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Abstra
tAutomati
 Design of Feistel Ciphers Using ConstraintTe
hniquesbyVenkatesh RamamoorthyDissertation Advisor: Marius C.Silaghi, Ph.D.In symmetri
 key 
ryptographi
 algorithms that operate on the Feistel prin
iple,Cryptographi
 substitution boxes (S-boxes) are employed to introdu
e 
onfusioninto the message being en
rypted. These S-boxes 
onstitute the non-linear part inmost 
ryptographi
 algorithms, and their design has been the fo
us of attentionamong resear
hers for several years. The 
on
erns yield major design requirements.In parti
ular, they should be highly nonlinear. Current work in S-box design tosatisfy se
urity requirements employ approa
hes su
h as human-made, math-made,generate-and-test, spe
tral inversion and lo
al sear
h. Re
ent approa
hes employneural networks and distributed methodologies.This work addresses the appli
ation of 
onstraint-based sear
h te
hniques to�nd 
ryptographi
 substitution boxes (S-boxes). In this approa
h, variables arede�ned, the domain of ea
h variable is spe
i�ed, and 
ommon se
urity requirementsfor an S-box are modeled into 
onstraints involving relevant variables. The modelis input to a solver that outputs the S-boxes.We have made a number of 
ontributions. First, the quality of obtained S-boxesis superior to the ones 
urrently published by the Data En
ryption Standard (DES)iii



as part of its spe
i�
ation based on Matsui's se
urity metri
. Se
ond, due to theenormity of the problem, several heuristi
s are investigated for n-ary ConstraintSatisfa
tion Problem (CSP) solvers to speed up S-box sear
h and generation. Weapply the properties of CSPs to redu
e the sear
h spa
e to obtain solutions both, ef-�
iently and having higher quality a

ording to Matsui's measure for non-linearity.We derive new results on Linear Approximation Tables for an S-box, and on the
ondition of a partially assigned S-box to form a 
omplete S-box. A method ofvisiting S-box variables that will e�
iently generate S-boxes is identi�ed. A formof value-ordering to propel this e�
ien
y further has been dis
overed.The proper-ties of 
onstraints are used to dis
over new forms of symmetry of S-boxes. Finally,a novel metri
 for sear
h e�
ien
y of systemati
 sear
hes su
h as this appli
ationhas been quanti�ed.

iv
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1
Chapter 1Introdu
tionCryptography is the s
ien
e of hiding information. A reason for this hidingof information is, for example, to ensure its 
on�dentiality. The original mes-sage being transformed is 
alled the plaintext and the transformed message, the
iphertext. The pro
ess of transformation is 
alled en
ryption and the reverse pro-
ess of retrieving the message from its transformed equivalent is 
alled de
ryption.En
ryption and de
ryption of a message is done using keys.The same key that is used to en
rypt the message 
an be used for de
ryption.This situation is akin to a lo
k that has one key. Su
h a 
ryptographi
 algorithm is
alled a Symmetri
 key algorithm. Alternatively, a di�erent (but related) key 
anbe used for de
ryption from the key used for en
ryption. Imagine a lo
king me
ha-nism that 
an be a
tivated using one key and dea
tivated using a 
orrespondinglydi�erent key. This kind of a 
ryptographi
 algorithm is 
alled an Asymmetri
 keyalgorithm.Symmetri
 key algorithms operate on the prin
iple of Feistel 
iphers [21℄. TheData En
ryption Standard (abbr. DES) 
ryptographi
 algorithm [1℄ is an exampleof a Feistel 
ipher. They operate on the prin
iple of 
onfusion and di�usion. Di�u-sion is used to distribute the bits in the input message being en
rypted and de-skewthe message, and is a

omplished using permutations. Confusion is introdu
edin the message during en
ryption by substituting parts of the message, repla
ingthem with values. Both are a

omplished using substitution boxes (S-boxes), whi
h
onstitutes the most nonlinear transformation in the entire en
ryption algorithm.DES is based on eight S-boxes, numbered from S1 up to S8, shown in Figure 1.1.Ea
h S-box, organized in the �gure as a 4×16 matrix, takes in a six-bit input andgives out a 4-bit output. Thus the total number of input bits to all eight S-boxestaken together is 48, while the total number of output bits is 32.An example demonstrates DES S-box usage.Example 1.1 Consider 39 as the 6-bit input to be substituted using DES S-box

S8, i.e., S8(39) is to be determined. Let y0y1y2y3y4y5 = 1001112 (39 in binary).The row is sele
ted by bits y0y5 = 112 = 3, 
orresponding to the last row of S-box
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S10 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 71 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 82 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 03 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13
S20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150 15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 101 3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 52 0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 153 13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9
S30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150 10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 81 13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 12 13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 73 1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12
S40 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150 7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 151 3 8 11 5 6 15 0 3 4 7 2 12 1 10 14 92 0 6 9 0 12 11 7 13 15 1 3 14 5 2 8 43 3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14(a) DES S-boxes S1 � S4
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S50 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150 2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 91 14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 62 4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 143 11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3
S60 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150 12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 111 10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 82 9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 63 4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13
S70 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150 4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 11 13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 62 1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 23 6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12
S80 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150 13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 71 1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 22 7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 83 2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11(b) DES S-boxes S5 � S8Figure 1.1: Substitution Boxes (S-boxes) S1 � S8 used in the Data En
ryptionStandard (DES)
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S8. The value of S8(39) is now obtained by indexing into the 
olumn y1y2y3y4 ofthis row, namely, 
olumn 00112, or 
olumn 3. The entry for S-box S8 in row 3,
olumn 3, read o� from Figure 1.1, is 7, that is, S8(39) = 7.The S-boxes of DES have been the subje
t of intense spe
ulation by the 
ryp-tographi
 
ommunity. Of parti
ular interest has been the manner in whi
h theyhave been designed, and why the spe
i�
 numbers shown in Table 1.1 have ap-peared in the algorithm, parti
ularly due to the 
lassi�ed nature of the design [58℄.It was not until after ground-breaking results on di�erential 
ryptanalysis by Bi-ham [11℄, and subsequent results on linear 
ryptanalysis by Matsui [34℄, that thedesign 
riteria have been published [16℄. The requirements for S-box design arespe
i�ed to ensure maximum se
urity, and a number of them are available in theliterature [72, 45, 6, 5, 64, 38℄.There are several methods now available to design S-boxes for Feistel 
iphers.A 
lassi�
ation is made [62℄ in whi
h S-boxes are generated using random num-bers, random generate- and-test, human-made and math-made entries. Re
ent ap-proa
hes employ lo
al sear
h, spe
tral inversion, neural networks and distributedapproa
hes. In most 
ases, the S-boxes generated need to be 
he
ked for satisfa
-tion of the se
urity requirements.Our work employs a novel approa
h that uses Constraint Satisfa
tion Problems(CSPs) to obtain S-boxes. Ea
h se
urity requirement is modeled as a 
onstraintin this approa
h. The solutions to the CSP are the S-boxes that satisfy the
onstraints. The main advantage of this approa
h over the existing ones is thatno expli
it testing of ea
h S-box for se
urity requirements is ne
essary sin
e thesolutions already satisfy the 
onstraints that model the requirements.1.1 Problem Statement
S-box Generation Generate a set of 
ryptographi
 substitution boxes (S-boxes)that satisfy known design 
riteria, with ea
h 
riterion being modeled as a
onstraint.E�
ien
y of Generation Improve upon S-box generation e�
ien
y using thisapproa
h.Quality of S-boxes Generated Provide measures to determine the quality of

S-boxes generated using this approa
h. Improve upon the quality of S-boxesusing the properties of CSPs. Compare and 
ontrast with equivalent metri
sof S-boxes generated using known approa
hes.



5Arrangements of S-boxes Examine arrangements of S-boxes and examine theoverall quality metri
 of the resulting arrangement.1.2 Solution OutlineDetermining S-boxes 
an be formulated as a CSP. A CSP 
onsists of variables,domains and 
onstraints. This �rst step of S-box problem formulation involvesidentifying the variables, domain of values assumed by ea
h variable, and the
onstraints 
onne
ting the variables.Next, the model obtained by spe
ifying the variables, domains and 
onstraintsis input to a solver. The solver is then exe
uted to yield the S-boxes that satisfythe known 
onstraints. Performan
e issues are likely to surfa
e and heuristi
s forspeedup are being formulated. An S-box has a parti
ular size that should beparameterized. The model should allow for generating lower-size S-boxes, leadingto experiments to be performed to examine e�
ien
y of S-box generation usingthe CSP approa
h.To formulate new heuristi
s, properties of CSPs are applied. In this regard,interesting observations are made. First, a number of 
onstraints are binary, in-volving two variables, while others are n-ary 
onstraints dealing with more thantwo variables. Then, some n-ary 
onstraints 
an be de
omposed into lower-aritypredi
ates while others are not straightforwardly de
omposable and spe
ial formsof proje
tions are being formulated. Aspe
ts of symmetry of 
onstraints are inves-tigated, and their impa
t assessed on solution speedup.An important issue is to as
ertain the quality of ea
h generated S-box forwhi
h a se
urity metri
 is arrived at, with lower and upper bounds in terms of the
S-box size. The spe
ial forms of proje
tions for the n-ary 
onstraints in
ludes thisse
urity metri
.Finally, an analysis of arranging S-boxes in order to determine an optimummix is 
arried out.1.3 Main ContributionsOur 
ontributions in the CSP-based approa
h to the design of S-boxes for FeistelCiphers have been the following.
S-box Generation1. Using CSPs, we have su

essfully obtained S-boxes that satisfy the spe
i�ed
riteria, ea
h of whi
h is modeled as a 
onstraint for the CSP.



