
Doctoral Thesis in Information and Communication Technology

Generating Optimized and Secure
Binary Code
RODOTHEA MYRSINI TSOUPIDI

Stockholm, Sweden 2023

kth royal institute
of technology

Generating Optimized and Secure
Binary Code
RODOTHEA MYRSINI TSOUPIDI

Doctoral Thesis in Information and Communication Technology
KTH Royal Institute of Technology
Stockholm, Sweden 2023

Academic Dissertation which, with due permission of the KTH Royal Institute of Technology,
is submitted for public defence for the Degree of Doctor of Philosophy on Wednesday the 7th
June 2023, at 1:00 p.m. in F3, Lindstedtsvägen 26, Stockholm.

© Rodothea Myrsini Tsoupidi
© Co-authors: Elena Troubitsyna, Panagiotis Papadimitratos, Roberto Castañeda Lozano, Benoit Baudry, Musard Balliu

ISBN: 978-91-8040-591-1
TRITA-EECS-AVL-2023:44

Printed by: Universitetsservice US-AB, Sweden 2023

i

Abstract

The increased digitalization of modern societies has resulted in a proliferation
of a broad spectrum of embedded devices, ranging from personal smartphones
and heart pacemakers to large-scale industrial IoT systems. Since they often
handle various sensitive data, these devices increasingly become the targets of
cyberattacks that threaten the integrity of personal data, financial security,
and sometimes even people’s safety.

A common source of security vulnerabilities in computing systems is soft-
ware. Nowadays, the vast majority of embedded software is written in high-
level programming languages and compiled to low-level assembly code using
general-purpose compilers. However, general-purpose compilers typically ig-
nore security aspects and mainly focus on improving performance and re-
ducing the code size. Meanwhile, the security-targeting compilers often pro-
duce code that is suboptimal with respect to performance. This security-
performance gap is particularly detrimental for embedded devices that are
usually battery-operated and hence, have stringent restrictions on memory
size and power consumption.

Among the most frequently carried out cyberattacks are code-reuse at-
tacks. They insert data into the victim system via memory-corruption vul-
nerabilities to redirect the control flow and hijack the system. Automatic
software diversification is an efficient mitigation approach against code-reuse
attacks, however, it typically does not allow us to explicitly control of the
introduced performance overhead.

Another large class of attacks is side-channel attacks. Such attacks often
target cryptographic implementations and aim at extracting the information
about the processed data by recording side-channel information, such as the
execution time or the power consumption of the victim system. Typically,
protection against side-channel attacks relies on software-based mitigations,
which may lead to high performance overhead. An attacker that attempts to
hijack the victim system may use either or both of these attacks and hence,
often multiple mitigations have to be combined together to protect a system.

This dissertation proposes Secure-by-Construction Optimization (Sec-
Opt), a constraint-based approach that combines performance goals with
security mitigations. More specifically, SecOpt achieves performance-aware
automatic code diversification against code-reuse attacks, while it generates
highly-optimized code that preserves software mitigations against side-
channel attacks. A key advantage of SecOpt is composability, namely the
ability to combine conflicting mitigations and generate code that preserves
these mitigations. In particular, SecOpt generates diverse code variants that
are secure against side-channel attacks, therefore protecting against both
code-reuse and side-channel attacks.

SecOpt features unique characteristics compared to conventional compiler-
based approaches, including performance-awareness and mitigation compos-
ability in a formal framework. Since the combined security and performance
goals are especially important for resource-constrained systems, SecOpt con-
stitutes a practical approach for optimizing performance- and security-critical
code for embedded devices.

ii

Sammanfattning

Den ökande digitaliseringen av det moderna samhället har orsakat snabb
spridning av ett brett utbud av inbyggda system, allt fr̊an smarta mobil-
telefoner och hjärtstimulatorer, till storskaliga industriella IoT system. Dessa
datorenheter blir allt oftare m̊al för cyberangrepp som hotar den personliga
integriteten, den ekonomiska säkerheten och ibland även människors säkerhet.

En vanlig källa till säkerhetss̊arbarheter i datasystem är mjukvara. Nu för
tiden är majoriteten av mjukvaran för inbyggda system skriven i högniv̊apro-
grammeringsspr̊ak som kompileras till maskinkod med hjälp av konventionella
kompilatorer. Dessa kompilatorer tar ofta inte hänsyn till säkerhetsaspekter i
programmets källkod och fokuserar istället p̊a att förbättra prestanda och re-
ducera kodstorlek. Samtidigt producerar säkerhetsinriktade kompilatorer ofta
kod som är suboptimal med avseende p̊a prestanda. Denna diskrepans mel-
lan säkerhet och prestanda är problematisk för inbyggda system med stränga
restriktioner vad gäller minnesanvändning och energiförbrukning.

Kod̊ateranvändningsattacker är en av de vanligaste typer av cyberan-
grepp. Dessa cyberangrepp injicerar data i det angripna systemet, via en
minneskorruptionss̊arbarhet, som ger möjlighet att dirigera om mjukvarans
kontrollflöde och kapa systemet. Automatiserad mjukvarudiversifiering är en
effektiv skydds̊atgärd mot kod̊ateranvändningsattacker men nuvarande meto-
der till̊ater inte explicit styrning av prestandaförsämringen. En annan stor cy-
berangreppsklass är sidokanalsattacker. Dessa cyberangrepp riktas ofta mot
kryptografiska implementeringar och syftar till att utvinna säkerhetsviktig
information som berör den behandlade datan. Angriparen läser av sidokanal-
sinformation under programmets exekvering, s̊asom exekveringstid eller ener-
giförbrukning. Vanliga skydds̊atgärder mot sidokanalsattacker är mjukvaru-
åtgärder, som dessvärre kan leda till stor prestandaförsämring. En angripare
som försöker kapa ett system kan använda en eller flera metoder för att utföra
dessa cyberangrepp. Därför måste ofta olika skydds̊atgärder kombineras för
att skydda ett system.

Denna avhandling introducerar Säker-vid-Konstruktion Kodoptime-
ring (SecOpt), en villkorsbaserad kompileringsmetod som kombinerar
prestandam̊al med skydds̊atgärder. Närmare bestämt utför SecOpt pre-
standamedveten automatisk diversifiering mot kod̊ateranvändningsattacker
och genererar optimerad kod som bibeh̊aller mjukvarůatgärder mot sido-
kanalsattacker. SecOpts nykelegenskap är dess möjlighet att kombinera
motstridiga skydds̊atgärder p̊a ett sätt som bevarar dessa skydds̊atgärders
egenskaper. Mer specifikt skapar SecOpt m̊angfaldiga kodvarianter som
uppfyller säkerhetskrav mot sidokanalsattacker, vilket skyddar b̊ade mot
kod̊ateranvändningsattacker och sidokanalsattacker.

SecOpt har unika egenskaper jämfört med konventionella kompileringsme-
toder, s̊asom prestandamedvetenhet och komponering av olika skydds̊atgärder
i ett formellt ramverk. Kombinationen av säkerhets- och prestandam̊al är
särskilt viktig för resursbegränsade inbyggda system. Sammanfatningsvis är
SecOpt en praktisk metod för att optimera säkerhetskritisk kod.

To my grandparents Myrsini and Stratis

Acknowledgments

First, I would like to thank my main supervisor Elena Troubitsyna, who trusted
my work and supported me during my PhD. This dissertation would not have been
possible without her trust, support, research advice, and supervision. I would also
like to thank my co-advisor Panos Papadimitratos, who helped me focus on the
security angle of my work and the presentation of my research results. I want to
thank my former co-advisor Roberto Castañeda Lozano for teaching me a lot about
presenting and writing research, supporting me during my studies, and continuing
to advise and work with me until the end of my studies. A special thanks to
Christian Schulte, who taught me all I know about Constraint Programming and
gave me the opportunity to work on an exciting project that is the basis of this
dissertation. You were an inspiration for my work, and you are dearly missed.
In addition, I am especially grateful to Thomas Sjöland for his significant and
continuous support. I want to thank Fernando Magno Quintão Pereira for serving
as the opponent of this dissertation, Elisavet Kozyri, Christoph Kessler, and Marjan
Sirjani for serving on the grading committee, Vladimir Vlassov for serving as a chair
at my defense, and Roberto Guanciale for acting as the advanced reviewer for my
thesis.

Big thanks to my friends and colleagues Amir M. Ahmadian, Nicolas Harrand,
and Javier Cabrera Arteaga for improving the quality of my work and the quality
of my life with many discussions, fikas, and activities inside and outsite KTH.
I also want to thank my friends and colleagues, Saranya Natarajan, Alexandros
Milolidakis, Orestis Floros, Nadia Campo Woytuk, Negar Sarinianaini, Andreas
Lindner, Deepika Tiwari, Anoud Alshnakat, Daniel Lundén, Gizem Çaylak, Tianze
Wang, Han Fu, Linnea Stjerna, Javier Ron Arteaga, and Viktor Palmkvist, for the
lunch and fika conversations, board-game nights, and taking care of my cats! I
want to especially thank my parents, my grandmother Myrsini and my grandfather
Stratis, my sister Sofia, my two brothers Panagiotis and Stratis, and recently my
niece Marielsa, for their endless support and trust in me. Last but not least, I want
to thank Oscar for all his continuous support, patience, and for sharing good and
bad moments.

v

Contents

Contents vi

Thesis ix

1 Introduction 1
1.1 Thesis Statement . 3
1.2 Research Questions . 3
1.3 Contributions . 4
1.4 Sustainability and Ethics . 5
1.5 Publications . 6
1.6 Outline . 7

2 Background 9
2.1 Cybersecurity Threats and Mitigations 9
2.2 Constraint Programming . 18
2.3 Compiler Backend . 21

3 Approach and Methodology 25
3.1 Secure-by-Design Optimization (SecOpt) 25
3.2 Methodology . 34

4 Related Work 37
4.1 Code-Reuse Attacks Mitigations . 37
4.2 Defending Side-Channel Attacks . 39
4.3 Secure Compilation and Optimization 42

5 Summary of Publications 45
5.1 Publication 1: Constraint-Based Software Diversification for Effi-

cient Mitigation of Code-Reuse Attacks 45
5.2 Publication 2: Constraint-Based Diversification of JOP Gadgets . . 46
5.3 Publication 3: Vivienne: Relational Verification of Cryptographic

Implementations in WebAssembly 46

vi

CONTENTS vii

5.4 Publication 4: Securing Optimized Code Against Power Side Channels 47
5.5 Publication 5: Thwarting Code-Reuse and Side-Channel Attacks in

Embedded Systems . 47

6 Conclusion and Future Work 49
6.1 Summary of Contributions . 49
6.2 Future Work . 50

References 53

Thesis

ix

Chapter 1

Introduction

The increasing digitalization of modern societies has created the need to protect
sensitive data and safety-critical systems from malicious actors. Embedded de-
vices, such as medical implants, traffic controllers, and car microcontrollers, are
safety-critical systems that require preserving strict safety and security require-
ments. In addition, embedded devices are often battery driven, and thus, resource
constrained [1].

Despite long-term efforts to identify and remove security vulnerabilities in soft-
ware systems, computer systems are still vulnerable to security threats. These
vulnerabilities are the result of design decisions, human errors, connectivity via
public network, public exposure of the hardware, and/or insufficient control to en-
sure information security [2]. Furthermore, embedded software is typically written
in unsafe languages, such as C and C++, which supports a wide range of target
architectures. Mitigating these security vulnerabilities requires vulnerable software
and/or hardware changes. Changes in the software are easier to implement and
deliver than hardware due to the long development process of hardware. Software
security mitigation approaches often apply changes to the source code of software
implementations, which is typically compiled to machine code in binary format.

General-purpose compilers focus on the generated codes’ performance efficiency
size; however, they typically do not preserve security properties [3]. In recent years,
secure compilers have aimed to fill this gap and automatically generate secure code.
Unfortunately, these approaches often introduce significant overhead to the perfor-
mance or code size of the generated code [4]. Resource-constrained Internet of
Things (IoT) devices and embedded systems may not afford software mitigations
that introduce high performance and code-size overhead. This performance-security
gap in compiler approaches creates the need for approaches that mitigate cyber-
attacks while generating highly optimized code. Constraint-based modeling and
solving is a naturally versatile framework that allows the expression of diverse
properties. Constraint-based compiler methods trade high-optimality guarantees,
composability, and formal guarantees for compilation time [5].

1

2 CHAPTER 1. INTRODUCTION

Among the most powerful software-induced cyberattacks are code-reuse at-
tacks [6]. These attacks insert data into the victim system via memory-corruption
vulnerabilities to redirect the control flow and hijack the system. Automatic soft-
ware diversification investigates the automatic generation of diverse program vari-
ants and is an efficient mitigation approach against code-reuse attacks [7]. Although
the reported performance overhead is typically low [8], few approaches allow con-
trol over the introduced performance overhead [9] to generate diverse variants with
predictable performance overhead. Furthermore, most automatic software diversi-
fication approaches do not provide any guarantees on the diversity of the generated
program variants.

Cryptographic algorithms aim at securing sensitive information and communi-
cation in the presence of adversarial behavior. The design of popular cryptographic
algorithms, such as RSA, is based on the assumption that breaking these algo-
rithms is computationally too hard to be practical. However, with the advent of
side-channel attacks, adversaries are able to break cryptographic algorithms using
knowledge about the algorithm’s implementation and side effects during the execu-
tion of the algorithm. In particular, these attacks exploit side-channel information,
such as the execution time or the power consumption, during the execution of the
victim algorithm to extract information about the processed data. These powerful
attacks have challenged the security of popular cryptographic algorithms, such as
AES, DES, and RSA [10, 11, 12]. Typical mitigations against side-channel attacks
include software mitigations that aim at hiding secret information from side-channel
traces. However, these mitigations may lead to high performance overhead. Hence,
reducing this overhead is essential, not least for resource-constrained devices.

An attacker attempting to exploit a victim system may use either or both of
these attacks; therefore, protecting a system often requires applying multiple mit-
igations. However, these mitigations may affect or invalidate each other; thus,
combining such mitigations while preserving their security properties is highly im-
portant. At the same time, the sequential application of software mitigations may
introduce prohibively high performance overhead; hence, controlling this overhead
is essential, especially for resource-constrained devices.

This dissertation investigates the generation of highly optimized and secure
binary code targeting code-reuse and side-channel attacks in embedded systems.
Compiler approaches allow high control over the program structure and the gener-
ated binary code, which enables effective vulnerability mitigation. In addition, typ-
ically, compilers generate optimized code; thus, embedding security properties in a
compiler-base approach allows the generation of highly optimized code [4]. This dis-
sertation presents Secure-by-Construction Optimization (SecOpt), a performance-
aware, secure compilation method, which uses Constraint Programming (CP), a
combinatorial optimization method, to generate highly optimized and secure code.
Compiler optimization has effectively used CP to describe the program properties,
code transformations, and the target processor cost model [5]. SecOpt extends
a constraint-based compiler approach to generate code that hinders cyberattacks
while it generates highly efficient code at the cost of compilation-time overhead.

1.1. THESIS STATEMENT 3

Code verification allows verifying security properties in the generated binary code
to increase trust in the compiler result. The ultimate goal of SecOpt is to design a
versatile compiler-based toolbox that protects binary code against code-reuse and
side-channel attacks while reducing the introduced resource overhead.

1.1 Thesis Statement

This dissertation proposes a constraint programming approach to integrate compiler
transformations and security constraints to generate optimized and secure code.
The thesis statement of this dissertation is the following:

Combinatorial binary-code hardening is effective, composable, and
highly optimizing.

The proposed approach is effective as it achieves satisfactory mitigation effec-
tiveness against different attacks, including code-reuse attacks, power side-channel
attacks, and timing side-channel attacks. When the attacker has multiple methods
to hijack a system, this approach may compose one solution that satisfies mit-
igations against all these threats. This property is valuable when two different
mitigation approaches conflict, i.e. the transformations of one mitigation may in-
validate the other mitigation(s). SecOpt is highly optimizing because it achieves
software diversification with zero performance overhead and generates optimized
code against side-channel attacks with reduced overhead compared to related ap-
proaches. These properties of SecOpt take advantage of the characteristics of CP,
which allows control over both the modeling and solving.

1.2 Research Questions

This dissertation poses four research questions that investigate the feasibility and
effectiveness of SecOpt at generating highly optimized secure programs, providing
a formal and composable framework.

RQ1: How feasible and effective is performance-aware
constrained-based software diversification against code-reuse
attacks?

