
Applications of Matching Theory in
Constraint Programming

Von der Fakultät für
Elektrotechnik und Informatik der

Gottfried Wilhelm Leibniz Universität Hannover

zur Erlangung des Grades
Doktor der Naturwissenschaften

Dr. rer. nat.

genehmigte Dissertation

von
Dipl.-Inform. Radosław Cymer
geboren am 18.06.1970 in Łódź

2013

Referent: Heribert Vollmer, Leibniz Universität Hannover
Korreferent: Ulrich Hertrampf, Universität Stuttgart

Tag der Promotion: 16.12.2013

Einfachheit ist das Resultat der Reife.

Simplicity is a result of maturity.

Friedrich Schiller

I would like to thank my supervisor, Prof. Heribert Vollmer, for his assistance in the
preparation of this thesis. Our interesting discussions and his patient guidance were a great
support. This thesis would not have been written if he had not exposed me to the world
of constraint programming. At our first meeting he recommended that I read the book
"Constraint Processing" by Rina Dechter in order to get to know constraint programming.
This reading fascinated me and gave me the impetus to further research this interesting
subject matter. In the course of time I have come to realize that constraint programming
has a connection with graph theory and I have deeply researched this area. When I had
thoroughly studied the book "Matching Theory" by László Lovász and Michael D. Plummer
I perceived that there exists a very good field of research in matching theory in order to
connect the results which can help to solve the global constraints. I have read many papers
that described an algorithm that could only solve one specific kind of global constraint.
Having seen the similarity between the constraints I figured that it is highly possible to
discover a universal method to solve some of them at once. This thesis, as the result of my
many years of research, describes how this is possible.

I would also like to thank Prof. Qinglin Roger Yu for several helpful comments about the
decomposition of graphs. This work could not have been fully achieved without his support.

I also thank Prof. David S. Johnson for his very exciting discussions, advice, his suggesti-
ons given and my answered questions regarding the complexity of some non-trivial problems.

Last and by no means least, I am very grateful to my dear wife Anna (to whom this
thesis is dedicated) for just being there, staying sane and keeping our family together during
the past few years while I was writing this thesis. Without her help, patience and support,
the achievement of this goal would have been simply impossible.

I apologize to all those omitted who helped me in one way or another. Even though I
have unconsciously forgotten them, I am very grateful for the aid they have given.

iv

Zusammenfassung

Thema: Anwendungen der Matchingtheorie in der Constraint-Programmierung.
Eines der wichtigsten und meist studierten Gebiete der Constraint-Programmierung sind

globale Constraints. Globale Constraints sind Klassen von Constraints, die mit einer be-
liebigen Anzahl von Variablen definiert sind. Diese Dissertation beschäftigt sich mit der
Matchingtheorie und deren Anwendung in der Constraint-Programmierung. Es wird hierbei
eine universelle Methode entwickelt, um verschiedene globale Constraints zu behandeln.

Die globalen Constraints sollten eine gemeinsame Eigenschaft haben, damit sich ihre
Lösung mittels eines Matchingproblems darstellen lässt. Die Grundidee ist, den globalen
Constraint als einen Hilfsgraphen zu modellieren, in dem jede Lösung einem zulässigen
Matching entspricht. Kanten, die zu keinem Matching gehören, können aus dem Graphen
entfernt werden, da die Werte, die sie repräsentieren, keine Lösung darstellen. Solche Kanten
können mit der sogenannten alternierenden Breiten- und Tiefensuche ermittelt werden.

Zuerst werden all jene globalen Constraints erörtert, die sich durch bipartite Graphen
darstellen lassen. Die nicht erlaubten Kanten können mit Hilfe der Dulmage-Mendelsohn
Zerlegung gefunden werden. In diesem Kapitel wird ein universeller Propagierungsalgorith-
mus für die folgenden Constraints (und ihre weichen Versionen) beschrieben: alldifferent,
correspondence, inverse, same, used_by, gcc, und symmetric_gcc.

Das nächste Kapitel betrachtet Constraints, die sich mittels Matching in einem einfa-
chen Graphen lösen lassen. Hier wird u.a. der Struktursatz von Gallai-Edmonds verwendet,
um die nicht erlaubten Kanten zu ermitteln. Ein Constraint, das sich mit dieser Methode
lösen lässt, ist z.B. das globale Constraint symmetric_alldifferent, seine Familie, d.h.
symmetric_alldifferent_except_0, symmetric_alldifferent_loop, dessen weiche Ver-
sion soft_symmetric_alldifferent_var, aber auch 2-cycle, proper_forest, tour und
undirected_path Constraints. Die zwei letzten Constraints sind NP-hart.

Als nächstes wird das gerichtete Matching vorgestellt. Dieses Matching lässt sich mittels
eines bipartiten Graphen berechnen, wobei hier die bereits entwickelte Methode angewandt
werden kann. Hiermit können folgende globale Constraints gelöst werden: circuit, cycle,
derangement, sowie dessen weiche Version soft_derangement_var, aber auch binary_tree,
tree, path und map. Meistens repräsentieren diese Constraints jedoch NP-vollständige Pro-
bleme und die Domänen der Variablen können nur partiell reduziert werden.

Zuletzt soll die Lösung von Optimierungsproblemen mittels gewichtetem Matching er-
örtert werden. Bei einem Graphen können sowohl Kanten als auch Knoten mit Gewich-
ten versehen werden. In der Dissertation werden Optimization-Constraints betrachtet, die
entweder durch knotengewichtete Graphen (wie z.B. wpa, nvalue und swdv) oder durch
kantengewichtete Graphen (wie z.B. cost_alldifferent, soft_inverse_var, cost_gcc,
cost_symmetric_gcc, cost_symmetric_alldifferent, cost_tour und cost_path) mo-
delliert werden können. Auch hier sind einige Probleme NP-vollständig und erlauben nur
partielle Propagation.

v

Schlagworte: Matchingtheorie, Zerlegungstheorie, extreme Mengen, Dominatoren, Constraint-
Programmierung, globale Constraints, Filteralgorithmen, Komplexität

vi

Abstract

One of the most important and most studied areas in constraint programming is global
constraints. Global constraints are classes of constraints defined by a relation between a
non-fixed number of variables. This thesis deals with matching theory and its application
in constraint programming. Based on the existing results of matching and decomposition
theory, a universal method will be devised for solving various global constraints.

All constraints should have the property that their solution is representable as a match-
ing problem in a particular graph. The basic idea is to model the solution to the global
constraint as a maximum, perfect or complete matching. The edges belonging to no match-
ing (forbidden edges) can be removed from the auxiliary graph because the corresponding
values do not belong to a solution. The partition of edges can be computed by means of the
so-called alternating breadth-first search and alternating depth-first search.

First, the bipartite matching will be discussed and some constraints representable by a
matching in a bipartite graph will be considered. The mandatory and forbidden edges can be
found by means of the Dulmage-Mendelsohn Canonical Decomposition. In this chapter we
describe a generic propagation routine for the following constraints and their soft versions:
alldifferent, correspondence, inverse, same, used_by, gcc, and symmetric_gcc.

The next chapter examines constraints solvable by the matching for general graphs. The
partition of edges can be determined by means of the Gallai-Edmonds Structure Theo-
rem. A constraint modeled as a maximum matching problem is the well-known constraint
symmetric_alldifferent and its variants, such as symmetric_alldifferent_except_0,
symmetric_alldifferent_loop and soft_symmetric_alldifferent_var, and 2-cycle,
as well the proper_forest constraint. By means of the Lovasz-Plummer Decomposition
the constraints tour and undirected_path can be partially solved.

The next chapter introduces a directed matching. This matching can be found by means
of the bipartite graph so the method proposed for the bipartite matching can be easily ap-
plied. The propagation rules described in this chapter can have an application to some graph
partitioning constraints such as circuit, cycle, derangement, soft_derangement_var,
tree, binary_tree, path and map. These constraints are mostly intractable and therefore
the domains can be only partially reduced.

In the last chapter of the thesis the weighted matching is disputed. This matching can
have an application to solve optimization constraints representable as a weighted match-
ing problem. There are two kinds of weighted matchings: a vertex-weighted matching and
an edge-weighted matching. By the first matching the constraints such as wpa, nvalue
or swdv can be solved. By the second matching the constraints cost_alldifferent,
soft_inverse_var, cost_gcc, cost_symmetric_gcc, cost_symmetric_alldifferent, as
well as cost_tour and cost_path can be modeled. Some of the constraints represent NP-
complete problems so only incomplete filtering is possible.

vii

Keywords: matching theory, decomposition theory, extreme sets, dominators, con-
straint programming, global constraints, filtering algorithms, computational complexity

viii

Contents

1 Introduction 1

2 Preliminaries 9

2.1 Some basic concepts . 9

2.2 Complexity of algorithms . 11

2.3 Graph Theory . 12

2.4 Matching Theory . 17

Degree-matchings . 19

2.5 Decomposition Theory (bipartite graphs) . 24

2.5.1 Elementary bipartite graphs . 25

2.5.2 Bipartite graphs with positive surplus 26

2.6 Decomposition Theory (general graphs) . 29

2.6.1 Elementary general graphs . 29

2.6.2 Factor-critical graphs . 30

2.7 Constraint Programming . 32

Global constraints . 33

3 Graph Traversal Algorithms 35

3.1 Depth-First Search . 35

3.2 Breadth-First Search . 39

4 Bipartite Graphs 45

4.1 Preliminaries . 46

Principle of duality . 49

4.2 Dulmage-Mendelsohn Canonical Decomposition 50

4.2.1 Bipartite Graphs with Imperfect Maximum Matchings 51

4.2.2 Bipartite Graphs with Perfect Matchings 52

4.2.3 Bipartite Subgraphs with prescribed Degrees 53

4.3 Partition of vertices and edges . 55

4.3.1 Alternating breadth-first search . 56

4.3.2 Alternating depth-first search for perfect matchings 56

Another algorithm . 58

ix

4.3.3 Alternating depth-first search for perfect (g, f)-matchings 63
4.3.4 Shrinking the bounds of degree conditions 67

4.4 Application to Global Constraints . 71
4.4.1 Hard Global Constraints . 72
4.4.2 Soft Global Constraints . 79

4.5 Convex bipartite graphs . 83
4.6 Summary . 85

5 General Graphs 87
5.1 Preliminaries . 89
5.2 Gallai-Edmonds Canonical Decomposition . 91

5.2.1 General Graphs with Maximum Matchings 91
5.2.2 General Graphs with Perfect Matchings 93
5.2.3 General Graphs with Degree-Matchings 97

5.3 Computing the partition of vertices and edges 101
5.3.1 Partition of vertices . 102
5.3.2 Partition of edges . 103

5.4 Application to Global Constraints . 107
5.5 Kano Canonical Decomposition . 121
5.6 Summary . 123

6 Directed Graphs 125
6.1 Preliminaries . 126
6.2 Canonical Decomposition . 130
6.3 Graph Partitioning Constraints . 131
6.4 Counting the number of solutions . 155
6.5 Summary . 157

7 Weighted Graphs 159
7.1 Preliminaries . 159
7.2 Computing the partition of edges . 164

7.2.1 Graphs with vertex-weighted matchings 164
Weighted alternating depth-first search 168

7.2.2 Graphs with edge-weighted matchings 172
Weighted alternating breadth-first search 176

7.3 Application to Optimization Constraints . 183
7.4 Summary . 199

8 Conclusion 201

Bibliography 207

x

List of Figures

1.1 Checking feasibility of the ALLDIFFERENT constraint 5

2.1 Examples of commonly used graphs . 15

2.2 Operations on graphs . 16

2.3 A perfect (1, 2)-matching (degenerated 2-factor) 23

2.4 A perfect 2-matching (simple 2-factor) . 24

2.5 Elementary bipartite graph with respect to (g, f)-matchings 26

2.6 Positive surplus bipartite graph . 26

2.7 Positive surplus bipartite graph with respect to f -matchings 27

2.8 Positive surplus bipartite graph with respect to (g, f)-matchings 28

2.9 Non-matching covered elementary general graphs 29

2.10 Four important matching covered graphs . 30

2.11 Near-perfect matching and factor-critical graph 30

3.1 Classification of edges in a depth-first search 37

3.2 Classification of edges in a breadth-first search 43

4.1 Minimum and maximum perfect (g, f)-matching 47

4.2 Alternating paths defined for perfect (g,f)-matchings 48

4.3 Dulmage-Mendelsohn decomposition of a bigraph with a maximum matching 51

4.4 Dulmage-Mendelsohn decomposition of a bigraph with a perfect matching . . 53

4.5 Dulmage-Mendelsohn decomposition of a bigraph with an optimal (g,f)-matching 54

4.6 Alternating depth-first search for perfect matching 62

4.7 Alternating depth-first search for perfect (g,f)-matching 65

4.8 Shrinking the bounds of degree conditions . 70

4.9 Value graph and pruning of the ALLDIFFERENT constraint 73

4.10 Intersection graph and pruning of the SAME constraint 76

4.11 Intersection graph and pruning of the USED_BY constraint 77

4.12 Variable-value graph and pruning of the GCC constraint 77

4.13 Value graph and pruning of the SOFT_ALLDIFFERENT_VAR constraint . 81

4.14 Intersection graph and pruning of the SOFT_SAME_VAR constraint 82

4.15 Intersection graph and pruning of the SOFT_USED_BY_VAR constraint . 82

4.16 Variable-value graph and pruning of the SOFT_GCC_VAR constraint . . . 82

xi

4.17 Intersection convex bipartite graph and pruning of the SORT constraint . . . 84

5.1 A blossom . 90
5.2 An f-blossom . 91
5.3 Gallai-Edmonds decomposition of a general graph with a maximum matching 92
5.4 The canonical decomposition of a general graph with a perfect matching . . . 96
5.5 Lovász-Plummer decomposition of a general graph with an optimal f-matching 97
5.6 2-bicritical graph . 100
5.7 The canonical decomposition of a general graph with a perfect f-matching . . 102
5.8 The canonical partition of an elementary graph 107
5.9 Pruning of the SYMMETRIC_ALLDIFFERENT constraint 109
5.10 Pruning of the SYMMETRIC_ALLDIFFERENT_EXCEPT_0 constraint . 111
5.11 Pruning of the SOFT_SYMMETRIC_ALLDIFFERENT_VAR constraint . 118
5.12 Pruning of the TOUR constraint . 120
5.13 Pruning of the UNDIRECTED_PATH constraint 120
5.14 Odd alternating cycles and double alternating paths defined for parity factors 121
5.15 Kano canonical decomposition of a general graph with a parity (1, f)-matching122

6.1 Pruning according to a strong connectivity 130
6.2 Pruning according to a directed matching . 132
6.3 Pruning of the CIRCUIT constraint . 135
6.4 Pruning of the SOFT_DERANGEMENT_VAR constraint 140
6.5 Pruning of the BINARY_TREE constraint 145
6.6 Pruning of the PATH constraint . 147
6.7 Pruning according to a dominator d . 148
6.8 Checking feasibility of the MAP constraint 153

7.1 Minimum and maximum weighted perfect (g, f)-matching 162
7.2 Weighted alternating depth-first search . 170
7.3 Weighted alternating breadth-first search . 182
7.4 Six scenarios for the weighted matching problem with bounds on the cost . . 184
7.5 Pruning of the NVALUE constraint . 188
7.6 Pruning of the COST_GCC constraint . 192
7.7 Pruning of the COST_SYMMETRIC_GCC constraint 193
7.8 Pruning of the COST_SYMMETRIC_ALLDIFFERENT constraint 195
7.9 Pruning of the COST_TOUR constraint . 197
7.10 Pruning of the COST_PATH constraint . 198

xii

List of Tables

2.1 Correspondences between relations and graph invariants 10
2.2 The number of vertices and edges in graph operations 17
2.3 History of algorithms for subgraphs with prescribed degrees 23
2.4 Properties of canonical subgraphs . 31

3.1 Classification of vertices in a depth-first search 36
3.2 Classification of edges in a depth-first search 36
3.3 Classification of vertices in a breadth-first search 39
3.4 Classification of edges in a breadth-first search 41
3.5 Some applications of graph traversal algorithms 44

4.1 History of algorithms for the cardinality bipartite matching problem 46
4.2 History of algorithms for the disjoint set union problem 62
4.3 Algorithms for the alldifferent constraint 74
4.4 Algorithms for the global_cardinality constraint 78
4.5 History of algorithms for the convex bipartite matching problem 83
4.6 Summary of results for bipartite graphs . 86

5.1 History of algorithms for the cardinality non-bipartite matching problem . . . 88
5.2 Scenarios for the soft_symmetric_alldifferent_var constraint 114
5.3 History of algorithms for the parity matching problem 122
5.4 Summary of results for general graphs . 124

6.1 History of algorithms for strongly connected components 127
6.2 History of algorithms for dominators . 142
6.3 Summary of results for directed graphs . 158

7.1 History of algorithms for the vertex-weighted matching problem 165
7.2 History of algorithms for the edge-weighted bipartite matching problem . . . 173
7.3 History of algorithms for priority queues . 174
7.4 History of algorithms for the edge-weighted non-bipartite matching problem . 194
7.5 Summary of results for weighted graphs . 199

8.1 List of global constraints discussed in this thesis 203

xiii

xiv

List of Algorithms

1 Depth-First Search of G . 38
2 Breadth-First Search of G . 42
3 Dulmage-Mendelsohn Canonical Decomposition of G 57
4 Alternating Depth-First Search of G . 61
5 Degree Alternating Depth-First Search of G 68
6 General propagation routine for hard global constraints representable by bi-

partite graphs . 72
7 General propagation routine for soft global constraints representable by bi-

partite graphs . 80
8 Computing the Gallai-Edmonds Decomposition of G 103
9 The divide-and-conquer approach to determine the partition of edges 104
10 Propagation routine for global constraints representable by general graphs . . 108
11 Partial filtering algorithm for the circuit constraint 135
12 Partial filtering algorithm for the cycle constraint 138
13 Filtering algorithm for the soft_derangement_var constraint 140
14 Filtering algorithm for the tree constraint 144
15 Partial filtering algorithm for the binary_tree constraint 145
16 Partial filtering algorithm for the path constraint 149
17 Partial filtering algorithm for the map constraint 154
18 Weighted Alternating Depth-First Search of G 171
19 Weighted Alternating Breadth-First Search of G 179
20 Cost-based propagation routine for optimization constraints 186

xv

xvi

Chapter 1

Introduction

In this chapter we give a short introduction to the field of constraint programming. We briefly
discuss what a constraint satisfaction problem is and how it can be handled. In the next
section, a small example is presented that demonstrates how constraint programming works.
In the final part of this chapter further details of this thesis, including the contributions, are
described and the main publications, on which the thesis is based, are listed.

Since this thesis is about matchings, it is therefore appropriate to start by defining a
matching in a graph. Informally, a graph is a fundamental concept that can model binary
relations between objects. Each object corresponds to a vertex in the graph and the re-
lationships are modeled by edges. A matching is a set of edges such that no two of them
are adjacent. A maximum matching is a matching that contains a maximum number of
edges. A perfect matching is a matching that covers all vertices of the graph. Finding a
maximum/perfect matching in a graph is a problem that appears in numerous situations.

Constraint programming is a powerful approach to model and solve hard combinatorial
problems. We enumerate some fields where constraint programming can be used (cf. [13]):

• relational databases

• artificial intelligence

• operations research

• combinatorial optimization

• molecular biology

• electrical engineering

• numerical analysis

• natural language processing

• computer algebra

1

2 CHAPTER 1. INTRODUCTION

A constraint satisfaction problem (abbreviated as CSP) consists of a finite set X =

{x1, . . . , xn} of variables, a set D = {Dx1
, . . . , Dxn

} of finite domains which represent the
set of possible values that each variable can take, and a set of constraints C ⊆ Dx1×. . .×Dxn

which link up the variables and define the set of combinations of values that are allowed.

A solution to a CSP is an assignment of a single value j from its domain Dxi
to each

variable xi ∈ X, such that all constraints are satisfied simultaneously (no constraint is
violated). The set of all solutions to a constraint problem P is denoted by sol(P).

A propagation technique (or inference) is a function that maps a constraint problem
P = (X,D,C) to a new constraint problem P ′ = (X,D′, C), where for every x ∈ X holds
D′x ⊆ Dx, and where sol(P) = sol(P ′).

A CSP is hyper-arc consistent with respect to the constraint C on variables x1, . . . , xk if
for each index i ∈ {1, . . . , k}, and each value d ∈ Dxi

, there exists an element (dx1
, . . . , dxi−1

,
d, dxi+1

, . . . , dxk
) ∈ C. A CSP is hyper-arc consistent if it is hyper-arc consistent with respect

to all of its constraints. A hyper-arc consistent propagation is a propagation technique that
turns a given CSP into a hyper-arc consistent CSP.

In the literature several other names for hyper-arc consistency have often been used such
as generalized arc consistency (often abbreviated as GAC) or domain consistency. This
could confuse newcomers entering the field.

A filtering algorithm associated with a CSP aims at removing all the values that do not
participate in any solution (are not consistent with the CSP). When all infeasible values are
deleted by the filtering algorithm we say that it achieves hyper-arc consistency.

Constraint programming often makes use of global constraints to increase its efficiency
and to determine important subproblems of the model. A global constraint is a constraint
with an arbitrary number of variables often being given as a parameter. Modeling by means
of global constraints is therefore more complex but they yield a stronger pruning. The global
constraints are characterized in [43]. An extensive list of global constraints is contained in
the Global Constraint Catalog [27]. Because of the NP-hardness of many global constraints,
it is highly unlikely that a polynomial-time solving technique will ever be found for them.

The subject of this thesis is an algorithmic method for solving global constraints. We
will focus in this work on the matching problem and we will discuss how to create a general
propagation algorithm for many common constraints. We will develop a tool box for various
important global constraints. The filtering algorithm is based on the results of decomposition
theory and a modified version of the breadth-first and depth-first traversals.

Matching theory is one of the classical and most important topics in combinatorial opti-
mization. The fundamentals of this field were established by Julius Petersen in 1891. The
matching problems have many important applications in graph theory and computer science.

This thesis is devoted to constraint propagation and will typically discuss theoretical
results. We investigate the application of matching theory in constraint programming. We
introduce a generic method for global constraints that can be represented by a matching in
a graph associated with the constraint. We propose to use different matchings as a pruning
technique in constraint programming.

3

We intend to apply matching theory both by checking feasibility and during the propaga-
tion phase of constraint programming. The combination of matching theory and constraint
programming is a common idea because both methods can be combined to solve the problem.

The algorithmic methods for solving global constraints are plentiful. Therefore, a detailed
overview thereof is obviously far out of the scope of a doctoral thesis chapter, or even a
handbook. In this thesis we present a method for matching-based constraints. We will
consider different versions of the matching problems, depending on whether the graph is
bipartite, general or directed, and whether the graph is weighted or not.

Decomposition theory is the most developed area in matching theory. The origin of
decomposition theory can be traced back to the book "Matching Theory" by Lovasz and
Plummer. Dulmage and Mendelsohn established the existence of a canonical decomposition
for bipartite graphs. A few years later, Gallai and Edmonds provided an efficient algorithm
for obtaining the decomposition of general graphs. Lovasz and Plummer established the
existence of a canonical decomposition in terms of degree-matchings.

Our work proposes a generic filtering algorithm for matching-based constraints. It relies
on decomposition theory. The edges of the graph will be divided into edges belonging to no,
some or all maximum/perfect matchings. This thesis deals with such a partition, and shows
how it can be used to improve the practical results of matching-based global constraints.

This work is an important contribution in establishing a clear link between results in
matching theory and the filtering algorithms of several global constraints based on match-
ing. In particular, it gives a distinctive and clear algorithmic framework to implement these
algorithms. The exposition of such a theory is very relevant for the constraint programming
community. The solving approach presented has the potential to become an essential re-
source for the solver developers, reducing their work time by efficiently implementing various
global constraints.

We would like to point out that most of the results presented here are well known in de-
composition theory, but they seem to be ignored in the constraint programming community.
The thesis intends to be a comprehensive introduction to this theory, as well as a showcase
of its practical applications for pruning algorithms.

An Illustrative Example

As a simple example of pruning, consider the alldifferent constraint, which states, as the
name indicates, that all variables in this constraint must be pairwise distinct. This global
constraint can clearly be replaced by the set of

(
n
2

)
disequalities of the form xi 6= xj . The

standard filtering algorithm for the decomposed alldifferent constraint works as follows.
Whenever the domain of the variable contains only one value, remove this value from the
domains of the other variables that occur in the alldifferent constraint. This procedure
is repeated as often as possible and has the following domain reduction rules [13, page 85]:

〈x 6= y;x ∈ Dx, y = a〉
〈x 6= y;x ∈ Dx \ {a}, y = a〉

;
〈x 6= y;x = b, y ∈ Dy〉

〈x 6= y;x = b, y ∈ Dy \ {b}〉
.

4 CHAPTER 1. INTRODUCTION

One of the disadvantages of this method is that one needs n2−n
2 disequalities to express

the alldifferent constraint on n variables. Moreover, the worst-case time complexity of
the algorithm is O(n2). Another, even more important, drawback of the above method is the
loss of information: hyper-arc consistency over the corresponding set of binary inequalities
is insufficient to detect that the constraint is inconsistent. So, the given pruning routine is
inefficient.

However, the more appropriate hyper-arc consistent propagation technique can be effi-
ciently implemented. A very useful theorem exists to derive algorithms that ensure consis-
tency for the alldifferent constraint. In order to state it in the terms we have defined,
we will introduce convenient notation. Let the cardinality of a set A be denoted by |A| and
let S be a family of m sets S1, . . . , Sm. A transversal or system of distinct representatives
(usually abbreviated as SDR) is a collection of m distinct elements t1, . . . , tm such that
ti ∈ Si for i = 1, . . . ,m. This being given, we can now state the necessity of whether our
constraint can be fulfilled.

Theorem 1.0.1 (Hall [149]) In order that an SDR will exist, it is sufficient that for each
k = 1, . . . ,m, any selection of k of the sets will contain between them at least k elements.

In other words, there exists an SDR if the union of any k sets among S1, . . . , Sm contains
at least k elements. More formally,

∀
I⊆{1,...,m}

| ∪
i∈I

Si| ≥ |I|.

From Hall’s Theorem we can now deduce the following result which checks whether the
alldifferent constraint is satisfiable.

Theorem 1.0.2 ([300, Theorem 5]) The alldifferent constraint on the variables x1,
. . ., xn with respective domains Dx1

, . . . , Dxn
has a solution if no subset K ⊆ {x1, . . . , xn}

exists such that |K| > | ∪xi∈K Dxi |.

This method only makes it possible to decide whether the global constraint has a solution;
it does not find the solution. The following example shows its application.

Example Consider the alldifferent constraint on the variables x1, . . . , x5 with the fol-
lowing domains: Dx1 = Dx2 = Dx3 = {2, 3}, Dx4 = {3, 4} and Dx5 = {4, 5, 6}. This
global constraint is obviously inconsistent since there are only two values, namely 2 and 3,
available for three variables x1, x2 and x3 that must be mutually different. This can also be
detected by Hall’s Theorem. Take a subset K = {x1, x2, x3}, then |K| = 3. Furthermore,
| ∪xi∈K Dxi | = |{2, 3}| = 2. For this subset K, Hall’s condition does not hold; hence this
constraint has no solution.

Observe that the number of generated sets is exponential, so this method is not practical.
An efficient approach for characterizing the values we have to remove from the variable
domains to ensure hyper-arc consistency is based on the technique introduced by Régin [255].

We can use one of the constraint propagation algorithms for the global constraint alld-

ifferent to prune the domains of variables. For this constraint many specialized filtering

5

methods have been developed. For example, if we apply a filtering algorithm for achieving
hyper-arc consistency [255], inconsistency can be detected in time complexity O(

√
n ·m),

where n is the number of variables inside the alldifferent constraint and m is the sum
of the cardinalities of the domains.

In order to check the feasibility of the alldifferent constraint, it is helpful to recognize,
that the constraint essentially represents a maximum bipartite matching between variables
and values in which each variable must be assigned to a different value. We construct a
bipartite graph with vertices on one side that correspond to variables, and vertices on the
other side that correspond to values in the domains. There is an edge {xi, j} iff j ∈ Dxi .
The alldifferent constraint is satisfiable if each vertex representing a variable is incident
to an edge belonging to some maximum matching. For instance, the constraint with the
domains from our running example can be represented by the bipartite matching problem
shown in Figure 1.1. The heavy lines indicate the maximum matching.

x4x3x2x1

2 53 4D(x1) = {2,3}

D(x2) = {2,3}
D(x3) = {2,3}
D(x4) = {3,4}

x5

6

D(x5) = {4,5,6}

Figure 1.1: Checking feasibility of the ALLDIFFERENT constraint

A matching algorithm for this bipartite graph will determine a maximum matching of
cardinality 4 indicating that at most four variables can be matched and so the constraint is
unsatisfiable (note that there is no assignment to x1, x2 and x3 which satisfies the constraint).

Theorem 1.0.3 The alldifferent constraint on variables x1, . . . , xn has a solution if a
maximum matching of the bipartite graph associated with the constraint has cardinality n.
Furthermore, value j can be deleted from the domain of the variable xi if the corresponding
edge {xi, j} belongs to no maximum matching.

Proof See Theorem 1 in [255] and/or Theorem 4 in [300]. ut

From the above result the following filtering algorithm can be devised. First, we create
the bipartite graph associated with the alldifferent constraint. Next, we compute a
maximum matching. If the matching does not cover all vertices representing variables then
the constraint is inconsistent. Otherwise, we remove edges that belong to no maximum
matching. The remaining edges correspond to the feasible values in the domains. This
follows from the fact that variable xi can take value j iff edge {xi, j} is a part of some
maximum matching.

In the bipartite graph of Figure 1.1 edge {x4, 4} belongs to all maximum matchings,
edges {x4, 3} and {x5, 4} belong to no maximum matching. The remaining edges are part
of at least one maximum matching but not all of them.

6 CHAPTER 1. INTRODUCTION

Outline of the Thesis

In this thesis we investigate the application of matching theory in constraint programming.
We propose to apply the results of decomposition theory during the propagation phase.

In Chapter 2 the definitions of general terms are given, the notation used throughout the
thesis is fixed, and the basic definitions from graph theory and matching theory are recalled.
An experienced reader can skim this chapter.

Chapter 3 discusses algorithms based on searching a graph using either a depth-first
search or a breadth-first search. We present Gray-Path Theorem for a depth-first search
and an algorithm for the classification of edges in a breadth-first search. Later in this thesis
it will be shown how these results can be combined to create a generic filtering algorithm.

In Chapter 4 we propose a general framework to treat global constraints which are rep-
resentable by matching in a bipartite graph. The algorithms we present can be considered
as a generalization of a breadth-first and a depth-first search. They find alternating cy-
cles and alternating paths, which can be used to partition edges in the graph, and thus to
prune the domains of the variables. The new results are the Dulmage-Mendelsohn Canon-
ical Decomposition for degree-matchings and the continuity property for degree-factors in
bipartite graphs. The bipartite graphs with positive surplus are defined with respect to
degree-matchings.

Chapter 5 treats the matching problem in general graphs. A slight modification of the
algorithm presented in the previous chapter allows us to find the partition of edges. The
contributions of this chapter are the Structure Theorem for Lovasz-Plummer Canonical De-
composition and the better filtering algorithm for the family of symmetric_alldifferent

constraint. The devised algorithm iterates over extreme sets and not over the vertices as
does the algorithm by Jean-Charles Régin. The theory of extreme sets is extended to f -
matchings.

Chapter 6 deals with a so-called directed matching. First we reduce it to a matching
problem on a certain bipartite graph, then we show how to apply to this problem the above
framework. The algorithm we get is essentially the same as in Chapter 4. The theory of
strongly connected components and dominators is specialized to handle global constraints
representable by directed graphs. For each graph partitioning constraint, we provide a
pruning algorithm which performs optimal filtering or prove that it is intractable.

Chapter 7 is devoted to weighted matching problems. In this chapter we are concerned
with costs associated with vertices or edges. The filtering technique is based on the weighted
version of the alternating breadth-first and depth-first traversals. Some intractability results
belong to the contribution of this chapter.

Chapter 8 concludes the thesis by emphasizing the results and proposing some further
fields of research.

To a large extent this thesis is self-contained. Theorems are proved with all details where
possible. Further, it contains many figures and examples, which clarify the theory. However,
we will assume that the reader is familiar with the basic concepts of algorithms, matching
theory and constraint programming. Excellent references are [67], [212] and [13].

7

Publications

The papers of the work presented in this thesis have been published in several journals.
The fundamental manuscript "Dulmage-Mendelsohn Canonical Decomposition as a generic
pruning technique" has been published in the journal "Constraints". In this paper we present
a general hyper-arc consistency filtering algorithm for matching-based constraints which can
be modeled by bipartite graphs. We have exhibited there the following results:

• Positive surplus bipartite graphs with respect to (g, f)-matchings

• Dulmage-Mendelsohn Canonical Decomposition for (g, f)-matchings

• Gray-Path-Theorem for depth-first search

• Alternating breadth-first search for determination of partition of vertices

• Alternating depth-first search for determination of partition of edges

• Alternating paths for perfect (g, f)-matchings

• Shrinking the bounds of degree conditions

• Continuity property in (g, f)-factors

• General propagation routine for hard and soft global constraints

The second manuscript "Gallai-Edmonds Decomposition as a pruning technique" has
been published in "Central European Journal of Operations Research". In this paper we
extend our work to general graphs. The main contribution of this manuscript is:

• Canonical Decomposition for f -matchings

• Extreme sets with respect to f -matchings

• Some properties of extreme sets with respect to f -matchings

• Transformation from the Lovász-Plummer decomposition into the Gallai-Edmonds one

• The divide-and-conquer approach to determine the partition of edges

The third manuscript "Propagation rules for graph partitioning constraints" has been
submitted to the journal "Annals of Operations Research". In this paper we extend our
work to directed graphs and present filtering algorithms for graph partitioning constraints.
The results can be summarized as follows:

• Transformation of a directed matching into a bipartite matching

• Pruning according to a directed matching, strong connectivity and dominators

The fourth manuscript "Weighted matching as a generic pruning technique applied to
optimization constraints" has also been submitted to the journal "Annals of Operations
Research". In this paper we extend our work to weighted graphs. The main contribution of
this manuscript is:

8 CHAPTER 1. INTRODUCTION

• Classification of edges in a breadth-first search into tree, back and cross edges

• Vertex-weighted matching problem for (g, f)-matchings

• Weighted alternating depth-first search for vertex-weighted graphs

• Weighted alternating breadth-first search for edge-weighted graphs

• Cost-based propagation algorithm for optimization constraints

The following intractability results have been obtained:

• The interval subset sum problem is NP-complete

• The general minimum vertex-weighted (g, f)-matching problem is NP-hard

• Vertex-weighted (g, f)-matching with cost lying between given bounds is NP-complete

• Edge-weighted (g, f)-matching with cost lying between given bounds is NP-complete

Chapter 2

Preliminaries

In this chapter we present a concise collection of those basic definitions we need to get
started. Additional terminology will be presented later in the sequel as needed.

2.1 Some basic concepts

In this section we briefly mention some of the mathematical concepts and notations which
will be used throughout the thesis.

We assume that the reader is familiar with the set-theoretical concepts such as sets,
subsets, proper subsets, union, intersection, difference and cross product of sets.

If S is a finite set, we will denote the number of elements in S (the cardinality of the set
S) by |S|; the empty set will be denoted by ∅.

For any sets A and B, the symmetric difference (A \ B) ∪ (B \ A) = (A ∪ B) \ (A ∩ B)

will be denoted by A⊕B.
A multiset is a set in which an element may occur more than once.
For the sets of integer and rational numbers we will use symbols Z and Q, respectively.

The superscript + restricts the sets to the non-negative numbers, i.e. Z+ = {x ∈ Z : x ≥ 0}.
The completion of a proof will be indicated by the symbol ut.

We will use bxc for the largest integer not greater than x, and dxe for the smallest integer
not less than x (e.g. bπc = 3 and dπe = 4). Clearly, dxe = −b−xc.

We denote the interval of integers {x : l ≤ x ≤ u} by [l, u].
In an implication p→ q, if p implies q then p is called the antecedent and q is called the

consequent .
An invariant is a parameter or property of graphs that is preserved by isomorphisms

(bijections with respect to vertices and edges).
We begin by recalling some elementary notions concerning relations. There are two main

kinds of relations that play a very important role in mathematics and computer science:
equivalence relations and partial orderings. In this section we define them and investigate
some of their properties.

Some typical properties of binary relations are (for all x, y and z in X):

9

10 CHAPTER 2. PRELIMINARIES

reflexivity: (x, x) ∈ R
irreflexivity: (x, x) /∈ R
symmetry: (x, y) ∈ R→ (y, x) ∈ R
asymmetry: (x, y) ∈ R→ (y, x) /∈ R
antisymmetry: (x, y) ∈ R ∧ (y, x) ∈ R→ x = y

transitivity: (x, y) ∈ R ∧ (y, z) ∈ R→ (x, z) ∈ R
intransitivity: (x, y) ∈ R ∧ (y, z) ∈ R→ (x, z) /∈ R

These properties are not independent of each other: an irreflexive and transitive relation
is always asymmetric and every asymmetric relation is always irreflexive. Note that irreflex-
ivity is the negation of reflexivity, but intransitivity is not the negation of transitivity, and
neither asymmetry nor antisymmetry is the negation of symmetry.

We consider now some especially important combinations of relations. A relation R

which is reflexive, symmetric and transitive is called an equivalence relation. Such a relation
uniquely determines a decomposition of the set X into pairwise disjoint classes: two elements
are equivalent if they belong to the same class of the decomposition.

A relation R on a set X is a (reflexive) partial order (or partial ordering) on X if R is
reflexive, antisymmetric and transitive. A set X with a partial order is called a partially
ordered set , also called a poset for short.

By a strict partial order we mean a relation which is irreflexive and transitive (and thus
asymmetric). A partial ordering R on a set X is called a linear order (or total order) on X if
any two elements are comparable, i.e. for any two elements x and y of X, either (x, y) ∈ R
or (y, x) ∈ R (both may hold).

An undirected graph is an irreflexive symmetric relation on a finite set of elements called
vertices. A complete graph is a linear symmetric relation.

A tournament is an oriented complete graph, i.e. it is a directed graph in which every
pair of vertices is joined by exactly one arc. Thus, assigning an orientation to each edge
of a complete graph results in a tournament. A tournament represents a linear irreflexive
asymmetric relation. Thus, it is a complete asymmetric digraph.

There is a very close connection between acyclic digraphs and posets. Every directed
acyclic graph (DAG) represents a strictly partial order and every poset can be represented
in several ways by the so-called comparability digraphs.

Invariant(s) Property Relation Discussed in

connected components connectivity equivalence Chapter 4
strongly connected components strong connectivity equivalence Chapter 6
extreme sets in elementary graphs canonical partition equivalence Chapter 5
directed acyclic graph acyclicity poset Chapter 6
canonical partition of bigraphs irreducibility poset Chapter 4
dominators reachability poset Chapter 6

Table 2.1: Correspondences between relations and graph invariants

2.2. COMPLEXITY OF ALGORITHMS 11

A binary operation � on a set S is called commutative if x � y = y � x for all x, y ∈ S.
It is associative if x � (y � z) = (x � y) � z for all x, y, z ∈ S. Operations that do not satisfy
these properties are called non-commutative and non-associative, respectively.

A function f from X to Y is a mapping whose domain is X and whose range is contained
in Y . A surjective function f from X onto Y is a function whose range is Y . An injective
function f from X into Y assigns different values for every two distinct elements of its
domain. A bijective function is both surjective and injective.

The function log n denotes logarithm to the base two, unless explicitly stated otherwise.
The monus function ·− is defined for numbers n, m by n ·−m = max{0, n−m}.

2.2 Complexity of algorithms

In most cases it is impossible to compute exactly the complexity of an algorithm. If f and
g are functions assigning real values to natural numbers, then we will use the following
notation (called Landau symbols):

• f(n) = O(g(n)) if there exists a natural number n0 and a constant K > 0 such that
for each n ≥ n0 we have f(n) ≤ Kg(n)

• f(n) = Ω(g(n)) if there exists a natural number n0 and a constant K > 0 such that
for each n ≥ n0 we have f(n) ≥ Kg(n)

• f(n) = Θ(g(n)) if both f(n) = O(g(n)) and f(n) = Ω(g(n))

• f(n) = Õ(g(n)) if f(n) = O(g(n) logk g(n)) for some k (the so-called soft-O notation)

• f(n) = o(g(n)) if f(n) = O(g(n)) and f(n) 6= Θ(g(n))

• f(n) = ω(g(n)) if g(n) = o(f(n)).

By amortized time we mean the time per operation averaged over a worst-case sequence
of operations performed (see survey [286] or [67, Chapter 17]).

We now give a brief summary of the fundamental ideas of complexity theory. A decision
problem belongs to the class P if there exists a polynomial algorithm to solve it, and belongs
to the class NP if there exists a polynomial algorithm to verify a solution. A basic question in
the complexity theory is whether the classes P and NP are equal. An NP-hard problem has
the property that any problem in NP can be polynomially reduced to it. An NP-complete
problem is an NP-hard problem which belongs to the class NP. NP-hard problems have
the property that if they belong to the class P then every NP-complete problem belongs to
P. For a detailed discussion of this theory we refer the reader to the books by Garey &
Johnson [131], Papadimitriou [241] and/or Sipser [272].

Ackermann’s function is defined recursively as

A(1, j) = 2j for j ≥ 1,

A(i, 1) = A(i− 1, 2) for i ≥ 2,

A(i, j) = A(i− 1, A(i, j − 1)) for i, j ≥ 2.

12 CHAPTER 2. PRELIMINARIES

From this formula we can define the inverse function α(m,n) for m ≥ n ≥ 1 by

α(m,n) = min{i ≥ 1 | A(i, bm/nc) > dlog ne}.

The function A grows very rapidly; on the other hand, the function α grows extremely
slowly. The reader may want to compute some values, but for all practical purposes,
α(m,n) ≤ 4.

The single-variable inverse Ackermann function, written as log∗ n, is the number of
times the logarithm of n needs to be applied until n ≤ 1. Thus, log∗ 65536 = 4, because
log log log log 65536 = 1. Although α(m,n) grows more slowly than log∗ n, α(m,n) is not a
constant, so the running time O(m · α(m,n)) is not linear.

We will use f (i)(n) to denote the i-fold application of the function f to the input n. The
function log∗ n is defined in terms of the log(i) n function, where

log(i) n =

n if i = 0,

log log(i−1) n if i > 0 and log(i−1) n > 0,

undefined if i > 0 and log(i−1) n < 0 or log(i−1) n is undefined.

Then, we let

log∗ n = min{i ≥ 0 | log(i) n ≤ 1} = min{i ≥ 0 | log log . . . log︸ ︷︷ ︸
i times

n ≤ 1}.

2.3 Graph Theory

For background on graph theory we recommend the books by Harary [150], Berge [39,40],
Bollobás [49] and/or Gondran & Minoux [143].

The definitions of the terms used are essentially the same as those of [212], but have been
modified in detail so as to be applicable within modern terminology. In particular, "point"
and "line" have been replaced by the more conventional notations "vertex" and "edge",
respectively.

An undirected graph (or simply a graph) G consists of a finite non-empty set of elements
V (G) called vertices and a set of unordered pairs of vertices E(G) called edges. We allow
multiple or parallel edges here, unless otherwise specified. When parallel edges are not
allowed, we will call the corresponding graph simple. Also, we will not allow loops unless
otherwise stated.

Let G be an undirected graph with the vertex set V (G) and the edge set E(G). The
number of vertices, denoted by n = |G| = |V (G)|, is called the order of G, and the number
of edges, denoted by m = ||G|| = |E(G)|, is called the size of G. A graph G is dense when
the number of edges is close to n2. A graph G is sparse when the number of edges is much
less than n2. More formally, graphs with |E| = Θ(|V |2) are often called dense, while graphs
with |E| = Θ(|V |) are called sparse.

An edge {x, y} is usually written xy. There are likely the same number of people using
xy rather than {x, y}, so we will use them without discrimination. A graph with no vertices

2.3. GRAPH THEORY 13

and hence no edges is called a null graph and will be denoted by ∅. A trivial graph is a
graph consisting of one vertex and no edges.

If xy is an edge in graph G, edge xy is said to join vertices x and y, to be incident with
vertices x and y, and vertices x and y are said to be adjacent . Two edges which share a
vertex are also said to be adjacent.

The set of edges with exactly one endpoint incident with a vertex in X will be written
∇(X) and the set of edges with one endpoint in X and the other in Y will be written
∇(X,Y). More formally, ∇(X,Y) = {xy | x ∈ X ∧ y ∈ Y }. For X ⊆ V (G), the neighbor set
of X, denoted by Γ(X), is the set of all vertices adjacent to at least one vertex of X. More
formally, Γ(X) = {y | xy ∈ E ∧ x ∈ X}. When X is a singleton {x}, we write ∇(x) and
Γ(x) instead of ∇({x}) and Γ({x}), respectively.

The number of edges in a graph G, incident with a vertex x, is called the degree (or
valency) of x in G and denoted by degG(x) (or shortly dG(x)). If graph G is understood, we
will sometimes abbreviate this to d(x). Clearly, the degree d(x) is equal to |Γ(x)|. A loop is
considered to have degree 2.

A vertex of odd degree is called an odd vertex , and a vertex of even degree is called an
even vertex . Moreover, a vertex of degree zero is called an isolated vertex , and a vertex of
degree one is called an endpoint (or a leaf). An edge incident with an endpoint is called a
pendant edge.

The earliest result on graph theory is essentially due to Swiss mathematician Leonhard
Euler (1707-1783) in 1735 [96], although he did not express it in the language of graphs. It
is often called Handshaking Lemma:

Lemma 2.3.1 (Handshaking Lemma) The sum of degrees of all vertices in any graph
G = (V,E) is equal to twice the number of its edges. Namely,∑

x∈V
d(x) = 2|E|.

Corollary 2.3.2 Every graph has an even number of odd vertices.

A graph in which all degrees are equal to k is said to be k-regular and if G is k-regular for
some k, we simply say that G is regular. A graph which is 3-regular is often called cubic.

We introduce now some notions concerning paths and cycles in a graph. A sequence
v0e1v1e2v2..vn−1envn of vertices and edges, such that every ei, 1 ≤ i ≤ n, is an edge joining
vertices vi−1 and vi , starting at the initial vertex v0 and terminating at the final vertex vn,
is called a walk . Note that in a walk edges and hence vertices can appear more than once.
If, however, all edges in a walk are distinct, the walk is called a trail , and if, in addition, the
vertices are also distinct, the trail is a path. We often denote a trail by a sequence e1e2..en

of edges and a path by a sequence v0v1..vn of vertices. The length of a walk is the number
of occurrences of edges appearing in it, counting repetitions of edges multiple times. The
length can be 0 for the case of a single vertex.

An internal vertex of a path (trail or walk) is a vertex that is neither the initial nor the
final vertex of this path (trail or walk).

14 CHAPTER 2. PRELIMINARIES

A walk or trail which begins and ends at the same vertex will be said to be closed . We
will define a cycle to be any (closed) path of length at least one, together with an edge
joining the first and the last vertex. The length of a cycle will also be the number of edges it
contains. A cycle of length n will be called an n-cycle. A loop is a cycle of length 1. A walk
(trail, path or cycle) of even length is called an even walk (trail, path or cycle), respectively.
An odd walk (trail, path or cycle) can be defined similarly.

If G is a graph and H is also a graph whose vertices and edges are the vertices and edges
of G, then H will be called a subgraph of G. If H is a subgraph of G and if every edge
joining two vertices of H which lies in G also lies in H, we call H an induced subgraph of
G. If X is a set of vertices in graph G, then G[X], the subgraph of G induced by X, is the
induced subgraph of G having vertex set X. A subgraph H of G is said to be spanning if
V (H) = V (G). A spanning regular subgraph of degree k is called a k-factor .

Removal of certain vertices means their removal together with the edges incident with
them. If X is a set of certain vertices of G then the graph remaining after the removal of X
is denoted by G−X. In case X = {x} is a singleton set we simply write G−x. Similarly, if
X is a set of edges of G then G−X denotes the graph arising by omitting the edges of X.

A graph in which every pair of vertices is adjacent is said to be complete, and the complete
graph on n vertices is denoted by Kn. A maximal complete subgraph of graph G is called
a clique of G.

A graph is connected if every two vertices are joined by a path. A maximal connected
subgraph of G is called a component of G. Components are even or odd according to whether
their vertex sets have even or odd cardinality.

If the vertex set of a graph G can be partitioned into two disjoint non-empty sets,
V (G) = V1 ∪ V2, such that all edges of G join a vertex of V1 to a vertex of V2, we call G
bipartite and refer to (V1, V2) as the bipartition of G. In this case we will also sometimes
call the sets V1 and V2 the color classes of G. A bipartite graph is often also referred to as
a bigraph.

A special bipartite graph which we will have occasion to use is Kn1,n2
, the complete

bipartite graph having color classes of size n1 and n2 and in which every vertex in each color
class is adjacent with every vertex in the other. In particular, K1,n is called an n-star (or
sometimes simply, a star), and is denoted by Sn. The star S3 is often called a claw .

A graph is r-partite if its vertices can be partitioned into r sets, called partite sets, in
such a way that no edge joins two vertices in the same set. A complete r-partite graph is an
r-partite graph obtained by joining two vertices iff they lie in different partite sets. If the
r-partite sets have sizes n1, n2, . . . , nr, then the resulting graph is denoted by Kn1,n2,...,nr

,
and if all of these partite sets have size s, then the graph is denoted by Kr(s).

A wheel Wn+1 is a graph that consists of an n-cycle Cn (called a rim) every vertex of
which is joined to a single common vertex (called a hub) by an edge (called a spoke).

A graph containing no cycles is called acyclic. An acyclic graph is called a forest , and if
the acyclic graph is also connected, it is called a tree. If tree T is a subgraph of graph G
and if V (T) = V (G), we call T a spanning tree of G.

2.3. GRAPH THEORY 15

P3 K6S7W6 K3,5C4

Figure 2.1: Examples of commonly used graphs

• Every tree is a bipartite graph.

• Every connected graph has a spanning tree.

• A connected graph on n vertices is a tree iff it has n− 1 edges.

• Every non-trivial tree has at least two leaves.

Theorem 2.3.3 The following statements are equivalent for a graph G:

1. G is a tree.

2. Every two vertices of G are joined by a unique path.

3. G is connected, but if any edge is removed from G, the resulting graph is disconnected.

4. G is acyclic, but if any two non-adjacent vertices of G are joined by an edge e, then
G+ e has exactly one cycle.

Proof See Theorem 4.1 in [150, Chapter 4]. ut

If the edges of a graph have a direction assigned to them, we have what is known as a
directed graph. More precisely, a directed graph, or digraph, D = (V,E) consists of a set of
nodes V (D) and a set of ordered pairs of nodes E(D) called directed edges (or arcs). For
an arc (u, v) the first node u is its tail and the second node is its head . The first node u is
also called the source of the arc (u, v) and the second node is called the target of the arc.

The number of arcs having v as their second node is called the in-degree of v and is
denoted by deg−(v) (or shortly d−(v)). Similarly, the out-degree of node v is the number of
arcs having v as their first node and is written deg+(v) (or shortly d+(v)). We use subscripts
(e.g. d+

D(v)) to specify the digraph D if the usage is not clear from the context.
The definitions of walk, trail, path and cycle must be modified somewhat in the case of

directed graphs. In each of these alternating sequences of nodes and arcs, we will insist that
each (directed) edge join the node before it to the node after it in the sequence. An acyclic
digraph is one containing no (directed) cycles. A digraph is strongly connected if given every
ordered pair of nodes (u, v), there is a (directed) path from u to v and from v to u.

There is a digraph version of Handshaking Lemma (see Lemma 2.3.1), which we call the
Handshaking Dilemma:

16 CHAPTER 2. PRELIMINARIES

Lemma 2.3.4 (Handshaking Dilemma) In any digraph, the sum of out-degrees of all
nodes and the sum of all the in-degrees are both equal to the number of arcs. Namely,∑

x∈V
d+(x) =

∑
x∈V

d−(x) = |E|.

It will be useful to classify each node of a digraph according to the combination of its
out-degree and in-degree:

• x is isolated if d+(x) = d−(x) = 0,

• x is a source (or transmitter) if d+(x) > 0 and d−(x) = 0,

• x is a sink (target or receiver) if d+(x) = 0 and d−(x) > 0,

• x is a carrier if d+(x) = d−(x) = 1,

• x is ordinary otherwise, i.e. if d+(x) · d−(x) > 1.

A weighted graph is a graph G together with a function associating a real number w[e]

to each edge e, called its length, cost , weight , capacity or penalty according to context.
We introduce now some graph operations.
The complementary graph (or complement) of a graph G is the graph G having the same

vertex set as G, but containing exactly those edges that are not in G.
For two graphs G1 and G2, the union G1∪G2 is the graph with vertex set V (G1)∪V (G2)

and edge set E(G1)∪E(G2), where V (G1)∩ V (G2) = ∅. The union G∪G is often denoted
by 2G, and for any integer n ≥ 3, we inductively define nG by (n − 1)G ∪ G. Note that
Kr(s) is the complement of rKs (i.e. Kr(s) = rKs).

The join (or suspension) G1 +G2 denotes the graph with vertex set V (G1)∪V (G2) and
edge set E(G1 + G2) = E(G1) ∪ E(G2) ∪ {xy | x ∈ E(G1) ∧ y ∈ E(G2)}, i.e. G1 + G2 is
obtained from G1 ∪G2 by adding all the edges joining a vertex of G1 to a vertex of G2. In
particular, a complete bipartite graph Kr,s = rK1 + sK1, a wheel graph Wn+1 = Cn +K1,
and a star graph Sn+1 = nK1 +K1.

The Cartesian product G1×G2 of G1 and G2 (also called the Cartesian sum) has vertex
set V (G1)× V (G2) and the vertex (u1, u2) is adjacent to (v1, v2) if either u1 = v1 and u2 is
adjacent to v2 in G2, or u2 = v2 and u1 is adjacent to v1 in G1. Observe that nK1×G = nG.
Clearly, the 4-cycle C4 = K2 ×K2, and the cube Q3 = C4 ×K2.

We illustrate in the below figure the graph operations for the case G1 = P2 and G2 = K2.

G1 ∪ G2 G1 + G2 G1 × G2G1 ∪ G2

Figure 2.2: Operations on graphs

2.4. MATCHING THEORY 17

It is easy to check that all operations are associative and commutative. The above
described graph operations are summarized in the following table.

G G G1 ∪G2 G1 +G2 G1 ×G2

n n n1 + n2 n1 + n2 n1n2

m
(
n
2

)
−m m1 +m2 m1 +m2 + n1n2 n1m2 +m1n2

d(x) n− 1− d(x) d(x) d(x) + n1 or d(x) + n2 d(x) +∇(y)

Table 2.2: The number of vertices and edges in graph operations

2.4 Matching Theory

In this section we recall some of the basic concepts regarding matchings. We will use standard
terminology but for the sake of clarity we will repeat the most important definitions and
notations from [212].

Formally, the matching problem can be described as follows. Let G = (V,E) be a graph
with the vertex set V and the edge set E. A set of vertices in a graph G is said to be
independent if no two of them are adjacent. A set of edges in a graph G is called a matching
if no two edges share a vertex in common. The size (or cardinality) of a matching M is the
number of edges inM . Clearly, the cardinality of a matching in a graph G of order n cannot
exceed bn2 c. A maximum matching of G is a matching M having the largest cardinality.
The number of edges in a maximum matching of G is called the matching number of G and
is denoted by ν(G).

Now suppose M ⊆ E is a fixed matching in graph G. Relative to a matching M in
G, edges that belong to M are called matched edges, while edges not in M are free (or
unmatched) edges. A vertex v is said to be saturated (covered or matched) by M if it is
incident with a matched edge; otherwise vertex v is exposed (or free). Non-matched vertices
are also called unsaturated or uncovered . Every saturated vertex v has a mate, the other
endpoint of the matched edge incident with v. If a matching M in a graph G saturates no
vertex in a subset X ⊂ V (G), then we say that M avoids X.

An alternating trail (or alternating path) is a trail (or path) whose edges are alternately
free and matched. An alternating cycle is defined similarly. The length of an alternating
trail, path, or cycle is the number of edges it contains. An alternating path may have length
0; in this case the path contains exactly one exposed vertex. Note that an alternating path
may begin with an edge in M or with an edge not in M . If, however, an alternating path
P begins and ends at different exposed vertices, we call P an augmenting path. Obviously,
every augmenting path has an odd number of edges. If M is a matching and P is an
augmenting path relative toM then the augmenting operation (symmetric difference)M⊕P
is a matching of size |M |+ 1. As usual, M is a maximum matching if there is no matching
M ′ in G with |M ′| > |M |.

A perfect matching of a graph G is a matching covering all vertices of V (G), that is, if

18 CHAPTER 2. PRELIMINARIES

each vertex of G is incident with exactly one edge of M . Clearly, a perfect matching, when
it exists, is maximum, but the converse does not hold in general. A perfect matching of G is
sometimes called a 1-factor of G and a graph with a collection of perfect matchings is said
to be a 1-factorable graph. Similarly, a 2-factor is a union of vertex-disjoint cycles, and a
2-factorization of a graph G is a decomposition of G into 2-factors.

A near-perfect matching in a graph G is a matching with exactly one exposed vertex.
This can only occur when the graph has an odd number of vertices and such a matching
must be maximum.

A complete matching from X into Y in a bipartite graph G with bipartition (X,Y) is a
matching M in which each vertex of X is incident with an edge of M . It is a matching of
size |X|. Such a matching is also called an assignment . Clearly, a complete matching must
necessarily be maximum. It is defined as a spanning subgraph such that the degree of each
vertex of X is 1 and the degree of each vertex of Y is at most 1.

The following result characterizes a maximum matching (see [212, Theorem 1.2.1]):

Theorem 2.4.1 (Augmenting Path Theorem) Let M be a matching in a graph G.
Then M is a matching of maximum size iff there is no augmenting path relative to M .

This fact was obtained independently by Claude Berge [38] in 1957 (for the maximum
matching problem) and by Robert Z. Norman and Michael O. Rabin [231] in 1959 (for the
minimum covering problem). The result was also recognized in 1891 by Julius Petersen [243].

Theorem 2.4.1 is the basis of most algorithms for determining maximum matchings in
arbitrary graphs. The basic idea is obvious: we start with any given matching and try to
find an augmenting path relative to the present matching in order to enlarge the matching
until no such paths remain. Intuitively, an augmenting path can be used to increase the
number of edges that belong to a matching. If P is an augmenting path relative to M then
the augmenting operation increases the cardinality of the matching M by one.

The following theorem identifies edges that belong to a maximum matching. The proof
was given by Julius Petersen [243].

Theorem 2.4.2 An edge belongs to some, but not to all maximum matchings, iff, for an
arbitrary maximum matchingM , it belongs either to an alternating path of even length which
begins at an exposed vertex, or to an alternating cycle of even length.

We now state the following corollary which is a direct consequence of Theorem 2.4.2:

Corollary 2.4.3 An edge belongs to some perfect matching, iff, for a given arbitrary perfect
matching M , it either belongs to M or to an even alternating cycle.

Proof The statement follows immediately from Theorem 2.4.2, because there are no exposed
vertices if a perfect matching exists. ut

We will call an edge of a graph G allowed (or admissible) if it occurs in some matching
of G and any edge which is not allowed will be called forbidden. An edge which belongs to

2.4. MATCHING THEORY 19

every perfect (or maximum) matching will be called mandatory . Clearly, if an allowed edge
is isolated, that is, not adjacent to any other allowed edge, then it lies in every matching.

We will call a vertex of a graph G vital if it is saturated by every maximum matching.
A vertex v is totally covered if every edge incident to it is admissible.

A graph G is said to be elementary if its allowed edges form a connected spanning
subgraph of G. If G has a perfect matching, is connected and all of its edges are allowed, G
is said to be 1-extendable (or sometimes matching covered).

Any edge belonging to no maximum matching (any non-admissible edge) can be removed
from G, so that the graph can be reduced to a partial graph in which all the edges belong
to at least one maximum matching. As the graph can no longer be connected, it will be
broken up into matching covered subgraphs, and we will have the canonical decomposition
of the initial problem.

For a general graph G let us define the deficiency of G, denoted by δ(G), by the equation

δ(G) = |V | − 2ν(G).

Note thatG has a perfect matching iff δ(G) = 0. Hence, δ(G) is the number of vertices left
unmatched by any arbitrary maximum matching, i.e. it is the number of exposed vertices.

Throughout this work we will use the convention that in the figures the solid lines indicate
the edges of the graph. The matched edges are depicted as thick edges, while the free edges
are depicted as thin edges. The dashed lines show the forbidden edges. The edges marked
with crosses × are forbidden, as well.

Degree-matchings

A matching defined only in terms of the degrees of its vertices is called a degree-matching .
Consider a graph G = (V,E) and two non-negative integer-valued functions g and f , called
degree conditions, defined on the vertex set V (G), such that 0 ≤ g(x) ≤ f(x) ≤ d(x) holds
for every x ∈ V (G).

For convenience, we write f(S) instead of
∑
x∈S f(x) where S ⊆ V . We also define

f∗(S) =
∑
x∈Γ(S) min{f(x), |∇(x, S)|} for any subset S ⊆ V (G). With respect to a degree-

matchingM we introduce the term of degree of a vertex x, denoted by dM (x), as the number
of edges belonging to M and adjacent to x (for an ordinary matching dM (x) ∈ {0, 1}).

We say that a graph G has a perfect f -matching if there exists a spanning subgraph
F ⊆ G, called an f -factor of G, such that dF (x) = f(x) for every vertex x ∈ V (G). In
particular, a 1-factor is simply a perfect matching and a 2-factor is a spanning subgraph
whose components are cycles.

We say that a graph G has a perfect (g, f)-matching if there exists a spanning subgraph
F ⊆ G, called a (g, f)-factor of G, such that g(x) ≤ dF (x) ≤ f(x) for each vertex x ∈ V (G).
Note that a (0, 1)-factor is just a matching and a (1, 1)-factor is simply a perfect matching.

In summary, the degree-matching M is called

• matching, if g(x) = f(x) = 1 for some x,

20 CHAPTER 2. PRELIMINARIES

• (0,1)-matching, if g(x) = 0, f(x) = 1 (i.e. dM (x) ∈ {0, 1}) for some x,

• f -matching, if g(x) = f(x) = dM (x) for some x,

• (g, f)-matching, if g(x) ≤ dM (x) ≤ f(x) for some x,

• parity (g, f)-matching, if g(x) ≡ dM (x) ≡ f(x) (mod 2) for some x.

The degree-matching is called perfect if the above conditions hold for all x. If there exists
no perfect degree-matching in G, one could try to minimize the number of exposed vertices.
Another way is to measure how much the degree conditions are violated by any degree-
matching M . For an arbitrary degree-matching M of a graph G with degree conditions g
and f we define the deficiency (or deviation) of M as follows

δM (G, (g, f)) =
∑

x∈V (G)

max{g(x)− dM (x), 0, dM (x)− f(x)}.

The deficiency of G with respect to degree conditions g and f is defined as

δ(G, (g, f)) = min
M

δM (G, (g, f)),

where the minimum is taken over all degree-matchingsM of G. An optimal degree-matching
is a matching M such that δM (G, (g, f)) = δ(G, (g, f)). A degree-factor is a matching of
deficiency 0. If the degree-matching and the degree conditions are clear from the context,
we will denote the deficiency of G shortly by δ(G).

If the graph induced by all matched edges is connected, then we call the degree-matching
the connected degree-matching . Connected (g, f)-matchings and connected f -matchings in a
graph G can be defined in a similar way. Clearly, G can have a degree-matching but it may
not necessarily be connected. The problem of determining if a graph has a degree-factor is
polynomially solvable, but determining whether a graph has a connected degree-matching
is intractable [131, Problem GT26] (see also survey [196]).

Now suppose M ⊆ E is a fixed degree-matching in graph G. With respect to M we can
classify the vertices of G into the following types:

• exposed vertex, if dM (x) < g(x),

• saturated vertex, if g(x) ≤ dM (x) ≤ f(x),

• supersaturated vertex, if f(x) < dM (x).

In this work, without loss of generality, we will only consider degree-matchings without
supersaturated vertices.

Shrunken degree conditions Let G be an arbitrary graph with degree conditions g and
f . Denote by δ(G) the deficiency of G with respect to (g, f). Then the degree conditions are
called shrunken if for each vertex x ∈ V (G) there exists a (g, f)-optimal subgraph H with
deficiency δ(H) = δ(G) such that dH(x) = g(x) and there exists a (g, f)-optimal subgraph
H ′ with deficiency δ(H ′) = δ(G) such that dH′(x) = f(x).

2.4. MATCHING THEORY 21

In the rest of this section we give a construction of all degree-factors of a graph, or,
in case that no degree-factors exist, of all optimal degree-factors which come as close to
degree-factors from below as possible.

If we want to investigate degree-matchings, then we may try to reduce the degree-
matching problem to the maximum matching problem, by constructing from the given graph
G another graph G∗, called an incremental graph [143], or inflated graph [75], such that G∗

has a perfect matching iff G has a perfect (g, f)-matching. That such a construction is
possible, was first observed by William T. Tutte, who in 1954 gave a reduction from the
perfect f -matching problem to the perfect matching problem [293] and in 1981 a reduc-
tion from the perfect (g, f)-matching problem to the perfect f -matching problem [294] (see
also [212, Section 10.1]).

In fact, a perfect (g, f)-matching problem can be reduced to a perfect f -matching problem
and hence to a perfect matching problem. Clearly, the reduction of a perfect degree-matching
problem to a perfect matching problem can be realized in polynomial time. This reduction
shows also that a degree-matching can be computed in polynomial time. Thus, degree-
matching problems can be solved by applying algorithms for maximum matching on the
incremental graph. We can also use the results to let the algorithm work directly on the
initial graph, and possibly obtain more efficient implementation.

We will now sketch the reduction routine for degree-matchings that forms the main
theme of this section. Let us consider now various types of matchings and their gadgets.
Our notation and description will be compatible with that of [220], except that "inner"
and "outer" will be replaced by the conventional terminology "internal" and "external",
respectively, in order to avoid confusion with standard terminology of matching theory.

In this method, every vertex x of the input graph G is replaced by a particular, more
complex subgraph, called a gadget [220], substitute [115], or template [75].

As stated in [220]: every gadget consists of external vertices, core vertices, external edges
and core edges. Core edges join core vertices to external vertices and external edges join
external vertices of different gadgets. Each core vertex is adjacent to all external vertices
resulting in a complete bipartite graph. Vertices of the same class are not adjacent to
one another, unless loops attached to the replaced vertex are modeled by joining two of
the external vertices. The second type of gadgets contains additionally internal vertices
and internal edges. Internal edges directly join internal vertices to external vertices. Each
internal vertex is adjacent to exactly one external vertex, while each core vertex is adjacent
to all internal vertices resulting in a complete bipartite graph.

The incremental graph G∗ of the graph G with degree condition f is obtained from G by
replacing every vertex x by a complete bipartite graph Kd(x),d(x)−f(x). Hence, the gadget
has d(x) external vertices, d(x)− f(x) core vertices, and d(x) · (d(x)− f(x)) core edges.

Obviously, the smaller the value of f(x), the more complex the gadget and, therefore,
the slower the computation of perfect f -matching. Consequently, for small values of f(x),
such that 2 · f(x) < d(x), an alternative and more appropriate set of gadgets exist. This
set of gadgets has been investigated by Meijer, Núñez-Rodríguez, & Rappaport [220]. They

22 CHAPTER 2. PRELIMINARIES

present gadgets that are bipartite complete graphs Kd(x),f(x) with a pendant edge attached
at each external vertex. The external vertices then become internal vertices, and the leaves
become external vertices. An obvious consequence of this definition is that the gadget has
d(x) external vertices, d(x) internal vertices, f(x) core vertices, d(x) internal edges, and
d(x) · f(x) core edges.

Observe that it is superfluous to transform the vertices with f(x) = 1. Thus, in our
transformation only vertices x, such that f(x) ≥ 2, are replaced by a gadget. Note that for
our algorithm, both sets of gadgets may be combined together resulting in a graph with the
minimized number of edges. The best performance is obtained when a valid vertex x of the
input graph G is replaced by a gadget with the smaller number of edges and vertices.

Clearly, this reduction of the f -factor problem to the perfect matching problem is a
polynomial-bounded reduction. It is not difficult to verify that the obtained graph G∗

indeed satisfies perfect matching property: there exists a perfect f -matching in the original
graph G iff there exists a perfect matching in the corresponding graph G∗.

However, these constructions are very inefficient, since they increase the number of ver-
tices and edges in G∗ to O(m) and Ω(m · n) respectively, which leads to an overall slow
algorithm in the worst case. Therefore, one way to reduce the time complexity would be
to construct a graph G∗ with the number of edges estimated by O(m). Such a reduction
method has been discovered by Gabow [115], who presented an efficient method for reduc-
ing perfect (g, f)-matchings to perfect matchings (in fact, a perfect (g, f)-matching problem
must be first reduced to a perfect f -matching problem and then to a perfect matching prob-
lem). He follows the approach of Tutte but utilizes the so-called sparse substitutes. These
serve to reduce the size of the transformed graph and lead to an O(

√
f(V) ·m) algorithm

for the construction of perfect (or optimal) (g, f)-matching.

Theorem 2.4.4 An optimal (g, f)-matching in a graph G can be found in O(
√
f(V) ·m)

time and O(m) space.

Proof See Theorem 3.1 in [115]. ut

The algorithm presented in [115] which computes the perfect degree-matching, can be
easily modified to give an optimal degree-matching or a perfect degree-matching with a
minimum/maximum number of edges.

Clearly, a maximum matching in G∗ corresponds to an optimal degree-matching in G.
In order to compute an optimal degree-matching we form an initial matching obtained by
repeatedly selecting core vertices of all gadgets, choosing a free adjacent edge and marking it
as matched. This results in a complete matching of all gadgets. The entire procedure can be
implemented to run in linear time. We can therefore assume that any initial matching which
we construct on an incremental graph G∗ covers all internal and core vertices in every gadget.
Observe that this is always possible, so we can easily start with such an initial matching.
Clearly, augmenting the matching never exposes a vertex that is already saturated. Then
every maximum matching of the incremental graph G∗ which saturates all core and internal
vertices in every gadget induces an optimal degree-matching in a graph G, and the converse

2.4. MATCHING THEORY 23

is also true. Note that this correspondence between optimal degree-matchings and maximum
matchings is, in general, not bijective. Thus, there exist several maximum matchings of G∗

which correspond to the same optimal degree-matching of G. It should be also noted that
the construction of G∗ is not unique. Clearly, if graph G is a multigraph then G∗ is a simple
graph. On the other hand, if G is bipartite and every gadget in G∗ is bipartite then G∗ is
also bipartite.

The idea to make use of gadgets in the reduction from a degree-factor problem into a
perfect matching problem is not new. There are monographs in the literature containing
this approach (see, for example, Berge [40, Chapter 8], Bollobás [49, Chapter II.3], Gondran
& Minoux [143, Chapter 7 (Section 5.2)], Lovász & Plummer [212, Section 10.1]). But
none of them gives an efficient algorithm for their use with the problem of determining
degree-factors, including systematic study.

Year Author(s) Complexity Strategy/Remarks

1964 Goldman [142] reduction to ordinary matchings
1967 Urquhart [295] O(f(V) · n3) for weighted degree-matchings
1976 Goodman et al. [144] O(n) for unweighted/weighted trees
1983 Gabow [115] O(

√
f(V) ·m) sparse substitutes

1983 Gabow [115] O(f(V) ·m · log n) for weighted degree-matchings
1984 Hartvigsen [153] O(n3) for weighted (1,2)-matchings
1985 Anstee [12] O(n3) alternating walks
1990 Heinrich et al. [155] O(

√
g(V) ·m) criterion of Lovász [210]

1993 Hell & Kirkpatrick [158] O(
√
g(V) ·m) for bipartite graphs

2009 Meijer et al. [220] O(n3) gadgets

Table 2.3: History of algorithms for subgraphs with prescribed degrees

We conclude this section with the following demonstration. It is well known that problems
involving 2-matchings are much easier to solve than the corresponding problems for ordinary
matchings. In fact, a 2-matching problem can be transformed to an ordinary matching
problem and a 2-factor problem can be reduced to finding a perfect matching in a bipartite
graph (see Theorem 6.1.4 in [212]). However, a 2-factor can be degenerated, since it may
include the same edge twice in a cycle (in fact, it is a perfect (1, 2)-matching).