6E�
ien
y of Generation1. We have formulated a number of heuristi
s to improve upon e�
ien
y of
S-box generation. The most promising heuristi
 from the e�
ien
y viewpointis an in
remental, 
omplete heuristi
 employing a zig-zag variable orderingand permuted domains to generate 6× 4 S-boxes.2. New properties have been formulated and proved for S-box nonlinearity andde
omposition of n-ary 
onstraints, to redu
e sear
h and speed up S-boxgeneration.3. New symmetries of S-boxes have been dis
overed using the CSP methodol-ogy, improving e�
ien
y further.Quality of S-boxes Generated1. Using an in
omplete heuristi
, we have obtained 6× 4 S-boxes that are su-perior in quality to those published in [1℄ depi
ted in Figure 1.1, as governedby Matsui's metri
 for the quality of an S-box.2. A new pattern of visiting S-box entries to speed up the sear
h has beenfound. A new shu�ing of values assigned to S-boxes to not only speed upsear
h but also, improve S-box quality, has been found.Arrangements of S-boxes1. An optimum arrangement of a spe
i�ed number of S-boxes sele
ted fromthose generated by our model is determined. A metri
 derived from thedi�erential 
ryptanalysis of DES [11℄ is adopted as the 
ertitude of optimalityof this arrangement.1.4 Organization of the DissertationThe rest of this Dissertation is organized in the following manner. Chapter 2dis
usses the S-boxes, where in DES they are lo
ated, along with an overview of theevolution of those numbers. It des
ribes relevant resear
h into S-box 
onstru
tionand provides a 
lassi�
ation to reveal where our work �ts into S-box design. ThisChapter also dis
usses aspe
ts of CSPs relevant to the problem on hand. The CSPsolver used in our work in various ways is outlined in an algorithmi
 fashion at theend of this Chapter.



7Chapter 3 dis
usses our CSP strategy to solve the problem. It presents themodeling of all binary 
onstraints formulated from the S-box requirements.Chapter 4 models the �rst of the two n-ary 
onstraints, namely, the nonlin-earity 
onstraint. This 
onstraint is straightforwardly implementable as a non-in
remental heuristi
 using a generate-and-test approa
h, leading to gross ine�-
ien
ies. Two in
remental heuristi
s are dis
ussed, one being an in
omplete heuris-ti
 and the other, a 
omplete heuristi
 using 
onstraint de
omposition. Both in
re-mental heuristi
s signi�
antly improve upon S-box generation speeds. In addition,the in
omplete heuristi
 has yielded 6× 4 S-boxes having nonlinearity metri
 su-perior those of the eight DES S-boxes of Figure 1.1.Chapter 5 models the se
ond of the two n-ary 
onstraints, whi
h we denotein that Chapter as the COUNT 
onstraint. This 
onstraint is implementable asa generate-and-test heuristi
, whi
h again, leads to ine�
ient sear
h for S-boxes.An in
remental heuristi
 is presented. The COUNT 
onstraint is not straightfor-wardly de
omposable into 
onstraints of smaller arity. Nevertheless, a proje
tions
heme is employed leading to domain-redu
tion and adding to e�
ien
y over thein
remental heuristi
. This is the se
ond, novel heuristi
 we present in this Chap-ter.Chapter 6 dis
usses aspe
ts of symmetry in S-boxes to 
ontribute to sear
he�
ien
y, and arrangement of multiple S-boxes to maximize a probabilisti
 
ostfun
tion.Chapter 7 presents experimental results of the various heuristi
s and their e�-
ien
ies. An e�
ien
y analysis is also made varying the size of S-boxes, beginningwith smaller-sized S-boxes and on the S-boxes of Simple DES, a miniaturized vari-ant of DES provided in [62℄. A measure of sear
h progress to quantify e�
ien
yrather than the simple measure of the number of solutions, while generating large-size S-boxes, is formulated. The results of heuristi
s that improve upon the qualityof S-boxes are presented, along with our main 
ontribution of obtaining S-boxeshaving quality better than the published DES S-boxes as adjudged by Matsui'sse
urity metri
. We also present orders of e�
ien
ies of variable and value orderingin the experiments.Chapter 8 dis
usses the results obtained in Chapter Seven in the light of whi
hheuristi
 is the most promising, and provides an insight into the nature of thesear
h spa
e. Chapter 9 
on
ludes this Dissertation.
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Chapter 2Ba
kground and Related WorkWe review the literature related to our topi
 of resear
h, namely, employingsystemati
 sear
h of 
ryptographi
 substitution boxes (abbr. S-boxes) using CSPs.The 
ryptographi
 algorithm 
hosen for our experimentation is the Data En
ryp-tion Standard (abbr. DES) [1℄. The reasons for 
hoosing DES are:1. It is simple to understand and implement, and has in fa
t been the de�ni-tive standard sin
e 1977 for twenty years before the Advan
ed En
ryptionStandard (AES) development e�ort.2. Extensive resear
h has been done on S-box design of DES-like algorithmsand we would like to 
ompare our results against existing work.3. Eventually an attempt 
an be made to investigate how the results 
ould beapplied � and perhaps, generalized � to the 
urrent Advan
ed En
ryptionStandard (AES [2℄).In addition, we feel that the mathemati
al stru
ture of the S-boxes for theAES do not lend themselves for dire
tly investigating S-box sear
h in the AESalgorithm. In any 
ase, AES is not a Feistel 
ipher unlike DES and several otherFeistel 
iphers, and DES is the right way to begin from.Our approa
h to S-box sear
h is a novel one, and to assess against knownte
hniques, one needs to review the following topi
s, to start with:1. Existing 
ryptographi
 algorithms, where in Cryptography do the S-boxes�t in, and what the properties of these S-boxes are.2. S-box design. This dire
tly stems from the properties required of an S-box.How S-boxes are 
urrently designed, namely, existing te
hniques that yieldsu
h S-boxes, are studied to analyze how our approa
h di�ers from those inthe literature to �nd S-boxes, and also, for more ideas.3. Existing approa
hes to S-box sear
h and the their di�eren
es from our ap-proa
h



9The relevant literature is 
lassi�ed into the following topi
s to form the stru
-ture for this Chapter.1. Cryptography2. S-box design and 
onstru
tion, and3. Sear
h te
hniques and CSPs2.1 CryptographyThe s
ien
e of Cryptology is 
lassi�ed into two bodies: Cryptography and Crypt-analysis.2.1.1 Classi�
ationCryptography is the s
ien
e of transforming an input data, for transmission orstorage, by an entity, into a form that 
annot be legible to any entity other thanthe one transforming the data. This transformation is done with the help of a key.The data being transformed is 
alled plaintext. The transformed data is 
alled
iphertext. The pro
ess of transformation is 
alled en
ryption and the key usedfor transformation is 
alled an en
ryption key. To be able to retrieve the data, theentity applies an inverse transformation and a key. The pro
ess of inverse trans-formation is 
alled de
ryption and the key used for this transformation is 
alled ade
ryption key. The transforming algorithm is 
alled a 
ipher, or Cryptographi
Algorithm. Both these terms are used inter
hangeably in this Dissertation.Cryptanalysis on the other hand, is the s
ien
e of dedu
ing the en
ryption keygiven parts of the 
iphertext, and optionally, the 
orresponding plaintext.Figure 2.1 graphi
ally illustrates the di�erent types of 
ryptographi
 algo-rithms. There are two types of 
iphers, namely, Stream Ciphers and Blo
k Ci-phers. Depending on whether the same key used for en
ryption is also used forde
ryption, or otherwise, we also have Asymmetri
 (or Publi
) Key Algorithmsand Symmetri
 (or Se
ret) Key Algorithms.2.1.2 Stream CiphersStream 
iphers are used to en
rypt variable-sized data (typi
ally at the bit level)with the help of a variable en
ryption key. The simplest stream 
ipher is theex
lusive-OR operator, whi
h takes in a stream of plaintext bits and performs abit-wise ex
lusive-OR on these bits with a key-stream generated by a key-streamgenerator, to yield the 
iphertext. The same key-stream, when ex
lusively-ORed
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Symmetric−key Algorithms Asymmetric (Public) key Algorithms

Stream Ciphers Block Ciphers

Feistel Ciphers Non−Feistel Ciphers

(DES, Blowfish, Twofish,
MARS, RC−6, CAST, Serpent)

(IDEA, AES/Rijndael)

Error−correcting

Codes

Discrete

Logarithm
(Diffie−Hellman,
ElGamal, DSA)

Elliptic

Curves
(EC−DH,

EC−DSA)

EC−ElGamal,

(McEliece)

Cryptographic Algorithms

Integer

Factorization
(RSA, Paillier)

(Encryption / Decryption, Digital Siguatures, Key Management)

Figure 2.1: A Classi�
ation of Cryptographi
 Algorithmswith the 
iphertext will (obviously) yield the plaintext. A more involved stream
ipher employs shift registers. They are easily implemented in hardware, are veryreliable, 
an perform at high speeds, and are typi
ally used in military appli
ations.A disadvantage is that the size of the key-stream should be equal to that of thedata-stream, whi
h is not pra
ti
al.2.1.3 Blo
k CiphersBlo
k 
iphers en
rypt �xed-length blo
ks of data with the en
ryption key. Forexample, a 1-MB �le is divided into a number of �xed-length blo
ks. Ea
h blo
kis en
rypted using the key. The blo
k-length and key-length, usually measured inbits, depends upon the 
ipher. For DES, they both are equal to 64 bits. For theAES, the blo
k-length is 128 bits but Rijndael [18℄ (of whi
h the AES is a part)additionally supports blo
k-lengths of 160, 192, 224 and 256 bits. The key-lengthis either of 128, 192 and 256 bits for both, Rijndael and the AES. Blo
k 
iphers areused in 
ommer
ial appli
ations su
h as banking transa
tions, disk prote
tion andse
tor-level en
ryption. However they su�er from the drawba
k of 
ryptanalysis.This happens be
ause the key size is smaller than all of the data being en
rypted.For DES, the key is 64 bits long but the data being en
rypted 
an be arbitrarilylong, and the same key is repeatedly used for ea
h blo
k the data is divided into.Cryptanalysis exploits this repetitive nature of operations.



