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Abstract

This dissertation is dedicated to the design and analysis ofalgorithms for global constraints.

Global constraints are one of the major contributors to the success of modern constraint

solvers in solving combinatorial and industrial problems.They serve as natural building

blocks in the modelling stage providing the user with a rich declarative language for problem

specification. Global constraints can also lead to dramaticreduction of the search space

during problem solving because their propagation algorithms leverage global knowledge

about the problem.

In this work we study a number of useful global constraints, including SEQUENCE,

ALL -DIFFERENT, GCC, GRAMMAR and NVALUE. We propose reformulations of these

constraints into logically equivalent problems on graphs or into logically equivalent sets

of primitive constraints. We analyse existing filtering algorithms for these constraints and

prove that our reformulations can simulate filtering algorithms for all these constraints with

a slight complexity overhead in some cases. These reformulations have a number of ad-

vantages; in particular, they allow adding global constraints to a constraint solver with-

out implementing special-purpose filtering algorithms, they guarantee maintaining standard

consistency levels for propagation, and their time complexity is similar to or the same as

the best known special-purpose filtering algorithms. Finally, we investigate limitations of

our approach and show that for some constraints and their filtering algorithms a polynomial

size reformulation is not possible.
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Chapter 1

Introduction

This thesis studies the design and analysis of algorithms for solving combinatorial optimi-

sation problems. Such problems arise from the need to improve day-to-day operation of

companies across all sectors of the economy. The ability to solve them efficiently is often

critical to maintaining the competitiveness of services and goods produced by the company.

Consider, for instance, the process of producing of a hardware device. At the design

stage, among other problems, one might need to find an optimumplacement of components

on the circuit board and design automated testing procedures to find possible device de-

fects. At the manufacturing stage, we might have to create a shift schedule for a factory to

produce devices and an optimum ordering of partially completed devices on the assembly

line. Finally, when shipping the product to customers, one needs to solve vehicle routing

problems with additional constraints.

Fast technological progress has lead to a dramatic growth inthe size of industrial opti-

misation problems. Nowadays, many real-world problems arevery difficult for a human to

tackle. Therefore, computing resources and efficient algorithms play an important role in

solving such problems.

The availability and affordability of computing resourcesincreases every year. This

trend is driven by hardware improvements, such as growing transistor densities and various

architectural optimisations, as well as new infrastructure technologies, such as cloud com-

puting. On the algorithmic side, the need to solve industrial optimisation problems fosters

the development of software combinatorial optimisation toolkits [Bix11].

Some of the first widely used toolkits came from the operations research community.

The development of the theory ofinteger linear programming(ILP) and the availability

of efficient implementations ofILP algorithms made it possible to deal with large-scale

problems in various domains, such as network design, shift scheduling, vehicle routing, and

1
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graph drawing [KB85, RT08, JM96, EFK00]. To solve a problem,one has to express it as

a system of linear inequality constraints and give this formal model to anILP solver. The

solver uses branch-and-bound techniques to find an optimal solution. From the theoretical

perspective, the class of problems thatILP tackles is the class of NP-complete problems.

Another popular class of software tools for solving NP-complete problems areBoolean

satisfiability solvers(SAT). A completeSATsolver performs exhaustive exploration of the

search space using smart heuristics and learning of new implied information during the

search.SATsolvers are used in software and hardware verification by Intel, IBM, and many

other companies [KS03, AFF+05, Zar04, Zar05]. To use mostSATsolvers, one needs to

express the problems as a conjunction of disjunctions of Boolean variables. SomeSAT

solvers also allow an arbitrary Boolean formula as an input format.

Constraint solversare a generalisation of Boolean solvers. They allow specifying the

problem as a set of high-level constraints, including so-called global constraints, over finite

domain variables. A constraint solver consists of two main parts: a modelling layer and a

search engine. One aim of the constraint programming modelling layer is to provide the

user with a set of global constraints to make the modelling process as simple as possible.

The richness of the constraint programming modelling layercontrasts with the very

restricted constraint languages that are supported bySATandILP solvers. These toolkits use

disjunctions of literals and linear inequality constraints, respectively, to represent a problem.

Useful global constraints are found by identifying patterns that commonly occur in many

problems. For example, finite state machines are often used to specify regulation rules in

scheduling and rostering problems. This motivated the introduction of the REGULAR global

constraint that allows modelling problem constraints in the form of an automaton [Pes04,

BCP04]. Another common pattern occurs when a set of objects must be matched to another

set of pairwise distinct objects. For instance, a set of machines have to perform different

tasks at any time point or a student cannot take two exams on the same day. To model this

pattern the ALL -DIFFERENT constraint was introduced [Reg94]. More useful constraint

patterns are continually being identified, and so far about300 are formally described in the

global constraints catalogue [BCR05] that form a powerful modelling layer that allows a

non-expert to specify their problem.

Besides being easy to use, the constraint programming modelling layer has the impor-

tant advantage of preserving the structure of the problem. Aconstraint solver can leverage

this structure-preserving encoding to solve the problem more efficiently. Since the structure

of the model significantly affects the performance of the constraint solver, the user needs



3

some expertise in modelling their problem in the most efficient way by choosing the right

constraints among hundreds of available global constraints.

Given a model of the problem a constraint solver search engine performs an exhaustive

exploration of the search space trying to avoid going into unsatisfiable subtrees by means

of inference algorithms, calledfiltering algorithmsor propagators1. Filtering algorithms

work locally for each individual constraint. Therefore, itis important to provide the best

possible algorithm for each constraint to achieve good performance. Significant research

effort is devoted to developing such algorithms for many useful global constraint [HK06].

The growing importance of combinatorial optimisation problems has motivated the

development of numerous industrial ILP, Boolean, and constraint solvers in the last two

decades. To name a few examples, Microsoft Research developed the Microsoft Solver

Foundation, which includes all three techniques, and incorporated in the Microsoft Excel

product [Mic11]. Intel uses a home-grown constraint solverfor automatic test generation for

hardware verification [Gut08,HCG09]. IBM is developing several constraint programming

solvers, including complete and incomplete-search constraint solvers, and recently acquired

the ILOG product line, which includesILP and constraint solvers [IBM11]. Google recently

developed a constraint solver for vehicle routing problems[Goo11]. Continued demand for

combinatorial optimisation tools motivates the research community to create new efficient

and effective algorithms to be incorporated into these tools.

This thesis addresses one of the important challenges in constraint programming,

namelyconstraint reformulation[Fre97]. Constraint reformulation is a technique that al-

lows us to substitute a constraint with a set of simpler constraints and preserve logical

equivalence between the original constraint and the constraints in the reformulation. These

simpler constraints can be primitive, bounded arity constraints or more expressive con-

straints on graphs, like network flow or shortest path constraint. On top of preserving logical

equivalence, a reformulation can satisfy additional requirements, e.g. guarantee that a given

amount of inference is achieved by constraints in the reformulation. Such reformulations

can have a number of advantages. For example, they allow adding new global constraints

to a constraint solver without implementing special-purpose filtering algorithms for these

constraints. Another advantage is that reformulations canexpose the internal state of filter-

ing algorithms to the constraint solver. This, potentially, allows us to build better branching

heuristics and obtain learning schemes, such as the c-learning scheme that was recently

proposed by Moore [Moo11]. In addition, we can use reformulation to communicate in-

1We only consider complete searchCSPsolvers in this work.
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formation between different constraints through the extravariables that are introduced in

the reformulation process. In this work, we focus on reformulations of filtering algorithms

for many important global constraints, which ensure that constraints in the reformulation

achieve the same inference as the filtering algorithm for theoriginal constraint would do.

The thesis defended in this dissertation is that:

Efficient propagators for many important global constraints can be de-

veloped by reformulating them using decompositions based on linear

inequalities and network flows. However, we show that there are also

theoretical limits on the efficiency of propagators and decompositions

that can simulate them.

Outline of the thesis. The rest of this thesis is structured as follows. Chapter 2 gives

an overview of results from graph theory, integer linear programming, formal languages

and constraint programming used in the rest of the thesis. Chapter 3 gives an overview

of the theoretical framework of constraint decompositionsintroduced in the previous work

and extends it to handle decompositions of constraint propagators. Chapter 4 proposes

network-flow based filtering algorithms for the SEQUENCE constraint and its generalisa-

tions. It also proposes a number to decompositions of the filtering algorithm into a set of

bounded arity constraints. Chapter 5 is dedicated to the GRAMMAR constraint and its gen-

eralisations. It investigates a wide class of restricted context free grammars and establishes

a lower bound on the complexity of filtering algorithms for these grammars. It also inves-

tigates reformulations from GRAMMAR to REGULAR constraint and proposes a filtering

algorithm and a decomposition for the weighted GRAMMAR constraint. Chapter 6 studies

the ALL -DIFFERENT constraint and its generalisations and proposes a range of decomposi-

tions into bounded arity constraints. Chapter 7 explores theoretical limits on the efficiency

of constraint propagator decompositions. In particular, we show that the polynomial time

domain consistency filtering algorithm for the ALL -DIFFERENT constraint cannot be en-

coded into a polynomial sizeSATformula so that unit propagation in a SAT solver achieves

the same amount of inference. Chapter 8 summarises the main contributions of the thesis

and outlines future research directions.



Chapter 2

Background

In this chapter we introduce the formal background for the work we present in Chapters 3–7.

2.1 Graph Theory

In this section we recall several important problems in graph theory, like the shortest path

and maximum network flow problems. These problems are central problems in graph the-

ory, as many real world problems, e.g the distribution of thetraffic in a road network or

assignment of jobs to machines in production line scheduling, can be reduced to them. In

constraint programming these problems also play an important role. Constraint propagators

for many useful global constraints can be reduced to problems on graphs.

2.1.1 Basic definitions

The definitions in this section are based on [Sch86]. Anundirected graphG = (V,E)

consists of two sets: a set ofvertices (or nodes) V = {vi|i = 1, . . . , n} and a set ofedges

E = {ei|ei = (vi, vj), vi, vj ∈ V }. Each edgeei = (vi, vj) represents anunordered pairof

two verticesvi andvj that it connects. An example of a graph is shown in Figure 2.1.The

graph contains 6 verticesv1, . . . , v6 and 6 edges. If a vertexvi is an endpoint of an edgee,

thene is said to beincident onvi. A vertexu is adjacent to a vertexv if they are joined by

an edge. Two adjacent vertices are calledneighbours. For example, verticesv1 andv4 are

adjacent, hence, they are neighbours. No graph that we use inthis thesis contains loops, i.e.

an edge with a single endpoint, and multiple edges. A graphG′ = (V ′, E′) is asubgraph

of G = (V,E) if V ′ ⊆ V andE′ ⊆ E.

A path in a graphG = (V,E) from v0 to vn is a sequence of distinct vertices and edges

of the form (v0, e0, v1, . . . , vn−1, en−1, vn), such thatei = (vi, vi+1), i = 0, . . . , n − 1.

5
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Figure 2.1A graph with 6 vertices and 6 edges.
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Figure 2.2A graph with two connected components.
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For example, the sequence(v3, (v3, v5), v5, (v5, v2), v2) is a path from the vertexv3 to the

vertexv2 in Figure 2.1. We can unambiguously describe a path using only the sequence of

vertices(v0, . . . , vn), e.g.(v3, v5, v2), or using only the sequence of edges(e0, . . . , en−1),

e.g.((v3, v5), (v5, v2)). If v0 = vn, the path is calledclosed. A closed path of length at least

one is called acircuit. A graph isconnectedif there exists a path between any two vertices.

A set of vertices connected by a path is called aconnected componentof the graph. A

graph can have several connected components. An example of agraph with two connected

components is at Figure 2.2. A graph without circuits is called aforest. A connected forest

is called atree.

A directed graph G = (V,E) consists of a set verticesV and a set of ordered pairs

E. The elements ofE = {ek | ek = (vi, vj), vi, vj ∈ V } are calleddirected edges. Each

directed edgeeij represents anordered pairof two vertices, a head vertexvi and the tail

vertexvj , that it joins. For simplicity, we use the same notations fora set of directed and

undirected edges. The type of graph will be clear from the context. Figure 2.3 shows an

example of a directed graph.

A directed path in a graphG = (V,E) from v0 to vn is a sequence of vertices and

directed edges of the form(v0, e0, v1, . . . , vn−1, e(n−1), vn) such thatei = (vi, vi+1), i =

0, . . . , n − 1. For example,(s, (s, v3), v3, (v3, v6), v6) is a path froms to v6 in Figure 2.3.

We can unambiguously describe a path using only the sequenceof vertices(v0, . . . , vn) or

using only the sequence of edgese0, . . . , e(n−1). If v0 = vn, the directed path is called
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Figure 2.3A network flow graph.
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Figure 2.4A network flow graph.
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closed. A closed directed path of length at least one is called adirected circuitor cycle.

A directed graphG = (V,E) is strongly connectedif there exists a directed path be-

tween any two of its vertices. A maximal strongly connected subgraph is called astrongly

connected componentor SCC.

A network flow graph is a directed graphG = (V,E) where each edge has limited

capacity. Thecapacityof an edgeei is an interval of values,[l(ei), u(ei)]. We distinguish

two special types of vertices:sourcesandsinks. The source vertexs does not have incoming

edges and a sink vertext does not have outgoing edges. An example of a network flow graph

is shown in Figure 2.3. For instance, the capacity of the edgefrom v4 to the sinkt is [0, 2].

A flow networkis a function that maps edges to integersf : E 7−→ N and satisfies the

flow conservation lawfor all vertices except the source and the sink. We denotef(e) the

amount of flow that is going through an edge. The conservationlaw requires the amount of

flow that enters each vertexvi to be equal to the amount flow that leaves this vertex:

∑

eji∈E,j 6=i

f (eji) =
∑

eij∈E,j 6=i

f (eij)

We denote byv(f) the amount of the flow that comes out of the source node. Due to the

conservation law the same amount of flow goes into the sink node. We callv(f) theflow

value. Figure 2.4 shows a flow in a network graph in grey colour. The value of this flow is

4.

A weightedundirected or directed graphG = (V,E) is a graph where every edge has
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Figure 2.5A convex bipartite graph with 6 vertices and 6 edges.

v1

v2

v3

v4

v5

v6

a real weight attached to it. We denotew(ei) theweightor costof an edge. Theweightor

costof the path between verticesv0 andvn is the sum of the weights of all edges on this

path. Cost of the flow through an edge is the product of the amount of flow, f(e), and the

weight of this edge. Theweightor costof the flow in a network graph,w(f), is the sum of

the flow costs of all edges that a flow goes through.

2.1.2 Restricted graphs

We consider several special cases of graphs that play an important role in constructing con-

straint propagators for global constraints, such as bipartite graphs, convex bipartite graphs

and interval graphs.

Definition 2.1 The graphG = (V,E) is bipartite if V partitions into 2 classes,V = A∪B
andA ∩B = ∅, such that every edge has ends in different classes.

The graph presented at Figure 2.1 is a bipartite graph. Vertices of this graph can be par-

titioned into two setsA = {v1, v2, v3} andB = {v4, v5, v6} so that each edge has its

endpoints in two different partitions.

Definition 2.2 The bipartite graphG = (V,E), V = A ∪B is convex bipartiteif vertices

in the partitionB can be ordered such that for allvi ∈ A the vertices adjacent tovi are

consecutive in this order.

The graph presented at Figure 2.1 is not a convex bipartite graph. We can check that any

ordering on the verticesv4, v5 andv6 does not create a convex graph. Figure 2.5 shows an

example of a convex bipartite graph.

Definition 2.3 The graphG = (V,E) is an intervalgraph if it could be interpreted as the

intersection of a set of intervals on the real line. It has onevertex for each interval in the

set, and an edge between every pair of vertices corresponding to intervals that intersect.

Figure 2.6 shows an example of a set of three intervals and thecorresponding interval graph.
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Figure 2.6An interval graph.
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Figure 2.7A weighted directed graph.
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2.1.3 Problems on graphs

In this section we introduce several important problems in graph theory. We use these

problems in Chapters 4 and 6, where we construct reformulations for SEQUENCE and

ALL -DIFFERENT constraints and their generalisations.

Problem 2.1 (Shortest path)Let G = (V,E) be a weighted graph. Theshortest path

between two verticess andt is a path of the minimum cost betweens andt.

Figure 2.7 shows a weighted directed graph. The shortest path between verticesv0 and

v5 is highlighted in gray. The Bellman-Ford algorithm solves the single source shortest

path problem (SSSP), which is a generalisation of the shortest path problem.SSSPfinds

shortest paths from a given source vertex to all vertices in the graph. The Bellman-Ford

algorithm takesO(|V ||E|) time. In a weighted graph that does not contain negative cost

edges solvingSSSPtakesO(|V |2) using Dijkstra’s algorithm. Using efficient data structures

the time complexity can be improved [CLRS01] for sparse graphs toO(|E| lg |V |) using

binary min-heap or toO(|V | lg |V | + |E|) using Fibonacci heap implementations of the

min-priority queue. Finally, if a graph does not contain cycles, so called directed acyclic

graph (DAG), then solvingSSSPtakesO(|E|) time [CLRS01].

Problem 2.2 (All pairs shortest path (APSP)) LetG = (V,E) be a weighted graph. The
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all pairs shortest path problemis the problem of finding a shortest path between every pair

of vertices inG.

APSPcan be solved inO(|V |2|E|) if we run the Bellman-Ford algorithm for each ver-

tex. If all edges have non-negative cost, we can use Dijkstra’s algorithm which reduces

complexity toO(|V |3). Alternatively, we can use the Floyd-Warshall algorithm, which

runs inΘ(|V |3) time and works for graphs with negative cost edges. For sparse graphs, it

is better to use Johnson’s algorithm that runs inO(|V |2 lg |V |+ |V ||E|) time [CLRS01].

Problem 2.3 (Maximum matching) LetG = (V,E) be an undirected graph. A matching

is a set of edgesM ⊆ E such that every vertex is incident to at most one edge in the set.

Themaximum matchingproblem is the problem of finding a matching of the maximum size.

Figure 2.8(a) shows a maximum matching in a graph. Edges in the matching are highlighted

in gray color. In this thesis we only work with maximum matching in bipartite graphs. The

Hopcroft-Karp algorithm finds a maximum matching in a bipartite graph inO(|E|
√

|V |)
time.

One generalisation of the maximum matching problem in unweighted graphs is the

problem of finding a minimum cost maximum matching on weighted graphs. Thecostor

weightof the matching is the sum of the weights of all edges in the matching.

Problem 2.4 (Minimum cost maximum matching) Let G = (V,E) be an undirected

weighted graph. Aminimum cost maximum matchingis a maximum matching of the mini-

mum cost.

Figure 2.8(b) shows a minimum cost maximum matching in a graph. Edges in the minimum

cost maximum matching are highlighted in gray. In this thesis we only consider the min-

imum cost maximum matching in bipartite graphs. This problem can be seen as a special

case of the minimum cost maximum flow problem that we considerbelow.

Another generalisation of the matching problem is the network flow problem. In the next

section we consider this problem and its generalisation in details as constraint propagators

that we propose in this thesis rely on the algorithms for network flow problems.

Problem 2.5 (Maximum flow) Let G = (V,E) be a directed network flow graph. The

feasible network flowproblem is to identify a flowf in a networkG = (V,E) satisfying the

following constraints∀ei ∈ E and∀vi ∈ V \ {s, t}:
∑

e=(vj ,vi)∈E,j 6=i

f (e) =
∑

e=(vi,vj)∈E,j 6=i

f (e) (2.1)

l(e) ≤ f (e) ≤ u(e) (2.2)
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Figure 2.8 (a)A maximum matching in a graph; (b) a minimum cost maximum matching.
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Themaximum network flowis a feasible flow with the maximum flow valuev(f).

Figure 2.4 shows a network graph with a flow of value4. The maximum flow can be solved

by the successive shortest path algorithm inO(|V |2|E|) time. There exist more efficient

preflow-push algorithms that run inO(|V |2
√

|E|) andO(|V ||E| + |V |2 lg |v(f)|) time,

wherev(f) is the value of the maximum flow.

We introduce the optimisation version of the maximum flow problem, which is a gener-

alisation of Problems 2.1–2.5.

Problem 2.6 (Minimum cost maximum flow) LetG = (V,E) be a directed network flow

graph. Theminimum cost maximum network flowis a maximum network flow with the

minimum flow weightw(f).

Problem 2.6 is one of the most researched problems in computer science. This problem

can be solved in polynomial time using a number of efficient algorithms [AMO93]. We
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consider one of them in the next section that runs inO(v(f))O(SP ) time, whereO(SP ) is

the time complexity of a shortest path algorithm.

Finally, we introduce several NP-complete problems on general graphs. We point out

that these problems can be solved in polynomial time if we consider restricted graphs, such

as interval graphs or bipartite graphs.

Problem 2.7 (Maximum independent set)Let G = (V,E) be an undirected graph. An

independent setis a set of verticesV ′ ⊆ V such that for any two verticesvi, vj ∈ V ′, vi

andvj are not adjacent. Amaximum independent setis an independent set of the maximum

size. We denoteαI(G) the size of the maximum independent set.

For example, the verticesv1, v2, v3, v7 andv8 in Figure 2.8(a) form a maximum independent

set.

Problem 2.8 (Maximum clique) LetG = (V,E) be an undirected graph. Aclique is a set

of verticesV ′ ⊆ V such that for any two verticesvi, vj ∈ V ′, vi and vj are adjacent. A

maximum cliqueis a clique of the maximum size.

We call amaximal cliquea clique in a graph that is not contained in any other clique.

2.1.4 Network flow theory

In this section we consider the successive shortest path algorithm to find a minimum cost

maximum flow in a graph [Sch86]. The algorithm uses the notionof a residual network.

Definition 2.4 Given a flow networkG = (V,E) and a flowf , theresidual network graph

ofG induced byf is Gf = (V,Ef ), where for each edgee = (vi, vj) ∈ E there exists

• an edgee = (vi, vj) ∈ Ef if f(e) < u(e) with capacities [max(l(e) −
f(e), 0), u(e) − f(e)] and the weightw(e),

• an edgee−1 = (vj , vi) ∈ Ef if f(e) > l(e), with capacities[0,max(f(e)− l(e), 0)]

and the weight−w(e),

wheree−1 denotes a reverse edge ofe.

The residual graph shows how much extra flow we can push through an edgee =

(vi, vj) and how much flow we can remove from this edge while meeting thelower bound

requirements for the flow through an edge. We also extend a setof edges in the residual

graph with an edge from the sinkt to the sources of the capacity[0,∞] and zero cost. On

each iteration, the successive shortest path algorithm finds an edgee = (vi, vj) such that
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f(e) < l(e) and finds a pathP from vj to vi in the residual graph. If there is no such path

then there is no feasible flow. Otherwise, it maximally increases the flow along the cycle

formed by the edge(vi, vj) and the pathP taking into account capacities of all edges along

this path. We define a characteristic vector of a pathP , sP , as follows: sP (e) = 1 if P

containse, sP (e) = −1 if P traversese−1 andsP (e) = 0 in all other cases. In a similar

way, we can define the characteristic vector of a cycle. Algorithm 2.1 shows a pseudocode

for the successive shortest path algorithm [Hoe05].

Algorithm 2.1 Minimum-weight flow of valuek in a graphG = (V,E)

procedure M INCOSTMAX FLOW(G, k)

f(e) = 0, e ∈ E

if ∃e ∈ E s.t. l(e) > 0 then

build a residual graphGf extended with an edge(t, s) with capacities[0,∞] and

a zero weight edge.

while ∃e = (vi, vj) ∈ E s.t.f(e) < u(e) do

compute a directed path fromvj to vi with the minimum costw(P )

if P does not existthen

return Failure.

else

define a cycle withP and the edge(vi, vj , s).

resetf = f + εsC whereε is maximal subject tof + εsP ≤ u.

if v(f) > k then

return True.

else

while v(f) < k do

compute a directed path froms to t in Gf minimisingw(P )

if P does not existthen

return Failure.

resetf = f + εsC whereε is maximal subject tol ≤ f + εsP ≤ u

andv(f) + ε ≤ k

Figure 2.9 shows a network flow graph where all weights of edges are zero. We want

to push 4 units of flow through the graph. Gray edges show that one unit of flow has been

pushed through the graph. However, several edges have unsatisfied lower bound capaci-

ties. For instance, the edge(s, v1) requires two units of flow and the current flow only
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Figure 2.9A network flow graph with one unit of flow.
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Figure 2.10A residual graph of the network flow graph from Figure 2.9.
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pushes one unit of flow through this edge. Hence, we constructa residual graph and find

a path fromv1 to s that is highlighted in gray (Figure 2.10). Note that we can push only

one unit of flow through this cycle. In this case it is enough tosatisfy the lower bound

capacity demand for the edge(s, v1). Finally, we update the flow in the original graph to

accommodate this unit of flow (Figure 2.11). The algorithm run in O(v(f))O(SP ), where

O(SP ) is the time complexity of a shortest path algorithm. Note that the successive short-

est path algorithm is pseudo-polynomial as its complexity depends on the size of the flow.

However, the size of the flow in this thesis is alwaysO(|V |) which makes the algorithm

sufficient for our purposes. The best polynomial time complexity to solve this problem is

O((|E| log |V |)(|E| + |V | log |V |)) [AMO93].

Figure 2.11A network flow graph with two units of flow.
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To build a constraint propagator we often need to determine the cost of pushing an extra

unit of flow through an edge or removing a unit of flow from an edge. We use the following

theorems to answer these questions:

Theorem 2.1 [AMO93] Letf be a min cost flow in a graphG = (V,E) ande = (vi, vj) be

an edge such thatf(e) = 1. LetP be a shortest path in the residual networkGf = (V,Ef )

from the vertexvi to the vertexvj . A minimum cost flow thatdecreases by onethe flow

through the edgee can be constructed as follows. We augment one unit of flow fromvertex

vi to vertexvj along the pathp and decrease the amount of flow throughe by one. The cost

of the optimum flowf ′ isw(f)− w(e) + w(p).

Theorem 2.2 [AMO93] Letf be a min cost flow in a graphG = (V,E) ande = (vi, vj) be

an edge such thatf(e) = 0. LetP be a shortest path in the residual networkGf = (V,Ef )

from the vertexvj to the vertexvi. A minimum cost flow thatincreases by onethe flow

through the edgee can be constructed as follows. We augment one unit of flow fromvertex

vj to vertexvi along the pathp and increase the amount of flow throughe by one. The cost

of the optimum flowf ′ isw(f) + w(e) + w(p).

2.2 Integer Linear Programming

In this section we recall some integer linear programming theory. We mostly focus on

tractable classes of integer linear programming (ILP) which can be reduced to the net-

work flow problem, because we use these tractable classes to construct a propagator for the

SEQUENCE constraint and its generalisations. We also consider the Fourier-Motzkin elim-

ination procedure that we use to construct a decomposition of the SEQUENCEconstraint.

The definitions in this section are based on [Sch86].

2.2.1 Basic definitions

A set of vectors inRn is called a polyhedron ifP = {x|Ax ≤ b} . Linear programming

(LP) is the problem of maximising or minimising a linear functional over a polyhedron

which is defined as a set of linear inequality constraints. One of the standard forms of LP

with n variables andm inequalities is:
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maximise c1x1 + c2x2 + . . .+ cnxn

subject to a11x1 + a12x2 + . . .+ a1nxn ≤ b1

a21x1 + a22x2 + . . .+ a2nxn ≤ b2

...

am1x1 + am2x2 + . . .+ amnxn ≤ bm

x ≥ 0

We can rewrite this system in the matrix form:

maximise cx (2.3)

subject to Ax ≤ b (2.4)

x ≥ 0 (2.5)

whereA ∈ Rm×n is a LPmatrix of coefficients, c ∈ Rn is a cost vector,b ∈ Rm is a

right-hand side vector andx ∈ Rn is a vector ofn variables:

A =

















a11 a12 . . . a1n

a21 a22 . . . a2n
...

am1 am2 . . . amn

















,

x =
(

x1, x2. . . . , xn

)T
, c =

(

c1, c2. . . . , cn

)

andb =
(

b1, b2. . . . , bm

)T
.

One of the most important results in LP is von Neumann’s Strong Duality Theorem:

Theorem 2.3 (Duality theorem of linear programming [Sch86]) LetA be a coefficients

matrix and letb andc be vectors then

maximise cx minimise yb

subject to Ax ≤ b ⇔ subject to yA ≥ c

x ≥ 0 y ≥ 0

provided that both sets of solutions are not empty.

A similar duality reformulation can be done for other standard forms with maximisation

and minimisation. We call the original LPprimal and the other LP programdual. In the

most general form the LP duality equations are as follows:
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Primal LP Dual LP

maximise dx+ ey + fz minimise au+ bv + cw

subject to Ax+By + Cz ≤ a subject to uA+ vD +wG ≥ d

Dx+ Ey + Fz = b ⇐⇒ uB + vE + wH = e

Gx+Hy +Kz ≥ c uC + vF + wK ≤ f

x ≥ 0 u ≥ 0

z ≤ 0 w ≤ 0

In the case of a maximisation problem (Equations (2.3)–(2.5)), any vectorx that sat-

isfies constraints (2.4) is called afeasiblesolution. If LP does not have feasible solutions

then it is infeasible. A function x ⇒ cx is called anobjective functionand the valuecx

is theobjective valueor costof x. Finding a solution of LP withn variables that can be

encoded withL bits can be done inO(n3.5L) pseudo-arithmetic operations on numbers

with O(L) digits. Note that the complexity is counted in the number of operations, and

operations on the rationals can in principle expand the sizeof the numbers (repeated multi-

plications can blow-up the representation exponentially). However, for practical purposes,

typical LP implementations prevent the blow-up of number representation by limiting the

precision to b bits throughout the execution; solvability by Linear Programming is widely

regarded as synonymous to strong tractability, and provably sub-exponential LP algorithms

exist [MSW96]. If we extend Equation (2.5) with integralityrequirement for variables, we

obtain aninteger linear program(ILP) . Integer linear programming belongs to the class of

NP-complete problems.

In the next section we consider a special class ofILP that admit a polynomial time

algorithm.

2.2.2 Tractable classes

A matrix A is totally unimodular if each sub-determinant ofA is 0, +1 or−1.

Theorem 2.4 (Totally unimodular matrix [Sch86]) LetA be a totally unimodular matrix

and letb be an integral vector. Then the polyhedronP := {x|Ax ≤ b} is integral.

In other words, if a ILP matrixA is totally unimodular, then we can solve the LP relaxation

of the problem and find a feasible integral solution.

Corollary 2.1 [Sch86] LetA be a totally unimodular matrix, and letb and c be integral

vectors. Then both problems in the LP-duality equation
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maximise cx minimise yb

subject to Ax ≤ b ⇔ subject to yA ≥ c

x ≥ 0 y ≥ 0

have an integral optimum solution.

There exists a polynomial time procedure to detect whether amatrix is totally unimod-

ular [Tru90]. Moreover, there are a number of sufficient conditions for the unimodular

matrices with entries0,+1 or −1 [Sch86]. In this thesis, we are interested in subclasses

of totally unimodular matrices that are called interval matrices. A is a interval matrix if

its entries are 0 and 1 and each column ofA has its 1’s in consecutive locations (assuming

some linear order of the rows ofA). Interval matrices are totally unimodular. An interesting

property of interval matrices is that an interval matrix canbe transformed into a matrix such

that has each column of the transformed matrix has exactly one+1 and exactly one−1 in

each column and the rest of the entries are zeros. The transformation procedure is given

in [AMO93]. We demonstrate it on an example. Consider the following ILP problem:

minimise
5
∑

i=1

xi (2.6)

x1 + x2 + x3 ≤ 2, (2.7)

x2 + x3 + x4 ≤ 3, (2.8)

x3 + x4 + x5 ≤ 4, (2.9)

wherexi ∈ [0, 2].

First, we reformulate this problem into a problem with equalities by introducing slack

variablesyi:

minimise

5
∑

i=1

xi

x1 + x2 + x3 + y1 = 2,

x2 + x3 + x4 + y2 = 3,

x3 + x4 + x5 + y3 = 4,

whereyi ≥ 0. We can express it as an integer linear program in the matrix form:

(

1 1 1 0 0 1 0 0
0 1 1 1 0 0 1 0
0 0 1 1 1 0 0 1

)







x1
x2
x3
x4
x5
y1
y2
y3






=
(−2

−3
−4

)

(2.10)
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Figure 2.12A minimum cost flow problem that corresponds to the ILP problem.
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Now we add a redundant constraint0x+ 0y = 0 and get

(

1 1 1 0 0 1 0 0
0 1 1 1 0 0 1 0
0 0 1 1 1 0 0 1
0 0 0 0 0 0 0 0

)







x1
x2
x3
x4
x5
y1
y2
y3






=

(−2
−3
−4
0

)

(2.11)

Finally, we subtractith from i+ 1th row, i = 1, . . . , 3 and obtain the following equiva-

lent ILP.

( 1 1 1 0 0 1 0 0
−1 0 0 1 0 −1 1 0
0 −1 0 0 1 0 −1 1
0 0 −1 −1 −1 0 0 −1

)







x1
x2
x3
x4
x5
y1
y2
y3






=

(−2
−1
−1
4

)

(2.12)

The resulting matrix can be transformed into a network flow problem if we consider the

resulting matrixA as an incidence matrix of a graph. We introduce a vertex for each row

and an edge for each column. If the value1 is in ith row and the value−1 is in thekth row,

then we draw a directed edge form theith vertex to thekth vertex. The bounds restrictions

on the variablesx become capacity bounds on the corresponding edges. The right hand side

vector defines the flow supply and demand for all vertices. If the value is negative then the

vertex has a flow demand and otherwise it has a flow supply. Edges that correspond to the

variablesx have weights of one and the remaining edges have zero weights. The network

flow that corresponds to the example is shown in Figure 2.12.

The following theorem gives another sufficient condition for transforming a ILP prob-

lem to a network flow problem.

Theorem 2.5 [AMO93] Any linear program that contains (a) at most one+1 and at most

one−1 in each column, or (b) at most one+1 and at most one−1 in each row, can be

transformed into a minimum cost flow problem.
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2.2.3 Fourier-Motzkin elimination

In this section we consider a technique for solving a system of linear inequalities. The idea

is to replace a system of linear inequalities overn variables with an equivalent system of

linear inequalities overn− 1 variables. Hence, on every step, the procedure eliminates one

variable, but might increase the number of inequalitiesO(n2) times. So, this method is not

polynomial for a general LP or ILP. We show how this method works on a system ofm

linear inequalities overn variables:

a11x1 + a12x2+ . . . +a1nxn ≤ b1

a21x1 + a22x2+ . . . +a2nxn ≤ b2

...

am1x1 + am2x2+ . . . +amnxn ≤ bm

We can assume that first column coefficients contain only{−1, 0,+1} entries. This

can be achieved by multiplying each inequality by a positivescalar. Then we reorder all

inequalities and partition them in three groups:

x1 + aix′ ≤ bi i = 1, . . . ,m′ (2.13)

−x1 + aix′ ≤ bi i = m′ + 1, . . . ,m′′ (2.14)

aix′ ≤ bi i = m′′ + 1, . . . ,m, (2.15)

wherex′ = (x2, . . . , xn) anda1, . . . , am are the rows ofA with first entries deleted. Equa-

tions (2.13)–(2.14) are equivalent to

maxm′+1≤j≤m′′(ajx′ − bj) ≤ x1 ≤ max1≤j≤m′(bj − aix′). (2.16)

Hence, we can eliminate the variablex1 and obtain an equivalent system:

ajx′ − bj ≤ bj − aix′ i = 1, . . . ,m′; j = m′ + 1, . . . ,m′′

aix′ ≤ bj i = m′′ + 1, . . . ,m.

This system hasm′(m′′−m′)+m−m′′ constraints, andn−1 variables. Any solution

of the new system can be extended to a solution of the originalsystem if we selectx1 with

respect to (2.16). We can apply this elimination stepn − 1 times. If the resulting system

has a solution then it can be extended to the solution of a system.

As pointed out above, this procedure has an exponential worst case behaviour, as the

number of constraints grows quadratically at each step.
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Consider how the procedure works on the following four linear constraints:

x1 + x2 + x3 ≥ 2, (2.17)

x2 + x3 + x4 ≤ 3, (2.18)

x1 + x3 + x4 ≤ 4, (2.19)

x3 + x4 ≥ 4, (2.20)

First, we eliminate the variablex1.

−x1 − x2 − x3 ≤ −2,

x1 + x3 + x4 ≤ 4,

x2 + x3 + x4 ≤ 3,

x3 + x4 ≥ 4,

m

2− x2 − x3 ≤ 4− x3 − x4,

x2 + x3 + x4 ≤ 3,

x3 + x4 ≥ 4,

m

−x2 ≤ 2− x4,

x2 + x3 + x4 ≤ 3,

x3 + x4 ≥ 4,

Second, we eliminate the variablex2.

−x2 + x4 ≤ 2,

x2 + x3 + x4 ≤ 3,

x3 + x4 ≥ 4,

m

x4 − 2 ≤ 3− x3 − x4,

x3 + x4 ≥ 4,

m

2x4 ≤ 5− x3,

x3 + x4 ≥ 4,
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Third, we eliminate the variablex3.

2x4 + x3 ≤ 5,

−x3 − x4 ≤ −4,

m

4− x4 ≤ 5− 2x4

We obtain thatx4 ≤ 1. Hence, we setx4 to 1 which is one of the possible values. Then,

x3 is equal to3, x2 = −1 andx1 = 0.

2.3 Formal languages

In this section we introduce some background in formal language theory. First, we consider

regular and context-free grammars. Then we introduce several types of grammars that are

in between these two grammars in the Chomsky hierarchy. We also consider the CYK

algorithm for parsing a string.

The definitions in this section are based on [Roz97] and [HU79].

2.3.1 Basic definitions

An alphabet Σ = {a1, . . . , an} is a finite, non empty set oflettersor symbols. We use

lower case letters to denote letters from the alphabet, e.g., Σe = {a, b, c}. A string or word

is a finite sequence of symbols chosen from some alphabet. Forexample,aabbc is a string

from Σe. An empty stringis the string with zero occurrences of symbols. Thelengthof

a string is the number of positions for symbols in the string.We defineΣk to be the set

of strings of lengthk. The set of all strings over an alphabetΣ is calledΣ∗. Note that

Σ∗ = Σ0 ∪Σ1 ∪ . . .. A languageL overΣ is a set of words overΣ. A universal language

overΣ is a set of all words overΣ∗. We denote|L| the cardinality of a language. We can

define basic operations over languages, such as union, intersection or complement.

The Hamming distancebetween two strings is the number of positions where these

strings are different. For example, the Hamming distance between stringsabbc andcabb is

3. The edit distancebetween two strings is the minimum number of deletion, insertion and

substitution operations required to convert one string into the other. For example, the edit

distance betweenabbc andcabb is 2 as we can delete the last symbol in the first string and

the first symbol in the second string.
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2.3.2 Grammars

A formal grammar(or grammar) is a set of rules for forming strings in a language. A

phrase-structure grammaris a quadrupleG = 〈Σ,H, P, S〉, whereΣ andH are disjoint

alphabets,S ∈ H, andP ⊆ V ∗
GNV ∗

G × V ∗
G, for VG = N ∪ T . The elements ofH are

callednon-terminalsymbols, the elements ofΣ are calledterminal symbols,S is thestart

symbol, andP the set ofproduction rules, (β, α) ∈ P that are written in the formβ → α.

The grammar iscontext-free(CFG) if each productionβ → α hasβ ∈ H. A grammar

that generates palindromes is an example of CFG,G = ({a, b}, {S}, {S → aSa, S →
bSb, S → a, S → b, S → ε}, S). The grammar islinear if each productionβ → α has

β ∈ H andα ∈ Σ∗ ∪ Σ∗HΣ∗. The grammar isright-linear if each productionβ → α

hasβ ∈ H andα ∈ Σ∗ ∪ Σ∗H. The grammar isleft-linear if each productionβ → α

hasβ ∈ H andα ∈ Σ∗ ∪ HΣ∗. The grammar isregular if each productionβ → α has

β ∈ H andα ∈ Σ ∪ ΣH. A grammar that generates wordsa∗b∗ is an example of regular

grammar,G = ({a, b}, {S, S1}, {S → aS, S → ε, S → a, S → S1, S1 → bS1, S1 →
b, S1 → ε}, S).

We do not consider grammars that are more expressive then context-free grammars in

this work. Hence, for each ruleβ → α, β ∈ H. A grammar issimple if and only if for each

pair of non-terminal and terminal there exists at most one production of the formA→ aα,

wherea ∈ Σ, α ∈ (Σ∪H)∗. A grammar iseven linear if and only if its productions are of

the formA→ aBb, wherea,b ∈ Σ+, A,B ∈ H and|a| = |b|.

A context-free grammar is inChomsky normal form(CNF) if and only if all productions

are of the formA → BC whereB andC are non-terminals orA → a wherea is a

terminal. Any context-free grammar can be converted to one that is in Chomsky normal

form with at most a linear increase in its size. For example, the grammar that generates

palindromes can be converted into the following Chomsky normal form grammar,G′ =

({a, b}, {S, Sa1 , Sa2 , Sb1 , Sb2}, {S → Sa1Sa2 , Sa1 → a, Sa2 → SSa1 , Sa2 → a, Sb1 →
b, S → Sb1Sb2 , Sb2 → SSb1 , Sb2 → b, S → a, S → b}, S). A context free grammar in

CNF isacyclic, Ga, if and only if there exists a partial order≺ of the non-terminals, such

that for every productionA1 → A2A3, A1 ≺ A2 andA1 ≺ A3. A context-free grammar is

in Greibach normal formif all productions are of the formA → aα wherea is a terminal

andα is a sequence of non-terminals orA → a wherea is a terminal. Any context-free

grammar can be converted to one that is in Greibach normal form with at most a polynomial

increase in its size.

The derivation relation⇒G induced byG is defined as follows: for anyu, v ∈ Σ∗,
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Figure 2.13A non-deterministic finite automaton.
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uAv ⇒G uαv if there exists a productionA→ α in P . The transitive, reflexive closure of

⇒G is denoted by⇒∗
G. A string in s ∈ Σ∗ is generatedby G if S ⇒∗

G s. For example,

to generate a palindrome stringaba usingG′ from the example above, we can use the

following derivation: S ⇒ Sa1Sa2 ⇒ aSa2 ⇒ aSSa1 ⇒ aSa ⇒ aba. The set of all

strings generated byG is denotedL(A). The membership question in the formal language

theory is the following. Given a stringw in Σ∗, decide whether or notw is in L(G). A

grammarG is unambiguousif and only if there exists a single derivation for each word in

the language generated by the grammarG.

2.3.3 Automata

A non-deterministic finite automaton (NFA) A = 〈Σ, Q, q0, F, δ〉 consists of an alphabet

Σ, a finite set of statesQ, an initial stateq0 ∈ Q, a set of final statesF ⊆ Q, and a transition

function δ : (Q × Σ) → P(Q), whereP is the power set ofQ. Figure 2.13 shows a non-

deterministic finite automaton that has three states{q0, q1, q2}. The set of final statesF

includes two statesq1 andq2. The automaton is non-deterministic, because from the initial

stateq0 on seeing the lettera, the automaton non-deterministically chooses the next state.

We use a double circle to denote a final state.

The automatonA is deterministic (DFA) if |δ(q, a)| ≤ 1 for all q ∈ Q anda ∈ Σ.

We extendδ to subsetsQ′ of Q and stringsaw with a ∈ Σ andw ∈ Σ∗ as follows:

δ̂(Q′, aw) = δ̂(Q′′, w), whereQ′′ = ∪q∈Q′δ(q, a). A string s ∈ Σ∗ is acceptedby A
if δ̂({q0}, s) = (Q′, ε) such thatQ′ ∩ F 6= ∅, that is, if starting from the initial stateq0

we can reach one of the final states using the transition function δ. Figure 2.13 shows a

deterministic finite automaton has a set of three states{q0, q1, q2}. The set of final statesF

consists of the stateq2. The initial state isq0.

The set of all strings accepted byA is denotedL(A). Both DFAs and NFAsaccept
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Figure 2.14A deterministic finite automaton.
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precisely the regular languages.

Given an automatonA, we writeunfoldn(A) for the unfolded and layered form ofA
that just accepts words of lengthn that belong to the regular language. We construct the

unfoldn(A) automaton for the automatonA in the following way. Each layer of unfolded

and layered automaton contains all states of the original automaton. We create a transition

from stateqi at layerk to stateqj at layerk + 1 labeled witha, k = 1, . . . , n if there is

a transitionδ(qi, a) = qj in the original automaton. We mark the initial state at layer1

as initial state of the resulting automaton. We mark the set of final state at layern + 1 as

final states of the resulting automaton. Figure 2.15(a) shows theunfoldn(A) automaton of

the automaton in Figure 2.14 wheren = 2. We writemin(A) for the canonical form ofA
with minimal number of states. Figure 2.15(b) shows themin(unfoldn(A)) for unfoldn(A)
from Figure 2.15(a) . We denotefn(A) the transformation of an automaton to automaton

that excepts strings ofn among the set of strings accepted byA. We writefn(A)≪ gn(A)
if and only if fn(A) ≤ gn(A) for all n, and there existsA such thatlog gn(A)

fn(A) = Ω(n). That

is, gn(A) is never smaller thanfn(A) and there are cases where it is exponentially larger.

A non-deterministic pushdown automaton(PDA) P over an alphabetΣ is a triple

〈S,Q,Σ, T, δ,Q0, F 〉, whereS is the initial stack ofP , Q is a finite set of states,Σ is

a set of input symbols,T is the set of stack symbols,δ is the transition function from

Q × (Σ ∪ {ε}) × T (a triple of the current state, input symbol and the top of thestack) to

Q×T ∗ (a pair of a new state and a sequence of stack symbols that are pushed on the stack),

Q0 is the start state,F ⊆ Q a set of accepting states. A wordw is accepted byPDA P

if starting from the initial stateQ0 we can reach one of the final states using the transition

function δ. We call all words accepted by PDAP the language generated byP , denoted

L(P ).

Pushdown automata are equivalent to context-free grammars. For every context-free

grammarG there exists a pushdown automatonP such thatL(G) is equivalent to the lan-

guage accepted byP . The reverse also holds.

A pushdown automatonP over an alphabetΣ is deterministicif the setδ of transitions

satisfies the following conditions for all(y, q, z) ∈ Q×(Σ∪{ε})×T : Card(δ(q, y, z)) ≤ 1
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Figure 2.15 (a) An unfolded automaton of the automaton from Figure 2.14 that accepts

words of length2. (b) The minimised automaton.
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δ(q, ε, z) 6= 0 =⇒ δ(q, a, z) = 0, (a ∈ A). In other words, a deterministicPDAhas at most

one transition for the same combination of input state, symbol and the top stack symbol. A

deterministic context-free languageis a language recognised by a deterministic PDA.

2.3.4 Cocke-Younger-Kasami’s parser

We consider a parsing algorithm that was proposed by Cocke, Younger and Kasami (CYK)

to determine whether a string can be generated by a context free grammarG = 〈Σ,H, P, S〉.
We assume that grammar is in CNF. Algorithm 2.2 shows the pseudocode for the CYK

parser. The algorithm constructs all possible derivationsfor all possible substrings of the

original string. Using the dynamic programming principle,it builds a derivation of a string

of lengthk that starts at positioni using two substrings of lengthj < k, j = i, . . . , k − 1.

The first substring starts at positioni and is of the lengthj and the second one starts at
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Figure 2.16A dynamic programming table that is constructed by Algorithm 2.2

S Sa

S

a b a

3

2

1

1 2 3

13

12
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22

21 31

1

Sa2

Sb1
SSa1

S

Sb2

Sa2
Sb2

Sa
2

position i + j and finishes at positioni + k. The time complexity of the algorithm is

O(n3|G|).

Algorithm 2.2 Cocke-Younger-Kasami’s algorithm

procedure CYK-ALGORITHM(G,w = (a1, . . . , an))

n = |w|;

for i = 1 to n do

V [i, 1] = {A|A→ ai ∈ G};

for j = 2 to n do

for i = 1 to n− j + 1 do

V [i, j] = ∅;
for k = 1 to j − 1 do

V [i, j] = V [i, j]∪{A|A→ BC ∈ G,B ∈ V [i, k], C ∈ V [i+ k, j − k]};

if S /∈ V [1, n] then

return 0;

return 1;

Figure 2.16 shows a dynamic programming table that Algorithm 2.2 constructs on the

stringaba and the palindromes grammarG′ from Section 2.3.2.
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2.4 Constraint programming

2.4.1 Basic definitions

A constraint satisfaction problem (CSP) is a triple〈X,D,C〉, whereX = {X1, . . . ,Xn}
is a set of finite domain variables,D = {D(X1), . . . ,D(Xn)} is the set of domains of the

variables andC = {C1, . . . , Cm} is a set of constraints.

Variables. The domain of a variable,D(X), represents all possible values that this

variable can take. We assume that values in a variable domainare ordered sets of integers.

We writelb(X) for the smallest value inD(X) andub(X) for the greatest value. A domain

of a variable can be represented as a set of possible values . In this case, we say that the

variable has aset representationof its domain. For example, a domainD(X) = {1, 2, 3}
shows that the variableX can take one of the three possible values. The set representation

requires a linear number of bits in the number of possible values to represent the domain.

It can represent any variable domain state. Alternatively,a variable can be represented as

an interval of values,[lb(X), ub(X)]. We call this representation theinterval or bounds

representation . For example, a domainD(X) = [1, 2100] shows that the variableX can

take one of the2100 possible values. The bounds representation requires a logarithmic

number of bits in the number of values to represent the domain. It can represent only a

quadratic number of different states of a variable domain.

We denote by|D(X)| the size of the domain representation. In case of the set represen-

tation of domains,|D(X)| = O(ub(X)− lb(X)). In case of the bounds representation, the

size of the domain isO(log(lb(X)) + log(ub(X))). An assignmentto a variableXi is a

mapping ofXi to a valuej ∈ D(Xi), it is also called literal, and writtenXi = j. We write

D(X) for sets of literals{Xi = j | Xi ∈ X ∧ j ∈ D(Xi)} andP(D) for the set of all such

sets.

Constraints. A constraintC ∈ C is defined over a set of variablesX1, . . . ,Xn, that are

called ascope, denotedscope(C) ⊆ X . The number of variables in a constraint scope is

called thearity of the constraint. Aconstraint is a relation over the variables in its scope.

For example,X 6= Y , D(X) = D(Y ) = [0, 2] is a binary constraint . The variablesX and

Y are in the scope of the constraint. A subset of all possible assignments to the variables

in scope(C) that satisfy the relation are calledsolutionsof C. We denote|C(X1, . . . ,Xk)|
the size of the constraint. A constraintC(X1, . . . ,Xk) can be representedextensionallyas

a table of valid (or invalid) assignments to variablesX1, . . . ,Xk. The size of constraint in
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this case equals to the size of the table. A constraintC(X1, . . . ,Xk) can be represented

intentionallyas a formula called the characteristic function of the constraint. For example,

X 6= Y is an intentional representation of the constraint. An extensional representation

of the same constraint is a set of satisfying tuples[(0, 1), (0, 2), (1, 2), (2, 0), (2, 1)]. The

size of the constraint is the size of formula plus the size of domains representationC(X) =

O(
∑k

i=1 |D(Xi)|). Constraints of arity2 are calledbinary and, otherwise, they are called

non-binaryor global constraints.

Local consistencies. Local consistencyis a property that characterises some necessary

conditions on values (or assignments) to belong to a solution. LetΦ denote a consistency

level. A constraintC is Φ consistentif and only if it satisfies the propertyΦ [Bes06].

We consider commonly used consistency levels. Asupport for the literalXi = vj is an

assignment containingXi = vj that satisfiesC. A variableXi is consistenton C if and

only if every value inD(Xi) has support onC. A constraintC isdomain consistent(DC) if

and only if each variable in its scope is consistent onC. A bound supportonC is a support,

such that each variableXi takes a value from the interval[lb(Xi), ub(Xi)]. A variableXi

is bounds consistenton C if and only if its lower and upper bounds values have bound

support onC. A constraintC is bounds consistent(BC) if and only if all variables in its

scope are bounds consistent .Range consistency(RC) is stronger than bounds consistency

but is weaker than domain consistency. A variableXi is range consistentonC if and only

if its values have bound support onC. A constraintC is range consistent(RC) if and only

if all its variables arerange consistent . A CSPis DC/RC/BC if and only if each constraint

is DC/RC/BC.

A CSPover variablesX is singleton domain consistent(SDC) with respect to variables

X if and only if for each variableXi ∈ X, we can assign any value in the domain ofXi and

make the resulting subproblem domain consistent . Consider, for example, a problem with

two constraints:X1 6= X2, X1 + X2 = X3, whereD(X1) = {0, 1, 2}, D(X2) = {1, 3}
andD(X3) = {1, 2, 3}. All constraints are domain consistent, but enforcingSDC on these

constraints removes the value1 from the domain ofX1 and the value2 from the domain of

X3. If we setX1 = 1 orX3 = 2 then the system of constraints is inconsistent. ACSPover

variablesX is singleton bounds consistent(SBC) with respect to variablesX if and only if

for each variableXi ∈ X, we can assign the upper (lower) bound value ofXi and make the

resulting subproblem bounds consistent . In the previous example enforcingSBCdoes not

prune any values. Similarly, we can defineSDC/SBCfor a subset of variables.

The procedure that enforces singleton domain or bounds consistency is called thefailed
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literal test(FLT) [Fre95]. We describe the failed literal test here as itis used independently

to SDC/SBCin this thesis. For each variable-value pair(Xi, j) of an unset variableXi, the

failed literal test setsXi = j , enforcesDC or BC, checks whether the remaining problem

is inconsistent so that one of the problem variables has an empty domain. If so, the valuej

is removed from domain of the variableXi.

We will compare local consistency properties applied to sets of constraints,C1 andC2

which are logically equivalent. As in [DB97], we say that a local consistency propertyΦ on

C1 is as strong asΨ onC2 (writtenΦ(C1)�Ψ(C2)) iff, given any domains, ifΦ holds onC1

thenΨ holds onC2; we say thatΦ onC1 is stronger thanΨ onC2 (writtenΦ(C1)≺Ψ(C2))

iff Φ on C1 is as strong asΨ on C2 but not vice verse;Φ on C1 is equivalent toΨ on

C2 (written Φ(c1)≡Ψ(c2)) iff Φ on C1 is as strong asΨ on C2 and vice verse; they are

incomparable otherwise. (writtenΦ(c1)⊲⊳Ψ(c2)).

A constraintC is monotoneif and only if there exists a total ordering≺ of the domain

values such that for any two valuesv, w, if v ≺ w thenv is substitutable tow in any support

for C [BHH+06b] .

Constraint propagators. A constraintC can have an inference algorithm or aconstraint

propagator. A constraint propagator is an algorithm which takes as input the domains of

the variables inscope(C) and returnsrestrictionsof these domains. Constraint propagators

are also calledfiltering algorithmsor propagation algorithms. Following [SS04], we can

formally define a propagation algorithm for a global constraint as a function:

Definition 2.5 (Propagator) A propagatorf for a constraintC is a polynomial time com-

putable functionf : P(D)→ P(D), such that

1. f is monotone, i.e.,D′(X) ⊆ D(X) =⇒ f(D′(X)) ⊆ f(D(X)),

2. f is contracting, i.e.,f(D(X)) ⊆ D(X) and

3. f is idempotent, i.e.,f(f(D(X))) = f(D(X)).

If a literal Xi = j is inD(X) \ f(D(X)) thenXi = j does not belong to any solution ofC

givenD(X). If f detects thatC has no solutions underD(X) thenf(D(X)) = ∅.

A propagator for the constraintC achievesΦ consistency level if and only if after it

finishes the constraintC is Φ-consistent. The weakest form of consistency the propagator

can achieve is detection of disentailment. A propagatordetects disentailmentif when no

possible assignment is a solution ofC thenf(D(X)) = ∅. A consistency checker for a
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constraintC is a function that returns 0 when it detects that no possible assignment is a

solution of the constraint and 1 otherwise, rather than restricting domains.

Definition 2.6 (Consistency checker)A consistency checkerf for a constraintC is a poly-

nomial time computable functionf : P(D) → {0, 1} such thatf is monotone, i.e.,

D′(X) ⊆ D(X) =⇒ f(D′(X)) ≤ f(D(X)). If f(D(X)) = 0 then no possible as-

signment underD(X) is a solution ofC.

A propagator enforcesdomain consistencyif and only if after it finishes the constraint

C is domain consistent. A propagator detectsdomain disentailmentwhen it fails if and

only if there exists no solution ofC. A propagator enforcesbounds consistencyon C if

and only if after it finishes the constraintC is bounds consistent. A propagator detects

bounds disentailmentwhen it fails if and only if there exists no solution ofC such that

each variable takes value between its lower and upper bounds. We consider a modification

of a constraint propagator that detects domain or bounds disentailment that returns0 when

it detects disentailment and1 otherwise. The propagator is called a consistency checker.

We can obtain a polynomial timeDC consistency checkerfC of a constraintC from a

polynomial timeDC propagatorfP for C and vice verse [BHHW07]. Given the propagator

fP , the corresponding consistency checkerfC is defined as:

fC(D(X)) =







0 fP (D(X)) = ∅
1 otherwise

(2.21)

Conversely, givenfC , the propagatorfP is

fP (D(X)) = D(X) \ {Xi = j | fC(D(X)|Xi=j) = 0} (2.22)

whereD(X)|Xi=j = D(X) \ {Xi = k|k 6= j}.
Note that Equation 2.22 is effectively running the failed literal test to enforce domain

consistency. It assigns each variable a value and checks whether the remaining problem is

inconsistent.

Solutions. A solution of CSP is an assignment of a value to each variable such that

all constraints are satisfied. We denote the set of all solutions of aCSPassols(
∧m

i=1 Ci).

Projection of solutions on a subset of variablesX′ ⊂ X, sols(
∧m

i=1Ci)[X ′], is a set of

solutions where values of variablesX \ X′ are ignored.

Constraint graphs. A constraint graph of a CSPis a graphG = (V,E) such thatV

corresponds to variables of the problem andE corresponds to constraints. Two nodes are
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Figure 2.17 A constraint graph for theCSPX 6= Y andY 6= Z, D(X) = D(Y ) =

D(Z) = [0, 2].

X Y Z

Figure 2.18A variable-value graph for theCSPX 6= Y andY 6= Z, D(X) = D(Y ) =

D(Z) = [0, 2].
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connected by an edge if and only if both of them belong to a scope of some constraint.

Consider aCSPwith two constraintsX 6= Y andY 6= Z, D(X) = D(Y ) = D(Z) =

[0, 2]. The constraint graph for thisCSPis represented in Figure 2.17. Avariable-value

graph (V G) of a CSPis a bipartite graphV G = (X ∪ D(X), E), where(Xi, j) ∈ E if

and only ifj ∈ D(Xi). An example of variable-value graph for aCSPwith two constraints

is shown at Figure 2.18. Avariable-value graph withXi = j (V GXi=j) is a variable-

value graph of theCSPwith D(Xi) = j. If the constraint graph does not have cycles, then

enforcingΦ on theCSPis equivalent to enforcingΦ consistency on individual constraints.

Such a constraint graph is called a Berge-acyclic graph [BFMY83].

2.4.2 Search

Constraint programming search algorithms can be divided into two main groups: local

search algorithms and systematic search algorithms. The idea of local search algorithms

is to select an initial variable-values combination, and change it, based on a local gradient

function, to get closer to a solution on every step. These algorithms show good performance

in practice, but they are incomplete as there is no guaranteethat an existing solution will be

found or that an inconsistent problem will be identified as such. The second group includes

complete search algorithms, which systematically explorethe search tree of a problem and
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in each node of the tree filter inconsistent variables values. In this work we only consider

the second group of search algorithms.

Complete constraint programming algorithms work by interleaving branching and in-

ference. Inference is an iterative procedure which, at eachiteration, invokes every constraint

propagator to narrow the domains of its variables. This invocation happens when one of the

variable domains is changed. The iteration stops when none of the constraint propagators

can do any more changes. In this case, propagation has reached acommon fixpointfor all

constraints. No inference by the propagators is possible atfixpoint and the search algorithm

performs branching by guessing the next variable assignment.

We illustrate the behaviour of search algorithms on the following example of a system

of two constraints:

X + Y = 7, X + 1 ≥ 2Y, with initial domains: X ∈ [0, 5], Y ∈ [0, 10]

The search algorithm starts with inference phase to computea fixpoint. A possible trace

of the fixpoint computation is the following. The lower boundof Y is initially 0 but from

the constraintX + Y = 7 we deduce thatY cannot take values 10: if it does, then the sum

is less than7, even if we fixX to its highest allowed value. Therefore the intervals can be

narrowed down toX ∈ [0, 5], Y ∈ [2, 10]. Similarly:

from X + Y = 7, we deduce: X ∈ [0, 5], Y ∈ [2, 7];

from X + 1 ≥ 2y, we deduce: X ∈ [3, 5], Y ∈ [2, 7];

and: X ∈ [3, 5], Y ∈ [2, 3];

back to X + Y = 7, we now deduce: X ∈ [4, 5], Y ∈ [2, 3].

At this point we have reached a common fixpoint for both constraints, because we can-

not deduce that the domains need to be narrowed any further. In this case the search al-

gorithm performs branching based on some heuristic. Suppose we branch on the variable

X and assign it to the first unassigned value4. This assignment triggers an inference pro-

cedure. By the first constraint, we set the variableY to 3. This gives a solution for this

problem.

This iterative algorithm is guaranteed to compute the fixpoint in polynomial time if the

domains of the variables are represented as a set of values and each constraint propagator

is polynomial. Each constraintC(X1, . . . ,Xk) can be invoked at most
∑k

i=1 D(Xi) times

and a propagator takes a polynomial time.
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2.4.3 Global constraints

A global constraintis a non-fixed arity constraint. An example of a global constraint is the

ALL -DIFFERENT(X1,X2, . . . ,Xn) constraint that holds if its variables take all distinct

values. Most global constraints have dedicated filtering algorithms that performs shrinking

of domains during the inference phase of the search (Section2.4.1).

Time complexity down a branch of a search tree.Constraint solvers usually enforce a

consistency levelΦ for a global constraint after its variable domains change. Hence, a filter-

ing algorithm for a constraintC(X) can be invokedO(|D(X)|) times down a branch of the

search tree, where|D(X)| =∑X∈X |D(X)|. Note that a constraint propagator is invoked

on monotonically decreasing domains of variables in scopesof corresponding constraints

down a branch. This monotonicity property allows us to buildincremental propagators that

reuse information computed higher in the search tree.

Incremental propagators for global constraints are usually significantly faster compared

to non-incremental propagators. In particular, this is thecase for domain consistency prop-

agators for ALL -DIFFERENT, GCC and SEQUENCE constraints. However, if we com-

pare the time complexity per single invocation of incremental and non-incremental prop-

agators, we obtain the same worst case complexity estimate.Consider for example the

ALL -DIFFERENT[X1, . . . ,Xn] constraint. The domain consistency propagator for this con-

straint is based on finding a maximum matching in the variable-value graph. If a constraint

propagator is not incremental then it has to construct a graph and check whether a max-

imum matching exists at each invocation. Hence, its single computation costsO(nd
√
n)

time, whered is the total number of values in the variable domains. The time complex-

ity down a branch isO(nd × nd
√

|n|) for this propagator. An incremental propagator for

the ALL -DIFFERENT constraint also constructs a variable-value graph and checks the exis-

tence of a matching during the first invocation. Hence, the worst case time complexity of

its invocation is the same as the time complexity of the non-incremental propagator. How-

ever, the constructed matching will be incrementally updated during the following invoca-

tions. Hence, any subsequent call takesO(d) time. The time complexity down a branch

is O(nd
√

|n| + nd × d) which is much more efficient than the time complexity of non-

incremental propagator down a branch. For this reason, it ismeaningful to compute the

total cumulative cost of enforcingΦ consistency down anentire branch of the search tree

so as to capture the incremental cost of propagation rather than the complexity of a single

invocation of a constraint propagator. We define thetotal cumulative costof enforcingΦ

consistency down an entire branch of the search tree as
∑k

i=1 Tf
i
Φ(D

i(X), Si−1) for any
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sequence(D1(X), . . . ,Dk(X)), Di(X) ⊇ f i
Φ(D

i(X)) ⊃ Di+1(X), i = 1, . . . , k, wherek

is the number of invocations,Si−1 is the internal state of a propagator before theith invo-

cation of the propagator,Di(X) are the domains of variablesX andTf i
Φ(D

i(X), Si−1) is

the time complexity of executingfΦ on domainsDi(X) at ith invocation of the propagator

givenSi−1.

In this thesis, we consider the complexity of algorithms that enforceφ down a branch.

In order to make an accurate comparison of incremental and non-incremental propagators,

we compute the complexity of non-incremental propagators down a branch using the total

cumulative cost.