Automatic software diversity has been effective against code-reuse attacks. Fine-
grained diversification approaches perform transformations at the binary or the
compiler level to generate functionally equivalent program variants. However, most
of these approaches 1) focus on x86 systems, 2) do not control how different the
generated variants are, and/or 3) do not control the performance overhead of the
generated program variants. With this question, we want to investigate the fea-
sibility of a constraint-based diversification approach and its effectiveness against

4 CHAPTER 1. INTRODUCTION

code-reuse attacks. In addition, we investigate how to generate highly optimized
and diverse solutions efficiently.

RQ2: How feasible is secure constraint-based optimization of
cryptographic implementations?

Software transformations of cryptographic implementations that mitigate timing
and power side-channel attacks may introduce significant performance overhead [13,
14, 15]. This dissertation considers two software mitigation approaches against
timing and power side channels, respectively and investigates the feasibility of a
constraint-based approach to generate optimized and secure code against these
attacks. In addition, this question investigates the adequacy of a constraint-based
approach to provide guarantees about the program security.

RQ3: How feasible and effective is a combined mitigation against
code-reuse attacks and side-channel attacks?

Protecting a system against cyberattacks often requires combining multiple mit-
igations against different attack classes. In some cases, diverse mitigations may
conflict with each other. In particular, the sequential application of different se-
curity mitigations may invalidate one another. This dissertation investigates the
feasibility of a constraint-based approach to combine multiple mitigations and the
security effect of combining fine-grained software diversification against code-reuse
attacks with mitigations against side-channel attacks.

RQ4: How feasible is code verification of binary code against
timing side channels?

The code that SecOpt generates against timing attacks needs to preserve timing
properties. To improve our trust in SecOpt, we verify the intended timing prop-
erties in the generated code using external tools. Furthermore, this dissertation
investigates the feasibility of a symbolic execution approach for verifying timing
mitigations in WebAssembly. WebAssembly is a recent low-level language with
multiple advantages, including security features, portability, and efficiency [16].
However, WebAssembly is vulnerable to timing side-channel attacks. This question
aims to investigate the feasibility of code verification to preserve timing properties
in real-world binary code.

1.3 Contributions

The contributions of this thesis are as follows:

C1: design and evaluate a local search algorithm for generating diverse solutions
in CP;

1.4. SUSTAINABILITY AND ETHICS 5

C2: propose a software diversification method that allows explicit control over the
execution-time overhead of the generated program variants and evaluate its
effectiveness against code-reuse attacks;

C3: design and evaluate a structural decomposition algorithm to diversify
medium-sized functions;

C4: model the automatic generation of optimized code that is secure against power
side-channel attacks;

C5: provide a proof that the constraint model against power side-channel attacks
protects against the leakage model;

C6: model the automatic generation of optimized code that is secure against tim-
ing side-channel attacks;

C7: model and evaluate a composable approach to code optimization that is secure
against code-reuse attacks and side-channel attacks;

C8: design and evaluate a method to verify the constant-time property in We-
bAssembly programs.

1.4 Sustainability and Ethics

Sustainability goals and ethics considerations are an essential part of this thesis
that aims at extending the state-of-the-art in secure code generation.

Sustainability: Cybersecurity is essential for preventing disinformation, fraud,
and breach of sensitive data, while it promotes economic growth and political in-
dependence. This thesis concerns the development of software mitigations against
cyberattacks that may result in the leakage of sensitive data or hijacking a possibly
critical system, such as medical equipment, energy production, medical records,
and more. In addition, the energy consumption of data centers accounts for around
1% to 1.5% of global energy use. Often, this data requires security measures to
protect against variable attacker models, which typically increase the performance
overhead, and thus, the total energy consumption for achieving the same results.
We believe that our approach is a step towards improved performance consumption
for software and, hence, reduced energy consumption.

Ethics: This thesis deals with data that consists of programs that are not subject
to ethical considerations. The reproducibility of the research conducted during this
thesis has been an important goal that we deal with by providing all artifacts for
this work online.

6 CHAPTER 1. INTRODUCTION

1.5 Publications

This thesis includes the following publications:

P1: R. M. Tsoupidi, R. Castañeda Lozano, and B. Baudry, “Constraint-Based
Software Diversification for Efficient Mitigation of Code-Reuse Attacks,” in
International Conference on Principles and Practice of Constraint Program-
ming, 2020, pp. 791–808

Contributions: The author of this thesis contributed with design discus-
sions, design decisions, implementation and evaluation of the method, paper
writing, and presentation of the paper.

P2: R. M. Tsoupidi, R. Castañeda Lozano, and B. Baudry, “Constraint-based
diversification of JOP gadgets,” Journal of Artificial Intelligence Research,
vol. 72, pp. 1471–1505, 2021

Contributions: The author of this thesis contributed with design dis-
cussions, algorithm design decisions, implementation and evaluation of the
method, and paper writing.

P3: R. M. Tsoupidi, M. Balliu, and B. Baudry, “Vivienne: Relational Verification
of Cryptographic Implementations in WebAssembly,” in 2021 IEEE Secure
Development Conference (SecDev), 2021, pp. 94–102

Contributions: The author of this thesis contributed with design discus-
sions, algorithm design decisions, solver optimization decisions, invariant de-
sign, implementation and evaluation of all methods, paper writing, and pre-
sentation of the paper.

P4: R. M. Tsoupidi, R. Castañeda Lozano, E. Troubitsyna, and P. Papadimitratos,
“Securing Optimized Code Against Power Side Channels,” in 2023 IEEE Se-
curity Foundations Symposium (CSF), 2023, to appear

Contributions: The author of this thesis contributed with design discus-
sions, algorithm design decisions, search algorithms, proof design and imple-
mentation, implementation and evaluation of all methods, paper writing, and
future presentation of the paper.

P5: R. M. Tsoupidi, E. Troubitsyna, and P. Papadimitratos, “Thwarting code-
reuse and side-channel attacks in embedded systems,” arXiv preprint
arXiv:2304.13458, 2023

Contributions: The author of this thesis contributed with timing side-
channel modeling, search algorithms, implementation and evaluation of all
methods, paper writing, and potential presentation of the paper.

Table 1.1 shows the research questions for each paper, and Table 1.2 shows the
contributions of each paper.

1.6. OUTLINE 7

publication R1 R2 R3 R4
A
B
C
D
E

Table 1.1: Research questions addressed per publication

publication C1 C2 C3 C4 C5 C6 C7 C8
A
B
C
D
E

Table 1.2: Contributions per publication

1.6 Outline

Chapter 2 discusses the background of this dissertation, including the cyberattacks
that this dissertation considers, the combinatorial approach of this work, and the
underlying constraint-based compiler backend. Chapter 3 describes the approach
and methodology of this dissertation, while Chapter 4 discusses the related work.
Chapter 5 presents the summary of the publications that this dissertation includes,
and finally, Chapter 6 concludes this dissertation and discusses potential future-
work directions.

Chapter 2

Background

This chapter presents the background of this dissertation. The background includes
a description of the cyberattacks and mitigations of these cyberattacks that we
consider in this dissertation (Section 2.1), a summary of CP, the primary solving
method in this dissertation (Section 2.2), and finally, a description of the modeling
of the combinatorial compiler that significant part of this dissertation lies upon
(Section 2.3).

2.1 Cybersecurity Threats and Mitigations

Cybersecurity is an increasingly important scientific field due to the emergence of
IoT devices and the digitalization of services, including transmission and storage
sensitive medical information, safety-critical infrastructure, and financial transac-
tions. Cyberattacks constitute a severe threat in modern societies because these
attacks lead to economic loss, negative reputation effects, and negative social im-
pact [22]. Many of these attacks are due to vulnerabilities in software or unintended
behavior in the hardware [23].

An important stage in the modern software development chain is compilation.
Typically, compilers translate code from a high-level language to a low-level lan-
guage, such as the binary code that the processor executes. Compilers aim at
generating code that is semantically equivalent to the source code, however, there
is no requirement to preserve security properties. On the contrary, compilers have
in some cases been found responsible for removing security software countermea-
sures or violating source-code security properties [3]. The reason for these security
violations is that compiler research has focused on improving performance and/or
code size, whereas security is a concept that has become relevant in recent years
due to the increasing use of electronic transactions and IoT devices.

Code-reuse and side-channel attacks are two types of powerful attacks where
compilers play an essential role. Code-reuse attacks depend on code snippets
that appear in the compiler-generated code and, thus, code generation is a key

9

10 CHAPTER 2. BACKGROUND

1 move $a0 , $zero # Move zero to $a0
2 lw $ra , 0x24($sp) # Load address for next gadget

3 jr $ra # Jump to address at $sp + 4*0x24

4 addiu $sp , $sp , 0x28 # Delay slot: increment $sp

Figure 2.1: Code-reuse gadget in Mips libc

software-development stage to affect these attacks. Similarly, compilers may affect
mitigations against side-channel attacks [24, 25, 26], and thus, compilation is the
appropriate stage for security property preservation.

Code-Reuse Attacks

Code-reuse attacks depend on memory-corruption vulnerabilities in the program
memory space, such as a buffer overflow. These vulnerabilities allow a malicious
actor to insert data into the target program memory. To prevent direct attacker-
introduced payload execution, executable-space protection prohibits the execution
of code in writable memory, e.g., the stack.

Code-reuse attacks, such as return-to-libc, and advanced attacks, such as
Return-Oriented Programming (ROP) [6, 27] and Jump-Oriented Program-
ming (JOP) [28, 29, 30], may bypass executable-space protection defenses. The
attackers use code snippets in known locations in the program memory of the target
system to design the attack. These code snippets, so-called gadgets, typically end
with a control-flow instruction, such as a return, a jump, or a call instruction. The
last control-flow instruction allows the attacker to build a gadget chain by trans-
ferring the control from one gadget to the next. The gadgets that are available in
the victim program memory, such as in dynamically-loaded libraries, may provide
high expressibility to allow the attacker to hijack the system [6].

Figure 2.1 shows a code-reuse gadget found in the libc library of a Mips32
Debian Linux system. At line 1, the gadget moves value zero to register $a0. Then,
it loads the address of the next gadget to the return-address register $ra. The
attacker has ensured that this address resides to address 0x24($sp), where $sp is
the stack pointer. At line 3, the code moves to the new gadget, jr $ra, and the last
instruction is a delay slot1. The delay slot increases and stack pointer $sp by 0x28.
This last step is important for the attacker to move the attack payload forward to
enable moving to the data of the next gadget. Such code sequence appear at the
return points of functions and are very common in compiler-generated code.

Classic code-reuse attacks assume that the attacker has access to binary code
identical to the victim code and designs a payload offline before attacking the victim
system. More advanced attacks allow reading the memory during the attack. In

1Delay slots in Mips follow a branch instruction but execute before them and their purpose is
to reduce the branch target estimation delay.

2.1. CYBERSECURITY THREATS AND MITIGATIONS 11

0x8014: move $a0 , $zero
0x8018: lw $ra , 0x24($sp)
0x801c: jr $ra
0x8020: addiu $sp , $sp , 0x28

(a) Variant 1

0x8010: lw $t9 , 0x24($sp)
0x8014: move $a0 , $zero
0x8018: nop

0x801c: jr $t9
0x8020: addiu $sp , $sp , 0x28

(b) Variant 2

Figure 2.2: Two diverse implementations of the gadget in Figure 2.1 in Mips.

particular, JIT-ROP [31] dynamically reads the program memory, selects appropri-
ate gadgets, and performs the attack. Similarly, Blind ROP (BROP) [32] achieves
reading the memory using repeated steps, however, BROP may lead to system
crashes. A different approach by Seibert et al. [33] achieves identifying the location
of code snippets in the code using timing side-channel information. In particular,
when the victim binary is not identical with the original binary, an attacker may
use timing side-channel information to decipher the binary’s diversification. The
attacker records the execution time of different parts of the code to recognize how
the code has been diversified. The advantage of this approach is that it does not
lead to system crashes, however, it may take a long time, up to a week, to achieve
the attack.

Code-Reuse Attack Mitigations

There are two main mitigation approaches against code-reuse attacks, Control-Flow
Integrity (CFI) [34] and automatic software diversification [7]. The main idea of
CFI is to ensure that the program executes legitimate control flow [35]. In this
way, CFI restricts code-reuse attacks to only transfer control to legitimate control-
flow targets, which reduces the power of these attacks2. The main disadvantage
of CFI is that it often leads to high execution-time overhead [34]. An alternative
mitigation against code-reuse attacks is automatic software diversification, which
introduces uncertainty to the implementation of the code and, in this way, hinders
a code-reuse attack that depends on the addresses of known gadgets. More gener-
ally, software diversification is a method to improve the fault tolerance of software
systems [36, 37] and security [38, 39] in computing systems. Software diversification
investigates code diversity at the level of algorithm implementation, library imple-
mentation [40, 41], memory layout (Adress Space Layout Randomization (ASLR)),
and binary-level implementation [8, 9]. This dissertation concerns automatic fine-
grained software diversification that generates program variants derived from the
same source code but with different binary implementations.

Many code-reuse attacks depend on gadgets, which are code sequences that ex-
ist in the program memory. Typically, classic code-reuse attacks depend on the

2Other approaches, such as stack canaries, have similar effect on ROP attacks.

12 CHAPTER 2. BACKGROUND

1 uint8 check_bit(uint8 pub , uint8 key) {

2 uint8 t = 0;

3 if (pub == key)

4 t = foo();

5 return t;

6 }

Figure 2.3: Program with secret-dependent branching in C

exact addresses of the gadgets in memory. Software diversification as a mitigation
against code-reuse attacks changes the address of these gadgets and/or their im-
plementation, aiming to reduce the probability of success of an attack. Figure 2.2
shows two versions of the gadget in Figure 2.1, where Figure 2.2a corresponds to
the original gadget in Figure 2.1. The gadget in Figure 2.2b differs from the gad-
get in Figure 2.2a in three points, 1) there is an additional No-Operation (NOP)
instruction at address 0x8018, 2) instructions move and lw are swapped, and 3) the
return address is loaded at register $t9 instead of register $ra. Assuming that the
attacker has used the gadget in Figure 2.2a to generate their payload, this pay-
load may fail against a user using the code in Figure 2.2b. More specifically, an
attacker that uses the gadget in Figure 2.2a will instruct the previous gadget to
jump to address 0x8014, namely the beginning of the gadget. However, at address
0x8014, the diversified gadget (Figure 2.2b) moves the value of zero to register a0,
but it does not move the attacker-controlled address to $t9. Hence, the processor
will not transfer the control flow to the next gadget to finalize the attack. This
scenario leads, with a high probability, to attack failure. Additional diversification
approaches like function shuffling or basic-block shuffling may increase the entropy
of this diversified example.

Side-Channel Attacks and Mitigations

Side-channel attacks use side-channel information, such as the execution time or the
power consumption of a program, to extract information about valuable program
values. Side-channel attacks constitute a severe threat to cryptographic algorithms.
The security of cryptographic algorithms often depends on values that should re-
main secret, such as symmetric or asymmetric keys. Using side-channel informa-
tion, an attacker may extract information about these keys to break cryptographic
security. Side-channel attacks have been successful against popular cryptographic
algorithms, such as DES, AES, and RSA [10, 11, 12].

Timing Side-Channel Attacks

Timing side-channel attacks [12] measure the execution time of the program to
extract information about program values. The attacker may perform the attack

2.1. CYBERSECURITY THREATS AND MITIGATIONS 13

1 uint8 sbox_get(uint8 *pub , uint8 key) {

2 return pub[key];

3 }

Figure 2.4: Program with secret-dependent memory operation

remotely via the network [42] or locally when the victim and the attacker share the
same hardware [43]. Timing attacks may extract information about a secret value
when this value affects the program execution.

In many implementations of cryptographic algorithms, the execution time may
depend on the value of the encryption/decryption key. For example, consider func-
tion check_bit in Figure 2.3. Assume that the value of pub is known to the attacker,
whereas key contains secret information. If these two values are equal, the program
executes function foo(), whereas otherwise, the check_bit function returns imme-
diately. Hence, if the two values are equal, then the execution of function check_bit

takes longer time than otherwise. Therefore, an attacker that measures the execu-
tion of this function may distinguish the difference between the execution time, e.g.
by controlling the value of pub and, subsequently, extract one bit of information
about the value of key.