1

2

7 4

3

6 5

1'’ 2'’ 3'’ 4'’ 5'’ 6'’ 7'’

1' 2' 3' 4' 5' 6' 7'

Figure 2.3: A perfect (1, 2)-matching (degenerated 2-factor)

A simple 2-factor is a 2-factor which is not degenerated. In the figure below we present

24 CHAPTER 2. PRELIMINARIES

how we can compute a simple 2-factor using the method presented in this section. On the
right side of the figure the incremental graph of the graph given on the left side of the
figure is depicted. The perfect matching of the incremental graph corresponds to the perfect
2-matching of the original graph.

1

2

7 4

3

6 5

1

2

7
4

3

6 5

Figure 2.4: A perfect 2-matching (simple 2-factor)

2.5 Decomposition Theory (bipartite graphs)

Recall that a graph G is bipartite if the vertex set V (G) can be partitioned into two sets V1

and V2 in such a way that no two vertices from the same set are adjacent. The sets V1 and
V2 are called the color classes of G and (V1, V2) is a bipartition of G.

Theorem 2.5.1 (König [191]) A graph G is bipartite iff G has no cycle of odd length.

Theorem 2.5.2 (Hall [149]) A bipartite graph G with bipartition (V1, V2) has a matching
covering V1 iff |X| ≤ |Γ(X)| holds for each X ⊆ V1.

Theorem 2.5.3 (Frobenius [112]) A bipartite graph G with bipartition (V1, V2) has a per-
fect matching iff |V1| = |V2| and |X| ≤ |Γ(X)| holds for each X ⊆ V1.

The following results can be easily obtained as a generalization of Hall’s Theorem:

Theorem 2.5.4 (Yuting & Kano [311]) Let G = (V1 ∪ V2, E) be a bipartite graph, and
let f be an integer-valued function defined on V1. Then G has a spanning subgraph H such
that dH(x) = f(x) for all x ∈ V1 and dH(y) = 1 for all y ∈ V2 iff f(V1) = |V2| and
f(X) ≤ |Γ(X)| for all X ⊆ V1.

Theorem 2.5.5 Let G = (V1∪V2, E) be a bipartite graph with degree condition f . If G has
a perfect f -matching then f(V1) = f(V2) and f(X) ≤ f(Γ(X)), for all X ⊆ V1.

Proof See Theorem 2.4.4 in [212]. ut

Theorem 2.5.6 Let G be a bipartite graph with bipartition (V1, V2) and degree conditions g
and f . If G has a perfect (g, f)-matching then max{g(V1), g(V2)} ≤ min{f(V1), f(V2)} and
g(X) ≤ f(Γ(X)) holds for every X ⊆ V1 and X ⊆ V2.

Elementary bipartite graphs and bipartite graphs with positive surplus play an important
role as building blocks in decomposition theory with respect to degree-matchings.

2.5. DECOMPOSITION THEORY (BIPARTITE GRAPHS) 25

2.5.1 Elementary bipartite graphs

An elementary bipartite graph is a graph in which every edge is contained in some perfect
matching. An example is a simple cycle Cn of even length or a complete bipartite graph
with the same number of vertices in its color classes (Kr,s with r = s).

In a similar way we can define elementary bipartite graphs with respect to perfect f -
matchings and perfect (g, f)-matchings.

Let D be the directed graph obtained from G by replacing each matched edge by an
arc leading from V1 to V2 and by orienting all other edges in the opposite direction. Then
the strongly connected components of D are exactly the elementary bipartite subgraphs
of G. However, this property does not hold for elementary graphs with respect to perfect
(g, f)-matchings.

The following properties characterize elementary bipartite graphs [212, Theorem 4.1.1]:

• Every elementary graph with at least four vertices is 2-connected.

• A bipartite graph G with bipartition (V1, V2) is elementary iff |V1| = |V2| and |Γ(X)| ≥
|X|+ 1 for every non-empty proper subset X of V1 or V2.

• G = K2 is the only elementary bipartite graph with the unique perfect matching.

• For any x ∈ V1 and y ∈ V2 if |V (G)| ≥ 4 then G− x− y has a perfect matching.

• For any perfect matching M digraph D is strongly connected.

The last four properties were independently discovered first by Hetyei [162] in 1964,
and later by Little, Grant and Holton [207] in 1975, providing criteria for a graph to be
elementary (see also [212, Theorem 4.1.1]).

Extending elementary bipartite graphs with perfect matching to elementary bipartite
graphs with perfect f -matching we receive the following properties:

• f(V1) = f(V2) and for ∅ 6= X ⊂ V1 or ∅ 6= X ⊂ V2 holds f(X) < f∗(X).

• Edges adjacent to vertices with f(x) = d(x) belong to all perfect f -matchings.

• For any perfect f -matching M digraph D is strongly connected.

The following properties characterize elementary bipartite graphs with respect to perfect
(g, f)-matchings:

• max{g(V1), g(V2)} ≤ min{f(V1), f(V2)},

• For every non-empty proper subset X of V1 or V2 holds g(X) < f∗(X).

Figure 2.5 shows an elementary bipartite graph with respect to perfect (g, f)-matchings.
The pairs of numbers (gi, fi) beside the vertices indicate the degree conditions. This graph
has the following properties (other than properties of elementary graphs with perfect f -
matchings):

26 CHAPTER 2. PRELIMINARIES

• Edges x1y1, x1y2, x5y5 and x6y7 belong to all perfect (g, f)-matchings,

• Digraph D has two strongly connected components {x1, x2, x3, y1, y2, y3} and {x4, x5,
x6, y4, y5, y6, y7} although edges x4y2 and x5y3 belong to some perfect (g, f)-matching.

x6

(1,2)
x5

(1,3)
x4

(1,1)
x3

(0,1)
x2

(0,2)
x1

(2,2)

(1,1)
y7

(1,2)
y1

(1,1)
y5

(1,2)
y4

(1,2)
y2

(0,1)
y3

(0,2)
y6

Figure 2.5: Elementary bipartite graph with respect to (g, f)-matchings

2.5.2 Bipartite graphs with positive surplus

A graph G with bipartition (V1, V2) has positive surplus (as viewed from V1) if the number of
neighbors of S is bigger than the size of S for any non-empty subset S of V1, i.e. |S| < |Γ(S)|
for any ∅ 6= S ⊆ V1. The surplus of the set S is defined by |Γ(S)| − |S|. The surplus of G is
the minimum surplus of all non-empty subsets of V1 and will be denoted by σ(G).

Bipartite graphs with positive surplus are connected. Simple examples include stars Sk
(as viewed from center vertex) and the complete bipartite graphs with different cardinalities
of their color classes (Kr,s with r 6= s). A more elaborate example is presented in Figure 2.6.

V1

V2

Figure 2.6: Positive surplus bipartite graph

Lemma 2.5.7 Let G = (V1 ∪ V2, E) be a bipartite graph with positive surplus (as viewed
from V1). Then the following holds:

• Vertices in V1 are saturated by every maximum matching,

• Vertices in V2 are exposed by at least one maximum matching,

• Every edge of G does not belong to at least one maximum matching.

Moreover, δ(G) = |V2| − |V1|.

Proof Since |X| < |Γ(X)| for all ∅ 6= X ⊆ V1, according to the well-known Hall’s Theorem
(Theorem 2.5.2), every maximum matching of G saturates all vertices in V1. Let {x, y} ∈ E,
where x ∈ V1 and y ∈ V2, and let M be a maximum matching of G not covering y. Since

2.5. DECOMPOSITION THEORY (BIPARTITE GRAPHS) 27

M saturates x we can assume that {x, z} ∈ M because M is a complete matching. Let
M ′ = M − {x, z} + {x, y}. Then M ′ is the desired maximum matching of G containing
{x, y}. ut

Theorem 2.5.8 The following statements are equivalent for a bipartite graph with biparti-
tion (V1, V2):

1. G has positive surplus (as viewed from V1),

2. G contains a spanning forest F such that dF (x) = 2 for every vertex x ∈ V1,

3. |V1| < |V2| and |X| < |Γ(X)| for every non-empty subset X of V1,

4. for every x ∈ V1 the graph obtained by adding a vertex to V1 connected to the vertices
of Γ(x) has a matching of cardinality |V1|+ 1,

5. inserting δ(G) = |V2| − |V1| new vertices to V1 and joining them to the vertices in V2

results in a graph with a perfect matching.

It follows that a bipartite graph G is elementary iff G − x has positive surplus for any
vertex x of G.

Positive surplus bipartite graphs with respect to f-matchings LetG be a bipartite
graph with bipartition (V1, V2) and let f(x) be an integer-valued function on the set V (G)

such that 0 ≤ f(x) ≤ d(x) for each x ∈ V (G). Graph G is said to have positive surplus (as
viewed from V1) if f(X) < f∗(X) for any ∅ 6= X ⊆ V1.

An example of a positive surplus bipartite graph with respect to f -matchings is shown
in Figure 2.7:

V1

V2

y9

(1)

(3)
x1

y8

(2)
y7

(1)
y6

(1)
y5

(2)
y4

(1)
y3

(1)
y2

(1)
y1

(0)

(3)
x2

(3)
x3

Figure 2.7: Positive surplus bipartite graph with respect to f -matchings

The graph consists of two parts: a bipartite subgraph with positive surplus (depicted on
the left side of the figure) and an elementary bipartite subgraph with perfect f -matching
(depicted on the right side of the figure). Some properties are immediate:

• Vertices in V1 are saturated by every optimal f -matching

• Every edge {x, y} with x ∈ V1 and f(x) = d(x) is contained in all optimal f -matchings

• The deficiency of G is equal to δ(G) = f(V2)− f(V1)

28 CHAPTER 2. PRELIMINARIES

• Inserting a new vertex x to V1 with f(x) = f(V2) − f(V1) and connecting it to all
vertices in V2 results in a graph with a perfect f -matching.

Note that positive surplus bipartite graphs with respect to degree-matchings may have
edges contained in every optimal matching and/or edges contained in no optimal matching.
For example, the graph depicted in Figure 2.7 has the following properties (other than
properties of bipartite graphs with positive surplus):

• Vertex y1 of V2 is neither exposed nor saturated

• Vertices y6, y7, y8 and y9 of V2 are saturated by every optimal f -matching

• The remaining vertices of V2 are exposed by at least one optimal f -matching

• Edges x2y5, x2y8, x3y8 and x3y9 belong to all optimal f -matchings

• Edges x1y1, x1y6, x2y1 and x3y1 belong to no optimal f -matching

In a similar way we can define positive surplus bipartite graphs with respect to (g, f)-
matchings.

Positive surplus bipartite graphs with respect to (g, f)-matchings Let G be a bi-
partite graph with degree conditions g and f . Then the graph G is said to have positive
surplus (as viewed from V1) if g(X) < f∗(X) holds for any ∅ 6= X ⊆ V1.

An example of positive surplus bipartite graph with respect to (g, f)-matchings is pre-
sented in Figure 2.8:

(1,2)(1,2)

(2,3)(1,2) (1,2)(1,1) (1,1) (2,3) (2,2)

(0,1)(2,2) (1,1)
V1

V2

Figure 2.8: Positive surplus bipartite graph with respect to (g, f)-matchings

LetG = (V1∪V2, E) be a positive surplus bipartite graph (as viewed from V1) with respect
to (g, f)-matchings. For shrunken degree conditions ĝ and f̂ it holds that ĝ(x) = f(x) for
every x ∈ V1 and f̂(x) = g(x) for every x ∈ V2. Thus, each property for any positive surplus
bipartite graph with respect to f -matchings holds also for positive surplus bipartite graphs
with respect to (g, f)-matchings. In particular, G has the following, similar properties:

• Vertices in V1 are saturated by every optimal (g, f)-matching

• Every edge of G belongs to at least one optimal (g, f)-matching

• The deficiency of G is equal to δ(G) = g(V2)− f(V1)

2.6. DECOMPOSITION THEORY (GENERAL GRAPHS) 29

2.6 Decomposition Theory (general graphs)

Recall that a near-perfect matching in a graph G is one in which exactly one vertex is
exposed. This can only occur when the graph has an odd number of vertices, and such a
matching must be maximum. If, for every vertex in a graph, there is a near-perfect matching
that omits only that vertex, the graph is also called factor-critical. In a similar way as degree-
matchings for bipartite graphs do, elementary general graphs and factor-critical graphs play
an important role as building blocks in decomposition theory of general graphs.

2.6.1 Elementary general graphs

Recall that a connected graph G with a perfect matching is elementary if its allowed edges
form a connected spanning subgraph. If every edge of G is contained in a perfect matching,
then G is called 1-extendable (or matching covered). Simple examples include complete
graphs with an even number of vertices (K2n). Every 1-extendable graph is elementary, but
the converse is not true in the general case. On the other hand, every elementary bipartite
graph is 1-extendable.

× ××

Figure 2.9: Non-matching covered elementary general graphs

A graph is k-extendable if each matching of size k inG can be extended to a perfect match-
ing. The family of k-extendable graphs is quite large. For example, the (trivial) tetrahedron
(K4), the cube (Q3), the dodecahedron and the icosahedron (but not the octahedron) are
2-extendable as well as all complete bipartite graphs Kn1,n2

are such. The Petersen graph
is 1-extendable, but not 2-extendable. If a graph is bicritical, it is 1-extendable. If a graph
is 2-extendable, it is either bipartite or bicritical. It should be also clear that if a graph is
k-extendable, it is also (k − 1)-extendable.

A graph G is said to be bicritical if G − x − y has a perfect matching for each pair of
distinct vertices x and y in G, not necessarily adjacent. A simple example of the bicritical
graph is a (trivial) dipole Dn or an odd wheel Wn. Bicritical graphs play a central role
in decomposition theory of graphs in terms of their maximum matchings. The structure
of bicritical graphs is far from being completely understood [212]. Obviously, a graph G is
bicritical iff G−x is factor-critical for every x ∈ V (G), every bicritical graph is also matching
covered (1-extendable) and no bipartite graph is bicritical.

A 3-connected bicritical graph is called a brick . For example, every odd wheel is a brick.
Four bricks play a special role in the theory of matching covered graphs: K4 - the complete
graph on 4 vertices, C6 - the triangular prism, R8 and the Petersen graph (see Figure 2.10).
It should be pointed out that in any brick which is large enough, there exists an edge whose
removal leaves a graph which is still matching covered.

30 CHAPTER 2. PRELIMINARIES

K4 R8C6 Petersen graph

Figure 2.10: Four important matching covered graphs

Note that bicritical graphs cannot be bipartite. For bipartite graphs, we modify the
definition slightly. A brace is a connected bipartite graph such that the deletion of any two
vertices from each color class results in a bipartite graph with a perfect matching. Clearly,
every brace is a 2-extendable bipartite graph. For example, every complete bipartite graph
with the same number of vertices in its color classes is a brace.

2.6.2 Factor-critical graphs

A graph G is said to be factor-critical (or hypomatchable) if G has no perfect matching,
but G− x has a perfect matching for every x ∈ V (G). Simple examples include odd-length
cycle Cn and the complete graph Kn of odd order. It is easy to see that factor-critical
graphs are connected, must always have an odd number of vertices and cannot be bipartite.
A factor-critical graph is trivial if it is a singleton, and non-trivial if it has at least three
vertices.

Testing for a graph being factor-critical is easier than the definition might indicate.
Just apply the blossom shrinking algorithm. The graph is factor-critical iff the algorithm
terminates with a single shrunken vertex.

Figure 2.11: Near-perfect matching and factor-critical graph

In the above figure, the left part shows a graph with a near-perfect matching and the right
part shows a factor-critical graph. Observe that every factor-critical graph has a near-perfect
matching, but the converse is not true.

Lemma 2.6.1 Let G = (V,E) be a factor-critical graph. Then every edge of G belongs to
some maximum matching.

Proof Let {x, y} ∈ E(G) and let M be a maximum matching of G avoiding x. Since
M covers y we can assume that there exists z such that {y, z} ∈ M since M is a perfect
matching in G− x. Let M ′ = M −{y, z}+ {x, y}. Then M ′ is the desired perfect matching
of G− z containing {x, y}. ut

2.6. DECOMPOSITION THEORY (GENERAL GRAPHS) 31

Let us summarize the following properties of factor-critical graphs:

• Every vertex is exposed by at least one maximum matching

• Every edge does not belong to at least one maximum matching

• A graph G is factor-critical iff ν(G− x) = ν(G) for all x ∈ V (G)

• A graph G is factor-critical iff the join of G and K1, G+K1, is bicritical

In a similar way we can define critical graphs with respect to degree-matchings.

Factor-critical graphs with respect to f-matchings A graph G is said to be critical
with respect to f -matchings if for every vertex v of G, G + vw with f(w) = 1 has an f -
factor. It is obvious that if G is critical with respect to f -matchings then G is connected,
δ(H, f) = 1 for any spanning f -optimal subgraph H of G and f(V) is odd.

Factor-critical graphs with respect to (g, f)-matchings A graph G is said to be crit-
ical with respect to (g, f)-matchings, shortly (g, f)-critical, if for every vertex v ∈ V (G) there
exists in G a perfect (g, fv)-matching M such that dM (v) = f(v) + 1 and g(x) ≤ dM (x) ≤
f(x) for all x 6= v and there exists a perfect (gv, f)-matchingM ′ such that dM ′(v) = g(v)−1

and g(x) ≤ dM ′(x) ≤ f(x) for all x 6= v. It can be proven that in the case of (g, f)-critical
graphs, we must always have g(x) ≡ f(x) (see Theorem 10.2.12c in [212]). It is also easy to
show that, similarly as for the f -critical graphs, a graph G is (g, f)-critical if it is connected,
δ(G, (g, f)) = 1 and g(V) = f(V) is odd (see Theorem 10.2.16 in [212]).

The following table summarizes properties of canonical subgraphs:

bipartite graph ν(G) δ(G) matching

elementary max{g(V1), g(V2)}..min{f(V1), f(V2)} 0 perfect
positive surplus f(V1) g(V2)− f(V1) complete

general graph

elementary d g(V)
2 e..b

f(V)
2 c 0 perfect

factor-critical f(V)−1
2 1 near-perfect

Table 2.4: Properties of canonical subgraphs

Factor-critical graphs, bipartite graphs with positive surplus, and elementary graphs play
an important role in decomposition theory as building blocks in the structure theorem of
Gallai and Edmonds. Clearly, the list of these canonical blocks is uniquely determined by G,
i.e. it does not depend on some arbitrary choices made during the decomposition procedure.

A graph G is said to be k-factor-critical if the subgraph G − S has a perfect matching
for any subset S of V (G) with |S| = k. Clearly, factor-critical graphs and bicritical graphs
are k-factor-critical graphs when k = 1 and k = 2, respectively.

For further reading on decomposition theory we recommend Lovász & Plummer [212],
Yu & Liu [309], and Akiyama & Kano [8].

32 CHAPTER 2. PRELIMINARIES

2.7 Constraint Programming

In this section we summarize the main notions and associated notations that will be used in
this work. We assume familiarity with the basic concepts of constraint satisfaction problems.
For a thorough explanation of this area, we refer the reader to the monographs by Van
Hentenryck [159], Tsang [291], Marriott & Stuckey [215], Apt [13], and/or Dechter [74].

A constraint network R consists of a finite set of variables X = {x1, . . . , xn}, with
respective domains D = {D1, . . . , Dn}, which represent the possible values for each variable
Di = {v1, . . . , vk}, and a set of constraints C = {C1, . . . , Ct} which link up the variables
and define the set of combinations of values that are allowed. Thus, a constraint network
can be viewed as a triple (X,D,C).

A constraint Ci is a relation Ri defined on a subset of variables Si, Si ⊆ X. The relation
denotes the variables’ simultaneous legal value assignments. The set Si is called the scope
of Ri. If Si = {xi1 , . . . , xir}, then Ri is a subset of the Cartesian product Di1 × . . . ×Dir .
Thus, a constraint can also be viewed as a pair Ci = 〈Si, Ri〉. When the scope’s identity is
clear, we will often identify the constraint Ci with its relation Ri. Alternatively, for clarity,
a constraint relation may be denoted RSi .

The arity of a constraint refers to the cardinality, or size, of its scope. A unary constraint
is defined on a single variable; a binary constraint , on two variables; a ternary constraint ,
on three variables. A binary constraint network has only unary and binary constraints.

Typical tasks over constraint networks are determining whether a solution exists, finding
one or all solutions, finding whether a partial instantiation can be extended to a full solution,
and finding an optimal solution relative to a given cost function. Such tasks are referred to
as constraint satisfaction problems (abbreviated as CSP), which are known in general to be
intractable, even when the constraints are restricted to binary constraints.

A problem that has one or more solutions is called satisfiable or consistent. If there is no
possible assignment of values to variables that satisfies all the constraints, then the network
is called unsatisfiable or inconsistent.

A filtering algorithm for a constraint C is an algorithm that prunes the domain of each
variable that C is defined on. The algorithm performs partial filtering if it removes only
some of the inconsistent values. If the algorithm removes every inconsistent value we say
that the algorithm achieves complete filtering .

The pruning is a task which shrinks the domain of each variable without changing the set
of solutions. We say that the pruning is incomplete if it removes some inconsistent values
but not every inconsistent value. A pruning is complete if the removal of any additional
value from any domain would change the set of solutions.

A binary constraint is arc consistent if for every value in the domain of the variable,
there exists a value in the domain of the other one such that the pair of values satisfied the
constraint. A non-binary constraint is hyper-arc consistent iff for any value of a variable
in its domain, there exists a value for every other variable in the domain such that the
tuple satisfies the constraint. In the literature, hyper-arc consistency is also referred to as
generalized arc consistency (often abbreviated as GAC) or domain consistency .

2.7. CONSTRAINT PROGRAMMING 33

We can enforce hyper-arc consistency on a constraint by shrinking the domains of the
variables. If a value does not participate in a solution to a subnetwork generated by this
constraint, it will clearly not be part of a complete solution.

Briefly, hyper-arc consistency means that the domains of the variables are such that for
any value in a domain, setting the variable to that value allows settings for all the other
variables so that the constraint is satisfied.

Achieving hyper-arc consistency can be sometimes too costly or even intractable, and it
makes sense to choose a weaker level of filtering.

Global constraints

A constraint C is often called a global constraint , if C is defined on an arbitrary subset
of variables and when processing C as a whole gives a better result than processing any
conjunction of constraints of smaller arity that is semantically equivalent to C.

A domain variable x is a variable ranging over a finite set of integers denoted by Dx. The
minimum and maximum values of Dx are denoted by min(Dx) and max(Dx), respectively,
while |Dx| designates the number of elements in Dx.

Domain propagation on a constraint removes values, which cannot be extended to a pair
of tuples of values satisfying the constraints from the domains of the variables until the
constraint is hyper-arc consistent.

A global constraint can be characterized by various parameters:

• n : the number of variables, |X|

• d: the size of the largest domain, maxx∈X |Dx|

• k: the cardinality of the union of all domains, | ∪x∈X Dx|

• m: the sum of the cardinalities of the domains,
∑
x∈X |Dx|

A global constraint is

• bounds consistent iff:

∀di ∈ {min(Di),max(Di)},∃dj ∈ [min(Dj),max(Dj)] : (d1, . . . , dn) ∈ C

• range consistent iff:

∀di ∈ Di,∃dj ∈ [min(Dj),max(Dj)] : (d1, . . . , dn) ∈ C

• hyper-arc consistent iff:

∀di ∈ Di,∃dj ∈ Dj : (d1, . . . , dn) ∈ C

34 CHAPTER 2. PRELIMINARIES

Chapter 3

Graph Traversal Algorithms

In this chapter we focus on two traditional search algorithms called depth-first search (DFS)
and breadth-first search (BFS), which are integral parts of numerous algorithms used in
computer science, operations research and constraint programming.

A graph G can be traversed in a depth-first manner or a breadth-first manner [67]. A
depth-first search follows untraversed edges from the most recently visited vertex, whereas
a breadth-first search traverses all adjacent edges of the currently visited vertex. A depth-
first search explores a graph in linear time using an auxiliary stack. On the other hand, a
breadth-first search explores a graph using an auxiliary queue.

The depth-first search is based on the vertex reached last, whereas the breadth-first search
traverses the vertices systematically in the order in which they have been reached. The three
possible colors of each vertex reflect if it is unvisited (white), visited but unexplored (gray)
or completely explored (black).

It is well known that during the depth- and breadth-first search each vertex of the
traversed graph can be classified into one of the following three states:

1. White vertex indicates that the vertex has not been discovered yet.

2. Gray vertex indicates the vertex already discovered but not yet finished.

3. Black vertex indicates the finished vertex.

With each vertex x we associate the following arrays (vectors): parent[x], level[x],
color[x], pre-order[x] and post-order[x].

3.1 Depth-First Search

In this section the important structures of the depth-first search and their powerful properties
will be recalled.

A depth-first forest is an ordered collection of (vertex-disjoint) depth-first trees, each
rooted at some vertex of G, so that every vertex in G and each tree edge of G belongs to
exactly one tree.

35

36 CHAPTER 3. GRAPH TRAVERSAL ALGORITHMS

Depth-first search uses parent[v] to record the father of vertex v. We have parent[v] = v

iff vertex v is the root of a depth-first tree and parent[v] = NIL for all white vertices. Depth-
first search timestamps each vertex when its color is changed. When vertex v changes its
color from white to gray, the time is recorded in discovery[v]. When vertex v changes
its color from gray to black, the time is recorded in finishing[v]. These timestamps are
integers between 1 and 2|V |, since there is one discovery event and one finishing event for
every vertex. Thus, the state of a vertex v is stored in a color variable as follows:

color state discovery time finishing time

white undiscovered discovery[v] = 0 finishing[v] = 0

gray discovered but not fully explored discovery[v] > 0 finishing[v] = 0

black fully explored discovery[v] > 0 finishing[v] > 0

Table 3.1: Classification of vertices in a depth-first search

For every vertex v holds discovery[v] < finishing[v]. Vertex v is white before time
discovery[v], gray between time discovery[v] and finishing[v], and black thereafter. The
vertex v is a leaf of a depth-first tree iff discovery[v] + 1 = finishing[v] (unless the tree is
trivial).

Every vertex in a depth-first tree can be reached from the root r by a unique path. Any
vertex w on the unique path from r to v is called an ancestor of v and v is called a descendant
of w.

Recall that in a depth-first search we can classify each edge into one of the four classes:

1. Tree edge is an edge in a depth-first tree. It connects a vertex to its child forming
the forest.

2. Back edge connects a vertex to its ancestor in a depth-first tree.

3. Forward edge is a non-tree edge that connects a vertex to its descendant in a depth-
first tree.

4. Cross edge connects two (unrelated) vertices in the same depth-first tree neither of
which is an ancestor of the other or joins two vertices in two different depth-first trees.

Thus, the class of an edge vw can be determined in the following way:

class v w discovery time finishing time

tree edge gray white discovery[w] = 0 finishing[w] = 0

back edge gray gray discovery[w] > 0 finishing[w] = 0

forward edge gray black discovery[v] < discovery[w] finishing[w] > 0

cross edge gray black discovery[v] > discovery[w] finishing[w] > 0

Table 3.2: Classification of edges in a depth-first search

3.1. DEPTH-FIRST SEARCH 37

Because the search strategy ensures that each edge is traversed only once, the total time
to perform the depth-first search is O(m+ n). Note also that the vertex u is an ancestor of
the vertex v in the depth-first tree if the vertex v was discovered during the time in which
the vertex u was gray. All gray vertices lie on a unique path in the depth-first tree and this
path corresponds to the recursion stack of the depth-first search. The last observation is so
important that it deserves to be stated as a theorem.

Theorem 3.1.1 (Gray-Path Theorem) Vertex u is an ancestor of the current vertex v
iff vertex v can be reached from u along a path consisting entirely of gray vertices.

In our scheme we are going to use the notion of pre-order and post-order numbers. Pre-
order, post-order, and in-order numberings are discussed in [2, Chapter 3] and [67, Chapter
12] (see also [285, Chapter 1]). While pre-order and post-order traversals are defined for all
types of trees, in-order traversal is defined only for binary trees.

The pre-order is a numbering of the vertices from 1 to n in the order they are discovered.
In the post-order the vertices are numbered from 1 to n by increasing finishing time. An
example of a depth-first tree for a digraph is shown in Figure 3.1 with the traversal numbers
given in the table on the right side.

tree edge

back edge

cross edge

forward edge

������ ������	�� ��
����	��

�

�

� �

�

�

 �

�

�

� �

�

�

�

v1

v2

v3 v4

Figure 3.1: Classification of edges in a depth-first search

There are the following properties of traversal numbers:

• The pre-order number of a vertex is greater than that of its parent.

• The in-order number of a vertex in a binary tree is greater than that of its left child
and smaller than that of its right child.

• The post-order number of a vertex is smaller than that of its parent.

• A specific traversal number of a vertex is always greater than that of its left sibling
and smaller than that of its right sibling.

A recursive procedure for carrying out a depth-first search is shown in Algorithm 1. The
algorithm processes all vertices and edges of a given digraph, identifies the edge by specifying
whether it is a back edge, forward edge or cross edge, and prints its kind in order in which
it has been determined (cf. [281, procedure CLASSIFY]).

The following properties characterize depth-first search:

• In a depth-first search of an undirected graph G every edge of G is either a tree edge
or a back edge. There are no forward edges and no cross edges.

38 CHAPTER 3. GRAPH TRAVERSAL ALGORITHMS

Algorithm 1 Depth-First Search of G
Require: Directed graph G = (V,E)

Ensure: Depth-First Forest
set time← 1

for each vertex v ∈ V do
set parent[v]← NIL

end for
for each vertex r ∈ V do
if discovery[r] = 0 then {white vertex}
set parent[r]← r {make r the root of T}
perform DFS(r)

end if
end for

procedure DFS(s)
set discovery[s]← time← time+ 1

for every arc (s, t) ∈ E do
if discovery[t] = 0 then {white vertex}
print (s,t) - tree edge
set parent[t]← s

perform DFS(t)
else if finishing[t] = 0 then {gray vertex}
print (s,t) - back edge

else {black vertex}
if discovery[s] < discovery[t] then
print (s,t) - forward edge

else
print (s,t) - cross edge

end if
end if

end for
set finishing[s]← time← time+ 1

3.2. BREADTH-FIRST SEARCH 39

• When a depth-first search is executed on a digraph each cross edge (x, y) has x to the
right of y (there are no left-to-right cross edges).

• A directed graph D is acyclic iff a depth-first search of D yields no back edges.

• The post-order number in a depth-first search yields a reverse topological ordering for
any directed acyclic graph.

3.2 Breadth-First Search

Depth-first search classifies the vertices of the traversed graph into white, gray and black
vertices. To keep track of progress, breadth-first search can also be used to classify the
vertices into the same three categories:

1. White vertex indicates a vertex that has not yet been visited.

2. Gray vertex indicates a vertex that has been visited but its children have not been
visited yet.

3. Black vertex indicates a vertex that has been visited and its children have been
visited as well.

White vertices are undiscovered while gray vertices are discovered but have undiscovered
adjacent vertices. Black vertices are discovered and are adjacent to only other black or gray
vertices.

Whenever a white vertex is discovered, it is colored gray and placed in the queue. The
color gray indicates the vertex that is currently in the queue. The color black indicates the
vertex that is no longer in the queue. The following table summarizes the basic features of
the vertices.

color state condition queue

white undiscovered parent[v] = NIL or level[v] =∞ -

gray discovered but not fully explored parent[v] 6= NIL or level[v] <∞ +

black fully explored parent[v] 6= NIL or level[v] <∞ -

Table 3.3: Classification of vertices in a breadth-first search

Recall that a depth-first search classifies each edge of a digraph into tree, back, forward
and cross edge [67, Section 22.3]. A breadth-first tree can also be used to classify edges into
the following categories:

1. Tree edge leads from a parent to its child.

2. Back edge leads from a descendant to its ancestor.

3. Cross edge connects two tree vertices that are not directly related.

40 CHAPTER 3. GRAPH TRAVERSAL ALGORITHMS

Note that a breadth-first search explores no forward edges. Observe also that, although
the properties of these edges remain the same, the breadth-first tree is different from the
depth-first tree on the same graph. A back edge in the depth-first tree may not be a back
edge in the breadth-first tree. A similar claim holds for cross edges. While cross edges in
the depth-first search are only directed from right to left, in the breadth-first search they
can be directed from right to left or from left to right.

The breadth-first search procedure develops a breadth-first tree with the source vertex r
as its root. The parent of any other vertex in the tree is the vertex from which it was first
discovered. For each vertex v the parent of v is stored in the variable parent[v]. Obviously,
we have parent[v] = v iff vertex v is the root of a breadth-first tree. Another variable,
level[v], computed by the search procedure, contains the number of tree edges on the path
from r to v. These values are integers between 0 and the diameter1 of the breadth-first tree.

Every vertex in a breadth-first tree can be reached from the root r by a shortest path.
Any vertex w on the unique path from r to v is called an ancestor of v and v is called a
descendant of w.

The determination of non-tree edges during a breadth-first search seems to be more
complex than in a depth-first search. Observe that every tree edge leads to a white vertex,
every back edge leads to a black vertex, whereas a cross edge can lead either to a gray or a
black vertex. This observation yields the following method.

The computational effort associated with our algorithm can be split into two stages:
executing a breadth-first search and then classification of edges. In the first stage of the
algorithm we build a breadth-first forest consisting entirely of tree edges and we compute
shortest paths from the root to every other vertex in the tree. In the second stage of the
algorithm we want to determine back and cross edges. We start from the leaf and examine
each outgoing/incoming edge on the path to the root. While the procedure in the first stage
was growing a tree, it stored the father of every vertex v in the variable parent[v]. With
this information we can easily find the path from leaf to the root of its tree. We detect that
we have reached the root when we hit a vertex v with parent[v] = v. Whether it is a back
edge or a cross edge, will be determined in the following way.

A breadth-first search of G corresponds to some kind of tree traversal on T . However, it
is not pre-order, post-order, or even in-order traversal; instead, the traversal goes one level
at a time, left to right within a level (where a level is defined simply in terms of distance
from the root of the tree). This traversal is called level-order traversal. Note that the pre-
order/post-order traversal is a list of the vertices in the order that they were first/last visited
by a depth-first search. We can simulate both these traversals in a breadth-first search as
follows.

Finding the pre-order or post-order numberings can be achieved through a depth-first
search on T in O(m+ n) time. Once pre-order and post-order numbers are assigned to the
vertices, we can correctly identify the structure of a breadth-first tree, because the traversal
numbers can be used to determine the various types of edges. What remains to be shown

1The diameter of a digraph D is the maximal distance between two vertices in D.

3.2. BREADTH-FIRST SEARCH 41

is that this method correctly identifies the edges. This will be done in the proof of the
following theorem.

Theorem 3.2.1 Let T be a breadth-first tree of a directed graph G = (V,E). Let x, y ∈ V
and (x, y) ∈ E. Let traversal numbers pre-order and post-order be assigned to the vertices.
These two numberings of the vertices can be used to classify the edges for the breadth-first
search. With respect to the breadth-first tree T , an arc (x, y) is a

1. tree edge, iff pre-order[x] < pre-order[y] ∧ post-order[x] > post-order[y]

2. back edge, iff pre-order[x] > pre-order[y] ∧ post-order[x] < post-order[y]

3. right-to-left cross edge, iff pre-order[x] > pre-order[y] ∧ post-order[x] > post-order[y]

4. left-to-right cross edge, iff pre-order[x] < pre-order[y] ∧ post-order[x] < post-order[y].

Proof Let us see why this is true. We only give an intuitive argument and invite the reader
for further detailed discussion. Firstly, observe that the pre-order (post-order) numbering
of a vertex is higher (lower) than those of its tree descendants. This fact together with the
observation that a back edge always goes from vertices to their ancestors with respect to
tree edges explains the characterization of back edges. Secondly, observe that cross edges
directed from right to left go from vertices with larger pre-order and post-order numbering
to vertices with smaller pre-order and post-order numbering. For cross edges directed from
left to right the converse holds - they lead from smaller to larger pre-order and post-order
numbering. This explains the characterization of cross edges. ut

The following table summarizes the basic features of edges in a breadth-first search (here,
symbol ⊕ denotes an exclusive-or logical operation).

class v w condition

tree edge gray white parent[w] = NIL or level[w] =∞

back edge gray
root parent[w] = w

black pre-order[v] > pre-order[w] ∧ post-order[v] < post-order[w]

cross edge gray
gray level[v] ≤ level[w] ≤ level[v] + 1

black pre-order[v] < pre-order[w]⊕ post-order[v] > post-order[w]

Table 3.4: Classification of edges in a breadth-first search

Thus, the algorithm to determine the partition of edges works in the following manner.
It first performs a breadth-first search, followed next by a depth-first search on the generated
shortest-path tree T . The first search discovers which vertices can reach which others and
finds shortest paths from a given vertex of a graph to other vertices. The second search
classifies non-tree edges. Then the condition pre-order[v] > pre-order[w] ∧ post-order[v] <

post-order[w] either holds or does not hold. In the former case {v, w} is a back edge and in
the latter case {v, w} is a cross edge.

Here is an iterative procedure for carrying out a breadth-first search:

42 CHAPTER 3. GRAPH TRAVERSAL ALGORITHMS

Algorithm 2 Breadth-First Search of G
Require: Directed graph G = (V,E)

Ensure: Breadth-First Forest
for each vertex v ∈ V do
set color[v]←WHITE

set parent[v]← NIL

end for
set Q← ∅
set r ← the first vertex of G
perform BFS(r)

procedure BFS(r)
set color[r]← GRAY

set parent[r]← r {make r the root of T}
set Q← {r}
while Q 6= ∅ do
set s← Q

set Q← Q \ {s} {DEQUEUE}
for every arc (s, t) ∈ E do
if color[t] = WHITE then {white vertex}
print (s,t) - tree edge
set color[t] = GRAY

set parent[t]← s

set Q← Q ∪ {t} {ENQUEUE}
else if color[t] = GRAY then {gray vertex}
print (s,t) - cross edge

else if t = r then {root}
print (s,t) - back edge

else {black vertex}
print (s,t) - cross edge or back edge

end if
end for
set color[s]← BLACK

end while

3.2. BREADTH-FIRST SEARCH 43

The figure below gives an example of a breadth-first tree and the resulting back and cross
edges with the pre-order and post-order numbers for each vertex being given in the table on
the right side of the figure. Arcs (v6, v3) and (v7, v1) are back edges, arcs (v3, v5) and (v7, v3)

are right-to-left cross edges, and arcs (v5, v6) and (v6, v4) are left-to-right cross edges.

tree edge

back edge

cross edge

������ ������	�� ��
����	��

�

�

� �

�

�

�

�

� �

�

�

� �

�

�

� �

�

�

� �

�

�

� �

v1

v2 v3 v4

v5 v6 v7

Figure 3.2: Classification of edges in a breadth-first search

The queue operations are enqueue(v) which inserts v at the rear of the queue, and
dequeue() which removes and takes the value of the first element of the queue. Each edge
is scanned at most twice. Thus the algorithm takes O(m) time. In the queue each vertex
may appear at most once. Therefore, the algorithm requires O(n) space in addition to the
input.

The overall running time complexity of breadth-first search is O(m+ n). Each vertex is
put on the queue exactly once and extracted exactly once; thus there are 2n queue operations.
Each edge is considered only once and, therefore, takes O(m) time.

The following properties characterize breadth-first search:

• In a breadth-first search of an undirected graph G every edge of G is either a tree edge
or a cross edge. There are no back edges and no forward edges.

• There are two kinds of cross edges: a left-to-right cross edge is directed from a smaller
discovery number to a larger one; a right-to-left cross edge is the opposite.

• During a search vertices leave the queue in order of their distances from the root.

• Any breadth-first tree is a shortest-path tree.

• A graph is bipartite if there are no cross edges with both endpoints on the same level.

Depth-first search is used for such diverse applications as connectivity and planarity of
undirected graphs, and cycle detection and topological ordering over the strongly connected
components of directed graphs, whereas breadth-first search is applied to shortest path
problems, network flows and the recognition of various graph classes. The following table
presents some applications of graph traversal algorithms:

44 CHAPTER 3. GRAPH TRAVERSAL ALGORITHMS

Problem DFS BFS reference

testing bipartiteness +
spanning forest + +
connectivity of an undirected graph + + Hopcroft & Tarjan [165]
strong connectivity of a directed graph + Tarjan [280]
shortest paths + Dijkstra [76]
biconnectivity of an undirected graph + Tarjan [280]
triconnectivity of an undirected graph + Hopcroft & Tarjan [166]
computing an st-numbering + Even & Tarjan [98]
planarity testing + Hopcroft & Tarjan [167]
topological ordering + Tarjan [284]
transitive closure + Ioannidis et al. [171]
testing flow graph reducibility + Tarjan [282]
finding dominators in a directed graph + Tarjan [281]
maximum matching in bipartite graphs + + Hopcroft & Karp [164]
maximum matching in general graphs + + Micali & Vazirani [221]

Table 3.5: Some applications of graph traversal algorithms

Chapter 4

Bipartite Graphs

In this chapter we introduce a generic propagation mechanism for constraint programming.
A first advantage of our pruning technique stems from the fact that it can be applied to
various global constraints. We describe a filtering scheme for such a family based on the
Dulmage-Mendelsohn Structure Theorem. Our method checks the feasibility in polynomial
time and then ensures hyper-arc consistency in linear time. It is also applicable to any soft
version of global constraint expressed in terms of a maximum matching in a bipartite graph
and remains of linear complexity.

This chapter suggests using matching theory related to the Dulmage-Mendelsohn Canon-
ical Decomposition of a bipartite graph as a framework to derive filtering algorithms for a
range of constraints based on matching. It presents the canonical decomposition and shows
how to apply it to global constraints whose solutions can be mapped to a matching problem.

The decomposition naturally identifies edges that are in all, some or none of the max-
imum matchings of the bipartite graph. As solutions of the constraint can be mapped to
such matchings, the pruning of the domains can be done according to the meaning of the
respective edge in the bipartite graph.

This chapter proposes a generic filtering algorithm for bipartite matching-based con-
straints. The algorithm is simple and intuitive. It relies on the Dulmage-Mendelsohn
Canonical Decomposition of bipartite graphs. The chapter shows how such a decomposition
can be used to improve the practical results of global constraints such as the well-known
alldifferent or global_cardinality constraints.

The chapter also shows that the Dulmage-Mendelsohn decomposition can be applied to
the soft version of bipartite matching-based constraints. We represent the cost of violation as
a deficiency of a matching and compute an optimal degree-matching in the auxiliary graph.
This can be done efficiently with matching theory. We apply our method to a number of
soft global constraints and obtain an efficient filtering algorithm.

We feel bipartite graphs deserve special treatment because it is the case that the majority
of real-world applications of matching theory deal with graph models which are bipartite.
The problem of finding a maximum matching in a bipartite graph arises in many areas of
operations research and other fields, and the search for efficient algorithms for the prob-

45

46 CHAPTER 4. BIPARTITE GRAPHS

lem has received a great deal of attention. Extensive discussion of the problem and its
applications can be found in the monographs of Lawler [201, Chapter 5], Papadimitriou &
Steiglitz [242, Chapter 10]. The book by Asratian, Denley, & Häggkvist [15] is an excellent
reference which deals solely with bipartite graphs.

Now we survey the algorithm for finding in bipartite graphs a matching of maximal
cardinality. One of the best algorithms for our problem is by John E. Hopcroft and Richard
M. Karp [164]. The main idea is to find many augmenting paths in one traversal of the
graph. Their algorithm is divided into phases. In each phase a maximal set of vertex-
disjoint augmenting paths of shortest length is found and is used to augment the matching.
The number of phases is at most O(

√
n) (see Proposition 5.2.4 in [15]).

Table 4.1 summarizes known polynomial-time algorithms for the problem (cf. [264, Sec-
tion 16.7a]). Here, ω is any real number such that any two n×n matrices can be multiplied
by O(nω) arithmetic operations (e.g. ω = 2.376).

Year Author(s) Complexity Strategy/Remarks

1931 König [192] O(n ·m) Hungarian method
1955 Kuhn [198] O(n ·m) Hungarian method
1962 Ford & Fulkerson [106] O(n ·m) network flow
1971 Hopcroft & Karp [164] O(

√
n ·m) shortest paths

1973 Karzanov [183] O(
√
n ·m) based on Dinits [78]

1981 Ibarra & Moran [170] Õ(nω) matrix multiplication
1991 Balinski & Gonzalez [19] O(n ·m) strong spanning trees
1991 Alt, Blum, Mehlhorn, & Paul [10] O(n ·

√
n·m
logn) matrix scanning

1991 Feder & Motwani [102] O(
√
n ·m logn

n2

m) graph compression
1997 Goldberg & Kennedy [141] O(

√
n ·m logn

n2

m) push-relabel method
2004 Mucha & Sankowski [224] Õ(nω) matrix multiplication

Table 4.1: History of algorithms for the cardinality bipartite matching problem

The approach presented in this chapter was published in [70]. The version showed here
generalizes and improves the original results. We will be able to describe the algorithms
more simply and the presentation of the propagation algorithm should be clearer than in
the paper. There are some new results. We state the principle of duality (see Theorems 4.1.7
and 4.1.8). Section 4.5 is new, as well.

4.1 Preliminaries

Let G be a bipartite graph with degree conditions g and f , and suppose that M is any
(g, f)-matching of G. A sequence of vertices and edges P = v0e1v1..etvt is said to be an
augmenting trail in G relative to M if

i) P is an alternating trail, i.e. ei /∈M for odd i and ei ∈M for even i (1 ≤ i ≤ t),

ii) v0 is an exposed vertex, i.e. dM (v0) < g(v0),

4.1. PRELIMINARIES 47

iii) δ(G[M ⊕ P]) < δ(G[M]), i.e. |M ⊕ P | = |M |+ 1.

Observe that the augmenting trails may terminate at saturated vertices (either t is odd
and g(vt) ≤ dM (vt) < f(vt) or t is even and g(vt) < dM (vt) ≤ f(vt)).

From the definition stated above, we can easily see the following result (see also [163]).

Theorem 4.1.1 The (g, f)-matching M in a graph is optimal iff there is no augmenting
trail relative to M .

The following result follows easily from the assumption that G is bipartite.

Corollary 4.1.2 The (g, f)-matching M in a bipartite graph is optimal iff there is no aug-
menting path relative to M .

A perfect (g, f)-matching of G with a maximum number of edges is called a maximum
perfect (g, f)-matching. Analogously, a perfect (g, f)-matching ofG with a minimum number
of edges is called a minimum perfect (g, f)-matching.

x6

(1,2)
x5

(1,3)
x4

(1,1)
x3

(0,1)
x2

(0,2)

(1,2)
y1

(1,2)
y4

(1,2)
y2

(0,1)
y3

(0,2)
y6

x1

(1,2)

(1,1)
y5

(0,1)
y7

x6

(1,2)
x5

(1,3)
x4

(1,1)
x3

(0,1)
x2

(0,2)

(1,2)
y1

(1,2)
y4

(1,2)
y2

(0,1)
y3

(0,2)
y6

x1

(1,2)

(1,1)
y5

(0,1)
y7

Figure 4.1: Minimum and maximum perfect (g, f)-matching

The following properties characterize graphs with perfect (g, f)-matchings.

• The size of the minimum perfect (g, f)-matching is at least max{g(V1), g(V2)}.

• The size of the maximum perfect (g, f)-matching is at most min{f(V1), f(V2)}.

Theorem 4.1.3 A maximum matching can be obtained from any other maximum matching
by a sequence of transfers along alternating cycles and paths of even lengths.

Proof See Theorem 5.1.7 in [15]. ut

Theorem 4.1.4 (Petersen [243]) Every perfect f -matching can be transformed into an-
other perfect f -matching by a series of transformations along even alternating cycles.

Proof See Theorem 7.2.4 in [15]. ut

Just as for perfect matchings and f -matchings, we can transform any perfect (g, f)-
matching into any other by a series of transformations. These transformations are based on
alternating paths and cycles. But first, let us introduce some new terms.

A graph G will be called normalized if f(x) 6= 0 and g(x) 6= d(x). We can make any
graph G with a perfect (g, f)-matching normalized in the following manner. A vertex x for

48 CHAPTER 4. BIPARTITE GRAPHS

which g(x) = f(x) = 0 will be deleted from G since obviously such a vertex cannot be a part
of any perfect degree-matching; we mark all adjacent edges as forbidden. Likewise, we can
also eliminate the case in which G contains a vertex of degree d(x) = g(x) = f(x) since we
can remove this vertex, decrease by 1 the degree conditions g and f of all incident vertices
and mark all adjacent edges as mandatory. In other words, we may assume in the sequel
that for all x ∈ V (G) we always have 0 ≤ g(x) < f(x) ≤ d(x) or 0 < g(x) = f(x) < d(x).

Let G be a normalized bipartite graph with an arbitrary perfect (g, f)-matching M . The
vertex x will be labeled as positive if dM (x) < f(x), or as negative if g(x) < dM (x). Clearly,
a vertex can be labeled both positive and negative (when g(x) < dM (x) < f(x)). Intuitively,
the positive (or negative) vertex x means that, without changing the deficiency of G, it is
possible to insert (or remove) the matched edge at x along an alternating path. Further, let
us call the vertex neutral when g(x) = dM (x) = f(x). Then any perfect (g, f)-matching M ′

can be obtained from any other perfect (g, f)-matching M by a sequence of transfers along
alternating paths or cycles of the following types:

1. an alternating path of even length, called a negative alternating path, connecting two
distinct vertices, starting from a negative vertex and a matched edge and terminating
with a free edge and a positive vertex;

2. an alternating path of even length, called a positive alternating path, connecting two
distinct vertices, starting from a positive vertex and a free edge and terminating with
a matched edge and a negative vertex;

3. an alternating path of odd length, called a decreasing alternating path, between two
distinct negative vertices and matched edges (in this case the deficiency of the graph
remains the same but the number of matched edges decreases);

4. an alternating path of odd length, called an increasing alternating path, between two
distinct positive vertices and free edges (in this case the deficiency of the graph remains
the same but the number of matched edges increases);

5. an alternating cycle (of even length).

Figure 4.2 illustrates alternating paths of various types (negative and positive endpoints
are designated by [−] and [+], respectively):

u2i

[+]
u0

[-]

u0

[+]
u2i

[-]

u0

[-]
u2i+1

[-]

u0

[+]
u2i+1

[+]

Figure 4.2: Alternating paths defined for perfect (g,f)-matchings

Observe that each transfer along any alternating path does not change the degrees of
internal vertices but only changes the degrees of endpoints by one.

4.1. PRELIMINARIES 49

Next, we investigate the properties of matching transformation in bipartite graphs. That
is, given two matchings, we can start with one and transform to another one through the
operation of symmetric difference. Combining theorems with properties we can deduce the
following results.

Theorem 4.1.5 A perfect (g,f)-matching M of a bipartite graph G can be obtained from
any other perfect (g, f)-matching M ′ by a sequence of transfers along alternating cycles of
even length and alternating paths of even and odd length.

Proof The proof of this theorem is similar to that of Theorem 7.2.4 in [15]. ut

Theorem 4.1.6 A perfect (g, f)-matching M in a bipartite graph G is minimum iff there
exists in G no decreasing alternating path relative to M ; it is maximum iff G has no in-
creasing alternating path relative to M .

Principle of duality

Now we introduce the dual structures in the (g, f)-matching problem needed by the frame-
work of this chapter (see Section 4.3.4). We consider a global degree-matching problem
thus also the dual is defined globally. Some first steps in this direction have been made
in [234],[236] and [294]. It is convenient to define other functions g′ and f ′ on V (G) by
the rule g′(x) = dG(x) − g(x) and f ′(x) = dG(x) − f(x). Then all associated properties
of (g, f)-matchings also hold with f ′ replacing f and g′ replacing g. The correspondence
(g, f)→ (f ′, g′) imposes a kind of duality in matching theory.

The dual factor F ′ of F has the same vertices as F and the edge e ∈ E(G) is in F ′ iff e
is not in F . Thus the dual of F is obtained by interchanging all occurrences of the matched
edges with the free edges. We have already encountered other dual concepts, such as duality
theory in linear programming [242, Chapter 3], matroid duality [201, Chapters 7 and 8],
directional duality [151, Chapter 2], and so on. The latter is a classical result in the theory
of binary relations.

For each theorem about factors (degree-matchings), there is a corresponding theorem
obtained by replacing every concept by its dual. The concept of dual factors provides
a duality in matching theory. The dual theorem follows immediately after applying the
principle of duality. We now illustrate how this principle generates new results. Here are
some very simple ones

Theorem 4.1.7 Let g and f be integer-valued functions on the vertex set V (G) of a graph G
and 0 ≤ g(x) ≤ f(x) ≤ d(x) for each vertex x ∈ V . Then G has a perfect (g, f)-matching iff
it has a perfect (f ′, g′)-matching, whose edges are those edges of G not belonging to the perfect
(g, f)-matching. In particular, an edge is mandatory concerning perfect (g, f)-matching iff
this edge is forbidden concerning perfect (f ′, g′)-matching, and vice versa.

Proof LetM be a perfect (g, f)-matching in G. Then g(x) ≤ dM (x) ≤ f(x) for every vertex
x ∈ V (G). From the definition of the dual matching M ′ holds dM ′(x) = dG(x) − dM (x).

50 CHAPTER 4. BIPARTITE GRAPHS

This being given we have f ′(x) = dG(x) − f(x) ≤ dG(x) − dM (x) ≤ dG(x) − g(x) = g′(x).
Thus, every dual matching M ′ is a perfect (f ′, g′)-matching. ut

Theorem 4.1.8 The problem of finding a perfect (g, f)-matching in G with the minimum
number of edges is equivalent to the problem of finding a perfect (f ′, g′)-matching in G with
the maximum number of edges, and vice versa.

Proof According to Theorem 4.1.6 a perfect (g, f)-matching is minimum/maximum iff there
is no decreasing/increasing alternating path in G. Because of this fact we will prove our
theorem by contradiction. Assume that M is a minimum perfect (g, f)-matching but its
dual M ′ does not have the maximum number of edges. This means that there exists in
G an increasing alternating path with respect to M ′. Since this path will increase the
number of edges in M ′, then, according to Theorem 4.1.7, there exists in G the dual perfect
(g, f)-matching with the smaller number of edges than M . But this is a contradiction of
our assumption that M has the minimum number of edges. This contradiction proves our
theorem. ut

Observe that the last result is a minimax theorem, a theorem which states that the
minimum of one thing is equal to the maximum of another. Every minimax theorem in graph
theory can be derived as a direct consequence of the duality theorem in linear programming
(see [212, Theorem 7A.2]). There are some classic minimax theorems known, such as, for
example, Menger’s Theorem (see [212, Theorem 2.4.1]), Dilworth’s Chain-Decomposition
Theorem (see Theorem 1.4.8 and Theorem 1.4.12 in [212]), Max-Flow Min-Cut Theorem
(see [212, Theorem 2.1.4]), Egerváry’s Theorem (see [212, Theorem 7.1.4]). Recall that the
dual of the maximum matching problem in bipartite graphs is the minimum vertex cover
problem (see König’s Minimax Theorem [212, Theorem 1.1.1]).

4.2 Dulmage-Mendelsohn Canonical Decomposition

This section is devoted to a comprehensive survey of the Dulmage-Mendelsohn Canoni-
cal Decomposition, a unique decomposition of a bipartite graph with respect to maximum
matchings. Later in this work we will see that it has an attractive application in efficient
filtering algorithms. A standard reference for matching theory, with emphasis on structures
rather than algorithms, is [212].

Let G be a bipartite graph with bipartition (V1, V2). Furthermore, let M be an initial
maximum matching in G. Denote by 〈A1, B1, C1〉 the decomposition of V1 (relative to M)
into three disjoint subsets A1, B1, and C1, where

B1 = {x ∈ V1|x is reachable from at least one exposed vertex in V1 via alternating paths},

A1 = {x ∈ V1|x is reachable from at least one exposed vertex in V2 via alternating paths},

C1 = V1 \ (A1 ∪B1).

Symmetrically, there exists a similar decomposition 〈A2, B2, C2〉 of V2, the other color
class of the bipartite graph, where

4.2. DULMAGE-MENDELSOHN CANONICAL DECOMPOSITION 51

B2 = {y ∈ V2|y is reachable from at least one exposed vertex in V2 via alternating paths},

A2 = {y ∈ V2|y is reachable from at least one exposed vertex in V1 via alternating paths},

C2 = V2 \ (A2 ∪B2).

4.2.1 Bipartite Graphs with Imperfect Maximum Matchings

The structure of bipartite graphs was considered by Andrew L. Dulmage and Nathan S.
Mendelsohn [83–86] before the results were derived for general graphs by Tibor Gallai and
Jack Edmonds [90]. The authors published a series of papers in which they worked out the
canonical decomposition for bipartite graphs in terms of maximum matchings and minimum
vertex covers1. Some of their results are summarized in the next theorem.

Theorem 4.2.1 (Dulmage-Mendelsohn Structure Theorem) Let G = (V1∪V2, E) be
a bipartite graph and let 〈A1, B1, C1〉 and 〈A2, B2, C2〉 are defined as above. Then

1. B = B1 ∪B2 is an independent set of vertices,

2. The subgraph G[C1 ∪ C2] has a perfect matching, and hence |C1| = |C2|,

3. Γ(B1) = A2 and Γ(B2) = A1,

4. Every maximum matching of G consists of a perfect matching of G[C1∪C2], a complete
matching from A1 into B2 and a complete matching from A2 into B1,

5. The subgraphs induced by A1∪B2 and A2∪B1 have positive surplus when viewed from
A1 and A2, respectively,

6. The size of a maximum matching is 1
2 (|V | − |B|+ |A|).

Proof See Theorem 3.2.4 in [212]. ut

We call the decomposition given in this theorem the Dulmage-Mendelsohn Canonical
Decomposition of the bipartite graph. An example of such decomposition is illustrated in
Figure 4.3 (this and the next image is taken from [246]).

B1 C1 A1

A2 C2 B2

V1

V2

Figure 4.3: Dulmage-Mendelsohn decomposition of a bigraph with a maximum matching

The reader is invited to verify the sets in terms of some other maximum matching and
to check that, by Theorem 4.2.1, the decomposition has the following properties:

1Recall that in bipartite graphs there is always a vertex cover and a matching of the same cardinality.

52 CHAPTER 4. BIPARTITE GRAPHS

• There is no edge between B1 and C2, between B2 and C1, and between B1 and B2.

• Edges between C1 and A2, between C2 and A1, and between A1 and A2 never belong
to a maximum matching.

• Every edge incident with a vertex of B1 or B2 lies in some maximum matching of G
(see Lemma 2.5.7).

• Vertices of A1 and A2 are saturated by every maximum matching (see Lemma 2.5.7).

• Vertices of B1∪B2 are exposed by at least one maximum matching (see Lemma 2.5.7).

With these concepts every bipartite graph has a unique decomposition into three induced
subgraphs (not necessarily connected): G[C1 ∪ C2], G[A1 ∪ B2] and G[A2 ∪ B1] together,
perhaps, with some additional edges between A1 and A2, A1 and C2, and between A2 and
C1, joining these three subgraphs in certain ways. These additional edges do not occur in
any maximum matching. Two of these three subgraphs, G[A1 ∪ B2] and G[A2 ∪ B1], are
bipartite graphs with positive surplus. Graph G[C1 ∪C2], on the other hand, is a subgraph
with a perfect matching. It has an interesting further decomposition which will be discussed
in the next subsection.

The subgraph G[A1 ∪ B2] with vertex sets A1 and B2 represents the underdetermined
part of the decomposition, the subgraph G[C1 ∪ C2] with vertex sets C1 and C2 represents
the determined part, and the subgraph G[A2 ∪ B1] with vertex sets A2 and B1 represents
the overdetermined part.

4.2.2 Bipartite Graphs with Perfect Matchings

Recall that a bipartite graph G is elementary if every edge of G is contained in at least
one perfect matching of G. There exists a decomposition of bipartite graphs with a perfect
matching into elementary bipartite subgraphs.

Let us now consider the bipartite graph G with a perfect matching M . The following
result due to König [191] and Dulmage & Mendelsohn [83,84] gives the canonical decompo-
sition of any bipartite graph with a perfect matching into elementary bipartite subgraphs.

Theorem 4.2.2 (Decomposition into elementary bipartite subgraphs) Let G be a
bipartite graph with a perfect matching M . Denote by Si and Ti (i = 1, . . . , k) the set of
vertices from V1 and V2, respectively, joined by a matched edge or reached via alternating
cycles (of even length). Then:

1. Each Hi = G[Si∪Ti] is an elementary subgraph with a perfect matching, so |Si| = |Ti|,

2. |Γ(X)| > |X| for every non-empty proper subset X of Si or Ti,

3. The bipartite graph obtained by shrinking every Si and Ti to a vertex and replacing
each set of parallel edges by a single edge has a unique perfect matching of size k,

4.2. DULMAGE-MENDELSOHN CANONICAL DECOMPOSITION 53

4. Elementary subgraphs Hi = (Si ∪ Ti, Ei) can be labeled in such a way that every edge
in G from a subgraph Hi to a subgraph Hj with i < j has one endpoint in Ti and the
other one in Sj.

Proof See Theorem 4.1.1, Lemma 4.3.1 and Lemma 4.3.2 in [212]. ut

Of course, this decomposition is unique and does not depend on the initial perfect match-
ing. An example of such decomposition is shown in Figure 4.4.

S1 S2 S3

C1

C2

T1 T2 T3

Figure 4.4: Dulmage-Mendelsohn decomposition of a bigraph with a perfect matching

In other words, from the previous theorem it follows that the decomposition has the
following properties:

• Edges between Hi and Hj with i 6= j never belong to a perfect matching

• if |Hi| ≥ 4 then every edge of Hi does not belong to at least one perfect matching

• if Hi = K2 then the only edge of Hi is contained in every perfect matching

By this theorem every bipartite graph with a perfect matching has a unique decomposi-
tion into elementary bipartite subgraphs together with some additional edges between them
joining these subgraphs in certain ways. These additional edges do not occur in any perfect
matching.

4.2.3 Bipartite Subgraphs with prescribed Degrees

Let G be a graph with degree conditions g and f . Recall that a perfect (g, f)-matching
in G is a subset of E(G) such that for each vertex x at least g(x) and at most f(x) edges
incident to x are in the subset. An f -matching is called perfect if, for each vertex x, there
are exactly f(x) edges incident to x. An optimal (g, f)-matching is a matching with the
smallest deficiency.

The existence of an optimal (g, f)-matching is guaranteed by Theorem 10.2.5 in [212].
The key is to find a (0, f)-factor F minimizing deficiency. This can be done in a way similar
to the algorithm due to Hopcroft & Karp. If for a vertex x it holds that dF (x) < g(x), then
the graph has no perfect (g, f)-matching. Otherwise, F itself is a (g, f)-factor of G. Hell &
Kirkpatrick [158] have shown that this method can be realized in O(

√
g(V) ·m) operations.

54 CHAPTER 4. BIPARTITE GRAPHS

An algorithm to compute an optimal f -matching was given by Quimper et al. in [253].
It is a generalization of the algorithm due to Hopcroft & Karp with a similar O(

√
f(V) ·m)

time complexity.
Although the Dulmage-Mendelsohn decomposition is defined only for bipartite graphs

with a maximum matching, we are able to extend it to a class of bipartite graphs with an
optimal (g, f)-matching. We now state the generalized version of the Dulmage-Mendelsohn
canonical decomposition. Consider the following decomposition of V1 into three disjoint
subsets:

B1 = {vertices in V1 reachable by alternating trails from some exposed vertex in V1},

A1 = {vertices in V1 reachable by alternating trails from some exposed vertex in V2},

C1 = V1 \ (A1 ∪B1).

The decomposition 〈A2, B2, C2〉 of V2 can be similarly defined. The decomposition is
unique and independent of the initial optimal (g, f)-matchingM . In Figure 4.5 we illustrate
the decomposition.

(1,2)(1,2)(1,1)(1,1)(0,1)(0,2)

(1,2)(1,1) (1,2)(1,1)(1,1) (2,2) (1,1)(1,2) (1,2)

(1,2) (2,3)(1,2) (1,1)(1,1)

(3,4) (2,2)

(1,1)(1,1) (1,1)

B1 C1 A1

A2 C2 B2

V1

V2

Figure 4.5: Dulmage-Mendelsohn decomposition of a bigraph with an optimal (g,f)-matching

The reader is asked to check the decomposition of the graph G in the figure. Note that
δ(G, (g, f)) = 2. According to observations we can formulate the following result.

Theorem 4.2.3 Let G be any bipartite graph with degree conditions g and f . Then, there
is a partition 〈A1, B1, C1〉 and a partition 〈A2, B2, C2〉 so that the following statements hold:

1. If x ∈ A1 ∪A2, then dM (x) ≥ f(x) for every optimal (g, f)-matching M .

2. If x ∈ B1 ∪B2, then dM (x) ≤ g(x) for every optimal (g, f)-matching M .

3. No edge connecting A1 to C2, A2 to C1, or A1 to A2 belongs to any optimal (g, f)-
matching.

4. Every edge connecting B1 to C2, B2 to C1, or B1 to B2 belongs to every optimal
(g, f)-matching.

Proof See Theorem 10.2.12 and Theorem 10.2.13 in [212]. ut

We are now ready to formulate the main structure theorem, which, together with the
previous theorem, establishes the canonical decomposition of bipartite graphs with optimal
(g, f)-matchings. Let us define the functions ḡ and f̄ by ḡ(x) = g(x) ·−|∇(x,B)|, f̄(x) =

f(x) ·−|∇(x,B)| for every x ∈ C1 ∪ C2.

4.3. PARTITION OF VERTICES AND EDGES 55

Theorem 4.2.4 Let A = A1∪A2, B = B1∪B2 and C = C1∪C2, whereby 〈A1, B1, C1〉 and
〈A2, B2, C2〉 are the three sets of the Dulmage-Mendelsohn decomposition for bipartite graph
G with an optimal (g, f)-matching M . Then this decomposition has the following properties:

1. The subgraph G[C1 ∪ C2] (not necessarily connected) has a perfect (ḡ, f̄)-matching.

2. The subgraphs G[A1 ∪ B2] and G[A2 ∪ B1] have positive surplus (as viewed from A1

and A2, respectively).

3. Every optimal (g, f)-matching of G[A1 ∪ B2], or G[A2 ∪ B1], saturates A1, or A2,
respectively.

4. Every optimal (g, f)-matching of G splits into a perfect (ḡ, f̄)-matching of G[C1 ∪C2]

and complete (g, f)-matchings of G[A1 ∪B2] and G[A2 ∪B1].

5. Subgraph G[C1∪C2] has further decomposition into elementary bipartite subgraphs with
respect to (g, f)-matchings. Edges between these subgraphs never belong to any perfect
(g, f)-matching.

Proof See Theorem 10.2.18 in [212]. ut

4.3 Partition of vertices and edges

In the following, we assume that one maximum matching is initially established. Suppose
we have a maximum matching M in a bipartite graph G = (V1 ∪ V2, E). The overall aim
is to specify some procedures that allow us to efficiently make the following partition of the
vertex set:

• the set of vertices exposed by at least one maximum matching (allowed vertices)

• the set of vertices saturated by every maximum matching (mandatory vertices)

and the following partition of the edge set:

• the set of edges belonging to no maximum matching (forbidden edges)

• the set of edges not belonging to at least one maximum matching (allowed edges)

• the set of edges belonging to all the maximum matchings (mandatory edges)

Any forbidden edge e can be deleted from graph G without affecting the deficiency of G.
Similarly, we can delete any mandatory edge e = {v, w} together with its endpoints v and
w and all edges incident with them without changing the deficiency.

56 CHAPTER 4. BIPARTITE GRAPHS

4.3.1 Alternating breadth-first search

The canonical decomposition 〈A1, B1, C1〉 and 〈A2, B2, C2〉, and thus the partition of ver-
tices, can be determined by performing a special kind of breadth-first search, called an
alternating breadth-first search, starting from exposed vertices of G. The search is restricted
to vertices reachable via alternating paths. Then B1 and A2 are given by the vertices of
G appearing in breadth-first trees rooted at exposed vertices of V1. Since we only consider
alternating paths in the traversal, we will refer to these trees as an alternating breadth-first
forest . The set B1 is the union of vertices occurring on the even levels of the forest, while the
set A2 is the union of vertices occurring on the odd levels of the forest. The sets B2 and A1

can be determined in the same way as B1 and A2, by forming the alternating breadth-first
forest from the set of exposed vertices in V2. It is obvious that the alternating breadth-first
search only operates along alternating paths.

The vertices in B1∪B2 are allowed; all the remaining vertices are mandatory. The edges
between C1 and A2, between C2 and A1, and between A1 and A2 are forbidden. The edges
between C1 and B2, between C2 and B1, and between B1 and B2, if any, are mandatory
(this situation occurs only in the case of the degree-matching). All the edges traversed
by the alternating breadth-first search are allowed. The subgraphs GU = G[A1 ∪ B2] and
GO = G[A2 ∪ B1] have as many connected components as the number of trees in the
alternating breadth-first forest and we have made the first decomposition step in the graph.
We now have to consider the decomposition of G[C1 ∪ C2].

4.3.2 Alternating depth-first search for perfect matchings

Now the question is how to have an efficient way to find the decomposition of edges in
G[C1 ∪ C2]. The following theorem gives an answer to this question (cf. [212, Exercise
4.1.5]).

Theorem 4.3.1 Consider a bipartite graph G = (V1∪V2, E) with an initial perfect matching
M . Let D be the directed graph obtained from G by replacing each matched edge by an arc
leading from V1 to V2 and by orienting all other edges in the opposite direction. Then the
strongly connected components of D are exactly the elementary bipartite subgraphs of G.

Proof See Theorem 5.1.1 in [309]. ut

We can use the auxiliary digraph to decide whether a given edge e in G can belong to
some perfect matching in G. In order to realize it we will need the following criterion:

Lemma 4.3.2 Let G be a graph and M be a perfect matching in G. Let e /∈M be an edge
in G. Then e = {xi, yj} can belong to some perfect matching in G iff xi and yj lie in the
same strongly connected component of the auxiliary digraph D.

Proof See Proposition 1 in [255]. ut

4.3. PARTITION OF VERTICES AND EDGES 57

This observation yields the following simple algorithm to compute the partition of edges
in a graph with an initial perfect matching. We first compute the strongly connected com-
ponents in the auxiliary digraph D. Edges whose endpoints are both in the same strongly
connected component belong to an even alternating cycle in G, and thus are allowed. Edges
that are not allowed but belong to M are mandatory. All other remaining edges, with end-
points in two distinct strongly connected components, as non-admissible and not belonging
to M , are forbidden.

A high-level description of the procedure that detects partition of vertices and edges is
described below (cf. Algorithm 2 in [255]):

Algorithm 3 Dulmage-Mendelsohn Canonical Decomposition of G
Require: Bipartite graph G = (V1 ∪ V2, E)

Ensure: Partition of vertices and edges
Compute the maximum matching M of G
Mark all vertices as MANDATORY and all edges as FORBIDDEN
Perform a breadth-first search starting from exposed vertices
Mark all traversed edges as ALLOWED
Mark all visited vertices on the even level as ALLOWED
Find partition of V1 into the sets A1, B1, and C1

Find similarly partition of V2 into the sets A2, B2, and C2

The Dulmage-Mendelsohn Decomposition is given by 〈A1, B1, C1〉 and 〈A2, B2, C2〉
Let GU = G[A1 ∪B2] and GO = G[A2 ∪B1]

Calculate GW = G[C1 ∪ C2] = G−GU −GO
Construct the auxiliary directed graph D from GW as described in the text
Compute all strongly connected components SCC1, . . . , SCCk of D
Find the partition of edges as explained in the text
Remove all forbidden edges from G

We now consider the complexity of this procedure. Before the execution of the first step
we have to construct a maximum matching M in the graph G. This takes O(

√
n ·m) time

and O(m · n) memory by using the algorithm of Hopcroft & Karp [164]. The other steps
can be done in a total time of O(m+ n), since the computation of the partition of vertices
and edges is made by a classical breadth-first/depth-first search in linear time using the
algorithm by Tarjan [280] (see also [67, Chapter 22]). Since the complexity of identifying
the strongly connected components can be done in time O(m+ n), we conclude that, with
an initial maximum matching M , we can establish the partition of edges in linear time.