Next we discuss the relation between variable domain representations and the time com-

plexity of constraint propagators. As we pointed out in Section 2.4.1 there are two common

integer variables representations: set representation and bounds representation. The set rep-

resentation requires a linear number of bits in the number ofpossible values to represent

the domain. It can represent any variable domain state and isused for constraint propa-

gators that enforce domain consistency and range consistency. The bounds representation

requires a logarithmic number of bits in the number of valuesto represent the domain. It can

represent only a quadratic number of different states of a variable domain and is used for

constraint propagators that enforce bounds consistency. It should be noted that the bound

representation is exponentially more succinct compared tothe domain representation. This

potentially allows us to construct a bounds consistency propagator for a constraint that is

exponentially faster compared to a domain consistency propagator for this constraint. For

example, a bounds consistency propagator for the ALL -DIFFERENT constraint runs inO(n)

time while a trivial lower bound on the domain consistency propagator isO(nd). However,

this advantage of the bound representation disappears of weconsider complexity of a prop-

agator down a branch of the search tree.

For example, if a constraint solver prunes bounds of a variable by one value at a time

then it ends up traversing the entire range of values in a domain as the following example

shows.

Example 2.1 Consider a set of constraints(X < Y ), (Y < X) and

ALL -DIFFERENT(X,Y,Z), with D(X) = D(Y ) = D(Zi) = [0, 2n], i = 1, . . . , n. We

assume that the solver enforces bounds consistency on each constraint. We also assume

that it invokes constraint on a variable bound change and that all constraints have the same

priority. Reasoning about this decomposition takes an exponential time in most modern

constraint solvers because finding a common fixpoint for thisset of constraints takesO(2n)
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Table 2.1: Runtimes in seconds to detect inconsistency in Example 2.1 by four modern

solvers.

n ILOG Solver [Ilo03] GeCode [GeC11b] Mistral [Heb11] Choco [Cho11]

20 0.19 0.06 0.030 0.56

21 0.37 0.122 0.066 1.11

22 0.74 0.240 0.13 2.25

23 1.51 0.482 0.27 4.20

24 2.95 1.016 0.54 8.78

25 6.01 2.072 1.1 17.8

time. Table 2.1 shows the results of our experiments to solvethis problem using several

modern constraint solvers.

Note that the bounds consistency propagator forALL -DIFFERENT(X,Y,Z) is called

by the solverO(2n) times. Therefore, the time complexity of enforcing bounds consistency

on theALL -DIFFERENT constraint isO(n22n) down a branch of the search tree.⋄

Example 2.1 demonstrates that using the bounds domain representation can ‘hide’ the

complexity of the set representation. In the worst case a constraint solver traverses the entire

domains of variables with bounds representation by inspecting one value at the time down

a branch of a search tree. Note that Example 2.1 demonstratesa worst case behaviour of a

solver, while it does not prove that it takes an exponential time to find a common fixpoint.

Unfortunately, the slow convergence of a constraint solvercannot be improved by using

a smarter algorithms to find the common fixpoint. It was shown in [BKNV11] that it is

NP-complete to find the common bounds consistent fixpoint fora polynomial set of linear

inequality constraints even with just two variables per inequality. Therefore, the number

of domain values is inevitably a factor in the worst case if wecompute complexity down a

branch of the search tree. Hence, as we compute complexity results down a branch of the

search tree, bounds representation does not give us any computational worst case complex-

ity advantage compared to the sets representation.

Fixed arity constraints. We defined a global constraint as a non-fixed arity constraint

that describes any relation on a set of variables. Other constraints are usually calledfixed

arity or bounded arityconstraints. Examples of such constraints are arithmetic constrains,

like X = Y + Z, logical constraints, likeX ∨ Y , or the TABLE(X1, . . . ,Xk) constraint

for a fixedk. Note that any fixed arity constraints can be represented as aTABLE constraint
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by enumerating all allowed tuples. If variable domains are represented as a set of values

then enforcing domain consistency on a table constraint is trivially polynomial. Another

important property of fixed arity constraints is that they can be encoded inSATso that unit

propagation (which we discuss in the next section) achievesdomain consistency [BHW03].

All decompositions into primitive constraints that we propose in this work are decompo-

sitions into bounded arity constraints or constraints thatcan be decomposed into bounded

arity constraints without hindering propagation, like linear arithmetic constraints with unary

coefficient.

Linear arithmetic constraints with unary coefficients. Finally, we consider the linear

arithmetic constraint,
∑n

i=1 Xi ≤ b. This constraint is a unbounded arity constraint. How-

ever, it can be decomposed into a set of fixed arity constraints without hindering propagation

in the following way.

We split a linear constraint of the formX1+X2+, . . . ,+Xn−2+Xn−1+Xn into ternary

constraints as follows. We introduce an set of auxiliary variables,Yj , j = 1, . . . , n− 1 and

a set of ternary constraints so thatY1 = X1 +X2, Y2 = Y1 +X3, . . ., Yn−1 = Yn−2 +Xn

andYn−1 ≤ b. This decomposition is Berge-acyclic and does not hinder propagation.

2.4.4 Boolean satisfiability

The Boolean satisfiability problem (SAT) is a special case of theCSPwhere variables are

Boolean. For each Boolean variablexi there exist twoliterals xi andxi. Constraints in

conjunctive normal form (CNF) are disjunctions of literals, calledclauses and sometimes

written simply as tuples of literals.

Unit propagationforcesa literal toTRUE if it appears in a clause where all other literals

are FALSE and continues until a fixpoint is reached. If all literals in aclause are made

FALSE, we say that the empty clause is produced. A stronger form of inference is thefailed

literal test [Fre95] which is the same procedure as described in Section 2.4.1. The only

difference is that there are only two values to test. For eachliteral l of an unset variablex,

the failed literal test setsl to TRUE, performs unit propagation, checks whether the empty

clause was produced and retractsl and its consequences. If the empty clause was produced,

l is set toFALSE.

A CSP instance can be encoded as aSAT instance. The most widely used mapping

of CSPvariables to Boolean variables is thedirect encoding. EachCSPvariableXi with

domainD(Xi) is encoded inSATas a set of propositionsxi,j, Xi ∈ X, j ∈ D(Xi) such that

Xi 6= j ⇐⇒ xi,j . The property that eachCSPvariable has at most one value is enforced
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by the set of clauses(xi,j, xi,k) for all k ∈ D(Xi), k 6= j and the property that eachCSP

variable has at least one value is enforced by the set of clauses
∨

j∈D(Xi)
xi,j. We denote

this propositional representation ofD(X) asDsat(X).

Another commonly used encoding ofCSPvariable domains in toSATis linear encod-

ing, which uses only a linear number of clauses. It should be pointed out that this encoding

was independently proposed in [GN04] (the ladder encoding), [AM04] (the regular en-

coding), [TTKB06] (the ordered encoding) and [OSC07] (the linear encoding). We use the

namelinear encodingbecause it reflects the main advantage of this encoding – the number

of clauses is linear in this encoding.

EachCSPvariableXi with domainD(Xi) is encoded inSATas a set of propositions

xi,j as in the direct encoding and a set of propositionsyi,j Xi ∈ X, j ∈ D(Xi) such that

Xi ≤ j ⇐⇒ yi,j. The following set of clauses ensures that it is a proper encoding of

domains:

yi,j ∨ yi,j+1 lb(D(Xi)) ≤ j < ub(D(Xi))− 1 (2.23)

xi,j ∨ yi,j lb(D(Xi)) ≤ j < ub(D(Xi)) (2.24)

xi,j ∨ yi,j−1 lb(D(Xi)) < j ≤ ub(D(Xi)) (2.25)

xi,lb(D(Xi)) ∨ yi,lb(D(Xi)) (2.26)

xi,j ∨ yi,j ∨ yi,j−1 lb(D(Xi)) < j < ub(D(Xi)) (2.27)

xi,ub(D(Xi)) ∨ yi,ub(D(Xi)−1) (2.28)

In this work we use both direct and linear encodings in our decompositions.



Chapter 3

Decompositions of global constraints

In this chapter we recall the notion of constraint decomposition into a constraint language.

Our definitions are based on the theoretical framework of Bessiere and Hentenryck [BH03].

We adjust this framework to handle decompositions of constraint propagators. We also in-

troduce our assumptions about the size of variable domains and constraints representations.

Note that our constraint reformulations into network flows naturally fit into this framework

if we fix the constraint language to a single network flow constraint.

Global constraints are one of the key components of the success of constraint program-

ming [HK06]. Their expressiveness allows capturing the structure of the problem at the

modelling stage and their powerful propagation algorithmspermit efficient reasoning dur-

ing the search. To achieve the most efficient propagation, filtering algorithms are designed

for each constraint individually. Moreover, some constraints have several propagation algo-

rithms that achieve different consistency levels. The variety of filtering algorithms for global

constraints allows us to achieve the best performance for each problem. However, it is hard

for constraint solvers developers to keep up with all the recent developments in global con-

straints and their propagation algorithms. Modern constraint solvers often provide only a

small set of global constraints that appear in the global constraints catalogue [BCR05] as

implementing all existing constraints and filtering algorithms is a very time consuming task.

There are three ways for a constraint solver to provide support for a global constraint

without implementing a dedicated propagator for this constraint. The first approach is to

provide a constraint only at the modelling language level. This constraint is logically de-

composed into a set of primitive or basic constraints that are available in every constraint

solver, e.g. the ALL -DIFFERENT constraint can be decomposed into a set of binary inequal-

ity constraints. The logical constraint decomposition usually does not provide any guar-

antees on the consistency level that will be achieved by the decomposition. Therefore, the
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user can use the global constraint to formalise his problem but cannot specify a propagation

algorithm for this constraint.

The second approach is to provide full support for the globalconstraint by decompos-

ing it into a set of primitive constraints in such a way that primitive constraints achieve the

same amount of propagation as a specialised filtering algorithm for the original constraint

at their fixpoint. For instance, the ATMOSTSEQ constraint can be decomposed into a set of

ATMOST constraints without hindering domain consistency of propagation. In this case, a

user specifies a global constraint and a consistency level that they want to achieve. Trans-

parently to the user, this constraint is reformulated into aset of constraints that achieve the

same inference as the propagation algorithm would do. Both these techniques are widely

used in constraint solvers and modelling languages, such asthe MiniZinc modelling lan-

guage [G1211], Ilog [ILO05] or Sugar [Sug11] constraint solvers.

The third approach is to ask the user to enumerate the set of allowed solutions of the

global constraint as a truth table, so-called the TABLE constraint. However, the size of the

table might be exponential,O(dn), whered is the number of variable values andn is the

number of variables. This makes this approach infeasible; therefore we do not consider it

further in this work.

In this chapter we formalise the first two approaches. Historically, the first approach

was more popular in constraint programming [Lau78]. The notion of reformulation of a

global constraint as a logical decomposition into constraints from a given language was

formalised in the theoretical work of Bessiere and Van Hentenryck [BH03]. To investigate

the decomposability property of a constraint the authors formalised key notions in con-

straint logical reformulation: a constraint language and constraint rewriting scheme. The

constraint language specifies the set of constraints and variable domains that can be used

in decomposition. The constraint rewriting scheme defines adecomposition of a constraint

into a set of constraints from the constraint language. Following this work, we also define

a notion of a constraint language and a logical decomposition of constraint into a constraint

language. However, we significantly narrow down the class ofconstraint languages to a set

of constraints that are practically used in constraint reformulation.

The second direction starts from the work by Ian Gent on decomposing binary con-

straints [Gen02]. Gent used a set of clauses to decompose a binary constraint and proved

that unit propagation on these clauses achieves domain consistency on the binary constraint.

Subsequent research in this direction was focused on decompositions ofn-ary constraints

that preserve a consistency level. However, it is difficult to come up with a general way
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to construct a polynomial size decomposition even into a setof clauses like in the case of

binary constraints. Hence, a few special cases have been investigated. A number of de-

compositions are based on results by Dechter [Dec03]. For instance, a global constraint

might be decomposed into a Berge acyclic graphs of simpler constraints, in a way that does

not hinder propagation. This approach was for example used to obtain a ternary decompo-

sition of the REGULAR constraint . Other results use the monotonicity property ofsome

constraints, such as the ATMOSTSEQ or ATLEASTSEQ constraints [BHH+06b].

In the general case, decompositions for global constraintsare constructed for each con-

straint individually. In this work we propose several new reformulations of global con-

straints that are not based on principles of Berge-acyclicity and monotonicity and do not

hinder propagation. The idea of our approach is to decomposea global constraint into a

set of fixed arity arithmetic constraints that mimics the corresponding filtering algorithm

for this constraint. To formalise these reformulation techniques we introduce the notion

of a constraint propagator language and a decomposition of aconstraint propagator in a

constraint propagator language. These notions generaliseprevious work on logical decom-

position of constraints and allow us to capture the way of constructing constraint reformu-

lation commonly used in modern constraint solvers. This problem was partially addressed

in the work by Bessiere and Hentenryck [BH03]. However, their framework is not flexible

enough to describe constraint propagator reformulations that we use in this work. In our de-

compositions, we allow different propagation algorithms for each constraint in a language.

Moreover, in this work we investigate decomposability properties of constraints propagators

rather than constraints themselves, so we extend their definitions.

3.1 Basic assumptions

In this section we define our main assumptions about representation of variable domains

and constraints.

First we choose a variable domain representation that we usein this work. There exist

two common representations of finite domain integer variables. The first representation is

the set representation of variable domains. The second is the interval (or bounds) represen-

tation of variable domains (Section 2.4.1). Both of these representations are used in modern

constraint solvers and the bound representation is exponentially more succinct compared

to the domain representation. However, as we discussed in Section 2.4.3, if we compute

complexity results down a branch of the search tree, bounds representation does not give

us any computational worst case complexity advantage compared to the sets representation.
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Hence, we make an assumption about domain representation:

Assumption 3.1 (Domains)The domain of a variable is represented as aset of integer

values.

Assumption 3.1 implies that the size of a domain representation is linear in the number

of possible values.

Next, we restrict the class of constraints that we consider in this work. We exclude

constraints that require an exponential time in the size of variable domain representation to

read a constraint or to check a solution. An example of such constraints are table constraints

over unbounded number of variables. We also rule out constraints that are NP-complete to

find a solution, as we can encode anyCSPwith a single constraint like this. These two

restrictions lead us to the second assumption.

Assumption 3.2 (Constraints) We consider only a constraintC(X) and a consistency

levelΦ such that

• the size of the constraint is polynomial in the size of domainrepresentation ofX.

• there exists a constraint checker that detectsΦ-disentailment and that has a polyno-

mial time and space complexity in the size of the domain representation ofX.

Note that the existence of a polynomial time consistency checker guarantees the exis-

tence of a polynomial time propagator (Section 2.4.1).

Assumptions 3.1 and 3.2 hold in the rest of the work.

3.2 Logical decomposition of a constraint

We define a logically equivalent reformulation of a constraint into a set of constraints from

a constraint language. We start from a definition of a constraint language that we take

from [BH03]. We rewrite this definition to take into account Assumptions 3.1 and 3.2.

Definition 3.1 (Constraint Language(modified [BH03])) A constraint languageL is an

infinite set of constraints{Ci} that satisfy Assumption 3.2 over finite domain variables

whose domains are represented as sets of integers.

We introduce the notion of a logical decomposition of a constraint into a constraint

language which is again a simplification of the language rewriting scheme that takes into

account Assumptions 3.1 and 3.2.
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Definition 3.2 (Projection of solutions) LetC(X,Y) be a global constraint over variables

X andY andsol(X,Y) be the set of solutions of the constraint. The projection of solutions

of C, sols(C(X,Y)), to variablesX, is a set of solutions where values of variablesY are

ignored. We denote such a projectionsols(C(X,Y))[X].

Definition 3.3 (Logical decomposition of a global constraint) LetC(X) be a global con-

straint andL be a constraint language. LetY be a set of auxiliary variables. A set of

constraintsC = {Ci(X,Y)},i = 1, . . . ,m, C ⊆ L, is a logical decompositionof the global

constraintC(X) if and only ifsols(C(X)) = sols(
∧m

i=1Ci(X,Y))[X].

Note if |D(Y)| andm are polynomial in|D(X)| then together with Assumption 3.2 this

guarantees that the size of the decomposition,
∑m

i=1 |Ci(X,Y)| is polynomial in the size of

D(X).

Definition 3.3 represents the main idea behind logical constraint reformulation. Instead

of using a global constraint we replace it with a set of constraints from a given constraint

language that are logically equivalent. Note that the constraints in the decomposition have

original or possibly auxiliary variables in their scopes. This is essential for some constraints

as they cannot be decomposed without using some auxiliary variables. For example, the

parity constraint cannot be polynomially expressed in the language of clauses without in-

troducing extra variables [DM02]. Moreover, introducing new variables can increase the

strength of propagation that we can achieve. For example, toobtain a decomposition of

the REGULAR constraint into a language of ternary table constraints, weintroduce extra

variables to obtain a decomposition that achieves domain consistency. To the best of our

knowledge, there is no decomposition of the REGULAR constraint into this language that

does not require extra variables. Note that if our language is the language of clauses over

Boolean variables then we can logically decompose any global constraint in this language

as we can reduce anyCSPto 3SAT .

As we pointed out above, a logically equivalent decomposition of a global constraint

is an important concept if we want to rewrite a constraint. However, in practice, we are

interested in decompositions of global constraints that achieve a certain consistency level on

the original constraintC. Most of the previous work on constraint decomposition consider

decompositions that provide guarantees with respect to a given consistency level [QW07,

Gen02, BHW03]. Therefore, we extend the notion of constraint language and constraint

decomposition to include these type of decompositions.
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3.3 Decomposition of a constraint propagator

In this section we formalise the notion of decomposition ofa constraint propagatoras op-

posed to decomposition of a constraint. The idea of decomposing a constraint propagator is

similar to the idea of logical decomposition of constraints. Informally, instead of achieving

consistency levelΦ on a global constraintC(X) we achieve consistency levelΦi for con-

straintsCi, i = 1, . . . ,m. If each of the constraintsCi, i = 1, . . . ,m is Φi-consistent we

are guarantied to achieve the same amount of pruning on variablesX as we would get by

enforcingΦ onC.

We introduce the notion of a constraint propagator languagewhich is an extension of

the notion of a constraint language.

Definition 3.4 (Constraint Propagator Language) A constraint propagators language

LP is an infinite set of pairs{〈Ci(X), PΦi
〉}, whereCi(X) is a constraint that satisfies

Assumption 3.2 andPΦi
is a filtering algorithm that enforces consistency levelΦi onCi.

Using the notion of constraint propagator language we introduce a notion of a decom-

position of a global constraint propagator.

Definition 3.5 (Decomposition of a global constraint propagator) LetC(X) be a global

constraint andPΦ be a propagator that enforces consistency levelΦ onC. A set of pairs

{〈Ci(X,Y), PΦi
〉} ⊆ LP , i = 1, . . . ,m is a Φ-decompositionof the constraintC(X) if

and only ifCi is Φi-consistent,i = 1, . . . ,m implies thatC isΦ-consistent.

Note that if|D(Y)| andm are polynomial in|D(X)| then together with Assumption 3.2

this guarantees that enforcingPΦi
onCi(X,Y) is polynomial in time and space in|D(X)|.

On top of this, Assumption 3.1 ensures that finding a common fixpoint for the set of con-

straints in the decomposition is polynomial in|D(X)|, e.g. [BKNV11].

Note that for our theoretical results we assume that auxiliary variablesY in the scope

of the constraint in the decompositionCi(X,Y), i = 1, . . . ,m, can only be modified by

the corresponding propagatorPΦi
. This means that we assume that a constraint solver does

not branch on these variables. The reason for this is that branching on auxiliary variables

corresponds to changing a global constraint definition. Hence, this makes it non-trivial to

derive any theoretical guaranties for our decomposition.

Consider, for example, the linear constraintC, X1 + X2 + X3 = 5 with a bounds

consistency propagatorPBC . The constraint propagator language consists of ternary sums

constraints, likeZ1 = Z2+Z3. We enforce bounds consistency on ternary sums constraints.
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To decomposeC, we introduce an auxiliary variableY and obtain the following pairs of

constraints and their propagators:〈X1 +X2 = Y, PBC〉 and〈Y +X3 = 5, PBC 〉. This de-

composition does not hinder propagation as the constraint graph is Berge-acyclic. Suppose

the constraint solver branches on variableY , e.gY < 2. In this case, the constraint solver

implicitly enforces an additional constraint on the first two terms in the original constraint.

In particular, it requires thatX1 +X2 < 1. The decomposition becomes logically stronger

compared to the original constraint. In this work we do not investigatetheoreticalconse-

quences of branching or modifying auxiliary variablesY externally to the constraints in the

decomposition by the constraint solver. Note that we only impose this restriction to simplify

the derivation of theoretical results. In practice, the constraint solver can branch on these

variables and use them for learning. This only makes the reformulation stronger and more

useful.

It should be noted that Definition 3.5 is again inspired by definitions of strong globali-

ties in a constraint language that were introduced in [BH03]. Formally, the main difference

is that Definition 3.5 allows enforcing any consistency level Φi on constraintCi in a decom-

position rather than enforcing consistency levelΦ on all constraints. Conceptually, we make

the constraint propagator of the constraint rather than theconstraintC itself the subject of

decomposition.

3.4 CNF Decomposition of a constraint propagator

Finally, we focus on a restricted but very useful subclass ofdecompositions of constraint

propagators –CNF decompositions. Definition 3.5 already provides the notionof a decom-

position of a constraint propagator. However, we need to adjust this definition as we have

to encode integer domain variables into Boolean variables.In this work we use the direct

encoding (Section 2.4.4) of integer variables into Booleanvariables. There are a number of

advantages in using this encoding. First, the direct encoding can represent arbitrary state

of a variable domain during search. Second, the direct encoding gives easy access to the

state of variable domains for other constraints in the decomposition. Third, we can easily

perform a polynomial time and space transformation of the constraint programming decom-

positions of constraint propagators that we propose intoCNF decompositions of constraint

propagators. There exist two commonly used alternative encodings. The linear encoding of

variable domains(Section 2.4.4), that can represent any interval domains but cannot repre-

sent domains with holes. This encoding is more restrictive compared to the direct encoding.

An advantage of the linear encoding is that it requires a linear number of variables and
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clauses while the direct encoding uses a quadratic number ofclauses. An important similar-

ity is that sizes of the direct and linear encodings are polynomial in the number of variables

and their possible values. Another popular encoding is a logarithmic encoding of variable

domains and its variations [Gav07]. These encodings are exponentially more succinct com-

pared to the direct encoding as the size of these encodings are logarithmic in the number

of possible variables values. The main disadvantage for us is that with a logarithmic num-

ber of Boolean variables we cannot represent all possible states of variables bounds during

search [Gav07]. Hence, we cannot express bounds consistency propagators behaviour using

these encodings.

Definition 3.6 (CNF Decomposition of a propagator)A CNF decomposition of a propa-

gation algorithmPΦ for a global constraintC(X) is a formula in CNFCP over Boolean

variablesx ∪ y such that

• input variablesx are the propositional representation ofD(X) using the direct en-

coding andy is a set of auxiliary variables whose size is polynomial in|X|.

• xi,j is set toFALSE by unit propagation if and only ifXi = j /∈ PΦ(D(X)).

• Unit propagation onCP produces the empty clause whenPΦ(D(X)) = ∅.

Note that if |y| and the number of clauses are polynomial in|D(X)| then the CNF

decomposition is polynomial in the size ofD(X).

Note that, we use only information about variables that are set toFALSE to obtain infor-

mation about the current state of domains in Definition 3.6. The reason for this is that we

want to ensure the monotonicity property of a propagator over Boolean variablesx. In prac-

tice, a CNF decomposition of a propagator may depend on variables that are set toTRUE

and have clauses that contain negative literals in a CNF decomposition. However, we can

always obtain the same information using positive literals. So, we can modify clauses of

the CNF decomposition substituting negative literals withthe disjunction of positive liter-

als. For instance, consider variableX2 with domain{1, 2, 3} and clause(x1,1, x2,2, y) in

CP . The literalx2,2 can make this clause unit. The direct encoding ofD(X2) includes a

at least clause(x2,1, x2,2, x2,3) and at most clauses(x2,1, x2,2), (x2,3, x2,2) and(x2,1, x2,3).

Note that literalx2,2 is TRUE if and only if literalsx2,1 andx2,3 areFALSE. Therefore, the

literal x2,2 can be replaced with the disjunction(x2,1, x2,3) and the clause(x1,1, x2,2, y) is

transformed to the clause(x1,1, x2,1, x2,3, y).
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The SEQUENCEconstraint

4.1 Introduction

In modelling real-world and combinatorial problems we often need to restrict the number

of occurrences of some values in an interval. For example, instaff scheduling problems we

may want to specify that an employee can have at most two days off during a week, in car

sequencing problems we may want to constrain the number of cars with sun roof produced

within a day or in job-shop scheduling problems we may want torestrict the number of

machines using a resource at any time point. To encode this type of constraints the AMONG

constraint was introduced [BC94]. AMONG states that betweenl andu of k variables take

values in a given setS.

Definition 4.1 AMONG(l, u, [X1, . . . ,Xk], S) holds ifl ≤ |{i | Xi ∈ S}| ≤ u.

In some problems we might need to express a generalisation ofthis constraint. For

example, we want to specify that every employee has at least 2days off in any 7 day period

or at most 1 in 3 cars along the production line has a sun-roof.In this case we want to slide

a restriction on the number of occurrences of some values along a sequence of variables.

To express this restriction the SEQUENCE constraint was introduced. The SEQUENCE

constraint restricts the number of values taken from a givensetS in any sequence ofk

variables.

Definition 4.2 SEQUENCE(l, u, k, [X1, . . . ,Xn], S) holds if for 1 ≤ i ≤ n − k + 1,

AMONG(l, u, [Xi, . . . ,Xi+k−1], S) holds.

The SEQUENCE constraint can be seen as a conjunction of sliding

AMONG(Xi, . . . ,Xi+k−1) constraints. We say that a variable subsequence of length

k is a sliding windowandk is the sizeof the sliding window.

47
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There are several interesting special cases and generalisations of the SEQUENCE con-

straint. The ATMOSTSEQ and ATLEASTSEQ constraints are two practically useful special

cases of the SEQUENCEconstraint. Ifl = 0, SEQUENCEis reduced to an ATMOSTSEQ con-

straint. Ifu = k, SEQUENCE is an ATLEASTSEQ constraint. These constraints occur for

example in modelling car sequencing as such problems typically only place upper bounds

on occurrences (e.g. at most 1 in 3 cars can have the sun-roof). An interesting property of

the ATLEASTSEQ constraint is that its decomposition into a set of ATLEAST constraints

does not hinder propagation [BHH+06b]. The same property holds for the ATMOSTSEQ

constraint.

To model some problems, we may want to have windows with different sizes or posi-

tions of constrained variables instead of sliding a window of fixed size. For example, the

window size in a rostering problem may depend on whether it includes a weekend or not.

As a second example, we might not want a window to start on Sunday. An extension of

the SEQUENCE constraint proposed in [HPRS] is that each AMONG constraint can have

different parameters (start position,l, u, andk). More precisely,

Definition 4.3 GEN-SEQUENCE(~p1, . . . , ~pm, [X1,X2, . . . ,Xn], S) holds if

AMONG(li, ui, ki, [Xsi , . . . ,Xsi+ki−1], S) for 1 ≤ i ≤ m where~pi = 〈li, ui, ki, si〉.

In modelling over-constrained problems it is useful to havea soft form of the

SEQUENCE constraint. The ROADEF 2005 challenge [SCNA08], which was proposed

and sponsored by Renault, puts forward a violation measure for the SEQUENCEconstraint

which takes into account by how much each AMONG constraint is violated. We therefore

consider the soft global SEQUENCE constraint that introduces a violation variableT and

bounds the total number of violations of individual AMONG constraints:

Definition 4.4 SOFTSEQUENCE(l, u, k, T, [X1, . . . ,Xn], S) holds if

T ≥
n−k+1
∑

i=1

max(l −
k−1
∑

j=0

Xi+j ∈ S,

k−1
∑

j=0

Xi+j ∈ S − u, 0) (4.1)

The SLIDING SUM constraint [BCR05] is another generalisation of the SEQUENCEcon-

straint that restricts the sum of variables rather than the number of occurrences of values in

a setS. We further extend the constraint to allow arbitrary windows .

Definition 4.5 SLIDING SUM ([X1, . . . ,Xn], [~p1, . . . , ~pm]) holds if li ≤
∑si+ki−1

j=si
Xi ≤

ui holds for1 ≤ i ≤ n− k + 1 where~pi = 〈li, ui, ki, si〉.
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Similarly to the soft SEQUENCE constraint we can define the soft SLIDING SUM

([X1, . . . ,Xn], [~p1, . . . , ~pm], T ) constraint:

Definition 4.6 SLIDING SUM ([X1, . . . ,Xn], [~p1, . . . , ~pm]) holds if T ≥ ∑m
i=1 max(li −

∑si+ki−1
j=si

Xj ,
∑si+ki−1

j=si
Xj − ui, 0)

Finally, we consider the Multiple SEQUENCE constraint, where we have multiple

SEQUENCEconstraints applied to the same sequence of variables. For instance, we might

insist that at most 1 in 3 cars have the sun roof option and simultaneously that at most 2 in

5 of those cars have electric windows.

Definition 4.7 The Multiple SEQUENCE ([X1, . . . ,Xn], [~p1, . . . , ~pm]) holds if

SEQUENCE(li, ui, ki, [X1, . . . ,Xn], Si) holds for 1 ≤ i ≤ n − k + 1 where

~pi = 〈li, ui, ki, si, Si〉.

The AMONG and SEQUENCE constraints are defined over integer domain variables.

However, they can be encoded by channelling into Boolean variables. We useYi ↔ (Xi ∈
S) and l ≤ ∑k

i=1 Yi ≤ u to do the encoding. Since the constraint graph of this encoding

is Berge-acyclic, this does not hinder propagation. Consequently, we will simplify nota-

tion and consider AMONG, SEQUENCE, GEN-SEQUENCE, the Soft SEQUENCEon Boolean

variables and fix the setS to contain the single value{1} in these cases.

In this chapter we make the following contributions:

• propose new domain consistency algorithms for the SEQUENCE constraint (Sec-

tion 4.2.3).

• propose new domain consistency algorithms for the GEN-SEQUENCE constraint

based on all pairs shortest path algorithm (Section 4.2.4 and Section 4.4.1).

• propose a first polynomial domain consistency algorithm forSLIDING SUM (Sec-

tion 4.4.4).

• propose a first polynomial domain consistency algorithm forthe soft SEQUENCEcon-

straint and the soft GEN-SEQUENCEconstraint (Section 4.4.2 and Section 4.4.3).

• introduce and propose a first polynomial domain consistencyalgorithm for the soft

SLIDING SUM constraint (Section 4.4.4).
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• propose several encodings of the SEQUENCE constraint into a set of primitive con-

straints and theoretically analyse their effectiveness and efficiency (Sections 4.3.2–

4.3.6).

• experimentally evaluate proposed algorithms and encodings of the SEQUENCEcon-

straint on some random and nurse scheduling problems. We identify conditions for

applicability of each algorithm or encoding to these problems (Section 4.6).

4.2 Filtering algorithms for the SEQUENCEconstraint

In this section we present several algorithms that enforce domain consistency on the

SEQUENCE constraint. We start with two domain consistency algorithms that were pro-

posed by van Hoeveet al. [HPRS]. The first algorithm enforces domain consistency in

cubic time, while the second algorithm is exponential in thelength of the sliding window.

Next, we present two new domain consistency algorithms for the SEQUENCEconstraint and

the GEN-SEQUENCEconstraint that improve upon the existing algorithms by a linear factor

in both cases. Let us first introduce the running example.

Example 4.1 (Running example (SEQUENCE)) Suppose regulations restrict the number

of days off to be between1 and 2 in any three consecutive days in a valid schedule. The

scheduling period is six days. To encode this rule we introduce six Boolean variables,

X1, . . . ,X6, one for each day in the schedule. If a worker has theith day off thenXi = 1,

otherwiseXi = 0. SEQUENCE(l, u, k, [X1, . . . ,X6]), l = 1, u = 2 andk = 3 encodes the

regulation rule.⋄

4.2.1 Cumulative sums based algorithm (HPRS)

The first polynomial time domain consistency algorithm for the SEQUENCEconstraint was

proposed by van Hoeveet al. [HPRS]. The propagator performs the failed literal test (Sec-

tion 2.4.1) using an algorithm (the repair procedure) that detects domain disentailment for

the SEQUENCEconstraint.

An array of cumulative sumsy of lengthn + 1 is introduced, in order to detect disen-

tailment of the constraint. A valueyi shows the number of ones taken by the firsti variables

X. The algorithm initially assigns valuesy asyi =
∑i

k=1 min(D(Xk)) for i = 1 to n and

y0 = 0. Then it keeps repairing the initial assignment ofy’s until they satisfy two sets of

constraints:
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yi+1 − yi ∈ D(Xi+1), i = 0, . . . , n− 1 (4.2)

l ≤ yi+k − yi ≤ u, i = 0, . . . , n− k. (4.3)

If the repair procedure finds an assignment to cumulative sums y that satisfies all con-

straints than the SEQUENCE constraint is satisfiable and the solution of the constraintcan

be obtained as

Xi = yi+1 − yi, i = 0, . . . , n. (4.4)

It is easy to see that this assignment of variablesX is a solution of the SEQUENCEconstraint.

This assignment is also the lexicographically smallest assignment of the variablesy. The

repair procedure runs inO(n2) time. The failed literal test adds another linear factor to the

complexity resulting inO(n3) [HPRS]. The algorithm can be made incremental [HPRS09]

so the total time complexity down a branch of the search tree isO(n3).

Example 4.2 Consider how the algorithm works on the running example 4.1.Suppose we

want to check whether the variable-value pairX2 = 1 has a support. We fixX2 to 1 and

compute the values of cumulative sumsyi. We obtain thaty0 = 0, y1 = min(D(X1)) = 0,

y2 = min(D(X1))+min(D(X2)) = 1, y3 = min(D(X1))+min(D(X2))+min(D(X3)) =

1 and so on. Hence,y0 = y1 = 0 and y2 = . . . = y6 = 1. This assignment does not

satisfy constraints(4.2)-(4.3). Therefore, the repair procedure finds the lexicographically

smallest assignment to the valuesyi. In this case,y’s assignment is0, 0, 0, 1, 1, 1, 2. The

corresponding assignment of the variablesX = [0, 0, 1, 0, 0, 1] is indeed a support for

X2 = 1. ⋄

4.2.2 REGULAR based algorithm (RE)

The second domain consistency algorithm for the SEQUENCEconstraint was also proposed

by van Hoeveet al. [HPRS]. The algorithm is based on the reformulation of the SEQUENCE

constraint into the REGULAR constraint . To perform reformulation we need to construct an

automatonA = 〈Σ, Q, q0, F, δ〉, whereΣ = {0, 1}, that accepts strings that are exactly the

solutions of the SEQUENCEconstraint.

The states ofA represent all the valid sequences of at mostk values and the transitions

between them simulate one shift to the right along the sequence. Hence, each stateq, q ∈ Q

of the automatonA encodes avalid sequence of values, so thatq = 〈d1, . . . , dp〉, p ≤ k and

l ≤ ∑p
j=1 dj ≤ u. The initial stateq0 represents the empty sequence of values. Any state
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is an accepting state, so thatQ = F . A transition of the automaton from a stateq to q′ on

seeing symbolv exists if and only ifq = 〈d1, . . . , dk〉 andq′ = 〈d2, . . . , dk, v〉, v ∈ {0, 1}.
The constructed automaton accepts only solutions of the SEQUENCE constraint. The

time complexity of the algorithm isO(n2k) which is exponential in the size of the sliding

window.

Figure 4.1 The REGULAR encoding of the SEQUENCE(1, 1, 2, [X1, . . . ,X6]) constraint.
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Example 4.3 Consider the encoding of theSEQUENCE(l, u, k, [X1, . . . ,X6]), l = 1,

u = 1, k = 2 constraint into theREGULAR constraint. AutomatonA that represents the

SEQUENCEconstraint is shown at Figure 4.1. For example, the initial state corresponds to

the empty sequence of values and has two transitions to sequences of length1. Note thatA
contains only valid states. Hence, there is no state that corresponds to the sequence〈11〉. ⋄

4.2.3 Network flow-based problem (primal model) (FB)

In this section we present a new filtering algorithm that enforces domain consistency on

the SEQUENCE constraint first presented in [MNQW08]. This algorithm is based on a

reformulation of the SEQUENCEconstraint into a network flow problem. This reformulation

allows us to use well studied results from graph theory and integer linear programming to

construct an efficient propagator which is the fastest knownpropagator for the constraint to

date for unbounded length of the sliding window.

Reformulation as an integer linear program. We encode the SEQUENCE con-

straint into a network flow by means of a linear program (LP). The SEQUENCE con-

straint can be seen as a conjunction of sliding AMONG constraints. In turn, the

AMONG(l, u, [X1, . . . ,Xk]) constraint over Boolean variables is logically equivalentto two

linear inequalities:

l ≤
k
∑

i=1

Xi

and
k
∑

i=1

Xi ≤ u.
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Therefore, we can reformulate the SEQUENCE constraint directly as an integer linear

program. We use our running example 4.1 to demonstrate the reformulation:

l ≤ X1 +X2 +X3 ≤ u,

l ≤ X2 +X3 +X4 ≤ u,

l ≤ X3 +X4 +X5 ≤ u,

l ≤ X4 +X5 +X6 ≤ u

whereXi ∈ {0, 1}.
By introducing surplus/slack variables,Yi andZi, we convert this to a set of equalities

in the standard from:

X1 +X2 +X3 − Y1 = l, X1 +X2 +X3 + Z1 = u,

X2 +X3 +X4 − Y2 = l, X2 +X3 +X4 + Z2 = u,

X3 +X4 +X5 − Y3 = l, X3 +X4 +X5 + Z3 = u,

X4 +X5 +X6 − Y4 = l, X4 +X5 +X6 + Z3 = u

whereYi, Zi ≥ 0. In matrix form, this is:









1 1 1 0 0 0 −1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 1 0 0 0 0 0 0
0 1 1 1 0 0 0 0 −1 0 0 0 0 0
0 1 1 1 0 0 0 0 0 1 0 0 0 0
0 0 1 1 1 0 0 0 0 0 −1 0 0 0
0 0 1 1 1 0 0 0 0 0 0 1 0 0
0 0 0 1 1 1 0 0 0 0 0 0 −1 0
0 0 0 1 1 1 0 0 0 0 0 0 0 1

























X1

...
X6
Y1
Z1

...
Y4
Z4

















=









l
u
l
u
l
u
l
u









This matrix has theconsecutive onesproperty for columns: each column has a block of

consecutive 1’s or−1’s and the remaining elements are 0’s. This means that the matrix of

coefficients istotally unimodular[Sch86] and, moreover, thisILP can be reformulated as

a network flow problem in a graph by Theorem 2.5.

From integer linear program to a network flow problem. The consecutive ones prop-

erty guarantees that there exists an equivalent network flowproblem. To identify this prob-

lem we can use the method of Veinott and Wagner [WM62] (see Section 2.2.2). This method

allows us to construct a graph such that feasible flows in thisgraph uniquely map to solu-

tions of the SEQUENCEconstraint. First we add a zero last row to the original matrix and

subtract theith row from i + 1th row for i = 1 to 2n. These operations do not change the

set of solutions. This gives:

A ~X = ~b, (4.5)
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where

A =











1 1 1 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0
−1 0 0 1 0 0 0 −1 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 −1 0 0 1 0 0 0 0 −1 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 −1 0 0 1 0 0 0 0 0 −1 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 −1 −1 −1 0 0 0 0 0 0 0 −1











,

~X =
(

X1, . . . ,X6, Y1, Z1, . . . , Y4, Z4

)T
,

~b =
(

l, u− l, l − u, u− l, l − u, u− l, l − u, u− l,−u
)T

This system of equations describes a network flow problem on graph G = (V,E)

by Theorem 2.5. Each row in the matrix corresponds to a node inV and each column

corresponds to an edge inE. Down each column, there is a single rowi equal to 1 and

a single rowj equal to -1 corresponding to an edge(i, j) ∈ E in the graph. We include

a source nodes and a sink nodet in V . Let b be the vector on the right hand side of the

equation. Ifbi is positive, then there is an edge(s, i) ∈ E that carries exactlybi amount of

flow. If bi is negative, there is an edge(i, t) ∈ E that caries exactly|bi| amount of flow. The

bounds on the variables, which are not expressed in the matrix, are represented as bounds

on the capacity of the corresponding edges.

Theorem 4.1 Consider aSEQUENCE(l, u, k, [X1, . . . ,Xn], S) constraint. There exists an

equivalent network flow graphG = (V,E) such that there is a one-to-one correspondence

between solutions of the constraint and feasible flows in thenetwork. This graph consists

of 5n− 4k+5 edges,2n− 2k+5 vertices, a maximum edge capacity ofu, and an amount

of flow to send equal tof = (n− k)(u− l) + u.

Proof: The existence of the network flow graph follows from the equivalence between

solutions ofILP and solutions of the SEQUENCEconstraint, the correctness of the Veinott-

Wagner procedure and Theorem 2.5.

The number of vertices in the graph is equal to the number of rows in the matrixA

which is2(n − k + 1) + 1 plus the source and the sink. This gives2n − 2k + 5 vertices.

The number of edges equals the number of columns plus the number of edges that connect

the source and the sink to other vertices. There aren + 2(n − k + 1) of the former one

and2(n− k + 1) of the latter. By construction, the maximum edge capacity isu. The total

amount of flow is

n+2(n−k+1)
∑

i=1,bi>0

bi =

(n−k+1)
∑

i=1

(u− l) + l = (n− k)(u− l)− u.

⋄
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The time complexity of finding a maximum flow of valuev(f) is O(|E|v(f))
using the Ford-Fulkerson algorithm [CLRS01]. Faster algorithms exist for this

problem. For example, Goldberg and Rao’s algorithm finds a maximum flow in

O(min(|V |2/3, |E|1/2)|E| log(|V |2/|E| + 2) logC) time whereC is the maximum ca-

pacity upper bound for an edge [GR98]. In our case, this givesO(n3/2 log n log u) time

complexity.

Figure 4.2 A flow graph for SEQUENCE(l, u, 3, [X1, . . . ,X6])

1 2 3 4 5 6

X1 [0,1]

7 8

X2  [0,1]

X3 [0,1]

9

X4 [0,1]

X5 [0,1]
X6  [0,1]

[l
]

[u
-l

]

[u
-l][u

-l
]

[u
-l
]

[u
-l]

[u
-l

]

[u-l]
[u

]

4
u

-3
l 4

u
-3

l

z1 z2 z3 z4y1 y2 y3 y4

The graph for the set of equations in the example is given in Figure 4.2. A flow of value

4u − 3l in the graph corresponds to a solution. If a feasible flow sends a unit flow through

the edge labelled withXi thenXi = 1 in the solution; otherwiseXi = 0. Each even

numbered vertex2i represents a window. The way the incoming flow is shared betweenYj

andZj reflects how many variablesXi in the j’th window are equal to 1. Odd numbered

vertices represent transitions from one window to the next (except for the first and last

vertices, which represent transitions between a window andnothing). An incomingX edge

represents the variable omitted in the transition to the next window, while an outgoingX

edge represents the added variable.

Theorem 4.1 suggests a straightforward algorithm to achieve domain consistency on the

SEQUENCEconstraint. We use Theorem 4.1 to construct an algorithm that detects domain

disentailment for the constraint and run the failed literaltest on top of this algorithm to

achieve domain consistency. This givesDC propagator that runs inO(n×n3/2 log n log u).

Next we show that this complexity can be significantly improved.

Enforcing domain consistency. Based on Theorem 4.1 we propose a network flow-

basedDC filtering algorithm for the SEQUENCEconstraint. Algorithm 4.1 shows the pseu-
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Algorithm 4.1 DC propagator for the SEQUENCE

1: procedure PROPAGATORSEQUENCE(D(X1), . . . ,D(Xn))

2: ConstructG(V,E).

3: Find a feasible flowf .

4: if ∄ a feasible flowf in G(V,E) then

5: return Failure.

6: Find the residual graphGf = (V,Ef ).

7: Find the strongly connected components inGf .

8: for k ← 1 to n do

9: Let eXk
= (Vi, Vj) be the edge that corresponds to the variableXk in G.

10: if Vi andVj are not in the same strongly connected componentthen

11: if f(eXk
) = 1 then

12: D(Xk) = D(Xk) \ {0}
13: else

14: D(Xk) = D(Xk) \ {1}

15: return True.

docode for this algorithm.

Theorem 4.2 Algorithm 4.1 enforces domain consistency of theSEQUENCE constraint in

O(n3/2 log n log u) time.

Proof: By Theorem 4.1 a support for value1 (0) in D(Xi), i = 1, . . . , n exists if and only

if there exists a feasible flow that sends (does not send) a unit flow through the edge labelled

with Xi.

A feasible flowf in the graphG = (V,E) gives a support for one of values of each

variable (line 4). Consider a variableXi. If f(eXi
) pushes a unit of flow through the

edgeeXi
then the value1 is supported otherwise the value0 is supported. Suppose that

f(eXi
) = 1. (The casef(eXi

) = 0 is similar). To find support forXi = 0 we have to find a

feasible flowf ′ such thatf ′(eXi
) = 0. Hence, by Theorem 2.1, such flow exists if and only

if we can find a path in the residual graphGf from Vi to Vj . This path exists if and only if

the verticesVi andVj belong to the same strongly connected component (line 10).

Complexity argument:A feasible flow can be found inO(n3/2 log n log u) time (line 4).

Strongly connected components can be found inO(|E|) = O(n), because the number of

edges in the flow graph for the SEQUENCEconstraint is linear inn by Theorem 4.1 (line 7).

The loop 8-14 takesO(n) time. Hence, the total time complexity isO(n3/2 log n log u). ⋄
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Algorithm 4.2 IncrementalDC propagator for the SEQUENCE

procedure PROPAGATORSEQUENCEINC(Xk = v, f,D(X1), . . . ,D(Xn))

f is a feasible flow

Xk is the assigned variable

Let eXk
= (Vi, Vj) be the edge that corresponds to the variableXk in G.

if Xk = v andf(eXk
) = v, v ∈ {0, 1} then

return True.

else

if Xk = 1 and∃ a path fromVi to Vj in Gf = (V,Ef ) then

Push a unit of flow througheXk
and updatef .

else

return Failure.

if Xk = 0 and∃ a path fromVj to Vi in Gf = (V,Ef ) then

remove a unit of flow througheXk
and updatef .

else

return Failure.

Find the strongly connected components inGf .

for i← 1 to n do

Let eXi
= (Vi, Vj) be the edge that corresponds to the variableXi in G.

if Vi andVj are not the same strongly connected componentthen

if f(e) = 1 then

D(Xi) = D(Xi) \ {0}.

if f(e) = 0 then

D(Xi) = D(Xi) \ {1}.

Example 4.4 Consider our running example. We assume that the first two variables are

fixed to1, X1 = X2 = 1. A feasible flow in the corresponding graph is shown in Figure4.3

(dashed edges). The residual graph is presented in Figure 4.4. The residual graph contains

two strongly connected components . The first component includes the first and the second

vertex (gray vertices). The second component contains the remaining vertices (patterned

with vertical lines). Note that the ends of the arc that corresponds to the variableX3

belong to different connected components. Therefore, there is no way to construct a feasible

flow through this edge to support the value1. Hence,1 is not supported forX3. Indeed,

if the first two variables are fixed to1, the third variable has to take0 to satisfy the first

AMONG(1, 2, [X1,X2,X3]) constraint.⋄
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Figure 4.3 A flow graph for SEQUENCE(1, 2, 3, [1, 1,X3 ,X4,X5,X6])
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Figure 4.4 The residual graph for the flow at Figure 4.3
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Example 4.5 We continue our running example. Suppose thatX6 is assigned the value1.

Note that the feasible flow supports the value0 fromD(X6). Hence, we find a path in the

residual graph from vertex9 to vertex7, which forms a cycle witheX6 (Figure 4.5, dashed

edges) and redirect the flow to construct a new feasible flow (Figure 4.6) that supports1. ⋄

Figure 4.5 Flow redirection in residual graphGf = (V,Ef ).
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Following Regin [Reg94,Reg96], we can make the algorithm incremental. Suppose that

during searchXi is fixed to valuev. If the last computed flow was a support forXi = v,

then there is no need to recompute the flow. We simply need to recompute the strongly

connected components in the new residual graph and enforceDC in O(n) time. If the

last computed flow is not a support forXi = v, we can find a cycle in the residual graph

containing the edge associated withXi in O(n) time. By pushing a unit of flow over this
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Figure 4.6 An updated network flow that supportsX6 = 1.

cycle, we obtain a flow that is a support forXi = v. Enforcing domain consistency can be

done inO(n) after computing the strongly connected components. Consequently, there is

an incremental cost ofO(n) when a variable is fixed, and the cost of enforcingDC down a

branch of the search tree isO(n2). Algorithm 4.2 shows the pseudocode of the incremental

algorithm.

4.2.4 Network flow-based problem (dual model) (DFB)

In the previous section we showed that the SEQUENCEconstraint can be reformulated as an

integer linear program (4.5), whose matrixA has the consecutive ones property in each col-

umn. The important point to observe here is that the consecutive ones property comes from

the way we post the AMONG constraints: AMONG is shifted along the sequence of variables

and the size of the sliding window is fixed. However, if we consider the GEN-SEQUENCE

constraint , where the AMONG constraints can be posted over any sequence of variables, the

correspondingILP formulation of the problem might not have the consecutive ones prop-

erty any more. Moreover, we can show that there is no equivalent transformation in general

of the ILP model that can be reduced to a network flow problem as the following example

shows.

Example 4.6 (Running example (GEN-SEQUENCE)) Consider the GEN-SEQUENCE

(l, u, k, [X1, . . . ,X5]) constraint which is formed by the conjunction of fourAMONG con-

straints with windows: [1,5], [2,4], [3,5] and [1,3]. This constraint can be reformulated as

the following ILP
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l ≤ X1 +X2 +X3 ≤ u (4.6)

l ≤ X2 +X3 +X4 ≤ u, (4.7)

l ≤ X3 +X4 +X5 ≤ u, (4.8)

l ≤ X1 +X2 +X3 +X4 +X5 ≤ u, (4.9)

whereXi ∈ {0, 1}.
By introducing surplus/slack variables,Yi andZi, we convert this to a set of equalities

in the standard from:

X1 +X2 +X3 − Y1 = l, X1 +X2 +X3 + Z1 = u,

X2 +X3 +X4 − Y2 = l, X2 +X3 +X4 + Z2 = u,

X3 +X4 +X5 − Y3 = l, X3 +X4 +X5 + Z3 = u,

X1 +X2 +X3 +X4 +X5 − Y4 = l, X1 +X2 +X3 +X4 +X5 + Z4 = u

whereYi, Zi ≥ 0. We can express it as an integer linear program in matrix form:









1 1 1 0 0 −1 0 0 0 0 0 0 0
1 1 1 0 0 0 1 0 0 0 0 0 0
0 1 1 1 0 0 0 −1 0 0 0 0 0
0 1 1 1 0 0 0 0 1 0 0 0 0
0 0 1 1 1 0 0 0 0 −1 0 0 0
0 0 1 1 1 0 0 0 0 0 1 0 0
1 1 1 1 1 0 0 0 0 0 0 −1 0
1 1 1 1 1 0 0 0 0 0 0 0 1



























X1
X2
X3
X4
X5
Y1
Z1

...
Y4
Z4



















=









l
−u
l

−u
l

−u
l

−u









(4.10)

We call the ILP matrix asA. Clearly, the matrixA does not have consecutive ones in every

column.⋄

In general, if a matrix does not have the consecutive ones property, it may be possible to

re-order the windows to achieve the consecutive ones property. If such a re-ordering exists,

it can be found and performed inO(m + n + r) time, wherer is the number of non-zero

entries in the matrix [BL76]. Even when re-ordering cannot achieve the consecutive ones

property there may, nevertheless, be an equivalent networkmatrix. Bixby and Cunningham

[BC80] give a procedure to find an equivalent network matrix,when it exists, inO(mr)

time. Alternative procedure is given in Section 20.1 of [Sch86].

Example 4.7 We show that the matrix of the problem described by Equations(4.6)–(4.9) is

not equivalent to any network matrix. We denote byA the ILP matrix of the system:

A =









1 1 1 0 0
1 1 1 0 0
0 1 1 1 0
0 1 1 1 0
0 0 1 1 1
0 0 1 1 1
1 1 1 1 1
1 1 1 1 1
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At the first step of the test we need to construct a graphGi for eachith row, i = 1, . . . , 8

of the matrixA. EachGi contains seven vertices{1, . . . , 8} \ {i}. Two verticesk and p

are adjacent inGi if there exists a columnj in A such thatA[k, j] 6= 0, A[p, j] 6= 0 and

A[i, j] = 0. Figure 4.7(a) showsG1 and Figure 4.7(b) showsG8, respectively.

We use the following statement from [Sch86].

If A is a network flow matrix, there exists ani for whichGi is disconnected.

Note that, for example, the graphG8 is disconnected soA could be a network matrix. We

continue the test. Following the procedure we consider the connected components ofG8.

The graphG8 contains7 connected components,C1, . . . , C7, one vertex eachCi = {i},
i = 1, . . . , 7. Next we introduce a notion of support for a row,W . A support for a row is the

set of coordinates in which the vector is nonzero. A support for the8th row which is the set

of non zero coordinates inA, W8 = {1, 2, 3, 4, 5} and compute values ofWi, i = 1, . . . , 7

andUk, k = 1, . . . , 7 as follows:

Wi = W8 ∩ support of the ith row

Uk =
⋃

{Wi|i ∈ Ck}

In our caseWi = Ui, , i = 1, . . . , 7 andW1 = W2 = {1, 2, 3}, W3 = W4 = {2, 3, 4},
W5 = W6 = {3, 4, 5} andW7 = 1, 2, 3, 4, 5.

Finally, we construct the undirected graphH with verticesC1, . . . , C7 where two dis-

tinct verticesCk andCl are adjacent iff

Wl ∩Wk 6= {}

Wl*Wk

Wk*Wl

Note these conditions are a simplified version of the condition 4 from [Sch86], page

284, as in our caseCi are of size1. Figure 4.7(c) shows the graphH. It is easy to see

that graph is not bipartite. The set of vertices{1, 2} and{3, 4} have to belong to different

partitions. At the same time vertices{5, 6} are connected to vertices from both sets{1, 2}
and{3, 4}. We use the following simplified statement from [Sch86]:

A is a network matrix if and only if H is bipartite.

Therefore, the matrixA is not a network matrix.⋄
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Figure 4.7 (a) GraphG1 (b)GraphG8, (c) the undirected graphH
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However, we observe that all rows of the matrix in Example 4.6do have consecutive

ones property if we ignore the slack variables. This means all columns have consecutive

ones in the dual formulation of the problem. We exploit this property to reformulate the

GEN-SEQUENCEconstraint as a network flow problem.

Reformulation as an integer linear program. We explain how the reformulation works

on the running example 4.6. We recall that GEN-SEQUENCEcan be encoded asILP with a

constant cost function:

Maximise 0 (4.11)

l ≤ X1 +X2 +X3, −u ≤ −X1 −X2 −X3, (4.12)

l ≤ X2 +X3 +X4, −u ≤ −X2 −X3 −X4, (4.13)

l ≤ X3 +X4 +X5, −u ≤ −X3 −X4 −X5, (4.14)

l ≤ X1 +X2 +X3 +X4 +X5, −u ≤ −X1 −X2 −X3 −X4 −X5, (4.15)

0 ≤ Xi, −1 ≤ −Xi, i = 1, . . . , 5 (4.16)

Note that we include unary constraints on the variablesXi in our formulation. In the

matrix form:

Maximise 0 (4.17)

A ~X ≥ ~b, (4.18)
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A =































1 1 1 0 0
−1 −1 −1 0 0
0 1 1 1 0
0 −1 −1 −1 0
0 0 1 1 1
0 0 −1 −1 −1
1 1 1 1 1
−1 −1 −1 −1 −1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
−1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1































,

~X =
(

X1, . . . ,X5

)T
,

~b =
(

l,−u, l,−u, l,−u, l,−u, l,−u, l,−u, 0, 0, 0, 0, 0,−1,−1,−1,−1,−1
)T

The dual formulation of the problem is :

Minimise − bT y

AT y = 0

y ≥ 0

where

AT =

( 1 −1 0 0 0 0 1 −1 1 0 0 0 0 −1 0 0 0 0
1 −1 1 −1 0 0 1 −1 0 1 0 0 0 0 −1 0 0 0
1 −1 1 −1 1 −1 1 −1 0 0 1 0 0 0 0 −1 0 0
0 0 1 −1 1 −1 1 −1 0 0 0 1 0 0 0 0 −1 0
0 0 0 0 1 −1 1 −1 0 0 0 0 1 0 0 0 0 −1

)

,

As was mention above, since the matrixA has the consecutive ones property on rows,

the matrixAT has the consecutive ones property on columns. The dual problem can thus

be converted to a network flow using the same transformation as with the SEQUENCEcon-

straint.

From integer linear program to a network flow problem. We apply the Veinott and

Wagner [WM62] procedure toAT (4.19) and obtain a matrix with a single1 and a single

−1 in each column:

AT =







1 −1 0 0 0 0 1 −1 1 0 0 0 0 −1 0 0 0 0
0 0 1 −1 0 0 0 0 −1 1 0 0 0 1 −1 0 0 0
0 0 0 0 1 −1 0 0 0 −1 1 0 0 0 1 −1 0 0
−1 1 0 0 0 0 0 0 0 0 −1 1 0 0 0 1 −1 0
0 0 −1 1 0 0 0 0 0 0 0 −1 1 0 0 0 1 −1
0 0 0 0 −1 1 −1 1 0 0 0 0 −1 0 0 0 0 1






,

Theorem 4.3 TheGEN-SEQUENCEconstraint is satisfiable if and only if there are no neg-

ative cycles in the flow graph associated with the dual linearprogram. This graph consists

of 2n + 2m edges,n+ 1 vertices, and an amount of flow to send equal to0.
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Proof: Von Neumann’s Strong Duality Theorem [AMO93] states that ifthe primal and

the dual problems are feasible, then they have the same objective value. Moreover, if the

primal is unsatisfiable, the dual is unbounded. The SEQUENCEconstraint is thus satisfiable

if the objective function of the dual problem is zero. It is unsatisfiable if it tends to negative

infinity.

Negative cost cycle.If there is a negative cycle in the graph, then we can push an infinite

amount of flow resulting in a infinitely small cost . Hence the dual problem is unbounded,

and the primal is unsatisfiable.

Positive cost cycle.Suppose that there are no negative cycles in the graph. Pushing any

amount of flow over a cycle of positive cost results in a flow of cost greater than zero. Such

a flow is not optimal since the null flow has a smaller objectivevalue.

Zero cost cycle. Pushing any amount of flow over a null cycle does not change the

objective value. Therefore the null cost flow is an optimal solution and since this solution is

bounded, the primal is satisfiable. Note that the objective value of the dual (zero) is in this

case equal to the objective value of the primal.

The number of vertices in the graph is equal to the number variables in the constraint

plus one as we add a zero row during the transformation, whichgivesn + 1 vertices. The

number of edges equals to the number of constraints in the primal model, including2n

unary constraints on variablesX, is 2n+ 2m. The total amount of flow is

2n+2m
∑

i=1,bi>0

bi = 0.

⋄
The flow associated with our running example is given in Figure 4.8. There are5 + 1

nodes labelled from 1 to6 where nodei is connected to nodei + 1 with an edge of cost0

and nodei + 1 is connected to nodei with an edge of cost1. Note that these two edges

correspond to the domain of the variableXi. The lower bound ofXi is the weight of the

edge from nodei to nodei + 1 and the upper bound ofXi is the edge fromi+ 1 to i. For

each window we have an edge fromith node toi+ kth node with cost−l and an edge from

i+ kth to ith node with costu. All nodes have a null supply and a null demand.

Enforcing domain consistency Based on Theorem 4.3 we can construct a network

flow-basedDC algorithm for the GEN-SEQUENCE constraint that outperforms the previ-

ous known algorithm byO(n) factor [HPRS]. Algorithm 4.3 shows the pseudocode for this

algorithm.
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Figure 4.8Network flow associated with the dualILP model of GEN-SEQUENCE.
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Algorithm 4.3 DC propagator for the GEN-SEQUENCE

1: procedure PROPAGATORGENSEQUENCE(~p1 , . . . , ~pm, [X1, . . . ,Xn])

2: ConstructG(V,E).

3: if ∃ a negative cycle inG(V,E) then

4: return Failure.

5: Find all pairs shortest paths inG.

6: for i← 1 to n do

7: Let (Vi, Vi+1) and(Vi+1, Vi) be the edges that corresponds toXi in G.

8: Letwi,j be the weight of the path fromVi to Vj in G.

9: D(Xi) = D(Xi) \ [− inf,−wi,i+1)

10: D(Xi) = D(Xi) \ (wi+1,i, inf]

11: return True.

Theorem 4.4 Algorithm 4.3 enforces domain consistency of theGEN-SEQUENCE con-

straint inO(n2 log n+ nm) time.

Proof: By Theorem 4.3 the absence of negative cycles in G guarantiesexistence of a

solution of the constraints (line 3).

We find for each variableXi the smallest (largest) value in its domain such that assign-

ing this value toXi does not create a negative cycle.

We recall that the lower bound corresponds to the weight of the edgeelb(Xi) from Vi

to Vi+1 and the upper bound corresponds to the weight of the edgeeub(Xi) from Vi+1 to

Vi. We find the weights,wi,i+1 andwi+1,i, of shortest paths fromVi to Vi+1 andVi+1 to

Vi, respectively, and ensure that the weights ofelb(Xi) andeub(Xi) do not create a negative

cycle. So we have conditions that−welb(Xi)
+ wi+1,i ≥ 0 or Xi ≤ wi+1,i. Clearly, any
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large value ofXi creates a negative cycle in the graph. Similarly,weub(Xi)
+wi,i+1 ≥ 0 and

Xi ≥ −wi,i+1.

Complexity argument:The flow graph hasO(n) nodes andO(m) edges. Testing

whether there is a negative cycle takesO(nm) time using the Bellman-Ford algorithm.

Johnson’s algorithm solves the all-pair shortest path problem inO(|V |2 log |V | + |V ||E|)
time which in our case givesO(n2 log n+ nm) time. ⋄

We can make the propagator incremental using the algorithm by Cotton and

Maler [CM06] to maintain the shortest path between|p| pairs of vertices inO(|E| +
|V | log |V | + |P |) time upon edge reduction. Each time a variable domain is changed,

the shortest paths can be recomputed inO(m+n log n) time. This givesO(nm+n2 log n)

time complexity down a branch of the search tree.

Algorithm 4.4 IncrementalDC propagator for the GEN-SEQUENCE

1: procedure PROPAGATORGENSEQUENCEINC(Xk , ~p1, . . . , ~pm, [X1, . . . ,Xn])

2: Recompute all pairs shortest paths inG.

3: for i← 1 to n do

4: Let (Vi, Vi+1) and(Vi+1, Vi) be the edges that corresponds toXi in G.

5: Letwi,j be the weight of the path fromVi to Vj in G.

6: D(Xi) = D(Xi) \ [− inf,−wi,i+1)

7: D(Xi) = D(Xi) \ (wi+1,i, inf]

8: return True.

The pseudocode of the incremental algorithm is shown as Algorithm 4.4.

Example 4.8 We continue our running example 4.6. We assume thatl = 1 and u = 2.

Suppose thatX1 andX2 are assigned to the value0. Consider the variableX3. We show

thatX3 has to take value1. We find the shortest path in G from vertex3 to vertex4. The

weight of this pathw3,4 is−1 (Figure 4.9, dashed edges). Hence,X3 ≥ 1. ⋄

4.3 Decompositions of theSEQUENCEconstraint

In this section we present several decompositions of the SEQUENCEconstraint that achieve

domain consistency for the SEQUENCEconstraint and two that do not achieve domain con-

sistency but are efficient in practice. The first algorithm that we present is based on encoding

of the SEQUENCE constraint using the REGULAR constraint based on the last occurrence

of a value fromS (we will refer to this algorithm asLO). It exploits special features



4.3. DECOMPOSITIONS OF THESEQUENCECONSTRAINT 67

Figure 4.9 GEN-SEQUENCE from Example 4.6 withl = 1, u = 2 andX1 = X2 = 0. The

shortest path in G between vertices1 and4.
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of practical applications of SEQUENCE, namely short windows and small bounds. The

time complexity of this algorithm is linear in the number of variables, but it polynomially

depends onk and l, u bounds. The second algorithm is based on the decomposition of

SEQUENCE into simple linear constraints on cumulative sums encoding(CS). It does not

achieveDC, but it works inO(n) time and is very efficient for problems whereu − l is

small. The third algorithm establishesDC on SEQUENCEby enforcing failed literal test on

the second decomposition inO(n3) time (CSDC). The fourth algorithm uses a dynamic

programming technique to achieveDC in O(nk2u). It is based on the partial sum encoding

of the SEQUENCE constraints (PS) and performs well for problems with small length of

the sliding window. The fifth algorithm represents the SEQUENCEconstraint as a conjunc-

tion of linear inequalities and enforcesDC on SEQUENCE in O(nlog(n)) amortised time

(DFB). The sixth algorithm also uses dynamic programming and takes onlyO(nlog(k))

time (LG). It does not achieve domain consistency, but it is strongerthan the decomposi-

tion of SEQUENCE into AMONG constraints and is asymptotically faster. We also consider

an improvement on the last decomposition that increases itspropagation strength. Table 4.1

gives a summary of the decompositions and filtering algorithms for the SEQUENCE con-

straint that we consider in this chapter.