Another timing vulnerability that appears in cryptographic implementations is
secret-dependent memory operations. Figure 2.4 shows function sbox_get, which
takes two inputs, a public array, pub, and a secret value, key. The function returns
the element of pub at index key. Here, the source of the leakage is the cache
hierarchy, which aims at providing recently-accessed address regions faster. In
particular, cache memories have low data access latency and store recently accessed
memory blocks for faster access in future memory requests by the processor. The
cache stores these blocks based on their address in memory, which depends on
the array index, key, in our example. Upon a memory request in the cache, if the
relevant cache line is full, the cache replaces old data with the new data. An attacker
may take advantage of the cache hierarchy to extract information about secret
values. For example, an attacker may fill a shared cache with their own data before
the victim runs their code. Subsequently, the attacker measures the access time of
their data to infer the memory access patterns of the victim (Prime+Probe) [44].

Other sources of timing vulnerabilities include variable-latency instructions with
secret operands, such as division and multiplication instructions in some architec-
tures. In general, when the execution time depends on secret values that should
remain unrevealed, execution time may leak information about these secret values.

Timing Side-Channel Mitigations

In the research literature, there are diverse mitigation approaches against tim-
ing side-channel attacks. This dissertation concerns two mitigation approaches:
constant-time programming and constant-resource programming.

14 CHAPTER 2. BACKGROUND

1 uint8 check_bit(uint8 pub , uint8 key) {

2 uint8 t; sint8 m;

3 t = foo();

4 m = -(pub == key);

5 return (t&m | 0&∼m);
6 }

Figure 2.5: Constant-Time Program from Listing 2.3 in C

Constant-Time Programming: The constant-time programming discipline is
a set of programming guidelines that aim at removing secret-dependent timing vari-
ations. The constant-time discipline converts secret-dependent branch instructions
and memory accesses to constant-time equivalent. In addition, some approaches
consider secret-dependent variable-latency instructions, such as division and mul-
tiplication, when their operands are secret values.

Figure 2.5 shows a constant-time version of function check_bit in Figure 2.3.
This implementation starts by executing function foo() (line 3), regardless of the
result of the comparison between the two input values. Then, the code stores the
negation of the result of the comparison between the two input values in the signed
variable m (line 4). That is, if the result of the comparison is true or 000000001

in binary encoding, then variable m is minus one or 11111111 in binary encoding.
Similarly, if the result of the comparison is false or equal to zero, then minus zero
is zero, which leads to 00000000 in binary encoding. The return result (line 5) is
either equal to t, when the value of m is 11111111, or 0, when m is 00000000. Hence,
in the constant-time reimplementation of Figure 2.3, the execution time does not
depend on the secret value, instead, it is constant.

Constant-time implementations may contain complex logic-operation code that
is often difficult to write, read, and debug. Hence, verification approaches are im-
portant for guaranteeing the correctness of these implementations. Furthermore,
compilers may break such implementations, for example, by converting logical op-
erations back to a secret-dependent branch [24].

Constant-Resource Policy: The constant-time programming discipline often
leads to complex code. Another alternative mitigation approach against timing side-
channel attacks is the constant-resource policy [45]. In contrast to the constant-time
policy, the constant-resource policy does not require the absence of secret-dependent
branches and memory operations, instead it requires that the program uses the same
resources for different secret values [46]. In particular, the constant-resource policy
allows secret-dependent branches when both branch directions lead to the same
execution time.

Figure 2.6 shows a constant-resource version of function check_bit in Figure 2.3.
At line 3, the implementation compares the two input values. If the input values
are equal, the implementation calls function foo() and stores the result in variable

2.1. CYBERSECURITY THREATS AND MITIGATIONS 15

1 uint8 check_bit(uint8 pub , uint8 key) {

2 uint8 t = 0, _t;

3 if (pub == key)

4 t = foo();

5 else

6 _t = foo ();

7 return t;

8 }

Figure 2.6: Balanced Constant-Resource Program from Listing 2.3 in C

t (line 4). If the two input variables are not equal, the code calls function foo()

and stores its result in an unused variable _t (line 6). The return result of this
function is t, which is either 0 or the return value of function foo(). The idea of
this transformation is that both branch directions take the same execution time3.

This implementation is easier to read and more similar to the original imple-
mentation than the constant-time equivalent in Figure 2.5. However, there are two
main compilation challenges of such implementations. First, dead-code elimina-
tion passes may remove the functionally unused call to function foo() in the else

branch. Second, timing variations between the two branches may depend on dif-
ferent microarchitectural features, such as instruction latencies, branch prediction,
and memory accesses. The latter may lead to a longer execution time for either of
the branches. These challenges make compiler-based approaches that consider an
accurate cost model valuable to guarantee that different execution paths use the
same resources.

Power Side-Channel Attacks

Power side-channel attacks measure the power consumption during the execution of
a program to exploit the victim system or extract security-critical information. For
power side-channel attacks, any value transitions in hardware, such as hardware
registers, the memory, or the memory bus, may reveal information about these
values. When a program manipulates secret information, the attacker may disclose
this information by recording the power consumption during the program execution.
Figure 2.7 shows function xor, which takes two values as input, pub, which is known
and/or controlled by the attacker and key, which is a secret value unknown to the
attacker. The function returns the exclusive-OR operation of the two input values.
These operations may affect the device’s power consumption because the processor
manipulates the secret value with a public value in the hardware.

A typical leakage model for power attacks is the Hamming model. A data word
consists of m bits, each of which takes a value from [0, 1]. We can write a data

3In general, the actual timing of each of the branches depends also on microarchitectural
features including, branch decisions, instruction latencies, and memory accesses

16 CHAPTER 2. BACKGROUND

1 uint32 xor(uint32 pub , uint32 key) {

2 uint32 t = pub ^ key;

3 return t;

4 }

Figure 2.7: Exclusive-OR implementation in C

word in form D =
∑m−1

i=0 di2
i, where di is the value of the binary encoding at the

ith position. The Hamming weight of a data word corresponds to the number of
bits that are one, i.e. H(D) =

∑m−1
i=0 di. Many works assume that the data leakage

through a power side channel depends on the number of bits switching from one to
zero or vice versa at a given time. Hence, the data leakage at the transition of one
hardware variable from D1 to D2 equals H(D1⊕D2), where ⊕ is the exclusive-OR
operator. The transition between these values happens at distinct time points, for
example, at the positive or negative clock edge in an electronic device [11]. The data
leakage may happen at different parts of the processor, for example, the memory
bus, the hardware registers, the memory cells, and more [11, 13, 47]. According to
Papagiannopoulos and Veshchikov [13], the easiest to exploit transitional leakages
are hardware-register and memory-bus reuse in an AVR processor.

Power side-channel attacks require the attacker to have local access to the victim
device and have equipment such as an oscilloscope to record the power consump-
tion of the target algorithm at the victim device. Simple Power Analysis (SPA)
is a technique to make direct observations on the power trace of an algorithm in
time. SPA allows the attacker to extract information when indirect branches, value
comparisons, multiplication operations, and exponentiation operations depend on
secret values. SPA allows secret information extraction from multiple DES proce-
dures [10]. Differential Power Analysis (DPA) may distinguish smaller variations in
the power traces that may be too small to distinguish using SPA. DPA records the
power traces of multiple executions of the algorithm. By observing the algorithm’s
output, e.g., the ciphertext, the attacker determines the values of secret data, such
as cryptographic keys [10]. Correlation Power Analysis (CPA) [11] uses the cor-
relation factor between the hamming distance of data and the measured power to
determine the relationship between a guessed value and the actual measurement.
This analysis depends on the Hamming distance model and is as powerful as DPA.
In recent years, power attacks based on deep learning has enabled more powerful
attacks [48].

Power Side-Channel Mitigations

Power side-channel attacks do not affect the program execution and are, therefore,
difficult to detect. One mitigation approach against power side-channel attacks
is software masking. This mitigation aims at randomizing the secret values using

2.1. CYBERSECURITY THREATS AND MITIGATIONS 17

1 uint32 sec_xor(uint32 pub , uint32 key , uint32 mask) {

2 uint32 mk = mask ^ key;

3 uint32 t = mk ^ pub;

4 return (t,mask)

5 }

Figure 2.8: Exclusive-OR with software masking

1 sec_xor(r0 ← pub , r1 ← key , r2 ← mask) {

2 r2 ← r2 ^ r1;

3 r0 ← r2 ^ r0;

4 }

Figure 2.9: Exclusive-OR with software masking in machine code

randomly generated values at every program execution. Software masking aims at
statistically hiding the secret information.

Software masking depends on finite field theory and uses the exclusive-OR op-
eration as the addition operation in GF (2n). Figure 2.8 shows function sec_xor,
which is an implementation of Figure 2.7 using software masking. First, this func-
tion randomizes the secret value key using a newly introduced randomly generated
value mask (line 2). Then, the function uses the randomized key value, mk, to per-
form an exclusive-OR operation with mask (line 3). Finally, function sec_xor returns
the final value and variable mask, which is necessary for retrieving the final result,
namely (mask ^ key ^ pub) ^ mask is equal to key ^ pub.

Although the function implementation in Figure 2.8 randomizes the secret be-
fore interacting with the public value, hardware interactions of values may introduce
secret-dependent power dependencies that appear in the power traces. These inter-
actions occur when hardware registers, the memory bus, or memory cells transition
from one value to another. For example, when a hardware register takes a new value
or when a new value is transferred via the memory bus to the main memory, may
result in a transition. Assuming that transitions from one to zero and from zero
to one result in a similar power consumption change, the hardware’s total power
change depends on the hamming distance between the old value and the new value
at the transition. Figure 2.9 shows an implementation of the masked algorithm in
Figure 2.8 using hardware registers. At line 2, register r2, which holds value mask,
transitions to the value of r2 ^ r1, which holds value key ^ mask. The leakage
from this transition is equal to mask ^ (key ^ mask) or key, which is a secret value.
Hence, this hardware implementation of the masked code leads to transitional leaks
due to register reuse. Similarly, other hardware value transmissions may lead to
transitional leaks of secret values.

18 CHAPTER 2. BACKGROUND

Many transitional leaks depend on compiler-generated machine code, which
determines hardware register assignment and instruction order. Furthermore, some
mitigations against these transitional leaks result in high performance overhead [13].
Therefore, compiler-based approaches may provide opportunities to mitigate these
leakages at a reduced performance overhead.

2.2 Constraint Programming

Constraint Programming (CP) is a method to solve or optimize combinatorial prob-
lems. Compared to other combinatorial solving or optimizing approaches, such as
Boolean Satisfiability (SAT) and linear programming, CP enables larger flexibil-
ity with regard to the domain of variables and the type of constraints. The main
strength of CP is its ability to exploit substructures in combinatorial problems
and has been particularly successful in solving scheduling, resource allocation, and
rectangle packing problems [49].

CP solving usually consists of two parts, 1) modeling, where the user models the
problem as a finite set of variables and constraints, and 2) solving, where the solver
attempts to find solutions, i.e. variable assignments that satisfy all constraints,
to the problem. A Constraint Satisfaction Problem (CSP) models a problem for
which we need to find one or multiple solutions to the problem. Constraint Op-
timization Problems (COPs) include an objective function, and the goal is to find
the solution(s) that optimize(s) this objective function.

Modeling

In CP, a problem is modeled as a finite set of variables, V , that takes values from a
finite set, U , and a set of constraints, C, among the variables in V . Typical variable
domains include integer and Boolean sets. CP solvers provide different constraint
implementations among different variable types.

Problem Modeling: The first step in CP is problem modeling. Modeling is
important because modeling decisions affect the solving time of the problem.

A typical example of a combinatorial problem is the eight-queen problem,
namely the problem of placing eight (chess) queens on a chessboard, so that they
do not threaten each other. There are (at least) two ways to model the eight-queens
problem. One way to model this problem is to use eight variables, qi, one for each
queen. Each variable qi corresponds to the ith column (or row) of the chessboard,
and its value corresponds to the position in the row (or column). The variable
domain, in this case, will be set {1, 2, ..., 8}. A different way to model the eight
queens problem is using one variable, cji for each chessboard position. In this
way, we have 64 variables with domain, {0, 1}. A variable takes value one when a
queen is present on the corresponding cells and zero otherwise. These two different
modeling approaches may lead to different solving times due to different properties

2.2. CONSTRAINT PROGRAMMING 19

of the solver and individual constraint implementations. Therefore, constraint
modeling is an essential step in constraint solving.

Constraints: Constraints are important for modeling a constraint problem. Dif-
ferent constraints affect the efficiency and expressiveness of the solving proce-
dure. Constraints that involve three or more variables are also called global con-
straints [49] and often provide improved efficiency. Global constraints constitute
one of the key strengths of CP.

The first modeling approach of the eight-queens example may use a global con-
straint, all-different(q1, ..., q8) [50], to make sure that all variables differ from
each other; namely, they do not share the same row/column. The all-different

constraint has improved efficiency over a set of disjunctive constraints ∀i, j ∈
{1, ..., 8}.qi 6= qj .

The second modeling approach may use a global linear constraint ∀i ∈ {1, ..., 8}.∑
j∈{1,...,8} c

j
i = 1 to ensure that every row accommodates only one queen. Note

that this constraint is an efficient way to model that one and only one queen appears

in a row or ∀i ∈ {1, ..., 8}.∃j ∈ {1, ..., 8}.
(
cji = 1 ∧ ∀k ∈ {1, ..., 8} − {j}.cki = 0

)
.

Solutions: The solutions to the problem are the variable assignments that satisfy
all constraints.

Example 1 Give a CSP P = 〈V,U,C〉, where V = {x, y, z}, U = {1, 2, 3, 4}, and
C = {x > 1, x + y = z}, the solutions to the problem are: sol(P) = {〈2, 1, 3〉,
〈2, 2, 4〉, 〈3, 1, 4〉}

In some problems, all solutions are not equivalent, and the application requires
a solution that, e.g., maximizes or minimizes an objective function, O. In this case,
the goal of the solver is to find the optimal solution to the problem.

Example 2 CSP P may be extended to a COP, P ′ = 〈V,U,C,O〉, with an opti-
mization function O = maximize x. Then, the solution that we are looking for is
sol(P ′) = {〈3, 1, 4〉}.

For many problems, it is sufficient to find one (optimal or not) solution, whereas,
for other problems, it is essential to find a set of diverse solutions [51]. Example
applications include automatic test generation [52], finding alternative optimal so-
lutions in process plant layout optimization [51], and solving complex constraints
by generating multiple solutions and then verifying the suitability using more exact
methods [53]. Defining the meaning of the difference between solutions is essential
in this context. To achieve this, we define function δ that takes two solutions and
returns the difference between these solutions.

Example 3 For problem P , we may define the function δ(s, s′) = |sx− s′x|+ |sy −
s′y|+|sz−s′z|. Then, the distance between all three pairs of solutions is δ(si, sj) = 2,
i, j ∈ {1, 2, 3}.

20 CHAPTER 2. BACKGROUND

Solving

Given a CSP or a COP, the solving process aims at finding feasible solutions.
Typically, solving in CP is an iterative procedure and consists of two main steps,
1) propagation, which reduces the variable domains based on the constraints, and
2) search, which sets the value of one variable from its domain in each step.

Propagation: Constraint propagation is the procedure that reduces the variable
domains based on the problem constraints. Often the propagation process considers
one constraint at a time and is repeated until reaching a fixpoint.

Example 4 CSP P = 〈V,U,C〉, where V = {x, y, z}, U = {1, 2, 3, 4}, and C =
{x > 1, x+y = z}, has two constraints C1 = x > 1 and C2 = x+y = z. Propagation
of C1 results in x ∈ {2, 3, 4}, y ∈ {1, 2, 3, 4}, z ∈ {1, 2, 3, 4}. Then, propagation of
C2 results in x ∈ {2, 3}, y ∈ {1, 2}, z ∈ {3, 4}, which is a fixpoint.

Search: Propagation is usually not sufficient to solve a problem. After propa-
gation has reached a fixpoint, the solver applies search to decompose the problem
into simpler subproblems. In particular, the solver selects one variable and splits
its domain, often in two parts.

Example 5 In our problem, P , search may split the previous fixpoint (x ∈
{2, 3}, y ∈ {1, 2}, z ∈ {3, 4}) into two subproblems, one for x = 2 and one for
x = 3.

Subsequently, the solver applies propagation to each subproblem to find solu-
tions and repeats the search step until it finds one solution, all solutions, or a
specific solution.

Example 6 For the first branch, x = 2, propagation returns fixpoint x ∈ {2}, y ∈
{1, 2}, z ∈ {3, 4}, which is not a single solution. Thus, we need to apply search
again for y = 1 and y = 2, which gives two solutions x ∈ {2}, y ∈ {1}, z ∈ {3} and
x ∈ {2}, y ∈ {2}, z ∈ {4}, respectively.