Theorem 4.3.3 Let G be a bipartite graph with an initial maximum matching M . Then
the Dulmage-Mendelsohn Canonical Decomposition of G can be computed in linear time.

Observe that if we need to split the graph G (based on the bipartite subgraph of C1 and
C2) into two classes: admissible and non-admissible edges, then we have only to construct
a directed auxiliary graph D obtained from G as follows. The directed graph consists of

58 CHAPTER 4. BIPARTITE GRAPHS

vertices from C1. From two vertices xi and xj in C1 there is a directed edge xi to xj in this
new directed graph iff there is an edge from xi to the mate(xj) in C2. In order to obtain
the desired decomposition apply now thereon an algorithm for finding strongly connected
components. The trivial components represent the then mandatory edges. Note also that,
with a small modification, our procedure works on the bipartite graphs with parallel edges.

We have seen that by performing three steps:

1. Construct the auxiliary directed graph D,

2. Compute the strongly connected components of D,

3. Determine the partition of edges,

it is possible to find the decomposition of the graph. It is not so obvious that this can also
be done in only one step. In the rest of this subsection we present a linear time algorithm
based on the depth-first search that maintains a representation of alternating cycles. This
approach is important for speeding up some algorithms on graph G (e.g. for the Gallai-
Edmonds Canonical Decomposition).

Another algorithm

We hereby present a procedure that allows us to classify the edges of several alternating
cycles with only one search phase and to simply derive the decomposition of the graph.

In order to give the faster method for computing the decomposition into elementary
bipartite subgraphs, and thus the partition of edges, we need to construct a special kind
of depth-first forest called an alternating depth-first forest . Let G = (V1 ∪ V2, E) be an
arbitrary bipartite graph with an initial perfect matching M . The routine will traverse
the bipartite graph in the following manner. If the level is odd, all adjacent edges (except
matched ones) leave the vertex, whereas when the level is even, only a matched edge leaves
the vertex. Thus, an alternating depth-first search, similar to an alternating breadth-first
search, simulates the traversing on the directed graph and constructs layers that alternately
use matched and free edges. The difference is that the alternating breadth-first search starts
from the exposed vertex and all the even levels are governments by the current matching
M but the alternating depth-first search starts from the saturated vertex and all matched
edges are responsible for odd levels. For odd levels, the vertices are simply given by the
mates of the vertices from the previous even level. For even levels, the next vertex is some
unvisited neighbor of a vertex from the previous odd level. Therefore, every vertex on the
even level must have its mate on the odd level. This implies that the alternating depth-first
tree must have leaves on odd levels. It should be obvious that an alternating depth-first
search maintains alternating cycles.

An alternating depth-first forest is an ordered collection of (vertex-disjoint) depth-first
trees, each rooted at some vertex of G with a matched edge from M , so that every vertex
in G and each matched edge from M belongs to exactly one tree.

We now give the following result, which is a direct consequence of Lemma 4.3.2, Corol-
lary 2.4.3 and Theorem 4.2.2 (see also [25]).

4.3. PARTITION OF VERTICES AND EDGES 59

Corollary 4.3.4 Let M be a perfect matching in a bipartite graph G and let C1, . . . , Ck be
the cycles (relative to M) determined by an alternating depth-first search on G. Then

• Edges included in any alternating cycle are allowed.

• Matched edges included in no alternating cycle are mandatory.

• Free edges included in no alternating cycle are forbidden.

In order to derive the algorithm we first introduce some notations. We call a cycle
completed if all its vertices are black and we call it active if this is not the case. Among the
set of vertices that currently belong to an alternating cycle Ci, let ci be the vertex whose
discovery timestamp is minimum. Then the vertices of Ci form a subtree of an alternating
depth-first tree. Vertex ci is called the core of the cycle Ci. A nested cycle is a cycle whose
core belongs to another alternating cycle. A cycle can be nested in more than one cycle or
may involve several cycles. These cycles are merged into one, with the core closest to the
root of the tree. Clearly, all vertices reachable from vertices in a completed cycle are black.
In particular, a cycle is active until its core is gray.

We now describe the algorithm in more detail. If {v, w} is a tree edge we simply initiate
a recursive call of depth-first search. If {v, w} is a non-tree edge and w is black or belongs to
a completed cycle then no action is required to maintain the alternating cycles. If {v, w} is
a non-tree edge and w is gray (this is the case with back edges) or belongs to an active cycle
then an alternating cycle is detected. For simplicity of routine, we allow (alternating) cycles
to have length 0 so that each vertex will be marked (at start) as belonging to a (trivial)
cycle.

We use an idea of contracting cycles obtained by replacing the vertices defining cycle
with its core. If the alternating depth-first search encounters a vertex belonging to a cycle,
then the search jumps to the core of the cycle. If the search finds a new alternating cycle
then this cycle is embedded to the contracted cycle. Clearly, the tree T ′ formed from T

by collapsing the cycle C contains an alternating cycle iff T does, since bipartite graphs
have only cycles of even length (see Theorem 2.5.1) and every traversed edge connects two
vertices on levels with different parities.

We now prove the correctness of our algorithm by the following results.

Lemma 4.3.5 If an edge is on a closed alternating trail then it is on an alternating cycle.

Proof Let C = v0e1v1 . . . vt−1etv0 be the shortest closed alternating trail. Then C is an
alternating cycle. In order to see it, suppose conversely that there exists 1 ≤ i < j < t such
that vi = vj . Since bipartite graphs have only cycles of even length (see Theorem 2.5.1)
then C ′ = v0e1v1 . . . eiviej+1 . . . vt−1etv0 is also a closed alternating trail, but shorter than
C. This assumption leads to a contradiction. Thus, C is an alternating cycle. ut

Theorem 4.3.6 Alternating cycles are detected by back edges.

60 CHAPTER 4. BIPARTITE GRAPHS

Proof Assume that there is a back edge {v, w}. Then vertex w is an ancestor of vertex v
in the depth-first tree. According to the Gray-Path Theorem there exists a path from w to
v. Coupled with the back edge {v, w} this defines an alternating cycle. ut

Theorem 4.3.7 Alternating cycles are detected by cross (or forward) edges leading to an
active cycle.

Proof Suppose that there is a cross (or forward) edge {v, w}, whereby w belongs to any
active cycle (with a gray core c). Then, according to the Gray-Path Theorem, there exists
a path from c to v. Since vertex w belongs to a cycle with the core c, there exists a path
from w to c. Thus, the edge {v, w} completes an alternating cycle. ut

Let us summarize some important properties of an alternating depth-first search:

• Every vertex on the even level has its mate on the odd level.

• Trees have leaves on odd levels.

• Every matched edge belongs to a tree.

• Cycles are detected by back edges and (allowed) cross edges.

• Every non-tree edge (forward or cross) is allowed when it leads to the collapsed cycle
whose core is not yet finished (gray vertex); otherwise it is forbidden.

An efficient implementation of the algorithm is dominated by the time to keep core of
cycles formed by the contraction operation. Any data structure for disjoint set merging can
be used for this purpose (see, for example, [67, Chapter 21]). In fact, the incremental tree
set union algorithm of Gabow & Tarjan presented in [121] can be used.

Recall that the disjoint set is a data structure that supports the following operations:

makeset(x) – creates a new set whose leader member is x,

unionset(x,y) – creates the union of the sets containing two elements x and y,

findset(x) – returns the leader element of the unique set containing x.

Table 4.2 presents history of algorithms for the disjoint set union problem2 (here, m
denotes the number of operations and n denotes the number of elements).

Note that the same data structure is used in the blossom shrinking algorithm for cardinal-
ity maximum matching of general graphs to keep tracks of blossoms. From an interpretation
point of view the base of a blossom is equivalent to the core of an alternating cycle. The pa-
per [125] surveys data structures and algorithms, which have been proposed in the literature
to solve the set union problem and some of its variants.

Because our search strategy guarantees that each edge is encountered at most twice
(the second time when cycles are being contracted) this gives the linear-time algorithm of
complexity O(m+ n) to find the partition of edges.

2The disjoint set union problem is sometimes called the equivalence problem, because of the fact that
the sets define a partition of the elements into equivalence classes.

4.3. PARTITION OF VERTICES AND EDGES 61

Algorithm 4 Alternating Depth-First Search of G
Require: Bipartite graph G = (V1 ∪ V2, E) with a perfect matching M
Ensure: Partition of edges into MANDATORY, ALLOWED and FORBIDDEN
set time← 1

mark all edges in G as FORBIDDEN
mark all edges in M as MANDATORY
for each vertex v ∈ V do
set parent[v]← NIL

MAKESET (v) {trivial cycle}
end for
for each vertex s ∈ V1 do
if discovery[s] = 0 then {white vertex}
set parent[s]← s {make s the root of T}
set discovery[s]← time← time+ 1

set t← mate(s)

set parent[t]← s

perform AlternatingDFS(t)
end if

end for

procedure AlternatingDFS(v)
set discovery[v]← time← time+ 1

for every edge {v, w} /∈M do
if discovery[w] = 0 then {tree edge}
set parent[w]← v

make t = mate(w) the next child of w
set discovery[w]← time← time+ 1

set parent[t]← w

perform AlternatingDFS(t)
else if finishing[FINDSET (w)] = 0 then {gray vertex}
mark edge {v, w} as ALLOWED
if back edge or cross edge then {cycle detected}
perform ContractCycle(v,w)

end if
end if

end for
set finishing[v]← time← time+ 1

set finishing[parent[v]]← time← time+ 1

procedure ContractCycle(v,w)
set c← FINDSET (w)

set x← FINDSET (v)

while x 6= c do
UNIONSET(x,c)
mark edge {x, parent[x]} as ALLOWED
set x← FINDSET (parent[x])

end while
MAKESET(c)

62 CHAPTER 4. BIPARTITE GRAPHS

Year Author(s) Complexity Heuristic/Method

1961 Arden, Galler, & Graham [14] Θ(n+m · n) naive find
1964 Galler & Fischer [129] Θ(n+m · log n) linking by size or rank
1972 Fischer [103] O(n · log log n) collapsing with weighting
1973 Hopcroft & Ullman [168] O(m · log∗ n) path compression
1974 McIlroy & Morris [1] Θ(m+ n · log n) collapsing with linking
1975 Tarjan [283] O(m · α(m,n)) multiple partition
1976 Rem [77, Chapter 23] Θ(m · log(2+m/n) n) naive splicing
1976 Rem [77, Chapter 23] Θ(m · α(m+ n, n)) splicing by rank
1977 van Leeuwen & Weide [301] O(m · log∗ n) path halving
1977 van Leeuwen & Weide [301] O(m · log∗ n) path splitting
1977 van Leeuwen & Weide [301] O(n+m · log n) reversal with linking
1984 Tarjan & van Leeuwen [287] O(m · α(m,n)) path compression
1985 Gabow & Tarjan [121] O(m+ n) microsets
1986 Blum [45] O(log n/ log log n) k-UF trees

Table 4.2: History of algorithms for the disjoint set union problem

We have found the partition of edges and from the above algorithm we have obtained
forbidden, allowed and mandatory edges. Let GW denote the partial graph of G[C1 ∪ C2]

obtained by removing all edges which cannot belong to any perfect matching. Then GW has
as many connected components as the number of cores in the alternating depth-first forest
plus the number of mandatory edges. The canonical decomposition and thus the partition
of vertices and edges is easy to perform.

Figure 4.6 illustrates the progress of an alternating depth-first search on the graph shown
in Figure 4.4.

3'2'

51 32 4 6 7

5'4' 6'1' 7'
1

1'

2'

2

4'

4

3'

3

������ ��	
���� 	�	������	�������� �������� ������������� ��	
���� 	�	������	�������� �������� ������������� �������� �������������� 	�������� ������������� ���������� ������������� ���������� ������������� ���������� ������6'

6

7'

7

5'

5

Figure 4.6: Alternating depth-first search for perfect matching

4.3. PARTITION OF VERTICES AND EDGES 63

Let us demonstrate in more detail how our procedure works. We consider the graph on the
left side of the figure and perform an alternating depth-first search beginning at the vertex 1.
The edges are traversed in the following order: {1, 1′}, {1′, 2}, {2, 2′}, {2′, 4}, {4, 4′}, {4′, 3},
{3, 3′}. After that, the back edge {3′, 1} detects the alternating cycle C1 = 11′22′44′33′.
This cycle is contracted to the core 1 and all edges contained in it are marked as allowed.
The search continues with the edges {3′, 6}, {6, 6′}, {6′, 7}, {7, 7′}, and the back edge {7′, 6}
detects the new alternating cycle C2 = 66′77′ with the core 6. Then the algorithm backtracks
from 7′ to 4′. Now the edges {4′, 5} and {5, 5′} are traversed. The cross edge {5′, 7} leads
to the completed cycle C2 and thus it remains marked as forbidden. The routine backtracks
again to the vertex 4′ and the forward edge {4′, 6} is traversed. Now the vertex 2′ is reached
and the forward edge {2′, 5} is traversed. Finally, the algorithm backtracks to the vertex 1′

and the forward edge {1′, 3} is marked as allowed since it connects two vertices of the active
cycle C1. Now the root vertex 1 is reached and the algorithm terminates.

The alternating tree constructed by the alternating depth-first search is depicted in the
middle of the figure. Since two disjoint alternating cycles C1 and C2 during the search
have been detected and the tree edge {5, 5′} is mandatory, three connected components are
shown. The table on the right side of the figure summarizes the most important steps of
the procedure and shows the partition of edges. All the remaining tree edges are classified
as allowed.

4.3.3 Alternating depth-first search for perfect (g, f)-matchings

Recall that we can transform any perfect (g, f)-matching into any other by a series of trans-
formations. These transformations are based on alternating paths and cycles (cf. Figure 4.2).
Additionally, if there exists an edge that does not occur in any of these types of alternating
paths and cycles then this edge is forbidden if the edge is free, and mandatory if the edge is
matched.

Motivated by these observations, we can now state the similar result as for the bipartite
graphs with a perfect matching. The following corollary extends the result of Corollary 4.3.4
to the case of the bipartite graphs with perfect (g, f)-matchings.

Corollary 4.3.8 Let M be a perfect (g, f)-matching in a bipartite graph G, let C1, . . . , Ck

be the cycles (relative to M) and let P1, . . . , Pt be the paths (relative to M) determined by
an alternating depth-first search on G. Then

• Edges included in any alternating cycle or alternating path are allowed.

• Matched edges included neither in alternating cycle nor alternating path are mandatory.

• Free edges included in no alternating cycle nor alternating path are forbidden.

Proof This corollary is a generalization of Ore’s Theorem to (g, f)-matchings (see Theorem
4.1.2 in [238]). ut

64 CHAPTER 4. BIPARTITE GRAPHS

Let C = C1 ∪ C2 be the set of vertices from the canonical decomposition of G with the
perfect (g, f)-matching M . Let us define the following sets:

C− = {the set of negative vertices, i.e. g(x) < dM (x) ≤ f(x)}

C+ = {the set of positive vertices, i.e. g(x) ≤ dM (x) < f(x)}

C0 = {the set of neutral vertices, i.e. g(x) = dM (x) = f(x)}

Recall that our task consists of finding the edges that cannot be a part of an optimal
(g, f)-matching. Therefore, detecting edges that cannot be a part of an alternating cycle
and an alternating path would be sufficient. We show how to make every vertex of the graph
totally covered and how to shrink the bounds of degree conditions. Obviously, it is equivalent
to enforce hyper-arc consistency on variables and bounds consistency on cardinality variable
domains associated with the bipartite graph.

In order to establish the partition of vertices and edges algorithmically, we first compute
an optimal (g, f)-matching in the bipartite graph G. This can be realized in O(

√
g(V) ·m)

operations by an algorithm due to Hell & Kirkpatrick [158]. In this way we get a canonical
decomposition 〈A1, B1, C1〉 and 〈A2, B2, C2〉. Next, we filter the inconsistent edges and
corresponding domain values inG. Using the standard approach of the Dulmage-Mendelsohn
Decomposition we can easily determine the set of allowed, forbidden and mandatory edges.

The subgraphs GU , GO and GW can be obtained in linear time by using a modified
alternating breadth-first search restricted to alternating trails. The partition of vertices
can be determined by forming the alternating breadth-first forest from the set of exposed
vertices. Similarly, as for the perfect matchings, the components of GW can be determined
by using a modified alternating depth-first search restricted to closed alternating trails.

Unfortunately, in the current case both positive surplus bipartite graphs and elementary
bipartite graphs may contain mandatory edges and the auxiliary digraph associated with the
latter must not be, in general, strongly connected, so we cannot blindly apply the machinery
from the previous subsection for the filtering algorithm.

There are some significant differences. Alternating cycles for perfect matchings start
and terminate on the same side of the bipartite graph. Their symmetric structure makes
it sufficient to search for alternating cycles starting from only one of the two sides. Unfor-
tunately, the alternating paths for perfect (g, f)-matching are not symmetric: they can be
of either even or odd length and may start and terminate on different sides of the bipartite
graph. The first approach that suggests itself is to look for alternating cycles and paths
with respect to perfect (g, f)-matchings in three phases, each of which restricts attention
to starting vertices on a single side. Of course, it remains to be demonstrated that such a
strategy achieves the partition of edges. Our algorithm has the following form:

I Find alternating paths and alternating cycles starting from unvisited negative vertices
and matched edges on the left side of the graph, which contains at least one negative
vertex.

II Find alternating paths and alternating cycles starting from unvisited positive vertices
and free edges on the right side of the graph.

4.3. PARTITION OF VERTICES AND EDGES 65

III Find alternating cycles starting from unvisited neutral vertices and matched edges on
the left side of the graph.

Note that the first two phases of the algorithm are structurally identical. The only
difference is the level of starting vertices in the depth-first search: the negative (or neutral)
roots have the even level, the positive roots have the odd level. The third phase of the
algorithm is identical with the algorithm from the previous subsection for bipartite graphs
with perfect matchings, because an optimal (g, f)-matching is simply a maximum matching,
if g(x) ≡ f(x) ≡ 1, and in this case all (saturated) vertices will be labeled as neutral.

Given a bipartite graph with an initial perfect (g, f)-matching, we wish to compute the
partition of edges. The partition can be found using a modified version of the alternating
depth-first search. For alternating cycles the algorithm proceeds in the same way as in the
case of perfect matchings. Hence, we need only to describe the routine for computation of
alternating paths.

If the alternating depth-first search detects an alternating path, then it marks all edges
on this path as allowed and vertices as belonging to the path. All detected alternating paths
lead always from the current vertex ti to the root ri. If the search encounters a vertex
belonging to any alternating path, then a new alternating path is detected. As before, we
allow (alternating) paths to have length 0 so that each vertex, which is both positive and
negative, belongs to a positive/negative alternating path. In particular, positive/negative
roots of trees will be marked (at start) as belonging to a (trivial) path.

Figure 4.7 illustrates the progress of the alternating depth-first search on the normalized
subgraph GW shown in Figure 4.5.

6
(1,2)

5
(1,2)

3
(1,1)

2
(0,1)

1
(0,2)

(1,2)
7'

(1,1)
1'

(1,2)
5'

(1,1)
4'

(1,1)
2'

(1,1)
3'

(1,1)
6'

1 [-|+]

1' [0]

3' [0]

3 [0]

5 [-]

6' [0]

6 [-]

������ ����	�
�� ��
���������� ����	�
�� �����

�������� ����	�
�� ��
���������� ����	�
�� �����

�������� ���	�
�� �����	
������
������ ���	�
�� �����	
������
������ �����	�
�� �����
������ �����
	�
�� �����

�������� �����	�
�� ���	
������
������ �����	�
�� �����

�������� �����	�
�� �����

��
2 [-]

7' [+]

5' [+]4' [0]

2' [0]

Figure 4.7: Alternating depth-first search for perfect (g,f)-matching

Let us demonstrate how our algorithm works. In the same way as with the perfect
matching we apply an alternating depth-first search to the graph depicted on the left side
of the figure. The first phase of the algorithm starts from the negative/positive vertex 1

and the matched edge {1, 1′}. The successive edges are traversed in the following order:
{1′, 3}, {3, 3′}, {3′, 5}, {5, 4′}, {4′, 6}, {6, 6′}. After that, the back edge {6′, 5} detects the
alternating cycle C1 = 54′66′ with the core vertex 5. Then, the algorithm backtracks to 6

and the matched edge {6, 7′} is traversed. The back edge {7′, 5} detects the nested cycle

66 CHAPTER 4. BIPARTITE GRAPHS

C2 = 54′67′ which is embedded into the cycle C1. Now the procedure backtracks from 7′

to 6, to 4′, then to 5 and the matched edge {5, 5′} is traversed. The cross edge {5′, 6}, as
leading to the active cycle C2, is marked as allowed and a new nested cycle is detected. Next,
the search backtracks to the vertex 3′, the core vertex 5 becomes black and thus the forward
edge {3′, 6}, as leading to the completed cycle C1, remains classified as forbidden. The
algorithm backtracks to the root vertex 1. The next (not yet discovered) negative vertex 2

becomes the root of a new alternating tree and the matched edge {2, 2′} is traversed. All the
remaining edges are cross edges. The cross edge {2′, 1}, as leading to the (trivial) alternating
path, is marked as allowed, the cross edges {2′, 3} and {2′, 5} remain forbidden. Finally, the
algorithm backtracks to the root vertex 2 and the matched edge {2′, 2}, as belonging to the
alternating path P1 = 12′2, is marked as allowed. Since all vertices of the graph have been
visited, the algorithm terminates.

The alternating forest constructed by the alternating depth-first search is depicted in the
middle of the figure. The table on the right side shows the classification of edges. All the
remaining edges are allowed.

The following results verify that our algorithm works correctly.

Lemma 4.3.9 If an edge is on an alternating trail then it is on an alternating path.

Proof Let P = v0e1v1..vt−1etvt be the shortest alternating trail. Then P is an alternating
path. In order to see it, suppose conversely that there exists 1 ≤ i < j < t such that
vi = vj . Since bipartite graphs have only cycles of even length (see Theorem 2.5.1) then P ′ =

v0e1v1..eiviej+1..vt−1etvt is also an alternating trail, but shorter than P . This assumption
leads to a contradiction. Thus, P is an alternating path. ut

Theorem 4.3.10 Alternating paths are detected by tree edges leading either to a negative
vertex on the odd level or to a positive vertex on the even level.

Proof Immediate from the definition of alternating paths with respect to perfect (g, f)-
matchings and the fact that the trees have negative roots on the even level or positive roots
on the odd level. ut

Theorem 4.3.11 Alternating paths are detected by non-tree (forward or cross) edges leading
to a vertex belonging to any alternating path.

Proof Suppose that there is a forward edge {v, w}. Then vertex v is a descendant of vertex
w in the depth-first tree. Since vertex w belongs to a path, thus there exists a path r..v..w..t
from the root r to the vertex t connecting vertex v to w. Then the desired alternating path
is r..vw..t. The proof for cross edges is similar. ut

Theorem 4.3.12 Alternating paths are detected by non-tree (forward or cross) edges leading
to a cycle whose core belongs to any alternating path.

Proof Suppose that there is a cross edge {v, w}. We have to distinguish two cases: vertex
v belongs to the same tree as vertex w or vertices v and w belong to two distinct trees. In

4.3. PARTITION OF VERTICES AND EDGES 67

both cases there exists a path from the root r (or r′) to the vertex v. Since the vertex w lies
on a cycle whose core c belongs to a path, there exists a path from w to c, and a path from
c to t. This results in a path from w to t (when t is an ancestor of w) or in a trail from w

to t (when t is a descendant of w), and a cross edge completes an alternating path or trail
r..vw..c..t (or r′..vw..c..t). The proof for forward edges is similar. ut

Let us summarize some important properties of the alternating depth-first search for
perfect (g, f)-matching:

• Each vertex on the even level is adjacent by a matched edge with a vertex on the odd
level.

• Every tree has a negative (or neutral) root on the even level, or a positive root on the
odd level.

• Cycles are determined in the same way as by the alternating depth-first search for
perfect matchings.

• Paths are detected by (allowed) tree edges or non-tree edges leading to a vertex be-
longing to an alternating path.

• The tree edge is allowed when it leads either to a negative vertex on the odd level, or
to a positive vertex on the even level.

• Trees with neutral roots admit no alternating paths.

We obtain the following theorem.

Theorem 4.3.13 A partition of vertices and edges for a bipartite graph with a given initial
perfect (g, f)-matching can be found in linear time.

4.3.4 Shrinking the bounds of degree conditions

For a specific vertex x we want to find the lower bound of g(x) and the upper bound of f(x)

such that there exists an optimal (g, f)-matching M with the same deficiency.
In order to establish bounds of the degree conditions, we will run on the graph G the

same routine twice, first for the degree condition g to obtain its lower bound and then for
the dual degree condition f ′ to compute the upper bound of the degree condition f .

For each saturated vertex x in G we construct a graph G−x with a partial (g, f)-matching
and find an optimal (g, f)-matching Mg

x . Then the number of edges in Mg
x adjacent to x

must be at least δ(G−x)− δ(G). In a similar way we can find the upper bound of f(x). We
remove the vertex x from the graph G and compute a dual optimal (f ′, g′)-matching Mf ′

x .
Then the maximum number of edges adjacent to x in an optimal (g, f)-matching equals
d(x) − δ′(G − x) + δ′(G). Observe that the narrowing of the degree conditions can be an
expensive task requiring as many as O(m · n) steps in the worst case. The following result
allows us to detect in linear time when the bounds should be shrunken to the same value.

68 CHAPTER 4. BIPARTITE GRAPHS

Algorithm 5 Degree Alternating Depth-First Search of G
Require: Bipartite graph G = (V1 ∪ V2, E) with a perfect (g, f)-matching M
Ensure: Partition of edges into MANDATORY, ALLOWED and FORBIDDEN

Let V1 denote the side of G with at least one negative vertex; otherwise
Let V2 denote the side of G with at least one positive vertex

[Initialization of variables]
set time← 1

mark all edges in G as FORBIDDEN
mark all edges in M as MANDATORY
for each vertex v ∈ V do
set parent[v]← NIL

set path[v]← FALSE

MAKESET (v) {trivial cycle}
end for

[Phase I]
for each negative vertex r ∈ V1 do
if discovery[r] = 0 then {white vertex}
set parent[r]← r {make r the root of T}
set level[r]← EV EN

if POSITIV E ∈ sign[r] then {trivial path}
set path[r]← TRUE

end if
perform AlternatingDFS(r,r)

end if
end for

[Phase II]
for each positive vertex r ∈ V2 do
if discovery[r] = 0 then {white vertex}
set parent[r]← r {make r the root of T}
set level[r]← ODD

if NEGATIV E ∈ sign[r] then {trivial path}
set path[r]← TRUE

end if
perform AlternatingDFS(r,r)

end if
end for

[Phase III]
for each neutral vertex r ∈ V1 do
if discovery[r] = 0 then {white vertex}
set parent[r]← r {make r the root of T}
set level[r]← EV EN

perform AlternatingDFS(r,r)
end if

end for

4.3. PARTITION OF VERTICES AND EDGES 69

procedure AlternatingDFS(r,s)
set discovery[s]← time← time+ 1

if level[s] = EV EN then
for every edge {s, t} ∈M do
if discovery[t] = 0 then {tree edge}

set parent[t]← s

set level[t]← ODD

if NEUTRAL /∈ sign[r] and NEGATIV E ∈ sign[t] then {path detected}
set path[t]← TRUE

end if
perform AlternatingDFS(r,t)

else {gray vertex}
if finishing[FINDSET (t)] = 0 then {cycle detected}
mark edge {s, t} as ALLOWED
perform ContractCycle(s,t) (see Algorithm 4)

else if NEUTRAL /∈ sign[r] and path[FINDSET (t)] then {path detected}
mark edge {s, t} as ALLOWED
set path[s]← TRUE

end if
end if

end for
else {level[s] = ODD}
for every edge {s, t} /∈M do
if discovery[t] = 0 then {tree edge}
set parent[t]← s

set level[t]← EV EN

if NEUTRAL /∈ sign[r] and POSITIV E ∈ sign[t] then {path detected}
set path[t]← TRUE

end if
perform AlternatingDFS(r,t)

else {gray vertex}
if finishing[FINDSET (t)] = 0 then {cycle detected}
mark edge {s, t} as ALLOWED
perform ContractCycle(s,t) (see Algorithm 4)

else if NEUTRAL /∈ sign[r] and path[FINDSET (t)] then {path detected}
mark edge {s, t} as ALLOWED
set path[s]← TRUE

end if
end if

end for
end if
set finishing[s]← time← time+ 1

if s 6= r and path[s] = TRUE then
set p← parent[s]

mark edge {s, p} as ALLOWED
set path[p]← TRUE

end if

70 CHAPTER 4. BIPARTITE GRAPHS

Theorem 4.3.14 Let A = A1 ∪ A2, B = B1 ∪ B2 and C = C1 ∪ C2, whereby Ai, Bi and
Ci (for i = 1, 2) are the three sets of the Dulmage-Mendelsohn decomposition for bipartite
graph G with an optimal (g, f)-matching M . Then the lower bounds ĝ and the upper bounds
f̂ of the degree conditions g and f are as follows:

ĝ(x) =

f(x), if x ∈ A

g(x), if x ∈ B

max{g(x), δ(GW − x)}, if x ∈ C−

g(x), if x ∈ C \ C−

f̂(x) =

f(x), if x ∈ A

g(x), if x ∈ B

d(x)−max{f ′(x), δ′(GW − x)}, if x ∈ C+

f(x), if x ∈ C \ C+

Proof According to Theorem 4.2.3 the allowed degrees for the vertices in A and B equal
f(x) and g(x), respectively, so we only need to prove our theorem for the vertices in C.
Consider the graph GW with a perfect (g, f)-matching. Clearly, ĝ(x) ≡ g(x) = f(x) ≡ f̂(x)

for every neutral vertex x ∈ C0. If the vertex x is strictly positive (i.e. g(x) = dM (x) < f(x))
then it is not necessary to compute the optimal (g, f)-matching of GW −x, since the vertex
x has already achieved the lower bound of the degree condition and it is impossible to
construct a matching that has one fewer edge adjacent to the vertex x. Therefore, we can
set ĝ(x) ≡ g(x) for every x ∈ C+ \ C−. On the other hand, the same applies to the
set C− \ C+: if the vertex x is strictly negative (i.e. g(x) < dM (x) = f(x)) then it is
not necessary to compute the optimal (f ′, g′)-matching of GW − x and thus we can set
f̂(x) ≡ f(x) for each x ∈ C− \ C+. Hence, we need only to determine the bounds of the
degree conditions for the vertices x ∈ C− ∪C+: the lower bound for the vertices in C− and
the upper bound for the vertices in C+. ut

(1,1)

x

(1,1)

(1,1)

(1,1)

(1,1)

(1,1)

(1,1)

(1,1)

(1,2)

(1,3)

(2,3)

Figure 4.8: Shrinking the bounds of degree conditions

We will now compare our result with the algorithm due to Quimper et al. [253]. Their
method prunes the cardinality variables in O(m ·n) steps (for lower bounds) + O(m ·n1.66)

4.4. APPLICATION TO GLOBAL CONSTRAINTS 71

steps (for upper bounds). However, the time required to compute the allowed bounds of the
degree conditions by our algorithm is O(m · (|C−|+ |C+|)). This is an improvement of the
algorithm due to Quimper et al. by a factor of n0.66 in the worst case. In the best case our
algorithm does not need to iterate over all vertices and that might be greatly efficient.

In addition, it is an interesting open problem whether there exists an algorithm that
prunes the domains of the cardinality variables to hyper-arc consistency. We now prove
that our algorithm achieves hyper-arc consistency for the cardinality variables when their
domains are intervals.

Theorem 4.3.15 Let G be any bipartite graph with shrunken degree conditions g and f .
For any vertex x ∈ V (G) the degrees of x in perfect (g, f)-matchings form a sequence of
consecutive integers.

Proof Let Mg(x) be a perfect (g, f)-matching such that dM (x) = g(x) and let Mf(x) be
a perfect (g, f)-matching such that dM (x) = f(x). According to Theorem 4.1.5 we can
transform Mg(x) into Mf(x) by a sequence of transfers along alternating cycles and alter-
nating paths. Since any alternating path changes the degree of x by at most 1, the degrees
of x in the intermediate perfect (g, f)-matchings M will cover every integer in the interval
[g(x), f(x)]. ut

Let us remark that the above theorem does not hold for general graphs. As a counterex-
ample let us take the cycle graph C3 with the following degree conditions: f(x1) = g(x1) =

f(x2) = g(x2) = 1, f(x3) = 0 and g(x3) = 2. There exists no perfect (g, f)-matching with
dM (x3) = 1 (see Figure 10.2.2 in [212]).

4.4 Application to Global Constraints

In this section we consider application of the Dulmage-Mendelsohn Canonical Decomposition
to several global constraints. A structural decomposition of a bipartite graph associated with
a global constraint canonically decomposes it into three distinct parts: over-constrained ,
under-constrained , and well-constrained . We use the notation GU to represent an under-
constrained part, GO denotes an over-constrained part and GW stands for the remaining
well-constrained part. At this point, note that one or two of these three subgraphs may
be empty in general. Intuitively, if the bipartite graph G = (X ∪ Y,E) represents a global
constraint, then the constraint is under-constrained if the surplus of Y is negative and it is
over-constrained if this surplus is positive.

In an over-constrained part the number of variables is greater than the number of values.
The additional variables cause the constraint to be violated and thus a maximum matching
yields no solution. We can deal with this situation in a number of ways. Firstly, through
a search process, we could remove variables in order to make the part well-constrained.
Alternatively, contradictory constraints might be handled as soft constraints associated with
the so-called variable-based violation measure. In this way, the over-constrained part of the
constraint can be isolated from parts that must be necessarily satisfied.

72 CHAPTER 4. BIPARTITE GRAPHS

An under-constrained part has more values than variables. It is the underdetermined
part that contains redundancy. Thus, for under-constrained constraints we do not have
enough information to set all the values. The additional values are either redundant or
contradictory and thus a perfect matching in the graph does not exist. A possible way
of making the constraint satisfiable would be to consider some of them as parameters in
order to obtain a well-constrained part, add additional values to the global constraint or
remove unsatisfied constraints from the global constraint which corresponds to the so-called
value-based violation measure.

In a well-constrained part the number of variables is equal to possible assignments of
values to variables. As we have seen, this part can be further decomposed into smaller
canonical parts. A failure in computing the well-constrained part means that no valid
solution exists and the constraint is unsatisfiable. The existence of a single solution requires
that the number of variables is equal to the number of constraints in the global constraint.

A global constraint is representable by a bipartite graph if the constraint can be modeled
as a matching problem in a bipartite graph. A solution can be represented by a maximum,
complete or perfect matching and there is a one-to-one correspondence between the matching
and the solution of the constraint. The pruning of the domain can be done according to the
meaning of the respective edge in the graph.

4.4.1 Hard Global Constraints

The presented approach allows us to implement an efficient generic propagation algorithm
for various global constraints representable by a bipartite graph, making use of matching
and decomposition theory. We apply our method to several global constraints that are well
known to the constraint programming community.

We now provide the skeleton of our general propagation routine.

Algorithm 6 General propagation routine for hard global constraints representable by
bipartite graphs
Require: Hard global constraint
Ensure: Hyper-arc consistency or constraint inconsistent
Normalize the domains of the variables {quick elimination}
Create an auxiliary bipartite graph G associated with the global constraint
Compute the maximum matching M in G
Compute the Dulmage-Mendelsohn Canonical Decomposition of G
Determine subgraphs GO, GU and GW corresponding to the solution
If GO 6= ∅ then return FALSE {constraint not consistent}
Find the partition of mandatory, allowed and forbidden edges
Remove all forbidden edges from the graph G
Prune the domains of the variables according to the partition of edges
If any of the domains becomes empty then return FALSE {constraint not satisfied}
return TRUE

4.4. APPLICATION TO GLOBAL CONSTRAINTS 73

The following result is immediate:

Theorem 4.4.1 (Complexity of the algorithm) Assume that the global constraint is
representable by a bipartite graph G with n vertices and m edges. Then the feasibility of
the constraint can be checked in O(

√
n ·m) time and hyper-arc consistency can be established

in O(m+ n) time.

We now demonstrate our idea on concrete examples. Some of the examples are illustrated
by a figure. On the left side of each figure the domains of the variables are given. In the
middle of each figure a bipartite graph corresponding to the global constraint is depicted
and the decomposition is shown. The thick edges indicate a matching, while the vertical
dashed lines show forbidden edges. On the right side of each figure the reduced domains
after pruning are presented.

ALLDIFFERENT The alldifferent constraint is defined by

alldifferent(〈x1, . . . , xn〉) = {(d1, . . . , dn) ∈ Dx1 × · · · × Dxn | ∀
i,j
i 6=j

(di 6= dj)}.

It is well known that the constraint alldifferent can be modeled as a matching problem
in a bipartite graph G called a value graph [255]. On the left side we have a vertex for every
variable xi and on the right side we have a vertex dj for every value that occurs in some
domain of the variables. We draw an edge between xi and dj iff the value dj is contained
in the domain of xi. Then there is a one-to-one correspondence between the maximum
matching of G covering all vertices representing variables and the assignment of variables
satisfying the constraint (see Theorem 1 in [255]). The constraint is consistent iff GO = ∅.
Hyper-arc consistency can be established in linear time. However, by means of our technique
it is possible to do it better by a constant factor. This follows from the fact that our algorithm
does not need to iterate over all values in the domain. The alternating depth-first search
simultaneous finds alternating cycles and classifies the edges (Figure 4.9). Indeed, it is not
necessary, as in the algorithm due to Régin [255], to identify strongly connected components
in order to determine partition of edges. Combining the computation of alternating cycles
(= strongly connected components in the auxiliary digraph) at the same time as categorizing
edges seems to be an effective way to save time during the computation.

GW GU

x6x5x4x3x2x1

71 542 3 6D(x1) = {1,2}
D(x2) = {2,3}
D(x3) = {1,3}
D(x4) = {2,4}
D(x5) = {3,4,5,6}
D(x6) = {6,7}

D’(x1) = {1,2}
D’(x2) = {2,3}
D’(x3) = {1,3}
D’(x4) = {4}
D’(x5) = {5,6}
D’(x6) = {6,7}

Figure 4.9: Value graph and pruning of the ALLDIFFERENT constraint

The following table presents the time complexity survey of the algorithms for the alld-

ifferent constraint.

74 CHAPTER 4. BIPARTITE GRAPHS

consistency complexity approach author(s)

bounds consistency O(n · log n) Hall intervals Puget [248]
O(n · log n) Hall intervals López-Ortiz et al. [208]
Θ(n) Hall intervals Quimper [252, Section 4.2]
O(n) convex bigraph Mehlhorn & Thiel [219]

range consistency Θ(n2) Hall sets Leconte [203]
O(n) Hall intervals Quimper [252, Section 4.3]

hyper-arc consistency O(
√
n ·m) matching theory Régin [255]

Table 4.3: Algorithms for the alldifferent constraint

For information concerning the empirical behavior of filtering algorithms for the alldif-

ferent constraint, see [134]. Theses dealing with the alldifferent constraint have been
written by Sven Thiel [288], Willem-Jan van Hoeve [299], and Claude-Guy Quimper [252].

ALLDIFFERENT_EXCEPT_0 The alldifferent_except_0 constraint [27] is a
special case of the alldifferent constraint. Quite often it appears, that for some modeling
reason, we do not want the normal constraint to hold for variables that take value 0. This
constraint is useful for this purpose by enforcing all variables of the constraint to take distinct
values, except those variables which are assigned to 0.

The filtering achieving hyper-arc consistency can be realized by means of our technique as
follows. We construct, as previously described, a bipartite graphG = (X∪Y,E) with vertices
on one side that correspond to variables, and vertices on the other side that correspond to
elements in the variable domains plus some additional vertices 0i representing variables with
joker values. The graph contains an edge {xi, dj} whenever dj ∈ D(xi) (dj 6= 0) and an
edge {xi, 0i} whenever 0 ∈ D(xi). It is not difficult to observe that there is a one-to-one
correspondence between the solution of the constraint and the maximum matching in the
constructed graph saturating all vertices representing variables.

CORRESPONDENCE The correspondence constraint [27] is defined on three collec-
tions of variables. It is derived from the sort_permutation constraint [315] by removing
the sorting condition. This constraint has the form correspondence(X,Y,Z) and states
that the variables of the third collection Z correspond to the variables of the first collection
X according to the permutation expressed by the second collection Y .

We represent the correspondence constraint as a bipartite graph G = (X∪Z,E) which
we call a restricted intersection graph. The vertices on one side represent the variables X,
the vertices on the other side represent the variables Z and there is an edge {xi, zj} iff
D(xi)∩D(zj) 6= ∅∧ j ∈ D(yi). Note that the second condition is usually called an element

constraint [160].
Looking at the definition of the correspondence constraint, it is easy to derive a tight

correlation between the solution of the constraint and the perfect matching in its auxiliary
graph. This observation motivates the following pruning algorithm. We first compute the
perfect matching M in the graph G. If it does not exist, then the constraint is inconsistent.

4.4. APPLICATION TO GLOBAL CONSTRAINTS 75

Otherwise, we need to detect all edges that can never belong to a perfect matching. This
can be simply done by means of our routine. Hyper-arc consistency can be obtained by the
following narrowing of variable domains:

D′(xi) = D(xi) ∩
⋃

{xi,zj}∈E(GW)

D(zj)

D′(yi) = D(yi) ∩
⋃

{xi,zj}∈E(GW)

{j}

D′(zj) = D(zj) ∩
⋃

{xi,zj}∈E(GW)

D(xi)

INVERSE The inverse constraint [27] is a particular case of the cycle constraint, a
case which can be modeled by means of the system of two dependently alldifferent

constraints. This constraint requires that each vertex of an associated digraph has exactly
one predecessor and one successor and that if the successor of the vertex i is the vertex j
then the predecessor of the vertex j is the vertex i.

The constraint is defined more formally as follows

inverse(〈x1, . . . , xn〉, 〈y1, . . . , yn〉) =

{(d1, . . . , dn) ∈ Dx1
× · · · ×Dxn

, (d′1, . . . , d
′
n) ∈ Dy1 × · · · ×Dyn | ∀

i 6=j
(di = j ⇔ d′j = i)}.

This constraint is present in problems sometimes required by specific heuristics that use
both predecessor and successor variables. In this example we show how to simply achieve
hyper-arc consistency for this constraint.

The constraint must first be normalized as follows. Suppose that there exists a value
j ∈ D(xi), while i /∈ D(yj). Then we can immediately remove value j from D(xi). Similarly,
we have to remove value i from D(yj) if j /∈ D(xi). Hence, we assume that such situations
do not occur during the creating of an auxiliary graph.

The inverse(X,Y) constraint can be expressed by a bipartite graph G = (X ∪ Y,E),
called a variable graph, in which the vertices of X correspond to the predecessor variables,
the vertices of Y correspond to the successor variables, and there is an edge between two
vertices xi and yj iff i ∈ D(yj) and j ∈ D(xi).

It is straightforward to see that there is a one-to-one correspondence between the perfect
matching in the corresponding graph and the solution of the constraint. For every forbidden
edge {xi, yj} we have to delete the value i from D(yj) and the value j from D(xi).

SAME The same constraint is defined on two sequences of variables and states that the
variables in one sequence use the same values as the variables in the other sequence. The
constraint was introduced by Beldiceanu [27]. One can also view the same constraint as re-
questing that one sequence is a permutation of the other. A hyper-arc consistency algorithm
for the same constraint has been presented by Beldiceanu, Katriel, & Thiel [33], making use
of flow theory.

The same constraint [27] is a relaxed version of the sort constraint introduced in [233]
in which we do not enforce the second collection of variables to be sorted in increasing order.

76 CHAPTER 4. BIPARTITE GRAPHS

The constraint is defined on two sets X and Y of distinct variables such that |X| = |Y | and
each v ∈ X ∪ Y has a domain D(v). A solution is an assignment of values to the variables
such that the value assigned to each variable belongs to its domain and the multiset of values
assigned to the variables of X is identical to the multiset of values assigned to the variables
of Y .

We represent the same constraint as a bipartite graph G = (X ∪Y,E) which we call the
intersection graph. The vertices on one side represent the variables X, the vertices on the
other side represent the variables Y , and there is an edge {xi, yj} iff D(xi) ∩ D(yj) 6= ∅.
There is a one-to-one correspondence between the perfect matching in G and the solution
of the constraint (Figure 4.10). Hyper-arc consistency can be established by the following
narrowing of variable domains:

D′(xi) = D(xi) ∩
⋃

{xi,yj}∈E(GW)

D(yj)

D′(yj) = D(yj) ∩
⋃

{xi,yj}∈E(GW)

D(xi)

.

GW

x3x2x1

y2y1 y3D(x1) = {1,2}
D(x2) = {3,4}
D(x3) = {4,5,6}
D(y1) = {2,3}
D(y2) = {4,5}
D(y3) = {4,5}

D’(x1) = {2}
D’(x2) = {4}
D’(x3) = {4,5}
D’(y1) = {2}
D’(y2) = {4,5}
D’(y3) = {4,5}

Figure 4.10: Intersection graph and pruning of the SAME constraint

USED_BY The used_by constraint is an under-constrained version of the same con-
straint. It is defined on two sets of variables X and Y such that |X| ≥ |Y | and a solution
is an assignment of values to the variables such that the multiset of values assigned to the
variables in Y is contained in the multiset of values assigned to the variables in X.

As in the case of the same constraint, we construct the intersection graph G = (X ∪
Y,E). There is a one-to-one correspondence between the solution of the used_by constraint
and the complete matching in G from Y into X (Figure 4.11). Hyper-arc consistency can
be established by the following narrowing of variable domains (we assume that D(xi) ∩⋃
∅D(yj) = D(xi). This can only occur when xi ∈ V (GU)):

D′(xi) = D(xi) ∩
⋃

{xi,yj}∈E(GW)

D(yj)

D′(yj) = D(yj) ∩
⋃

{xi,yj}∈E(GW)∪E(GU)

D(xi)

.

GLOBAL_CARDINALITY The global_cardinality [256] constraint (abbreviated
shortly as gcc) is a generalization of the alldifferent constraint enforcing bounds on

4.4. APPLICATION TO GLOBAL CONSTRAINTS 77

GW

x3x2x1

y2y1D(x1) = {1,2}

D(x2) = {4,5}
D(x3) = {4,5,6}
D(y1) = {2,3}
D(y2) = {2,4,5}

D’(x1) = {2}

D’(x2) = {4,5}
D’(x3) = {4,5,6}
D’(y1) = {2}
D’(y2) = {4,5}

GU

Figure 4.11: Intersection graph and pruning of the USED_BY constraint

the number of occurrences of values in a set of variables. Its filtering algorithm is based
on a flow computation. The constraint holds if the corresponding flow network models an
admissible flow. The constraint is defined by

global_cardinality(〈x1, . . . , xn〉, 〈lv1 , . . . , lvk〉, 〈uv1 , . . . , uvk〉) =

{(d1, . . . , dn) ∈ Dx1 × · · · ×Dxn | ∀
j

lvj ≤
∣∣∣∣∣∣∣∣
⋃

1≤i≤n
vj=di

{i}

∣∣∣∣∣∣∣∣ ≤ uvj
}.

For our example we will need to construct a special graph, called a variable-value graph.
Following Quimper et al. [253], let G = (X∪D,E) be a bipartite graph such that the vertices
on the left side represent the variables and the vertices on the right side represent the values.
There is an edge {xi, dj} in E iff the value dj is in the domain D(xi) of the variable xi.
Let g and f be two functions associated with vertex v such that g(xi) = f(xi) = 1 for all
variable-vertices xi ∈ X and g(d) = l(d), f(d) = u(d) for all value-vertices d in D. Then it is
straightforward to check that there is a one-to-one correspondence between the solution of
the gcc constraint and the perfect (g, f)-matching of the constructed graph (Figure 4.12).

GW

x6x5x4x3x2x1

1 542 3D(x1) = {1,2}
D(x2) = {1,2}
D(x3) = {1,2}
D(x4) = {1,2}
D(x5) = {1,2,3}
D(x6) = {2,3,4,5}

D’(x1) = {1,2}
D’(x2) = {1,2}
D’(x3) = {1,2}
D’(x4) = {1,2}
D’(x5) = {3}
D’(x6) = {4,5}

x7

D(x7) = {5} D’(x7) = {5}

1(1,2)
2(1,2)
3(1,1)
4(0,1)
5(0,2)

1'(2,2)
2'(2,2)
3'(1,1)
4'(0,1)
5'(1,2)

Figure 4.12: Variable-value graph and pruning of the GCC constraint

The following table presents algorithms for the gcc constraint.
Empirical studies concerning the quality of various filtering algorithms for the gcc con-

straint can be found in [230]. A thesis dealing with the global_cardinality constraint
is due to Claude-Guy Quimper [252].

SYMMETRIC_CARDINALITY The symmetric_cardinality constraint is speci-
fied in terms of a set of variables X which take their values in the subset V . It constrains
the number of times a value can be assigned to a variable xi in X to be in an interval

78 CHAPTER 4. BIPARTITE GRAPHS

consistency complexity approach author(s)

bounds consistency O(n) Hall intervals Quimper et al. [254]
O(n+ k) convex bigraph Katriel & Thiel [187]

range consistency O(k · n) unstable sets Quimper et al. [253]
O(n) unstable sets Quimper [252, Section 5.5]

hyper-arc consistency O(k · n2) flow theory Régin [256]
O(k · n ·

√
n) matching theory Quimper et al. [253]

Table 4.4: Algorithms for the global_cardinality constraint

[l(xi), u(xi)], where l(xi) and u(xi) are non-negative integers and at the same time it re-
stricts the number of occurrences of each value vj ∈ V in the sets assigned to variables in
X to be an interval [l(vj), u(vj)]. This constraint was introduced in [189] where, moreover,
a filtering method for this constraint based on flow theory was presented.

The constraint is defined as

symmetric_cardinality(〈x1, . . . , xn〉, bounds) =

{((d1
1, . . . , d

k1
1), . . . , (d1

n, . . . , d
kn
n)) ∈ Dk1

x1
× · · · ×Dkn

xn
|

∀
i

(lxi
≤ ki ≤ uxi

) ∧ ∀
j

lvj ≤
∣∣∣∣∣∣∣∣
⋃

1≤i≤n
vj=di

{i}

∣∣∣∣∣∣∣∣ ≤ uvj
}.

In this example we show how this constraint can be modeled as a perfect (g, f)-matching
problem. We describe both a method for checking consistency of this constraint and a
filtering method thereof. For the symmetric_cardinality constraint we propose to build
a value graph G as described in [255]. Let G = (X ∪ V,E) be a bipartite graph such
that vertices on the left side represent variables and vertices on the right side represent
values. There is an edge {xi, vj} in E iff the value vj is in the domain D(xi) of the variable.
Let g and f be two functions associated to vertices of G such that g(xi) = l(xi) and
f(xi) = u(xi) for all variable-vertices xi ∈ X; and g(vj) = l(vj) and f(vj) = u(vj) for all
value-vertices vj in V . Then it can be easily shown that there is an equivalence between the
existence of a perfect (g, f)-matching of the constructed graph and the consistency of the
symmetric_cardinality constraint.

In addition, our algorithm narrows the bounds of the occurrence variables. This is the
first efficient filtering algorithm for this constraint that achieves bounds consistency (which
is, in fact, hyper-arc consistency; see Theorem 4.3.15) for all cardinality variables, and not
only hyper-arc consistency for the domain variables.

Observe that the symmetric_cardinality constraint might be viewed as an extension
of some previously mentioned constraints. For example, a constraint alldifferent can be
modeled as a symmetric_cardinality constraint where the cardinality of sets assigned
to variables is set to be exactly 1 and the occurrence of each value is restricted to the
interval [0, 1]. A constraint alldifferent_except_0 can be modeled in two different

4.4. APPLICATION TO GLOBAL CONSTRAINTS 79

ways. Firstly, when with each vertex of value graph G we associate two functions g and
f such that g(xi) = f(xi) = 1 for all variable-vertices xi ∈ X; g(vj) = 0 and f(vj) = 1

for all value-vertices vj 6= 0 in V , and we set g(0) = 0 and f(0) = k, where k is the
number of variables with value 0 in their domains. Secondly, when instead of the value-
vertex 0 for every variable-vertex xi, such that 0 ∈ D(xi), we set g(xi) = 0 and f(xi) = 1,
and g(xi) = f(xi) = 1 otherwise. Moreover, a global_cardinality constraint can be
modeled as a symmetric_cardinality constraint by restricting the cardinality of sets
assigned to problem variables to value 1.

4.4.2 Soft Global Constraints

A global constraint is over-constrained when no assignment of values to variables makes
it consistent. In this situation, the goal is to find the set of variables violating the global
constraint. It is then natural to identify soft constraints that are allowed to be violated,
and the objective is to optimize the degree of satisfaction of the global constraint according
to some criteria. A standard measure of violation is the variable-based violation measure
which is defined as the minimum number of variables that need to change their values in
order to satisfy the constraint. This measure is represented by the cost variable z, which is
to be minimized during the solution process.

In this subsection we propose an efficient hyper-arc consistency algorithm for this case. As
a consequence, without any modification, our method can solve over-constrained problems
modeled as a matching problem for bipartite graphs. This approach is quite general and
can be applied to a wide range of global constraints.

The proposed algorithm for soft global constraints with variable-based violation measure
works as follows. We first compute the canonical decomposition of the corresponding bipar-
tite graph. Let δ(GO) denote the deficiency of graph GO; in other words it is a lower bound of
the cost variable z. Thus, if δ(GO) > max(D(z)) then the constraint is not consistent. Oth-
erwise, we distinguish two situations. If δ(GO) = max(D(z)) then all the values of variables
that corresponding edges are forbidden must be removed from their domains. Otherwise, if
δ(GO) < max(D(z)) then all values in their domains are allowed. Finally, we update the
lowest possible value of violation to min(D(z)) ← max(min(D(z)), δ(GO)). Clearly, if at
least one domain of some variable becomes empty then the constraint is inconsistent.

The algorithm solving the constraint is summarized below (see Algorithm 7).
We show that this algorithm is correct.

Theorem 4.4.2 (Correctness of the algorithm) Assume that a soft global constraint
can be represented by a bipartite graph G and there exists a one-to-one correspondence be-
tween the solution of the constraint and the maximum matching in G. Then the above
algorithm makes the global constraint hyper-arc consistent.

Proof Let GO, GW and GU be subgraphs of G obtained from the Dulmage-Mendelsohn
Canonical Decomposition. The minimal number of variables fromGO = G[A2∪B1] to change
their value in order to make this part of graph G well-constrained is equal to the deficiency

80 CHAPTER 4. BIPARTITE GRAPHS

Algorithm 7 General propagation routine for soft global constraints representable by bi-
partite graphs
Require: Soft global constraint with variable-based violation measure
Ensure: Hyper-arc consistency or constraint inconsistent
Normalize the domains of the variables {quick elimination}
Create an auxiliary bipartite graph G associated with the global constraint
Compute the maximum matching M in G
Compute the Dulmage-Mendelsohn Canonical Decomposition of G
Determine subgraphs GO, GU and GW corresponding to the solution
Let δ(GO) be the deficiency of the subgraph GO
if δ(GO) > max(D(z)) then {constraint not consistent}
return FALSE

else if δ(GO) = max(D(z)) then
Find the partition of mandatory, allowed and forbidden edges
Remove all forbidden edges from the graph G
Prune the domains of the variables according to the partition of edges

else
all values in the domain of each variable are allowed

end if
Update min(D(z))← max(min(D(z)), δ(GO))

if any of the domains becomes empty then {constraint not satisfied}
return FALSE

end if
return TRUE

4.4. APPLICATION TO GLOBAL CONSTRAINTS 81

of GO. This follows from the fact that inserting δ(GO) new vertices to A2 and connecting
them to the vertices in B1 results in a graph with a perfect matching (see Theorem 2.5.8).
Therefore, in the case when δ(GO) = max(D(z)) all forbidden edges must be deleted from
the graph G in order to make a constraint hyper-arc consistent since they belong to no
maximum matching. However, when the upper bound of the cost variable z is greater then
δ(GO) we can further delete matched edges to make vertices from GW and GU exposed. In
this case every edge belongs to some maximum matching. In order to see this, we only need
to consider free edges. Let {v, w} be an arbitrary free edge and {v,mate(v)} or {w,mate(w)}
be its adjacent matched edge(s) (at least one must exist). Assume that we want to make
the vertex mate(w) exposed. But then M −{w,mate(w)}+ {v, w} is the desired maximum
matching missing the vertex mate(w). ut

The following result is immediate:

Theorem 4.4.3 (Complexity of the algorithm) Hyper-arc consistency for a global con-
straint representable by a bipartite graph with an initial maximum matching can be established
in linear time.

We now illustrate our idea with concrete examples.

SOFT_ALLDIFFERENT_VAR This (soft) constraint is designed for over-constrained
problems in which the task is to obtain a solution that is close to feasibility of the well-known
alldifferent constraint. The constraint limits the degree to which a set of variables fails
to take all distinct values. A complete pruning algorithm establishing hyper-arc consistency
is given in [245].

The constraint soft_alldifferent_var can be filtered to hyper-arc consistency by
means of our technique as follows. The lower bound of the cost variable z is |X| − |M |,
where X is the set of variables and M is the maximum matching in the corresponding value
graph associated with the constraint. It is equal to the deficiency of GO. The variables that
need to be changed in order to obtain the solution satisfying an alldifferent constraint
are exposed vertices in X (Figure 4.13).

GO GW

x4x3x2x1

1 2 3

D(x2) = {1,2}
D(x3) = {1,2}
D(x4) = {1,2}
D(x5) = {2,3}

D(z) = {1,2}

D’(x2) = {1,2}
D’(x3) = {1,2}
D’(x4) = {1,2}
D’(x5) = {3}

D’(z) = {2}
x5

D(x1) = {1} D’(x1) = {1}

Figure 4.13: Value graph and pruning of the SOFT_ALLDIFFERENT_VAR constraint

SOFT_SAME_VAR The constraint soft_same_var can be filtered to hyper-arc con-
sistency by an algorithm that is similar to the one for the same constraint. We first compute
the canonical decomposition of an auxiliary graph G, which is an intersection graph. The

82 CHAPTER 4. BIPARTITE GRAPHS

lower bound of the cost variable z is δ(GO). If δ(GO) > max(D(z)) we know that the
constraint is inconsistent. Otherwise, if δ(GO) = max(D(z)), we remove all invalid values
from the domains of variables which corresponding edge is forbidden (Figure 4.14).

GO

x3x2x1

y2y1 y3D(x1) = {1,2}
D(x2) = {2}
D(x3) = {2,3}
D(y1) = {2,3}
D(y2) = {3}
D(y3) = {3,4}

D’(x1) = {1,2}
D’(x2) = {2}
D’(x3) = {3}
D’(y1) = {2}
D’(y2) = {3}
D’(y3) = {3,4}

D(z) = {0,1}
GU D’(z) = {1}

Figure 4.14: Intersection graph and pruning of the SOFT_SAME_VAR constraint

SOFT_USED_BY_VAR The constraint soft_used_by_var is a soft version of the
constraint used_by and can be filtered to hyper-arc consistency by the same algorithm
as for the previously described soft global constraints (Figure 4.15). This constraint can
be interpreted as an under-constrained version of the constraint soft_same_var and can
thus be filtered to hyper-arc consistency by an analogous algorithm to the latter one.

GO

x3x2x1

y2y1D(x1) = {1,2}

D(x2) = D(x3) = {2}
D(x4) = D(x5) = {3}
D(y1) = D(y2) = D(y3) = {1}

D(z) = {1,2,3}

D’(x1) = {1,2}

D’(x2) = D’(x3) = {2}
D’(x4) = D’(x5) = {3}
D’(y1) = D’(y2) = D’(y3) = {1}
D’(y4) = {1,2,3}

GU

x4 x5

y3 y4

D(y4) = {1,2,3}

D’(z) = {2,3}

Figure 4.15: Intersection graph and pruning of the SOFT_USED_BY_VAR constraint

SOFT_GCC_VAR Note that filtering algorithms for soft versions of the gcc and the
symmetric_cardinality constraints are immediate. When GO 6= ∅ then the constraints
are over-constrained and the variable-based violation measure will be useful (Figure 4.16).
When GU 6= ∅ then the constraints are under-constrained and the value-based violation
measure will help to solve the constraint.

GO GU

x6x5x4x3x2x1

1 2 3D(x1) = {1}
D(x2) = {1}
D(x3) = {1}
D(x4) = {1,2}
D(x5) = {1,2}
D(x6) = {2,3}

D’(x1) = {1}
D’(x2) = {1}
D’(x3) = {1}
D’(x4) = {2}
D’(x5) = {2}
D’(x6) = {2,3}

D(z) = {0,1} D’(z) = {1}

1(1,2)
2(3,3)
3(1,1)

1'(2,2)
2'(3,3)
3'(1,1)

Figure 4.16: Variable-value graph and pruning of the SOFT_GCC_VAR constraint

A thesis dealing with the soft_gcc_var constraint is by Alessandro Zanarini [313].

4.5. CONVEX BIPARTITE GRAPHS 83

4.5 Convex bipartite graphs

In this section we study constraints representable by convex bipartite graphs. For such
constraints we will develop a filtering algorithm that achieves bounds consistency. In this
section we assume that all variable domains are intervals and we will show how to prune
them to the possible smallest intervals.

Recall that a bipartite graph G with bipartition (V1, V2) is said to be V1-convex if there
is an ordering on V1 such that for all v ∈ V2 the vertices adjacent to v are consecutive.
Convexity over V2 is defined analogously. A bipartite graph that is convex over both V1 and
V2 is said to be doubly convex. Any given bipartite graph can be tested for convexity in
linear time using an algorithm devised by Kellogg S. Booth & George S. Lueker [50].

Complexity surveys for maximum matchings in convex bipartite graphs:

Year Author(s) Complexity Strategy/Remarks

1967 Glover [138] O(n1 · n2) ordered vector
1981 Lipski & Preparata [206] O(n2 + n1 · α(n1)) disjoint set union
1984 Gallo [130] O(n1 · log n1) binary heap
1988 Scutellà & Scevola [265] O(n1 · log p+ n1 · α(n1)) balanced binary trees
1996 Steiner & Yeomans [276] O(n1) off-line minimum
2008 Katriel [186] O(m+ n2 · log n1) vertex-weighted matching

Table 4.5: History of algorithms for the convex bipartite matching problem

Here, p = min {dn2

n1
e, n1}. Recall that a greedy algorithm at any individual stage selects,

without regard for future consequences, that option, which is, in some particular sense,
locally optimal. When the algorithm terminates the local optimum is equal to the global
optimum. Note that the greedy algorithm produces an optimal solution only for a special
class of structures called matroids. We already know some greedy algorithms, such as
Dijkstra’s shortest path algorithm [76] or Kruskal’s minimum spanning tree algorithm [197].
The next example is an algorithm for finding a matching in a convex bipartite graph. Glover’s
algorithm (see also [201, Section 5.6] and [15, Section 5.3] for further reading) is greedy in
the sense that it always chooses an edge among those that belong to an actual maximal
matching, i.e. it picks an allowed edge.

SORT The constraint sort(X,Y) is defined on two collections of variables. The constraint
states that the variables of the second collection correspond to the variables of the first
collection according to a permutation sorted in non-decreasing order.

The constraint is introduced in [233]. The filtering algorithm achieving bounds consis-
tency is presented in [44] and in [219]. The complexity of the first algorithm is O(n · log n),
the running time of the second algorithm is O(n) plus the time for sorting the bounds of
the variable domains.

Now we show how the algorithm can be implemented in linear time if the sorting of the
variables in the collection X is known according to both the lower and upper bounds of their

84 CHAPTER 4. BIPARTITE GRAPHS

domains.
First, the domains of Y should be normalized. Normalization can be achieved by setting

min(D′(yi)) = max(min(D(yi−1)),min(D(yi))), where 2 ≤ i ≤ n

max(D′(yi)) = min(max(D(yi)),max(D(yi+1))), where n− 1 ≥ i ≥ 1

Next, in the same way as in the case of the same constraint, we create an intersection
bipartite graph G. In fact, it is a convex bipartite graph. Suppose that our intersection
convex bipartite graph contains a perfect matching. In order to narrow the variable domains
of X we use the following reduction rule:

D′(xi) = D(xi) ∩
⋃

{xi,yj}∈E(GW)

D(yj)

However, before we explain how to further narrow the domains of Y we must introduce
two kinds of perfect matchings in the convex bipartite graphs. A perfect matching with
respect to the upper, or lower, bound of X is obtained when from the set of free vertices
we choose such a vertex xi that max(D(xi)) is minimal, or min(D(xi)) is maximal. We
denote such perfect matchings by Mmin and Mmax, respectively. Then we get the following
propagation rules:

min(D′(yj)) = max(min(D(yj)),min(D(xi))), where {xi, yj} ∈Mmin

max(D′(yj)) = min(max(D(yj)),max(D(xi))), where {xi, yj} ∈Mmax

A thesis dealing with the sort constraint has been written by Sven Thiel [288].

Mmin

x3x2x1

y2y1 y3

D(x1) = [7,10]
D(x2) = [1,13]
D(x3) = [13,15]

D(y1) = [2,4]
D(y2) = [4,7]
D(y3) = [2,13]

D’(x1) = [7,10]
D’(x2) = [2,13]
D’(x3) = [13,15]

D’(y1) = [2,4]
D’(y2) = [5,6]
D’(y3) = [7,10]

D(x4) = [3,17]
D(x5) = [5,6]

D(y4) = [12,19]
D(y5) = [14,18]

D’(x4) = [3,17]
D’(x5) = [5,6]

D’(y4) = [12,15]
D’(y5) = [14,17]

x4 x5

y4 y5

Mmax

x3x2x1

y2y1 y3

x4 x5

y4 y5

Figure 4.17: Intersection convex bipartite graph and pruning of the SORT constraint

SORT_PERMUTATION The sort_permutation constraint was introduced in [315].
It is defined on three collections of variables. The variables of the first collection correspond
to the variables of the third collection according to the permutation of the second collection.
The variables of the third collection are sorted in increasing order.

In the same way as in the correspondence constraint, the constraint can be modeled
by means of the restricted intersection graph: we have an edge {xi, zj} between X and Z
iff D(xi)∩D(zj) 6= ∅ ∧ j ∈ D(yi). If the variable domains are intervals the generated graph
is convex.

4.6. SUMMARY 85

In order to narrow the domains of the variables X and Z we would do the same as in
the previous example. But our approach achieves bounds consistency only on the domains
of Z. This is not the case for the variables of X and Y (cf. [288, Section 3.1.4]).

4.6 Summary

In this chapter, we have developed a generic filtering technique, based on a breadth-first
search and depth-first search, called alternating breadth-first search and alternating depth-
first search, that runs in linear time assuming that the appropriate matching is given. The
algorithm can be efficiently used as a propagation routine when solving a global constraint
representable by a bipartite graph.

We believe that this chapter illustrates that decomposition theory of bipartite graphs and
the Dulmage-Mendelsohn Canonical Decomposition have a practical application for describ-
ing filtering algorithms for global constraints representable by bipartite graphs regardless
of the underlying model used for the constraint (value, variable, or intersection graph, con-
vex bipartite graph, and so on) and its solution (perfect, complete, maximum or optimal
matching).

The following table summarizes time complexities of global constraints representable by
a bipartite graph which were discussed in this chapter.

86 CHAPTER 4. BIPARTITE GRAPHS

checking hyper-arc

global constraint model feasibility consistency reference

alldifferent value graph O(
√
n ·m) O(m+ n+ k)

Régin
[255]

alldifferent_except_0 value graph O(
√
n ·m) O(m+ n+ k) here

correspondence
intersection
graph

O(
√
n ·m) O(m+ n) here

inverse variable graph O(
√
n ·m) O(m+ n) here

same
intersection
graph

O(
√
n ·m) O(m+ n) here

used_by
intersection
graph

O(
√
n ·m) O(m+ n) here

gcc
variable-value
graph

O(
√
g(V) ·m) O(m+ n+ k)

Quimper
[253]

symmetric_cardinality
variable-value
graph

O(
√
g(V) ·m) O(m+ n+ k) here

soft_alldifferent_var value graph O(
√
n ·m) O(m+ n+ k) Petit [245]

soft_same_var
intersection
graph

O(
√
n ·m) O(m+ n) here

soft_used_by_var
intersection
graph

O(
√
n ·m) O(m+ n) here

soft_gcc_var
variable-value
graph

O(
√
g(V) ·m) O(m+ n+ k)

Zanarini
[314]

soft_symmetric_

cardinality_var
variable-value
graph

O(
√
g(V) ·m) O(m+ n+ k) here

Table 4.6: Summary of results for bipartite graphs

Chapter 5

General Graphs

In the current chapter traditional results in matching theory and recently developed tech-
niques in decomposition theory are conveniently combined and extended. We use the Gallai-
Edmonds Structure Theorem to decompose a general graph with perfect matching into el-
ementary subgraphs. This decomposition is a stronger version of the Dulmage-Mendelsohn
Canonical Decomposition described in the previous chapter. In particular, we observe that
the Gallai-Edmonds Decomposition applied to constraint programming will allow us to con-
centrate on the global constraints representable by general graphs with perfect matching.

In this chapter we present an algorithm for finding the partition of edges in general
graphs. The algorithm has O(p · m) time complexity, where p is the number of maximal
extreme sets in G. Our algorithm is based on the notion of extreme sets introduced by
Anton Kotzig [193–195]. The extreme sets will be defined for f -matchings.

The maximum matching problem in general graphs is one of the most fundamental
problems in matching theory and has been investigated extensively. This problem was first
formulated and solved by Edmonds [90] using his well-known blossom shrinking algorithm.
Since a number of algorithms have been developed for this problem some of them are listed
in Table 5.1 (cf. [264, Section 24.4a]).

Several algorithms have been proposed to solve the maximum matching problem on
general graphs. These algorithms are considerably more intricate than for bipartite graphs.
The first polynomial algorithm, called the blossom shrinking algorithm, for determining
maximal matchings, based on Augmenting Path Theorem (Theorem 2.4.1), was initially
found by Jack Edmonds [90] with a complexity of O(n4), although he did not state this
formally. The complexity of this algorithm has been improved from O(n4) to O(n3) by
Gabow [114] and using union-find data structure to O(n · m · α(m,n)) by Tarjan [283],
where α is the inverse of Ackermann’s function, which is very slow growing. This can be
further reduced to O(n ·m) time using the disjoint-set result of Gabow & Tarjan [121].

These algorithms follow the general paradigm for matching algorithms: repeated aug-
mentation by augmenting paths until a maximum matching is obtained. We assume that
the reader is familiar with this paradigm, which can, for example, be obtained by reading
standard references [212, Section 9.1], [218, Section 7.6.2] or [285, Chapter 9].