112.1.4 Asymmetri
 (Publi
) Key Cryptographi
 AlgorithmsIn asymmetri
 key en
ryption, the key used for de
ryption is di�erent from thatused for en
ryption. However, they are always related. Asymmetri
 key 
ryptosys-tems are usually put to use in the following way. One of the keys � the one usedfor en
ryption � is usually published by the user so that anyone in the world 
anuse to en
rypt data to send to this user. The se
ond key is kept private and inthe user's 
ustody, used to de
rypt the re
eived 
iphertext. The en
ryption key is
alled the publi
 key and the de
ryption key, the private key.Asymmetri
 key algorithms are designed in su
h a way that the publi
 key
annot be used to determine the private key. It is the di�
ulty of determining thisrelationship between the keys that prote
ts the 
ryptanalysis of these algorithms.Rivest-Shamir-Adleman (RSA) [36℄, ElGamal [58℄, Paillier [44℄, M
Elie
e [65℄ andEllipti
 Curve Cryptography (ECC) [62℄ are some examples of asymmetri
 keyalgorithms.Asymmetri
 key algorithms (with the ex
eption of M
Elie
e and ECC) arebased on number theory and deal with large prime numbers, typi
ally around 4096bits at most (around 1230 de
imal digits). (ECC has around 183-bit key-lengths).The RSA algorithm rests on the Integer Fa
torization problem while the ElGamal,Di�e-Hellman and DSA [3℄ algorithms rely on the Dis
rete Logarithm problem.The Paillier en
ryption algorithm [44℄ relies on the Composite Residuosity Classproblem. The M
Elie
e en
ryption algorithm is based on the theory of error-
orre
ting 
odes [65℄, [35℄. These problems determine the relationship between thepubli
 and private keys.Asymmetri
-key algorithms rely on heavy mathemati
al 
omputation (in par-ti
ular, modular exponentiation). Algorithms for performing arithmeti
 on verylarge numbers, also 
alled multipre
ision numbers, are dis
ussed in [36℄. As su
h,asymmetri
 key algorithms are not suitable for en
ryption of bulk data su
h aslarge �les. They are used in key management (se
tion 2.1.6).Asymmetri
 key algorithms are also used for digital signatures. Signing ado
ument is an operation performed by a user with the private key. The signeddo
ument, when sent to a re
ipient, is �rst veri�ed by that re
ipient using thesender's 
orresponding publi
 key available with the re
ipient. Sin
e the signerused the private key, whi
h is kept se
ret with the signer, only the signer and noone else would have signed the do
ument. The RSA en
ryption algorithm is usedfor digital signatures as well. For this algorithm, the publi
 and private keys areinter
hangeable. This is not true in general, for ElGamal has a signature algorithmdi�erent from that used for en
ryption / de
ryption. Another signature algorithmused is the Digital Signature Algorithm (DSA).



12Asymmetri
 key algorithms assume that the sender already has the re
ipient'spubli
 key. How does the sender �rst get this publi
 key from a re
ipient? Thistopi
 is mentioned under the topi
 of key management (se
tion 2.1.6).ECC relies on the di�
ulty of �nding the abs
issae of a point on a 
urve givenits ordinate, modulo a prime. ECC has analogs for the Di�e-Hellman and DSAalgorithms, 
alled EC-DH and EC-DSA [28℄ algorithms, respe
tively.2.1.5 Symmetri
 (or Se
ret) Key Cryptographi
 AlgorithmsIn symmetri
 key en
ryption, the same key is used for en
ryption and de
ryption.Usually, symmetri
 key en
ryption algorithms rely on logi
al operations su
h as bitleft-shift, right-shift, left and right rotations, ex
lusive-OR, AND, OR, and NOToperations. They lend themselves naturally towards hardware implementations,while software implementations need to be optimized for high-speed operations.Due to their high-speed operation, symmetri
 key algorithms are used for bulk dataen
ryption and de
ryption. DES [1℄, AES [2℄, IDEA [32℄, CAST [4℄, Blow�sh [57℄,Two�sh [59℄ and several others are examples of symmetri
 key algorithms.An assumption inherent in symmetri
 key en
ryption and de
ryption is thatthe en
ryption key is already shared between the sender and re
ipient. How thissharing is done is the subje
t of key management, dis
ussed in Se
tion 2.1.6.2.1.6 An Overview of Key Management, Se
ret Sharing and Se
urity Proto
olsKey management is used to solve the assumptions of symmetri
 and publi
 key
ryptosystems.1. In symmetri
 key 
ryptosystems, the two parties involved in se
ure 
ommu-ni
ations already have the en
ryption key in pla
e. This is ensured using keynegotiation or key agreement.2. In publi
 key 
ryptosystems, the sender is assumed to possess the re
ipient'spubli
 key. This is ensured using digital 
erti�
ates [58℄.Key agreement is done using an asymmetri
 key en
ryption algorithm. Thesender wishing to transmit the symmetri
 key se
urely to the re
ipient en
ryptsthe symmetri
 key with the re
ipient's publi
 key and sends the 
iphertext to there
ipient. Sin
e this symmetri
 key is only around 64-256 bits long, speed is not anissue. The re
ipient de
rypts the re
eived 
iphertext using the private key. Nowboth parties have the symmetri
 key available with them, for bulk data en
ryption.Noti
e that a proto
ol has evolved during this pro
ess.



13Key negotiation is done between the sender and re
ipient using information
ommon to everyone, and information known only to the sender and only to there
ipient (not both). The Di�e-Hellman key negotiation proto
ol is an example.With keys being shared between parties involved in 
ommuni
ation, arises theidea of how se
rets 
an be shared between the parties. Shamir's se
ret sharings
heme [52℄ 
an be used to split a se
ret into shares, one for ea
h parti
ipant, su
hthat a minimum number of parti
ipants (
alled a threshold) only 
an re
onstru
tthe se
ret. A di�erent, and somewhat less e�
ient threshold s
heme was developedby Blakley [12℄. Veri�able se
ret sharing is proposed in [61℄ to a
hieve se
urityagainst 
heating parti
ipants. If everyone in the group of parti
ipants 
an verifythat the shares are 
orre
tly distributed, the s
heme is 
alled a publi
ly veri�ablese
ret sharing s
heme.Operations 
an also be done on se
rets by the group of parti
ipants usingtheir shares alone, without knowing what the underlying se
rets are. Su
h opera-tions 
an in
lude resizing (redu
ing) the threshold of a share, performing addition,subtra
tion, s
alar multipli
ation and multipli
ation of se
rets. More operationsin
lude generating a random number or a random bit without ea
h user knowingits value, 
omputing the square root of a se
ret using its shares, �nding the mul-tipli
ative inverse of a se
ret, unbounded fan-in (multiplying se
rets), and logi
aloperations (AND, OR, NOT, ex
lusive-OR) [19℄.An example of a se
urity proto
ol is by Needham and S
hroeder [42℄, that hasbeen modeled as a soft CSP over the framework of semirings [8℄ for 
on�dentialityanalysis.Further dis
ussions on Asymmetri
 key algorithms, key management and se-
urity proto
ols [62, 58, 36℄ are outside the s
ope of this Dissertation.2.2 Feistel NetworksThis se
tion dis
usses Feistel Networks, their workings (espe
ially DES), and wherethe S-boxes �t into a symmetri
 key 
ipher are now dis
ussed.2.2.1 Confusion and Di�usionSymmetri
 key blo
k 
iphers operate on the prin
iples of produ
t 
iphers, using
onfusion and di�usion [62, 58, 40℄. Confusion is introdu
ed during transformationto make the relationship between the key and 
iphertext as 
omplex as possible.This is usually a
hieved by substituting parts of plaintext bits with 
onstant bitsusing substitution boxes (S-boxes).Di�usion on the other hand is introdu
ed during transformation in order tospread the in�uen
e of plaintext 
hara
ters over as mu
h of the 
iphertext as



14possible. This ensures that statisti
al properties of the plaintext are hidden in the
iphertext. Di�usion is a

omplished by permuting the plaintext bits.A produ
t 
ipher 
omposes the operations of 
onfusion and di�usion. Doingso only on
e is not su�
ient, and repeating these operations a
hieves the desirede�e
t.2.2.2 The Feistel network as a Produ
t CipherThe Feistel network, �rst designed by Horst Feistel, is a produ
t 
ipher that re-peatedly performs the following steps on a blo
k of plaintext: Permute the inputbits (di�usion), and apply S-boxes (
onfusion) on these permuted bits. Thesesteps, 
alled an en
ryption round, also 
onsist of mixing a transformation of theen
ryption key, 
alled subkey. Ea
h round uses a subkey di�erent from the others,and the subkeys are generated from the en
ryption key using a key s
hedule.Let a blo
k of plaintext being en
rypted be represented by m = L0R0, wherethe blo
k m is of length n bits, and L0 and R0 are two halves of this blo
k,ea
h having length n/2 bits. Let also, the key s
hedule take the en
ryption key
K as input and generate subkeys K1, K2, . . .Kr, for the r rounds. A round ofen
ryption is a fun
tion f , that takes in two inputs, a subkey Ki and a half-blo
k Ri−1, and gives out an n/2-bit half-blo
k Ri, 1 ≤ i ≤ r. De�ne half-blo
ks
L1, R1, L2, R2, . . . Lr, Rr, where for i = 1, 2, 3, . . . , r,

