

Definition 11 (CTG A&S Problem). An instance of the CTG allocation and
scheduling problem is a tuple 〈CTG,Obj,Dur,Rel,Due,ResSet,ResCons〉.

In the CTG = 〈T,A,C, P 〉 T represents the set of non preemptive tasks to be
allocated and scheduled, A represents the set of precedence constraints between
pairs of tasks, C is the set of conditions labeling the nodes and P is the set of
outcomes and probabilities labeling the arcs. Obj is the objective function. Dur,
Rel, Due, ResSet and ResCons are functions mapping each task in T to the
respective duration, release date, due date, alternative resource set and resource
consumption. Given a task ti ∈ T , its duration is referred to as Duri, its release
date as Reli, its due date as Duei, its alternative resource set to as ResSeti and
its resource consumption ResConsi; with the exception of ResSet all mentioned
functions have values in N+.

For sake of simplicity, we assume each task ti needs a single resource taken
from its ResSeti for its execution; however, the results presented in this chapter
can be easily extended to tasks requiring more than one resource. More in detail,
suppose each task requires up to m of types of resource; provided separate
ResSet and ResCons functions, all the presented results apply to each type in
a straightforward fashion.

4.4.4.1 Modeling tasks and temporal constraints

As far as the model is concerned, each node in the CTG corresponds to a
task (also called activity). Similarly to constraint-based scheduling, a task ti is
associated to a time interval [Si, Ei) where Si is a decision variable denoting the
starting time of the task and Ei is a variable linked to Si as follows: Ei = Si+Di.
Depending on the problem, the duration may be known in advance or may
be a decision variable. In this chapter we consider fixed, known in advance,
durations.
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The start time variable of a task ti has a domain of possible values ranging
from the earliest start time EST (ti) to the latest start time LST (ti). Similarly,
the end time variable has a domain ranging from earliest to the latest end times,
referred to as EET (ti) and LET (ti). Initially S(ti) and Ei range on the whole
schedule horizon (from the time point 0 to the end of horizon [0..eoh]).

Each arc (ti, tj) in the CTG corresponds to a precedence constraint on deci-
sion variables and has the form S(ti) + Di ≤ S(tj). Due dates and release dates
translate to constraints S(ti) + Di ≤ Duei and S(ti) ≥ Reli.

4.4.4.2 Modeling alternative resources

Beside start time of activities, an additional decision variable res(ti) represents
the resource assigned to the activity ti. The domain of possible values of res(ti)
is ResSeti.

Resources in the problem can be either discrete or unary. Discrete resources
(also referred to as cumulative resources) have a known maximal capacity. A
certain amount of resource ResConsi is consumed by activity ti assigned to a
discrete resource res(ti) at the start time of activity ti and the same quantity
is released at its end time. A unary resource has a unit capacity. It imposes
that all activities requiring the same unary resource are totally ordered. Given
a resource rk its capacity is referred to as Ck.

4.4.4.3 Classical objective function types

Depending on the problem, the objective function may depend on the temporal
allocation of the activities, i.e., decisions on variables S (or equivalently variables
E if the duration is fixed), or on the resource assignments, i.e., decisions on
variables res.

In constraint-based scheduling, a widely studied objective function is the
makespan, i.e., the length of the whole schedule. It is the maximum value of
the Ei variables.

Obj1 = max
ti∈T

Ei (4.1)

Another example of objective function is the sum of costs of resource assignments
to single tasks. As an example, consider the case where running a task on a
given resource consumes a certain amount of energy or power.

Obj2 =
∑

ti∈T

cost(ti, res(ti)) (4.2)

In the hypothesis to have a cost matrix where each element cij is the cost of
assigning resource j to task ti, res(ti) = j ↔ cost(ti, res(ti)) = cij .

A third example that we will consider in this chapter still depends on resource
assignment, but on pairs of assignments.

Obj3 =
∑

ah=(ti,tj)∈A

cost(ti, res(ti), tj , res(tj)) (4.3)

For instance, suppose that arcs represent communication activities between two
tasks. If ti and tj are assigned to the same resource, their communication cost
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is zero, while if they are assigned to different resources, the communication cost
increases. Suppose we have a vector where each element ck is the cost of arc
arck = (ti, tj) if ti and tj are assigned to different resources.

cost(ti, res(ti), tj , res(tj)) =

{
ck if res(ti) 6= res(tj)
0 otherwise

Other objective functions could be considered as well. For example there
could be a cost for having at least one task using a certain resource (e.g. to
turn the resource “on”). In this case the cost is associated to the execution of
sets of tasks; the objective function can be considered a generalization of Obj3
and is dealt with by means of the same techniques.

Clearly, having probabilities and conditional branches, we have to take into
account all possible run time scenarios and optimize the expected value of the
objective function. Therefore, given the objective function Obj and a scenario
s, we refer to the objective function computed in the scenario s to as Obj(s).

For example, in Obj
(s)
1 , the maximum of end variables is restricted only to those

tasks that are active in the scenario s (those belonging to TG(s)).

Obj
(s)
1 = max

ti∈TG(s)
Ei = max

ti∈T
fti(s)Ei

Similarly Obj
(s)
2 =

∑

ti∈TG(s)

cost(ti) =
∑

ti∈T

fti(s)cost(ti, res(ti))

and

Obj
(s)
3 =

∑

ah=(ti,tj)∈TG(s)

cost(res(ti), res(tj)) =

=
∑

ah=(ti,tj)∈A

fti(s)ftj (s)cost(ti, res(ti), tj , res(tj))

Finally, by recalling the definition of “expected value” in probability theory, we
state that:

Definition 12 (Expected Objective). The expected value of a given objective
function Obj is a weighted sum of the Obj(s) weighted by scenario probabilities

E(Obj) =
∑

s∈S

p(s)Obj(s)

4.4.4.4 Solution of the CTG Scheduling Problem

The solution of the CTG scheduling problem can be given either in terms of
a scheduling and allocation table [WAHE03a] where each task is assigned to a
different resource and a different start time, depending on the scenario, or as
a unique allocation schedule where each task is assigned a single resource and
a single start time independently on the run time scenario. The first solution
is much more precise and able to better optimize the expected value of the ob-
jective function. Unfortunately, the size of such a table grows exponentially as
the number of scenarios increases, making the problem of computing an optimal
scheduling table P-SPACE complete (it is analogous to finding an optimal policy
in stochastic constraint programming [Wal02]). We therefore chose to provide
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Figure 4.5: A: a CTG scheduling problem; B: a possible solution

a more compact solution, where each task is assigned a unique resource and a
unique start time feasible in every possible run time scenario. this keeps the
problem NP-hard. This choice goes in the line of the notion of strong control-
lability defined in [VF99] for temporal constraint networks with uncertainty; in
particular, a network is said to be strongly controllable if there exists a single
control sequence satisfying the temporal constraints for every scenario. In ad-
dition, for some classes of problems such as compilation of computer programs,
this is the only kind of solution which can be actually implemented and executed
[SK03]. More formally, we provide the following definition.

Definition 13 (Solution to a CTG A&S Problem). The solution of the alloca-
tion and scheduling problem 〈〈T,A,C, P 〉, Obj,Dur,Rel,Due,ResSet,ResCons〉
is an assignment to each task ti ∈ T of a start time Si ∈ [0..eoh] and of a re-
source res(ti) ∈ ResSeti such that

1. ∀ti ∈ T Si ≥ Reli
2. ∀ti ∈ T Si +Duri ≤ Duei
3. ∀(ti, tj) ∈ A Si +Duri ≤ Sj

4. ∀t = 0 . . . eoh ∀s ∈ S ∀rk ∈ R ∈
⋃

ti∈TG(s)

ResSeti :

∑

ti ∈ TG(s) :
res(ti) = rk
Si ≤ t < Ei

ResConsi ≤ Ck

Constraints (1) and (2) ensure each task is executed within its release date
and due date. Constraints (3) enforce precedence constraints, constraints (4) en-
force resource capacity restrictions in all scenarios and at every time instant t on
the time line. A solution is optimal if E(Obj) is minimized (resp. maximized).

For example, in Figure 4.5A we show a small CTG scheduling problem and
in Figure 4.5B the corresponding solution. Note that all tasks have a unique
start time and a unique resource assignment independent from the scenario, but
feasible in all scenarios. For instance, tasks t1 and t2 are mutually exclusive,
as they cannot appear in the same scenario. Therefore, although they use the
same unary resource, their execution can overlap in time.
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Figure 4.6: A: The CTG from Figure 4.2; B: The associated BFG; C: probabil-
ities of condition outcomes

4.5 Probabilistic Reasoning

The model presented in Section 4.4 cannot be solved via traditional constraint-
based scheduling techniques. In fact, there are two aspects that require proba-
bilistic reasoning and should be handled efficiently: the resource constraints to
be enforced in all scenarios and the computation of the expected value of the
objective function (a weighted sum on all scenarios). In both cases, in prin-
ciple, we should be able to enumerate all possible scenarios, whose number is
exponential. Thus, we need a more efficient way to cope with this expression.

One contribution of this chapter is the definition of a data structure, called
Branch/Fork Graph (BFG), that compactly represents all scenarios, and one
parametric polynomial time algorithm working on the BFG that enables efficient
probabilistic reasoning. For instance, we instantiate the parametric algorithm
for the computation of the probability of a given set of scenarios, such as the
probability of all scenarios where a given set of tasks execute (resp. do not
execute).

4.5.1 Branch/Fork Graph

A Branch/Fork Graph (BFG) intuitively represents the skeleton of all possible
control flows and compactly encodes all scenarios of the corresponding CTG; for
example Figure 4.6B shows the BFG associated to the CTG from Figure 4.2A
(reported again in Figure 4.6A for simplicity).

A BFG is an acyclic directed graph. Nodes are either branch nodes (B-nodes,
dots in Figure 4.6B) or fork nodes (F nodes, circles in Figure 4.6B). There is
a branch node in the BFG for each branch node in the CTG. F-nodes instead
represent sets of events and group CTG nodes executing at all such events. For
example in Figure 4.6B Fa groups together nodes t2, t3 and t4 as they all execute
in all scenarios where a = true. More formally:

88



Definition 14 (Branch/Fork Graph). A Branch/Fork graph is a directed, acyclic
graph associated to a CTG = 〈T = TB ∪ TF , A, C, P 〉 with two types of nodes,
referred to as B-nodes and F-nodes.

BFG nodes satisfy the following conditions:

1. The graph has a B-node Bi for every branch node t ∈ TB in the associated
CTG.

2. Let S be the sample space of the CTG; then the BFG has an F-node Fi

for every subset of events σ ∈ 2S, unless:

(a) ∄ti ∈ T such that ∀s ∈ σ : ti ∈ TG(s).

(b) ∃ck ∈ C such that (I) more than one outcome of ck appear in sce-
narios in σ and (II) not all the outcomes of ck appear in σ.

(c) ∃σ′ ∈ 2S such that (a) and (b) are not satisfied (i.e. hence, an F-node
would be built) and σ ⊂ σ′.

The CTG branch node corresponding to a B-node Bi is denoted as t(Bi). The
F-nodes are said to “represent” the set of events σ they correspond to, denoted
as σ(Fi). The set of CTG nodes ti such that ∀s ∈ σ(Fi), ti ∈ TG(s) is said to
be “mapped on” Fi and is denoted as t(Fi)

2

BFG arcs satisfy the following conditions:

1. An F-node Fi is connected to a B-node Bj by an arc (Fi, Bj) if t(Bj) ∈
t(Fi)

2. A B-node Bi is connected by means of an arc labeled with the outcome
Outt(Bi),k to an F-node Fj such that tk ∈ t(Fj)

3. An F-node Fi is connected to an F-node Fj such that no path from Fi to
Fj already exists and:

(a) σ(Fj) ⊂ σ(Fi)

(b) There exists no F-node Fk such that σ(Fj) ⊂ σ(Fk) ⊂ σ(Fi)

Condition on BFG nodes (1) tells the BFG has one B-node for each branch
in the associated CTG. Following condition (2), each F-node models a subsets
of events σ ∈ 2S ; there is however no need to model a subset σ if any of the
three conditions (2abc) holds. In particular:

2a) there is no need to model sets of events σ such that no task in the graph
would be mapped to the resulting F-node; such sets of events are of no
interest, as the ultimate purpose of the BFG is to support reasoning about
task executions and their probability.

2b) there is no need to model a set of events σ, if two or more outcomes of a
condition ck appear in σ and still there is some outcome of ck not in σ.
In fact if two or more (but not all) outcomes of ck are in σ, then σ still
depends on ck and one could model this by using several F-nodes, each
one referring to a single outcome. If however all outcomes of ck are in σ,
then σ is independent on ck.

2c) provided neither condition (2a) nor (2b) holds, there is still no need to
build an F-node if there exist a larger set of events σ′ such that neither
condition (2a) nor (2b) holds as well. In practice, due to condition (2c)
F-nodes always model maximal sets of events.

2Note that t(Bi) is a node, while t(Fi) is a set.
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Figure 4.7: A: The non CFU CTG from Figure 4.3.B; B: The associated BFG

For instance, according to the definition, the BFG corresponding to the CTG
in Figure 4.6A contains a branch node for each branch: B0 corresponds to t1
(i.e. t(B0) = t1), B1 to t6, B2 to t7, B3 to t12, B4 to t15. As for F-nodes, F0

represents the whole sample space and nodes t0, t1, t12, t15 are mapped to it (i.e.
t(F0) = {t0, t1, t12, t15}), as they execute in all scenarios. F-node Fb corresponds
to the set of events {¬abcde,¬abc¬de,¬abcd¬e,¬abc¬d¬e,¬ab¬cde,¬ab¬c¬de,
¬ab¬cd¬e,¬ab¬c¬d¬e}, that is the set of events where outcomes ¬a and b
are both true; t8 is the only task in t(Fb) as it executes in all such scenarios
(condition (2b)) and does not execute in any superset of scenarios (condition
(2c)).

Concerning the BFG connectivity, condition (1) intuitively states that ev-
ery B-node has an ingoing arc from all F-nodes where the corresponding CTG
branch is mapped; in the BFG of Figure 4.6B condition (1) yields all arcs from F-
nodes to B-nodes. Condition (2) defines instead the connectivity from B-nodes
to F-nodes: it tells that every B-node has an outgoing arc for each outcome of
the corresponding CTG branch; the destination of such BFG arc is the F-node
where the destination of the arc with that outcome (task tk) is mapped to.
The BFG arc is labeled with the corresponding CTG outcome. In Figure 4.6B
condition (2) yields all arcs from B-nodes to F-nodes.

Finally condition (3) (that never happens in CTG satisfying the CFU) de-
fines connectivity between F-nodes and other F-nodes linked by no path result-
ing from conditions (1) and (2). In particular, arcs (Fi, Fj) are built where Fj

is the destination F-node, and Fi is the “minimal” (see condition (3b)) F-node
such that σ(Fj) ⊂ σ(Fi) (see condition (2b)). Observe that parents of B-nodes
are always F-nodes, parents of F-node can be both F-nodes and B-nodes; chil-
dren of B-nodes are always F-nodes, children of F-nodes can be both F-nodes
and B-nodes. As an example consider Figure 4.7 where we have links between
F-nodes in the BFG corresponding to a CTG that does not satisfy CFU.

Some properties follow from the BFG definition. First of all, given a CTG,
its associated BFG is uniquely defined. The result comes from the fact that
node condition (1) univocally defines the set of B-nodes, node condition (2c)
univocally selects the set of scenarios to which every F-node corresponds to
and the graph connectivity is univocally defined once F-nodes and B-nodes are
given.

The family of mappings of CTG nodes to F-nodes in general does not par-
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Figure 4.8: Task t3 is mapped on two F-nodes (F¬a, F¬b)

tition nodes in the CTG; Figure 4.8 shows an example graph where a node
(namely t3) is mapped to more than one F-node in the BFG (F¬a, F¬b). The
following theorem holds:

Theorem 1. If a CTG node ti is mapped to more than one F-node, such F-
nodes are mutually exclusive, and represent pairwise disjoint sets of scenarios.

Proof. Suppose a ti is both mapped on F-nodes Fj and Fh; this can be true
only if no set of events σ′ exists such that (2a), (2b) (2c) are satisfied. From
condition (2b), ti ∈ TG(s)∀s ∈ σ(Fj)∪σ(Fh), hence σ

′ = σ(Fj)∪σ(Fh) satisfies
(2b), and of course (2c). Hence σ′ = σ(Fj)∪σ(Fh) must violate (2a), or ti would
not be mapped to Fj and Fh. Therefore, there must be a condition ck (let O
be the set of outcomes) such that events in σ(Fj) ∪ σ(Fh) do not contain the
whole set of outcomes of ck and σ(Fj), σ(Fh) contains exactly one outcome of
ck. As different outcomes of the same condition generate mutually exclusive
events, σ(Fj) and σ(Fh) are mutually exclusive.

Note also that in general F-nodes and B-nodes can have more than one
parent (despite this is not the case for F-nodes in Figure 4.6 and 4.8), as well
as more than one child. In particular:

Theorem 2. Parents of B-nodes are always mutually exclusive; parents of F-
nodes are never mutually exclusive.

Proof. Let Bi be a B-node; due to connectivity condition (1), its parents are
the F-nodes where the corresponding CTG branch t(Bi) is mapped; due to
Theorem 1 those F-nodes are mutually exclusive.

Now, let Fi be an F-node, with F-node parents F ′ and F ′′, then σ(Fi) ⊂
σ(F ′) and σ(Fi) ⊂ σ(F ′′), due to connectivity condition (3). Note that the strict
inclusion holds, hence σ(F ′) * σ(F ′′), σ(F ′′) * σ(F ′′) and σ(F ′) ∩ σ(F ′′) 6=
∅. Therefore the two parents are non mutually exclusive, as they share some
event. The reasoning still holds when one parent (or both) is a B-node Bj , by
substituting σ(F ′) with {s ∈ σ(F ′) | t(Bj) ∈ t(F ′)}.

4.5.2 BFG and Control Flow Uniqueness

Control flow uniqueness translates into additional properties for the BFG:
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Theorem 3. If CFU holds, every F-node has a single parent and it is always
a B-node.

Proof. (1. Every F-node has a single parent) Suppose a node Fi has two parents
F ′, F ′′ (see the proof of Theorem 2 for how to adapt the reasoning to B-nodes).
Let tj be a CTG and-node ∈ t(Fi), and consider two incoming arcs a′ = (t′, tj)
and a′′ = (t′′, tj) such that a′ ⇒ a′′ (for CFU to hold); either the parents t′

and t′′ are in t(Fi) as well, or they are mapped to some ancestors of Fi; in this
case they execute in the events represented by any descendant of such ancestors
(as a consequence of connectivity conditions), hence they also execute on some
parents of Fi. It is therefore always possible to identify a tj such that:

(a) tj ∈ t(Fi)

(b) parents t′ and t′′ respectively execute in all events in σ(F ′) and σ(F ′′).

Now, since a′ ⇒ a′′, in terms of set of events this implies σ(F ′′) ⊂ σ(F ′).
However, due to Theorem 2, we know that and σ(F ′′) * σ(F ′), which leads to
a contradiction. Hence, if CFU holds, every F-node has a single parent.

(2. The parent is a B-node) Suppose there exists an F-node Fi with a single,
F-node, parent F ′. As F ′ is the only parent of Fi and there is no intermediate
B-node, every node tj ∈ t(Fi) executes in σ(F ′) as well. At the same time, due
to connectivity condition (3), σ(Fi) ⊂ σ(F ′); hence such a node Fi, if existent,
would fail to satisfy node condition (2c). Therefore, the single parent of every
F-node is a B-node.