4.3.1 Decomposition intoAMONG constraints (AD)

The first decomposition that we consider is the existing decomposition into AMONG con-

straints. This decomposition naturally follows from the definition of the SEQUENCEcon-

straint. We call this theAD encoding. It was shown that theAD decomposition hinders

propagation [HPRS]. We give another example that shows the weakness of the decomposi-



68 CHAPTER 4. THESEQUENCECONSTRAINT

Table 4.1: A summary of the decompositions and filtering algorithms for the SEQUENCE

constraint. The first column shows the name of the algorithm and the second column de-

scribes what this algorithm stands for.

PS theDC decomposition based on partial sums

HPRS theDC filtering algorithm based on cumulative sums

AD the decomposition into AMONG constraints

LG the decomposition based on a log based encoding

CS the decomposition based on cumulative sums

LO theDC decomposition based on the REGULAR constraint

FB theDC filtering algorithm that on network flow

MR theDC decomposition of multiple SEQUENCEs based on REGULAR

tion.

Example 4.9 Consider theSEQUENCE(1, 1, 3, [X1,X2,X3,X4]) with domainsD(X1) =

D(X3) = D(X4) = {0, 1} and D(X1) = 0. The decomposition contains

AMONG(1, 1, [X1,X2,X3], {1}) and AMONG(1, 1, [X2,X3,X4], {1}) constraints. Both

of these constraints are domain consistent, while enforcing domain consistency on the

SEQUENCEconstraint setsX4 to 0. ⋄

4.3.2 Decomposition based on cumulative sums (CS)

Our first reformulation is based on computing cumulative sums similar to theHPRS algo-

rithm described in Section 4.2.1. The idea of this encoding is to mimic the behaviour of the

HPRS algorithm using a set of constraints overinteger variablesthat encode cumulative

sums values. Therefore, we encode a sequence of cumulative sumsvaluesyi, i = 0, . . . , n

by introducing a sequence of cumulative suminteger variables, Yj, i = 0, . . . , n, where

Yj =
∑j

i=1 Xi each with domain[0, j]. We encode this linearly

Y0 = 0, Yi = Xi + Yi−1, i = 1, . . . , n. (4.19)

l ≤ Yi+k − Yi, i = 1, . . . , n− k + 1 (4.20)

Yi+k − Yi ≤ u, i = 1, . . . , n− k + 1 (4.21)

We call this theCS encoding. Not surprisingly, this encoding hinders propagation.

Example 4.10 Consider, for example, SEQUENCE (1, 2, 2, [X1 ,X2,X3,X4], {1}),
D(X3) = {0} andD(Xi) = {0, 1}, i ∈ {1, 2, 4}. The corresponding cumulative sum
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variables Y have the following domains:Y0 ∈ {0}, Y1 ∈ {0, 1}, Y2, Y3 ∈ {1, 2},
Y4 ∈ {2, 3}. All constraints inCS are bounds consistent. However, domain consistency on

theSEQUENCEprunes the value0 from the domains ofX2 andX4. ⋄

However, theCS decomposition detects domain disentailment (see Section 2.4.3 for

the domain disentailment definition) which is exactly what the repair procedure from the

HPRS algorithm achieves.

Theorem 4.5 Enforcing bounds consistency onCS detects domain disentailment for the

SEQUENCEconstraint and takesO(n2).

Proof: Suppose that all constraints (4.19)–(4.21) are bounds consistency. We show that the

lower bounds of variablesY can be transformed to a solutions of the SEQUENCEconstraint.

The same result holds for the upper bounds ofY .

Consider the assignmentxi = lb(Yi) − lb(Yi−1), i = 1, . . . , n. The value ofXi is

either0 or 1. By constraint (4.20) we have:l ≤ lb(Yi+k) − lb(Yi), i = 1, . . . , n − k + 1.

Otherwise the lower bound of the variableYi+k does not have a bound support. By (4.21)

we have: thelb(Yi+k) − lb(Yi) ≤ u, i = 1, . . . , n − k + 1. Otherwise the lower bound of

the variableYi does not have a bound support.

We rewrite this asl ≤ lb(Yi+k)− lb(Yi+k−1)+ lb(Yi+k−1)− . . .− lb(Yi+1)+ lb(Yi+1)−
lb(Yi) ≤ u. This means thatl ≤ xi+k + xi+k−1 . . . + xi+1 ≤ u, i = 1, . . . , n − k + 1.

Hence the assignmentx satisfies the SEQUENCEconstraint.

Complexity argument:There areO(n) constraints in the system and each constraint can

be invoked at mostO(n) times. All constraints are of bounded size. Therefore the total time

complexity isO(n2). ⋄
Theorem 4.5 suggests that we can enforce domain consistencyon the SEQUENCEcon-

straint by enforcing singleton bounds consistency on the set of constraints (4.19) - (4.21).

Theorem 4.6 Singleton bounds consistency on the variablesX1, . . . ,Xn onCS enforces

domain consistency onSEQUENCE[X1, . . . ,Xn] and takesO(n3) time.

Proof: Proof of the theorem follows from Equations 2.22 and Theorem4.5. ⋄

Example 4.11 Consider theSEQUENCEconstraint from Example 4.10. Enforcing single-

ton bounds consistency onCS prunes the value0 from the domains ofX2 andX4. ⋄

The CS decomposition can be also applied to propagate the GEN-SEQUENCE con-

straint. However, the number of constraints in the decomposition can increased by factor of
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O(n), because there areO(n2) windows of variables in the worst case. Theorems 4.5–4.6

holds for the GEN-SEQUENCE constraint except of complexity argument. The complexity

of detecting disentailment isO(n3). Therefore, the time complexity of enforcing domain

consistency isO(n4).

4.3.3 Decomposition based onREGULAR constraints (LO)

As mentioned is Section 4.2.2, van Hoeveet al. give an encoding of SEQUENCEusing the

REGULAR constraint [HPRS]. This permits domain consistency to be achieved inO(n2k)

time. The states of the automata used in this encoding recordwhich of the lastk values

encountered are from the setS. We can slightly improve upon this encoding by having

states record just the lastk− 1 values encountered. A transition is then permitted if the last

k−1 values encountered plus the current variable have the correct frequency of values from

the given set.

We now give an alternative encoding using the REGULAR constraint. The encoding

exploits two features of many car sequencing and staff rostering problems. First, such

problems typically only place upper bounds on occurrences (e.g. at most 1 in 3 cars can

have the sun-roof). Second, in many problems the lower and upper bounds are typically

small (e.g. in all data files in Prob001 in CSPLib,u ≤ 2 andk ≤ 5).

Suppose we wish to ensure that at most 1 ink Boolean variablesXi take the value 1.

Consider an automaton whose states record the minimum ofk and the distance back to the

last occurrence of 1. If1 has not yet occurred, the distance is taken to bek. The transi-

tion function from the stateq on seeingXi is t(q,Xi) = min(k, q + 1) if Xi = 0 and

t(q,Xi) = 1 if q = k andXi = 1. The initial state of the automaton isk and any state is

accepting (Figure 4.10(a)). A similar automaton can be constructed foru > 1, but we need

states to record the distances back to the lastu occurrences of value 1.

Now, suppose we wish to ensure at least 1 ink variables take the value 1. The states of the

automaton record the distance back to the last occurrence of1. If 1 has not yet occurred, the

distance is taken to be the number of variables seen so far. The transition function from the

stateq on seeingXi is t(q,Xi) = q+1 if Xi = 0 andq < k, andt(q,Xi) = 1 if q ≤ k and

Xi = 1. The initial state of the automaton is1 and any state is accepting (Figure 4.10(b)).

Thus, to encode a SEQUENCE constraint, we convert it into a sequence of ATLEAST and

ATMOST constraints. We can convert the sequence of ATLEAST constraints into a se-

quence of ATMOST constraints (or vice verse depending on which representation gives

smaller complexity) by inverting the value being counted. For example, the constraint that
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Figure 4.10 (a) Automation for the ATMOSTSEQ constraint withu = 1 andk = 3 (b)

Automation for the ATLEASTSEQ constraint withl = 1 andk = 3

q0=3 q0=1

(a) (b)

at least 3 in any 5 days must be work days is equivalent to at most 2 in 5 days are rest

days. Finally, we construct the product of the automata for the two sequences of ATMOST

or ATLEAST constraints. The complexity of enforcing domain consistency on SEQUENCE

using this encoding isO(nkmin(l,k−l) × kmin(u,k−u)). Note that ifu > k − u for the

ATMOSTSEQ constraint then we convert ATMOSTSEQ to ATLEASTSEQ first and, then,

build an automaton to represent the constraint. This transformation is the reason for the

min operator in the time complexity. We will refer to this encoding asLO as the automa-

ton records the last occurrence(s).

4.3.4 Decomposition based on partial sums (PS)

The next encoding is arguably the simplest encoding which enforces domain consistency.

ThePS encoding simply decomposes the constraint into a set of equations based on partial

sums:Pi,j =
∑j

l=iXl each with domain[0,min(u, j − i + 1)]. ThePS encoding of the

SEQUENCEconstraint isPi,i+k−1 ≤ u andPi,i+k−1 ≥ l for 1 ≤ i ≤ n − k + 1 as well as

Pi,i = Xi for 1 ≤ i ≤ n and most importantly, all possible ways of adding two of these

variables to create another:Pi,j = Pi,m + Pm+1,j for 1 ≤ i ≤ m < j ≤ n, j ≤ i+ k − 1.

Note there areO(nk2) constraints of the last form.

Theorem 4.7 Bounds consistency on thePS encoding enforces domain consistency of the

SEQUENCEconstraint inO(nk2u) down a branch of the search tree.

Proof: We say that domainD bounds capturesC if for eachXi + · · · + Xj ≤ c ∈ C,

maxD(Pi,j) ≤ c and for eachXi+· · ·+Xj ≥ c ∈ C,minD(Pi,j) ≥ c. Clearly the domain

resulting from bounds consistency applied toPS bounds captures theAD encoding.

We show that ifD is bounds consistent withPS and bounds capturesC then it also

bounds capturesC ′ which results from eliminating the least (or greatest) indexed variable

Xi.

We consider the least variableXi, the greatest is similar. Consider Fourier-Motzkin

elimination ofXi. For each pair of constraints inC of the formXi + · · · +Xj1 ≤ c1 and
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Xi + · · · +Xj2 ≥ c2, Fourier-Motzkin elimination creates the constraint

1. (a) if j1 > j2 thenXj2+1 + · · ·+Xj1 ≤ c1 − c2,

2. (b) if j1 < j2 thenXj1+1 + · · ·+Xj2 ≥ c2 − c1.

3. (c) if j1 = j2 then0 ≤ c1 − c2.

Now sinceD bounds capturesC we haveub(Pi,j1) ≤ c1 andlb(Pi,j2) ≥ c2. For case (a) by

bounds consistency on the constraintPi,j1 = Pi,j2 +Pj2+1,j1 we haveub(Pj2+1,j1) ≤ c1 −
c2, for (b) bounds consistency onPi,j2 = Pi,j1 +Pj1+1,j2 giveslb(Pj1+1,j2) ≥ c2− c1, and

for (c) the new constraint istrue since otherwiseD(Pi,j1) = ∅. Hence the new constraint

is bounds captured byD.

To prove domain consistency of SEQUENCE, letC be theAD encoding plus inequalities

fixing X variables in the current domainD (which we assume is bounds consistency with

PS). Clearly D bounds capturesC. Consider any variableXi, and eliminate fromC

other variables in orderX1, . . . ,Xi−1,Xn, Xn−1, . . . ,Xi+1 to obtainC ′. Note that if we

eliminate variables in this order we preserve the consecutively property of each inequality.

Now C ′ only involves the variableXi. By the correctness of Fourier-Motzkin elimination

(Section 2.2.3) there are solutions ofC extending any solution ofC ′. SinceD bounds

capturesC ′ by repeated use of the above argument we have that there are solutions toC for

eachd ∈ D(Xi).

Complexity argument:We note that the domains of the variables in each constraint

Pi,j = Pi,m + Pm+1,j can change at most3u times in a forward computation. Each propa-

gation isO(1) hence the overall complexity down a branch isO(nk2u). ⋄
As in the case of theCS decomposition, thePS decomposition can be also used to prop-

agate the GEN-SEQUENCE(~p1, . . . , ~pt, [X1,X2, . . . ,Xn], S) constraint(Definition 4.2). We

introduce variablesPi,j, 1 ≤ i ≤ j ≤ O(n) and the following constraints:Psh,sh+kh−1 ≤
uh andPsh,sh+kh−1 ≥ lh for 1 ≤ h ≤ t, Pi,i = Xi for 1 ≤ i ≤ n andPi,j = Pi,m+Pm+1,j

for 1 ≤ i ≤ m < j ≤ n, j ≤ O(n). In the case of the GEN-SEQUENCEconstraint there are

O(n3) constraints of the last form. Theorem 4.7 holds for the GEN-SEQUENCEconstraint

as the proof does not depend on that number of the variablesPi,j .

4.3.5 Decomposition based on a log based encoding ofSEQUENCE (LG)

Our final encoding (calledLG) is based on a simple dynamic program that builds up partial

sums on counts. We introduceL[i, j] with domain [0,min(u, 2i−1)] for the partial sums
∑j+2i−1

h=j Xh where0 ≤ i ≤ ⌊log h⌋ and1 ≤ j ≤ n−2i+1. Note thatL[i, j] = Pj,j+2i−1.
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This requires the following constraints:L[0, j] = Xj , 1 ≤ j ≤ n andL[i, j] = L[i−1, j]+

L[i − 1, j + 2i−1], 1 ≤ j ≤ n, i > 0. Supposek =
∑m

i=1 2
ai wherea1 < . . . < am (in

other words,ai is theith bit set in the binary representation ofh). We also need the vector,

Z1 to Zn−h+1 each with domain[l, u] and constraint:

Zj =
m
∑

i=1

L[ai, j +
i−1
∑

h=1

2ah ]

Figure 4.11 shows initial domains and intravariable dependencies for the SEQUENCE

(2, 3, 5, [X1 , . . . ,X7]) constraint.

Figure 4.11 Dependencies between partial sums variablesL andX and their initial do-

mains for the SEQUENCE(2, 3, 5, [X1 , . . . ,X7]) constraint.
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We haveO(n log h) variablesL that are subject toO(n log h) ternary constraints and

O(n) variablesZ that are subject toO(n) linear constraints of lengthO(log h) The con-

straint propagation cost equals to the number of invocations of the filtering algorithm for this

constraint times the cost of one invocation. The number of invocations is proportional to the

number of values in its variable domains. Hence, the propagation cost of a ternary constraint

isO(u). For all ternary constraints we havePC1 = O(u)O(n log h) = O(nu log h). Also,

we haveO(n) variablesZ that are subject toO(n) linear constraints. Note that this con-

straint is a constraint of unbounded arity. However, as we pointed out in Section 2.4.3, we

can further decompose this constraint into constraints of fixed arity constraints and this de-

composition does not hinder propagation. Hence, instead ofhavingO(n) linear constraints

of arity O(log h), we haveO(n log h) ternary constraints.

The cardinality of each variable in these constraints is bounded byO(u). Consequently,

the propagation cost for linear constraints isPC2 = O(u)O(n log h) = O(nu log h).

Therefore we can enforce bounds consistency on this encoding in O(nu log h) +

O(nu log h) = O(nu log h) time down the whole branch of a search tree. However,
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this may not achieve domain consistency on the SEQUENCEconstraint.

Example 4.12 ConsiderX1 to X4 with domains{0, 1}, X5 = X6 = 1, and the global

constraintSEQUENCE(4, 4, 5, [X1 , . . . ,X6]). Then, we have:

L[0, j] = Xj

L[1, j] = L[0, j] + L[0, j + 1]

L[2, j] = L[1, j] + L[1, j + 2]

Z1 = L[0, 1] + L[2, 2]

Z2 = L[0, 2] + L[2, 3]

Enforcing BC on the decomposition givesL[0, 1], L[0, 2], L[0, 3], L[0, 4] ∈ {0, 1},
L[0, 5] = L[0, 6] = 1, L[1, 1], L[1, 2], L[1, 3], L[1, 4] ∈ {1, 2}, L[1, 5] = 2,

L[2, 2], L[2, 3] ∈ {3, 4}, andZ1 = Z2 = 4. However, enforcing domain consistency of

theSEQUENCEconstraint prunes value zero fromD(X1). ⋄

There are a number of redundant constraints which we can add to improve propagation.

For example, we can post:

Zj =
m
∑

i=1

L[ai, j +
m
∑

h=i+1

2ah ]

It is not hard to show that such additional redundant constraints can help propagation.

Example 4.13 Suppose we add the redundant constraints to the constraint in Exam-

ple 4.12:

Z1 = L[2, 1] + L[0, 5]

Z2 = L[2, 2] + L[0, 6]

Enforcing bounds consistency now setsL[2, 1] = L[2, 2] = 3, L[0, 1] = 1 andX1 = 1. ⋄

4.3.6 Theoretical comparison

We compare theoretically those encodings on which we may notachieve domain consis-

tency on the SEQUENCEconstraint. We will show that we get more propagation withLG

thanAD, but thatAD, CS andLG are otherwise incomparable. It should be noted that

during propagation all auxiliary variables inCS, LG, AD andPS encodings will always

have ranges as their domains, consequently, bounds consistency is equivalent to domain

consistency for them.



4.3. DECOMPOSITIONS OF THESEQUENCECONSTRAINT 75

Proposition 4.1 Bounds consistency onLG is strictly stronger than bounds consistency on

AD.

Proof: SupposeLG is bounds consistent. Consider any AMONG constraint inAD. It is

not hard to see how, based on the partial sums inLG, we can construct support for any

value assigned to any variable in this AMONG constraint. To show strictness, consider

SEQUENCE(l, u, k, [X1, . . . ,X6]), l = u = 3, k = 4, with X1,X2 ∈ {1} andX3, . . .,

X6 ∈ {0, 1}. Enforcing bounds consistency onLG fixesX5 = X6 = 1. On the other hand,

AD is bounds consistent.⋄

Proposition 4.2 Bounds consistency onCS is incomparable to bounds consistency onAD.

Proof: Consider SEQUENCE(1, 1, 3, [X1 ,X2,X3,X4]) with X1 ∈ {0} andX2, X3, X4 ∈
{0, 1}. NowAD is bounds consistent. InCS, we haveY0, Y1 ∈ {0}, Y2 ∈ {0, 1}, Y3, Y4 ∈
{1}. AsY3 andY4 are equal, enforcing bounds consistency onCS prunes1 from the domain

of X4.

Consider SEQUENCE (1, 2, 2, [X1 ,X2,X3,X4]) with X3 ∈ {0} andX1, X2, X4 ∈
{0, 1}. In CS, we haveY0 ∈ {0}, Y1 ∈ {0, 1}, Y2, Y3 ∈ {1, 2}, Y4 ∈ {2, 3}. All

constraints inCS are bounds consistent. Enforcing bounds consistency onAD prunes0

from the domains ofX2 andX4. ⋄
From the proof of Theorem 4.2 it follows that bounds consistency onCS does not

enforce domain consistency on SEQUENCEwhen SEQUENCE is monotone.

Proposition 4.3 Bounds consistency onCS is incomparable with bounds consistency on

LG.

Proof: Consider SEQUENCE (2, 2, 4, [X1 ,X2,X3,X4,X5]) with X1 ∈ {1} andX2, X3,

X4, X5 ∈ {0, 1}. All constraints in theLG decomposition are bounds consistent. InCS,

we haveY0 ∈ {0}, Y1 ∈ {1}, y2, Y3 ∈ {1, 2}, Y4 ∈ {2}, Y5 ∈ {3}. As Y4 andS5 are

ground andY5 = Y4 + 1, enforcing bounds consistency onCS fixesX5 = 1.

Consider SEQUENCE (2, 3, 3, [X1 ,X2,X3,X4]) with X1 = 1 and X2, X3, X4 ∈
{0, 1}. Now CS is bounds consistent. However, enforcing bounds consistency on LG

prunes 0 fromX4. ⋄
Recall that singleton bounds consistency onCS is equivalent to domain consistency

on SEQUENCE. We therefore also consider the effect of singleton consistency on the other

encodings where propagation is hindered. UnlikeCS, singleton bounds consistency onAD

orLG may not prune all possible values.
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Figure 4.12 Relations among decompositions of the SEQUENCEconstraint.

DC(SEQ) SBC(AD)

BC(LG)

BC(CS)SBC(CS)

SBC(LG)

BC(AD)

Proposition 4.4 Domain consistency onSEQUENCE is strictly stronger than singleton

bounds consistency onLG.

Proof: Consider SEQUENCE(2, 2, 4, [X1 ,X2,X3,X4,X5], {1}) with X1 ∈ {1} andX2,

X3,X4,X5 ∈ {0, 1}. ConsiderX5 = 0 and theLG decomposition. We haveL[0, 1] ∈ {1},
L[0, 2], L[0, 3], L[0, 4] ∈ {0, 1}, L[0, 5] ∈ {0}, L[1, 1], L[1, 2] ∈ {1, 2}, L[1, 3], L[1, 4] ∈
{0, 1}, L[2, 1], L[2, 2] ∈ {2}. All constraints inLG are bounds consistent. Consequently,

we do not detect thatX5 = 0 does not have support.⋄

Proposition 4.5 Domain consistency onSEQUENCE is strictly stronger than singleton

bounds consistency onAD.

Proof: By transitivity from Theorems 4.4 and 4.1.⋄

We summarise relations among decompositions in Figure 4.12. As before, we denote

SBC(X)enforcing singleton bounds consistency on a decompositionX. We collapse all

decomposition that enforceDC in a single nodeDC(SEC) to simplify the diagram.

An interesting research question, that was arose by an anonymous reviewer, is that to

consider theoretical properties of combinations of these encodings. For example, theAD

andCS encoding are incomparable, so we might expect that their compliment each other.

4.4 Generalisations of theSEQUENCEconstraint

In this section we consider generalisations of the SEQUENCE constraint and soft forms of

this constraint, like the SOFTSEQUENCEconstraint.
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4.4.1 The generalisedSEQUENCEconstraint

The GEN-SEQUENCE constraint is a natural generalisation of the SEQUENCE

constraint, where AMONG constraints with different parameters are en-

forced on consecutive variables. We recall Definition 4.3 ofthe con-

straint. GEN-SEQUENCE(~p1, . . . , ~pm, [X1,X2, . . . ,Xn], S) holds if and only if

AMONG(li, ui, ki, [Xsi , . . . ,Xsi+ki−1], S) for 1 ≤ i ≤ m where~pi = 〈li, ui, ki, si〉.

Section 4.2.4 gives a reformulation technique to propagatethe GEN-SEQUENCE con-

straint that exploit the consecutive ones in each row property in ILP formulation of

GEN-SEQUENCE. The algorithm runs inO(nm + n2 log n) time down a branch of the

search tree.

4.4.2 The SoftSEQUENCEconstraint

A soft form of the SEQUENCE constraint is a relaxation of the SEQUENCEconstraint that

often occurs in practice. The soft SEQUENCE constraint takes into account by how much

each AMONG constraint is violated. We recall the definition of the SOFTSEQUENCEcon-

straint 4.4. SOFTSEQUENCE(l, u, k, T, [X1, . . . ,Xn]) holds iff:

T ≥
n−k+1
∑

i=1

max(l −
k−1
∑

j=0

Xi+j ,

k−1
∑

j=0

Xi+j − u, 0) (4.22)

As before to simplify notations, we consider SOFTSEQUENCEon Boolean variables as

this does not hinder propagation .

Example 4.14 (Running example (SOFTSEQUENCE)) Consider a relaxation of Exam-

ple 4.1. Suppose we allow a schedule to violate individualAMONG constraints but we

restrict the total number of violations to be1. This restriction can be encoded as the soft

SOFTSEQUENCE(l, u, k, T, [X1, . . . ,X6]), l = 1, u = 2, k = 3 and T ≤ 1 constraint.

Again, we vary the values of parametersl, u, k andT to highlight properties of our algo-

rithms.⋄

We again convert to a flow problem by means of an integer linearprogram, but this

time with a varying objective function. Consider the reformulation using our running ex-

ample 4.14. We introduce variables,Qi andPi to represent the penalties that may arise from

violating lower and upper bounds respectively. We can then express this SOFTSEQUENCE
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constraint as follows. The objective function gives a lowerbound onT .

Minimise

4
∑

i=1

(Pi +Qi) subject to :

X1 +X2 +X3 − Y1 +Q1 = l, X1 +X2 +X3 + Z1 − P1 = u,

X2 +X3 +X4 − Y2 +Q2 = l, X2 +X3 +X4 + Z2 − P2 = u,

X3 +X4 +X5 − Y3 +Q3 = l, X3 +X4 +X5 + Z3 − P3 = u,

X4 +X5 +X6 − Y4 +Q4 = l, X4 +X5 +X6 + Z3 − P4 = u

whereYi, Zi, Pi andQi are non-negative. The penalty variables used for SOFTSEQUENCE

arise directly out of the problem description and occur naturally in the LP formulation.

We could also view them as arising through the methodology of[HPR06], where edges

with costs are added to the network graph for the hard constraint to represent the softened

constraint.

In matrix form, this is:

Minimise
∑4

i=1(Pi +Qi) subject to:











1 1 1 0 0 0 −1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0
0 1 1 1 0 0 0 0 −1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 −1 0 0 0 0
0 0 1 1 1 0 0 0 0 0 −1 0 0 0 0 0 0 0 1 0 0 0
0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 −1 0 0
0 0 0 1 1 1 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 1 0
0 0 0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 −1











































X1

...
X6
Y1
Z1

...
Y4
Z4
Q1

P1

...
Q4
P4

































=









l
u
l
u
l
u
l
u









,

If we transform the matrix as before, we get a minimum cost network flow problem:

Minimise
∑4

i=1(Pi +Qi) subject to:













1 1 1 0 0 0 −1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 −1 −1 0 0 0 0 0 0
−1 0 0 1 0 0 0 −1 −1 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 −1 −1 0 0 0 0
0 −1 0 0 1 0 0 0 0 −1 −1 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 −1 −1 0 0
0 0 −1 0 0 1 0 0 0 0 0 −1 −1 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 −1 −1
0 0 0 −1 −1 −1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 1













~X = ~b,

where

~XT =
(

X1 . . . X6 Y1 Z1 . . . Y4 Z4 Q1 P1 . . . Q4 P4

)

and
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~bT =
(

l, u− l, l − u, u− l, l − u, u− l, l − u, u− l, −u
)

The flow graphG = (V,E) for this system is presented in Figure 4.13. Dashed edges

have cost1, while other edges have cost0. The minimal cost flow in the graph corresponds

to a minimal cost solution to the system of equations

Figure 4.13 A flow graph for SOFTSEQUENCE(l, u, 3, T, [X1, . . . ,X6])
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Theorem 4.8 For any constraintSOFTSEQUENCE(l, u, k, T, [X1, . . . ,Xn], v), there is an

equivalent network flow graph. There is a one-to-one correspondence between solutions of

the constraint and feasible flows of cost less than or equal tomax(D(T )).

Proof: The existence of a network flow graph follows from the equivalence between solu-

tions of ILP and solutions of the SEQUENCEconstraint, correctness of the Veinott-Wagner

procedure and Theorem 2.5.⋄
Using Theorem 4.8, we construct aDC filtering algorithm for the SOFTSEQUENCE

constraint. A pseudocode for a network flow-basedDC algorithm for the SOFTSEQUENCE

constraint is shown as Algorithm 4.5.

Theorem 4.9 Algorithm 4.5 enforces domain consistency on the variablesX of

the SOFTSEQUENCE constraint and bounds consistency on the variableT in

O(n2 log n log log u) time.

Proof: By Theorem 4.8 a support for value1 (0) in D(Xi), i = 1, . . . , n exists if and only

if there exists a min cost flowf that sends (does not send) a unit flow through the edge

labelled withXi with w(f) ≤ ub(T ) by Theorem 4.8. The lower bound ofT is supported

if and only if there exists a feasible flow of cost at mostlb(T ) (line 7).



80 CHAPTER 4. THESEQUENCECONSTRAINT

Algorithm 4.5 DC propagator for the SOFTSEQUENCE

1: procedure PROPAGATORSOFTSEQUENCE(l, u, k, T, [X1 , . . . ,Xn])

2: ConstructG(V,E).

3: Construct min cost flowf .

4: if w(f) > ub(T ) then

5: return Failure.

6: else

7: D(Ti) = D(Ti) \ [− inf, w(f)− 1]

8: Find all pairs shortest paths inGf = (V,Ef ).

9: for i← 1 to n do

10: Let eXi
= (Vi, Vj) be the edge that corresponds to the variableXi in G.

11: Letwi,j be the weight of the shortest path fromVi to Vj in Gf .

12: if f(eXi
) = 0 andw(f)− wj,i + w(eXi

) > ub(T ) then

13: D(Xi) = D(Xi) \ {0}

14: if f(eXi
) = 1 andw(f) + wi,j −w(eXi

) > ub(T ) then

15: D(Xi) = D(Xi) \ {1}

16: return True.

A min cost flowf in the graphG = (V,E) gives a support for the lower bound of the

variableT . Moreover, it gives a support for one of values of each variable (line 4).

If f(eXi
) pushes a unit of flow through the edgeeXi

then the value1 is supported

otherwise the value0 is supported. Suppose thatf(eXi
) = 0. (The casef(eXi

) = 1 is

similar). To find support forXi = 0 we have to find a min cost flowf ′ such thatf ′(eXi
) = 0

and make sure thatw(f ′) ≤ ub(T ) (line 12). Hence, by Theorem 2.1, we need to find the

weightwj,i of a shortest path fromVj to Vi in the residual graphGf . We also have to make

sure that if we redirect the flow through the edgeeXi
the weight of the min cost flow is less

thanlb(T ), so thatw(f)− w(eXi
) + wj,i ≤ ub(T ),

Complexity argument: The minimal cost flow in a graph can be found in

O(|V ||E| log logU log |V |C) = O(n2 log n log log u) time [AMO93] (line 4). All

pairs shortest path algorithm on the residual graph takesO(n2 log n) time using John-

son’s algorithm [CLRS01](line 8). The loop 9–15 takesO(n) time. This gives an

O(n2 log n log log u) time complexity to enforceDC on SOFTSEQUENCE. ⋄.

Example 4.15 Consider how Algorithm 4.5 works on the running example 4.14. We sup-

pose that the first three variables are fixed to the value one,X1 = X2 = X3 = 1. A min
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Figure 4.14 A flow graph for SEQUENCE(1, 2, 3, T, [1, 1, 1,X4 ,X5,X6]), T = [0, 1].
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Figure 4.15 The residual graph for the flow at Figure 4.14
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cost flow in the corresponding graph is shown in Figure 4.3 (gray dashed edges). Note that

the cost of the flow is1 as the firstAMONG constraint is violated by one unit. Hence, the

lower bound of the variableT has to be changed to1.

The residual graph that corresponds to the flow in Figure 4.14is shown in Fig-

ure 4.15(a). The reversed edges are highlighted in gray dashed.

Consider the variableX4. The min cost flowf does not send a unit of flow through the

corresponding edgeeX4 . Therefore, the value0 is supported. Consider a support for the

value1. We find the shortest path from the vertex9 to the vertex3. The weight of this path

is 1 (Figure 4.15(b), thick gray edges). If we redirect the flow through the edgeeX4 then the

min cost flow is2 which violates constraint. Therefore, the value1 can be removed form

D(X4). ⋄
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4.4.3 The SoftGEN-SEQUENCEconstraint

A soft form of the GEN-SEQUENCE constraints is a relaxation of the GEN-SEQUENCE

constraint. The soft GEN-SEQUENCE constraint takes into account by how much each

AMONG constraint is violated. The soft GEN-SEQUENCE ([X1, . . . ,Xn], [~p1, . . . , ~pm], T )

introduces a violation variableT and is defined as follow.

T ≥
m
∑

i=1

max(li −
si+ki−1
∑

j=si

Xj,

si+ki−1
∑

j=si

Xj − ui, 0) (4.23)

As before, we consider soft GEN-SEQUENCE on Boolean variables as this does not

hinder propagation to simplify notations.

Example 4.16 (Running example (SoftGEN-SEQUENCE)) Consider a relaxation of Ex-

ample 4.6. Suppose we allow to violate individualAMONG constraints but we restrict the

total number of violations to be1. Hence, the domain of the cost variableT is {0, 1}. ⋄

To express the soft GEN-SEQUENCE constraint as a linear program, we introduce

penalty variables for each inequality associated to the hard GEN-SEQUENCE, namely,Qi

andPi, i = 1, . . . ,m and minimise the sum of penalty variables. We show the reformulation

using the running example 4.16.

Minimise

4
∑

i=1

(Pi +Qi) subject to :

l ≤ X1 +X2 +X3 +Q1, −u ≤ −X1 −X2 −X3 + P1,

l ≤ X2 +X3 +X4 +Q2, −u ≤ −X2 −X3 −X4 + P2,

l ≤ X3 +X4 +X5 +Q3, −u ≤ −X3 −X4 −X5 + P3,

l ≤ X1 +X2 +X3 +X4 +X5 +Q4, −u ≤ −X1 −X2 −X3 −X4 −X5 + P4

0 ≤ Xi, −1 ≤ −Xi, 0 ≤ Qi, 0 ≤ Pi

In matrix form, this is:

Minimise

4
∑

i=1

(Pi +Qi) (4.24)

A ~X ≥ ~b, (4.25)
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A =















































1 1 1 0 0 1 0 0 0 0 0 0 0
−1 −1 −1 0 0 0 1 0 0 0 0 0 0
0 1 1 1 0 0 0 1 0 0 0 0 0
0 −1 −1 −1 0 0 0 0 1 0 0 0 0
0 0 1 1 1 0 0 0 0 1 0 0 0
0 0 −1 −1 −1 0 0 0 0 0 1 0 0
1 1 1 1 1 0 0 0 0 0 0 1 0
−1 −1 −1 −1 −1 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1















































where

~X =
(

X1,X2,X3,X4,X5, Q1, P1, . . . , Q4, P4

)

~b =
(

l,−u, l,−u, l,−u, l,−u, 0, . . . , 0,−1, . . . ,−1, 0, . . . , 0, 0, . . . , 0
)

The dual formulation of the problem is :

Maximise − bT y

AT y = ~c

y ≥ 0.

where

AT =



















1 −1 0 0 0 0 1 −1 1 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0
1 −1 1 −1 0 0 1 −1 0 1 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0
1 −1 1 −1 1 −1 1 −1 0 0 1 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0
0 0 1 −1 1 −1 1 −1 0 0 0 1 0 0 0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 −1 1 −1 0 0 0 0 1 0 0 0 0 −1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



















cT = ( 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 )

The dual problem can be transformed using row operations to obtain the consecutive

ones property on the columns of the matrix. Note that the firstfive rows of the matrix

already have the consecutive ones property. For each of the first 2 × 5 columns, one needs

to obtain ones between the last entry set to1 (−1) in the first5 columns and the single1 (−1
that can be obtained by multiplying the corresponding row by−1) under these rows. This is

done by selecting the row with a single1(−1) whose corresponding column is set to1(−1)

and adding this row to every row above until the consecutive ones property is reached on

this column. So we obtain the following matrix:
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AT =





















1 −1 0 0 0 0 1 −1 1 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0
1 −1 1 −1 0 0 1 −1 0 1 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0
1 −1 1 −1 1 −1 1 −1 0 0 1 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0
1 −1 1 −1 1 −1 1 −1 0 0 0 1 0 0 0 0 −1 0 1 −1 0 0 0 0 0 0
1 −1 1 −1 1 −1 1 −1 0 0 0 0 1 0 0 0 0 −1 1 −1 1 −1 0 0 0 0
1 −1 1 −1 1 −1 1 −1 0 0 0 0 0 0 0 0 0 0 1 −1 1 −1 1 −1 1 −1
0 −1 1 −1 1 −1 1 −1 0 0 0 0 0 0 0 0 0 0 0 −1 1 −1 1 −1 1 −1
0 0 1 −1 1 −1 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 1 −1 1 −1
0 0 0 −1 1 −1 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 −1 1 −1
0 0 0 0 1 −1 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 1 −1
0 0 0 0 0 −1 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 −1
0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1
0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1





















Using the same technique for the SEQUENCEconstraint, we obtain a system that can be

solved using a network flow algorithm. Figure 4.16 shows the flow graph for the running

example 4.16. Note that the flow graphs for the hard and soft GEN-SEQUENCEconstraints

have a very similar structure. Consider the flow graph for theGEN-SEQUENCE constraint

in the running example (Figure 4.8). It includes arcs that correspond to original variablesX

and are labelled0 or 1, i = 1, . . . , n and arcs that correspond to linear inequalities and are

labelled−l or u. The flow graph for the soft GEN-SEQUENCEconstraint contains the same

arcs for variables, however, each of the inequality arcs is split into two arcs by introducing

a node with unit demand or supply1.

This leads to a difference between the two flow graphs: the flowgraph for the

GEN-SEQUENCE constraint has zero flow circulation, while the flow graph forthe soft

GEN-SEQUENCE constraint contains a flow of valuem = 4. Note that the capacity of

each edge connecting either the source or the sink to other nodes is exactly 1. However,

the capacities of the other edges in the flow network are not bounded. Therefore, these

edges can carry several units of flow in a feasible minimum cost flow, which makes a

flow-basedDC propagator for the soft GEN-SEQUENCE constraint more computationally

expensive compared to the hard case. The flow graph for the soft GEN-SEQUENCE con-

straint hasO(n +m) nodes andO(n +m) edges. The minimal cost flow can be found in

O(|V | log |E|(|E| + |V | log |V |) = O((n + m)2 log2(n + m)) time [AMO93]. TheDC

filtering algorithm for the soft GEN-SEQUENCE constraint works exactly the same as for

the soft SEQUENCEconstraint (Section 4.4.2), except that finding all pairs ofshortest paths

is replaced with finding all pairs of minimal cost flows. Hence, the total time complexity of

the flow-basedDC filtering algorithm isO(n(n+m)2 log2(n+m)).

4.4.4 TheSLIDING SUM constraint

The SLIDING SUM constraint [BCR05] is a further generalisation of the GEN-SEQUENCE

constraint from Boolean to integer variables, which we extend to allow arbitrary windows.

1 Note that, in contrast to the soft SEQUENCEconstraint, this flow graph is not obtained by the methodology

of [HPR06].
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Figure 4.16 Network flow associated with the soft GEN-SEQUENCEconstraint posted on

the running example. The edge capacities are written in square brackets [] to differentiate

them from the edge costs. Gray edges show a possible flow in thenetwork.
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We recall the definition of the constraint. SLIDING SUM ([X1, . . . ,Xn], [~p1, . . . , ~pm]) holds

if li ≤
∑si+ki−1

j=si
Xi ≤ ui holds for1 ≤ i ≤ n− k+1 where~pi = 〈li, ui, ki, si〉 is, as with

the generalised SEQUENCE, a window.

A bounds consistency propagator for this constraint can be constructed the same way

as the propagator for the GEN-SEQUENCEconstraint. The only difference is that instead of

constraint (4.16) with right hand sides0 or 1 we have a set of constraints:

ai ≤ Xi, −bi ≤ −Xi, i = 1, . . . , n

The proof of the reformulation is identical to the proofs forthe GEN-SEQUENCEconstraint

as well as complexity guaranties.

Similarly, a bounds consistency propagator for the soft GEN-SEQUENCEconstraint can

be constructed in the same way as propagator for the GEN-SEQUENCEconstraint.
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Figure 4.17 The automaton for the Multiple SEQUENCE constraint with2 SEQUENCEs:

SEQUENCE(0, 1, 2, [X1 , . . . ,Xn], {1}) and SEQUENCE(2, 3, 3, [X1 , . . . ,Xn], {2}),
D(Xi) = {0, 1, 2}, i = 1, . . . , n
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4.4.5 The Multiple SEQUENCEconstraint

We often have multiple SEQUENCE constraints applied to the same sequence of vari-

ables. For instance, we might insist that at most 1 in 3 cars have the sun roof option

and simultaneously that at most 2 in 5 of those cars have electric windows. We propose

an encoding for enforcing domain consistency on the conjunction of m such SEQUENCE

constraints (we shall refer to this asMR). Suppose that thejth such constraint is

SEQUENCE(lj , uj , kj , [X1, . . . ,Xn], vj). For simplicity, we suppose that the values being

counted are disjoint. The extension to the non-disjoint case is straightforward but notation-

ally messy. We channel into a new sequence of variablesYi whereYi = j if Xi ∈ vj else

Yj = 0. We now construct an automaton whose states record the lastk′ − 1 values used

wherek′ is the largestkj . Transitions of the automaton ensure that all SEQUENCE con-

straints are satisfied. Therefore, domain consistency can be enforced using the REGULAR

constraint inO(nmk′−1) time. The automaton for the Multiple SEQUENCEconstraint with

2 SEQUENCEs is presented in Figure 4.17.

Next we show that enforcing even bounds consistency of the Multiple SEQUENCEcon-

straint is NP-hard.

Theorem 4.10 EnforcingBC on the MultipleSEQUENCEconstraint isNP -hard.

Proof: We do a reduction from a 1-in-3SATproblem on positive clauses. The decision 1-

in-3 SATproblem is to decide whether there exists a satisfying assignment for aSATformula

over positive literals such that there is exactly one true literal in each clause.

Consider a problem φ(X) with N variables and M clauses. The

Multiple SEQUENCE constraint has 2NM integer variables with do-

mains {0, 1, 2, 3}. The Multiple Sequence constraint consists of three
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SEQUENCE constraints: SEQUENCE(N,N, 2N, [X1, . . . ,X2NM ], {1, 2}),
SEQUENCE(0, 1, N, [X1, . . . ,X2NM ], {2}) and SEQUENCE(M,M, 2NM,

[X1, . . . ,X2NM ], {2}). The sequence of variables includesM blocks of length

2N . The firstN variables of a block of2N variables represent an assignment and the

secondN variables are dummy variables. IfXi, i = 1, . . . , N equals1 or 2 then theith

Boolean variable is true, otherwise the Boolean variable isfalse.

Each block of2N variables corresponds to a clause. Let thejth clause bex1 ∨ x4 ∨
x5. Then domains of variablesX2N(j−1)+i = {0, 1}, i = (1, . . . , 2N) ∧ (i /∈ {1, 4, 5}).
X2N(j−1)+i = {2, 3}, i ∈ {1, 4, 5}.

The first SEQUENCEconstraint ensures that there is a sliding assignment alongthe se-

quence of variables. If a variableXi takes value1 or 2 in the first block thenXi+2Nj takes

value1 or 2 in the jth block, j = 1, . . . ,M . If a variableXi takes value0 or 3 in the

first block thenXi+2Nj takes value0 or 3 in the jth block, j = 1, . . . ,M . The second

SEQUENCEconstraint ensures that at most one variable in each block takes value2 and the

third SEQUENCEconstraint forces at least one variable in each block to takevalue2. There-

fore there is exactly one variable in each block that takes value 2. Consecutively, the only

Boolean variable in each clause takes the value true. The Multiple SEQUENCEconstraint is

bounds consistent if φ(X) has a satisfying assignment.⋄

4.5 Other related work

The SEQUENCEconstraint was introduced by Beldiceanu and Contejean [BC94]. In addi-

tion to the domain consistency algorithm for the SEQUENCEconstraint that we described in

Sections 4.2.1– 4.2.2, several incomplete algorithms havebeen proposed. Beldiceanu and

Carlsson suggested a greedy filtering algorithm for the CARDPATH constraint that can be

used to propagate the SEQUENCEconstraint [BC01]. Regin and Puget proposed a filtering

algorithm for the Global Sequencing constraint (GSC) that combines a SEQUENCE and a

global cardinality constraint (GCC) [RP97]. Regin decomposed GSC into a set of variable

disjoint AMONG and GCC constraints [Reg05]. This encoding is equivalent tothe AD

decomposition if we use it to propagate the SEQUENCEconstraint.

4.6 Experimental results

To compare the performance of the different algorithms and encodings, we carried out a

number of experiments. Our setup is similar to the set up in [HPRS] and consists of two
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sets of experiments. The first series of experiments is on a single SEQUENCE constraint.

The aim of these experiments to test ‘pure’ speed of the filtering algorithms and decom-

positions. Hence, we randomly generated instances so we could control the parameters

precisely. The second series of experiments uses nurse rostering benchmarks to test more

realistic situations. The aim of these experiments is to test an interaction of the SEQUENCE

constraint with other constraints.

Experiments were run with ILOG Solver 6.1 on an Intel Pentium4 CPU 3.20Ghz, 1G

RAM. Boost graph library version1.34.1 was used to implement incremental flow-based al-

gorithms for the SEQUENCEand SOFTSEQUENCEconstraints. The current flow was stored

in a set of backtrackable integers provided by ILOG solver. On each backtrack we have to

update the current network flow in the Boost data structure that represents the flow graph.

This introduces a linear overhead on backtracking. Note that this overhead can be avoided

if we implement backtrackable data-structures for graphs and implement network flow al-

gorithms using these date-structures..

We recall that Table 4.1 gives a summary of the decompositions and filtering algorithms

for the SEQUENCEconstraint that we consider in these experiments.

4.6.1 Random instances

For each possible combination ofn ∈ {100, 250, 500, 1000, 3000, 5000, 6000}, k ∈
{7, 15, 50}, ∆ = u − l ∈ {1, 3, 5}, we generated twenty instances with random lower

bounds in the interval[0, k − ∆). We used random value and variable orderings and a

time-out of 300 sec. Results for different values of∆ are presented in Tables 4.2- 4.3 for

n ∈ {100, 250, 500, 1000, 3000, 5000, 6000}. For all experimental results we show the

number of solved instances and cpu time averaged by the number of solved instances in

seconds. Note that in the summary part of all tables we show the average time and the

average number of backtracks over solved instances only.

Results for different values of∆ are presented in Figures 4.18–4.19 for all values ofn.

We compare6 algorithms and decompositions for the SEQUENCEconstraint.

Instances can be partitioned into 2 groups based on the hardness of the instance. In

the first group∆ = 1. On these instances, assignment of one variable has a strongimpact

on other variables. In the extreme case when∆ = 0 instantiation of one variable assigns

on average anothern/k variables. So, from a theoretical point of view, we expect DC

propagators to significantly shrink variable domains and reduce the search tree. As can be

seen from Table 4.2,DC propagators outperform non-DC propagators. Surprisingly,CS
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Table 4.2: Randomly generated instances with a single SEQUENCEconstraint and∆ = 1. Number of instances solved in 300 sec / average time to solve.

n k PS HPRS AD LG CS FB

100 7 20 / 0.01 20 / 0.01 20 / 14.05 20 / 0.00 20 / 0.00 20 / 0.01

15 20 / 0.04 20 / 0.01 16 / 9.21 17 / 4.47 20 / 0.00 20 / 0.01

50 20 / 1.47 20 / 0.01 18 / 17.01 18 / 4.71 20 / 0.00 20 / 0.01

250 7 20 / 0.02 20 / 0.05 14 / 0.66 18 / 1.68 20 / 0.03 20 / 0.08

15 20 / 0.12 20 / 0.05 3 / 0.04 4 /0 20 / 0.02 20 / 0.08

50 20 / 5.06 20 / 0.05 4 / 11.85 4 / 0.33 20 / 0.02 20 / 0.07

500 7 20 / 0.04 20 / 0.35 8 / 2.20 12 / 4.14 20 / 0.13 20 / 0.30

15 20 / 0.30 20 / 0.31 6 / 0.01 6 / 0.01 20 / 0.09 20 / 0.30

50 20 / 15.86 20 / 0.26 2 / 0.03 2 / 0.01 20 / 0.07 20 / 0.28

1000 7 20 / 0.09 20 / 2.36 4 / 0.01 4 / 0.02 20 / 0.71 20 / 1.18

15 20 / 0.64 20 / 2.06 2 / 0.59 3 / 0.02 20 / 0.38 20 / 1.17

50 20 / 28.47 20 / 1.48 1 /0 1 /0 20 / 0.28 20 / 1.14

3000 7 20 / 0.35 20 / 64.04 3 / 0.07 8 / 0.08 20 / 15.14 20 / 10.44

15 20 / 2.24 20 / 51.04 1 /0 1 /0 20 / 5.49 20 / 11.90

50 0 /0 20 / 35.48 0 /0 0 /0 20 / 2.61 20 / 10.12

5000 7 20 / 0.66 15 / 262.17 1 /0 8 / 0.20 20 / 64.05 20 / 36.09

15 20 / 3.76 17 / 211.17 0 /0 1 /0 20 / 24.46 20 / 34.59

50 0 /0 19 / 146.63 0 /0 0 /0 20 / 8.24 20 / 31.66

6000 7 20 / 0.87 0 /0 0 /0 2 / 0.25 20 / 95.64 20 / 55.56

15 20 / 4.35 5 / 280.15 0 /0 0 /0 20 / 36.83 20 / 50.09

50 0 /0 12 / 193.41 0 /0 0 /0 20 / 12.54 20 / 47.73

TOTALS

solved/total 360 /420 368 /420 103 /420 129 /420 420 /420 420 /420

avg time for sol 3.576 46.688 7.867 1.900 12.700 13.943

avg bt for sol 0 0 208033 38993 378 0
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Table 4.3: Randomly generated instances with a single SEQUENCEconstraint and∆ = 3. Number of instances solved in 300 sec / average time to solve.

n k PS HPRS AD LG CS FB

100 7 20 / 0.01 20 / 0.00 20 / 0.00 20 / 0.00 20 / 0.01 20 / 0.02

15 20 / 0.04 20 / 0.00 17 / 0.00 19 / 0.07 20 / 0.01 20 / 0.02

50 20 / 1.49 20 / 0.00 19 / 1.37 19 / 0.00 20 / 0.01 20 / 0.01

250 7 20 / 0.02 20 / 0.04 20 / 0.00 20 / 0.00 20 / 0.08 20 / 0.10

15 20 / 0.13 20 / 0.05 18 / 0.01 19 / 0.01 20 / 0.05 20 / 0.10

50 20 / 5.18 20 / 0.04 1 /0 3 / 0.01 20 / 0.03 20 / 0.09

500 7 20 / 0.04 20 / 0.27 20 / 0.01 20 / 0.01 20 / 0.55 20 / 0.37

15 20 / 0.32 20 / 0.45 17 / 0.01 20 / 0.01 20 / 0.26 20 / 0.37

50 20 / 13.04 20 / 0.29 2 / 0.02 2 / 0.02 20 / 0.13 20 / 0.36

1000 7 20 / 0.10 20 / 2.19 20 / 0.02 20 / 0.03 20 / 3.83 20 / 1.48

15 20 / 0.73 20 / 2.69 15 / 0.02 16 / 0.03 20 / 1.98 20 / 1.45

50 20 / 24.37 20 / 2.57 5 / 0.05 6 / 0.04 20 / 0.60 20 / 1.42

3000 7 20 / 0.41 20 / 51.08 20 / 0.12 20 / 0.15 20 / 105.78 20 / 13.43

15 20 / 2.42 20 / 73.55 9 / 0.16 14 / 0.18 20 / 41.74 20 / 13.00

50 0 /0 20 / 59.02 3 / 0.19 3 / 0.17 20 / 6.93 20 / 12.91

5000 7 20 / 0.81 14 / 201.29 20 / 0.31 20 / 0.34 6 / 144.07 20 / 38.47

15 20 / 3.42 13 / 235.41 11 / 0.31 14 / 0.39 12 / 139.79 20 / 39.02

50 0 /0 13 / 213.87 0 /0 1 /0 20 / 32.16 20 / 37.79

6000 7 20 / 1.06 0 /0 20 / 0.46 20 / 0.54 5 / 283.36 20 / 59.77

15 20 / 4.02 0 /0 6 / 0.47 7 / 0.50 7 / 150.46 20 / 57.56

50 0 /0 5 / 232.23 5 / 0.69 5 / 0.61 20 / 46.43 20 / 55.84

TOTALS

solved/total 360 /420 345 /420 268 /420 288 /420 370 /420 420 /420

avg time for sol 3.200 39.608 0.214 0.137 26.550 15.884

avg bt for sol 0 0 1133 117 493 0
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Table 4.4: Randomly generated instances with a single SEQUENCEconstraint and∆ = 5. Number of instances solved in 300 sec / average time to solve.

n k PS HPRS AD LG CS FB

100 7 20 / 0.00 20 / 0.00 20 / 0.00 20 / 0.00 20 / 0.01 20 / 0.02

15 20 / 0.05 20 / 0.00 20 / 0.00 20 / 0.00 20 / 0.01 20 / 0.02

50 20 / 1.44 20 / 0.01 20 / 0.00 20 / 0.00 20 / 0.01 20 / 0.01

250 7 20 / 0.02 20 / 0.02 20 / 0.00 20 / 0.00 20 / 0.09 20 / 0.12

15 20 / 0.13 20 / 0.04 20 / 0.01 20 / 0.01 20 / 0.10 20 / 0.11

50 20 / 4.92 20 / 0.06 17 / 0.01 17 / 0.01 20 / 0.03 20 / 0.11

500 7 20 / 0.04 20 / 0.15 20 / 0.01 20 / 0.01 20 / 0.58 20 / 0.44

15 20 / 0.35 20 / 0.25 20 / 0.01 20 / 0.01 20 / 0.69 20 / 0.45

50 20 / 12.06 20 / 0.37 18 / 0.02 19 / 0.02 20 / 0.20 20 / 0.42

1000 7 20 / 0.09 20 / 0.99 20 / 0.03 20 / 0.03 20 / 4.33 20 / 1.70

15 20 / 0.64 20 / 1.83 20 / 0.03 20 / 0.04 20 / 4.68 20 / 1.70

50 20 / 30.14 20 / 2.73 10 / 0.05 9 / 0.05 20 / 1.24 20 / 1.69

3000 7 20 / 0.41 20 / 23.85 20 / 0.14 20 / 0.16 20 / 104.68 20 / 14.96

15 20 / 2.53 20 / 44.67 20 / 0.16 20 / 0.20 20 / 125.11 20 / 15.21

50 0 /0 20 / 66.61 5 / 0.29 7 / 0.31 20 / 22.73 20 / 14.61

5000 7 20 / 0.85 20 / 109.18 20 / 0.36 20 / 0.42 0 /0 20 / 46.42

15 20 / 4.15 17 / 215.97 20 / 0.36 20 / 0.47 6 / 160.99 20 / 45.97

50 0 /0 11 / 210.53 9 / 0.48 10 / 0.46 20 / 108.34 20 / 44.88

6000 7 20 / 1.08 20 / 185.73 20 / 0.50 20 / 0.55 0 /0 20 / 74.01

15 20 / 4.90 6 / 281.65 20 / 0.51 20 / 0.63 3 / 152.83 20 / 70.70

50 0 /0 10 / 254.33 5 / 0.57 6 / 0.65 18 / 181.74 20 / 69.84

TOTALS

solved/total 360 /420 384 /420 364 /420 368 /420 347 /420 420 /420

avg time for sol 3.544 49.350 0.144 0.169 35.020 19.209

avg bt for sol 0 0 1 1 769 0
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has the best time of all combinations and solved all instances up to the size of the sequence

3000. After that CS loses toPS or FB algorithms. Whilst it takes more backtracks

compared to theDC propagators which solve problems without search, it is muchfaster.

ThePS algorithm is faster compared to otherDC algorithms on instances with smallk and

much slower on instances with largerk ≥ 50. Moreover, its relative performance decays

for largerk’s. TheFB algorithm performs better compared to theHPRS algorithm and it

scales better. It is also the only propagator that solves allinstances forδ ∈ {1, 3, 5}. The

AD andLG decompositions do not perform well on these instances. Theycannot solve

most of the benchmarks especially for large values ofn. Note that theLG decomposition

performs slightly better compared to theAD decomposition.

In the second group∆ ≥ 3. On these instances, assignment of one variable does not

have a big influence on other variables. The overhead of usingDC propagators to achieve

better pruning outweighs the reduction in the search space.For the instance∆ = 3, theDC

propagators still outperform the non-DC propagators on large values ofn or k. The clear

winner in the∆ = 5 case are those propagators which do not achieveDC. Whenk ≤ 15

AD is best. Whenk gets larger,LG solves more instances and works faster due to its better

propagation.

It should be noted that theFB propagator is not the fastest one but has the most robust

performance. It is sensitive only to the value ofn and not to other parameters, like the length

of the window(k) or hardness of the problem(∆). As can be seen from Figure 4.18- 4.19,

theFB propagator scales better than the other propagators with the size of the problem. It

appears to grow quadratically with the number of variables,while theHPRS propagator

displays cubic growth.

We do not present the results for theLO decomposition in this section because the size

of the automaton fork ∈ {15, 50} is too large.

4.6.2 Nurse Rostering Problems

All instances are taken fromhttp://www.projectmanagement.ugent.be/

nsp.php. The basic model includes the following three constraints:each shift has a mini-

mum required number of nurses, each nurse should have at least 12 hours of break between

2 shifts, each nurse should have at least two consecutive days on any shift. In addition, each

model has an additional SEQUENCE constraint that is specified in the first column in the

table of results. For each day in the scheduling period, a nurse is assigned to a day (D),

evening (E), or night (N) shift or takes a day-off (O). We introduce one variableX[i, j] for



4.6. EXPERIMENTAL RESULTS 93

Figure 4.18 Randomly generated instances with a single SEQUENCEconstraints for differ-

ent combinations of∆ = {1, 3} andk.
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each nurse,i = 1 . . . p and each day,j = 1 . . . n, wherep is the number of nurses,n is

the number of days in the scheduling period. Each model was run on 50 instances. The

scheduling period is 28 days. The number of nurses in each instance was set to the maximal

number of nurses required for any day over the period of 28 days. The time limit for all
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Figure 4.19 Randomly generated instances with a single SEQUENCEconstraint for differ-

ent combinations of∆ = {5} andk.
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instances was 900 sec. For variable ordering, we branched onthe smallest domain.

Table 4.5 gives results for those instances that were solvedby each propagator. In

these experimentsn < 50. As expected from the random experiments, theAD andLG

decompositions outperform all other decompositions. The only exception are instances

with ∆ = 0 where non-DC propagators lose toDC algorithms and theCS decomposition

(third and forth rows).

4.6.3 Multiple SEQUENCE instances

We also evaluated the performance of the different propagators on problems with multiple

SEQUENCE constraints. We again used randomly generated instances and nurse rostering

problems. For each possible combination ofn ∈ {50, 100}, k ∈ {5, 7}, ∆ = 1, we gen-

erated twenty random instances of Multiple SEQUENCEwith 4 SEQUENCEs. All variables

had domains of size 5. An instance was obtained by selecting random lower bounds in

the interval[0, k − ∆]. We excluded instances where
∑m

i=1 li ≥ k to avoid unsatisfiable

instances. We used a random variable and value ordering, anda time-out of 300 sec. All

SEQUENCEconstraints were enforced on disjoint sets of cardinality one.

Experimental results are presented in Table 4.6. They show that the multiple

SEQUENCEpropagator significantly outperforms other propagators onrandom benchmarks
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Table 4.5: Models of the nurse rostering problem using the SEQUENCEconstraint. Number of instances solved in 900 sec / average time to solve.

SEQUENCE PS LO HPRS AD LG CS FB

(1, 3, 3, {O}) 46 / 7.78 46 / 9.06 46 / 9.74 46 / 7.59 46 / 7.66 39 / 50.32 46 / 22.47

(3, 5, 5, {O}) 48 / 10.02 48 / 8.97 48 / 13.58 48 / 8.00 48 / 7.61 39 / 46.49 48 / 32.91

(2, 2, 5, {O}) 46 / 8.41 46 / 7.78 46 / 17.33 41 / 13.87 41 / 14.07 44 / 32.75 44 / 36.47

(2, 2, 7, {O}) 23 / 132.47 24 / 100.27 21 / 56.71 18 / 18.46 18 / 18.27 19 / 25.98 21 / 176.50

(2, 3, 5, {O}) 26 / 38.98 26 / 44.83 27 / 67.13 28 / 74.02 28 / 75.30 22 / 84.40 25 / 49.23

(2, 5, 7, {O}) 12 / 18.07 12 / 17.64 13 / 78.03 13 / 70.28 13 / 72.20 12 / 13.70 12 / 22.25

(1, 3, 4, {O}) 26 / 53.93 25 / 30.73 26 / 53.50 26 / 44.53 26 / 46.12 20 / 38.36 24 / 24.49

TOTALS

solved/total 227 /350 227 /350 227 /350 220 /350 220 /350 195 /350 220 /350

avg time for solved 30.418 25.362 32.186 26.263 26.680 43.582 45.501

avg bt for solved 104949 92401 149198 175855 175855 192618 42562
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Table 4.6: Randomly generated instances with 4 SEQUENCEconstraints and∆ = 1. Number of instances solved in 300 sec / average time to solve.

n k MR PS HPRS AD LG CS FB LO

50 5 20 / 0.04 13 / 15.68 13 / 22.40 13 / 15.09 13 / 9.78 1 /0 11 / 40.14 13 / 18.93

7 20 / 0.56 6 / 19.50 6 / 14.64 7 / 14.69 7 / 5.98 1 /0 5 / 6.39 6 / 15.37

100 5 20 / 0.39 0 /0 0 /0 0 /0 0 /0 0 /0 0 /0 0 /0

7 20 / 1.36 2 / 0.03 2 / 0.03 2 / 29.50 2 / 1.56 1 /0 2 / 0.05 2 / 0.02

TOTALS

solved/total 80 /80 21 /80 21 /80 22 /80 22 /80 3 /80 18 /80 21 /80

avg time for sol 0.589 15.280 18.051 16.270 7.824 0 26.307 16.110

avg bt for sol 0 115758 115758 305610 152058 0 26923 115758
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in both metrics, namely time to find a valid sequence and the number of solved instances.

For bigger values ofn, the multiple SEQUENCE is the only filtering algorithm that success-

fully solved all instances. However, it should be noted that, due to its space complexity, to

use this propagator successfully,k andm should be relatively small andn should be less

than100.

In the second series of experiments we used nurse schedulingproblems benchmarks.

We removed the last constraint from the basic model described in the previous section and

added two sets of SEQUENCEconstraints to give two different models. In the first model,

each nurse has to work one or two night shifts in 7 consecutivedays, one or two evening

shifts, one to five day shifts and have two to five days-off. In the second model, each nurse

has to work one or two night shifts in 7 consecutive days, and have one or two days-off in 5

days. In order to measure the performance of the Multiple SEQUENCEconstraint on large

problems, we built a schedule over a 28 day period. The numberof nurses was equal to

maximal number of nurses required for any day over the periodmultiplied by 1.5. The total

number of variables in an instance is about500. Table 4.7 shows the number of instances

solved by each propagator. The multiple SEQUENCE propagator solved more instances

compared to the other propagators.

4.6.4 The SoftSEQUENCEconstraint

We evaluated performance of the soft SEQUENCEconstraint on random problems. For each

possible combination ofn ∈ {50, 100}, k ∈ {5, 15, 25}, ∆ = {1, 5} andm ∈ {4} (where

m is the number of SEQUENCE constraints), we generated twenty random instances the

same way as in Section 4.6.3. Instances with this set of parameters are hard instances for

SEQUENCEpropagators as less than 22% of instances were solved by any of domain con-

sistency propagators. To relax these instances, we allow violating the SEQUENCEconstraint

with a cost that has to be less than or equal to15% of the length of the sequence. Experi-

mental results are presented in Table 4.8. As can be seen fromthe table, theFBS algorithms

is competitive with the decomposition into soft AMONG constraints on easy problems and

outperforms the decomposition on hard problems.

We observed that theFBS propagator is very slow for the soft SEQUENCEconstraint.

Note that the number of backtracks ofFBS is three orders of magnitude smaller compared

toADS . We profiled the algorithm and found that it spends most of thetime performing the

all pairs shortest path algorithm. Unfortunately, this is difficult to compute incrementally

because the residual graph can be different on every invocation of the propagator.
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Table 4.7: Models of the nurse rostering problem using the SEQUENCEconstraint. Number of instances solved in 300 sec / average time to solve.