87

88 CHAPTER 5. GENERAL GRAPHS

Year Author(s) Complexity Strategy/Remarks

1965 Edmonds [90] O(n4) blossom shrinking
1965 Witzgall & Zahn [307] O(n2 ·m) augmenting paths
1969 Balinski [17] O(n3) labeling technique
1973 Gabow [114] O(n3) labeling technique
1974 Kameda & Munro [176] O(n ·m) better blossom handling
1975 Even & Kariv [97] O(n5/2) extremely complicated
1976 Karzanov [184], Lawler [201] O(n3) no explicit shrinking
1976 Gabow [114] + Tarjan [283] O(n ·m · α(m,n)) disjoint set union
1980 Micali & Vazirani [221,302],[244] O(

√
n ·m) shortest paths

1985 Gabow [114] + Tarjan [121] O(n ·m) linear disjoint set union
1990 Blum [46,48] O(

√
n ·m) reachability in digraphs

1991 Gabow & Tarjan [124] O(
√
n ·m) ε-optimality

1995 Goldberg & Karzanov [139,140] O(
√
n ·m · logn

n2

m) graph compression
2003 Fremuth-Paeger & Jungnickel [111] O(

√
n ·m · logn

n2

m) graph compression
2004 Mucha & Sankowski [224] O(nω) matrix multiplication
2006 Harvey [154] O(nω) matrix multiplication

Table 5.1: History of algorithms for the cardinality non-bipartite matching problem

The fastest known algorithm with the best asymptotic running time is given in [221] by
Silvio Micali and Vijay V. Vazirani. The algorithm generalizes the method of Hopcroft &
Karp [164] for bipartite graphs. Although an extensive discussion of this algorithm was given
in [244], a formal proof of the correctness appeared nearly 10 years after the algorithm had
been designed [302]. Recently, Vazirani has written a new manuscript about his algorithm,
which contains the simplified version of correctness proof [303].

The algorithm works in phases. In each phase a maximal set of vertex-disjoint shortest
augmenting paths is found and the existing matching is increased along these paths. As in
the bipartite case, it can be shown (see, for example, [4, Section 8.2], [164] or [217, Section
IV.9.2]) that the number of phases is O(

√
n) and hence the total running time is O(

√
n ·m).

On many graphs the number of phases is smaller. In particular, Rajeev Motwani [223] has
shown that the number of phases is O(log n) for random graphs (see also [23]).

Unfortunately, the algorithm of Micali & Vazirani is rather difficult to understand and
implement. The procedure they present turns out to be too complex for efficient implementa-
tion. In LEDA, the popular library framework for efficient data types and algorithms, devel-
oped by Kurt Mehlhorn and Stefan Näher [218], the algorithm of Gabow & Tarjan [285],[121]
with running time O(n ·m), improved from O(n ·m ·α(m,n)), is used for the implementation
of the maximum matching algorithm on general graphs. That applies to perfect matchings
as well because a perfect matching is a matching of maximum size.

We conclude this section by remarking that while most of the results in this chapter have
appeared before in [72], there are some new results. In particular, we present the degree-
version of the divide-and-conquer approach, which we left as an exercise for the reader. In

5.1. PRELIMINARIES 89

addition, some new additional properties of extreme sets are discovered (see Property 5.2.9
and 5.2.10). Theorem 5.3.4 is new. It clarifies the number of maximal extreme sets in
a general graph, which was lacking in the paper. Additionally, we prove the correctness
of the pruning algorithm for the soft_symmetric_alldifferent_var constraint (see
Lemma 5.4.4). An example describing the clique constraint is new. Section 5.5 is new.

5.1 Preliminaries

In order to make our thesis self-contained, we briefly introduce some terminology. This
botanical flavor comes from [90]. The important concept is that of a blossom in a graph.
Recall that blossoms play a key role in Edmonds’ algorithm for maximum matchings and
weighted perfect matchings in general graphs.

Let G be a graph and let M be a matching in G. A blossom B in G is an alternating
path relative to M that forms a cycle of odd-length with |M ∩ E(B)| = |V (B)−1|

2 matched
edges. It is convenient to consider also the vertices of the graph as (trivial) blossoms of size
one. Note that every blossom is a factor-critical subgraph of G, but the converse does not
hold in general, since a blossom is not an induced subgraph. A vertex of B not covered by
M ∩ E(B) is called the base of B.

A shrunken blossom results when a blossom B is collapsed into a single vertex b, the
base of the blossom, whereby every edge {x, y} with x /∈ B and y ∈ B is transformed into
the edge {x, b}. The reverse of this process gives an expanded blossom. More formally,

Shrunken graph Given a graph G = (V,E) with a matching M and a blossom B, the
shrunken graph G/B with matching M/B is defined as follows:

• V (G/B) = (V \B) ∪ {b}

• E(G/B) = E \ E[B]

• M/B = M \ E[B]

where E[B] denotes the set of edges within B, and b is the base of B.

Observe that G/B may contain parallel edges between vertices, if G contains a vertex
which is joined to B by more than one edge. If G/B is the graph obtained from G after
shrinking the blossom B, then such an operation is justified by the following property:

Theorem 5.1.1 There is an augmenting path in G iff there is an augmenting path in G/B.

Proof See Lemma 9.1.1 in [212]. ut

Two blossoms are either disjoint or one is contained in the other. In the latter case the
first blossom is said to be nested in the second. Since a blossom is not an induced subgraph,
we may have two vertices v and w belonging to the same blossom B without edge {v, w}
being in B. However, a simple analysis shows that except for one vertex b ∈ B, called the

90 CHAPTER 5. GENERAL GRAPHS

base of the blossom, for matched edge {u, v} if u and v belong to some blossoms, then u

and v belong to the same blossom.

A stem is an even alternating path from an exposed vertex to the base of B. The stem
of the blossom may be empty. If the stem is not empty, it contains a matched edge incident
to the base. The base of a blossom is exposed iff the stem is empty.

There are no blossoms in bipartite graphs because blossoms have an odd number of
edges and there does not exist a cycle with an odd number of edges in a bipartite graph (see
Theorem 2.5.1). In the case of a non-bipartite graph whenever we come across a blossom we
reduce it to a single vertex. And any edge that does not belong to a blossom but is incident
on one of its vertices is now incident on this new vertex formed by shrinking the blossom.

Figure 5.1 shows a blossom. The blossom consists of nine edges, four of which are
matched. The base of the blossom is x2. The stem of the blossom is the path x0x1x2.
Edge {x3, x8} does not belong to this blossom, since there exists no alternating path in B
involving this edge. We can see that vertices x0 and x11 are exposed. So the augmenting
path x0x1x2x3x5x7x9x11 will increase the size of the matching by 1.

x2x0

x3

x1

x4

x5

x6

x7

x8

x9

x10

x11

Figure 5.1: A blossom

Every vertex v in the blossom, except its base, is reachable from the root r, or from the
base of the blossom, through two vertex-disjoint alternating paths; one has even length and
the other has odd length. The even alternating path to vertex v terminates with a matched
edge, and the odd alternating path to vertex v terminates with a free edge.

The following facts characterize blossoms:

• A stem spans 2l + 1 vertices and contains l matched edges for some integer l ≥ 0.

• A blossom spans 2k+ 1 vertices and contains k matched edges for some integer k ≥ 1.
The matched edges cover all vertices of the blossom except the base.

• The base of a blossom is always an outer (even) vertex.

• Every vertex in a blossom (except its base) is reachable from the root (or from the
base) via two distinct alternating paths; one with an even and one with an odd length.

• An even alternating path in a blossom terminates with a matched edge and an odd
alternating path terminates with a free edge.

• For a matched edge both its endpoints belong to the same blossom.

• Two blossoms are either disjoint or one is contained in the other.

5.2. GALLAI-EDMONDS CANONICAL DECOMPOSITION 91

A rooted alternating forest with respect to a given matching M is a forest F in G with
the following properties:

• F contains all vertices not covered by M .

• Each connected component of F contains exactly one exposed vertex, its root.

• Each root is an outer (even) vertex.

• Every inner (odd) vertex is adjacent in the tree with an outer (even) vertex.

• All inner (odd) vertices have degree two in F .

• The unique path from any vertex x in F to the root of the connected component
containing x is alternating.

• The number of outer vertices that are not a root equals the number of inner vertices.

Let G be a graph with degree conditions g and f , and M be a degree-matching in G. An
f -blossom in G with respect to M is an f -critical subgraph B of G (cf. [153, Theorem 2.5])
with |M ∩ E(B)| = f(B)−1

2 and the base b (see Figure 5.2).

(1,1)

(1,1)

(2,2)

(1,1)

b

(1,1)(1,1)

Figure 5.2: An f-blossom

5.2 Gallai-Edmonds Canonical Decomposition

In this section we investigate general graphs with degree-matchings. The obtained results are
mainly based on the structure theorem of Gallai and Edmonds (for maximum matchings),
and of Lovász and Plummer (for optimal degree-constrained matchings). This section is
mainly expository in nature. At this point we collect some basic material that will be
needed later on and include proofs of almost all the results.

5.2.1 General Graphs with Maximum Matchings

We now present a very important result in matching theory which can have useful applica-
tions in constraint programming. This is the so-called Gallai-Edmonds Structure Theorem.
It was independently discovered by Tibor Gallai [127,128] (who published it in some Hun-
garian journals) and by Jack Edmonds [90]. Incidentally, their methods of proofs were quite
different. The reader is referred to [212, Section 3.2] for a detailed discussion of this theo-
rem, which characterizes the structure of maximum matchings in graphs. It is comforting

92 CHAPTER 5. GENERAL GRAPHS

to know that we can obtain this canonical decomposition efficiently, that is, in linear time,
via the blossom shrinking algorithm.

First, let us determine the important properties of this canonical decomposition. Con-
sider a simple graph G = (V,E) with an initial maximum matching M . Then V can be
decomposed into three disjoint subsets V = A ∪ C ∪D, where

D = {the set of vertices which are not covered by at least one maximum matching},

A = {the set of vertices in V \D that are adjacent to at least one vertex in D},

C = V \ (A ∪D).

C

D

A××××

××××

××××

Figure 5.3: Gallai-Edmonds decomposition of a general graph with a maximum matching

Figure 5.3 illustrates an example of such a decomposition. Some properties of this de-
composition are given in the following result.

Theorem 5.2.1 (Gallai-Edmonds Structure Theorem [127,128],[90]) If G is a graph
and A, C and D are defined as above, then the following statements hold:

1. The components of the subgraph induced by D are factor-critical,

2. The subgraph induced by C has a perfect matching,

3. A = Γ(D) \D,

4. The bipartite multigraph obtained from G by deleting the vertices of C and the edges
spanned by A, and by contracting each component of D to a single vertex has positive
surplus (as viewed from A),

5. Every maximum matching of G splits into a perfect matching of each connected compo-
nent of C, a near-perfect matching of each component of D, and a complete matching
from A into distinct components of D.

Proof See Theorem 3.2.1 in [212]. ut

5.2. GALLAI-EDMONDS CANONICAL DECOMPOSITION 93

Some important consequences of this theorem are immediate:

• No edge spanned by A belongs to any maximum matching.

• No edge connecting A to C belongs to any maximum matching.

• Every edge incident with a vertex ofD lies in some maximum matching (Lemma 2.6.1).

• There is no edge between C and D.

• Vertices of A and C are saturated by every maximum matching.

• Vertices of D are exposed by at least one maximum matching.

• Each connected component of C has even cardinality.

• Each connected component of D has odd cardinality.

Thus, the Gallai-Edmonds Canonical Decomposition is very useful to determine all edges
belonging to no maximum matching. The partition of vertices can be obtained by applying
Edmonds’ blossom shrinking algorithm. Consider the alternating forest at the termination
of the algorithm. The set of vertices which are either outer (even) vertices of the forest or
inside shrunken outer vertices (blossoms) forms the set D. The set of inner (odd) vertices
of the forest is the set A. The rest of the vertices of G (out of the forest) belongs to the set
C. In summary, we have the following possibilities:

x is outer (even) level[x] is even and ∀y 6=x blossom(y) 6= blossom(x)

x is inner (odd) level[x] is odd and ∀y 6=x blossom(y) 6= blossom(x)

x ∈ blossom (level[x] is even or odd) and ∃y 6=x blossom(y) = blossom(x)

out of forest otherwise

5.2.2 General Graphs with Perfect Matchings

Note that if G has a perfect matching, then the Gallai-Edmonds decomposition gives no
information about the allowed edges because the partition 〈A,C,D〉 is trivial with C = V (G)

and hence A = D = ∅. However, the linear-time method for finding the allowed edges
incident to a vertex v extends to any graph that has a perfect matching as follows. Before
we present such an algorithm we need some additional definitions. Our description is based
on [212, Section 3.3].

We will call a set of vertices X in V (G) extreme if the following equality holds

δ(G−X) = δ(G) + |X|.

Note that the empty set ∅ is always extreme. The singleton set may or may not be
extreme in general. However, if G has a perfect matching then every singleton subset of V
is extreme. We refer to such an extreme set as a trivial one.

94 CHAPTER 5. GENERAL GRAPHS

An extreme set X of G is maximal if all components of G−X are factor-critical. If G is
bipartite with a perfect matching then both of its color classes form maximal extreme sets.

According to the Gallai-Edmonds Structure Theorem the set A is itself extreme (cf. [212,
Exercise 9.1.2]) and the deficiency of G, δ(G) = t − |A|, where t denotes the number of
connected components of D. If C 6= ∅ then A is not a maximal extreme set. In general,
A is not a unique extreme set and one of our concerns will be to characterize it among all
extreme sets. The relation

{(x, y) : x, y ∈ V and either x = y or {x, y} is extreme in G}

is an equivalence relation in elementary graphs. Finding a maximal extreme set can be
accomplished in linear time. Now we point out the following few additional simple properties
of extreme sets, which are fundamental for our purposes and are presented in [212, Section
3.3] as exercises for the reader. For the sake of completeness, we will prove some of them.

Property 5.2.1 Every subset of an extreme set is extreme.

Property 5.2.2 If Y is extreme in G and X ⊆ Y then Y −X is extreme in G−X.

Property 5.2.3 If X is an extreme set in G and Z is an extreme set in G−X, then X ∪Z
is an extreme set in G.

Proof Let X be any extreme set in G and Z be any extreme set in G − X. Then the
following holds: δ(G − (X ∪ Z)) = δ(G − X − Z) = δ(G − X) + |Z| (since Z is extreme
in G −X) = δ(G) + |X| + |Z| (since X is extreme in G). The result follows now from the
definition of an extreme set and the fact that X ∩ Z = ∅. ut

Property 5.2.4 A singleton set {v} ⊆ V (G) is extreme iff v ∈ A(G) ∪ C(G).

Property 5.2.5 Let e = xy be an edge in G and suppose G has a perfect matching. Then
the set {x, y} is extreme in G iff e lies in no perfect matching of G.

Proof Let x and y be any two vertices in G. Then G − x − y has no perfect matching iff
δ(G − x − y) = 2. But this in turn holds iff {x, y} is extreme, that is 2 = δ(G − x − y) =

δ(G) + |{x, y}| = 2. ut

The last property immediately gives us a simple algorithm for edge partition. For each
edge {x, y}, we temporarily delete it and test if the resulting graph G − x − y still has a
perfect matching. If so, we restore the edge; otherwise we remove the edge permanently. To
compute the perfect matching we start from M − {{x,mate(x)}, {y,mate(y)}} and search
for an augmenting path with endpoints mate(x) and mate(y). To do this we need only
O(m) operations. Since there are m edges in G, the complexity of the algorithm is O(m2).
We can improve this complexity by using the following result.

Proposition 5.2.2 Let G be any graph and x ∈ A(G) ∪ C(G). Then A(G − x) ∪ {x} is
extreme in G. Moreover, if x ∈ C(G) and X is any extreme set in G− x, then X ∪ {x} is
extreme in G.

5.2. GALLAI-EDMONDS CANONICAL DECOMPOSITION 95

Proof The proof follows from Lemma 3.3.10 in [212] and stems from the fact that every
barrier1 is an extreme set (see Lemma 3.3.8 in [212]). ut

We now give a structure theorem for perfect matchings, which generalizes the funda-
mental Gallai-Edmonds Structure Theorem for maximum matchings. In order to describe
it more formally, we first need to introduce some terminology.

Assume that G has a perfect matching and let X be an extreme set in G. Let G′ =

G−C(G−X), t = |X|, and let D1, . . . , Dt be the connected components of D(G−X). Let
G0 denote the bipartite multigraph obtained from G′ by contracting each component Di to
a single vertex and deleting each edge spanned by X. Let Gi be the multigraph obtained
from G′ by shrinking all vertices of V (G) − Di to a single vertex. We call G0 the gluing
bipartite multigraph and the multigraphs G1, . . . , Gt the pieces of G at extreme set X (these
terms come from [211]).

We will now prove a very useful theorem which can have an application to propagation
of global constraints representable by a perfect matching in a general graph.

Theorem 5.2.3 Let G = (V,E) be any graph with a perfect matching M , v ∈ V , and let
〈A,C,D〉 be the Gallai-Edmonds Canonical Decomposition of G − v. Then the following
holds:

1. The set X = A ∪ {v} is extreme in G,

2. The edges in G[X] are forbidden in G,

3. The edges in ∇(X,C) are forbidden in G,

4. The bipartite multigraph G0 obtained from G− C by contracting each connected com-
ponent of D to a single vertex and by deleting each edge spanned by X has a perfect
matching,

5. The multigraph Gi obtained from G− C by contracting the set V (G)−Di to a single
vertex has a perfect matching,

6. The mandatory, allowed, or forbidden edges of G are precisely those edges which are,
respectively, mandatory, allowed, or forbidden in one of the graphs Gi, i = 0, . . . , t,
where t = |X|.

Proof LetM be a perfect matching of G and let 〈A,C,D〉 be the Gallai-Edmonds Canonical
Decomposition of G− v. Then the theorem can be proven in the following way:

1. Since every vertex is a (trivial) extreme set and the set A of the Gallai-Edmonds de-
composition of G is always extreme, the claim follows immediately from Property 5.2.3.

2. According to the Gallai-Edmonds Structure Theorem, every maximum matching con-
tains a complete matching from A into distinct components of D. Since M matches
all vertices of A with all connected components of D, thus M cannot contain any edge
spanned by A.

1A barrier is a set X ⊆ V such that the number of odd components of G−X is equal to |X|+ δ(G).

96 CHAPTER 5. GENERAL GRAPHS

3. It can be proven analogously as Claim 2.

4. According to the Gallai-Edmonds Structure Theorem, D consists of factor-critical
components and every maximum matching of G contains a complete matching from
A into distinct components of D. Since X is an extreme set in G, thus it must be
precisely |X| connected components of D. So each perfect matching of G is mapped
onto a perfect matching of G0.

5. Analogously, as for Claim 4.

6. It follows from Claims 4 and 5.

The theorem is established. ut

This theorem describes a way to decompose general graphs with perfect matchings into
matching covered (1-extendable) subgraphs. It is instructive to study the example shown in
Figure 5.4, which demonstrates how the decomposition by means of extreme set works (the
non-trivial blossoms are circled).

X

G0

×

×

×
×

×
×

×
×

× ×

×

G1 G2 G3 G4

Figure 5.4: The canonical decomposition of a general graph with a perfect matching

The reader is invited to convince himself about the truth of the following very simple
result:

Lemma 5.2.4 Any matched edge in the gluing bipartite multigraph G0 is incident with the
base of the respective blossom.

Thus, the connected components of D are the blossoms and the gluing bipartite multi-
graph G0 has the form G[∇(A, base(Di))], where base(Di) denotes the base of the blossom
Di, i = 1, . . . , t, t = |X|.

5.2. GALLAI-EDMONDS CANONICAL DECOMPOSITION 97

5.2.3 General Graphs with Degree-Matchings

For a general graph G with an optimal degree-matching we define subsets A, B, C and D
of V (G) as follows

D = {v ∈ V |there exist both even and odd alternating trails from exposed vertices to v}

B = {v ∈ V |there exists an even alternating trail from some exposed vertex to v} \D

A = {v ∈ V |there exists an odd alternating trail from some exposed vertex to v} \D

C = V \ (A ∪B ∪D)

Clearly, A, B, C and D are pairwise disjoint. We call the partition 〈A,B,C,D〉 of V the
Lovász-Plummer Canonical Decomposition. It is the generalization of the Gallai-Edmonds
Canonical Decomposition for maximum matchings. Note that C = V (G) iff a graph G has
a perfect (g, f)-matching. The decomposition has the following properties (see Theorem
10.2.13 in [212]):

• No edge connecting A to C or spanned by A belongs to any optimal (g, f)-matching

• Each edge connecting B to C or spanned by B belongs to every optimal (g, f)-matching

• There is no edge connecting C to D

• Vertices of A ∪ C are saturated by every optimal (g, f)-matching

• Vertices of B ∪D are exposed by at least one optimal (g, f)-matching

As an example, consider the graph G depicted in Figure 5.5 and its optimal f -matching
(this illustration is adapted from [110]). Here, f ≡ 3. Observe that δ(G) = 1.

C

D

A B

××××

Figure 5.5: Lovász-Plummer decomposition of a general graph with an optimal f-matching

Theorem 5.2.5 The following holds for every optimal (g, f)-matching M of G:

98 CHAPTER 5. GENERAL GRAPHS

(a) If x ∈ A, then dM (x) ≥ f(x),

(b) If x ∈ B, then dM (x) ≤ g(x),

(c) If x ∈ C, then g(x) ≤ dM (x) ≤ f(x),

(d) If x ∈ D, then g(x) = f(x) and f(x)− 1 ≤ dM (x) ≤ f(x) + 1.

Proof See Theorem 10.2.12 in [212]. ut

We are now ready to formulate the main structure theorem which establishes the canon-
ical decomposition of general graphs with degree-matchings. Let us define, using a given
pair of degree conditions (g, f), further pair (ĝ, f̂) as follows:

ĝ(x) =

f(x), for every x ∈ A

g(x) ·−|∇(x,B ∪ C ∪D)|, for every x ∈ B

g(x) ·−|∇(x,B)|, for every x ∈ C ∪D

f̂(x) =

f(x), for every x ∈ A

f(x) ·−|∇(x,B ∪ C)|, for every x ∈ B

f(x) ·−|∇(x,B)|, for every x ∈ C ∪D

Theorem 5.2.6 Let G be any graph, 〈A,B,C,D〉 – the Canonical Decomposition and let
ĝ, f̂ be defined as above. Then the following statements hold:

1. The connected components of G[C] admit perfect (ĝ, f̂)-matching,

2. The connected components of G[D] are (ĝ, f̂)-critical,

3. Every optimal (g, f)-matching of G[A ∪B ∪D] saturates A,

4. The bipartite multigraph G[A ∪ B ∪ D] obtained from G by deleting the vertices of
G[C] and the edges joining B and D or spanned by A or B and by contracting each
component of G[D] to a single vertex has positive surplus (viewed from A),

5. Every optimal (g, f)-matching of G splits into a perfect (ĝ, f̂)-matching of G[C], a
near-perfect (ĝ, f̂)-matching of the connected components of G[D], and a complete
(ĝ, f̂)-matching from A to B ∪D.

Proof See Theorem 10.2.18 in [212]. ut

Note that every component of G[D] is (g, f)-critical. So if G is a bipartite graph, then
D = ∅. Moreover, the set B is the union of all singleton (trivial) components of D in the
Gallai-Edmonds decomposition.

Let G∗ be an incremental graph with a maximum matching M∗ (which corresponds to
an optimal degree-matching in the graph G). If we have found the canonical decomposition
of V (G∗) it is possible to obtain the canonical decomposition of V (G) in the following way.

5.2. GALLAI-EDMONDS CANONICAL DECOMPOSITION 99

Theorem 5.2.7 Let G be any graph with an optimal degree-matching M , G∗ be an incre-
mental graph of G, and let 〈A∗, B∗, C∗, D∗〉 be the Gallai-Edmonds Decomposition of G∗.
Then the Lovász-Plummer Decomposition 〈A,B,C,D〉 of G can be determined as follows

(a) x ∈ A, if every external vertex in the gadget of x belongs to A∗ or C∗,

(b) x ∈ B, if every external vertex in the gadget of x belongs to B∗ or C∗,

(c) x ∈ C, if every vertex in the gadget of x belongs to C∗,

(d) x ∈ D, otherwise.

Proof We will prove our theorem for the first case as proof for the other cases is almost
identical. Consider a vertex x and its corresponding gadget. According to the definition of
the set A∗ there exists an odd alternating path from an exposed vertex to the vertices of
A∗. It is now not difficult to check that every alternating path in the incremental graph
G∗ corresponds exactly to an alternating trail in the original graph G (by contracting each
gadget to a single vertex), and conversely, any alternating trail in G can be easily converted
into an alternating path in G∗ (by expanding every vertex of the trail to a gadget). Since
an odd alternating path from an exposed vertex to an external vertex in the gadget of x
corresponds to an odd alternating trail from an exposed vertex to x then, according to the
definition of the set A, x ∈ A. Observe that some external vertices in the gadget of x may
belong to C∗ but this fact has no influence on the category of x. ut

Let G∗ be an incremental graph with a perfect matching M∗ (which corresponds to a
perfect (g, f)-matching in the graph G). The set X is said to be extreme with respect to
(g, f)-matchings if the set X∗ is extreme in the incremental graph G∗. Here, X∗ denotes the
union of all external vertices belonging to a gadget corresponding to every x ∈ X of V (G).

In particular, a set of vertices X in V (G) is extreme with respect to f -matchings if the
following equality holds

δ(G−X) = δ(G) + f(X).

Unfortunately, the situation here is more complicated than it is for extreme sets in the
case of the ordinary matching. The difficulty in processing extreme sets with respect to
f -matchings is due to the fact that any singleton set must not be in general extreme. For
example, in Figure 5.12, the singleton {1} is not extreme with respect to 2-matchings, and
neither {4}, {6}, {7} nor {8} are such.

We now point out a few simple properties of extreme sets with respect to f -matchings.

Property 5.2.6 Every subset of an extreme set is extreme.

Property 5.2.7 Let G be any graph with a perfect f -matching. Assume that {x} is not
extreme in G. Then x belongs to no extreme set.

Proof Clearly, δ(G− x) < f(x) (cf. Lemma 3.3.1 in [212]). Assume that {x, y} is extreme
in G. Then we have δ(G−{x, y}) = f(x)+f(y). On the other hand, we have δ(G−{x, y}) ≤
δ(G− x) + f(y) < f(x) + f(y), which is a contradiction to our hypothesis. Thus, x belongs
to no extreme set. ut

100 CHAPTER 5. GENERAL GRAPHS

For (g, f)-matchings the situation is considerably more complex. In fact, the above
property does not hold (cf. Figure 5.10). An alternative way is based on a reduction to the
f -matching problem.

It is sensible to try to apply matching theory to the theory of f -matchings. We now
define 2-bicritical graphs and give several characterizations of them. A graph G is said to
be 2-bicritical if G−v contains a perfect 2-matching for every vertex v ∈ V (G). It turns out
that the properties of 2-bicritical graphs seem to be analogous to the properties of bicritical
graphs. For example, if G is a 2-bicritical graph then G has a perfect 2-matching (see
Corollary 6.2.2 in [212]), and every edge of G is allowed (see Theorem 6.2.9 in [212]). This
result can be generalized to f -matchings.

Property 5.2.8 If graph G with a perfect f -matching has no extreme sets then all edges of
G are allowed.

Figure 5.6: 2-bicritical graph

From [185, Theorem 3] we can deduce the following property (cf. [107]):

Property 5.2.9 If graph G has no extreme sets with respect to a certain f -matching, such
that δ(G− x) = 0 holds for every vertex x, then it has a perfect f -matching.

We now prove the following property from which Property 5.2.8 can be easily obtained.

Property 5.2.10 Every edge connecting two vertices belonging to no extreme set is allowed.

Proof We show how finding two odd augmenting trails reduces to finding a closed alternat-
ing trail of even length. Let e = {x, y} be an edge connecting vertices x and y belonging to
no extreme set. Since set {x} is not extreme, thus there exists in G−x an augmenting trail
from some x′ and x′′ matched with x in the original graph G. Analogously, there exists in
G− y an augmenting trail from some y′ and y′′. Without loss of generality, we can assume
that there is an odd alternating trail from x′ to y′ in G; otherwise, the vertices can be
exchanged. Under assumption that G is 2-connected, such an alternating trail must exist,
because all the remaining vertices are saturated. We can complete this alternating trail to
a closed alternating trail of even length through edge e and two adjacent edges incident to
x and y, i.e. {x, x′} and {y, y′}. ut

The following result is a generalization of Theorem 5.2.3. Note that in our presentation,
it is a straightforward consequence of the preceding results (see also [163]).

5.3. COMPUTING THE PARTITION OF VERTICES AND EDGES 101

Theorem 5.2.8 (Decomposition into matching covered subgraphs) Let G = (V,E)

be any graph with a perfect (g, f)-matching M , S – an extreme set of G, 〈A,B,C,D〉 –
Lovász-Plummer Decomposition of G−S, and let Di be connected components of D. Define
the degree conditions (ḡ, f̄) by

ḡ(x) =

g(x), for every x ∈ A

g(x) ·−|∇(x,B ∪ C ∪D)|, for every x ∈ B

g(x) ·−|∇(x,B)|, for every x ∈ C

1 ·−|∇(Di, B)|, for each connected component Di

f̄(x) =

f(x), for every x ∈ A

min{|∇(x,A ∪ S)|, f(x) ·−|∇(x,B ∪ C)|}, for every x ∈ B

f(x) ·−|∇(x,B)|, for every x ∈ C

1, for each connected component Di

Then the following holds:

1. The set X = A ∪ S is extreme in G,

2. The edges in G[X] are forbidden in G,

3. The edges in ∇(X,C) are forbidden in G,

4. The bipartite multigraph G0 obtained from G− C by contracting each connected com-
ponent of D to a single vertex and by deleting each edge spanned by X or B, and
removing all edges joining B and D has a perfect (ḡ, f̄)-matching,

5. The edges mandatory, allowed or forbidden in the gluing bipartite multigraph G0 are,
respectively, mandatory, allowed or forbidden edges in G,

6. Let Ti, i = 1, . . . , t, where t ≤ |X|, be connected components of G − C − X. The
multigraph Gi obtained from G−C by contracting the set V (G)−Ti to a single vertex,
has a perfect (g, f)-matching,

7. The edges mandatory, allowed or forbidden in the pieces of G at extreme set X are
precisely those edges which are, respectively, mandatory, allowed or forbidden in G.

Observe that this theorem is general and, for g ≡ f ≡ 1, it is equivalent to Theorem 5.2.3.
We illustrate the theorem using the graph in Figure 5.7, where g ≡ f ≡ 2.

5.3 Computing the partition of vertices and edges

Suppose we have a maximum matching M in a graph G = (V,E) and we want to search for
all edges of the graph which do not appear in any maximum matching. An additional step
would be to identify the edges that participate in every maximum matching. The overall
aim is to establish a partition of the edge set E into three disjoint subsets:

102 CHAPTER 5. GENERAL GRAPHS

X

G0

×

×
×

G1 G2 G3 G4

××

××

×

(1,1)

(2,2)

(1,1) (1,1)(1,1)(2,2)(1,1)

(2,2) (2,2)

(0,1)

(2,2) (2,2)

(2,2)

××

Figure 5.7: The canonical decomposition of a general graph with a perfect f-matching

• the set of edges belonging to no maximum matching (forbidden edges),

• the set of edges not belonging to at least one maximum matching (allowed edges),

• the set of edges belonging to all the maximum matchings (mandatory edges).

5.3.1 Partition of vertices

Our goal now is to implement the Gallai-Edmonds decomposition algorithm. As we have
already mentioned, it is known that using the method of [115], the most efficient imple-
mentation of the algorithm for computing degree-matchings runs in O(

√
f(V) ·m) time. In

order to find a perfect (or optimal) degree-matching at most
√
f(V) phases are needed, and

each phase is of complexity O(m). This algorithm does not only find a degree-matching for
G, but it also constructs the Gallai-Edmonds decomposition of G.

There is a strong relationship between this algorithm and the Gallai-Edmonds Structure
Theorem. This presentation is inspired by [218, Section 7.7.2] and [285, Chapter 9]. Given
any matching M , the algorithm assigns labels to the vertices as follows. Every vertex is
labeled as either EVEN, ODD or UNLABELED. A vertex is labeled UNLABELED (or out-of-forest)
if it does not belong to any alternating tree and it is labeled EVEN or ODD otherwise. A vertex
v is labeled EVEN (or outer) if there is an alternating trail of even length from an exposed
vertex to v, and vertex v is labeled ODD (or inner) if there is an odd alternating trail from an
exposed vertex to v. Clearly, ifM is any maximum matching, then this labeling corresponds
to the Gallai-Edmonds decomposition (see [212, Section 3.2]). The set of vertices belonging

5.3. COMPUTING THE PARTITION OF VERTICES AND EDGES 103

to any (proper) blossom is the set D, the sets of vertices labeled exclusively EVEN or ODD are
the sets B and A, respectively, and the set of UNLABELED vertices is the set C.

Motivated by this description we obtain the following procedure:

Algorithm 8 Computing the Gallai-Edmonds Decomposition of G
Require: General graph G = (V,E) with an initial maximum matching M
Ensure: Partition of vertices
Make one iteration of blossom shrinking algorithm starting from exposed vertices
Find the set C of unlabeled vertices
Let B be the set of even vertices not belonging to any blossom
Let A be the set of odd vertices not belonging to any blossom
Let D be the set of vertices belonging to any blossom
The Gallai-Edmonds Decomposition is given by 〈A,B,C,D〉

The next theorem is an immediate result:

Theorem 5.3.1 The partition of vertices in a graph with an initial maximum matching can
be determined in linear time.

Proof One iteration of the blossom shrinking algorithm takes O(m) time. This can be seen
as follows. Let M be an initial maximum matching in a graph G. Recall that the blossom
shrinking algorithm is based on the breadth-first search strategy. During the breadth-first
search (with respect to M) each edge is examined at most twice (in the bipartite case, only
once). This gives the required complexity of O(m). Classification of vertices takes O(n)

time. This leads to an overall linear complexity in the number of edges and vertices. ut

5.3.2 Partition of edges

Theorems 5.2.3 and 5.2.8 suggest an algorithm for computing the partition of edges and we
are ready to present the filtering method. Our algorithm is based on a simple, but subtle,
divide-and-conquer approach [1, Section 2.6],[2, Section 10.1],[67, Section 2.3]. Recall that
divide-and-conquer algorithms consist of two parts:

• Divide: Smaller subproblems are solved recursively and independently;

• Conquer: The solution to the original problem is combined from the solutions to the
subproblems.

The algorithm has the following form (at the start of the algorithm all vertices are marked
as UNSCANNED and all edges as UNTRAVERSED):

Let us describe our algorithm in more detail. Each perfect matching of G is mapped into
a perfect matching of G0 by the contraction of every connected component of D to a single
vertex, being the base of the blossom. So the mandatory, allowed or forbidden edges of G, if
not contracted, correspond to mandatory, allowed and forbidden edges in G0, respectively.
Every perfect matching of G consists of a perfect matching of each connected component of

104 CHAPTER 5. GENERAL GRAPHS

Algorithm 9 The divide-and-conquer approach to determine the partition of edges
Require: General graph G = (V,E) with an initial perfect (g, f)-matching M
Ensure: Partition of edges
repeat {find extreme set}
Choose one UNSCANNED vertex v
Relabel v as SCANNED
Compute the Gallai-Edmonds Decomposition 〈A,B,C,D〉 of G− v (see Algorithm 8)

until {v} is extreme or all vertices are SCANNED
if there are no extreme sets in G then
Mark all edges of G as TRAVERSED
Mark all edges of G as ALLOWED (see Property 5.2.8)
return

end if
Let X = A ∪ {v} {extreme set}
Determine the degree conditions ḡ and f̄ (see Theorem 5.2.8)
Find connected components C1, C2, . . . , Cr of G[C]

for every connected component Ci with at least one UNSCANNED vertex do
Let Mi = M ∩ E(Ci)

Recursive call of this procedure with G = Ci, M = Mi, g = ḡ and f = f̄

end for
Form the gluing bipartite multigraph G0 with bipartition (X,B ∪ base(Di))

Let M0 = M ∩ E(G0)

Perform an alternating depth-first search (with respect to M0) on G0

Determine the partition of edges in G0 (see Algorithm 4 and 5)
Remove forbidden edges from G

Mark all vertices of X as SCANNED
Mark all edges in G0 as TRAVERSED
Mark vertices incident with all TRAVERSED edges as SCANNED
Let t be the number of connected components of G[B ∪D]

Form the pieces G1, G2, . . . , Gt of G at extreme set X
for every piece Gi with at least one UNSCANNED vertex do
Let Mi = M ∩ E(Gi)

Recursive call of this procedure with G = Gi, M = Mi, g and f
end for

5.3. COMPUTING THE PARTITION OF VERTICES AND EDGES 105

G[C], a perfect matching of the gluing bipartite multigraph G0, and a perfect matching of
each piece of G at extreme set X.

We use a depth-first search to traverse the multigraph G0 and to look for alternating
cycles (cf. Corollary 2.4.3) and paths. This step of our routine is a slightly modified version
of the algorithm presented in Section 4.3 for a related problem. We choose any unvisited
vertex belonging to B ∪ base(Di) and form a depth-first tree starting from a matched edge
adjacent to this vertex. The depth-first tree grows vertex by vertex in the following manner.
The vertices on the odd level are simply given by the mates of the vertices from the previous
even level. The vertices on the even level are non-scanned neighbors of vertices from the
previous odd level. Thus, edges alternate from the matched edge on the even level to the
free edge on the odd level. If a tree edge on the even level encounters a vertex belonging to a
blossom, then the search jumps to the base of the blossom. On the other hand, if a non-tree
edge leads to a gray vertex an alternating cycle is discovered. Then we shrink the vertices of
the alternating cycle to a single pseudovertex, in the same way as in the shrinking blossom
algorithm. If the vertices in each alternating cycle are contracted into a single vertex, the
remaining edges in the depth-first tree form an alternating path. A very important property
of our algorithm is the fact that we can run it without constructing the bipartite multigraph
G0 explicitly.

The following results verify that our algorithm works correctly.

Theorem 5.3.2 An alternating cycle is discovered by a non-tree edge leading to a blossom
with the gray base.

Proof Let a non-tree edge {v, w} leads to a blossom B with the gray base b. Then the vertex
v is an ancestor of the vertex b in the depth-first tree. Thus, there exists an alternating
path from b to v. Since the vertex w belongs to the blossom B with the base b, there exists
an alternating path from w to b. The non-tree edge {v, w} completes the alternating cycle
b..vw..b. ut

Theorem 5.3.3 Every non-tree edge leading to a blossom with the black base is forbidden.

Proof This follows from the fact that there exists no alternating cycle including this edge.
ut

Observe that the worst time complexity of our algorithm is O(n ·m) in the case when the
input graph G is bicritical (cf. [212, Theorem 5.2.5]). The same complexity will be achieved
when the graph is 2-bicritical. Clearly, the best time complexity of this algorithm is O(m)

when the initial graph has only two disjoint maximal extreme sets. In general holds:

Theorem 5.3.4 If G is a non-elementary graph, then the maximal extreme set of G is the
union of some maximal extreme sets of the elementary components of G.

Proof This is an immediate consequence of the properties of maximal extreme sets of
elementary graphs: the maximal extreme set of G is the product of the maximal extreme
sets of the elementary components of G. ut

106 CHAPTER 5. GENERAL GRAPHS

Theorem 5.3.5 Let p denote the number of maximal extreme sets in a graph. Then the
partition of edges can be determined in O(p ·m) time.

Proof We assume that if a graph in the theorem is not connected, we apply this proof
to each of its connected components. Let M be an initial perfect matching in G, and let
〈A,B,C,D〉 be the Gallai-Edmonds Decomposition of G − v. Since we consider maximal
extreme sets we can assume that C = ∅. Recall that for an elementary graph G (not
necessarily matching covered), the canonical partition of maximal extreme sets forms an
equivalence class of its vertex set. We know that an edge {x, y} is allowed in G iff x and
y belong to different classes of the canonical partition (see Theorem 5.2.2 (b) in [212]).
On the other hand, every edge induced by the vertices of the same class is forbidden (see
Property 5.2.5). Thus, in order to detect all these edges we need at most p iterations of the
blossom shrinking algorithm. In particular, we need only one iteration when G precisely
has two maximal extreme sets (e.g. if G is bipartite), and we need n− 1 iterations when all
classes of G are singletons (e.g. if G is bicritical). We show this in a more formal way.

1. p = 2 (the best case). Here, we have V (G0) = V (G). In this situation we need only
to perform two graph traversals in order to compute the partition of edges. The first
traversal is the breadth-first search to find the extreme set X. The second traversal is
a modified version of the alternating depth-first search on G0 with respect to M .

2. p = n (the worst case). Here, we have X(i) = {vi}, V (G
(i)
0) = {vi,mate(vi)},

E(G
(i)
0) = ∇(vi) and G

(i)
1 = G for i = 1, . . . , n. In this situation we need to call

n − 1 times the blossom shrinking algorithm. Since in every step |V (G0)| = 2,
|E(G0)| = dG(vi), and

∑
dG(vi) = 2m (see Lemma 2.3.1) we have to traverse ev-

ery edge of G at most twice, in order to compute the partition of edges.

3. In the average case for every step the following holds: |V (G0)| <
∑
|V (Gi)| = |V (G)|

and |E(G0)| < |
∑
|E(Gi)| ≤ |E(G)| for i = 1, . . . , t. Every step reduces the task of

finding a partition of edges in G to the task of finding a partition of edges in the smaller
graph Gi, for i = 0, 1, . . . , t. Recall that for any non-elementary graph, the family of
maximal extreme sets never gives a partition of its vertex set. However, since each
elementary subgraph of G is determined by all the allowed edges of G we can assume,
without loss of generality, that G is elementary. Observe that, in elementary graphs,
the notion of maximal extreme sets and extreme sets coincide (see Lemma 5.1.1 and
Theorem 5.1.3 in [212]). If every edge of G has been traversed, then we claim that
the partition of edges is already determined. This can be realized for every (maximal)
extreme set. Since every case can be accomplished in linear time by Theorem 5.3.1,
the total running time is O(p ·m).

These observations yield the assertion about the complexity. ut

Let G be an elementary graph with p (maximal) extreme sets. The above theorem
intuitively means that we have to call at most p− 1 times the blossom shrinking algorithm

5.4. APPLICATION TO GLOBAL CONSTRAINTS 107

in order to classify all edges of G. Observe further that the canonical partition of a matching
covered graph canonically decomposes it into a p-partite graph.

×

×

Figure 5.8: The canonical partition of an elementary graph

In this section we have analyzed a polynomial time algorithm for a partition of edges in
a general graph. The question of whether there exists a linear time algorithm remains open.

5.4 Application to Global Constraints

In order to define global constraints representable by general graphs we first introduce a
graph associated with any instance of these constraints. We assume that the variables and
their domain values represent the same set of elements. Let X = {x1, x2, . . . , xn} be a set
of n variables with respective finite domains Dxi

⊆ {0, 1, 2, . . . , n} for i = 1, 2, . . . , n. To
these variables we can associate the graph G = (V,E), called a value graph, with vertex set
V = {vi : 1 ≤ i ≤ n} and edge set E = {{vi, vj} : i ∈ Dxj

∧ j ∈ Dxi
, 1 ≤ i ≤ n}. Clearly,

n = |V |, m = |E| ≤ 1
2

∑
|Dxi |, and d(vi) ≤ |Dxi | for all xi ∈ X.

Observe that the following property must hold for the constraint: if we have a connection
from the vertex vi to the vertex vj then we must have also a connection from the vertex vj
to the vertex vi. Hence, an edge {vi, vj} exists iff j is in the domain of variable xi and i is
in the domain of variable xj . Moreover, elimination of an edge {vi, vj} from the associated
graph during the pruning means elimination of the value j from the domain of variable xi
and elimination of the value i from the domain of the variable xj . Without loss of generality,
we can identify vertex vi with value i.

The domains have to be first normalized. Suppose that there exists a value j ∈ Di, while
i /∈ Dj . Then we can immediately remove value j from Di. Hence, we assume that such
situations do not occur during the creating of the corresponding graph, unless otherwise
stated.

We now provide the skeleton of our general propagation routine (see Algorithm 10). The
details of each part of the routine will be explained in the examples (cf. Algorithm 6).

Our routine first builds up an auxiliary graph associated with a global constraint, then
constructs an appropriate matching, then decomposes the graph according to the Gallai-
Edmonds Decomposition (Theorem 5.2.1), and successively identifies allowed edges and
eliminates forbidden edges, reducing the remainder global constraint in a suitable way.

We now demonstrate our idea on concrete examples. Some of the examples are illustrated
by figures. On the left half of the figure the domains are given. Next, the graph representing

108 CHAPTER 5. GENERAL GRAPHS

Algorithm 10 Propagation routine for global constraints representable by general graphs
Normalize the domains of the variables {quick elimination}
Create an auxiliary graph G associated with the global constraint
Compute an optimal degree-matching M in G
If appropriate matching does not exist then return FALSE {constraint inconsistent}
Find the partition of mandatory, allowed and forbidden edges (see Algorithm 9)
Prune the domains of the variables according to the partition of edges
If any of the domains become empty then return FALSE
return TRUE

the constraint is shown. On the right half of the figure the canonical decomposition is
depicted and the reduced domains are presented. Blossoms are denoted by a list of their
vertices (enclosed within curly brackets { and }). The base of the blossom is on the first
position in the sequence. We only show the first step of the decomposition and leave the
details of the next steps as an exercise for the reader.

SYMMETRIC_ALLDIFFERENT In order to keep this work self-contained, we briefly
recall the well-known global constraint symmetric_alldifferent. Our description is
based on [257] and [300].

The symmetric alldifferent constraint is a particular case of the alldifferent

constraint and was introduced by Jean-Charles Régin [257]. This constraint is useful to
be able to express certain items that should be grouped as pairs, for example in the prob-
lems of round-robin tournament scheduling or rostering. It is referenced under the name
one_factor in [161] and [290]. The constraint states that all variables must take different
values, and if the variable representing element i is assigned to the value representing ele-
ment j, then the variable representing element j must be assigned to the value representing
element i. A more formal definition is presented below.

symmetric_alldifferent(x1, . . . , xn) =

{(d1, . . . , dn) ∈ Dx1
× · · · ×Dxn

| ∀
i,j
i 6=j

(di = j ⇔ dj = i)}.

We propose the following algorithm to achieve hyper-arc consistency. First, we compute
a maximum matching M in the graph G. This can be done in O(

√
n ·m) time by applying

the algorithm of Micali & Vazirani described in [221]. If |M | < n
2 , then the perfect matching

does not exist and the constraint is not satisfiable. Otherwise, we need to detect all edges
that can never belong to a perfect matching. Clearly, the constraint is hyper-arc consistent iff
every edge in the corresponding graph G belongs to some perfect matching (see Proposition
1 in [257]). Hence, we only need to check whether an edge that does not belong to M is a
part of an even alternating cycle. This can be easily done by means of our routine. For every
pair of values i and j, such that {vi, vj} is forbidden we remove value i from the domain of
the variable xj and remove value j from Dxi

.

5.4. APPLICATION TO GLOBAL CONSTRAINTS 109

Note also that Régin in his algorithm explicitly used the property of the Gallai-Edmonds
Decomposition although he did not point it out (cf. [257, Proposition 3]). His algorithm
classifies only one vertex to an extreme set and all incident edges not traversed by the
blossom shrinking algorithm are to be removed. However, by means of our technique it is
possible to detect forbidden edges with respect to the entire extreme set. This follows from
the fact that our algorithm does not iterate over all vertices in G but only iterates over
(maximal) extreme sets.

The following example and explanation is taken from the paper by Régin [257]. The
complexity of his (first) hyper-arc consistency algorithm is O(n · m) because there are n
calls to the blossom shrinking algorithm. The (second) filtering algorithm that does not
achieve hyper-arc consistency has complexity O(m). However, in the first step starting the
search from the vertex j, it will remove only the edge {f, h} as it has been not traversed.
Observe that by means of our routine, in the first step more edges are removed, as in
both algorithms due to Régin. Our routine needs only two calls of the blossom shrinking
algorithm, in order to ensure hyper-arc consistency.

i

jg

D(a) = {b,c}
D(b) = {a,c}
D(c) = {a,b,d}

D(d) = {c,e}
D(e) = {d,f} h

a

d

b

c

e

X

D ∪ B×

×
f

D(f) = {e,g,h}

D(g) = {f,h,i}
D(h) = {f,g,j}
D(i) = {g,j}
D(j) = {i,h}

f

g h

i j

× ×

×
D’(a) = {b}
D’(b) = {a}
D’(c) = {d}
D’(d) = {c}
D’(e) = {f}
D’(f) = {e}
D’(g) = {h,i}
D’(h) = {g,j}
D’(i) = {g,j}

D’(j) = {i,h}

{c,a,b} e

d

d

bc

a

X

B

Figure 5.9: Pruning of the SYMMETRIC_ALLDIFFERENT constraint

Let us demonstrate with this example how our algorithm works. Consider the gluing
bipartite multigraph arising from the value graph associated with the global constraint
depicted on the left side in the Figure 5.9 above. We remove vertex j from the graph (as
in the example given by Régin), make one iteration of the blossom shrinking algorithm
starting from exposed vertex h and compute the Gallai-Edmonds Decomposition. Hence,
here: A = {d, f, g}, B = {e, i, h}, C = ∅ and D = {c, a, b}. Thus, the extreme set X =

{d, f, g, j}. Then, we perform an alternating depth-first search starting from the vertices of
B∪ base(Di) and remove from the graph the detected forbidden edges, i.e. {d, e} and {f, h}
(as not belonging to any alternating cycle or path), and {f, g} (as belonging to G[X]). The
mandatory (matched) edges are {c, d} and {e, f}. We next mark all vertices of X and B as
scanned and examine the pieces at extreme set X. Since only the subgraph with vertices
a, b, c and d contains not yet traversed edges we choose an unvisited vertex b and repeat
the whole routine. In the second step of the algorithm the extreme set X = {c, b} is found

110 CHAPTER 5. GENERAL GRAPHS

and two forbidden edges are detected: {c, b} (as spanned by X), and {a, c} (as belonging
to neither alternating path nor cycle). Since all vertices have been marked as scanned the
algorithm terminates and our constraint is hyper-arc consistent.

SYMMETRIC_ALLDIFFERENT_EXCEPT_0 In this example we discuss a con-
straint symmetric_alldifferent_except_0. The arguments of this constraint are n
assignment variables (similar to the classical symmetric_alldifferent constraint) and
the constraint states that all variables, except those which are assigned to value 0, must be
grouped by pairs. As far as we know this constraint has not been treated before and no
propagation algorithm has been proposed. The constraint is defined as follows

symmetric_alldifferent_except_0(x1, . . . , xn) =

{(d1, . . . , dn) ∈ Dx1
× · · · ×Dxn

| ∀
i,j
i 6=j

di = 0 ∨ dj = 0 ∨ (di = j ⇔ dj = i)}.

The constraint has been recently introduced within the Global Constraint Catalog [27].
In contrast to the previous constraint this constraint can be defined on the odd number of
variables. It can have an application in a number of real sport scheduling problems. Value
0 can be used, for instance, to model the fact that a team does not play. We now show how
one can filter this constraint in two distinct, but equivalent, ways.

The constraint can be expressed by a graph with degree conditions g and f . In the same
way as for the common symmetric_alldifferent constraint, we construct the graph
G with the vertex set V = {v1, . . . , vn} and the edge set E, such that {vi, vj} ∈ E iff
i ∈ Dxj

∧ j ∈ Dxi
. Further, for every vertex vi we set g(vi) = f(vi) = 1 if 0 /∈ Dxi

and
g(vi) = 0, f(vi) = 1 if 0 ∈ Dxi

.
Then it is easy to see that the constraint is satisfied iff G has a perfect (g, f)-matching

and it is hyper-arc consistent iff every edge in the corresponding graph G belongs to some
perfect (g, f)-matching.

A perfect (0, 1)-matching is a special case of a perfect degree-matching for which holds
the condition 0 = g(x) < f(x) = 1 ≤ d(x) for some vertices x ∈ V (G), called semi-saturated
vertices. There is a procedure for reducing a perfect (0, 1)-matching problem on a graph G
to a perfect matching problem on a larger graph. The procedure looks as follows:

• Join by an edge every pair of non-adjacent semi-saturated vertices.

• The subgraph (induced by semi-saturated vertices) results in a complete graph.

• If G has an odd number of vertices then add one (dummy) vertex and connect it with
all semi-saturated vertices.

These operations are well-defined. Let us denote the resulting graph byG∗. The spanning
subgraph induced by semi-saturated vertices and dummy vertex, if added, will be called the
gadget . We have the following result

Theorem 5.4.1 Graph G has a perfect (0, 1)-matching iff G∗ has a perfect matching.

5.4. APPLICATION TO GLOBAL CONSTRAINTS 111

Proof If G∗ has a perfect matching M∗ then removing from G∗ all the inserted edges
belonging to the gadget results in G with a perfect (0, 1)-matching. Conversely, if G has a
perfect (0, 1)-matching M then it is always possible to extend M to a perfect matching of
G∗ by saturating the exposed vertices of G∗. ut

We have given a complete description of the structure of elementary components in a
graph G having a perfect (0, 1)-matching. We proved that the augmentation of G by gadgets
does not change the canonical decomposition of the graph.

We use this theorem to make the symmetric_alldifferent_except_0 constraint
hyper-arc consistent.

Theorem 5.4.2 The global constraint symmetric_alldifferent_except_0 is hyper-
arc consistent iff every edge in the corresponding graph G∗ belongs to a perfect matching.

Proof By the definition of hyper-arc consistency and application of Theorem 5.4.1. ut

If every edge belonging to the gadget and incident with the vertex vi is forbidden then
value 0 is infeasible and can be deleted from the domain of the variable xi (see Figure 5.10).

4

1 2

D(x1) = {2,3,4,5}

D(x2) = {0,1,4,5}
D(x3) = {0,1,4}
D(x4) = {1,2,3}
D(x5) = {1,2}

D’(x1) = {4,5}

D’(x2) = {0,4,5}
D’(x3) = {0,4}
D’(x4) = {1,2,3}
D’(x5) = {1,2}5

4
(1,1)

2
(0,1)

(1,1)
1

(0,1)
3

(1,1)
5

X

B

×

×

3

0

Figure 5.10: Pruning of the SYMMETRIC_ALLDIFFERENT_EXCEPT_0 constraint

The second way can be schematized as follows. We add to G a new dummy vertex labeled
v0 that is joined by an edge to each vertex of which a corresponding variable has a value
0 in its domain. Finally, we define the degree conditions g(v0) = 0 and f(v0) = d(v0) for
the dummy vertex v0, and g(vi) = f(vi) = 1 for all the remaining vertices. Then, in a
similar way as before, there is a strong relationship between a perfect (g, f)-matching and a
solution of the constraint. Of course, there is the same propagation algorithm which achieves
hyper-arc consistency.

SYMMETRIC_ALLDIFFERENT_LOOP The symmetric_alldifferent_loop

constraint extends the common symmetric_alldifferent constraint by allowing some
kind of polygamy between the pairing of objects. This corresponds to occurring loops in a
value graph associated with the global constraint.

This variant of the symmetric_alldifferent constraint has been recently introduced
within the Global Constraint Catalog [27]. Using this constraint the Dürer’s Magic Square
and Survo Puzzle problems can be easily modeled [36]. The constraint can also be expressed
as an alldifferent constraint together with constraints that maintain the symmetry. An-
other representation can be made that uses the so-called cycle constraint, where each cycle

112 CHAPTER 5. GENERAL GRAPHS

consists of at most two vertices. Note that loops are considered to be cycles of length 1 and
a task would be to find in a digraph associated with the constraint a partition with cycles
of length at most 2. The constraint is defined as follows

symmetric_alldifferent_loop(x1, . . . , xn) =

{(d1, . . . , dn) ∈ Dx1
× · · · ×Dxn

| ∀
i,j
i 6=j

di = i ∨ dj = j ∨ (di = j ⇔ dj = i)}.

It is straightforward to check that our constraint is strongly related with the global
constraint symmetric_alldifferent_except_0, which we discussed in the previous
example. Of course, if we replace the domain of every variable xi with value i in its domain
by Dxi

\ {i} ∪ {0} then the symmetric_alldifferent_except_0 constraint becomes
equivalent to the symmetric_alldifferent_loop constraint and there is the same prop-
agation algorithm which achieves hyper-arc consistency.

The following result is an immediate consequence of our considerations.

Theorem 5.4.3 The constraint symmetric_alldifferent_loop is hyper-arc consis-
tent iff the corresponding symmetric_alldifferent_except_0 constraint is hyper-arc
consistent.

SOFT_SYMMETRIC_ALLDIFFERENT_VAR When a global constraint has no
solution it is also said to be over-constrained. It is then natural to identify soft constraints
that are allowed to be violated, and minimize the total violation according to some criteria.

For a set C of constraints, let Ch ⊆ C be the set of hard constraints, that is, the
constraints that must necessarily be satisfied. Then Cs = C\Ch is the set of soft constraints.
For the set C of constraints we introduce a function that measures the violation and has the
following form

µ : Dx1
× · · · ×Dxn

7→ Z+.

This approach has been introduced in [245] and was developed further in [35] (see
also [261]). Hence, our constraint can be defined as follows

soft_symmetric_alldifferent_var(x1, . . . , xn, z, µ) =

{(d1, . . . , dn) ∈ Dx1 × · · · ×Dxn | µ(d1, . . . , dn) ∈ Dz}.

In this example it will be shown how the classical Gallai-Edmonds Decomposition can
be useful to solve the soft version of the symmetric_alldifferent constraint. As far as
we know such a constraint has not been treated before and no propagation algorithm has
been proposed.

A structural decomposition of a general graph associated with a global constraint canon-
ically decomposes it into two parts: over-constrained and well-constrained. We will use
the notation GO = G[A ∪ B ∪ D] to represent an over-constrained part and GW = G[C]

denotes the remaining well-constrained part. Intuitively, if the hard global constraint can
be modeled as a matching problem in a graph then this constraint is satisfiable iff GO = ∅.

5.4. APPLICATION TO GLOBAL CONSTRAINTS 113

Loosely speaking a well-constrained problem has at least one solution (or exactly one
solution if the perfect matching is unique), whereas an over-constrained problem has no
solution. In a well-constrained part the number of variables equals the number of satisfied
constraints. This part can be further decomposed into smaller canonical parts (matching
covered subgraphs).

In an over-constrained part the number of variables is greater than the number of satisfied
constraints. The additional variables are redundant and thus the graph has no perfect
matching and the constraint is inconsistent. A possible way to make the constraint satisfiable
would be a transformation of the over-constrained part into a well-constrained one. This can
be realized by omitting the conflicting variables from the global constraint or assigning other
values to them. The latter operation corresponds to the so-called variable-based violation
measure. The number of contradictory variables equals the deficiency of GO.

The variable-based violation measure counts how many variables need to change their
values in order for the constraint to be satisfied. In this model the cost of an assignment is
defined to be the minimal number of vertices not covered by any maximum matching.

We can make the soft_symmetric_alldifferent_var constraint hyper-arc con-
sistent in the following way. Let D = (N,A) be a digraph such that N = V (G) and
A = {(vi, vj) | i ∈ Dxj

}. We construct a complete graph Kn on the same set of vertices
as the digraph D. We next extend the graph Kn by applying a ’weight’ function w to its
edges. For every edge in Kn with no, one or two corresponding arcs in D we give it a weight
of 2, 1 and 0, respectively.

Let Kn be the weighted value graph associated with the constraint. The global con-
straint soft_symmetric_alldifferent_var is satisfied iff there exists a weighted per-
fect matching in Kn with cost w such that min(Dz) ≤ w ≤ max(Dz) (we assume that the
domain of the cost variable z is an interval).

We can now define a simple, brute-force filtering algorithm for computing the partition
of edges. Let Mmin be a minimum-weight perfect matching in Kn with cost wmin (clearly,
every complete graph of even order contains a perfect matching). It is known that if arbi-
trary changes are made to the edges incident to one vertex, a new minimum-weight perfect
matching can be constructed by finding one weighted augmenting path. This can be done
in time O(m+ n · log n) [118].

In order to find all forbidden edges we choose an arbitrary free edge e = {vi, vj} such that
w(e) 6= 2 and recompute a minimum-weight matching Me in the graph Kn − vi − vj . Then
the cost of the minimum-weight perfect matching involving edge e is we = w(Me) + w(e).
We mark edge e as allowed if min(Dz) ≤ we ≤ max(Dz); otherwise, edge e is forbidden.

In order to find all mandatory edges we choose an arbitrary matched edge e such that
w(e) 6= 2 and recompute a minimum-weight perfect matchingMē in the graph Kn−e. Then
the cost of the minimum-weight perfect matching avoiding edge e equals wē = w(Mē). We
mark edge e as mandatory if max(Dz) < wē.

Note that the procedure, which allows us to transform the solution of the constraint into
the weighted matching problem, is very inefficient, because it greatly increases the number

114 CHAPTER 5. GENERAL GRAPHS

of edges in the auxiliary graph. Since there are 1
2n(n− 1) edges in a complete graph, using

the weighted matching algorithm improved by Gabow [118] yields an O(n · (n2 + n · log n))

running time (for checking the feasibility) plus an O(m · (n2 + n · log n)) running time (for
achieving hyper-arc consistency). For certain problems, this complexity may be prohibitively
expensive and can hinder this method from being systematically used during the search for a
solution and pruning of the soft_symmetric_alldifferent_var constraint. Therefore,
we now present the efficient (but more involved) method based on the Gallai-Edmonds
decomposition. From an interpretation point of view this model can be expressed with the
soft_2-cycle_var constraint.

We now sketch a method to make our over-constrained constraint satisfied. Let G be
any graph with a maximum matching M , and let 〈A,B,C,D〉 denote the canonical decom-
position of G. Further, let C1, C2, . . . , Cr and D1, D2, . . . , Dt, where t > |A|, be connected
components of C and B ∪D, respectively.

In order to make the constraint satisfied we must first add edges to the associated graph
G in such a way, that the resulting graph will have a perfect matching. First, observe that
forcing a maximum matching to use forbidden (or not existing) edges in G can increase (or
decrease) the deficiency by 2. We prove this in a more formal way:

Lemma 5.4.4 Forcing a maximum matching to use forbidden (or not existing) edges in G
can increase (or decrease) the deficiency by 2.

Proof Obviously, forcing the use of any forbidden edge decreases the deficiency by 2. There
are three possibilities here. We can use an edge in a connected component of C, an edge
between C and A, or an edge spanned by A.

The case of not existing edges is more complicated. There are several possibilities here.
The proof follows from a case-by-case analysis. All the possibilities are shown in the below
table together with the resulting difference of the deficiency and the cost function of the
corresponding maximum matching. The straightforward but tedious verification is omitted.

edge deficiency δ violation µ remark

e ∈ ∇(A,A) +2 +1, +2 forbidden edge
e ∈ ∇(A,C) +2 - forbidden edge
e ∈ ∇(A,D) 0 +2 allowed edge
e ∈ ∇(Ci, Ci) 0, +2 +2
e ∈ ∇(Ci, Cj) +2 - forbidden edge
e ∈ ∇(Ci, Dj) 0 -
e ∈ ∇(Di, Di) 0 - allowed edge
e ∈ ∇(Di, Dj) -2, 0 -2, -1 decreased deficiency

Table 5.2: Scenarios for the soft_symmetric_alldifferent_var constraint

Note that the edges of the maximum matching M constructed in the proof of the above
theorem have costs either 1 or 2. ut

5.4. APPLICATION TO GLOBAL CONSTRAINTS 115

For example, we can decrease the deficiency of G with a maximum matching M by

• connecting two distinct components Di and Dj of B ∪D by an edge, or

• joining Ck toDi andDj by two edges, in such a way that there exists an odd alternating
path connecting adjacent vertices in the matching covered subgraph of G[Ck], or

• inserting three edges among Ck−Cl, Ck−Di, and Cl−Dj , in such a way that there is
an odd alternating path joining adjacent vertices in the matching covered subgraphs
of G[Ck] and G[Cl].

We want to point out that it is possible to make a forbidden edge admissible in the
following situations:

• taking a forbidden edge e spanned by C and joining by an edge two vertices connecting
the endpoints of e by odd alternating paths, or

• taking a forbidden edge e between C and A and joining by an edge vertex of C with
vertex of B ∪D, in such a way that these vertices are reachable by an odd alternating
path, or

• taking a forbidden edge e spanned by A and connecting by two edges four distinct
components of D.

We have already reached the perfect matching and our next step will be to show how
to build a next perfect matching involving additional edges. Deciding if an edge e inserted
to G[C] is allowed or not seems to be a difficult task. Let Ci be a connected component of
G[C] + e with a perfect matching Mi. Consider an alternating depth-first forest after the
algorithm (alternating depth-first search with respect toMi) terminates. By Corollary 2.4.3
an edge is allowed if it is contained in an even alternating cycle. Thus, every back (or
forward) edge connecting two vertices on the levels with different parities is allowed. This
can be checked in O(1) time. If an edge joins two vertices connected by an odd alternating
path, then it creates an alternating cycle involving this edge. This costs O(mi) time, where
mi is the number of edges in Ci. On the other hand, the edge is forbidden if it connects
two vertices belonging to the same extreme set. This takes O(1) time, assuming that the
canonical partition is known.

We will now consider the problem to determine whether two arbitrary edges belong to
any perfect matching. In order to describe our idea in modern terminology, we need a few
definitions. If G is a graph and H is a subgraph of G then H is said to be nice if G− V (H)

has a perfect matching. It is known that any two edges of an elementary bipartite graph
lie on a nice cycle (see Corollary 4.2.10 in [212]). Further, if G (not necessarily bipartite)
is matching covered, then any two edges of G are contained in a nice (alternating) cycle
(see Theorem 5.4.4 in [212]). In particular, for any edge e there exists a perfect matching
containing e and another perfect matching avoiding e. These results give us immediately an
algorithm for finding all admissible edges in G[C].

116 CHAPTER 5. GENERAL GRAPHS

In order to check the satisfiability and to achieve hyper-arc consistency we first con-
struct two auxiliary graphs associated with the soft_symmetric_alldifferent_var

constraint. The first graph is the hard value graph Gh: there is an edge between vi and vj if
i ∈ Dxj

∧ j ∈ Dxi
. The second graph, the soft value graph Gs, is constructed in such a way

that there is an edge between vi and vj if i ∈ Dxj
∨ j ∈ Dxi

. Clearly, |V (Gh)| = |V (Gs)|,
|E(Gh)| ≤ |E(Gs)|, and δ(Gh) ≥ δ(Gs). Next, we compute a maximum matching Mh in the
graph Gh. This can be carried out in polynomial time by using the algorithm of Micali &
Vazirani [221]. If Gh has no perfect matching then the constraint is over-constrained. Let
δh = δ(Gh). We then distinguish two situations:

1. |E(Gh)| = |E(Gs)|. We consider the following cases:

(a) If max(Dz) < δh then the constraint is inconsistent.

(b) If min(Dz) ≤ δh < max(Dz)− 1 then the constraint is consistent, and all domain
values are allowed. Namely, if we change any variable xj to the value i, then we
have to assign the value j to the variable xi. From an interpretation point of
view this corresponds to adding an edge between two vertices.

(c) If δh = max(Dz) or δh = max(Dz)− 1 then the constraint is consistent, and only
those domain values whose corresponding edge belongs to a maximum matching
are feasible. According to the Gallai-Edmonds Structure Theorem every edge in
GO = Gh[A ∪ B ∪D] (except that spanned by A) is allowed (see Lemma 2.6.1).
Thus, we have only to determine admissible and forbidden edges in GW = Gh[C].
We can make it in the same way as for the standard symmetric_alldifferent

constraint. All these edges can be determined, and the corresponding domain
values can be removed, in O(p′ · m′) time, where p′ is the number of maximal
extreme sets in GW and m′ is the number of edges in GW (see Theorem 5.3.5).

Finally, we can update min(Dz) to be the maximum of its current value and δh.
Additionally, we must remove from Dz all values being of different parity than δh

(all odd values). This follows from the fact that adding an edge to the graph (which
corresponds to assigning other values to variables) can only change its deficiency by
2. Then our constraint is hyper-arc consistent.

2. |E(Gs)| > |E(Gh)|. We proceed in the following manner.

Let Ah, Bh, Ch and Dh be the sets of the Gallai-Edmonds decomposition of Gh.
From the subgraph GO we create the graph Gs[∇(Ah ∪Dh, Bh ∪Dh)], derived from
the subgraph Gh[Ah ∪ Bh ∪ Dh] by removing edges spanned by Ah and inserting
soft edges (i.e. i ∈ Dxj

∧ j /∈ Dxi
∨ j ∈ Dxi

∧ i /∈ Dxj
). This allows us to compute a

maximum matchingMs[Ah∪Bh∪Dh] and the deficiency of Gs[Ah∪Bh∪Dh]. Clearly,
δ(Gs) ≤ δ(Gs[Ah ∪ Bh ∪ Dh]) ≤ δ(Gh). Let δs = 1

2 (δ(Gh) + δ(Gs[Ah ∪ Bh ∪ Dh])).
This is the minimal number of variables that need to be changed in order to satisfy
the constraint. This follows from the fact that from any graph G with a maximum
matching we can obtain a perfect matching by connecting the pairs of vertices from

5.4. APPLICATION TO GLOBAL CONSTRAINTS 117

two distinct components of Bh ∪Dh. Clearly, δh ≥ δs = wmin, where wmin is the cost
of the minimum-weight perfect matching in the weighted value graph associated with
the global constraint.

We can now prune our constraint in the following way (in general, we will not achieve
hyper-arc consistency). We have two cases to consider.

(a) δs = δh.

From the graph Gh we create an auxiliary graph G′s by inserting all soft edges
between Ch and Bh ∪ Dh. Next, we join by an edge all pairs of subsequent
vertices forming a complete graph Kr′ , where r′ is the number of vertices in
Bh ∪Dh adjacent to ∇(Ch, Bh ∪Dh). Let us denote the number of edges in G′s
by m′s. Observe that all hard edges in ∇(Dh, Dh) are allowed.

i. If max(Dz) < δs then the constraint is inconsistent.

ii. If δs = max(Dz) then an edge e in G′s is admissible if it lies in some maximum
matching of G′s. With the help of our technique we can find these edges in
O(p′s ·m′s) time.

iii. If δs = max(Dz)− 1 then an edge is allowed if it is allowed in G′s, or G′s + es.
In particular, all soft edges in ∇(Ch, Bh ∪Dh) are allowed.

iv. If δs = max(Dz)−2 then all hard edges are admissible; a soft edge is allowed
if it is allowed in G′s, G′s + es, or Gs[Ch].

v. If min(Dz) ≤ δs < max(Dz)− 2 then all edges in Gs are allowed.

(b) δs < δh.

Let As, Bs, Cs and Ds be the sets of the Gallai-Edmonds decomposition of
Gs[Ah ∪ Bh ∪Dh]. Clearly, As ⊆ Ah, Bs ⊆ Bh, Cs ⊆ Ah ∪ Bh ∪Dh, Ds ⊆ Dh

and Ah∪Bh∪Dh = As∪Bs∪Cs∪Ds. In the same way as for the previous case,
we create an auxiliary graph G′′s from the graph Gh by inserting all soft edges
between Ch and Bs ∪ Ds, and additionally, by inserting all soft edges between
two distinct connected components of Dh. Next, we join by an edge all pairs
of adjacent vertices forming a complete graph Kr′′ , where r′′ is the number of
vertices in Bs ∪Ds incident with ∇(Ch, Bs ∪Ds). Let us denote the number of
edges in G′′s by m′′s . Note that all hard edges in ∇(Ds, Ds) are allowed.

i. If max(Dz) < δs then the constraint is inconsistent.

ii. If δs = max(Dz) then an edge e in G′′s is admissible if it lies in some maximum
matching of G′′s (see Figure 5.11). By means of our technique we can find
these edges in O(p′′s ·m′′s) time.

iii. If δs = max(Dz) − 1 then an edge is allowed if it is allowed in G′′s , G′s, or
G′′s + es. In particular, all hard edges in ∇(Ah, Bh ∪Dh) are allowed.

iv. If δs = max(Dz)−2 then all hard edges are admissible; a soft edge is allowed
if it is allowed in G′′s , G′s, G′′s + es, G′s + es, or Gs[Ch].

v. If min(Dz) ≤ δs < max(Dz)− 2 then all edges in Gs are allowed.

118 CHAPTER 5. GENERAL GRAPHS

Finally, we update min(Dz) to δs if min(Dz) < δs and remove from Dz all odd values
if there exists no maximum matching in G′s (case (a)) or G′′s (case (b)) with the odd
number of soft edges; otherwise all (odd and even) values are feasible.