From Theorem 3 we deduce that if CFU holds the BFG is a bi-chromatic
alternate graph. Moreover, since every branch node with m outgoing arcs orig-
inates exactly m F-nodes, the BFG has exactly no +1 F-nodes, where no is the
number of condition outcomes; for this reason, when CFU is satisfied, one can
denote F-nodes (other than the root) by the outcome they refer to; for example
an F-node referring to outcome a = true will be denoted as Fa, if referring to
b = false as F¬b and so on.

CFU is also a necessary condition for the structural property listed above
to hold; therefore we can check CFU by trying to build a BFG with a single
parent for each F-node: if we cannot make it, then the original graph does not
satisfy the condition. The BFG construction procedure in case CFU is satisfied
is outlined in the following section.

4.5.3 BFG construction procedure if CFU holds

The BFG construction procedure has exponential time complexity in case the
CTG satisfies CFU since the number of possible conjunctions in the activation
events is exponential; in practice we can devise a polynomial time algorithm
if Control Flow Uniqueness holds. In this case we know the BFG contains an
F-node for each condition outcome in the original CTG, plus an F root node;
therefore we can design an algorithm to build a BFG with an F-node for each
condition outcome, and check at each step whether CFU actually holds; if a
violation is encountered we return an error.

In the following, we suppose that each CTG node ti is labeled with the
set of condition outcomes in all paths from the root node to ti (or “upstream
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conditions”); this can be easily done in polynomial time by means of a forward
visit of the graph.

A polynomial time complexity BFG building procedure for graphs satisfying
CFU is shown in Algorithm 2. The algorithm performs a forward visit of the
Conditional Task Graph starting from the root node; as the visit proceeds the
BFG is built and the CTG nodes are mapped to F-nodes. The acyclicity of the
CTG ensures that whenever a CTG node ti is visited, all F-nodes needed to
map it have already been built.

Figure 4.9 shows an example of the procedure, where the input is a subgraph
of the CTG from Figure 4.2A. Initially (Figure 4.9B) the L set only contains
the root task t5 and V = ∅. The CTG node t5 is visited (line 5) and mapped
to the pre-built F-node F0. The mapping set function at line 6 returns the set
of F-nodes in the current BFG on which t5 has to be mapped; details on how
to compute this set will be given later. In the next step (Figure 4.9C) t6 is
processed and mapped on F0; however, being t6 a branch, a new B-node is built
(line 9) and an F-node for each condition outcome (Fb, F¬b). In Figure 4.9D
t7 is visited and, similarly to t6, a new B-node and two new F-nodes are built.
Next, t8 is visited and mapped on Fb (Figure 4.9E); similarly t9 is mapped on
F¬b, t10 on Fc and t11 on F¬c (those steps are not shown in the figure). Finally,
in Figure 4.9F and 4.9G, nodes t20 and t21 are visited; since the first is triggered
by both the outcomes b and ¬b it is mapped directly on F0; t21 is instead an
and node, whose main predecessor is t10, therefore the mapping set function
maps it on the same F-node as t10.

Algorithm 2: Building a BFG

1: input: a Conditional Task Graph with all nodes labeled with the set of their
upstream conditions

2: build the root F-node F0

3: let L be the set of nodes to visit and V the one of visited nodes. Initially L

contains the CTG root and V = ∅
4: while L 6= ∅ do

5: pick the first node ti ∈ L, remove ti from L

6: let F (ti) = mapping set(ti) be the set of F-nodes ti has to be mapped on
7: map ti on all F-nodes in F (ti)
8: if ti is a branch then

9: build a B-node Bi

10: build an F-node FOut for each condition outcome Out of the branch
11: connect each F-node in F (ti) to Bi

12: end if

13: add ti to V

14: for all child node tj of ti do
15: if all parent nodes of tj are in V , add tj to L

16: end for

17: end while

The set F (ti) for each CTG node is computed by means of a two-phase pro-
cedure. In first place an extended set of F-nodes is derived by a forward visit of
the BFG built so far. The visit starts from the root F-node. At each step: (A)
if an F-node is visited, then all its children are also visited; (B) if a B-node is
visited, then each child nde is visited only if the corresponding condition out-
come appears in the label of ti (which reports the “upstream outcomes”). The
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Figure 4.9: BFG building procedure

CTG node ti is initially mapped to all leaves reached by the visit; for example,
with reference to Figure 4.9G, CTG node t21 is first mapped to Fb, F¬b, Fc.

In the second phase this extended set of F-nodes is simplified by recursively
applying two simplification rules; in order to make the description clearer we
temporarily allow CTG branch nodes to be mapped on B-nodes: B-node map-
pings, however, will be discarded at the end of the simplification process.

rule 1: if a B-node Bi is the only parent of F-nodes F0, F1, . . . and a task tj is
mapped on all of them, then add Bi to F (tj). For example, with reference
to Figure 4.9G, where initially F (t21) = {Fb, F¬b, Fc}, after an application
of rule 1 we have F (t21) = {Bleft, Fb, F¬b, Fc}

rule 2: if a task tj is mapped on a B-node Bi with parent F0, F1, . . ., then Bi

and all its descendants can be removed from F (tj). If at the end of this
process no descendant of F0, F1, etc is in F (tj), then map tj on F0, F1, etc.
For example, after the application of rule 2, F (t21) becomes {Fc}.

Once all simplifications are done, all remaining F-nodes in F (ti) must be
mutually exclusive, as said in Section 4.5.1 and shown in Figure 4.8: if this fails
to occur it means the BFG has not enough F-nodes for the mapping, which
in turn means the original graph does not meet CFU. In this case an error is
reported.
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4.5.4 BFG and scenarios

The most interesting feature of a BFG is that it can be used to select and
encode groups of scenarios in which arbitrarily chosen nodes execute. A spe-
cific algorithm can then be applied to such scenarios, in order to compute the
corresponding probability, or any other feature of interest.

Groups of scenarios are encoded in the BFG as sets of s-trees:

Definition 15 (S-Tree). An s-tree is any subgraph of the BFG satisfying the
following properties:

1. The subgraph includes the root node

2. If the subgraph includes an F node, it includes also all its children

3. If the subgraph includes an F-node, it includes also all its parents

4. If the subgraph includes a B-node, it includes also one and only one of its
children.

Note that the s-tree associated to a scenario s is the BFG associated to the
deterministic task graph TG(s).

Figure 4.10: (A) BFG for the graph in Figure 4.6 - (B) the s-tree associated to
the scenario ¬a¬b¬c¬de - (C) a subgraph (set of s-trees) associated to scenarios
where ¬ace holds

Despite its name, an s-tree is not necessarily a tree: this is always the case
only if CFU holds (which is not required by Definition 15) (see Figure 4.10A/B,
where CFU holds and F-nodes are labeled with the condition outcome they refer
to).

By relaxing condition (4) in Definition 15 and allowing the inclusion of more
than one condition per B-node, we get a subgraph representing a set of s-trees;
a single s-tree (and hence a scenario) can be derived by choosing from the
subgraph a single outcome per branch condition. For example from the subgraph
in Figure 4.10C one can extract the set of s-trees corresponding to ¬abcde,
¬abc¬de, ¬a¬bcde, ¬a¬bc¬de. This encoding method is sufficient to represent
sets of scenarios of practical interest (e.g. those required by the algorithm and
constraints discussed in the chapter). The importance of s-trees mainly lies in
the fact that they are required for the algorithm presented in the forthcoming
Section 4.5.6.
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4.5.5 Querying the BFG

We now restrict our attention to CTG satisfying Control Flow Uniqueness;
namely we want to provide a way to select a set of s-trees representing a set
of scenarios which include or exclude a specified group of nodes; once such a
subgraph is available, the execution probability can be extracted by a proper
algorithm. We consider selection rules specified by means of either conjunctions
or disjunctions of positive and negative terms3. Each basic term of the query
can be either ti (with meaning “task ti executes”) or ¬ti (with meaning “task
ti does not execute”). Some examples of valid queries are:

q0 = ti ∧ tj q1 = ti ∧ ¬tj ∧ ¬tk q2 = ti ∨ tj

A query returns the BFG subgraph representing the events where the speci-
fied tasks execute/do not execute, or null in case no such event exists. The idea
of the query processing procedure is that, since the complete BFG represents all
possible scenarios, we can select a subset of them by removing F-nodes which
do not satisfy the boolean query. Thus, in order to be processed, queries are
first negated:

¬q0 = ¬ti ∨ ¬tj ¬q1 = ¬ti ∨ tj ∨ tk ¬q2 = ¬ti ∧ ¬tj

Each element in the negated disjunction now has to be mapped to a set
of F-nodes to be removed from the BFG. This can be efficiently done by pre-
computing for each BFG node an inclusion label and an exclusion label :

1. Inclusion labels A CTG task ti is in the inclusion label i(Fj) of an F-node
Fj either if it is directly mapped on it, ti ∈ t(Fj), or if ti is in the inclusion label
of any of its parents.

A CTG task ti is in the inclusion label i(Bj) of a B-node Bj if ti is in the
inclusion label of all of its parents.

In practice, ti ∈ i(Fj) (resp. i(Bj)) if it does execute in all scenarios corre-
sponding to every s-tree containing Fj (resp. Bj).

2. Exclusion labels A CTG task ti is in the exclusion label e(Fj) of an
F-node Fj either if parents of Fj are F-nodes4 and ti is in the exclusion label of
any parent, or if the parent of Fj is a B-node and it exists a brother node Fk

such that ti is mapped on a descendant (either direct or not) of Fk and ti is not
mapped on a descendant (either direct or not) of Fj .

A CTG task ti is in the exclusion label e(Bj) of a B-node Bj if ti is in the
exclusion label of all of its parents.

In practice, ti ∈ e(Fj) (resp. e(Bj)) if it cannot execute in the scenario
correspondent to any s-tree containing Fj (resp. Bj).

For example in Figure 4.6B (reproduced in Figure 4.11A for sake of clarity),
the inclusion label of node F0 is i(F0) = {t0, t1, t12, t15} and i(B3) is equal to

3Mixed queries are also allowed by converting them to groups of conjunctive queries repre-
senting disjoint sets of scenarios, but paying an exponential complexity blow-up, depending on
the size and the structure of the query. Pure conjunctive and disjunctive queries are however
enough for managing cases of practical interest as shown in the rest of the chapter.

4This property holds for general CTG, while if CFU is satisfied parents of F-nodes are
always B-nodes.
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i(F0); then i(Fd) = i(F0) ∪ {t14} and i(F¬d) = i(F0) ∪ {t13}; i(B4) is again
equal to i(F0), since neither t13 nor t14 are mapped on both parents of B4. As
for the exclusion labels: e(F0) = ∅ and e(B0) = ∅; e(F¬a) = {t2, t3, t4}, since
those tasks are mapped on the brother node Fa and they are not mapped on
any descendant of F¬a.

Once inclusion and exclusion labels are computed, each (conjunctive) term
of the query (e.g. ti ∧ ¬tj ∧ . . .) is mapped to a set of F/B-nodes satisfying
ti ∈ i(Fj) (or i(Bj)) for every positive element ti in the term, and ti ∈ e(Fj)
(or e(Bj)) for each negative element ¬ti in the term. For example:

ti → {Fj | ti ∈ i(Fj)} ∪ {Bj | ti ∈ i(Bj)}

¬ti → {Fj | ti ∈ e(Fj)} ∪ {Bj | ti ∈ e(Bj)}

ti ∧ tk → {Fj | ti, tk ∈ i(Fj)} ∪ {Bj | ti, tk ∈ i(Bj)}

ti ∧ ¬tk → {Fj | ti ∈ i(Fj), tk ∈ e(Fj)} ∪ {Bj | ti ∈ i(Bj), tk ∈ e(Bj)}

Note that an (originally) conjunctive query is mapped to a set of terms, each
consisting of a single positive or negative task literal; the query is processed
by removing from the complete BFG the F and B-nodes corresponding to each
term. Conversely, an (originally) disjunctive query yields a single term con-
sisting of a conjunction of positive of negative task; the query is processed by
removing from the BFG the F and B-nodes corresponding to the term. For
example, on the graph of Figure 4.6B (reproduced in Figure 4.11A for sake
of clarity), the query q = t21 ∧ ¬t3 ∧ ¬t16 = ¬(¬t21 ∨ t3 ∨ t16) is processed
by removing from the BFG F¬c, Fa and F¬e, since t21 ∈ e(F¬c), t3 ∈ i(Fa)
and t16 ∈ i(F¬e). The resulting subgraph is the one shown in Figure 4.10C
(reproduced in Figure 4.11B).

Figure 4.11: (A) the BFG from Figure 4.6B (B) the subgraph from Figure 4.10C

Disconnected nodes are removed at the end of the process. During query
processing, one has to check whether at some step any B-node loses all children;
in such case the output is null, as the returned BFG subgraph would contain a
B-node with no allowed outcome and this is impossible. Similarly, the result is
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null if all BFG nodes are removed. A query is always processed in linear time.
Finally, the following theorem holds:

Theorem 4. If a query returns a BFG subgraph, this represents a set of s-trees.

Proof. Assume the query result is not null and remember we consider CFU to be
satisfied; then condition (1) in Definition 15 is trivially satisfied, as a non-empty
query always includes the root node. Conditions (2) and (3) are satisfied as, in
a graph satisfying CFU, children and parents of F-nodes are always B-nodes,
and B-nodes are never removed when processing a query. Finally, condition (4)
is satisfied as query processing may remove some children of a B-node, but not
all of them (or null would be returned).

As the result of a query is always a set of s-trees, it can be used as input for the
backward visit algorithm.

4.5.6 Visiting the BFG

Many algorithms along the chapter are based on a backward visit of the BFG.
During these visits each algorithm collects some attributes stored in F and B
nodes. We therefore propose a meta algorithm, using a set of parameters which
have to be defined case by case. All backward visit based algorithms assume
CFU is satisfied and require as input a subgraph representing a set of s-trees
(hence a BFG as a particular case).

In particular, Algorithm 3 shows the generic structure of a backward visit of
a given BFG. The visit starts from the leaves and proceeds to the root; every pre-
decessor node is visited when all its successors are visited (lines 12-13). The meta
algorithm is parametric in the five-tuple 〈A, initF , initB , updateF , updateB〉. In
particular A is a set of possible attribute values characterizing each F and B-
node, and A(n) denotes the values of the attributes for node n; the function
initF : {Fi} → A associates to an F-node an element in A, that is values for
each of its attributes, and the function updateF : {Fi} × {Bj} → A associates
to an F-node and a B-node an element in A. The functions initB : {Bi} → A
and updateB : {Bi} × {Fj} → A are defined similarly to initF and updateF for
B-nodes. In the algorithm, initF and initB are used to assign an initial value
of attributes in A to each F and B-node (line 2); the function updateF is used
to update the attribute values of the parent of an F-node (which is a B-node
— line 6) and initB is used to update the attributes of the parent of a B-node
(which is an F-node — line 8). In the following, we will use Algorithm 1 with
different parameter settings for different purposes.

4.5.7 Computing subgraph probabilities

In the following we show how to compute the probability for a given BFG, or
part of it (sets of s-trees derived from querying the BFG).

The probability of a subgraph can be computed via a backward visit which
is an instantiation of the meta Algorithm 3. In particular, a single attribute p,
representing a probability, is stored in F and B-nodes, and thus A = [0, 1]. The
result of the algorithm is the probability value of the root node. The init and
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Algorithm 3: Backward visit(A, initF , initB , updateF , updateB)

1: let L be the set of nodes to visit and V the one of visited nodes. Initially L
contains all subgraph leaves and V = ∅

2: for each F and B-node, store the values of attributes in A. Initially set
A(n) = initF (n) for all F nodes, A(n) = initB(n) for all B-nodes

3: while L 6= ∅ do
4: pick a node n ∈ L
5: if n is an F-node with parent np then
6: A(np) = updateF (n, np)
7: else if n is a B-node then
8: for every parent np: A(np) = updateB(n, np)
9: end if

10: V = V ∪ {n}
11: L = L \ {n}
12: for every parent np do
13: if all children of np are in V then L = L ∪ {np}
14: end for
15: end while

update functions are as follows:

initF (Fi) = the probability of the outcome labeling the arc

from the single B-node parent of Fi and Fi itself

initB(Bi) = 0

updateF (Fi, Bj) = p(Bj) + p(Fi)

updateB(Bi, Fj) = p(Fj) · p(Bi)

As an example, consider the subgraph of Figure 4.10C (also reported in
Figure 4.11B, together with the probabilities). The computation starts from
the leaves; for example at the beginning p(Fb) = 0.4, p(F¬b) = 0.6, p(Fc) = 0.6
(set by initF ). Then, probabilities of B-nodes are the weighted sum of those of
their children (see updateF ); for example p(b1) = p(Fb)+p(F¬b) = 0.4+0.6 = 1
and p(b2) = p(Fc) = 0.6. Probabilities of F-nodes are instead the product of
those of their children (see updateB), and so p(F¬a) = p(b1)p(b2) = 0.6. The
visit proceeds backwards until p(F0) is computed, which is also the probability
of the subgraph.

4.6 Objective Function

One of the purposes of the probabilistic reasoning presented so far is to derive
the expected value of a given objective function efficiently. We consider in
this section three examples of objective functions that are commonly used in
constraint based scheduling, described in Section 4.4.4.3: the minimization of
costs of single task-resource assignments, the minimization of the assignment
cost of pairs of tasks, and the makespan. We refer to the first two examples
as objective functions depending on the resource allocation while we refer to the
third case as objective function depending on the task schedule.
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This first and the second case are easier since we can transform the expected
value of the objective function in a deterministic objective function provided
that we are able to compute the probability a single task executes and the prob-
abilities that a pair of tasks executes respectively. The third example is much
more complicated since there is not a declarative description of the objective
function that can be computed in polynomial time. Therefore, we provide an
operational definition of such expected value by defining an expected makespan
constraint, and the corresponding filtering algorithm.

4.6.1 Objective function depending on the resource allocation

We first consider an objective function depending on single tasks assignments
and on the run time scenario; for example, suppose there is a fixed cost for the
assignment of each task ti to a resource res(ti), as it is the case for objective
(4.2) in Section 4.4.4.3. The general form of the objective function on a given
scenario s is.

Obj(s) =
∑

ti∈TG(s)

cost(ti, res(ti)) =
∑

ti∈T

fti(s)cost(ti, res(ti))

We remind that fti(s) = 0 if ti 6∈ TG(s). According to Definition 8, the expected
value of the objective function is

E(Obj) =
∑

s∈S

p(s)Obj(s) =
∑

s∈S

p(s)
∑

ti∈T

fti(s)cost(ti, res(ti))

We remind that Si = {s | ti ∈ TG(s)} is the set of all scenarios where task i
executes. Thus,

E(Obj) =
∑

ti∈T

[

cost(ti, res(ti))
∑

s∈Si

p(s)

]

Now every stochastic dependence is removed and the expected value is reduced
to a deterministic expression. Note that

∑

s∈Si
p(s) is simply the probability

of execution of node/task i. This probability can be efficiently computed by
running Algorithm 3 instantiated as explained in Section 4.5.7, on the BFG
sub-graph resulting from the query q = ti.

As a second example, we suppose the objective function is related to arcs
and to the run time scenario; again, we assume there is a fixed cost for the
activation of an arc, as it is the case for the objective (4.3) in Section 4.4.4.3.
The general form of the objective function is.