MR PS HPRS AD LG CS FB LO

Model 1 10 / 12.91 4 / 10.00 4 / 6.26 4 / 5.20 5 / 60.48 5 / 52.20 4 / 27.09 4 / 11.22

Model 2 8 / 5.66 4 / 0.07 4 / 0.04 4 / 0.03 4 / 0.03 4 / 0.03 4 / 0.08 4 / 0.08

TOTALS

solved/total 18 /100 8 /100 8 /100 8 /100 9 /100 9 /100 8 /100 8 /100

avg time for sol 9.69 5.03 3.15 2.61 33.61 29.02 13.59 5.65

avg bt for sol 16628 30696 30696 30232 413227 413510 30696 30689
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Table 4.8: Randomly generated instances with 4 soft SEQUENCEs. Number of instances solved in 300 sec / average time to solve.

∆ = 1 ∆ = 5

n k ADS FBS ADS FBS

50 7 6 / 19.30 7 / 27.91 20 / 0.01 20 / 2.17

15 8 / 36.07 13 / 20.41 11 / 49.49 10 / 30.51

25 6 / 0.73 10 / 23.27 10 / 6.40 10 / 7.41

100 7 1 /0 3 / 7.56 19 / 10.50 18 / 16.51

15 0 /0 5 / 6.90 3 / 0.01 3 / 7.20

25 0 /0 5 / 4.96 5 / 19.07 5 / 23.99

TOTALS

solved/total 21 /120 43 /120 68 /120 66 /120

avg time for solved 19.463 18.034 13.286 13.051

avg bt for solved 245245 343 147434 128
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4.7 Conclusions

The SEQUENCEconstraint is useful in modelling a range of rostering, scheduling and car

sequencing problems. We proved that down the whole branch ofa search tree domain

consistency can be enforced on the SEQUENCEconstraint in justO(n2) time using a refor-

mulation into a network flow problem. This improves upon the previous bound ofO(n3)

for each call down the branch [HPRS]. We also introduced a soft version of the SEQUENCE

constraint and proposed anO(n2 log n log log u) time domain consistency algorithm based

on minimum cost network flows. We proposed domain consistency algorithms for several

generalisations of the SEQUENCE constraint, including GEN-SEQUENCE, SLIDING SUM

and soft versions of these constraints. To propagate the SEQUENCEconstraint, we also in-

troduced six new encodings, some of which do not hinder propagation. Our experiments on

random and nurse scheduling benchmarks suggest that, on very large and tight problems,

the domain consistency algorithms and decompositions mostly outperform incomplete de-

compositions. However, on smaller or looser problems much simpler encodings are better,

even though these encodings hinder propagation. Experimental results also demonstrate

that theFB filtering algorithm is more robust than existing propagators. This also suggests

that we can construct a portfolio-based algorithm for the SEQUENCE constraint that, de-

pending on the looseness of the constraint, can invoke the best encoding. When there are

multiple SEQUENCE constraints, especially when we are forcing values to occur, a more

expensive propagator shows promise. We also showed that ourflow-based domain con-

sistency propagator for the soft SEQUENCE constraint outperforms a decomposition into

AMONG constraints.



Chapter 5

The GRAMMAR constraint

5.1 Introduction

An attractive mechanism to specify global constraints in rostering and other domains is

using formal languages. For instance, we might need to produce an optimum schedule for

a company that is subject to various regulation rules, e.g. an employee can work at most

two consecutive night shifts or must have two days-off per week. One way to encode rules

of this type is to represent them with a finite automaton. Pesant [Pes04] introduced the

REGULAR constraint that specifies that an assignment of a sequence ofvariables forms a

string from a regular language .

Definition 5.1 The constraintREGULAR(A, [X1, . . . ,Xn]) is satisfied if and only ifX1 to

Xn is a string accepted by the finite automatonA.

The REGULAR constraint is widely used and is implemented in many modern constraint

solvers, as a lot of constraints can be encoded as the REGULAR constraint. However, in

modelling shift scheduling problems, a regular language might not be expressive enough

to succinctly encode regulation rules. A naive REGULAR encoding of regulation rules can

be very expensive, as the resulting automaton is very large in some cases, which leads to

large memory consumption and slows down search [QW07]. Alternatively, regulation rules

can be represented in a succinct way using the GRAMMAR constraint [Sel06, QW06], an

approach that was shown to be effective by Quimper and Walsh [QW07] and Kadioglu and

Sellmann [KS08] .

Definition 5.2 The constraintGRAMMAR ([X1, . . . ,Xn], G) is satisfied if and only ifX1 to

Xn is a string accepted by the context free grammarG [Sel06,QW06].

101
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A GRAMMAR constraint can be exponentially more succinct than the corresponding

REGULAR constraint [KNW09], but reasoning with it is significantly more expensive.

Therefore, an interesting problem is whether we can propagate the GRAMMAR constraint

more efficiently than the worst-case complexity which isO(n3|G|). In this work we inves-

tigate two different approaches to this problem.

The first approach is to reformulate a GRAMMAR constraint as a REGULAR constraint

and use existing automata minimisation algorithms to reduce the size of REGULAR. An

advantage of this approach is that if the reformulated REGULAR constraint has a reasonable

size and the minimisation algorithm is effective we obtain afast filtering algorithm for the

GRAMMAR constraint. In particular, this approach should work well for grammars that are

close to a regular grammar but this is not obvious from the representation of the grammar

in Chomsky normal form, and grammars that have external constraints, like a restriction

on the length of a derivation from some non-terminals. A disadvantage of this approach is

that the reformulation might increase exponentially the size of problem specification so that

we will not be able to complete our reformulation procedure in the worst case. Therefore,

another challenge here is to predict the size of the resulting REGULAR constraint to avoid

running into the worst case scenario. We investigate this direction in Section 5.3.

The second approach is to impose some restrictions on the context-free grammarG

in the specification of the GRAMMAR constraint so thatG is strictly between regular and

context-free grammars in the Chomsky hierarchy. A large body of work in formal language

theory considers these subclasses of grammars. Several restricted forms of context-free

grammars have been proposed that permit linear parsing algorithms whilst being more ex-

pressive than regular grammars. Examples of such grammars are LL(k), LR(1), and LALR.

Such grammars play an important role in compiler theory and pattern recognition. For in-

stance, yacc generates parsers that accept LALR languages.Therefore, we might expect

that using these restricted classes leads to a more efficientfiltering algorithm. This idea is

investigated in Section 5.4.

Another direction that we investigate in the chapter is whether we can extend the

GRAMMAR constraint to model over-constrained problems and problems with preferences.

For instance, in some problems we might need to express a relaxed version of regulation

rules, like an employee works without a break during a day or works extra hours. In this case

an employee is paid at a higher rate. The goal in this type of problems is to find a schedule

that minimises the overall additional expenses. To expressthese restrictions we introduce a

generalisation of the GRAMMAR constraint — the weighted GRAMMAR constraint.
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Definition 5.3 TheWEIGHTEDGRAMMAR (G,W, z, [X1, . . . ,Xn]) constraint, whereG is

a context-free grammar,W is a function that maps productions ofG to weights,z is a cost

variable andX1, . . . ,Xn are decision variables, holds if and only if an assignmentX forms

a string belonging to the grammarG and the minimal weight of a derivation ofX is less

than or equal toz. The weight of a string derivation is the sum of the production weights

used in the derivation.

We propose aDC filtering algorithm and a decomposition of the weighted GRAMMAR

constraint that does not hinder propagation in Section 5.5.We also show that the weighted

GRAMMAR constraint can be used to model the soft GRAMMAR constraint with Hamming

and edit distances violation measures (Section 2.3.1)

Definition 5.4 The softGRAMMAR (G, z, [X1, . . . ,Xn]) constraint holds if and only if the

string [X1, . . . ,Xn] is at most Hamming (edit) distancez from a string in the context free

grammarG.

Finally, we show that the weighted GRAMMAR constraint can be used to encode the

EDITDISTANCE constraint.

Definition 5.5 EDITDISTANCE([X1, . . . ,Xn], [Y1, . . . , Ym], N) holds if and only if the

edit distance between assignments of two sequences of variablesX and Y is less than or

equal toN .

In this chapter we make the following contributions:

• investigate the relationship between REGULAR and GRAMMAR and propose an al-

gorithm to convert the GRAMMAR constraint into the REGULAR constraint (Sec-

tions 5.3.1–5.3.3).

• propose an efficient algorithm to compute the number of states of a non-deterministic

finite automaton that is equivalent to the original GRAMMAR constraint (Sec-

tion 5.3.4).

• propose minimisation techniques for the REGULAR constraint (Sections 5.3.5–5.3.6).

• experimentally evaluate the proposed reformulations on some shift scheduling prob-

lems and show that it is often beneficial to reformulate a GRAMMAR constraint as a

REGULAR constraint on these problems (Section 5.3.7).



104 CHAPTER 5. THEGRAMMAR CONSTRAINT

• explore the gap in the Chomsky hierarchy between regular andcontext-free grammars

to identify grammar classes which can or cannot be propagated more efficiently than

context-free grammars (Section 5.4).

• introduce weighted and soft GRAMMAR constraints and propose domain consistency

propagators for these constraints (Section 5.5.1 and Section 5.5.3).

• propose a decomposition of the weighted GRAMMAR constraints into set of bounded

arity constraints (Section 5.5.2).

• propose an encoding of the EDITDISTANCE constraint into the linear weighted

GRAMMAR constraints (Section 5.5.4).

• experimentally evaluate the proposed propagators and decompositions on some shift

scheduling problems (Section 5.5.6).

5.2 Dynamic programming based algorithms

In this section we present an overview of existing algorithms for the GRAMMAR constraint.

We start by reviewing a domain consistency algorithm for theGRAMMAR constraint [Sel06,

QW06]. We use the following example to illustrate the algorithm.

Example 5.1 (Running example (GRAMMAR )) As the running example we use the

GRAMMAR ([X1,X2,X3], G) constraint with domainsD(X1) = {a}, D(X2) = {a, b},
D(X3) = {b} and the grammarG in Chomsky normal form{S → AB,A → AA |
a,B → BB | b} [QW06]. The language generated byG, L(G), is all strings of the form

a+b+. ⋄

A domain consistency propagator for the GRAMMAR constraint that we consider is

based on theCYK parser for context-free grammars (Section 2.3.4). We recall that the

idea of theCYK parser is to construct, in a dynamic programming manner, a table that

represents all possible derivations of a string. The[i, j]th cell of the table contains a set of

non-terminals. From each of these non-terminals we can derive a substring of lengthj that

starts at theith position. If the[1, n]th cell of the table contains the starting non-terminal

then the string belongs to the context-free language. TheCYKalgorithm requires the input

grammar to be in Chomsky normal form.

Similarly to theCYKparser, the GRAMMAR propagator constructs all possible deriva-

tions of all possible strings that can be formed from variable domain values. The algo-

rithm has two stages. The pseudo-code is presented in Algorithm 5.1. In the first stage,
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we construct a dynamic programing tableV [i, j], i, j = 1, . . . , O(n), where an element

A of V [i, j] is a non-terminal that generates a substring over a sub-sequence of variables

[Xi, . . . ,Xi+j−1] (lines 2–8) using values from domains of these variables. For instance, a

set of strings over the sequence of variables[X1,X2] is {aa, ab}. Hence,V [1, 2] contains

all non-terminals that can generate one of these strings. The non-terminalA generates a

stringaa and the non-terminalS generates a stringab.

In the second stage, we move fromV [1, n] to the bottom of tableV . For an element

A of V [i, j], we determine whether a derivation fromA of a substring[Xi, . . . ,Xi+j−1]

can participate in a derivation of a solution[X1, . . . ,Xn] from S. If so, we markA (lines

12–17). All unmarked terminals and non-terminals can be removed from the table. Note

that if a terminala is removed from positioni then the valuea can be removed from the

domain of the variableXi (lines 18–19). The time complexity of the algorithm is domi-

nated by lines 12 – 17. We consider each non-terminal in the table and try all possible

1-step derivations from this non-terminal in a loop. There are |N | non-terminals in the

grammarG andO(n2) cells in the table. LetF (A) be the number of productions inG

with non-terminalA on the left-hand side. Then the number of 1-step derivationsfrom

each non-terminal isO(F (A)n). Therefore, the total time complexity on the propagator is

O(n2
∑

A∈N nF (A)) = O(n3|G|). Note that this is the same complexity as the complexity

of theCYKparsing algorithm (Section 2.3.4).

Example 5.2 The dynamic programming tableV produced by the propagator of the

GRAMMAR constraint for Example 5.1 is given in Figure 5.1. Figure 5.1(a) shows the

result of the first stage. Figure 5.1 (b) shows the result of the second stage after we removed

all unmarked entries from table.⋄

We call atrace in the dynamic programming tableV a parsing tree of a solution of the

GRAMMAR constraint. Figure 5.1 (b) shows all possible traces using arrows. For exam-

ple, two possible productions from the starting non-terminal S are shown as two pairs of

pointers:S → A11B21 andS → A12B31.

An alternative view of the dynamic programming table produced by this propagator

is as an AND/OR graph [QW07]. This is a layered directed acyclic graph, with layers

alternating between AND-NODES or OR-NODES. Each OR-NODE in the AND/OR graph

corresponds to an entryA ∈ V [i, j]. An OR-NODE has a child AND-NODE for each

productionA → BC so thatA ∈ V [i, j], B ∈ V [i, k] andC ∈ V [i + k, j − k]. The

children of this AND-NODE are the OR-NODES that correspond to the entriesB ∈ V [i, k]

andC ∈ V [i + k, j − k]. Note that the AND/OR graph constructed in this manner is
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Algorithm 5.1 TheCYK-based propagator for the GRAMMAR constraint

1: procedure CYK-ALG(G, z, [X1 , . . . ,Xn])

2: for i = 1 to n do

3: V [i, 1] = {A|A→ a ∈ G, a ∈ D(Xi)}

4: for j = 2 to n do

5: for i = 1 to n− j + 1 do

6: V [i, j] = ∅;
7: for k = 1 to j − 1 do

8: V [i, j] = V [i, j]∪{A|A → BC ∈ G,B ∈ V [i, k], C ∈ V [i+k, j−k]}

9: if S /∈ V [1, n] then

10: returnFALSE;

11: mark(1, n, S);

12: for j = n downto 2 do

13: for i = 1 to n− j + 1 do

14: for A such that(i, j, A) is markeddo

15: for k = 1 to j − 1 do

16: for eachA→ BC ∈ G s.t.B ∈ V [i, k], C ∈ V [i+ k, j − k] do

17: mark(i, k,B); mark(i+ k, j − k,C);

18: for i = 1 to n do

19: D(Xi) = {a ∈ D(Xi)|A→ a ∈ G, (i, 1, A) is marked};

20: returnTRUE;

equivalent to the tableV , so we use them interchangeably. Figure 5.2 shows the AND/OR

graph constructed for the tableV in the running example.

Every derivation of a strings ∈ L(G) can be represented as a tree that is a subgraph of

the AND/OR graph and therefore can be represented as a trace in V . Since every possible

derivation can be represented this way, both the tableV and the corresponding AND/OR

graph are a compilation of all solutions of the GRAMMAR constraint.

5.3 Reformulation of theGRAMMAR constraint

In this section, we investigate whether we can obtain a faster propagation algorithm for the

GRAMMAR constraint by reformulation into the REGULAR constraint. We argue that if the

reformulation does not produce a large transition relationthen we can significantly improve
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Figure 5.1 Dynamic programming table produced by the propagator of theGRAMMAR

constraint. Pointers correspond to possible derivations.

propagation speed of the GRAMMAR constraint. In addition, we can perform optimisations

such as minimising the automaton to further compress the constraint representation and, as

a result, achieve more performance gain.

In the worst case the reformulation does not give any benefitsbecause the resultingNFA

is exponentially larger then the original GRAMMAR constraint as the following example

shows.

Example 5.3 (Theorem 4 [Sel06])ConsiderGRAMMAR ([X1, . . . ,Xn], G) whereG gen-

eratesL = {wwR#vvR|w, v ∈ {0, 1}n/2}, wherewR denote the reverse ofw. Solutions
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Figure 5.2 AND/OR graph.

of GRAMMAR can be compiled into the dynamic programming table of sizeO(n3), while

the smallest equivalent NFA that accepts the same language has exponential size.

Note that the separation between regular and context free languages concerns express-

ibility only and does not immediately imply an exponential separation for finite languages.

Therefore, performing the transformation itself is not a suitable test of the feasibility

of the approach. In Section 5.3.4 we investigate whether we can compute the size of the

resulting automaton without performing the actual transformation. We propose two polyno-

mial algorithms to determine the size of the resulting automaton. The first algorithm finds

an upper bound of the size of automaton in linear time, while the second one computes the

exact size ofNFA in O(n2).

In the rest of this section we describe the reformulation in three steps. First, we convert

the GRAMMAR constraint into an acyclic grammar (Section 5.3.1). Then weconvert this

acyclic grammar into a pushdown automaton (Section 5.3.2),and finally we encode the

pushdown automaton as aNFA (Section 5.3.3). The first two steps are well known in formal

language theory but we describe them for clarity.

5.3.1 Transformation of GRAMMAR into an acyclic grammar

We first construct an acyclic grammar,Ga(Σ,H, P, S) such that the languageL(Ga) coin-

cides with solutions of the GRAMMAR constraint. We recall thatΣ is the set of terminals,

H is the set of non-terminals,P is the set of productions andS is the starting non-terminal

(Section 2.3.3). Our algorithm is based on the propagator for the GRAMMAR constraint

(Section 5.2). Given the tableV produced by the GRAMMAR constraint propagator (Sec-

tion 5.2), we construct an acyclic grammarGa in the following way. For each possible
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derivation from a non-terminalA, A → BC, such thatA ∈ V [i, j], B ∈ V [i, k] and

C ∈ V [i + k, j − k] we introduce a productionAi,j → Bi,kCi+k,j−k in Ga (lines 11–17

of Algorithm 5.2). The start symbol ofGa is S1,n. By construction, the obtained grammar

Ga is acyclic (Section 2.3.2). Every production inGa is of the formAi,j → Bi,kCi+k,j−k

and non-terminalsBi,k, Ci+k,j−k occur in rows belowjth row in V . Example 5.4 shows

the grammarGa obtained by Algorithm 5.2 on our running example.

Example 5.4 The acyclic grammarGa that corresponds to theGRAMMAR constraint in

constructed from our running example.

S1,3 → A1,2B3,1 | A1,1B2,2 A1,2 → A1,1A2,1 B2,2 → B2,1B3,1

A1,1 → a1 A2,1 → a2 B2,1 → b2 B3,1 → b3

⋄

To prove equivalence, we recall that traces of the tableV represent all possible deriva-

tions of GRAMMAR solutions. Therefore, every derivation of a solution can besimulated

by productions fromGA. For instance, consider the solution(a, a, b) of GRAMMAR from

Example 5.1. A possible derivation of this string is

S → AB →
S ∈ V [1, 3] A ∈ V [1, 2], B ∈ V [3, 1]

AAB → a1AB →
A ∈ V [1, 1], A ∈ V [2, 1], B ∈ V [3, 1] A ∈ V [2, 1], B ∈ V [3, 1]

a1a2B → a1a2b3

B ∈ V [3, 1]

We can simulate this derivation using productions inGa: S1,3 → A1,2B3,1 →
A1,1A2,1B3,1 → a1A2,1B3,1 → a1a2B3,1 → a1a2b3.

Observe that the acyclic grammarGa is essentially a labelling of the AND/OR

graph, with non-terminals corresponding to OR-NODES and productions corresponding to

AND-NODES. Thus, we use the notationGa to refer to both the AND/OR graph and the

corresponding acyclic grammar.

5.3.2 Transformation into a pushdown automaton

Given an acyclic grammarGa = (Σ,H, P, S1,n) from the previous section, we now con-

struct a pushdown automatonPa(〈S1,n〉 , Q,Σ,Σ∪H, δ,QP , FP ), where〈S1,n〉 is the initial
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Algorithm 5.2 Transformation to an Acyclic Grammar

1: procedure CONSTRUCTACYCLICGRAMMAR (in : X,G, V ; out : Ga)

2: Σ = ∅ ⊲ Σ is the set of terminals inGa

3: H = ∅ ⊲ H is the set of non-terminals inGa

4: P = ∅ ⊲ P is the set of productions inGa

5: for i = 1 to n do

6: V [i, 1] = {A|A→ a ∈ G, a ∈ D(Xi)}
7: for A ∈ V [i, 1] s.tA→ a ∈ G, a ∈ D(Xi) do

8: Σ = Σ ∪ {ai}
9: H = H ∪ {Ai,1}

10: P = P ∪ {Ai,1 → ai}

11: for j = 2 to n do

12: for i = 1 to n− j + 1 do

13: for eachA ∈ V [i, j] do

14: for k = 1 to j − 1 do

15: for eachA→ BC ∈ G s.t.B ∈ V [i, k], C ∈ V [i+ k, j − k] do

16: H = H ∪ {Ai,j, Bi,k, Ci+k,j−k}
17: P = P ∪ {Ai,j → Bi,kCi+k,j−k}

stack ofPa, Σ is the alphabet,Σ∪H is the set of stack symbols,δ is the transition function,

Q = QP = FP = {qP } is the single initial and accepting state (Section 2.3.3). We use

an algorithm that encodes a context free grammar into a pushdown automaton (PDA) that

computes the leftmost derivation of a string [HU90]. The stack maintains the sequence of

symbols that are expanded in this derivation. At every step,thePDA non-deterministically

uses a production of the grammar to expand the top symbol of the stack if it is a non-

terminal, or consumes a symbol of the input string if it matches the terminal at the top of

the stack.

We now describe this reformulation in detail. There exists asingle stateqP which is

both the starting and an accepting state. For each non-terminalAi,j in Ga we introduce the

set of transitionsδ(qP , ε, Ai,j) = {(qP , β)|Ai,j → β ∈ Ga}. For each terminalai ∈ Ga,

we introduce a transitionδ(qP , ai, ai) = {(qP , ε)}. The automatonPa accepts on the empty

stack. This constructs a pushdown automaton acceptingL(Ga).
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Example 5.5 The pushdown automatonPa constructed for the running example.

δ(qP , ε, S1,3) = (qP , A1,2B3,1) δ(qP , ε, S1,3) = (qP , A1,1B2,2)

δ(qP , ε, A1,2) = (qP , A1,1A2,1) δ(qP , ε, B2,2) = (qP , B2,1B3,1)

δ(qP , ε, A1,1) = (qP , a1) δ(qP , ε, A2,1) = (qP , a2)

δ(qP , ε, B2,1) = (qP , b2) δ(qP , ε, B3,1) = (qP , b3)

δ(qP , ai, ai) = (qP , ε)∀i ∈ {1, 2} δ(qP , bi, bi) = (qP , ε)∀i ∈ {2, 3}

⋄

5.3.3 Transformation into aNFA

Finally, we construct anNFA(Σ, Q,Q0, F0, σ), denotedNa, using thePDA from the last

section. States of thisNFA encode all possible configurations of the stack of thePDA that

can appear in parsing a string fromGa. To reflect that a state of theNFA represents a stack,

we write states as sequences of symbols〈α〉, whereα is a possibly empty sequence of sym-

bols andα[0] is the top of the stack. For example, the initial state is〈S1,n〉 corresponding

to the initial stack〈S1,n〉 of Pa. Algorithm 5.3 unfolds thePDA in a similar way to unfold-

ing theDFA. Note that theNFA accepts only strings of lengthn and has the initial state

Q0 = 〈S1,n〉 and the single final stateF0 = 〈〉.

We start from the initial stack〈S1,n〉 and find all distinct stack configurations that are

reachable from this stack using transitions fromPa. For each reachable stack configura-

tion we create a state in theNFA and add the corresponding transitions. If the new stack

configurations are the result of expansion of a production inthe original grammar, these

transitions areε−transitions, otherwise they consume a symbol from the inputstring. Note

that if a non-terminal appears on top of the stack and gets replaced, then it cannot appear

in any future stack configuration due to the acyclicity ofGa. Therefore|α| is bounded by

O(max(|Ga|, n)) and Algorithm 5.3 terminates. The size ofNa is O(|Ga|n) in the worst

case. The automatonNa that we obtain before line 21 is an acyclicNFAwith ε transitions. It

accepts the same language as thePDAPa since every path between the starting and the final

state ofNA is a trace of the stack configurations ofPa. Figure 5.3(a) shows the automaton

Na with ε-transitions constructed from the running example. After applying theε-closure

operation, we obtain a layeredNFA that does not haveε transitions (line 21) (Figure 5.3(b)).
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Algorithm 5.3 Transformation toNFA

1: procedure PDA TO NFA(in : Pa, out : Na)

2: Qu = {〈S1,n〉} ⊲ Qu is the set of unprocessed states

3: Q = ∅ ⊲ Q is the set of states inNa

4: σ = ∅ ⊲ σ is the set of transitions inNa

5: Q0 = {〈S1,n〉} ⊲ Q0 is the initial state inNa

6: F0 = {〈〉} ⊲ F0 is the set of final states inNa

7: while q ∈ Qu is not emptydo

8: if q ≡ 〈Ai,j, α〉 then

9: for each transitionδ(qP , ε, Ai,j) = (qP , β) ∈ δ do

10: σ = σ ∪ {σ(〈Ai,j, α〉 , ε) = 〈β, α〉}
11: if 〈β, α〉 /∈ Q then

12: Qu = Qu ∪ {〈β, α〉}

13: Q = Q ∪ {〈Ai,j, α〉}
14: else ifq ≡ 〈ai, α〉 then

15: for each transitionδ(qP , ai, ai) = (qP , ε) ∈ δ do

16: σ = σ ∪ {σ(〈ai, α〉 , ai) = 〈α〉}
17: if 〈α〉 /∈ Q then

18: Qu = Qu ∪ {〈α〉}

19: Q = Q ∪ {〈ai, α〉}

20: Qu = Qu \ {q}

21: Na(Σ, Q,Q0, F0, σ) = ε− Closure(Na(Σ, Q,Q0, F0σ)).

5.3.4 Computing the size of theNFA

As the NFA may be exponential in size, we provide a polynomial method ofcomputing

its size in advance. We can use this to decide if it is practical to transform it in this way.

Observe first that the transformation of aPDAto anNFAmaintains a queue of states that cor-

respond to stack configurations. Each state encodes a stack configurations and corresponds

to several OR-NODES in the AND/OR graph because there are a number of derivation that

lead to the same stack. Each state of an OR-NODE v is generated from the states of the

parent OR-NODESof v. This suggests a relationship between paths in the AND/OR graph

of theCYKalgorithm and states inNa. We use this relationship to compute a loose upper

bound for the number of states inNa in time linear in the size of the AND/OR graph by

counting the number of paths in that graph. Alternatively, we compute the exact number of
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Figure 5.3 Na produced by Algorithm 5.3
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states inNa in time quadratic in the size of the AND/OR graph.

Theorem 5.1 There exists a surjection from paths inGa from the root toOR-NODES onto

stack configurations in the PDAPa.

Proof: Consider a pathp from the root of the AND/OR graph to an OR-NODE labelled

with Ai,j . We construct a stack configurationΓ(p) that corresponds top. We start with the

empty stackΓ = 〈〉. We traverse the path from the root toAi,j. For every AND-NODE

v1 ∈ p, with left child vl and right childvr, if the successor ofv1 in p is vl, then we pushvr

onΓ, otherwise do nothing. When we reachAi,j , we push it onΓ. The final configuration

Γ is unique forp and corresponds to the stack of thePDAafter having parsed the substring

1 . . . i − 1 and having non-deterministically chosen to parse the substring i . . . i + j − 1

using a production withAi,j on the LHS.

We now show that all stack configurations can be generated by the procedure above.

Every stack configuration corresponds to at least one partial leftmost derivation of a string.

The leftmost derivation of a string is a derivation that always applies a production rule to the

leftmost non-terminal. We say a stack configuration〈α〉 corresponds to a partial derivation

dv = 〈a1, . . . , ak−1, Ak,j , α〉 wherea1, . . . , ak−1 is the parsed substring of lengthk − 1

starting at position1, Ak,j is the leftmost non-terminal that is used to parse a substring of
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lengthj starting at positionk and theα is the context of the stack after parsing the whole

prefix of the string of lengthk + j. Therefore, it is enough to show that all partial leftmost

derivations (we omit the prefix of terminals) can be generated by the procedure above.

We prove this by induction. The base case is trivial. Supposethat〈a1, . . . , ai−1, Bi,j , β〉
is the partial leftmost derivation such thatΓ(p(root,Bi,j)) 6= β, wherep(root,Bi,j)

is a path from the root to the OR-NODE Bi,j and for any partial derivation

〈a1, . . . , ak−1, Ak,j , α〉, such thatk < i Ak,j ∈ Ga Γ(p(root,Ak,j)) = α. Consider the

production rule that introduces the non-terminalBi,j to the partial derivation. There are two

possible cases depending whereBi,j is in this production:

1. the production rule isD → C,Bi,j or

2. the production rule isD → Bi,j, C.

Case 1.Suppose the production rule isD → C,Bi,j used. Then the partial derivation is

〈a1, . . . , af ,D, β〉 ⇒|D→C,Bi,j
〈a1, . . . , af , C,Bi,j , β〉. The path from the root to the node

Bi,j is a concatenation of some paths fromD to Bi,j and from the root toD. Therefore,

Γ(p(root,Bi,j)) is constructed as a concatenation ofΓ(p(D,Bi,j)) and Γ(p(root,D)).

Γ(p(D,Bi,j)) is empty because the nodeBi,j is the right child of the AND-NODE that

corresponds to the productionD → C,Bi,j andΓ(p(root,D)) = β becausef < i. There-

fore,Γ(p(root,Bi,j)) = β.

Case 2.Suppose the production rule isD → Bi,j, C used. Then the partial derivation

is 〈a1, . . . , ai−1,D, γ〉 ⇒|D→Bi,j ,C 〈a1, . . . , ai−1, Bi,j, C, γ〉 = 〈a1, . . . , ai−1, Bi,j, β〉.
Then,Γ(p(root,D)) = γ, becausei − 1 < i andΓ(p(D,Bi,j)) = 〈C〉, because the

nodeBi,j is the left child of AND-NODE that corresponds to the productionD → Bi,j, C.

Therefore,Γ(p(root,Bi,j)) = 〈C, γ〉 = β. This leads to a contradiction.

⋄

Example 5.6 An example of the mapping described in the last proof is in Figure 5.4(a) for

the grammar of our running example. Consider theOR-NODE A1,1. There are 2 paths

from S1,3 to A1,1. One is direct and uses onlyOR-NODES 〈S1,3, A1,1〉 and the other uses

OR-NODES 〈S1,3, A1,2, A1,1〉. The 2 paths are mapped to 2 different stack configurations

〈A1,1, B2,2〉 and 〈A1,1, A2,1, B3,1〉 respectively. We highlight edges that are incident to

AND-NODES on each path and lead to the right children of theseAND-NODES. There is

exactly one such edge for each element of a stack configuration. ⋄

Note that theorem 5.1 only specifies a surjection from paths to stack configurations, not

a bijection. Indeed, different paths may produce the same configurationΓ.
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Figure 5.4 Computing the size ofNa. (a) AND/OR graphGa. (b) Stack graphGA1,1
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Example 5.7 Consider the grammarG = {S → AA,A → a|AA|BC,B → b|BB,C →
c|CC} and the AND/OR graph of this grammar for a string of length 5. The path

〈S1,5, A2,4, B2,2〉 uses the productionsS1,5 → A1,1A2,4 andA2,4 → B2,2C4,2, while the

path 〈S1,5, A3,3, B3,1〉 uses the productionsS1,5 → A1,2A3,3 andA3,3 → B3,1C4,2. Both

paths map to the same stack configuration〈C4,2〉 after parsing the first three positions.⋄

By construction, the resultingNFA has one state for each stack configuration of the

PDA in parsing a string. Since each path corresponds to a stack configuration, the number

of states of theNFA before applyingε-closure is bounded by the number of paths from the

root to any OR-NODE in the AND/OR graph. This is cheap to compute using the following

recursive algorithm [Dar01]:

PD(v) =







1 If v has no incoming edges
∑

p PD(p) wherep is a parent ofv
(5.1)

Therefore, the number of states of theNFA Na is at most
∑

v PD(v), wherev is an

OR-NODE of Ga (Figure 5.4).

We can compute the exact number of paths inNa beforeε-closure without constructing

the NFA by counting paths in thestack graphGv for each OR-NODE v. The stack graph

captures the observation that each element of a stack configuration generated from a pathp

is associated with exactly one edgee that is incident onp and leads to the right child of an

AND-NODE. Gv contains one path for each sequence of such edges, so that if two pathsp

andp′ in Ga are mapped to the same stack configuration, they are also mapped to the same

path inGv . The stack graph of an OR-NODE v ∈ V (Ga) is a directed acyclic graph which
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is constructed so thatGv, such that for every stack configurationΓ of Pa with k elements,

there is exactly one pathp in Gv of lengthk andv′ is theith vertex ofp if and only if v′ is

theith element from the top ofΓ.

Example 5.8 Consider the grammar of the running example and theOR-NODE A1,1 in

theAND/OR graph. The stack graphGA1,1 for this OR-NODE is shown in Figure 5.4(b).

Along the path〈S1,3A1,1〉, only the edge that leads toB2,2 generates a stack element. This

edge is mapped to the edge(A1,1, B2,2) in GA1,1 . Similarly, the edges that lead toA2,1 and

B3,1 are mapped to the edges(A1,1, A2,1) and(A2,1, B3,1) respectively.⋄

SinceGv is a DAG, we can efficiently count the number of paths in it. We constructGv

using Algorithm 5.4. The graphGv computed in Algorithm 5.4 for an OR-NODE v has as

many paths as there are unique stack configurations inPa with v at the top.

Algorithm 5.4 Computing the stack DAGGv of an OR-NODE v

1: procedure STACKGRAPH((in : Ga, v, out : Gv))

2: V (Gv) = {v}
3: label(v) = {v}
4: Q = {(v, vp)|vp ∈ parents(v)} ⊲ queue of edges

5: while Q not emptydo

6: (vc, vp) = pop(Q)

7: if vp is an AND-NODE andvc is left child ofvp then

8: vr = childrenr (vp)

9: V (Gv) = V (Gv) ∪ {vr}
10: E(Gv) = E(Gv) ∪ {(vl, vr)|vl ∈ label(vc)}
11: label(vp) = label(vp) ∪ {vr}
12: else

13: label(vp) = label(vp) ∪ label(vc)

14: Q = Q ∪
{

(vp, v
′
p)|v′p ∈ parents(vp)

}

Theorem 5.2 There exists a bijection between paths inGv and states in the NFANa which

correspond to stacks withv at the top.

Proof: Let p be a path from the root tov in Ga. First, we show that every pathp′ in Gv

corresponds to a stack configuration, by mappingp to p′. Thereforep′ corresponds toΓ(p).

We then show thatp′ is unique forΓ(p). This establishes a bijection between paths inGv

and stack configurations.
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We traverse the inverse ofp, denotedinv(p) and constructp′ incrementally. Note that

every vertex ininv(p) is examined by Algorithm 5.4 in the construction ofGv . If inv(p)

visits the left child of an AND-NODE, we append the right child of that AND-NODE to p′.

This vertex is inGv by line 7. By the construction ofΓ(p) in the proof of theorem 5.1, a

symbol is placed on the stack if and only if it is the right child of an AND-NODE, hence if

and only if it appears inp′. Moreover, if a vertex is theith vertex in a path, it corresponds

to theith element from the top ofΓ(p). We now see thatp′ is unique forΓ(p). Two distinct

paths of lengthk cannot map to the same stack configuration, because they mustdiffer in at

least one positioni, therefore they correspond to stacks with different symbols at position

i. Therefore, there exists a bijection between paths inGv and stack configurations withv

at the top.⋄

Hence|Q(Na)| =
∑

v #paths(Gv), wherev is an OR-NODE of Ga. Computing the

stack graphGv of every OR-NODE v takesO(|Ga|) time, as does counting paths inGv.

Therefore, computing the number of states inNa takesO(|Ga|2) time.

We can also compute the number of states in theε-closure ofNa = 〈Σ, Q, q0, F, δ〉.
Theε-closure of a stateq ∈ Q is a set of state that are reachable formq without consuming

any input symbol:ε(q) = {q′|q ε−→ q′, q′ ∈ Q}. For any subset of states,Q′ ⊆ Q, we define

theε-closure asε(Q′) = ∪q∈Q′ε(q). We can eliminate allε transitions fromNa which is

acyclic graph by construction, in the following way. We sortstates in topological order. For

each stateq we find itsε-closureε(q). Consider a stateq′, q′ ∈ ε(q). For each outgoing

transition that consumes a input symbol,q′′ = δ(q′, a), we replace this transition with the

transitionq′′ = δ(q, a). The resultingNFA is a non-deterministicNFAwithoutε transitions.

We observe that if none of the OR-NODES that are reachable by paths of length 2 from

an OR-NODE v correspond to terminals, then any state that corresponds toa stack con-

figuration withv at the top will only have outgoingε−transitions and will be removed by

theε−closure. Thus, to compute the number of states inNa afterε−closure, we sum the

number of paths inGv for all OR-NODESv such that a terminal OR-NODE can be reached

from v by a path of length 2.

5.3.5 Transformation into aDFA

Finally, we convert theNFA into aDFA using the standard subset construction [HU90]. In-

deed, removing non-determinism may increase the size of theautomaton and slow down

propagation. However, converting into aDFA opens up the possibility of further optimi-

sations. In particular, as we describe in the next section, there are efficient methods to
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minimise the size of aDFA. By comparison, minimisation of aNFA is PSPACE-hard in

general [MS72]. Even when we consider just the acyclicNFA constructed by unfolding a

NFA, minimisation remains NP-hard [AJV01].

5.3.6 Automaton minimisation

TheDFA constructed by this or other methods may contain redundant states and transitions.

We can speed up propagation of the REGULAR constraint by minimising the size of this au-

tomaton. First, we outline the idea of the REGULAR constraint propagator that was proposed

by Pesant [Pes04]. To propagate the REGULAR([X1, . . . ,Xn],A) constraint, we need to

construct an unfolded layered automaton,unfoldn(A), that only accepts words of lengthn

which are accepted byA (Section 2.3.3 introduces unfolded automata). The first layer con-

tains only the starting state and the last layer contains only the final states. There exists a bi-

jection between solutions of the REGULAR constraint and paths in the unfolded layered au-

tomaton [Pes04]. Pesant’s propagator was introduced for the REGULAR([X1, . . . ,Xn],A)
constraint whereA is DFA. However, it works withNFAswithout any modification of the

algorithm. Hence, we can minimise the original automatonA or its unfolded versionA.

Minimisation can be performed either offline (i.e. before wehave the problem data and

have unfolded the automaton) or on-line (i.e. once we have the problem data and have un-

folded the automaton). There are several reasons why we might prefer an on-line approach

where we unfold before minimising. First, although minimising after unfolding may be

more expensive than minimising before unfolding, both are cheap to perform. Minimising

aDFA takesO(Q logQ) time using Hopcroft’s algorithm andO(nQ) time for the unfolded

DFA whereQ is the number of states [Rev92]. Second, thanks to Myhill-Nerode’s theorem,

minimisation does not change the layered nature of the unfoldedDFA. Third, and perhaps

most importantly, minimising aDFA after unfolding can give an exponentially smaller au-

tomaton than minimising theDFA and then unfolding. To put it another way, unfolding may

destroy the minimality of theDFA. We recall that we writefn(A) ≪ gn(A) if and only if

fn(A) ≤ gn(A) for all n, and there existsA such thatlog gn(A)
fn(A) = Ω(n).(Section 2.3.3).

Theorem 5.3 Given any DFAA, |min(unfoldn(A))| ≪ |unfoldn(min(A))|.

Proof: To show |min(unfoldn(A))| ≤ |unfoldn(min(A))|, we observe that both

min(unfoldn(A)) andunfoldn(min(A)) are automata that recognise the same language.

By definition, minimisation returns the smallestDFA accepting this language. Hence

min(unfoldn(A)) cannot be larger thanunfoldn(min(A)).
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To show unfolding then minimising can give an exponentiallysmaller sizedDFA, con-

sider the following languageLn. A string of lengthk belongs toLn if and only if it contains

the symbolj, j = k mod n, wheren is a given constant. The alphabet of the languageLn

is {0, . . . , n−1}. The minimalDFA for this language hasΩ(n2n) states as each state needs

to record which symbols from0 to n− 1 have been seen so far, as well as the current length

of the string modn. Unfolding this minimalDFA and restricting it to strings of lengthn

gives an acyclicDFA with Ω(n2n) states. Note that all strings are of lengthn and the equa-

tion j = n mod n has the single solutionj = 0. Therefore, the languageLn consists of

the strings of lengthn that contain the symbol 0. On the other hand, if we unfold and then

minimise, we get an acyclicDFA with just 2n states. Each layer of theDFA has two states

which record whether0 has been seen.⋄

Further, if we make our initial problem domain consistent, domains might be pruned

which give rise to possible simplifications of theDFA. We usesimplify(A) for the simpli-

fied form ofA constructed by deleting transitions and states that are no longer reachable

after domains have been reduced. We show here that we should also perform such simplifi-

cation before minimising.

Theorem 5.4 Given any DFA A, |min(simplify(unfoldn(A)))| ≪ |simplify(

min(unfoldn(A)))|.

Proof: Both min(simplify(unfoldn(A))) and simplify(min(unfoldn(A))) are DFAs

that recognise the same language of strings of lengthn. By definition, minimisation must

return the smallestDFA accepting this language. Hencemin(simplify(unfoldn(A))) is

no larger thansimplify(min(unfoldn(A))).

To show that minimisation after simplification may give an exponentially smaller sized

automaton, consider the language which contains sequencesof integers from1 ton in which

at least one integer is repeated and in which the last two integers are different. The alphabet

of the languageLn is {1, . . . , n}. The minimal unfoldedDFA for strings of lengthn from

this language hasΩ(2n) states as each state needs to record which integers have beenseen.

Suppose the integern is removed from the domain of each variable. The simplifiedDFA

still hasΩ(2n) states to record which integers 1 ton − 1 have been seen. On the other

hand, suppose we simplify before we minimise. By a pigeonhole argument, we can ignore

the constraint that an integer is repeated. Hence we just need to ensure that the string is

of lengthn and that the last two integers are different. The minimalDFA accepting this

language requires justO(n) states.⋄
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5.3.7 Experimental results

We empirically evaluated the results of our method on a set ofshift-scheduling bench-

marks [DPR05, CBCGLM07]1. These shift-scheduling benchmarks were used in a series

of papers on GRAMMAR constraints, including [KS08], [QW07] and [QR10]. Experiments

were run with the MiniSat+ solver for pseudo-Boolean instances and GeCode 2.2.0 for con-

straint problems, on an Intel Xeon 4 CPU, 2.0 Ghz, 4G RAM. We use a timeout of3600

sec in all experiments. The problem is to schedule employeesto activities subject to vari-

ous rules, e.g. a full-time employee has one hour for lunch. These rules are specified by a

context-free grammar augmented with the following restrictions on productions [QW07]:

1. a full-time employee has to work between 7.5 and 9.5 hours

2. a part-time employee has to work between 3.25 and 6 hours

3. a full-time employee has to have one hour lunch break

4. a full-time employee has to have two 15 minute short breaksone before and one after

lunch

5. a part-time employee has to have one 15 minute short break

6. an employee can change activities after a break or a lunch

7. an employee has to work consecutively on one activity for at least one hour.

A schedule for an employee hasn = 96 slots of 15 minutes represented byn variables.

In each slot, an employee can work on an activity (aj), take a break (b), lunch (l) or rest (r).

These rules are specified by the following grammar:

S → RPR, P →WbW, L→ lL|l,
S → RFR, R→ rR|r, W → Ai,

Ai → aiAi|ai, F → PLP

To take into account restrictions on productions we introduce functionsf(i, j) are pred-

icates that restrict the starti and lengthj of any string matched by a specific production and

open(i) is a function that returns1 if the business is open atith slot and0 otherwise.

P : fP (i, j) ≡ 13 ≤ j ≤ 24, L : fL(i, j) ≡ j = 4

F : fF (i, j) ≡ 30 ≤ j ≤ 38, W : fW (i, j) ≡ j ≥ 4

Aj : fAj
(i, j) ≡ open(i)

1 I would like to thank Louis-Martin Rousseau and Claude-Guy Quimper for providing me with the bench-

mark data
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In addition, the business requires a certain number of employees working in each ac-

tivity at given times during the day. We minimise the number of slots in which employees

work such that the demand is satisfied.

As shown in [QW07], this problem can be converted into a pseudo-Boolean (PB) model.

The GRAMMAR constraint is converted into aSATformula in conjunctive normal form us-

ing the AND/OR graph. To model labour demand for a slot we introduce Boolean variables

b(i, j, ak), equal to1 if jth employee performs activityak at ith time slot. For each time slot

i and activityak we post a pseudo-Boolean constraint
∑m

j=1 b(i, j, ak) > d(i, ak), where

m is the number of employees andd(i, ak) is the labour demand at theith time point for the

activity ak. The objective is modelled using the function
∑n

i=1

∑m
j=1

∑a
k=1 b(i, j, ak). Ad-

ditionally, the problem can be formulated as an optimisations problem in a constraint solver,

using a matrix model with one row for each employee. We post a GRAMMAR constraint

on each row, AMONG constraints (see Definition 4.1) on each column for labour demand

and LEX constraints between adjacent rows to break symmetry. We usethe static variable

and value ordering used in [QW07]. We assign variables top down and from left to right.

The value ordering isr, b, l, a1, a2. The goal is to minimise the number of slots in which

employees work.

We compare the PB decomposition and the CP model described above with the refor-

mulation of the GRAMMAR constraint as a REGULAR constraint. Using Algorithm 5.4,

we computed the size of an equivalentNFA. Surprisingly, this has a reasonable size, so

we converted the GRAMMAR constraint to aDFA then minimised. In order to reduce the

blow-up that may occur during the conversion of theNFA to theDFA, we heuristically min-

imised theNFA using the following simple observation: two states are equivalent if they

have identical outgoing transitions. We traverse theNFA from the last to the first layer and

merge equivalent states and then apply the same procedure tothe reversedNFA. We repeat

until we cannot find a pair of equivalent states. We also simplified the originalCYK table,

taking into account whether the business is open or closed ateach slot (this information

is based on the value ofopen(i) function). Theorem 5.4 suggests such simplification can

significantly reduce the size both of theCYKtable and of the resulting automata. In practice

we also observe a significant reduction in size. The resulting minimised automaton obtained

before simplification is about ten times larger compared to the minimisedDFA obtained af-

ter simplification. Table 5.1 gives the sizes of representations at each step. We see from this

that the minimisedDFA is in every case smaller than the originalCYK table. Interestingly,

the subset construction generates the minimumDFA from theNFA, even in the case of two
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activities, and heuristic minimisation of theNFAachieves a notable reduction.

For each instance, we used the resultingDFA in place of the GRAMMAR constraint

in both the CP model and thePB model using the encoding of the REGULAR constraint

(DFAsor NFAs) into CNF [Bac07]. We compare the model that uses thePBencoding of the

GRAMMAR constraint (GR1) with two models that use thePB encoding of the REGULAR

constraint (REGULAR1, REGULAR2), a CP model that uses the GRAMMAR constraint

(GRCP
1 ) and a CP model that uses a REGULAR constraint (REGULARCP

1 ). REGULAR1

and REGULARCP
1 use the DFA, whilst REGULAR2 uses theNFAconstructed after simplifi-

cation by when the business is closed.

The performance of aSATsolver can be sensitive to the ordering of the clauses in the

formula. To test robustness of the models, we randomly shuffled each ofPB instances

to generate 10 equivalent problems and averaged the resultsover 11 instances. Also, the

GRAMMAR and REGULAR constraints were encoded into aPB formula in two different

ways. The first encoding ensures that unit propagation enforces domain consistency on the

constraint. The second encoding ensures that unit propagation detects disentailment of the

constraint, but does not always enforce domain consistency. For the GRAMMAR constraint

we omit the same set of clauses as in [QW07] to obtain the weaker PB encoding. For the

REGULAR constraint we omit the set of clauses that performs backwardpropagation of

the REGULAR constraint. Note that Table 5.2 shows the median time and thenumber of

backtracks to prove optimality over 11 instances. For each model we show the median time

and the corresponding number of backtracks for the bestPBencoding between the one that

achieves domain consistency and the weaker one.

Table 5.2 shows the results of our experiments using these 5 models. The model

REGULAR2 outperforms GR1 in all benchmarks, whilst REGULAR1 outperforms GR1 in

most of the benchmarks. The model REGULAR2 also proves optimality in several instances

of hard benchmarks. It should be noted that performing simplification before minimisation

is essential. It significantly reduces the size of the encoding and speeds up MiniSat+. Fi-

nally, we note that thePB models consistently outperformed the CP models, in agreement

with the observations of [QW07] . Between the two CP models, REGULARCP
1 is signifi-

cantly better than GRCP
1 , finding a better solution in many instances and proving optimality

in two instances. In addition, although we do not show it in the table, GeCode is approx-

imately three orders of magnitude faster per branch with theREGULARCP
1 model. For in-

stance, in benchmark number 2 with 1 activity and 4 workers, it explores approximately 80

million branches with the REGULARCP
1 and 24000 branches with the GRCP

1 model within
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Table 5.1: Shift Scheduling Problems.Ga is the acyclic grammar,NFAε
a is NFA with ε-transitions,NFAa is NFA without ε-transitions,min(NFAa) is

minimisedNFA, DFA is DFA obtained frommin(NFAa), min(DFA) is minimisedDFA, #act is the number of activities,# is the benchmark number.

#act # Ga NFAε
a NFAa min(NFAa) DFA min(DFA)

terms prods states trans states trans states trans states trans states trans

1 2/3/8 4678 / 9302 69050 / 80975 29003 / 42274 3556 / 4505 3683 / 4617 3681 / 4615

1 4/7/10 3140 / 5541 26737 / 30855 11526 / 16078 1773 / 2296 1883 / 2399 1881 / 2397

1 5/6 2598 / 4209 13742 / 15753 5975 / 8104 1129 / 1470 1215 / 1553 1213 / 1551

2 1/2/4 3777 / 6550 42993 / 52137 19654 / 29722 3157 / 4532 3306 / 4683 3303 / 4679

2 3/5/6 5407 / 10547 111302 / 137441 50129 / 79112 5975 /8499 6321 / 8846 6318 / 8842

2 8/10 6087 / 12425 145698 / 180513 65445 / 104064 7659 /10865 8127 / 11334 8124 / 11330

2 9 4473 / 8405 76234 / 93697 34477 / 53824 4451 / 6373 4691 / 6614 4688 / 6610
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Table 5.2: Shift Scheduling Problems. GR1 is thePB model with GRAMMAR , REGULAR1 is thePB model withmin(simplify(DFA)), REGULAR2 is the

PB model withmin(simplify(NFA)), GRCP
1 is the CP model with GRAMMAR , REGULARCP

1 is the CP model withmin(simplify(DFA)). We showtime and

number ofbacktracks to prove optimality (the median time and the median number of backtracks for thePBencoding oversolved shuffled instances), number of

activities, the number ofworkers and the benchmark number#.

PB/MiniSat+ CSP/GeCode

a # w GR1 REGULAR1 REGULAR2 GRCP
1 REGULARCP

1

cost s t / b cost s t / b cost s t / b cost t / b cost t / b

1 2 4 26.00 11 27 / 8070 26.00 11 9 / 11053 26.00 11 4 / 7433 26.75 - / - 26.00 - / -

1 3 6 36.75 11 530 / 101560 36.75 11 94 / 71405 36.75 11 39 / 58914 37.00 - / - 37.00 - / -

1 4 6 38.00 11 31 / 16251 38.00 11 12 / 10265 38.00 11 6 / 7842 38.00 - / - 38.00 - / -

1 5 5 24.00 11 5 / 3871 24.00 11 2 / 4052 24.00 11 2 / 2598 24.00 - / - 24.00 - / -

1 6 6 33.00 11 9 / 5044 33.00 11 4 / 4817 33.00 11 3 / 4045 - - / - 33.00 - / -

1 7 8 49.00 11 22 / 7536 49.00 11 9 / 7450 49.00 11 7 / 8000 49.00 - / - 49.00 - / -

1 8 3 20.50 11 13 / 4075 20.50 11 4 / 5532 20.50 11 2 / 1901 21.00 - / - 20.50 92 / 2205751

1 10 9 54.00 11 242 / 106167 54.00 11 111 / 91804 54.00 11 110 / 109123 - - / - - - / -

2 1 5 25.00 11 92 / 35120 25.00 11 96 / 55354 25.00 11 32 / 28520 25.00 - / - 25.00 90 / 1289554

2 2 10 58.00 1 3161 / 555249 58.00 0 - / - 58.00 4 2249 / 701490 - - / - 58.00 - / -

2 3 6 37.75 0 - / - 37.75 1 3489 / 590649 37.75 9 2342 / 570863 42.00 - / - 40.00 - / -

2 4 11 70.75 0 - / - 71.25 0 - / - 71.25 0 - / - - - / - - - / -

2 5 4 22.75 11 739 / 113159 22.75 11 823 / 146068 22.75 11 308 / 69168 23.00 - / - 23.00 - / -

2 6 5 26.75 11 86 / 25249 26.75 11 153 / 52952 26.75 11 28 / 21463 26.75 - / - 26.75 - / -

2 8 5 31.25 11 1167 / 135983 31.25 11 383 / 123612 31.25 11 74 / 47627 32.00 - / - 31.50 - / -

2 9 3 19.00 11 1873 / 333299 19.00 11 629 / 166908 19.00 11 160 / 131069 19.25 - / - 19.00 - / -

2 10 8 55.00 0 - / - 55.00 0 - / - 55.00 0 - / - - - / - - - / -
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the 1 hour timeout.

5.4 Restrictions of theGRAMMAR constraint

In this section we investigate whether we can obtain an efficient propagator for the

GRAMMAR ([X1, . . . ,Xn], G) constraint if we restrict the context free grammarG to, for

instance, deterministic and unambiguous context-free grammar. We want to point out that

these restricted forms of context-free grammars permit quadratic parsing algorithms while

still being more expressive than regular grammars. We show that we cannot exploit the

properties of these grammars that make fast parsing algorithms possible. Hence, we answer

this question negatively by showing that detecting disentailment for the GRAMMAR con-

straint in these cases is as hard as parsing an unrestricted context free grammar. We also

consider the class of linear grammars and give a propagator that runs in quadratic time.

5.4.1 Simple Context-Free Grammars

In this section we show that propagating asimplecontext-free grammar constraint is at least

as hard as parsing an (unrestricted) context-free grammar.A grammarG is simpleif it is in

Greibach form (Section 2.3.2), and for every non-terminalA and terminala there is at most

one production of the formA → aα. Hence, restricting ourselves to languages recognised

by simple context-free grammars does not improve the complexity of propagating a global

grammar constraint. Simple context-free languages are deterministic context-free languages

(characterised by deterministic push-down automata), andalsoLL(1) languages [Roz97],

so this result also holds for propagating these more generalclasses of languages.

First, we encode variable domains as a regular language thatcontains all strings that can

be formed using values inD(X1), . . . ,D(Xn). Given finite setsD1, . . . ,Dn, their Carte-

sian product languageL(RD1,...,Dn) is the cross product of the domains{a1a2 · · · an | a1 ∈
D1, . . . , an ∈ Dn}. We recall the definition of the GRAMMAR constraint (Definition 5.2).

The GRAMMAR ([X1, . . . ,Xn], G) constraint is true for an assignment to variablesX if and

only if the string formed by this assignment belongs toL(G).

From Definition 5.2, we observe that finding a support for the grammar constraint is

related to intersecting the context-free language with theCartesian product language of the

domains.

Proposition 5.1 LetG be a context-free grammar,X1, . . . ,Xn be a sequence of variables

with domainsD(X1), . . . ,D(Xn). ThenL(G) ∩ L(RD(X1),...,D(Xn)) 6= 0 if and only if
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GRAMMAR ([X1, . . . ,Xn], G) is satisfiable.

Context-free grammars are closed under intersection with regular grammars. To see this,

consider a context-free grammarG in Chomsky form and a regular grammarR. Following

the “triple construction”, the intersection grammar has non-terminals of the form〈F,A, F ′〉
whereF,F ′ are non-terminals ofR andA is a non-terminal ofG. Intuitively, 〈F,A, F ′〉
generates stringsw that are generated byA and also byF , through a derivation fromF to

F ′. If A→ BC is a production ofG, then we add, for all non-terminalsF,F ′, F ′′ of R, the

production〈F,A, F ′′〉 → 〈F,B, F ′〉〈F ′, C, F ′′〉. If A → a is a production ofG, then we

add, for all non-terminalsF,F ′ of R, the production〈F,A, F ′〉 → 〈F, a, F ′〉. If F → aF ′

is a production ofR, then we add〈F, a, F ′〉 → a. If F → a is a production ofR, then

we add〈F, a, F 〉 → a. The resulting grammar isO(|G|n3) in size wheren is the number

of non-terminals ofR. This is similar to the construction of Theorem 6.5 in [HU79]which

uses push-down automata instead of grammars. Since emptiness of context-free grammars

takes linear time (cf. [HU79]) we obtain through Proposition 5.1 a cubic time algorithm to

check whether a global constraint GRAMMAR ([X1, . . . ,Xn], G) has support. In fact, this

shows that we can efficiently propagate more complex constraints, such as the conjunction

of a context-free with a regular constraint. Note that ifR is a Cartesian product language

then the triple construction generates the same result as the CYKbased propagator for the

GRAMMAR constraint [Sel06,QW06].

We now show that forsimplecontext-free grammarsG, detecting disentailment of the

constraint GRAMMAR ([X1, . . . ,Xn], G), i.e. testing whether it has a solution, is at least as

hard as parsing an arbitrary context-free grammar.

Theorem 5.5 LetG be a context-free grammar in Greibach form ands a string of lengthn.

One can construct inO(|G|) time a simple context-free grammarG′ and inO(|G|n) time a

Cartesian product languageL(RD(X1),...,D(Xn)) such thatL(G′)∩L(RD(X1),...,D(Xn)) 6= ∅
if and only ifs ∈ L(G).

Proof: The idea behind the proof is to determine an unrestricted context free grammarG

by mapping each terminal inG to a set of pairs – the terminal and a production that can con-

sume this terminal. This allows us to carry information about the derivation inside a string in

G′. Then, we construct a Cartesian product languageL(RD(X1),...,D(Xn)) over these pairs so

that all strings from this language map only to the strings. LetG = 〈N,T, P, S〉 and fix an

arbitrary order of the productions inP . We now construct the grammarG′ = 〈N,T ′, P ′, S〉.
For every1 ≤ j ≤ |P |, if the jth production ofP is A→ aα then let(a, j) be a new sym-

bol in T ′ and let the productionA → (a, j)α be inP ′. Next, we construct the Cartesian
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product language. We defineD(Xi) = {(a, j)|(si = a) ∧ (a, j) ∈ T ′}, i = 1, . . . , n and

si is theith letter ofs. Clearly,G′ is constructed inO(|G|) time andL(RD(X1),...,D(Xn)) in

O(|P |n) time.

(⇒) Let L(G′) ∩ L(RD(X1),...,D(Xn)) be non empty. Then there exits a strings′

that belongs to the intersection. Lets′ = (a1, i1) · · · (an, in). By the definition of

L(RD(X1),...,D(Xn)), the stringa1a2 · · · an must equals. Sinces′ ∈ L(G′), there must

be a derivation byG of the form

S ⇒G,p1 a1α⇒G,p2 a1a2α
′ · · · ⇒G,pn a1 · · · an

wherepj is thejth production inP . Hence,s ∈ L(G).

(⇐) Let s ∈ L(G). Consider a derivation sequence of the strings. We replace every

symbola in s that was derived by theith production ofG by (a, i). By the construction of

G′, the strings′ is inL(G′). Moreover,s′ is also inL(RD(X1),...,D(Xn)). ⋄
Note that context-free parsing has a quadratic time lower bound, due to its connection

to matrix multiplication [Lee02]. Given this lower bound and the fact that the construction

of Theorem 5.5 requires only linear time, we can deduce the following.

Corollary 5.1 LetG be a context-free grammar. IfG is simple (or deterministic orLL(1))

then detecting disentailment ofGRAMMAR ([X1, . . . ,Xn], G) is at least as hard as context-

free parsing of a string of lengthn.

We now show the converse to Theorem 5.5 which reduces intersection emptiness of a

context-free with a regular grammar, to the membership problem of context-free languages.

This shows that the time complexity of detecting disentailment for the GRAMMAR con-

straint is the same as the time complexity of the best parsingalgorithm for an arbitrary con-

text free grammar. Therefore, our result shows that detecting disentailment takesO(n2.4)

time [CW90], as in the best known algorithm for Boolean matrix multiplication. It does

not, however, improve the asymptotic complexity of a domainconsistency propagator for

the GRAMMAR constraint described in Section 5.2 [Sel06,QW06].

Theorem 5.6 Let G = 〈N,T, P, S〉 be a context-free grammar andL(RD(X1),...,D(Xn))

be Cartesian product language. One can construct in timeO(|G| + |T |2) a context-free

grammarG′ and in timeO(n|T |) a string s such thats ∈ L(G′) if and only ifL(G) ∩
L(RD(X1),...,D(Xn)) 6= ∅.

Proof: Construction ofG′. We assign an index to each terminal inT . For each positioni

of the strings ofR, we create a bitmap of the alphabet that describes the terminals that may
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appear in that position. Thejth bit of the bitmap is1 if and only if the symbol with indexj

may appear at positioni. The strings is the concatenation of the bitmaps for each position

and has sizen|T |. First, we addB → 0 andB → 1 to G′. For each terminal inT with

index j, we introduceTj → Bj−11B|T |−j into G′ to accept any bitmap with 1 at thejth

position. Then, for each production inG of the formA→ aα such that the index ofa is j,

we addA → Tjα to G′. In this construction, every production inG′ except for those with

Ti on the left hand side can be uniquely mapped to a production inG.

(⇒) Supposes′ ∈ L(G′). Consider a derivation sequence ofs′. We construct a string

s ∈ L(G) ∩ L(R). Note that every string that belongs toL(G′) has lengthk|T | for some

k. Moreover, it is partitioned in blocks of|T | symbols and every block of is generated by

one of the non-terminalsTp. We constructs by placing at thejth position the symbol with

indexi if the jth block of symbols ofs′ was generated by the non-terminalTi. Clearly this

belongs toR. Then, a derivation ofs in G can be created by removing from the derivation

of s′ productions withTi on the left hand side and replacing the rest with the corresponding

production inG, sos ∈ L(G) ∩ L(R) andL(G) ∩ L(R) 6= ∅.

(⇐) SupposeL(G) ∩L(R) 6= ∅ and lets be a string in the intersection. We construct a

strings′ that belongs toL(G′) by replacing the symbol with indexi at positionj of s with

a block of|T | symbols with 1 at theith position and 0 elsewhere. We create a derivation of

s′ in G′ by replacing each productionA→ aα in it with the pair of productionsA→ Tiα,

Ti → (0|1)i−11(0|1)|T |−i wherei is the index ofa. Thus,s ∈ L(G′). ⋄

Theorems 5.5–5.6 show that, on the one hand, many well-studied restricted context-free

grammars do not permit constructing a domain consistency propagator for the GRAMMAR

constraint that is more efficient than the best parsing algorithm for an arbitrary context-

free grammar. On the other hand, the best known propagator that detects disentailment of

the GRAMMAR constraint and runs inO(n3) time can be improved using the best parsing

algorithm.

5.4.2 Linear Context-Free Grammars

A context-free grammar islinear if every production contains at most one non-terminal in

its right-hand side. Linear languages are a proper supersetof regular languages and are a

strict subset of context-free languages. Linear context-free grammars possess two important

properties: (1) membership of a given string of lengthn can be checked in timeO(n2)

(see Theorem 12.3 in [WW86]), and (2) the class is closed under intersection with regular

grammars (to see this, apply the “triple construction” as explained after Proposition 5.1).
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The first property allows us to show that aCYK-based propagator for this type of grammars

runs in quadratic time. This is then the third example of a grammar, besides regular and

context-free grammars, where the asymptotic time complexity of the parsing algorithm and

that of the corresponding propagator are equal. The second property opens the possibility of

constructing a polynomial time propagator for a conjunction of the linear GRAMMAR and

the REGULAR constraints that runs inO(n2) time.

Theorem 5.7 Let G be a linear grammar andGRAMMAR ([X1, . . . ,Xn], G) be the cor-

responding global constraint. There exists a domain consistency propagator for this con-

straint that runs inO(n2|G|) time.

Proof: We convertG = 〈N,T, P, S〉 into Chomsky normal form (Section 2.3.2). Every

linear grammar can be converted into the formA → aB, A → Ba andA → a, where

a, b ∈ T andA,B ∈ N (see Theorem 12.3 of [WW86]) inO(|G|) time. To obtain the

Chomsky normal form we replace every terminala ∈ T that occurs in a production on the

right hand side with a new non-terminalYa and introduce a productionYa → a.