For the second branch, x = 3, we get directly one solution after propagation:
x ∈ {3}, y ∈ {1}, z ∈ {4}.

Deciding which variable to branch on and how to split the value space of the
selected variable at an invocation of search may affect the efficiency of the solving
procedure and is an important design decision. These branching schemes are called
search heuristics. Typical search heuristics include smaller value first, variable with
the smallest value set first, and more.

Branch-and-bound search is an approach to solving COP problems. First, the
algorithm finds one solution. Then, the algorithm adds a new constraint to the
problem that requires the following solution to be better than the current one. The
solver continues until there are no better solutions.

2.3. COMPILER BACKEND 21

Example 7 For P ′ that we used before, with O = maximize x, we have the first
propagation fixpoint as: x ∈ {2, 3}, y ∈ {1, 2}, z ∈ {3, 4}. Assume we first find
solution 〈2, 1, 3〉. Then, branch-and-bound adds constraint x > 2, which leads to
the optimal solution, 〈3, 1, 4〉.

Apart from the classic search heuristics, there are other search procedures
called metaheuristics [54]. In this dissertation, we use Large Neighborhood Search
(LNS) [55], a form of local search that is consistent with CP. LNS is often used for
solving optimization problems. After finding the first solution, LNS uses part of
this solution to find a better solution. To do that, LNS destroys parts of the solu-
tion (assignments to variables) and then tries to find other solutions that improve
the objective function.

Example 8 In our example, P ′, with O = maximize x, we have the first propa-
gation fixpoint as: x ∈ {2, 3}, y ∈ {1, 2}, z ∈ {3, 4}. Assume we first find solution
〈2, 1, 3〉. Then, LNS destroys variables x and z, and adds an optimization con-
straint x > 2 and after propagation we have: x ∈ {3}, y ∈ {1}, z ∈ {4}, which is
the optimal solution.

2.3 Compiler Backend

Compilers are essential components in the software development chain. Typical
general-purpose compilers take as input a program written in a high-level language
and translate it to a low-level language or machine code. Conventional compilers,
such as LLVM [56] and GCC [57], consist of a series of analysis and transforma-
tion passes that aim to improve the code performance, reduce the code’s size, or
minimize the energy consumption.

Compiler front- and middle-end passes perform high-level transformations such
as loop unrolling, dead-code elimination, and expression rewriting, whereas com-
piler back-end passes are responsible for target-processor-related transformations.
At the compiler backend, there are three main transformations, 1) instruction se-
lection, where machine instructions replace abstract instructions, 2) instruction
scheduling, which decides the order of the instructions in the final code, and 3)
register allocation, which assigns virtual registers to hardware registers and mem-
ory. These transformations are very important for the quality of the generated code
in the hardware and are increasingly important in architectures that require sig-
nificant effort from the compiler, such as static multiple-issue architectures. Such
architectures typically require the compiler to schedule multiple instructions to dif-
ferent processing units statically. However, the compiler backend transformations
are known to be combinatorial problems, where finding the optimal hardware code
implementation may take exponential time. Instead, many compilers use heuristics
that find efficient but not optimal solutions.

22 CHAPTER 2. BACKGROUND

Combinatorial Compiler Backend

For compiler-demanding architectures or performance-critical functions, there are
combinatorial compiler-backend approaches to find optimal low-level implementa-
tions [58, 59]. These approaches use an abstract processor model and represent the
quality of each solution in the form of a cost function. Subsequently, combinato-
rial compiler approaches generate code that optimizes this objective function. In
combinatorial optimization, an optimal solution corresponds to a solution that max-
imizes or minimizes the objective function. Combinatorial models do not exclude
the presence of multiple optimal solutions.

Unison, a recent work, has shown the benefits of unifying multiple compiler
passes to generate highly optimized code. In particular, instruction scheduling and
register allocation are strongly interdependent problems, and thus, modeling both
problems together improves the quality of the generated code [5]. Unison is the
first practical combinatorial compiler-backend approach, and SecOpt is based on
Unison. In particular, SecOpt extends Unison to consider security properties.

Modeling: Typically, compiler-backend passes process the program in Static Sin-
gle Assignment (SSA) form, where every variable is assigned a value only once. A
combinatorial compiler models a program as a set of basic blocks B, i.e. pieces of
code with no branches apart from the exit of the block. Each basic block con-
tains a number of optional operations, o ∈ Operations, that may be active or not.
An active operation appears in the generated code, while an inactive operation is
omitted. These optional operations enable transformations that are necessary for
register allocation and instruction scheduling. Inso denotes the set of hardware
instructions that implement operation o. Each operation includes a number of
operands p ∈ Operands, each of which may be implemented by different, equally-
valued temporaries, t ∈ Temps. Temporaries represent an infinite number of virtual
registers, which the solver assigns to a hardware register or a memory location in
the stack. Alternatively, a temporary may not be alive.

Fig. 2.10 shows a simplified version of the constraint-based compiler backend
model for Fig. 2.7. Temporaries t0 and t1 contain the input arguments pub and
key, respectively. Copy operations (o2, o3, o5) enable copying program values
from one register to another (or to the stack) and are critical for flexibility in
register allocation. Operation o2 allows the copy of value pub from t0 to t3. In the
final solution, a copy operation may not be active (shown by the dash in the set of
instructions: [-, copy]). The xor operation (o4) takes two operands, and each of
these operands may use equally valued temporary variables, e.g., t1 and t4.

Objective Function: Combinatorial compiler backends use an objective func-
tion that is based on the target processor characteristics to generate optimized
code. Unison’s objective function optimizes metrics such as code size and execution
time. Unison captures these goals in a generic objective function that sums up the

2.3. COMPILER BACKEND 23

o1: in [t0 ← pub , t1 ← key]

o2: t2 ← [-, copy] t0

o3: t3 ← [-, copy] t1

o4: t4 ← xor [t1 ,t3] [t0 ,t2]

o5: t5 ← [-, copy] t5

o6: out [t6 ← [t4 ,t5]]

Figure 2.10: Exclusive-OR operation

weighted cost of each basic block:∑
b∈B

weight(b) · cost(b),

where cost(b) for basic block b is a variable, which estimates the cost of a specific
implementation of the basic block, and weight is a constant value that represents
the contribution of the particular basic block to the total cost. For execution-time
optimization, Unison uses statically extracted basic-block frequencies to estimate
the contribution of each basic block. This cost model is accurate for predictable
hardware architectures. The accuracy of the cost model reduces in the presence
of advance microarchitectural features, such as cache hierarchy, dynamic branch
prediction, and/or out-of-order execution.

Solving: After modeling the problem, the constraint solver attempts to optimize
the problem using scheduling constraints. Unison uses structural decomposition
and advanced search strategies to find the optimal or a good solution efficiently.

Figure 2.11 shows a solution to the program in Figure 2.10. Temporaries t0

and t1 are assigned to hardware registers r0 and r1, respectively, due to the calling
conventions of the target architecture. Temporary t2 is assigned to r2, and the
operation copies the value of r0 to r2. Operation o3 is not active, and thus,
temporary t3 is not live. Temporary t4 is assigned to register r0. Operation o5 is
also not active, and temporary t5 is not live. Finally, temporary t6 is assigned to
the return register r0. This solution is suboptimal, instead, the optimal solution
(see Figure 2.12) deactivates all copy operations.

o1: in [t0:r0 ← pub , t1:r1 ← key]

o2: t2:r2 ← copy t0:r0

o4: t4:r0 ← xor t1:r1 t2:r2

o6: out [t6:r0]

Figure 2.11: Solution of exclusive-OR operation

24 CHAPTER 2. BACKGROUND

o1: in [t0:r0 ← pub , t1:r1 ← key]

o4: t4:r0 ← xor t1:r1 t0:r0

o6: out [t6:r0]

Figure 2.12: Optimal solution of exclusive-OR operation

Transformations: Unison enables the following transformations: 1) hardware
register assignment, 2) register copying, 3) memory spilling, 4) constant remateri-
alization, 5) instruction order, and 6) NOP insertion. Hardware register assignment
maps a hardware register to an operand, register copying copies an operand from
one hardware register to another, and memory spilling allocates a memory slot in
the stack to store an operand. Constant rematerialization allows re-running an
operation, like value loading, instead of copying its result. SecOpt may also al-
ter the instruction order as long as there are no data dependencies or insert NOP
instructions by delaying the issue cycle of an operation.

Chapter 3

Approach and Methodology

3.1 Secure-by-Design Optimization (SecOpt)

This section presents our approach, SecOpt, to generate secure and optimized code
by design. SecOpt implements the following mitigation approaches: 1) fine-grained
software diversification, 2) software masking, and 3) preservation of the constant-
resource property.

Overall, there are three main advantages of SecOpt compared to other ap-
proaches, 1) performance awareness, 2) composability, and 3) a formal definition
of mitigations in the form of constraints. SecOpt inherits an accurate cost model
from Unison [5], which allows control over the performance overhead of the gener-
ated code. In particular, SecOpt may generate optimal or near-optimal code with
a known performance overhead that is based on the cost model. An important
advantage of SecOpt is combining different security mitigations. More specifically,
SecOpt allows combining fine-grained software diversification and software mask-
ing or the constant-resource property to ensure the preservation of the combination
of these properties. Moreover, many conventional compiler-based mitigation ap-
proaches do not provide formal guarantees that the intended properties hold in the
generated code. SecOpt defines the target mitigations in the form of constraints,

factorial.c

Source
Code

• performance control

• composability of secu-
rity mitigations

• formal security model
specification

SecOpt

factorial.o

101001010
100111101
100110001
100100110
100011100
100010011

Target
Code

Figure 3.1: High-level view of SecOpt

25

26 CHAPTER 3. APPROACH AND METHODOLOGY

providing guarantees about preserving the intended properties. However, SecOpt’s
security analysis, transformations, and the underlying constraint solvers are not
verified. Verifying these compilation stages is part of future work for Unison [5]
and SecOpt. Code verification uses formal methods to prove software properties
or identify violations of these properties in the code. To ensure that the generated
code against timing side channels satisfies the constant-resource property, we use
external static-analysis tools that output the over- and under-approximation of the
execution time. This verification stage increases our trust in SecOpt’s code gen-
eration. Furthermore, we investigate the constant-time property in WebAssembly
programs using relational symbolic execution, which generalizes symbolic execution
to prove relational properties [60].

Figure 3.1 shows a high-level view of SecOpt. SecOpt takes as input a program
in a high-level language, such as C and C++, and outputs a secure binary-code
implementation. The following sections describe the approach of this dissertation
to protect binary code against code-reuse and side-channel attacks.

Fine-Grained Software Diversification

To enable code diversification, SecOpt uses the transformation search space that
the constraint model allows. In particular, there are multiple solutions to the
constraint model of SecOpt that satisfy the model of the program semantics, the
target processor model, and the low-level transformations. These solutions may be
optimal according to the cost model or suboptimal. To generate diverse solutions,
we need to define the a distance measure, δ, which is a constraint between two
alternative solutions to the problem and measures how different these solutions
are. The problem definition is the following:

Definition 1 Diverse Code Generation: Consider a program p and a set, S, of
program implementations of p, pi ∈ S, which are functionally equivalent (∼) with
the original program, ∀pi ∈ S. p ∼ pi, and each other, ∀pi, pj ∈ S. pi ∼ pj. Fur-
thermore, these program implementations differ from each other based on a distance
function δ, namely: ∀pi, pj ∈ S. δ(pi, pj).

In this definition and later in this section, we define δ as a predicate that is true when
the compared solutions are different and false otherwise. This simplification implies
that our model assumes that two program implementations are different when they
differ by one model variable, which decides the register assignment or the program
schedule. Note that this constraint enforces that the program implementations
are different but does not restrict how different these implementations are. The
actual implementation of our approach allows control over the value of the distance
function to enforce more diversity among the solutions.

To generate highly diverse and optimized code, SecOpt uses a local-search
method, LNS, to navigate in the program’s search space around the optimal solu-
tion. More specifically, SecOpt finds first the optimal solution, yopt, according to

3.1. SECURE-BY-DESIGN OPTIMIZATION (SECOPT) 27

the cost model and then uses LNS to find alternative solutions around this optimal
solution. Initiating the search starting from the optimal solution allows the solver
to locate highly optimized solutions quickly. To control the performance overhead
in the generated variants, we introduce a constraint Copt that restricts the cost
function to have at most g% overhead. At the same time, SecOpt introduces a
distance measure that forces the solutions to differ from each other. In particular,
SecOpt uses an iterative algorithm as follows:

1 y ← yopt; // Start with optimal solution

2 S ← {yopt}; // Add optimal solution to S
3 C′ ← C ∪ {∆(yopt), Copt}; // Add constraints

4 while cont_cond () // Iterate until limit

5 y ← solveLNS(y, C′); // Find next solution

6 S ← S ∪ {y}; // Add new solution to S
7 C′ ← C′ ∪ {∆(y)}; // Add diversity constraint

8 return S // Return set of diverse solutions

At line 1, the algorithm copies the optimal solution to the current solution to
proceed in the iteration. At line 2, the algorithm adds the optimal solution to the
set of solutions, S. Then, at line 3, the algorithm updates the set of constraints with
two constraints. First, distance constraint ∆(yopt) ensures that all future solutions
to the problem y′ will differ from yopt, namely δ(y′, yopt). The second constraint
Copt restricts the solutions to have at most g% performance overhead. Lines 4 to 7
implement the iterative algorithm that proceeds until it reaches a condition, such as
a time limit or the maximum number of variants (line 4). At line 5, the algorithm
takes the previous solution and finds a new solution using LNS. Subsequently,
the algorithm inserts the new solution to set S (line 6), and finally, the algorithm
updates the set of constraints C ′ so that the future solutions are different from the
newly found solution.

Automatic fine-grained software diversification is effective against code-reuse
attacks, however, software diversification approaches against side-channel attacks
lead to a large overhead [14]. Instead, to secure the code against side-channel
attacks, SecOpt preserves software mitigations against side-channel attacks.

Optimizing Side-Channel Mitigations

The underlying constraint-based compiler backend of SecOpt generates highly-
optimized binary code. However, these optimal solutions do not necessarily satisfy
security constraints. Enforcing the generation of secure solutions requires extend-
ing the constraint model to include security constraints. The security properties
that SecOpt implements are software masking against power side channels and the
constant-resource property against timing side channels. The selected mitigations
depend on the underlying compiler-backend’s transformation space and our goal
to generate highly optimized code for resource-constrained devices. In particular,

28 CHAPTER 3. APPROACH AND METHODOLOGY

both software masking and constant-resource programming introduce performance
overhead that a combinatorial approach may reduce [13, 61].

To investigate the feasibility and adequacy of a secure optimizing approach, we
express each mitigation as part of the constraint model of the underlying constraint-
based compiler backend. Definition 2 defines the problem statement for secure code
generation.

Definition 2 Secure Constraint-Based Optimization: Given a constraint problem
P = 〈V,U,C,O〉 that describes a constraint-based compiler backend in CP, we define
constraints Csec, such that problem Psec = 〈V,U,C∪Csec, O〉 satisfies solutions that
mitigate the relevant vulnerabilities.

An important initial step for generating the input data for the security con-
straints, Csec, is security analysis of the code. This analysis takes as input a
security policy that defines which program variables are secret, public, or random
to identify possible vulnerabilities in the program.

Software Masking

SecOpt generates code that protects against transitional leakages due to hardware-
register reuse and memory-bus reuse. Before generating the constraints, SecOpt
performs static analysis to identify possible sources of leaks in the code. In partic-
ular, SecOpt adapts the type-inference algorithm from Wang et al. [25] to extract a
set of program variables and operations that may lead to transitional leakages. This
analysis returns a set of pairs of program variables, RPairs, and a set of pairs of
memory operations, MPairs. Each pair in RPairs leaks secret information when
a hardware register transitions from one value to another. Analogously, a pair of
operations in MPairs leaks secret information if the two operations write to the
memory bus subsequently. The constraint model that preserves software masking
consists of constraints that use RPairs and MPairs to restrict the register al-
location and instruction scheduling of the code generation. In particular, SecOpt
extends the compiler-backend constraint model with the following set of constraints
to protect against register-reuse leakages:

conflict_rassign(RPairs):
∀t1, t2 ∈ RPairs. r(t1) = r(t2) =⇒ ¬subseq(t1, t2)

Constraint conflict_rassign implies that if the temporaries in a pair of program
variables that appears in RPairs, t1, t2, are assigned to the same register, r(t1) =
r(t2), then they should not be assigned subsequently (subseq). Here, constraint
(subseq) considers both directions, namely t1 is assigned to r(t1) immediately
before t2 is assigned to the same register and vice versa.