Obj(s) =
∑

ah=(ti,tj)∈TG(s)

cost(res(ti), res(tj)) =

=
∑

ah=(ti,tj)∈A

fti(s)ftj (s)cost(ti, res(ti), tj , res(tj))

The expected value of the objective function is

E(Obj) =
∑

s∈S

p(s)
∑

ah=(ti,tj)∈A

fti(s)ftj (s)cost(ti, res(ti), tj , res(tj))
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note that cost(ti, res(ti), tj , res(tj)) is a cost that we can derive from a cost
matrix c

E(Obj) =
∑

ah=(ti,tj)∈A



cost(ti, res(ti), tjres(tj))
∑

s∈Si∩Sj

p(s)





Now every stochastic dependence is removed and the expected value is reduced
to a deterministic expression. Note that

∑

s∈Si∩Sj
p(s) is the probability that

both tasks i and j execute. Again this probability can be efficiently computed
using Algorithm 3 on the BFG sub-graph resulting from query q = ti ∧ tj .

4.6.2 Objective function depending on the task schedule

For a deterministic task graph, the makespan is simply the end time of the
last task; it can be expressed as: makespan = max{Ei | ti ∈ T}. If the task
graph is conditional the last task depends on the occurring scenario. Remember
we are interested in finding a single assignment of start times, valid for each
execution scenario; in this case each scenario s identifies a deterministic Task
Graph (TG(s)) and its makespan is max{Ei | ti ∈ TG(s)}. Thus, the most
natural declarative expression for the expected makespan would be:

E(makespan) =
∑

s∈S

p(s)max{Ei | ti ∈ TG(s)} (4.4)

where p(s) is the probability of the scenario s. Note that the expression can
be simplified by considering only tail tasks (i.e. tasks such that |A+(ti)| = 0).
For example, consider the CTG depicted in Figure 4.12A, the scenarios are {a},
{¬a, b}, {¬a,¬b}, and the expected makespan can be expressed as:

E(makespan) = p(a)max{E2, E6}+

p(¬a ∧ b)max{E4, E6}+

p(¬a ∧ ¬b)max{E5, E6}

Unluckily the number of scenarios is exponential in the number of bran-
ches, which limits the direct use of expression (4.4) to small, simple instances.
Therefore, we defined an expected makespan global constraint

exp mkspan cst([E1, . . . , En], emkspan)

whose aim is to compute legal bounds on the expected makespan variable
emkspan and on the end times of all tasks (Ei) in a procedural fashion. We
devised a filtering algorithm described in Section 4.6.2.1 whose aim is to prune
the expected makespan variable on the basis of the task end variables, and
vice-versa, see Section 4.6.2.2.

4.6.2.1 Filtering the expected makespan variable

The filtering algorithm is based on a simple idea: the computation of the ex-
pected makespan is tractable when the order of tasks, and consequently of end
variables, is known. Consider the schedule in Figure 4.12B, where all tasks use
a unary resource URes0: since t5 is the last task, the makespan of all scenarios

101



containing t5 is E5. Similarly, since t4 is the last but one task, E4 is the makespan
value of all scenarios containing t4 and not containing t5, and so on.

The computation can be done even if start times have not yet been assigned,
as long as the end-order of tasks is known; in general, let t0, t1, . . . , tnt−1 be the
sequence of CTG tasks ordered by increasing end time, then:

E(makespan) =

nt−1∑

i=0

p(ti ∧ ¬ti+1 ∧ . . . ∧ ¬tnt−1) Ei (4.5)

The expected makespan can therefore be computed as a weighted sum of end
times, where the weight of task ti is given by the probability that 1) ti executes 2)
none of the task ending later than ti executes. The sum contains nt terms, where
nt is the number of tasks; again this number can be decreased by considering
tail tasks only.

Hence, once the end order of tasks is fixed, we can compute the expected
makespan in polynomial time, we just need to be able to efficiently compute
the probability weights in expression (4.5): if CFU holds, this can be done as
explained in Section 4.5 by running Algorithm 3 (in its probability computation
version) on the BFG subgraph resulting from query q = ti∧¬ti+1∧ . . .∧¬tnt−1.

In general, however, during search the order of tasks is not fixed, but it is al-
ways possible to identify possibly infeasible task schedules whose makespan,
computed with expression (4.5), can be used as a bound for the expected
makespan variable. We refer to these schedules as Smin and Smax, see Fig-
ure 4.13. In particular, Smin is a schedule where all tasks are assumed to end
at the minimum possible time and are therefore sorted by increasing min(Ei);
conversely, in Smax tasks are assumed to end at the maximum possible time,
hence they are ordered according to max(Ei). Obviously both situations will
likely be infeasible, but have to be taken into account. Moreover, the following
theorem holds:

Theorem 5. The expected makespan assumes the maximum possible value in
the Smax schedule, the minimum possible value in the Smin schedule.

Proof. Let us take into account Smax. Let t0, . . . , tn−1 be the respective task
order; the corresponding expected makespan value due to expression 4.5 is a
weighted sum of (maximum) end times:

emkspan(Smax) = w0 ·max(E0) + · · ·+ wn−1 ·max(En−1)

Note that
∑

i wi = 1 as weights are probability; also note weights are univocally
defined by the task order. If Smax were not the expected maximum makespan

Figure 4.12: Temporal task grouping
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Figure 4.13: A: Example of Smin and Smax sequences. B: An update of E1
causes a swap in Smax

.

schedule, it should be possible to increase the expected makespan value by
reducing the end time of some tasks. Now, let us gradually decrease max(Ei)
while maintaining max(Ei) ≥ max(Ei−1): as long as wi does not change the
expected makespan value necessarily decreases. When max(Ei) gets lower than
max(Ei−1), weights wi and wi−1 change as follows:

wi = p(ti ∧ ¬ti+1 ∧ . . . ∧ ¬tn−1) → p(ti ∧ ¬ti−1 ∧ ¬ti+1 ∧ . . . ∧ ¬tn−1)

wi−1 = p(ti−1 ∧ ¬ti ∧ ¬ti+1 ∧ . . . ∧ ¬tn−1) → p(ti−1 ∧ ¬ti+1 ∧ . . . ∧ ¬tn−1)

hence wi−1 gets higher, wi gets lower. As the sum
∑

i wi is constant and equal
to 1 both before and after the swap, wi−1 grows exactly by the amount by
which wi shrinks; in other terms, some of the weight of ti is transferred to
ti−1 or, equivalently, ti−1 “steals” some weight from ti. From now on, if we
keep on decreasing max(Ei) the expected makespan will still decrease, just at
a slower pace due to the lower value wi, until wi will become 0. Hence by
reducing the end time of a single time variable the expected makespan can only
get worse. Moving more tasks complicates the situation, but the reasoning still
holds. An analogous proof can be done for the expected makespan for the Smin

schedule.

We can therefore prune the expected makespan variable by enforcing:

emkspan(Smin) ≤ emkspan ≤ emkspan(Smax) (4.6)

In order to improve computational efficiency, we can use F-nodes of the BFG
instead of tasks in the computation of emkspan(Smin) and emkspan(Smax),
exploiting the mapping between tasks (CTG nodes) and F-nodes; details are
given later on in Section 4.6.2.3.

Pruning the makespan variable requires to compute the makespan of the
two schedules Smin, Smax; this is done by performing a BFG query (complexity
O(nt)) and a probability computation (complexity O(nt)) for each task (O(nt)
iterations). The basic worst case complexity is therefore O(n2

t ), which can be
reduced to O(nt log(nt)) by exploiting caching and dynamic updates during
search. As an intuition, all probability weights in the BFG can be computed at
the root of the search tree and cached. Then, each time a variable Ei changes,
possibly some nodes change their positions in Smin, Smax (see Figure 4.13B,
where max(E1) changes and becomes lower than max(E3), thus the two nodes
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are swapped); in such a situation, the probabilities of all the re-positioned nodes
have to be updated. Each update is done in O(log(nt)) by modifying the proba-
bility weights on the BFG; as no more than nt nodes can move between a search
node and any of its children, the overall complexity is O(nt log(nt)).

Figure 4.14: Upper bound on end variables

4.6.2.2 Filtering end time variables

When dealing with a makespan minimization problem, it is crucial for the effi-
ciency of the search process to exploit the makespan variable domain updates
(e.g. when a new bound is discovered) to filter the end variables domains.

Bounds for Ei can be computed again with expression (4.5); for example
to compute the upper bound for Ei) we have to subtract from the maximum
expected makespan value (max(mkspan)) the minimum contribution of all tasks
except ti:

Ei ≤

max(emkspan)−
∑

j 6=i

p(tj ∧ ¬tj+1 ∧ . . .)min(Ej)

p(ti ∧ ¬ti+1 ∧ . . .)
(4.7)

where t0, . . . , ti−1, ti, ti+1, . . . is the sequence where the contribution of tj , j 6= i
is minimized. Unfortunately, this sequence is affected by the value of Ei. In
principle, we should compute a bound for all possible assignments of Ei, while
keeping the contribution of other nodes minimized.

Note that the sequence where the contribution of all tasks is minimized is
that of the Smin schedule; we can compute a set of bounds for Ei by “sweeping”
its position in the sequence, and repeatedly applying formula (4.7). An example
is shown in Figure 4.14, where a bound is computed for t0 (step 1 in Figure 4.14).
We start by computing a bound based on the current position of t0 in the
sequence (step 2 in Figure 4.14); if such a bound is less than min(E1), then
max(E0) is pruned, otherwise we swap t0 and t1 in the sequence and update the
probabilities (the original probability w0 becomes w1) according to expression
(4.5). The process continues by comparing t0 with t2 and so on until max(E0)
is pruned or the end of Smin is reached. Lower bounds for min(Ei) can be
computed similarly, by reasoning on Smax.
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A detailed description of the filtering procedure is given in Algorithm 4. The
tasks are processed as they appear in Smin (line 2); for each tj the algorithm
starts to scan the next intervals (line 6). For each interval we compute a bound
(lines 7 to 11) based on the maximum makespan value (max(mkspan)), the
current task probability/weight (wgt) and the contribution of all other tasks to
the makespan lower bound (rest).

If the end of the list is reached or the bound is within the interval (line 12)
we prune the end variable of the current task (line 13) and the next task is
processed. If the bound exceeds the current interval, we move to the next one.
In the transition the current task possibly gains weight by “stealing” it from
the activity just crossed (lines 15 to 18); wgt and rest are updated accordingly.

Algorithm 4: End variables pruning (upper bound)

1: let Smin = t0, t1, . . . , tk−1

2: for j = 0 to k − 1 do

3: compute result of query q = tj ∧ ¬tj+1 ∧ . . . ∧ tk−1 and probability p(q)
4: wgt = p(q)
5: rest = mkspan(Smin)−min(Ej)wgt

6: for h = j to k − 1 do

7: if wgt > 0 then

8: UB =
max(mkspan)− rest

wgt
9: else

10: UB = ∞

11: end if

12: if h = (k − 1) or UB ≤ min(Eh+1) then

13: set UB as upper bound for tj
14: else

15: remove element ¬th+1 from query q and update p(q)
16: newwgt = p(q)
17: rest = rest− (newwgt− wgt)min(Eh+1)
18: wgt = newwgt

19: end if

20: end for

21: end for

The algorithm takes into account all tasks (complexity O(nt)) and for each
of them it analyzes the subsequent intervals (complexity O(nt)); weights are up-
dated at each transition with complexity O(log(nt)) taking care of the fact that
a task can be mapped to more than one F-node (note that directly working on
F nodes avoids this issue). The overall complexity is O(n2

t log(nt)); by manip-
ulating F-nodes instead of tasks it can be reduced down to O(nt + n2

o log(no)),
where no is the number of condition outcomes in the CTG.

4.6.2.3 Improving the constraint efficiency

In order to improve the computational efficiency of all filtering algorithms used
in the expected makespan constraint (see Section 4.6.2.1), we can use F-nodes
instead of tasks in the computation of emkspan(Smin) and emkspan(Smin).
Remember that there is a mapping between tasks (CTG nodes) and F nodes.
Each F-node can therefore be assigned a minimum and a maximum end value
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computed as follows:

maxend(Fj) = max{max(Ei) | ti ∈ t(Fj)}

minend(Fj) = max{min(Ei) | ti ∈ t(Fj)}

The rationale behind the formulas is that tasks mapped to an F-node Fi all
execute in events in σ(Fi); therefore the end time of the set of tasks will always
be dominated by the one ending as last.

The two schedules Smin, Smax can store F-nodes (sorted by minend and
maxend) instead of activities and their size can be reduced to at most no + 1
(where no is the number of condition outcomes, often no ≪ nt): this is in fact
the number of F-nodes in a BFG if CFU holds (see Section 4.4.2).

Each time the end variable of a task ti mapped to Fj changes, values
maxend(Fj) and minend(Fj) are updated and possibly some nodes are swapped
in Smin, Smax (similarly to what Figure 4.13B shows for tasks). These up-
dates can be done with complexity O(max(nt, no)), where nt is the number of
tasks. The makespan bound calculation of constraints (4.6) can be done by
substituting tasks with F-nodes in expression (4.5), as shown in expression 4.8:

E(makespan) =
∑

i

p(Fi ∧ ¬Fi+1 ∧ . . . ∧ ¬Fno−1) end(Fi) (4.8)

where end(Fi) ∈ [minend(Fi),maxend(Fi)] and probabilities p(Fi ∧ ¬Fi+1 ∧
. . . ∧ ¬Fno−1) can be computed by querying the BFG with q = Fi ∧ ¬Fi+1 ∧
. . .∧¬Fno−1. BFG queries involving F-nodes can be processed similarly to usual
queries; basically, whilst each task is mapped to one or more F-nodes, an F node
is always mapped to a single F-node (i.e. itself); thus, (a) the inclusion and
exclusion labels can be computed as usual and (b) every update of the weight
or the time window of an F-node is performed in strictly logarithmic time. The
same algorithms devised for tasks can be used to prune the makespan and the
end variables, but the overall complexity goes down to O(max(nt, n

2
o log(no))).

4.7 Conditional Constraints

To tackle scheduling problems of conditional task graphs we introduced the so
called conditional constraints, which extend traditional constraints to take into
account the feasibility in all scenarios.

Let C be a constraint defined on a set of variables X, let S be the set of
scenarios of a given CTG, let X(s) ⊆ X be the set of variables related to tasks
appearing in the scenario s ∈ S. The conditional constraint corresponding to C
must enforce:

∀s ∈ S C|X(s)

where C|X(s) denotes the restriction of constraint C to variables in X(s).
A very simple example is the disjunctive conditional constraint [Kuc03] that

models temporal relations between tasks ti and tj that need the same unary
resource for execution. The disjunctive constraint enforces:

mutex(ti, tj) ∨ (E(ti) ≤ Sj) ∨ (Ej ≤ Si)

where mutex(ti,tj) holds if tasks ti and tj are mutually exclusive (see Definition
6) so that they can access the same resource without competition.
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As another example, let us consider the cumulative constraint modeling lim-
ited capacity resources. The traditional resource constraint enforces for each
time instant t:

∀ time t, ∀R ∈
⋃

ti

ResSeti
∑

ti :
Si ≤ t < Ei
res(ti) = rk

ResConsi ≤ Ck

while its conditional version enforces:

∀ time t, ∀s ∈ S, ∀R ∈
⋃

ti∈TG(s)

ResSeti
∑

ti ∈ TG(s) :
Si ≤ t < Ei
res(ti) = rk

ResConsi ≤ Ck

where the same constraint as above must hold for every scenario; this indeed
amounts to a relaxation of the deterministic case.
As a consequence, resource requirements of mutually exclusive tasks are not
summed, since they never appear in the same scenario. In principle, a condi-
tional constraint can be implemented by checking the correspondent non condi-
tional constraint for each scenario; however, the number of scenarios in a CTG
grows exponentially with the number of branch nodes and a case by case check
is not affordable in practice. Therefore, implementing conditional constraints
requires an efficient tool to reason on CTG scenarios; this is provided by the
BFG framework, described in Section 4.5.1.

We have defined and implemented the conditional version of the timetable
constraint [ILO94] for cumulative resources described in the following section;
other conditional constraints can be implemented by using the BFG framework
and taking inspiration from existing filtering algorithms.

4.7.1 Timetable constraint

A family of filtering algorithms for cumulative resource constraints is based on
timetables, data structures storing the worst case usage profile of a resource over
time [ILO94]. While timetables for traditional resources are relatively simple
and very efficient, computing the worst usage profile in presence of alternative
scenarios and mutually exclusive activities is not trivial, since it varies in a non
linear way; furthermore, every activity has its own resource view.

Suppose for instance we have the CTG in Figure 4.15A; tasks t0, . . . , t4 and
t6 have already been scheduled: their start time and durations are reported in
Figure 4.15B; all tasks require a single cumulative resource of capacity 3, and
the requirements are reported next to each node in the graph. Tasks t5 and
t7 have not been scheduled yet; t5 is present only in scenario ¬a, where the
resource usage profile is the first one reported in Figure 4.15B; on the other
hand, t7 is present only in scenario a, b, where the usage profile is the latter
in Figure 4.15B. Therefore the resource view at a given time depends on the
activity we are considering. In case an activity is present in more than one
scenario, the worst case at each time instant has to be considered.

We introduce a new global timetable constraint for cumulative resources and
conditional tasks in the non-preemptive case. The global constraint keeps a list
of all known starting and ending points of activities (in particular their latest
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Figure 4.15: Capacity of a cumulative resource on a CTG

start times and earliest end times); given an activity ti, if LST (ti) ≤ EET (ti)
then the activity has an obligatory part from LST (ti) to EET (ti) contributing
to the resource profile.

The filtering algorithm is described in Algorithm 5. All along the algorithm
ti is the target activity, the variable “time” represents the time point currently
under exam and “finish” is finish line value (when it is reached the filtering is
over); finally “firstPStart” represents the first time point where ti can start
and“good” is a flag whose value is false if the resource capacity is exceeded at
the last examined time point.

Algorithm 5 keeps on scanning meaningful end points of all obligatory parts
in the interval [est(ti), finish) until (line 4):

1. The resource capacity is exceeded in the current time point (good = false)
and the current time point has gone beyond the latest start time of ti (in
this case the constraint fails)

2. The resource capacity is not exceeded in the current time point (good =
true) and the finish line has been reached (time ≥ finish)

Next, the resource usage is checked at the current time point (line 5); in case the
capacity is exceeded this is recorded (good = false at line 7) and the algorithm
moves to the next end point of an obligatory part (EET (tj)) in the hope the
resource will be freed by that time. In case the capacity is not exceeded: (A) the
current time point becomes suitable for the activity to start (line 10) and (B) the
finish line is updated (line 11) to the current time value plus the duration of the
activity; then the algorithm keeps on checking the starting time of obligatory
parts (see line 14). If the finish line is reached without reporting a resource
over-usage, then the start time of ti can be updated (line 18).

Algorithm 5 treats the computation of the resource usage as a black box: the
resUsage(ti, time) denotes the worst case usage at time time, as seen by task
ti; the worst case usage of a cumulative resource as seen by the current activity
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Algorithm 5: Filtering algorithm for the conditional timetable constraint

1: let time = EST (ti), finish = EET (ti)
2: let firstPStart = time

3: let good = true

4: while ¬ [(good = false ∧ time > LST (ti)) ∨ (good = true ∧ time >= finish)] do
5: if ResConsi + resUsage(ti, time) > resCapacity then

6: let time = next EET (tj)
7: let good = false

8: else

9: if good = false then

10: let firstPStart = time

11: let finish = max(finish, time+Duri)
12: let good = true

13: end if

14: let time = next LST (tj)
15: end if

16: end while

17: if good = true then

18: let EST (ti) = firstPStart

19: else

20: fail
21: end if

can be computed efficiently via a backward visit, as described in Algorithm 3,
on a BFG whose F-nodes are labeled with a weight value as follows.