Li = Ri−1, Ri = Li−1 ⊕ f(Ki, Ri−1).Visually, this means that there are r transformations on a half-blo
k, and inea
h round, a transformation is followed by a swap of the two en
rypted half-blo
ks.After the last round, the swap step is undone and the 
iphertext, therefore, is RrLr.The situation is depi
ted in �gure 2.2.An interesting features of the Feistel network is that the de
ryption algorithmis the same as the en
ryption algorithm, ex
ept that the subkeys are 
onsumed inea
h round in an order that is the reverse of the order used in en
ryption. Thisis good sin
e one does not have to implement separate algorithms for en
ryptionand de
ryption.2.2.3 The Data En
ryption Standard (DES)DES is a 16-round Feistel 
ipher that takes a 64-bit input blo
k of plaintext, a64-bit key, and outputs a 64-bit output blo
k of plaintext. The key s
hedulegenerates 16 48-bit subkeys, ea
h to be used in one round of en
ryption. An initialpermutation (IP ) is applied to the 64-bit plaintext blo
k before the 16 roundsbegin. For the rounds, ea
h blo
k is divided into a left and right 32-bit half-blo
kthat forms L0R0 of Figure 2.2.
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Figure 2.3: The fun
tion f of DES that uses S-boxes2.2.4 The Round Fun
tion and the S-boxes of DESThe round fun
tion f for DES is shown in Figure 2.3. f 
onsists of an expansionfun
tion E, an ex
lusive-OR operation with the subkey for the 
urrent round, anappli
ation of eight Substitution Boxes (S-boxes), and a permutation P on thebits.
E stret
hes a 32-bit half-blo
k by repeating 16 bits on
e, to yield a 48-bitvalue. This is ex
lusively-ORed with the 48-bit subkey in the 
urrent round. The48-bit ex
lusive-OR result is input to eight S-boxes, ea
h taking in six bits. Ea
h

S-box produ
es a 4-bit output, and the eight 4-bit outputs together form a 32-bit output. This result is permuted using P to yield a 32-bit value, whi
h nowex
lusively-ORed with the other 32-bit half to give the output half-blo
k of a round



17of DES en
ryption. The other half-blo
k (dire
tly from the input) and this outputhalf-blo
k are inter
hanged before being passed to the next round.After the last round, no inter
hange is done, and the inverse permutation IP−1is applied to both half-blo
ks taken together to yield a 64-bit output 
iphertextblo
k.As shown in Figure 2.3, the round fun
tion f 
ontains the S-boxes that are thesubje
t of this Dissertation. The S-boxes of DES that have been published in [1℄are shown in Table 1.1 and they 
onsist of �xed numbers. An interesting featureof the Feistel network is that these S-boxes 
an be repla
ed by other S-boxes,and the en
ryption and de
ryption will still work. Obviously the en
ryption willprodu
e a di�erent 
iphertext now.2.3 The Design of Substitution BoxesEa
h S-box in DES yields a 4-bit output string for a 6-bit input string, suggestinga many-to-one fun
tion. The numbers in the DES S-boxes are �xed and are shownin Table 1.1. The S-boxes of DES have been the subje
t of intense spe
ulationright from their in
eption. The design prin
iples are the results of years of resear
hby the 
ryptographi
 
ommunity, parti
ularly after allegations that the NSA mayhave modi�ed them to introdu
e a trap-door for the government to inter
ept mes-sages [58℄. The design 
riteria was 
lassi�ed and were revealed [16℄ only afterresults of di�erential 
ryptanalysis were published by Eli Biham, and linear 
rypt-analysis by Matsui [34℄. A lu
id tutorial of di�erential and linear 
ryptanalysisis provided in [26℄. Susan Landau [33℄ dis
usses these, and in addition, providesa third atta
k by Wiener. A

ording to the paper, based on exhaustive sear
hbut with te
hnology at that time (1993), Wiener estimated that the $1-Millionma
hine with 57,000 DES 
hips and a pipelined ar
hite
ture (
onstantly feedingdata and 
omputing simultaneously) 
ould break a DES-en
rypted message in 3.5hours.2.3.1 The Se
urity Criteria for DES S-boxesThe design requirements of DES, eight in number, are listed in Table 2.1 [16℄.These design 
riteria are labelled S-1, S-2, and so on upto S-8. In our work, weformulate 
onstraints to model the requirements, and input the 
onstraints to asolver. Substitution Boxes are generated by the solver to satisfy the 
onstraintsthat model the stated requirements. This approa
h to S-box generation turnsout to be a novel one, and no literature has been available so far that relates tothis spe
i�
 approa
h. Therefore, existing approa
hes of designing and generating



18substitution boxes are dis
ussed, and mention is made of how the ideas are being(or will be) applied to our work.S-1 �Ea
h S-box has six bits of input and four bits of output.�S-2 �No output bit of an S-box should be too 
lose to a linear fun
tion ofthe input bits. (That is, if we sele
t any output bit position and anysubset of the six input bit positions, the fra
tion of inputs for whi
hthis output bit equals the ex
lusive-OR of these input bits should notbe 
lose to 0 or 1, but rather should be near 1
2).�S-3 �If we �x the leftmost and rightmost input bits of the S-box and varythe four middle bits, ea
h possible 4-bit output is attained exa
tly on
eas the middle four input bits range over their 16 possibilities.�S-4 �If two inputs to an S-box di�er in exa
tly one bit, the outputs mustdi�er in at least two bits.�S-5 �If two inputs to an S-box di�er in the two middle bits exa
tly, theoutputs must di�er in at least two bits.�S-6 �If two inputs to an S-box di�er in their �rst two bits and are identi
alin their last two bits, the two outputs must not be the same.�S-7 �For any nonzero 6-bit di�eren
e between inputs ∆Ii,j, no more thaneight of the 32 pairs of inputs exhibiting ∆Ii,j may result in the sameoutput di�eren
e ∆Oi,j.�S-8 �Similar to S-7, but with stronger restri
tions in the 
ase ∆Oi,j = 0 forthe 
ase of three a
tive S-boxes on round i.�A 
riterion, stronger than S-2, named as S-2' [16℄ is often quoted:S-2' �No linear 
ombination of output bits of an S-box should be too 
loseto a linear fun
tion of the input bits. (That is, if we sele
t any subsetof the four output bit positions and any subset of the six input bitpositions, the fra
tion of inputs for whi
h the ex
lusive-OR of theoutput bits equals the ex
lusive-OR of these input bits should not be
lose to 0 or 1, but rather should be near 1

2)."Table 2.1: The S-box 
riteria used by IBM for designing DES [16℄



192.3.2 S-boxes and Boolean Fun
tionsAn n×m S-box is de�ned to be a Boolean Mapping S : Z2n → Z2m that takes an
n-bit string and gives out an m-bit string. Here Zk stands for the set {0, ...k− 1}.
S need not be invertible. They are used in the generation of a parameterizedsubstitution of x, through the fun
tion

f : Z2m × Z2n → Z2m , f(x, y) = x⊕ S(y),where y is the parameter. The obtained substitution fun
tion is a parameterizedbije
tion, and it is therefore often referred to as a permutation fun
tion.If n = m, S is more likely to be a one-one and onto itself, that is, a permutationof the set {x : 0 ≤ x < 2n}. This is, in fa
t, re
ommended for an n×n S-box [73℄.A Boolean fun
tion is de�ned to be a Boolean Mapping F : Z2n → Z2 thattakes as input an n-bit string and yields as output either 0 or 1. Thus a Booleanfun
tion is an n× 1 S-box and is many-to-one.2.3.3 S-box RepresentationCurrent literature suggests three ways [38℄ in whi
h an n × m S-box S(x), 0 ≤
x < 2n, is represented. We add a fourth representation that is used in our work.Fun
tion Representation using m-bit numbers In this representation, themapping is de�ned as

S(x) = rx, 0 ≤ rx < 2m. (2.1)Bitwise Representation with Bits from Boolean fun
tions In this repre-sentation, ea
h S-box entry is expressed as an aggregation of bits, ea
h in turngenerated by a Boolean fun
tion:
[

Cm−1(x) Cm−2(x) . . . C0(x)
]

, (2.2)where 0 ≤ i < m and ea
h Ci(x) : Z2n → Z2 is a Boolean fun
tion. Ci(x) isregarded in [38℄ as a �
olumn of the S-box (entry)".The (de
imal) expression formed from the bitwise representation of an S-box,given by
S(x) = 2m−1Cm−1(x) + 2m−2Cm−2(x) + 2m−3Cm−3(x) + . . . + C0(x),provides for 
onversion from the bit-wise representation into the fun
tionalrepresentation using m-bit numbers given by Equation 2.1, and 
onversely.