We recall the time complexity analysis for theCYK-based domain consistency propa-

gator for an arbitrary context-free grammar constraint ( Section 5.2). The time complexity

is bounded by all possible 1-step derivations from each non-terminal in the table and is

equal toO(|G|n3). In contrast to unrestricted context-free grammars, the number of pos-

sible 1-step derivations from each of these non-terminals is bounded byO(F (A)) for a

linear grammar as opposed toO(F (A)n) in general case. Therefore, the propagator runs in

O(n2|G|) for a linear grammarG. ⋄

It is possible to restrict linear grammars further, so that the resulting global constraint

problem is solvable inlinear time. As an example, consider “fixed-growth” grammars in

which there existsl andr with l + r ≥ 1 such that every production is of the form either

A→ w ∈ T+ or A→ uBw where the length ofu ∈ T ∗ equalsl and the length ofw ∈ T ∗

equalsr. In this case, the triple construction (explained after Proposition 5.1) generates

O(|G|n) new non-terminals implying linear time propagation (similarly, CYKruns in linear

time as it only generates non-terminals on the diagonal of the dynamic program). A special

case of fixed-growth grammars are regular grammars which have l = 1 andr = 0 (or vice

verse).
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5.5 Generalisations of theGRAMMAR constraint

In this section we consider a generalisation to the GRAMMAR constraint — the weighted

GRAMMAR constraint that is useful for modelling over-constrained problems and problems

with preferences. Consider, for example, a shift scheduling problem where we have two

types of shifts: day and night shifts. Suppose there is an employee who prefers day shifts

to night shifts. To model these preferences we penalise withthe unit weight night shift

assignments to this employee. We also put a boundk on the total number of night shift

assignments by fixing the upper bound of the cost variablez. In this way we make sure that

the employee will work at mostk night shifts in a schedule. In a similar way we can model

the cost of employee incentives. Suppose the business pays extra salarys for a night shift

on public holidays. To model this constraint we increase theweight of the corresponding

production of the formA→ a by s.

The WEIGHTEDGRAMMAR constraint can also be used to model bonus payments for

specific activities. For example, the employer wants to provide incentives for employees to

work longer hours. Suppose, the grammar that represents regulation rules includes the pro-

ductions:Work → WorkWork|Work,Work → a which is the case in our benchmark

problems 5.3.7. Hence, an occurrence of a non-terminalWork at theith level of the dy-

namic programming tableV indicates that an employee performedi consecutive activities.

If, for example, the salary of an employee increases bys for each activity performed after

the5th consecutive activity, we can model this by increasing bys the weight ofW at the

5th level or higher in the tableV as we describe in Section 5.5.1.

For some forms of objective functions, we can use the WEIGHTEDGRAMMAR con-

straint to construct the conjunction of the Optimisations function and the GRAMMAR con-

straint without requiring an additional modelling step. This is considered in our empirical

evaluation of the WEIGHTEDGRAMMAR constraint.

5.5.1 The weightedGRAMMAR constraint

In this section we propose aDC propagator for the WEIGHTEDGRAMMAR constraint. Let

us recall that the weighted WEIGHTEDGRAMMAR (G,W, z, [X1, . . . ,Xn]) constraint holds

if and only if the assignmentX forms a string belonging to the grammarG and the minimal

weight of a derivation ofX is less than or equal toz, where the matrixW defines weights

of productions in the grammarG.

We propose aDC propagator for the WEIGHTEDGRAMMAR constraint based on an

extension of theCYK parser to probabilistic grammars [Ney91] and inspired by the DC
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propagator for the unweighted GRAMMAR constraint (Section 5.2). We assume thatG is

in Chomsky normal form and with a single start non-terminalS. The algorithm has two

stages similar to Algorithm 5.1. In the first stage, we construct a dynamic programing table

V [i, j], i, j = 1, . . . , O(n), where an elementA of V [i, j] is a potential non-terminal that

generates a substring[Xi, . . . ,Xi+j ]. We compute a lower boundl[i, j, A] on the minimal

weight of a derivation fromA. In the second stage, we move fromV [1, n] to the bottom of

tableV . For an elementA of V [i, j], we compute an upper boundu[i, j, A] on the maximal

weight of a derivation fromA of a substring[Xi, . . . ,Xi+j ]. We mark the elementA if

and only if l[i, j, A] ≤ u[i, j, A]. The pseudo-code is presented in Algorithm 5.5. Lines

2–5 initialise l and u. Lines 6–16 compute the first stage, whilst lines 21–30 compute

the second stage. Finally, we prune inconsistent values in lines 31–32. Algorithm 5.5

enforces domain consistency on variablesX and bounds consistency on the cost variablez

on the WEIGHTEDGRAMMAR (G,W, z, [X1 , . . . ,Xn]) constraint inO(|G|n3) time as the

following Lemmas show.

We can further refine the granularity of the weights by makingW a 3D matrix with

three argumentsW (i, j, P ), i, j = 1, . . . , O(n), P ∈ G, so that it gives the weight of

using the productionP to produce the substring starting at positioni with lengthj. This

is similar to the conditional productions used in [QW07] andthe cost definition used in the

COSTREGULAR constraint [DPR06]. In accordance with these previous uses, we call these

conditional weights. In fact, we will use conditional weights in our experimental setup.

For simplicity, however, we use the simpler definition of unconditional weights in the rest

of this section. To incorporate this weight matrix we modifyAlgorithm 5.5 by replacing

W [A→ BC] with W [A→ BC, i, j] in the corresponding lines.

First, we show that Algorithm 5.5 finds correct values of matricesl andu.

Lemma 5.1 LetWCYK-alg compute the valuel[i, j, A]. Then there is no derivation of a

substring[Xi, . . . ,Xi+j ] fromA, A ∈ V [i, j] of weight less thanl[i, j, A].

Proof: By induction on the length of derivation.

Length1. Line 8 ensures that the valuel[i, 1, A] is the minimal weight of all productions

of typeA→ a applied to values in theXi domain.

Lengthp. Let the lemma’s statement hold for all derivations of a substring of lengthp

or less.

Lengthp+ 1. Line 16 computesl[i, p + 1, A] using valuesl[r, t, B], r ∈ [i, i + p+ 1],

t < p + 1, that are correct by the induction step. Hence, the weightW [A → BC] +

l[i, k,B]+l[i+k, j−k,C] is the minimum possible weight if we apply productionA→ BC
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Algorithm 5.5 The weightedCYKpropagator
1: procedure WCYK-ALG(G,W, z, [X1, . . . ,Xn])

2: for j = 1 to n do

3: for i = 1 to n− j + 1 do

4: for eachA ∈ G do

5: l[i, j, A] = z + 1; u[i, j, A] = −1;

6: for i = 1 to n do

7: V [i, 1] = {A|A → a ∈ G, a ∈ D(Xi)}
8: for A ∈ V [i, 1] s.tA → a ∈ G, a ∈ D(Xi) do

9: l[i, 1, A] = min{l[i, 1, A],W [A → a]};

10: for j = 2 to n do

11: for i = 1 to n− j + 1 do

12: V [i, j] = ∅;

13: for k = 1 to j − 1 do

14: V [i, j] = V [i, j] ∪ {A|A → BC ∈ G,B ∈ V [i, k],C ∈ V [i+ k, j − k]}
15: for eachA → BC ∈ G s.t.B ∈ V [i, k], C ∈ V [i+ k, j − k] do

16: l[i, j, A] = min{l[i, j, A],W [A → BC] + l[i, k,B] + l[i+ k, j − k,C]};

17: if S /∈ V [1, n] then

18: return 0;

19: lb(z) = max(lb(z), l[1, n, S]);

20: mark(1, n, S); u[1, n, S] = ub(z);

21: for j = n downto 2 do

22: for i = 1 to n− j + 1 do

23: for A such that(i, j, A) is markeddo

24: for k = 1 to j − 1 do

25: for eachA → BC ∈ G s.t.B ∈ V [i, k], C ∈ V [i+ k, j − k] do

26: if W [A → BC] + l[i, k,B] + l[i+ k, j − k,C] > u[i, j, A] then

27: continue;

28: mark(i, k,B); mark(i+ k, j − k,C);

29: u[i, k,B] = max{u[i, k,B], u[i, j, A]− l[i+ k, j − k,C]−W [A → BC]};

30: u[i+ k, j − k,C] = max{u[i+ k, j − k,C], u[i, j, A]− l[i, k,B]−W [A → BC]};

31: for i = 1 to n do

32: D(Xi) = {a ∈ D(Xi)|A → a ∈ G, (i, 1, A) is marked and W [A → a] ≤ u[i, 1, A]};

33: return 1;

such thatB derives string of lengthk starting at positioni andC derives the remaining part.

Consequently,l[i, p+ 1, A] computes the minimal weight of all possible derivation fromA

of lengthp+ 1 starting atith position.⋄

Lemma 5.2 LetWCYK-alg compute the valueu[i, j, B]. Then there is no derivation of

[X1, . . . ,Xn] with weight less than or equal toz such that its substring[Xi, . . . ,Xi+j ]

generated byA has weight greater thanu[i, j, B].

Proof: By induction on the length of derivation.

Lengthn. The valueu[1, n, S] = z is correct.
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Lengthp. Let the lemma’s statement hold for all derivations of a substring of lengthp

or greater.

Lengthp−1. Line 29 computes valueu[i, p−1, B], using valuesl[i+p−1, t−(p−1), C],

that are correct by Lemma 5.1, andu[i, t, A], p−1 < t, that are correct by the induction step.

If u[i, p − 1, B] = −1 then there is no way to extend a derivation fromA, A ∈ V [i, p − 1]

by the condition in line 26. Consequently, the valueu[i, p − 1, B] is correct.⋄

Lemma 5.3 LetWCYK-alg compute the valuel[i, j, A] such thatl[i, j, A] < z+1. Then

there exists a substring[Xi, . . . ,Xi+j ] generated fromA, A ∈ V [i, j] of weightl[i, j, A].

Proof: By induction on the length of derivation.

Length1. Line 8 ensures that the valuel[i, 1, A] is the minimal weight of all productions

of typeA→ a applied to values in theXi domain. Hence, there exist a valuea in the domain

of Xi and the productionA→ a with the weightl[i, 1, A].

Lengthp. Let the lemma’s statement hold for all derivations of a substring of lengthp

or less.

Lengthp+ 1. Line 16 ensures that there exist valuesl[i, k,B], l[i+ k, (p + 1) − k,C]

and a productionW [A→ BC] such that

l[i, p + 1, A] = W [A→ BC] + l[i, k,B] + l[i+ k, (p + 1)− k,C].

By the induction step there exist derivations of the substring [Xi, . . . ,Xi+k], k < j fromB

of weightl[i, k,B] and the substring[Xi+k, . . . ,X(p+1)−k], (p+1)−k < (p+1) fromC of

weightl[i+k, (p+1)−k,C]. The substring[Xi, . . . ,Xi+k] and[Xi+k, . . . ,X(p+1)−k] are

disjoint. They can be derived fromB andC, respectively, by the induction step. Moreover,

there exists a productionA→ BC. Hence, we can derive a string of the weightl[i, p+1, A].

⋄

Lemma 5.4 Let WCYK-alg compute the valueu[i, j, A] such thatl[i, j, A] ≤ u[i, j, A]

and l[1, n, S] ≤ u[1, n, S]. Then there exists a derivation of[X1, . . . ,Xn] with a weight at

mostz and its substring[Xi, . . . ,Xi+j ] generated byA has a weight at mostu[i, j, A].

Proof: As l[i, j, A] ≤ u[i, j, A], substring [Xi, . . . ,Xi+j ] can be generated fromA

with weight l[i, j, A]. We will show that this substring can be extended to a solution of

WEIGHTEDGRAMMAR . Line 29 ensures that there exist valuesu[i, k,B], l[i+ j, k − j, C]

and a productionW [B → AC] such that2

u[i, j, A] = u[i, k,B]− l[i+ j, k − j, C]−W [B → AC]

2The caseB → CA ∈ G(line 30),B ∈ V [p, i+ j − p], C ∈ V [p, i− p], A ∈ V [i, j] is similar
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We will show that the substring[Xi, . . . ,Xi+j ] can be extended to a substring

[Xi, . . . ,Xi+k], j < k and the weight of an extended substring derivation is less than or

equal tou[i, k,B].

Line 16 ensures thatl[i, k,B] ≤ l[i, j, A] + l[i + j, k − j, C] + W [B → AC]. Also,

l[i, j, A] ≤ u[i, j, A] by the statement of the lemma. Hence,

l[i, k,B] ≤ u[i, j, A] + l[i+ j, k − j, C] +W [B → AC]

or

l[i, k,B] ≤ u[i, k,B]

By Lemma 5.3, substring[Xi, . . . ,Xi+k] can be derived fromB ∈ V [i, k] with weight

l[i, k,B].

Applying the same argument to the valueu[i, k,B], l[i, k,B] ≤ u[i, k,B], we move up

to the start non-terminalS, S ∈ V [1, n]. ⋄

Theorem 5.8 WCYK-alg enforces domain consistency on variablesX and bounds con-

sistency on the variablez on the WEIGHTEDGRAMMAR (G,W, z, [X1 , . . . ,Xn]) con-

straint.

Proof: Suppose we are looking for a support forXi = a. If the valuea was not pruned

by the algorithm then there exists a non-terminalA, A → a, A ∈ V [i, 1] that was marked.

Hence, there exist a non-terminalC and a productionB → AC such thatl[i, 1, A] + l[i +

1, j, C]+W [B → AC] ≤ u[i, j, B] (line 26). Moreover,u[i, 1, A] ≥ u[i, j, B]− l[i+1, j−
1, C] −W [B → AC]. Consequently,l[i, 1, A] ≤ u[i, 1, A] holds forA. By Lemma 5.4,

Xi = a can be extended to a solution of the constraint.

Suppose the valuea was pruned fromD(Xi). If a was pruned then there is no marked

non-terminalA in V [i, 1, A] such thatA → a. Consequently, there is no non-terminalC

and productionB → AC such thatl[i, 1, A] + l[i + 1, j, C] +W [B → AC] ≤ u[i, j, B].

Consequently,u[i, 1, A] = −1. By Lemma 5.2Xi = a cannot be extended to a solution.

Lemma 5.3 together with line 19 guarantees bounds consistency on the variablez.

⋄
The time complexity of theWCYK-alg algorithm is dominated by lines 21 – 30 and

equalsO(|G|n3).

5.5.2 Decomposition of the weightedGRAMMAR constraint

As an alternative to this monolithic propagator, we proposea simple decomposition with

which we can also enforce domain consistency. The idea of thedecomposition is to in-
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troduce arithmetic constraints to computel andu. Given the tableV obtained by Algo-

rithm 5.5, we construct the correspondingAND/OR directed acyclic graph as in [QW07].

We label anOR node byn(i, j, A), and anAND node byn(i, j, k,A → BC). We denote

the parents of a nodend asPRT (nd) and the children asCHD(nd). For each node two

integer variables are introduced to computel andu. For anOR-nodend, these arelO(nd)

anduO(nd), whilst for anAND-nodend, these arelA(nd), uA(nd).

For eachAND nodend = n(i, j, k,A → BC) we post a constraint to connectnd to

its childrenCHD(nd):

lA(nd) =
∑

nc∈CHD(nd)

lO(nc) +W [A→ BC] (5.2)

For eachOR nodend = n(i, j, A) we post a set of constraints to connectnd to its parents

PRT (nd) and siblings:

uA(nd) = uO(np), np ∈ PRT (nd) (5.3)

For eachOR nodend = n(i, j, A) we post constraints to connectnd to its children

CHD(nd):

lO(nd) = min
nc∈CHD(nd)

{lA(nc)} (5.4)

For eachOR nodend = n(i, j, A) we post a set of constraints to connectnd to its parents

PRT (nd) and siblings:

uO(nd) = maxnp∈PRT (nd){uA(np)− lO(nsb)−W [P ]}, (5.5)

whereP = B → AC or B → CA, np = n(r, q, t, P ) is the parent ofnd = n(i, j, A) and

nsb = n(i1, j1, C).

Finally, we introduce constraints to pruneXi. For each leaf of the DAG that is anOR

nodend = n(i, 1, a), we introduce:

a ∈ D(Xi)⇒ 0 ≤ lO(nd) ≤ z (5.6)

a /∈ D(Xi)⇔ lO(nd) > z (5.7)

lO(nd) > uO(nd)⇒ a /∈ D(Xi) (5.8)

As the maximal weight of a derivation is less than or equal toz we post:

uO(n(1, n, S)) ≤ z (5.9)

Bounds propagation will set the lower bound oflO(n(i, j, A)) to the minimal weight

of a derivation fromA, and the upper bound onuO(n(i, j, A)) to the maximum weight
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of a derivation fromA. We forbid branching on variableslA|O anduA|O as branching on

lA|O would change the weights matrixW and branching onuA|O would add additional

restrictions to the weight of a derivation (see Section 3.3). Bounds propagation on this

decomposition enforces domain consistency on the WEIGHTEDGRAMMAR constraint be-

cause the decomposition constraints mimic the computationof Algorithm 5.5. If we invoke

constraints in the decomposition in the same order as we compute the tableV , this takes

O(n3|G|) time. For simpler grammars, propagation is faster. For instance, as in the un-

weighted case, it takes justO(n|G|) time on a regular grammar.

We can speed up propagation by recognising when constraintsare entailed. IflO(nd)>

uO(nd) holds for anOR nodend then constraints (5.5) and (5.4) are entailed. IflA(nd) >

uA(nd) holds for anAND nodend then constraints (5.2) and (5.3) are entailed. To model

entailment we augmented each of these constraints in such a way that if lO(nd) > uO(nd)

or lA(nd) > uA(nd) hold then corresponding constraints are not invoked by the solver.

5.5.3 The SoftGRAMMAR constraint

We can use the WEIGHTEDGRAMMAR constraint to encode a soft version of GRAMMAR

constraint which is useful for modelling over-constrainedproblems. The soft

GRAMMAR (G, z, [X1, . . . ,Xn]) constraint holds if and only if the string[X1, . . . ,Xn] is

at most distancez from a string inG. We consider both Hamming and edit distances. We

denote GRAMMARh(G, z, [X1, . . . ,Xn]) the soft GRAMMAR constraint with the Hamming

distance violation measure and GRAMMAR e(G, z, [X1, . . . ,Xn]) the soft GRAMMAR con-

straint with the edit distance violation measure.

We encode the soft GRAMMARh(G, z, [X1, . . . ,Xn]) constraint as a weighted

GRAMMAR (G′,W, z, [X1, . . . ,Xn]) constraint. TheG′ grammar containsG and for each

productionA → a ∈ G, we introduce additional unit weight productions to simulate sub-

stitution:

G′ = G ∪ {A→ b,W [A→ b] = 1|A→ a ∈ G,A→ b /∈ G, b ∈ Σ}

All productions fromG have zero weight.

Theorem 5.9 The WEIGHTEDGRAMMAR (G′,W, z, [X1, . . . ,Xn]) constraint is equiva-

lent to theGRAMMARh(G, z, [X1, . . . ,Xn]) constraint.

Proof: Consider a solutionX of GRAMMARh(G, z, [X1, . . . ,Xn]) with costk. X can be

transformed into a stringS, S ∈ G with k substitutions. Hence, the stringS can be derived
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in G′ with zero weight. Now we transform the stringS back toX using productions of

G′. If the symbolXi = b was substituted by the symbola in S, we replaceA → a in the

parsing tree ofS with A→ b increasing the weight of the derivation by one. Note that this

replacement affects only a leaf of the parsing tree, hence nothing else has to be changed in

the parsing tree after the replacement. The remaining substitution in S can be done in the

similar way. Consequently,X can be derived inG′ with weightk.

Consider a solutionX of WEIGHTEDGRAMMAR (G′,W, z, [X1, . . . ,Xn]) with weight

k. If we replace productions of the typeA → b with weight one withA → a with

weight zero, then the weight of a derivation is decreased by one. This replacement cor-

responds to the substitution of the valuea in the domain ofXi with b. There are exactly

k productions of this type in the parsing tree ofX in G′, consequently,X is a solution of

GRAMMARh(G, z, [X1, . . . ,Xn]) with costk. ⋄
For edit distance, we use the same idea of an encoding of

the soft GRAMMAR e(G, z, [X1, . . . ,Xn]) constraint as a weighted

GRAMMAR (G′′,W, z, [X1, . . . ,Xn]) constraint. TheG′′ grammar containsG and

additional productions to simulate substitution, insertion and deletion:

G′′ = G ∪ {A→ b,W [A→ b] = 1|A→ a ∈ G,A→ b /∈ G, b ∈ Σ}∪

{A→ ε,W [A→ ε] = 1|A→ a ∈ G, a ∈ Σ}∪

{A→ Aa,W [A→ Aa] = 1|a ∈ Σ}∪

{A→ aA,W [A→ aA] = 1|a ∈ Σ}

To handleε productions we modify Algorithm 5.5 so loops in lines (13),(24) run from0 to

j. All productions fromG have zero weight.

Theorem 5.10 TheWEIGHTEDGRAMMAR (G′′,W, z, [X1, . . . ,Xn]) constraint is equiva-

lent to theGRAMMAR e(G, z, [X1, . . . ,Xn]) constraint.

Proof: Similar to the proof of Theorem 5.9. The only difference is ininsertion and deletion

operations that are used in the transformation ofS back toX.

If the symbolb was deleted before the symbolc in a transformation fromX to S then

we insertb beforec in S. Namely, the productionA→ c in the parsing tree ofS is replaced

with A→ Ac→ bc increasing the weight of the derivation by one.

If the symbolb was inserted in the transformation fromX to S then we deleteb in S.

Namely, the productionA → b in the parsing tree ofS is replaced withA → ε increasing

the weight of the derivation by one.⋄
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5.5.4 TheEDITDISTANCE constraint

In this section we present another application of the weighted GRAMMAR constraint. We

show how to encode an edit distance constraint into such a grammar. In particular, we show

that we can use linear weighted GRAMMAR constraint(Section 5.4.2). We recall that the edit

distance between two strings is the minimum number of deletion, insertion and substitution

operations required to convert one string into another. Each of these operations can change

one symbol in a string. W.l.o.g. we assume thatn = m.

We recall the definition of the EDITDISTANCE constraint:

EDITDISTANCE([X1, . . . ,Xn], [Y1, . . . , Ym], N) holds if and only if the edit dis-

tance between assignments of two sequences of variablesX andY is less than or equal to

N .

We will show that the EDITDISTANCE constraint can be encoded as a weighted form of

the linear GRAMMAR constraint. The idea of the encoding is to parse matching substrings

using productions of weight 0 and to parse edits using productions of weight 1.

We convert EDITDISTANCE([X], [Y], N) into a linear

WEIGHTEDGRAMMAR ([Z2n+1, N,Ged) constraint. The firstn variables in the se-

quenceZ are equal to the sequenceX, the variableZn+1 is ground to the sentinel symbol

# so that the grammar can distinguish the sequencesX andY, and the lastn variables of

the sequenceZ are equal to the reverse of the sequenceY. We define the linear weighted

grammarGed as follows.

S →dSd w = 0 ∀d ∈ D(X) ∪D(Y) (5.10)

|d1Sd2 w = 1 ∀d1 ∈ D(X), d2 ∈ D(Y), d1 6= d2 (5.11)

|dS|Sd w = 1 ∀d ∈ D(X) (5.12)

|# w = 0, (5.13)

whereD(X) = ∪ni=1D(X). Intuitively, rule (5.10) captures matching terminals, rule (5.11)

captures replacement, rules (5.12) capture insertions anddeletions. It is easy to show

equivalence of these two constraints.

The propagator for the linear WEIGHTEDGRAMMAR constraint takesO(n2|G|) time

since the arguments of Theorem 5.7 also apply to a CYK-based propagator for lin-

ear WEIGHTEDGRAMMAR . Down a branch of the search tree, the time complexity is

O(n2|G|ub(N)).

We can use this encoding of the EDITDISTANCE constraint into a linear

WEIGHTEDGRAMMAR constraint to construct propagators for more complex constraints.
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For instance, we can exploit the fact that linear grammars are closed under intersection

with regular grammars to propagate efficiently the conjunction of an EDITDISTANCE con-

straint and REGULAR constraints on each of the sequencesX,Y. More formally, letX and

Y be two sequences of variables of lengthn subject to the constraints REGULAR(X, R1),

REGULAR(Y, R2) and EDITDISTANCE([X], [Y], N). We construct a domain consistency

propagator for the conjunction of these three constraints,by computing a grammar that

generates strings of length2n + 1 which satisfy the conjunction. First, we construct an

automaton that acceptsL(R1)#L(R2)
R. Since regular languages are closed under con-

catenation and reversal, this language is also regular and requires an automaton of size

O(|R1| + |R2|). Second, we intersect this with the linear weighted grammarthat encodes

the EDITDISTANCE constraint using the “triple construction”. The size of theobtained

grammar isG∧ = |Ged|(|R1| + |R2|)2 and this grammar is a weighted linear grammar.

Therefore, we can use the linear WEIGHTEDGRAMMAR (Z, N,G∧) constraint to encode

the conjunction. Note that the size ofG∧ is only quadratic in|R1| + |R2|, becauseGed

is a linear grammar. The time complexity to enforce domain consistency on this con-

junction of constraints isO(n2|G∧|) = O(n2d2(|R1| + |R2|)2) for each invocation and

O(n2d2(|R1|+ |R2|)2ub(N)) down a branch of the search tree.

5.5.5 Other related work

Cost based GRAMMAR constraints (CFGC) were independently proposed by Kadioglu and

Sellmann in [KS08] The difference between this work and oursis that in [KS08] weights can

only be placed on individual terminals. Here, we allow weights to be placed on any produc-

tion and therefore WEIGHTEDGRAMMAR is more expressive than CFGC. For instance, we

can express the Soft GRAMMAR constraint with the edit distance violation measure using

the weighted GRAMMAR constraint, but we cannot encode this constraint with the CFGC

constraint.

Demassey, Pesant and Rousseau proposed the cost REGULAR constraint [DPR06] that

shares a lot of advantages of the weighted GRAMMAR constraint. The propagator is based

on the same idea as Pesant’s propagator for the REGULAR constraint. The propagator builds

an unfolded layered automaton. In addition, it associates acost with each transition in the

unfolded graph based on the cost matrix. It was shown that there is a bijection between

solutions of COSTREGULAR and paths in the corresponding weighted unfolded automaton

of weight at mostub(z). However, as Example 5.3 demonstrated, there exist languages

that can be expressed by polynomial sized context free grammars but the smallest regular
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language that accepts these languages is exponential in size.

5.5.6 Experimental results

In this section, we evaluate the impact of the WEIGHTEDGRAMMAR constraint on some

shift scheduling benchmarks. We show that the weighted GRAMMAR constraint is efficient

for solving these problems, because it allows propagating the conjunction of GRAMMAR

and the objective function of a shift scheduling problem. Weused GeCode 2.0.1 for our

experiments and ran them on an Intel Xeon2.0Ghz machine with4Gb of RAM.

We use the same shift scheduling problems that we introducedin Section 5.3.7

and use the same CP basic model. We replace the GRAMMAR constraint with the

WEIGHTEDGRAMMAR constraint.

In the first set of experiments, we used WEIGHTEDGRAMMAR (G, zj ,X), j =

1, . . . ,m with zero weights. We investigate whether the filtering algorithm for the

WEIGHTEDGRAMMAR constraint introduces an overhead compared to the unweighted

GRAMMAR constraint. For this purpose, we define the weight function with conditional

weights as follows

W (P, i, j) =







0 if f(i, j) = 1

+∞ if f(i, j) = 0

Our monolithic propagator gave similar results to the unweighted GRAMMAR propaga-

tor from [QW07]. Decompositions of the WEIGHTEDGRAMMAR constraint were slower

than decompositions of the unweighted GRAMMAR constraint as the former uses integers

instead of Booleans. However, using the WEIGHTEDGRAMMAR constraint did not lead to a

significant slowdown even if it does not achieve any extra pruning compared to GRAMMAR .

In the second set of experiments, we investigate whether propagating the conjunction

of the GRAMMAR constraint and the objective function can achieve additional pruning.

In order to do this, we augment the first model with additionalconstraints. We assigned

weights to the productions of the grammar as described in Section 5.5.1. Specifically, we

assigned weight1 to activity productions, likeAi → ai. The objective function is thus

reduced to
∑m

j=1 zj , wherezj is the cost variables for the WEIGHTEDGRAMMAR (G, zj ,X)

constraint,j = 1, . . . ,m. Note
∑m

j=1 zj =
∑n

i=1

∑m
j=1

∑a
k=1 b(i, j, ak) is the number of

slots in which employees worked. Results are presented in Table 5.3.

As can be seen from Table 5.3, we improved on the best solutionfound in the first model

in 4 benchmarks and proved optimality in one. This shows that propagating the conjunction

of the GRAMMAR constraints and the objective function pays off in terms of the runtime
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improvements. The decomposition of the WEIGHTEDGRAMMAR constraint was slightly

slower than the monolithic propagator. As was shown in Section 5.5.2, the time complexity

of the decomposition is the same as the complexity of the monolithic propagator if the

decomposition constraints are invoked in a particular order. However, we cannot enforce

this ordering in the solver. It was also pointed out that someconstraints become irrelevant

during the search, but they are not entailed. Therefore, they present an overhead. We

eliminate this redundant computation by annotating these constraints with an additional

entailment test. If this test succeeds the solver ignores them in the remainder of the current

branch (Section 5.5.2). Table 5.3 shows that redundant computation contributes a significant

overhead and the additional entailment test improves performance in most cases, making the

decomposition slightly faster than the monolithic propagator.

5.6 Conclusions

In this chapter we addressed three important problems for the GRAMMAR constraint.

First of all, we showed that, unlike parsing, restrictions on context-free grammars such

as determinism do not improve the efficiency of propagation of the corresponding global

GRAMMAR constraint. This negatively resolves an open question stated by Meinolf Sell-

mann [Sel06] regarding unambiguous GRAMMAR constraint. On the other hand, one

specific syntactic restriction, that of linearity, allows propagation in quadratic time. We

demonstrated an application of such a restricted grammar inencoding the EDITDISTANCE

constraint and more complex constraints. Second, we have shown how to transform a

GRAMMAR constraint into a REGULAR constraint. In the worst case, the transformation

may increase the space required to represent the constraint. However, in practice, we ob-

served that such transformation reduces the space requiredto represent the constraint and

speeds up propagation. We argued that transformation also permits us to compress the

representation using standard techniques for automaton minimisation. We proved that min-

imising such automata after they have been unfolded and domains initially reduced can

give automata that are exponentially more compact than those obtained by minimising be-

fore unfolding and reducing. Experimental results demonstrated that such transformations

can improve the size of rostering problems that can be solved. Thirdly, we have intro-

duced a weighted form of the GRAMMAR constraint. The GRAMMAR constraint with

weights permits us to model over-constrained problems and problems with preferences.

We proposed propagators for the WEIGHTEDGRAMMAR constraint based on the CYK

parser. We also proposed a decomposition of the WEIGHTEDGRAMMAR constraint into
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Table 5.3: All benchmarks have a one-hour time limit.|A| is the number of activities,m is the number of employees,cost shows the total number of slots in

which employees worked in the best solution,time is the time to find the best solution,bt is the number of backtracks to find the best solution,BT is the number

of backtracks in one hour,Opt shows if optimality is proved,Imp shows if a lower cost solution is found by the second model

Monolithic Decomposition Decomposition+entailment

|A| # m cost time bt BT cost time bt BT cost time bt BT Opt Imp

1 2 4 107 5 0 8652 107 7 0 5926 107 7 0 11521

1 3 6 148 7 1 5917 148 34 1 1311 148 9 1 8075

1 4 6 152 1836 5831 11345 152 1379 5831 14815 152 1590 5831 13287

1 5 5 96 6 0 8753 96 6 0 2660 96 3 0 45097

1 6 6 − − − 10868 132 3029 11181 13085 132 2367 11181 16972

1 7 8 196 16 16 10811 196 18 16 6270 196 15 16 10909

1 8 3 82 11 9 66 82 13 9 66 82 5 9 66
√ √

1 10 9 − − − 10871 − − − 9627 − − − 18326

2 1 5 100 523 1109 7678 100 634 1109 6646 100 90 1109 46137

2 2 10 − − − 11768 − − − 10725 − − − 6885

2 3 6 165 3517 9042 9254 168 2702 4521 6124 165 2856 9042 11450
√

2 4 11 − − − 8027 − − − 6201 − − − 5579

2 5 4 92 37 118 12499 92 59 118 6332 92 49 118 10329

2 6 5 107 9 2 6288 107 22 2 1377 107 14 2 7434

2 8 5 126 422 1282 12669 126 1183 1282 3916 126 314 1282 16556
√

2 9 3 76 1458 3588 8885 76 2455 3588 5313 76 263 3588 53345
√

2 10 8 − − − 3223 − − − 3760 − − − 8827
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simple arithmetic constraints. Experiments on a shift-scheduling benchmark suggest that

the WEIGHTEDGRAMMAR constraint has promise for solving real-world problems.
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Chapter 6

The ALL -DIFFERENTconstraint and

Generalisations

6.1 Introduction

In modelling timetabling, scheduling and other problems weoften need to specify the re-

striction that a set of variables takes pairwise distinct values. Consider, for example, a

timetabling problem where a number of students have to take exams during an exam ses-

sion period. We want to construct an exam timetable such thatnone of the students has to

take two exams on the same day. Another example is a job-shop scheduling problem, where

there exists a set of tasks and a set of machines that can process these tasks. We want to

ensure that at any time point one machine processes at most one job. To encode this type of

restrictions the ALL -DIFFERENT constraint was introduced [Lau78].

Definition 6.1 The ALL -DIFFERENT([X1, . . . ,Xn]) constraint is satisfied if and only if

Xi 6= Xj, for i, j = 1, . . . , n, i 6= j.

A natural generalisation of the ALL -DIFFERENT constraint is the overlapping

ALL -DIFFERENTconstraint which allows to reason about two ALL -DIFFERENTconstraints

simultaneously. For example, in timetabling problems, we might have two students who

have some common exams and some unique exams. The overlapping ALL -DIFFERENT

constraint can be used to encode a timetabling problem for both students .

Definition 6.2 The OVERLAPPINGALL DIFF([X1, . . . ,Xn], S, T ) constraint whereS ⊆
X, T ⊆ X, S ∪ T = X holds if and only if ALL -DIFFERENT([S]) and

ALL -DIFFERENT([T ]) hold simultaneously .

145
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Another generalisation of the ALL -DIFFERENT constraint is the GCC constraint, that

restricts the number of occurrences of some values to be within an interval [Reg96]. The

GCC constraint is useful in modelling shift scheduling problems, job shop scheduling prob-

lems and in many other domains. For example, in the shift scheduling problem described in

Section 5.3.7, the GCC constraint can be used to model labourdemand constraints, such as

between two and three employees have to perform a certain activity .

Definition 6.3 The GCC([X1, . . . ,Xn], [l1, . . . , ld], [u1, . . . , ud]) constraint holds if and

only if |{i|Xi = j}| ∈ [lj , uj ], j = 1, . . . ,m.

A third generalisation of the ALL -DIFFERENT constraint is the NVALUE constraint. Pa-

chet and Roy proposed this global constraint to model a combinatorial problem in selecting

musical play-lists [PR99]. The NVALUE constraint restricts the number of occurrences of

different values taken by a set of variables :

Definition 6.4 The NVALUE([X1, . . . ,Xn], N) constraint holds if and only ifN =

|{Xi | 1 ≤ i ≤ n}|.

The NVALUE constraint was also used to model the problem of species differentia-

tion [Bue10].

ALL -DIFFERENT and its generalisations are among the most useful constraints in con-

straint programming toolkits. Therefore, considerable effort has been invested in develop-

ing efficient propagation algorithms for these constraints[Reg94,Lec96,Pug98,MT00,LO-

QTvB03,Reg96,QLOvBG04,PR99].

In this chapter we study the decomposability of these constraints and their filtering al-

gorithms. Our main contribution is to show that existing range consistency and bounds

consistency filtering algorithms for these constraints canbe reformulated using a set of

primitive arithmetic constraints, like ternary sum constraints or linear arithmetic constraints.

We prove that these decompositions do not hinder propagation. Chapter 7 shows a comple-

mentary result that domain consistency algorithms for the ALL -DIFFERENT and GCC con-

straints cannot be polynomially decomposed into a set of primitive constraints. Enforcing

domain consistency on the OVERLAPPINGALL DIFF and NVALUE constraints is NP-hard

which, assuming P6=NP, implies that a polynomial size decomposition for these global con-

straints cannot exist without hindering propagation [EKKM05,BHH+05]. -
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In this chapter we make the following contributions:

• propose range consistency and bounds consistency decompositions of the

ALL -DIFFERENT constraint (Section 6.3).

• draw a connection between ALL -DIFFERENT and SEQUENCE constraints (Sec-

tion 6.4), that shows that the ALL -DIFFERENT constraint can be encoded as the

SEQUENCEconstraint.

• propose a decomposition that detects bounds disentailmentfor the

OVERLAPPINGALL DIFF constraint (Section 6.7).

• propose range consistency and bounds consistency decompositions of the GCC con-

straint (Section 6.8.2)

• present an extension of Hall’s theorem for maximum matchingin a graph (Sec-

tion 6.9.1.3).

• propose range consistency and bounds consistency decompositions of the NVALUE

constraint (Section 6.9.2).

• experimentally evaluate performance of these decompositions on some combinato-

rial and random problems and analyse their advantages and limitations (Section 6.5,

Section 6.7.4 and Section 6.9.5).

6.2 Filtering algorithms for the ALL -DIFFERENTconstraint

The ALL -DIFFERENT constraint is one of the oldest and most useful global constraints

available to the constraint programmer. A large number of filtering algorithms have

been proposed for the ALL -DIFFERENT constraint, including propagators that enforce

domain consistency [Reg94, GMN08], range consistency [Lec96] and bounds consis-

tency [Pug98, MT00, LOQTvB03]. In this section we show that many of these monolithic

filtering algorithms can be decomposed into a set of primitive constraints. Since a do-

main consistency propagator for the ALL -DIFFERENT constraint cannot be polynomially

decomposed into a set of primitive constraints (Chapter 7),we focus on decomposing range

consistency and bounds consistency filtering algorithms , .Let us introduce a running ex-

ample:



148 CHAPTER 6. ALL-DIFFERENT AND GENERALISATIONS

Example 6.1 (Running example (ALL -DIFFERENT)) Suppose we have five conference

tracks and five large rooms in a conference centre. Each conference track has some specific

requirements for a conference room, like capacity, availability of video and audio systems,

etc, so that the first track can be held only in rooms number{3, 4, 5}, the second in rooms

{1, 2, 3, 4, 5}, the third in rooms{3, 4}, the fourth in rooms{2, 3, 4, 5} and the fifth track

can be held only in the 1-st room. The goal is to construct a schedule for the conference

so that all tracks run in different rooms. To encode this problem we introduce five finite do-

main variables,[X1, . . . ,X5], where theith variables representsith conference track. The

domain ofXi contains all suitable rooms where theith track can be held. The following

matrix shows the domains of the variables.

1 2 3 4 5

X1 ∗ ∗
X2 ∗ ∗ ∗ ∗ ∗
X3 ∗ ∗
X4 ∗ ∗ ∗ ∗
X5 ∗

⋄

The ALL -DIFFERENT[X1,X2,X3,X4,X5] constraint ensures that each conference

track runs in a separate room.

As we only work with range consistency and bounds consistency filtering algorithms

and bounds supports, we assume that the domains of all variables are intervals. We also

denote the set of lower bounds of variablesX asLB =
⋃n

i=1{lb(D(Xi))} and the set of

upper bounds of variablesX asUB =
⋃n

i=1{ub(D(Xi))}
Existing bounds consistency and range consistency algorithms for the ALL -DIFFERENT

constraint are based on the notion of aHall interval , which is a special case of aHall

set [Hal35]. A Hall set is a set ofd domain values that completely contains the domains

of d variables. Then a Hall interval is a Hall set that contains consecutive values. More

formally,

Definition 6.5 (Hall set [Hal35]) A setS is a Hall set if and only if|{i | D(Xi) ⊆ S}| =
|S|.

Definition 6.6 (Hall interval) An interval [l, u] is a Hall interval if and only if

|{i | D(Xi) ⊆ [l, u]}| = u− l + 1.
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Based on the notion of Hall interval we can derive necessary and sufficient conditions

for range consistency and bounds consistency for the ALL -DIFFERENT constraint. Infor-

mally, the following theorems state that variables whose domains are contained within the

Hall interval consume all the values in the Hall interval, whilst any other variables ranges

of values (bounds) must find their support outside the Hall interval.

Theorem 6.1 (Bounds disentailment [Pug98])TheALL -DIFFERENT constraint is satis-

fiable if and only if

1. D(Xi) 6= ∅, i = 1, . . . , n and

2. for each interval[l, u], |D(Xi) ⊆ [l, u]| ≤ u− l + 1,

wherel ∈ LB andu ∈ UB.

Theorem 6.2 (Range consistency)TheALL -DIFFERENT constraint is range consistent if

and only if

1. Theorem 6.1 conditions 1– 2 hold and

2. for each Hall interval of values[l, u] and for eachXi:

if D(Xi) is not fully contained in the interval[l, u] thenD(Xi) ∩ [l, u] = ∅, i =

1, . . . , n.

Theorem 6.3 (Bounds consistency)TheALL -DIFFERENT constraint is bounds consistent

if and only if

1. Theorem 6.1 conditions 1– 2 hold and

2. for each Hall interval of values[l, u] and for eachXi:

if D(Xi) is not fully contained in the interval[l, u] then{lb(D(Xi)), ub(D(Xi))} /∈
[l, u], i = 1, . . . , n.

Leconte [Lec96] proposed the first range consistency filtering algorithm for the

ALL -DIFFERENT constraint that is based on identification of Hall intervals. Algorithm 6.1

shows the pseudocode for this algorithm (the pseudocode is from [Qui06]). This algorithm

sorts variables twice, by the upper bounds and by the lower bounds. The outer loop iterates

over variables sorted by the upper bounds. For each variablethe algorithm iterate over vari-

ables sorted by the lower bounds to detect Hall intervals. The values in Hall intervals are

removed from domains of variables that are not completely contained inside one of these

intervals. The time complexity of the algorithm isΘ(n2).
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Algorithm 6.1 Leconte’s algorithm

1: procedure ALL DIFF-RC([X1, . . . , Xn])

2: for Xj in decreasing order ofub(D(Xj)) do

3: count = 0;

4: k = −1;

5: for Xi in decreasing order oflb(D(Xi)) do

6: if k ≥ 0 then

7: D(Xi) = D(Xi) \ [lb(D(Xk), ub(D(Xj))] ;

8: if ub(D(Xi) ≤ ub(D(Xj)) then

9: count = count+ 1;

10: if count = ub(D(Xj))− lb(D(Xi)) + 1 then

11: k = i ;

12: for Xi such thatub(D(Xj)) < ub(D(Xi)) do

13: if lb(D(Xk) ≤ lb(D(Xi)) then

14: D(Xi) = D(Xi) \ [inf, lb(D(Xk)) + 1] ;

Puget [Pug98] proposed aBC filtering algorithm for the ALL -DIFFERENT constraint

that is also based on identification of Hall intervals. First, Puget observed that the prob-

lem can be simplified by achieving bounds consistency on the lower bounds independently

of bounds consistency on the upper bounds. To achieve boundsconsistency on the lower

bounds (the upper bounds are similar), Puget sorts all variables by their upper bounds and

processes variables in this order. For each pair of variables Xj andXi, j is less thani in

the order, the algorithm keeps tracks of the number of variables where domains are inside

the interval[lb(D(Xj)), ub(D(Xi))] and updates this information using dynamic program-

ming. If the algorithm detects a Hall interval then these values are pruned according to

Theorem 6.3. The naive implementation of the algorithm runsin O(n3) time, because we

need to keep track ofO(n2) intervals on each step. The complexity can be improved to

O(n log n) per invocation by observing that we do not need to keep track of nested Hall

intervals and by using a balanced binary tree to store the Hall intervals. Lopez-Ortizet

al. proposed an improvement of this algorithm that runs inO(n) time per invocation [LO-

QTvB03].

Consider how to achieve range consistency and bounds consistency on our running ex-

ample.
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Example 6.2 Recall that domains of the variables are:

1 2 3 4 5

X1 ∗ ∗
X2 ∗ ∗ ∗ ∗ ∗
X3 ∗ ∗
X4 ∗ ∗ ∗ ∗
X5 ∗

Bounds consistency. We consider the interval[1, 1]. This interval is a Hall interval of

size 1 that containsD(X5). Therefore, we prune value1 fromD(X2).

1 2 3 4 5

X1 ∗ ∗
X2 ∗ ∗ ∗ ∗
X3 ∗ ∗
X4 ∗ ∗ ∗ ∗
X5 ∗

The constraint is now bounds consistent . At this point, there are two Hall intervals

[3, 4] and [2, 5] formed by domains of variablesX1,X3 andX1,X2,X3,X4, respectively.

However, none of the variables bounds, that are not contained inside these intervals overlap

[3, 4] or [2, 5]. Therefore, by Theorem 6.3, the constraint is bounds consistent .

Range consistency. The interval[3, 4] is a Hall interval of size 2 as it completely

contains the domains of 2 variables,X1 andX3. By Theorem 6.2, we can remove values

[3, 4] from the domains ofX2 andX4. This leaves the following domains:

1 2 3 4 5

X1 ∗ ∗
X2 ∗ ∗
X3 ∗ ∗
X4 ∗ ∗
X5 ∗

By Theorem 6.2 the constraint is now range consistent .⋄

6.3 A decomposition of theALL -DIFFERENTconstraint

In this section we propose a simple decomposition of the ALL -DIFFERENT constraint that

allows enforcing range consistency. Following Theorems 6.2–6.3, the decomposition en-
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sures that no interval can contain more variables than its size using a set of arithmetic

constraints over a set of Boolean variables. We introduceO(n2d) new 0/1 variablesAilu to

represent whetherXi takes a value in the interval[l, u]. For1 ≤ i ≤ n, 1 ≤ l ≤ u ≤ d and

u− l < n, we post the following constraints:

Ailu = 1 ⇐⇒ Xi ∈ [l, u] (6.1)
n
∑

i=1

Ailu ≤ u− l + 1 (6.2)

Informally, constraints (6.1) provide channelling between variablesAilu and the orig-

inal variablesXi, and constraints (6.2) count how many original variables are inside each

interval [l, u].

If the number of original variablesX whose domains are completely contained inside an

interval[l, u] becomes equal to the length of the interval,u−l+1, then constraints (6.2) force

unset variablesAilu to take value zero. In turn, setting a variableAilu to zero propagates

pruning to the original variablesXi through the channelling constraints (6.1).

We will prove that enforcingDC on the decomposition enforcesRC on the original

ALL -DIFFERENT constraint. Interestingly, a simple decomposition like this can simulate

a complex propagation algorithm like Leconte’s. In addition, the overall complexity of

reasoning with the decomposition is similar to Leconte’s propagator.

Theorem 6.4 Enforcing domain consistency on constraints(6.1) and (6.2) enforces range

consistency on the correspondingALL -DIFFERENT constraint inO(n2d2) down any

branch of the search tree.

Proof: By Theorem 6.2 every Hall interval should be removed from thedomain of variables

whose domains are not fully contained within that Hall interval. Let [a, b] be a Hall interval.

That is,|H| = b−a+1 whereH = {Xi | D(Xi) ⊆ [a, b]}. Constraint (6.1) fixesAiab = 1

for all D(Xi) ∈ H. Constraint (6.2) withl = a andu = b becomes tight, fixingAiab = 0

for all Xi 6∈ H. The channelling constraint (6.1) forl = a, u = b, andXi 6∈ H removes the

interval [a, b] from the domain ofXi as required for range consistency.

Complexity argument:There areO(n2d) constraints (6.1). Each constraint that can be

invokedO(d) times on variableXi bound change and once on an assignment of the Boolean

variableAilu down the branch of the search tree. In the first case each propagation requires

O(1) time. In the second case the single propagation requiresO(d) time. This givesO(d)

time down the branch of the search tree.

Constraints (6.1) therefore takeO(n2d2) down the branch of the search tree to prop-

agate. There areO(d2) constraints (6.2) that each takeO(n) time to propagate down the
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branch of the search tree for a total ofO(nd2) time. The total running time is given by

O(n2d2) +O(nd2) = O(n2d2). ⋄

We illustrate this decomposition on our running example.

Example 6.3 Consider again the running example. Recall that domains of the variables

are :

1 2 3 4 5

X1 ∗ ∗
X2 ∗ ∗ ∗ ∗ ∗
X3 ∗ ∗
X4 ∗ ∗ ∗ ∗
X5 ∗

Range consistency. First take the interval[1, 1]. SinceX5 ∈ [1, 1], constraint (6.1)

impliesA511 = 1. Now from the linear equation(6.2) we get that
∑5

i=1 Ai11 ≤ 1. That

is, at most one variable can take the value1 within this interval. This forces thatA211 =

A311 = A411 = A511 = 0. Using the channelling constraint(6.1) andA211 = 0, we get

X2 6∈ [1, 1]. SinceX2 ∈ [1, 5], this leavesX2 ∈ [2, 5].

1 2 3 4 5

X1 ∗ ∗
X2 ∗ ∗ ∗ ∗
X3 ∗ ∗
X4 ∗ ∗ ∗ ∗
X5 ∗

Now take the interval[3, 4]. From the channelling constraint(6.1), we obtainA134 =

A334 = 1. Now from constraint(6.2),
∑5

i=1 Ai34 ≤ 2. That is, at most 2 variables can

take a value within this interval. This means thatA234 = A434 = A534 = 0. Using

constraint(6.1) we getX2 6∈ [3, 4], X4 6∈ [3, 4]. SinceX2 ∈ [2, 5] andX4 ∈ [2, 5], this
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leavesX2 = {2, 5} andX4 ∈ {2, 5}.

1 2 3 4 5

X1 ∗ ∗
X2 ∗ ∗
X3 ∗ ∗
X4 ∗ ∗
X5 ∗

By Theorem 6.4 theALL -DIFFERENT constraint is range consistent .⋄

By using a decomposition that can only prune bounds of variable domains, we can give

a decomposition that achieves bounds consistency in a similar way. In addition, we can

reduce the overall complexity in the case that constraints are woken whenever their bounds

change.

Following a linear encoding (Section 2.4.4), we introduce new 0/1 variables,Bik, 1 ≤
k ≤ d and replace (6.1) by the following constraints,1 ≤ l ≤ u ≤ d andu− l < n,:

Bil = 1 ⇐⇒ Xi ≤ l (6.3)

Ailu = 1 ⇐⇒ (Bi(l−1) = 0 ∧Biu = 1) (6.4)

Theorem 6.5 Enforcing bounds consistency on constraints(6.2) to (6.4) enforces bounds

consistency on the correspondingALL -DIFFERENT constraint inO(nd2) down any branch

of the search tree.

Proof: We first observe that bounds consistency is equivalent to domain consistency on con-

straints (6.2) becauseAilu are Boolean variables. So, the proof follows the proof for Theo-

rem 6.4 except that fixingAilu = 0 prunes the bounds ofD(Xi) if and only if Bi(l−1) = 0

or Biu = 1, that is, if and only if exactly one bound of the domain ofXi intersects the

interval [l, u]. Only the bounds that do not have a bound support are shrunk.

Complexity argument:The complexity reduces compared to Theorem 6.4 as (6.3) ap-

pearsO(nd) times and is wokenO(d) times, whilst (6.4) appearsO(n2d) times and is

woken justO(1) time. The total time complexity isO(n2d) +O(nd2) = O(nd2) ⋄
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Example 6.4 Consider again the running example. We start with initial domains:

1 2 3 4 5

X1 ∗ ∗
X2 ∗ ∗ ∗ ∗ ∗
X3 ∗ ∗
X4 ∗ ∗ ∗ ∗
X5 ∗

Bounds consistency. Consider the interval[1, 1]. SinceX5 ∈ [1, 1],(6.3) impliesB50 =

0 andB51 = 1. The linear constraint(6.4) implies thatA511 = 0. By the same reasoning

as in Example 6.3, the value1 is pruned forX2.

1 2 3 4 5

X1 ∗ ∗
X2 ∗ ∗ ∗ ∗
X3 ∗ ∗
X4 ∗ ∗ ∗ ∗
X5 ∗

If we consider the interval[3, 4] we can derive thatA234 = A434 = A534 = 0 the same

way as in Example 6.3. However, this does not give an additional pruning on the original

variablesX. Consider, for example, the second variableX2. The variableA234 is fixed

to 0. This implies that eitherB24 has to be0 or B22 has to be1. However, none of these

Boolean variables is fixed and no propagation occurs on the variable X2. ⋄

A special case of ALL -DIFFERENT is PERMUTATION when we have the same num-

ber of values as variables, and the values are ordered consecutively. A decomposition of

PERMUTATION just needs to replace (6.2) with the following equality where (as before)

1 ≤ l ≤ u ≤ d, andu− l < n:

n
∑

i=1

Ailu = u− l + 1 (6.5)

This can increase propagation. In some cases,DC on constraints (6.1) and (6.5) will prune

values that aRCpropagator for PERMUTATION would miss.

Example 6.5 Consider aPERMUTATION constraint over the following variables and val-
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ues:

1 2 3

X1 ∗ ∗
X2 ∗ ∗
X3 ∗ ∗ ∗

These domains are range consistent . However, take the interval [2, 2]. By enforcing DC

on constraint(6.1), A122 = A222 = 0. Now, from constraint(6.5), we have
∑3

i=1Ai22 =

1. ThusA322 = 1. By constraint(6.1), this setsX3 = 2. On this particular problem

instance, DC on constraints(6.1)and(6.5)has enforced domain consistency on the original

ALL -DIFFERENT constraint.⋄

6.4 Other decompositions of theALL -DIFFERENTconstraint

In this section we consider two other decompositions of the ALL -DIFFERENT constraint.

The first decomposition is an existing naive decomposition into a clique of binary inequality

constraints [Lau78]. This decomposition does not enforce bounds consistency but it can be

also easily implemented in a constraint solver. We present it for completeness of the mate-

rial. We also use this model in an experimental evaluation. The second decomposition is a

new alternative decomposition of the ALL -DIFFERENT constraint to the decomposition that

is described in Section 6.3. This decomposition does not achieve bounds consistency, but it

detects bounds disentailment and provides an interesting connection to the GEN-SEQUENCE

constraint (Section 4.2.4) . Moreover, this decompositionis useful to construct a bounds

consistency filtering algorithm for the OVERLAPPINGALL DIFF constraint .

6.4.1 Decomposition into clique of binary inequalities

A natural way to decompose the ALL -DIFFERENT constraint is to encode the constraint

using a set of binary inequalities.

Xi 6= Xj i, j = 1, . . . , n; i 6= j (6.6)

Clearly, constraints (6.6) are logically equivalent to theALL -DIFFERENT constraint.

However, this decomposition provides only weak inference as the following theorem shows:

Theorem 6.6 Enforcing domain consistency on the decomposition(6.6) does not detect

bounds disentailment of theALL -DIFFERENT constraint.
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Proof: Consider an ALL -DIFFERENT([X1,X2,X3]) with the following domainsD(X1) =

D(X2) = D(X3) = {1, 2}. Enforcing domain consistency on each binary constraint does

not cause any pruning. However, the ALL -DIFFERENT constraint is bounds disentailed.⋄

6.4.2 Decomposition using the linear encoding

Gent and Nightingale [GN04] proposed a decomposition of theALL -DIFFERENTconstraint

that is based on ladder encoding that they proposed in the same paper. We call this the linear

encoding to be consistent with the rest of the thesis.

Exactly one encoding(EO) Consider a set ofS Boolean variables. We want to encode

that exactly one Boolean variable in the setS is true. We introducep = n − 1 additional

Boolean variables and a set of clauses. The first set of clauses are validity clauses:

p−1
∧

i=1

(ȳi+1 ∨ yi) (6.7)

(6.8)

The second set of constraints contains channeling constraints:

|S|
∧

i=1

[(yi−1 ∧ ȳi) ⇐⇒ xi] (6.9)

Finally, we sety0 = 1 andy|S| = 0.

At most one encoding(AMO) We add an extra variable to the EO encoding to obtain

the at most one encoding (AMO). This variable indicates thatall variables fromS are set to

false.

To use the linear encoding to encode the ALL -DIFFERENT constraint we consider direct

encoding Boolean variables. We use EO encoding to make sure that a variable takes a value.

We use AMO encoding to ensure that each value is taken by at most one variable. It was

shown in [GN04] that the proposed encoding is as strong as thedecomposition into a set of

binary inequalities.

Theorem 6.7 Unit propagation on the decomposition(6.7)–(6.9) does not detect bounds

disentailment for theALL -DIFFERENT constraint.

Proof: Consider ALL -DIFFERENT([X1,X2,X3,X4,X5]) with the following domains

D(X1) = D(X2) = D(X3) = {1, 4} andD(X4) = D(X5) = {2, 3}. We introduce
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Table 6.1: Boolean variables to encodeX1, . . . ,X5.

X1 X2 X3 X4 X5

1 x11 x21 x31 x41 = 0 x51 = 0

2 x12 = 0 x22 = 0 x32 = 0 x42 x52

3 x13 = 0 x23 = 0 x33 = 0 x43 x53

4 x14 x24 x34 x44 = 0 x54 = 0

20 Boolean variablesxiv, v = 1, . . . , 4, i = 1, . . . , 5 (Table 6.1). The variablexiv is set to

true iff the variableXi is assigned tov.

Consider the EO constraints for the1st column (the second and the third are symmetric).

We have the following validity constraints:̄y11 ∨ y10, ȳ12 ∨ y11, ȳ13 ∨ y12 andȳ14 ∨ y13. These can

be simplified toȳ12 ∨ y11 andȳ13 ∨ y12.

We have the following channeling constraints:
(

y10 ∧ ȳ11
)

⇐⇒ x11,
(

y11 ∧ ȳ12
)

⇐⇒
x12,
(

y12 ∧ ȳ13
)

⇐⇒ x13 and
(

y13 ∧ ȳ14
)

⇐⇒ x14.

These constraints can be simplified to
(

ȳ11
)

⇐⇒ x11,
(

y11 ∧ ȳ2
)

⇐⇒ FALSE,
(

y12 ∧ ȳ3
)

⇐⇒ FALSE and
(

y13
)

⇐⇒ x14.

Unit propagation cannot make further inference.

Consider the EO constraints for the4st column (the fifth column is symmetric.) We

have the following validity constraints:̄y41 ∨ y40, ȳ42 ∨ y41, ȳ43 ∨ y42 andȳ44 ∨ y43. These can be

simplified toȳ42 ∨ y41 andȳ43 ∨ y42.

We have the following channeling constraints:
(

y40 ∧ ȳ41
)

⇐⇒ x41,
(

y41 ∧ ȳ42
)

⇐⇒
x42,
(

y42 ∧ ȳ43
)

⇐⇒ x43 and
(

y43 ∧ ȳ44
)

⇐⇒ x44.

These constraints can be simplified to
(

ȳ41
)

⇐⇒ FALSE,
(

y41 ∧ ȳ42
)

⇐⇒ x42,
(

y42 ∧ ȳ43
)

⇐⇒ x42 and
(

y43
)

⇐⇒ FALSE.

Unit propagation derives:y41 = true and y43 = false. All validity constraints are

satisfied.

AMO constraints for any row cannot derive any inference as none of the variables is set

to a value. Hence, the unit propagation cannot make further inference while the constraint

is bounds disentailed.⋄

6.4.3 Partial sums decomposition of theALL -DIFFERENT constraint.

The next decomposition that we consider is a decomposition into partial sums that is based

on encoding into the GEN-SEQUENCE constraint (Section 4.2.4). This decomposition can

be seen as complementary to theBC decomposition (Section 6.3) because it provides an
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alternative view on the ALL -DIFFERENT constraint. We also use this decomposition to

build the first polynomial time propagator for the overlapping ALL -DIFFERENT constraint

(Section 6.7).

Reduction to the GEN-SEQUENCE constraint. First we show that detecting bounds

disentailment of the ALL -DIFFERENT constraint can be polynomially reduced to detect-

ing bounds disentailment of the GEN-SEQUENCE constraint. This reduction reveals an

interesting connection between two classes of constraints: counting constraints, like the

ALL -DIFFERENT constraint, and sliding constraints, like the GEN-SEQUENCE constraint.

We find this connection interesting and show that it is usefulto construct a polynomial time

propagator for the overlapping ALL -DIFFERENT constraint.

We recall that to fulfil conditions of Theorems 6.1–6.3, we count how manyvariables

are completely inside each interval of values (Section 6.3). In our new decomposition we

show that it is enough to keep track of how manyvaluesare taken by variablesX in each

interval of values. Informally, we say that if we can find a setof n values so that the number

of selected values in each interval is between the number of variables whose domains are

inside this interval and the length of this interval, then wecan construct a solution of the

ALL -DIFFERENT constraint. To encode this observation we use the GEN-SEQUENCEcon-

straint. We introduce Boolean variablesav, v = 1, . . . , d which indicate whether the value

v was taken by one of the variablesXi:

av = 1⇔ |∃i. Xi = v| > 0 v = 1, . . . , d (6.10)

Then the ALL -DIFFERENT constraint can be encoded as GEN-SEQUENCEover the new

variablesav in the following way. For each interval of values[l, u], wherel is a lower

bound of one of variablesX andu is an upper bound of one of variablesX, we intro-

duce an AMONGlu([al, . . . , au], blu, clu) constraint, whereblu = |{Xi|D(Xi) ⊆ [l, u]}|,
clu = u − l + 1, to ensure that Hall’s condition is satisfied (Theorem 6.1).Note that

the valueblu is constructed from the domains of variablesX to pass information between

the ALL -DIFFERENT and the GEN-SEQUENCEalldiff constraints. We also introduce the

AMONG([a1, . . . , ad], n, n) constraint to make sure that exactlyn values will be used. Then

the GEN-SEQUENCEconstraint is a conjunction of these AMONG constraints:

Definition 6.7

GEN-SEQUENCEalldiff ⇔ AMONG([a1, . . . , ad], n, n)
∧





∧

l≤u

AMONGlu ([al, . . . , au], blu, clu)



 ,
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whereblu = |{Xi|D(Xi) ⊆ [l, u]}|, clu = u− l + 1, l ∈ LB andu ∈ UB.

Note that the upper bound parameterclu is redundant for each AMONGlu constraint but

we keep it for consistency with our results for the OVERLAPPINGALL DIFF constraint.

Example 6.6 Consider the following example with 5 variables:

1 2 3 4 5 6

X1 ∗ ∗
X2 ∗ ∗ ∗ ∗ ∗ ∗
X3 ∗ ∗
X4 ∗ ∗ ∗ ∗ ∗
X5 ∗

We construct theGEN-SEQUENCEalldiff constraint according to Definition 6.7. We

introduce six Boolean variablesa1, . . . , a6. The set of lower bounds is{1, 2, 3} and the set

of upper bounds is{1, 4, 6}. Therefore, we introduce constraints

AMONG16([a1, . . . , a6], 5, 5) AMONG11([a1], 1, 1)

AMONG14([a1, a2, a3, a4], 3, 4) AMONG16([a1, . . . , a6], 5, 6)

AMONG24([a2, a3, a4], 2, 3) AMONG26([a2, . . . , a6], 3, 5)

AMONG34([a3, a4], 2, 2) AMONG36([a3, . . . , a6], 2, 4)

Note that some constraints are redundant.

Theorem 6.8 TheGEN-SEQUENCEalldiff constraint as defined by Definition 6.7 is satisfi-

able if and only if theALL -DIFFERENT constraint is satisfiable.

Proof: Any solution of the ALL -DIFFERENT constraint is a solution of the

GEN-SEQUENCEalldiff constraint, because Theorem 6.1 holds for this solution. Therefore,

we only have to show the converse.