To compute the worst case usage of a resource at time t we first have to
“load” the requirement of each task ti executing at time t (such that LST (ti) ≤
t ≤ EET (ti)) on each F-node Fj such that ti belongs to the node inclusion label
(ti ∈ i(Fj)). For the computation of the maximum weight of a scenario each F
and B-node has a single attribute w representing a weight value (in particular
A = [0,∞)). The init and update functions are defined as follows:

initF (Fi) =
∑

LST (tj) ≤ t ≤ EET (tj),
tj ∈ i(Fi)

ResConsi

initB(Bi) = 0

updateF (Fi, Bj) = max(w(Bj), w(Fi))

updateB(Bi, Fj) = w(Fj) + w(Bi)

At the end of the process the weight of the root node is the worst case resource
usage.

Basically Algorithm 3, instantiated as described, performs a backward visit
of the BFG, summing up the weight of each child for every F-node (see updateB)
and choosing for each B-node the maximum weight among those of its children
(see updateF ). As each outcome has to be processed once, the complexity is
O(no); loading a CTG task on an F-node has complexity O(no). The timetable
filtering algorithm Algorithm 5 in the worst case loads a CTG node and com-
putes a weight for each task, hence nt times; therefore the complexity of the
filtering algorithm for the time window of a single task is O(nt(no + no)) =
O(ntno). This value can be reduced by caching the results and updating the
data structures when a time window (say of task ti) is modified; this is done
by updating data on F-nodes and propagating the change backward along the
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BFG; due to its tree like structure this is done in O(log(no)) and the overall
complexity is reduced to O(nt log(no))

4.8 Related work

This chapter is a substantially revised and extended version of two previous
papers: in [LM06] we propose a similar framework for dealing with objective
functions depending on task allocation in the field of embedded system design,
while in [LM07] we face the makespan minimization problem. In the present
chapter, we recall some ideas of these previous papers, but in addition we de-
scribe conditional constraints, we formalize the overall stochastic framework and
we perform extensive evaluation.

The area where CTG allocation and scheduling has received more attention is
most probably the one of embedded system design. In this context, Conditional
Task Graphs represent a functional abstraction of embedded applications that
should be optimally mapped onto multi core architectures (Multi Processor
Systems on Chip - MPSoCs). The optimal allocation and schedule guarantees
high performances for the entire life time of the system. The problem has
been faced mainly with incomplete approaches: in particular, [PEP00] is one
of the earliest works were CTGs are referred to as Conditional Process Graphs;
there the focus is on minimizing the worst case completion time and a solution
is provided by means of a branch outcome dependent “schedule table”; a list
scheduling based heuristic is provided and inter tasks communications are taken
into account as well. In [WAHE03a] a genetic algorithm is devised on the basis of
a conditional scheduling table whose (exponential number of) columns represent
the combination of conditions in the CTG and whose rows are the starting times
of activities that appear in the scenario. The size of such a table can indeed be
reasonable in real world applications. Another incomplete approach is described
in [XW01] that proposes a heuristic algorithm for task allocation and scheduling
based on the computation of mutual exclusion between tasks. Finally, [SK03]
describes an incomplete algorithm for minimizing the energy consumption based
on task ordering and task stretching.

To our knowledge, beside our previous work on CTG, the only complete
approach to the CTG allocation and scheduling problem is proposed in [Kuc03]
and is based on Constraint Programming. The solving algorithm used only
scales up to small task graphs (∼ 10 activities) and cumulative resources are
not taken into account. Only a simple unary resource constraint is implemented
in the chapter. Also, the expected value of the objective function is not taken
into account.

Another complete CP based approach is described in [KW03] and targets low
level instruction scheduling with Hierarchical Conditional Dependency Graphs
(HCDG); conditional dependencies are modeled in HCDGs by introducing spe-
cial nodes (guards), to condition the execution of each operation; complexity
blowup is avoided by providing a single schedule where operations with mutu-
ally exclusive guards are allowed to execute at the same time step even if they
access the same resource. We basically adopted the same approach to avoid
scheduling each scenario independently. Mutual exclusions relations are listed
in HCDGSs for each pair of tasks and are computed off line by checking com-
patibility of guard expressions, whereas in CTGs they are deduced from the
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graph structure; note the in-search computation described in the chapter is just
used to support speculative execution. Pairwise listing of exclusion relations is
a more general approach, but lacks some nice properties which are necessary to
efficiently handle non-unary capacity resources; in particular computing worst
case usage of such a resource is a NP-complete problem if only pairwise mutual
exclusions are known; in fact, in [KW03] only unary resources are taken into
account.

An interesting framework where CTG allocation and scheduling can fit is
the one presented in [BVLB07]. The framework is general taking into account
also other forms of stochastic variables (say for example task durations) and can
integrate three general families of techniques to cope with uncertainty: proac-
tive techniques that use information about uncertainty to generate and solve
a problem model; revision techniques that change decisions when it is relevant
during execution and progressive techniques that solve the problem piece by
piece on a gliding time horizon. Our work is less general and more focused on
the efficient solution of a specific aspect of the framework, namely conditional
branches and alternative activities.

Conditional Task Graph may arise in the context of conditional planning
[PS92]. Basically, in conditional planning we have to check that each execution
path (what we call scenario) is consistent with temporal constraints. For this
purpose extensions to the traditional temporal constraint based reasoning have
been proposed in [TVP03] and [TPH00]. However, these approaches do not take
into account the presence of resources, which is conversely crucial in constraint
based scheduling

Other graph structures similar to CTG have been considered in [KJF07,
BF00]. These graphs contain the so called optional activities but their choice
during execution is decided by the scheduler and is not based on the condition
outcome. Basically, constraint based scheduling techniques should be extended
to cope with these graphs, but no probability reasoning is required. For graphs
with optional activities, an efficient unary resource constraint filtering algorithm
is proposed in [VBC05].

Close in spirit to optional activities are Temporal Networks with Alternatives
(TNA), introduced in [BC07]. TNA augment Simple Temporal Networks with
alternative subgraphs, consisting of a “principal node” and several arcs to the
same number of “branching nodes”, from which the user has to choose one
for run-time execution. Like in optional activities, the user is responsible for
choosing a node; unlike in optional activities, exactly one branching node has
to be selected. TNA do not allow early exits (as our approach does) and do
not require any condition such as CFU. The follow-up work [BCS07] proposes
a heuristic algorithm to identify equivalent nodes in a TNA, similarly to what
we do with the BFG. Note however that F-nodes do not necessarily represent
equivalence classes (think of the fact that a CTG node can be mapped to more
than one F-node), but rather elementary groups of scenarios where a subset of
tasks execute.

Speaking more generally, stochastic problems have been widely investigated
both in the Operations Research community and in the Artificial Intelligence
community.

Operations Research has extensively studied stochastic optimization. The
main approaches can be grouped under three categories: sampling [AS02] con-
sisting of approximating the expected value with its average value over a given
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sample; the l-shaped method [LL93] which faces stochastic problems with re-
course, i.e. featuring a second stage of decision variables, which can be fixed
once the stochastic variables become known. The method is based on Ben-
ders Decomposition [Ben62]; the master problem is a deterministic problem for
computing the first phase decision variables. The subproblem is a stochastic
problem that assigns the second stage decision variables minimizing the average
value of the objective function. A third method is based on branch and bound
extended for dealing with stochastic variables, [NPR98].

In the field of stochastic optimization an important role is played by stochas-
tic scheduling. This field is motivated by problems arising in systems where
scarce resources must be allocated over time to activities with random features.
The aim of stochastic scheduling problems is to come up with a policy that,
say, prioritize over time activities awaiting service. Mainly three methodologies
have been developed:

• Models for scheduling a batch of stochastic jobs, where the tasks to be
scheduled are known but their processing time is random, with a known
distribution, (see the seminal papers [Smi56, Rot66]).

• Multi armed bandit models [GJ74] that are concerned with the problem
of optimally allocating effort over time to a collection of projects which
change state in a random fashion.

• Queuing scheduling control models [CS71] that are concerned with the de-
sign of optimal service discipline, where the set of activities to be executed
is not known in advance but arrives in a random fashion with a known
distribution.

Temporal uncertainty has also been considered in the Artificial Intelligence
community by extending Temporal Constraint Networks (TCSP) to allow con-
tingent constraints [VF99] linking activities whose effective duration cannot be
decided by the system but is provided by the external world. In these cases, the
notion of consistency must be redefined in terms of controllability; intuitively,
a network is controllable if it is consistent in any situation (i.e. any assignment
of the whole set of contingent intervals) that may arise in the external world.
Three levels of controllability must be distinguished, namely the strong, the
weak and the dynamic one. We ensure in this work strong controllability since
we enforce consistency in all scenarios.

The Constraint Programming community has recently faced stochastic prob-
lems: in [Wal02] stochastic constraint programming is formally introduced and
the concept of solution is replaced with the one of policy. In the same paper, two
algorithms have been proposed based on backtrack search. This work has been
extended in [TMW06] where an algorithm based on the concept of scenarios is
proposed. In particular, the paper shows how to reduce the number of scenarios
and still provide a reasonable approximation of the value of optimal solution.
We will compare our approach to the one reported in this paper both in terms
of efficiency and solution quality.

4.9 Experimental results

Our approach, referred to as conditional solver, has been implemented using the
state of the art ILOG Cplex 11.0, Solver 6.3 and Scheduler 6.3. We tested the
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approach on a number of instances representing several variants of a real world
hardware design problem, where a multi task application (described by means of
a CTG) has to be scheduled on a multiprocessor hardware platform. The prob-
lem features complex precedence relations (representing data communications),
unary resources (the processors) and a single cumulative resource (modelling a
shared communication channel whose capacity is its total bandwidth).

Instances for all problem variants are “realistic”, meaning that they are
randomly generated on the base of real world instances [GLM07]. We designed
groups of experiments for two variants of the problem (described respectively
in Sections 4.9.1 and 4.9.2), to evaluate the conditional timetable constraint
and objective functions presented in this chapter and the performance of the
BFG framework. Also, we compare our approach with a scenario based solver
[TMW06] that explicitly considers all scenarios or a subset of them.

4.9.1 Bus traffic minimization problem

In the first problem variant hardware resources like processing elements and
memory devices have to be allocated to tasks in order to minimize the ex-
pected bus traffic. Once all resources are assigned, tasks have to be scheduled
and a specified global deadline must be met. The objective depends only on
the allocation choices and counts two contributions: one depending on single
task-resource assignments, one depending on pairs of task-resource assignments.
Basically, the objective function captures both cases described in Section 4.6.1.

We faced the problem by means of Logic Based Benders’ Decomposition
[HO03] as explained in [LM06], where the master problem is the resource allo-
cation and the subproblem is the computation of a feasible schedule.

We implemented a conditional solver based on BFG and a scenario based
one [TMW06]. In the first case the stochastic objective function in the master
problem is reduced to a deterministic expression where scenario probabilities
are computed as described in Section 4.6.1; in the scheduling subproblem unary
resources (the processors) are modeled with conditional disjunctive constraints,
while the communication channel is considered a cumulative resource and is
modeled with a conditional timetable constraint.

In the scenario based solver the objective function is a sum of an exponential
number of linear terms, one for each scenario. Processors are modeled again
with conditional disjunctive constraints, while for the communication channel
a collection of discrete resources (one per scenario) is used. A simple scenario
reduction technique is implemented, so that the solver can be configured to take
into account only a portion of the most likely scenarios.

We generated 200 instances for this problem, ranging from 10 to 29 tasks, 8
to 33 arcs, which amounts to 26 to 95 activities in the scheduling subproblem
(tasks and arcs are split into several activities). All instances satisfy Control
Flow Uniqueness, and the number of scenario ranges from 1 to 72. The CTG
generation process works by first building a deterministic Task Graph, and then
randomly selecting some fork nodes to be turned into branches (provided CFU
remains satisfied); outcome probabilities are chosen randomly according to a
uniform distribution. The number of processors in the platform goes from 2 to
5. We ran experiments on a Pentium IV 2GHz with 512MB of RAM with a
time limit of 900 seconds.

The first set of experiments, reported in Table 4.1, has the goal to test the
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time
tasks arcs acts scens proc min med max > TL inf

10-12 8-12 26-36 1-6 2-2 0.02 0.07 25.41 0 3
12-14 10-16 32-46 3-9 2-2 0.04 0.12 610.96 1 1
14-15 12-17 38-49 2-9 2-3 0.03 0.22 33.70 0 7
15-18 13-22 41-62 2-18 3-3 0.11 0.43 2.56 1 7
18-19 16-22 50-63 4-30 3-3 0.31 1.78 87.52 2 2
20-21 16-25 52-71 3-24 4-4 0.29 1.68 741.49 2 4
21-23 19-28 59-79 6-24 4-4 1.27 1.27 641.74 3 11
24-25 20-29 64-83 4-36 4-5 0.73 3.25 479.16 2 5
25-28 22-30 69-88 5-72 5-5 0.19 2.37 382.36 4 7
28-29 23-33 74-95 8-48 5-5 2.49 11.49 78.46 4 4

Table 4.1: Performance tests for the expected bus traffic minimization problem

performance of the conditional solver. Each row refers to a group of 20 instances
and reports the minimum and maximum number of tasks, arcs, scheduling activ-
ities scenarios and processors (columns: tasks, arcs, acts, scens and proc); mini-
mum (column: min), median (med) and maximum (max) computation time for
the instances solved to optimality, included the time to perform pre-processing
and build the BFG. Then the number of instances not solved within the time
limit follows (> TL) and the number of infeasible instances (inf). As one can
see the median computation time is pretty low and grows with the size of the
instance, while its maximum has a more erratic behavior, influenced by the
presence of uncommonly difficult instances. The number of timed-out instances
intuitively grows with the size of the graph.

S100 S80 S50

scens proc T

Tcond
> TL inf T

Tcond
> TL inf Z

Zcond

T

Tcond
> TL inf Z

Zcond

1-3 2-3 1.30 1 3 1.31 1 3 1.00 0.85 1 3 0.86
3-4 2-4 0.98 2 5 1.22 2 5 1.00 0.57 1 1 0.74
4-6 2-5 1.33 2 4 0.85 1 4 0.97 1.04 0 4 0.69
6-6 2-5 1.06 0 5 1.31 0 5 0.96 0.83 0 4 0.78
6-8 2-4 0.96 1 6 1.15 1 6 0.93 1.20 0 6 0.69
8-9 2-5 0.89 6 5 1.00 6 5 0.88 0.48 5 4 0.62
9-12 2-5 1.24 3 6 1.11 4 6 0.96 0.79 3 6 0.79
12-12 3-5 1.38 3 8 0.96 4 8 0.91 0.97 4 8 0.73
12-24 3-5 0.98 2 6 0.96 3 6 0.87 0.59 3 5 0.79
24-72 3-5 1.21 3 2 1.04 3 2 0.81 0.89 3 2 0.64

Table 4.2: Performance tests for the expected bus traffic minimization problem

Then we compared the conditional solver we realized with a scenario based
one for the same problem: the results for this second group of tests are shown
in Table 4.2. Each row reports results for a group of 20 instances, for which
it shows the minimum and maximum number of scenarios (column scens), the
minimum and maximum number of processors (procs), and some data about
the scenario based solver when 100% (S100) 80% (S80) and 50% (S50) of the
most likely scenarios are considered. In particular we report for each scenario
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based solver the average solution time ratio with the conditional solver ( T
Tcond

,

on the instances solved by both approaches), the number of timed out instances
(> TL, not considered in the average time computation) and the number of
infeasible instances (inf). For the S50 and S80 solvers also the average solution
quality ratio is shown ( Z

Zcond
). Note that in Table 4.2, instances are sorted by

number of scenarios, rather than by size; as a consequence, the first rows do not
necessarily refer to the smallest nor the easiest scheduling problems.

On average, the conditional solver improves the scenario based one by a 13%
factor; this is not an impressive improvement. Also the improvement does not
occur in all cases; the reason is that the computation time for this problem is
dominated by that of finding an optimal resource allocation, and with regard
to this subproblem the conditional approach only offers a more efficient way to
build the same objective function expression. We expect to have much better
results as the importance of the scheduling subproblem grows.

Note how the use of scenario reduction techniques speeds up the solution
process for S80 and S50, but introduces inaccuracies in the objective function
value, which is lower than it would be (see column Z

Zcond
). Also, some infeasible

instances are missed (the value of the “inf” column for S50 is lower than S100).

4.9.2 Makespan minimization problem

In the second problem variant we consider the minimization of the expected
makespan, that is the expected application completion time. This is indeed
much more complex than the previous case, since this objective function depends
on the scheduling related variables. We therefore chose to limit ourselves to
computing an optimal schedule for a given resource allocation.

As we did for the previous problem variant, we implemented both a condi-
tional and a scenario based solver. In the conditional solver the makespan com-
putation is handled by the global constraint described in Section 4.6.2, whereas
in the scenario based solver the makespan is the sum of the completion time of
each possible scenario, weighted by the scenario probability (see expression 4.4).
Processors and bus constraints are modeled as described in Section 4.9.1.

For this problem we generated 800 instances, ranging from 37 to 109 tasks,
2 to 5 “heads” (tasks with no predecessor), 3 to 11 “tails” (tasks with no suc-
cessor), 1 to 135 scenarios. The number of processors (unary resources) ranges
from 3 to 6. Again all instances satisfy the control flow uniqueness. We ran
experiments with a time limit of 300 seconds; all tests were executed on a AMD
Turion 64, 1.86 GHz.

We performed a first group of tests to evaluate the efficiency of the expected
makespan conditional constraint and the quality of the solutions provided(in
particular the amount of gain which can be achieved by minimizing the ex-
pected makespan compared to worst case based approaches); a second group of
experiment was then performed to compare the performances of the conditional
solver with the scenario-based one. Table 4.3 shows the results for the first group
of tests; here we evaluate the performance of the solver using the conditional
timetable constraint (referred to as C) and compare the quality of the computed
schedules versus an identical model where the deterministic makespan is min-
imized (referred to as W). In this last case, no expected makespan constraint
is used; the objective function is thus deterministic and amounts to minimizing
the worst case makespan (hence the objective for the deterministic model will
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be necessarily worse than the conditional one). The models for C and W are
identical with every other regard (they both use conditional resource constraints
and assign a fixed start time to every task). Each row identifies a group of 50
instances. For each group we report the minimum and maximum number of
activities (acts), of scenarios (scens) and of unary resources (proc), the aver-
age solution time (T(C)), the average number of fails (F(C)) and the number
of instances which could not be solved within the time limit (> TL) by the
conditional solver.