Figure 3.2 shows one vulnerable (Figure 3.2a) and one secure (Figure 3.2b)
implementation of the code in Figure 2.7. In both figures, the input variables, pub,
key, mask, are stored in registers r0, r1, and r2, respectively. In these figures, we
denote public values as (p), secret values as (s), and random values as (r). The

3.1. SECURE-BY-DESIGN OPTIMIZATION (SECOPT) 29

1 @ r0: pub (p), r1: key (s), r2: mask (r)

2 eors r2 , r1 @ r2:r->r^s

3 eors r0 , r2 @ r0:p->p^s^r

4 bx lr

(a) Insecure

2 eors r1, r2 @ r1:s->s^r

3 eors r0, r1 @ r0:p->s^r^p

4 bx lr

(b) Secure

Figure 3.2: Two program implementations of Figure 2.7 for ARM Cortex M0

1 @ r0: [pub] (p), r1: [key] (s), r2: [mask] (r), r3: [res]

2 ...

3 ldr r1, [r1] @ M:p->s,r1:p->s

4 ldr r2, [r2] @ M:s->r,r2:p->r

5 eors r2, r1 @ r2:r->r^s

6 ldr r0, [r0] @ M:r->p,r0:p->p

7 eors r2, r0 @ r2:r^s->r^s^p

8 str r2, [r3] @ M:p->r^s^p

9 ...

10 ...

11 ...

(a) Insecure (LLVM)

2 ...

3 ldr r2, [r2] @ M:p->m,r2:p->m

4 str r2, [sp] @ M:m->m

5 ldr r2, [r1] @ M:m->k,r2:m->k

6 ldr r1, [sp] @ M:k->m,r1:p->m

7 eors r2, r1 @ r2:k->k^m

8 ldr r0, [r0] @ M:m->p,r0:p->p

9 eors r0, r2 @ r0:k^m->k^m^p

10 str r0, [r3] @ M:p->m^k^p

11 ...

(b) Secure (SecOpt)

Figure 3.3: Two program implementations of the equivalent of Figure 2.7 using
pointers for ARM Cortex M0

comments next to the code denote the value transitions (vold->vnew) in a register,
e.g. r0. The first instruction at line 2, eors, takes two operands r2 and r1, performs
the exclusive-OR, and writes the result in register r2 (two-address instruction). This
operation implies that there is a value transmission in register r2, from value mask to
value mask ^ key, which leads to a hamming-distance leakage (mask ^ key) ^ mask,
which is equal to key(circled in red). This leakage implies that the implementation
leaks information about value key to a power side-channel attacker. The rest of
the code does not lead to any leaks. To generate a secure implementation for the
code in Figure 2.7, SecOpt changes the operand order of the eors instruction, as
shown in Figure 3.2b (line 2). The new implementation leads to a leak of value
mask, which is random.

Similarly, we add the following constraints to protect against memory-bus shar-
ing leakages:

conflict_order(MPairs):
∀o1, o2 ∈MPairs. ¬msubseq(o1, o2)

Constraint conflict_order implies that two operations o1, o2 should not be sched-
uled subsequently (msubseq). Constraint (msubseq) considers both directions,
namely, o1 before o2 and vice versa.

Figure 3.3 shows one vulnerable implementation (Figure 3.3a) generated by

30 CHAPTER 3. APPROACH AND METHODOLOGY

Unison and one secure implementation (Figure 3.2b) generated by SecOpt. This
implementation is a variant of the code in Figure 2.7, where the inputs and the
output are passed as references. In both figures, the addresses of the input variables,
pub, key, mask, are stored in registers r0, r1, and r2, respectively. To mark the value
transitions in memory M and registers, e.g. r0, we denote all public values with p,
including the addresses to the program input variables and the initial value in the
memory bus. At line 3, the implementation loads the secret value from the address
in register r1 to register r1. These instructions lead to two leaks, one register-reuse
transitional leakage in register r1 and one memory-bus transition leakage (circled).
That is, the initial value of r1 is public (address to the value key), and the initial
value in the memory bus is public, which we assume in this work. At line 4, the code
loads the mask, which leads to no leaks. However, at line 5, we have a register-
reuse leakage as in the previous example (Figure 3.2a) because the result of the
exclusive-OR operation is stored at the same register as value mask, which leads to
a leak related to the value of key (circled). To generate secure code, SecOpt needs
to schedule the memory operations in a specific order ensure that there are no
register-reuse and memory-bus leaks. To do that, SecOpt uses a stack slot to store
the random value mask (line 4), then load the secret value (line 5), and finally load
the random value again (line 6). One of these load operations may be optimized
away, however, Unison does not allow the allocation of unused variables. Forcing
the constraint model to consider dead copies is part of future work.

Constant-Resource Code

SecOpt aims at generating constant-resource code, where secret-dependent branches
are balanced. Although in some cases it is possible to generate constant-resource
code, in other cases, this is not possible because the source code is not balanced
or because front- and middle-end compiler transformations have removed the bal-
ancing (dead) code. To enable mitigation of such code, we perform two program
transformations, 1) add an empty basic block that the solver will fill with NOP
operations and 2) add a basic block that consists of instructions from the basic
block to balance that are deactivated (only in the case of one basic block).

Figure 3.4 demonstrates our transformations for a simple program that returns
one if the input variables key and pub are equal and zero, otherwise. The first
version of the transformed code (Figure 3.4a) adds an empty else block in the
code, while the second version (Figure 3.4b) copies the assignment of mask to one
in the if block to a newly defined else block.

To preserve the constant-resource property, the constraint model enforces all
paths starting from a secret-dependent control-flow operation to have equal latency.
Identifying these paths requires a prior analysis, which first identifies all secret-
dependent control-flow instructions and, subsequently, finds all program paths that
begin from these instructions. This analysis generates a set of lists of paths, where
each list, pathssec, consists of a set of paths that start from the same secret-

3.1. SECURE-BY-DESIGN OPTIMIZATION (SECOPT) 31

1 u32 check_bit(u32 pub , u32 key) {

2 u32 t = 0;

3 if (pub == key)

4 t = 1;

5 else

6 // nop;

7 return t;

8 }

(a) Add Empty Block

2 u32 _t , t = 0;

3 if (pub == key)

4 t = 1;

5 else

6 _t = 1;

7 return t;

8 }

(b) Copy Unbalanced Block

Figure 3.4: Balancing transformations

dependent control-flow instruction. The following constraint enforces the same
execution time for each path in pathssec.

balance_blocks(pathssec):
∀p1, p2 ∈ pathssec.

∑
b∈p1

cost(b) =
∑

b∈p2
cost(b)

Figure 3.5a shows an implementation of the code snippet in Figure 3.4b in as-
sembly code for processor ARM Cortex M0. First, the code (line 3) copies value
zero to register r2 (variable t in Figure 3.4b). At line 4, the implementation com-
pares the two input variables, and if they are not equal (taken branch), the control
flow goes to line 9; otherwise, it continues to line 7. These branches depend on
the secret value in register r1, and hence, the attacker should not distinguish the
execution time regardless of the branch destination. The not taken branch starting
at line 7 copies value #1 to the return register r0 (1 cycle) and then branches to
the exit block .LBBO_3 (3 cycles). If the branch is taken, then there is an additional
overhead of two cycles because the processor needs to calculate the target address
and/or the comparison result. The taken branch starting at line 9 copies the con-
tent of variable r2 to the return register (1 cycle) and assigns value #1 to register r1

(1 cycle), which corresponds to the unused temporary _t in Figure 3.4b. In total,
each branch takes four cycles.

Composability of Security Mitigations

One of the major advantages of constraint-based approaches is composability of
multiple properties in the form of constraints. The constraint-based approach of
SecOpt allows the combination of multiple mitigations against different attacks.
As we show in Publication 4, fine-grained software diversification may conflict with
both constant-resource programming and software masking. SecOpt allows com-
bining multiple mitigations while preserving the properties of these mitigations at
the same time. This work focuses on fine-grained software diversification and soft-
ware masking or constant-resource programming. The problem statement in this
problem is the following:

32 CHAPTER 3. APPROACH AND METHODOLOGY

1 @ r0: pub , r1: key

2 @ BB#0:

3 movs r2, #0

4 cmp r1, r0

5 bne .LBB0_2

6 @ BB#1:

7 movs r0, #1

8 b .LBB0_3

9 .LBB0_2:

10 mov r0, r2

11 movs r1, #1

12 .LBB0_3:

13 bx lr

14 ...

15 ...

(a) Secure variant 1

2 @ BB#0:

3 movs r2 , #0

4 cmp r1 , r0

5 bne .LBB0_2

6 @ BB#1:

7 movs r3 , #1

8 mov r0 , r3

9 b .LBB0_3

10 .LBB0_2:

11 mov r3 , r2

12 mov r0 , r3

13 movs r3 , #1

14 .LBB0_3:

15 bx lr

(b) Secure variant 2

Figure 3.5: Two program implementations that preserve constant-resource prop-
erty for ARM Cortex M0

Definition 3 Secure Constraint-Based Code Diversification: Given problem P =
〈V,U,C,O〉 that describes a constraint-based compiler backend, we add constraints
Csec, that protect against side-channel vulnerabilities, Psec = 〈V,U,C ∪ Csec, O〉.
We aim at generating a set, S, of solutions to the constraint problem, Psec that
are different with each other, ∀pi, pj ∈ S.δ(pi, pj) and are functionally equivalent
∀pi, pj ∈ S.pi ∼ pj.

To achieve these goals, we combine the constraints and methods we discussed in
the previous sections. In particular, the combined approach extends the set of con-
straints with constraints balance_blocks or conflict_rassign and conflict_order

and then, uses LNS to find diverse program solutions. Figure 3.5 shows two program
variants that preserve the constant-resource property based on the copy transfor-
mation in Figure 3.4b. The two variants balance the execution time of the two
paths that split at the branch instruction bne. In both implementations, the first
path consists of basic block one, BB#1, and the second consists of basic block two,
.LBBO_2. The two variants differ with regard to the register assignment, including
copying a result from one register to another (lines 7-8 and 11-12). The two variants
differ in the code size, which may result in different addresses in the binary code.
This relocation, together with different register assignment, e.g. movs r1, #1 (line
11) and movs r3, #1 (line 13), respectively, alter the semantics of possible gadgets
and may break code-reuse gadgets that consider either of the variants. Perform-
ing code re-randomization may further harden the implementation against both
attacks.

3.1. SECURE-BY-DESIGN OPTIMIZATION (SECOPT) 33

Verification of Security Properties

Code verification on binary code tests security properties in the binary code to
verify the preservation of these security properties or identify security vulnerabil-
ities. Typically, code verification approaches rely on formal methods to provide
guarantees that the requested security properties hold. There are different code-
verification methods, including symbolic execution that uses constraint solving to
prove the requested properties and abstract interpretation that depends on a formal
abstraction of the program values and semantics.

SecOpt generates secure code against timing side channels. After code gener-
ation, we verify the constant-resource property in the generated code to increase
the trust in SecOpt. In particular, to ensure that the constant-resource property
holds in the generated code, we verify this property using external static-analysis
tools. More specifically, for each processor we target, we use a Worst Case Execu-
tion Time (WCET) tool to verify that secret-dependent paths take the same time.
WCET analysis generates an overapproximation (and optionally an underapproxi-
mation, Best Case Execution Time (BCET)) of the execution time of a program.
WCET analysis is an important topic in embedded systems because it is an input
to schedulability analysis, which tests whether the system under analysis meets its
deadlines. To verify the constant-resource property, we derive the WCET and the
BCET using symbolic values for the secret input variables of the function under
analysis and compare these values. If the two values are equal, we have an in-
dication that the execution time does not depend on these secret values. If the
two values are not equal, then we need to investigate further if the execution time
depends on secret values, or if the difference between WCET and BCET is due to
overapproximation of the analysis.

In some cases, secure compilation uses verification approaches to accept
compiler-generated code if the verification test succeeds or reject the code if
the process identifies security vulnerabilities [62]. In this work, we verify the
constant-time property in WebAssembly. Our approach uses relational symbolic
execution, a method that performs symbolic execution on a program with two
input states or two programs with the same input state [60]. For testing the
constant-time property, we execute symbolically two executions of the same pro-
gram with two input states. The two states differ with regard to the secret input
values, which take different initial symbolic values. Then, the analysis executes
the program symbolically using one state that considers both executions. The
analysis is possible by using paired variables, each consisting of two versions that
correspond to the different executions. Given that the two states differ only with
regard to the secret values, a potential execution path divergence signifies a timing
leakage. Similarly, the analysis needs to ensure that there are no secret-dependent
memory operations, which allow cache timing attacks. More formally, we consider
{Φ}〈(M1, c)|(M2, c)〉{Ψ}, where Φ is the precondition, namely the security policy
that defines which input variables are secret or public. Ψ denotes the verification
properties, namely the absence of secret-dependent control-flow instructions and

34 CHAPTER 3. APPROACH AND METHODOLOGY

secret-dependent memory operations. M1 and M2 are the initial memory instances,
and c is the program instructions. When discovering a vulnerability, the approach
returns the vulnerability as a solution to the requirement.

Loop analysis is a challenge in symbolic execution because it may lead to path
explosion. Among different methods to deal with loops in symbolic execution are
using bounded loop unrolling or loop invariants. The former may lead to increased
analysis overhead and unsound analysis, whereas the latter is challenging to per-
form automatically. Our work considers both unbounded loop unrolling and the
generation of a relational invariant.

3.2 Methodology

The topic of this dissertation combines cybersecurity and computer science meth-
ods, which include theoretical research and applied experimental research [63].

In the bibliography, there are several compiler-based approaches to tackle se-
curity properties. The process of conducting research for each research question
starts with a survey in the area to identify challenges in state-of-the-art research.
We identify the need for highly optimizing security approaches and evaluating the
effect of the sequential composition of multiple mitigations. After defining the
problem, we follow an iterative process that consists of three steps, 1) define a
hypothesis, 2) implement/extend a research prototype to evaluate the hypothesis,
3) refine the hypothesis based on the results. This process repeats until the final
research project is complete. The work towards this dissertation consists of the
following incremental steps:

• Design and evaluate an LNS-based algorithm as an extension to Unison to
generate highly diverse solutions in Mips. This step is the first part of the
development of SecOpt.

• Design and evaluate a new LNS-based algorithm based on the structural de-
composition of a function. Evaluate this approach in a whole-program diver-
sification scheme for Mips32.

• Extend SecOpt to optimize code that preserves software masking and supports
the ARM Cortex M0 processor. As part of this step, we prove that the
proposed constraint model leads to code that does not leak secret information
through transitional leakages due to register reuse and memory-bus reuse.

• Extend SecOpt to optimize code that preserves the constant-resource property
and combine with diversification.

Apart from these incremental steps towards SecOpt, we investigate a different
approach to perform whole-program verification of the constant-time property in
WebAssembly.

3.2. METHODOLOGY 35

We evaluate Publications 1 and 2 using benchmark functions from two bench-
mark suites, MediaBench [64] and SPEC CPU2006 [65] that are popular for eval-
uating embedded-system and compiler-based approaches. Publication 1 uses 17
small, randomly selected functions from both benchmark suites. The evaluation
shows that the proposed LNS-based approach trades scalability for diversity in CP.
In addition, the evaluation shows our approach allows the generation of multiple
optimal diverse solutions for the majority of the benchmarks. Relaxing the opti-
mality constraint enables more diverse solutions. Publication 2 uses 20 medium-size
functions from MediaBench. The evaluation of Publication 2 confirms the results
of Publication 1 for larger programs. In addition, Publication 2 presents a whole-
program diversification evaluation using a case study from MediaBench, G.721.
This application is an implementation of a set of voice compression algorithms. We
use a GCC-based tool to link the generated variants for the MIPS32-based Pic32MX
microcontroller. This case study shows up to 95% code-reuse gadget diversification
or relocation.

Publications 3, 4, and 5 use cryptographic implementations from the real world
and previous work that evaluates similar approaches. The evaluation of Publication
3 uses real-world constant-time implementations from diverse libraries, including
libsodium [66], HACL* [67], BearSSL [68]. In addition, the evaluation uses known
timing vulnerabilities from the literature. This publication presents two approaches
to verify constant-time programs. The first approach uses unbound loop unrolling
and is able to verify 55 out of 57 implementations. The second approach uses a
lightweight relational invariant generation and is able to verify the rest two imple-
mentations but fails to analyze many implementations due to the limited precision
of the generated invariant.