Shrinking domains. Consider a solution of the GEN-SEQUENCEalldiff constraint

[a1, . . . , ad]. The first AMONG([a1, . . . , ad], n, n) constraint ensures that exactlyn Boolean

variablesav are set to true. We shrink domains of variablesX in the following way. If

av = 0 we remove the valuev from domains of all variablesX. This leavesn values in the

universe of possible values∪ni=1D(Xi). We renumber these values consecutively from1 to

n and obtain new domains of variablesD′(Xi), i = 1, . . . , n. We renumber the values to

point out that new domainsD′ are intervals, as the original domains are intervals. This will

allow us to work with Hall intervals rather than Hall sets in the remaining proof.
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Consider the shrinking procedure on Example 6.6. Consider asolution over variables

a, a1 = 1, a2 = 0, a3 = 1, a4 = 1, a5 = 1 anda6 = 1. As a2 = 0 then we remove value

{2} from domains ofX1, . . . ,X5 and renumber3 to 2, 4 to 3, 5 to 4 and6 to 5. We get the

following domainsD′:

1 2 3 4 5

X1 ∗ ∗
X2 ∗ ∗ ∗ ∗ ∗
X3 ∗ ∗
X4 ∗ ∗ ∗ ∗
X5 ∗

Solution of ALL -DIFFERENT. We prove that ALL -DIFFERENT([D′(X1), . . . ,D
′(Xn)])

has a solution. Suppose there is no solution of the ALL -DIFFERENT constraint. Then there

is an interval[e, f ] and a set of variablesP = {Xi|D′(Xi) ⊆ [e, f ]} such that|P | > f−e+
1. Consider the tightest interval,[l, u] that contains all variables inP before shrinking the

intervals. The AMONGlu([al, . . . , au], blu, u−l+1) constraint, whereblu = |{Xi|D(Xi) ⊆
[l, u]}| andclu = u− l + 1, is satisfied, hence|{Xi|D(Xi) ⊆ [l, u]}| ≤∑u

i=l ai. Consider

all valuesV that were pruned from the interval[l, u]. As the valuev, v ∈ V was pruned,

the corresponding variableav, v ∈ V , is set to 0. Therefore, after shrinking, we have

|{Xi|D′(Xi) ⊆ [e, f ]}| = |{Xi|D(Xi) ⊆ [l, u]}| ≤
u
∑

i=l

ai =
u
∑

i=l;i/∈V
ai.

The interval[e, f ] contains all renamed values from the original interval[l, u] such that

v /∈ V , hence
∑u

i=l;i/∈V ai = f − e+ 1. This gives

|{Xi|D′(Xi) ⊆ [e, f ]}| ≤
u
∑

i=l

ai = f − e+ 1.

This contradicts our assumption that|{Xi|D′(Xi) ⊆ [e, f ]}| > f − e+ 1. ⋄
Theorem 6.7 provides an interesting connection between theALL -DIFFERENT

constraint and the GEN-SEQUENCE constraint. However, the encoding into the

GEN-SEQUENCE constraint is not enough to enforce bounds consistency on the

ALL -DIFFERENT constraint.

Theorem 6.9 Enforcing DC on theGEN-SEQUENCEalldiff constraint specified by Def-

inition (6.7) and constraints (6.10) does not enforce bounds consistency on the

ALL -DIFFERENT constraint.
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Proof: Consider the ALL -DIFFERENT([X1,X2,X3]) constraint withD(X1) = D(X2) =

{1, 2} and D(X3) = {1, 2, 3}. We introduce3 Boolean variablesa1, a2 and a3

and 3 AMONG constraints according Definition 6.7: and AMONG13([a1, a2, a3], 3, 3),

AMONG12([a1, a2], 2, 2) and AMONG13([a1, a2, a3], 3, 3). The last constraint is redun-

dant. The only solution of the GEN-SEQUENCE constraint isa1 = a2 = a3 = 1. Con-

straints (6.10) are domain consistent . Hence, the values1 and 2 are not pruned from

D(X3). ⋄
Decomposition into the partial sums.We recall that to obtain the partial sums encod-

ing of the GEN-SEQUENCEconstraint, we introduce integer variablesPlu, Plu =
∑u

v=l av

each with domain[0, n] (Section 4.3.4). We connectPlu variables through a set of ternary

constraints:Plu = Plk + P(k+1)u, 1 ≤ l ≤ k < u ≤ d andu − l < n. To satisfy the

AMONGlu([al, . . . , au], blu, clu) constraint, we need to make sure thatblu ≤ Plu ≤ clu

The upper bound parameter is a constant and is equal tou − l + 1, so we can ex-

press this restriction with a constraintPlu ≤ u − l + 1. The lower bound parameter

blu = |{Xi|D(Xi) ⊆ [l, u]}| varies during the search and can be updated using theBC

decomposition of the ALL -DIFFERENT constraint. This decomposition introduces vari-

ablesAilu and constraints (6.3)–(6.4). Hence, we can easily update the lower bound of the

Plu variables, becauseblu =
∑n

i=1 lb(Ailu) = |{Xi|D(Xi) ⊆ [l, u]}|. Then a combination

of thePS decomposition of the GEN-SEQUENCEconstraint and theBCcomposition of the

ALL -DIFFERENT constraint is the following:

Bil = 1 ⇐⇒ Xi ≤ l (6.11)

Ailu = 1 ⇐⇒ (Bi(l−1) = 0 ∧Biu = 1) (6.12)

Plu =
n
∑

i=1

Ailu (6.13)

Plu ≤ u− l + 1 (6.14)

Plu = Plk + P(k+1)u, (6.15)

where1 ≤ i ≤ n, 1 ≤ l ≤ k < u ≤ d andu− l < n.

The decomposition (6.11)–(6.15) does enforce bounds consistency on the

ALL -DIFFERENT constraint as it subsumes the decomposition (6.3)–(6.4). Note

that the decomposition (6.11)–(6.15) encapsulates the AMONG constraints over the all

possible intervals of values,[l, u], l ∈ LB andu ∈ UB while it is sufficient to consider

only O(n) AMONG constraints at any point of the search. Since, domains of thevariables

are pruned and their lower and upper bounds are changed, we might need to consider

anyO(n2) of O(d2) intervals. As we do not know in advance whichO(n2) intervals to
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consider, we have to keep track of allO(d2) intervals with decomposition.

6.5 Experimental Results

To test these decompositions, we ran experiments on pseudo-Boolean encodings (PB) of

CSPs containing ALL -DIFFERENT and PERMUTATION constraints. Using SAT solvers we

can evaluate whether dynamic branching heuristic and learning schemes can take advan-

tage of the auxiliary variables in the decompositions. Thisis not possible within publicity

available CSP solvers. We used the MiniSat+ 1.13 solver on anIntel Xeon 4 CPU, 2.0 Ghz,

4G RAM machine with a timeout of600 seconds for each experiment. Our decomposi-

tions contain two types of constraints: SUM constraints like (6.2) and MEMBER constraints

like (6.1). The SUM constraints can be posted directly to the MiniSat+ solver. To en-

code MEMBER constraints in the pseudo-Boolean form, we use literalsBij for the truth of

Xi ≤ j (Section 2.4.4), and clauses of the form(Ailu = 1) ⇔ (Bi(l−1) = 0 ∧ Biu = 1).

This encoding achieves bounds consistency as stated in Theorem 6.5. To increase prop-

agation, we use a direct encoding with literalsZij for the truth ofXi = j and clauses

(Ailu = 0) ⇒ (Zij = 0), j ∈ [l, u]. The overall level of consistency achieved is there-

fore between bounds consistency and range consistency. We denote this encodingHI. To

explore the impact of small Hall intervals, we also triedHIk, a PB encoding of our decom-

position with only the subset of constraints (6.2) for whichu− l+1 ≤ k. This detects Hall

intervals of size at mostk. Finally, we also decomposed the ALL -DIFFERENT constraint

into a clique of binary inequalities, and used a direct encoding to convert this intoSAT. We

denote it byBI.

Pigeon Hole Problems. Table 6.2 gives results on pigeon hole problems (PHP) withn

pigeons andn− 1 holes. Our decomposition is both faster and gives a smaller search tree

compared to theBI decomposition. On such problems, detecting large Hall intervals is

essential.

Double-Wheel Graceful Graphs. The second set of experiments uses double-wheel

graceful graphs [PS03]. We converted theCSPmodel given in [PS03] into a PB formula.

The model contains an ALL -DIFFERENT constraint on node labels and a PERMUTATION

constraint on edge labels. For the PERMUTATION constraint we use (6.5). We strengthen

theBI decomposition in this case with clauses to ensure that everyvalue appears at least

once. Table 6.3 show that our decomposition outperforms theaugmentedBI decomposi-
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Table 6.2: PHP problems.t is time andbt is the number of backtracks to solve the problem.

n BI HI1 HI3 HI5 HI7 HI9

bt/ t bt/ t bt/ t bt/ t bt/ t bt/ t

5 30/ 0.0 28/ 0.0 4/ 0.0

7 622/ 0.0 539/ 0.0 47/ 0.0 6/ 0.0

9 16735/ 0.3 18455/ 0.7 522/ 0.0 122/ 0.0 8/ 0.0

11 998927/ 29.3 665586/ 44.8 5681/ 0.3 171/ 0.0 180/ 0.0 10/ 0.1

13 -/ - -/ - 13876/ 0.9 2568/ 0.2 247/ 0.1 195/ 0.1

15 -/ - -/ - 1744765/ 188.6 24109/ 2.6 1054/ 0.2 165/ 0.1

17 -/ - -/ - -/ - 293762/ 48.0 8989/ 1.1 4219/ 0.6

19 -/ - -/ - -/ - 107780/ 21.8 857175/ 368.0 39713/ 9.9

21 -/ - -/ - -/ - -/ - 550312/ 426.2 57817/ 33.5

tion on many instances. Whilst detecting large Hall intervals can reduce the search space

dramatically, in some cases MiniSat+’s branching heuristics and clause learning features

appear to be fooled by the many extra variables introduced inthe encodings.

Overall these experiments suggest that detecting Hall intervals reduces search signifi-

cantly, and focusing on small Hall intervals may be best except on problems where large

Hall intervals occur frequently.

Table 6.3: Double-wheel graceful graphs.t is time andbt is the number of backtracks to

solve the problem

DWn BI HI1 HI3 HI5 HI7 HI9

bt/ t bt/ t bt/ t bt/ t bt/ t bt/ t

3 176/ 0.1 90/ 0.1 63/ 0.1

4 30/ 0.1 14/ 0.1 212/ 0.2

5 22/ 0.2 526/ 0.4 87/ 0.3 1290/ 1.7

6 1341/ 1.0 873/ 0.9 318/ 0.7 1212/ 2.9

7 2948/ 3.6 2047/ 4.2 1710/ 3.6 1574/ 4.0 27/ 0.9

8 2418/ 5.5 724/ 2.2 643/ 2.8 368/ 2.4 3955/ 19.5

9 3378/ 8.6 1666/ 5.7 1616/ 9.0 30/ 1.8 10123/ 129.7 405/ 6.5

10 19372/ 118.3 9355/ 66.2 14120/ 85.9 10/ 2.1 4051/ 35.0 5709/ 71.2

11 839/ 5.4 12356/ 84.2 1556/ 13.9 14/ 2.4 7456/ 105.2 5552/ 92.7

6.6 Generalisations ofALL -DIFFERENT

In the following sections we consider the three useful generalisations of the

ALL -DIFFERENT constraint. We show that bounds consistency and range consistency fil-

tering algorithms for these constraints can be decomposed in a way similar to decompo-
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sitions of the ALL -DIFFERENT constraint. In Section 6.7 we consider the overlapping

ALL -DIFFERENT constraint. We propose a decomposition that detects boundsdisentail-

ment for the constraint that it based on a connection betweenthe ALL -DIFFERENT con-

straint and the GEN-SEQUENCE constraint. constraints. In Section 6.8–6.9 we focus

on range consistency and bounds consistency decompositions of the GCC constraint and

NVALUE constraint, respectively.

6.7 The overlappingALL -DIFFERENTconstraint

In this section we consider the OVERLAPPINGALL DIFF constraint and show that en-

forcing bounds consistency on this constraint is polynomial. We recall that the

OVERLAPPINGALL DIFF([X1, . . . ,Xn], S, T ) constraint whereS ⊆ X, T ⊆ X, S ∪ T =

X holds if and only if ALL -DIFFERENT(S) and ALL -DIFFERENT(T ) hold simultaneously.

This constraint is more difficult to propagate compared to ALL -DIFFERENT because en-

forcing domain consistency on this constraint is NP-hard [KEKM08].

Let us introduce a running example:

Example 6.7 We have 7 exams and 2 students that each have to take 5 of the 7 exams over a

5 day period. We number the exams from1 to7. The first student has to take the first 5 exams

and the second student has to take the last 5 exams. Due to the availability of examiners,

not every exam is offered each day. For example, the1st exam is not offered on the final

day of the week. Only one exam can be sat each day by each student. This problem can be

encoded as anOVERLAPPINGALL DIFF constraint. We introduce seven integer variables

to represent exams,X1 to X7. As the first student has to take the first five exams, the set

S includes variables{X1,X2,X3,X4,X5}. As the second student has to take the last five

exams, the setT includes variables{X3,X4,X5,X6,X7}. The following matrix shows

domains of all variables that take into account availability restrictions:

1 2 3 4 5

S \ T
X1 ∗ ∗ ∗ ∗
X2 ∗ ∗

S ∩ T

X3 ∗ ∗ ∗
X4 ∗ ∗ ∗
X5 ∗ ∗ ∗ ∗ ∗

T \ S
X6 ∗ ∗
X7 ∗ ∗ ∗ ∗
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Finding a solution for thisOVERLAPPINGALL DIFF constraint is equivalent to solving the

timetabling problem.⋄

We denote asP the subset of variables{X1, . . . ,Xn}, PS = P ∩ (S \ T ), P T =

P ∩ (T \ S) andPST = P ∩ S ∩ T . Consider the set of variablesP = {X1,X4,X5,X7}
from the running example 6.7. Then,PS = {X1}, P T = {X7} andPST = {X4,X5}.

6.7.1 Decomposition of theOVERLAPPINGALL DIFF constraint

Similar to Section 6.4.3, we show that detecting bounds disentailment of the

ALL -DIFFERENTconstraint can be polynomially reduced to detecting boundsdisentailment

of the GEN-SEQUENCEconstraint . In the case of OVERLAPPINGALL DIFF this reduction is

more sophisticated compared to the ALL -DIFFERENT constraint. Based on this reduction,

we construct a decomposition of the OVERLAPPINGALL DIFF constraint.

This section also corrects a mistake in the paper [BKN+10]. First we recall Theorem 2

that we rewrite using the notation of this thesis:

Theorem 6.10 (Simultaneous Hall Condition [BKN+10])

Let OVERLAPPINGALL DIFF([X1, . . . ,Xn], S, T ) be the overlappingALL -DIFFERENT

constraint. There exists a solution of the constraint if andonly if |D(P )| + |D(PS) ∩
D(P T )| ≥ |P | for P ⊆ {X1, . . . ,Xn}, whereD(P ) = ∪Xi∈PD(Xi).

The following example shows that this condition is insufficient.

Example 6.8

1 2 3 4 5

S \ T X1 ∗ ∗ ∗

S ∩ T

X2 ∗ ∗
X3 ∗ ∗
X4 ∗ ∗ ∗ ∗ ∗
X5 ∗ ∗ ∗ ∗ ∗

T \ S X6 ∗ ∗ ∗

Consider, for example,P = {X1, . . . ,X6} and compute the condition for this set.

D(P ) = 5 and|D(PS)∩D(P T )| = 2. Hence,7 = |D(P )|+|D(PS)∩D(P T )| ≥ |P | = 6

Consider another example,P = {X1,X2,X3,X6}. D(P ) = 4, |D(PS) ∩D(P T )| = 2

and6 = |D(P )|+ |D(PS) ∩D(P T )| ≥ |P | = 4. It is easy to see that the condition holds

for any set of variables. However, the constraint does not have a solution as values{2, 3}
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are taken byX2 andX3. Hence,X1 andX6 cannot share any value. Note that the simple

decomposition into 2ALL -DIFFERENT constraints will detect disentailment.

The proof makes the following false claim (the last paragraph): “If u ∈ AS ′
(u ∈ AT ′

is similar) thenv can be inN(P T ∗
), sov is a shared vertex withN(P ∗). There are two

cases to consider:”.

There can be three cases here.⋄

Unfortunately, Theorem 2 was used to prove the main result ofthe paper that bounds

consistency on the OVERLAPPINGALL DIFF constraint is polynomial. However, the result

holds and we give an alternative proof here.

Reduction to theGEN-SEQUENCEconstraint. Our reduction is based on a partitioning

of the OVERLAPPINGALL DIFF constraint into 3 ALL -DIFFERENT constraints over over-

lapping sets of variables — ALL -DIFFERENT([S \ T ]), ALL -DIFFERENT([S ∩ T ]) and

ALL -DIFFERENT([T \ S]). We show that it is sufficient to find a solution of a single

ALL -DIFFERENT over the shared variables betweenS andT that is subject to extra re-

strictions. We want a solution of the ‘middle’ ALL -DIFFERENT([S ∩ T ]) constraint that

leaves enough values in each interval to satisfy the other two ‘side’ ALL -DIFFERENT con-

straints. More precisely, if we have a solution of ALL -DIFFERENT([S ∩ T ]) thatdoes not

use at leastmax(|{Xi | Xi ∈ S \T,D(Xi) ⊆ [l, u]}|, |{Xi | Xi ∈ T \S,D(Xi) ⊆ [l, u]}|)
values in each interval[l, u], then we can always extend this solution to a solution of the

OVERLAPPINGALL DIFF constraint.

We show that we can reformulate ALL -DIFFERENT([S∩T ]) using the GEN-SEQUENCE

that takes into account the information about the number of values that have to be unused

in each interval of values. We introduce Boolean variablesav, v = 1, . . . , d that indicate

whether there exists a variableXi ∈ S ∩ T that equalsv.

av = 1⇔ |∃i. Xi = v,Xi ∈ S ∩ T | > 0 v = 1, . . . , d (6.16)

For each interval of values[l, u], wherel is a lower bound of one of variablesX andu

is an upper bound of one of variablesX, we introduce an AMONGlu([al, . . . , au], blu, clu)

constraint, whereblu = |{Xi|Xi ∈ S∩T,D(Xi) ⊆ [l, u]}| andclu = u−l+1−max(|{Xi |
Xi ∈ S \ T,D(Xi) ⊆ [l, u]}|, |{Xi | Xi ∈ T \ S,D(Xi) ⊆ [l, u]}|). The parame-

ter blu ensures that Hall’s condition is satisfied for the ALL -DIFFERENT([S ∩ T ]) con-

straint (Theorem 6.1). The parameterclu ensures that Hall’s condition is satisfied for

ALL -DIFFERENT([S \ T ]) and ALL -DIFFERENT([T \ S]). In addition, we introduce
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AMONG([a1, . . . , ad], |S ∩ T |, |S ∩ T |) to make sure that exactly|S ∩ T | values will be

used. The GEN-SEQUENCEconstraint is a conjunction of these AMONG constraints:

Definition 6.8

GEN-SEQUENCEoalldiff ⇔ AMONG([a1, . . . , ad], |S ∩ T |, |S ∩ T |)
∧





∧

l≤u

AMONGlu ([al, . . . , au], blu, clu)



 ,

whereblu = |{Xi|Xi ∈ S ∩ T,D(Xi) ⊆ [l, u]}|, clu = u − l + 1 − max(|{Xi | Xi ∈
S \ T,D(Xi) ⊆ [l, u]}|, |{Xi | Xi ∈ T \ S,D(Xi) ⊆ [l, u]}|), l ∈ LB andu ∈ UB.

Example 6.9 Consider our running example.

1 2 3 4 5

S \ T
X1 ∗ ∗ ∗ ∗
X2 ∗ ∗

S ∩ T

X3 ∗ ∗ ∗
X4 ∗ ∗ ∗
X5 ∗ ∗ ∗ ∗ ∗

T \ S
X6 ∗ ∗
X7 ∗ ∗ ∗ ∗

We construct theGEN-SEQUENCEoalldiff constraint according to Definition 6.8. We intro-

duce five Boolean variablesa1, . . . , a5. The set of lower bounds is{1, 2} and the set of

upper bounds is{2, 3, 4, 5}. Therefore, we introduce constraints

AMONG15([a1, . . . , a5], 3, 3) AMONG12([a1, a2], 0, 2 −max(1, 0))

AMONG13([a1, a2, a3], 2, 3 −max(1, 1)) AMONG14([a1, . . . , a4], 2, 4 −max(2, 1))

AMONG15([a1, . . . , a5], 3, 5 −max(2, 2)) AMONG22([a2], 0, 1 −max(0, 0))

AMONG23([a2, a3], 0, 2 −max(0, 1)) AMONG24([a2, a3, a4], 0, 3 −max(0, 1))

AMONG25([a2, . . . , a5], 0, 4 −max(0, 2))

Theorem 6.11 TheGEN-SEQUENCEoalldiff constraint as defined by Definition(6.8)is sat-

isfiable if and only if theOVERLAPPINGALL DIFF constraint is satisfiable.

Proof: Consider a solution of the overlapping ALL -DIFFERENT constraints over Boolean

variablesav. Since every interval satisfies the Hall condition for the variables inS ∩ T

then the number ofav that are set to one is greater or equal to|{Xi|Xi ∈ S ∩ T,D(Xi) ⊆
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[l, u]}|. On the other hand the Hall condition holds for ALL -DIFFERENT([S \ T ]) and

ALL -DIFFERENT([T \ S]). Hence, the number of value that are taken by variables in(S \
T ) ∪ (T \ S) is greater than or equal tomax(|{Xi | i ∈ S \ T,D(Xi) ⊆ [l, u]}|, |{Xi |
i ∈ T \S,D(Xi) ⊆ [l, u]}|). Therefore, the upper bound constraint is satisfied too for each

AMONG constraint.

Conversely, consider a solution of the GEN-SEQUENCEoalldiff constraint.

Shrinking domains. First, we shrink domains of variables to construct three independent

ALL -DIFFERENT constraints. Ifav = 1 we removev from domains of variables inS \ T
and from domains of variables inT \ S. If av = 0 we removev from domains of variables

in S ∩ T . This shrinks the universe of values to|S ∩ T | different values for the variables in

S ∩ T and tod− |S ∩ T | different values for variables in(S \ T ) ∪ (T \ S). Consider the

shrinking procedure on Example 6.9. Consider a solutiona1 = 1, a2 = 0, a3 = 1, a4 = 0

anda5 = 1. Then we remove value{1, 3, 5} from domains ofX1,X2,X6,X7 and values

{2, 4} from domains ofX3,X4,X5. We get the following domains:

1 2 3 4 5

S \ T
X1 ∗ ∗
X2 ∗

S ∩ T

X3 ∗ ∗
X4 ∗ ∗
X5 ∗ ∗ ∗

T \ S
X6 ∗
X7 ∗ ∗

Now three partitions of variables are independent: no values appears in bothS \ T and

S ∩T or in bothT \S andS ∩T , whileS \T andT \S are free to share values. Therefore,

we only need to show that the Hall condition is satisfied in each partition.

We renumber these values consecutively from1 to |S ∩ T | for the variablesS ∩ T and

from 1 to d− |S ∩ T | for variable inS \ T andT \ S. We denote new domains of variables

D′(Xi), i = 1, . . . , n. Note that domainsD′ are intervals, because the original domains are

intervals and the values that we remove are moved from all variables of a each partition.

In our example,|S ∩ T | = 3, d − |S ∩ T = 2|. We renumber3 to 2 and5 to 3 which
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leads to the following domains of variables in|S ∩ T |

1 2 3

S ∩ T

X3 ∗ ∗
X4 ∗ ∗
X5 ∗ ∗ ∗

We renumber2 to 1 and4 to 2 for variables inS \ T andT \ S and get

1 2

S \ T
X1 ∗ ∗
X2 ∗

T \ S
X6 ∗
X7 ∗ ∗

Solution of ALL -DIFFERENT([S ∩ T ]). Consider the partitionS ∩ T and the

ALL -DIFFERENT([S ∩ T ]) constraint.The proof is identical to the proof of Theorem 6.8,

because this proof does not depend on the parameterclu.

Solution of ALL -DIFFERENT([S \T ]). Consider the partitionS \T (T \S is symmetric).

Note that values in domains of variables in this partition are valuesv such thatav = 0 in

the solution of the GEN-SEQUENCEoalldiff constraint.

Suppose there exists an interval[e, f ] which violates the Hall condition, so that

P = {Xi|Xi ∈ S \ T,D′(Xi) ⊆ [e, f ]} such that|P | > f − e + 1. Consider the

tightest interval,[l, u] that contains all variables inP before the shrinking procedure. As

the AMONGlu([al, . . . , au], blu, clu), whereblu = |{Xi|Xi ∈ S ∩ T,D(Xi) ∈ [l, u]}|
and clu = u − l + 1 − max(|{Xi | Xi ∈ S \ T,D(Xi) ⊆ [l, u]}|, |{Xi | Xi ∈
T \ S,D(Xi) ⊆ [l, u]}|), is satisfied, then

∑u
i=l ai ≤ clu. W.l.o.g. we assume that

|{Xi | Xi ∈ S \ T,D(Xi) ⊆ [l, u]}| > |{Xi | Xi ∈ T \ S,D(Xi) ⊆ [l, u]}|. Hence,

u
∑

i=l

ai ≤ u− l + 1− |{Xi | Xi ∈ S \ T,D(Xi) ⊆ [l, u]}|

|{Xi | Xi ∈ S \ T,D(Xi) ⊆ [l, u]}| ≤ u− l + 1−
u
∑

i=l

ai.

Note thatu − l + 1 − ∑u
i=l ai = |{i|(ai = 0, i ∈ [l, u]}| in the solution of the

GEN-SEQUENCE constraint. Hence,|{Xi | Xi ∈ S \ T,D(Xi) ⊆ [l, u]}| ≤ |{i|(ai =

0, i ∈ [l, u]}|. Note that

|{Xi|Xi ∈ S \ T,D(Xi) ⊆ [l, u]}| = |{Xi|Xi ∈ S \ T,D′(Xi) ⊆ [e, f ]}|,



6.7. THE OVERLAPPINGALL-DIFFERENT CONSTRAINT 171

as the interval[l, u] was the interval in the original that contained all variables in the violated

setP . Moreover,|{i|(ai = 0, i ∈ [l, u]}| is exactly the number of values that are left in

the interval[l, u] after the shrinking procedure. Therefore,|{Xi | Xi ∈ S \ T,D′(Xi) ⊆
[e, f ]}| ≤ {i|(ai = 0, i ∈ [l, u]} = f − e + 1. This contradicts our assumption that

|{Xi|Xi ∈ S \ T,D′(Xi) ∈ [e, f ]}| > f − e+ 1. ⋄

From Theorem 6.11 it follows that

Corollary 6.1 Detecting bounds disentailment of theOVERLAPPINGALL DIFF constraint

can be done inO(dn2) time.

Proof: Detecting domain disentailment of the GEN-SEQUENCEoalldiff constraint can be

done inO(nm) time, wheren is the number of variables andm is the number of AMONG

constraints (Theorem 4.4). In our case,n = d andm = O(n2). Therefore, we can detect

bounds disentailment inO(dn2) time. ⋄

Using the failed literal test procedure together with Theorem 6.11 we get that :

Corollary 6.2 Enforcing bounds consistency on theOVERLAPPINGALL DIFF constraint

can be done inO(d2n3) time.

We can improve the complexity of enforcing bounds consistency on the

OVERLAPPINGALL DIFF constraint if we do a binary search on variable domains in the

following way. Consider, for example, a variableX with the domainD(X) = [l, u]. We

are looking for a support forlb(X). At the first step we temporarily fix the domain of X

to the first half so thatD(X) = [l, (u − l)/2] and run the bounds disentailment detection

algorithm. If this algorithm fails, we halved the search andrepeat with the other half. If

this algorithm does not fail, we know that there is a value in[l, (u− l)/2] that has a bounds

support. Hence, we continue with the binary search within this half. As each test takes

O(dn2) time and there aren variables to prune, the total running time isO(n3d log d).

Example 6.10 Consider our running example. Suppose we setX6 to 3 and the domains of
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the other variables are not changed.

1 2 3 4 5

S \ T
X1 ∗ ∗ ∗ ∗
X2 ∗ ∗

S ∩ T

X3 ∗ ∗ ∗
X4 ∗ ∗ ∗
X5 ∗ ∗ ∗ ∗ ∗

T \ S
X6 ∗
X7 ∗ ∗ ∗ ∗

We construct theGEN-SEQUENCEoalldiff constraint according to Definition 6.8. We

introduce five Boolean variablesa1, . . . , a5. The set of lower bounds is{1, 2, 3} and the set

of upper bounds is{2, 3, 4, 5}. Therefore, we introduce constraints

AMONG15([a1, . . . , a5], 3, 3) AMONG12([a1, a2], 0, 2 −max(1, 0))

AMONG13([a1, a2, a3], 2, 3 −max(1, 1)) AMONG14([a1, . . . , a4], 2, 4 −max(2, 1))

AMONG15([a1, . . . , a5], 3, 5 −max(2, 2)) AMONG22([a2], 0, 1 −max(0, 0))

AMONG23([a2, a3], 0, 2 −max(0, 1)) AMONG24([a2, a3, a4], 0, 3 −max(0, 1))

AMONG25([a2, . . . , a5], 0, 4 −max(0, 2)) AMONG33([a3], 0, 1 −max(0, 1))

AMONG34([a3, a4], 0, 2 −max(0, 1)) AMONG35([a3, a4, a5], 0, 3 −max(0, 1)))

Using the dual formulation of the ILP encoding of theGEN-SEQUENCEoalldiff con-

straint we construct a flow graph (Figure 6.1). We omit several edges that correspond to

parameterblu, whereblu = 0. Gray dashed edges highlight a negative cycle in the graph.

This implies that theOVERLAPPINGALL DIFF is unsatisfiable. Indeed, ifX6 = 3, thenX3

andX4 cannot take value3. Therefore, 3 variablesX2,X3,X4 in S are contained inside

the interval[1, 2]. This leads to a violation.⋄

Theorem 6.12 Enforcing DC on theGEN-SEQUENCEoalldiff constraint specified by

Definition 6.8 and constraints(6.16) does not enforce bounds consistency on the

OVERLAPPINGALL DIFF constraint

Proof: From Theorem 6.9 it follows that the decomposition does not enforce bounds con-

sistency on individual ALL -DIFFERENT constraints, therefore, it does not enforce bounds

consistency on the OVERLAPPINGALL DIFF constraint.⋄
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Figure 6.1 The flow graph that corresponds to the dualILP model of the

GEN-SEQUENCEoalldiff constraint (Example 6.10)
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Decomposition of theOVERLAPPINGALL DIFF constraint We show that we can en-

code bounds disentailment detection of the OVERLAPPINGALL DIFF constraint using a

reformulation based on partial sums encoding of the GEN-SEQUENCE constraint. As in

Section 6.4.3, we cannot use the decomposition immediately, because parameters of the

GEN-SEQUENCEconstraint are changing during the search (Definition 6.8).Therefore, we

combine the partial sums encoding and the bounds consistency (or range consistency) de-

composition of the ALL -DIFFERENT constraint. We introduce Boolean variablesAilu, Bil

to represent whetherXi takes a value in the interval[l, u], (inf, l], respectively, and the vari-

ablesCS, CST andCT , which represent bounds on the number of variables from eachset

S \T , T \S andS∩T that may take values in the interval[l, u]. We introduce the following

set of constraints for1 ≤ i ≤ n, 1 ≤ l ≤ u ≤ d andu− l < n:

Bil = 1 ⇐⇒ Xi ≤ l (6.17)

Ailu = 1 ⇐⇒ (Bi(l−1) = 0 ∧Biu = 1) (6.18)

CST
lu =

∑

i∈S∩T
ailu (6.19)

CS
lu =

∑

i∈S\T
ailu (6.20)

CT
lu =

∑

i∈T\S
ailu (6.21)

CST
1u = CST

1l + CST
(l+1)u (6.22)

CST
lu ≤ u− l + 1− CS

lu (6.23)

CST
lu ≤ u− l + 1− CT

lu (6.24)
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Theorem 6.13 Decomposition (6.17)–(6.24) detects bounds disentailment of the

OVERLAPPINGALL DIFF constraint.

Proof: Constraints (6.22) subsume the partial sums decompositionof the GEN-SEQUENCE

constraint that encodes the ALL -DIFFERENT([S ∩T ]) constraint. Constraints (6.19)–(6.24)

and (6.23)–(6.24) correctly adjust parametersblu andclu, 1 ≤ l ≤ u ≤ d andu− l < n for

each AMONGlu constraint, because the lower bound ofCST
lu computes|{Xi|Xi ∈ S ∩ T}|,

the lower bound ofCS
lu computes|{Xi|Xi ∈ S \ T}| and the lower bound ofCT

lu computes

|{Xi|Xi ∈ T \ S}|. ⋄
Next we show that the decomposition (6.17)–(6.24) does not enforce bounds con-

sistency on the OVERLAPPINGALL DIFF constraint. However, unlike the algorithm pro-

posed in Section 6.4.3, it does enforce bounds consistency on individual constraints —

ALL -DIFFERENT([S]) and ALL -DIFFERENT([T ]).

Theorem 6.14 Decomposition(6.17)–(6.24) does not enforce bounds consistency of the

ALL -DIFFERENT([S]) andALL -DIFFERENT([T ]) constraint but does enforce bounds con-

sistency onOVERLAPPINGALL DIFF(S, T ) constraints.

Proof: To show that the decomposition does not enforce bounds consistency we con-

sider the following example of the OVERLAPPINGALL DIFF([X1, . . . ,X4], S, T ), S =

{X1,X2,X3} andT = {X2,X3,X4} with the following domains:

1 2 3 4

X1 ∗ ∗
X2 ∗ ∗ ∗
X3 ∗ ∗ ∗
X4 ∗ ∗

From constraints (6.23)–(6.24) we deriveCST
1,2 = [0, 1] andCST

2,3 = [0, 1] and no more

propagation happens. However, assigningX3 = 2 falsifies the constraint.

The decomposition enforces bounds consistency on ALL -DIFFERENT([S])

(ALL -DIFFERENT([T ]) is similar) because constraints (6.17)–(6.20) and (6.23) sub-

sume theBCdecomposition of the ALL -DIFFERENT constraint (6.2)–(6.4).⋄

Example 6.11 We demonstrate how the constraints(6.17)–(6.24) work on our running

example 6.7. Consider the interval[1, 4] that contains variables{X1,X2,X3,X4}.
lb(CST

14 ) ≥ 2 and lb(CS
14) ≥ 2. Therefore, the constraintCST

14 + CS
14 ≤ 4 forcesCST

14 = 2
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andCS
14 = 2. The interval[1, 4] is saturated, aslb(CST

14 ) = ub(CST
14 ). Hence, by(6.17)–

(6.19), values[1, 4] are removed fromD(X5).

1 2 3 4 5

S \ T
X1 ∗ ∗ ∗ ∗
X2 ∗ ∗

S ∩ T

X3 ∗ ∗ ∗
X4 ∗ ∗ ∗
X5 ∗

T \ S
X6 ∗ ∗
X7 ∗ ∗ ∗ ∗

As lb(CST
55 ) = ub(CST

55 ) = 1, by channelling constraints(6.17)–(6.18) the value 5 is

removed from the domain of the variableX7.

1 2 3 4 5

S \ T
X1 ∗ ∗ ∗ ∗
X2 ∗ ∗

S ∩ T

X3 ∗ ∗ ∗
X4 ∗ ∗ ∗
X5 ∗

T \ S
X6 ∗ ∗
X7 ∗ ∗ ∗

Consider the interval[1, 3] and variables{X2,X3,X4}. ub(CS
13) ≤ 1 ⇒ (6.18)⇒

ub(CS
12) ≤ 1. The interval[1, 2] is saturated, aslb(CS

12) = ub(CST
12 ). Hence, by(6.17)-

(6.18),(6.20), [1, 2] is removed fromD(X1). Similarly, [2, 3] is removed fromD(X7).

1 2 3 4 5

S \ T
X1 ∗
X2 ∗ ∗

S ∩ T

X3 ∗ ∗ ∗
X4 ∗ ∗ ∗
X5 ∗

T \ S
X6 ∗ ∗
X7 ∗
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Bounds disentailment. To show that the decomposition detects bounds disentailment

we setX3 to 2. By the constraintCST
22 + CS

22 ≤ 1 we getCS
22 = 0 and by channelling

constraints (6.17)–(6.18) the value 2 is removed from the domain of the variableX2. This

setsX2 to 1 and causes pruning of the value1 fromX3.

1 2 3 4 5

S \ T
X1 ∗
X2 ∗

S ∩ T

X3 ∗ ∗
X4 ∗
X5 ∗

T \ S
X6 ∗ ∗
X7 ∗

Finally, consider the interval[2, 3]. We have thatlb(CST
23 ) ≥ 2 and lb(CT ) ≥ 1. This

violates the constraint thatCST
23 + CT

23 ≤ 2. ⋄

6.7.2 Exponential separation

We now give an artificial problem on which our new propagator does exponentially less

work than existing methods to propagate two individual ALL -DIFFERENT constraint sepa-

rately.

Theorem 6.15 There exists a class of problems such that enforcing bounds disentailment

on OVERLAPPINGALL DIFF detects unsatisfiability without search, while a search method

that enforces bounds consistency on the decomposition intoALL -DIFFERENT constraints

explores an exponential sized search tree regardless of thebranching heuristic.

Proof:

In = ALL -DIFFERENT([X1, . . . ,Xn, Y1, . . . , Y2n]) ∧

ALL -DIFFERENT([Y1, . . . , Y2n, Z1, . . . , Zn]) ∧

D(Xi) = [1, 2n − 1], ∀i = 1, . . . , n ∧

D(Yi) = [1, 4n − 1], ∀i = 1, . . . , 2n ∧

D(Zi) = [2n, 4n − 1], ∀i = 1, . . . , n

The OVERLAPPINGALL DIFF constraint. We will use the decomposition (6.17)– (6.24)

for bounds disentailment detection.
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Consider the interval[1, 4n − 1]. lb(CST
1,4n−1) ≥ 2n, lb(CS

1,2n−1) ≥ n and

lb(CT
2n,4n−1) ≥ n. The constraintCST

1,2n−1+CS
1,2n−1 ≤ 2n−1 implies thatCST

1,2n−1 ≤ n−1.

The constraintCST
2n,4n−1+CT

2n,4n−1 ≤ 2n implies thatCST
2n,4n−1 ≤ n. Finally, the constraint

CST
1,4n−1 = CST

1,2n−1 +CST
2n,4n−1 is violated becauseub(CST

1,2n−1) + ub(CST
2n,4n−1) ≤ 2n− 1

andlb(CST
1,4n−1) ≥ 2n.

Decomposition. Consider any ALL -DIFFERENT constraint. A subset of variables of

size at mostn has at least2n − 1 different values in their domains and a subset of size

betweenn + 1 and3n has4n − 1 values in their domains. Therefore, to obtain a Hall

interval and prune, we must instantiate at leastn− 1 variables. Reasoning about the second

ALL -DIFFERENT is similar. Therefore, the search tree hasΩ(n!) nodes.⋄

6.7.3 Other related work

Little work has been done for propagating conjunctions of ALL -DIFFERENT constraints.

Enforcing domain consistency on the constraint was shown tobe NP-hard in [KEKM08]. In

the same work, the authors proposed approximation algorithms for the simultaneous match-

ing problem. It is unclear, however, if they can be used for building constraint propagation

algorithms.

In [AHHT07], it was proposed that communication between different constraints can be

improved by generalising pruning to removing paths from a multi-valued decision diagram.

Propagating conjunctions of ALL -DIFFERENT constraints was proposed as an application,

but the level of consistency enforced in this setting is not established in [AHHT07]. The

authors demonstrated that their approach works well on problems with three overlapping

PERMUTATION constraints where the PERMUTATION constraints overlap on most of the

variables. As all problems were solved without backtracks Iconjecture that for these ran-

dom problems the authors achieve a level of consistency which is close to domain consis-

tency.

In [MMA10], a system of ALL -DIFFERENT constraints was investigated from the in-

teger linear programming point of view. In particular, the authors presented a system of

inequalities that describes the convex hull of a system of ALL -DIFFERENTs if the sys-

tem of ALL -DIFFERENTs satisfies the inclusion property. For each ALL -DIFFERENTi, i =

1, . . . , n we distinguish between variables that belong to the scope ofthe ALL -DIFFERENTi

constraint and the remaining variables that we denoteTi. The inclusion property requires

that for any two constraints, ALL -DIFFERENTi(Xi) and ALL -DIFFERENTj(Xj), we have

that eitherTi ⊂ Tj or Tj ⊂ Ti.
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Table 6.4: Random problems.n is the size ofX, Y andZ, o is the size ofW , d is the size

of variable domains. Number of instances solved in 300 seconds out of 50 runs / average

backtracks/average time to solve.

n,d,o BC DC OBC

#s / #bt / t #s / #bt / t #s / #bt / t

4, 15, 10 14 /2429411 / 61.8 41 /1491341 / 52.1 42 / 17240/ 32.5

4, 16, 11 6 /5531047 / 153.7 22 /1745160 / 67.9 31 / 8421/ 19.5

4, 17, 12 1 / 17 / 0 6 /2590427 / 100.9 24 / 8185/ 21.5

5, 16, 10 11 /3052298 / 82.0 37 /1434903 / 58.2 42 / 20482/ 48.5

5, 17, 11 2 /3309113 / 94.5 19 /2593819 / 114.6 26 / 4374/ 15.8

5, 18, 12 1 / 17 / 0 4 /2666556 / 133.1 22 / 3132/ 12.2

6, 17, 10 11 /2845367 / 79.1 31 /1431671 / 66.3 40 / 6796/ 21.9

6, 18, 11 4 / 199357 / 6.6 16 /1498128 / 80.2 31 / 4494/ 17.5

6, 19, 12 4 /3183496 / 110.0 5 /1035126 / 66.2 27 / 3302/ 15.5

TOTALS

sol/total 54 /450 181 /450 285 /450

avg time for sol 78.072 70.551 24.689

avg bt for sol 2818926 1666568 9561

Finally, [LMS+09] proposed several rules to improve propagation between multiple

ALL -DIFFERENT constraints. The authors also proposed an encoding of the multiple

ALL -DIFFERENT constraints into CNF that requires an exponential size in the worst case.

6.7.4 Experimental results

To evaluate the performance of our decomposition we carriedout a series of experiments

on random problems. We ran experiments with Ilog 6.2 solver on an Intel Xeon 4 CPU,

2.0 Ghz, 4Gb RAM. We compare performance of the domain consistency, bounds con-

sistency [LOQTvB03] propagators and our decomposition into constraints (6.17)-(6.24)

for the OVERLAPPINGALL DIFF constraint (OBC ). We use the following problems. We

have three global constraints: ALL -DIFFERENT(X ∪W ), ALL -DIFFERENT(Y ∪W ) and

ALL -DIFFERENT(Z ∪W ). We also randomly post a linear number of binary ordering rela-

tions between variables inX, Y andZ. We post three OVERLAPPINGALL DIFF constraints

in OBC model instead of three ALL -DIFFERENTs: OVERLAPPINGALL DIFF([X ∪W,Y ∪
W ]), OVERLAPPINGALL DIFF([X∪W,Z∪W ]) and OVERLAPPINGALL DIFF([Z∪W,Y ∪
W ]). We use a random variable ordering and run each instance with50 different seeds. As

can be seen from Table 6.4, our decomposition reduces the search space significantly, is

much faster and solves more instances overall.
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6.8 TheGCCconstraint

Another generalisation of the ALL -DIFFERENT constraint is the global cardinality con-

straint , GCC([X1, . . . ,Xn], [l1, . . . , ld], [u1, . . . , ud]). This constraint ensures that the

value i occurs betweenli andui times inX1 to Xn. The GCC constraint is useful in

resource allocation problems where values represent resources. Another example is the car

sequencing problem (prob001 atCSPLib.org), where we can post a GCC constraint to en-

sure that the correct number of cars of each type is put on the assembly line. Let us introduce

a running example:

Example 6.12 (Running example (GCC)) Consider a resource allocation problem in a

goods store. There are five activities that need to be performed in the shop on daily basis,

like monitoring security, assist customers, etc. There arefive employees in the store which

are available resources in this problem. Each employee is qualified to perform one or

more activities. During a day an employee can be assigned to asingle activity. We need

to construct a schedule for a day so that at least one employeeis assigned to each of the

activities1, 2, 4 and 5 and at most one employee is assigned to the3rd activity. We can

encode this problem using aGCCconstraint.

We introduce five variables,X1, . . . ,X5, one for each employee. Domains of the vari-

ables show activities that each employee is qualified to workon. Using the values[l1, . . . , l5]

and[u1, . . . , u5] we make sure that each of activities1, 2, 4, 5 is performed during a day and

the third activity is assigned to at most one person. The following tables show domains of

variables and upper and lower bounds on the occurrences of values:

v 1 2 3 4 5

X1 ∗
X2 ∗ ∗ ∗ ∗ ∗
X3 ∗
X4 ∗ ∗ ∗ ∗ ∗
X5 ∗ ∗ ∗ ∗ ∗
lv 1 1 0 1 1

uv 5 5 1 5 5

⋄
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6.8.1 Filtering algorithm for the GCC constraint

The GCC constraint is one of the most useful constraints. Therefore, a number of fil-

tering algorithms that achieve domain consistency [Reg96], range consistency and bounds

consistency [KT03, QLOvBG04] have been proposed for it. In this section we recall the

bounds consistency algorithm for the GCC constraint that was proposed by Quimperet

al. [QLOvBG04], because our decomposition is based on this algorithm .

The filtering algorithm is based on the observation that the

GCC([X1, . . . ,Xn], [l1, . . . , ld], [u1, . . . , ud]) constraint can be split into two constraints

1. the upper bound constraint (GCCU ) that only takes into account the upper bounds

parameters – GCC([X1, . . . ,Xn], [0, . . . , 0], [u1, . . . , ud]) and

2. the lower bound constraint (GCCL) that only takes into account the lower bounds

parameters – GCC([X1, . . . ,Xn], [l1, . . . , ld], [n, . . . , n]).

Quimperet al. proved that it is sufficient to enforceBC on the GCCU and GCCL indepen-

dently.

Before we describe the algorithm we introduce notations. Let S be a set of values. We

useIS for the number of variablesX whose domainsD(Xi) intersect the setS,

IS = |{Xi|D(Xi) ∩ S 6= ∅}|, (6.25)

andUS for the number of variablesXi whose domains are subsets ofS,

US = |{Xi|D(Xi) ⊆ S}|. (6.26)

We recall that we denote the set of all lower bounds of variables X as LB =
⋃n

i=1{lb(D(Xi))} and the set of all upper bounds of variablesX as UB =
⋃n

i=1{ub(D(Xi))}. We point out that we slightly change notation from [QLOvBG04] to

differentiate from Definition 6.6.

6.8.1.1 Filtering algorithm for the GCCU constraint.

First we consider the GCCU constraint. The bounds consistency and range consistency

filtering algorithms are based on the notion of an extended Hall interval:

Definition 6.9 (Extended Hall interval) An interval [l, u] is an extended Hall interval if

and only ifU[l,u] =
∑u

v=l uv.
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Theorems 6.17 and 6.18 provide necessary and sufficient conditions for range consis-

tency and bounds consistency, respectively. These theorems can be seen as generalisations

of Theorem 6.2 and Theorem 6.3 for the ALL -DIFFERENT constraint.

Theorem 6.16 (Range/Bounds disentailment, Lemma 5.1 [Qui06]) The

GCCU ([X1, . . . ,Xn], [0, . . . , 0], [u1, . . . , ud]) constraint is satisfiable if and only if

for any interval[l, u] it holds that:

1. D(Xi) 6= ∅, i = 1, . . . , n and

2. for each extended interval[l, u], U[l,u] ≤
∑u

v=l ui,

wherel ∈ LB andu ∈ UB.

Theorem 6.17 (Range consistency, follows from Lemma 3 [QLOvBG04]) The

GCCU ([X1, . . . ,Xn], [0, . . . , 0], [u1, . . . , ud]) constraint is range consistent if and

only if

1. Theorem 6.16 conditions 1– 2 hold and

2. for each extended Hall interval of values[l, u] and eachXi:

if D(Xi) is not fully contained in the interval[l, u] thenD(Xi) ∩ [l, u] = ∅, i =

1, . . . , n.

Theorem 6.18 (Bounds consistency, follows from Lemma 3 [QLOvBG04]) The

GCCU ([X1, . . . ,Xn], [0, . . . , 0], [u1, . . . , ud]) constraint is bounds consistent if and

only if

1. Theorem 6.16 conditions 1– 2 conditions hold and

2. for each extended Hall interval of values[l, u] and eachXi:

if D(Xi) is not fully contained in the interval[l, u] then{lb(Xi), ub(Xi)}∩[l, u] = ∅,
i = 1, . . . , n.

The bounds consistency algorithm for the GCC constraint runs in (n + n log n) time.

The range consistency algorithm is more expensive and runs in O(n log n + n|HI|) time,

where|HI| is the number of Hall intervals. This algorithm enforces bounds consistency on

the GCCU constraint, then finds Hall intervals and prunes variable domains according to

Theorem 6.17 to achieve range consistency.

Consider how to achieve range consistency and bounds consistency on our running ex-

ample if we ignore the information about lower bound parameterslv, v = 1, . . . , d.
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Example 6.13 Bounds consistency. We consider the interval[3, 3]. This interval is an

extended Hall interval becauseU[3,3] = 1 and
∑3

v=3 uv = 1. However, none of the vari-

ables bounds overlaps the interval[3, 3]. Therefore, by Theorem 6.18,GCCU is bounds

consistent .

v 1 2 3 4 5

X1 ∗
X2 ∗ ∗ ∗ ∗ ∗
X3 ∗
X4 ∗ ∗ ∗ ∗ ∗
X5 ∗ ∗ ∗ ∗ ∗
lv 0 0 0 0 0

uv 5 5 1 5 5

Range consistency. Consider again the interval[3, 3] that is an extended Hall interval. By

Theorem 6.18, we can remove value3 from the domains ofX2,X4 andX5. This leaves the

following domains:

v 1 2 3 4 5

X1 ∗
X2 ∗ ∗ ∗ ∗
X3 ∗
X4 ∗ ∗ ∗ ∗
X5 ∗ ∗ ∗ ∗
lv 0 0 0 0 0

uv 5 5 1 5 5

By Theorem 6.17 the constraint is range consistent .⋄

6.8.1.2 Filtering algorithm for the GCCL constraint.

Next we consider the GCCL constraint. The bounds consistency and range consistency

filtering algorithms are based on the notion of an unstable set:

Definition 6.10 (Unstable set)A setS is an unstable set if and only ifIS =
∑

v∈S lv.

Theorems 6.20 and 6.21 provide necessary and sufficient conditions for range consis-

tency and bounds consistency, respectively.
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Theorem 6.19 (Range/Bounds disentailment, Lemma 5.2 [Qui06]) The

GCCL([X1, . . . ,Xn], [l1, . . . , lm], [n, . . . , n]) constraint is satisfiable if and only if

for any interval[l, u] it holds that:

1. D(Xi) 6= ∅, i = 1, . . . , n and

2. for each set of valuesS, IS ≥
∑

v∈S lv.

Theorem 6.20 (Range consistency, Lemma 4 [QLOvBG04])The GCCL([X1, . . . ,Xn],

[l1, . . . , lm], [n, . . . , n]) constraint is range consistent if and only if

1. Theorem 6.19 conditions 1–2 hold and

2. for each unstable setS:

if D(Xi) ∩ S 6= ∅ thenD(Xi) ⊆ S, i = 1, . . . , n.

Theorem 6.21 (Bounds consistency, follows from Lemma 4 [QLOvBG04]) The

GCCL([X1, . . . ,Xn], [l1, . . . , lm], [n, . . . , n]) constraint is bounds consistent if and

only if

1. Theorem 6.19 conditions 1–2 hold and

2. for each unstable setS:

if D(Xi) ∩ S 6= ∅ then{lb(D(Xi)), ub(D(Xi))} ⊆ S, i = 1, . . . , n.

The filtering algorithm proposed in [QLOvBG04] is based on detection of the unstable

sets. The algorithm enforces bounds consistency on the GCCL in O(n log n+ n) time and

range consistency inO(n log n+ n|US|) time, where|US| is the number of unstable sets.

This algorithm enforces bounds consistency on the GCCL constraint, then finds unstable

sets and prunes variable domains according to Theorem 6.20.

Consider how to achieve range consistency and bounds consistency on our running ex-

ample if we ignore the information about upper bound parametersuv, v = 1, . . . , d.

Example 6.14 . Bounds consistency. We consider the set{2, 4, 5}. This set is an unstable

set becauseI{2,4,5} = 3 and
∑

v∈{2,4,5} lv = 3. The lower bounds of variablesX2,X4

andX5 are outside the unstable set. Therefore, by Theorem 6.21, weremove value1 from

domains of variablesX2,X4 andX5.
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v 1 2 3 4 5

X1 ∗
X2 ∗ ∗ ∗ ∗
X3 ∗
X4 ∗ ∗ ∗ ∗
X5 ∗ ∗ ∗ ∗
lv 1 1 0 1 1

uv 5 5 5 5 5

We consider the set{1, 2, 4, 5}. This set is an unstable set becauseI{1,2,4,5} = 4 and
∑

v∈{1,2,4,5} lv = 4. However, none of the variablesX2,X4 andX5 bounds are outside this

set. By Theorem 6.21, theGCCL constraint is bounds consistent .

Range consistency. Consider again the unstable set{1, 2, 4, 5}. By Theorem 6.20, we

remove the value3 from domains of variablesX2,X4 andX5.

v 1 2 3 4 5

X1 ∗
X2 ∗ ∗ ∗
X3 ∗
X4 ∗ ∗ ∗
X5 ∗ ∗ ∗
lv 1 1 0 1 1

uv 5 5 5 5 5

We have processed all unstable sets and, by Theorem 6.20, theGCCL constraint is

range consistent .⋄

6.8.2 Decompositions of theGCCconstraint

We can decompose range consistency and bounds consistency filtering algorithm for

the GCC constraint in a similar way to decomposing ALL -DIFFERENT using the

GEN-SEQUENCE constraint (Section 6.4.3, the decomposition (6.11)–(6.15)). We intro-

duce the additionalO(d2) integer variables,Nlu to represent the number of variables whose

domains are contained in the interval[l, u]. Clearly,Nlu ∈ [
∑u

i=l li,
∑u

i=l ui] andN1d = n.
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We then post the following constraints for1 ≤ i ≤ n, 1 ≤ l ≤ u ≤ d, 1 ≤ k < u:

Ailu = 1 ⇐⇒ Xi ∈ [l, u] (6.27)

Nlu =

n
∑

i=1

Ailu (6.28)

N1u = N1k +N(k+1)u (6.29)

Constraints (6.27) are channelling constraints between variableA and the original vari-

ablesX. The integer variablesNlu can be seen as ‘counter’ variables because they keep

track of the number of times a value from the interval[l, u] is used (constraints (6.28)).

Finally, constraints (6.29) provides communication between ’counter’ variablesN .

Range consistency. We next show that enforcing domain consistency on constraint (6.27)

and bounds consistency on constraints (6.28) and (6.29) enforces range consistency on the

GCC constraint.

Theorem 6.22 Enforcing domain consistency on constraint(6.27)and bounds consistency

on constraints(6.28) and (6.29) achieves range consistency on the correspondingGCC

constraint inO(nd3) time down any branch of the search tree.

Proof: Bounds disentailment. We first show that if range consistency fails on the GCC

then enforcing domain consistency on (6.27) and bounds consistency on constraints (6.28)

and (6.29) will fail. By Theorem 6.17 and Theorem 6.20 the GCCconstraint fails on a

GCC if and only if

1. there exists an violated extended Hall interval[l, u] such thatU[l,u] >
∑u

v=l uv or

2. there exists a violated unstable setS such thatIS <
∑

v∈S lv.

Consider these two cases.

Violated extended Hall interval.Suppose, there exists a violated extended Hall interval

[l, u] with U[l,u] >
∑u

v=l uv. By constraints (6.27) we have
∑n

i=1Ailu > U[l,u] and by

(6.28) we have

Nlu =

n
∑

i=1

Ailu > U[l,u].

This implies thatNlu >
∑u

v=l uv, whereas the greatest value in the domain ofNlu was set

to
∑u

v=l uv. So bounds consistency will fail on the constraintNlu =
∑n

i=1Ailu.

Violated unstable set. Consider the second case. Suppose now that a setS =

{v1, . . . , vk} is such thatIS <
∑

vi∈S lvi . We denoteP the set of variables{Xi|D(Xi) ∩
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S 6= ∅}. The total number of values taken by variablesXi is equal ton, therefore, the

number of variables inP ′ = {Xi|Xi /∈ P} is greater thann −∑vi∈S lvi . Consider the

set of intervalsS′ = {[1, v1 − 1], . . . , [vk + 1, vd]} that contain variables inP ′. Note that

domain of any variableXi, Xi ∈ P ′ is contained in at most one interval inS′, otherwiseXi

would be inP . Therefore,

U[1,v1−1] + U[v1+1,v2−1] + . . . + U[vk+1,d] > n−
∑

vi∈S
lvi .

Thanks to constraints (6.28), we know that for anyl, u, Nlu ≥ U[l,u]. So,

N1(v1−1) +N(v1+1)(v2−1) + . . .+N(vk+1)d ≥

U[1,v1−1] + U[v1+1,v2−1] + . . . + U[vk+1,d] > n−
∑

vi∈S
lvi .

The initial domains ofNlu variables also tell us that for everyvi in S, Nvivi ≥ lvi . Thus,

lb(N1(v1−1)) + lb(Nv1v1) + lb(N(v1+1)(v2−1)) + . . .

+lb(Nvkvk) + lb(N(vk+1)d) > n = ub(N1d) (6.30)

Chaining lower bounds. Successively applying bounds consistency onN1v1 =

N1(v1−1) + Nv1v1 , then onN1(v2−1) = N1v1 + N(v1+1)(v2−1), and so on untilN1d =

N1vk +N(vk+1)d will successively increase the lower bound of the variablesso that

N1v1 = N1(v1−1) +Nv1v1 ⇒BC

lb(N1v1) ≥ lb(N1(v1−1)) + lb(Nv1v1)

...

N1vi = N1(v1−1) +Nvivi ⇒BC

lb(N1vi) ≥ lb(N1(v1−1)) + lb(Nvivi)⇔chaining

lb(N1vi) ≥ lb(N1(v1−1)) + lb(Nv1v1) + . . . + lb(N(vi−1+1)(vi−1)) + lb(Nvivi)

...

N1vd = Nvkvk +N(vk+1)d ⇒BC

lb(N1vi) ≥ lb(Nvkvk) + lb(N(vk+1)d)⇔chaining

lb(N1vd) ≥ lb(N1(v1−1)) + lb(Nv1v1) + . . . + lb(Nvkvk) + lb(N(vk+1)d)

This leads to a failure on the variableN1d aslb(N1d) > ub(N1d).



6.8. THEGCCCONSTRAINT 187

We call this successive application of constraints (6.29) to make sure the lower bound

of a variableN1vi is greater than or equal to the sum of lower bounds of variables

N1,v1 , Nv1,v1 , . . . , N(vi−1+1)(vi−1), Nvivi as thechaining lower boundsprocedure.

Range consistency.We now show that when domain consistency on (6.27) and bounds

consistency on (6.28) and (6.29) do not fail, we prune all values that are pruned when

enforcing range consistency on the GCC constraint. Consider a valuev ∈ D(Xj) for some

i ∈ [1, n] such thatv does not have any bound support.

From Theorem 6.17 and Theorem 6.20 we conclude that there aretwo cases when this

can happen:

1. there exists an extended Hall interval[l, u] that containsv andD(Xj) is not included

in the interval[l, u] or

2. there exists an unstable setS thatdoes notcontainsv andD(Xj) intersectsS.

Consider the first case. Suppose there exists an extended Hall interval [l, u], v ∈ [l, u]

such thatU[l,u] =
∑u

v=l uv. Then,

Nlu =
n
∑

i=1

Ailu ≥ U[l,u] =
u
∑

v=l

uv.

On the other hand,ub(Nlu) =
∑u

v=l uv and the variableNlu is fixed to this value. The

constraint (6.28) makes sure that
n
∑

i=1

Ailu =

u
∑

v=l

uv.

As there are
∑u

v=l uv variablesAilu that are equal to1, the remaining unset variables are

fixed to 0. In particular,Ajlu was an unset variable becauseD(Xj) * [l, u] and constraint

(6.28) ensures that it takes the value0. As v ∈ [l, u], v is pruned fromD(Xj).

Consider the second case. LetS = {v1, . . . , vk} be an unstable set such thatv /∈ S and

D(Xi) ∩ S 6= ∅. W.l.o.g. we assume thatvi < v < vi+1 As S is an unstable set we have:

IS =
∑

vi∈S
lvi .

We again denoteP the set of variables{Xi|D(Xi) ∩ S 6= ∅}. The total number of values

taken byXi variables being equal ton, the number of variables inP ′ = {Xi|Xi /∈ P} is

equal ton−∑vi∈S lvi . Consider the set of intervalsS′ = {[1, v1−1], . . . , [vk+1, vd]} that

contain variables inP ′. By the above argument we have the following equation for intervals

in S′:

U[1,v1−1] + U[v1+1,v2−1] + . . .+ U[vk+1,d] = n−
∑

vi∈S
lvi (6.31)
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Thanks to constraints (6.28), we know that for anyl, u, Nlu ≥ U[l,u]. So,

N1(v1−1) +N(v1+1)(v2−1) + . . .+N(vk+1)d ≥ n−
∑

vi∈S
lvi .

The initial domains ofNlu variables also tell us that for everyvi in S, Nvivi ≥ lvi .

lb(N1(v1−1)) + lb(Nv1v1) + lb(N(v1+1)(v2−1)) + . . .

+lb(Nvkvk) + lb(N(vk+1)d) ≥ n = ub(N1d) (6.32)

By the chaining lower bounds procedure we derive thatlb(N1d) ≥ n = ub(N1d). This

implies that the variableN1d is fixed ton. Moreover, chaining lower bounds makes sure

that

lb(N1d) = lb(N1(vi−1)) +
k
∑

i=1

(

lb(N(vi−1+1)(vi−1)) + lb(Nvivi)
)

+ lb(N(vk+1)d) (6.33)

Chaining upper bounds.As lb(N1d) = ub(N1d), equation (6.33) suggests that none

of the variables in the RHS of this equation can take a value that is greater than its

lower bound. Indeed if we consider the chaining lower boundsprocedure in the back-

ward direction:N1d = N1vk + N(vk+1)d, onN1vk = N1(vk−1) + Nvkvk , and so on until

N1v1 = N1(v1−1)+Nv1v1 , this will successively decrease the upper bounds of the variables

to their lower bounds:

N1d = N1vk +N(vk+1)d

using ub(N1d) = lb(N1d) and lb(N1d) ≥ lb(N1vk) + lb(N(vk+1)d)⇒BC

lb(N1vk ) = ub(N1vk), lb(N(vk+1)d) = ub(N(vk+1)d)

...

N1v1 = N1(v1−1) +Nv1v1

using ub(N1v1) = lb(N1v1) and lb(N1v1) ≥ lb(N1(v1−1)) + lb(Nv1v1)⇒BC

lb(N1(v1−1)) = ub(N1(v1−1)), lb(Nv1v1) = ub(Nv1v1)

This leads to fixing the value of the variablesN1,v1 , Nv1,v1, . . . ,

N(vi−1+1)(vi−1), Nvivi . . . , N1d to their lower bounds. We call this thechaining up-

per boundsprocedure. In particular,N(vi+1)(vi+1−1) = U[vi+1,vi+1−1]. As D(Xj) ∈ S,

D(Xj) is not contained inside the interval[(vi + 1)(vi+1 − 1)] andAj(vi+1)(vi+1−1) is

unset. The constraint

N(vi+1)(vi+1−1) =

n
∑

i=1

Ai(vi+1)(vi+1−1)
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is tight becauseN(vi+1)(vi+1−1) = U[vi+1,vi+1−1]. Therefore all unset variables, including

Aj(vi+1)(vi+1−1) are fixed to0 and (6.27) prunesv from D(Xj).

Complexity argument:There areO(nd2) constraints (6.27) that can be wokenO(d)

times down the branch of the search tree. Each invocation costs eitherO(1) if domain of

a variableXi is changed orO(d) if Ailu is assigned. This amounts to the total ofO(nd3)

down the branch of the search tree.

There areO(d2) constraints (6.28), which can be wokenO(n) times each down the

branch of the search tree for a total cost ofO(n) time down the branch. Thus a total of

O(nd2) down the branch of the search tree. There areO(d2) constraints (6.29) that can be

wokenO(n) times down the branch. Each propagation takesO(1) time to execute for a

total ofO(nd2) time down the branch. The final complexity down the branch of the search

tree is thereforeO(nd3) +O(nd2) +O(nd2) = O(nd3). ⋄

Example 6.15 Consider how the decomposition(6.27)–(6.29) works on our running ex-

ample. We recall that initial domains of the variables and upper and lower bounds on the

occurrences of values are:

v 1 2 3 4 5

X1 ∗
X2 ∗ ∗ ∗ ∗ ∗
X3 ∗
X4 ∗ ∗ ∗ ∗ ∗
X5 ∗ ∗ ∗ ∗ ∗
lv 1 1 0 1 1

uv 5 5 1 5 5

Consider the interval[3, 3]. This is an extended Hall interval:

N3,3 = A133 +A233 +A333 +A433 +A533

andN3,3 = [0, 1], A333 = 1. This makes the constraint tight and bounds propagation fixes

A133 = A233 = A433 = A533 = 0. By channelling constraints value3 is pruned from

variablesX2,X4 andX5.
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v 1 2 3 4 5

X1 ∗
X2 ∗ ∗ ∗ ∗
X3 ∗
X4 ∗ ∗ ∗ ∗
X5 ∗ ∗ ∗ ∗
lv 1 1 0 1 1

uv 5 5 1 5 5

Consider the setS = {2, 4, 5}. This is an unstable set (see Example 6.14).