In column C/W we report the makespan value ratio which shows an average
improvement of 12% over the deterministic objective. The gain is around 16% if
we consider only the instances where the makespan is actually improved (column
stc C/W). The computing time of the two approaches is surprisingly roughly
equivalent for all instances.

acts scens proc T(C) F(C) > TL C

W
stc C

W

37-45 1-2 3-4 1.54 3115 0 0.83 0.80
45-50 1-3 3-5 2.67 4943 0 0.88 0.84
50-54 1-3 3-5 9.00 17505 0 0.88 0.85
54-57 2-4 4-5 25.68 52949 1 0.88 0.85
57-60 1-6 4-5 29.78 77302 1 0.94 0.90
60-65 1-6 4-6 24.03 28514 0 0.85 0.80
65-69 2-8 4-6 32.12 47123 2 0.90 0.84
69-76 3-12 4-6 96.45 101800 14 0.86 0.82
76-81 1-20 5-6 144.67 134235 21 0.90 0.86
81-86 3-24 5-6 143.31 130561 17 0.84 0.75
86-93 2-36 5-6 165.74 119930 25 0.93 0.87
93-109 4-135 5-6 185.56 127321 28 0.93 0.87

Table 4.3: Performance tests

scens T(C) > TL T(S100)
T(C) > TL T(S80)

T(C) > TL S80

C

T(S50)
T(C) > TL S50

C

1-2 41.00 5 22.60 5 22.66 5 1.00 0.58 3 0.77
2-3 66.02 8 19.85 10 19.93 10 1.00 1.69 7 0.80
3-4 43.80 5 35.05 8 35.12 8 1.00 9.19 5 0.79
4-5 49.94 6 73.75 9 73.63 9 1.00 57.03 8 0.80
5-6 66.39 9 48.74 12 16.64 12 0.98 0.77 8 0.82
6-6 51.26 5 6.52 8 6.11 8 0.96 41.99 8 0.80
6-8 38.85 5 82.21 11 71.09 9 0.98 84.41 3 0.80
8-9 57.78 9 66.32 10 63.70 10 0.98 26.76 9 0.85
9-12 52.96 5 89.52 13 86.97 13 0.98 40.43 6 0.85
12-14 117.93 17 45.60 22 43.02 22 0.97 37.35 18 0.84
14-20 95.74 11 32.62 22 31.85 21 0.99 28.76 15 0.90
20-135 178.88 24 66.19 37 65.56 37 1.00 22.09 35 0.912

Table 4.4: Comparison with scenario based solver

Table 4.4 compares the conditional model with a scenario based solver; we
remind that in this second case the cumulative resource is implemented with
one constraint per scenario and the expected makespan is expressed with the
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declarative formula (4.4). In both models unary resources (processors) are im-
plemented with conditional constraints.

Again, rows of Table 4.4 report average results for groups of 50 instances;
instances are grouped and sorted by increasing number of scenarios; hence, once
again the results on the first row do not necessarily refer to the easiest/smallest
instances. The table reports the solution time of the conditional solver (T(C))
and the performance ratios w.r.t the scenario based solver with 100% (S100),
80% (S80) and 50% (S50) of the most likely scenarios. The four columns “> TL”
show the number of instances not solved within the time limit for each approach.
Finally, columns S50/C and S80/C show the accuracy of the solution provided
by S50 and S80 solvers.

As it can be seen the conditional model now outperforms the scenario based
one by an average factor of 49.08. For this problem, in fact, the conditional
approach provides a completely different and more efficient representation of
the objective function, rather then just a more efficient procedure to build the
same expression (as it was the case for the traffic minimization).

By reducing the number of considered scenarios the performance gap de-
creases; nevertheless, the conditional solver remains always better than S80; it
is outperformed by S50 when the number of scenarios is low, but the solution
provided has an average 17% inaccuracy. Moreover, neither S50 nor S80 guaran-
tee feasibility in all cases, since some scenarios are not considered at all in the
solution.

4.10 Conclusion

CTG allocation and scheduling is a problem arising in many application areas
that deserves a specific methodology for its efficient solution. We propose to
use a data structure, called Branch/Fork graph, enabling efficient probabilistic
reasoning. BFG and related algorithms can be used for extending traditional
constraint to the conditional case and for the computation of the expected value
of a given objective function.

The experimental results show that the conditional solver is effective in prac-
tice, and that it outperforms a scenario based solver for the same problem. The
performance gap becomes significant when the makespan objective function is
considered.

Current research is devoted to taking into account other problems where
the stochastic variables are task durations or resource availability. Also, the
application of CTG allocation and scheduling to the time prediction for business
process management is a subject of our current research activity.
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Chapter 5

A&S with Uncertain Durations

5.1 Introduction

This Chapter addresses Allocation and Scheduling problems when tasks cannot
be assumed to have fixed durations; similarly to the previous chapter, the main
motivation for the approach come from the need of predictable off-line scheduling
techniques in the design processes of modern embedded systems.

Multicore platforms have become widespread in embedded computing. This
trend is propelled by ever-growing computational demands of applications and
by the increasing number of transistors-per-unit-area, under continuously tight-
ening energy budgets dictated by technology and cost constraints [Mul08, JFL+07,
YPB+08]. Effective multicore computing is however not only a technology issue,
as we need to be able to make efficient usage of the large amount of computa-
tional resources that can be integrated on a chip. This has a cross-cutting impact
on architecture design, resource allocation strategies, programming models.

Scalable performance is only one facet of the problem: predictability is an-
other big challenge for embedded multicore platforms. Many embedded appli-
cations run under real-time constraints, i.e. deadlines that have to be met for
any possible execution. This is the case of many safe-critical applications, such
as in the automotive and the aircraft industries.

Predictability and computational efficiency are often conflicting objectives,
as many performance enhancement techniques (such as caches, branch predic-
tion. . . ) aim at boosting expected execution time, without considering poten-
tially adverse consequences on worst-case execution. Hence applications with
strong predictability requirements often tend to under-utilize hardware resources
[TW04] (e.g. forbidding or restricting the use of cache memories, limiting re-
source sharing, etc.). At the same time, many economical and practical reasons
push for the integration of more and more application functionalities on a few
powerful computing devices; thus, achieving both predictability and high aver-
age case performance becomes an inescapable requirement.

Chapter Objective The objective of this chapter is predictable and efficient
non-preemptive scheduling of multi-task applications with inter-task dependen-
cies. We focus on non-preemptive scheduling because it is widely utilized to
schedule tasks on clustered domain-specific data-processors under the super-
vision of a general-purpose CPU [PAB+06, Pag07]. Non-preemptive schedul-
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ing is known to be subject to anomalies1 when tasks have dependencies and
variable execution times [RWT+06]. Traditional anomaly-avoidance techniques
[Liu00] rely on either synchronizing task switching on timer interrupts (which
unfortunately implies preemption), or on delaying inter-task communication (or
equivalently stretching execution time).

In our formulation, the target platform is described as a set of resources,
namely execution clusters (i.e one or more tightly coupled processors with shared
memory) and communication channels. An application is a set of dependent
tasks that have to be periodically executed with a max-period constraint (i.e.
deadline equal to period), modeled as a Task Graph. A task execution is charac-
terized by known min-max intervals and inter-task dependencies are associated
with a known amount of data communication. Min-max duration values can be
extracted off-line by statical timing analysis, directly tackled in WP2.

Contribution Our main contribution can be summarized as follows. We de-
veloped a robust scheduling algorithm that proactively inserts additional inter-
task dependencies only when required to meet the deadline for any possible
combination of task execution times within the specified intervals. Our ap-
proach avoids idle time insertion, hence it does not artificially lower platform
utilization, it does not need timers and related interrupts, nor a global timing
reference. The algorithm is complete, i.e. it will return a feasible graph aug-
mentation if one exists. We also propose an iterative version of the algorithm for
computing the tightest deadline that can be met in a robust way. Even though
worst-case runtime is exponential, the algorithms have affordable run times (i.e
seconds to minutes) for task graphs with tens of tasks.

The enumeration of possible conflict sets is a key component of the pro-
posed algorithm. We deal with this fundamental step by means of two different
techniques: the first one is based on Constraint Programming; the second one
leverages Operations Research techniques to find conflicts in a fraction of time
compared to the first method; however, the found conflict tends to be less crit-
ical. While the first method has exponential worst case complexity, the second
one is plynomial.

Outline The rest of the chapter is organized as follows: Section 5.3.1 and Sec-
tion 5.3.2 present some related work; additionally, Section 5.3.2 introduces some
basic Precedence Constraint Posting Concepts. Section 5.4 gives the problem
definition, while Section 5.5 describes the proposed heuristic resource alloca-
tion method. Section 5.6 describes the core of the work, i.e. the predictable
scheduling algorithm; two alternative approaches to perform a key algorithmic
step (conflict set enumeration) are given in Sections 5.6.2.1 and 5.6.2.2. Finally,
Section 5.7 reports experimental results and Section 5.8 provides conclusions
and suggests some possible future work.

Publications The work at the based of this chapter has been partly published
to internation conferences in [LM09, LMB09]. The submission of an extended
version to an international journal is planned for the near future.

1execution traces where one or more tasks run faster than their worst-case execution time
but the overall application execution becomes slower
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5.2 Overview of the approach

A preliminary heuristic allocation step assigns tasks to processor clusters target-
ing workload balancing and minimization of inter-cluster communication. Task
migration among clusters is not allowed and partitioned scheduling is performed
off-line by our algorithm. The on-line (run-time) part of the scheduler is ex-
tremely simple: when a task completes execution on a cluster, one of the tasks
for which all predecessors have completed execution is triggered.

Once the task-to-resource allocation step is done, one has to compute a
schedule, guarantee to meet all the hard deadline constraint for every combina-
tion of task durations. From a computational point of view, this is an instances
of the Resource Constrained Project Scheduling Problem (RCPSP) with vari-
able durations. RCPSP aims to schedule a set of activities subject to precedence
constraints and the limited availability of resources.

Additionally, we allow minimum and maximum time lags to be specified on
each precedence constraint in the scheduling step; namely, the time distances
between the end of a task and the beginning of its successor is forced to be in
a constrained interval with user-specified min and max. This is the case, for
example, of Dynamic Voltage Scaling (DVS) platforms, where tasks running
on the same processor at different frequencies may require a minimum time
distance constraint to allow frequency switching. Note that in the considered
case study time lags are only partially used.

We adopt a Precedence Constraint Posting approach (see [PCOS07] and
Section 2.3.3): the solution we provide is an augmented Task Graph; this is
the original project graph plus a fixed set of new precedence constraints, such
that all possible resource conflicts are cleared and a consistent assignment of
start times can be computed by the on-line scheduler for whatever combination
of activity durations. The main advantage of a PCP approach is to retain
flexibility: each task starts at run-time as soon as all its predecessors are over;
in case the predecessors end earlier, the task seamless starts earlier. This is not
the case for many common approaches to deal with duration uncertainty (e.g.
stretching task durations in case of early end, or time triggered scheduling).

5.3 Related work

5.3.1 Scheduling with variable durations

Non-preemptive real-time scheduling on multiprocessors has been studied ex-
tensively in the past. We focus here on partitioned scheduling. We can cluster
previously proposed approaches in two broad classes, namely: on-line and off-
line.

On-line Scheduling with Uncertain Durations On-line techniques target
systems where workloads become known only at run-time. In this case, alloca-
tion and scheduling decision must be taken upon arrival of tasks in the system,
and allocation and scheduling algorithms must be extremely fast, typically con-
stant time or low-degree polynomial time. Given that multiprocessor allocation
and scheduling on bounded resources is NP-Hard [GJ+79], obviously, on-line ap-
proaches cannot guarantee optimality, but they focus on safe acceptance tests,
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i.e. a schedulable task set may be rejected but a non-schedulable task set will
never be accepted.

An excellent and comprehensive description of the on-line approach is given
in [Liu00], and can be summarized as follows. When an application (i.e. a task
graph), enters the system, it is first partitioned on processor clusters using a
fast heuristic assignment (e.g. greedy first-fit bin packing). Then schedulability
is assessed on a processor-by-processor basis. First, local task deadlines are
assigned, based on a deadline assignment heuristic (e.g. ultimate deadline), then
priorities are assigned to the tasks, and finally a polynomial-time schedulability
test is performed to verify that deadlines can be met. It is important to stress
that a given task graph can fail the schedulability test even if its execution would
actually meet the deadline. This is not only because the test is conservative,
but also because several heuristic, potentially sub-optimal decisions have been
taken before the test which could lead to infeasibility even if a feasible schedule
does exist. One way to improve the accuracy of the schedulability test is to
modify synchronization between dependent tasks by inserting idle times (using
techniques such as the release-guard protocol [SL96]) that facilitate worst-case
delay analysis. Recent work has focused on techniques for improving allocation
and reducing the likelihood of failing schedulability tests even without inserting
idle times [FB06, Bar06].

Off-line approaches with Uncertain Durations Off-line approaches, like
the one proposed in this chapter, assume the knowledge of the task graph and its
characteristics before execution starts. Hence, they can afford to spend signifi-
cant computational effort in analyzing and optimizing allocation and scheduling
(e.g. by applying advance Timing Analysis techniques). In this field, we distin-
guish two main sub-categories. One sub-category assumes a fixed, deterministic,
execution time for all tasks. Even though the allocation and scheduling problems
remain NP-Hard, efficient complete (exact) algorithms are known (see for in-
stance [RGB+08] and references therein) that work well in practice, and many
incomplete (heuristic) approaches have been proposed as well for very large
problems that exceed the capabilities of complete solvers [ZTL+03]. These ap-
proaches can also be used in the case of variable execution times, but we need
to force determinism: at run-time, task execution can be stretched artificially
(e.g. using timeouts or idle loops) to always complete as in the worst case.
This eliminates scheduling anomalies, but implies significant platform under-
utilization and unexploitable idleness [Liu00]. Alternatively, powerful formal
analysis techniques can be used to test the absence of scheduling anomalies
[BHM08]. However, if an anomaly is detected, its removal is left to the software
designer. This can be a daunting task.

The second sub-category is robust scheduling. The main idea here is to build
an a priori schedule with some degree of robustness. This can be achieved by
modeling time variability (for example by means of min-max intervals), and
inserting redundant resources [Gho96], redundant activities [GMM95] or more
generally slack time to absorb disruptions; it is also common to add time re-
dundancy by stretching task durations [CF99]. A different approach is based
on building a backup schedule for the most likely disruptions [DBS94]. Robust
scheduling has been extensively investigated in the process scheduling commu-
nity [LI08]. In this chapter we leverage a technique called Precedence Con-
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straint Posting (PCP) [LG95, Lab05, PCOS07] devised for Resource Constraint
Project Scheduling Problem (RCPSP) to obtain a robust schedule by prevent-
ing resource conflicts with added precedence constraints. Compared to existing
PCP approaches, we directly exploit known time bounds on task durations and
guarantee feasibility for every possible scenario; existing approaches assume
fixed durations and focus on adding some degree of flexibility to the schedule,
without giving any guarantee.

5.3.2 PCP Background

We adopt a Precedence Constraint Posting approach (PCP, see [PCOS07] and
Section 2.3.3); in PCP, possible resource conflicts are resolved off-line by adding
a fixed set of precedence constraints between the involved activities. The result-
ing augmented graph defines a set of possible schedules, rather than a schedule
in particular. The actual schedule will depend on the run-time duration of each
task and is produced by the on-line scheduler.

Central to any PCP approach is the definition of Minimal Conflict Set
(MCS), making its first appearance in [IR83a] (1983), where a branching scheme
based on resolution of the so called “minimal forbidden sets” is first proposed.
A MCS is a set of tasks ti collectively overusing one of the resources (e.g. a
processor cluster, communication channel. . . ) and such that the removal of a
single task from the set wipes out the conflict as well; additionally, the tasks
must have the possibility to overlap in time. Following [Lab05], we formally
define a MCS for a resource rk as a set of tasks such that:

1.
∑

ti∈MCS req(ti, rk) > Ck

2. ∀ti ∈ MCS :
∑

tj∈MCS\{ti}
req(tj , rk) ≤ Ck

3. ∀ti, tj ∈ MCS with i < j : ti � tj ∧ tj � ti is consistent with current
state of the schedule, where ti � tj denotes that ti can run before tj .

where rk denotes a resource specific resource, Ck is the respective capacity,
req(ti, rk) is the amount of resource rk required by task ti. Condition 1 requires
the set to be a conflict, condition 2 enforces minimality and condition 3 requires
activities to be possibly overlapping. A MCS can be resolved by posting a
single precedence constraint between any pair of activities in the set; complete
search can thus be performed by using MCS as choice points and posting on
each branch a precedence constraint (also referred to as resolver). This is the
case of many PCP based works: for example [Lab05] makes use of complete
search to detect MCS and proposes a heuristic to rank possible resolvers. Other
branch and bound approaches based on posting precedence constraints to resolve
MCS are reported in [RH98], where minimum and maximum time lags are also
considered; variable activity durations are not taken into account in any of these
works.

MCS: Enumeration and Execution Policies One of the key difficulties
with complete PCP approaches is that detecting MCS by complete enumeration
can be time consuming, as their number is in general exponential in the size of
the Task Graph. A possible way to overcome this issue is to only consider MCS
which can occur given for a specified “execution policy”: this is the case for
example of the already cited work [RH98] where an earliest start policy (start
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every activity as soon as possible) is implicitly assumed; note that with this
approach the number of MCS to be considered remains exponential, despite it
is effectively reduced.

Having an earliest start policy [MRW84, MRW85] is also a basic assump-
tion for many stochastic RCPSP approaches; here variable task durations are
explicitly considered and usually modeled as stochastic variables with known
distribution. Most works in this area assume the objective function is to mini-
mize the makespan and focus on computing restrictions of earliest start policies
to resolve resource conflicts on-line. This is the case of preselective policies,
introduced in [IR83a, IR83b], and a priori selecting for each minimal conflict
set an activity to be delayed in case the conflict occurs. A major drawback with
this approach is the need to enumerate all possible MCS [Sto01, Sto00]. To over-
come this limitation, [MS00] introduces so called linear preselective policies: in
this case a fixed priority is assigned to each activity such that when a conflict
is about to occur at run time, the lowest priority activity is always delayed. To
the best of the authors knowledge, no stochastic RCPSP approach has consid-
ered minimum and maximum time lags so far. Another way to fix the issue of
efficient conflict detection is to drop completeness and resort to heuristic meth-
ods; see for example the method described in [PCOS07], which also incorporates
time reasoning by representing the target project as a simple temporal network;
many feature of this efficient and expressive model are leveraged by our ap-
proach. Finally, for excellent overviews about methods for the RCPSP problem
and dealing with uncertainty in scheduling see [BDM+99, BD02, HL05b].

5.4 Problem Definition

5.4.1 The Target Platform

A common template for embedded MPSoCs features an advanced general-purpose
CPU with memory hierarchy and OS support and an array of programmable
processors, also called accelerators, for computationally intensive tasks. accel-
erators have limited or no support for preemption and feature private memory
subsystems [PAB+06, Pag07, BEA+08]. Explicit communication among ac-
celerators is efficiently supported (e.g. with specialized instructions or DMA
support), but uniform shared memory abstraction is either not supported or it
implies significant overheads 2.

We model the heterogeneous MPSOC as shown in Figure 5.1A (a). All
shaded blocks are resources that will be allocated and scheduled. For the sake
of clarity, all empty blocks are not modeled in the problem formulation. acceler-
ators (CL1, . . . , CLN) are modeled as clusters of one or more execution engines.
A cluster with C execution engines models an accelerator with multiple execu-
tion pipelines (e.g. a clustered VLIW) or a multi-threaded processor with a fixed
number of hardware-supported threads. Note that the case of C = 1 (single-
instruction-stream accelerator) is handled without loss of generality. From a
broader perspective, one may say a cluster is modeled as a resource with finite
capacity C; each task requires exactly 1 unit of such a resource. The master
CPU is left implicit as its function is mostly related to orchestration.