Publication 4 applies theoretical and experimental research methodology in the
evaluation. To ensure security, we prove that the security constraint model implies
secure code generation based on our leakage model. In addition, the evaluation
in Publication 4 uses twelve benchmark functions that we derive from previous
work [25] to perform an empirical evaluation. We evaluate the performance over-
head of the generated code and the compilation-time overhead compared with Uni-
son. To evaluate the speedup of our approach compared to other security-aware
approaches, we compare with the approach by Wang et al. [25] and LLVM with no
optimizations, -O0. This evaluation shows a high speedup of up to three times faster
than LLVM -O0 and the work by Wang et al. [25] at the expense of a compilation
time increase.

The evaluation of Publication 5 uses the same benchmarks as Publication 4 and
an additional set of five benchmarks to evaluate the constant-resource property.
These benchmark functions comprise diverse algorithms that may take secret values
as inputs and contain secret-dependent control-flow instructions [69]. To verify
the security of the generated solutions, we use two WCET tools for ARM Cortex
M0 [70] and Mips [71, 72]. These tools calculate the worst- and best-case execution
time, and we use them to show that the generated variants do not depend on secret
values. The evaluation indicates that property-preserving diversification introduces

36 CHAPTER 3. APPROACH AND METHODOLOGY

diversification-time overhead, however, this does not reduce the effectiveness against
code-reuse attacks.

Chapter 4

Related Work

This chapter presents state-of-the-art research in defenses against code-reuse at-
tacks (Section 4.1), and side-channel attacks (Section 4.2). The latter consists of
three parts and includes related work on mitigations against timing side-channel
attacks, mitigations against power side-channel attacks, and verification approaches
for timing side-channel attacks.

4.1 Code-Reuse Attacks Mitigations

Table 4.1: Mitigation approaches against code-reuse attacks

Pub. Mitigation InL OutL ML Av.
Abadi et al. [35] CFI x86 x86 Bin
Pappas et al. [8] Div x86 x86 Bin
Homescu et al. [9] Div C, C++ x86 llvm
AVRAND [73] Div, RR AVR AVR Bin
C-Flat [74] CFI ARM ARM Bin
CFI CaRE [75] CFI ARM ARM Bin
Koo et al. [76] Div, RR C, C++ x86 llvm
MicroGuard [1] Div, CFI C, C++ ARM llvm/Bin
HARM [77] Div, RR ARM ARM Bin
FH-CFI [78] HWCFI ARM ARM Bin

SecOpt [17, 18, 21] Div C, C++
Mips,
ARM

llvm

Code-reuse attacks constitute a serious threat to computer software in both
high-end computers [29] and embedded systems [27, 28]. There are two main mech-
anisms to mitigate code-reuse attacks, CFI [34] and automatic software diversifi-
cation [7]. CFI includes hardware and software mechanisms to prevent illegitimate

37

38 CHAPTER 4. RELATED WORK

control-flow violations during program execution. On the other end, automatic
software diversification hinders code-reuse attacks by introducing uncertainty to
the program implementation. This uncertainty affects the location and exact im-
plementation of code-reuse gadgets, which are the building blocks of code-reuse
attacks.

Table 4.1 shows a number of representative approaches against code-reuse at-
tacks. The table includes the publication citation (Pub.), the mitigation each ap-
proach uses (Mitigation), the input language (InL), the output language (OutL),
the mitigation level (ML), which is either at binary code (Bin) or a compiler (e.g.
llvm), and finally, the availability of the respective artifact (Av.). For the availabil-
ity field (Av.), indicates that the artifact is available, whereas indicates that
the main author of this dissertation was not able to find the artifact.

Table 4.1 shows a set of approaches that use CFI against code-reuse attacks [35,
74, 75, 1, 78]. The majority of these approaches target embedded systems, including
C-Flat [74], CFI CaRE [75], and FH-CFI [78], and MicroGuard [1] that target ARM
systems. One of these approaches, MicroGuard [1] combines CFI with software
diversification against code-reuse attacks. In general, CFI approaches lead to higher
execution-time overhead than software diversification approaches [34, 7].

Automatic software diversification (Div in Table 4.1) is another approach against
code-reuse attacks. ASLR is a coarse-grained software diversification method that
randomly selects the address space of key data areas, such as the address of dynamic
libraries. ASLR is the most widely-used diversification method, and its effect on
performance is insignificant. However, ASLR leads to low entropy, which enables
brute-force code-reuse attacks [79]. Fine-grained software diversification, which
includes diversification at the function- or instruction-level of the program, provides
improved protection against code-reuse attacks.

Pappas et al. [8] perform fine-grained software diversification at the binary level
and apply zero-cost transformations, namely register randomization, instruction
schedule randomization, and function shuffling. However, they do not evaluate
the actual performance overhead of their approach. In contrast, SecOpt uses a cost
model to calculate the performance overhead and allows diversification with no per-
formance degradation. Also, SecOpt enables more transformations including NOP
insertion, register copying, spilling, and constant rematerialization. SecOpt may be
combined with function shuffling to achieve whole-program diversification [18].

Homescu et al. [9] present a fine-grained diversification approach that inserts
NOP instructions to the code. To reduce the introduced overhead, they use profiling
information to prioritize NOP insertion in pieces of code that have low execution
frequency. Seibert et al. [33] show that static frequency NOP insertion is possible to
bypass using side-channel information. SecOpt is also able to control the introduced
overhead by using a static cost model, while it allows targeted diversification in code
without introducing performance overhead. The latter is possible because SecOpt
uses a larger variety of transformations than NOP insertion.

The introduction of advanced code-reuse attacks allows for deciphering the di-
versification scheme by using a memory vulnerability to read the program mem-

4.2. DEFENDING SIDE-CHANNEL ATTACKS 39

ory [31, 32], or using timing information [33]. These attacks give rise to re-
randomization (RR in Table 4.1) approaches. Re-randomization typically switches
between different program variants at specific time intervals [76] or at different
events, such as at reboot time [73]. Re-randomization may introduce additional
runtime performance overhead that may be low, such as HARM [77] that intro-
duces 5% overhead. SecOpt may be used in a re-randomization scheme at boot
time against attacks, such as BROP [32]. We leave the evaluation of such an ap-
proach as future work.

4.2 Defending Side-Channel Attacks

Side-Channel attacks constitute a serious threat to cryptographic implementations.
There are different side-channel attacks, including timing, power, electromagnetic,
and sound side-channel attacks. This dissertation focuses on timing and power side-
channel mitigations. The next sections present a set of representative mitigation
approaches against these attacks.

Defending Timing Side-Channel Attacks

In this section, we discuss methods to mitigate and verify timing side-channel at-
tacks.

Timing Side-Channel Mitigations

Table 4.2: Mitigation approaches against timing side-channel attacks

Pub. Attack Mitig. InL OutL ML Av.
Crane et al. [14] TSC Div C, C++ x86a llvm
Raccoon [15] TSC Obf C, C++ x86 llvm
Fact [80] TSC CT DSL C Custom
HACL* [81] TSC, MC CT DSL C Flow

Jasmin [82] TSC, MC CT DSL x86 Custom
Winderix et al.
[61]

TSC, IL BB C, C++ MSP430 llvm

Constantine [83] TSC CT C, C++ x86 llvm
Crow [84] TSC Div C, C++ Wasm llvm

Vu et al. [4]
VBL,
TSC

SM,CT C, C++ ASM llvm

SecOpt [21]
TSC,
TBL,
CRA

Div,
SM/BB

C, C++
Mips,
ARM

llvm

aThe evaluation targets x86, however the method applies to other architectures

40 CHAPTER 4. RELATED WORK

There are different approaches to mitigate timing side-channel attacks. These
approaches either eliminate the secret-dependent timing differences in the program
execution [85] or obfuscate the timing profile of the program to reduce the ability
of the attacker to identify secret values [15, 14] Table 4.2 shows a set of represen-
tative mitigation approaches against timing side-channel attacks (TSC). The table
includes the publication (Pub.), the attack, the approach mitigates (Attack), the
mitigation the approach applies (Mitig.), the input language (InL), the output lan-
guage (OutL), the mitigation level (ML), which is a custom compiler (custom), a
specific compiler (Flow), or the LLVM compiler (llvm). The last field (Av.) indi-
cates that the artifact is available () or not available ().

There are two main approaches that eliminate secret-dependent time differences,
1) cryptographic constant-time (CT) programming discipline [85], which eliminates
secret-dependent timing differences by rewriting the code, and 2) constant-resource
(BB) programming [45], which instead balances the different execution paths to
take the same time.

The constant-time programming discipline replaces secret-dependent branch
and memory operations with constant-time equivalent that make use of logic opera-
tions. HACL* [81] is an approach to generate code that is constant time and mem-
ory safe against memory corruption (MC). The output code is in C, and thus, there
is another compilation step from C to assembly code that may use CompCert [86],
a verified compiler. Jasmin [82] is low-level optimizing cryptographic Domain Spe-
cific Languages (DSLs) that generate efficient constant-time code for cryptographic
implementations. The main drawback of Jasmin is that the input code is writ-
ten in a low-level language, which requires re-implementing legacy cryptographic
algorithm implementations and acquiring a deep understanding of low-level code.

Constant-resource programming is a more relaxed mitigation approach com-
pared to the constant-time programming discipline. In particular, constant-resource
programming does not require the absence of secret-dependent branches. Instead, it
allows balancing secret-dependent branches with NOP instructions to hinder the at-
tacker from identifying the selected execution path. Winderix et al. [61] implement
an approach to balance secret-dependent branches on MSP430. Their approach
protects against both timing attacks and interrupt-latency (IL) side-channel at-
tacks. SecOpt focuses on timing attacks and achieves balancing secret-dependent
branches with up to 70% overhead.

Constantine [83] is a different approach that achieves constant time by auto-
matically linearizing code. Their approach introduces large overhead of up to five
times. Raccoon [15] uses obfuscation (Obf) to hide secret-dependent leaks. The
main disadvantage of this approach is high performance overhead of up to 16 times.
Crane et al. [14] mitigate timing side channels using fine-grained code diversification
(Div) by inserting memory NOP operations. However, their approach may lead to
up to 8 times performance overhead. The main disadvantage of these approaches
is high execution-time overhead compared to SecOpt that introduces up to 70%
overhead.

4.2. DEFENDING SIDE-CHANNEL ATTACKS 41

Verification

Code verification is a way to identify timing vulnerabilities in programs. Almeida
et al. [85] use product programs to verify constant-time programs in C. Vale [87] ver-
ifies the correctness, safety, and security of binary code in ARM and x86. Among
other security properties, Vale preserves the constant-time property using taint
analysis. Binsec/Rel [24] performs relational symbolic execution [60] to verify
constant-time program in binary code.

The verification approach of this thesis, Vivienne [19] uses also relational sym-
bolic execution to verify the constant-time property in WebAssembly code. In
addition, Vivienne implements a lightweight invariant inference approach. Bastys
et al. [88] is another approach that uses concolic execution to verify the constant-
time property in WebAssembly.

Power Side-Channel Mitigations

Table 4.3: Mitigation approaches against power side-channel attacks

Pub. Attack Mitig. InL OutL ML Av.
Eldib and Wang
[89]

VBL SM DSL - Custom

Papagiannopoulos
and Veshchikov
[13]

TBL SM AVR AVR Binary

Besson et al. [62] IFL - C ASM CompCert
Wang et al. [25] TBL SM C, C++ ASM llvm
Athanasiou et al.
[26]

TBL SM ARM ARM Binary

Vu et al. [4]
VBL,
TSC

SM,CT C, C++ ASM llvm

Rosita [47] TBL SM ARM ARM Binary

SecOpt [20] TBL SM C, C++
Mips,
ARM

llvm

Power side-channel attacks record the power traces of a computer to extract
secret values, such as cryptographic keys. There are different mitigation approaches
to hinder power side channel attacks during the program execution. An approach
to mitigate power side channels is to randomize the secret data, so that the power
traces do not reveal secret information to the attacker. Software masking (SM), uses
the exclusive-OR operation, ⊕, to mix the secret value with a randomly generated
value. This randomly generated value, or mask, allows the randomization of the
secret value and requires the same mask to decipher.

We consider different types of power leakage, Value-Based Leakage (VBL) and
Transition-Based Leakage (TBL). VBLs appear when secret values are not masked,

42 CHAPTER 4. RELATED WORK

i.e. public values known to the attacker interact with secret values [89, 4], whereas,
TBL appear when fundamental hardware structures, such as hardware registers,
memory cells, and memory bus, leak information by transitioning from one value
to another. The absence of VBLs does not guarantee the absence of TBLs, whereas
the opposite is true.

Table 4.3 shows a set of representative mitigation approaches against power side-
channel attacks. For each of the approaches, Table 4.3 shows the publication (Pub.),
the attack the approach mitigates (Attack), the mitigation the approach applies
(Mitig.), the input language (InL), the output language (OutL), the mitigation
level (ML), which is either binary or a compiler, like CompCert or LLVM (llvm).
The last field (Av.) indicates that the artifact is available (), not available (),
parts of the artifact are missing ().

The approaches by Papagiannopoulos and Veshchikov [13] and Rosita [47] are
processor specific, focusing on AVR and ARM Cortex M0, respectively. They
mitigate different types of TBLs, including register-reuse leakage, memory-reuse
leakage, and memory-bus-reuse leakage, which are detected in a specific processor
implementations.

Wang et al. [25] take as input masked code and use a more generic type-inference-
based approach [90] to identify possible register-reuse leaks and subsequently mit-
igate them. The main disadvantage of this approach is that it does not generate
highly optimized code. SecOpt follows a similar type-inference-based approach to
optimize masked code with no register-reuse leaks and memory-bus reuse leaks.

Athanasiou et al. [26] use the same type-inference approach to find and mitigate
possible register-reuse leakages. SecOpt generates code that is free from register-
reuse leaks and memory-bus reuse leaks.

4.3 Secure Compilation and Optimization

Popular languages like C enable security vulnerabilities, such as memory corruption
and many undefined behaviors [3]. Compiler development and research focus mostly
on functional correctness in accordance with the language specification. In addition,
general-purpose compilers focus on optimizing the performance efficiency or the
size of the code, however, they rarely consider security properties [3]. Therefore,
important compiler algorithms and heuristics are designed with performance and
code size in mind and not security. With the advent and popularity of the Internet
and recently the IoT devices, where multiple computers connect to each other,
security has become a major concern. Secure compilation is a field that aims at
generating secure code, where performance is a secondary aspect.

Table 4.3 presents approaches that combine security features with highly opti-
mized code. Jasmin [82] is an approach that generates secure and optimized code.
The main disadvantage of Jasmin is that it uses a low-level DSL, that requires
writing cryptographic code in a new assembly-like language.

4.3. SECURE COMPILATION AND OPTIMIZATION 43

Vu et al. [91] present an approach that prevents compiler-introduced vulner-
abilities in LLVM. Vu et al. [91] generate highly optimized code that preserves
security properties, such as software masking (SM) against VBLs and the constant-
time property for timing side channels (TSC). Unfortunately, the artifact for their
approach is not available.

A different approach by Besson et al. [62] proves that the compiler preserves
security properties. In particular, they show that two optimization passes in Com-
pCert [86] preserve information-flow properties at function entries and exits.

Chapter 5

Summary of Publications

The following sections (Sections 5.1 to 5.5), provide a summary of each paper that
is included in this dissertation

5.1 Publication 1: Constraint-Based Software
Diversification for Efficient Mitigation of Code-Reuse
Attacks

Fine-grained software diversification is an approach that is effective against code-
reuse attacks. Related work focuses on high-end computer architectures, with lit-
tle focus on embedded devices, although, code-reuse attacks target embedded de-
vices [28, 29, 30]. An additional advantage of fine-grained software diversification
is its low introduced overhead, which makes it suitable for resource-constrained
devices. Unfortunately, many related approaches do not control the introduced
performance overhead.

This publication presents a fine-grained software diversification approach that
uses CP to enable control over the introduced performance overhead. A wide range
of low-level program transformations in the underlying compiler backend enables
fine-grained diversification that targets Mips32, an embedded-system architecture.
The underlying constraint-based compiler backend generates optimized code with
regard to performance and code size. To achieve high diversity and scalability, this
publication proposes LNS, a local-search-based heuristic, which attempts to find
solutions to the constraint model that correspond to machine-code implementations.
The evaluation of the algorithm on 17 small functions from MediaBench and SPEC
CPU 2006 shows that the presented algorithm enables the generation of program
variants that are different from each other with an acceptable diversification time.
The available diversification transformations allow the generation of zero-overhead
variants, which corresponds to highly optimized function variants.