Following the proof of Theorem 6.22 we consider a set of intervalsS′ = {[1, 1], [3, 3]}
and perform the chaining lower bounds procedure taking intoaccount thatlb(N11) =

lb(N22) = lb(N33) = lb(N44) = lb(N55) = 1:

lb(N12) ≥ lb(N11) + lb(N22) |⇒ lb(N12) = 2

lb(N13) ≥ lb(N12) + lb(N33) |⇒ lb(N13) = 3

lb(N14) ≥ lb(N13) + lb(N44) |⇒ lb(N14) = 4

lb(N15) ≥ lb(N14) + lb(N55) |⇒ lb(N15) = 5

Now we havelb(N15) = ub(N15) = 5. We apply the chaining upper bounds procedure:

ub(N15) = lb(N15) = lb(N14) + lb(N55) |⇒ N14 = 4;N55 = 1

...

ub(N12) = lb(N12) ≥ lb(N11) + lb(N22) |⇒ N11 = N22 = 1

Hence, all variablesNll, l = 1, . . . , 5 are fixed to1. By constraints(6.27), A111 =

A333 = 1, so by constraints(6.28), Ai11 = 0, i,∈ [2, . . . , 5] andAi33 = 0, i,∈ {1, 2, 4, 5}.
By constraints(6.27), we remove 1 and 3 fromX2,X4,X5. This makes the constraint range

consistent .
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v 1 2 3 4 5

X1 ∗
X2 ∗ ∗ ∗
X3 ∗
X4 ∗ ∗ ∗
X5 ∗ ∗ ∗
lv 1 1 0 1 1

uv 5 5 1 5 5

⋄

Bounds consistency. We show that using our reformulation we can enforceBC of the

GCC constraint. As in the case of ALL -DIFFERENT, by replacing constraints (6.27) by

constraints (6.3) and (6.4), the decomposition achievesBC.

Theorem 6.23 Enforcing bounds consistency on constraints(6.3), (6.4), (6.28)–(6.29)

achieves bounds consistency on the correspondingGCC constraint inO(nd2) time down

any branch of the search tree.

Proof: The proof follows that for Theorem 6.22 except that fixingAilu = 0 prunes the

bounds ofD(Xi) if and only if exactly one bound of the domain ofXi intersects the interval

[l, u]. The complexity reduces toO(nd2) as bounds consistency on (6.3) and (6.4) is in

O(nd2) (see Theorem (6.5) ) and bounds consistency on (6.28) and (6.29) is inO(nd2) (see

Theorem 6.22).⋄

The best known algorithm for bounds consistency on GCC runs in O(n) time at each

call [QLOvBG04] and can be awakenO(nd) times down a branch of the search tree . This

gives a total ofO(n2d), which is greater than theO(nd2) here whenn > d.

Example 6.16 Consider how the BC decomposition works on our running example. We

recall that initial domains of the variables and upper and lower bounds on the occurrences
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of values are:

v 1 2 3 4 5

X1 ∗
X2 ∗ ∗ ∗ ∗ ∗
X3 ∗
X4 ∗ ∗ ∗ ∗ ∗
X5 ∗ ∗ ∗ ∗ ∗
lv 1 1 0 1 1

uv 5 5 1 5 5

Consider the setS = {1, 2, 4, 5}. This is an unstable set:

IS =
∑

i∈S
li = 4

Moreover, we have thatA333 = 1, which forceslb(N3,3) = 1 by constraint(6.28). Fol-

lowing the proof of Theorem 6.22 we consider a set of intervals S′ = {[3, 3]} and per-

form the chaining lower bounds procedure taking into account that lb(N11) = lb(N22) =

lb(N33) = lb(N44) = lb(N55) = 1 (similar to Example 6.15). This sets lower bounds

of variablesNll, l = 1, . . . , 5 to 1. Then we apply the chaining upper bounds proce-

dure (similar to Example 6.15), which fixesNll, l = 1, . . . , 5 to 1. Finally, by con-

straints (6.27), A111 = A333 = 1, so by constraints(6.28), Ai11 = 0, i,∈ 2..5 and

Ai33 = 0, i,∈ {1, 2, 4, 5}. By constraints(6.3) and (6.4), we remove 1 fromX2,X4,X5.

Note that we cannot remove the value3 as it is not a bound of any variable. This makes the

constraint bounds consistent .⋄

6.8.3 Other decompositions of theGCCconstraint

In this section we consider three decompositions of the GCC constraint. The first decom-

position is a naive decomposition into a set of AMONG constraints [Lau78]. This decom-

position does not enforce bounds consistency or range consistency but it can be also easily

implemented in a constraint solver. We present it for completeness of the material. The

second is a decompositions that was recently proposed in [FS09]. It was shown that this

decomposition is useful in practice. We prove here that thisdecomposition does not detect

bounds disentailment (Section 6.8.3.2).
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6.8.3.1 Decomposition intoAMONG constraint

A natural way to decompose the GCC([X1, . . . ,Xn], [l1, . . . , ld], [u1, . . . , ud]) constraint is

to encode it using a set of AMONG constraints.

AMONG([X1, . . . ,Xn], lv, uv , {v}) v = 1, . . . , d; (6.34)

Clearly, constraints (6.34) are logically equivalent to the GCC constraint. This decom-

position provides a weak pruning as the following theorem shows:

Theorem 6.24 Enforcing domain consistency on the decomposition(6.34)does not detect

bounds disentailment for theGCCconstraint.

Proof: Consider GCC([X1,X2,X3], [2, 2], [2, 2]) with the following domains

D(X1) = D(X2) = D(X3) = {1, 2}. Enforcing domain consistency on each

AMONG([X1,X2,X3], 2, 2, {1}) and AMONG([X1,X2,X3], 2, 2, {2}) constraint does not

cause any pruning because any of three variables that can potentially take value1 to satisfy

the first AMONG constraint and value2 to satisfy the second AMONG. However, the GCC

constraint is bounds disentailed.⋄

6.8.3.2 Decomposition using linear encoding of domains

The next decomposition that we consider is a decomposition proposed in [FS09].

The decomposition uses cardinality variables instead of cardinality bounds values

[l1, . . . , ld], [u1, . . . , ud]. However, we replace the cardinality variables with the cardinality

values here to keep all decompositions consistent.

To construct a decomposition we introduced+1 cumulative sum variablesA0, . . . , Ad

such thatAv =
∑n

i=1Biv, whereBiv is defined according to equation (6.3).

We then post the following constraints for1 ≤ i ≤ n, 1 ≤ v ≤ d,

civ ⇐⇒ (Xi == v) (6.35)

Biv ⇐⇒ Xi ≤ v (6.36)

A0 = 0 (6.37)

Av =

n
∑

i=1

Biv (6.38)

lv ≤
∑n

i=1 civ ≤ uv (6.39)

lv ≤ Av −Av−1 ≤ uv (6.40)
n
∑

v=1

lv ≤ Ad −A0 ≤
n
∑

v=1

uv (6.41)
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Theorem 6.25 Enforcing bounds consistency on the decomposition(6.35)–(6.41)does not

detect bounds disentailment for theGCCconstraint.

Proof: Consider GCC([X1,X2,X3,X4,X5], [1, 0, 0, 1], [2, 1, 1, 2]) with the following do-

mainsD(X1) = D(X2) = [1, 4] andD(X3) = D(X4) = D(X5) = [2, 3]. Initial domains

of variables:D(A1) = [0, 2] D(A2) = [0, 5] D(A3) = [3, 5] andD(A4) = [5].

A4 −A3 ≥ 1 |⇒ D(A3) = [3, 4]

A3 −A2 ≥ 0 |⇒ D(A2) = [0, 4]

A3 −A2 ≤ 1 |⇒ D(A2) = [2, 4]

A2 −A1 ≤ 1 |⇒ D(A2) = [2, 3]

A1 −A0 ≥ 1 |⇒ D(A1) = [1, 2]

So after propagation reaches fix point we haveD(A1) = [1, 2] D(A2) = [2, 3]

D(A3) = [3, 4], D(A4) = [5] andD(civ) = [0, 1], 1 ≤ i ≤ n, 1 ≤ v ≤ d. However,

enforcing bounds consistency detects a failure.⋄

6.8.4 Other related work

The global cardinality constraint was first introduced in the CHARME constraint program-

ming language [OMT89]. Regin proposed a domain consistencypropagator based on net-

work flow that runs inO(n2) time [Reg99]. Katriel and Thiel proposed a bounds consis-

tency propagator for the extended form of the GCC constraintthat has variables represent-

ing the cardinalities [KT03]. Quimperet al. proved that enforcing domain consistency on

such an extended GCC constraint is NP-hard [QLOvBG04]. Theyalso improved the time

complexity to enforce domain consistency and gave the first propagator for enforcing range

consistency on GCC .

6.9 TheNVALUE constraint

Another generalisation of the ALL -DIFFERENT constraint is the

NVALUE([X1, . . . ,Xn], N) constraint . NVALUE counts the number of values used

by a set of variables. Pachet and Roy proposed the global NVALUE constraint to model

a combinatorial problem for selecting musical play-lists [PR99]. From a theoretical

perspective, the NVALUE constraint is similar to the OVERLAPPINGALL DIFF constraint
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and is more difficult to propagate than the ALL -DIFFERENT and GCC constraints since

enforcing domain consistency on it is known to be NP-hard [BHH+06a]. Moreover,

as NVALUE is a generalisation of ALL -DIFFERENT, there exists no polynomial sized

decomposition of NVALUE which achieves domain consistency (Chapter 7).

Nevertheless, we show that decomposition can simulate the polynomial time algorithm

for enforcing bounds consistency on NVALUE . Our range consistency propagator has the

same worst case complexity as the best known bounds consistency propagator. This con-

trasts with the ALL -DIFFERENT constraint where the best known bounds consistency prop-

agator has better worst case complexity to the best known range consistency propagator.

Example 6.17 (Running example (NVALUE)) Beldiceanu et al. give an interesting appli-

cation of theNVALUE constraint to encode a resource allocation problem for virtual ma-

chine management on a cluster of computers [BHLP10]. The problem consists of assigning

virtual machines to nodes of the cluster subject to two typesof constraints:

• each machine has CPU time or memory resource demand and

• there are restrictions on the number of nodes that can be usedby virtual machines.

The second restriction is modelled using theNVALUE constraint [BHLP10].

Suppose we have6 virtual machines and nodes of the cluster have different character-

istics. Therefore, each virtual machine can be run on nodes that satisfy its resource demand

constraints. We introduce one variable for each virtual machine,X1, . . . ,X6. Domains of

the variables show compatibility between virtual machinesand nodes of the cluster. We also

introduce a variableN that represents restrictions on the number of nodes that we can use.

The following matrix shows domains of the variables.

1 2 3 4 5 6

X1 ∗ ∗ ∗ ∗ ∗ ∗
X2 ∗
X3 ∗
X4 ∗ ∗ ∗
X5 ∗ ∗
X6 ∗ ∗
N ∗ ∗ ∗ ∗ ∗ ∗

In our exampleN is unrestricted. We will vary this parameter in the following sections to

demonstrate our filtering algorithms and decompositions.⋄
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6.9.1 Filtering algorithms for the NVALUE constraint

The NVALUE constraint can be seen as a conjunction of two constraints : an

ATMOSTNVALUE constraint and an ATLEASTNVALUE constraint .

Definition 6.11 The ATLEASTNVALUE ([X1, . . . ,Xn], N) constraint is satisfied if and

only ifN ≤ |{Xi|1 ≤ i ≤ n}|.

Definition 6.12 The ATMOSTNVALUE ([X1, . . . ,Xn], N) constraint is satisfied if and

only if |{Xi|1 ≤ i ≤ n}| ≤ N .

We show that decomposing the NVALUE constraint into these two parts does not hin-

der propagation in general if we enforce range consistency or bounds consistency. Note

that it has been shown that this decomposition hinders propagation if we enforce domain

consistency [BHH+06a].

In both these cases we are only looking for a bound support, therefore, we assume

that domains of all variables are intervals. We also use the following notations. Given an

assignmentX of values,card(X) denotes the number of distinct values inX. Given a

vector of variablesX = [X1 . . . Xn], card↑(X) is the maximum cardinality assignment

andcard↓(X) is the minimum cardinality assignment.

Theorem 6.26 (adapted from Lemma 1 [BHH+06a]) Consider the NVALUE([X1,

. . . ,Xn], N) constraint. IfD(N) ⊆ [card↓(X), card↑(X)], then the bounds ofN have

bound supports.

Proof: Let Xmin be a minimum cardinality assignment ofX with card(Xmin) =

card↓(X) andXmax be a maximum cardinality assignment ofX with card(Xmax) =

card↑(X). Consider the sequenceXmin = X0,X1, . . . ,Xn = Xmax whereXk+1 is the

same asXk except thatXk+1 has been assigned its value inXmax instead of its value in

Xmin. |card(Xk+1) − card(Xk)| ≤ 1 because they only differ onXk+1. Hence, for any

p ∈ [card↓(X), card↑(X)], there existsk ∈ [1, . . . , n] with card(Xk) = p. Thus,Xk with

card(Xk) = p is a bound support forp on NVALUE([X1, . . . ,Xn], N). Therefore,lb(N)

andub(N) have a bound support.⋄
We now prove that decomposing the NVALUE constraint into ATMOSTNVALUE and

ATLEASTNVALUE constraints does not hinder pruning when enforcing range consistency

or bounds consistency.
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Theorem 6.27 Enforcing bounds consistency on the variableN for

NVALUE([X1, . . . ,Xn], N) is equivalent to enforcing bounds consistency on the variable

N for ATMOSTNVALUE([X1, . . . ,Xn], N) and forATLEASTNVALUE ([X1, . . . ,Xn], N).

Proof: Suppose the ATMOSTNVALUE and ATLEASTNVALUE constraints are bounds

consistent on variableN . The ATMOSTNVALUE constraint guarantees thatcard↓(X) ≤
lb(N) and the ATLEASTNVALUE constraint guarantees thatcard↑(X) ≥ ub(N). There-

fore,D(N) ∈ [card↓(X), card↑(X)]. By Theorem 6.26, the variableN is bounds consis-

tent .⋄

Theorem 6.28 Suppose NVALUE([X1, . . . ,Xn], N) is bounds consistent on

the variable N . Then enforcing range consistency on variablesX for

NVALUE([X1, . . . ,Xn], N) is equivalent to enforcing range consistency on variablesX

for ATMOSTNVALUE([X1, . . . ,Xn], N) and forATLEASTNVALUE ([X1, . . . ,Xn], N).

Proof: As NVALUE is bounds consistent on the variableN , ATMOSTNVALUE and

ATLEASTNVALUE are bounds consistent on this variable by Theorem 6.27.

Suppose the ATMOSTNVALUE and ATLEASTNVALUE constraints are range con-

sistent on variablesX. Consider a variable-value pairXi = b. Let XL be a bound

support ofXi = b in the ATLEASTNVALUE constraint so that there exists a value

p1 ∈ D(N) such thatcard(XL) ≥ p1. Let XM be a bound support ofXi = b

in the ATMOSTNVALUE constraint so that there exists a valuep2 ∈ D(N) such that

card(XM ) ≤ p2. Consider the sequenceXL = X0,X1, . . . ,Xn = XM whereXk+1 is

the same asXk except thatXk+1 has been assigned its value inXM instead of its value

in XL. |card(Xk+1) − card(Xk)| ≤ 1 because they only differ onXk+1. Hence, there

existsk ∈ [1, . . . , n] with min(p1, p2) ≤ card(Xk) ≤ max(p1, p2). We know thatp1 and

p2 belong toD(N) because they belong to bound supports. Thus,card(Xk) ∈ D(N) and

card(Xk) is a bound support forXi = b on NVALUE([X1, . . . ,Xn], N). ⋄

Theorem 6.29 Suppose NVALUE([X1, . . . ,Xn], N) is bounds consistent on

the variable N . Then enforcing bounds consistency on variablesX for

NVALUE([X1, . . . ,Xn], N) is equivalent to enforcing bounds consistency on variablesX

for ATMOSTNVALUE([X1, . . . ,Xn], N) and forATLEASTNVALUE ([X1, . . . ,Xn], N).

Proof: Similar to Theorem 6.28.⋄
When enforcing domain consistency, Bessiereet al. [BHH+06a] noted that decompos-

ing the NVALUE constraint into ATMOSTNVALUE and ATLEASTNVALUE constraints
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does hinder propagation, but only whenD(N) contains justcard↓(X) andcard↑(X) and

there is a gap in the domain in-between (see Theorem 1 in [BHH+06a] and the discussion

that follows). When enforcing bounds consistency or range consistency, any such gap in

the domain forN is ignored and it is not surprising that the decomposition does not hinder

propagation.

A number of polynomial propagation algorithms have been proposed that achieve

bounds consistency and some closely related levels of localconsistency [Bel01, BHH+05,

BHH+06a]. In this chapter we consider a bounds consistency filtering algorithm for the

ATMOSTNVALUE that was proposed in [Bel01] and a domain consistency filtering algo-

rithm for the ATLEASTNVALUE that was proposed in [ZMP06], because our bounds con-

sistency propagator is based on this algorithm. We use the theoretical results that these

algorithms are based on in the following sections.

6.9.1.1 Filtering algorithm for the ATMOSTNVALUE constraint.

First we consider the ATMOSTNVALUE constraint . A bounds consistency algorithm for

this constraint was proposed in [Bel01] and the proof that itenforces bounds consistency

on the variableN was given [BHH+05]. The algorithm is based on counting of the number

of cliques in the interval graph formed by domains of variables that are also intervals. The

number of cliques in the interval graph equals to the size of the maximum independent set.

In order to explain the algorithm we recall the notions of interval graph and show how to

construct this graph given variable domains.

We consider the construction of the interval graph from domains of variables on an

example.

Example 6.18 We recall domains of theX variables and suppose that the domain of the

variableN is [1, 2]:

1 2 3 4 5 6

X1 ∗ ∗ ∗ ∗ ∗ ∗
X2 ∗
X3 ∗
X4 ∗ ∗ ∗
X5 ∗ ∗
X6 ∗ ∗
N ∗ ∗
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Figure 6.2A set of intervals that correspond to domains of variablesX (a) and an interval

graph(b).

1 2 3 4 5

X1

X2

X3

X4

X5

v1 v2 v3

v4

v5

(a) (b)

6

X6

v6

We construct the interval graph as follows. LetS be a set of intervals formed by domains

of variables so thatS = {D(X1), . . . ,D(Xn)}. We introduce one vertex for each interval

{v1, . . . , vn} and an edge(vi, vj) if and only ifD(Xi)∩D(Xj) 6= ∅. The set of intervals that

corresponds to the domains of the variables isS = {[1, 6], [2, 2], [2, 2], [2, 4], [4, 5], [4, 5]}.
Figure 6.2 shows an interval representation of domains. To construct an interval graph we

introduce one vertex for each intervalv1, . . . , v6 and we connectvi andvj if their domains

of the corresponding variables overlap. Figure 6.2 shows the corresponding interval graph.

⋄

We recall that we denoteαI(G) (Section 2.1.3) the size of the maximum independent

set. A maximum independent set is highlighted as gray squares on Figure 6.2(b) for the

running example.

The bounds consistency algorithm proposed in [Bel01] sortsvariables by their up-

per bounds. Then it process them in this order and outputs a sequence of maximal

cliques,C1, . . . , Cm. The number of these cliques is the size of maximum independent

set [BHH+06a].

Proposition 6.1 (Proposition 1 [BHH+06a]) Let {C1, ..., Ck} be a partition of the inter-

vals into maximal cliques. IfC = {I1, . . . , Ip} is the vector of intervals whereIj is the

element ofCj with least maximum value, then all such elements have empty pairwise inter-

sections.

Note that not only elements of the cliques with least maximumvalues can form a pair-

wise independent set of intervals. Consider, for example, the ATMOSTNVALUE constraint

with 3 variablesD(X1) = [1, 2], D(X2) = [2, 3] andD(X4) = [5, 6]. There are two max-

imal cliques. The first contains intervals[1, 2] and[2, 3]. The second contains the interval
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[5, 6]. The sets{[1, 2], [5, 6]} and{[2, 3], [5, 6]} are two sets of disjoint intervals.

Definition 6.13 LetCj = ∩pi=1Iij be the intersection of intervals in thejth clique. We call

Cj the jth intersection interval. We call setC = {C1, . . . , Ck} maximum cardinality set of

intersection intervals.

Theorem 6.30 (Range/Bounds disentailment)The ATMOSTNVALUE ([X1, . . .

,Xn], N) constraint is satisfiable if and only if

1. D(Xi) 6= ∅, i = 1, . . . , n and

2. αI(G) ≤ ub(N).

Theorem 6.31 (Bounds consistency onN ) The ATMOSTNVALUE ([X1, . . . ,Xn], N)

constraint is bounds consistent onN iff

1. Theorem 6.30 conditions 1–2 hold and

2. αI(G) ≤ lb(N).

Theorem 6.32 (adapted from Lemma 2 [BHH+06a]) Consider ATMOSTNVALUE

([X1, . . . , Xn], N). If N is bounds consistent andlb(N) < ub(N), thenX are range

consistent .

Proof: Take any assignmentXmin such thatcard(Xmin) = card↓(X). Let Xb be the

assignment where the value ofXi in Xmin has been replaced byb, b ∈ D(Xi). We know

that card(Xb) ∈ [card(Xmin) − 1, card(Xmin) + 1] = [card↓(X) − 1, card↓(X) + 1]

because only one variable has been flipped. Asub(N) > lb(N) and lb(N) ≥ αI(G) =

card↓(X) thencard↓(X) + 1 ≤ ub(N). Therefore,Xi = b has a support.⋄

Theorem 6.33 (adapted from Lemma 2 [BHH+06a]) Consider ATMOSTNVALUE

([X1, . . . , Xn], N). If N is bounds consistent andlb(N) < ub(N), thenX are bounds

consistent .

Proof: Similar to Theorem 6.32.⋄
Next we provide necessary and sufficient conditions to enforce range consistency and

bounds consistency.

Theorem 6.34 (Range consistency onX) TheATMOSTNVALUE([X1, . . . ,Xn], N) con-

straint is range consistent on variablesX if and only if
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1. Theorems 6.30 and 6.31 conditions 1–2 hold and

2. (a) lb(N) < ub(N) or

(b) αI(G) = lb(N), lb(N) = ub(N) andD(Xi) ∈ C, i = 1 . . . , n,

whereC is the maximum cardinality set of intersection intervals.

Proof: Case 2a follows from Theorem 6.32. Case 2b is when the valueN is fixed. As

αI(G) = lb(N) = ub(N) then there are at leastN maximal cliques. We know that at least

one value from eachCi has to appear in a solution. Hence,N values, one from eachCi,
i = 1, . . . , N , are taken in any assignment. Therefore none of the values outside the∪Ni=1Ci
can be taken by a variableXi, i = 1, . . . , n. On the other hand, any value insideCi can be

taken by a variableX as it belong toith interval of any maximum cardinality set of disjoint

intervals by construction of the setC. ⋄

Theorem 6.35 (Bounds consistency onX) The ATMOSTNVALUE([X1, . . . ,Xn], N)

constraint is bounds consistent on variablesX if and only if

1. Theorems 6.30 and 6.31 conditions 1–2 hold and

2. (a) lb(N) < ub(N) or

(b) αI(G) = lb(N), lb(N) = ub(N) and {lb(D(Xi)), ub(D(Xi)} ∈ C, i =

1 . . . , n,

whereC is the maximum cardinality set of intersection intervals.

Proof: Similar to Theorem 6.34.⋄
We also observe that changing the domains of theX variables cannot affect the upper

bound ofN by the ATMOSTNVALUE constraint and, conversely, changing the lower bound

of N cannot affect the domains of theX variables.

Let us consider how to achieve range consistency and bounds consistency on our run-

ning example.

Example 6.19 First we check disentailment of the constraint. By Theorem 6.30 we find a

set of maximal cliques. In our example, there are two maximalcliquesC1 and C2. C1

contains a set of intervals that correspond to domains of variablesX1, X2, X3 andX4. C2

contains domains of variablesX5 andX6. The size of a maximum independent set is two,

which is equal toub(N). Hence, the constraint is satisfiable.

Bounds consistency on N . The lower bound ofN is 1 which is smaller than the size of

the maximum independent set. Hence, we remove1 fromD(N). This fixesN to 2.
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1 2 3 4 5 6

X1 ∗ ∗ ∗ ∗ ∗ ∗
X2 ∗
X3 ∗
X4 ∗ ∗ ∗
X5 ∗ ∗
X6 ∗ ∗
N ∗

Bounds consistency on X. Now we consider the maximum cardinality set of intersection

intervalsC. As we have a single maximum set of disjoint intervals{[2, 2], [4, 5]} thenC1 =

{[2, 2]}, C2 = {[4, 5]} andC = {[2, 2], [4, 5]}. Therefore, values1 and6 have to be pruned

fromD(X1) as{lb(X1), ub(X1)} /∈ {2, 4, 5}.

1 2 3 4 5 6

X1 ∗ ∗ ∗ ∗
X2 ∗
X3 ∗
X4 ∗ ∗ ∗
X5 ∗ ∗
X6 ∗ ∗
N ∗

Range consistency on X. To achieve range consistency we also need to prune the value

3 from domains of variablesX1 andX3, as this value does not belong to any of the intervals

in C.

1 2 3 4 5 6

X1 ∗ ∗ ∗
X2 ∗
X3 ∗
X4 ∗ ∗
X5 ∗ ∗
X6 ∗ ∗
N ∗
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6.9.1.2 Filtering algorithm for the ATLEASTNVALUE constraint.

Next we consider the ATLEASTNVALUE constraint. This constraint can be encoded as the

soft ALL -DIFFERENT constraint with the variable-based violation measure [ZMP06] .

Definition 6.14 The soft ALL -DIFFERENT([X1, . . . ,Xn], Z) constraint with variable-

based violation measure holds if and only ifn − ∑d
v=1 max(|{Xi = v | 1 ≤ i ≤

n}| − 1, 0) ≤ Z.

Then the ATLEASTNVALUE ([X1, . . . ,Xn], N) constraint is equivalent to

ALL -DIFFERENT([X1, . . . ,Xn], Z) constraint,Z = n − N , because the variableN

shows the number of distinct values in an assignment and the variableZ shows the total

number of repetitions in an assignment.

A domain consistency filtering algorithm for the soft ALL -DIFFERENT constraint was

proposed in [ZMP06]. The algorithm is based on the correspondence between solutions of

the ALL -DIFFERENT constraint and maximum matching in the variable-value graph, Gv

(Section 2.4.1). We denote a maximum matching in the variable-value graphM(G).

Consider an encoding of the ATLEASTNVALUE constraint into the ALL -DIFFERENT

constraint and a construction of the variable-value graph on the running example.

Example 6.20 We recall domains of the variablesX (Example 6.17) and suppose that the

domain of the variableN is [5, 6]:

1 2 3 4 5 6

X1 ∗ ∗ ∗ ∗ ∗ ∗
X2 ∗
X3 ∗
X4 ∗ ∗ ∗
X5 ∗ ∗
X6 ∗ ∗
N ∗ ∗

An equivalent softALL -DIFFERENT constraint has the same variablesX in the scope

and the domain of the variableZ is [0, 1].

Next we construct a variable-value graph. We introduce one vertex for a variable,vXi
,

i = 1, . . . , 6 and one vertex for a value,vj , j = 1, . . . , 6. We add an edge fromvXi
to vj if

and only ifvj ∈ D(Xi) (Figure 6.3 (a)). The size of a maximum matching is5 (Figure 6.3

(b)) (gray lines).⋄
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Figure 6.3 (a) Variable-value graph that corresponds to the soft ALL -DIFFERENT con-

straint, (b) a maximum matching in the variable-value graph(gray dashed lines)
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A domain consistency filtering algorithm for the soft ALL -DIFFERENT constraint

along with necessary and sufficient conditions for achieving domain consistency is de-

scribed in [ZMP06]. Due to equivalence of the soft ALL -DIFFERENT constraint and

ATLEASTNVALUE we adjust these conditions to the interval domain variables:

Theorem 6.36 (Range/Bounds disentailment. Follows from Theorem 7 [ZMP06])

The ATLEASTNVALUE ([X1, . . . ,Xn], N) constraint is satisfiable if and only if

1. D(Xi) 6= ∅, i = 1, . . . , n and

2. |M(Gv)| ≥ lb(N).

Theorem 6.37 (Bounds consistency onN .) The ATLEASTNVALUE ([X1, . . . ,Xn], N)

constraint enforces bounds consistency on the variableN if and only if

1. Theorem 6.36 conditions 1–2 hold and

2. |M(Gv)| ≥ ub(N).

Theorem 6.38 ( adapted from Lemma 2 [BHH+06a]) Consider ATLEASTNVALUE

([X1, . . . , Xn], N). If N is bounds consistent andlb(N) < ub(N), thenX are range

consistent .

Proof: Take any assignmentXmax such thatcard(Xmax) = card↑(X). Let Xb be the

assignment where the value ofXi in Xmax has been replaced byb, b ∈ D(Xi). We know

that card(Xb) ∈ [card(Xmax) − 1, card(Xmax) + 1] = [card↑(X) − 1, card↑(X) + 1]
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because only one variable has been flipped. AsN is bounds consistent thenub(N) ≤
card↑(X) andlb(N) < card↑(X). Hence,lb(N) ≤ card(Xb). and the variable-value pair

Xi = b has a support.⋄

Theorem 6.39 ConsiderATLEASTNVALUE ([X1, . . . , Xn], N). If N is bounds consistent

and lb(N) < ub(N), thenX are bounds consistent .

Proof: Similar to Theorem 6.38.⋄

Theorem 6.40 (Range consistency. Follows from Theorem 7 [ZMP06]) The

ATLEASTNVALUE ([X1, . . . ,Xn], N) constraint is range consistent on variablesX

if and only if

1. Theorems 6.36 and 6.37 conditions 1–2 hold and

(a) lb(N) < ub(N) or

(b) lb(N) = ub(N), ub(N) = |M(Gv)| and for each variable-value pairXi = vj,

i = 1, . . . , n, j = 1 . . . , d, the corresponding edge(vXi
, vj) can be extended to

a matching of size at leastlb(N).

Theorem 6.41 (Bounds consistency. Follows from Theorem 7 [ZMP06])

TheATLEASTNVALUE ([X1, . . . ,Xn], N) constraint is bounds consistent on variables

X if and only if

1. Theorems 6.36 and 6.37 conditions 1–2 hold and

(a) lb(N) < ub(N) or

(b) lb(N) = ub(N), ub(N) = |M(Gv)| and for each variable-bound pairXi =

lb(D(Xi))/Xi = ub(D(Xi)), i = 1, . . . , n, j = 1 . . . , d, the corresponding

edge(vXi
, lb(D(Xi)))/(vXi

, ub(D(Xi))) can be extended to a matching of size

at leastlb(N).

We also observe that changing the domains of the variablesX cannot affect the lower

bound ofN by the ATLEASTNVALUE constraint and, conversely, changing the upper

bound ofN cannot affect the domains ofX.

Consider how to achieve range consistency and bounds consistency on our running ex-

ample.
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Example 6.21 First we check bounds disentailment. Example 6.20 shows that the size of

the maximum matching in the graphGv is 5, which is greater thanlb(N). By Theorem 6.36

the constraint is satisfiable.

Bounds consistency on N . As the size of the maximum matching is5, the value6 has

to be removed fromD(N) by Theorem 6.37. This fixesN to 5.

1 2 3 4 5 6

X1 ∗ ∗ ∗ ∗ ∗ ∗
X2 ∗
X3 ∗
X4 ∗ ∗ ∗
X5 ∗ ∗
X6 ∗ ∗
N ∗

Bounds consistency on X. Note that variablesX2,X3 andX5,X6 can take only three

distinct values,D(Xi) ⊆ {2, 4, 5}, i = {2, 3, 5, 6}. AsN = 5, X4 cannot take values in

the set{2, 4}. If X4 takes2 or 4, then the size of the maximum matching will be4.

1 2 3 4 5 6

X1 ∗ ∗ ∗ ∗ ∗ ∗
X2 ∗
X3 ∗
X4 ∗
X5 ∗ ∗
X6 ∗ ∗
N ∗

Range consistency on X.

We note that variablesX2, . . . ,X6 can take only four distinct values,D(Xi) ∈
{2, 3, 4, 5}, i = {2, . . . , 6}. AsN = 5, these value have to be pruned from the domain
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of variableX1.

1 2 3 4 5 6

X1 ∗ ∗
X2 ∗
X3 ∗
X4 ∗ ∗ ∗
X5 ∗ ∗
X6 ∗ ∗
N ∗

⋄

6.9.1.3 Hall theorem for the softALL -DIFFERENT constraint

Before we present our decompositions for the ATLEASTNVALUE constraint we derive nec-

essary and sufficient conditions for the existence of the maximum matching in a convex

graph that corresponds to the soft ALL -DIFFERENT constraint. We use these conditions in

Section 6.9.2.3 where we present a reformulation of the ATLEASTNVALUE constraint into

a set of primitive constraints.

Consider the soft ALL -DIFFERENT([X1, . . . ,Xn], N) constraint and the corresponding

variable-value graphG(V,E), V = A ∪ B, |A| = n, |B| = d. We denote vertices in the

partitionA asX1, . . . ,Xn and vertices in the partitionB as1, . . . , n. We refer to vertices

in the partitionA as variables and vertices in the partitionB as values of the interval[1, d].

Clearly, the neighbourhood ofN(Xi) is D(Xi).

Suppose the graphG does not have a matching of sizen. Then there exists a violated

Hall interval. To determine the size of the maximum matchingwe need to distinguish

between violated Hall intervals that contain and do not contain a violated unstable set. This

allows us to determine whether there exists a matching that covers all values from a violated

Hall interval. We recall definition of the setIS (Equation (6.25):IS = |Xi|D(Xi)∩S 6= ∅|.

Definition 6.15 (Violated unstable set)A setS is a violated unstable set if and only if

IS < |S|

Consider an example of a violated Hall interval that contains a violated unstable set.

Example 6.22 Consider the softALL -DIFFERENT([X1, . . . ,X5], N) constraint with do-

mainsD(X1) = . . . = D(X4) = [2, 3], D(X5) = [1, 4] andN = 1. The interval[2, 3]
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is a violated Hall interval. However, it does not contain a violated unstable set. The in-

terval [1, 4] is also a violated Hall interval. However, there exists a violated unstable set

S = {1, 4}: IS = 1 and |S| = 2. This means that there is no maximum matching that

covers values1 and4.⋄

To distinguish between violated Hall intervals, we introduce the notion of violated-

saturated Hall interval, which is a Hall interval such that we can construct a maximum

matching that covers all values in this interval. More formally,

Definition 6.16 Consider the softALL -DIFFERENT([X1, . . . ,Xn], N) constraint. A Hall

interval [a, b] is a violated-saturatedHall interval if and only if it is violated and for any

subsetS ⊂ [a, b], IS ≥ |S|.

The meaning of aviolated-saturatedHall interval is that this is an violated Hall interval

such that there is a matching that covers each value in this interval.

We use results for range consistency and bounds consistencyfor the GCCL constraint

(Section 6.8.1) to obtain the maximum matching.

Proposition 6.2 Consider the softALL -DIFFERENT([X1, . . . ,Xn], N) constraint. Let

[a, b] be a violated Hall interval andP be a set of interval domain variables that are con-

tained inside this interval,P = {Xi|D(Xi) ⊆ [a, b]}. The interval[a, b] is a violated-

saturated Hall interval if and only ifGCCL([P ], [1, . . . , 1], [|P |, . . . , |P |]) is satisfiable.

Proof: Suppose[a, b] is a violated-saturated Hall interval. As variables inP have interval

domains it is sufficient to show that the GCCL([P ], [1, . . . , 1]) constraint has a bounds

solution. Hence, conditions of Theorem 6.19 are applied. Note that all lower boundslv are

ones in our case. Hence,
∑

v∈S lv = |S|.
Suppose GCCL([P ], [1, . . . , 1], [|P |, . . . , |P |]) is violated. Then there exists a violated

unstable setS′ ∈ [a, b] such that

IS′ < |S′|.

This contradicts the assumption that[a, b] is a violated-saturated Hall interval.

As the GCCL constraint has a solution, for any set of values

IS ≥ |S|.

Hence,[a, b] is a violated-saturated Hall interval.⋄
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Theorem 6.42 LetG(V,E), V = A ∪ B, |A| = n, |B| = d, n ≤ d be a convex bipartite

graph,M(G) be a maximum matching in the graph,|M(G)| < n. Let [a, b] be a violated-

saturated Hall interval andP be a set of variables that are contained inside this interval,

P = {Xi|D(Xi) ⊆ [a, b]}. LetG′(V ′, E′), V ′ = A′ ∪ B′, A′ = A ∩ P , B′ = B ∩ [a, b]

be a graph induced byP and [a, b]. Then there exists a matching inG′ that covers values

[a, b].

Proof: As [a, b] is a violated-saturated Hall interval, there exists a solution of the

GCCL([P ], [la, . . . , lb]) constraint, wherela = . . . = lb = 1 (Proposition 6.2). This solu-

tion is a required matching inG′. ⋄
We show that each violated Hall interval contains a violated-saturated Hall interval.

Theorem 6.43 Let [a, b] be a violated Hall interval andP be a set of interval domain

variables that are contained inside this interval,P = {Xi|D(Xi) ⊆ [a, b]}. Then, there

exists a violated-saturated Hall interval[c, d] such that[c, d] ⊆ [a, b].

Proof: Consider a violated Hall interval[a, b]. We have

|P | > b− a+ 1. (6.42)

As [a, b] is not a violated-saturated Hall interval, there is a violated unstable setS =

{f1, . . . , fp}, S ⊆ [a, b] such that

IS < |S|.

We denoteP ′ a subset of variables that overlapS. We assume thatS is a maximal

violated unstable set. It is easy to see that there exists a unique maximum violated unstable

set because a union of two violated unstable sets gives a violated unstable set.

Next we remove variablesP ′ and valuesS from the set of variablesP and the set of

values[a, b]. This partitions the interval[a, b] into a set of intervals:

F = {[a, f1 − 1], [f1 + 1, f2 − 1], . . . , [fp + 1, b]}. (6.43)

Note that domain of any variableXi, Xi ∈ P \ P ′ is completely contained inside a

single interval inF , otherwiseXi overlaps withS and belongs toP ′. AsS is the maximum

violated unstable setS, each interval[fj + 1, fj+1 − 1] ∈ F is a violated-saturated Hall

interval.⋄
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We partition the interval of values[1, d] into violated-saturated and non-violated Hall

intervals. LetH = {[a1, b1], . . . , [ap, bp]} be a maximum set of all maximal-length

violated-saturated Hall intervals andHvi be the amount of violation forHi: Hvi =

bi−ai+1−|D(Xi) ⊆ [ai, bi]|. The intervals inH are disjoint, otherwise they are not max-

imal in length. The rest of the intervals we denoteF , F = [1, d] \H. Note that any interval

[a, b] ∈ F is not violated by Theorem 6.43. Otherwise, it would containa violated-saturated

Hall interval inside. The next theorem shows how to construct a maximum matching that

uses this partitioning.

Theorem 6.44 Let G(V,E), V = A ∪ B, |A| = n, |B| = d, n ≤ d be a con-

vex bipartite graph,M(G) be a maximum matching in the graph,|M(G)| < n. Let

H = {[a1, b1], . . . , [ap, bp]} be a set of all maximal-length violated-saturated Hall inter-

vals. Then there exists a maximal matching of sizen−∑p
i=1Hvi.

Proof: The setH partitions the interval of values[1, d] into maximal-length violated-

saturated Hall intervals and non-violated intervalsF , F = [1, d] \ H. We denote the set

of variables that are contained inside∩pi=1[ai, bi] as V1 and the rest of variables asV2,

V2 = V \ V1.

Matching inside violated-saturated Hall interval. Consider a maximal violated-

saturated Hall interval,Hi = [ai, bi]. By Theorem 6.42 we can construct a matching of

sizebi − ai + 1 using variables whose domains are inside the interval[ai, bi].

LetPi be a set of variables that are completely contained inside the interval[ai, bi]. Note

thatPi ∩Pj = ∅, i 6= j by construction of maximal-length violated-saturated Hall intervals

and
⋃p

i=1 Pi = V1. As intervals inH are disjoint, we can construct a matching that covers
⋃p

i=1[ai, bi] using variables inV1.

Matching outside violated-saturated Hall interval. We remove verticesV1 ∪
(∪pi=1[ai, bi]) and the corresponding edges from the graphG. We denote the new graph

G′(V ′, E′), V = A′ ∪ B′. The remaining graph is a convex graph because the original

graph was convex. The size of the partitionB′ is |B| −∑p
i=1(bi − ai + 1). We rename

vertices inB′ as1, . . . , |B| −∑p
i=1(bi − ai + 1) (similar to the shrinking procedure in

Theorem 6.7). Suppose the renaming maps

ci ↔ c′i, . . ., di ↔ d′i, where{ci, di} ∈ B , {c′i, d′i} ∈ B′,

The size of the partitionA′ is |A|− |V1| = |A|−
∑p

i=1(bi−ai+1)−∑p
i=1 Hvi. We show

that this graph has a matching of sizeA′.



6.9. THENVALUE CONSTRAINT 211

Suppose there is no matching of size|A′|. Then, there exists a violated Hall interval

[a′i, b
′
i]. By Theorem 6.43,[a′i, b

′
i] contains a violated-saturated Hall sub-interval[c′i, d

′
i].

We map values in[c′i, d
′
i] back to original values inB. If [ci, di] form a continuous

interval we reached a contradiction as[ci, di] * H. Otherwise, these values form a setS′.

Let H ′ = {[aij , bij ]|[aij , bij ] ⊆ [ci, di]}, H ′ ⊆ H, H ′ ∪ S′ = H be a set of violated-

saturated Hall intervals of maximum length that are contained inside[ci, di]. Then, the

interval[ci, di] does not contain violated unstable sets, because[ci, di] is a union of elements

of S′ and∪[aij ,bij ]∈H′ [aij , bij ] that do contain such violated unstable sets by construction.

Therefore,[ci, di] is a violated-saturated Hall interval. This contradicts that the intervals in

H ′ are violated-saturated Hall intervals ofmaximal length.

Maximum matching construction. AsV1 andV2 have a disjoint neighbourhood, we can

construct a matching of size[
∑p

i=1(bi−ai+1)]+ [n−∑p
i=1(bi−ai+1)−∑p

i=1 Hvi] =

n−∑p
i=1Hvi.

This matching is a maximal matching because the only way to increase it is to use an

unused vertex that is inside a violated-saturated Hall interval. However, all values from

violated-saturated Hall intervals are used.⋄

6.9.2 Decompositions of theNVALUE constraint

Section 6.9.1 shows that the decomposition of the NVALUE constraint into

ATMOSTNVALUE and ATLEASTNVALUE does not hinder bounds propagation on the vari-

able N and range and bounds propagation on the variablesX. Therefore, we present

a decomposition of the ATMOSTNVALUE and ATLEASTNVALUE into a set of primitive

arithmetic constraints independently. Section 6.9.2.1 shows range consistency and bounds

consistency decompositions of the ATMOSTNVALUE and Section 6.9.2.2 proposes com-

plexity improvements of these decomposition. Section 6.9.2.3 shows range consistency and

bounds consistency decompositions of the ATLEASTNVALUE .

6.9.2.1 ATMOSTNVALUE constraint

We now give a decomposition for the ATMOSTNVALUE constraint that does not hinder

range consistency and bounds consistency. To decompose theATMOSTNVALUE con-

straint, we introduce 0/1 variables,Ailu to represent whetherXi uses a value in the

interval [l, u], and ‘counter’ variables,Mlu with domains[0,min (u− l + 1, n)] which

count the number of values taken inside the interval[l, u]. Note that this construction
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is similar to the alternative decomposition of the ALL -DIFFERENT constraint and the

OVERLAPPINGALL DIFF constraint (Sections 6.4.3 and 6.7)

To constrain these introduced variables, we post the following constraints:

Ailu = 1 ⇐⇒ Xi ∈ [l, u] ∀ 1 ≤ i ≤ n, 1 ≤ l ≤ u ≤ d (6.44)

Ailu ≤Mlu ∀ 1 ≤ i ≤ n, 1 ≤ l ≤ u ≤ d (6.45)

M1u = M1k +M(k+1)u ∀ 1 ≤ k < u ≤ d (6.46)

M1d ≤ N (6.47)

We now prove that this decomposition does not hinder propagation.

Theorem 6.45 Enforcing domain consistency on constraints(6.44)and bounds consistency

on (6.45)–(6.47)is equivalent to range consistency on variablesX and bounds consistency

on the variableN for ATMOSTNVALUE ([X1, . . . ,Xn], N), and takesO(nd3) time to

enforce down the branch of the search tree.

Proof: We show that the decomposition detects disentailment. By Theorem 6.30 the

ATMOSTNVALUE constraint is disentailment ifαI(G) = card↓(X) > ub(N).

Let Y = {Xp1 , . . . ,Xpk} be a maximum cardinality subset of variables ofX whose

domains are pairwise disjoint (i.e.,D(Xpi) ∩D(Xpj ) = ∅,∀i, j ∈ 1..k, i 6= j). Let IY =

{[bi, ci] | bi = lb(D(Xpi)), ci = ub(D(Xpi)),Xpi ∈ Y } be the corresponding ordered set

of disjoint ranges of the variables inY . Proposition 6.1 shows that|Y | = card↓(X).

Consider interval[bi, ci] ∈ IY . Constraints (6.45) ensure that variablesMbici i =

[1, . . . , k] are greater than or equal to1 and constraints (6.46), by chaining the lower bounds

procedure (introduced in proof of Theorem 6.22), ensure that

M1d = M1,b1−1 +Mb1,c1 +Mc1+1,b2−1 + . . . +MbN ,cN +McN+1,d. (6.48)

and

lb(M1d) ≥ lb(M1,b1−1)+ lb(Mb1,c1)+ lb(Mc1+1,b2−1)+ . . .+ lb(MbN ,cN )+ lb(McN+1,d).

Therefore, the lower bound of the variableN is greater than or equal tocard↓(X) which

leads to the failure of the last constraint in the chaining lower bounds procedure.

Bounds consistency onN . The chaining lower bounds procedure ensures thatlb(N) ≥
card↓(X). Hence,N is bounds consistent by Theorem 6.31.
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Range consistency onX. By Theorem 6.34 the only case when pruning might occur is

if the variableN is ground andcard↓(X) = N . In this case|Y | = card↓(X) = lb(N) =

ub(N). By chaining upper bounds procedure (introduced in proof ofTheorem 6.22) on

equation (6.48) we get that the upper bounds of variablesMbi,ci , [bi, ci] ∈ IY are set to their

lower bounds and variablesMci−1+1,bi−1 that correspond to intervals outside the setIY are

forced to zero.

As this argument holds for any maximum set of pairwise disjoint variables all values

outside the maximum cardinality set of intersection intervals C will be pruned. By Theo-

rem 6.32 the constraint is range consistent .

Complexity argument:There areO(nd2) constraints (6.44) and constraints (6.45) that

can be wokenO(d) times down the branch of the search tree. This requiresO(d) time down

the branch for a total ofO(nd3) down the branch. There areO(d2) constraints (6.46) which

can be wokenO(n) times down the branch and all invocations down the branch takeO(d)

time. This gives a total ofO(nd2). The final complexity down the branch of the search tree

is thereforeO(nd3). ⋄

Similar to the ALL -DIFFERENT and GCC constraints we can easily modify the decom-

position to enforce bounds consistency if we replace constraints (6.44) by constraints (6.3)

and (6.4).

Theorem 6.46 Enforcing bounds consistency on constraints(6.3)–(6.4) and bounds con-

sistency on(6.45)–(6.47) is equivalent to bounds consistency onATMOSTNVALUE

([X1, . . . ,Xn], N), and takesO(nd2) time to enforce down the branch of the search tree.

Proof: The proof is similar to Theorem 6.45. The only difference is that channelling

constraints (6.3)–(6.4) only prunes variable bounds.

Complexity argument:The complexity reduces toO(nd2) as bounds consistency on

(6.3) and (6.4) is inO(nd2) compared toO(nd3) on (6.44). This givesO(nd2) time com-

plexity down a branch of the search tree.⋄

Consider how the two decompositions work on our running example.
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Example 6.23 . We recall that domains of the variables are

1 2 3 4 5 6

X1 ∗ ∗ ∗ ∗ ∗ ∗
X2 ∗
X3 ∗
X4 ∗ ∗ ∗
X5 ∗ ∗
X6 ∗ ∗
N ∗ ∗

Bounds consistency on N . AsX2 = 2 andX5 ∈ [4, 5], we havelb(M2,2) ≥ 1 and

lb(M4,5) ≥ 1. By the chaining lower bounds procedure, we getlb(M1,6) = ub(M1,6) =

2. This enforces bounds consistency on the variableN . AsN is fixed we have to prune

variablesX.

1 2 3 4 5 6

X1 ∗ ∗ ∗ ∗ ∗ ∗
X2 ∗
X3 ∗
X4 ∗ ∗ ∗
X5 ∗ ∗
X6 ∗ ∗
N ∗

Bounds consistency on X. Now we consider the maximum cardinality set of intersec-

tion intervalsC. As we have a single maximum set of disjoint intervals,C = {[2, 2], [4, 5]}.
The implied constraint

M1,6 = M1,1 +M2,2 +M3,3 +M4,5 +M6,6

is tight asub(M1,6) = lb(M2,2) + lb(M4,5). Therefore, by the chaining upper bounds

procedure, theM1,1, M3,3 andM6,6 are fixed to zero. By channelling constraints(6.3)–

(6.4) the values 1 and 6 are pruned fromD(X1).



6.9. THENVALUE CONSTRAINT 215

1 2 3 4 5 6

X1 ∗ ∗ ∗ ∗
X2 ∗
X3 ∗
X4 ∗ ∗ ∗
X5 ∗ ∗
X6 ∗ ∗
N ∗

Range consistency on X. To achieve range consistency we also need to enforce domain

consistency on constraints(6.44)which prunes the value3 from domains of variablesX1

andX3.

1 2 3 4 5 6

X1 ∗ ∗ ∗
X2 ∗
X3 ∗
X4 ∗ ∗
X5 ∗ ∗
X6 ∗ ∗
N ∗

6.9.2.2 Faster decompositions

We can improve how the solver handles this decomposition of the ATMOSTNVALUE con-

straint by adding implied constraints and by implementing specialised propagators. The aim

of the specialised propagators is to improve channeling between variablesX and decompo-

sition variables to speed up the enforcement of range consistency. Our first improvement is

to add an implied constraint and enforce bounds consistencyon it:

M1d =

d
∑

i=1

Mii (6.49)

This does not change the asymptotic complexity of reasoningwith the decomposition, nor

does it improve the level of propagation achieved. However,we have found that the fixpoint

of propagation is reached quicker in practice with such an implied constraint.

Our second improvement is to bring the complexity of enforcing range consistency

down to the same complexity as bounds consistency. Note thatdecomposition (6.44)–(6.47)
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achieves range consistency inO(dn3) time. The time complexity is dominated by the chan-

nelling constraints (6.44). To improve the complexity we start from the bounds consistency

decomposition that runs inO(dn2) time and extend it withO(d log d) Boolean variables

Bil(l+2k) ∈ [0, 1], 1 ≤ i ≤ n, 1 ≤ l ≤ d, 0 ≤ k ≤ ⌊log d⌋. The following constraint

ensures thatBijj = 1 ⇐⇒ Xi = j.

Definition 6.17 TheDOMAIN BITMAP(Xi, [Bi11, . . . , Bidd]) constraint holds if and only if

Bijj = 1 ⇐⇒ Xi = j, j = 1, . . . , d,

We can then use the following clausal constraints to channelfrom variablesMlu to these

variables and on to theX variables. These constraints are posted for every1 ≤ i ≤ n, 1 ≤
l ≤ u ≤ d, 1 ≤ j ≤ d and integersk such that0 ≤ k ≤ ⌊log d⌋:

Bij(j+2k+1−1) = 1 ∨Bij(j+2k−1) = 0 (6.50)

Bij(j+2k+1−1) = 1 ∨Bi(j+2k)(j+2k+1−1) = 0 (6.51)

Mlu 6= 0 ∨Bil(l+2k−1) = 0 2k ≤ u− l + 1 < 2k+1 (6.52)

Mlu 6= 0 ∨Bi(u−2k+1)u = 0 2k ≤ u− l + 1 < 2k+1 (6.53)

The variableBil(l+2k−1), similarly to the variablesAlu, is true whenXi ∈ [l, l+2k−1],
but instead of having one such variable for every interval, we only have them for intervals

whose length is a power of two.

We assume that we do not branch on auxiliary variables in thiswork. Hence, the only

case when enforcing bounds consistency on constraints (6.3) and (6.4) is not equivalent

to enforcing range consistency on constraints (6.44) is when Ailu is forced to zero by the

constraint (6.45),Ailu ≤Mlu. This can only happen ifMlu is forced to take the value zero

by propagation. Hence, to enforce range consistency on the ATMOSTNVALUE constraint

we only need to enhance bounds consistency decomposition with the following inference:

if Mlu is forced to take the value zero then values[l, u] have to be removed from domains

ofvariablesX .

Theorem 6.47 Let Mlu be 0. Enforcing range consistency on constraints(6.50)–(6.53),

the DOMAIN BITMAP(Xi, [Bi11, . . . , Bidd]) constraint removes values[l, u] from domains

of all variablesX. This takesO(nd2) time to enforce down the branch of the search tree.

Proof: WhenMlu = 0, with 2k ≤ u − l + 1 < 2k+1, constraints (6.52) –(6.53) set to 0

theB variables that correspond to the two intervals of length2k that start atl and finish at

u, respectively. In turn, constraints (6.50)–(6.51) set to 0theB variables that correspond to
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intervals of length2k−1, all the way down to intervals of size 1. These trigger constraints

(6.17), so all values in the interval[l, u] are removed from the domains of all variables.

Complexity argument:We can propagate DOMAIN BITMAP in a constant time per vari-

able change then we can enforce range consistency on this constraint in timeO(d) over

a branch, andO(nd) for all variablesXi. Note that range consistency can be enforced on

each of constraints (6.50)– (6.53) in constant time over a branch. There existO(nd log d) of

the constraints (6.50)–(6.51) andO(nd2) of the constraints (6.52)–(6.53), so the total time

to propagate them all down a branch isO(nd2). ⋄

Example 6.24 SupposeX1 ∈ [5, 9]. Then, by constraints(6.3)–(6.4), A14 = 0, A19 = 1

and by constraints(6.45), M59 > 0. Conversely, supposeM59 = 0 and X1 ∈ [1, 10].

Then, by constraints(6.52)–(6.53), we getB158 = 0 andB169 = 0. FromB158 = 0 and

(6.50)–(6.51) we getB156 = 0, B178 = 0, B155 = B166 = B177 = B188 = 0, and by

(6.17), the interval[5, 8] is pruned fromX1. Similarly,B169 = 0 causes the interval[6, 9]

to be removed fromX1, soX1 ∈ [1, 4] ∪ {10}. ⋄

6.9.2.3 ATLEASTNVALUE constraint

There is a similar decomposition for the ATLEASTNVALUE constraint. We introduce 0/1

variables,Ailu to represent whetherXi uses a value in the interval[l, u], and integer vari-

ables,Elu with domains[0, n] to count the number of times values in[l, u] arereused, that

is, the amount of violationHv for the interval[l, u]. To constrain these introduced variables,

we post the following constraints:

Ailu = 1 ⇐⇒ Xi ∈ [l, u] ∀ 1 ≤ i ≤ n, 1 ≤ l ≤ u ≤ d (6.54)

Elu ≥
∑n

i=1Ailu − (u− l + 1) ∀ 1 ≤ l ≤ u ≤ d (6.55)

E1u = E1k + E(k+1)u ∀ 1 ≤ k < u ≤ d (6.56)

N ≤ n− E1d (6.57)

We now prove that this decomposition does not hinder propagation in general.

Theorem 6.48 Enforcing domain consistency on constraints(6.54)and bounds consistency

on (6.55)–(6.57) is equivalent to enforcing range consistency on variablesX and bounds

consistency on the variableN for ATLEASTNVALUE ([X1, . . . ,Xn], N), and takesO(nd3)

time down a branch of the search tree.

Proof: The valuecard↑(X) is equal to the size of a maximum matchingM(Gv) in the

variable-value graph of the constraint. SinceN ≤ n − E1d, we show that the lower bound



218 CHAPTER 6. ALL-DIFFERENT AND GENERALISATIONS

of E1d is equal ton − |M(Gv)|, where|M(Gv)| is the size of the maximum matching.1

Theorem 6.44 shows that the size of the maximum matching equals ton−∑p
i=1Hvi, where

H = {[a1, b1], . . . , [ak, bk]} is a maximum set of maximal length violated-saturated Hall

intervals andHvi = bi−ai+1−|D(Xi) ⊆ [ai, bi]|, i = 1, . . . , p. Therefore, it is sufficient

to show thatlb(E1d) is greater than or equal to the total amount of violation:
∑p

i=1Hvi.

We partition the interval[1, d] into a set of maximal violated-saturated and non-violated

Hall intervals. LetH = {[bj , cj ]}, j = 1, . . . , k be a set of maximal violated-saturated Hall

intervals andP = {Xi|D(Xi) ⊆ ∪kj=1[bj , cj ]}
As [bj, cj ] is a violated-saturated Hall interval we have

Hv[bj ,cj] = lb(Ebj ,cj) =

n
∑

i=1

lb(Aibjcj)− (cj − bj + 1)

Consider the remaining intervals{[1, d] \ H}: F = {[1, b1 − 1], [c1 + 1, b2 −
1], . . . , [ck, d]}.

Any interval in F is not a violated Hall interval by Theorem 6.42. Therefore,

lb(Ebj+1,cj+1−1) = 0 for any interval inF . Constraints (6.55)–(6.57) imply

E1d = E1,b1−1 + Eb1,c1 +Ec1+1,b2−1 + . . .+ Ebk,ck + Eck+1,d.

and by the chaining lower bounds procedure we have that

lb(E1d) ≥ lb(E1,b1−1) + lb(Eb1,c1) + lb(Ec1+1,b2−1) + . . . + lb(Ebk,ck) + lb(Eck+1,d).

As lower bounds of non-violated intervals are zeros we have:

lb(E1d) ≥ lb(Eb1,c1) + + . . .+ lb(Ebk,ck) =

k
∑

i=1

Hvi

Therefore,lb(E1d) ≥
∑k

i=1 Hvi and bounds propagation on

N ≤ n− E1d

implies thatub(N) ≤ n− lb(E1d) = n−∑k
i=1 Hvi = |M(G)|.

Hence, the decomposition verifies thatlb(N) ≤ |M(Gv)| and by Theorem 6.36 detects

disentailment.

Bounds consistency onN . The chaining lower bounds procedure ensures thatub(N) ≤
|M(G)|. By Theorem 6.37 the variableN is bounds consistent .

1We assume thatE1d is not pruned by other constraints.
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Range consistency onX. By Theorem 6.34 the only case when pruning might occur is

if the variableN is ground andcard↑(X) = N . By Theorem 6.44 the size of the maximum

matching iscard↑(X) = n−∑k
i=1 Hvi. Therefore, the variableE1d is fixed to

∑k
i=1Hvi.

Consider again the partitioning of the interval[1, d] into violated-saturated Hall intervals

and the non violated intervals. Constraints (6.55)–(6.57)imply

E1d = E1,b1−1 + Eb1,c1 + Ec1+1,b2−1 + . . .+ Ebk ,ck + Eck+1,d. (6.58)

and by the chaining upper bounds procedure, taking into account that
∑

[bj ,cj ]∈H lb(Ebj ,cj) =
∑k

i=1 Hvi, we have that upper bounds of the variables

E1(b1−1), Eb1c1 , E(c1+1)(b2−1), . . . , Ebkck , E(ck+1)d are fixed to their lower bounds.

In particular, for any non-violated interval[aj , dj ], Eajdj is fixed to zero and for any

violated-saturated interval[bj , cj ], Ebjcj is fixed to
∑cj

i=bj
Hvi.

Consider a variable-value pairXi = v that does not have a support. We consider

two cases whenXi = v does not have a support. We recall thatP = {Xi|D(Xi) ⊆
∪kj=1[bj , cj ]}:

1. D(Xi) is contained inside one of the violated-saturated Hall intervals,Xi ∈ P ;

2. D(Xi) is not contained inside one of the violated-saturated Hall intervals,Xi ∈ X \
P .

Case 1. Consider the interval[bj, cj ] ∈ H, such thatD(Xi) ⊆ [bj , cj ]. Let P ′ =

{Xi|D(Xi) ⊆ [bj , cj ])}. First we show that variables outside ofP ′ cannot take values

in the interval[bj , cj ]. This shows that the problem of constructing a matching of size

cj − bj + 1 using variables inP ′ such thatXi = v is isolated from the rest of the problem.

The variableEbjcj equals
∑cj

i=bj
Hvi and

∑n
i=1Aibjcj ≥ |P ′| = cj − bj + 1 +

∑cj
i=bj

Hvi. Therefore,
∑n

i=1Aibjcj = cj − bj + 1 by constraints (6.55). Hence, the

values[bj, cj ] are pruned from domains of variablesX \ P ′.

Next, we need to prove that there exists a matching of sizecj − bj + 1 using variables

in P ′ such thatXi = v.

Proposition 6.2 shows a connection between finding a matching that covers all values

from the interval and the GCCL([P ′], [1, . . . , 1], [ubj , . . . , ucj ]) constraint andubj = . . . =

ucj = |P ′|. We can use this connection to construct a matching such thatXi = v. By

Theorem 6.20 GCCL does not have a solution withXi = v if and only if

• there exists an unstable setS, S ⊆ [bj , cj ] thatdoes notcontainv andD(Xj) inter-

sectsS,
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We modify the proof of Theorem 6.4 to prove that this case is handled by the decomposition.

Let S = {v1, . . . , vk} be an unstable set such thatv /∈ S andD(Xi) ∩ S 6= ∅. W.l.o.g.

we assume thatvj < v < vj+1 AsS is an unstable set we have:

IS = |S|,

whereIS = |Xi|D(Xi) ∩ S 6= ∅| ( Equation (6.25)).

The number of variables inQ′ = P ′ \ IS = {Xi|Xi /∈ IS} is equal tocj − bj +1− |S|.
Any variableXi, Xi /∈ IS can be contained inside only one of the intervals[bj , v1−1], [v1+
1, v2 − 1], . . . , [vk + 1, cj ]. Therefore

U[bj ,v1−1] + U[v1+1,v2−1] + . . .+ U[vk+1,cj ] = |Q′| = cj − bj + 1− |S|, (6.59)

whereU[l,u] = |Xi|D(Xi) ⊆ [l, u]| (Equation (6.26)).

The amount of violation in the interval[bj , cj ] is

lb(Ebjcj) = ub(Ebjcj) = |IS |+ |Q′| − (cj − bj + 1). (6.60)

Thanks to constraints (6.55), we know that for any interval[l, u]:

lb(Elu) ≥ U[l,u] − (u− l + 1). (6.61)

So, taking into account constraints (6.59)–(6.61):

lb(Ebj(v1−1)) + lb(Ev1v1) + lb(E(v1+1)(v2−1)) + . . .+ lb(Evkvk) + lb(E(vk+1)cj ) ≥

U[bj ,v1−1] + U[v1+1,v2−1] + . . .+ U[vk+1,cj ] − (cj − bj + 1− |S|) +
k
∑

v=1

lb(Evv) =

|Q′| − (cj − bj + 1− |S|) +
k
∑

v=1

lb(Evv)

As S is unstable set we haveS = |IS | which implies

lb(Ebj(v1−1)) + lb(E(v1+1)(v2−1)) + . . .+ lb(E(vk+1)cj )

≥ |IS |+ |Q′| − (cj − bj + 1) +

k
∑

v=1

lb(Evv). (6.62)

By Equation (6.60)

lb(Ebj(v1−1)) + lb(E(v1+1)(v2−1)) + . . .+ lb(E(vk+1)cj )

≥ ub(Ebjcj) +

k
∑

v=1

lb(Evv). (6.63)
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On the other hand we have

ub(Ebjcj) ≥ lb(Ebj(v1−1)) + . . . + lb(E(vk+1)cj ) +
k
∑

v=1

lb(Evv). (6.64)

Equations (6.63) and (6.64) have to hold simultaneously so we get

ub(Ebjcj) = lb(Ebj(v1−1)) + lb(E(v1+1)(v2−1)) + . . . + lb(E(vk+1)cj ). (6.65)

By the chaining upper bound procedure on the implied constraint

E1d = E1(bj−1) + Ebj(v1−1) + Ev1v1 +E(v1+1)(v2−1) + . . .+ Evkvk + E(vk+1)cj

and taking into account equation (6.65) and that variables

E1,b1−1, Eb1,c1 , Ec1+1,b2−1, . . . , Ebk ,ck , Eck+1,d are ground, the decomposition fixes

lower bounds of variablesEbj(v1−1), E(v1+1)(v2−1), . . . , E(vk+1)cj to their upper bounds.