2it can be emulated in software by propagating via copy operations all private memory
modifications onto external shared memory [PAB+06]
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Figure 5.1: The target platform model

When two dependent tasks are allocated onto the same cluster, their com-
munication is implicitly handled via shared variables on local memory. On the
contrary, communication between tasks allocated on two different clusters is
explicitly modeled as an extra task which uses a known fraction bi,j of the total
bandwidth3 available at the output communication port (triangle marked with
O) of the cluster hosting the source task and the input port (triangle marked
with I) of the cluster hosting the destination task. More in general one may
say that input and output ports are resources with finite capacity equal to the
bandwidth; a data communication requires bij units of the full bandwidth.

t0

t1 t2

t3 t4 t5 t6

t7 t8

t9

Figure 5.2: A structured Task Graph

5.4.2 The Input Application

We assume the input application for the mapping and scheduling algorithm is
described as a Task Graph 〈T,A〉; T is a set of tasks ti, representing processes

3Note that a previous study [BBGM05a] showed how modeling the communication over-
head as a fraction of the bandwidth has bounded impact on task durations as long as less
than 60% of the available bandwidth is used.
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or any type of sequential application subunit; A is a set of directed edges ah =
(ti, tj) representing precedence relations due to data communications.

The Gantt chart in Figure 5.1(b) shows a simple example of a scheduled Task
Graph. We assume Tasks ti do not have a fixed duration, but they are described
by duration intervals [di, Di]. In the figure, the shortest duration corresponds to
the shaded part of the rectangles, while the longest duration is represented by
the empty part following the shaded part. Tasks t1, t2 are scheduled on cluster
CL1, while task t3, t4, t5 are allocated and scheduled on cluster CL2. Both
clusters have two execution engines. Figure 5.2 show a simple structured Task
Grah, representing a software radio application. The graph will be used in all
the examples throughout the section; for sake of simplicity, we assume all tasks
in Figure 5.2 are homogeneous and in particular have the same minimum and
maximum duration di and Di, respectively with value 1 and 2.

Dependencies are represented by arrows. Intra-cluster communications are
assumed to occur instantaneously, while inter-cluster communication are carried
out by a DMA engine and require some time, bounded by a minimum value dij
and a maximum value Dij . Note that inter-cluster communication is explicitly
represented by additional tasks executing at the same time on the input (I2)
and output (O1) ports of the clusters involved in the communication. Such
additional task are not present in the original application graph, but are built
as a by product of the resource allocation step (see Section 5.5). In the sample
graph in Figure 5.2 we assume all arcs are homogeneous, and in particular have
the same minimum and maximum duration dij and Dij (with value 1 and 2)
and bandwidth requirement bij = 1.

Time window constraints exist on the start and end time of each task; specif-
ically, we assume every task has to start after a specified release time (rsi) and
to end before a specified deadline (dli). Without loss of generality, we assume
there is a single source task (t0) with no ingoing arcs and a single sink task
(tn−1) with no outgoing arcs. Finally, precedence relations may have associated
minimum and maximum time lags; namely, a precedence relation (ti, tj) may
be annotated by values dij , Dij such that the time distance between the end of
ti and the start of tj at run-time cannot be lower than dij nor higher than Dij .

5.4.3 Problem Statement

The problem consists in finding a allocation and a schedule for the input ap-
plication on the target platform. In deeper detail, an allocation consists of a
mapping of each task to a cluster; we denote as pe(ti) the cluster (Processing
Element – PE) a task ti is assigned to.

A schedule is a collection of additional precedence relations defining an aug-
mented graph. The additional precedence relations are sufficient to prevent any
resource overusage (either cluster or communication port) at run-time, provided
they are respected by the on-line scheduler.

From a technical point of view, at run-time an allocation & schedule (some-
times referred to as partitioned schedule) is described simply by a set of tasks
allocated on each processor and the triggering guards of each task, which are
identifiers of all predecessor tasks in the augmented graph. The run-time se-
mantic is straightforward: whenever a task terminates execution, a new task is
started among those with completely released triggering guards (any tie-breaker
rule can be used, e.g. EDF). If no task has fully released guards, the processor
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remains idle until a guard change triggered by a communication. Note that a
single Gantt chart like the one in Figure 5.1 corresponds to a huge set of actual
executions, one for each combination of different durations for all the tasks.

5.5 Resource Allocation Step

Before scheduling, a heuristic allocation of the available resources to tasks is
computed; in particular, tasks are mapped to clusters by means of a state of
the art multilevel graph partitioning algorithm [KK99].

The Graph Partioning Algorithm Tasks in the graph are split in a number
of sets equal to the number of clusters, trying:

1. to balance the computational load and

2. to minimize inter-cluster communication

In detail, let wgt(ti) bet a weight value associated task ti, and let a second
type of weight wgt(ah) be associated to each arc ah ∈ A; finally, let P0, P1 the
returned partition (assuming the number of clusters is 2). The objective of the
algorithm is minimizing the edge-cut, given by:

edgecut(P0, P1) =
∑

ah=(ti,tj)
ti∈P0,tj∈P1

wgt(ah)

the partition P0, P1 must satisfy a balancing constraint; namely, given an input
parameter α ∈ (0, 0.5), the algorithm approximatively ensures:

(1− α) ·
∑

tj∈Pj

≤
∑

ti∈Pi

≤ (1 + α) ·
∑

tj∈Pj

The graph partitioning approach can be applied to hardware resource allocation
with nice results, by assigning to each task as weight the average computation
time (i.e. .5 · (Di − di)) and to each arc (ti, tj)) the bandwidth requirement bij
corresponding to the communication. Consequently, the balancing constraints
naturally matches the need to partition the computation workload over different
clusters, while minimizing the edge cut (i.e. the inter cluster communication in
the case of hardware mapping) contains the usage of communication resources.

In detail, we require the difference between the maximum and minimum
workload to be within a 6% bound (α = 0.06). The method is designed for ho-
mogeneous computational resources, but generalizes to heterogeneous ones with
proper modifications. Figure 5.3A shows a likely outcome of the partitioning
of the Task Graph from Figure 5.2 on a two cluster platform; the presented
cuts splits the tasks T in two equal weight sets (namely {t0, t1, t3, t4, t7} and
{t2, t5, t6, t8, t9}) and minimizes the number of arcs connecting the two compo-
nents of the partition.

Output of the Algorithm and Graph Transformation The output of
the multilevel partitioning algorithm is a collection of task sets, one per each
cluster. Based on this information, the original task graph is transformed by
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Figure 5.3: A) Outcome of the partitioning – B) Transformed Graph

adding an extra tasks t′, t for each inter-cluster communication (ti, tj); task t′

represents the data transfer and uses bij units of the Output Port of cluster
pe(ti) and of the the Input Port of cluster pe(tj); analogously to the other
tasks in the graph, t′ has variable duration corresponding to that of the inter-
cluster communication, i.e. in the interval dij , Dij . The transformed graph is
the actual input for the subsequent scheduling step. Figure 5.3B shows the
transformed graph corresponding to the partition in Figure 5.3A; note that
two extra activities (t0,2 and t7,9) have been added to model the inter cluster
communications.

5.6 Scheduling Step

We propose a PCP based approach to compute a schedule (i.e. an augmented
Task Graph). Once the allocation step is over and a transformed graph is avail-
able, the input application is described by a collection of tasks, each requiring
one or more unit of some finite capacity resources. Arcs in the graph sim-
ply represent precedence relations with no associated execution, as intra-cluster
communications are considered instantaneous and inter-cluster communications
are modeled by extra tasks.

The problem of scheduling a set of tasks with arbitrary precedence rela-
tions on a set of finite capacity resources is known in the literature as Resource
Constrained Project Scheduling Problem (RCPSP – see Section 2.4). Here in
particular we tackle the RCPSP with minimum and maximum time lags on the
precedence relations and variable, bounded, task durations.

The scheduling method we propose performs complete search branching on
MCS. The MCS to be used to open a choice point and branch can be selected in
one of two ways: (I) by solving a Constraint Programming model or (II) use of
an efficient, polynomial time, MCS detection procedure based on the solution of
a minimum flow problem (related, but substantially different from the method
outlined in [Mus02]). In general, the method used for MCS selection represents
a first major contribution w.r.t. similar approaches like [Lab05].

Similarly to [PCOS07], our approach incorporates an expressive and efficient
time model, taking care of consistency checking of time windows constraints
and enabling the detection of possibly overlapping activities. Our second main
contribution is the extension of such a time model in order to provide effi-
cient time reasoning with variable durations and enable constant time consis-
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tency/overlapping check.

5.6.1 The time model

The time model we devised relates to Simple Temporal Networks with Uncer-
tainty (STNU, [VF99]). The model itself consists of a set T of temporal events
or time points τi with associated time windows, connected by directional binary
constraints so as to form a directed graph. Such constraints are in either of the
two forms:

1. τi
[δij ,∆ij ]
−−−−−→ τj (free constraint, with STNU terminology), meaning that a

value d in the interval [δij ,∆ij ] must exist such that τj = τi + d; equiva-
lently we can state that δij ≤ τj − τi ≤ ∆ij .

2. τi
[δij :∆ij ]
−−−−−→ τj (contingent constraint, with STNU terminology), meaning

that τi and τj must have enough flexibility to let τj = τi + d hold for each
value d ∈ [δij ,∆ij ].

Both δij and ∆ij are assumed to be non-negative; therefore, unlike in STN, a
constraint cannot be reverted. The above elements are sufficient to represent a
variety of time constraints; in particular, an instance of the problem at hand,
can be modeled by:

1. introducing two events σi, ηi for the start and the end of each activity,
respectively with time windows [sti,∞] and [0, dli];

2. adding a contingent precedence constraint σi
[di:Di]
−−−−→ ηi for each activity;

3. adding a free precedence constraint ηi
[0,∞]
−−−→ σj for each arc in the project

graph.

The precedence constraints in the time model define a directed graph 〈T , C〉,
referred to as time graph. Here T is the set of time points and C the set of
temporal constraints. In the following, we will write τi � τj if a chain of
precedence constraints connects τi to τj (we write τi ≺ τj if the precedence
relation is strict). Testing τi � τj can be done in costant time by keeping the
transitive closure of the time graph (and this is with cubic complexity along a
branch on the search tree).

Figure 5.4 shows the time graph for the TG in Figure 5.2; each event σi, ηi
is represented as a black circle. The solid edges are contingent constraint, with
the respective lags explicitly reported ([1 : 2] for all the nodes). Dotted edges
represent free constraints; the time lags in this case are not reported and always
equal to [0,∞].

Bound Consistency for the Temporal Network We rely on CP and con-
straint propagation for dynamic controllability checking, rather than using a
specialized algorithm like in [MMV01, MM05]. In particular, we are interested
in maintaining for each time point τi four different bounds, namely: the start
(sp) and the end (ep) of the time region where the associated event can occur
(possible region); and the start (so) and the end (eo) of a time region (obligatory
region) such that, if τi is forced to occur out of there, dynamic controllability is
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Figure 5.4: Time model for the graph in Figure 5.2

compromised. An alternative view is that the obligatory region keeps track of
the amount of flexibility left to a time point.

Figure 5.5 shows as example of such bounds: sp and ep delimit the region
where each τi can occur at run: for example τ1 can first occur at time 10, if
τ0 occurs at 0 and has run time duration 10; similarly τ2 can first occur at 20
as at least 10 time units must pass between τ1 and τ2 due to the precedence
constraint. As for the upper bounds, note that τ2 cannot occur after time 60,
or there would be a value d ∈ [10, 20] with no support in the time window of
τ3; conversely, τ1 can occur as late as time 50, since there is at least a value
d ∈ [10, 20] with a support in the time window of τ2. Consider now bounds on
the obligatory region: note that if (for instance) τ1 is forced to occur before time
20 the network is no longer dynamic controllable, as in that case there would
not be sufficient time span between τ0 and τ1. Similarly, τ2 cannot be forced
to occur later than time 60 or there would be a value d ∈ [10, 20] such that the
precedence constraint between τ2 and τ3 cannot be satisfied.

In general, bounds on the possible region (sp, ep) are needed to enable effi-
cient dynamic controllability checking (if the time window of every time point
is not empty) and constant time overlapping checking; bounds on the oblig-
atory region (so, eo) are a novel contribution and let one check in constant

[10:20] [10,20] [10:20]

[0,0,30,30] [10,20,50,50] [20,30,60,60] [30,50,80,80]

τ0 τ1 τ2 τ3

sp so eo ep

Figure 5.5: Time bounds for a simple time point network
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time whether a new precedence constraint can be added without compromising
dynamic controllability. With this trick it is possible for example to remove
inconsistent ordering relations between tasks that cannot be trivially inferred
starting from the possible region.

CP-FD Implementation of the Temporal Model We maintain the de-
scribed bounds by introducing two CP integer variables Tm, TM for each time
point, such that min(Tm) marks the start of the possible region and max(Tm)
tells how far this start can be pushed forward; similarly, max(TM) marks the end
of the possible region and min(TM) tells how far this end can be pulled back; con-
sequently, we map sp to min(Tm), eo to max(Tm), so to min(TM), ep to max(TM);
then we post for each τi: Tmi ≤ TMi. This ensures sp ≤ so, eo ≤ ep and triggers
a failure whenever sp is pushed beyond eo (the time point is forced to occur
after the obligatory region) or ep is pulled before so (the time point is forced
to occur before the obligatory region). Note that if dynamic controllability has

to be kept, the case sp > eo never occurs. For each constraint τi
[δ,∆]
−−−→ τj , we

perform the following filtering:

δ ≤ max(Tmj)−max(Tmi) ≤ ∆

δ ≤ min(Tmj)−min(Tmi) ≤ ∆

δ ≤ max(TMj)max(TMi) ≤ ∆

δ ≤ min(TMj)min(TMi) ≤ ∆

which can be done by posting δ ≤ Tmj − Tmi ≤ ∆ and δ ≤ TMj − TMi ≤ ∆. The
rationale behind the filtering rules can be explained by looking at Figure 5.6A.
For example sp(τj) cannot be less than δ time units away from sp(τi), or no
time distance value d exists in [δ,∆] such that τj = τi + d; so min(Tmj) can be
updated to min(Tmi) + δ, in case it is less than that value: this is depicted in
the figure with an arrow going from sp(τi) to sp(τj). By reasoning in the same
fashion one can derive all other filtering rules. Similarly, for each contingent

constraint τi
[δ:∆]
−−−→ τj we perform the following filtering:

max(Tmi) + ∆ = max(Tmj)

min(Tmi) + δ = min(Tmj)

max(TMi) + ∆ = max(TMj)

min(TMi) + ∆ = min(TMj)

As in the previous case, figure 5.6B gives a pictorial intuition of the rationale
behind the rules. Now, neither sp(τj) can be closer than δ time units to sp(τi),
nor sp(τi) can be farther than δ units from sp(τj); otherwise there would exist

Figure 5.6: (A) Filtering rules for free constraints; (B) Filtering rules for con-
tingent constraints
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a d value in [δ,∆] such that τj could not be equal to τi + d. This explains the
second filtering rule on the leftmost column. By reasoning similarly one can
derive all other rules. The described filtering runs in polynomial time and is
sufficient to enforce consistency on the network, with the support of the on-line
scheduler.

5.6.2 MCS Based Search

The solver architecture is depicted in figure 5.6.2. It is organized as two main
components: (1) a Constraint Programming (CP) scheduler, performing search
by adding precedence constraints (Precedence model), which are translated into
task time bounds by the Time model; (2) a Minimum Conflict Set (MCS) finder
that exploits knowledge on resources as described later, whereas the scheduler
has no direct notion of resource constraints; the reason is that usual CP algo-
rithms connecting task time bounds and resources are designed to check consis-
tency for at least one duration value, rather than for all durations. We recall
that a MCS is a minimal set of tasks which would cause a resource over-usage
in case they overlap; here minimal means that by removing any task from the
set the resource usage is no longer jeopardized. Due to its minimality, a MCS is
resolved by posting a single precedence constraint between two tasks belonging
to the set.

MCS Based Tree Search The search engine of the scheduler iteratively
detects and solves MCSs, in tree search fashion. At each step, in first place a
MCS is identifies; then the solver selects a pair of tasks ti, tj ∈ MCS and opens
a choice point. Let RS = (ti0 , tj0), . . . (tim−1

, tjm−1
) be the list of pairs of nodes

in the set such that a precedence constraints can be posted. Then the choice
point can be recursively expressed as:

CP (RS) =

{
post(ti0 , tj0) if |RS = 1|
post(ti0 , tj0) ∨ [forbid(ti0 , tj0) ∧ CP (RS \ (ti0 , tj0))]

where (ti0 , tj0) always denotes the first pair in the processed set. The operation

post(ti0 , tj0) amounts to adding the constraint ηi
[0,∞]
−−−→ σj in the time model,

and forbid(ti0 , tj0) consists in adding σj
[1,∞]
−−−→ ηi (strict precedence relation).

If the addition/forbidding of any precedence constraint succeeds, the solver looks
for one more MCS and the procedure is reiterated, until no more possible conflict

Figure 5.7: Solver architecture
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exists. In case no precedence relation can be posted or forbidden on the whole
RS set, the solver fails (the problem contains an unsolvable MCS).

Prior to actually building the choice point, all precedence constraints could in
principle be sorted according to some heuristic criterion; note however this is not
done in the current implementation: introducing some score to rank precedence
constraints (e.g. the one proposed in [Lab05], based on preserved search space)
is part of planned future work. The behevior of the solver strongly depends
on the MCS finding procedure, for which we provide two alternative method,
each one with advantages and drawbacks. The two methods are described in
the following two sections.

5.6.2.1 Finding MCS via CP Based Complete Search

The first proposed MCS finding method is based on complete search; in detail
the MCS detection problem is stated as a Constraint Satisfaction Problem,
whose decision variables are Ti ∈ {0, 1} and Ti = 1 is task ti is part of the
selected MCS, Ti = 0 otherwise. Let R be the set of problem resources (including
both clusters – with capacity 1 – and communication ports – with capacity
= bandwidth), and let rqik be the quantity of a resource rk ∈ R requested by a
task ti; rqik = 0 if the task does not require the resource. The set of tasks in
an MCS must exceed the usage of at least one resource:

∨

rk∈R

(
∑

ti

rqikTi > Ck

)

(5.1)

where and Ck is the capacity of resource rk. At least one of the inequalities
between round brackets in expression 5.1 must be true for the constraint to
be satisfied. Moreover, the selected set must be minimal, in the sense that by
removing any task from the MCS, the resource over-usage no longer occurs4.
More formally:

∀rk ∈ R :
∑

ti

rqikTi − min
Ti=1

{rqik} ≤ Ck

that is, the capacity for all rk is not exceeded if we remove from the set the task
with minimum requirement.

Finally, a MCS must contain tasks with an actual chance of overlapping:
therefore if a precedence relation exists between two tasks ti and tj they cannot
both be part of the same MCS:

∀ti, tj | ti ≺ tj ∨ tj ≺ ti : Ti · Tj = 0

A list of mutually exclusive tasks is given to the MCS finder by the scheduling
search engine at each step of the solution process. The MCS finding problem
is solved again via tree search. Tasks are selected according to their resource
requirements, giving precedence to the most demanding ones: this biases the
selection towards smaller MCS, and thus choice points with fewer branches; this
often reduces the search effort to solve the scheduling problem.