45

46 CHAPTER 5. SUMMARY OF PUBLICATIONS

5.2 Publication 2: Constraint-Based Diversification of JOP
Gadgets

Publication 1 presents an algorithm that is efficient and effective for small func-
tions that represent around 24% of the total set of functions in MediaBench. This
publication presents a different algorithm that allows the diversification of larger
functions using structural decomposition. This algorithm first solves a subproblem
that consists of the inter-block program-variable assignments and then, for each
basic block, it generates multiple solutions that can be combined to generate diver-
sified program variants. This publication also presents a distance measure that is
adjusted to the code-reuse attack properties. The evaluation uses 20 functions from
MediaBench that cover 96% of the function size in the bench suite. The evaluation
shows that the global LNS-based algorithm is more effective against code-reuse at-
tacks but scales up to around 60% of the functions in MediaBench, whereas the
decomposition-based algorithm scales to up to 93% of the functions. This publica-
tion evaluates also the effect of whole-program diversification on a case study. This
case study shows that the proposed diversification algorithms have high effective-
ness against code-reuse attacks while performing additional randomization steps,
such as function shuffling, improves the effectiveness of diversification measured by
gadget relocation.

5.3 Publication 3: Vivienne: Relational Verification of
Cryptographic Implementations in WebAssembly

Timing side-channel attacks constitute a serious threat to the security of crypto-
graphic implementations. Most languages and many algorithm implementations
are vulnerable to side-channel attacks, including WebAssembly, a new language for
the web, which is portable, efficient, and features security properties. The charac-
teristics of WebAssembly make it a suitable choice for implementing cryptographic
libraries with multiple cryptographic implementations already available.

Relational verification is an efficient approach for verifying programs that follow
the constant-time policy and/or locate constant-time violations. Vivienne presents
an approach that uses relational symbolic execution to identify timing vulnerabili-
ties in WebAssembly. Loop analysis is the main bottleneck of symbolic execution.
To deal with this, this publication proposes an approach to automatic relational
invariant generation.

The evaluation uses 57 cryptographic library implementations and shows that
relational symbolic execution with loop unrolling is efficient for the verification of
the constant-time property, when the loop bounds of the analyzed program are not
very high. For the benchmarks that contain large loop bounds, relational invariant
generation is more effective than unbound loop unrolling. However, sometimes the
automatic relational invariant does not capture the loop bounds, which results in
low effectiveness in analyzing compiler-generated code.

5.4. PUBLICATION 4: SECURING OPTIMIZED CODE AGAINST POWER
SIDE CHANNELS 47

5.4 Publication 4: Securing Optimized Code Against Power
Side Channels

Power side channels are a serious threat to cryptographic libraries. Power attacks
typically require access to the victim’s physical location and record the power con-
sumption of the target machine in time using devices, such as an oscilloscope. These
attacks are very powerful because they can identify small variations in the power
consumption of the executing program.

Software masking is a software mitigation against power side-channel attacks,
which hides secret values from the power traces using randomly generated variables.
These random values statistically remove the dependencies of the secret values from
the power traces.

Secret-dependent transitional effects, for example, when hardware registers or
the memory bus transition from one value to another, may leak secret information
through power side channels. Although the source code of a program may be masked
correctly, the compiler may invalidate these transformations by, for example, reusing
hardware registers. This publication presents a compiler-based approach that gen-
erates highly optimized code that mitigates power side-channel attacks. The paper
presents a formal proof that the proposed constraint model is correct with regard
to the leakage model. The evaluation of the approach on twelve masked programs
targeting two embedded architectures, ARM Cortex M0 and Mips, shows that our
approach leads up to 13% performance overhead compared to optimal non-secure
compilation and a geometric mean speedup of approximately three compared to
other secure-compilation approaches.

5.5 Publication 5: Thwarting Code-Reuse and
Side-Channel Attacks in Embedded Systems

Security protection of a computing system typically requires application of mul-
tiple mitigations against different attacks that may affect the system. Applying
these mitigations sequentially may lead to mitigation conflicts, when the latest
applied mitigation reverts or invalidates the changes of the previously applied mit-
igations. Embedded systems have additional constraints that derive from resource
limitations, such as battery life, and thus, overall resource estimation is of major
importance.

Publication 5 concerns thwarting code-reuse attacks and side-channel attacks
in embedded systems. An efficient mitigation against code-reuse attacks is fine-
grained code diversification, while typical mitigations against power and timing
side-channel attacks include low-level code transformations. Both fine-grained code
diversification and side-channel mitigations operate at the low-level implementation
of the input code. The evaluation runs on 15 benchmark programs derived from
previous work against side-channel attacks. This publication shows that 1) fine-
grained software diversification may break side-channel mitigations, 2) a combined

48 CHAPTER 5. SUMMARY OF PUBLICATIONS

mitigation against both code-reuse attacks and side-channel attack is feasible but
with increased compilation overhead, and 3) there is no clear negative effect of
the effectiveness of diversification against code-reuse attacks, when protecting also
against side-channel attacks.

Chapter 6

Conclusion and Future Work

This chapter presents the conclusion of this dissertation (Section 6.1) and discusses
future research directions (Section 6.2).

6.1 Summary of Contributions

This dissertation presents a combinatorial approach to secure code generation. This
work features three properties: performance awareness, composability, and formal-
isation. Below we summarise the answers to the research questions of this disser-
tation and discuss the obtained research results.

RQ1: How feasible and effective is performance-aware
constrained-based software diversification against code-reuse
attacks?

Our experiments show that performance-aware constraint-based software diversifi-
cation can effectively diversify code-reuse gadgets. The proposed algorithm allows
for the efficient generation of highly diverse solutions, while it controls the generated
performance overhead. Our approach scales to up to medium-sized programs of ap-
proximately 500 Machine Intermediate Representation (MIR) instructions. Hence,
we believe that our approach constitutes an important building block for whole-
program diversification or re-randomization to provide high effectiveness against
code-reuse attacks.

RQ2: How feasible is secure constraint-based optimization of
cryptographic implementations?

Our approach to constraint-based optimization of cryptographic implementation is
highly optimizing for small cryptographic functions of up to 100 MIR instructions.
The results that generate programs free of transitional leaks show a high speedup

49

50 CHAPTER 6. CONCLUSION AND FUTURE WORK

compared to competing approaches and non-optimized code. This is achieved at
the expense of compilation time. Constant-resource preservation is effective against
timing side channels and generates secure low-level code.

RQ3: How feasible and effective is a combined mitigation against
code-reuse attacks and side-channel attacks?

Our experiments show that combining software diversification with software mit-
igations against side-channel attacks enables the generation of multiple program
variants that are secure against side-channel attacks. There is an overhead on the
diversification time, however, there is no clear effect on the effectiveness of diversi-
fying code-reuse gadgets and thus hindering code-reuse attacks.

RQ4: How feasible is code verification of binary code against
timing side channels?

Our constant-resource verification approach verifies the constant-resource property
in all generated programs by SecOpt. Similarly, our approach to relation verification
to test the constant-time property in WebAssembly is able to analyze successfully 55
out of 57 real-world implementations consisting of large code bases. In addition, the
relational invariant approach is able to analyze the remaining two implementations,
while a more precise invariant generation approach may successfully analyze the
total set of implementations.

Conclusion

This dissertation developed a constraint-based compiler backend approach that
presents a concrete step towards secure-by-design optimized compilation. The
main features of this approach are composability of security measures, performance
awareness that allows the generation of highly optimized code, and a constraint-
based framework that exhibits properties that have been formalised. Code verifi-
cation is an additional step toward highly trusted code generation. To summarize,
this work proposed a novel compiler-based approach to generate highly optimized
and secure code against major vulnerabilities that affect security-critical software.

6.2 Future Work

There are several directions for future work that can focus on improvements and
extensions to proposed approaches. The extension of the current work could include
1) evaluating our approach against full-fledged attacks, 2) extending the software-
masking optimization approach to larger programs by decomposing linearized pro-
grams into smaller pieces, and 3) extending SecOpt to support more cybersecurity
mitigations. Below we discuss the directions of the future work in detail.

6.2. FUTURE WORK 51

Evaluation against Complete Attacks

This dissertation concerns the automatic and correct-by-design generation of code
that satisfies security mitigations. Our work evaluates these approaches using for-
mal methods (see Publication 4), empirical evaluation (see Publication 3 and 5),
or statistical properties (see Publication 1 and 2). However, an interesting research
direction would be to investigate the effect on full-fledged attacks. Two exam-
ples of attacks include code-reuse attacks and power side-channel attacks that have
recently received increased interest.

Software diversification provides statistical properties that hinder code-reuse
attacks. However, an interesting direction is to design different types of code-reuse
attacks, such as ROP and JOP attacks, in Mips and ARM. This research direction
may give further insights into how to improve and target diversification towards
full-fledged attacks.

Power side-channel attacks have advanced significantly in the recent years, in-
cluding statistical analysis of the power traces using deep learning. These attacks
are powerful and evaluating our approach against such attacks may provide addi-
tional insights on extending the mitigation of our approach to further transitional
leaks.

Scalability Enhancement

Scalability, namely the ability to analyze large problems is an active and demanding
research topic in combinatorial optimization. This dissertation has made clear steps
toward increased scalability in Publication 2. In addition, Publication 3 investigates
additional solving methods to enhance the scalability of the optimization approach.
The introduction of security constraints increases the complexity of the problem
and, hence, its compilation time. However, Publication 3 uses linearized input
programs that consist of a single basic block. One step towards improving the
scalability of the approach in Publication 3 is extending the security analysis to
support if statements and loops. This direction may reduce the accuracy of the
security analysis and lead to reduced code efficiency.

Cybersecurity Countermeasures

This dissertation concerns mitigations against code-reuse attacks and side-channel
attacks. However, there are additional attacks that depend on compiler-generated
code.

Memory-Probing Attacks

Memory-probing attacks allow an adversary to read the content of the main memory
and/or the register file [92]. One idea is to use SecOpt to reduce the presence of
secret values in memory by reducing the live range of registers and stack operations.
Overwriting the secret data in memory, including the stack and register after the end

52 CHAPTER 6. CONCLUSION AND FUTURE WORK

of the live range is an additional transformation towards reducing the capabilities
of memory-probing attacks.

Speculation Attacks

Modern processors use speculation to improve the performance of the program ex-
ecution when the result of a branch is not known. In particular, the processor uses
statistical information from previous branches to take a branching decision before
the processor calculates the actual branch decision. Speculative execution improves
the processor performance when the branch prediction is correct. In case of mis-
prediction, the processor discards the speculatively executed instruction results.
However, the processor does not reverse any side effects of the speculative execu-
tion, such as cache updates. A compiler-based approach to mitigate these attacks
may include padding vulnerable branches with NOPs that delay the speculative
execution of instructions that leak secret information. This approach may intro-
duce high performance overhead. Instead, verification of the absence of speculation
leaks using relational verification is an effective method to ensure the security of
the generated software [93].

References

[1] M. Salehi, D. Hughes, and B. Crispo, “MicroGuard: Securing Bare-Metal
Microcontrollers against Code-Reuse Attacks,” in 2019 IEEE Conference on
Dependable and Secure Computing (DSC), Nov. 2019, pp. 1–8.

[2] A. Bendovschi, “Cyber-Attacks – Trends, Patterns and Security Countermea-
sures,” Procedia Economics and Finance, vol. 28, pp. 24–31, Jan. 2015.

[3] V. D’Silva, M. Payer, and D. Song, “The Correctness-Security Gap in Compiler
Optimization,” in 2015 IEEE Secur. Priv. Workshop, 2015, pp. 73–87.

[4] S. T. Vu, A. Cohen, A. De Grandmaison, C. Guillon, and K. Heydemann,
“Reconciling optimization with secure compilation,” Proceedings of the ACM
on Programming Languages, vol. 5, no. OOPSLA, pp. 1–30, 2021.

[5] R. C. Lozano, M. Carlsson, G. H. Blindell, and C. Schulte, “Combinatorial
Register Allocation and Instruction Scheduling,” ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), vol. 41, no. 3, pp. 17:1–17:53,
2019.

[6] H. Shacham, “The Geometry of Innocent Flesh on the Bone: Return-into-
libc Without Function Calls (on the x86),” in Proceedings of the 14th ACM
Conference on Computer and Communications Security, ser. CCS ’07. New
York, NY, USA: ACM, 2007, pp. 552–561.

[7] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz, “SoK: Automated Soft-
ware Diversity,” in 2014 IEEE Symposium on Security and Privacy, May 2014,
pp. 276–291.

[8] V. Pappas, M. Polychronakis, and A. D. Keromytis, “Smashing the Gad-
gets: Hindering Return-Oriented Programming Using In-place Code Random-
ization,” in 2012 IEEE Symposium on Security and Privacy, May 2012, pp.
601–615, iSSN: 1081-6011.

[9] A. Homescu, S. Neisius, P. Larsen, S. Brunthaler, and M. Franz, “Profile-
guided Automated Software Diversity,” in Proceedings of the 2013 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO), ser.
CGO ’13. Washington, DC, USA: IEEE Computer Society, 2013, pp. 1–11.

53

54 REFERENCES

[10] P. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,” in Advances
in Cryptology — CRYPTO’ 99, ser. Lecture Notes in Computer Science.
Springer, 1999, pp. 388–397.

[11] E. Brier, C. Clavier, and F. Olivier, “Correlation Power Analysis with a Leak-
age Model,” in Cryptographic Hardware and Embedded Systems - CHES 2004,
ser. Lecture Notes in Computer Science. Springer, 2004, pp. 16–29.

[12] P. C. Kocher, “Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems,” in Annual International Cryptology Conference.
Springer, 1996, pp. 104–113.

[13] K. Papagiannopoulos and N. Veshchikov, “Mind the Gap: Towards Secure
1st-Order Masking in Software,” in International Workshop on Constructive
Side-Channel Analysis and Secure Design. Springer, 2017, pp. 282–297.

[14] S. Crane, A. Homescu, S. Brunthaler, P. Larsen, and M. Franz, “Thwarting
Cache Side-Channel Attacks Through Dynamic Software Diversity,” in Pro-
ceedings 2015 Network and Distributed System Security Symposium. Internet
Society, 2015.

[15] A. Rane, C. Lin, and M. Tiwari, “Raccoon: Closing Digital {Side-
Channels} through Obfuscated Execution,” in 26th USENIX Security Sym-
posium (USENIX Security 15), 2015, pp. 431–446.

[16] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman, D. Gohman,
L. Wagner, A. Zakai, and J. Bastien, “Bringing the web up to speed with
WebAssembly,” in Proc. of the Conf. on Programming Language Design and
Implementation (PLDI), 2017, pp. 185–200.

[17] R. M. Tsoupidi, R. Castañeda Lozano, and B. Baudry, “Constraint-Based
Software Diversification for Efficient Mitigation of Code-Reuse Attacks,” in
International Conference on Principles and Practice of Constraint Program-
ming, 2020, pp. 791–808.

[18] R. M. Tsoupidi, R. Castañeda Lozano, and B. Baudry, “Constraint-based
diversification of JOP gadgets,” Journal of Artificial Intelligence Research,
vol. 72, pp. 1471–1505, 2021.

[19] R. M. Tsoupidi, M. Balliu, and B. Baudry, “Vivienne: Relational Verification
of Cryptographic Implementations in WebAssembly,” in 2021 IEEE Secure
Development Conference (SecDev), 2021, pp. 94–102.

[20] R. M. Tsoupidi, R. Castañeda Lozano, E. Troubitsyna, and P. Papadimitratos,
“Securing Optimized Code Against Power Side Channels,” in 2023 IEEE Se-
curity Foundations Symposium (CSF), 2023, to appear.

REFERENCES 55

[21] R. M. Tsoupidi, E. Troubitsyna, and P. Papadimitratos, “Thwarting
code-reuse and side-channel attacks in embedded systems,” arXiv preprint
arXiv:2304.13458, 2023.

[22] “ENISA Threat Landscape 2022.” [Online]. Available: https://www.enisa.
europa.eu/publications/enisa-threat-landscape-2022

[23] S. Liu and B. Cheng, “Cyberattacks: Why, what, who, and how,” IT Profes-
sional, vol. 11, no. 3, pp. 14–21, 2009.

[24] L.-A. Daniel, S. Bardin, and T. Rezk, “Binsec/Rel: Efficient Relational Sym-
bolic Execution for Constant-Time at Binary-Level,” in 2020 IEEE Symposium
on Security and Privacy (SP), 2020, pp. 1021–1038.