D(x1) = {2,3,4}

D(x2) = {1,3}
D(x3) = {1,5}
D(x4) = {1,5,6}
D(x5) = {4,6}

D’(x1) = {2,4}

D’(x2) = {1,3}
D’(x3) = {5}
D’(x4) = {1,6}
D’(x5) = {6}

1

4

32
5

D(x6) = {4,5}
D(z) = {0,1} 6

D’(x6) = {4,5}
D’(z) = {1}

Ah

Dh

1

4

32

5

×

6

×

Cs

Gh Gs

Figure 5.11: Pruning of the SOFT_SYMMETRIC_ALLDIFFERENT_VAR constraint

2-CYCLE The 2-cycle constraint is a particular case of the cycle constraint which was
introduced in CHIP [29]. When we impose an additional condition that the number of cycles
is exactly half of the number of vertices and each cycle has only two vertices then the cycle

constraint can be expressed by means of the symmetric_alldifferent constraint. This
constraint can then be interpreted as covering the associated digraph with disjoint cycles of
length two. Clearly, there exists in our case no solution of the cycle constraint when the
number of variables is odd or ncycle 6= n

2 .

PROPER_FOREST This constraint was proposed by Nicolas Beldiceanu, Irit Katriel,
and Xavier Lorca in [32]. The constraint has the form proper_forest(ntree, nodes)

and requires that a graph G associated with the constraint can be covered by a set of ntree

proper trees, i.e. trees that contain at least two vertices, in such a way that each vertex of G
belongs to one distinct tree. A filtering algorithm for this constraint is described in [32]. It
achieves hybrid consistency and its running time is dominated by the complexity of finding
all edges that do not belong to any maximum matching in G.

In appendix B an algorithm for detecting always saturated vertices is given. However,
we know that the vertices of the graph which are saturated by every maximum matching
are vertices in C ∪A. These vertices can be detected in linear time.

In appendix C the authors outline an O(n ·m) algorithm that determines which edges of
the graph belong to at least one maximum matching. We know that this can be performed
in O(p ·m) time.

CLIQUE In this example we consider the clique constraint, which has been introduced
by Torsten Fahle [101]. The constraint models the maximum clique problem. It asks for a
largest clique Q in a graph G associated with the constraint. It is known that this problem
is NP-hard [182],[131, Problem GT19]. Although clique is not directly connected with the
Gallai-Edmonds Decomposition, our technique can be useful to compute an upper bound
for the size of the maximum clique. The filtering rule is based on the relation between the
maximum clique and the maximum matching: |Q| ≤ |G|−ν(G) (cf. [259, Property 4]). This
upper bound can be easily checked by means of the maximum matching algorithm.

5.4. APPLICATION TO GLOBAL CONSTRAINTS 119

TOUR The global constraint tour is an undirected version of the circuit constraint. It
describes a Hamiltonian cycle on an undirected graph associated with the constraint. The
constraint is defined as tour(nodes) where nodes is a collection of n variables whose
domains are subsets of {1, . . . , n}. The constraint requires that y1, . . . , yn is a permutation
of 1, . . . , n, where y1 = xyn and yi+1 = xyi for i = 1, . . . , n − 1. The constraint can be
viewed as describing a Hamiltonian cycle in an associated undirected graph G that contains
an edge {vi, vj} iff j belongs to the domain of xi and i belongs to the domain of xj . An
edge {vi, vj} of G is selected when xi = j∧ i = xj and tour requires that the selected edges
form a Hamiltonian cycle.

Obviously, checking a tour constraint for satisfiability is equivalent to checking whether
an associated graph has a Hamiltonian cycle, which is an NP-complete problem [182],[131,
Problem GT37]. Achieving hyper-arc consistency for tour is thus NP-hard. There are,
however, useful incomplete filtering methods that run in polynomial time.

A Hamiltonian cycle is a special (i.e. connected) perfect 2-matching. Hence, a necessary
condition to satisfiability of this constraint is to have a perfect 2-matching. The second
necessary condition is that the graph must be 2-connected. So, if G has a connected perfect
2-matching, then C(G− v) = ∅ for all v ∈ V (G), where C(G− v) is the set C of the Gallai-
Edmonds decomposition for G − v. Also, if the associated graph is bipartite, it must have
the same number of vertices in each color class.

To our knowledge, there are no published filtering algorithms for pruning of the tour

constraint. We present two different methods. The first method consists of computing
a perfect matching on the graph associated with the global constraint and removing all
forbidden edges. This follows from the fact that a forbidden edge does not belong to any
alternating cycle and thus cannot be a part of a Hamiltonian cycle. There are no mandatory
edges in a Hamiltonian graph too, because it must be 2-connected.

However, this method will not work on graphs with an odd order. Observe that every
Hamiltonian graph with an odd number of vertices must be necessarily factor-critical. This
follows from the fact that if G contains a non-empty set X of vertices whose deletion breaks
the rest of the graph into more than |X| connected components then G has no Hamiltonian
cycle. According to the Gallai-Edmonds Structure Theorem such a set is the extreme set A,
and A = ∅ if the graph is factor-critical.

In this example we now demonstrate a new partial filtering method not presented yet.
This is one of the examples which explicitly uses the properties of the Lovász-Plummer
Canonical Decomposition and the results of Theorem 5.2.8. Our idea is based on identifying
perfect matchings in the incremental graph corresponding to the graph associated with the
constraint. This follows from the fact that every Hamiltonian cycle is a connected perfect
2-matching. Our routine looks for a perfect matching in the incremental graph and any edge
not belonging to it will be removed from the associated graph. This will result in deleting
some edges from the associated graph, which cannot be a part of any Hamiltonian cycle (see
Figure 5.12). By using the reduction technique due to Gabow [115] it is possible to compute
a perfect 2-matching in O(

√
n ·m) time.

120 CHAPTER 5. GENERAL GRAPHS

(0,1)
{1,4,5}

(0,1)
8

3
(2,2)

2
(2,2)

D(x1) = {3,4,5,8}
D(x2) = {3,4,7,8}
D(x3) = {1,2,6,7}
D(x4) = {1,2,5,8}
D(x5) = {1,4,6}
D(x6) = {3,5}

D’(x1) = {4,5,8}
D’(x2) = {4,7,8}
D’(x3) = {6,7}
D’(x4) = {1,2,5,8}
D’(x5) = {1,4,6}
D’(x6) = {3,5}

(2,2)
7

(1,1)
6

1 3

24

5

6

8

D(x8) = {1,2,4}

×
X

B ∪ D

D’(x8) = {1,2,4}

×

D(x7) = {2,3}

7

D’(x7) = {2,3}

Figure 5.12: Pruning of the TOUR constraint

To summarize, three of the easily verifiable ways to justify the claim that tour constraint
has no solution, are as follows (G denotes the graph associated with the constraint):

1. if G is not 2-connected,

2. (a) if G with an even number of vertices has no perfect matching,

(b) if G with an odd number of vertices is not factor-critical,

3. if G has no perfect 2-matching.

UNDIRECTED_PATH This is an undirected version of the constraint path_from_to

that was proposed by Althaus et al. in [11]. The constraint holds if some edges of a graph
G associated with the constraint form a path between two given vertices of G.

This is the second example that demonstrates the application of Theorem 5.2.8. Recall
that a path P is Hamiltonian if it passes through every vertex exactly once. Obviously, a
Hamiltonian path is a connected perfect (1, 2)-matching.

We propose the following incomplete filtering algorithm. Without loss of generality, we
can assume that we wish to find a path between vertices v1 and vn. First, we construct an
auxiliary graph G. We add a loop to G for each vertex vi such that 0 ∈ Dxi

. Next, we
define the degree condition f as follows. We set f(v1) = f(vn) = 1, and f(v) = 2 for all
the remaining vertices. Then it is easy to see that any path between v1 and vn represents a
perfect f -matching in G (see Figure 5.13). If we assume that the loops are excluded from
the matching then the generated path between two distinguished vertices forms a connected
(1, 2)-factor.

D(x1) = {2,3,5}
D(x2) = {0,1,3,4}
D(x3) = {1,2,4}
D(x4) = {3,5,6}
D(x5) = {1,4,6}

D’(x1) = {2,3}
D’(x2) = {0,1,3}
D’(x3) = {1,2,4}
D’(x4) = {3,5}
D’(x5) = {4,6}

3

6

1

2

5

×
4

D(x6) = {4,5} D’(x6) = {5}
(0,1)
{2}

(1,2)
3

6
(1,1)

1
(1,1)

(2,2)
5

4
(2,2)

X

×
B ∪ D

Figure 5.13: Pruning of the UNDIRECTED_PATH constraint

5.5. KANO CANONICAL DECOMPOSITION 121

5.5 Kano Canonical Decomposition

This section is mostly based on the book "Factors and Factorizations of Graphs" [8].
In this section we consider the so-called parity factors. Let G be any graph, and let g and

f be integer-valued functions such that 0 ≤ g(x) ≤ f(x) ≤ dG(x) and g(x) ≡ f(x) (mod 2)

for each x ∈ V (G). Then a spanning subgraph F of G is called a parity (g, f)-factor if
g(x) ≤ dF (x) ≤ f(x) and dF (x) ≡ f(x) (mod 2) for all x ∈ V (G).

A spanning subgraph F of a graph G is called an even factor of G if every vertex has an
even degree in F . Analogously, a spanning subgraph F of a graph G is called an odd factor
of G if every vertex has an odd degree in F . In particular, for an odd integer-valued function
f , a spanning subgraph F of G is called a (1, f)-odd factor if dF (x) ∈ {1, 3, . . . , f(x)} for
every x ∈ V (G).

Jin Akiyama & Mikio Kano in [8] proposed the following construction for a parity (g, f)-
factor. We construct an auxiliary graph G∗ from G by adding (f(x)−g(x))/2 loops to every
vertex x ∈ V (G). We can easily see that G has a parity (g, f)-factor iff G∗ has an f -factor.

For a (1, f)-odd parity factor they give the following construction: replace every vertex
x ∈ V (G) by the complete graph Kf(x) on f(x) vertices and for every edge {x, y} of G, join
every vertex of Kf(x) to every vertex of Kf(y). Then there is a strong relationship between
perfect matching in G∗ and (1, f)-odd factor of G.

Another transformation to an ordinary matching has been proposed by Gérard Cornuéjols
in [68]. In his construction of the incremental graph G∗ each gadget is a complete bipartite
graph Kd(x),d(x)−g(x) with additional edges connecting f(x) − g(x) distinct core vertices.
It follows from this definition that the gadget is no more bipartite and has 2 · d(x) − g(x)

vertices and d(x) · (d(x)− g(x)) + 1
2 · (g(x)− f(x)) edges.

An augmenting walk with respect to parity (g, f)-matching M is an alternating walk W
such that δ(G[M ⊕W]) < δ(G[M]).

Theorem 5.5.1 (Kano & Katona [177]) A parity (g, f)-matching M in a graph G is
optimal iff there is no augmenting walk relative to M .

A double alternating path is a pair of vertex-disjoint alternating paths connecting two
different vertices. An even double alternating path leading to a negative/positive vertex
is called a positive/negative double alternating path. An odd alternating cycle starting
and terminating at v is an alternating cycle of odd length around a given vertex v. An odd
alternating cycle is called increasing/decreasing if the first and the last edge is free/matched.

u2i

[+]
u0

[-]

u0

[+]
u0

[-]
u0

[+]

u2i+1

[+]

Figure 5.14: Odd alternating cycles and double alternating paths defined for parity factors

122 CHAPTER 5. GENERAL GRAPHS

Year Author(s) Complexity Strategy/Remarks

1980 Ebert [88] O(m) depth-first search, maximal parity factors
1988 Cornuéjols [68] O(n4) reduction to ordinary matchings
1994 Nam [228] O(n3) gadgets, augmenting walks
2007 Kano & Katona [178] O(n3) for smallest optimal (1, f)-odd subgraphs

Table 5.3: History of algorithms for the parity matching problem

A graph G is said to be elementary with respect to parity (g, f)-matchings if the allowed
edges induce a connected spanning subgraph of G. Analogously, a graph G is said to be
critical with respect to parity (g, f)-matchings if G+ vw with g(w) = f(w) = 1 has a perfect
parity (g, f)-matching for all vertices v of G.

We are now ready to give a structure theorem on (1, f)-odd subgraphs. Let G be a simple
graph and f : V 7→ {1, 3, 5, . . .}. Define

D = {v ∈ V | ν(G+ vw) = ν(G) + 2},

A = Γ(D) \D,

C = V \ (A ∪D).

Theorem 5.5.2 (Structure Theorem on (1, f)-odd matchings) Let G = (V,E) be a
graph, f be any odd-valued function, and 〈A,C,D〉 be the decomposition defined as above.
Then the following statements hold:

1. Every component of G[D] is critical with respect to (1, f)-odd matchings,

2. Subgraph G[C] has a perfect (1, f)-odd matching,

3. Every optimal (1, f)-odd matching M saturates A ∪ C, and

4. dM (u) = f(u) for every vertex u ∈ A.

C

D

A××××

Figure 5.15: Kano canonical decomposition of a general graph with a parity (1, f)-matching

Theorem 5.5.3 (Ebert [88]) Every perfect even-matching M contains at least one cycle.

5.6. SUMMARY 123

Theorem 5.5.4 (Yu & Zhang [310]) A graph G has a unique odd factor iff G is a tree
of even order.

TOUR_EXCEPT_0 Within the tour constraint, we introduce the tour_except_0

constraint since it can be seen as a kind of relaxation of the tour constraint where we
allow the use of value 0 several times. The constraint enforces to cover an undirected graph
G described by the nodes collection with one cycle. The required pattern is a connected
perfect parity (0,2)-matching (i.e. a connected (0-2)-even factor).

FULL_BINARY_TREE A full binary tree is a tree in which every vertex is either a leaf
or has exactly two children. If we attach to every root a pendant edge then the full binary
forest forms an acyclic perfect parity (1,3)-matching (i.e. an acyclic (1,3)-odd factor).

5.6 Summary

Matching problems, in both bipartite and non-bipartite graphs, are useful models for a
number of global constraints. This chapter has presented some representative applications
of matching and decomposition theory in constraint programming.

This chapter illustrated the use of matching theory related to the Gallai-Edmonds canon-
ical decomposition of a general graph as a framework to derive filtering algorithms for a range
of constraints based on matching such as the well-known symmetric_alldifferent, tour

or the newly introduced undirected_path constraint. The chapter also showed that the
Gallai-Edmonds decomposition can be applied to the soft version of matching-based con-
straints.

Our pruning algorithm, based on the degree-matching paradigm, performs global con-
straint propagation, computes and generates the forbidden values for each variable of global
constraint. This method is quite general and can be applied on a wide range of global
constraints whose solution can be mapped to a particular matching in the general graph.
We have presented applications of our procedure to some important and well-studied global
constraints.

Two open problems concerning the soft_symmetric_alldifferent_var constraint
remain to be solved. Does a hyper-arc consistency filtering algorithm with the complexity
of O(

√
n ·m) for the case |E(Gs)| > |E(Gh)| exist? What applications could there be for

this constraint?
The following table summarizes all the results for global constraints representable by a

general graph that were discussed in this chapter. Here, n denotes the number of vertices,
m is the number of edges, and p denotes the number of maximal extreme sets in the graph.
The constraints designated with an asterisk are NP-hard.

124 CHAPTER 5. GENERAL GRAPHS

checking hyper-arc

global constraint model matching feasibility consistency reference

symmetric_
value graph perfect O(

√
n ·m) O(p ·m)

Régin
alldifferent [257]
symmetric_alldif-

value graph (0,1)-factor O(
√
n ·m) O(p ·m) here

ferent_except_0

symmetric_all-
value graph (0,1)-factor O(

√
n ·m) O(p ·m) here

different_loop

soft_symmetric_ hard and soft
maximum O(

√
n ·m) O(p ·m) here

alldifferent_var value graph
2-cycle value graph perfect O(

√
n ·m) O(p ·m) here

proper_forest
solid and dotted

maximum O(
√
n ·m) O(p ·m)

Beldiceanu

value graph [32]

clique(*)
complementary
graph

maximum − −
Fahle
[101]

tour(*) value graph
connected
2-factor

− − here

undirected_path(*) value graph
connected
(1,2)-factor

− − here

Table 5.4: Summary of results for general graphs

Chapter 6

Directed Graphs

In previous chapters we discussed matchings in bipartite and general graphs and studied their
applications in constraint programming. In this chapter we introduce directed matchings.
This extension also plays an important role in matching theory and constraint programming.
Although there is not much coverage of this topic in the literature, the reader can refer to
the works of William T. Tutte [292] and Oystein Ore [234,235,237].

In this chapter we review existing methods and present a generic propagation mechanism
for graph partitioning constraints based on directed matchings. The task is also to give a
set of several propagation rules according to specific partition properties. Every solution
of the global constraint corresponds to a subgraph of the corresponding digraph associated
with the constraint. The filtering identifies the arcs of the digraph that do not belong to a
solution. We illustrate this principle on some common global constraints.

Directed graphs are often used to model different problems. Constraints that describe
partitions of the nodes in a given initial digraph have been considered from an early stage
of constraint programming research. Some examples include the circuit [200],[188], cy-

cle [29], tree [30],[100], path [34],[268] and clique [101],[259] constraints. Problems
involving these constraints are intractable in general. This work goes one step further by
introducing a set of specific propagation rules for these global constraints.

In Chapters 4 and 5 filtering algorithms were introduced that use the semantic of the
constraint in terms of maximum matching. In this chapter, we extend this concept to global
constraints representable by directed graphs. We present a paradigm based on a directed
matching. We illustrate our method with a complete study of specific global constraints.

In the context of graph partitioning constraints, the contribution of this chapter is to
show how to combine directed graphs with decomposition theory to get a general propagation
technique for graph partitioning constraints. We want to point out that our goal is not
to partition a given digraph D associated with a global constraint, but rather to find out
whether it is possible to make and detect those arcs of D that do not belong to any partition
corresponding to a specific pattern.

Directed graphs probably form the most interesting class of graphs and have a very
rich theory, a theory which has no analog in the theory of undirected graphs. A standard

125

126 CHAPTER 6. DIRECTED GRAPHS

reference for the theory of directed graphs, with emphasis on structures and concepts, rather
than algorithms, is [151]. An excellent reference to algorithms is [21].

Throughout this chapter we use round brackets () to enclose ordered pairs of vertices
(arcs) and curly brackets { } to enclose unordered pairs (edges). A directed path connecting
v1 to vn is a set of arcs (v1, v2), (v2, v3), . . . , (vn−1, vn) ordered in such a way that the tail of
any arc is the head of its successor.

The work in this chapter is based on the paper [73]. But we also present some results
which have not been published yet. In particular, in Section 6.3 we derive a method for the
proper partitioning constraints, in which every pattern must consist of at least two nodes.
Our technique can be then applied to solve the proper versions of graph partitioning con-
straints. Section 6.2 deals with an algorithmic method based on the decomposition theory of
directed graphs. We give a new linear time algorithm for the detection of strongly connected
components in a directed graph. We will see that the strong components of a directed graph
become the elementary subgraphs of an associated bipartite graph. Section 6.4 is new.

6.1 Preliminaries

We start with formal definitions of the central concepts. We first recall some necessary
terminology of the theory of digraphs that we will use in this chapter.

A digraph (directed graph) D is a pair (V,E), where V is a finite set of elements, called
vertices (or nodes), and E ⊆ V × V is a set of ordered pairs (vi, vj) of vertices, called arcs
(or directed edge). The number of vertices n = |V | is the order of D. The number of arcs
m = |E| is the size of D.

A digraph H is a subdigraph of a digraph D if V (H) ⊆ V (D) and E(H) ⊆ E(D). If
V (H) = V (D), then H is called a spanning subdigraph (or a factor) of D.

If (vi, vj) is an arc of D, then vi is called the head (or initial endpoint) and vj is called
the tail (or terminal endpoint). Graphically, the vertices can be represented by points, and
(vi, vj) will be represented by an arrow connecting the points vi and vj , vj being at the tip
of the arrow.

An arc whose endpoints coincide is called a loop. Two arcs, or edges, are called adjacent
if they have at least one endpoint in common. In this chapter we consider digraphs without
multiple (parallel) arcs but which may contain loops.

Vertex u is called a successor of vertex v if there is an arc with v as its initial endpoint
and u as its terminal endpoint. The set of all successors of v is denoted by

Γ+(v) = {u ∈ V : (v, u) ∈ E}.

Similarly, vertex u is called a predecessor of vertex v if there exists an arc of the form
(u, v). The set of all predecessors of vertex v is denoted by

Γ−(v) = {u ∈ V : (u, v) ∈ E}.

The set of all neighbors of v is denoted by

Γ(v) = Γ+(v) ∪ Γ−(v).

6.1. PRELIMINARIES 127

For a set X ⊆ V , we let

Γ+(X) =
⋃
x∈X

Γ+(x) and Γ−(X) =
⋃
x∈X

Γ−(x).

The outward demi-degree (or out-degree for short) of a vertex v in D, denoted by d+(v),
is the number of arcs starting at (leaving) v and the inward demi-degree (or in-degree for
short) of a vertex v, denoted by d−(v), is the number of arcs terminating at (entering) v.
The total degree (or just degree) of a vertex v, denoted by d(v), is defined by

d(v) = d+(v) + d−(v).

Clearly, we have:
d+(v) =

∣∣Γ+(v)
∣∣ and d−(v) =

∣∣Γ−(v)
∣∣ .

A directed path P of length k is a sequence of k+1 distinct vertices v0, v1, . . . , vk together
with the k distinct arcs (v0, v1), (v1, v2), . . . , (vk−1, vk). The vertex v0 is the initial endpoint
(or source) of the path P , the vertex vk is the terminal endpoint (or target) of the path
P , and the remaining vertices are the internal nodes of the path P . A directed circuit is a
(directed) path that begins and ends at the same vertex.

A digraph is called strongly connected (or strong) if, for any two vertices vi and vj , there
exists a path from vi to vj and a path from vj to vi. The decomposition of a directed graph
into strongly connected components is a fundamental tool in graph theory with various
applications. There exist following algorithms for strong connectivity:

Year Author(s) Strategy/Remarks

1970 Purdom [249] stack
1971 Munro [227] disjoint set union
1972 Tarjan [280] one depth-first search traversal
1976 Dijkstra [77, Chapter 25] top-down development
1980 Kosaraju [2, Section 6.7],[67, Section 22.5] unpublished
1981 Sharir [269] two depth-first search traversals
1996 Cheriyan & Mehlhorn [62],[218, Section 7.4] depth-first spanning tree
2000 Gabow [119] path-based depth-first search
2013 here matching theory

Table 6.1: History of algorithms for strongly connected components

A strong component of a digraph D is a maximal strongly connected subdigraph of D.
We assume that the trivial digraph, consisting of exactly one vertex, is vacuously strong
since it does not contain two distinct vertices. Corresponding to any digraph D, there is a
new digraph whose definition is based on the strong components of D. Let S1, S2, . . . , Sp be
the strong components of a digraph D. The strong component graph (also called the con-
densation) of D, is the simple digraph SC(D) with vertex set V (SC(D)) = {s1, s2, . . . , sp},
such that there is an arc in digraph SC(D) from vertex si to vertex sj iff there is an arc
in digraph D from a vertex in strong component Si to a vertex in strong component Sj .

128 CHAPTER 6. DIRECTED GRAPHS

Multiple arcs from a given strongly connected component to another strongly connected
component are merged.

Notice that the strong component graph of any digraph (some authors use the term
reduced digraph to describe such digraphs) is a directed acyclic graph, that is, it contains no
directed cycles. Note that at this point we allow acyclic digraphs to contain loops.

An acyclic digraph is often referred to by its abbreviation, DAG. The term DAG is
typically pronounced as a word, not spelled out as an acronym.

Acyclic digraphs play a very important role in both theory and applications of digraphs
and form a well-studied family of digraphs, in particular, due to the following important
properties:

• In every directed acyclic graph there is at least one source (a vertex with no incoming
edges: d−(v) = 0) as well as at least one sink (a vertex of out-degree zero: d+(v) = 0),

• Every acyclic digraph has a topological ordering of its vertices,

• For every vertex v there is a path from any source to v and a path from v to any sink.

Clearly, in any digraph all the vertices on a cycle belong to the same strongly connected
component. A strongly connected component will be called a source component if it corre-
sponds to a source vertex in a strong component graph. Analogously, a strongly connected
component of D that corresponds to a sink of SC(D) is called a sink component . A strongly
connected component is trivial if it consists of one vertex without a loop, and is non-trivial
otherwise.

In order to obtain short proofs of various results on subdigraphs or efficiently solve
many problems dealing with directed graphs the following transformation of a directed
graph D to a bipartite graph is extremely useful [143, page 411]. Let BR(D) denote the
bipartite graph with bipartition (V1, V2) defined as follows. Let V (D) = {v1, . . . , vn}, and
put V1 = {v′1, . . . , v′n} and V2 = {v′′1 , . . . , v′′n}. The elements of V1 are called outward , and
the elements of V2 are called inward . We next join v′i to v′′j by an edge in BR(D) iff there
exists an arc of the form (vi, vj) in D. We call BR(D) the bipartite representation of D.

Recall that a matching in an undirected graph G = (V,E) is a set of edges from E, no
two of which share a vertex, a maximum matching of G is a matching of maximal cardinality
among all matchings of G and a perfect matching is a set of pairwise disjoint edges that
cover all the vertices of G.

Let D = (V,E) be a digraph with vertex set V (D) and arc set E(D). Further, let
~g = (g−, g+) and ~f = (f−, f+) be pairs of non-negative integer-valued functions defined on
V (D) such that 0 ≤ g−(x) ≤ f−(x) ≤ d−D(x) and 0 ≤ g+(x) ≤ f+(x) ≤ d+

D(x) for every
x ∈ V (D). We say that the digraph D has a directed perfect ~f -matching if there exists a
spanning subdigraph F ⊆ D such that d−F (x) = f−(x) and d+

F (x) = f+(x) for all x ∈ V (D).
Analogously, a directed perfect (~g, ~f)-matching of D is defined to be a spanning subdigraph
H ⊆ D such that g−(x) ≤ d−H(x) ≤ f−(x) and g+(x) ≤ d+

H(x) ≤ f+(x) for all x ∈ V (D).
The existence of a directed perfect matching in a digraph is equivalent to the existence of

a perfect matching in its corresponding bipartite representation. For given pairs of functions

6.1. PRELIMINARIES 129

~g = (g−, g+) and ~f = (f−, f+) defined on V (D), we define two functions g, f : V (BR(D)) 7→
Z+ by

g(x) =

{
g+(x), if x ∈ V1

g−(x), if x ∈ V2

and

f(x) =

{
f+(x), if x ∈ V1

f−(x), if x ∈ V2.

Then it is easy to see that D has a directed perfect ~f -matching iff BR(D) has a perfect
f -matching, and that D has a directed perfect (~g, ~f)-matching iff BR(D) has a perfect
(g, f)-matching.

The following necessary and sufficient conditions for the existence of a directed perfect
(~g, ~f)-matching are easily verified using matching theory (for bipartite graphs).

Theorem 6.1.1 Let D = (V,E) be a digraph with non-negative integer-valued functions
~g = (g−, g+) and ~f = (f−, f+) defined on V (D). If D has a directed perfect (~g, ~f)-matching
then ∑

x∈X
g+(x) ≤

∑
x∈Γ+(X)

f−(x)

and ∑
x∈X

g−(x) ≤
∑

x∈Γ−(X)

f+(x)

for all X ⊆ V .

Proof The proof of this theorem is analogous to that of Theorem 2.4.5 in [212]. ut

A cycle cover of an undirected graph is a spanning subgraph that consists solely of single
cycles in which every vertex is a part of exactly one cycle. Cycle covers are also known as
2-factors since every vertex has degree two in a cycle cover.

A cycle factor in a directed graph D = (V,E) is a spanning subdigraph of D in which
the inward and outward degree of every vertex v is equal to 1:

d+(v) = d−(v) = 1.

Observe that a strongly connected digraph needs not necessarily have a cycle factor. We
can use matching theory to find a cycle factor in a given digraph or to prove that none
exists. We now begin with the necessary and sufficient condition for the existence of a cycle
factor in a digraph.

Theorem 6.1.2 A directed graph D = (V,E) has a cycle factor iff

|X| ≤

∣∣∣∣∣ ⋃
x∈X

Γ+(x)

∣∣∣∣∣
and

|X| ≤

∣∣∣∣∣ ⋃
x∈X

Γ−(x)

∣∣∣∣∣
for each X ⊆ V .

130 CHAPTER 6. DIRECTED GRAPHS

This looks, in fact, very much like a translation of Hall’s Theorem (Theorem 2.5.2) into
the language of directed graphs. Indeed, it is practically the same result. It can be proven
by applying the Frobenius’ Theorem (Theorem 2.5.3) to a bipartite representation BR(D)

constructed from digraph D. It is easy to see that D has a cycle factor iff the bipartite
graph BR(D) contains a perfect matching.

A path factor of a digraph D is a spanning subdigraph, each of whose components is
a path. Note that a directed matching does not exclude cycles, whereas a path factor is
acyclic. It is obvious that if a digraph has a cycle factor, then it also has a path factor. The
converse is not true.

6.2 Canonical Decomposition

In this section we consider the canonical decomposition of directed graphs with respect to
strong connectivity. We review the characterization of strong digraphs in terms of elementary
graphs. The results presented in this section are mainly based on the joint work of Diane
M. Johnson, Andrew L. Dulmage, & Nathan S. Mendelsohn [173].

Let D be a directed graph of order n and size m. We need the definition of the following
special graph related to the bipartite graph BR(D) introduced in the previous section.

The augmented bipartite graph corresponding to the directed graph D is a graph BR∗(D)

defined as the graph with the same vertex sets V1 and V2 as BR(D). Every edge of BR(D)

is an edge of BR∗(D) and in addition the n unordered pairs {v′i, v′′i }, i = 1, 2, . . . , n are
edges of BR∗(D).

Theorem 6.2.1 If BR∗(D) is the augmented bipartite graph corresponding to the directed
graph D, then D is strongly connected iff BR∗(D) is elementary.

Proof See Theorem 4 in [173]. ut

The last property gives us immediately a simple filtering algorithm with respect to the
constraint strongly_connected [11]. A brute force approach with complexity of O(m2)

has been described in [80]. A filtering algorithm according to a strong connectivity looks
as follows. First, we create graph BR∗(D). Next, we start with an initial empty matching
and iterate over i = 1, . . . , n. We add to the initial matching the edge {v′i, v′′i }. Then,
the application of the alternating depth-first search to the initial matching M results in
hyper-arc consistency with respect to the strongly_connected constraint (Figure 6.1).

x3

x2

x1

2'’
D(x1) = {2,4}

D(x2) = {1,4}
D(x3) = {5}

D’(x1) = {2}

D’(x2) = {1}
D’(x3) = {5}

D(x4) = {3}
D(x5) = {3,4}

D’(x4) = {3}
D’(x5) = {3,4}

x4

x5

3'’ 4'’

2' 3' 4' 5'

5'’1'’

1'

×

×

Figure 6.1: Pruning according to a strong connectivity

6.3. GRAPH PARTITIONING CONSTRAINTS 131

Theorem 6.2.2 For any directed graph D, let G1, . . . , Gk be the canonical decomposition
of BR∗(D) into elementary subgraphs. If Di, i = 1, . . . , k, is the subdigraph of D such that
BR∗(Di) = Gi, then D1, . . . , Dk are the strongly connected components of D.

Proof See Theorem 6 in [173]. ut

The following is the property of the augmented bipartite graphs:

• It is possible for BR∗(D) to be connected without D being strongly connected.

6.3 Graph Partitioning Constraints

In this section we present a graph-theoretic analysis of a directed matching, using matching
theory. We show a direct reduction of the directed matching problem on a digraph to the
maximum matching problem on a bigraph. This reduction yields an algorithm to determine
the partition of edges in the directed matching making use of decomposition theory for
bipartite graphs. In this section examples are given and filtering algorithms are developed.

In order to investigate global constraints in the sequel we first introduce the digraph
associated with any instance of these constraints1. Let X = {x1, x2, . . . , xn} be a set of
n variables with respective finite domains Dxi

⊆ {1, 2, . . . , n} for i = 1, 2, . . . , n. To these
variables we can associate the digraph D = (V,E) with vertex set V = {vi : 1 ≤ i ≤ n} and
arc set E = {(vi, vj) : j ∈ Dxi , 1 ≤ i, j ≤ n}. Observe that the number of vertices is equal
to the number of variables, and the number of arcs equals the sum of domain cardinalities.
Thus, n = |V | and m = |E| =

∑
|Dxi
| for all xi ∈ X. Further, we have

d+(vi) = |Dxi
|,

d−(vi) = |D−1
xi
| = |{j : i ∈ Dxj}|.

Hence, a directed edge (vi, vj) exists iff j is in the domain of variable xi. Moreover,
elimination of an arc (vi, vj) from the associated digraph during the pruning means removing
of the value j from the domain of variable xi.

A digraph associated with a global constraint can be viewed as an undirected graph
by forgetting the orientation of its arcs, removing loops and merging all multiple resulting
edges. We call this graph the underlying graph associated with the global constraint (the
undirected version of a directed graph). Clearly, elimination of an edge {vi, vj} from the
underlying graph during the pruning is equivalent both to the removing of the value j from
the domain of variable xi (if it exists) and the removing of the value i from the domain of
variable xj (if it exists).

Our algorithm to find a partition of edges is based on the following simple observation.

Theorem 6.3.1 Let D be a digraph associated with the global constraint and assume that
there exists a one-to-one correspondence between the solution of the constraint and the di-
rected perfect (~g, ~f)-matching in D. Further, let BR(D) denotes the bipartite representation

1We assume that the variables and their domain values represent the same set of elements.

132 CHAPTER 6. DIRECTED GRAPHS

of D. Then, the necessary condition to satisfiability of the constraint is that BR(D) must
have a perfect (g, f)-matching. Moreover, the mandatory (or forbidden) edges in a perfect
(g, f)-matching of BR(D) are mandatory (or forbidden) arcs in a directed perfect (~g, ~f)-
matching of the digraph D.

Proof Suppose that BR(D) has a perfect (g, f)-matchingM consisting of edges e1, . . . , e|M |.
Then the arcs form a directed perfect (~g, ~f)-matching. Indeed, in the subdigraph D′ induced
by these arcs every vertex vi has an out-degree and an in-degree equal to the number of
matched edges incident to xi on the outward side and to yi on the inward side of BR(D),
respectively, and, according to the definition, such a subdigraph is precisely a directed perfect
(~g, ~f)-matching in D. ut

To illustrate this theorem, consider Figure 6.2.

2

1 6

4

3 5

1' 2' 3' 4' 5' 6'

1 2 3 4 5 6

2'

4

5

5'

1

6'

1'

3 6

4'

2

3'

Figure 6.2: Pruning according to a directed matching

On the left side of the figure a directed graph D in which we wish to find a cycle factor
is presented. In the middle of the figure the bipartite representation BR(D) is depicted and
a perfect matching M is shown. Observe that the perfect matching in BR(D) corresponds
to a cycle factor 1 → 2 → 1 ∪ 3 → 4 → 5 → 6 → 3 in D. In order to obtain the desired
partition of edges we need only to apply an alternating depth-first search on BR(D) with
respect to M . The alternating depth-first forest (computed by the algorithm devised in
Chapter 4) is shown on the right side of the figure. Since edge {1′, 3} in BR(D) is forbidden
and edge {3, 4′} is mandatory, arc (3, 1) in D is forbidden (drawn as a dashed arrow), and
arc (3, 4) is mandatory (drawn as a bold arrow).

A graph partitioning constraint can be seen as a problem for finding a partial graph of a
given digraph associated with the constraint. Graph partitioning constraints are the main
subject of the thesis written by Xavier Lorca [209]. From an interpretation point of view
the subdigraphs so obtained are called functional graphs and they have the characteristic
property that the out-degree of each vertex is equal to 1 (i.e. every vertex of the partition
has exactly one successor). Thus, we will always have g+(v) = f+(v) = 1 for all vertices
of D which corresponds to g(v) = f(v) = 1 for all vertices on the outward side of the
corresponding bipartite graph BR(D).

By the continuity property for the count variable of a graph partitioning constraint we
mean that if a digraph associated with the constraint can be decomposed into r and s

connected components, where r ≤ s, then it can be decomposed into k components for all k
such that r ≤ k ≤ s.

6.3. GRAPH PARTITIONING CONSTRAINTS 133

In the following we will demonstrate the reduction technique on some graph partitioning
constraints. The method is composed of two main phases. The first one focuses on checking
if a constraint has a solution. The second phase makes it possible to find some arcs that do
not participate in any solution. This phase can be split into three steps: bounds filtering of
count variable(s), pruning forbidden arcs when the count variable is instantiated to one of
its extrema, and structural filtering. The bounds filtering concentrates on the cardinality of
the expected partition. It consists of removing the values of count variable that are out of
range. The structural filtering detects the arcs that do not belong to the expected partition
and reduces the domain variables of constraint. All steps are complementary and together
form a (partial) filtering for a graph partitioning constraint.

CIRCUIT The circuit constraint was first formulated by Jean-Louis Laurière [200]. It
can be viewed as describing a Hamiltonian circuit2 on a directed graph D associated with
the constraint. The constraint is defined as circuit(nodes), where nodes is a collection
of variables {x1, . . . , xn} whose domains are subsets of {1, . . . , n}. It requires that a tuple
(d1, . . . , dn) be a cyclic permutation of (1, . . . , n), where each di+1 = xdi and xdn = d1. An
associated directed graph D contains an arc (xi, xj) iff j belongs to the domain of xi. An
arc (xi, xj) of D is selected when xi = j and circuit requires that the selected arcs form a
directed Hamiltonian circuit.

For the global constraint circuit there is a very immediate reduction from the Hamilto-
nian circuit, which demonstrates that reasoning with this constraint is generally intractable.
For this reason, it is perhaps not surprising that, in the past, there has been little comment
on it. Therefore, we now formally prove its computational intractability.

Theorem 6.3.2 Deciding whether the circuit constraint has a solution is NP-complete.

Proof We use a transformation from DIRECTED HAMILTONIAN CIRCUIT [131, Prob-
lem GT38] into the circuit constraint. Given a digraph D = (V,E) with n = |V | vertices
and m = |E| edges. We construct a circuit constraint, circuit(x1, . . . , xn) in which
Dxi = {j : (vi, vj) ∈ E}. The constructed circuit constraint has a solution iff the original
DIRECTED HAMILTONIAN CIRCUIT problem has a solution. ut

A famous combinatorial problem that can be modeled with the circuit constraint is
the Traveling Salesperson Problem (abbreviated as TSP) [202]. Many other problems can
be expressed in terms of Hamiltonian cycles, such as the Euler Knight’s Tour Problem on a
chessboard, or the Chinese Postman Problem [212, Section 6.5].

Clearly, checking a circuit constraint for satisfiability is equivalent to checking if an asso-
ciated digraph has a Hamiltonian circuit, which is an NP-complete problem [182]. Achieving
hyper-arc consistency for circuit is thus NP-hard. There exist, however, several necessary
conditions that can be verified in polynomial time.

An obvious necessary condition for a digraph to be Hamiltonian is that the graph must
be strongly connected. However, this condition is not sufficient. Another obvious and quite

2A digraph is Hamiltonian if it contains a directed circuit that visits each vertex once without touching
any vertex more than once.

134 CHAPTER 6. DIRECTED GRAPHS

powerful necessary condition for a digraph to be Hamiltonian is the existence of a cycle
factor. Both conditions can be checked in polynomial time. Clearly, a Hamiltonian circuit is
a cycle factor but the converse is not necessarily true because some cycle factors may consist
of several disjoint circuits.

We know that achieving hyper-arc consistency for circuit is NP-hard. Therefore, we
will now describe some useful incomplete filtering methods, that run in polynomial time,
which are only partially related to those presented in [57],[188] and [271].

One of the elementary filtering methods for circuit is based on the alldifferent

constraint [255]. The alldifferent filtering method can be applied because all the vari-
ables of the nodes collection have to take distinct values. A further necessary condition to
satisfiability of this constraint is to have at most one single strongly connected component.

The filter removes inconsistent values by eliminating non-Hamiltonian arcs from the as-
sociated digraph, that is, arcs that belong to no Hamiltonian circuit. Filtering can also
be based on sufficient conditions for non-Hamiltonicity of a digraph, some of which appear
in [202, Chapter 11]. Most of the known sufficient conditions for a digraph D to be Hamilto-
nian assert that if the degrees of the vertices of D are sufficiently large [22],[137],[214],[308],
or D has enough arcs [205], then D is Hamiltonian. Unfortunately, the number of arcs must
be nearly as large as the number of edges in a complete graph with n vertices.

We have taken care of many sufficient conditions for a digraph to have a Hamiltonian
circuit. However, none of these are necessary conditions. For example, the oriented cycle
Cn, the simplest Hamiltonian digraph of all, does not satisfy any of these conditions when
n is large.

Latife Genç Kaya and John N. Hooker presented in [188] a recursive algorithm that
eliminates non-Hamiltonian arcs from the graph via vertex separators. The filter is based
on an idea put forward by Václav Chvátal that every Hamiltonian graph is 1-tough3 (for
details, see [202, page 405]). Their algorithm identifies almost all unsatisfiable instances and
eliminates about one-third of the inconsistent values from the variable domains.

We now demonstrate a partial filtering method which explicitly uses the properties of
the Gallai-Edmonds Canonical Decomposition and the results presented in the previous
chapter (see Theorem 5.2.8). Our idea is based on identifying a perfect 2-matching in the
underlying graph associated with the constraint. This follows from the fact that every
Hamiltonian circuit is a 2-factor and each 2-factor can be considered as a generalization
of a Hamiltonian circuit. Our routine looks for a perfect 2-matching in the underlying
graph and the corresponding edge not belonging to it will be removed from the associated
digraph (together with an opposite arc, if it exists). This will result in deleting some 2-
cycles from the associated digraph, which cannot be a part of any Hamiltonian circuit.
Note that the problem of removing all cycles of length two from the Hamiltonian digraph
is NP-hard [131, Problem GT13]. However, our method coupled with the alldifferent

constraint gives a more effective pruning.

3A graph G is called t-tough if the deletion of an arbitrary set S of vertices leaves the rest of the graph
either connected or else broken into no more than |S|/t connected components.

6.3. GRAPH PARTITIONING CONSTRAINTS 135

Observe that neither filtering method is redundant of the other, but both combined
together improve the propagation behavior in some cases, as can be seen in the following
example. Let circuit(x1, . . . , x8) constraint have the following domains Dx1 = {3, 4, 5},
Dx2

= {4, 7, 8}, Dx3
= {2, 7}, Dx4

= {1, 5}, Dx5
= {6}, Dx6

= {3, 5}, Dx7
= {2} and

Dx8
= {1, 4}. Then pruning based on alldifferent removes values 4 and 7 from Dx2

and
value 2 from the domain of variable x3. But filtering based on our method removes first
value 3 from Dx1 and value 2 from the domain of variable x3 (see Figure 6.3). Then the
next step with the alldifferent constraint removes values 4 and 7 from Dx2 and value 5

from the domain of variable x6. Hence, the filter has deleted 2-cycle 6 → 5 → 6 from the
associated digraph, as belonging to no Hamiltonian circuit. The domains after two steps
of the algorithm look as follows: Dx1 = {4, 5}, Dx2 = {8}, Dx3 = {7}, Dx4 = {1, 5},
Dx5 = {6}, Dx6 = {3}, Dx7 = {2} and Dx8 = {1, 4}.

(0,1)
{1,4,5}

(0,1)
8

3
(2,2)

2
(2,2)

D(x1) = {3,4,5}
D(x2) = {4,7,8}
D(x3) = {2,7}
D(x4) = {1,5}
D(x5) = {6}
D(x6) = {3,5}

D’(x1) = {4,5}
D’(x2) = {4,7,8}
D’(x3) = {7}
D’(x4) = {1,5}
D’(x5) = {6}
D’(x6) = {3,5}

(2,2)
7

(1,1)
6

1 3

24

5

6

7

8

D(x7) = {2}
D(x8) = {1,4}

×
X

B ∪ D
×

D’(x7) = {2}
D’(x8) = {1,4}

Figure 6.3: Pruning of the CIRCUIT constraint

We give a summary of our algorithm:

Algorithm 11 Partial filtering algorithm for the circuit constraint
Require: Digraph D associated with the global constraint circuit(nodes)

Ensure: Incomplete pruning
Remove all loops from the associated digraph D
Check the necessary condition whether D is strongly connected
If D has more than one strongly connected component, then the constraint is inconsistent
If any of the sufficient conditions holds, then the constraint is satisfiable
If the underlying graph has no perfect 2-matching, then the constraint is unsatisfiable
Pruning according to the Gallai-Edmonds Canonical Decomposition
Pruning according to the alldifferent(nodes) constraint

All steps have a polynomial complexity. The removal of all loops takes O(n) time.
Finding the strongly connected components of D requires O(m + n) time and space (see
Table 6.1). The checking of any the sufficient conditions takes minimal O(1) [205] and
maximal O(n3) time [214]. A directed perfect matching M can be computed from scratch
in time O(

√
n ·m). A perfect 2-matching of the underlying graph can then be found from

M in time O(
√
k ·m), where k is the number of exposed vertices in G. Pruning according

to the Gallai-Edmonds Canonical Decomposition can be performed in O(p · m) time (see

136 CHAPTER 6. DIRECTED GRAPHS

Theorem 5.3.5), where p denotes the number of maximal extreme sets in the underlying
graph. Pruning according to the Dulmage-Mendelsohn Canonical Decomposition can be
realized in linear time (see Theorem 4.3.3).

CYCLE The cycle is a useful constraint that was introduced in CHIP [29] in order to
tackle hard combinatorial problems. It can be used for modeling various problems such
as the multiple traveling salesmen problem [202, Chapter 2 (Section 3.3) and Chapter 5
(Section 6.1)], the vehicle routing problem [202, Chapter 12],[29], and the balanced Euler
knight problem [51].

The constraint has the form cycle(ncycle, nodes), where ncycle is a domain variable
and nodes is a collection of domain variables. The cycle constraint partitions a given
associated digraph described by the nodes collection into a set of vertex-disjoint cycles.
The constraint requires that in the digraph there are exactly ncycle directed circuits, such
that every vertex belongs to exactly one cycle.

As the first interpretation, the cycle(ncycle, nodes) constraint can be seen as the
problem of finding ncycle distinct cycles in a directed graph in such a way that each vertex
is visited exactly once. In the second interpretation, this constraint can be considered as
the number of ncycle cycles of a permutation 〈x1, . . . , xn〉.

Both observations are equivalent to the formulation of the alldifferent constraint.
This can be seen from the fact that a cycle in a directed graph D is a spanning subdigraph
of D in which the in-degree and out-degree of every vertex v is equal to 1:

d+(v) = d−(v) = 1.

Note that the global constraint circuit is a special case of the global constraint cycle

in which the first parameter ncycle is fixed to 1. Thus, the elementary filtering methods for
the circuit constraint presented in the last example can be simply adapted to the cycle

constraint. Moreover, a necessary condition to satisfiability of this constraint is to have
at most max(Dncycle) strongly connected components. Clearly, if the number of strongly
connected components equals ncycle, then, for each connected component, we can enforce
pruning according to the global constraint circuit, as discussed earlier.

Nicolas Beldiceanu, within his Global Constraint Catalog [27], proposes the following
algorithm: Since all variables in nodes have to take distinct values one can reuse the
algorithms associated with the alldifferent constraint. A second necessary condition is
to have no more than max(Dncycle) strongly connected components. Since all the vertices of
a circuit belong to the same strongly connected component, an arc going from one strongly
connected component to another strongly connected component has to be removed.

This method is redundant. We will prove that an arc going from one strongly connected
component to another one will be detected during pruning according to a directed matching.

Theorem 6.3.3 Let D = (V,E) be a directed graph associated with the global constraint
cycle, a bipartite graph BR(D) be the bipartite representation of D, and let M be a perfect
matching in BR(D). Then an edge (vi, vj) belongs to some perfect matching in BR(D) iff
vertices vi and vj belong to the same strongly connected component of D.

6.3. GRAPH PARTITIONING CONSTRAINTS 137

Proof Since bipartite representation BR(D) contains a perfect matching iff a digraph D

has a cycle factor, thus when we take an arc e going from a strongly connected component
Si to another strongly connected component Sj , then we can never return to Si in order
to create a cycle involving the arc e. Hence, all such connecting arcs do not belong to any
perfect matching. ut

Moreover, a lower bound on the number of vertex-disjoint cycles in a digraph D is equal
to the number of strongly connected components. However, the problem of finding an upper
bound on the number of vertex-disjoint cycles in a given digraph D is NP-hard to compute.
We will see that the maximum number of vertex-disjoint cycles in a digraph D is related to
the minimum number of vertices in D needed to eliminate all cycles of D.

An upper bound on the number of the disjoint cycles can be obtained by solving the
feedback vertex set problem. We will use some additional notation and terminology. Given
a directed graph D = (V,E), a feedback vertex set (abbreviated as FVS) is a set of vertices
whose removal leaves an acyclic digraph. The problem is to find such a set with minimum
cardinality. Obviously, forests and acyclic digraphs have a value of 0 since they have no
cycles. In the literature, the term cycle cutset (or cutset in the short) has appeared as a
synonym for feedback vertex set.

For a digraph D we denote by ν(D) the maximum number of vertex-disjoint cycles,
and by τ(D) the minimum number of elements in a feedback vertex set of D. Clearly, we
have ν(D) ≤ τ(D) and it is easy to construct an infinite family of digraphs such that
only inequalities hold. Indeed, let D = (V,E) be a digraph with vertex set V (D) =

{x1, x2, x3, x4, y1, y2, y3, y4} and arc set E(D) = {(yi, xi) : 1 ≤ i ≤ 4} ∪ {(xi, yj) : 1 ≤
i 6= j ≤ 4}. Then ν(D) = 2, but τ(D) = 3.

In summary, we have the following results:

Theorem 6.3.4 A lower bound on the number of cycles in the digraph D associated with
the global constraint cycle equals the number of strongly connected components in D.

Theorem 6.3.5 The problem of determining the minimum number of cycles in the digraph
D associated with the global constraint cycle is NP-hard.

Proof The problem is clearly NP-hard as the answer is 1 if the digraph D has a Hamiltonian
circuit, which is known to be an NP-complete task. ut

Theorem 6.3.6 The problem of determining the maximum number of cycles in the digraph
D associated with the global constraint cycle is NP-hard.

A natural greedy algorithm for finding the maximum number of vertex-disjoint cycles is
to, repeatedly, find and remove the vertices belonging to the smallest cycle in the current
digraph, until there are no more cycles left.

Richard M. Karp [182] was the first to prove that the FVS problem is NP-complete
(see also [131, Problem GT7]). It is thus not surprising that the above mentioned decision
problem for the maximum number of vertex-disjoint cycles is also NP-complete.

138 CHAPTER 6. DIRECTED GRAPHS

Notice that the computing of the maximal number of vertices such that the corresponding
induced subdigraph forms a directed acyclic graph is equivalent to enforcing satisfiability
of the global constraint cutset [99], which holds if its corresponding digraph possesses no
vertex-disjoint cycles. Because it is an NP-complete problem, recent research in this area
has been concentrated on designing algorithms finding a minimum cutset for a restricted
class of digraphs and a relatively small cutset for general digraphs. The algorithm described
in [99] returns two vertex sets, S1 and S2, such that S1 ∩ S2 = ∅, S1 ∪ S2 is a cutset of a
digraph D and such that |S1| ≤ τ(D) ≤ |S1 ∪S2|. Note that if S2 = ∅ then S1 is guaranteed
to be a minimum cutset.

Theorem 6.3.7 Enforcing hyper-arc consistency on the count variable ncycle of the global
constraint cycle is NP-hard.

Proof It is easy to see that the problem is equivalent to the cycle cover problem. This
employs a reduction from the PARTITION INTO HAMILTONIAN SUBGRAPHS prob-
lem [131, Problem GT13], originally shown NP-complete by Leslie G. Valiant [296]. ut

When we impose the additional condition that each cycle has only two vertices, then the
cycle constraint can be expressed by means of the constraint symmetric_alldifferent.
This constraint can be then interpreted as covering the associated graph with disjoint circuits
of length two. Clearly, there exists in this case no solution to the cycle constraint when
the number of variables is odd or ncycle 6= {n2 }. A complete filtering algorithm achieving
hyper-arc consistency for the symmetric_alldifferent constraint was proposed by Régin
in [257]. Its running time is O(n ·m). This complexity has been improved in this thesis to
O(p ·m) by making use of decomposition theory, where p is the number of maximal extreme
sets in the underlying graph (see Theorem 5.3.5).

We now give a summary of the algorithm:

Algorithm 12 Partial filtering algorithm for the cycle constraint
Require: Digraph D associated with the global constraint cycle(ncycle, nodes)

Ensure: Incomplete pruning
If ncycle = {1} then the constraint is equivalent to circuit(nodes)

Pruning according to the perfect matching on BR(D) (alldifferent(nodes))
Compute mincycle as the number of strongly connected components of D
Estimate maxcycle (global constraint cutset(ncycle, nodes))
Update variable ncycle according to mincycle and maxcycle values
If there are no loops in D and min(ncycle) = n

2 then the constraint is equivalent to
symmetric_alldifferent(nodes)

If ncycle = {mincycle} then for each strong component Si pruning associated with the
circuit(Si) constraint

All steps have a polynomial complexity. Finding the strongly connected components of D
requires O(m+n) time and space (see Table 6.1). The existence of a cycle factor in a digraph

6.3. GRAPH PARTITIONING CONSTRAINTS 139

can be checked and a cycle factor found, if it exists, in time O(
√
n ·m) [164]. The incomplete

filtering algorithm for a cutset constraint has O(m+n · log n) time complexity [99]. Hyper-
arc consistency for a symmetric_alldifferent constraint can be achieved in polynomial
time (see Section 5.4).

A thesis dealing with the cycle constraint is written by Eric Bourreau [51].

DERANGEMENT The derangement constraint is a special case of the cycle con-
straint. It enforces the covering of an associated digraph by a set of vertex-disjoint proper
cycles. In another interpretation it is required to have a permutation with no fixed points.

The pruning for achieving hyper-arc consistency is simple. From a digraph D associated
with the global constraint derangement just remove all loops in an iterative way to obtain
a reduced digraph D′. This step corresponds to the normalization of the variable domains.
Then construct an auxiliary bipartite graph BR(D′) and compute a perfect matching in
it. There is a one-to-one correspondence between the solution of the constraint and the
existence of the perfect matching. Checking the feasibility can be realized in O(

√
n · m)

time, hyper-arc consistency can be established in O(m) time (see Theorem 4.4.1).

From an interpretation point of view this constraint is related to alldifferent with
unary constraints xi 6= i for all i, since the number of cycles is free, and the variables
and their domains represent the same set of elements. Observe that the bipartite graph
associated with the directed perfect matching is equivalent to the value graph associated
with the alldifferent constraint.

SOFT_DERANGEMENT_VAR A problem is over-constrained when no assignment
of values to variables is possible to satisfy the constraint. In this situation the goal is to
find a compromise which allows some constraints to be violated and search for solutions
that violate as few constraints as possible. The cost of the violation can be defined as the
number of assigned values that should change in order to make the constraint satisfied. This
measure is represented by the cost variable z which is to be minimized.

In this example we apply our method to the soft version of the derangement constraint
by introducing the notion of deficiency to directed graphs.

Some preliminary terminology is needed. Recall that in the maximum matching of G
the number of exposed vertices is called the deficiency of G and is denoted by δ(G). Let
the deficiency of D be the number of exposed vertices on the outward side of its bipartite
representation BR(D).

We aim at computing a lower bound of z in order to check the consistency of the global
constraint. The following result is a direct consequence of Theorem 4.4.2.

Corollary 6.3.8 Assume that a global constraint can be represented by a directed graph
D and there exists a one-to-one correspondence between the solution of the constraint and
the directed perfect matching in D. Then a lower bound of the cost variable z equals the
deficiency of D. Further, if δ(D) < max(Dz) then all the values of domains of variables are
consistent with the global constraint. If δ(D) = max(Dz) then values of the domains which

140 CHAPTER 6. DIRECTED GRAPHS

are represented by forbidden arcs can be removed. Otherwise, if δ(D) > max(Dz) then the
constraint is inconsistent.

Using the above result, we can formulate the following filtering algorithm that enforces
hyper-arc consistency on the soft_derangement_var constraint (cf. Algorithm 7):

Algorithm 13 Filtering algorithm for the soft_derangement_var constraint
Require: Digraph D associated with soft_derangement_var(z, nodes)

Ensure: Hyper-arc consistency or constraint not satisfied
Compute a maximum matching in the bipartite graph BR(D)

Compute the Dulmage-Mendelsohn Canonical Decomposition
Determine subgraphs GO, GU and GW
Determine the partition of edges
Let δ denote the deficiency of the subgraph GO
If δ > max(Dz) then the constraint is inconsistent
If δ = max(Dz) then all forbidden arcs must be removed from the digraph D
If δ < max(Dz) then all arcs in D are allowed
Update the domain of the cost variable z

The algorithm first computes a maximum matching in the bipartite graph BR(D). This
takes O(

√
n ·m) time. The next steps are of linear complexity.

The proof of Corollary 6.3.8 applies to any constraint whose graph representation resem-
bles D and a solution corresponds to a directed perfect matching. For all such constraints
that are consistent, hyper-arc consistency can be achieved in linear time, assuming that
the maximum matching in BR(D) is known. Note that this is equal to the complexity of
achieving hyper-arc consistency on the hard version of these constraints.

(1,1)
4

(1,1)
1

4'
(1,1)

1'
(1,1)

3'
(1,1)

D(x1) = {2}
D(x2) = {1,3}
D(x3) = {2}
D(x4) = {3,4}
D(z) = {0,1}

D’(x1) = {2}
D’(x2) = {1}
D’(x3) = {2}
D’(x4) = {3}
D’(z) = {1}

21

(1,1)
2

(1,1)
3

2'
(1,1)

34

×

Figure 6.4: Pruning of the SOFT_DERANGEMENT_VAR constraint

TREE In this example we provide a quick description of the tree constraint. The tree

constraint partitions a given directed graph into a forest of vertex-disjoint directed trees,
where only certain vertices can be tree roots. More precisely, the digraph is partitioned
into a set of vertex-disjoint anti-arborescences4. The constraint has the form tree(ntree,

nodes), where ntree is a domain variable specifying the number of trees in the tree parti-
tion, and nodes is a collection of n variables whose domains consist of elements of {1, . . . , n}.

4A digraph D is an anti-arborescence with anti-root r iff for each vertex v in D there is a (directed) path
from v to r and the underlying undirected graph of D is a tree.

6.3. GRAPH PARTITIONING CONSTRAINTS 141

The constraint holds if the associated digraph D is covered by a set of ntree trees in such
a way that each vertex of D belongs to one distinct tree. The arcs of the trees are directed
from their leaves to their respective roots.

A hyper-arc consistency filtering algorithm for the global constraint tree is described
in [30]. This algorithm is based on the necessary and sufficient conditions that we now very
briefly describe.

Before sketching a filtering algorithm for pruning the tree constraint, we introduce some
terminology regarding digraph D = (V,E) and strong component graph SC(D) associated
with the tree constraint. These definitions and notations are introduced in the original
version of [30]:

• A vertex v such that (v, v) ∈ E is called a potential root .

• A strongly connected component of D that contains at least one potential root is called
a rooted component .

• A vertex v is a door of the strongly connected component if there exists an arc (v, w) ∈
E such that v and w do not belong to the same strongly connected component of D.

• A vertex v is a winner if v is a door or a potential root.

• An arc (v, w) ∈ E such that v and w do not belong to the same strongly connected
component is called a connecting arc.

• Similarly, an arc (v, w) ∈ E such that v and w belong to the same strongly connected
component is called a non-connecting arc.

• Enforcing an arc (v, w) of D corresponds to removing from D all arcs (v, u) such that
u 6= w.

Let D be a digraph associated with the tree(ntree, nodes) constraint and let SC(D)

be a strong component graph of D. Let mintree and maxtree respectively denote a lower
and an upper bound on the number of trees for partitioning the digraphD into a set of vertex-
disjoint anti-arborescences. mintree is equal to the number of sink components in SC(D)

(the number of strongly connected components in D with no outgoing arcs) and maxtree

is equal to the number of potential roots in D. These bounds are sharp, this means that, for
every mintree ≤ ntree ≤ maxtree, we can construct the partition of edges into ntree

vertex-disjoint trees. The constraint tree has at least one solution iff all sink components
of D contain at least one potential root and Dntree ∩ [mintree,maxtree] 6= ∅.

In the original filtering algorithm proposed in [30] the constraint is propagated according
to the strong articulation points of D. Recall that a strong articulation point of a strongly
connected component S is such a vertex s that if we remove it then S will be broken into at
least two strongly connected components. Equivalently, s is a strong articulation point of D
iff D−{s} has more strongly connected components than D. However, it was shown in [100]
that the concept of strong articulation points is not practical and the authors propose a new
formulation of pruning rules based on dominators.

142 CHAPTER 6. DIRECTED GRAPHS

Recall that a vertex v dominates another vertex w with respect to a designated start
vertex s if every directed path in D from s to w contains v. From the above definition, it
can be easily seen that every vertex dominates itself. Also, it can be seen that the entry
vertex s dominates all the vertices in the digraph. Hence, if both u and v dominates w, one
of u and v dominates the other.

Here are some properties of the dominance relation.

• For all x, x dominates itself (reflexivity).

• If x dominates y, then y does not dominate x (asymmetry).

• If x dominates y and y dominates x, then x = y (antisymmetry).

• If x dominates y and y dominates z, then x dominates z (transitivity).

• If x and y both dominate z, then either x dominates y or conversely.

• There may exist vertices x and y such that neither x dominates y nor y dominates x.

Hence, dominance relation is a partial order (for short, a poset). Improving on a pre-
vious work by Tarjan [281], who discovered an O(n · log n + m)-time algorithm for finding
dominators in an arbitrary digraph, Lengauer & Tarjan [204] proposed an O(m · log n)-time
algorithm and a more complicatedO(α(m,n)·m)-time version, where α(m,n) is an extremely
slow-growing functional inverse of the Ackermann function [283]. An implementation of this
algorithm in linear time is presented in [9].

Theses dealing with dominators are [135] (see also [251]). Table 6.2 presents a complexity
survey for dominators (almost all algorithms are based on the depth-first search [280]).

Year Author(s) Complexity Strategy/Remarks

1969 Lowry & Medlock [213] O(n4) brute-force
1972 Purdom & Moore [250] O(n ·m) connectivity, shortest paths [76]
1974 Tarjan [281] O(n · log n+m) disjoint set union, priority queue
1977 Aho & Ullman [3] O(n · (n+m)) set definition of dominance
1979 Lengauer & Tarjan [204] O(m · log n) link-eval without balancing
1979 Lengauer & Tarjan [204] O(α(m,n) ·m) link-eval with balancing
1983 Ochranová [232] O(m) for control flow graphs
1985 Harel [152] O(m+ n · log(3) n) linear disjoint set union [121]
1998 Buchsbaum et al. [53,54] O(m+ n) microtrees, bottom-up linking
1999 Alstrup et al. [9] O(m+ n) divide-and-conquer, microtrees
2001 Cooper et al. [66] O(n2) clever tree-based
2004 Georgiadis & Tarjan [136] O(m+ n) off-line nearest common ancestors

Table 6.2: History of algorithms for dominators

Clearly, a directed graph can have at most n dominators (strong articulation points).
This bound is tight and is realized by the directed cycle Cn. Indeed, in this digraph each
vertex is a dominator (strong articulation point).

6.3. GRAPH PARTITIONING CONSTRAINTS 143

In terms of the graph partitioning constraints, dual concepts and algorithms relating to
dominators can be employed. A vertex d is a dominator of v with respect to a winner w iff
there is no path from v to w in D−{d}. Other variants of the notion are defined analogously.
In particular, we can exploit properties for edge dominators. We say that an arc (u, v) is an
edge dominator of vertex w if every path from vertex s to vertex w contains arc (u, v). In a
similar way as for dominators, all edge dominators of a given digraph D with a designated
start vertex s can be computed in linear time.

Clearly, every dominator is a strong articulation point, but not conversely (cf. Figure 6.8
and Figure 8.1 in [251]). Hence, using dominators instead of strong articulation points leads
to the better filtering. In general, if vertex u dominates vertex v then arc (v, u) does not
belong to any solution. This follows from the fact that if every path from u to w requires v,
then any path from v to u has to be forbidden.

Let us consider Si, 1 ≤ i ≤ p, a strongly connected component of D, and let Di be a set
of dominators of Si defined with respect to the winners in Si. The removal of any dominator
d ∈ Di creates two kinds of strongly connected components (for more details, see [34]):

• ∆d is the (possibly empty) set of strong components from which no winner of Si can
be reached by a path that does not contain the dominator d,

• ∆̄d is the (possibly empty) set of strong components from which at least one winner
of Si can be reached by at least one path that does not contain the dominator d.

In addition, among the strongly connected components of ∆d three types thereof, possibly
empty, may be further distinguished:

• ∆+
d is the set of strong components corresponding to sources in SC(∆d),

• ∆−d is the set of strong components corresponding to sinks in SC(∆d),

• ∆∓d is the set of the remaining strong components (neither sources nor sinks).

Let us consider some interesting properties of these strongly connected components.

Property 6.3.1 Let d be a dominator in strongly connected component Si with respect to
winners. Then d belongs to all paths from any vertex of ∆d to any vertex of ∆̄d.

Property 6.3.2 ([34, Proposition 1]) If there exists a path factor in D then there exists
a Hamiltonian path in ∆d leading from the source component ∆+

d to the sink component ∆−d ,
and finishing on the dominator d.

Property 6.3.3 Let dom(v) be the set of vertices dominated by a vertex v and let d be a
dominator in Si with respect to winners. Then d ∈ dom(v) for every v ∈ ∆d.

Pruning is then performed according to the following rule, which prevents the creation
of (proper) cycles:

Theorem 6.3.9 An arc (d, i) of a dominator d that reaches a vertex i of ∆d is forbidden.

144 CHAPTER 6. DIRECTED GRAPHS

Proof The claim follows from the fact that enforcing such an arc would lead to some strong
components with no winners, and hence creating a cycle, which is a contradiction. ut

We now give a summary of the full algorithm:

Algorithm 14 Filtering algorithm for the tree constraint
Require: Digraph D associated with the global constraint tree(ntree, nodes)

Ensure: Hyper-arc consistency or constraint not satisfied
Compute mintree and maxtree

Update variable ntree according to mintree and maxtree values
Check the conditions for satisfiability
If ntree = {mintree} then any potential root in a non-sink component is forbidden
If ntree = {maxtree} then every outgoing non-loop arc of each potential root is for-
bidden
Pruning according to dominators of D (see Theorem 6.3.9)

The presented filtering algorithm has a linear time complexity [100]. Computing the
strongly connected components ofD takesO(m+n) time (see Table 6.1). Checking that each
sink component of D contains at least one potential root takes O(n) time. Testing whether
maxtree < min(ntree) or max(ntree) < mintree takes O(1) time. Pruning according
to dominators (Theorem 6.3.9) can be easily performed in linear time (see Table 6.2).

BINARY_TREE The binary_tree constraint is derived from the tree constraint,
which enforces the partitioning of an associated digraph into a set of vertex-disjoint binary
trees. The arcs of the binary trees are directed from their leaves to their respective roots.

The constraint has the form binary_tree(ntree, nodes), where ntree is a domain
variable specifying the number of binary trees in the tree partition, and nodes is a collection
of n variables. The constraint holds if the associated digraph D is covered by a set of ntree

binary trees in such a way that each vertex of D belongs to one distinct tree.
The filtering algorithm for the binary_tree constraint is not known. Currently for this

constraint one can use the algorithm associated with the general tree constraint [30],[100]
or a modified global_cardinality constraint for handling the fact that a successor has
at most two predecessors. We show how to handle this constraint by means of the method
described in this thesis. Although the proposed algorithm does not achieve hyper-arc con-
sistency (the problem to find a spanning tree in which no vertex has degree larger than some
given integer is NP-complete [131, Problem ND1]), it is relatively simple to implement.

For any proper forest of binary trees the following holds:

~g(x) =

(0, 1) for leaves

(1, 1) for internal nodes

(1, 0) for roots

~f(x) =

(0, 1) for leaves

(2, 1) for internal nodes

(2, 0) for roots

In the underlying graph a tree is binary if all internal vertices have degree at most three
except the roots which have degree at most two and the leaves which have degree one. For

6.3. GRAPH PARTITIONING CONSTRAINTS 145

proper trees all vertices have degree at least one (there are no isolated points). We model the
tree constraint by the associated digraph D in which the vertices represent the variables
and the arcs represent the successor relation between them. Let R be the set of potential
roots. In order to obtain the digraph D′ associated with the binary_tree constraint we
add one dummy vertex v0 to the input digraph D and declare that each of its predecessors
is a potential root in R.

We construct a bipartite graph associated with the global constraint as described in
the sequel with the following minor modifications. The vertices on both sides correspond
to variables and there is an edge {vi, vj} iff j ∈ Dxi

and i 6= j. With every vertex we
associate two functions g and f such that for each vertex vi on the outward side we set
g(vi) = f(vi) = 1 (since every vertex must have only one successor) and for the vertex vj
on the inward side we set g(vj) = 1 and f(vj) = 2 for roots and internal nodes (since every
vertex can have at most two predecessors) or g(vj) = f(vj) = 0 for the vertices representing
leaves (if they are initially fixed). Additionally, we connect all the vertices representing
potential roots (these are variables with i ∈ Dxi) to a single vertex labeled ntree and set
g(ntree) = min(Dntree) and f(ntree) = max(Dntree). If we wish to find proper trees, then
we set g(ri) = 1 if in a sink component there exists only one potential root ri. Otherwise,
we set g(ri) = 0. Then, we use the filtering algorithm described in Chapter 4 to determine
the partition of edges and the bounds of the ntree variable.

(1,1)
4

(1,1)
1

4'
(1,2)

1'
(1,2)

3'
(1,2)

D(x1) = {3}
D(x2) = {1,4}
D(x3) = {3}
D(x4) = {3}
D(x5) = {3,4}
D(x6) = {4}

D’(x1) = {3}
D’(x2) = {1}
D’(x3) = {3}
D’(x4) = {3}
D’(x5) = {4}
D’(x6) = {4}2 5 6

1 4

3

(1,1)
6

(1,1)
5

(1,1)
2

(1,1)
3

6'
(0,0)

5'
(0,0)

2'
(0,0)

D(ntree) = {1,2} D’(ntree) = {1}

ntree
(1,2)

×

×

Figure 6.5: Pruning of the BINARY_TREE constraint

On acyclic digraphs, it is easy to see that the feasibility can be checked in polynomial
time by computing the perfect (g, f)-matching in the bipartite graph associated with the
constraint. Hyper-arc consistency can then be achieved in linear time by determining the
partition of edges. Since there are no cycles in the digraph D, the matched edges in the
bipartite graph BR(D) will form the partition into the forest of vertex-disjoint binary trees
(see Figure 6.5).

Our algorithm has the following form:

Algorithm 15 Partial filtering algorithm for the binary_tree constraint
Require: Digraph D associated with the global constraint binary_tree(ntree, nodes)

Ensure: Incomplete pruning
Pruning associated with the tree constraint
Pruning according to a directed matching

146 CHAPTER 6. DIRECTED GRAPHS

PATH From an interpretation point of view, the path constraint is the unary tree con-
straint. This constraint requires the partitioning of a directed graph D into a set of vertex-
disjoint (directed) paths.

The constraint has the form path(npath, nodes), where npath is a domain variable
specifying the number of paths, and nodes is a collection of n variables. The constraint
holds if the associated digraph D is covered by a set of npath paths in such a way that each
vertex of D belongs to a single path.

A directed Hamiltonian path problem is NP-complete [131, Problem GT39]. The problem
can be solved in polynomial time for acyclic digraphs.

For any proper path the following holds:

~g(x) =

(0, 1) for sources

(1, 1) for internal nodes

(1, 0) for targets

~f(x) =

(0, 1) for sources

(1, 1) for internal nodes

(1, 0) for targets

In an undirected graph each internal vertex of the path has degree two and each endpoint
has degree one. The number of edges in the path equals the number of vertices minus 1.