20Boolean Matrix An S-box 
an be represented by a 2n ×m binary matrix
[cij ]2n×m

, wherecij ∈ Z2, 0 ≤ i < 2n, 0 ≤ j < m. (2.3)
S(x) is now obtained as follows:

S(x) =
m−1
∑

j=0

cxj2
m−j−1This representation 
an be viewed as a binary ve
tor or one-dimensional formof representation of all 2n entries of an S-box. We now formulate a two-dimensionalrepresentation that is more useful in our work, in whi
h ea
h entry 
an be eitherbinary, de
imal or hexade
imal.A Tabular form of S-box Representation In our work, ea
h n ×m S-boxis organized as a 2n−m × 2m table, to 
ontain a total of 2n entries. The (n −m)bits taken together form the row-sele
t, and the remaining m bits index into the
olumn of the sele
ted row. Ea
h row is a permutation of the m-bit numbers in

Z2m . Thus ea
h S-box has 2n−m su
h o

urren
es of these numbers, one in ea
hrow. In other words, there exists four inputs that map to the same S-box entry inthe table (many-to-one fun
tion).For example, ea
h S-box of DES is typi
ally organized as a table with 4 rows,16 
olumns as Figure 1.1 illustrates. The input to ea
h S-box ranges from 0 to 64,while the 
orresponding output ranges from 0 to 16. Example 1.1 dis
usses theusage of a DES S-box.2.3.4 Spe
i�
ation of S-boxes in Cryptographi
 AlgorithmsThe DES S-boxes of Figure 1.1 are �xed and spe
i�ed as part of the algorithmspe
i�
ation [1℄. For other algorithms, the S-boxes may be similarly �xed or maybe variable, or often, 
omputed depending upon a parameter. Di�erent ways ofspe
ifying S-boxes in a 
ipher are now dis
ussed.Based upon the di�erent ways in whi
h the S-boxes are spe
i�ed, in 
rypto-graphi
 algorithms they 
an be 
lassi�ed as follows:Fixed S-boxesThese substitution boxes are 
onstant, and are spe
i�ed as part of the algorithmto be used for en
ryption / de
ryption. Several Feistel 
iphers spe
ify S-boxesthat fall under this 
ategory. Examples are DES and CAST-256 [4℄.



21Variable S-boxesIn these algorithms, the entries in the substitution boxes are generated as a partof the en
ryption / de
ryption pro
ess, and used at that point. They get modi�edbetween two en
ryption rounds. Blow�sh [57℄ is an example where the S-boxesdepend on the en
ryption key. This is done to 
ounter linear and di�erential
ryptanalysis. Another example is Two�sh [59℄. IDEA [32℄, although not a Feistel
ipher, implements a multipli
ation step modulo (216 + 1) whi
h is also viewed asan S-box [58℄, and this operation depends on parts of the key (i.e. a key-dependent
S-box). An advantage is a saving on memory tables that would otherwise have tobe initialized had the entries been �xed. A disadvantage of this s
heme is that forevery en
ryption / de
ryption session, the S-boxes have to be set up and startuptimes 
an be
ome expensive if the operation has to be 
arried out repeatedly usingdi�erent keys.2.3.5 S-box Generation Te
hniquesFour te
hniques are outlined for the generation of S-boxes [62, 40℄.RandomGenerate S-box entries using some pseudo-random number generator, or from atable of random digits. For small-size S-boxes, like the 6× 4 S-boxes of DES, thisstrategy may result in undesirable 
hara
teristi
s, but for those having large size(for example, 64× 32 S-boxes, this approa
h should be a

eptable.A variation of this te
hnique is to initialize S-boxes with pseudo-random digitsand as rounds progress, keep 
hanging them depending upon the data and / orthe key. This is exa
tly what is done in Blow�sh [57℄ and Two�sh [59℄.Random with testingRandomly sele
t S-box entries, then test the results against various 
riteria. We�nd that the level of testing subdivides this te
hnique further.Generate-and-test every entryEvery S-box entry is randomly generated and tested. In addition, ea
h entryis tested against its neighbors that are the several other entries, within the same
S-box. Among the eight design 
riteria S-1 to S-8 of DES [16℄ (Table 2.1), 
riteriaS-3 to S-7 examine neighboring entries in an S-box. This s
heme is dis
ussed indetail in Se
tion 2.5.



22An obvious extension of testing every entry in a single S-box is to test entriesa
ross multiple S-boxes. This requirement stems from the fa
t that not all S-boxes
an be identi
al. Testing and reje
ting S-boxes by examining their in�uen
e onneighboring S-boxes has been re
ommended [17℄. DES 
onstraint S-8 [16℄ suggeststhis requirement for any three out of the eight S-boxes. These tests are apparentlyformulated to thwart atta
ks due to di�erential 
ryptanalysis [11℄.Human-madeThis strategy more or less employs a manual approa
h and the underlying mathe-mati
s used to support the same is very simple. The S-boxes of DES were appar-ently formulated using this approa
h. For large-size S-boxes the approa
h be
omesimpra
ti
al. Even for small-sized ones, testing, parti
ularly at the bit-level, 
anbe
ome 
umbersome and prone to human errors, with more e�orts required toreview and 
orre
t.The �rst S-boxes for Feistel 
iphers were designed by hand. Early se
urityatta
ks have propelled the resear
h for guidelines (i.e., requirements) that avoidknown vulnerabilities. These requirements prove to be so di�
ult to a
hieve, tothe point where it is said [1℄ that the DES designing team dropped guards whenhand-pi
king their last S-box (given the fa
t that their last S-box is sus
eptibleto atta
ks from di�erential 
ryptanalysis [11℄).Math-madeGenerate S-boxes based on mathemati
al prin
iples. Using mathemati
al 
on-stru
tion, the resulting S-boxes 
an be 
onstru
ted to o�er proven se
urity againstlinear and di�erential 
ryptanalysis, together with good di�usion. For example,Bent fun
tions 2.4.5 are loaded into S-box entries as part of S-box 
onstru
-tion [53, 23, 7, 38℄.2.4 Re
ommended Properties of an S-boxThe S-boxes of DES form the only non-linear part of the algorithm [72℄. As su
h,any la
una in S-box design will severely a�e
t the 
ipher. After the results ofBiham's di�erential 
ryptanalysis [11℄ and Mastui's linear 
ryptanalysis [34℄ werepublished, 
ryptographers worked on deriving more 
riteria for S-boxes in orderto thwart against these and other atta
ks.Several design 
riteria have been evolved and these are dis
ussed below. In ourwork, we have not used any of these sin
e our obje
tive is to generate S-boxes thatsatisfy DES 
riteria alone to begin with. On
e that is done, we 
an improve on



23sear
h spa
e by modeling ea
h of these requirements into a 
onstraint, adding tothe existing set of 
onstraints and narrowing the sear
h spa
e.2.4.1 NonlinearityAn obvious requirement is that the S-boxes be nonlinear. This means that nooutput should be 
lose to a linear 
ombination of any subset of the input bits. TheDES design 
riterion S-2 in Table 2.1 re
ommends that the fra
tion of the numberof output bits that is a linear 
ombination of a subset of input bits should be neither0 nor 1, but 
lose to 1
2
[16℄. Table 2.1 additionally spe
i�es a more stringent,optional 
riterion labelled S-2'. This requirement states that the fra
tion of alinear 
ombination of a subset of output bits to that of the input bits should be
lose to 1

2
.Nonlinearity is de�ned in terms of the distan
e from the set of all a�ne fun
-tions [45, 23℄. It is also de�ned in terms of the spe
trum of a Boolean fun
tion(also 
alled theWalsh Transform) [23℄. Algorithms to 
onstru
t non-linear Booleanfun
tions and S-boxes using the bit-by-bit approa
h is provided in [45℄.Gupta and Sarkar [23℄ has modi�ed an elegant algorithm by Zhang and Zhengto generate S-boxes having an extended degree. They have also modi�ed theMaiorana-M
Farland te
hnique to generate S-boxes having non-linearity betterthan previously known 
onstru
tion methods. The S-boxes generated by them areuseful for stream 
iphers.2.4.2 Di�usion 
hara
teristi
s of S-boxesA requirement of a good S-box is the possession of strong di�usion 
hara
teristi
s.This means that 
hanging a small number of its input bits should result in a 
hangein a very large number of its output bits.2.4.3 Avalan
he Criterion, and Stri
t Avalan
he CriterionA requirement of a good 
ipher is that in general, 
omplementing one bit of theinput should result in a 
hange in an average of half the number of output bits.This requirement is 
alled the Avalan
he Criterion. A more stringent requirement
alled the Stri
t Avalan
he Criterion (SAC) [72℄ states that ea
h output bit should
hange with a probability of 1

2
whenever a single input bit is 
omplemented. SACis quanti�ed in [38℄ in terms of another measure, the dynami
 distan
e of an S-box.This paper also de�nes a Maximum Order SAC (MOSAC), and re
ommends thatan ideal S-box should satisfy MOSAC.



24There is also a Guaranteed Avalan
he Criterion (GAC) [64℄. An S-box satis�esa GAC of order γ if any single-bit inversion at its input results in at least γ bitsof inversion at its 
orresponding output.Heys and Tavares [64℄ dis
usses the e�e
t of the number of rounds, S-box size,di�usion 
hara
teristi
s on avalan
he 
hara
teristi
s. Spe
i�
ally, the avalan
he
riterion is satis�ed in fewer rounds when the guaranteed avalan
he parameter γin
reases. When the size of the S-box in
reases, the avalan
he behavior of theen
ryption network improves.Seberry, Zhang and Zheng [60℄ propose a novel systemati
 s
heme of generat-ing S-boxes based on group Hadamard matri
es. In parti
ular, their generated
S-boxes satis�es the SAC. They have de�ned a measure of robustness against dif-ferential 
ryptanalysis, and ensured that the S-boxes generated by them satisfythis measure.2.4.4 Bit Independen
e CriterionThe Bit Independen
e Criterion (BIC) [72℄ states that when any single input bit
i is inverted, for all i, j, k, output bits j and k should 
hange independently. TheBIC is quanti�ed in [38℄ in terms of the distan
e to higher order BIC (DHOBIC).There is another measure quanti�ed in [38℄, 
alled the Maximum Order BIC(MOBIC), de�ned in terms of the dynami
 distan
e. The paper re
ommends thatan ideal S-box should satisfy MOBIC.2.4.5 Bent fun
tionsMister and Adams [38℄ propose that all linear 
ombinations of S-box 
olumnsshould be bent fun
tions. Bent fun
tions are a spe
ial 
lass of Boolean fun
tionsthat are highly non-linear [7℄. They are de�ned in terms of the spe
trum of aBoolean Fun
tion (the Walsh Transform) [38℄, [23℄. These are used for S-box
onstru
tion by the bit-by-bit 
onstru
tion method dis
ussed in subse
tion 2.3.5.2.5 Sear
h te
hniquesWhile there are a number of sear
h te
hniques in the dis
ipline of Arti�
ial In-telligen
e (AI) [54℄, we 
an divide the approa
hes to S-box sear
h, using AI, intotwo simple 
lasses for our purposes, namely, Nonsystemati
 Sear
h and Systemati
Sear
h. In this se
tion, we fo
us on S-boxes generated in the available literature,and 
lassify them into the appropriate AI 
ategory. Figure 2.4 summarizes thetaxonomy of S-box sear
h.
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Figure 2.4: Classi�
ation of S-box Sear
h Te
hniques2.5.1 Nonsystemati
 Sear
hIn this form of sear
h, there is no systemati
 way in whi
h S-boxes are sear
hedfrom beginning to end. Two s
hemes immediately fall in this 
ategory: Randomgenerate-and-test, and Lo
al Sear
h. The S-box sear
h in the literature easily fallsinto one of these two 
ategories.Random generate-and-testIn this s
heme, an S-box is �lled with random entries and tested to satisfy thedesired properties. Note that this 
lass is akin to the one dis
ussed in subse
-tion 2.3.5. A striking feature summarized from the literature is the manner inwhi
h the S-box entries are loaded prior to testing. The approa
hes in the avail-able literature, for our purposes, 
an be 
lassi�ed into three 
ategories:1. Bit-by-bit generation-and-testing In this approa
h, ea
h bit of every
S-box entry is loaded with a Boolean fun
tion and tested for satisfa
tion ofthe mathemati
al properties of the S-box properties up to the a