[25] J. Wang, C. Sung, and C. Wang, “Mitigating power side channels during com-
pilation,” in Proc. 2019 27th ACM Jt. Meet. Eur. Softw. Eng. Conf. Symp.
Found. Softw. Eng., ser. ESEC/FSE 2019. Association for Computing Ma-
chinery, 2019, pp. 590–601.

[26] K. Athanasiou, T. Wahl, A. A. Ding, and Y. Fei, “Automatic Detection and Re-
pair of Transition- Based Leakage in Software Binaries,” in Softw. Verification,
ser. Lecture Notes in Computer Science. Springer International Publishing,
2020, pp. 50–67.

[27] G.-A. Jaloyan, K. Markantonakis, R. N. Akram, D. Robin, K. Mayes, and
D. Naccache, “Return-Oriented Programming on RISC-V,” in Proceedings of
the 15th ACM Asia Conference on Computer and Communications Security,
ser. ASIA CCS ’20, Oct. 2020, pp. 471–480.

[28] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, “Jump-oriented Program-
ming: A New Class of Code-reuse Attack,” in Proceedings of the 6th ACM Sym-
posium on Information, Computer and Communications Security, ser. ASI-
ACCS ’11. New York, NY, USA: ACM, 2011, pp. 30–40.

[29] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham, and
M. Winandy, “Return-oriented Programming Without Returns,” in Proceed-
ings of the 17th ACM Conference on Computer and Communications Security,
ser. CCS ’10. New York, NY, USA: ACM, 2010, pp. 559–572.

[30] O. Gilles, F. Viguier, N. Kosmatov, and D. G. Pérez, “Control-flow integrity
at risc: Attacking risc-v by jump-oriented programming,” 2022.

[31] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and A. Sadeghi,
“Just-In-Time Code Reuse: On the Effectiveness of Fine-Grained Address
Space Layout Randomization,” in 2013 IEEE Symposium on Security and Pri-
vacy, May 2013, pp. 574–588.

https://www.enisa.europa.eu/publications/enisa-threat-landscape-2022
https://www.enisa.europa.eu/publications/enisa-threat-landscape-2022

56 REFERENCES

[32] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazières, and D. Boneh, “Hacking
Blind,” in 2014 IEEE Symposium on Security and Privacy, May 2014, pp.
227–242, iSSN: 2375-1207.

[33] J. Seibert, H. Okhravi, and E. Söderström, “Information Leaks Without Mem-
ory Disclosures: Remote Side Channel Attacks on Diversified Code,” in Pro-
ceedings of the 2014 ACM SIGSAC Conference on Computer and Communi-
cations Security, ser. CCS ’14, Nov. 2014, pp. 54–65.

[34] N. Burow, S. A. Carr, J. Nash, P. Larsen, M. Franz, S. Brunthaler, and
M. Payer, “Control-Flow Integrity: Precision, Security, and Performance,”
ACM Computing Surveys, vol. 50, no. 1, pp. 16:1–16:33, Apr. 2017.

[35] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow integrity,”
in Proceedings of the 12th ACM conference on Computer and communications
security, ser. CCS ’05, Nov. 2005, pp. 340–353.

[36] B. Randell, “System structure for software fault tolerance,” in Proceedings
of the international conference on Reliable software. New York, NY, USA:
Association for Computing Machinery, Apr. 1975, pp. 437–449.

[37] B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davidson, J. Knight,
A. Nguyen-Tuong, and J. Hiser, “N-variant systems: A secretless framework
for security through diversity.” in USENIX Security Symposium, 2006, pp.
105–120.

[38] F. B. Cohen, “Operating system protection through program evolution.” Com-
put. Secur., vol. 12, no. 6, pp. 565–584, 1993.

[39] S. Forrest, A. Somayaji, and D. Ackley, “Building diverse computer systems,”
in Proceedings. The Sixth Workshop on Hot Topics in Operating Systems (Cat.
No.97TB100133), May 1997, pp. 67–72.

[40] B. Persaud, B. Obada-Obieh, N. Mansourzadeh, A. Moni, and A. Somayaji,
“Frankenssl: Recombining cryptographic libraries for software diversity,” in
Proceedings of the 11th Annual Symposium On Information Assurance. NYS
Cyber Security Conference, 2016, pp. 19–25.

[41] N. Harrand, T. Durieux, D. Broman, and B. Baudry, “Automatic diversity in
the software supply chain,” arXiv preprint arXiv:2111.03154, 2021.

[42] D. Brumley and D. Boneh, “Remote timing attacks are practical,” Computer
Networks, vol. 48, no. 5, pp. 701–716, 2005.

[43] D. J. Bernstein, “Cache-timing attacks on aes,” 2005.

[44] D. A. Osvik, A. Shamir, and E. Tromer, “Cache Attacks and Countermeasures:
The Case of AES,” in Topics in Cryptology – CT-RSA 2006, ser. Lecture Notes
in Computer Science. Berlin, Heidelberg: Springer, 2006, pp. 1–20.

REFERENCES 57

[45] G. Barthe, S. Blazy, R. Hutin, and D. Pichardie, “Secure Compilation of
Constant-Resource Programs,” in CSF 2021 - 34th IEEE Computer Security
Foundations Symposium. IEEE, Jun. 2021, pp. 1–12.

[46] V. C. Ngo, M. Dehesa-Azuara, M. Fredrikson, and J. Hoffmann, “Verifying and
Synthesizing Constant-Resource Implementations with Types,” in 2017 IEEE
Symposium on Security and Privacy (SP), May 2017, pp. 710–728, iSSN: 2375-
1207.

[47] M. A. Shelton, N. Samwel, L. Batina, F. Regazzoni, M. Wagner, and Y. Yarom,
“Rosita: Towards Automatic Elimination of Power-Analysis Leakage in Ci-
phers,” Proceedings 2021 Network and Distributed System Security Symposium,
2021, appears in NDSS 2022.

[48] K. Ngo, E. Dubrova, and T. Johansson, “Breaking Masked and Shuffled CCA
Secure Saber KEM by Power Analysis,” in Proceedings of the 5th Workshop
on Attacks and Solutions in Hardware Security, Nov. 2021, pp. 51–61.

[49] W.-J. van Hoeve and I. Katriel, “Global constraints,” in Foundations of Arti-
ficial Intelligence. Elsevier, 2006, vol. 2, pp. 169–208.

[50] J.-C. Régin, “A filtering algorithm for constraints of difference in CSPs,” in
AAAI, vol. 94, 1994, pp. 362–367.

[51] L. Ingmar, M. Garcia de la Banda, P. J. Stuckey, and G. Tack, “Modelling
diversity of solutions,” in Proceedings of the thirty-fourth AAAI conference on
artificial intelligence, 2020.

[52] E. Hebrard, B. Hnich, B. O’Sullivan, and T. Walsh, “Finding Diverse and
Similar Solutions in Constraint Programming,” in National Conference on Ar-
tificial Intelligence and the Seventeenth Innovative Applications of Artificial
Intelligence Conference, 2005, p. 6.

[53] L. Popovic, A. Côté, M. Gaha, F. Nguewouo, and Q. Cappart, “Scheduling
the equipment maintenance of an electric power transmission network using
constraint programming,” in 28th International Conference on Principles and
Practice of Constraint Programming (CP 2022). Schloss Dagstuhl-Leibniz-
Zentrum für Informatik, 2022.

[54] M. Gendreau, J.-Y. Potvin et al., Handbook of metaheuristics. Springer, 2010,
vol. 2.

[55] P. Shaw, “Using constraint programming and local search methods to solve
vehicle routing problems,” in Principles and Practice of Constraint Program-
ming, ser. Lecture Notes in Computer Science, vol. 1520. Springer, 1998, pp.
417–431.

58 REFERENCES

[56] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong pro-
gram analysis & transformation,” in CGO. IEEE, 2004.

[57] R. M. Stallman, Using the GNU Compiler Collection: a GNU manual for GCC
version 4.3.3. CreateSpace, 2009.

[58] G. Hjort Blindell, Instruction Selection. Springer International Publishing,
2016.

[59] R. C. Lozano and C. Schulte, “Survey on Combinatorial Register Allocation
and Instruction Scheduling,” ACM Computing Surveys (CSUR), vol. 52, no. 3,
pp. 62:1–62:50, 2019.

[60] G. P. Farina, S. Chong, and M. Gaboardi, “Relational Symbolic Execution,”
in Proceedings of the 21st International Symposium on Principles and Prac-
tice of Declarative Programming, ser. PPDP ’19. Association for Computing
Machinery, Oct. 2019, pp. 1–14.

[61] H. Winderix, J. T. Mühlberg, and F. Piessens, “Compiler-Assisted Hardening
of Embedded Software Against Interrupt Latency Side-Channel Attacks,” in
2021 IEEE European Symposium on Security and Privacy (EuroS P), Sep.
2021, pp. 667–682.

[62] F. Besson, A. Dang, and T. Jensen, “Information-Flow Preservation in Com-
piler Optimisations,” in 2019 IEEE 32nd Comput. Secur. Found. Symp. CSF,
2019, pp. 230–23 012.

[63] T. Edgar and D. Manz, Research methods for cyber security. Syngress, 2017.

[64] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “MediaBench: A tool
for evaluating and synthesizing multimedia and communicatons systems,” in
MICRO. IEEE, 1997, pp. 330–335.

[65] CPU 2006 Benchmarks, SPEC, 2020, https://www.spec.org/cpu2006, accessed
on 2020-03-20.

[66] Libsodium Community, “The sodium cryptography library (Libsodium),”
2018. [Online]. Available: https://libsodium.gitbook.io/doc

[67] J. Protzenko, B. Beurdouche, D. Merigoux, and K. Bhargavan, “Formally
Verified Cryptographic Web Applications in WebAssembly,” in 2019 IEEE
Symposium on Security and Privacy (SP), May 2019, pp. 1256–1274.

[68] T. Pornin, “Bearssl, a smaller SSL/TLS library,” last accessed May 14, 2021.
[Online]. Available: https://bearssl.org/

[69] H. Mantel and A. Starostin, “Transforming Out Timing Leaks, More or Less,”
in Computer Security – ESORICS 2015, ser. Lecture Notes in Computer Sci-
ence. Springer International Publishing, 2015, pp. 447–467.

https://www.spec.org/cpu2006
https://libsodium.gitbook.io/doc
https://bearssl.org/

REFERENCES 59

[70] A. Lindner, R. Guanciale, and M. Dam, “Proof-producing symbolic execution
for binary code verification,” 2023.

[71] D. Broman, “A Brief Overview of the KTA WCET Tool,” Dec. 2017, number:
arXiv:1712.05264 arXiv:1712.05264 [cs].

[72] R. M. Tsoupidi, “Two-phase WCET analysis for cache-based symmetric multi-
processor systems,” Master’s thesis, Royal Institute of Technology KTH, 2017.

[73] S. Pastrana, J. Tapiador, G. Suarez-Tangil, and P. Peris-López, “AVRAND: A
Software-Based Defense Against Code Reuse Attacks for AVR Embedded De-
vices,” in Detection of Intrusions and Malware, and Vulnerability Assessment,
ser. Lecture Notes in Computer Science, 2016, pp. 58–77.

[74] T. Abera, N. Asokan, L. Davi, J.-E. Ekberg, T. Nyman, A. Paverd, A.-R.
Sadeghi, and G. Tsudik, “C-FLAT: Control-Flow Attestation for Embedded
Systems Software,” in Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’16, Oct. 2016, pp. 743–754.

[75] T. Nyman, J.-E. Ekberg, L. Davi, and N. Asokan, “CFI CaRE: Hardware-
Supported Call and Return Enforcement for Commercial Microcontrollers,” in
Research in Attacks, Intrusions, and Defenses, ser. Lecture Notes in Computer
Science. Springer International Publishing, 2017, pp. 259–284.

[76] H. Koo, Y. Chen, L. Lu, V. P. Kemerlis, and M. Polychronakis, “Compiler-
Assisted Code Randomization,” in 2018 IEEE Symposium on Security and
Privacy (SP), May 2018, pp. 461–477.

[77] J. Shi, L. Guan, W. Li, D. Zhang, P. Chen, and P. Chen, “HARM: Hardware-
assisted continuous re-randomization for microcontrollers,” in 2022 IEEE eu-
ropean symposium on security and privacy (EuroS P), 2022.

[78] A. Fu, W. Ding, B. Kuang, Q. Li, W. Susilo, and Y. Zhang, “FH-CFI: Fine-
grained hardware-assisted control flow integrity for ARM-based IoT devices,”
Computers & Security, vol. 116, p. 102666, May 2022.

[79] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh, “On
the effectiveness of address-space randomization,” in Proceedings of the 11th
ACM conference on Computer and communications security, ser. CCS ’04.
Association for Computing Machinery, Oct. 2004, pp. 298–307.

[80] S. Cauligi, G. Soeller, F. Brown, B. Johannesmeyer, Y. Huang, R. Jhala, and
D. Stefan, “FaCT: A Flexible, Constant-Time Programming Language,” in
2017 IEEE Cybersecurity Dev. SecDev, 2017, pp. 69–76.

[81] J.-K. Zinzindohoué, K. Bhargavan, J. Protzenko, and B. Beurdouche,
“HACL*: A Verified Modern Cryptographic Library,” in Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security,
2017, pp. 1789–1806.

60 REFERENCES

[82] J. B. Almeida, M. Barbosa, G. Barthe, A. Blot, B. Grégoire, V. Laporte,
T. Oliveira, H. Pacheco, B. Schmidt, and P.-Y. Strub, “Jasmin: High-
Assurance and High-Speed Cryptography,” in Proc. 2017 ACM SIGSAC Conf.
Comput. Commun. Secur., ser. CCS ’17. Association for Computing Machin-
ery, 2017, pp. 1807–1823.

[83] P. Borrello, D. C. D’Elia, L. Querzoni, and C. Giuffrida, “Constantine: Au-
tomatic Side-Channel Resistance Using Efficient Control and Data Flow Lin-
earization,” Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security, pp. 715–733, Nov. 2021.

[84] J. Cabrera Arteaga, O. Floros, O. Vera Perez, B. Baudry, and M. Monperrus,
“Crow: Code diversification for webassembly,” in MADWeb, NDSS 2021, 2021.

[85] J. B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir, and M. Emmi, “Ver-
ifying constant-time implementations,” in 25th USENIX security symposium
(USENIX security 16). Austin, TX: USENIX Association, Aug. 2016, pp.
53–70.

[86] X. Leroy, “Formal verification of a realistic compiler,” Communications of the
ACM, vol. 52, no. 7, pp. 107–115, Jul. 2009.

[87] B. Bond, C. Hawblitzel, M. Kapritsos, K. R. M. Leino, J. R. Lorch,
B. Parno, A. Rane, S. Setty, and L. Thompson, “Vale: Verifying {High-
Performance} Cryptographic Assembly Code,” in 26th USENIX Security Sym-
posium (USENIX Security 17), 2017, pp. 917–934.

[88] I. Bastys, M. Algehed, A. Sjösten, and A. Sabelfeld, “Secwasm: Information
flow control for webassembly,” in Static Analysis: 29th International Sympo-
sium, SAS 2022, Auckland, New Zealand, December 5–7, 2022, Proceedings.
Springer, 2022, pp. 74–103.

[89] H. Eldib and C. Wang, “Synthesis of Masking Countermeasures against Side
Channel Attacks,” in Comput. Aided Verification, ser. Lecture Notes in Com-
puter Science. Springer International Publishing, 2014, pp. 114–130.

[90] P. Gao, J. Zhang, F. Song, and C. Wang, “Verifying and Quantifying Side-
channel Resistance of Masked Software Implementations,” ACM Transactions
on Software Engineering and Methodology, vol. 28, no. 3, pp. 16:1–16:32, 2019.

[91] S. T. Vu, A. Cohen, K. Heydemann, A. de Grandmaison, and C. Guil-
lon, “Secure optimization through opaque observations,” arXiv preprint
arXiv:2101.06039, 2021.

[92] F. Besson, A. Dang, and T. Jensen, “Securing Compilation Against Memory
Probing,” in Proc. 13th Workshop Program. Lang. Anal. Secur., ser. PLAS
’18. Association for Computing Machinery, 2018, pp. 29–40.

REFERENCES 61

[93] L.-A. Daniel, S. Bardin, and T. Rezk, “Hunting the haunter-efficient relational
symbolic execution for spectre with haunted relse,” in NDSS 2021-Network
and Distributed Systems Security, 2021.