4Indeed, we have experimentally observed that by relaxing the minimality constraints does
not affect the correctness of the solver, but speeds up the solution process.
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Algorithm 6: Overview of the search strategy

1: set best MCS so far (best) to ∅
2: for rk ∈ R do
3: find a conflict set S by solving a minimum flow problem
4: if weight of S is higher than Ck then
5: refine S to a minimal conflict set S′

6: if S′ is better than the best MCS so far then
7: best = S′

8: end if
9: end if

10: end for
11: if best = ∅ then
12: the problem is solved
13: else
14: open a choice point as described in Section 5.6.2
15: end if

5.6.2.2 Finding MCS via Min-flow and Local Search

One of the key difficulties with complete search based on MCS branching is how
to detect and choose conflict sets to branch on; this stems from the fact that the
number of MCS is in general exponential in the size of the project graph, hence
complete enumeration, or even a smarted approach such as the one described
in Section 5.6.2.1 incurs the risk of combinatorial explosion.

We hence propose an alternative method to detect possible conflict, based on
the solution of a minimum flow problem on a specific resource rk, as described in
[Gol04]; the method has the major advantage of having polynomial complexity.
Note however the conflict set found is not guaranteed to be minimal, nor to
be well suited to open a choice point. We coped with this issue by adding a
conflict improvement step. An overview of the adopted search strategy is shown
in Algorithm 6. In the next section each of the steps will be described in deeper
detail; the adopted criterion to evaluate the quality of a conflict set will be given
as well.

Conflict Set Detection The starting observation for the minimum flow
based conflict detection is that, if the problem contains a minimal conflict set,
it also contains a non necessarily minimal conflict set, i.e. a conflict set not
necessarily satisfying the minimality condition in the definition of Section 5.4;
let us refer to this as a CS. Therefore we can check the existence of an MCS on
a given resource rk by checking the existence of any CS.

Resource Graph: Let us consider the augmented project graph, further anno-
tated with all precedence constraint which can be detected by time reasoning;
if we assign to each activity the requirement rqik as a weight. We refer to such
weighted graph as resource graph 〈T,AR〉, where (ti, tj) ∈ AR iff ti � tj or
ep(ηi) ≤ sp(σj). If a set of tasks is a CS, then we have

∑

ti∈S rqik > Ck. Since
the tasks in a CS must have the possibility to overlap, they always form a stable
set (or independent set) on the resource graph.
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Max Weight Stable Set on the Resource Graph: We can therefore check the
existence of a MCS on a resource rk by finding the maximum weight independent
set on the resource graph and checking its total weight; this amounts to solve
the following ILP model P ′:

P′ : max
∑

ti∈A

rqikxi

s.t.
∑

ti∈πj

xi ≤ 1 ∀πj ∈ Π (5.2)

xi ∈ {0, 1}

P′′ : min
∑

πj∈Π

yj

s.t.
∑

ti∈πj

yj ≥ rqik ∀ti ∈ T (5.3)

yj ∈ {0, 1}

where xi are the decision variables and xi = 1 iff task ti is in the selected set; Π
is the set of all paths in the graph (in exponential number) and πj is a path in
Π. As for the constraints (5.2) consider that, due to the transitivity of temporal
relations, a clique on the resource graph is always a path from source to sink.
In any independent set no two nodes can be selected from the same clique,
therefore, no more than one task can be selected from each path πj in the set
Π of all graph paths.

The corresponding dual problem is P ′′, where variable yj is path πj is se-
lected; that is, finding the maximum weight stable set on a transitive graph
amounts to find the minimum set of source-to-sink paths such that all nodes are
covered by a number of paths at least equal to their requirement (constraints
(5.3)). Note that, while the primal problem features an exponential number of
constraints, its dual has an exponential number of variables. One can however
see that the described dual is equivalent to route the least possible amount of
flow from source to sink, such that a number of minimum flow constraints are
satisfied; therefore, by introducing a real variable fij for each edge in AR, we
get:

min
∑

tj∈T+(t0)
f0j

s.t.
∑

tj∈T−(ti)
fji ≥ rqik ∀ti ∈ T (5.4)

∑

tj∈T−(ti)
fji =

∑

tj∈T+(ti)
fij ∀ti ∈ T \ {t0, tn−1} (5.5)

fij ≥ 0

where T+(ai) denotes the set of direct successors of ti and T−(ti) denotes the
set of direct predecessors. One can note this is a flow minimization problem.
Constraints (5.4) are the same as constraints (5.3), while the flow balance con-
straints (5.5) for all intermediate activities are implicit in the previous model.
The problem can be solved starting for an initial feasible solution by iteratively
reducing the flow with the any embodiment of the inverse Ford-Fulkerson’s
method, with complexity O(|AR| · F) (where F is the value of the initial flow).
Once the final flow is known, activities in the source-sink cut form the maximum
weight independent set.

Finding MCS by solving a Min Flow Problem: In our approach we solve the
minimum flow problem by means of the Edmond-Karp’s algorithm. On this
purpose each task ti has to be split into two subnodes t′i, t

′′
i ; the connecting arc

(t′i, t
′′
i ) is then given minimum flow requirement rqik; every arc (ti, tj) ∈ AR is

converted into an arc (t′′i , t
′
j) and assigned minimum flow requirement 0.
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Observe that the structure of the resulting graph closely matches that of
the time graph, which indeed can be used as a basis for the min-flow problem
formulation. Figure 5.8A shows the time graph from Figure 5.4, annotated with
the flow requirement corresponding to the tasks in the original graph mapped
to cluster 0 (note those require each 1 unit of a cluster resource). Note the
added task t0,2, t7,9 have 0 requirement, as they model data transfer, which are
carried out by the DMA engine; similarly, all other tasks have 0 requirement,
as they are mapped to cluster 1. The figure show the S/T cut corresponding
to the maximum weight Conflict Set, consisting of tasks {t3, t4} (highlighted in
Figure 5.8B).

In general, we compute the initial solution to the min-flow problem by:

1. selecting each arc (t′i, t
′′
i ) in the new graph with minimum flow requirement

rqik > 0

2. routing rqik units of flow along a backward path from t′i to t′0 (source)

3. routing rqik units of flow along a forward path from t′′i to t′′n−1 (sink)

minor optimizations are performed in order to reduce the value of the initial
flow. If at the end of the process the total weight of the independent set is
higher than Ck, then a CS has been identified.
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Figure 5.8: A) Minimum flow problem on the time graph; B) Corresponding
Conflict Set

Reduction to MCS Once a conflict set has been identified, a number of issues
are still pending; namely (1) the detected CS is not necessarily minimal and (2)
the detected CS does not necessarily yield a good choice point. Branching on
non-minimal CS can result in exploring unnecessary search paths, but luckily
extracting a MCS from a given CS can be done very easily in polynomial time.
The second issue is instead more complex, as it requires to devise a good MCS
evaluation heuristic. We propose to tackle both problems by performing local
search based intensification.

As evaluation criterion for a given conflict set S we use the lexicographic
composition of (1) the number of precedence constraints which can be posted
between pairs of tasks ti, tj ∈ S, and of (2) the size of the set itself (i.e. |S|);
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for both criteria, lower values are better. Note a precedence constraint cannot
be posted on ti, tj iff either of the followings holds:

1. tj ≺ ti in the time graph, where ≺ denotes a strict precedence relation.
Note this can be checked in constant time by means of the time graph.

2. so(ηi) > eo(σj) in the time model, as briefly discussed in section 5.6.1,
where ηi and σj are time points representing the end of ti and the start of
tj . This check can be performed in constant time thanks to the specialized
time windows introduced in Section 5.6.1.

As a consequence, local search naturally moves towards CS yielding choice points
with a small number of branches: this goes in the same direction of the “min-
imum size domain” variable selection criterion (see Section 2.2.2). Once the
number of branches in the resulting choice point cannot be further reduced,
nodes are removed from the CS turning it into a minimal conflict set. Of course
the total weight of is kept above Ck (S must remain a conflict set). In detail,
given a conflict set S, we consider the following pool of local search moves:

1. add(S, ti) : a task ti /∈ S is added to S, all tasks tj ∈ S such that (ti, tj) ∈
AR or (tj , ti) ∈ AR are removed from the set. The number of precedence
constraints that can be posted is updated accordingly. The move has
quadratic complexity.

2. del(S, ti) : a node ti ∈ S is removed from S; the number of precedence
constraints that can be posted is updated accordingly. The move has
linear complexity.

At each local search step all del moves for ti ∈ S are evaluated, together with
all add moves for every immediate predecessor or successor of activities in S;
the best move strictly improving the current set is then chosen. The process
stops when a local optimum is reached. Note that in Figure 5.8B no LS move
can be performed without if the overall requirement of cluster 0 has to be kept
above 1; in fact, the set {t3, t4} is already an MCS.

5.6.3 Detecting unsolvable Conflict Sets

At search time, it is possible for a Conflict Set to become unsolvable, that is: no
resolver can be posted at all. This situation is in practice not very frequent and
does not compromise convergence, but it can have a substantial impact on the
solver performance if not promptly detected. On this purpose an additional step
is added at the beginning of each search step (prior to MCS finding), where an
attempt to identify unsolvable conflict sets is performed. Observe that a conflict

set S is unsolvable iff for each pair ti, tj ∈ S neither ηi
[0,∞]
−−−→ σj nor ηj

[0,∞]
−−−→ σi

can be posted. In practice, if we build an undirected graph where an edge
connecting ti and tj is present if such a situation holds, an unsolvable CS for a
resource rk always forms a clique with weight higher than Ck.

Figure 5.9 shows the graph for the TG in Figure 5.3B, in the hypothesis that
a tight global deadline constraint is posted (note that 12 is the best deadline
value for which feasibility can be guaranteed). Cliques in the graphs represent
group of node which cannot prevent from overlapping; in case any clique exceed
the capacity of some resource an unsolvable CS is detected; in the example,
{t3, t4} (overusing cluster 0) and {t5, t6} (overusing cluster 1) are unsolvable.
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Figure 5.9: Graph for unsolvable CS identification

As neither the special graph we have just described nor its complement
are transitive, the minimum flow based method cannot be used to detect an
unsolvable CS. We therefore resorted to complete search, taking advantage of
the very sparse structure quite often exhibited by the special graph. During
search, nodes are selected according to their degree (number of adjacent edges),
deprived of the currently selected set; such degree is dynamically updated as new
nodes are selected. In order to limit the search effort we finally run the process
with a fail limit, which was empirically set to 10× the size of the transformed
Task Graph used as input for the scheduling stage.

5.6.4 Feasibility and optimality

The solver described so far solves the feasibility version of the problem. In fact,
it finds a set of precedence constraints that added to the original task graph
ensure to meet deadline constraints in every run time scenario (i.e., for each
combination of task durations). A simple optimality version of the solver can
easily be defined by performing binary search on the space of possible deadlines
and iteratively calling the above described solver.

Initially, an infeasible lower bound (e.g. 0) and a feasible upper bound (e.g.
the sum of the durations) for the deadline are computed; an optimal deadline is
then computed by iteratively narrowing the interval (lb..ub] by solving feasibility
problems. At each step a tentative bound tb is computed by picking the value in
the middle between lb and ub, then the problem is solved using tb as deadline.
If a solution is found, the tb is a valid upper bound for the optimal deadline;
conversely, tb is a valid lower bound. The process stops when lb is equal to
ub minus 1. The worst-case execution time of both the feasibility solver and
the optimality solver is clearly exponential. However, search is very efficient
in practice, as discussed in details in the next section. An interesting feature
of the optimality version of the algorithm is that in case it exceeds the time
limit, it provides a lower and an upper bound on feasible deadlines anyway.
Experimental results will show that, for the considered instances, such bounds
are tight even for the largest Task Graphs.
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5.7 Experimental results

Both the scheduler and the MCS finder have been implemented within the of the
state-of-the-art ILOG Solver 6.3. Preliminary heuristic allocation is performed
using the METIS [Kar] graph partitioning package. We forced the difference
between the maximum and minimum workload to be within 6%.

We tested the system on groups of randomly generated task graphs designed
to mimic the structure of real-world applications5. In particular all groups con-
tain so called structured graphs (see Section 2.1): they have a single starting
task and a single terminating task, and feature branch nodes with variable fan
out and a collector node for each branch; this reflects typical control/data flows
arising with structured programming languages (such as C or C++). For all in-
stances, the maximum task duration can be up to twice the minimum durations;
data transfers within the same clusters are assumed to be instantaneous, while
inter-cluster communications have finite duration (up to 1/4 of average task ex-
ecution time) and use from 10% to 90% of the port bandwidth. We consider two
different platforms: the first one has 16 single-instruction-stream accelerators
connected with the interconnect by ports with the same bandwidth, the second
contains 4 accelerators with 4 processors each. Inter-cluster communications
employ ports with the same bandwidth as in the first platform.

Results concerning the approach with complete search based MCS identifi-
cation are presented in Section 5.7.1; such approach is compared with a Worst
Case Execution Time (WCET) scheduler, assuming the maximum duration for
each task. Such method is much faster, but requires time triggered scheduling
and idle time, hence achieving robustness at the cost of flexibility. Results for
the Min-flow based conflict identification methods are instead in Section 5.7.2;
the alternative MCS finding method is compared with the complete search one.

5.7.1 Results with Complete Search Based MCS Finding

The first group of experiments considers graphs with a fixed fan out (3 to 5
branches) and variable size (from 10 to 70 tasks). In each experiment we ran
the optimality solver described in Section 5.6.4: this process requires to solve
a number feasibility problems in order to identify the lowest feasible deadline
and the highest infeasible deadline. All runs were performed on an Intel Core 2
Duo, with 2GB or RAM; the solver was given a time limit of 15 minutes.

Table 5.1 lists the results for the first group of experiments, related to plat-
form type 1 and 2 (column “P”). Each row reports results for groups of 10
instances, showing the average deadline for the lowest feasible and the highest
infeasible solution found (columns DL), the ratio between those two values (I/F)
the number of added precedence relation in the best solution (Npr). Detailed
information is given about the solution time: the average and median time for
the optimization process is reported in column total Ta/Tm; column TL shows
the number of timed out instances (which are not considered in the average and
median computation); Nit contains the average number of iterations performed.
To give an evaluation of the feasibility version of the solver the solution time for
the highest infeasible and lowest feasible deadlines is also given. Finally, the re-
tained flexibility (FL) w.r.t. the WCET scheduler is shown: this is computed as

5both the generator and the instances are available at
http://www.lia.deis.unibo.it/Staff/MicheleLombardi/
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(CTWCET −min(CTPCP ))/CTWCET , where CTWCET is the completion time of
the WCET schedule and min(CTPCP ) is the minimum possible completion time
of the PCP schedule. Note that time for the allocation step is negligible and is
omitted in the results. Similarly, the running time for the WCET scheduler is
omitted, but it is always much faster then the PCP approach.

Considering table 5.1, clearly, the solution time and the number of timed
out instances grows as the number of tasks increases. The very high values
for the deadline ratio show how tight bounds for the optimal deadline can be
computed even for timed out instances. This aspect is crucial for designing
a heuristic method based on the optimal version of the algorithm proposed
that provides deadline bounds at a given time limit. Differences between the
average and median solution time can be used as an indicator of the stability
of the solution time; in particular very close average and median values are
reported for feasible deadlines, while a much less stable behavior is observed
for infeasible deadlines: detecting infeasibility seems to be often an easy task,
but rare complexity peaks do arise; this could be expected, being the problem
NP-hard. Mapping and scheduling the considered task graphs on the clustered
platform appears to be an easier task. Not only the solution time is lower,
but the behavior of the solver is much more stable; this is probably due to the
smaller number of inter-cluster communications, which are scheduled as resource
demanding tasks, and therefore increase the actual problem size and the number
of conflict sets. The shorter deadlines are also due to the reduced number of
inter-cluster communications.

To investigate the solver sensitivity to graph parallelism, in the second group
of experiments we considered instances with a fixed number of tasks, but variable
fan out (from 2-to-4 to 6-to-8). The results for this second group of instances,
mapped respectively on platform 1 and 2, are reported in table 5.2. Again,
each row summarizes results for 10 experiments. Both for platform 1 and 2,
increasing the fan out makes the problem more difficult, since the higher par-
allelism translates into a higher number of conflict sets. For the same reason
also more precedence relations have to be added to prevent the occurrence of
resource over-usage. As for the previous group, mapping and scheduling on the
clustered platforms is easier and produces better optimal deadlines.

The last group of instances contains an aggregation of small, independent
structured task graphs with low fan out (2-3). This case is of high interest as
the result of the unrolling of a simple multirate system would likely look like

feasible infeasible total

P N DL Ta/Tm DL Ta/Tm Ta/Tm Nit Npr TL I/F FL

1

20 1023 0.4/0.4 1022 0.2/0.1 4.9/5.1 11 13 0 1.00 31%
30 1448 1.4/1.2 1447 10.5/0.2 39.4/17.3 12 22 0 1.00 35%
40 1867 1.9/2.0 1866 0.3/0.5 34.3/32.3 12 23 1 1.00 34%
50 1936 5.9/6.2 1890 8.3/1.0 119.5/94.8 11 23 2 0.98 32%
60 2124 10.7/8.6 2089 9.3/1.7 192.4/185.0 11 45 3 0.98 34%
70 2390 19.7/19.7 2306 7.0/2.0 300.5/301.2 9 50 6 0.97 34%

2

20 930 0.1/0.1 929 0.1/0.1 1.1/1.2 11 8 0 1.00 32%
30 1360 0.2/0.2 1359 0.1/0.1 4.7/4.7 11 7 0 1.00 35%
40 1751 0.3/0.3 1750 0.2/0.2 10.1/10.2 12 7 0 1.00 35%
50 1758 1.0/0.8 1757 0.4/0.4 24.5/22.7 12 15 0 1.00 33%
60 1959 1.9/1.8 1914 0.6/0.6 41.2/37.8 10 25 2 0.98 34%
70 2108 5.1/4.9 2107 1.0/1.0 89.3/84.9 13 41 0 1.00 33%

Table 5.1: First group of instances (variable size)
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feasible infeasible total

P N DL Ta/Tm DL Ta/Tm Ta/Tm Nit Npr TL I/F FL

1

2-4 1765 2.2/2.0 1764 0.4/0.5 33.5/32.0 12 17 0 1.00 32%
3-5 1573 3.9/3.8 1572 0.8/0.6 53.8/54.6 12 36 0 1.00 32%
4-6 1551 59.4/5.4 1550 0.7/0.5 119.7/63.0 12 49 0 1.00 33%
5-7 1406 5.6/4.9 1405 1.5/0.5 117.6/63.7 12 53 0 1.00 34%
6-8 1318 6.6/6.2 1295 0.4/0.3 75.2/68.0 10 60 3 0.98 33%

2

2-4 1643 0.4/0.3 1642 0.2/0.2 10.7/9.8 12 8 0 1.00 32%
3-5 1453 0.7/0.6 1452 0.2/0.2 15.0/14.5 12 14 0 1.00 33%
4-6 1472 0.9/0.9 1471 0.2/0.2 16.5/15.9 12 21 0 1.00 33%
5-7 1305 1.1/0.9 1304 0.2/0.2 18.6/17.4 12 23 0 1.00 34%
6-8 1223 1.3/1.4 1218 0.2/0.2 19.7/20.4 11 28 2 1.00 33%

Table 5.2: Second group of instances (variable fan-out)

this type of graphs. We generate composite graphs with 1 to 7 subgraphs, 10
to 70 tasks. The results for platform 1 and 2 are reported in table 5.3, again by
groups of 10 instances. The complexity of the mapping and scheduling problem
on platform 1 grows as the number of tasks increases. Note however how, despite
the high parallelism calls for a large number of precedence relations, this kind
of graphs seems to be easier to solve than those in the first group; this behavior
requires a deeper analysis, which is subject of future work. Finally, note how
mapping composite graphs on platform 2 is surprisingly easy: the nature of those
graph allows the allocator to almost completely allocate different subgraph on
different clusters, effectively reducing inter-cluster communications.