umulationof the 
urrent bit. [38℄ loads a Bent fun
tion bit-by-bit, with the bitsdistributed a
ross a 
olumn of an S-box, and tests for 
riteria su
h as its non-linearity and highest dynami
 distan
e. Individual bits of a 4×4 S-box entryare 
hosen and together, they are tested against the four design 
riteria su
has bije
tion, nonlinearity, stri
t avalan
he and output bit independen
e [72, 6,



265℄. A re
ent approa
h uses neural networks to model Bent fun
tions [31℄ sin
ethe sigmoid fun
tion used there lends itself naturally towards implementationof Bent fun
tions. These 
an be loaded bit-by-bit into an S-box and testedfor the other 
riteria. For our purposes, this approa
h 
learly falls under thebit-by-bit generation-and-testing 
ategory of S-box sear
h.O'Connor [43℄ 
ombinatorially analyzes this bit-by-bit s
heme for n × n
S-boxes and shows that there are pra
ti
al limits up to whi
h this approa
h
an generate S-boxes e�
iently. In parti
ular, the author shows that thebit-by-bit method of generation 
an be
ome infeasible when m > 6.A 
ellular automata based approa
h to S-box design [63℄ employs one 
ell perbit of an S-box. The obje
tives are to maximize nonlinearity and minimizea se
ond 
ondition, that of auto
orrelation of the S-boxes.2. Row / Column generation-and-testing In this approa
h, ea
h row ofan S-box is generated and tested. The rationale behind this is that ea
hrow of an n × m S-box is a bije
tion, just as is the 
ase with DES. Ea
hentry of DES in one row would be viewed as a 4 × 4 bije
tive S-box now.The intera
tions between S-box entries as pres
ribed by the DES 
riteriaS-3 through S-7 [16℄ is per
eived in [6℄ as intera
tions between these 4 × 4
S-boxes, and is not addressed in the latter paper. The authors demonstratethat the S-boxes 
onstru
ted using this approa
h proved superior to the
n×n S-boxes 
onstru
ted by Pieprzyk and Finkelstein [45℄ using the bit-by-bit approa
h. But that was not due to any problem in that approa
h. Thelimitation of this paper is that the authors fo
ussed only on nonlinearity of
S-boxes [6℄, and a number of other properties were not met.3. One-time generation of all entries, and testing of ea
h In this ap-proa
h, an S-box is �lled with entries and tests are 
arried out to 
he
k ifthe S-box satis�es mathemati
al properties. The paper by Cheng, et.al [73℄devises a s
heme by whi
h they 
ompute 8 × 8 S-boxes by en
rypting theplaintext numbers {0, 1, . . . , 255} using randomly-generated 2-bit subkeys,and with a 6-round mini-version of the IDEA 
ipher. These S-boxes weretested for the properties of bije
tion, nonlinearity, avalan
he 
riteria, outputbit independen
e 
riteria, equiprobable input / output ex
lusive-OR distri-bution and in addition, the inverse S-boxes were also tested to satisfy theseproperties.



27Lo
al Sear
hIn this approa
h, sear
h for S-boxes is done using hill-
limbing, geneti
 algorithms,and simulated annealing. Su
h meta-heuristi
 and evolutionary te
hniques haveemerged as potentially very powerful tools for the design of S-boxes [14℄. Onefeature of these te
hniques is the existen
e of a 
ost fun
tion that should be min-imized or maximized. In [15℄, the 
ost fun
tion is based on the Walsh-Hadamardspe
tra. The requirement is that either the non-linearity should be high or theauto
orrelation should be low [15℄, [13℄.As part of S-box generation using this approa
h, an S-box is generated (ran-domly or otherwise) and then tested. This 
onforms to the one-time generate-and-test approa
h dis
ussed in Se
tion 2.5.1, ex
ept that the generation need notalways be based on mathemati
al prin
iples and 
ould be random. After ea
h
S-box is �lled with entries, one tries to perform a lo
al sear
h to optimize the 
ostfun
tion.Millan [37℄ performed hill-
limbing as part of the lo
al sear
h. Clark, Ja
oband Stepney [15℄ performed a two-step lo
al sear
h. The �rst step is annealingto minimize the 
ost fun
tion. Let Ssa be the best S-box just en
ountered inthe sear
h pro
ess. The next step is to hill-
limb from this point with respe
tto non-linearity, or with respe
t to auto
orrelation, to produ
e the �nal solution
fsahc [15℄. Then the non-linearity, auto
orrelation and algebrai
 degree of fsahc ismeasured. A 
omparison with Millan's method suggested that this was superior,and the authors infer that the hill-
limbing step did not 
ontribute signi�
antlybut the annealing step added to a dramati
 in
rease in non-linearity.The paper by Chakraborty, et.al [13℄ dis
usses experiments to determine theempiri
al values of two adjustment parameters X and R used in the spe
trum-based 
ost fun
tions. They have 
on
luded that for an n × n bije
tive S-box,
R > 3.5 and X < 2

n
2 , and that R should be an integer.Clark, Ja
ob, Maitra and Stani
a [14℄ used a similar approa
h to sear
h forBoolean fun
tions, but a 
ompletely di�erent sear
h spa
e. Instead of sear
hingthe spa
e of Boolean fun
tions for those with the desired properties of non-linearity,auto
orrelation, among others, they sear
hed the entire spe
trum of artifa
ts (per-mutations of Walsh Transforms of all fun
tions) to determine whi
h of those areBoolean by spe
tral inversions (inverse Walsh Transforms). Annealing is againused as part of the sear
h pro
ess. The 
ost fun
tion is the distan
e from a near-est Boolean fun
tion to whi
h a (non-Boolean) element of the sear
h spa
e 
an�
ollapse" to. Using this idea, they have un
overed S-boxes that have hithertobeen not obtained using any other means.



282.5.2 Systemati
 sear
hThe advantage of lo
al sear
h over systemati
 sear
h is that the memory require-ments are small, and a solution 
an be found in a very short time [54℄. For, oneinstantiates an S-box not satisfying the desired properties, and the guided sear
hqui
kly homes to a near-neighbor that satis�es these properties.The disadvantage is that, there is the extra e�ort of testing the assigned ele-ment of the sear
h-spa
e for those properties is exer
ised. Moreover, it is possiblethat the 
ost fun
tion gets optimized but the solution is still approximate. Forexample, [14℄ would give rise to almost Boolean fun
tions.We 
onsider two approa
hes to systemati
 sear
h: Generate-and-test and Con-straint Satisfa
tion Problems (CSPs). Our work uses the CSP approa
h.Systemati
 Generate-and-testIn this approa
h to systemati
 sear
h, we assign values to ea
h S-box entry startingfrom the lowest, and verify if all properties of the S-box are satis�ed. If even oneproperty is not satis�ed, we dis
ard that S-box and take the next value of thelast-assigned variable. If all values of the last-assigned variable are exhausted, weba
ktra
k and 
hoose the next value for the penultimate variable, and so on.This approa
h is very ine�
ient, parti
ularly for large-size S-boxes. For a(n,n) bije
tive S-box, the worst-
ase number of sear
hes is equal to (2n)2n . Evenfor small-size S-boxes su
h as (4,4), the maximum number of 
he
ks is 1616, i.e.
264 (very high!). Hen
e this approa
h is not at all re
ommended.Constraint Satisfa
tion Problem (CSP) Based Approa
hThis is the approa
h used in our work. The 
losest work of modeling se
urityrequirements using CSPs was presented by Bistarelli, et.al [8℄ to analyze se
urityproto
ols. There the authors model the network that arises out of the exe
utionof se
urity proto
ols as a Soft CSP (SCSP) using the framework of semirings.The aspe
t of 
on�dentiality, one of the goals of the se
urity proto
ols, analyzed,is further formalized as the property of the solution of the SCSP. Two SCSPshave been posed: A poli
y SCSP that models the network arising out of proto
olexe
ution for those admissible proto
ols that have terminated su

essfully, and animputable SCSP that models a given network 
on�guration. The authors 
omparethe solutions obtained for these two problems to determine whether the given
on�guration hides a 
on�dentiality atta
k. The approa
h is demonstrated on theNeedham-S
roeder Se
urity Proto
ol based on Asymmetri
 Key Cryptosystems.To our knowledge, employing CSPs is a �rst-time approa
h to S-box design. Wegenerate an entire S-box already satisfying all of the properties that are modeled