As Xi overlapsS andv /∈ S, thenv ∈ [vj + 1, vj+1 − 1] andAi(vj+1)(vj+1−1) is unset

asD(Xi) * [vj + 1, vj+1 − 1]. The variableE(vj+1)(vj+1−1) is fixed toU[vj+1,vj+1−1] −
vj+1 + vj − 1. Therefore,U[vj+1,vj+1−1] ≥

∑n
i=1 Ai(vj+1)(vj+1−1). On the other hand,

U[vj+1,vj+1−1] ≤
∑n

i=1Ai(vj+1)(vj+1−1) by definition. This make the constraint tight and

sets the variableAi(vj+1)(vj+1−1) to 0 and prunesv from D(Xi).

Case 2.Consider a variable-value pairXi = v, Xi ∈ X \ P . Following the proof of

Theorem 6.44 we need to construct a matching of sizen−|P | using value from[1, d]\ IH,

whereIH =
⋃

[bj ,cj ]∈H [bj , cj ] is union of violated-saturated sets, such thatXi = v. If

we ignore values inIH then we have the following condition for the variable-valuepair

Xi = v to be range inconsistent :

• there exists a Hall interval[l, u] that containsv andD(Xj) is not included in the

interval [l, u]

To adapt this condition to our case we need to take into account that the Hall interval

[l, u] is not necessarily an interval of consecutive values as it might contain violated-

saturated Hall intervals inside. We show that our decomposition detects this case. Let

H ′ = {[bj , cj ]|[bj , cj ] ⊆ [l, u]}, j = 1 . . . , g, H ′ ⊆ H, be a set of violated-saturated Hall

intervals inside[l, u]. We denote
⋃

[bj ,cj ]∈H′ [bj , cj ] asIH ′, the set of variables that are con-

tained insideH ′ asQ, Q = {Xi|D(Xi) ⊆
⋃

[bj ,cj]∈H′ [bj, cj ]} and the remaining variables

{Xi|D(Xi) ∩ ([l, u] \ IH ′)) 6= ∅} asQ′.
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Then we partition[l, u] into a set of intervals{[l, b1 − 1], [b1, c1], [c1 + 1, c2 −
1], . . . , [bg, cg], [cg + 1, u]} and the corresponding constraints:

Elu = El(b1−1) + Eb1c1 + . . .+ Ebgcg + E(cg+1)u

The lower bounds of the variablesEaj ,dj , [aj , dj ] /∈ H ′ are set to zero as they are

not violated. The interval[l, u] is a Hall interval, if we ignore values fromH ′. Hence

|Q| = u− l + 1− |IH ′| and|Q′| = |IH ′|+∑cj
i=bj

Hvi. Then,|Q|+ |Q′| = u− l + 1−
|IH ′|+ |IH ′|+∑cj

i=bj
Hvi = u− l + 1 +

∑cj
i=bj

Hvi. This gives

n
∑

i=1

Ajlu ≥ u− l + 1 +

cj
∑

i=bj

Hvi.

On the other hand,

Elu =

cj
∑

i=bj

Hvi ≥
n
∑

j=1

Ajlu − (u− 1 + 1)

This implies that

n
∑

i=1

Ailu = u− l + 1 +

cj
∑

i=bj

Hvi

is tight. Asv ∈ [l, u] \ IH ′ andD(Xi) is not completely inside[l, u] the variableAilu is

unset and tightness of the last sum forcesAilu to be0.

Complexity argument:There areO(nd2) constraints (6.54) that can be wokenO(d)

times down the branch of the search tree inO(1), so a total ofO(nd3) down the branch.

There areO(d2) constraints (6.55) which can be propagated in timeO(n) down the branch

for a total ofO(nd2). There areO(d2) constraints (6.56) which can be wokenO(n) times

each down the branch for a total cost inO(n) time down the branch. Thus a total ofO(nd2).

The final complexity down the branch of the search tree is thereforeO(nd3). ⋄

Similar to the ALL -DIFFERENT, GCC and ATMOSTNVALUE constraints we can easily

modify the decomposition to enforce bounds consistency if we replace constraints (6.54) by

constraints (6.3) and (6.4).

Theorem 6.49 Enforcing bounds consistency on constraints(6.3)–(6.4) and bounds con-

sistency on(6.54)–(6.57) is equivalent to bounds consistency onATLEASTNVALUE

([X1, . . . ,Xn], N), and takesO(nd2) time to enforce down the branch of the search tree.
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Proof: The proof is similar to Theorem 6.45.⋄
Consider how to achieve range consistency and bounds consistency on our running ex-

ample.

Example 6.25 We recall domains of the variables in Example 6.20.

1 2 3 4 5 6

X1 ∗ ∗ ∗ ∗ ∗ ∗
X2 ∗
X3 ∗
X4 ∗ ∗ ∗
X5 ∗ ∗
X6 ∗ ∗
N ∗ ∗

Bounds consistency on N . Consider the violated saturated Hall intervals[2, 2]. We par-

tition the interval of values into violated-saturated Hallintervals and non-violated Hall

intervals:

[1, 1], [2, 2], [3, 6]

and the corresponding implied constraint:

E16 = E11 + E22 + E36. (6.66)

As there are two variables,X2 andX3 whose domains are completely contained in-

side the intervals[2, 2]. The constraints(6.54)–(6.55) give thatA222 = 1, A322 = 1,
∑6

i=1Ai22 ≤ 2 and E22 ≥ 1. By the chaining lower bounds procedure on the con-

straint (6.66), we have thatlb(E16) ≥ 2. AsN ≤ 6 − E16 we have thatub(N) ≤ 5

and the value6 is pruned fromN . This fixesN to 5.

1 2 3 4 5 6

X1 ∗ ∗ ∗ ∗ ∗ ∗
X2 ∗
X3 ∗
X4 ∗ ∗ ∗
X5 ∗ ∗
X6 ∗ ∗
N ∗
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Example 6.20 shows that the size of the maximum matching in the graphGv is 5. By

Theorem 6.36N is bounds consistent .

Bounds consistency on X. We show that the decomposition detects Hall intervals if

we ignore values from violated-saturated Hall intervals. In this example if we ignore the

interval [2, 2] we can see that the interval[4, 5] and [3, 4, 5] are Hall intervals.

1 ⊗ 3 4 5 6

X1 ∗ ⊗ ∗ ∗ ∗ ∗
X2 ⊗
X3 ⊗
X4 ⊗ ∗ ∗
X5 ⊗ ∗ ∗
X6 ⊗ ∗ ∗
N ∗

First we show that variables that are not contained inside violated-saturated Hall inter-

vals do not take values from these intervals. Consider againthe implied constraint(6.66).

AsE16 = 1 and lb(E22) ≥ 1 the constraint(6.66)forcesE11 andE36 to 0 by the chaining

upper bounds procedure.E36 = 0 forcesElu, [l, u] ⊂ [3, 6].

Consider the interval[2, 2]. As
∑6

i=1Ai22 ≤ 2 andE22 = 1 we get
∑6

i=1Ai22 = 2.

This setsAi22, i = {1, 4, 5, 6} to 0 and the value2 is pruned fromX4(constraints(6.3)–

(6.4)). The value2 is not pruned fromX1 as2 is not a bound value for this variable.

Second we show that the decomposition detects Hall intervals. Consider the interval

[4, 5]. There are two variables,X5 andX6 whose domains are completely contained inside

the intervals[4, 5]. The constraints(6.3)–(6.4)give thatA545 = 1, A645 = 1,
∑6

i=1 Ai45 ≤
2. The constraints(6.55) implies that the sum

∑6
i=1Ai45 is less than or equal to2. This

gives
∑6

i=1 Ai45 = 2. The channelling constraints(6.3)–(6.4)prune4 fromX4. Again, the

value4 is not pruned from the domain ofX1 as it is not a bound value. At this point the
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constraint is bounds consistent .

1 2 3 4 5 6

X1 ∗ ∗ ∗ ∗ ∗ ∗
X2 ∗
X3 ∗
X4 ∗
X5 ∗ ∗
X6 ∗ ∗
N ∗

Range consistency on X. By the same arguments as above but replacing constraints

(6.3)–(6.4)with (6.54). This prunes the values2 and4 fromX1.

1 2 3 4 5 6

X1 ∗ ∗ ∗ ∗
X2 ∗
X3 ∗
X4 ∗
X5 ∗ ∗
X6 ∗ ∗
N ∗

Consider the interval[3, 5] which is a Hall interval. Similar to the reasoning about the

interval [4, 5], we derive that the value[3, 5] have to be pruned fromD(X1). This makes

the constraint range consistent .

1 2 3 4 5 6

X1 ∗ ∗
X2 ∗
X3 ∗
X4 ∗
X5 ∗ ∗
X6 ∗ ∗
N ∗

⋄
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6.9.3 Other decompositions of theNVALUE constraint

A natural way to decompose the NVALUE constraint by introducing 0/1 variables to repre-

sent which values are used and posting a sum constraint on these introduced variables:

Xi = j → Bj = 1 ∀1 ≤ i ≤ n, 1 ≤ j ≤ d (6.67)

Bj = 1→ ∨n
i=1Xi = j ∀1 ≤ j ≤ d (6.68)

∑d
j=1Bj = N (6.69)

Note that constraint (6.69) is not a fixed arity constraint, but can itself be decomposed

to ternary sums without hindering bound propagation. Unfortunately, this simple decompo-

sition hinders propagation. It can be bounds consistent whereas bounds consistency on the

corresponding NVALUE constraint detects disentailment.

Theorem 6.50 Enforcing bounds consistency onNVALUE is stronger than bounds consis-

tency on its decomposition into(6.67)to (6.69).

Proof: Clearly, bounds consistency on NVALUE is at least as strong as bounds consistency

on the decomposition. To show strictness, considerX1 ∈ {1, 2}, X2 ∈ {3, 4}, Bj ∈ {0, 1}
for 1 ≤ j ≤ 4, andN = 1. Constraints (6.67) to (6.69) are bounds consistent . However,

the corresponding NVALUE constraint has no bound support and thus enforcing bounds

consistency on it detects disentailment.⋄

We observe that enforcing domain consistency instead of bounds consistency on con-

straints (6.67)–(6.69) in the example of the above proof still does not prune any value.

6.9.4 Other related work

In [BHH+05] and [BHH+06a], Bessiereet al. consider a number of different methods to

compute a lower bound on the number of values used by a set of variables. One of their

methods is based on a simple linear relaxation of the minimumhitting set problem. This

gives a propagation algorithm that achieves a level of consistency strictly stronger than

bounds consistency on the NVALUE constraint. Cheaper approximations have also been

proposed based on greedy heuristics and an approximation for the independence number of

the interval graph which is due to Turán. Recently, an efficient propagation algorithm was

proposed for the increasing NVALUE constraint which is a NVALUE over an ordered set of

variables [BHLP10].
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6.9.5 Experimental results

To evaluate performance of our decompositions, we performed experiments on two sets

of problems containing the ATMOSTNVALUE constraint. We used the same problems as

in the only previous experimental comparison of propagators for the ATMOSTNVALUE

constraint [BHH+06a]. We ran experiments with Ilog 6.2 solver on an Intel Xeon4 CPU,

2.0 Ghz, 4Gb RAM.

6.9.5.1 Dominating set of the Queen’s graph

The problem is to put the minimum number of queens on an × n chessboard, in such a

way that each square of the chessboard either contains a queen or is attacked by a queen.

This is equivalent to the dominating set problem in the Queen’s graph. Each vertex in the

Queen’s graph corresponds to a square of the chessboard and there exists an edge between

two vertices if and only if a queen from one square can attack aqueen from the other

square. To model the problem, we use a variableXi for each square, and values from1 to

n2 and post a single ATMOSTNVALUE ([X1, . . . ,Xn2 ], N) constraint. The valuej belongs

to D(Xi) if and only if there exists an edge(i, j) in the Queen’s graph orj = i. We

use the minimum domain variable ordering and the lexicographical value ordering. For

n ≤ 120, all minimum dominating sets for the Queen’s problem are either of size⌈n/2⌉ or

⌈n/2 + 1⌉ [OW01]. We therefore only solved instances for these two values ofN .

We compare our decomposition with two simple decompositions of the

ATMOSTNVALUE constraint. The first decomposition is the one described in Sec-

tion 6.9.3 except that in constraint (6.69), we replace “=” by “≤”. We denote this

decompositionOccs. The second decomposition is similar to the first one, but we use the

cardinality variables of a GCC constraint to keep track of the used values. We call this

decompositionOccsgcc. In the third decomposition, as explained in Section 6.9.2.2, we

channel the variablesXi directly to the pyramid variablesMlu to avoid introducing many

auxiliary variablesAilu and we add the redundant constraint
∑n2

i=1Mii = M1,n2 to the

decomposition to speed up the propagation across the pyramid. Finally, we re-implemented

the ternary sum constraintZ = X + Y in Ilog. This gave us about30% speed up. We call

this decompositionPyramid.

Results are presented in Table 6.5. Our decomposition performs better than the other

two decompositions, both in runtime and in number of backtracks. It should be pointed out

that our results are comparable with the results for the ATMOSTNVALUE bounds consis-

tency propagator from [BHH+06a]. Whilst our decomposition is not as efficient as the best
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Table 6.5: Backtracks and runtime (in seconds) to solve the dominating set problem for the

Queen’s graph.

n N Occs Occsgcc Pyramid

backtracks time backtracks time backtracks time

5 3 34 0.01 34 0.06 7 0.00

6 3 540 0.16 540 2.56 118 0.03

7 4 195,212 84.70 195,212 1,681.21 83,731 21.21

8 5 390,717 255.64 390,717 8,568.35 256,582 89.30

results presented in that paper, our decomposition was on the other hand much easier to

implement.

6.9.5.2 Random binaryCSP problems

We also reproduced the set of experiments on random binaryCSP problems from

[BHH+06a]. Problem instances are generated according to model B [Pro94]. Whenn→∞
this model can be trivially unsatisfiable ift/(d2) > 1/d [GMP+01]. In our experiments,

the number of variables for hard problems is small,n ≤ 100, and the presence of flaws is

unlikely.

These problems can be described by four parameters. The number of variablesn, the

domain sized, the number of binary constraintsm and the number of forbidden tuples in

each binary constraint. The first three classes are harder problems as they are close to phase

transition in satisfiability. The last two classes are under-constrained problems. We add a

single ATMOSTNVALUE constraint over all variables to bound the number of valuesN that

can be used in a solution.

As in [BHH+06a], we generated 500 instances for each of the following 5 classes of

random binaryCSPs:

• class A :n = 100, d = 10,m = 250, t = 52, N = 8

• class B :n = 50, d = 15,m = 120, t = 116, N = 6

• class C :n = 40, d = 20,m = 80, t = 240, N = 6

• class D :n = 200, d = 15,m = 600, t = 85, N = 8

• class E :n = 60, d = 30,m = 150, t = 350, N = 6

All instances are solved using the minimum domain variable ordering heuristic, a lexi-

cographical value ordering and a timeout of600 seconds. We use the same decompositions
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of the ATMOSTNVALUE constraint as in the experiments with the dominating set of the

Queen’s graph. Results are given in Table 6.6. We see that ourdecomposition is faster than

the other two decompositions and solves more instances.

Table 6.6: Randomly generated binaryCSPs with an ATMOSTNVALUE constraint. For

each class we give two lines of results. Line 1: number of instances solved in 600 sec

(#solved), average backtracks on solved instances (#bt), average time on solved instances

(time). Line 2: number of instances solved by all methods, average backtracks on these

instances, average time on these instances.

Occs Occsgcc Pyramid

Class #solved #bt time #solved #bt time #solved #bt time

A total solved 453 139,120 111.2 79 8,960 302.8 462 148,673 105.7

solved by all 79 8,960 7.1 79 8,960 302.8 79 8,739 6.3

B total solved 473 228,757 113.5 125 37,377 292.9 491 235,715 94.9

solved by all 125 7,377 17.6 125 37,377 292.9 125 32,110 12.2

C total solved 479 233,341 110.3 156 37,242 290.3 490 224,802 84.2

solved by all 156 37242 16.4 156 37,242 290.3 156 31,715 11.1

D total solved 482 8,306 6.0 456 207 14.9 489 13,776 9.0

solved by all 456 207 0.2 456 207 14.9 456 625 0.4

E total solved 500 331 0.3 500 331 5.1 500 174 0.1

solved by all 500 331 0.3 500 331 5.1 500 174 0.1

TOTALS

Total solved/tried 2,387/2,500 1,316/2,500 2,432/2,500

Avg time for solved 67.0 87.5 58.0

Avg backtracks for solved 120,303 8,700 123,931

These experiments demonstrate that this new decompositionis efficient in practice. Of

course, if the toolkit contains a specialised bounds consistency propagator for the NVALUE

constraint, we will probably do best to use this. However, when the toolkit lacks such a

propagator (as is often the case), it is reasonable to try outour decomposition.

6.10 Conclusions

We have studied a number of decompositions of the ALL -DIFFERENT,

OVERLAPPINGALL DIFF, GCC and NVALUE constraint. We showed that a simple

decomposition can simulate the bounds consistency propagator for these constraints with

comparable time complexity to the best known propagators. For ALL -DIFFERENT, GCC

and NVALUE constraints we proposed decompositions that enforce rangeconsistency.

These decompositions are interesting for a number of reasons. First, we can easily
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incorporate them into other solvers. Second, the decompositions provide other constraints

with access to the state of the propagator. For example, in the decompositions of the

PERMUTATION constraint, propagation is improved by sharing intermediate variables.

Third, these decompositions provide a fresh perspective onpropagation of global con-

straints. For instance, our results suggest that it may pay off to focus propagation and

nogood learning on relatively small Hall intervals. Finally, these decompositions raise an

important question: are there propagation algorithms thatcannot be efficiently simulated

using decompositions? We consider this question in the nextchapter.

Our other theoretical contribution is a reformulation of the consistency checker for

the ALL -DIFFERENT constraint into a negative cycle detection problem which isa simi-

lar result to the SEQUENCEconstraint. In fact, we used an interesting connection between

ALL -DIFFERENT and SEQUENCEconstraints to build this reformation.

Finally, we implemented our decompositions and showed thatthey outperform existing

decompositions for the corresponding constraints. However, in spite of theoretically similar

worse case behaviour, they are slower compared to the best known propagators for each

constraint if such a propagator exists. However, as we pointed out above, if a constraint

solver does not provide a bounds consistency and a range consistency propagator for one of

these constraints, our decompositions can be used to replace a propagator.



Chapter 7

Limitations of decompositions of

global constraint

7.1 Introduction

In Chapters 4–6 we presented decompositions of global constraints propagators. One im-

portant question that arises is ‘What are the limitations ofthis approach?’. Which global

constraint propagators can be effectively decomposed using simple encodings, like the one

used in the previous Chapters 4–6? We show that results from circuit complexity can be

used to resolve this question. Our main result is that there is a polynomial sized decomposi-

tion of a constraint propagator into CNF if and only if the propagator can be computed by a

polynomial size monotone Boolean circuit. It follows that bounds on the size of monotone

Boolean circuits give bounds on the size of decompositions of global constraints into CNF.

For instance, a super-polynomial lower bound on the size of aBoolean circuit for perfect

matching in a bipartite graph gives a super-polynomial lower bound on the size of a CNF

decomposition of the domain consistency propagator for theALL -DIFFERENT constraint.

The limitation of our result is that it holds for constraint propagator decompositions where

variables domains are represented using the direct encoding. This is a matter of future re-

search to investigate other encodings, like the logarithmic encoding. However, our results

directly extend to decompositions intoCSPconstraints of bounded arity with a relation

given in extension since such decompositions can be translated into clauses of polynomial

size [BH03]. Each constraint that we used in our decomposition belongs to this class or can

be decomposed into bounded arity constraints without hindering propagation. The mono-

tone circuit complexity results are thus useful in understanding the limits of what we can

achieve with decompositions.

231



232 CHAPTER 7. LIMITATIONS OF DECOMPOSITIONS

7.2 Background

In this section we provide some background on Boolean circuits and monotone Boolean

functions. A Boolean circuitS is a directed acyclic graph (DAG). Each source vertex of

the DAG is aninput gateand the unique sink of the DAG is the output gate. Each non-input

vertex is labelled with a logical connective, such as and (∧), or (∨) and not (¬). An input b

to the circuit is an assignment of avalue0 or 1 to each input gate.1 The value of a non-input

gate is computed by applying the connective that it is labelled with the values of its ancestor

gates. The value of the circuitS(b) is the value of its output gate. Any polynomial time

decision algorithm can be encoded as a Boolean circuit of polynomial size for a fixed length

input [PS82].

In this work, we will use a restriction of Boolean circuits to∧-gates and∨-gates, called

monotone circuits. The family of functions that are computable by monotone circuits is

exactly all the monotone Boolean functions. Note that thereexist families of polynomial

time computable monotone Boolean functions such that the smallest monotone circuit that

computes them is super-polynomial in size [Raz85].

Definition 7.1 (Monotone Boolean function)A Boolean functionf is monotone if and

only if f(b) = 0 implies f(b′) = 0 for all b′ ≤ b, where≤ is the pairwise vector

comparison, i.e.,b′i ≤ bi for all i.

It is convenient to check monotonicity of a function on the lattice structure of all assign-

ments. We illustrate this on Example 7.1.

Definition 7.2 (Latices) A lattice is a partially ordered set in which any two elements have

a unique supremum and infimum.

Example 7.1 Consider a monotone function over Boolean variablesX1,X2,X3,X4 with

satisfying assignments presented in Table 7.1. We use pairwise vector comparison to order

all possible assignments of input variables. With this order relation, assignments form a

lattice that is presented in Figure 7.1.

Satisfying assignments are in gray. As can be seen from the lattice, the functionf is

monotone becausef(X) = 0 impliesf(X′) = 0 for all X′ ≤ X. ⋄

Next we introduce the notion of a partial instantiation of input variables that we use in

the following sections.

1 We use 0 and 1 to distinguish fromTRUE andFALSE for SATvariables.
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Table 7.1: Monotone Boolean functionf .

yi X1 X2 X3 X4 f(X)

1 T F F T 1

2 F T T F 1

3 T F T F 1

4 F T T T 1

5 T F T T 1

6 T T F T 1

7 T T T F 1

8 T T T T 1

Figure 7.1 Lattice of a monotone function assignments from Example 7.1. Satisfying

assignments are in gray.
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FFFT FFTF FTFF TFFF

FFTT FTFT TFFT TFTF TTFF FTTF

FTTT TTFT TFTT TTTF

TTTT

Definition 7.3 (Partial instantiation) A partial instantiationof input Boolean variablesX,

I, is a set of literals such thatX i ∈ I (Xi ∈ I) if and only ifXi is set toFALSE(TRUE).

By f(XI) = 0 we mean that given a partial instantiationI, f evaluates0 for any

instantiation of the unset variables. Similarly, byf(XI) = 1 we mean thatf evaluates1

for any instantiation of the unset variables. To simplify notation we writef(I) instead of

f(XI) when the set of variables is clear from the context.

We also consider a relaxation of partial instantiation thatignores information about

variables that are set toTRUE.

Definition 7.4 (FALSE-only partial instantiation) Let I be a partial instantiation of the



234 CHAPTER 7. LIMITATIONS OF DECOMPOSITIONS

input variablesX. TheFALSE-only partial instantiationIF is the partial instantiation such

that IF = {X i|X i ∈ I}.

Finally, we introduce a mapping between partial instantiations and their extensions to

the full instantiation that corresponds to the highest assignment in the lattice.

Definition 7.5 LetI be a partial instantiation of the input variablesX. The top assignment

Xt w.r.t. a partial instantiationI is defined as follows:Xt
i (I) = FALSE if Xi ∈ I and

Xt
i (I) = TRUE otherwise.

We writeXt instead ofXt(I) when the corresponding partial assignment is clear from

the context. Clearly,I andIF have the same top assignmentXt.

Figure 7.2 Lattice of a monotone function assignments from Example 7.1. A partial in-

stantiation isI = {X1,X3,X4}. All assignments that became incompatible by the partial

assignment are in light gray.
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FFTT FTFT TFFT TFTF TTFF FTTF

FTTT TTFT TFTT TTTF

TTTT

Example 7.2 Consider the monotone function from Example 7.1. Suppose a partial in-

stantiation isI = {X1,X3,X4}. Figure 7.2 shows the lattice where we mark light

gray all assignments that are incompatible by the partial assignmentI. The FALSE-

only partial instantiationIF = {X4}. The top assignmentXt(I) is the assignment

(TRUE, TRUE, TRUE, FALSE) which is the highest among all possible extensions ofI and

IF in the lattice.⋄

Lemma 7.1 Let I be a partial instantiation of the input variables andXt(I) is the corre-

sponding top assignment. Thenf(Xt) = 0 if and only iff(I) = 0.
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Figure 7.3 Lattice of a monotone function assignments from Example 7.1. A partial in-

stantiation isI = {X4}. All assignments that are compatible with the partial assignment

are in gray.
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Proof: If Xt is not a solution then all other extensionsX ′ of I are such thatX ′ ≤ Xt are

not solutions as well due to monotonicity of the function. Hence,f(X ′) = 0.

Conversely, iff(I) = 0, then the function is 0 for all possible extensions, includingXt,

by definition.⋄

Finally, we show thatI and IF contain equivalent information for the monotone

Boolean function to decide whether there exists a solution that extendsI or the correspond-

ing IF .

Lemma 7.2 Let I be a partial instantiation of the input variablesX and IF be the corre-

spondingFALSE-only partial instantiation. Thenf(I) = 0 if and only iff(IF ) = 0.

Proof: Follows from the fact thatI andIF have the same top assignment in the lattice. By

Lemma 7.1,f(I) = f(IF ) = 0. ⋄

We summarise results of Lemmas 7.1–7.2 in Table 7.2 (first line, page 228).

In the next section, we show that a monotone Boolean functioncan be decomposed into

a CNF of polynomial size if and only if it can be computed by a polynomial monotone

circuit. Based on this result we show a similar result for CNFdecompositions of constraint

propagators. This allows determining lower bounds on the size of CNF decompositions of

many cardinality constraints, including ALL -DIFFERENT and GCC constraints.
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7.3 Properties of CNF decompositions

In this section, we formally define aCNF decompositionof a monotone Boolean function.

We start with a definition of a CNF decomposition that mimics the behaviour of a monotone

Boolean function.

Definition 7.6 (CNFf decomposition of a monotone Boolean function)A CNFf de-

composition of a monotone Boolean functionf is a formula in CNFBf over variables

X ∪ y such that

• X is the set ofinput variablesand y is a set ofauxiliary variableswhose size is

polynomial in|X|.

• Given a partial instantiationI, unit propagation onBf produces the empty clause

whenf(I) = 0.

We also use the notationB(I) for a CNF formula whereXi is replaced withTRUE

(FALSE) whenXi ∈ I (X i ∈ I).

Example 7.3 To illustrate Definition 7.6, consider the monotone function from Exam-

ple 7.1. This monotone function can be seen as aTABLE constraint. Bacchus [Bac07]

decomposes such aTABLE constraint into CNFBf using the following set of clauses:

X1 ⇒ y3 ∨ y5 ∨ y6 ∨ y7 ∨ y8 X1 ⇒ y1 ∨ y2 ∨ y4

X2 ⇒ y1 ∨ y2 ∨ y4 ∨ y5 ∨ y7 ∨ y8 X2 ⇒ y3 ∨ y5

X3 ⇒ y3 ∨ y4 ∨ y5 ∨ y7 ∨ y8 X3 ⇒ y1 ∨ y6

X4 ⇒ y1 ∨ y4 ∨ y5 ∨ y6 ∨ y8 X4 ⇒ y2 ∨ y3 ∨ y7

y1 ⇒ X1 y1 ⇒ X2 y1 ⇒ X3 y1 ⇒ X4

y2 ⇒ X1 y2 ⇒ X2 y2 ⇒ X3 y2 ⇒ X4

y3 ⇒ X1 y3 ⇒ X2 y3 ⇒ X3 y3 ⇒ X4

y4 ⇒ X1 y4 ⇒ X2 y4 ⇒ X3 y4 ⇒ X4

y5 ⇒ X1 y5 ⇒ X2 y5 ⇒ X3 y5 ⇒ X4

y6 ⇒ X1 y6 ⇒ X2 y6 ⇒ X3 y6 ⇒ X4

y7 ⇒ X1 y7 ⇒ X2 y7 ⇒ X3 y7 ⇒ X4

y8 ⇒ X1 y8 ⇒ X2 y8 ⇒ X3 y8 ⇒ X4

wherey = {yi}, i ∈ {1, . . . , 8} are auxiliary variables that correspond to satisfying tu-

ples. Suppose theX1,X2 and X4 are set toFALSE, so that the partial instantiation is

I = {X1,X2,X4}. This instantiation forces the variablesyi, i = 1, . . . , 8 to FALSE,
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which generates an empty clause. This falsifies the first clauseX1 ⇒ y3∨ y5∨ y6∨ y7∨ y8.
⋄

Next we introduce an alternative toCNFf definition of aCNF decomposition of a

monotone Boolean function that does not generate an empty clause when a partial assign-

ment cannot be extended to a solution. Instead, it records this result in an auxiliary Boolean

variable. Definition 7.7 is equivalent to Definition 7.6 as Theorem 7.1 will show.

Definition 7.7 (CNFC decomposition a monotone Boolean function)A CNFC decom-

position of a monotone Boolean functionf(X) is a CNFBC over variablesX ∪ y ∪ {z}
such that

• X is a set of input variables andy is a set of auxiliary variables whose size is poly-

nomial in |X| andz is theoutput variable.

• Unit propagation onBC never forces any variable fromX or generates the empty

clause if no variable iny is set externally toBC , i.e., every variabley ∈ y is either

unset or forced by a clause inBC .

• Given a partial instantiationI, z is set toFALSE by unit propagation if and only if

fC(I) = ∅.

Example 7.4 Consider the monotone Boolean function from Example 7.3. Weconstruct a

CNFC decomposition of the monotone functionBC , using theCNFf decomposition of

the monotone function,Bf . The clauses that cause pruning of input variable domains are

removed and the last clause is augmented with the output variablez to avoid generation of

the empty clause in case of failure:

y1 ⇒ X1 y1 ⇒ X2 y1 ⇒ X3 y1 ⇒ X4

y2 ⇒ X1 y2 ⇒ X2 y2 ⇒ X3 y2 ⇒ X4

y3 ⇒ X1 y3 ⇒ X2 y3 ⇒ X3 y3 ⇒ X4

y4 ⇒ X1 y4 ⇒ X2 y4 ⇒ X3 y4 ⇒ X4

y5 ⇒ X1 y5 ⇒ X2 y5 ⇒ X3 y5 ⇒ X4

y6 ⇒ X1 y6 ⇒ X2 y6 ⇒ X3 y6 ⇒ X4

y7 ⇒ X1 y7 ⇒ X2 y7 ⇒ X3 y7 ⇒ X4

y1 ∧ y2 ∧ y3 ∧ y4 ∧ y5 ∧ y6 ∧ y7 ∧ y8 ⇒ z

Consider the partial instantiation whereX1,X2 and X4 are set toFALSE, so I =

{X1,X2,X4}. This forces all auxiliary variablesyi, i = 1, . . . , 8 to beFALSE. Therefore,
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the output variablez is forced toFALSE, signalling that the monotone functionf does not

have a satisfying assignment under current partial instantiation I. ⋄

In example 7.4, we transformed aCNFf decomposition of monotone function from

example 7.3 into aCNFC decomposition of monotone function in an ad-hoc manner. The

next theorem shows that this can be done in a generic way.

Theorem 7.1 There exists a polynomial time and space conversion betweena CNFf and

CNFC decompositions of a monotone Boolean functionf .

Proof: We recall that we denoteBf andBC CNFf andCNFC decompositions of a

monotone Boolean functionf , respectively. We assume that formulae are given in 3-CNF

form. We can convert any CNF formula to 3-CNF, increasing itssize by at most a linear

factor and without hindering unit propagation [GJ90, section 3.1.1].

(→) We constructBC as a transformation off such that the output variablez of BC is

FALSE if and only if unit propagation onBf produces the empty clause.

Let the set of clauses ofBC be c1 . . . cm. For each variablep ∈ X ∪ y, we introduce

2 variablespt andpf in CC so thatpt andpf are true ifp is forced toTRUE or FALSE,

respectively:

p =⇒ pt p =⇒ pf (7.1)

Then, we simulate unit propagation for each clauseck by replacing it with 3 impli-

cationsthat contain the variablespt and pf rather thanp. For example, to simulate unit

propagation for the clausec1 = (p, q, r), we replace it with

pf ∧ qf =⇒ rf pf ∧ rt =⇒ qt qf ∧ rt =⇒ pt (7.2)

Unit propagation on Equation (7.2) can never derive the empty clause, because the true

and false values ofp are encoded in different variablespt andpf , which may be true simul-

taneously. When this happens, unit propagation onCP would generate the empty clause,

therefore we must set the output variablez to FALSE, using the following clauses:

pt ∧ pf =⇒ z (7.3)

The union of the clauses (7.1), (7.2) and (7.3) is aCNFC decomposition offC with

sizeO(|X ∪ y|+ |CP |) = O(|CP |), therefore the transformation is polynomial.

(←) This direction is trivial, as we can extend aBC with an extra clause(z). ⋄
Since all sizes of CNF decompositions,Bf andBC , that we introduced in this section

are polynomially equivalent, in the remainder of this paperwe only prove results for the
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CNFC decomposition. We also omit the subscriptC from CNFC to simplify notation as

we always assume that CNF decomposition of a monotone function is defined by Defini-

tion 7.6.

We show a similar result to Lemma 7.2 for a CNF decomposition of monotone function

f . As in the case of a monotone function, we show that the information about variables that

are set toTRUE is not important for a CNF decomposition of monotone function f .

Lemma 7.3 Let I be a partial instantiation of the input variablesX of BC andIF be the

correspondingFALSE-only partial instantiation. ThenBC(I) sets the output variablez to

FALSE if and only ifBC(I
F ) setsz to FALSE.

Proof: Follows from Lemma 7.2 and the correctness of the CNF decompositions.⋄

7.4 Equivalence to monotone circuits

In this section, we show our main result, which establishes aconnection between CNF

decompositions of a monotone function and circuit complexity.

Theorem 7.2 A monotone functionf can be decomposed to a CNF of polynomial size if

and only if it can be computed by a monotone circuit of polynomial size.

The proof of theorem 7.2 is constructive. We will first show the reverse direction, using

the Tseitin encoding [TSW83] of a monotone circuit.

Definition 7.8 (Tseitin encoding of a Boolean circuit)The Tseitin encoding of a circuitS

into clausal form has one propositional variable for each input ofS and a gate variableyg

for each gate ofS. W.l.o.g, we assume all gates have fan-in 2. For each∧-gateg with

inputsX1, X2, the Tseitin encoding contains the clauses(X1, g), (X2, g), (X1,X2, g) and

for each∨-gate it contains the clauses(X1, g), (X2, g), (X1,X2, g).

Proposition 7.1 (Correctness of Tseitin encoding of a Boolean circuit) Given any com-

plete instantiation of the input variables, unit propagation on the Tseitin encoding sets the

variable corresponding to the output gate ofS to TRUE if the circuit computes 1 and to

FALSE otherwise.

We define the mapping between a partial instantiationI and inputs of Boolean circuit. The

inputs of a Boolean circuit correspond to a complete instantiation of the inputs. Hence, we

have to select one full instantiation among all possible extensions ofI.
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Table 7.2: Equivalence between a monotone function, its CNFdecomposition and the

corresponding monotone circuit.

f(IF ) ⇔Lemma 7.1 f(I) ⇔Lemma 7.2 f(Xt)

⇑
correctness of CNF decomposition

⇓
BC(IF ) ⇔Lemma 7.3 BC (I) ⇔monotonicity of f BC(Xt)

⇑
Corollary 7.1

⇓
SC(b(IF )) ⇔

b(IF )=Xt SC(b(I)) ⇔
b(I)=XT SC(b(Xt))

Definition 7.9 (Mapping between a partial instantiation anda Boolean circuit input)

Let f be a monotone Boolean function computed by a Boolean circuitSC . Let I be a

partial instantiation of the input variablesX of BC andb(I) be the corresponding input

to SC . We set inputsb(I) to be equal to the top assignment ofI, Xt(I), bi(I) = Xt
i (I),

i = 1, . . . , |b|.

We show that the function is unsatisfiable under the partial assignment if and only if the

circuits output0 on the corresponding inputb(I) as the following lemma shows. This

lemma mirrors Lemma 7.1 for inputs of monotone Boolean circuit.

Lemma 7.4 Let I be a partial instantiation of the input variablesX of f andb(I) is the

corresponding input of a circuit. Thenf(I) = 0 if and only ifSC(b(I)) = 0.

Proof: If f(I) evaluates to0 then it will evaluate to0 for any possible extension ofI ′ of I,

includingXt(I). Asb(I) = Xt(I), we get thatSC(b(I)) = 0.

Consider the reverse direction. SupposeSC(b(I)) = 0. Hence, the assignment

Xt(I) = b(I) is not a solution off . As Xt(I) is the top assignment in the lattice among

all possible extensions ofI andf is a monotone function, we get thatf(I) = 0. ⋄
Next we consider how to construct a CNF decomposition of a monotone function. Sup-

pose that a monotone functionf can be encoded into a monotone circuitSC of polynomial

size. The Tseitin encoding ofSC turns out to be a CNF decomposition offC . This is a

direct consequence of the following lemma.

Lemma 7.5 Let SC be a monotone circuit,TC be its Tseitin encoding andI be a partial

instantiation of the input variablesX. Then,TC is a CNF decomposition of the function

computed bySC , i.e., unit propagation onTC with I forces the output variablez to FALSE

if and only ifSC(b(I)) = 0.
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Proof: (→) This follows from the correctness of the Tseitin encoding (Proposition 7.1).

(←) Suppose thatSC(b(I)) = 0, but the output variablez is not forced toFALSE

by unit propagation underI. Consider a instantiationXt(I) that corresponds toI. Let

yg ∈ y ∪ {z} be an auxiliary gate variable that is unset underXt(I). SinceTC is an

encoding of the monotone circuitSC , y will be set toTRUE underXt(I). To see this,

observe that an unset gate variable will be madeTRUE if its unset input variables are set

to TRUE. Consider now a gateg′ at depth1 that has only inputs of the circuit as inputs.

When we set all unset input variables to true inXt(I), the variableyg′ will be set toTRUE.

Applying this argument recursively, we get that the unset variablez that corresponds to the

output gate will also be set to true.

By the correctness of the Tseitin encoding,SC(b) = 1, a contradiction.⋄
As the Tseitin encoding of a circuitSC is a CNF decomposition of the corresponding

Boolean function, we use the same notation,BC , to denote the Tseitin encoding.

Corollary 7.1 Let SC be a monotone circuit andBC be its Tseitin encoding. LetI be a

partial instantiation of the input variablesX of BC . Then, unit propagation onBC with I

forces the output variablez to FALSE if and only ifSC(b) = 0, for all b whereb is the

input toSC that corresponds to any extension ofI to a complete instantiationXt(I).

Proof: This follows from Lemma 7.5 and the fact thatSC is a monotone circuit.⋄
We summarise the results of Lemmas 7.3 and Corollary 7.1 in Table 7.2.

Interestingly, Lemma 7.5 cannot be generalised to non-monotone Boolean circuits. The

next example shows that there exists a non-monotone Booleancircuit S that computes a

monotone function, and a partial instantiationI with b the corresponding input toS, such

thatS(b) = 0 but unit propagation on the Tseitin encoding ofS under the instantiationI

does not set the output variable toFALSE.

Figure 7.4A circuit whose Tseitin encoding is incomplete.

X1

X2

1

2

3

OR (X1,X2)

AND (X1,X2)

X1

X2

X1 NOT (X1)

X1

X2

Example 7.5 Consider the non-monotone circuitS shown in Figure 7.4. Note thatS com-

putes a monotone function.
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The Tseitin encoding ofS introduces three Boolean variablesg1, g2 andg3 for the gates

OR1, OR2 and AND3, respectively, and the clauses(X1, g1), (X2, g1), (g1,X1,X2),

(X1, g2), (X2, g2), (g2,X1,X2), (g3, g1), (g3, g2), (g1, g2, g3).

Now suppose thatI = {X1}. Then, by Definition 7.9,b = {X1 = 0,X2 = 1} and

S(b) = 0. SinceS computes a monotone function, all possible extensions ofX evaluate

to 0. But in the Tseitin encoding, settingX1 to FALSE does not make any clauses unit,

therefore unit propagation does not setg3 to FALSE. ⋄

We now show the forward direction of Theorem 7.2: every CNF decompositionBC of

a monotone functionf can be converted to a monotone circuit that computesf with at most

a polynomial increase in size.

The transformation from a CNF decompositionBC to monotone circuit exploits two

properties of CNF decompositions, namely, that only positive literals of input variables

appear inBC , and that unit propagation only makes auxiliary variablesFALSE. We show

the former property in Lemma 7.6 and the latter in Lemma 7.7.

Lemma 7.6 Let BC be a CNF decomposition of a monotone Boolean functionf . There

exists a polynomial size CNF decompositionBC
′ of f such that negative literals of the

input variables do not appear in any clause inBC
′.

Proof: Let I be a partial instantiation of the input variables such that unit propagation on

BC(I) setsz to FALSE. By Lemma 7.3,BC(I
F ) setsz to FALSE. By definition,BC never

forces any literal of an input variable. AsIF does not contain literalsXi = TRUE, then a

clause that contain negative literals of the input variables does not become unit during unit

propagation onBC(I
F ). Hence, these clause are not necessary to derive thatz to FALSE.

Therefore, we just remove these clause fromBC(I) to obtainBC
′. ⋄

The next step is to show that we can transform a CNF decomposition so that each

auxiliary variable is unset orFALSE for all inputs that make the output variableFALSE. The

transformation is a renaming of the auxiliary variables. Lemma 7.7 describes the property

that allows this transformation.

Lemma 7.7 LetBC be a CNF decomposition of a monotone functionf over the variables

X ∪ y ∪ {z}, I1, I2 be partial instantiations such that unit propagation onBC forcesz to

FALSE under bothI1 andI2. For any variabley ∈ y, if y is forced toFALSE (TRUE) by unit

propagation underI1 then it is not forced toTRUE (FALSE) by unit propagation underI2.

Proof: Let a variabley be forced toTRUE by unit propagation underI1 and toFALSE under

I2, but z is FALSE under bothI1 and I2. W.l.o.g we can assume thatI1 and I2 do not
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contain information about variables assigned toTRUE (Lemma 7.3). Consider the partial

instantiationI such that if a variableXi ∈ X is FALSE in eitherI1 or I2, it is alsoFALSE

in I, otherwise it is unset. SinceI fixes a superset of the literals that are fixed in eitherI1

or I2, all clauses that became unit by eitherI1 or I2 will also be unit inI. Therefore, unit

propagation underI will force at least the union of the sets of literals forced byI1 andI2.

This means that unit propagation underI will make bothy andy TRUE, which generates

the empty clause. This is a contradiction, asBC can never produce the empty clause, by

Definition 7.7.⋄

Corollary 7.2 A CNF decompositionBC of a monotone functionf over variablesX ∪y∪
{z}, can be polynomially converted into a decompositionBC

′ of f such that every variable

in y is either unset orFALSE whenz is FALSE.

Proof: We constructBC
′ fromBC by flipping in every clause the polarity of each auxiliary

variabley such that there exists a partial instantiationI such that unit propagation onBC(I)

setsy to TRUE andz is FALSE. ⋄
Lemma 7.6 and Corollary 7.2 allow us to precisely characterise the form of the clauses

in a CNF decomposition.

Corollary 7.3 LetBC be a CNF decomposition of a monotone functionf . The variables

ofBC can be renamed so that each clause has exactly one negative literal.

Proof: By Lemma 7.6, all input variables are positive literals in the decomposition and

by Definition 7.7 they are never forced by unit propagation onBC . In addition, by Corol-

lary 7.2, we can rename the auxiliary variables so that unit propagation onBC may only

ever set them toFALSE. Then, in any clause that consists of input variables and oneauxiliary

variabley, y must be negative, otherwise it may be set toTRUE, a contradiction.

Suppose there exists a clausec with two auxiliary variablesy1 and y2 and both are

negative inc. Since neithery1 nory2 can ever be madeTRUE, this clause can never become

unit and can be ignored. Suppose the literals of bothy1 andy2 are positive inc. Then, ifc

becomes unit, it makes one of the auxiliary variablesTRUE, a contradiction. Thus, exactly

one of the literals ofy1 andy2 is negative inc. The same reasoning can be extended to

clauses with more than two auxiliary variables.⋄
The condition described by Corollary 7.3 is similar toBC being re-nameable anti-Horn,

but is stronger as it requiresexactlyone negative literal in each clause, rather than at most

one. This condition allows us to build a monotone circuit from a decomposition, using the

construction of the next lemma.
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Lemma 7.8 LetBC be a CNF decomposition of a monotone functionf . Then, there exists

a monotone circuitSC of sizeO(n|BC |) that computesf .

Figure 7.5 Conversion of a CNF decomposition of a consistency checker into a monotone

Boolean circuit.
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Proof: We assume thatBC is in the form described in Corollary 7.3 because we can always

polynomially transformBC to this form.

The inputs of the circuit correspond to the input variables of BC . For each input vari-

ableXi of BC , there exists an inputbi of SC which is 0 if Xi is FALSE and 1 otherwise.

Internal gates of the circuit correspond to auxiliary variables after a certain number of unit

propagation steps, using the same mapping.

Circuit construction. We create a circuit with|y| layers1 . . . |y|. Letc1, . . . , cm be the

clauses ofBC . Theith layer of the circuit contains an∨-gatecij for each clausecj , called

clause gatesand an∧-gateyik for each auxiliary variableyk, calledvariable gates. Consider

a clausecj which containsy as the sole negative literal (recall that Corollary 7.3 ensures

that this is the case), the positive literals of input variablesXj1 , . . . ,Xjq and the positive

literals of auxiliary variablesyjq+1 , . . . , yjq+r
. The inputs of each gatecij arebj1 , . . . , bjq

andyi−1
jq+1

, . . . , yi−1
jq+r

. Let the clauses withyk as the sole negative literal beck1 , . . . , cks .

Then, the inputs of each gateyik arecik1 , . . . , c
i
ks

. The output of the circuit isz|y|. Note that

in this construction the inputs of some the gates may not be defined. This is the case, for

example, for the gatec1i , where the clauseci contains the positive literals of some auxiliary

variables. If this happens for a clause gate, we omit it, while if it happens for a variable

gate, we omit the undefined input. If all the inputs of a variable gate are undefined, we omit

the gate.

This construction computes one breadth first application ofunit propagation at each

layer that works as follows. LetC be a CNF formula andU = {(wi)}, wi ∈ X ∪ y ∪
{z} be a set of unit clauses. By breadth first application of unit propagation we mean

a set of resolution steps with unit clauses fromU . For example, consider a clausec =
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(w1, . . . , wn, w
′) such that∃(wi) ∈ U , i = 1, . . . , n. Unit propagation derives the unit

clause(w′) from c using only clauses inU at any resolution step. But if there exists a clause

(−w′, w′′), one breadth first step of the unit propagation will not derive the unit clause(w′′).

Induction step. We show by induction that the gateykr outputs0 if and only if an

auxiliary variableyr is forced to beFALSE afterk breadth first steps of unit propagation.

For the first layer, there exist gates only for clauses with nopositive literals of auxiliary

variables. Suppose unit propagation setsyr to FALSE. Consider any gatecj which contains

the negative literalyr and is used to deriveyr. All the propositional variables incj except

yr have to beFALSE to imply yr. Hence, the inputs corresponding to these propositional

variables are 0. Thusc1j is 0 if and only if yr is FALSE after unit propagation ofcj . If

many clauses contain the negative literalyr, then at least one of them setsyr to FALSE in

one breadth first step if and only if there exists a clause gatethat is 0 and is an input to the

variable gatey1r , which is an∧-gate and is thus 0.

For the inductive step, assume that the layers1 . . . k − 1 simulatek − 1 breadth first

steps of unit propagation and a gateyk−1
r outputs0 if and only if an auxiliary variableyr is

forced to beFALSE duringk − 1 steps.

Consider the result of thekth step. First, we note that ifyk−1
r outputs0 thenykr also

outputs0 by construction. Suppose unit propagation derivesyr using a clausecj′ . In this

case, all positive literals, input and auxiliary variables, in cj′ are fixed toFALSE. By con-

struction, all inputs that correspond to input variablesXi, Xi ∈ scope(cj′) are set to0.

By the inductive hypothesis, all gates that correspond to auxiliary variables in the scope of

cj′ also output 0. These outputs are inputs ofckj′ . Hence,ckj′ outputs0 andyr is forced to

FALSE.

To conclude the proof, observe that in the extreme case, unitpropagation will set exactly

one more literal at every breadth first step, thus after|y| steps it must either arrive at a

fixpoint or set all literals. Since the circuit has|y| layers, it will correctly compute the result

of unit propagation onBC . SinceBC setsz to FALSE iff f is 0 and the circuit will compute

0 in its output iffBC setsz to FALSE, we get that the circuit computesf ⋄
We illustrate the construction of Lemma 7.8 with an example.

Example 7.6 Consider the CNF decompositionBC = {c1, c2, c3, c4, c5}, wherec1 =

(X1,X2, y1), c2 = (X5,X6, y2), c3 = (X4, y1, y2), c4 = (X3, y2, y1), c5 =

(y1, y2,X7, z).

We construct a monotone circuitSC from BC , (Figure 7.5). For a given instantiation

of the input variables, this circuit computes 0 for the corresponding Boolean inputs if and
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only if unit propagation onBC forces the output variable toFALSE.

The circuit consists of 3 layers, with gates 1 and 2 in the firstlayer, 3–8 in the second and

gate 9 in the third. The gates 1–6 and 9 are clause gates, whilegates 7 and 8 are variable

gates. A strict application of the construction of Lemma 7.8would also have variable gates

in layers 1 and 3, but we omit them here as they would be single-input gates. Note that in

Figure 7.5, inputs are replicated at each layer to reduce clutter.

We note also that the layered construction of Lemma 7.8 is necessary. A circuit that

attempts to capture unit propagation on all clauses withoutusing layers would have to

contain a cycle between the gates that computey1 andy2, becausey1 would need to be an

input of the clause gatec3 that computesy2 and y2 would need to an input of the clause

gatec4 that computesy1. Constructing a layered circuit allows us to remove such cycles.⋄

The proof of theorem 7.2 is now immediate from Lemmas 7.5 and 7.8.

7.5 Decompositions of global constraint propagator

In this section we consider CNF decompositions of global constraint propagators. We recall

the definition of a CNF decomposition propagator from Section 3.4.

Definition 7.10 (CNF Decomposition of a propagator)A CNF decomposition of a prop-

agation algorithmPΦ for a global constraintC(X) is a formula in CNFCP over variables

x ∪ y such that

• input variablesx are the propositional representation ofD(X) using the direct en-

coding andy is a set of auxiliary variables whose size is polynomial in|x|.

• xi,j is set toFALSE by unit propagation if and only ifXi = j /∈ PΦ(D(X)).

• Unit propagation onCP produces the empty clause whenPΦ(D(X)) = ∅.

A constraint propagatorPΦ(D(X)) is a monotone function overD(X). Hence, its

CNF decompositionCP is a monotone Boolean function over Boolean variablesx, because

Boolean variables in the direct encoding represent the characteristic function ofD(X).

Due to monotonicity of a CNF decomposition over Boolean variables we can restate

Theorem 7.2 for a constraint propagator.

Theorem 7.3 A constraint propagatorPΦ can be decomposed to a CNF of polynomial size

if and only if it can be computed by a polynomial monotone circuit of polynomial size.
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Now we use an existing circuit complexity result to show thatthere is no polynomial

size CNF decomposition of the domain consistency propagator for the ALL -DIFFERENT

constraint. This also applies to generalisations of ALL -DIFFERENT , such as GCC .

Corollary 7.4 There is no polynomial sized CNF decomposition of the

ALL -DIFFERENT([X1, . . . ,Xn]) domain consistency propagator.

Proof: Regin [Reg94] showed that an ALL -DIFFERENT([X1, . . . ,Xn]) constraint has a

solution if and only if the corresponding bipartite variable-value graph has a matching of

sizen. If the total number of values in the variable domains equalsn then we need to find

a perfect matching. In addition, every bipartite graph corresponds to the value graph of

an ALL -DIFFERENT constraint and domain consistency propagators detect disentailment.

Thus, if there exists a polynomial size CNF decomposition ofthe ALL -DIFFERENT do-

main consistency propagator, we can construct a monotone circuit that computes whether

a bipartite graph has a perfect matching. But Razborov [Raz85] showed that the smallest

monotone circuit that computes whether there exists a perfect matching for a bipartite graph

is super-polynomial in the number of vertices in the graph. Therefore, the smallest CNF de-

composition of the ALL -DIFFERENT domain consistency propagator is super-polynomial

in size.⋄

7.6 Conclusions

In this chapter we have shown how the tools of circuit complexity can be used to study de-

compositions of global propagators into CNF. We show that there is no polynomial size CNF

decomposition of the domain consistency propagator for theALL -DIFFERENT constraint

if variables domains are represented using direct encoding. Our results directly extend

to decompositions intoCSPconstraints of bounded arity with domains given in extension

since such decompositions can be translated into clauses ofpolynomial size. An interesting

next step is to consider the decomposability of constraint propagators into more expressive

primitive constraints where domains are represented in logarithmic space via their bounds.

CSPsolvers provide this feature, which is missing in CNF. We conjecture that there exists

an equivalence between suchCSPdecompositions of constraint propagators and monotone

arithmetic circuits that are generalisations of Boolean monotone circuits to real numbers

and gates for addition and multiplication. Since lower bound results on monotone circuits

usually transfer to monotone arithmetic circuits, this would imply that the domain consis-

tency propagator for ALL -DIFFERENT cannot be decomposed to constraints that exploit
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(exponentially) large domains.



Chapter 8

Conclusion

The thesis defended in this dissertation is that:

Efficient propagators for many important global constraints can be de-

veloped by reformulating them using decompositions based on linear

inequalities and network flows. However, we show that there are also

theoretical limits on the efficiency of propagators and decompositions

that can simulate them.

We proposed reformulations of a number of useful global constraints, including

SEQUENCE, ALL -DIFFERENT, GCC, GRAMMAR , NVALUE and their generalisations into

a set of bounded arity primitive constraints or network flow problems. We analysed the

proposed decompositions from theoretical and practical points of view. We proved that our

decomposition into network flow or shortest path problems allows constructing the most

up-to-date efficient propagator for the time complexity to the best known propagators. We

investigated limitations of our approach and showed that the domain consistency filtering

algorithm for ALL -DIFFERENT cannot be decomposed in a set of bounded arity constraints

of polynomial size without hindering propagation.

Below we summarise the main contributions of this work and significance of the results.

Our results support the thesis message above.

Constraint decompositions into primitive constraints. We propose reformula-

tions of a number of global constraints, including SEQUENCE, SLIDING SUM , weighted

GRAMMAR , ALL -DIFFERENT, GCC, ATMOSTNVALUE , and ATLEASTNVALUE into a

set of primitive constraints, such as constraints of bounded arity. The results are significant

for the following of reasons:

249
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• Preserving inference.We show that in many cases complex filtering algorithms can be

simulated by simple decompositions, meaning that reasoning with the decomposition

does the same pruning as existing monolithic propagators.

• Maintaining complexity.The time complexity of our propagators based on decom-

position are similar to the time complexity of the best knownpropagators for the

corresponding global constraints.

• Easy to implement.Constraint decompositions can be easily added to a new solver

avoiding the need to re-implement filtering algorithms for all global constraint. While

there are about 300 constraints in the global constraints catalogue, most modern con-

straint solvers typically support fewer than 20 of them. Using our decompositions,

constraint solver developers can easily extend their modelling layer and avoid spend-

ing time on implementing inference algorithm for many decomposable constraints.

• Access to the internal state of the inference algorithm.Reformulations are based on

encoding the theoretical concepts that underlie constraint filtering algorithms, like

detection of Hall intervals in the case of the ALL -DIFFERENT constraint. To con-

struct a decomposition, we introduce variables to keep track of these Hall intervals.

In contrast, an inference algorithm will infer this information using variable domain

processing. The variables that we introduce expose the internal state of the filtering

algorithm to the constraint solver. The solver can, potentially, use this information

in its branching heuristics or nogood learning. This direction was not investigated in

this thesis. Recently, Moore [Moo11] investigated a related research direction. Moore

proposed a new c-learning scheme that introduces new variables during learning. He

showed an exponential separation between nogood learning [KB05] and c-learning

scheme. As decompositions of global constraints introducenew variables these vari-

ables can be, potentially, used such a in c-learning scheme.

• Beyond standard consistency levels.Our decompositions allow achieving the same

inference as the original algorithm. However, they also allow relaxing the level of in-

ference in order to investigate trade-offs between inference and search. For example,

we found problems where Hall intervals of large size occur rarely. Hence, we can

ignore these intervals, which hinders inference, but makesthe reformulation smaller

and more efficient.

• Integration into other search paradigms.Our decompositions, which use only fixed

arity constraints or constraints that can be decomposed into fixed arity constraints,
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can be easily integrated into other search paradigms, likeSATor ILP solvers.

We would like to point out two tradeoffs of using decompositions into primitive con-

straints versus monolithic propagators. First, the space complexity is equal to the time

complexity for the decomposition as we use auxiliary variables to store internal states of

propagators. This can be avoided by using intricate monolithic propagators that support

smart data-structures and save the space significantly in come case. The second point is that

the average time complexity depends on the invocation orderof constraints. If a constraint

solver is not aware that a set of primitive constraints constitutes a decomposition, the or-

der of their invocation can be different to the best invocation order and hit the worst case

complexity.

Constraint decompositions into network flows.We propose new filtering algorithms

that are based on network flow or shortest path algorithms fora number of global con-

straints, including SEQUENCE, generalised SEQUENCE, soft SEQUENCE, SLIDING SUM

and overlapping ALL -DIFFERENT constraints. These results are significant for the fol-

lowing reasons:

• Efficient algorithms.To the best of our knowledge, the proposed reformulations allow

constructing the most efficient algorithms for a number of global constraints. A re-

formulation to a network flow or shortest path algorithm enables the use of the whole

body of research on graph algorithms to construct filtering algorithms for global con-

straints.

• Better understanding of the nature of these constraints.Reformulation to a problem

on a graph gives a better understanding of the nature of the constraint and allows

drawing a connection between seemingly unrelated constraints like counting con-

straint, the ALL -DIFFERENT constraint, the sliding constraint, and the SEQUENCE

constraint. This understanding allowed us to build new filtering algorithms for even

more expressive constraints, like the overlapping ALL -DIFFERENT constraint.

Limitations of decompositions. We propose a technique for identifying whether a

constraint can be polynomially decomposed into CNF so that unit propagation achieves the

same amount of inference as a filtering algorithm on the original constraint would do. This

result is significant for the following reasons:

• Connection to circuit complexity.The non-decomposability result presented in this

thesis reveals a connection between the constraint reformulation problem and circuit
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complexity results. In particular, we use the lower bounds results on the size of mono-

tone functions computed on monotone circuits. Hence, any new results on the lower

bounds of monotone functions can be used to prove results on non-decomposability

of global constraints.

• Resolution of an open question.Our result resolves the open questions of which

global constraints can be effectively propagated using simple encodings [BH03]. In

particular, we show that the polynomial time domain consistency filtering algorithm

for the ALL -DIFFERENT constraint cannot be encoded into a polynomial sizeSAT

formula so that unit propagation in a SAT solver achieves thesame amount of in-

ference. The limitation of our result is that we assume direct encoding of variables

domains. This shows that there are global constraints on which a constraint solver

can be theoretically exponentially more efficient comparedto aSATsolver.

Limitations on the efficiency of a propagator. We investigate a number of restricted

classes of the GRAMMAR constraint. We identify a subclass of context free grammars

that permit a faster filtering algorithm compared to the filtering algorithm for an arbitrary

context free GRAMMAR constraint and several classes of widely used restricted context free

grammars that require cubic time to perform inference in theworst case. These results are

significant for the following reasons:

• Exploration of the space between the first and the second levels of Chomsky hierarchy.

We investigate a wide class of restricted context free grammars and show that even

for a very restricted class of simple context-free grammarsthere exist no filtering

algorithm faster thanO(n3).

• Resolution of an open question.Our result resolves the open question whether there

exists a filtering algorithm for the unambiguous context free GRAMMAR constraint

that exploits the unambiguity to achieve better time efficiency compared to an arbi-

trary context free GRAMMAR constraint [Sel06]. We answer this question negatively.

8.1 Future work

The reformulations presented in this work are already beingused in the constraint pro-

gramming community. In particular, many of our reformulations have been implemented

by other researchers in the field. The flow-based propagator for the SEQUENCEconstraint

(Section 4.2.3) was implemented in the ECLiPSe Constraint Logic Programming system
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[Ecl]. This propagator was adapted to improve pruning in solving the problem of deter-

mining the minimum number of points needed to guarantee a playoff spot in the National

Hockey League [RvB09]. It was also extended to the case of open/dynamic SEQUENCE

constraints [Mah09]. Several decompositions of SEQUENCE constraints (Sections 4.3.2

and 4.3.4) were implemented in the MiniZinc library [G12b],the decomposition of the

ALL -DIFFERENTconstraint (Section 6.3) was implemented in the MiniZinc library [G12a].

Decompositions of ALL -DIFFERENT and PERMUTATION constraints were smoothly trans-

lated into an ASP solver [DW10, Dre10]. This allowed enhancing an ASP solver with

range and bounds consistency algorithms for the ALL -DIFFERENT and PERMUTATION

constraints. Our work on the transformation of the GRAMMAR constraint and minimisa-

tion of unfolded automata helped to improve the REGULAR constraint implementation in

GeCode [GeC11b]. The new propagator, starting from version3.2.0, stores and copies

unfolded automata ‘That can improve performance considerably (twice as fast) at a slight

increase in memory’ [GeC11a].

Our work on constraint decompositions has also motivated improvements to constraint

solvers that enable them to handle large numbers of primitive constraints more efficiently.

As pointed out above, reformulations offer a number of advantages, including incremen-

tality and efficiency. However, in practice, we could not achieve the same performance as

monolithic propagators in some cases, like the decomposition of the NVALUE constraint.

The reason for this is that the order of constraints in the decomposition, which does not

matter for the worst-case theoretical complexity, does matter in practice. The average case

complexity of our decompositions depends on the order in which constraints are invoked. To

achieve good performance, we need to call constraints in thedecomposition in an optimum

order to achieve the fixpoint with a minimum number of constraints invocations. So far

we do not have control over propagation order for constraints other that the global priority

mechanism available in some solvers [GeC11b, Ilo03]. A possible remedy for this problem

is to enhance the solver with the ability to group several constraints to propagate them to-

gether, in a specific order, during the search. This enhancement was recently prototyped

in the GeCode constraint solver. Lagerkvist and Schulte introduced a notion of propagator

groups, which allow keeping together a set of constraints and specifying their propagation

ordering [LS09].

This work raises a number of open questions.

Constraint decompositions into primitive constraints. What other global constraints

can be decomposed into a set of primitive constraints without hindering propagation? What
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are tractable cases for conjunctions of global constraintsto enforce bounds consistency or

domain consistency? We made a first step forward in this direction and considered the

OVERLAPPINGALL DIFF constraint. The next step could be to consider conjunctionsof

two GCC constraints. This conjunction is significantly morecomplex due to lower bound

on values bounds that have to be met. Another direction here is to combine constraint

decompositions with symmetry breaking constraints, similar to the recent work [BNQW11].

Can we improve average case behaviour of decomposition in modern constraint solvers?

How can we use additional variables that we introduce in these decompositions to improve

branching heuristics or nogood learning [KB05,Kat08]?

Constraint decompositions into network flows.What are other global constraints that

can be encoded as network flow or shortest path problems? These types of reformulations

are very appealing as they allow using a large body of research in the graph theory to

improve propagators.

Limitations on the efficiency of a propagator. What are other global constraints that

cannot be decomposed into a set of bounded arity constraintsof polynomial size? Can we

exploit variables with exponentially large domains together with bounded arity constraints

to overcame the circuit complexity results?

Whatever the answer to these questions, it is clear from thisthesis that decompositions

have an important theoretical and practical role to play in the development of constraint

solvers.
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