5.7.2 Results with Min-flow Based MCS Finding

This section reports results for the solver where the MCS finding relies on the so-
lution of a min-flow problem and on local search (as described in Section 5.6.2.2).
The method is compared with the results obtained by identifying MCS via com-
plete search (the results in the previous section). In the following, we refer to
the first approach as MF solver (Minimum Flow), and to the latter as CS solver
(Complete Search).

The following testing process has been devised: for each available instance a
very loose deadline requirement is first computed (namely, the sum of all worst
case durations); next binary search is performed as described in Section 5.6.4;
the process converges to the best possible deadline and provides information
about the performance of the solvers, as well as an indication of the tightness
to the best deadline constraint which can be reached by both solvers. A time

feasible infeasible total

P N DL Ta/Tm DL Ta/Tm Ta/Tm Nit Npr TL I/F FL

1

20 929 0.1/0.1 928 0.1/0.1 1.4/1.5 11 5 0 1.00 34%
30 1319 0.3/0.3 1318 0.1/0.1 6.7/6.6 11 15 0 1.00 36%
40 1347 0.5/0.4 1346 0.2/0.3 14.2/14.5 12 23 0 1.00 34%
50 1342 1.5/1.3 1341 1.6/0.4 37.8/32.4 12 44 0 1.00 32%
60 1378 7.3/2.7 1377 21.5/6.5 166.9/82.1 12 79 0 1.00 32%
70 1851 16.8/4.6 1849 54.1/1.4 274.2/112.6 12 113 3 1.00 35%

2

20 871 0.1/0.1 870 0.1/0.1 0.5/0.5 11 1 0 1.00 33%
30 1238 0.1/0.1 1237 0.1/0.1 1.7/1.7 11 1 0 1.00 36%
40 1259 0.1/0.1 1258 0.1/0.1 4.6/4.4 12 4 0 1.00 35%
50 1205 0.3/0.2 1204 0.2/0.2 9.4/9.0 12 15 0 1.00 31%
60 1217 0.6/0.6 1216 0.3/0.3 17.2/17.5 12 35 0 1.00 32%
70 1624 1.7/1.5 1623 0.5/0.5 34.2/35.2 12 47 0 1.00 34%

Table 5.3: Third group of instances (variable #subgraphs)
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FEAS INF

N FL TT T F NMCS TMCS TO MEM T TMCS T TMCS

A

41-49 0.59 — 7.03 22 164 2.82 0 11M 0.49 23.20 0.13 1.10
56-66 0.56 0.96 90.12 1832 1140 67.34 1 28M 1.37 30.56 8.84 116.56
75-82 0.55 — 49.24 30 287 18.07 0 55M 2.93 39.20 0.71 2.90
93-103 0.56 0.97 130.34 81 533 55.79 3 110M 8.42 66.14 1.66 6.57
111-116 0.56 0.89 251.08 71 720 129.22 4 172M 18.84 89.00 2.14 5.67
121-128 0.59 0.92 365.05 96 666 169.58 6 222M 22.11 75.75 5.82 11.25

B

41-49 0.60 — 0.39 6 155 0.37 0 0.22M 0.05 0.05 0.00 0.01
56-66 0.56 0.91 1.07 6 212 1.04 1 0.28M 0.15 0.15 0.00 0.01
75-82 0.56 — 3.32 18 309 3.25 0 0.32M 0.41 0.39 0.09 0.09
93-103 0.57 0.98 11.29 51 537 11.18 2 0.42M 1.29 1.27 0.23 0.23
111-116 0.55 0.92 27.52 1175 1549 26.86 4 0.49M 3.28 3.22 0.09 0.08
121-128 0.59 0.89 36.64 82 713 36.36 6 0.50M 3.19 3.19 1.80 1.78

Table 5.4: Results on the first group of instances (growing number of nodes)
for (A) the CS solver and (B) the MF solver

limit of 900 seconds was set on the whole test process. Note the reported results
only related to the first platform (16 single thread accelerators) and the second
group of generated instances; the group representing applications with multiple
independent task graphs is omitted.

Table 5.4 summarizes results on the first group of instance, respectively for
the CS (A) and MF solver (B). Here the branching factor was fixed to the
range 3-5. Note the results for the CS solver are indeed the same as Table 5.1,
just group according to a different criterion, namely the number of tasks in the
transformed graph resulting after the allocation step. Each row refers to a group
of 10 instances, and shows the minimum and maximum number of nodes (N),
the average solution time (T) and number of fails (F) for the entire test process,
the number of MCS used to branch (NMCS) and the time spent to detect them
(TMCS); the number of timed out instances and the total memory usage are
respectively in columns TO and MEM. The solution time and the time to
detect MCS is reported for single feasible and unfeasible runs as well (FEAS,
INF).

Finally, columns FL and TT deserve special attention; whenever a feasible
solution is found a flexibility indicator can be given by the ratio between the
best case completion time and the worst case completion time for the produced
graph; the average of such indicator is reported in FL. When a timeout occurs,
the ratio between the current lower bound and the current upper bound on
the best achievable deadline is computed and used as a tightness indicator; the
average of such indicator is reported in TT.

FEAS INF

BF FL TT T F NMCS TMCS TO MEM T TMCS T TMCS

A

2-4 0.58 1.00 51.21 13 305 21.09 1 107M 3.05 38.22 0.62 0.00
3-5 0.56 0.99 67.51 14 405 31.21 1 125M 4.97 55.44 0.66 0.11
4-6 0.55 1.00 84.40 48 565 42.63 1 134M 6.72 75.00 0.83 2.78
5-7 0.54 0.98 71.15 15 476 33.13 2 133M 5.36 66.50 0.62 0.00
6-8 0.52 0.99 102.02 20 667 54.95 4 160M 8.40 88.00 0.67 0.33

B

2-4 0.58 — 3.74 48 385 3.67 0 0.33M 0.34 0.33 0.15 0.15
3-5 0.56 — 4.17 7 423 4.09 0 0.36M 0.54 0.53 0.01 0.01
4-6 0.56 0.80 41.00 5418 6230 39.65 1 0.39M 5.78 5.58 0.03 0.03
5-7 0.54 0.49 4.88 6 455 4.78 2 0.37M 0.67 0.63 0.00 0.01
6-8 0.51 0.93 6.16 6 576 6.06 4 0.42M 0.87 0.86 0.00 0.00

Table 5.5: Results on the second group of instances (growing branching factor)
for (A) the CS solver and (B) the MF solver
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As one can see, the MF solver reports improvements of around one order of
magnitude both in the total solution time and in the time required to detect
MCS; in particular, the latter has to be mainly ascribed to the flow based conflict
detection method, while the former also benefits from the much more efficient
time model used in the MF solver; the compactness of the time model also has
a leading role in the drastic improvement in memory usage. The flexibility and
the tightness achieved by the two solvers are comparable; note in particular
the very high values of the tightness indicator reached by both the approaches.
Note however the CS solver reports a smaller number of timed out instances:
this is enable by the higher quality MCS found by the Constraint Programming
based method.

Table 5.5 shows the same results for the second group of instances; here the
number of tasks in the graph is always between 74 and 94, while the branching
factor spans the interval reported for each row in the column BF . As one can
observe, the trend of all results is around the same as the previous case, with
the addition of the flexibility indicator getting higher as the branching factor
increases. Note however the MF solver sometimes achieves considerably worse
values for the tightness indicator value; this indicates the MF solver tends to stop
earlier (i.e. for more loose bounds) in case of timeouts. Similarly to Table 5.4,
the MF solver reports an higher number of timeouts compared to the CS one.

A last set of experiments was finally performed to test the impact of the
local search (LS) and the unsolvable conflict set (UCS) detector; in fact, as
those feature are not necessary for the method to converge, it is reasonable to
question their actual effect on the solver efficiency. Table 5.6 reports results
for those tests, performed on the first group of instances previously discussed.
Both for the case when the UCS finder and the local search are turned off,
the table shows the solution time (T), the number of processed MCS (NMCS)
and the number of detected UCS (NUCS); the number of timed out instances
(TO) is indicated as well. Columns NMF, NLS, NUF respectively report the
number of times the minimum flow, local search and UCS finder algorithm are
run. The results show that the actual advantage of incorporating a UCS finder
is shadowed by the efficacy of the local search CS improver, to the point that
sometimes a better run time is achieved without the feature. On the other hand,
no question arise about the effective utility of the local search method during
MCS detection. Quite surprisingly however, turning LS off helps reducing the
number of timeouts: this has to be further investigated.

NO UCS FINDER NO LOCAL SEARCH

N T NMCS NUCS TO NMF NLS T NMCS NUCS TO NMF NUF

41-49 0.37 155 0 0 914 562 0.43 198 36 0 973 242
56-66 1.04 212 0 1 1417 1042 1.07 243 2 1 1383 253
75-82 3.52 325 0 0 3355 2933 3.96 393 41 0 3533 442
93-103 11.96 538 0 2 7660 7168 14.02 727 159 2 8685 894
111-116 18.51 631 0 5 8566 8133 48.65 1318 279 4 23744 1606
121-128 40.98 713 0 6 15499 14983 133.13 2049 1088 5 46073 3145

Table 5.6: Performance of the MF solver when some features are turned off
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5.8 Conclusions and future work

We have devised a constructive algorithm for computing robust resource allo-
cations and schedules, when tasks have uncertain, bounded, durations. The
method couples a heuristic allocation step with a complete scheduling stage.

The approach has been devised to solve an important class of problems
arising in the embedded system design process; namely, we address predictive
mapping and scheduling for real-time applications with variable-duration tasks.
Scheduling anomalies are eliminated by inserting sequencing constraints be-
tween tasks in a controlled way, i.e. only when needed to prevent resource
conflicts which may appear for “unfortunate” combinations of execution times.
We developed a solver that solves both feasibility and optimality problems.

Even though run-time is worst-case exponential (as expected for complete
methods on NP-Hard problems), solution times in practice are very promising:
task graphs with several tens of tasks can be handled in a matter of minutes.
This is competitive with state-of-the-art verification methods used to test the
presence of anomalies [BHM08].

Future work will focus on replacing the heuristic allocation step with (yet
efficient) but complete approach; this will enable to repeat the allocation and
scheduling process in a LBD like scheme. Introducing filtering for resource con-
straints is another necessary improvement; on this regard, the main difficulty is
given by the different semantic for the task duration, requiring consistency to be
enforced for each value, rather than for at least one value. Introducing a prob-
ability distribution on task durations is also subject of current research: that
would enable more complex objectives, such as minimization of the expected
execution time, by exploiting probability theory results.
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Chapter 6

Concluding remarks

We have presented a number of hybrid algorithmic approaches for Allocation
and Scheduling problems, making heavy use of decomposition techniques to
provide integration support. In particular, we investigated the use of LBD for
scheduling problems involving general precedence constraints in a determinis-
tic environment. We highlighted the possibility to effectively use NP-hard cut
generation schemes if the subproblem is easy enough, and the chance to apply
recursive decomposition to boost the solver efficiency on subproblem parts. We
devised efficient probabilistic reasoning methods for Conditional Task Graphs,
and used them to introduce conditional constraints, and deterministic reduc-
tion techniques for expected value functionals (namely, assignment cost and
makespan). We tackled A&S problems with tasks having uncertain, bounded
durations and we showed how efficient conflict detection can be performed by
solving a minimum flow problem.

Despite the developed techniques have broad applicability, they mainly tar-
get the design flow of embedded systems; in particular, we considered mapping
and scheduling problems on both real (namely, the Cell BE processor) and re-
alistic synthetic architectures (via carefully generated instances). We showed
how in many cases practical size problems are within the reach of exact op-
timization methods; moreover, thanks to the very presence of hard real time
constraints, uncertainty elements can be taken into account off-line without
drastically increasing the problem complexity. Finally, we demonstrated how
hybrid approaches can be used to achieve the level of flexibility and accuracy
required for an optimization method to be included in a CAD tool.

Future works are detailed in Chapters 3, 4 and 5. Additionally, they in-
clude the actual embedding of the proposed techniques within a design software
prototype, as well as their further development. On this purpose, heuristic ap-
proaches and specialized strategies for exact solvers (providing good solution in
the early search stages) have to be investigated as well.

Part of the developed work has been published on international confer-
ences [RLMB08, LMB09, LM09, LM07, LM06, BLMR08, BLM+08] and journals
[LM10, BLMR10].
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[BB72] U. Bertelé and F. Brioschi. Nonserial dynamic programming. Aca-
demic Press, 1972.

[BB82] D. D. Bedworth and J. E. Bailey. Integrated Production Control
Systems - Management Analysis Design. Wiley, New York, 1982.

147



[BBDM02] L. Benini, A. Bogliolo, and G. De Micheli. A survey of design
techniques for system-level dynamic power management. Readings
in Hardware/Software Co-Design, G. De Micheli, R. Ernst, and
W. Wolf, Eds. The Morgan Kaufmann Systems On Silicon Series.
Kluwer Academic Publishers, Norwell, MA, pages 231–248, 2002.

[BBGM05a] L. Benini, D. Bertozzi, A. Guerri, and M. Milano. Allocation and
scheduling for mpsocs via decomposition and no-good generation.
19:1517, 2005.

[BBGM05b] Luca Benini, Davide Bertozzi, Alessio Guerri, and Michela Mi-
lano. Allocation and Scheduling for MPSoCs via Decomposition
and No-Good Generation. In Peter van Beek, editor, Proc. of
CP, volume 3709 of Lecture Notes in Computer Science, pages
107–121. Springer, 2005.

[BBGM06] Luca Benini, Davide Bertozzi, Alessio Guerri, and Michela Mi-
lano. Allocation, Scheduling and Voltage Scaling on Energy Aware
MPSoCs. In J. Christopher Beck and Barbara M. Smith, editors,
Proc. of CPAIOR, volume 3990 of Lecture Notes in Computer
Science, pages 44–58. Springer, 2006.

[BC94] C. Bessiere and M. O. Cordier. Arc-consistency and arc-
consistency again. Artificial intelligence, 65(1):179–190, 1994.

[BC07] Roman Barták and Ondrej Cepek. Temporal Networks with Al-
ternatives: Complexity and Model. In David Wilson and Geoff
Sutcliffe, editors, Proc. of FLAIRS, Proceedings of the Twentieth
International Florida Artificial Intelligence Research Society Con-
ference, May 7-9, 2007, Key West, Florida, USA, pages 641–646.
AAAI Press, 2007.

[BC09a] L. Bianco and M. Caramia. A new lower bound for the resource-
constrained project scheduling problem with generalized prece-
dence relations. Computers and Operations Research, 2009.

[BC09b] Lucio Bianco and Massimiliano Caramia. An Exact Algorithm
to Minimize the Makespan in Project Scheduling with Scarce Re-
sources and Feeding Precedence Relations. In Proc. of CTW,
pages 210–214, 2009.

[BCP08] Nicolas Beldiceanu, Mats Carlsson, and Emmanuel Poder. New
Filtering for the cumulative Constraint in the Context of Non-
Overlapping Rectangles. In Laurent Perron and Michael A. Trick,
editors, Proc. of CPAIOR, volume 5015 of Lecture Notes in Com-
puter Science, pages 21–35. Springer, 2008.

[BCR05] N. Beldiceanu, M. Carlsson, and J. X. Rampon. Global constraint
catalog. Technical Report SICS Technical Report T2005:08, 2005.

[BCS07] R. Bartak, O. Cepek, and P. Surynek. Modelling Alternatives in
Temporal Networks. In Proc. of IEEE SCIS, pages 129–136, April
2007.

148



[BD02] J. C. Beck and A. J. Davenport. A survey of tech-
niques for scheduling with uncertainty. Available from
http://www.eil.utoronto.ca/profiles/chris/gz/uncertainty-
survey.ps, 2002.

[BDM+99] Peter Brucker, Andreas Drexl, Rolf Möhring, Klaus Neumann,
and Erwin Pesch. Resource-constrained project scheduling: No-
tation, classification, models, and methods. European Journal of
Operational Research, 112(1):3–41, 1999.

[BEA+08] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung,
J. MacKay, M. Reif, L. Bao, J. Brown, et al. TILE64 processor:
A 64-core SoC with mesh interconnect. pages 88–598, 2008.

[Bee06] Peter Van Beek. Handbook of constraint programming, chapter
Backtracking Search Algorithms, pages 85–134. Elsevier Science
Ltd, 2006.

[Ben62] J. F. Benders. Partitioning procedures for solving mixed-variables
programming problems. Numerische Mathematik, (4):238–252,
1962.

[Ben96] A. Bender. MILP based task mapping for heterogeneous multi-
processor systems. In Proc. of EURO-DAC/EURO-VHDL, pages
190–197, Los Alamitos, CA, USA, 1996. IEEE Computer Society
Press.

[BF00] J. C. Beck and M. S. Fox. Constraint-directed techniques for
scheduling alternative activities. Artificial Intelligence, 121(1-
2):211–250, 2000.

[BHLS04] Frédéric Boussemart, Fred Hemery, Christophe Lecoutre, and
Lakhdar Sais. Boosting Systematic Search by Weighting Con-
straints. In Proc. of ECAI, pages 146–150, 2004.

[BHM08] Aske Brekling, Michael R. Hansen, and Jan Madsen. Models and
formal verification of multiprocessor system-on-chips. Journal of
Logic and Algebraic Programming, 77(1-2):1–19, 2008. The 16th
Nordic Workshop on the Prgramming Theory (NWPT 2006).

[BJK93] P. Brucker, B. Jusrisch, and A. Kramer. A new lower bound for
the job-shop scheduling problem. European Journal of Operational
Research, (64):156–167, 1993.

[BK00] P. Brucker and S. Knust. A linear programming and constraint
propagation-based lower bound for the RCPSP. European Journal
of Operational Research, 127(2):355–362, 2000.

[BKST98] P. Brucker, S. Knust, A. Schoo, and O. Thiele. A branch and
bound algorithm for the resource-constrained project scheduling
problem. European Journal of Operational Research, 107(2):272–
288, 1998.

149



[BLM+08] Luca Benini, Michele Lombardi, Marco Mantovani, Michela Mi-
lano, and Martino Ruggiero. Multi-stage Benders Decomposition
for Optimizing Multicore Architectures. In Laurent Perron and
Michael A. Trick, editors, Proc. of CPAIOR, volume 5015 of Lec-
ture Notes in Computer Science, pages 36–50. Springer, 2008.

[BLMR08] Luca Benini, Michele Lombardi, Michela Milano, and Martino
Ruggiero. A Constraint Programming Approach for Allocation
and Scheduling on the CELL Broadband Engine. In Peter J.
Stuckey, editor, Proc. of CP, volume 5202 of Lecture Notes in
Computer Science, pages 21–35. Springer, 2008.

[BLMR10] Luca Benini, Michele Lombardi, Michela Milano, and Martino
Ruggiero. Optimal Allocation and Scheduling for the Cell BE
Platform. to appear on: Annals of Operations Research, 2010.

[BLPN01] P. Baptiste, C. Le Pape, and W. Nuijten. Constraint-based
scheduling. Kluwer Academic Publishers, 2001.
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Heuristics: Two Reasons to Forsake FC (and CBJ?) on Hard
Problems. In Proc. of CP, pages 61–75, 1996.
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