29as 
onstraints. The S-boxes are generated using propagation and inferen
ing. Noextra step of testing is required as is being done in the earlier approa
hes, sin
e,the 
onstraints are satis�ed as part of solution generation, suggesting a majoradvantage of the CSP approa
h over the existing ones. Another advantage usingthis approa
h is that ea
h S-box entry is 
omplete in itself unlike those in theliterature where ea
h S-box is populated a bit at a time, or a row/
olumn at atime. We will introdu
e the novel idea of a Partially Assigned S-box in Chapter 3,in whi
h an S-box does not have all entries assigned. This assignment 
an bedone either row-wise or 
olumn-wise depending upon the heuristi
 used. Thepartially assigned S-box will in
rementally be extended to a 
omplete S-box withall entries assigned, and all requirements satis�ed at any point in sear
h. Theidea of extending a partially assigned S-box gives rise to a set of in
rementalheuristi
s dis
ussed in Chapters 4 and 5, to signi�
antly speed up S-box sear
h asthe experimental results in Chapter 7 will reveal.2.6 Constraint Satisfa
tion Problems (CSPs)A Constraint Satisfa
tion Problem (CSP) is a triplet (X, D, C) where:1. X is a set of variables, X = {x1, x2, . . . , xn}2. D is a set of domains, D = {D1, D2, . . . , Dn}. Ea
h of the Di's is in itself aset of domain-values that the variable xi, 1 ≤ i ≤ n, 
an assume.3. C is a set of relations on a subset of the set X of variables. Ea
h element of C,say Ci, for some i, is a relation Ri de�ned on a subset Si ⊆ X, denoting validassignments to the variables in Si simultaneously. If Si = {xi1, xi2, . . . , xir} isthe set of variables with variable xik having domain Dik , 1 ≤ k ≤ r, then Riis a subset of the Cartesian Produ
t Di1×Di2×Di3× . . .×Dir. A 
onstraint
Ci on the variables in Si 
an also be written as a pair Ci = 〈Si, Ri〉.De�nition 2.1 (Binary and n-ary Constraint) If a relation c ∈ C on a sub-set of the set X of variables is binary, then the parti
ular 
onstraint in the set Cis 
alled a binary 
onstraint, having two variables. A 
onstraint with more thantwo variables is 
alled an n-ary 
onstraint.De�nition 2.2 (Instantiation) An instantiation of a set of variables

{xi1 , xi2 , . . . , xir} ⊆ X where ea
h variable xik has domain Dik , 1 ≤ k ≤ r,is a tuple of ordered pairs 〈(xi1 , ai1), (xi2, ai2), . . . , (xik , aik)〉 in whi
h ea
h orderedpair (xik , aik) represents an assignment of the value aik ∈ Dik to the variable xik ,
1 ≤ k ≤ r [20℄.



30Informally, an instantiation of a subset of the set of variables is an assignmentof an element to ea
h variable in the set from its domain. The tuple is alter-natively written as (x1 = a1, x2 = a2, . . . , xr = ar), or even more 
ompa
tly, as
(a1, a2, . . . , ar). In Chapters 4 and 5, we will dis
uss the novel idea of a partiallyassigned S-box, whi
h is an instantiation of a subset of the set of variables in ourmodel.De�nition 2.3 (Solution to a CSP) A solution of a CSP (X, D, C) is an in-stantiation of all its variables in X su
h that all 
onstraints in C is satis�ed.The S-boxes in our work that have all entries present su
h that all se
urity
riteria are satis�ed form the solutions to the CSP.2.6.1 Representation of a CSPFor our purposes, we 
onsider three ways to represent a CSP [20℄. The �rstof these is used in our work while the other two are mentioned for 
ompletenesspurposes.Boolean Matrix Consider a binary 
onstraint with variables x and y. Let theirdomains be Dx = {d0, d1, d2, . . . , dm−1} and Dy = {e0, e1, e2, . . . , en−1}, respe
-tively. A binary 
onstraint involving x and y 
an be represented as a Boolean
m× n matrix [aij]m×n. In this representation, the binary element aij , 0 ≤ i < m,
0 ≤ j < n, is de�ned as follows:

aij =

{

1, if x = di ∧ y = ej

0, otherwiseThe Boolean matrix representation is also referred to as the extensional repre-sentation or extensional form, and is the representation used in our work.We now study this representation with the help of three examples.Example 2.1 Consider a CSP with two variables x and y, and domains Dx and
Dy respe
tively. Let Dx = Dy = {0, 1, 2, 3}. Consider the following 
onstraintinvolving x and y:

x + y = 4 (2.4)Constraint 2.4 
an be written in an expanded form as follows, 
onsistent with
Dx and Dy:

x = 1 ∧ y = 3, x = 2 ∧ y = 2, x = 3 ∧ y = 1



31From this expansion, the extensional representation of 
onstraint 2.4 results inthe following Boolean matrix A, with the elements of Dx forming its row numbersand the elements of Dy, its 
olumn numbers. In other words, the row and 
olumnnumbering for the matrix A begin from 0 rather than 1. Thus an entry in thematrix A in Row 1 and Column 3 is 1, 
orresponding to the Boolean expression
x = 1 ∧ y = 3 and similarly, for the other two Boolean expressions.

A =











0 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0









This parti
ular 
onstraint results in a square, symmetri
 matrix but in general, thematrix need neither be square nor symmetri
.When there exists more than one binary 
onstraint involving the same two vari-ables, they 
an be 
ombined by AND-ing the Boolean entries in their extensionalrepresentation. Example 2.2 dis
usses this property.Example 2.2 Consider a CSP with two variables x and y, and domains Dx and
Dy respe
tively. Let Dx = Dy = {0, 1, 2, 3}. Consider the following binary 
on-straints involving the same two variables x and y:

x + y = 4

x− y = 2 (2.5)Constraints 2.5 
an be expanded into the following:
x = 1 ∧ y = 3, x = 2 ∧ y = 2, x = 3 ∧ y = 1

x = 2 ∧ y = 0, x = 3 ∧ y = 1We now have two expanded 
onstraints in x and y. Note that both 
onstraintsshould be satis�ed simultaneously. The expanded 
onstraints are represented inextentional form using matri
es A1 and A2, respe
tively, to yield:
A1 =











0 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0











, A2 =











0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0











.By ANDing the entries in the two matri
es A1 and A2, we obtain the followingmatrix:
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A =











0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0











(2.6)The AND-operation is the 
omposition used sin
e both 
onstraints 2.5 shouldhold simultaneously. This what we will do in our S-box formulation in Chapter 3.The 
onstraint resulting from the matrix A that serves as its extensional rep-resentation (Equation 2.6) is
x = 3 ∧ y = 1whi
h is none other than the solution to the CSP.The following example demonstrates the e�e
t of reordering the domains ofvariables on the extensional representation of a 
onstraint.Example 2.3 Consider a CSP with two variables x and y, and domains Dx and

Dy respe
tively. Let Dx = Dy = {0, 1, 2, 3}. Consider the following 
onstraintinvolving x and y:
x + 2y = 4 (2.7)Equation 2.7 
an be expanded into the following:

x = 0 ∧ y = 2, x = 2 ∧ y = 1 (2.8)The extensional representation of 
onstraints 2.8 is given by the following 4×4matrix.
A =











0 0 1 0
0 0 0 0
0 1 0 0
0 0 0 0









Now let us order the domains Dx and Dy to yield ordered domains D′
x =

{2, 0, 3, 1} and D′
y = {3, 2, 1, 0}.To maintain Eq. 2.8, the rows and 
olumns of the matrix A should now beshu�ed. Shu�ing the entries a

ordingly results in the following matrix A′:

A′ =











0 0 1 0
0 1 0 0
0 0 0 0
0 0 0 0











(2.9)



33De�ne permutation fun
tions λx : Dx → D′
x and λy : Dy → D′

y, where:
λx =

(

0 1 2 3
2 0 3 1

)

, λy =

(

0 1 2 3
3 2 1 0

)Let us now attempt to determine the matrix A′ dire
tly from permutations λxand λy. Applying λx and λy dire
tly on the numbers involved in 
onstraint 2.8will not yield A′ as the extensional representation of the resulting 
onstraint. For,dire
t appli
ation yields the following:
x = λx(0) ∧ y = λy(2), x = λx(2) ∧ y = λy(1)or

x = 2 ∧ y = 1, x = 3 ∧ y = 2resulting in the extensional representation
A′′ =











0 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0











6= A′The inverse permutations of λx and λy are given by:
λ−1

x =

(

2 0 3 1
0 1 2 3

)

=

(

0 1 2 3
1 3 0 2

)and
λ−1

y =

(

3 2 1 0
0 1 2 3

)

=

(

0 1 2 3
3 2 1 0

)It turns out that appli
ation of the inverses λ−1
x and λ−1

y to the numbers in
onstraint 2.8 yields the desired result. This appli
ation implies the following:
x = λ−1

x (0) ∧ y = λ−1
y (2), x = λ−1

x (2) ∧ y = λ−1
y (1)or

x = 1 ∧ y = 1, x = 0 ∧ y = 2whi
h results in the matrix A′ given by Equation 2.9.Constraint Graph A binary 
onstraint 
an be graphi
ally represented by a
onstraint graph. The variables of the set X serve as the nodes of the graph.Whenever any two variables parti
ipate in a parti
ular 
onstraint, they are 
on-ne
ted by an edge. A dual graph is obtained by inter
hanging the original graph'snodes into edges and edges into nodes.