Let minpath and maxpath denote the minimum and the maximum number of paths
in a path factor of D. Clearly, maxpath is the number of potential roots for paths (i.e.
maxpath = |{i : i ∈ Dxi}|). When the number of paths is not fixed (i.e. |Dnpath| > 1), the
key point of any approach solving the path constraint is the evaluation of the lower bound
on the number of paths for partitioning the digraph D associated with the global constraint.

Theorem 6.3.10 Let D be a digraph associated with the path constraint. A lower bound
on the number of vertex-disjoint paths for partitioning D is the number of sink components
in SC(D).

However, the number of sink components in SC(D) is not a sharp lower bound for the
number of paths in D. In fact, finding a sharp lower bound makes the problem NP-complete,
since we can easily reduce the Hamiltonian path problem to this problem. A sharper lower
bound on the number of disjoint paths is introduced by the following result.

Theorem 6.3.11 A lower bound on the number of vertex-disjoint paths in the digraph D
associated with the path constraint is equal to max{1, δ(D)}.

Both the directed perfect matching in D and the smallest possible number minpath

of paths can be found in O(
√
n · m) time [164]. Observe that in the case of non-acyclic

digraphs the non-sharp lower bound on the number of vertex-disjoint paths introduced by
Theorem 6.3.11 can be generalized to the sharp lower bound. This follows from the fact
that some matched edges in BR(D) form a cycle in D, which reduces the minimum number
of vertex-disjoint paths at the most by 1.

We create a directed graphD associated with the path constraint as follows. The vertices
correspond to variables and there is an arc (vi, vj) iff j ∈ Dxi

and i 6= j. We add a new
dummy vertex v0 representing count variable npath. There is an arc from vi to v0 iff i ∈ Dxi

.

6.3. GRAPH PARTITIONING CONSTRAINTS 147

With every vertex we associate two pairs of functions ~g = (g−, g+) and ~f = (f−, f+) such
that for each vertex vi we set g−(vi) = 0, f−(vi) = 1 and g+(vi) = f+(vi) = 1. If we want to
distinguish proper paths from isolated loops then we set g−(ri) = 1 if in the sink component
Si of SC(D) only one potential root ri exists. Additionally, we set g−(v0) = min(Dnpath),
f−(v0) = max(Dnpath) and g+(v0) = f+(v0) = 0.

We construct a bipartite graph associated with the path constraint as follows. The
vertices on both sides correspond to variables and there is an edge {vi, vj} iff j ∈ Dxi

and i 6= j. With every vertex we associate two functions g and f such that for each
vertex vi on the outward side we set g(vi) = f(vi) = 1 and for the vertex vj on the
inward side we set g(vj) = 0 and f(vj) = 1. Additionally, we connect all the vertices
representing potential roots to a single vertex labeled npath and set g(npath) = min(Dnpath)

and f(npath) = max(Dnpath). Then, we use the filtering algorithm described in Chapter 4
to determine the partition of edges and the bounds of the npath variable (see Figure 6.6).
Since a path factor in an acyclic digraph has no cycles, this implies that the path factor for
acyclic digraphs is easy to find.

(1,1)
4

(1,1)
1

4'
(0,1)

1'
(0,1)

3'
(0,1)

D(x1) = {1,2}
D(x2) = {1,2}
D(x3) = {1}
D(x4) = {1,2}
D(x5) = {3,6}

D’(x1) = {1}
D’(x2) = {2}
D’(x3) = {1}
D’(x4) = {2}
D’(x5) = {3,6}

16 35

(1,1)
5

(1,1)
2

(1,1)
3

5'
(0,1)

2'
(0,1)

D(npath) = {2} D’(npath) = {2}

24

npath
(2,2)

(1,1)
6

6'
(0,1)

D(x6) = {3,5} D’(x6) = {3,5}

× ××

Figure 6.6: Pruning of the PATH constraint

Observe that the path constraint is very similar to the alldifferent constraint, except
that the potential roots have to be handled differently. In order to avoid cycles we have the
additional restriction that each vertex on the path is not visited more than once, initial
endpoints are excluded from the set, every element is distinct and must appear once yet the
numbers representing potential roots appear exactly twice. On the bipartite representation
BR(D) of D we use Algorithm 5 to prune every arc of D that is incompatible with the path

constraint.
Recall that vertex d is a dominator of vertex v with respect to vertex w iff there is no

path from v to w in D − {d}. Thus, if vertex i dominates vertex j then arc (j, i) does not
belong to any solution. But there are more propagation rules and according to dominators
of D the pruning is performed in the following way (see [34]):

Theorem 6.3.12 Let d be a dominator in D. Then the following arcs are forbidden in D:

1. An arc (d, i) going from the dominator d to ∆d,

2. An arc (j, i) going from ∆̄d to ∆d such that the strong component containing i is not
a source,

3. An arc (i, d) going from ∆d such that the strong component containing i is not a sink,

148 CHAPTER 6. DIRECTED GRAPHS

4. An arc (j, d) going from ∆̄d such that the strong component ∆d is not empty.

Proof These rules have not been proven in [34]. Thus, we formally do it.

1. Proof analogous as for Theorem 6.3.9.

2. The claim follows from the fact that there would be no way to visit some of the vertices
of ∆d if the strong component containing i were not to be a source.

3. The claim follows from the fact that there would be no way to visit some of the vertices
of ∆d if the strong component containing j were not to be a sink.

4. The claim follows from the fact that there would be no way to visit all the vertices of
∆d if the arc (j, d) were to be enforced.

ut

These propagation rules prevent the creation of (proper) cycles and enforce one single
predecessor for each vertex of the strongly connected component. We demonstrate the
theorem with Figure 6.7:

i

i j

j

d

d∆d∆

+∆ d

−∆ d

m
d∆

Figure 6.7: Pruning according to a dominator d

Theorem 6.3.13 ([34, Proposition 2]) A lower bound on the number of vertex-disjoint
paths partitioning the strongly connected component Si with respect to a dominator d is
provided by the minimum number of paths partitioning ∆̄d (the number of rooted components
in ∆̄d) minus 1 if there exists an arc (u, v) ∈ Si such that u ∈ ∆̄d and v ∈ ∆+

d .

The authors of [34] do not include the filtering for arcs between two strongly connected
components because they do not know how to do this efficiently by computing one single
feasible flow. However, by means of our technique it is possible to make it during the pruning
according to a directed matching. For example, our algorithm will detect the following
mandatory arcs: (0, 1), (1, 2), (3, 3), (7, 7), (8, 8), (9, 9), (10, 10), (11, 13), (13, 12) and the
following forbidden arcs: (2, 0), (3, 2), (3, 7), (3, 8), (4, 2), (5, 1), (6, 1), (6, 7), (6, 8), (7, 12),
(8, 12), (9, 13), (10, 13), (12, 7), (12, 8), (12, 11) (see Example 5 and Figure 6 in [34]).

This will be realized in the following way. First, according to dominator 2 of C0, the arc
(2, 0), as leading to ∆0, is detected by Case 1, the arcs (5, 1) and (6, 1) are detected by Case
2, the arcs (3, 2) and (4, 2) are detected by Case 4. Analogously, according to dominator
13 of C1, the arc (12, 11), as leading to ∆1, is detected by Case 1, the arcs (9, 13) and

6.3. GRAPH PARTITIONING CONSTRAINTS 149

(10, 13) are detected by Case 2, the arcs (7, 12) and (8, 12) are detected by Case 4. Next,
according to the directed matching, the arcs (3, 7), (3, 8), (6, 7), (6, 8), (12, 7), (12, 8) are
detected. Additionally, the minimum/maximum number of vertex-disjoint paths is 5 and 7,
respectively. Internal nodes are 1 and 13.

Our algorithm has the following form:

Algorithm 16 Partial filtering algorithm for the path constraint
Require: Digraph D associated with the global constraint path(npath, nodes)

Ensure: Incomplete pruning
Compute minpath and maxpath

Adjust variable npath according to minpath and maxpath values
If npath = {minpath} then any potential root in a non-sink component is forbidden
If npath = {maxpath} then all outgoing non-loop arcs for each potential root are for-
bidden
If D is not acyclic then pruning according to dominators of D (see Theorem 6.3.12)
Pruning according to a directed matching

Theorem 6.3.14 The count variable npath has the continuity property.

Proof Consider a digraph D and a set of potential roots R. Assume that we have found a
path factor of size r < |R|. We can build a path factor of size r + 1 by decomposing one
of its paths with respect to its potential roots. These steps may be continued until a path
factor of size |R| is achieved. ut

MAP In this example we provide a quick description of the map constraint. Next, we
show how the propagation rules used for the constraints circuit, cycle and tree can be
implemented to generate a partial filtering algorithm.

The map constraint is a useful global constraint that can be used for covering a graph
by a set of disjoint cycles and trees, and for modeling various problems such as random
mappings [104], or graph related problems for the vertex-disjoint partitioning of graphs.
However, before we define it more formally we need the description of the map. For a map,
we take the definition from [266, page 459]:

Every map decomposes into a set of connected components, also called connected
maps. Each component consists of the set of all points that wind up on the same
cycle, with each point on the cycle attached to a tree of all points that enter the
cycle at that point.

The global constraint map has the form map(nbcycle, nbtree, nodes), where nbcy-

cle and nbtree are domain variables, and nodes is a collection of vertices, which domain
designates the successor vertex that will be used in the covering. The variables nbcycle

and nbtree are respectively equal to the number of cycles and the number of trees in the
partition that can be interpreted as a map.

150 CHAPTER 6. DIRECTED GRAPHS

For any map the following holds (here, k denotes the inward degree of the vertex x):

~g(x) =

(0, 1) for leaves

(1, 1) for internal nodes of trees

(1, 1) for internal nodes of cycles

(1, 0) for enter points

~f(x) =

(0, 1) for leaves

(k, 1) for internal nodes of trees

(1, 1) for internal nodes of cycles

(k, 1) for enter points

The map constraint was introduced within the Global Constraint Catalog [27] but no
filtering algorithm is known. The purpose of this example is to present an incomplete filtering
algorithm for the map constraint. The filter removes inconsistent values by eliminating arcs
from the associated digraph, which do not belong to a map. We prove the necessary condition
for an arc to be part of the map constraint, which provides the basis for eliminating arcs.

Before we more formally describe a filtering algorithm for the map constraint, we first
need to introduce some terminology that will be used throughout this example. We will, as
far as possible, use the notation introduced in [30], which we now extend:

• A strongly connected component that has a cycle factor is called a cycle component .

• A strongly connected component that has no cycle factor is called a tree component .

Observe that every tree component contains at least one tree. Thus, the number of trees
in the map constraint is related to the number of sink components that have no cycle factor.
Since a path is a degenerated tree the maximum number of paths in a map constraint is
related to the number of trees.

We need to slightly modify the definition of the strong component graph associated
with the map constraint. The strong component graph SC(D) is derived from D with
the following modification: to each strongly connected component of D that is a cycle
component, we associate a vertex with a loop. The vertices without loops represent tree
components.

It can be easily shown that if D contains a tree component then it must necessarily
contain a tree. Thus, presence of trivial vertices in a digraph associated with the map

constraint implies the presence of at least one tree.
We now introduce a theorem that will allow us to reduce the problem of finding the

partition of a directed graph to the problem of estimating the bounds on the minimal and
the maximal number of cycles and trees.

Theorem 6.3.15 Let D = (V,E) be an arbitrary finite (not necessarily connected) digraph
such that every vertex has at least one successor. Then there exists a partition of D consisting
of cycles, possibly loops, with trees having roots on their vertices.

Proof One can construct the partition of D from its arcs by first selecting an arbitrary arc
among them and then successively adding a new arc in such a way that it has at least one
endpoint in common with the arcs already selected. Since the domains are finite, each such
sequence must eventually loop back on itself. ut

6.3. GRAPH PARTITIONING CONSTRAINTS 151

Hence, according to this theorem, no pruning is required for the map constraint when
there are no given bounds on the number of cycles and the number of trees (e.g. Dnbcycle =

Dnbtree = {0, . . . , n}). Further, every map has at least one cycle (including loops). When
the above operation is repeated, starting each time from an element not previously hit, the
vertices group themselves into components. This leads to a valuable characterization of such
a partition: a map is a set of connected components that are cycles of trees. Thus, every
connected component is a collection of rooted trees arranged in a cycle.

Theorem 6.3.16 The minimum number of cycles in the digraph D associated with the
global constraint map equals the number of sink components in SC(D).

Proof The claim follows from the fact that every sink component is strongly connected;
this means it contains at least one cycle, and there is no path between two vertices that
belong to two distinct sink components of D. ut

Observe that the non-sharp lower bound on the number of cycles in the cycle constraint
introduced by Theorem 6.3.4 is now generalized to the sharp lower bound on the number of
cycles in the map constraint. But the results of Theorem 6.3.6 remain still valid.

Theorem 6.3.17 The problem of determining the maximum number of cycles in the digraph
D associated with the global constraint map is NP-hard.

Proof The problem of finding the maximum number of vertex-disjoint cycles is related to
the problem of determining a feedback vertex set of minimum cardinality. The claim follows
now from the fact that the minimum cutset problem is an NP-hard task. ut

Theorem 6.3.18 Given a digraph D associated with the map constraint, an upper bound
on the number of cycles partitioning D is given by the minimum feedback vertex set of D.

Proof The claim follows from the fact that the size of the minimum feedback vertex set in
a digraph D is no less than the maximum number of vertex-disjoint cycles in D. ut

It is easy to see that a map where all the variables have distinct values leads to a set of
cycles. Therefore, if digraph D associated with the map constraint has a cycle factor then
we can immediately set mintree = 0. On the other hand, if digraph D has only cycles of
length 1 (i.e. loops), we have a map that corresponds to a forest of trees and paths, and the
algorithm for the tree or path constraint can be used.

Theorem 6.3.19 A lower bound on the number of trees in the digraph D associated with the
global constraint map is equal to the minimal number of vertex-disjoint proper trees rooted
on the sink components of SC(D) and covering all tree components of SC(D).

Proof According to the definition of the map constraint the number of trees equals the
number of arcs that do not belong to any cycle yet their tails are located on a cycle. There-
fore, the minimal number of trees is equal to the minimal number of trees in D rooted at
the sink components of SC(D). Thus, the claim is trivially derived from the definition of
the tree constraint. ut

152 CHAPTER 6. DIRECTED GRAPHS

Recall that in a topological ordering of a given directed acyclic graph D, each vertex v is
associated with a value ord(v), such that for each arc (u, v) we have ord(u) < ord(v) and for
each arc (v, w) we have ord(v) < ord(w). The topological ordering can be found in linear
time [67, Section 22.4].

In order to compute a lower bound on the number of trees for the map constraint we will
impose a constraint increasing_nvalue(nval, variables) with the following variables
and domains. Let variables be a set of tree components of SC(D). For every tree compo-
nent si we put into the domain Dsi the topological number ord(sj) of the sink component sj
in SC(D) if there is a directed path from si to the sink component sj . For variable nval we
set Dnval = {1, . . . , |variables|}. Since enforcing hyper-arc consistency for the increas-

ing_nvalue constraint is O(m) [31] the computation of a lower bound on the number of
trees is of linear complexity.

According to the property of DAGs we know that from every vertex v there exists a
directed path in SC(D) to at least one of its sinks. Thus, we make sure that we will explore
a tree and all the trivial vertices of SC(D) will be visited.

We know that for the map constraint the number of trees is the number of vertices
directly connected to a cycle. According to this definition a trivial upper bound could be
computed as follows: count the number of vertices for which at least one successor (that
is not the vertex itself) is a part of a potential cycle. This can be made faster by using
the following idea: every vertex that belongs to a strongly connected component containing
more than one vertex or having a loop is a vertex that can be on a cycle. Therefore, we
should find a vertex that has at least one successor different from those on the cycle.

It turns out that a sharper bound on the maximal number of trees can be obtained by
solving the nvalue constraint. More formally, an upper bound on the number of trees in
the map(nbcycle, nbtree, nodes) constraint equals n minus the minimum number of
distinct values in the nvalue(nval, nodes) constraint, where n is the number of variables
and Dnval = {0, . . . , n}. Since the computing of the minimum number of distinct values for
the nvalue constraint is an NP-hard task [41] then the computing of the maximum number
of trees for the map constraint is NP-hard, as well.

Theorem 6.3.20 An upper bound on the number of trees for the global constraint map

equals n minus the minimum number of distinct values in the nvalue(nval, nodes) con-
straint, where Dnval = {0, . . . , n}. More formally, mintree = n−min(D′nval).

Proof Let D be a directed graph associated with the map constraint. Suppose that we
start from mintree = 0. In this case digraph D has, obviously, a cycle factor. This is the
same as the nvalue constraint with Dnval = {n}, since each value in nval must appear
once, which leads to a set of cycles. Similarly, the case that mintree = 1 is the same as
the nvalue constraint with Dnval = {n − 1}. This follows from the fact that when n − 1

variables are distinct, two variables must take the same value. Since one value belongs to
some cycle the second value is a terminal endpoint of a directed path leading to this cycle.
Other cases can be handled similarly. Continuing this process, by the pigeonhole principle5,

5The pigeonhole principle, called also Dirichlet drawer principle, states that if n + 1 objects (pigeons)

6.3. GRAPH PARTITIONING CONSTRAINTS 153

we find that a map having exactly k distinct values has at most n−k trees. A bound is non-
sharp since a vertex must not necessarily belong to a cycle. The same argument holds for
each of the 1, . . . , n distinct values in the map, so the expected number of trees is obtained
by the formula given in the theorem. Thus, we have proven the result. ut

Theorem 6.3.21 The problem of determining the maximum number of trees in the digraph
D associated with the global constraint map is NP-hard.

Proof The claim follows from the fact that computing the lower bound on nval variable
of the nvalue constraint is NP-hard. Such a constraint is called atmost_nvalue [41]. ut

Since the map constraint is satisfiable when the values nbcycle and nbtree are of
allowed range the incomplete pruning algorithm consists of detection forbidden arcs when
nbcycle and nbtree are instantiated to one of their extrema.

We demonstrate our algorithm with the following example (the sample digraph is taken
from [65, page 23]).

D(x1) = {2,5,6}
D(x2) = {1}
D(x3) = {2,4,5}
D(x4) = {9}
D(x5) = {1,7}
D(x6) = {5,8,10}

3 7

1

4

D(nbcycle) = {1,2}

D(x7) = {4}
D(x8) = {7,10}
D(x9) = {7}
D(x10) = {8}
D(x11) = {10,12}
D(x12) = {8,11,13}

D(x13) = {11}

13

9

D(nbtree) = {1,2}

6 10 11

2 5 8 12

s3 = {1,2,5,6} s2 = {8,10}

s4 = {3} s1 = {4,7,9}

s5 = {11,12,13}

Figure 6.8: Checking feasibility of the MAP constraint

Figure 6.8 illustrates the different terms related to the map constraint. The map con-
straint is stated with the variable domains given on the left side of the figure. In the middle
of the figure the digraph D associated with the map constraint is depicted. On the right
side of the figure the strong component graph SC(D) is shown. To each strongly connected
component Si of D corresponds a vertex si of SC(D). Vertices s1, s2 and s5 with loops
represent cycle components, vertices s3 and s4 represent tree components. Further, vertices
s4 and s5 represent source components and vertex s1 represents a sink component.

The minimum number of cycles is 1 since there exists one sink component S1. An upper
bound on the number of cycles is 4 since τ(D) = 4. A cutset is, for example, {1, 4, 10, 11}.
Note that in our case ν(D) = τ(D). The minimum number of trees is 1 since there exists

are placed into n boxes (pigeonholes), then some box contains more than one object.

154 CHAPTER 6. DIRECTED GRAPHS

one path leading to the sink component and covering all tree components of SC(D). An
upper bound on the number of trees is 5(= 13− 8), since min(D′nval) = 8 for the constraint
atmost_nvalue. The constraint map holds since the values of count variables nbcycle

and nbtree lie within the computed extrema. The reader is invited to check some possible
solutions with an arbitrary number of cycles and trees from range 1 . . . 2.

We conclude this subsection with a summary of the incomplete filtering algorithm:

Algorithm 17 Partial filtering algorithm for the map constraint
Require: Digraph D associated with the constraint map(nbcycle, nbtree, nodes)

Ensure: Incomplete pruning
If nbcycle = {1} and nbtree = {0} then the constraint specializes into circuit(nodes)

If max(nbcycle) > 1 and nbtree = {0} then the constraint specializes into cy-

cle(nbcycle, nodes)

Compute mincycle and mintree

Estimate maxcycle and maxtree

If all sink components of D are loops and their number is equal to nbcycle, and the
minimum number of trees is equal to min(nbtree), and the number of vertices in D

which have a successor which is located on a sink component of D equals max(nbtree),
then the constraint is equivalent to tree(nbcycle, nodes)

If nbcycle = {mincycle} then the pruning is equivalent to the pruning for
tree(nbtree, tc(d)), where tc(d) denotes a tree component of D, which is created
in the following way: every strong component representing sink of SC(D) is contracted
to a single vertex with a loop
If nbtree = {mintree} then the pruning is equivalent to the pruning for tree(nbtree,

tt(d)), where tt(d) denotes a tree component of D, which is created in the following
way: the tail of every arc going to a strong component representing sink of SC(D) is
replaced by a loop

Evaluating the complexity of the algorithm is done by analyzing the following steps. In
order to compute the mincycle value we need to find strongly connected components of D.
This takes O(m+n) time (see Table 6.1). In order to estimate the maxcycle value we use
the algorithm for the cutset constraint that is of O(m+n · log n) time complexity [99]. The
existence of a cycle factor can be decided in time O(

√
n ·m) [164]. The construction of the

strong component graph SC(D) can be easily done in linear time. The topological ordering
of the vertices of SC(D) may be obtained by performing a depth-first search [67, Section
22.4]. The minimum number of trees can be computed in linear time [31]. Estimating
the maximum number of trees takes O(n2) time when we use one of the approximation
algorithms described in [41]. Adjusting the variables nbcycle and nbtree can be carried
out in constant time.

We analyzed the use of the global constraint map for modeling various problems and
for partitioning graphs. We have shown that the constraint can be solved by using the
other global constraints such as cutset, nvalue, circuit, cycle, tree or even symmet-

6.4. COUNTING THE NUMBER OF SOLUTIONS 155

ric_alldifferent.

6.4 Counting the number of solutions

Enumeration problems, such as "how many solutions has a given problem", associated with
NP-complete problems, are #P-complete. The concept of #P-completeness was introduced
by Leslie G. Valiant [296,297] (see also [131, Section 7.3] and/or [241, Chapter 18]).

The problem of determining the number of matchings in a given graph is #P-complete.
However, one might ask whether the number of solutions for a given problem instance can
be determined in polynomial time, and this question is one of the central issues that we will
investigate in this section.

CIRCUIT It is obvious that every strongly connected complete digraphKn is Hamiltonian.
The number of Hamiltonian circuits in Kn is equal to (n− 1)!. For example, all circuits in
K4 are the following 3!=6 permutations with one single cycle: (2,3,4,1), (2,4,1,3), (3,1,4,2),
(3,4,2,1), (4,1,2,3), (4,3,1,2).

CYCLE Observe that if the domains of the variables x1, . . . , xn range from 1 to n, then
the total number of solutions of the cycle(k, {x1, . . . , xn}) constraint corresponds to the
number of ways to partition n objects into k non-empty cycles. These numbers are called the
Stirling numbers of the first kind [7, Chapter III] and are denoted by

[
n
k

]
= s(n, k)(−1)n−k,

where s(n, k) are the coefficients in the expansion:
n∑
k=0

s(n, k)xk = x(x− 1)(x− 2) . . . (x− n+ 1).

For example, x(x−1)(x−2)(x−3) = x4−6x3 +11x2−6x, and hence there are
[

4
2

]
= 11

permutations of {1, 2, 3, 4} with 2 cycles: (1,3,4,2), (1,4,2,3), (2,1,4,3), (2,3,1,4), (2,4,3,1),
(3,1,2,4), (3,2,4,1), (3,4,1,2), (4,1,3,2), (4,2,1,3), (4,3,2,1).

This correspondence between the number of solutions to the cycle constraint and the
Stirling numbers of the first kind was primarily observed by Nicolas Beldiceanu and Evelyne
Contejean [29]. Note that we get [n

1

]
= (n− 1)!

n∑
k=0

[n
k

]
= n!

n∑
k=0

s(n, k) = 0

TREE In order to define an exact formula for the total number of solutions we first need
to give the classical Faá di Bruno’s formula for the number of ways to partition a set of n
distinct elements into k non-empty subsets, such that each partition contains exactly λi sets
of cardinality i for i = 1, . . . , n:

n!

n∏
i=1

1

λi!(i!)λi
.

156 CHAPTER 6. DIRECTED GRAPHS

The following formula computes the number of partitions of a set with n elements into
k non-empty subsets: ∑

n!

n∏
i=1

1

λi!(i!)λi
,

where the sum is over all different solutions in non-negative integer n-tuples (λ1, . . . , λn)

satisfying the conditions
∑n
i=1 λi = k and

∑n
i=1 iλi = n.

These numbers are called the Stirling numbers of the second kind [7, Chapter III] and
are denoted by

{
n
k

}
= S(n, k), where S(n, k) are defined implicitly by the equation:

xn =

n∑
k=0

S(n, k)x(x− 1)(x− 2) . . . (x− k + 1).

It is straightforward to prove by induction or usage of the algebra of generating functions,
that, if the domains of the variables x1, . . . , xn range from 1 to n, then the total number of
solutions of the tree(k, {x1, . . . , xn}) constraint is equal to:∑

λ1+λ2+...+λn=k
λ1+2λ2+...+nλn=n
λ1,λ2,...,λn≥0

n!

n∏
i=1

(ii−1)λi

λi!(i!)λi
.

For example, when n = 4 and k = 2 the total number of solutions equals 4! (10)1

1!(1!)1
(32)1

1!(3!)1 +

4! (21)2

2!(2!)2 = 4 · 9 + 3 · 4 = 48. These are the following solutions: (1,1,1,4), (1,1,2,4), (1,1,3,1),
(1,1,3,2), (1,2,1,1), (1,2,1,3), (1,2,2,2), (1,2,2,3), (1,2,4,1), (1,2,4,2), (1,3,1,4), (1,3,3,2), (1,3,
3,3), (1,3,4,4), (1,4,2,4), (1,4,3,1), (1,4,3,3), (1,4,4,4), (2,2,1,4), (2,2,2,4), (2,2,3,1), (2,2,3,2),
(2,3,3,4), (2,4,3,4), (3,1,3,4), (3,2,2,4), (3,2,3,1), (3,2,3,3), (3,2,4,4), (3,3,3,4), (4,1,3,4), (4,2,
1,4), (4,2,3,2), (4,2,3,3), (4,2,4,4), (4,4,3,4) and (1,1,3,3), (1,1,4,4), (1,2,1,2), (1,2,2,1), (1,3,
3,1), (1,4,1,4), (2,2,3,3), (2,2,4,4), (3,2,3,2), (3,4,3,4), (4,2,2,4), (4,3,3,4). Note that we have
4 + 3 =

{
4
2

}
= 7.

Further, it can be proven that the number of all rooted trees over n vertices is given by:

(n+ 1)n−1 .

Observe that the above formula is very similar to the well-known Cayley’s formula nn−2

counting labeled trees with n vertices [59].

BINARY_TREE It is an open problem to obtain explicit formula for the number of
solutions to a binary_tree constraint with all domains [1, n]. From an interpretation
point of view this is equivalent to giving a formula for the number of forests on n nodes of
rooted labeled binary trees.

PATH Analogously as for the tree constraint, it can be easy proven by induction that the
number of solutions of the path(k, {x1, . . . , xn}) constraint equals:∑

λ1+λ2+...+λn=k
λ1+2λ2+...+nλn=n
λ1,λ2,...,λn≥0

n!

n∏
i=1

1

λi!
.

6.5. SUMMARY 157

For example, when n = 4 and k = 2 the total number of solutions is equal to 4! 1
1!

1
1!+4! 1

2! =

24 + 12 = 36. These are the following solutions: (1,1,2,4), (1,1,3,2), (1,2,1,3), (1,2,2,3),
(1,2,4,1), (1,2,4,2), (1,3,1,4), (1,3,3,2), (1,3,4,4), (1,4,2,4), (1,4,3,1), (1,4,3,3), (2,2,1,4), (2,2,
3,1), (2,3,3,4), (2,4,3,4), (3,1,3,4), (3,2,2,4), (3,2,3,1), (3,2,4,4), (4,1,3,4), (4,2,1,4), (4,2,3,2),
(4,2,3,3) and (1,1,3,3), (1,1,4,4), (1,2,1,2), (1,2,2,1), (1,3,3,1), (1,4,1,4), (2,2,3,3), (2,2,4,4),
(3,2,3,2), (3,4,3,4), (4,2,2,4), (4,3,3,4). In particular, the number of Hamiltonian paths in a
complete digraph of order n is equal to n!.

MAP Clearly, there are nn different mappings from the set of integers between 1 and n

onto itself. A simple counting argument says that the number of maps with k different
values in the image is given by [266, page 454]:

k!

(
n

k

){n
k

}
.

6.5 Summary

In this chapter we have studied pruning algorithms for various graph partitioning constraints.
While some propagation rules for some of these constraints can be found in previous works,
this study establishes a corpus of filtering rules which can be enforced in constraint pro-
gramming community using graph partitioning constraints. This study provides optimal
filtering rules for most of the constraints representable by directed acyclic graphs or proves
their NP-hardness. The pruning is performed according to strongly connected components,
directed matchings and dominators. Filtering algorithms are presented and their complexity
is discussed. For some of the constraints only incomplete filtering algorithms are provided,
leaving the design of more efficient algorithms as an open problem. We believe that this
chapter illustrates and shows that other global constraints (such as alldifferent, sym-

metric_alldifferent, cutset or nvalue) are of practical interest for describing pruning
techniques for graph partitioning constraints.

The following tables summarize all the theoretical results for graph partitioning con-
straints we dealt with in this chapter. The first table gives an overview of complexities.
The second table gives an exhaustive list of the basic properties for all graph partitioning
constraints discussed in this chapter.

158 CHAPTER 6. DIRECTED GRAPHS

checking hyper-arc
global constraint model complexity feasibility consistency reference

circuit digraph/graph NP-hard − − here
cycle digraph/bigraph NP-hard − − here
derangement digraph/bigraph tractable O(

√
n ·m) O(m+ n) here

soft_derange-

ment_var
digraph/bigraph tractable O(

√
n ·m) O(m+ n) here

tree digraph tractable O(m+ n) O(m+ n) [100]

binary_tree
digraph/bigraph NP-hard − − here
DAG/bigraph tractable O(

√
n ·m) O(m+ n) here

path
digraph/bigraph NP-hard − − [34]
DAG/bigraph tractable O(

√
n ·m) O(m+ n) here

map digraph NP-hard − − here

number of count lower upper continuity
global constraint pattern components variable bound bound property

circuit
cycle

1 −
factor

cycle
cycle

ncycle ncycle non-sharp non-sharp -
factor

derangement
cycle

−
factor

soft_derange- cycle
−

ment_var factor
tree anti-arbo- ntree ntree sharp sharp +
binary_tree rescence ntree ntree non-sharp sharp +

path
path

npath npath non-sharp sharp +
factor

map
functional

nbcycle
nbcycle sharp non-sharp +

graph nbtree non-sharp non-sharp +

Table 6.3: Summary of results for directed graphs

Chapter 7

Weighted Graphs

This chapter presents a filtering technique based on weighted matching that uses decom-
position techniques presented in previous chapters. In this chapter we will extend our
considerations to the weighted case and we will again obtain a polynomial complexity.

The design of specific filtering algorithms to solve global constraints is necessary for the
constraint programming community. It has been pointed out in [58] (see also [105]) that a
weakness of constraint programming is related to combinatorial optimization problems. In
this chapter we present an efficient way of implementing the pruning for the optimization
constraints. The propagation mechanism is based on the algorithms computing weighted
matchings. It will turn out that techniques for the weighted matching problems can be
applied to filtering algorithms for global constraints much more explicitly than has been
done before.

The work, which we present in this chapter, is based on the paper [71]. It is structured as
follows. In Section 7.1 we formally introduce the approach. Section 7.2 provides a clear and
complete description of the generic version of the algorithm to prune domains of variables in
some global optimization constraints. In a number of important cases our method achieves
hyper-arc consistency in polynomial time. A key feature in our implementation is the use of
decomposition theory. Section 7.3 compares some of the optimization constraints reported
in the literature and shows how they can be solved by means of the weighted matching. The
fundamental idea of our algorithm is to apply the modified algorithm of Dijkstra for finding
the shortest path.

7.1 Preliminaries

In this section we give some preliminaries on graph and matching theory.
For a graph G and S ⊆ V (G), if G− S is acyclic, then S is said to be a feedback vertex

set of G. The size of the smallest feedback vertex set is called the cycle cover number
of G and is denoted by τ(G). The corresponding problem of eliminating all cycles from
a graph by means of the deletion of vertices does not have a simple solution. The latter
question is difficult for both undirected and directed graphs, and even for bipartite graphs

159

160 CHAPTER 7. WEIGHTED GRAPHS

(see [182],[131, Problem GT7]). Clearly, τ(G) = 0 iff G is a forest. For some common
families of graphs there are formulas; e.g. τ(Pn) = 0, τ(Cn) = 1, τ(Wn) = 2, τ(Kr,s) = r−1

if r ≤ s, τ(Kn) = n− 2, and so on. Thus, it holds 0 ≤ τ(G) ≤ n− 2.
Let us now consider a graph G with a given optimal (g, f)-matching M . With respect

to M we have five possible constellations for an alternating path P in G (cf. Figure 4.2):

1. an even alternating path leading from an exposed vertex and a free edge to a matched
edge and a saturated (neutral or strictly positive) vertex, or conversely,

2. an even alternating path starting from a negative vertex and a matched edge and
terminating with a free edge and a positive vertex, or conversely,

3. an odd alternating path between two distinct negative vertices and matched edges,

4. an odd alternating path between two distinct positive vertices and free edges.

All these possible alternating paths are determined by the function pathDetected in our
algorithm. They may occur merely (except the first one) in the perfect (g, f)-matchings.

Recall that there exists a procedure for reducing the problem of finding a perfect degree-
matching on a graph G into the problem of finding a perfect matching in an incremental
graph G∗. The problem for weighted degree-matchings can be solved by using a technique
discovered by Gabow, who in [115] presented an efficient O(f(V) ·min{m · log n, n2}) algo-
rithm for the construction of a maximum edge-weighted degree-constrained subgraph (see
also [264, Section 33.6a]).

The cost of an edge is a value, called a weight, associated with the edge. Edge weights
are assumed to be integers. In general, there is no assumption made on the signs of weights.
However, the complexity of weighted matching algorithms depends on the signs of the costs,
because the most efficient algorithms for searching of shortest paths deals only with non-
negative weights.

The cost of a matching M in G is defined as the sum of the weights of all its edges:

cost(M) =
∑
e∈M

w(e).

Throughout this chapter we will consider the following three problems of matching theory:

• the cardinality degree-matching problem

• the vertex-weighted degree-matching problem

• the edge-weighted degree-matching problem

The reader may be more familiar with two related problems: maximum cardinality match-
ing and maximum edge-weighted matching , the latter usually known as a maximum-weight
matching, but renamed here in order to distinguish it from its vertex-weighted counterpart.
In the maximum cardinality matching problem we want to find a matching of maximum car-
dinality in a given graph G without any weight function. For the maximum edge-weighted

7.1. PRELIMINARIES 161

matching problem a graph G and a weight function w : E 7→ Z, which assigns a weight to
every edge, are given. The goal is then to find in G a matching of maximum cost. Ob-
viously, the maximum cardinality matching problem is a particular case of the maximum
edge-weighted matching problem, where all edges are assigned the same weight and, there-
fore, this problem is easier to solve than the more general maximum edge-weighted matching
problem. The best known time complexity of algorithms based on the technique of augmen-
tation that solves the former is O(

√
n ·m) [164],[221] while algorithms that solve the latter

have a best time complexity of O(n · (m + n · log n)) [118], although algorithms of time
complexity O(m · n · log n) [20],[126] tend to be more practical.

A maximum-weight perfect matching is a perfect matching whose edges have the greatest
total weight possible. A maximum-weight matching is defined similarly but is not required to
be perfect. Since there may be negative weights, a maximum-weight matching does not have
to be in general a maximum-size matching. But even under the assumption that all weights
are positive the maximum-weight matching is not necessarily also the matching of maximum
cardinality. However, in view of the preceding considerations, we will restrict our attention
to the problem of determining the maximum-weight matching with maximum cardinality. It
is intuitively clear that in order to find a maximum-weight matching among the matchings
of maximum cardinality we only have to apply an algorithm to compute a maximum-weight
matching with respect to the cost function defined by adding a large enough constant K
(i.e. K = 1 + n ·max{∪e∈E |w(e)|}) to the weight of every edge, but this is not required by
the algorithms below because we will always consider maximum matchings.

In the weighted matching problem with lower and upper bounds on the cost , we want to
determine whether we can find a maximum matching with the cost lying between the lower
and upper bounds cmin and cmax. The weighted matching M is said to be an admissible
weighted matching if the condition cmin ≤ cost(M) ≤ cmax holds. The minimization problem
can be then solved by setting cmin = −∞ (we impose only an upper bound on the cost), while
the maximization problem can be solved by setting cmax =∞ (the cost is only bounded from
below). If both cmin = −∞ and cmax = ∞ then we have the classical maximum matching
problem. Throughout this chapter, we will use the phrase "admissible weighted matching"
to refer to an admissible weighted matching among the matchings of minimum deficiency.

We want to point out that it suffices to restrict our attention to maximum-weight match-
ings, because the respective minimum can be obtained if all weights w(e) are replaced by
K − w(e), for some large positive constant K (i.e. K = 1 +

∑
e∈E |w(e)|).

Suppose now that some weights are negative. The edge-weighted graph can then be
transformed into an equivalent one in which there are only non-negative weights. A tempting
solution is to add a constant K (i.e. K = 1 − min{∪e∈Ew(e)}) to each edge weight, thus
removing negative weights, calculate a minimum/maximum edge-weighted matching on the
new graph, and then use that result in the original graph after adjusting the obtained
cost accordingly (see [258, Discussion 7.1]). However, the naive implementation of this
strategy does not work in general because matchings with many edges (e.g. maximum
perfect (g, f)-matchings) become more costly than matchings with few edges (e.g. minimum

162 CHAPTER 7. WEIGHTED GRAPHS

perfect (g, f)-matchings). We are not aware of any method to solve this problem. However,
in most real-life situations, the weights are of the same sign and hence this problem is
non-existent. Therefore, we assume that in perfect (g, f)-matchings all the edges have non-
negative weights.

A maximum-weight perfect (g, f)-matching must not be, in general, a maximum perfect
(g, f)-matching. Analogously, a minimum-weight perfect (g, f)-matching must not be a
perfect (g, f)-matching with the minimum number of edges (cf. Figure 7.1).

x2

(0,1)

(0,1)
y1

(1,1)
y2

x1

(1,1)

1 25

x2

(0,1)

(0,1)
y1

(1,1)
y2

x1

(1,1)

1 25

Figure 7.1: Minimum and maximum weighted perfect (g, f)-matching

A weighted augmenting path is an alternating path in which the total weight of the
free edges exceeds the total weight of the matched edges. More formally, for a weighted
augmenting path we have cost(M ⊕ P) > cost(M). A weighted augmenting cycle can be
similarly defined. A matching M is a maximum-weight matching iff M has no weighted
augmenting cycles or paths.

We know that the key paradigm in finding a maximum cardinality matching is the exis-
tence of augmenting paths. An analogous result holds for weighted matchings:

Theorem 7.1.1 (Minieka [222, Theorem 5.3]) A weighted matching M in a graph G

is optimal iff no weighted augmenting path relative to M exists.

Here, an augmenting path for a weighted maximum/minimum matching is an alternating
path in which the total weight of free edges is greater/lower than the total weight of matched
edges.

Now let C be a weighted augmenting cycle which is used to augment M to M ′. Then
the cost of C is not defined as the sum of the weights of each of its edges but rather by

cost(C) =
∑

e∈C\M

w(e)−
∑

e∈C∩M
w(e),

i.e., it is the total weight of the free edges in C minus the weight of the matched edges.
Thus, the cost of the matching M ⊕ C is enlarged by the cost of the (alternating) cycle C.
Many of the difficulties associated with the above formula are overcome by working with
a transformed set of costs. This motivates the use of the reduced weight w′ instead of the
actual weight w since because of the fact that w′(e) = 0 if e ∈M , the cost definition becomes
a simple sum:

cost(C) =
∑
e∈C

w′(e).

7.1. PRELIMINARIES 163

Recall that the most efficient algorithms for the minimum/maximum edge-weighted
matching problem follow the primal-dual paradigm. These algorithms construct a matching
and a dual solution simultaneously. A potential function assigns an integer to every vertex.
For a potential function π : V 7→ Q and a weight function w : E 7→ Z+, the reduced weight of
an edge e = {v, w} is defined as w′(e) = w(e)−π(v)−π(w) (or w′(e) = π(v) +π(w)−w(e),
respectively). Observe that w(e) ≥ π(v) + π(w) (or w(e) ≤ π(v) + π(w), respectively) for
every edge e = {v, w}. The algorithms maintain a matching M of minimum/maximum cost
with the property that all edges have non-negative reduced weights, whereas every matched
edge has reduced weight 0, and all exposed vertices have potential 0. The cost of the min-
imum/maximum edge-weighted matching equals the sum of the potentials of all saturated
vertices. The cost of an alternating cycle is simply the sum of the reduced weights of all
edges contained in it. However, for augmenting paths, the following result holds (the similar
conditions can be proven for the remaining alternating paths):

Lemma 7.1.2 Let M be any minimum-weight matching, and let any potential function π

that proves the optimality of the matching M be given. For any even augmenting path P ,
with respect to M , leading from a positive vertex v0 to a negative vertex vt, the following
holds:

cost(P) =
∑
e∈P

w′(e) + π(v0)− π(vt).

Proof (cf. Property 2.4 in [4]) Let P = v0..vt be any even alternating path P from a
positive vertex v0 to a negative vertex vt. Then

cost(P) =
∑

e∈P\M

w(e)−
∑

e∈P∩M
w(e)

=
∑

e∈P\M

(w′(e) + π(vi) + π(vj))−
∑

e∈P∩M
(w′(e) + π(vi) + π(vj))

=
∑
e∈P

w′(e) +
∑
e∈P

(π(vi)− π(vj))

=
∑
e∈P

w′(e) + π(v0)− π(vt).

Notice that the last equality follows from the fact that for any alternating path P the
expression

∑
e∈P (π(vi)− π(vj)) is equal to π(v0)− π(vt) because for each vertex vi on the

path P , other than the endpoints v0 and vt, the term π(vi) occurs once with a positive sign
and once with a negative sign. ut

Unfortunately, it is in general not true that the above given formulas for the reduced
weights are valid. The situation here seems to be more complicated because in case of degree-
matchings we have that w(e)−π(v)−π(w) ≤ 0 (or π(v)+π(w)−w(e) ≤ 0, respectively) holds
for all matched edges, and w(e)−π(v)−π(w) ≥ 0 (or π(v) +π(w)−w(e) ≥ 0, respectively)
for all free edges [24],[304]. By these conditions the reduced weights of matched edges can be
negative, so the above lemma does not hold. An alternative way is based on a transformation
to the ordinary weighted matching problem.

164 CHAPTER 7. WEIGHTED GRAPHS

7.2 Computing the partition of edges

Suppose we have a weighted matching M in a graph G = (V,E) and we want to search
for all edges of the graph which do not appear in any admissible weighted matching. An
additional step would be to identify the edges that participate in every admissible weighted
matching. The overall aim is to establish a partition of the edge set E into three disjoint
subsets:

• the set of edges belonging to no admissible weighted matching (forbidden edges),

• the set of edges belonging to some admissible weighted matching (allowed edges),

• the set of edges belonging to every admissible weighted matching (mandatory edges).

It is well known that when we solve the weighted matching problem we obtain a lower and
an upper bound on the objective function and reduced weights1. In fact, weighted matching
problems are problems of linear programming. Recall that the reduced weights estimate
the increase of the objective function by at least w′(xi, dj) when we enforce the assignment
xi = dj . A huge advantage of this approach is that it can be applied very efficiently. Namely,
reduced weights are obtained automatically when solving a linear program.

When bounds on the objective function are known, reduced weights resulting from linear
solving can be used to adjust variable domains. The reduced weight of a variable is an
estimate of how much worse the optimal solution becomes under changes to the value of
that variable. Thus, our algorithm is based on the following observation. Edges whose
reduced weights are sufficiently large (i.e. cost(Mmin)+w′(e) > cmax) can be safely ignored,
since they will never be part of an admissible edge-weighted matching. Analogously, edges
whose reduced weights become sufficiently small in a maximum edge-weighted matching (i.e.
cost(Mmax)−w′(e) < cmin) are forbidden. This step of the algorithm is the so-called quick
elimination. Hence, the filtering rule can be applied without additional computational costs.
However, such a filtering algorithm does not, in general, establish hyper-arc consistency.

7.2.1 Graphs with vertex-weighted matchings

In this subsection we discuss polynomial algorithms for finding a maximum vertex-weighted
matching and for computing a decomposition of edges in the graph G. We present our work
in a bipartite matching context in order to relate the maximum vertex-weighted matching
problem to other matching problems, comparing them from the algorithmic perspective.

Given a graph G = (V,E) and a weight function w : V 7→ Z for each vertex of G (weights
are assigned to vertices, not edges), the cost of a matchingM is defined to be the sum of the
weights of the vertices covered by the matching M (we assume that x ∈ M iff dM (x) > 0

and x is saturated):

cost(M) =
∑
x∈M

w(x).

1In terms of linear programming potentials are called dual variables and reduced weights are slacks.

7.2. COMPUTING THE PARTITION OF EDGES 165

Therefore, an admissible vertex-weighted matching is one which has the feasible cost
among all possible matchings of G. Observe that if all the weights assigned to the vertices
of the graph are equal, the problem considered is simply the problem of finding a maximum
matching, and a maximum vertex-weighted matching is simply a maximum matching.

However, a reduction from the maximum edge-weighted matching problem to the max-
imum vertex-weighted matching problem is not possible in general. We are, therefore, in-
clined to think that the maximum vertex-weighted matching problem, as a particular case,
is easier to solve than the more general maximum edge-weighted matching problem.

Of course, this also makes the maximum vertex-weighted matching problem more difficult
to solve than the maximum cardinality matching problem, although the two latter problems
are closely related. Indeed, the best known time complexity of algorithms that solve the
maximum vertex-weighted matching problem is O(

√
n ·m · log n) [274], with algorithms of

time complexity O(n ·m) [288, Chapter 4] being more practical.

Year Author(s) Complexity Strategy/Remarks

1978 Megiddo & Tamir [216] O(n · log n) edge-weighted graph
1984 Spencer & Mayr [274] O(

√
n ·m · log n) divide-and-conquer

1987 Mulmuley & Vazirani [225] - theoretical
1998 Campêlo Neto & Klein [229] O(m · log n) for chordal graphs
1998 Ahuja & Orlin [6] O(n3) for path graphs
1998 Ahuja & Orlin [6] O(n2 · log n) for path graphs
2001 Tabatabaee et al. [277] O(n ·m) alternating paths
2004 Thiel [288, Chapter 4] O(n ·m) weight-augmenting paths
2008 Katriel [186] O(m+ n2 · log n1) for convex bigraphs
2009 Halappanavar [148, Chapter III] O(n · log n+ n ·m) sort- and search-based

Table 7.1: History of algorithms for the vertex-weighted matching problem

In the same way as in the case of the edge-weighted matching, without loss of generality,
it suffices to restrict our attention to maximum cost, because the respective minimum can
be obtained by negating the weights, computing the maximum, and taking the opposite.
However, a significant difference in the case of edge-weighted matchings is the fact that when
all weights are positive then the maximum vertex-weighted matching is always a matching
of maximum cardinality (see, for example, [274, Lemma 1],[225], or [148, Theorem III.2.1]).
The converse clearly does not hold, since a maximum matching does not necessarily need to
be a vertex-weighted matching of maximum cost.

Assume that we have a maximum cardinality matching M and we want to solve the
problem of maximizing its cost. Let us consider alternating cycles and paths. An alternating
cycle matches exactly the same vertices, and hence it has the same cost. For an even
alternating path P with endpoints x and y (starting from a free edge and terminating with
a matched edge) we have the following possibilities:

166 CHAPTER 7. WEIGHTED GRAPHS

cost(P) =

0, if

 0 < g(x) ≤ dM (x) < f(x)

0 < g(y) < dM (y) ≤ f(y)

∧
w(x), if

 0 = g(x) = dM (x) < f(x) ∨ 0 < g(x) = dM (x) + 1

0 < g(y) < dM (y) ≤ f(y)

∧
−w(y), if

 0 < g(x) ≤ dM (x) < f(x)

0 = g(y) = dM (y)− 1 ∨ 0 < g(y) = dM (y)

∧
w(x)− w(y), if

 0 = g(x) = dM (x) < f(x) ∨ 0 < g(x) = dM (x) + 1

0 = g(y) = dM (y)− 1 ∨ 0 < g(y) = dM (y)

∧
Hence, the cost of the alternating path P depends only on its endpoints. This follows

from the fact that augmenting the matching along the alternating path P never exposes
internal vertices of P that are already saturated. The formulas for odd alternating paths
can be obtained in a similar way.

Unfortunately, the minimum vertex-weighted (g, f)-matching is quite different from the
maximum one and seems to be more difficult to maintain. It turns out that the problem
of determining the minimum vertex-weighted (g, f)-matching, when some weighted vertices
with g(x) = 0 ∧ f(x) > 2 exist in the graph, is intractable in general.

Theorem 7.2.1 The general minimum vertex-weighted (g, f)-matching problem is NP-hard.

Proof Clearly, if g(x) > 0 for every vertex x then we have the classical vertex-weighted
problem, which is tractable. Otherwise, we make a transformation from the minimum cover
problem [182],[131, Problem SP5]. We will prove that the problem is intractable if g(x) = 0

for all vertices on one side of the bipartite graph with bipartition (X,Y). Let C be the
collection of subsets of a finite set S in the minimum cover problem. Let every element of
the set S be represented by the vertices of X on one side of the bipartite graph, and let
every element of the collection C be represented by the vertices of Y on the other side of
the bipartite graph. There exists an edge between x ∈ X and y ∈ Y iff x is an element of
the subset y. Additionally, for vertices of X we set w(x) = 0 and the degree conditions to
g(x) = f(x) = 1. Further, for vertices of Y we set w(y) = 1, and the degree conditions to
g(y) = 0 and f(y) = d(y), where d(y) denotes the degree of the vertex y (the cardinality
of the subset c ∈ C; |c| > 2, since otherwise the problem is solvable in polynomial time).
There is a one-to-one correspondence between the solution to the minimum cover problem
and the solution to the minimum vertex-weighted (g, f)-matching. Thus, the last problem
is NP-hard. ut

From an interpretation point of view, this problem is equivalent to the weighted domi-
nation problem, where one has to select a set of vertices in order to control every vertex of
a graph and the use of the same vertex once or several times does not change the cost of the
dominating set.

7.2. COMPUTING THE PARTITION OF EDGES 167

However, for convex bipartite graphs2 the problem is solvable in polynomial time. We
will now explain how to compute a minimum vertex-weighted (g, f)-matching in a convex
bipartite graph, which corresponds to a configuration of variables of which all domains are
intervals. We adapt our method from the algorithm presented in [28]. If we assume that the
weighted vertices are arranged in increasing order of their minimum weight, which can be
realized in O(n · log n) computational time, then the algorithm for computing the minimum-
weight (g, f)-matching problem in convex bipartite graphs has a linear complexity of O(n).
This leads to an overall complexity of O(n log n+hn) for the filtering algorithm with respect
to Mmin, where h denotes half of the number of vertices incident with the forbidden edges.

In order to prove the next result, we need first to define the interval subset sum problem.
Let finite set A, size s(a) ∈ Z+ for each a ∈ A, and positive integers L and U are given.
The question, which appears, is whether there exists a subset A′ ⊆ A such that the sum of
the sizes of the elements in A′ lies within the interval from L to U . We have the following
lemma:

Lemma 7.2.2 The interval subset sum problem is NP-complete.

Proof Direct reduction from SUBSET SUM [182],[131, Problem SP13] by letting L = B =

U , where B is a positive integer from an arbitrary instance of SUBSET SUM. ut

Theorem 7.2.3 The problem to determine whether G has a vertex-weighted (g, f)-matching
with cost lying between given bounds L and U is NP-complete.

Proof In order to show that our problem is NP-complete we must show that it belongs
to NP and that all NP-problems are polynomial reducible to it. The first part is easy: we
need only to check whether the cost of a vertex-weighted degree-matching lies within the
given interval. To prove the second part we show that the interval subset sum problem
is polynomial time reducible to our problem. We transform from the interval subset sum
problem. Let finite set A, size s(a) ∈ Z+ for each a ∈ A, and bounds L and U are given
in the interval subset sum problem. Let every element of A be represented by the vertices
X = {x1, . . . , xk}, whereby k = |A|, on one side, and by the vertices Y = {y0, y1, . . . , yk} on
the other side of the bipartite graph. For every i = 1, . . . , k there exists an edge between xi
and y0 and between xi and yi. Additionally, for vertices of X we set degree conditions to
g(x) = f(x) = 1 and weight w(x) to 0; for vertices of Y we set g(y0) = 0, f(y0) = k − 1,
w(y0) = 0 for vertex y0 and g(yi) = 0, f(yi) = 1 and w(yi) = s(yi) for all the remaining
vertices. Then it is straightforward to check that there is a one-to-one correspondence
between the solution to the interval subset sum problem and the vertex-weighted degree-
matching problem. In consequence, our problem is NP-complete. ut

In the above proof we have assumed that the subset A′ does not allow repetition of
elements. When this subset is considered to be a multiset then the polynomial time reduction
from the interval subset sum problem looks as follows. For every i = 1, . . . , k we create a

2A bipartite graph G with bipartition (V1, V2) is called convex on V2 if there exists an ordering of V2 so
that for any x ∈ V1 the set Γ(x) forms an interval in the ordering.

168 CHAPTER 7. WEIGHTED GRAPHS

star graph S
(i)
k+1 of order k + 1 with one internal (center) vertex x

(i)
0 and k + 1 leaves

y
(i)
0 , . . . , y

(i)
k . We set degree conditions g(v) = f(v) = 1 for all vertices, and define weights

as in the construction given in the proof of the above theorem. Then there is a one-to-one
correspondence between the solution to the interval subset sum problem and the vertex-
weighted matching problem. Since we can verify this solution in polynomial time, this
proves again that our problem is NP-complete.

Weighted alternating depth-first search

Given an arbitrary bipartite graph with an initial vertex-weighted (g, f)-matching M , we
wish to compute the partition of edges. In this subsection we present a procedure that allows
us to classify the edges of several alternating paths or cycles with only one search phase and
to simply derive the decomposition of the graph. We use a special kind of depth-first search
called a weighted alternating depth-first search. The purpose of the weighted alternating
depth-first search is to detect the forbidden edges in the vertex-weighted matching. The
routine will traverse the bipartite graph in the following manner. If the level is even all
adjacent matched edges leave the vertex; when the level is odd all edges (except matched
ones) leave the vertex. Thus, an alternating depth-first search simulates the traversing on a
directed graph and constructs layers that alternately use matched and free edges. For odd
levels, the vertices are simply given by the mates of the vertices from the previous even level.
For even levels, the next vertex is some unvisited neighbor of the vertex from the previous
odd level. It should be obvious that a weighted alternating depth-first search maintains
weighted alternating paths and cycles.

In order to develop an algorithm we first introduce some notations. In fact, our algorithm
is adapted from one presented in Chapter 4, therefore, only differences and additional steps
will be reported here.

The crucial steps are the labelings of vertices. We start with the computation of the
reduced weights with respect to the current matchingM . It holds that w′(x) = 0 if dM (x) >

1 for x on the odd level or even root, and w′(x) = 0 if dM (x) ≥ 1 for x on the even level
or odd root; otherwise w′(x) = w(x). Moreover, the cost of an alternating path P with
endpoints x and y equals

cost(P) =

w′(y)− w′(x), if x and y are on the even levels

w′(x)− w′(y), if x and y are on the odd levels

−w′(x)− w′(y), if x is on the even level and y is on the odd level

w′(x) + w′(y), if x is on the odd level and y is on the even level

(7.1)

Notice that these formulas are used by the function costPath(x, y) in our algorithm to
compute the cost of the alternating path starting at x and terminating at y.

A weighted alternating depth-first search of the graph G with an initial maximum vertex-
weighted degree-matching M visits all vertices of G in order of non-decreasing weights. In
the case of a matching with the minimum cost the visited vertices are sorted in non-increasing
order.

7.2. COMPUTING THE PARTITION OF EDGES 169

If the alternating depth-first search discovers an alternating cycle (this is the case for
back edges) then this cycle is contracted by replacing all its vertices with the vertex, called
core of this cycle (analogy to the base of a blossom), whose level is minimum. When a nested
cycle is detected (this is the case for non-tree edges leading to cycles with gray cores), then
these cycles are merged into one, with the core closest to the root of the tree. Additionally,
for every core we determine the minimum weight of all critical vertices (i.e. 0 = g(x) < f(x)

and dM (x) = 0 on the odd level or dM (x) = 1 on the even level) contained in the shrunken
cycles represented by this core. By these operations we guarantee that every alternating
path leading to any alternating cycle will have the minimum possible cost.

If the alternating depth-first search discovers an alternating path (this is the case for
tree edges), then it marks all edges on this path as allowed and vertices as belonging to
the path. All detected alternating paths lead always from the current vertex ti to the root
ri. We process with alternating paths in the same way as with alternating cycles: for every
vertex on the alternating path we determine the minimum weight of all critical vertices
contained in the path. By this operation we guarantee that every alternating path leading
to another alternating path will have the minimum possible cost. If the search encounters a
vertex belonging to any alternating path (this is the case for non-tree edges leading to black
vertices), then, if the cost is admissible, a new alternating path will be discovered.

The computation of the partition of edges works as follows. In the first phase we look for
even alternating paths that start at a saturated vertex and terminate at an exposed vertex.
This situation can only occur in the subgraph GU . We pick such a vertex, make it the root
and grow a weighted alternating depth-first tree. Thus, the first phase performs the search
on every connected subgraph of GU starting from saturated vertices in B2 and matched
edges.

The second phase performs the search on every connected subgraph of GW . Observe
that it is not necessary to look for alternating cycles but only to examine all critical vertices
(if they exist). Thus, this phase can consist of maximal two steps. The first step performs
the weighted alternating depth-first search from critical vertices with dM (x) = 0 and free
edges, the second step starts from critical vertices with dM (x) = 1 and matched edges.

For a maximum vertex-weighted matching we process the vertices in non-decreasing
weight order. Thus, the weights of the roots of the weighted alternating depth-first trees can
only increase during the phase of the search. This has the following consequence. When we
grow a weighted alternating depth-first tree with root r without discovering an alternating
path or cycle, we know that all vertices in the tree can only reach exposed vertices with
weight at most w(r). And hence, they do not have to be taken into account by later calls.

Let us summarize some important properties of the weighted alternating depth-first
search:

• Each vertex on the even level is adjacent by a matched edge with a vertex on the odd
level.

• Each vertex on the odd level is adjacent by a free edge with a vertex on the even level.

170 CHAPTER 7. WEIGHTED GRAPHS

• Every tree has a negative (or a neutral) root on the even level, or an exposed (or a
positive) root on the odd level.

• Alternating cycles are detected by back edges.

• Nested cycles are detected by cross (or forward) edges leading to a cycle with a gray
core.

• Alternating paths are detected by tree edges leading either to a positive vertex on the
even level, or to a negative vertex on the odd level, or to an exposed vertex on the
even level.

• Alternating paths are detected by non-tree (forward or cross) edges leading to a vertex
belonging to an alternating path.

• Admissible paths are detected by tree edges, or non-tree edges leading to an admissible
alternating path or to an alternating cycle with critical vertices.

• Edges included in any alternating cycle or any admissible alternating path are allowed.

• Matched edges included in no alternating cycle nor admissible alternating path are
mandatory.

• Free edges included in neither the alternating cycle nor in the admissible alternating
path are forbidden.

The entire procedure is presented in Algorithm 18.

Let us show by an example how our algorithm works. The corresponding bipartite graph
is depicted in the figure below. For the sake of simplicity, we define the weight of the vertex
to be equal to its number. Since there are exposed vertices (in the subgraph GU), we will
grow trees with roots on the even level.

3

x2

x1

1

x3

2

6

5

4

4

x3

2

5

x1

1

6

x2

3

x3x2

51 32 4 6

x1 x3x2

51 32 4 6

x1

Figure 7.2: Weighted alternating depth-first search

On the left side of the figure the minimum vertex-weighted matching (cost(Mmin) = 6) is
shown. We grow a weighted alternating depth-first tree with a value 3 at the root, because it
is the first value in decreasing order of weights of all saturated vertices. We find a weighted
alternating path 3x21x12x34, as leading from saturated vertex 3 to exposed vertex 4, with
cost 1(= 4− 3), then an alternating cycle 3x21x13 is detected. Then the second alternating

7.2. COMPUTING THE PARTITION OF EDGES 171

Algorithm 18 Weighted Alternating Depth-First Search of G
Require: Bipartite graph G with a maximum vertex-weighted (g, f)-matching Mmax

Ensure: Partition of edges into MANDATORY, ALLOWED and FORBIDDEN

procedure WeightedAlternatingDFS(r,s)
set color[s]← GRAY

for every edge {s, t} ∈M if level[s] is even or {s, t} /∈M if level[s] is odd do
if color[t] = WHITE then {tree edge}
set parent[t]← s

set level[t]← level[s] + 1

perform WeightedAlternatingDFS(r,t)
else {gray or black vertex}
if color[core(t)] = GRAY then {cycle detected}
mark edge {s, t} as ALLOWED
perform ContractCycle(s,t) (see Algorithm 4)

else if path[core(t)] <> NIL then {forward or cross edge}
let c = costPath(r, path[core(t)])

if c ≥ wmin then
mark edge {s, t} as ALLOWED
set path[s]← core(t)

end if
end if

end if
end for
set color[s]← BLACK

if path[s] = NIL and pathDetected(r, s) then
let c = costPath(r, s)

if c ≥ wmin then
set path[s]← s

end if
end if
if path[s] <> NIL and s 6= r then
set p← parent[s]

mark edge {s, p} as ALLOWED
set t← p

if path[p] <> NIL then
set t← path[p]

end if
if pathDetected(r, t) and costPath(r, path[s]) < costPath(r, t) then
set path[p]← p

else
set path[p]← path[s]

end if
end if

172 CHAPTER 7. WEIGHTED GRAPHS

path 3x21x15 with cost 2(= 5 − 3) will be found. The forward edge {x2, 4}, as leading to
a vertex belonging to an alternating path, discovers a new alternating path 3x24 with cost
1(= 4− 3). The fourth alternating path 3x26 with cost 3(= 6− 3) is detected. Since there
are no unvisited vertices, our algorithm terminates.

Now consider the right side of the figure, where the same graph with the maximum
vertex-weighted matching is shown (cost(Mmax) = 15). We build a weighted alternating
depth-first forest starting from saturated vertices in increasing order of their weights. First,
we grow a tree with root 4 and we discover one alternating path 4x32 (detected by tree edge
{x3, 2} leading to exposed vertex 2) with cost −2(= 2− 4). Next, we grow a tree with root
5 and we discover three alternating paths: 5x12 (detected by cross edge {x1, 2} leading to
an alternating path) with cost −3(= 2− 5), 5x11 (detected by tree edge {x1, 1}) with cost
−4(= 1 − 5), and 5x13 (detected by tree edge {x1, 3}) with cost −2(= 3 − 5). Finally, we
grow a third tree with root 6 and we discover three alternating paths: 6x24x32 (detected by
cross edge {x2, 4}) with cost −4(= 2 − 6), 6x21 (detected by cross edge {x2, 1}) with cost
−5(= 1− 6), and 6x23 (detected by cross edge {x2, 3}) with cost −3(= 3− 6). Since all the
vertices have been visited, we may stop the algorithm.

We conclude this subsection with an analysis of the running time of the algorithm. If
we suppose that the arithmetical operations such as additions and subtractions, as well as
comparisons, can be done in constant time, then the algorithm is of linear complexity. We
assume that the evaluation of boolean expressions is performed from left to right in a short-
circuiting way. Because the search strategy guarantees that each edge is encountered at most
three times (the first time when the edges are traversed, the second time when the cycles
are being contracted, and the third time during the backtracking), the total time to perform
the weighted alternating depth-first search is O(m+ n). We had assumed that we have an
ordering of the vertices according to their weights, because the algorithm for computing the
vertex-weighted matching provides such a sorting (for details, see [288, Chapter 4]).

7.2.2 Graphs with edge-weighted matchings

In this subsection an algorithm for the determination of the partition of edges is developed.
The algorithm itself is slightly involved, and the example given in the sequel will also be
useful in understanding the algorithm.

In a similar way as in the case of the vertex-weighted matching, the interval subset
sum problem can be polynomially reduced to the edge-weighted matching problem. This
transformation leads to the following result being the direct consequence of Theorem 7.2.3:

Corollary 7.2.4 The edge-weighted (g, f)-matching problem with lower and upper bounds
on the cost is intractable in general.

Proof Just as in the proof of Theorem 7.2.3 we transform from the interval subset sum
problem. Let an arbitrary instance of the interval subset sum problem be given. In this
problem we have set A of numbers {a1, . . . , ak}, size s(ai) ∈ Z+ for each ai ∈ A, the lower
bound L, and the upper bound U . We create a star graph Sk with an internal vertex x0.

7.2. COMPUTING THE PARTITION OF EDGES 173

Let every element of the set A be represented by an edge ei = {x0, xi} for which we set cost
w(ei) = s(ai). Additionally, we set degree conditions as follows: for internal vertex x0 we
set g(x0) = 1 and f(x0) = k, whereas for all leaves xi, i = 1, . . . , k, we set g(xi) = 0 and
f(xi) = 1. The whole construction obviously requires only polynomial time. To prove that
this reduction works, we can easily verify that there is a one-to-one correspondence between
the solution to the interval subset sum problem and the solution to the edge-weighted (g, f)-
matching problem. This completes the proof. ut

We want to compute a maximum edge-weighted matching in G efficiently. There are
well-known algorithms that compute the maximum edge-weighted matching in a bipartite
graph, i.e. the popular Hungarian algorithm for the assignment problem. The running times
of the best algorithms for the maximum-weight matching problem in bipartite graphs are
usually stated as O(n · (m+n · log n)) [4, Chapter 12.4] and O(

√
n ·m · log (nW)) [123] (here,

W denotes the largest edge weight).

Table 7.2 summarizes known polynomial-time algorithms for the problem (cf. [264, Sec-
tion 17.5a]). Time bounds are stated in terms of the number n of vertices, the number m
of edges, and in some cases in terms of an upper bound W on the edge weights (assumed
in these cases to be integers). The algorithms whose time bounds involve W assume integer
weights, whereas others run on arbitrary rational or real weights.

Year Author(s) Complexity Strategy/Remarks

1931 Egerváry [92] - theoretical
1946 Easterfield [87] O(2n · n2) transversals
1949 Robinson [263] cycle canceling
1955 Kuhn [198,199] O(n4) Hungarian method
1957 Munkres [226] O(n4) Hungarian method
1960 Iri [172] O(n2 ·m) voltage configurations
1969 Dinits & Kronrod [79] O(n3) diagonal scaling
1970 Edmonds & Karp [91] O(n3) labeling method
1971 Tomizawa [289] O(n3) reduction and induction
1977 Johnson [175] O(n ·m · logd n), d = dmn e d-ary heaps [174]
1983 Gabow [117] O(n

3
4 ·m · logW) cost scaling

1984 Fredman & Tarjan [109] O(n · (m+ n · log n)) Fibonacci heaps
1988 Gabow & Tarjan [122,123] O(

√
n ·m · log (nW)) approximated scaling

1992 Orlin & Ahuja [239] O(
√
n ·m · log (nW)) improved scaling

1996 Cheriyan & Mehlhorn [62] O(n
5
2 · log (nW)(log(2) n

logn)
1
4) bit compression

1999 Kao et al. [179] O(
√
n ·m ·W) unfolded graphs

2001 Kao et al. [180] O(
√
n ·m ·W · logn

n2

m) unfolded graphs
2012 Duan & Su [82] O(

√
n ·m · logW) Balinski & Gomory [18]

Table 7.2: History of algorithms for the edge-weighted bipartite matching problem

The most efficient algorithms for weighted matching problems use abstract data struc-

174 CHAPTER 7. WEIGHTED GRAPHS

tures, called priority queues (or heaps), consisting of a collection of elements, each with an
associated priority. On a priority queue the following operations are possible [67, Section
6.5]:

insert(x,k) – inserts a new element with priority k into the queue (heap),

find_min() – finds and returns an element with the minimal priority,

decrease_key(x,k) – decreases the priority of the element in the queue,

extract_min() – removes and returns an element with the smallest priority.

Clearly, there are n insert operations, n extract_min operations and at most m−n+1

decrease_key operations. An implementation of a priority queue is said to be efficient if
each operation takes O(log n) amortized time. Running times of several implementations of
priority queues are shown in the following table:

Year data structure amortized running time references

1964 binary heap O(m · log n) Williams [306]
1972 leftlist heap O(m · log n) Crane [69]
1975 d-ary heap O(m · logd n), d = dmn e Johnson [174]
1977 mergeable heap O(m · log logC) van Emde Boas et al. [298]
1978 binomial heap O(m · log n) Vuillemin [305], [52]
1984 Fibonacci heap O(m+ n · log n) Fredman & Tarjan [109]
1985 skew heap − Sleator & Tarjan [273]
1986 min-max heap − Atkinson et al. [16]
1986 pairing heap O(m+ n · log n) Fredman et al. [108], [275]
1987 deap − Carlsson [55],[56]
1988 relaxed heap O(m+ n · log n) Driscoll et al. [81]
1990 one-level radix heap O(m+ n · logC) Ahuja et al. [5]
1990 two-level radix heap O(m+ n · logC/ log logC) Ahuja et al. [5]
1990 Fibonacci radix heap O(m+ n ·

√
logC) Ahuja et al. [5]

1993 diamond deque − Chang & Du [61]
1997 monotone heap O(m+ n · (logC)

1
3 +ε) Cherkassky et al. [63,64]

2000 trinomial heap O(m+ n · log n) Takaoka [278]
2003 2-3 heap O(m+ n · log n) Takaoka [279]
2004 layered heap O(m+ n · log log n) Elmasry [93]
2008 thin heap O(m+ n · log n) Kaplan & Tarjan [181]
2008 two-tier relaxed heap O(m+ n · log n) Elmasry et al. [95]
2009 quake heap O(m+ n · log n) Chan [60]
2009 rank-pairing heap O(m+ n · log n) Haeupler et al. [146,147]
2010 violation heap O(m+ n · log n) Elmasry [94]

Table 7.3: History of algorithms for priority queues

7.2. COMPUTING THE PARTITION OF EDGES 175

We give amortized running time as a sequence of m decrease_key and n extract_min

operations (n ≤ m). Symbol − denotes that a priority queue is not suitable for our approach,
because of the lacking of decrease operation. These implementations are given here only for
didactic purposes.

Priority queues derive great importance from their use in solving a wide range of com-
binatorial problems, including shortest path, minimum spanning tree, weighted bipartite
matching and minimum cost flow problem; see [4] or [67] for a discussion.

Recall that an edge is forbidden in any maximum matching iff it belongs to no alternating
cycle (in the subgraph GW) starting from a saturated vertex, or to no alternating path of
even length (in the subgraphs GU or GO) starting from an exposed vertex. The search for
all forbidden and mandatory edges can be done in linear time by applying the so-called
alternating breadth- and alternating depth-first traversals (see Section 4.3).

However, a maximum edge-weighted matching problem is more complex than a maximum
matching problem, because in the latter we need only to know whether there is an alternating
cycle (or an alternating path) containing a given edge or not. For an edge-weighted problem
we need to identify whether there is a particular alternating cycle (or a particular alternating
path) with an optimal cost, containing a given edge, because there are weights on edges and
the global bounds must be fulfilled. In the following we denote by Ce, P e, Me

min andMe
max,

respectively, the lightest alternating cycle, the lightest alternating path, the minimum-weight
matching and the maximum-weight matching involving the edge e.

Now we can make the following connection between partition of edges and weighted
matchings.

Theorem 7.2.5 Given an edge-weighted graph G with a minimum edge-weighted matching
Mmin and a maximum edge-weighted matching Mmax. The graph G has no admissible
edge-weighted matching if cost(Mmin) > cmax or cost(Mmax) < cmin. Analogously, an
edge e does not belong to any admissible edge-weighted matching if cost(Me

min) > cmax or
cost(Me

max) < cmin.

Proof We only need to restrict our attention to the minimum edge-weighted matching since
the proof for the other case is similar. By definition, if cmax < cost(Mmin) then G cannot
have any admissible edge-weighted matching. Further, if there exists a matching containing
edge e such that the cost of the matching lies between the given bounds, then this edge is
admissible. On the other hand, the edge e is forbidden if cmax < cost(Me

min). ut

From this result we can define a simple, brute-force pruning algorithm for computing
the partition of edges. First, we compute the minimum and the maximum-weight matching
Mmin andMmax in an edge-weighted graph G. If cost(Mmin) > cmax or cost(Mmax) < cmin

then we know that no admissible edge-weighted matching exists. Otherwise, four possible
scenarios are to be considered (cf. Figure 7.4). If cost(Mmin) < cmin ≤ cost(Mmax) ≤ cmax
we choose an arbitrary free edge e = {vi, vj} /∈ Mmax and compute a maximum-weight
matchingM ′max in the graph G′ = G−vi−vj . These operations require time O(m+n·log n)

when starting in graph G′ from the maximum-weight matching Mmax − {vi,mate(vi)} −

176 CHAPTER 7. WEIGHTED GRAPHS

{vj ,mate(vj)} with exposed vertices mate(vi) and mate(vj) [118]. Finally, we remove the
edge e from the graph G and mark it as forbidden if a matching in G′ with the same
deficiency as in G does not exist or cost(Me

max) = cost(M ′max) + w(e) < cmin.

In order to find all mandatory edges we choose an arbitrary edge e = {vi, vj} ∈Mmin ∩
Mmax and recompute a maximum-weight matching M ′′max in the graph G′′ = G − e. We
mark the edge e in the graph G as mandatory if the matching in G′′ with the same deficiency
as in G does not exist or cost(M ′′max) < cmin. Obviously, this entire procedure runs in time
O(m · (m+ n · log n)). The other scenarios can be handled similarly.

At first glance, it does not seem easy to improve this algorithm because for each edge e
the distances are computed in G− e. However, if for each vertex v we compute the lightest
alternating path from v to every vertex in G, we will be able to know which incident edges
are forbidden. Therefore, since there are n vertices, we can compute the partition of edges
in time O(n · (m + n · log n)), which improves the previous complexity. But the partition
can be determined more quickly.

Weighted alternating breadth-first search

The purpose of the weighted alternating breadth-first search is to detect the forbidden edges
in the edge-weighted matching due to the fact that the edge can increase (or decrease)
the cost of the weighted matching to the value that is not allowed. We use the breadth-
first search as strategy, because it finds the shortest paths and cycles. We will recall some
properties of breadth-first search which are important for our algorithm.

Similarly, as for the vertex-weighted graphs, we need to traverse the edges of the graph
with respect to an initial edge-weighted matching. The weighted alternating breadth-first
search starts from a given vertex r on the prescribed level l (0-even or 1-odd), corresponding
to the type of the vertex (negative, neutral, or positive). In the first step, we traverse all
(matched or free) edges incident with the vertex r. When we visit the vertices adjacent to
the start vertex r then these vertices are placed into next level l+ 1. In the second step, we
scan all the new vertices we can reach from the (free or matched) edges, respectively. These
new vertices, which are adjacent to vertices on the level l + 1 and assigned to no level, are
located in level l + 2, and so on. Thus, a weighted alternating breadth-first search, similar
to a weighted alternating depth-first search, simulates the traversing on a directed graph
and constructs layers that alternately use matched and free edges. The weighted alternating
breadth-first search terminates when every vertex has been visited and every edge has been
traversed.

The weighted alternating breadth-first search uses a priority queue Q to store processed
vertices. There are several possible ways for implementing the priority queue needed by
the weighted alternating breadth-first search. We can implement the priority queue with a
simple bucket data structure, which is an array of entries indexed by the priorities, or with
a radix heap data structure. We can also use a Fibonacci heap in order to obtain a strongly
polynomial algorithm O(m+n · log n) [4, Appendix A.4], [67, Chapter 20]. This immediately
yields an overall O(m+ n · log n) time complexity to classify the edges.

7.2. COMPUTING THE PARTITION OF EDGES 177

We determine back and cross edges in order to detect lightest alternating cycles and
paths. The algorithm designates tree and cross edges belonging to any optimal alternating
path and back edges belonging to any optimal alternating cycle as traversed. The remaining
edges are not marked as traversed unless they have been already traversed in one of the
previous phase of the algorithm. The algorithm terminates when all the edges have been
traversed (become tree edges in any breadth-first forest). Additionally, if there exists an
edge that does not occur in any of the lightest alternating paths or cycles generated by
our algorithm then this edge is forbidden if the edge is free, and mandatory if the edge is
matched.

Recall that our task consists of finding the edges that cannot be a part of an admissible
weighted degree-matching. Therefore, detecting edges that cannot be a part of a lightest
alternating cycle or a lightest alternating path would be sufficient.

For an edge-weighted matching problem we assume that G is with non-negative weights
and at least one minimum/maximum-weight matching has been found. Thus, throughout
our algorithm there is an initial weighted matching at hand, the cost of which is improved
iteratively.

To find a partition of edges, the algorithm operates in phases. During each phase, the
algorithm finds a partition of edges in one of the connected (canonical) components. Since
we have to consider every vertex separately we split our algorithm into four phases.

The first phase of the algorithm processes the subgraph GU and looks for even alternating
paths and alternating cycles in it. The next phases of the algorithm process the subgraph
GW . In the second phase we maintain alternating paths that start from a positive vertex
and a free edge. In the third phase we look for alternating paths that start from a negative
vertex and a matched edge. Clearly, during the second phase the first edge of the alternating
path changes its status from free to matched but in the third phase the first edge of the
alternating path changes its status from matched to free. These two phases can only occur in
(g, f)-matchings. In the last phase we compute alternating cycles that start from a neutral
vertex and a matched edge. This situation appears only in f -matchings.

We have made the partition of edges and from the above algorithm we have obtained for-
bidden, allowed and mandatory edges. The canonical decomposition and thus the partition
of edges is easy to perform.

Let us summarize some important properties of the weighted alternating breadth-first
search:

• Every matched edge connects a vertex on the even level with a vertex on the odd level

• Every free edge connects a vertex on the odd level with a vertex on the even level.

• The lightest alternating cycles are detected by back edges.

• The lightest alternating paths can be determined by tree edges or cross edges.

• Every tree path from an arbitrary vertex to any of its descendants is the lightest path.

• A tree with non-tree edges contains only admissible alternating cycles and paths.

178 CHAPTER 7. WEIGHTED GRAPHS

• Edges included in any admissible alternating cycle or any admissible alternating path
are allowed.

• Matched edges included in no admissible alternating cycle nor admissible alternating
path are mandatory.

• Free edges included neither in an admissible alternating cycle nor in an admissible
alternating path are forbidden.

Observe that the weighted alternating breadth-first search is a modified version of Dijk-
stra’s algorithm [67, Section 24.3]. However, for the alternating paths, the adapted routine
significantly reduces the number of queue operations and the running time of the prun-
ing algorithm, since fewer insert and decrease priority operations need to be performed.
The improvement maintains an upper bound for the cost variable and performs only queue
operations with values smaller than the bound.

The weighted alternating breadth-first search algorithm can also be viewed as a method
which successively looks for lightest alternating cycles and paths with respect to a given
weighted matching M and a predetermined start vertex or edge. In order to avoid multiple
consideration of the same edge the algorithm traverses only these edges which have not yet
been traversed in the actual breadth-first search. For this purpose we use the disjoint set
union data structure of Gabow & Tarjan [121] (see also Table 4.2).

The pseudocode for the weighted alternating breadth-first search is shown in Algo-
rithm 19.

Let us describe our procedure in more detail. Firstly, we initialize the data structure for
each vertex. We use parent to maintain predecessor information in the tree. The array cost

represents the shortest distances from the root r to the vertices in the tree. Each vertex
is initially labeled with ∞. The procedure maintains a priority queue Q for the vertices
of G. For each vertex v it computes a weight cost[v] of a lightest path from the root r to
v (which corresponds to the path with the minimum cost). Initially, it marks r as root,
sets cost[r] to 0 and inserts the item 〈r, 0〉 into the priority queue. In the main loop our
procedure deletes from the priority queue a vertex v with the minimal value of cost. On
the even level the procedure takes the matched edges; otherwise, it takes all outgoing free
edges of v. The routine checks whether the distance function does not satisfy the triangle
inequality with respect to edge {v, w}. Whenever such an edge is found we use it to reduce
cost[w] to cost[v] +w′(v, w). Consider an edge {v, w} and let c = cost[v] +w′(v, w). In case
of alternating paths our procedure checks whether c is smaller than the current maximal
admissible cost. If so, three cases will be distinguished. If parent[w] = NIL (or cost[w]

equals ∞) the routine inserts an item 〈w, c〉 into Q (this is the case when a white vertex
indicates a tree edge). Otherwise, if c < cost[w], the procedure decreases the priority of w
in Q to c and updates cost[w] to c (this is the case when a gray vertex indicates a tree edge).
In the last case the edge {v, w} is marked as a non-tree edge (this is the case for gray or
black vertices).

7.2. COMPUTING THE PARTITION OF EDGES 179

Algorithm 19 Weighted Alternating Breadth-First Search of G
Require: Bipartite graph G with a minimum edge-weighted (g, f)-matching Mmin

Ensure: Partition of edges into MANDATORY, ALLOWED and FORBIDDEN

procedure WeightedAlternatingBFS(r)
Q.insert(r,0)
set color[r]← GRAY

while Q 6= ∅ do
set v ← Q.extract_min()
for every edge {v, w} ∈M if level[v] is even or {v, w} /∈M if level[v] is odd do
set c← cost[v] + w′(v, w)

if NEUTRAL ∈ sign[r] or c ≤ wmax then
if c < cost[w] then {tree edge}
set cost[w]← c

set parent[w]← v

set level[w]← level[v] + 1

if color[w] = WHITE then {white vertex}
Q.insert(w,c)
set color[w]← GRAY

else {gray vertex}
Q.decrease_key(w,c)

end if
end if
set color[v]← BLACK

add edge {v, parent[v]} to the tree T and mark it as TRAVERSED
if pathDetected(r, v) and cost[v] + costPath(r, v) ≤ wmax then
mark all edges on the path from v to r as ALLOWED

end if
end if

end for
end while
perform DFS on the tree T in order to classify the non-tree edges (see Theorem 3.2.1)
for each back edge {v, w} do
mark back edge {v, w} as TRAVERSED
if cost[v]− cost[w] + w′(v, w) ≤ wmax then {cost of the cycle}
mark back edge {v, w} as ALLOWED
mark all edges on the path from v to w as ALLOWED

end if
end for
for each cross edge {v, w} do {cost of the path}
if pathDetected(r, w) and cost[v] + w′(v, w) + costPath(r, w) ≤ wmax then
mark cross edge {v, w} as TRAVERSED and ALLOWED
mark all edges on the path from v to r as ALLOWED

end if
end for

180 CHAPTER 7. WEIGHTED GRAPHS

The decision, as to whether a vertex is a critical vertex (an endpoint of some alternating
path), is made when a vertex is permanently labeled (is colored black). When a vertex
v is identified as a critical vertex, there exists an admissible lightest alternating path with
respect to the maximum/minimum edge-weighted matching from v to the root r. The reason
is that we cannot guarantee that the computed alternating path for gray labeled vertices
would be the shortest path, since the path for a gray colored vertex could be changed at
any time. All legal neighbor information is maintained by the data structure parent. Note
that the graph we construct is a digraph, with weights on vertices (by potential function π)
and edges (by reduced weights w′), even though the input graph was only an edge-weighted
undirected one.

Our algorithm is of a hybrid nature. It consists of a multiple breadth-first traversal, where
we always explore from the vertex of highest degree with respect to untraversed edges. First,
the algorithm determines the vertex incident with the maximal number of free edges with
respect to an initial matching M . Next, the algorithm generates a tree with a weighted
alternating breadth-first fashion (as described in the text above) and decreases the degree
of the visited vertices by the number of traversed edges. The algorithm then considers a
new vertex of highest degree to explore from, thus building a new tree. The edges examined
in this way form a new forest, becoming part of the weighted spanning tree (tree edges)
or forming an alternating cycle (back edges) or path (cross edges) of admissible cost. The
algorithm terminates when all edges in G have been traversed.

The correctness of our algorithm follows immediately from the following results:

Theorem 7.2.6 Lightest alternating cycles are discovered by back edges. Moreover, the cost
of the cycle equals cost[v]− cost[w] +w′(v, w), where w′(v, w) is a reduced weight of the back
edge {v, w}.

Proof If {v, w} is a back edge, then there must be a path in the breadth-first tree from v

to w. This path together with edge {v, w} forms a cycle. Since there are only cycles of even
length in bipartite graphs (Theorem 2.5.1), and any breadth-first tree contains only shortest
paths, this defines an even alternating cycle of admissible cost. Since there exists the lightest
alternating path of weight cost[w] from root r to vertex w, and the lightest alternating path
of weight cost[v] from r to v, then the lightest alternating path from v to w has the weight
cost[v] − cost[w] (since any subpath of the lightest path must also be the lightest path).
Thus, the cost of the alternating cycle is equal to cost[v]− cost[w] + w′(v, w). ut

Theorem 7.2.7 Lightest alternating paths can be determined by tree edges or cross edges.
Moreover, the cost of the (edge-weighted) path equals cost[v] + w′(v, w) + costPath(r, w),
where w′(v, w) is a reduced weight of the edge {v, w} and costPath(r, w) is a cost of the
(vertex-weighted) alternating path from r to w with respect to the potential function π.

Proof This follows from the fact that there exists an admissible alternating path from an
appropriate vertex v of the breadth-first tree to the root r. If the endpoints satisfy the
conditions needed for an alternating path then the lightest alternating path is detected.

7.2. COMPUTING THE PARTITION OF EDGES 181

According to Lemma 7.1.2 and Formula (7.1) the cost of any alternating path with
endpoints x and y equals

∑
e∈P w

′(e) + costPath(x, y).

If {v, w} is a tree edge, then the tree edges from the root r to the vertex v plus the edge
{v, w} form an alternating path of weight cost[v] + w′(v, w) + costPath(r, w).

If {v, w} is a cross edge, two distinct alternating paths from the root r to the vertex w
can be identified. One of these follows tree edges directly to w and has weight cost[w] +

costPath(r, w). The other alternating path follows tree edges to v and then uses cross edge
{v, w}, giving a cost of cost[v] + w′(v, w) + costPath(r, w). ut

The time complexity associated with the weighted breadth-first search is O(m+n · log n).
There are n−1 tree edges and m−n+1 non-tree edges; hence the category of non-tree edges
(back edge or cross edge) must be determined at most m − n times (some back edges, as
leading to the root of the tree, or some cross edges, as leading to gray vertices, can be found
immediately). Observe that the number of back edges leading to the root r is d(r)− dM (r).
Thus, the complexity of carrying out m−n+ 1− d(r) + dM (r) edges turns out to be harder
to realize since more breadth-first traversals must be performed. Therefore, it is difficult to
characterize the overall complexity of the algorithm but it is O(max{1, τ(G)}·(m+n · log n))

in the worst case (when more weighted forests must be examined), where τ(G) denotes the
cycle cover number of G; the average case running time is much better (since we can find
a few weighted alternating cycles in one search phase). The best case running time of the
algorithm is O(m+ n · log n) (when all the non-tree edges can be classified in linear time).
Observe that when all matched edges have reduced weight 0 and there only exist even
alternating cycles in the bipartite graph with bipartition (V1, V2), we can improve the best
case running time to O(m + k · log k), where k = min{|V1|, |V2|} (this can only happen in
the case of the ordinary weighted matchings). Using suitable data structures, the algorithm
requires O(m+ n) space.

We now give an example which demonstrates how our algorithm works. The correspond-
ing bipartite graph is depicted in the below figure: on the left side we have a minimum edge-
weighted matching, on the right side a maximum edge-weighted matching is shown. The
numbers near the edges denote their weights, whereas the reduced weights are given in the
parentheses. The potential of each vertex is also given in both cases. It is easy to check that
the bold edges form a minimum edge-weighted matching, which has weight cost(Mmin) = 15

and a maximum edge-weighted matching with a total weight cost(Mmax) = 32. Since there
are exposed vertices (in the subgraph GU), we will grow trees with roots on the even level.

Let G be a graph with the minimum edge-weighted matchingMmin shown on the left side
of the figure. Starting from (saturated) vertex y1, we construct the weighted alternating tree
Tmin displayed close to the graph G. Since the level is even only matched edge {y1, x2} leaves
the root. On the odd level we examine (three) free edges, which are ordered according to
their reduced weights and use increasing order for the priority queue: {x2, y4} with reduced
weight 0, {x2, y2} with reduced weight 3, and {x2, y3} with reduced weight 9.

When the search is continued, edges {y4, x4}, {x4, y5} and {y5, x3} are chosen and in-
serted into tree Tmin. Next, the back edge {x3, y4} is examined and a weighted alternating

182 CHAPTER 7. WEIGHTED GRAPHS

y3 y4

x4x2 x3x1

y5

y1

x2

x4

y4

x3

y5

y3

y2y1

9(2)6(4)

0

0

0

2

0

x1

10(9)7(1)5(0)

8(3)4(0)

2(0)

1(0)

2(0)

4(0)

5(0)

y2 y3

3 9

0

0

0

4

1

0

y3 y4

x4x2 x3x1

y5

y2

x1

x2

y1

x3

y4

y5

y2y1

9(0)6(0)

0

0

0

5

0

x4

10(0)7(0)5(0)

8(0)4(2)

2(7)

1(8)

2(5)

4(0)

5(6)

y3

7

6

0

2

0

8

06 5 5 7

-1 0 -4 -3 0

5 6 5 3

0 2 4 1 6

�

�

Figure 7.3: Weighted alternating breadth-first search

cycle y4x4y5x3y4 of cost 6 is detected. The remaining two non-tree edges {x1, y1} and
{x1, y2} can be easily determined. The first one, as leading to the root y1, is the back edge
that detects a new weighted alternating cycle y1x2y4x4y5x3y3x1y1 of cost 2. The second
one, as leading to the gray vertex y2, is the cross edge that discovers a weighted alternating
path y1x2y4x4y5x3y3x1y2 of cost 4.

When free edge {x2, y2} is examined we find an adjacent exposed vertex y2, which yields
a new alternating path y1x2y2 in G of cost 4. We want to use this path to determine allowed
edges. For this purpose, we trace this path backwards from its endpoint y2 to the root y1

of Tmin.

Note that edge {x2, y3} is ignored when cross edge {x3, y3}, as leading to the gray vertex
y3, is traversed and the vertex y3 is examined.

Since all vertices have been visited but not all edges have been traversed, further steps
must be performed in order to examine all of them. Thus, the algorithm will begin the
search from the vertex y3. We do not give its steps here, since it is a good exercise for the
reader to continue the example.

Let G be a graph with an initial maximum edge-weighted matching Mmax shown on the
right side in the above figure. Then a call of a weighted alternating breadth-first search
yields the result drawn on the right side of the figure, where choices are made according to
the reduced weights of edges. We begin by constructing a weighted alternating tree Tmax
with root y2, as described for the minimum-weight matching in the previous case. Whenever
we encounter a back edge closing an alternating cycle, we mark all involved edges as allowed.
The resulting weighted tree Tmax constructed by a weighted alternating breadth-first search
is shown on the right side of the figure. The only cross edge is {x2, y1}; the three back edges
are {x2, y2}, {x3, y3} and {x4, y4}.

In this example we have only demonstrated the weighted alternating breadth-first search
starting from the (first in order) saturated vertices y1 and y2 in B2. The reader is invited
to analyze the search starting from the vertex y3 or y4 with the highest degree in B2.

7.3. APPLICATION TO OPTIMIZATION CONSTRAINTS 183

7.3 Application to Optimization Constraints

In this section we demonstrate how our algorithms can be used for checking the feasibility and
establishing hyper-arc consistency for some of the most frequently used global constraints.
Various examples are given that illustrate the effectiveness of the approach.

Since we deal with weighted matchings, we consider the undirected weighted bipartite
graph G, called a weighted value graph. On one side we have a vertex for every variable and
on the other side we have a vertex for each value that occurs in the domains of variables.
There is an edge {xi, dj} in G iff dj ∈ Dxi

. We assign weights to vertices or edges and degree
conditions to vertices. Additionally, graph G is associated with lower and upper bounds,
cmin and cmax, on the cost. Initially cmin = min(Dcost) and cmax = max(Dcost).

Optimization constraints representable by weighted matchings are defined on a vertex-
or an edge-weighted graph G and a cost variable cost. They state that G admits an
appropriate weighted matching with cost at least min(Dcost) and at most max(Dcost). More
formally,

∀
e
∃
M

(e ∈M ⇒ min(Dcost) ≤ cost(M) ≤ max(Dcost)) .

Note that by the above definition we cannot restrict all values of Dcost to belong to a
solution. This would, however, be the case if we had defined the consequent cost(Me) ∈
Dcost. The reason for omitting this additional restriction on the cost variable cost is that
it makes the task of establishing hyper-arc consistency intractable. This follows from an
easy transformation from SUBSET SUM [182],[131, Problem SP13]. Therefore, we assume
that the domain of the cost variable consists of one single interval of consecutive values.
Note that this is actually the case for many real-world instances. Hence, with respect to the
cost variable we will establish bounds consistency. Thus, to enforce bounds consistency on
the cost variable, we increase a lower bound and decrease an upper bound of Dcost to the
cost of the minimum and maximum-weight matching in the weighted value graph.

We now develop a propagation algorithm for the optimization constraints, so that the
solution is representable by an appropriate weighted matching. Our routine works in the
following manner. First, we compute the minimum and the maximum cost that can be
achieved. These values can be used to detect inconsistency and to narrow the bounds of the
cost variable. If cost(Mmax) < min(Dcost) or cost(Mmin) > max(Dcost) then the constraint
is not consistent. Otherwise, if {cost(Mmin), cost(Mmax)} ∩ Dcost 6= ∅, the constraint has
a solution. On the other hand, if cost(Mmin) < min(Dcost) and max(Dcost) < cost(Mmax),
the constraint may not be consistent (see Figure 7.4).

Next, we filter the inconsistent edges and corresponding domain values in G. We deter-
mine the partition of edges with respect to the corresponding weighted matching and remove
the forbidden edges from the graph. If an edge in the matching is deleted we recompute this
matching and repeat these steps until no edge deletion occurs any more.

We compute for every variable xi and every value dj ∈ Dxi the minimum M
xidj
min and

the maximum M
xidj
max weighted matching, which can be achieved, if xi is fixed to dj and

all other domains remain the same. This can be used for pruning the domains of xi: if

184 CHAPTER 7. WEIGHTED GRAPHS

cost(M
xidj
min) > max(Dcost) or cost(Mxidj

max) < min(Dcost), we can remove the value dj from
the domain of the variable xi.

Finally, we narrow the lower bound of the cost variable to max{min(Dcost), cost(Mmin)}
and the upper bound to min{max(Dcost), cost(Mmax)}. If any domain becomes empty then
the constraint is inconsistent.

We can further use the particular structure of G. In the following we show how to solve
the problem by means of decomposition theory. In order to establish the partition of edges
algorithmically, we first compute an optimal (g, f)-matching in the bipartite graph G. This
can be realized in O(

√
g(V) ·m) operations by an algorithm due to Gabow [115]. In this

way we get the canonical decomposition 〈A1, B1, C1〉 and 〈A2, B2, C2〉. Using these sets of
partition, we can construct three, possible empty, induced subgraphs of G: GU , GO and
GW . For optimization constraints representable by weighted matchings, in a similar way as
for hard global constraints, it must hold that GO = ∅.

Using the standard approach of the Dulmage-Mendelsohn Decomposition we can easily
determine the partition of edges. We remove all mandatory edges from the graph G and
adjust the allowed bounds on the cost accordingly. Additionally, we shrink the bounds of
degree conditions, which is equivalent to enforcing bounds consistency on cardinality variable
domains associated with the bipartite graph (see Section 4.3.4).

We may assume that the canonical decomposition of G has been applied, since otherwise
we know that we can determine the canonical subgraphs of G in linear time (see Theo-
rem 4.3.3). We can then try to solve the problem for each connected component separately.
But for the vertex-weighted matching problem it suffices to consider only the connected
components of the subgraph GU since every alternating cycle in GW does not change the
cost of the vertex-weighted matching (unless g(x) = 0 ∧ f(x) > 2 for some vertices x).

In our algorithm we have considered the following six exclusive scenarios:

constraint inconsistent1)

pruning with respect to Mmax2)

intractable in general3)

pruning with respect to M4)

pruning with respect to Mmin5)

constraint inconsistent6)

interpretation descriptioncondition

cost(Mmax) < cmin

cost(Mmin) < cmin � cost(Mmax) � cmax

cmin � cost(Mmin) � cmax < cost(Mmax)

cmin � cost(Mmin) � cost(Mmax) � cmax

cost(Mmin) < cmin � cmax < cost(Mmax)

cmax < cost(Mmin)

Figure 7.4: Six scenarios for the weighted matching problem with bounds on the cost

7.3. APPLICATION TO OPTIMIZATION CONSTRAINTS 185

The general procedure is presented in Algorithm 20. For all tractable scenarios, we
achieve hyper-arc consistency for the assignment variables x1, . . . , xn. Additionally, for the
cost variable cost, we achieve in scenario 4 – bounds consistency, in scenario 2 – upper bound
consistency, and in scenario 5 – lower bound consistency. Therefore, in the following we will
write under these assumptions that we achieve hyper-arc consistency for the assignment
variables and bounds consistency for the cost variable.

Theorem 7.3.1 An optimization constraint whose solution is representable by a weighted
matching is consistent iff there exists a weighted matching with the cost lying between the
lower and the upper bound of the cost variable cost.

Proof Let G be the weighted value graph associated with the global constraint. Assume
that there exists a weighted matching of G with the cost within a given interval. From this
weighted matching we can build a solution of our constraint. On the other hand, if the
constraint is consistent then there exists a feasible weighted matching which corresponds to
the solution of the constraint. ut

It is now time to demonstrate our idea on concrete examples. For every global constraint
we first give its formal definition, then we derive a transformation to the weighted matching
problem, and finally we discuss some related global constraints. All definitions are taken
from the Global Constraint Catalog [27] (in some cases we changed the definition in order
to adapt it for our purposes).

For some examples we present our idea with figures. On the left side of the figure the
domains are given. On the right side of the figure the domains after pruning are shown. In
the middle of the figure the graph associated with the constraint and the decomposition of
edges is depicted. The edges of a matching M are shown in bold. The potential π of each
vertex is shown near the vertex in the auxiliary graph. Edge weights w and reduced weights
w′ are indicated next to each edge in the auxiliary graph as w(w′).

WEIGHTED_PARTIAL_ALLDIFF This constraint is abbreviated as wpa. It has
the form weighted_partial_alldiff(variables, undef, values, cost). From an
interpretation point of view this constraint is a generalization of a constraint called alld-

ifferent_except_0: all variables must have pairwise distinct values except those which
are assigned value undef. Additionally, with every value that occurs in the domains we as-
sociate the weight which is defined by the values collection. It is assumed that the weight
of value undef is always equal to 0. The constraint states that the sum of the weights of
the values that are assigned to the variables must be equal to variable cost. More formally,

weighted_partial_alldiff(〈x1, . . . , xn〉, undef, weights, cost) =

{(d1, . . . , dn) ∈ Dx1 × · · · ×Dxn | ∀
i,j
i<j

(di 6= dj ∨ di = dj = undef)∧

min(Dcost) ≤
n∑
i=1

weight(di) ≤ max(Dcost)}.

186 CHAPTER 7. WEIGHTED GRAPHS

Algorithm 20 Cost-based propagation routine for optimization constraints
Require: Global constraint representable by a weighted bipartite graph G with bounds
Ensure: Hyper-arc consistency, constraint inconsistent, or unknown
Compute the maximum matching M
Compute the Dulmage-Mendelsohn Canonical Decomposition (see Algorithm 3)
if GO 6= ∅ then
return FALSE {problem over-constrained}

end if
Determine the partition of edges (see Algorithm 4 and 5)
Identify mandatory edges and use them to decrease the bounds accordingly
Shrink the bounds of the degree conditions g and f (see Theorem 4.3.14)
Remove forbidden and mandatory edges from the graph
Compute the minimum-weight matching Mmin

if cmax < cost(Mmin) then {scenario 6}
return FALSE {constraint inconsistent}

end if
Compute the maximum-weight matching Mmax

if cmin > cost(Mmax) then {scenario 1}
return FALSE {constraint inconsistent}

end if
if cmin ≤ cost(Mmin) and cmax ≥ cost(Mmax) then {scenario 4}
set cmin ← cost(Mmin)

set cmax ← cost(Mmax)

return TRUE
end if
repeat
if cmax 6=∞ then {scenarios 3 and 5}
Determine the partition of edges with respect to Mmin (see Algorithm 18 and 19)
Remove forbidden edges from the graph
if cmin 6= −∞ then
Recompute the maximum-weight matching Mmax

set cmax ← min(cmax, cost(Mmax))

end if
end if
if cmin 6= −∞ then {scenarios 2 and 3}
Determine the partition of edges with respect to Mmax (see Algorithm 18 and 19)
Remove forbidden edges from the graph
if cmax 6=∞ then
Recompute the minimum-weight matching Mmin

set cmin ← max(cmin, cost(Mmin))

end if
end if

until no more forbidden edges detected
if cmin > cost(Mmin) and cmax < cost(Mmax) then {scenario 3}
return MAYBE {constraint may be not consistent}

end if
return TRUE

7.3. APPLICATION TO OPTIMIZATION CONSTRAINTS 187

The following two models can be used to establish hyper-arc consistency for this con-
straint. We build a vertex-weighted value graph, remove from it the vertex representing
value undef and define the degree conditions as follows. For each vertex representing a
variable we set g(x) = f(x) = 1 if undef /∈ Dx or g(x) = 0 and f(x) = 1, otherwise.
For each vertex representing a value we set g(x) = 0 and f(x) = 1. Further, we assign a
weight to every vertex. Each vertex representing a variable gets weight 0, and the weights
of vertices representing values are given by the values collection. Then it is easy to prove
that any vertex-weighted perfect (0,1)-matching corresponds to the solution of the constraint
and establishing hyper-arc consistency is equivalent to remove all forbidden edges from the
vertex-weighted graph defined as above.

The second model can be defined in a similar way. We create the vertex-weighted value
graph with the following degree conditions. For each vertex representing a variable we set
g(x) = f(x) = 1. For each vertex representing the defined value we set g(x) = f(x) = 1,
whereas for the vertex representing value undef we set g(x) = 0 and f(x) = d(x). Analo-
gously, as in the first model, we assign a weight to every vertex. Each vertex representing a
variable gets weight 0, the weights of vertices representing defined values are given by the
values collection; the weight of value undef is defined to be 0. Then it is straightforward
to check that there is a one-to-one correspondence between any admissible vertex-weighted
complete (g, f)-matching and the solution of the constraint. Therefore, establishing hyper-
arc consistency for this constraint can be done easily after computing the partition of edges.

We believe that our filtering algorithm is simpler and more intuitive than that presented
in [288, Chapter 4]. Our approach is indeed similar and more general, but our effort is
comparable to that of Sven Thiel. In contrast to his method, our propagation routine
performs only one depth-first search and we do not have to compute regrets explicitly, but
we are able to determine the partition of edges with the help of the weighted alternating
depth-first search. The partition of edges can be determined by starting from matched edges
and weighted vertices sorted in increasing order of their weights.

NVALUE The number_of_distinct_values constraint (abbreviated as nvalue) was
introduced in [240] under the name of cardinality_on_attribute_values. The con-
straint has the form nvalue(nval,variables), where nval is a domain variable and vari-

ables is a collection of variables. The constraint states that the number of distinct values
taken by the variables of the collection variables lies within the domain of the variable
nval. More formally, nvalue(n,〈x1, . . . , xn〉) holds iff∣∣∣∣∣∣

⋃
1≤i≤n

{xi}

∣∣∣∣∣∣ = N.

Achieving hyper-arc consistency for the nvalue constraint is, in general, NP-hard [42],
but incomplete polynomial-time filtering algorithms have been proposed [26],[41].

The purpose of this example is to show how to solve this constraint by means of the
weighted matching. We build a vertex-weighted value graph with the following weights and
degree conditions. For each vertex representing a variable we set w(x) = 0, g(x) = f(x) = 1

188 CHAPTER 7. WEIGHTED GRAPHS

and for each vertex representing a value we set w(x) = 1, g(x) = 0 and f(x) = d(x), where
d(x) denotes the degree of the vertex x. Then it is easy to prove that any admissible vertex-
weighted perfect (g, f)-matching represents the solution of the constraint. When all the
domains of the variables are intervals, we know that the constraint can be made hyper-arc
consistent. Otherwise, establishing hyper-arc consistency is NP-hard (see Theorem 7.2.1).

In Figure 7.5 we present an example from [26] and we show how our method works.

Mmin

x3x2x1

10 2

D(x1) = [0,3]
D(x2) = [0,1]
D(x3) = [1,7]

D(x6) = [3,4]
D(x7) = [3,3]
D(x8) = [4,6]

D’(x1) = [1,3]
D’(x2) = [1,1]
D’(x3) = [1,5]

D’(x6) = [3,4]
D’(x7) = [3,3]
D’(x8) = [4,5]

D(x4) = [1,6]
D(x5) = [1,2]

D(x9) = [4,5]

D’(x4) = [1,5]
D’(x5) = [1,1]

D’(x9) = [4,5]

x4 x5

3 4

x6 x7 x8 x9

5 6 7

D(N) = [1,3] D’(N) = [3,3]

×

Figure 7.5: Pruning of the NVALUE constraint

The constraint generalizes the constraints alldifferent (by setting Dnval = {n}),
not_all_equal (by Dnval = {2, . . . , n}) and all_equal (by Dnval = {1}), but one
should use the filtering algorithms specified for these three constraints, because they achieve
a more efficient pruning.

SUM_OF_WEIGHTS_OF_DISTINCT_VALUES This global constraint (abbre-
viated as swdv) is a weighted version of the nvalue constraint. The constraint was intro-
duced in [28], where the filtering algorithm has also been given. The constraint has the form
swdv(variables,values,cost). All variables take the values in the values collection.
In addition, cost is the sum of the weights associated to the distinct values taken by the
variables. The formal definition of this constraint looks as follows:

sum_of_weights_of_distinct_values(〈x1, . . . , xn〉, weights, cost) =

{(d1, . . . , dn) ∈ Dx1
× · · · ×Dxn

| S =
⋃

1≤i≤n

{di},

min(Dcost) ≤
∑
di∈S

weight(di) ≤ max(Dcost)}.

In a similar way to the previous example, we build a vertex-weighted value bipartite graph
with the following degree conditions. We set g(x) = f(x) = 1 for each vertex representing
a variable and g(x) = 0 and f(x) = d(x) for each vertex representing a value. Then it is
easy to see that the solution of this constraint corresponds to the vertex-weighted matching
problem. The minimum/maximum cost of a variable assignment is equal, respectively, to
the cost of the minimum/maximum vertex-weighted perfect (g, f)-matching in the vertex-
weighted value bipartite graph defined as above.

7.3. APPLICATION TO OPTIMIZATION CONSTRAINTS 189

According to Theorem 7.2.1 the constraint is intractable in general. However, we know
that when the vertex-weighted bipartite graph is convex (which corresponds to the situation
that each variable has a domain consisting of one single interval of consecutive values) this
leads to a polynomial algorithm establishing hyper-arc consistency.

Our filtering algorithm is basically equivalent to that presented in [28] but considerably
more intuitive since it uses the language of matching theory. Sven Thiel states [288, page 109]
that the "lower side" of swdv is quite different from the "upper side" and seems to be more
difficult to handle. However, as this example shows, there exists a certain connection between
them and both sides can be handled with the same method: vertex-weighted matching.

COST_ALLDIFFERENT The cost_alldifferent constraint is the conjunction of
the well-known alldifferent constraint and the sum constraint. The constraint has the
form cost_alldifferent(variables,matrix,cost). Just as for the common alldiffer-

ent constraint, all variables should take distinct values. In addition, the domain variable
cost is equal to the sum of the weights associated to the fact that we assign value dj to
variable xi. These weights are given by the matrix collection. More formally,

cost_alldifferent(〈x1, . . . , xn〉, weights, cost) =

{(d1, . . . , dn) ∈ Dx1 × · · · ×Dxn | ∀
i,j
i6=j

(di 6= dj)∧

min(Dcost) ≤
n∑
i=1

weight(xi, di) ≤ max(Dcost)}.

The addition of costs to an alldifferent constraint has been studied by Yves Caseau
and François Laburthe [58]. The authors do not propose any filtering algorithm but only
show an interest in computing the consistency of such a global constraint. Our effort shows
that the feasibility of this constraint can be checked by searching for an admissible edge-
weighted complete matching in the corresponding edge-weighted value graph and hyper-arc
consistency can be established in polynomial time.

The following model is used to establish hyper-arc consistency of the domain variables
and bounds consistency of the cost variable. We create an edge-weighted bipartite value
graph. Then it is easy to check that there is a one-to-one correspondence between the
solution of this constraint and computing an admissible edge-weighted complete matching.

According to Theorem 7.2.5 the value dj of the variable xi is not consistent with the
cost_alldifferent constraint iff there exists no admissible edge-weighted matching which
contains an edge e = {xi, dj}. So, if e is not contained in any admissible alternating cycle
or any admissible alternating path then the value dj of the variable xi is not supported and
can be deleted from the domain Dxi

.
Our constraint is strongly related with the constraint weighted_partial_alldiff,

which we previously discussed. It should not be difficult to observe that the vertex-weighted
matching problem can be regarded as a particular case of the edge-weighted matching prob-
lem. We can reduce the former to the latter by turning the vertex-weight function into an
edge weight-function. The weight of every edge would simply be the sum of the weights of

190 CHAPTER 7. WEIGHTED GRAPHS

its incident vertices w(xi, dj) = w(xi) +w(dj) for every edge {xi, dj} (in our case w(xi) = 0

for all i). This simple transformation from the vertex-weighted matching problem to the
edge-weighted matching problem shows that the same filtering algorithm can be used.

MINIMUM_WEIGHT_ALLDIFFERENT This constraint (abbreviated as mwa) is
a minimization version of the alldifferent constraint with costs. It was introduced in [58]
(under the name MinWeightAlldiff) and in [105] (under the name IlcAlldiffCost).
The filtering algorithm is described in [267]. With the help of cost_alldifferent this
constraint can be modeled as follows.

We first create an edge-weighted value graph associated with the constraint and set
cmin = −∞. In order to check the feasibility we compute the minimum edge-weighted perfect
matchingMmin. Using the Hungarian algorithm it can be realized in timeO(n·(m+n·log n)).
If cost(Mmin) > max(Dcost) we know that the constraint has no solution.

To achieve hyper-arc consistency we need to remove all edges e /∈ Mmin that cannot
be a part of any lightest alternating cycle Ce with cost(Mmin) + cost(Ce) ≤ max(Dcost).
The constraint can be made hyper-arc consistent in the worst-case computational time of
O(τ(G) · (m+ n · log n)).

Observe that a very important property of our algorithm is that we can run it without
explicitly transforming the graph G into a directed corresponding network NM , as described
in [267]. This can be realized by means of the weighted alternating breadth-first search. In
addition, it is not necessary to compute all-pairs shortest paths as proposed in the mentioned
paper.

Meinolf Sellmann [267] posed an open problem whether his algorithm can be implemented
to run incrementally faster. This example gave the affirmative answer to his question.

SOFT_INVERSE_VAR The soft_inverse_var constraint is the soft version of the
inverse constraint with the variable-based violation measure. The constraint is denoted by
soft_inverse_var(nodes,nodes,cost). With the algorithm we propose, we are able for
the first time to achieve hyper-arc consistency for this constraint. First, recall the definition
of the hard version of the constraint:

inverse(〈x1, . . . , xn〉, 〈y1, . . . , yn〉) =

{(d1, . . . , dn) ∈ Dx1 × · · · ×Dxn , (d
′
1, . . . , d

′
n) ∈ Dy1 × · · · ×Dyn | ∀

i 6=j
(di = j ⇔ d′j = i)}.

We can make the soft constraint hyper-arc consistent in the following way. This constraint
can be expressed by a complete edge-weighted bipartite graph, called a weighted variable
graph, in which vertices correspond to the variables and the weight function is defined
as follows. There is an edge between two vertices x and y with weight w(x, y) = 0 if
x ∈ Dy ∧ y ∈ Dx. There is an edge with weight w(x, y) = 1 if only one of these two
conditions holds (i.e. x ∈ Dy ∧ y /∈ Dx ∨ x /∈ Dy ∧ y ∈ Dx). All the remaining edges
become the weight w(x, y) = 2. It is now straightforward to see that there is a one-to-one
correspondence between the minimum edge-weighted perfect matching in the corresponding
graph and the solution of the constraint.

7.3. APPLICATION TO OPTIMIZATION CONSTRAINTS 191

COST_GLOBAL_CARDINALITY This constraint was introduced in [258] under the
name global_cardinality_constraint with costs, where also the algorithm achiev-
ing hyper-arc consistency, based on the minimum cost flow algorithm, has been given. The
constraint has the form cost_gcc(variables,values,matrix,cost). It states that the
number of variables in the variables collection which assume value from the values collec-
tion is within the given interval. Additionally, the assigned cost is equal to the sum of the
weights associated to the edges. These weights are given by the matrix collection. More
precisely, for a given set of variables, this constraint is the conjunction of the sum constraint
and the gcc constraint.

A constraint is specified in terms of a set of variables which take their values in a subset
of values. It constrains the number of times a value vi ∈ values is assigned variables in
variables to be within a given interval [lvi , uvi]. The minimal and the maximal number
of occurrences of each value can be different from the others. This motivates the following
definition:

cost_global_cardinality(〈x1, . . . , xn〉, 〈lv1 , . . . , lvk〉, 〈uv1 , . . . , uvk〉, weights, cost) =

{(d1, . . . , dn) ∈ Dx1 × · · · ×Dxn |

∀
j

lvj ≤
∣∣∣∣∣∣∣∣
⋃

1≤i≤n
vj=di

{i}

∣∣∣∣∣∣∣∣ ≤ uvj
∧

min(Dcost) ≤
n∑
i=1

weight(xi, di) ≤ max(Dcost)}.

The following model can be used to establish hyper-arc consistency for this constraint.
We construct an edge-weighted bipartite value graph with degree conditions g and f . The
vertices on one side correspond to the variables and vertices on the other side correspond
to the values. For each variable xi we define g(xi) = f(xi) = 1 and for each value vj
we set g(vj) = lvj and f(vj) = uvj . Then it is easy to show that there exists a one-to-
one correspondence between the admissible edge-weighted perfect (g, f)-matching and the
solution of the constraint (Figure 7.6).

In order to check the feasibility we first compute a minimum edge-weighted (g, f)-
matching Mmin in an edge-weighted value graph G defined as above. To achieve hyper-arc
consistency we need to remove all edges e /∈Mmin that cannot be a part of any perfect (g, f)-
matching with cost less than max(Dcost). This simply corresponds to edges e that are not
contained in any lightest alternating cycle Ce with cost(Mmin) + cost(Ce) ≤ max(Dcost) or
in any lightest alternating path P e of even length with cost(Mmin)+cost(P e) ≤ max(Dcost).

In order to compute the partition of edges we begin the weighted alternating breadth-first
search from positive (or negative) vertices. If not all edges have been traversed we continue
the search from neutral vertices.

Our version of the constraint allows us to solve the minimization, maximization or op-
timization problem, although in the original paper due to Jean-Charles Régin [258] only a
minimization version of the constraint was considered.

192 CHAPTER 7. WEIGHTED GRAPHS

1(0)

2(0)

1(0)

2(1)3(2)

2(1)

2(1)

1(0) 1(0)

0 0 0 0

x5x4x3x2x1

431 2D(x1) = {1,2}
D(x2) = {1,2}
D(x3) = {1,2}
D(x4) = {1,2}
D(x5) = {3,4}

D’(x1) = {1,2}
D’(x2) = {1}
D’(x3) = {2}
D’(x4) = {1,2}
D’(x5) = {3,4}

1(2,2)
2(2,2)
3(0,1)
4(0,1)

1 1 1 2 1

2(0)

x1(1,1)
x2(1,1)
x3(1,1)
x4(1,1)
x5(1,1)

D(cost) = [-∞,7] D’(cost) = [6,7]

×
×

π

π

Figure 7.6: Pruning of the COST_GCC constraint

COST_SYMMETRIC_CARDINALITY This global constraint extends the familiar
symmetric_cardinality constraint with a weight function associated with each individ-
ual assignment. It is a conjunction of the latter and the sum constraint. The constraint
was introduced in [190], where also the filtering algorithm based on flow theory has been
proposed. The constraint is defined as follows:

cost_symmetric_cardinality(〈x1, . . . , xn〉, bounds, weights, cost) =

{((d1
1, . . . , d

k1
1), . . . , (d1

n, . . . , d
kn
n)) ∈ Dk1

x1
× · · · ×Dkn

xn
|

∀
i

(lxi
≤ ki ≤ uxi

)∧

∀
j

lvj ≤
∣∣∣∣∣∣∣∣
⋃

1≤i≤n
vj=di

{i}

∣∣∣∣∣∣∣∣ ≤ uvj
∧

min(Dcost) ≤
n∑
i=1

ki∑
j=1

weight(xi, d
j
i) ≤ max(Dcost)}.

In a similar way to the previous example, this constraint can be modeled with the help of
the edge-weighted bipartite graph. We define the degree conditions g and f as follows. For
each variable xi we set g(xi) = lxi and f(xi) = uxi and for each value vj we set g(vj) = lvj

and f(vj) = uvj . Then it is easy to show that every admissible edge-weighted perfect (g, f)-
matching represents the solution of the constraint (Figure 7.7). Therefore, establishing
hyper-arc consistency for this constraint is equivalent to the search for forbidden edges in
the edge-weighted value graph defined as above. The consistency of the constraint can be
checked in O(f(V) · (m + n · log n)) and hyper-arc consistency can be computed in the
complexity of O(τ(G) · (m + n · log n)) providing that an optimal edge-weighted perfect
(g, f)-matching has been found.

The constraint is consistent if there exists an edge-weighted perfect (g, f)-matching which
satisfies lower and upper bounds of the cost variable. Recall that perfect (g, f)-matchings can
have the different number of edges. This property gives a way of computing the consistency
of the constraint by determining a minimum/maximum perfect (g, f)-matching M with a
maximum number of edges and checking if min(Dcost) ≤ cost(M) ≤ max(Dcost). If this
inequality does not hold we would need to verify whether there exists another perfect (g, f)-
matchingM ′ such that cost(M ′) < cost(M) satisfying bound conditions of the cost variable.

7.3. APPLICATION TO OPTIMIZATION CONSTRAINTS 193

For a cost_global_cardinality constraint there is an equivalent constraint sym-

metric_cardinality with costs where the cardinality of each variable is restricted to [1, 1].
Similarly, for a cost_alldifferent constraint there is a cost_symmetric_cardinality

constraint where the cardinalities of each variable are restricted to [1, 1] and the cardinalities
of each value are restricted to be within the interval [0, 1].

1(0)

2(0)

1(0)

2(0)2(0)

1(0)
2(1)1(0)

1(0)

0 0 1 0 0

x5x4x3x2x1

1 542 3D(x1) = {2,3}
D(x2) = {1,3}
D(x3) = {2,4}
D(x4) = {3,4,5}
D(x5) = {5}

D’(x1) = {2,3}
D’(x2) = {1,3}
D’(x3) = {2,4}
D’(x4) = {4,5}
D’(x5) = {5}

1(0,1)

2(0,1)
3(0,1)

4(1,2)
5(0,2)

1 0 1 2 1

0(0)

x1(0,2)

x2(0,1)
x3(1,1)

x4(0,2)
x5(0,1)

D(cost) = [8,∞] D’(cost) = [8,9]

×π
π

Figure 7.7: Pruning of the COST_SYMMETRIC_GCC constraint

COST_SYMMETRIC_ALLDIFFERENT In this example we discuss a constraint
symmetric_alldifferent associated with costs. We will present a filtering algorithm for
this constraint, which is based on standard algorithms of combinatorial optimization for the
computation of weighted matchings in general graphs. To the best of our knowledge the
cost_symmetric_alldifferent constraint itself has not been treated before.

The constraint has the form cost_symmetric_alldifferent(nodes,matrix,cost).
With every value dj that occurs in the domain of some variable xi we associate a non-
negative weight w(xi, dj) which is defined by matrix. Clearly, w(xi, dj) = w(xj , di). The
constraint states that cost must be equal to the sum of the weights of the values that are
assigned to the variables. The parameter cost is a cost variable. Its domain must be an
interval.

The cost_symmetric_alldifferent constraint is a generalization of the symmet-

ric_alldifferent constraint in which a cost is associated with every value of each variable.
Then, each solution of the underlying symmetric_alldifferent constraint is associated
with a global cost equal to the sum of the costs associated with the assigned values of the
solution. The symmetric_alldifferent constraint with costs restricts the global cost to
be within a lower and upper bound of the cost variable.

The constraint is defined more formally as follows:

cost_symmetric_alldifferent(〈x1, . . . , xn〉, weights, cost) =

{(d1, . . . , dn) ∈ Dx1 × · · · ×Dxn | ∀
i,j

(di 6= i ∧ di = j ⇔ dj = i)∧

min(Dcost) ≤
n∑
i=1
i<di

weight(xi, xdi) ≤ max(Dcost)}.

In Section 5.4 (Example 1) about the common symmetric_alldifferent constraint
we have seen that solutions of this global constraint correspond in a natural way to perfect
matchings in a so-called value graph. Since our new problem deals with weighted assign-
ments, we consider the weighted value graph G. We construct graph G = (V,E) with the

194 CHAPTER 7. WEIGHTED GRAPHS

vertex set V = {x1, . . . , xn} and edge set E = {{xi, xj} | i ∈ Dxj
∧ j ∈ Dxi

}. We extend
the value graph G by applying a weight function to its edges. The weight of edge {xi, xj}
is w(xi, xj) for all 1 ≤ i < j ≤ n and j ∈ Dxi .

Let cost_symmetric_alldifferent(nodes,matrix,cost) be the constraint under
consideration in this example and let G be its edge-weighted value graph. It is easy to
see that there is a tight correlation between this constraint and the edge-weighted perfect
matching problem. Therefore, there is also a one-to-one correspondence between the optimal
cost of variable assignments and admissible edge-weighted perfect matchings in G.

We have transformed our constraint into an edge-weighted matching problem. We want
now to compute an admissible edge-weighted perfect matching in G efficiently. For the latter
problem, a series of well-known algorithms has been developed. A maximum edge-weighted
perfect matching can be found from scratch in time O(n · (m+n · log n)) using the algorithm
by Gabow [118] or in time O(m·log (nW)·

√
n · α(m,n) · log n) by applying the sophisticated

algorithm by Gabow & Tarjan [124] (here, W is the largest magnitude of an edge weight
and α is an inverse of Ackermann’s function, which is very slow growing).

The following table summarizes known polynomial-time algorithms for solving the prob-
lem; here, d = max{m/n, 2} is the density of the graph (cf. [264, Section 26.3a]):

Year Author(s) Complexity Strategy

1965 Edmonds [89] O(n4) primal-dual
1973 Gabow [113] O(n3) labeling
1976 Lawler [201] O(n3) labeling
1982 Galil et al. [126] O(n ·m · log n) priority queue
1984 Gabow et al. [120] O(n · (m · log

(3)
d n+ n · log n)) contraction, packets

1985 Gabow [116] O(n3/4 ·m · logW) cost scaling, shells
1990 Gabow [118] O(n · (m+ n · log n)) Fibonacci heaps
1991 Gabow & Tarjan [124] O(

√
n · α(m,n) · log n ·m · log (nW)) ε-optimality

1999 Blum [47] O(n ·m · log n) reachability
2012 Huang & Kavitha [169] O(

√
n ·m ·W · logn

n2

m) augmenting

Table 7.4: History of algorithms for the edge-weighted non-bipartite matching problem

However, the matching can be updated more quickly. For instance, if arbitrary changes
are made to the edges incident to one vertex, a new maximum edge-weighted perfect match-
ing can be constructed by finding one weighted augmenting path [20],[116]. This can be
done in time O(m+ n · log n) [118].

The filtering algorithm for the symmetric_alldifferent constraint with costs is an
extension of the filtering algorithm of the symmetric_alldifferent without costs and is
based on finding an admissible weighted perfect matching of G.

In the following, we describe an algorithm that achieves hyper-arc consistency in the
same worst-case running time as is needed to compute a minimum edge-weighted perfect
matching when using the above mentioned methods or algorithms.

To achieve hyper-arc consistency of the cost_symmetric_alldifferent constraint,

7.3. APPLICATION TO OPTIMIZATION CONSTRAINTS 195

we need to remove all values from variable domains that cannot be a part of any feasible
assignment of values to variables with associated cost lying within a given interval. That
is, in the graph interpretation of the problem, we need to compute and remove the set of
edges that cannot be a part of any perfect matching with cost both greater than or equal to
minimal and less than or equal to maximal value of the cost variable cost.

From the above results we can define the following filtering algorithm for computing
the partition of edges. First, we compute the minimum and the maximum-weight perfect
matching Mmin and Mmax in the weighted value graph G. If the perfect matching does not
exist, w(Mmin) > max(Dcost) or w(Mmax) < min(Dcost) then we know that the constraint
has no solution. Otherwise, we detect the forbidden edges in G and corresponding domain
values in the constraint. Using the standard approach of the Gallai-Edmonds Decomposition
presented in Chapter 5, we can easily determine the set of admissible and forbidden edges.

In order to achieve this, we must find an extreme set. This can be done by means of the
algorithm given in Chapter 5. We choose an arbitrary (not yet visited) vertex x and compute
the Gallai-Edmonds Decomposition 〈A,B,C,D〉 in G−x. We know that the set X = A∪{x}
is extreme in G. Then, for every free edge e connecting X to Di we recompute the minimum
edge-weighted perfect matching in G[Di]∪{e} and set w(e) to an obtained weight decreased
by the cost of the matching in the blossom G[Di]. It takes only one iteration to complete
the optimal matching due to the incrementality of the algorithm. Then, in order to find the
forbidden edges, we perform the weighted alternating breadth-first search on the bipartite
multigraph G0 with bipartition (X,B ∪ base(Di)), where base(Di) denotes the base of the
blossom Di. Next, we mark all vertices in X ∪ B as visited and repeat the whole routine
until all vertices are marked as visited (Figure 7.8).

Finally, to enforce bounds consistency on the cost variable cost, we narrow the lower
and the upper bound of Dcost to the cost of the minimum and the maximum-weight perfect
matching in the weighted value graph. If any domain becomes empty then the constraint is
not consistent.

2

1 3

D(x1) = {3,4,5}
D(x2) = {3,6}
D(x3) = {1,2,4}
D(x4) = {1,3,6}
D(x5) = {1,2,6}

D’(x1) = {4,5}
D’(x2) = {3,6}
D’(x3) = {2,4}
D’(x4) = {1,3}
D’(x5) = {1,6}5

4

2

1

3

5

X

B
×

6

6

4

4

3

4
3

1

2
1

2

D(x6) = {2,4,5}
D(cost) = [2,9]

D’(x6) = {2,5}
D’(cost) = [6,8]

×

ππ 0.5 1.5 1.5

2.5 -0.5 0.5

×

Figure 7.8: Pruning of the COST_SYMMETRIC_ALLDIFFERENT constraint

COST_TOUR The global constraint cost_tour is an optimization version of the tour

constraint. This constraint can be used to model the Traveling Salesperson Problem (abbre-
viated as TSP). Recall that the TSP is the problem of finding a Hamiltonian cycle visiting
a set of n cities only once and minimizing the travel distance. The constraint has the
form cost_tour(nodes,matrix,cost) where nodes is a collection of n variables whose

196 CHAPTER 7. WEIGHTED GRAPHS

domains are subsets of {1, . . . , n}, matrix is an array containing the costs (distances or
capacities) of connecting each pair of vertices and cost is an objective function. The con-
straint is satisfied when nodes form one cycle involving all variables with an optimal cost.
More formally,

cost_tour(〈x1, . . . , xn〉, weights, cost) =

{((d1
1, d

2
1), . . . , (d1

n, d
2
n)) ∈ Dx1

× · · · ×Dxn
| ∀
i,j

(j ∈ {d1
i , d

2
i } ⇔ i ∈ {d1

j , d
2
j})∧

∀
S⊂{1,...,n}

(⋃
i∈S
{d1
i , d

2
i } 6= S

)
∧

min(Dcost) ≤
n∑
i=1
i<di

weight(xi, xdi) ≤ max(Dcost)}.

The second condition in the above definition is the so-called subtour elimination con-
straint . It excludes cycles between arbitrary proper subset S of vertices of G by requiring
that at least one edge connects a vertex outside S to one within S. This is the so-called
nocycle constraint [57],[247].

Clearly, the TSP is a special (i.e. connected) minimum edge-weighted perfect 2-matching.
Since it is a difficult NP-complete problem [131, Problem ND22], no complete solution can
be expected. But our results discussed above shed some light on this connection. They also
yield a nice partial pruning method for this constraint.

A necessary condition for the satisfiability of this constraint is to have no more than
one single connected component. The second necessary condition is that the graph must be
2-connected. Other necessary conditions are given in Chapter 5 (Section 5.4).

In this example we demonstrate a partial filtering method not presented before. Our
idea is based on identifying perfect matchings in an incremental graph corresponding to
the underlying graph associated with the constraint. This follows from the fact that every
Hamiltonian cycle is a connected perfect 2-matching. Our routine looks for a perfect match-
ing in the incremental graph and any edge not belonging to it will be removed from the
associated graph. This will result in deleting some edges from the associated graph, which
cannot be a part of any Hamiltonian cycle.

Let us first try to count how many vertices and edges will have the incremental graph.
Let G = (V,E) be a graph associated with the cost_tour constraint. Clearly, the number
of vertices is equal to the number of variables, and the number of edges equals half of the
sum of domain cardinalities. Thus, n = |X| and m = 1

2

∑
|Dxi
| for all xi ∈ X.

For f(x) = 2 the gadget, which is the complete bipartite subgraph Kd(x),d(x)−2, with
weight w(e) = 0 for every internal edge e in the gadget, obviously has 2d(x)−2 vertices and
d(x)(d(x) − 2) edges for every x ∈ V and d(x) ≥ 2. Thus, the incremental graph G∗ will
have 4m− 2n ∈ O(m) vertices and

∑
x∈V d(x)2 − 3m ∈ Ω(m · n) edges and the complexity

of finding the maximum matching in incremental graph would be O(m2 · (n + logm)) by
using the algorithm due to Gabow [118] or O(m ·n · log (mW) ·

√
m · α(m · n,m) · logm) by

applying the sophisticated algorithm due to Gabow & Tarjan [124].

7.3. APPLICATION TO OPTIMIZATION CONSTRAINTS 197

Note that for d(x) > 4 the reduction procedure which allows us to transform the perfect 2-
matching problem in G onto the perfect matching problem in G∗ is very inefficient, because it
highly increases the number of vertices and edges of the incremental graph. The computation
of the minimum edge-weighted matching may be prohibitively expensive and can hinder
this method from being systematically used during the search for a solution to a perfect 2-
matching problem. Therefore, one way to reduce the time complexity would be to construct
a graph G∗ with the number of edges estimated by O(m). We define, for every x ∈ V , a
more suitable gadget as the complete bipartite subgraph Kd(x),2 with d(x) pendant edges
attached at external vertices (see [220]). It is now easy to see that a perfect matching in G∗

corresponds to a perfect f -matching in G in which matched edges form a perfect 2-matching.
Since the resulting graph will have 4m+ 2n vertices and 7m ∈ O(m) edges, as required, the
edge-weighted matching algorithm with sufficiently complexity will be maintained.

The cost_tour constraint is called a weighted_circuit constraint in [37]. The
authors propose the filtering algorithm based on the 1-tree relaxation due to Michael Held
and Richard M. Karp [156,157]. We demonstrate the behavior of the filtering method by
the sample graph given in Figure 7.9. The graph has been taken from [37] as a running
example. We examine this graph again.

6

1 4

D(x1) = {2,3,6}
D(x2) = {1,4,5}
D(x3) = {1,4,5}
D(x4) = {2,3,6}
D(x5) = {2,3,6}

D’(x1) = {2,3}
D’(x2) = {1,4,5}
D’(x3) = {1,4,5}
D’(x4) = {2,3,6}
D’(x5) = {2,3,6}2

4

2

8
3

5

X

B

5

6
3

4

3

5

3

6

4

1

2

D(x6) = {1,4,5}
D(cost) = [0,25]

D’(x6) = {4,5}
D’(cost) = [24,25]

5
× ×

π 6 6 6π -3 -1 0

Figure 7.9: Pruning of the COST_TOUR constraint

COST_PATH Shortest path problems play a central role in both the design and use of
communication networks. In this example we consider a constraint for the shortest path
problem.

The global constraint cost_path is defined on an edge-weighted graph G. The con-
straint is satisfied if some edges form an optimal path in G between two distinguished vertices
s and t. This constraint can be formally defined as follows:

cost_path(〈x1, . . . , xn〉, weights, cost) =

{((d1
1, d

2
1), . . . , ds, . . . , dt, . . . , (d

1
n, d

2
n)) ∈ Dx1 × · · · ×Dxn | ∀

i,j
(j ∈ {d1

i , d
2
i } ⇔ i ∈ {d1

j , d
2
j})∧

∀
S⊆{1,...,n}\{s,t}

(⋃
i∈S
{d1
i , d

2
i } 6= S

)
∧

min(Dcost) ≤
n∑
i=1
i<di

weight(xi, xdi) ≤ max(Dcost)}.

198 CHAPTER 7. WEIGHTED GRAPHS

The cost_path constraint was introduced in [268] under the name shorter_path,
where also an incomplete cost-based filtering was given. In this example we show how to
solve the problem of optimal path between a designated pair of vertices by solving an edge-
weighted parity (g, f)-matching problem. We transform the cost_path constraint into an
edge-weighted parity (g, f)-matching problem as follows. Suppose that we want to solve
the optimal path problem from the source vertex s to the target vertex t. We construct
an auxiliary edge-weighted graph G. We set f(s) = f(t) = 1 and g(x) = 0, f(x) = 2 for
all the remaining vertices. It is easy to see that any path from s to t represents a parity
(g, f)-matching M in the corresponding edge-weighted graph G (i.e. dM (s) = dM (t) = 1

and dM (x) ∈ {0, 2} for all other vertices x).

In order to transform the parity (g, f)-matching problem into an f -matching problem we
add a loop of weight w(x, x) = 0 to each vertex x, except vertices s and t. Now we could
transform the f -matching problem to the perfect matching problem as demonstrated in the
previous example, but we will present another transformation. The transformation that we
give is taken from [4, Chapter 12.7]. It consists of two steps. In the first step, we insert two
additional vertices, x′e and x′′e , in the middle of each edge e = {xi, xj} for which xi 6= xj and
f(xi) = f(xj) = 2. Further, we set w(xi, x

′
e) = w(xj , x

′′
e) = 1

2w(xi, xj) and w(x′e, x
′′
e) = 0.

In the second step of the transformation we split each vertex xi such that f(xi) = 2 into
two vertices x′i and x′′i . For each edge {xi, xj} we introduce two edges {x′i, xj} and {x′′i , xj}
with the same weight as the edge {xi, xj}. It is easy to establish an equivalence between
the edge-weighted perfect f -matching in G and the edge-weighted perfect matching in the
resulting graph. Therefore, we can obtain an optimal path with the same cost by solving
the admissible edge-weighted perfect matching problem by any polynomial time algorithm.

It is easy to calculate that the resulting graph will have at most 2m + 2n vertices and
at most 5m edges. Hence, the size of the resulting graph is polynomial in the size of the
original graph. Furthermore, the cost of a perfect f -matching in G is equal to the cost of
the corresponding perfect matching M in the resulting graph G∗ (Figure 7.10).

The problem of finding an optimal path connecting two given vertices of an undirected
connected graph is trivial since there is only one such path. To decide whether there exists
an optimal path that visits a certain set of edges is NP-hard. Consequently the problem of
achieving hyper-arc consistency for the cost_path constraint is also NP-hard.

4'’

s 12'’

D(xs) = {1,2}
D(xt) = {3,4}
D(x1) = {2}
D(x2) = {1,4}
D(x3) = {4}

D’(xs) = {1}
D’(xt) = {3,4}
D’(x1) = {2}
D’(x2) = {1,4}
D’(x3) = {4}1'

2

t

s

1

3

X

D×

24'’

4

2'’

4

6

3

1

21

2

D(x4) = {2,3}
D(cost) = [5,11]

D’(x4) = {2,3}
D’(cost) = [9,11]

{1'’,12'} {2’,24'}
{t,3', 3'’, 4',
34', 34'’}

� 4.5 2.5 1.5

� -2.5 -2 0.5

Figure 7.10: Pruning of the COST_PATH constraint

7.4. SUMMARY 199

7.4 Summary

In this chapter we have proposed an efficient way of implementing a filtering algorithm for
the optimization constraints. The method is based on the modified version of the alternating
depth-first search (for vertex-weighted matchings) and alternating-breadth-first search (for
edge-weighted matchings). We have demonstrated that weighted matching is a powerful tool
for cost-based modeling several global constraints. We have shown that hyper-arc consistent
filtering algorithm is NP-hard if an optimal solution should be found as lying within the given
interval of bounds. It remains open whether the technique we have used can be generalized
to more optimization constraints.

The following table summarizes all the results for optimization constraints that were
discussed in this chapter. The constraints designated with an asterisk are NP-hard. Here
n denotes the total number of vertices in the graph G associated with the constraint, k is
the minimum of the number of values (the cardinality of the union of all variable domains)
or the number of variables, m is the number of edges (the sum of the cardinalities of the
variable domains), h denotes half of the number of vertices incident with the forbidden edges
(the number of pruned variable-value pairs), p denotes the number of maximal extreme sets
in G, and t = max{1, τ(G)}. By S(n,m) we denote the time required to solve a shortest
path problem in a graph with n vertices and m edges, e.g. S(n,m) ∈ O(m+ n · log n).

weighted checking hyper-arc
optimization constraint matching feasibility consistency reference

wpa vertex O(n ·m) O(h ·m) [288]
nvalue(*) vertex - - [26],[41]
swdv(*) vertex - - [28]
cost_alldifferent edge O(n · S(n,m)) O(t · S(k,m)) here
mwa edge O(n · S(n,m)) O(t · S(k,m)) [267]
soft_inverse_var edge O(n · S(n, n2)) O(t · S(n, n2)) here
cost_gcc edge O(n · S(n,m)) O(t · S(n,m)) [258]
cost_symmetric

edge O(f(V) · S(n,m)) O(t · S(n,m)) [190]
_cardinality

cost_symmetric
edge O(n · S(n,m)) O(t · p · S(n,m)) here

_alldifferent

cost_tour(*) edge - - here
cost_path(*) edge - - [268]

Table 7.5: Summary of results for weighted graphs

200 CHAPTER 7. WEIGHTED GRAPHS

Chapter 8

Conclusion

In the course of this thesis we have studied an application of matching theory within a
constraint programming framework. The presented work answered some open questions in
the context of global constraints.

We hope that our research will be a powerful tool in the constraint programming commu-
nity. In fact, a generic filtering algorithm for global constraints whose solution is represented
by a matching in a particular graph can be obtained from our results in a quite natural way.

In the final chapter of this thesis we summarize the preceding chapters, highlight open
problems and present some ideas on future work.

Summary of Results

In Chapter 2 we surveyed some of the fundamental definitions relating to the area of com-
plexity theory, graph theory, matching theory, and constraint programming.

In Chapter 3 we discussed algorithms based on searching a graph using either a depth-
first search or a breadth-first search. Some applications of these two traversals were given.
The contribution of this chapter was Gray-Path Theorem for a depth-first search and the
algorithm for the classification of edges in a breadth-first search. Until now no such algorithm
was known. Later in this thesis it had been shown how these results can be combined to
create a generic filtering algorithm.

In Chapter 4 we presented decomposition theory for bipartite graphs and proposed fil-
tering algorithms for global constraints representable as a matching problem in a bipartite
graph. The algorithm is based on the modified version of the graph traversals which we
have named an alternating breadth-first search and an alternating depth-first search. The
additional contribution of this chapter was the Dulmage-Mendelsohn Canonical Decompo-
sition for degree-matchings and the theorem that the degrees of bipartite degree-factors are
consecutive.

In Chapter 5 we presented decomposition theory for general graphs and proposed filtering
algorithms for global constraints representable as a matching problem in a general graph.
The contribution of this chapter was the decomposition into matching covered subgraphs

201

202 CHAPTER 8. CONCLUSION

for f -matchings. We have formally defined extreme sets with respect to f -matchings and
provided some of their properties.

In Chapter 6 we presented decomposition theory for directed graphs. We have discovered
an algorithm for computing strongly connected components based on matching theory. We
introduced a useful filtering technique based on a directed matching and showed how it
is possible to transform any directed matching into a bipartite matching. The method
described in Chapter 4 allowed us to solve some graph partitioning constraints efficiently.
We also presented efficient methods for incomplete pruning of the variable domains. Our
result can be applied to other constraints with a similar graph representation and structure.

In Chapter 7 we dealt with the weighted matching problems. We have presented a fil-
tering framework based on weighted matching that uses decomposition techniques. The
contribution of this chapter was the cost-based propagation algorithm for optimization con-
straints. We have provided a clear and complete description of the use of decomposition
theory to prune domains of variables in some global optimization constraints. We have
proved, by transformation from the interval subset sum problem, that a general weighted
degree-matching problem with lower and upper bounds on the cost is NP-complete. The
partition of edges in the vertex-weighted bipartite graph can be obtained in linear time by
using a modified depth-first search called a weighted alternating depth-first search. The par-
tition of edges in the edge-weighted graph associated with the optimization constraint can be
determined by forming an alternating breadth-first forest by using a modified breadth-first
search called a weighted alternating breadth-first search. The method may be regarded as
a variant of Dijkstra’s algorithm.

Open Problems

We have some open problems that could not be solved in this thesis.

1. The classification of edges in a breadth-first search in only one (traversal) phase.

2. The existence of a linear algorithm for the detection and handling of extreme sets.

3. The definition of extreme sets with respect to perfect (g, f)-matchings.

4. A hyper-arc consistency algorithm for the soft_2-cycle_var constraint with the
complexity of O(

√
n ·m).

5. Can a pruning according to dominators be realized with the help of matching theory?

6. How many solutions does a binary_tree constraint with domains [1, n] have?

7. Can a (weighted) spanning tree constraint [80, Chapter 5],[247],[260],[262] be repre-
sented as a (weighted) matching problem?

8. Can an edge-weighted perfect (g, f)-matching problem with arbitrary costs be trans-
formed into an edge-weighted perfect (g, f)-matching problem with non-negative costs?

We conclude by listing all the global constraints that were discussed in this thesis.

203

global constraint abbreviation discussed in

alldifferent
Chapter 4

alldifferent_except_0

binary_tree(*)
Chapter 6

circuit(*)

clique(*) Chapter 5

correspondence Chapter 4

cost_alldifferent

Chapter 7

cost_global_cardinality cost_gcc

cost_path(*)
cost_symmetric_alldifferent

cost_symmetric_cardinality cost_symmetric_gcc

cost_tour(*)

cycle(*)
Chapter 6

derangement

global_cardinality gcc
Chapter 4

inverse

map(*) Chapter 6

minimum_weight_alldifferent mwa
Chapter 7

nvalue(*)

path(*) Chapter 6

proper_forest Chapter 5

same
Chapter 4

soft_alldifferent_var

soft_derangement_var Chapter 6

soft_global_cardinality_var soft_gcc_var Chapter 4

soft_inverse_var Chapter 7

soft_same_var Chapter 4

soft_symmetric_alldifferent_var Chapter 5

soft_symmetric_cardinality_var

Chapter 4
soft_used_by_var

sort

sort_permutation

sum_of_weights_of_distinct_values swdv(*) Chapter 7

symmetric_alldifferent

Chapter 5symmetric_alldifferent_except_0

symmetric_alldifferent_loop

symmetric_cardinality symmetric_gcc Chapter 4

tour(*) Chapter 5

tree Chapter 6

undirected_path(*) Chapter 5

used_by Chapter 4

weighted_partial_alldiff wpa Chapter 7

Table 8.1: List of global constraints discussed in this thesis

204 CHAPTER 8. CONCLUSION

Future Work

In this thesis preliminary work on applications of matching theory in constraint programming
is investigated. As a part of our future work we plan to continue and extend our research,
improve the current implementation and develop new algorithms. Some specific goals for
the immediate future include:

Empirical evaluation. All algorithms we developed here are practicable and easy to
implement. Thus, we expect this work to be relevant for many applications and practical
approaches in the subject of constraint programming. We consider an empirical evaluation
of our algorithms to be an interesting question that deserves further study.

Implementation. All methods and algorithms presented in this thesis have been imple-
mented in C using LEDA library. The code has been developed in Borland C++ Builder.
The code can also be compiled using GCC. An important piece of work would be an imple-
mentation of our pruning technique into some constraint solver libraries such as, for example,
Gecode, JaCoP, Choco, SICStus and other.

Component matchings. In this thesis we have only investigated degree-matchings. An-
other interesting kind of matchings is component matchings. A component matching is
defined in terms of spanning subgraphs having specified (connected) components. From this
point of view, ordinary 1-factors are just the same as K2-factors, 2-factors are the same as
cycle factors, and acyclic (1,2)-factors are exactly path factors. Although we have consid-
ered cycle and path factors we did not give more details about the necessary or sufficient
conditions for a graph to have a component factor.

Principle of duality. The principle of duality is an important concept. We have outlined
and provided some examples thereof. It would be very interesting to give more results where
duality theory can be applied.

Continuity property in general graphs. We have proven that bipartite degree-factors
have a continuity property (see Theorem 4.3.15). We know that this result does not hold
for general graphs. But an interesting question is whether we can determine vertices in a
general graph whose degrees are consecutive in degree-factors.

Balanced constraints. One of the interesting questions for future work would be to
apply our approach to balanced constraints such as balance_cycle, balance_path

and balance_tree [27]. These constraints are characterized by the additional parameter
measuring the difference between the number of vertices in the smallest pattern and the
number of vertices in the largest pattern.

Weighted directed matchings. We have given the application of matching theory to the
constraints representable by bipartite, general, directed and weighted graphs. Another nat-
ural extension of the matching problem arises when considering weighted directed matchings
in digraphs.

Degree-matchings and linear programming. The weighted matching [89] and the
weighted f -matching [304] (see also [24]) can be successfully formulated in terms of theory of
linear programming. An interesting research area for future work would be to describe a lin-
ear programming formulation for all degree-matchings, especially weighted (g, f)-matchings.

205

Soft optimization constraints. For optimization constraints, the typical goal is to find
the value of the objective function at the optimal solution to a hard combinatorial problem.
Soft optimization constraints would be useful for addressing optimization problems that
might be over-constrained. Until now, such constraints have not been investigated.
Hypergraphs. We would like to apply our research to hypergraphs. There are some suffi-
cient conditions known for the existence of perfect matchings in hypergraphs. Some of these
sufficient conditions are not computable in polynomial time. Let us remark that the match-
ing problem of 3-uniform hypergraph1 is equivalent to the 3-dimensional matching prob-
lem, which is NP-complete [182],[131, Problem SP1]. The reduction from the 3-dimensional
matching problem to a global constraint problem allows us to prove that the problem is
intractable.
Further constraints. Since not all the matching-based constraints have been discussed
in this thesis, it could also be beneficial and valuable to find and have a look at more
constraints.
Set variables. Finally, it would be interesting if the presented framework of this thesis
could also cope with set variables by generalizing the obtained results for integer variables2.

The last two areas of future work are not explicitly connected with matching theory.
Bipartite crossing. In the course of our research, before we dealt with the area of this
thesis, we investigated the crossing number problem in bipartite graphs. The crossing num-
ber is the minimum possible number of crossings with which the graph can be drawn. A
graph with crossing number 0 is a planar graph. This problem is NP-complete [132] but can
be solved in linear time for caterpillars3. We wish to continue this research.
Planar circuit constraint. In this thesis we have given a partial filtering for the tour

constraint. Another interesting problem is to find a Hamiltonian cycle in a planar graph. In
this case we can use for pruning a necessary condition discovered by the Latvian mathemati-
cian Emanuel Grinberg [145] in 1968 (see also [270],[312]). The Hamiltonian cycle problem
is NP-complete even for planar graphs [133].

1A hypergraph is called r-uniform if every edge contains precisely r vertices. Thus, the 2-uniform
hypergraphs are exactly the ordinary undirected graphs without loops.

2An integer variable takes a value from a given integer set or a given integer interval, while a set variable
takes a value from a given set of integer sets.

3A caterpillar (or a comb) is a tree in which every vertex is on a central stalk or only one edge away
from the stalk. In other words, a caterpillar is a tree such that deleting all the leaves produces a (possibly
empty) path. We refer to the remaining path as the spine of the caterpillar. The edges of a caterpillar can
be partitioned into two sets: the spine edges, and the leaf edges.

206 CHAPTER 8. CONCLUSION

Bibliography

[1] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Analysis of
Computer Algorithms. Addison-Wesley, 1974.

[2] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. Data Structures and Algo-
rithms. Addison-Wesley, 1983.

[3] Alfred V. Aho and Jeffrey D. Ullman. Principles of Compiler Design. Addison-Wesley,
Reading, Massachusetts, 1977.

[4] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows: The-
ory, Algorithms and Applications. Prentice-Hall, Upper Saddle River, New Jersey,
1993.

[5] Ravindra K. Ahuja, Kurt Mehlhorn, James B. Orlin, and Robert E. Tarjan. Faster
algorithms for the shortest path problem. Journal of the Association for Computing
Machinery, 37(2):213–223, 1990.

[6] Ravindra K. Ahuja and James B. Orlin. A faster algorithm for the inverse spanning
tree problem. Journal of Algorithms, 34(1):177–193, 2000.

[7] Martin Aigner. Combinatorial Theory. Springer, New York, 1979.

[8] Jin Akiyama and Mikio Kano. Factors and Factorizations of Graphs, volume 2031 of
Lecture Notes in Mathematics. Springer, 2011.

[9] Stephen Alstrup, Dov Harel, Peter W. Lauridsen, and Mikkel Thorup. Dominators in
linear time. SIAM Journal on Computing, 28(6):2117–2132, 1999.

[10] Helmut Alt, Norbert Blum, Kurt Mehlhorn, and Markus Paul. Computing a maximum
cardinality matching in a bipartite graph in time O(n1.5

√
m/ log n). Information

Processing Letters, 37(4):237–240, 1991.

[11] Ernst Althaus, Alexander Bockmayr, Matthias Elf, Thomas Kasper, Michael Jünger,
and Kurt Mehlhorn. SCIL – Symbolic Constraints in Integer Linear Programming. In
Rolf H. Möhring and Rajeev Raman, editors, Algorithms – ESA 2002, 10th Annual
European Symposium, Rome, Italy, September 17-21, 2002, Proceedings, volume 2461
of Lecture Notes in Computer Science, pages 75–87. Springer, 2002.

207

208 BIBLIOGRAPHY

[12] Richard P. Anstee. An algorithmic proof of Tutte’s f -factor theorem. Journal of
Algorithms, 6(1):112–131, 1985.

[13] Krzysztof R. Apt. Principles of Constraint Programming. Cambridge University Press,
New York, 2003.

[14] Bruce W. Arden, Bernard A. Galler, and Robert M. Graham. An algorithm for
equivalence declarations. Communications of the ACM, 4(7):310–314, 1961.

[15] Armen S. Asratian, Tristan M. J. Denley, and Roland Häggkvist. Bipartite Graphs
and their Applications. Cambridge University Press, Cambridge, 1998.

[16] Mike D. Atkinson, Jörg-Rüdiger W. Sack, Nicola Santoro, and Thomas Strothotte.
Min-max heaps and generalized priority queues. Communications of the ACM,
29(10):996–1000, 1986.

[17] Michel L. Balinski. Labelling to obtain a maximum matching. Combinatorial Mathe-
matics and its Applications, pages 585–602, 1969.

[18] Michel L. Balinski and Ralph E. Gomory. A primal method for the assignment and
transportation problems. Management Science, 10(3):578–593, 1964.

[19] Michel L. Balinski and Jaime Gonzalez. Maximum matchings in bipartite graphs via
strong spanning trees. Networks, 21(2):165–179, 1991.

[20] Michael O. Ball and Ulrich Derigs. An analysis of alternative strategies for implement-
ing matching algorithms. Networks, 13(4):517–549, 1983.

[21] Jørgen Bang-Jensen and Gregory Gutin. Digraphs: Theory, Algorithms and Applica-
tions. Springer, second edition, 2009. Previous edition 2000.

[22] Jørgen Bang-Jensen, Gregory Gutin, and Hao Li. Sufficient conditions for a digraph
to be Hamiltonian. Journal of Graph Theory, 22(2):181–187, 1996.

[23] Holger Bast, Kurt Mehlhorn, Guido Schäfer, and Hisao Tamaki. Matching algorithms
are fast in sparse random graphs. In Volker Diekert and Michel Habib, editors, STACS
2004, 21st Annual Symposium on Theoretical Aspects of Computer Science, Montpel-
lier, France, March 25-27, 2004, Proceedings, volume 2996 of Lecture Notes in Com-
puter Science, pages 81–92. Springer, 2004.

[24] Mohsen Bayati, Christian Borgs, Jennifer Chayes, and Riccardo Zecchina. Belief-
propagation for weighted b-matchings on arbitrary graphs and its relation to linear
programs with integer solutions. SIAM Journal on Discrete Mathematics, 25(2):989–
1011, 2011.

[25] Lowell W. Beineke and Michael D. Plummer. On the 1-factors of a non-separable
graph. Journal of Combinatorial Theory, 2(3):285–289, 1967.

BIBLIOGRAPHY 209

[26] Nicolas Beldiceanu. Pruning for the minimum constraint family and for the number
of distinct values constraint family. In Toby Walsh, editor, Principles and Practice of
Constraint Programming – CP 2001, 7th International Conference, CP 2001, Paphos,
Cyprus, November 26 - December 1, 2001, Proceedings, volume 2239 of Lecture Notes
in Computer Science, pages 211–224. Springer, 2001.

[27] Nicolas Beldiceanu, Mats Carlsson, and Jean-Xavier Rampon. Global Constraint Cat-
alog. Technical Report T2012-03, Swedish Institute of Computer Science, 2012.

[28] Nicolas Beldiceanu, Mats Carlsson, and Sven Thiel. Cost-filtering algorithms for the
two sides of the sum of weights of distinct values constraint. Technical Report T2002-
14, Swedish Institute of Computer Science, 2002.

[29] Nicolas Beldiceanu and Evelyne Contejean. Introducing global constraints in CHIP.
Mathematical and Computer Modelling, 20(12):97–123, 1994.

[30] Nicolas Beldiceanu, Pierre Flener, and Xavier Lorca. The tree constraint. In Ro-
man Barták and Michela Milano, editors, Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems, 2nd International
Conference, CPAIOR 2005, Prague, Czech Republic, May 30 - June 1, 2005, Pro-
ceedings, volume 3524 of Lecture Notes in Computer Science, pages 64–78. Springer,
2005.

[31] Nicolas Beldiceanu, Fabien Hermenier, Xavier Lorca, and Thierry Petit. The increas-
ing nvalue constraint. In Andrea Lodi, Michela Milano, and Paolo Toth, editors,
Integration of AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems, 7th International Conference, CPAIOR 2010, Bologna, Italy,
June 14-18, 2010. Proceedings, volume 6140 of Lecture Notes in Computer Science,
pages 25–39. Springer, 2010.

[32] Nicolas Beldiceanu, Irit Katriel, and Xavier Lorca. Undirected forest constraints.
In J. Christopher Beck and Barbara M. Smith, editors, Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimization Problems, 3rd
International Conference, CPAIOR 2006, Cork, Ireland, May 31 - June 2, 2006, Pro-
ceedings, volume 3990 of Lecture Notes in Computer Science, pages 29–43. Springer,
2006.

[33] Nicolas Beldiceanu, Irit Katriel, and Sven Thiel. Filtering algorithms for the same
constraint. In Jean-Charles Régin and Michel Rueher, editors, Integration of AI and
OR Techniques in Constraint Programming for Combinatorial Optimization Problems,
First International Conference, CPAIOR 2004, Nice, France, April 20-22, 2004, Pro-
ceedings, volume 3011 of Lecture Notes in Computer Science, pages 65–79. Springer,
2004.

[34] Nicolas Beldiceanu and Xavier Lorca. Necessary condition for path partitioning con-
straints. In Pascal Van Hentenryck and Laurence A. Wolsey, editors, Integration of AI

210 BIBLIOGRAPHY

and OR Techniques in Constraint Programming for Combinatorial Optimization Prob-
lems: 4th International Conference, CPAIOR 2007, Brussels, Belgium, May 23-26,
2007. Proceedings, volume 4510 of Lecture Notes in Computer Science, pages 141–154.
Springer, 2007.

[35] Nicolas Beldiceanu and Thierry Petit. Cost evaluation of soft global constraints. In
Jean-Charles Régin and Michel Rueher, editors, Integration of AI and OR Techniques
in Constraint Programming for Combinatorial Optimization Problems, First Inter-
national Conference, CPAIOR 2004, Nice, France, April 20-22, 2004, Proceedings,
volume 3011 of Lecture Notes in Computer Science, pages 80–95. Springer, 2004.

[36] Nicolas Beldiceanu and Helmut Simonis. A model seeker. Description and detailed
results. Update of Technical Report 4C-2012-01. Cork Constraint Computation Centre,
University College Cork, 19 May 2012.

[37] Pascal Benchimol, Willem-Jan van Hoeve, Jean-Charles Régin, Louis-Martin
Rousseau, and Michel Rueher. Improved filtering for weighted circuit constraints.
Constraints, 17(3):205–233, 2012.

[38] Claude Berge. Two theorems in graph theory. In Proceedings of the National Academy
of Sciences of the United States of America, volume 43, pages 842–844, 1957.

[39] Claude Berge. The Theory of Graphs and its Applications. John Wiley & Sons, New
York, 1962.

[40] Claude Berge. Graphs and Hypergraphs. North-Holland, Amsterdam, 1973.

[41] Christian Bessiere, Emmanuel Hebrard, Brahim Hnich, Zeynep Kiziltan, and Toby
Walsh. Filtering algorithms for the nvalue constraint. In Roman Barták and Michela
Milano, editors, Integration of AI and OR Techniques in Constraint Programming for
Combinatorial Optimization Problems, 2nd International Conference, CPAIOR 2005,
Prague, Czech Republic, May 30 - June 1, 2005, Proceedings, volume 3524 of Lecture
Notes in Computer Science, pages 79–93. Springer, 2005.

[42] Christian Bessiere, Emmanuel Hebrard, Brahim Hnich, and Toby Walsh. The com-
plexity of global constraints. In Deborah L. McGuinness and George Ferguson, editors,
Proceedings of the 19th National Conference of Artificial Intelligence (AAAI), pages
112–117, San Jose, California, 2004.

[43] Christian Bessiere and Pascal Van Hentenryck. To be or not to be ... a global con-
straint. In Francesca Rossi, editor, Principles and Practice of Constraint Programming
– CP 2003, 9th International Conference, CP 2003, Kinsale, Ireland, September 29
- October 3, 2003, Proceedings, volume 2833 of Lecture Notes in Computer Science,
pages 789–794. Springer, 2003.

[44] Noëlle Bleuzen-Guernalec and Alain Colmerauer. Narrowing a 2n-block of sortings in
O(n log n). In Gert Smolka, editor, Principles and Practice of Constraint Programming

BIBLIOGRAPHY 211

– CP97, Third International Conference, CP97, Linz, Austria, October 29 - November
1, 1997, Proceedings, volume 1330 of Lecture Notes in Computer Science, pages 2–16.
Springer, 1997.

[45] Norbert Blum. On the single-operation worst-case time complexity of the disjoint set
union problem. SIAM Journal on Computing, 15(4):1021–1024, 1986.

[46] Norbert Blum. A new approach to maximum matching in general graphs. In Mike
Paterson, editor, Automata, Languages and Programming, 17th International Collo-
quium, ICALP90, Warwick University, England, July 16-20, 1990, Proceedings, vol-
ume 443 of Lecture Notes in Computer Science, pages 586–597. Springer, 1990.

[47] Norbert Blum. Maximum matching in general graphs without explicit consideration
of blossoms. Research Report, 26 October 1999. Universität Bonn.

[48] Norbert Blum. A simplified realization of the Hopcroft-Karp approach to maximum
matching in general graphs. Research Report, 26 October 1999. Universität Bonn.

[49] Béla Bollobás. Extremal Graph Theory. Academic Press, London, 1978.

[50] Kellogg S. Booth and George S. Lueker. Testing for the consecutive ones property,
interval graphs, and graph planarity using PQ-tree algorithms. Journal of Computer
and System Sciences, 13(3):335–379, 1976.

[51] Eric Bourreau. Traitement de contraintes sur les graphes en programmation par con-
traintes [Processing constraints on graphs in the framework of Constraint Program-
ming]. PhD thesis, University Paris, France, 1999. In French.

[52] Mark R. Brown. Implementation and analysis of binomial queue algorithms. SIAM
Journal on Computing, 7(3):298–319, 1978.

[53] Adam L. Buchsbaum, Haim Kaplan, Anne Rogers, and Jeffery R. Westbrook. A
new, simpler linear-time dominators algorithm. ACM Transactions on Programming
Languages and Systems, 20(6):1265–1296, 1998.

[54] Adam L. Buchsbaum, Haim Kaplan, Anne Rogers, and Jeffery R. Westbrook. Cor-
rigendum: A new, simpler linear-time dominators algorithm. ACM Transactions on
Programming Languages and Systems, 27(3):383–387, 2005.

[55] Svante Carlsson. The deap – a double-ended heap to implement double-ended priority
queues. Information Processing Letters, 26(1):33–36, 1987.

[56] Svante Carlsson, Jingsen Chen, and Thomas Strothotte. A note on the construction
of the data structure "deap". Information Processing Letters, 31(6):315–317, 1989.

[57] Yves Caseau and François Laburthe. Solving small TSPs with constraints. In Lee
Naish, editor, Proceedings of the 14th International Conference on Logic Programming
(ICLP), Leuven, Belgium, July 8-11, 1997, pages 316–330, 1997.

212 BIBLIOGRAPHY

[58] Yves Caseau and François Laburthe. Solving various weighted matching problems with
constraints. Constraints, 5(1):141–160, 2000.

[59] Arthur Cayley. A theorem on trees. Quarterly Journal of Pure and Applied Mathe-
matics, 23:376–378, 1889.

[60] Timothy M. Chan. Quake heaps: A simple alternative to Fibonacci heaps. In Andrej
Brodnik, Alejandro López-Ortiz, Venkatesh Raman, and Alfredo Viola, editors, Space-
Efficient Data Structures, Streams, and Algorithms – Papers in Honor of Munro, J.
Ian on the Occasion of His 66th Birthday, volume 8066 of Lecture Notes in Computer
Science, pages 27–32. Springer, 2013.

[61] Sung C. Chang and Min W. Du. Diamond deque: A simple data structure for priority
deques. Information Processing Letters, 46(5):231–237, 1993.

[62] Joseph Cheriyan and Kurt Mehlhorn. Algorithms for dense graphs and networks on
the random access computer. Algorithmica, 15(6):521–549, 1996.

[63] Boris V. Cherkassky, Andrew V. Goldberg, and Craig Silverstein. Buckets, heaps,
lists and monotone priority queues. In Proceedings of the 8th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 83–92, New Orleans, Louisiana,
1997.

[64] Boris V. Cherkassky, Andrew V. Goldberg, and Craig Silverstein. Buckets, heaps, lists
and monotone priority queues. SIAM Journal on Computing, 28(4):1326–1346, 1999.

[65] Nicos Christofides. Graph Theory: An Algorithmic Approach. Academic Press, Lon-
don, 1975.

[66] Keith D. Cooper, Timothy J. Harvey, and Ken Kennedy. A simple, fast dominance
algorithm. Software-Practice and Experience, 4:1–28, 2001.

[67] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. In-
troduction to Algorithms. The MIT Press, Cambridge, Massachusetts, second edition,
2001. Previous edition 1990.

[68] Gérard Cornuéjols. General factors of graphs. Journal of Combinatorial Theory, Series
B, 45(2):185–198, 1988.

[69] Clark A. Crane. Linear lists and priority queues as balanced binary trees. Doctoral dis-
sertation, Stanford University. Department of Computer Science, Stanford, California,
USA, 1972.

[70] Radosław Cymer. Dulmage-Mendelsohn canonical decomposition as a generic pruning
technique. Constraints, 17(3):234–272, 2012.

[71] Radosław Cymer. Weighted matching as a generic pruning technique applied to opti-
mization constraints. Annals of Operations Research, 217(1):165–211, 2014.

BIBLIOGRAPHY 213

[72] Radosław Cymer. Gallai-Edmonds decomposition as a pruning technique. Central
European Journal of Operations Research, 23(1):149–185, 2015.

[73] Radosław Cymer. Propagation rules for graph partitioning constraints. Journal of
Graph Algorithms and Applications, 20(2):363–410, 2016.

[74] Rina Dechter. Constraint Processing. Morgan Kaufmann Publishers, San Francisco,
California, 2003.

[75] Pablo Diaz-Gutierrez and Meenakshisundaram Gopi. Quadrilateral and tetrahedral
mesh stripification using 2-factor partitioning of the dual graph. The Visual Computer,
21(8-10):689–697, 2005.

[76] Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269–271, 1959.

[77] Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall, Englewood Cliffs,
New Jersey, 1976.

[78] Efim A. Dinits. Algorithm for solution of a problem of maximum flow in a network
with power estimation. Soviet Mathematics Doklady, 11(5):1277–1280, 1970.

[79] Efim A. Dinits and Mikhail A. Kronrod. An algorithm for the solution of the assign-
ment problem. Soviet Mathematics Doklady, 10(6):1324–1326, 1969.

[80] Grégoire Dooms. The CP(Graph) Computation Domain in Constraint Program-
ming. PhD thesis, Faculté des Sciences Appliquées, Université Catholique de Louvain,
Louvain-La-Neuve, Belgium, 2006.

[81] James R. Driscoll, Harold N. Gabow, Ruth Shrairman, and Robert E. Tarjan. Relaxed
heaps: An alternative to Fibonacci heaps with applications to parallel computation.
Communications of the ACM, 31(11):1343–1354, 1988.

[82] Ran Duan and Hsin-Hao Su. A scaling algorithm for maximum weight matching
in bipartite graphs. In Proceedings of the 23rd Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 1413–1424, Kyoto, Japan, 2012.

[83] Andrew L. Dulmage and Nathan S. Mendelsohn. Coverings of bipartite graphs. Cana-
dian Journal of Mathematics, 10:517–534, 1958.

[84] Andrew L. Dulmage and Nathan S. Mendelsohn. A structure theory of bipartite graphs
of finite exterior dimension. Transactions of the Royal Society of Canada, Series III,
53:1–13, 1959.

[85] Andrew L. Dulmage and Nathan S. Mendelsohn. On the inversion of sparse matrices.
Mathematics of Computation, 16:494–496, 1962.

[86] Andrew L. Dulmage and Nathan S. Mendelsohn. Two algorithms for bipartite graphs.
Journal of the Society for Industrial and Applied Mathematics, 11(1):183–194, 1963.

214 BIBLIOGRAPHY

[87] Thomas E. Easterfield. A combinatorial algorithm. The Journal of the London Math-
ematical Society, 21(3):219–226, 1946.

[88] Jürgen Ebert. A note on odd and even factors of undirected graphs. Information
Processing Letters, 11(2):70–72, 1980.

[89] Jack Edmonds. Maximum matching and a polyhedron with 0,1-vertices. Journal of
Research of the National Bureau of Standards, 69B(1-2):125–130, 1965.

[90] Jack Edmonds. Paths, trees and flowers. Canadian Journal of Mathematics, 17:449–
467, 1965.

[91] Jack Edmonds and Richard M. Karp. Theoretical improvements in algorithmic effi-
ciency for network flow problems. Journal of the Association for Computing Machin-
ery, 19(2):248–264, 1972.

[92] Jenő Egerváry. Matrixok kombinatorius tulajdonságairól [On combinatorial properties
of matrices]. Matematikai és Fizikai Lapok, 38:16–28, 1931. In Hungarian.

[93] Amr Elmasry. Layered heaps. In Torben Hagerup and Jyrki Katajainen, editors,
Algorithm Theory - SWAT 2004, 9th Scandinavian Workshop on Algorithm Theory,
Humlebæk, Denmark, July 8-10, 2004, Proceedings, volume 3111 of Lecture Notes in
Computer Science, pages 212–222. Springer, 2004.

[94] Amr Elmasry. The violation heap: A relaxed Fibonacci-like heap. In My T. Thai
and Sartaj Sahni, editors, Computing and Combinatorics, 16th Annual International
Conference, COCOON 2010, Nha Trang, Vietnam, July 19-21, 2010. Proceedings,
volume 6196 of Lecture Notes in Computer Science, pages 479–488. Springer, 2010.

[95] Amr Elmasry, Claus Jensen, and Jyrki Katajainen. Two-tier relaxed heaps. Acta
Informatica, 45(3):193–210, 2008.

[96] Leonhard Euler. Solutio problematis ad geometriam situs pertinentis [The solution of
a problem relating to the geometry of position]. Commentarii Academiae Scientarium
Imperialis Petropolitanae, 8:128–140, 1736/1741. In Latin.

[97] Shimon Even and Oded Kariv. AnO(n2.5) algorithm for maximummatching in general
graphs. In Proceedings of the 16th Annual Symposium on Foundations of Computer
Science (FOCS), pages 100–112, Berkeley, California, 1975.

[98] Shimon Even and Robert E. Tarjan. Computing an st-numbering. Theoretical Com-
puter Science, 2(3):339–344, 1976.

[99] François Fages and Akash Lal. A global constraint for cutset problems. In 5th Interna-
tional Workshop on Integration of AI and OR Techniques in Constraint Programming
for Combinatorial Optimization Problems (CPAIOR), Montreal, Canada, 2003.

BIBLIOGRAPHY 215

[100] Jean-Guillaume Fages and Xavier Lorca. Revisiting the tree constraint. In Jimmy
Ho-Man Lee, editor, Principles and Practice of Constraint Programming – CP 2011,
17th International Conference, CP 2011, Perugia, Italy, September 12-16, 2011. Pro-
ceedings, volume 6876 of Lecture Notes in Computer Science, pages 271–285. Springer,
2011.

[101] Torsten Fahle. Cost based filtering vs. upper bounds for maximum clique. In 4th In-
ternational Workshop on Integration of AI and OR Techniques in Constraint Program-
ming for Combinatorial Optimization Problems (CPAIOR), pages 93–107, Le Croisic,
France, 2002.

[102] Tomás Feder and Rajeev Motwani. Clique partitions, graph compression and speeding-
up algorithms. Journal of Computer and System Sciences, 51(2):261–272, 1995.

[103] Michael J. Fischer. Efficiency of equivalence algorithms. In Raymond E. Miller and
James W. Thatcher, editors, Complexity of Computer Computations, pages 153–167.
Plenum Press, New York, 1972.

[104] Philippe Flajolet and Andrew M. Odlyzko. Random mapping statistics. In Jean-
Jacques Quisquater and Joos Vandewalle, editors, Advances in Cryptology - EURO-
CRYPT ’89, Workshop on the Theory and Application of Cryptographic Techniques,
Houthalen, Belgium, April 10-13, 1989, Proceedings, volume 434 of Lecture Notes in
Computer Science, pages 329–354. Springer, 1990.

[105] Filippo Focacci, Andrea Lodi, and Michela Milano. Cost-based domain filtering. In
Joxan Jaffar, editor, Principles and Practice of Constraint Programming – CP’99, 5th
International Conference, Alexandria, Virginia, USA, October 11-14, 1999, Proceed-
ings, volume 1713 of Lecture Notes in Computer Science, pages 189–203. Springer,
1999.

[106] Lester R. Ford, Jr. and Delbert R. Fulkerson. Flows in Networks. Princeton University
Press, Princeton, New Jersey, USA, 1962.

[107] Pierre Fraisse, Pavol Hell, and David G. Kirkpatrick. A note on f -factors in directed
and undirected multigraphs. Graphs and Combinatorics, 2(1):61–66, 1986.

[108] Michael L. Fredman, Robert Sedgewick, Daniel D. Sleator, and Robert E. Tarjan. The
pairing-heap: A new form of self-adjusting heap. Algorithmica, 1(1-4):111–129, 1986.

[109] Michael L. Fredman and Robert E. Tarjan. Fibonacci heaps and their uses in im-
proved network optimization algorithms. Journal of the Association for Computing
Machinery, 34(3):596–615, 1987.

[110] Christian Fremuth-Paeger and Dieter Jungnickel. Balanced network flows. IV. Duality
and structure theory. Networks, 37(4):194–201, 2001.

216 BIBLIOGRAPHY

[111] Christian Fremuth-Paeger and Dieter Jungnickel. Balanced network flows. VIII. A
revised theory of phase-ordered algorithms and the O(

√
nm log (n2/m)/ log n) bound

for the nonbipartite cardinality matching problem. Networks, 41(3):137–142, 2003.

[112] Georg Frobenius. Über zerlegbare Determinanten [On decomposable determinants].
Sitzungsbericht der Königlich Preussischen Akademie der Wissenschaften, XVIII:274–
277, 1917. In German.

[113] Harold N. Gabow. Implementation of Algorithms for Maximum Matching on Nonbi-
partite Graphs. PhD thesis, Department of Computer Science, Stanford University,
Stanford, California, USA, 1973.

[114] Harold N. Gabow. An efficient implementation of Edmonds’ algorithm for maximum
matching on graphs. Journal of the Association for Computing Machinery, 23(2):221–
234, 1976.

[115] Harold N. Gabow. An efficient reduction technique for degree-constrained subgraph
and bidirected network flow problem. In Proceedings of the 15th Annual ACM Sym-
posium on Theory of Computing (STOC), 25-27 April, 1983, Boston, Massachusetts,
USA, pages 448–456, 1983.

[116] Harold N. Gabow. A scaling algorithm for weighted matching on general graphs.
In Proceedings of the 26th Annual Symposium on Foundations of Computer Science
(FOCS), pages 90–100, Portland, Oregon, 1985.

[117] Harold N. Gabow. Scaling algorithms for network problems. Journal of Computer and
System Sciences, 31(2):148–168, 1985.

[118] Harold N. Gabow. Data structures for weighted matching and nearest common an-
cestors with linking. In Proceedings of the 1st Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 434–443, San Francisco, California, 1990.

[119] Harold N. Gabow. Path-based depth-first search for strong and biconnected compo-
nents. Information Processing Letters, 74(3-4):107–114, 2000.

[120] Harold N. Gabow, Zvi Galil, and Thomas H. Spencer. Efficient implementation of
graph algorithms using contraction. Journal of the Association for Computing Ma-
chinery, 36(3):540–572, 1989.

[121] Harold N. Gabow and Robert E. Tarjan. A linear-time algorithm for a special case of
disjoint set union. Journal of Computer and System Sciences, 30(2):209–221, 1985.

[122] Harold N. Gabow and Robert E. Tarjan. Almost-optimum speed-ups of algorithms for
bipartite matching and related problems. The Association for Computing Machinery,
pages 514–527, 1988.

[123] Harold N. Gabow and Robert E. Tarjan. Faster scaling algorithms for network prob-
lems. SIAM Journal on Computing, 18(5):1013–1036, 1989.

BIBLIOGRAPHY 217

[124] Harold N. Gabow and Robert E. Tarjan. Faster scaling algorithms for general graph
matching problems. Journal of the Association for Computing Machinery, 38(4):815–
853, 1991.

[125] Zvi Galil and Giuseppe F. Italiano. Data structures and algorithms for disjoint set
union problems. ACM Computing Surveys, 23(3):319–344, 1991.

[126] Zvi Galil, Silvio Micali, and Harold N. Gabow. An O(EV log V) algorithm for find-
ing a maximal weighted matching in general graphs. SIAM Journal on Computing,
15(1):120–130, 1986.

[127] Tibor Gallai. Kritische Graphen II [Critical graphs]. Magyar Tudományos Akadémia;
Matematikai Kutató Intézetének Közleményei, 8:373–395, 1963. In German.

[128] Tibor Gallai. Maximale Systeme unabhängiger Kanten [Maximal independent edge-
systems]. Magyar Tudományos Akadémia; Matematikai Kutató Intézetének Kö-
zleményei, 9:401–413, 1964. In German.

[129] Bernard A. Galler and Michael J. Fischer. An improved equivalence algorithm. Com-
munications of the ACM, 7(5):301–303, 1964.

[130] Gianluca Gallo. An O(n log n) algorithm for the convex bipartite matching problem.
Operations Research Letters, 3(1):31–34, 1984.

[131] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. Freeman, San Francisco, California, 1979.

[132] Michael R. Garey and David S. Johnson. Crossing number is NP-complete. SIAM
Journal of Algebraic Discrete Methods, 4(3):312–316, 1983.

[133] Michael R. Garey, David S. Johnson, and Robert E. Tarjan. The planar Hamiltonian
circuit problem is NP-complete. SIAM Journal on Computing, 5(4):704–714, 1976.

[134] Ian P. Gent, Ian Miguel, and Peter Nightingale. Generalized arc consistency for the
alldifferent constraint: An empirical survey. Artificial Intelligence, 172(18):1973–2000,
2008.

[135] Loukas Georgiadis. Linear-Time Algorithms for Dominators and Related Problems.
PhD thesis, Princeton University, Princeton, USA, 2005.

[136] Loukas Georgiadis and Robert E. Tarjan. Finding dominators revisited: Extended
abstract. In Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA), pages 869–878, New Orleans, Louisiana, 2004.

[137] Alain Ghouila-Houri. Une condition suffisante d’existence d’un circuit Hamiltonien
[A sufficient condition for the existence of a Hamilton cycle]. Comptes rendus de
l’Académie des Sciences, 25:495–497, 1960. In Latin.

218 BIBLIOGRAPHY

[138] Fred Glover. Maximum matching in a convex bipartite graph. Naval Research Logistics
Quarterly, 14(3):313–316, 1967.

[139] Andrew V. Goldberg and Alexander V. Karzanov. Maximum skew-symmetric flows. In
Paul G. Spirakis, editor, Algorithms – ESA ’95, Third Annual European Symposium,
Corfu, Greece, September 25-27, 1995, Proceedings, volume 979 of Lecture Notes in
Computer Science, pages 155–170. Springer, 1995.

[140] Andrew V. Goldberg and Alexander V. Karzanov. Maximum skew-symmetric flows
and matchings. Mathematical Programming, Series A, 100(3):537–568, 2004.

[141] Andrew V. Goldberg and Robert Kennedy. Global price updates help. SIAM Journal
on Discrete Mathematics, 10(4):551–572, 1997.

[142] Alan J. Goldman. Optimal matchings and degree-constrained subgraphs. Journal of
Research of the National Bureau of Standards, 68B(1):27–29, 1964.

[143] Michel Gondran and Michel Minoux. Graphs and Algorithms. John Wiley & Sons,
New York, 1984.

[144] Seymour E. Goodman, Stephen T. Hedetniemi, and Robert E. Tarjan. b-matchings in
trees. SIAM Journal on Computing, 5(1):104–108, 1976.

[145] Emanuel J. Grinberg. Plane regular graphs of degree three without Hamiltonian cir-
cuits. Latvian Mathematical Yearbook, 4:51–58, 1968. In Russian. Translated by Dainis
Zeps.

[146] Bernhard Haeupler, Siddhartha Sen, and Robert E. Tarjan. Rank-pairing heaps. In
Amos Fiat and Peter Sanders, editors, Algorithms – ESA 2009, 17th Annual European
Symposium, Copenhagen, Denmark, September 7-9, 2009. Proceedings, volume 5757
of Lecture Notes in Computer Science, pages 659–670. Springer, 2009.

[147] Bernhard Haeupler, Siddhartha Sen, and Robert E. Tarjan. Rank-pairing heaps. SIAM
Journal on Computing, 40(6):1463–1485, 2011.

[148] Mahantesh Halappanavar. Algorithms for vertex-weighted matching in graphs. PhD
thesis, Old Dominion University, Norfolk, Virginia Area, USA, 2009.

[149] Philip Hall. On representatives of subsets. The Journal of the London Mathematical
Society, 10(1):26–30, 1935.

[150] Frank Harary. Graph Theory. Addison-Wesley Publishing Company, Reading, Mas-
sachusetts, 1972.

[151] Frank Harary, Robert Z. Norman, and Dorwin Cartwright. Structural Models: An
Introduction to the Theory of Directed Graphs. John Wiley & Sons, New York, 1965.

BIBLIOGRAPHY 219

[152] Dov Harel. A linear time algorithm for finding dominators in flow graphs and related
problems. In Robert Sedgewick, editor, Proceedings of the 17th Annual ACM Sym-
posium on Theory of Computing (STOC), May 6-8, 1985, Providence, Rhode Island,
USA, pages 185–194, 1985.

[153] David B. Hartvigsen. Extensions of Matching Theory. PhD thesis, Department of
Mathematics, Carnegie-Mellon University, Pittsburgh, Pensylvania, USA, 1984.

[154] Nicholas J. A. Harvey. Algebraic algorithms for matching and matroid problems.
SIAM Journal on Computing, 39(2):679–702, 2009.

[155] Katherine Heinrich, Pavol Hell, David G. Kirkpatrick, and Guizhen Liu. A simple
existence criterion for (g < f)-factors. Discrete Mathematics, 85(3):313–317, 1990.

[156] Michael Held and Richard M. Karp. The traveling-salesman problem and minimum
spanning trees. Operations Research, 18(6):1138–1162, 1970.

[157] Michael Held and Richard M. Karp. The traveling-salesman problem and minimum
spanning trees: Part II. Mathematical Programming, 1(1):6–25, 1971.

[158] Pavol Hell and David G. Kirkpatrick. Algorithms for degree constrained graph factors
of minimum deficiency. Journal of Algorithms, 14(1):115–138, 1993.

[159] Pascal van Hentenryck. Constraint Satisfaction in Logic Programming. The MIT
Press, 1989.

[160] Pascal van Hentenryck and Jean-Philippe Carillon. Generality versus specificity: An
experience with AI and OR techniques. In Proceedings of the 7th National Conference
on Artificial Intelligence (AAAI), pages 660–664, 1988.

[161] Martin Henz, Tobias Müller, and Sven Thiel. Global constraints for round robin tour-
nament scheduling. European Journal of Operations Research, 153(1):92–101, 2004.

[162] Gábor Hetyei. 2 x 1-es téglalapokkal lefedhető idomokról [On rectangular config-
urations which can be covered by 2 x 1 rectangles]. A Pécsi Tanárképző Főiskola
Tudományos Kőzleményei Seria 6: Matematika, 8:351–368, 1964. In Hungarian.

[163] Lu HongLiang and Yu QingLin. Constructive proof of deficiency theorem of (g, f)-
factor. Science China Mathematics, 53(6):1657–1662, 2010.

[164] John E. Hopcroft and Richard M. Karp. An n5/2 algorithm for maximum matchings
in bipartite graphs. SIAM Journal on Computing, 2(4):225–231, 1973.

[165] John E. Hopcroft and Robert E. Tarjan. Algorithm 447: Efficient algorithms for graph
manipulation. Communications of the ACM, 16(6):372–378, 1973.

[166] John E. Hopcroft and Robert E. Tarjan. Dividing a graph into triconnected compo-
nents. SIAM Journal on Computing, 2(3):135–158, 1973.

220 BIBLIOGRAPHY

[167] John E. Hopcroft and Robert E. Tarjan. Efficient planarity testing. Journal of the
Association for Computing Machinery, 21(4):549–568, 1974.

[168] John E. Hopcroft and Jeffrey D. Ullman. Set merging algorithms. SIAM Journal on
Computing, 2(4):294–303, 1973.

[169] Chien-Chung Huang and Telikepalli Kavitha. Efficient algorithms for maximum weight
matchings in general graphs with small edge weights. In Proceedings of the 23rd Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1400–1412, Kyoto,
Japan, 2012.

[170] Oscar H. Ibarra and Shlomo Moran. Deterministic and probabilistic algorithms for
maximum bipartite matching via fast matrix multiplication. Information Processing
Letters, 13(1):12–15, 1981.

[171] Yannis Ioannidis, Raghu Ramakrishnan, and Linda Winger. Transitive closure algo-
rithms based on graph traversal. ACM Transactions on Database Systems (TODS),
18(3):512–576, 1993.

[172] Masao Iri. A new method of solving transportation-network problems. Journal of the
Operations Research Society of Japan, 3:27–87, 1960.

[173] Diane M. Johnson, Andrew L. Dulmage, and Nathan S. Mendelsohn. Connectivity
and reducibility of graphs. Canadian Journal of Mathematics, 14:529–539, 1962.

[174] Donald B. Johnson. Priority queues with update and finding minimum spanning trees.
Information Processing Letters, 4(3):53–57, 1975.

[175] Donald B. Johnson. Efficient algorithms for shortest paths in sparse networks. Journal
of the Association for Computing Machinery, 24(1):1–13, 1977.

[176] Tiko Kameda and J. Ian Munro. An O(|V | · |E|) algorithm for maximum matching of
graphs. Computing, 12:91–98, 1974.

[177] Mikio Kano and Gyula Y. Katona. Odd subgraphs and matchings. Discrete Mathe-
matics, 250(1):265–272, 2002.

[178] Mikio Kano and Gyula Y. Katona. Structure theorem and algorithm on (1, f)-odd
subgraphs. Discrete Mathematics, 307(11-12):1404–1417, 2007.

[179] Ming-Yang Kao, Tak-Wah Lam, Wing-Kin Sung, and Hing-Fung Ting. A decomposi-
tion theorem for maximum weight bipartite matchings with applications to evolution-
ary trees. In Jaroslav Nešetřil, editor, Algorithms – ESA ’99, 7th Annual European
Symposium, Prague, Czech Republic, July 16-18, 1999, Proceedings, volume 1643 of
Lecture Notes in Computer Science, pages 438–449. Springer, 1999.

[180] Ming-Yang Kao, Tak-Wah Lam, Wing-Kin Sung, and Hing-Fung Ting. A decomposi-
tion theorem for maximum weight bipartite matchings. SIAM Journal on Computing,
31(1):18–26, 2001.

BIBLIOGRAPHY 221

[181] Haim Kaplan and Robert E. Tarjan. Thin heaps, thick heaps. ACM Transactions on
Algorithms (TALG), 4(1):3:1–3:14, 2008.

[182] Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller
and James W. Thatcher, editors, Complexity of Computer Computations, pages 85–
103. Plenum Press, New York, 1972.

[183] Alexander V. Karzanov. On finding maximum flows in network with special structure
and some applications. Mathematical Problems for Production Control, 5:81–94, 1973.

[184] Alexander V. Karzanov. Efficient realization of the Edmonds’ algorithms for matching
maximal power and maximal weight. Studies in Discrete Optimization, pages 306–327,
1976.

[185] Panagiotis Katerinis. Some results on the existence of 2n-factors in terms of vertex-
deleted subgraphs. Ars Combinatoria, 16-B:271–277, 1983.

[186] Irit Katriel. Matchings in node-weighted convex bipartite graphs. INFORMS Journal
on Computing, 20(2):205–211, 2008.

[187] Irit Katriel and Sven Thiel. Complete bound consistency for the global cardinality
constraint. Constraints, 10(3):191–217, 2005.

[188] Latife Genç Kaya and John N. Hooker. A filter for the circuit constraint. In Frédéric
Benhamou, editor, Principles and Practice of Constraint Programming – CP 2006,
12th International Conference, CP 2006, Nantes, France, September 25-29, 2006, Pro-
ceedings, volume 4204 of Lecture Notes in Computer Science, pages 706–710. Springer,
2006.

[189] Waldemar Kocjan and Per Kreuger. Filtering methods for symmetric cardinality con-
straint. In Jean-Charles Régin and Michel Rueher, editors, Integration of AI and
OR Techniques in Constraint Programming for Combinatorial Optimization Problems,
First International Conference, CPAIOR 2004, Nice, France, April 20-22, 2004, Pro-
ceedings, volume 3011 of Lecture Notes in Computer Science, pages 200–208. Springer,
2004.

[190] Waldemar Kocjan, Per Kreuger, and Björn Lisper. Symmetric cardinality constraint
with costs. Technical report, MRTC, Mälardalen University, 2004.

[191] Dénes König. Über Graphen und ihre Anwendung auf Determinantentheorie und
Mengenlehre [On graphs and their applications in determinant theory and set theory].
Mathematische Annalen, 77:453–465, 1916. In German.

[192] Dénes König. Graphok és matrixok [Graphs and matrices]. Matematikai és Fizikai
Lapok, 38:116–119, 1931. In Hungarian with German summary.

[193] Anton Kotzig. On the theory of finite graphs with a linear factor I. Matematicko-
Fyzikálny Časopis Slovenskej Akadémie Vied, 9(2):73–91, 1959. In Slovak.

222 BIBLIOGRAPHY

[194] Anton Kotzig. On the theory of finite graphs with a linear factor II. Matematicko-
Fyzikálny Časopis Slovenskej Akadémie Vied, 9(2):136–159, 1959. In Slovak.

[195] Anton Kotzig. On the theory of finite graphs with a linear factor III. Matematicko-
Fyzikálny Časopis Slovenskej Akadémie Vied, 10(4):205–215, 1960. In Slovak.

[196] Mekkia Kouider and Preben D. Vestergaard. Connected factors in graphs – a survey.
Graphs and Combinatorics, 21(1):1–26, 2005.

[197] Joseph B. Kruskal. On the shortest spanning subtree and the traveling salesman
problem. Proceedings of the American Mathematical Society, 7(1):48–50, 1956.

[198] Harold W. Kuhn. The Hungarian method for the assignment problem. Naval Research
Logistics Quarterly, 2:83–97, 1955.

[199] Harold W. Kuhn. Variants of the Hungarian method for assignment problems. Naval
Research Logistics Quarterly, 3:253–258, 1956.

[200] Jean-Louis Laurière. A language and a program for stating and solving combinatorial
problems. Artificial Intelligence. An International Journal, 10(1):29–127, 1978.

[201] Eugene L. Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Rine-
hart & Winston, New York, 1976.

[202] Eugene L. Lawler, Jan K. Lenstra, Alexander H. G. Rinnooy Kan, and David B.
Shmoys, editors. The Traveling Salesman Problem: A Guided Tour of Combinatorial
Optimization. John Wiley & Sons, New York, 1985.

[203] Michel Leconte. A bounds-based reduction scheme for difference constraints.
In Proceedings of the 2nd International Workshop on Constraint-based Reasoning
(Constraint-96), Key West, Florida, 1996.

[204] Thomas Lengauer and Robert E. Tarjan. A fast algorithm for finding dominators in a
flowgraph. ACM Transactions on Programming Languages and Systems, 1(1):121–141,
1979.

[205] Mordechai Lewin. On maximal circuits in directed graphs. Journal of Combinatorial
Theory, Series B, 18(2):175–179, 1975.

[206] Witold Lipski and Franco P. Preparata. Efficient algorithms for finding maxi-
mum matchings in convex bipartite graphs and related problems. Acta Informatica,
15(4):329–346, 1981.

[207] Charles H. C. Little, Douglas D. Grant, and Derek A. Holton. On defect d-matchings
in graphs. Discrete Mathematics, 13(1):41–54, 1975. Erratum: Discrete Mathematics,
14(2):203, 1976.

BIBLIOGRAPHY 223

[208] Alejandro López-Ortiz, Claude-Guy Quimper, John Tromp, and Peter van Beek. A
fast and simple algorithm for bounds consistency of the alldifferent constraint. In
Georg Gottlob and Toby Walsh, editors, Proceedings of the 18th International Joint
Conference on Artificial Intelligence (IJCAI), Acapulco, Mexico, August 9-15, 2003,
pages 245–250, 2003.

[209] Xavier Lorca. Contraintes de Partitionnement de Graphe [Graph Partitioning Con-
straints]. PhD thesis, Université de Nantes, Faculté des Sciences et des Techniques,
Nantes, France, 2007. In French.

[210] László Lovász. Subgraphs with prescribed valencies. Journal of Combinatorial Theory,
8(4):391–416, 1970.

[211] László Lovász. Matching structure and the matching lattice. Journal of Combinatorial
Theory, Series B, 43(2):187–222, 1987.

[212] László Lovász and Michael D. Plummer. Matching Theory. Annals of Discrete Math-
ematics (29). North-Holland, Amsterdam, 1986.

[213] Edward S. Lowry and Cleburne W. Medlock. Object code optimization. Communica-
tions of the ACM, 12(1):13–22, 1969.

[214] Yannis Manoussakis. Directed Hamiltonian graphs. Journal of Graph Theory,
16(1):51–59, 1992.

[215] Kim Marriott and Peter J. Stuckey. Programming with Constraints: An Introduction.
The MIT Press, 1998.

[216] Nimrod Megiddo and Arie Tamir. An O(N · logN) algorithm for a class of matching
problem. SIAM Journal on Computing, 7(2):154–157, 1978.

[217] Kurt Mehlhorn. Data Structures and Algorithms 2: Graphs Algorithms and NP-
Completeness. Springer, 1984.

[218] Kurt Mehlhorn and Stefan Näher. LEDA: A Platform for Combinatorial and Geomet-
ric Computing. Cambridge University Press, Cambridge, 1999.

[219] Kurt Mehlhorn and Sven Thiel. Faster algorithms for bound-consistency of the sorted-
ness and the alldifferent constraint. In Rina Dechter, editor, Principles and Practice of
Constraint Programming – CP 2000, 6th International Conference, CP 2000, Singa-
pore, September 18-21, 2000, Proceedings, volume 1894 of Lecture Notes in Computer
Science, pages 306–319. Springer, 2000.

[220] Henk Meijer, Yurai Núñez-Rodríguez, and David Rappaport. An algorithm for com-
puting simple k-factors. Information Processing Letters, 109(12):620–625, 2009.

[221] Silvio Micali and Vijay V. Vazirani. An O(
√
|V | · |E|) algorithm for finding maxi-

mum matching in general graphs. In Proceedings of the 21st Annual Symposium on
Foundations of Computer Science (FOCS), pages 17–27, Syracuse, New York, 1980.

224 BIBLIOGRAPHY

[222] Edward Minieka. Optimization Algorithms for Networks and Graphs. Marcel Dekker,
New York and Basel, 1978.

[223] Rajeev Motwani. Average-case analysis of algorithms for matchings and related prob-
lems. Journal of the Association for Computing Machinery, 41(6):1329–1356, 1994.

[224] Marcin Mucha and Piotr Sankowski. Maximum matchings via Gaussian elimination.
In Proceedings of the 45th IEEE Symposium on Foundations of Computer Science,
volume 6, pages 248–255, 2004.

[225] Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. Matching is as easy as
matrix inversion. Combinatorica, 7(1):105–113, 1987.

[226] James Munkres. Algorithms for the assignment and transportation problems. Journal
of the Society for Industrial and Applied Mathematics, 5(1):32–38, 1957.

[227] J. Ian Munro. Efficient determination of the transitive closure of a directed graph.
Information Processing Letters, 1(2):56–58, 1971.

[228] Yunsun Nam. Matching Theory: Subgraphs with Degree Constraints and other Proper-
ties. PhD thesis, Department of Mathematics, University of British Columbia, Canada,
1994.

[229] Manoel Bezerra Campêlo Neto and Sulamita Klein. Maximum vertex-weighted match-
ing in strongly chordal graphs. Discrete Applied Mathematics, 84(1-3):71–77, 1998.

[230] Peter Nightingale. The extended global cardinality constraint: An empirical survey.
Artificial Intelligence, 175(2):586–614, 2008.

[231] Robert Z. Norman and Michael O. Rabin. An algorithm for a minimum cover of a
graph. Proceedings of the American Mathematical Society, 10(2):315–319, 1959.

[232] Renata Ochranová. Finding dominators. In Marek Karpinski, editor, Proceedings of
the 4th Conference on Foundations of Computation Theory, volume 158 of Lecture
Notes in Computer Science, pages 328–334. Springer, 1983.

[233] William J. Older, Godfried M. Swinkels, and Maarten H. van Emden. Getting to the
real problem: Experience with BNR prolog in OR. In 3rd International Conference
on the Practical Application of Prolog (PAP), pages 465–478, Paris, France, 1995.

[234] Oystein Ore. Studies on directed graphs, I. Annals of Mathematics, 63(3):383–406,
1956.

[235] Oystein Ore. Studies on directed graphs, II. Annals of Mathematics, 64(1):142–153,
1956.

[236] Oystein Ore. Graphs and subgraphs. Transactions of the American Mathematical
Society, 84:109–136, 1957.

BIBLIOGRAPHY 225

[237] Oystein Ore. Studies on directed graphs, III. Annals of Mathematics, 68(3):526–549,
1958.

[238] Oystein Ore. Graphs and subgraphs, II. Transactions of the American Mathematical
Society, 93:185–204, 1959.

[239] James B. Orlin and Ravindra K. Ahuja. New scaling algorithms for the assignment
and minimum mean cycle problems. Mathematical Programming, 54(1):41–56, 1992.

[240] François Pachet and Pierre Roy. Automatic generation of music programs. In Joxan
Jaffar, editor, Principles and Practice of Constraint Programming – CP’99, 5th Inter-
national Conference, Alexandria, Virginia, USA, October 11-14, 1999, Proceedings,
volume 1713 of Lecture Notes in Computer Science, pages 331–345. Springer, 1999.

[241] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[242] Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization: Algo-
rithms and Complexity. Prentice-Hall, Englewood Cliffs, New Jersey, 1982.

[243] Julius Petersen. Die Theorie der regulären Graphs [The theory of regular graphs].
Acta Mathematica, 15:193–220, 1891. In German.

[244] Paul A. Peterson and Michael C. Loui. The general maximum matching algorithm of
Micali and Vazirani. Algorithmica, 3(1-4):511–533, 1988.

[245] Thierry Petit, Jean-Charles Régin, and Christian Bessière. Specific filtering algorithms
for over-constrained problems. In Toby Walsh, editor, Principles and Practice of
Constraint Programming – CP 2001, 7th International Conference, CP 2001, Paphos,
Cyprus, November 26 - December 1, 2001, Proceedings, volume 2239 of Lecture Notes
in Computer Science, pages 451–463. Springer, 2001.

[246] Alex Pothen and Chin-Ju Fan. Computing the block triangular form of a sparse
matrix. ACM Transactions on Mathematical Software, 16(4):303–324, 1990.

[247] Patrick Prosser and Chris Unsworth. Rooted tree and spanning tree constraints. In
17th ECAI Workshop on Modelling and Solving Problems with Constraints, 2006.

[248] Jean-François Puget. A fast algorithm for the bound consistency of alldiff constraints.
In Proceedings of the 15th National Conference on Artificial Intelligence and 10th
Innovative Applications of Artificial Intelligence Conference (AAAI / IAAI), pages
359–366, 1998.

[249] Paul W. Purdom. A transitive closure algorithm. BIT Numerical Mathematics,
10(1):76–94, 1970.

[250] Paul W. Purdom and Edward F. Moore. Algorithm 430: Immediate predominators in
a directed graph. Communications of the ACM, 15(8):777–778, 1972.

226 BIBLIOGRAPHY

[251] Luis Quesada. Solving Constrained Graph Problems using Reachability Constraints
based on Transitive Closure and Dominators. PhD thesis, Université Catholique de
Louvain, Belgium, 2006.

[252] Claude-Guy Quimper. Efficient Propagators for Global Constraints. PhD thesis, Uni-
versity of Waterloo, Waterloo, Ontario, Canada, 2006.

[253] Claude-Guy Quimper, Alejandro López-Ortiz, Peter van Beek, and Alexander Golyn-
ski. Improved algorithms for the global cardinality constraint. In Mark Wallace, edi-
tor, Principles and Practice of Constraint Programming – CP 2004, 10th International
Conference, CP 2004, Toronto, Canada, September 27 - October 1, 2004, Proceedings,
volume 3258 of Lecture Notes in Computer Science, pages 542–556. Springer, 2004.

[254] Claude-Guy Quimper, Peter van Beek, Alejandro López-Ortiz, Alexander Golynski,
and Sayyed Bashir Sadjad. An efficient bounds consistency algorithm for the global
cardinality constraint. Constraints, 10(2):115–135, 2005.

[255] Jean-Charles Régin. A filtering algorithm for constraints of difference in CSPs. In
Proceedings of the 12th National Conference on Artificial Intelligence (AAAI), pages
362–367, Seattle, Washington, 1994.

[256] Jean-Charles Régin. Generalized arc consistency for global cardinality constraint. In
Proceedings of the 13th National Conference on Artificial Intelligence (AAAI), pages
209–215, Portland, Oregon, 1996.

[257] Jean-Charles Régin. The symmetric alldiff constraint. In Thomas Dean, editor, Pro-
ceedings of the 16th International Joint Conference on Artificial Intelligence, IJCAI
99, Stockholm, Sweden, July 31 - August 6, 1999, pages 420–425, 1999.

[258] Jean-Charles Régin. Cost-based arc consistency for global cardinality constraints.
Constraints, 7(3-4):387–405, 2002.

[259] Jean-Charles Régin. Using constraint programming to solve the maximum clique prob-
lem. In Francesca Rossi, editor, Principles and Practice of Constraint Programming
– CP 2003, 9th International Conference, CP 2003, Kinsale, Ireland, September 29
- October 3, 2003, Proceedings, volume 2833 of Lecture Notes in Computer Science,
pages 634–648. Springer, 2003.

[260] Jean-Charles Régin. Simpler and incremental consistency checking and arc consistency
filtering algorithms for the weighted spanning tree constraint. In Laurent Perron
and Michael A. Trick, editors, Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems, 5th International Conference,
CPAIOR 2008, Paris, France, May 20-23, 2008, Proceedings, volume 5015 of Lecture
Notes in Computer Science, pages 233–247. Springer, 2008.

[261] Jean-Charles Régin, Thierry Petit, Christian Bessiere, and Jean-François Puget. An
original constraint based approach for solving over constrained problems. In Rina

BIBLIOGRAPHY 227

Dechter, editor, Principles and Practice of Constraint Programming – CP 2000, 6th
International Conference, CP 2000, Singapore, September 18-21, 2000, Proceedings,
volume 1894 of Lecture Notes in Computer Science, pages 543–548. Springer, 2000.

[262] Jean-Charles Régin, Louis-Martin Rousseau, Michel Rueher, and Willem-Jan van Ho-
eve. The weighted spanning tree constraint revisited. In Andrea Lodi, Michela Milano,
and Paolo Toth, editors, Integration of AI and OR Techniques in Constraint Pro-
gramming for Combinatorial Optimization Problems: 7th International Conference,
CPAIOR 2010, Bologna, Italy, June 14-18, 2010. Proceedings, volume 6140 of Lecture
Notes in Computer Science, pages 287–291. Springer, 2010.

[263] Julia B. Robinson. On the Hamiltonian game (A Traveling Salesman Problem). Re-
search Memorandum RM-303, The RAND Corporation, Santa Monica, California, 5
December 1949.

[264] Alexander Schrijver. Combinatorial Optimization. Polyhedra and Efficiency, volume
A, B, C. Springer, Berlin, 2003.

[265] Maria G. Scutellà and Gianluca Scevola. A modification of Lipski-Preparata’s al-
gorithm for the maximum matching problem on bipartite convex graphs. Ricerca
Operativa, 46:63–77, 1988.

[266] Robert Sedgewick and Philippe Flajolet. An Introduction to the Analysis of Algo-
rithms. Addison-Wesley, 1996.

[267] Meinolf Sellmann. An arc-consistency algorithm for the minimum weight all different
constraint. In Pascal Van Hentenryck, editor, Principles and Practice of Constraint
Programming – CP 2002, 8th International Conference, CP 2002, Ithaca, New York,
USA, September 9-13, 2002, Proceedings, volume 2470 of Lecture Notes in Computer
Science, pages 744–749. Springer, 2002.

[268] Meinolf Sellmann. Cost-based filtering for shorter path constraints. In Francesca Rossi,
editor, Principles and Practice of Constraint Programming – CP 2003, 9th Interna-
tional Conference, CP 2003, Kinsale, Ireland, September 29 - October 3, 2003, Pro-
ceedings, volume 2833 of Lecture Notes in Computer Science, pages 694–708. Springer,
2003.

[269] Micha Sharir. A strong connectivity algorithm and its application in data flow analysis.
Computers & Mathematics with Applications, 7(1):67–72, 1981.

[270] Yoshio Shimamoto. On an extension of the Grinberg theorem. Journal of Combina-
torial Theory, Series B, 24(2):169–180, 1978.

[271] Jefferey A. Shufelt and Hans J. Berliner. Generating Hamiltonian circuits without
backtracking from errors. Theoretical Computer Science, 132:347–375, 1994.

[272] Michael Sipser. Introduction to the Theory of Computation. PWS, Boston, 1997.

228 BIBLIOGRAPHY

[273] Daniel D. Sleator and Robert E. Tarjan. Self-adjusting heaps. SIAM Journal on
Computing, 15(1):52–69, 1986.

[274] Thomas H. Spencer and Ernst W. Mayr. Node weighted matching. In Jan Paredaens,
editor, 11th International Colloquium on Automata, Languages and Programming,
Antwerpen, Belgium, July 16-20, 1984 (EATCS sign). Proceedings, volume 172 of
Lecture Notes in Computer Science, pages 454–464.

[275] John T. Stasko and Jeffrey S. Vitter. Pairing heaps: Experiments and analysis. Com-
munications of the ACM, 30(3):234–249, 1987.

[276] George Steiner and Julian S. Yeomans. A linear time algorithm for maximum
matchings in convex, bipartite graphs. Computers & Mathematics with Applications,
31(12):91–96, 1996.

[277] Vahid Tabatabaee, Leonidas Georgiadis, and Leandros Tassiulas. QoS provisioning
and tracking fluid policies in input queueing switches. IEEE/ACM Transactions on
Networking, 9(5):605–617, 2001.

[278] Tadao Takaoka. Theory of trinomial heaps. In Ding-Zhu Du, Peter Eades, Vladimir
Estivill-Castro, Xuemin Lin, and Arun Sharma, editors, Computing and Combina-
torics, 6th Annual International Conference, COCOON 2000, Sydney, Australia, July
26-28, 2000, Proceedings, volume 1858 of Lecture Notes in Computer Science, pages
362–372. Springer, 2000.

[279] Tadao Takaoka. Theory of 2-3 heaps. Discrete Applied Mathematics, 126(1):115–128,
2003.

[280] Robert E. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on
Computing, 1(2):146–160, 1972.

[281] Robert E. Tarjan. Finding dominators in directed graphs. SIAM Journal on Comput-
ing, 3(1):62–89, 1974.

[282] Robert E. Tarjan. Testing flow graph reducibility. Journal of Computer and System
Sciences, 9(3):355–365, 1974.

[283] Robert E. Tarjan. Efficiency of a good but not linear set union algorithm. Journal of
the Association for Computing Machinery, 22(2):212–225, 1975.

[284] Robert E. Tarjan. Edge-disjoint spanning trees and depth-first search. Acta Informat-
ica, 6(2):171–185, 1976.

[285] Robert E. Tarjan. Data Structures and Network Algorithms. SIAM Press, Philadelphia,
1983.

[286] Robert E. Tarjan. Amortized computational complexity. SIAM Journal on Algebraic
Discrete Methods, 6(2):306–318, 1985.

BIBLIOGRAPHY 229

[287] Robert E. Tarjan and Jan van Leeuwen. Worst-case analysis of set union algorithm.
Journal of the Association for Computing Machinery, 31(2):245–281, 1984.

[288] Sven Thiel. Efficient Algorithms for Constraint Propagation and for Processing Tree
Description. PhD thesis, Saarlandes University, Germany, 2004.

[289] Nobuaki Tomizawa. On some techniques useful for solution of transportation network
problems. Networks, 1(2):173–194, 1971.

[290] Michael A. Trick. Integer and constraint programming approaches for round-robin
tournament scheduling. In Edmund K. Burke and Patrick De Causmaecker, edi-
tors, Practice and Theory of Automated Timetabling IV, 4th International Conference,
PATAT 2002, Gent, Belgium, August 21-23, 2002, Selected Revised Papers, volume
2740 of Lecture Notes in Computer Science, pages 63–77. Springer, 2003.

[291] Edward Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.

[292] William T. Tutte. The 1-factors of oriented graphs. Proceedings of the American
Mathematical Society, 4(6):922–931, 1953.

[293] William T. Tutte. A short proof of the factor theorem for finite graphs. Canadian
Journal of Mathematics, 6:347–352, 1954.

[294] William T. Tutte. Graph factors. Combinatorica, 1(1):79–97, 1981.

[295] Robert J. Urquhart. Degree Constrained Subgraphs of Linear Graphs. PhD thesis,
Systems Engineering Laboratory, Department of Electrical Engineering, University of
Michigan, Ann Arbor, Michigan, USA, 1967.

[296] Leslie G. Valiant. The complexity of computing the permanent. Theoretical Computer
Science, 8(2):189–201, 1979.

[297] Leslie G. Valiant. The complexity of enumeration and reliability problems. SIAM
Journal on Computing, 8(3):410–421, 1979.

[298] Peter van Emde Boas, Rob Kaas, and Erik Zijlstra. Design and implementation of an
efficient priority queue. Mathematical Systems Theory, 10:99–127, 1977.

[299] Willem-Jan van Hoeve. Operations Research Techniques in Constraint Programming.
PhD thesis, University Amsterdam, The Netherlands, 2005.

[300] Willem-Jan van Hoeve. The alldifferent constraint: a survey. In Annual Workshop of
the ERCIM Working Group on Constraints, Prague, Czech Republik, June 2001.

[301] Jan van Leeuwen and Theo van der Weide. Alternative path compression tech-
niques. Technical Report RUU-CS-77-3, Department of Computer Science, University
of Utrecht, The Netherlands, 1977.

230 BIBLIOGRAPHY

[302] Vijay V. Vazirani. A theory of alternating paths and blossoms for proving correctness
of the O(

√
|V | · |E|) general graph maximum matching algorithm. Combinatorica,

14(1):71–109, 1994.

[303] Vijay V. Vazirani. An improved definition of blossoms and a simpler proof of the MV
matching algorithm. CoRR, abs/1210.4594, 2012.

[304] Walter Vogel. Bemerkungen zur Theorie der Matrizen aus Nullen und Einsen [Notes
on the theory of matrices of zeros and ones]. Archiv der Mathematik (Archives of
Mathematics), 14:139–144, 1963. In German.

[305] Jean Vuillemin. A data structure for manipulating priority queues. Communications
of the ACM, 21(4):309–315, 1978.

[306] John W. J. Williams. Algorithm 232: Heapsort. Communications of the ACM,
7(6):347–348, 1964.

[307] Christoph Witzgall and Charles T. Zahn. Modification of Edmonds’ maximum match-
ing algorithm. Journal of Research of the National Bureau of Standards, 69B(1-2):91–
98, 1965.

[308] Douglas R. Woodall. Sufficient conditions for circuits in graphs. Proceedings of the
London Mathematical Society, 24(4):739–755, 1972.

[309] Qinglin Roger Yu and Guizhen Liu. Graph Factors and Matching Extensions. Springer,
2009.

[310] Qinglin Roger Yu and Zhao Zhang. Extremal properties of (1, f)-odd factors in graphs.
Ars Combinatoria, 84:161–170, 2007.

[311] Cui Yuting and Mikio Kano. Some results on odd factors of graphs. Journal of Graph
Theory, 12(3):327–333, 1988.

[312] Joseph Zaks. Extending an extension of Grinberg’s theorem. Journal of Combinatorial
Theory, Series B, 32(1):95–98, 1982.

[313] Alessandro Zanarini. Exploiting Global Constraints for Search and Propagation. PhD
thesis, École Polytechnique de Montréal, Canada, 2010.

[314] Alessandro Zanarini, Michela Milano, and Gilles Pesant. Improved algorithm for the
soft global cardinality constraint. In J. Christopher Beck and Barbara M. Smith,
editors, Integration of AI and OR Techniques in Constraint Programming for Combi-
natorial Optimization Problems, 3rd International Conference, CPAIOR 2006, Cork,
Ireland, May 31 - June 2, 2006, Proceedings, volume 3990 of Lecture Notes in Com-
puter Science, pages 288–299. Springer, 2006.

[315] Jianyang Zhou. A permutation-based approach for solving the job-shop problem.
Constraints, 2(2):185–213, 1997.

BIBLIOGRAPHY 231

Wissenschaftlicher Werdegang

Persönliche Daten

Name Radosław Cymer

Geburt 18. Juni 1970 in Łódź (Polen)

Schulische Laufbahn

1977-1985 Grundschule, Łódź

1985-1991 Gymnasium, Łódź (Abitur)

Universitäre Laufbahn

1991-1996 Universität, Łódź (Informatikstudium, Magisterarbeit)

2006-2013 Universität, Hannover (Fern-Promotionsstudium)

Berufliche Laufbahn

1998-2000 Tutor für Studenten der Informatik (Hochschule)

1997-2013 Softwareentwickler, Datenbankadministrator (Wirtschaft)

	Introduction
	Preliminaries
	Some basic concepts
	Complexity of algorithms
	Graph Theory
	Matching Theory
	Degree-matchings

	Decomposition Theory (bipartite graphs)
	Elementary bipartite graphs
	Bipartite graphs with positive surplus

	Decomposition Theory (general graphs)
	Elementary general graphs
	Factor-critical graphs

	Constraint Programming
	Global constraints

	Graph Traversal Algorithms
	Depth-First Search
	Breadth-First Search

	Bipartite Graphs
	Preliminaries
	Principle of duality

	Dulmage-Mendelsohn Canonical Decomposition
	Bipartite Graphs with Imperfect Maximum Matchings
	Bipartite Graphs with Perfect Matchings
	Bipartite Subgraphs with prescribed Degrees

	Partition of vertices and edges
	Alternating breadth-first search
	Alternating depth-first search for perfect matchings
	Another algorithm

	Alternating depth-first search for perfect (g,f)-matchings
	Shrinking the bounds of degree conditions

	Application to Global Constraints
	Hard Global Constraints
	Soft Global Constraints

	Convex bipartite graphs
	Summary

	General Graphs
	Preliminaries
	Gallai-Edmonds Canonical Decomposition
	General Graphs with Maximum Matchings
	General Graphs with Perfect Matchings
	General Graphs with Degree-Matchings

	Computing the partition of vertices and edges
	Partition of vertices
	Partition of edges

	Application to Global Constraints
	Kano Canonical Decomposition
	Summary

	Directed Graphs
	Preliminaries
	Canonical Decomposition
	Graph Partitioning Constraints
	Counting the number of solutions
	Summary

	Weighted Graphs
	Preliminaries
	Computing the partition of edges
	Graphs with vertex-weighted matchings
	Weighted alternating depth-first search

	Graphs with edge-weighted matchings
	Weighted alternating breadth-first search

	Application to Optimization Constraints
	Summary

	Conclusion
	Bibliography