34Hypergraph For n-ary 
onstraints, all variables parti
ipating in any one 
on-straint are lumped into a node of the graph. Thus ea
h node is a subset of X. Twonodes, formed by subsets X1 and X2, are 
onne
ted if and only if the set X1∩X2 isnon-empty. Su
h a graph is 
alled a hypergraph. An n-ary 
onstraint is 
onvertedinto a set of binary 
onstraints using the dual graph of its underlying hypergraph.2.6.2 An overview of S-box Sear
h Strategy using CSPsTo examine the feasibility of the CSP approa
h to S-box sear
h, we modeledthe eight 
riteria of DES into 
onstraints. Criterion S-8 is found to deal withmultiple S-boxes and is handled separately at another level, dis
ussed in Chapter 6.Criterion S-1 to S-7 are modeled as 
onstraints. Out of these, 
riterion S-1 willbe found to be already modeled based on variable 
hoi
e. S-3 to S-6 are binary
onstraints while S-2 and S-7 are n-ary 
onstraints.Initially we tried to model the 
onstraints using the CSP programming languageMozart-Oz [67℄. However we qui
kly found that a number of DES 
onstraints hadto be 
he
ked at the bit level, for whi
h Mozart-Oz proved to be insu�
ient. There-fore, we resorted to a C++�based solver to take in our model in its appropriateform, and generate solutions.The solver is introdu
ed in Se
tion 2.7 in pseudo-
ode form (Algorithm 1). Inits original form, the solver handles only binary 
onstraints. Our strategy is tomodel 
onstraints for 
riteria S-3 to S-6 (Chapter 3) and pre
ompile these intothe solver, generate solutions to satisfy these binary 
onstraints, and then testthem on 
onstraints S-2 and S-7. The approa
h turned out to be very ine�
ient(systemati
 generate-and-test!) In general, generate-and-test is not re
ommendedas dis
ussed earlier, and 
onstraint propagation needs to be 
arried out. We for-mulate several heuristi
s for the 
onstraints that model 
riteria S-2 (Chapter 4and S-7 (Chapter 5).For the binary 
onstraints, we dis
uss 
onstraint propagation that is imme-diately related to our work, namely, ar
-
onsisten
y, and its relaxed forms, viz.bounds 
onsisten
y and range 
onsisten
y. Alldiff 
onstraints will be addressednext, parti
ularly suited for S-3.2.6.3 An Overview of Constraint PropagationOld CSP solvers employed so 
alled intelligent ba
ktra
kers, namely algorithmsfor intelligent management of 
on�i
t re
ording between values of variables. Someexamples of intelligent ba
ktra
kers are: graph-based ba
kjumping, 
on�i
t-basedba
kjumping, dynami
 ba
ktra
king and ba
kmarking [20, 47, 22, 29℄. These algo-rithms are able to e�
iently identify relevant 
ulprit variables for found 
on�i
ts,and thereby avoid some redundant sear
h.



35Modern solvers use look-ahead te
hniques, su
h as: forward 
he
king, ar
 andpath 
onsisten
y, or singleton 
onsisten
y [56, 39℄. A s
heme that, based on (partsof) a CSP P , infers additional (redundant) 
onstraints to be added to P , is 
alleda �ltering operation. Given a �ltering operation A for CSPs,
A : CSP → CSPa CSP P is lo
ally 
onsistent with respe
t to A (e.g., ar
 
onsistent, path 
onsis-tent, et
.) if it is a �xed point of A, i.e.,

P = A(P ).One of the most 
ommonly used lo
al 
onsisten
y 
on
epts is ar
 
onsisten
y.It is based on the Waltz �ltering operation [71℄ that uses a 
onstraint Ck on twovariables x1 and x2 subje
t to unary 
onstraints x1 ∈ D1 and x2 ∈ D2 respe
tively.This �ltering operation infers the new 
onstraints with stronger D1 and D2:
D1 := D1 ∩ Ck(D2)|x1

D2 := D2 ∩ Ck(D1)|x2
,where by Ck(Dj)|xi

we denote the proje
tion of the domain Dj for xj , through therelation Ck, on the variable xi. Pra
ti
ally, Waltz �ltering removes values from thedomains of variables. New domains (sets in unary 
onstraints) obtained this wayare traditionally referred to as labels of the 
orresponding variables. The repeatedappli
ation of the Waltz �ltering operation until rea
hing the �xed point is 
alledar
 
onsisten
y (AC). The labels obtained at �xed point by repeated appli
ationof this �ltering pro
ess are 
alled ar
 
onsistent labels. The CSP whose domainsare ar
 
onsistent labels is said to be ar
 
onsistent. If ar
 
onsisten
y removes allthe elements from the domain of some variable (also 
alled domain wipe-out), we
an infer that the CSP has no solution.Various ways to repeatedly apply Waltz �ltering have been studied in the past.They di�er by the way of sele
ting the 
onstraint for the next �ltering operation,or by the additional information stored about the progress of the last �ltering stepon ea
h given 
onstraint. Su
h information 
an help in only in
rementally �lteringthe 
onstraint when the labels of its variables 
hange. The best su
h �lteringalgorithms are AC2001 and AC-3d [9, 66℄. Sometimes �ltering algorithms arenot applied repeatedly until the �xed point is a
hieved. For example, they may beapplied only a �xed number of times, as in the 
ase of dire
ted ar
 
onsisten
y [68℄.Look-ahead (lo
al �ltering) 
an be either used in a pre-pro
essing step, or re-peatedly 
alled at various points throughout the sear
h pro
ess. The latter 
aseis referred to as maintenan
e of the 
orresponding 
onsisten
y 
on
ept. Mainte-nan
e of ar
 
onsisten
y (MAC) [55℄ is 
ommonly referred to as one of the best



36CSP solvers. Ea
h assignment of a value to a variable (
alled the 
urrent variable)is propagated as if a �ltering step would have restri
ted the label of that variableto the 
orresponding value. MAC has been studied under several versions, di�er-entiated by the sele
tion of the points at whi
h the ar
 
onsisten
y is enfor
ed.Typi
ally it is enfor
ed after any 
hange of a label.2.6.4 Forms of Ar
-Consisten
y of CSPsAr
-
onsisten
y is extended to Generalized Ar
 Consisten
y (GAC), and also, isslightly relaxed as Bounds Consisten
y and Range Consisten
y. Bounds and Range
onsisten
y are used in Alldiff 
onstraints, to be dis
ussed next. We also mentionSingleton 
onsisten
y whi
h is used in the C++ solver employed in our work.Generalized Ar
 Consisten
y (GAC)While ar
-
onsisten
y is appli
able to binary 
onstraints, this notion is extendedto the domains of more than two variables parti
ipating in an n-ary 
onstraint.De
hter [20℄ de�nes GAC as follows: Given a 
onstraint network R = (X, D, C)with S ⊆ X and RS ∈ C, a variable x is ar
-
onsistent relative to RS if and onlyif, for every value a ∈ Dx there exists a tuple t ∈ S in the domain of variables in
S, su
h that t[x] = a. t 
an be 
alled a support for a.De
hter dis
usses how AC-1 
an be extended to GAC and informs that the
omplexity of the main step in GAC is bounded by O(dr+1), where d bounds thedomain-size and r is the 
onstraint s
ope size. Bessiere, et.al. [10℄ extended AC-2001/3.1 to GAC2001/3.1. The 
omplexity of GAC2001/3.1 is O(er2dr), where eis the number of 
onstraints.In the next two de�nitions below, 1,5 form a two-element set while [1,5℄ is aninterval (a
tually, a 
losed interval), i.e. the set {1, 2, 3, 4, 5}.Range Consisten
yAn n-ary 
onstraint C(x1, x2, . . . , xn) where no domain Di is empty, is 
alledrange-
onsistent [27℄ if and only if, for ea
h variable xi and value di ∈ Di,there exist values d1 ∈ [min D1, max D1], d2 ∈ [min D2, max D2], . . ., di−1 ∈
[min Di−1, max Di−1], di+1,∈ [min Di+1, max Di+1], . . ., dn ∈ [min Dn, max Dn]su
h that (d1, d2, . . . , dn) ∈ C.This means that range 
onsisten
y does not 
he
k for the feasibility of the
onstraint for ea
h and every domain-value of the parti
ipating variables, but onlywith respe
t to intervals that in
lude those domain-values.



37Bounds Consisten
yAn n-ary 
onstraint C(x1, x2, . . . , xn) where no domain Di is empty, is 
alledbounds-
onsistent [27℄ if and only if, for ea
h variable xi and value di ∈
{min Di, max Di}, there exist values d1 ∈ [min D1, maxD1], d2 ∈ [min D2, max D2],
. . ., di−1 ∈ [min Di−1, max Di−1], di+1,∈ [min Di+1, max Di+1], . . ., dn ∈
[min Dn, max Dn] su
h that (d1, d2, . . . , dn) ∈ C.This means that bounds 
onsisten
y does not even 
he
k all domain-values ofthe variables parti
ipating in the 
onstraint, but only the minimum and maximumvalues. Bounds 
onsisten
y 
an be viewed as a relaxation of range 
onsisten
y.Alldiff ConstraintsWhile formulating 
onstraints for our CSP solver for DES S-boxes, the 
riterionS-2 is found to be made of n-ary 
onstraints, spe
ifying that ea
h S-box rowshould not 
ontain dupli
ates. In other words, the variables parti
ipating in ea
hrow should possess di�erent values. Su
h 
onstraints 
an be easily modeled asAlldiff 
onstraints and 
onsisten
y algorithms spe
ially available for these kindsof 
onstraint 
an be used to advantage [27℄, [49℄, [51℄, [50℄.The programming language Mozart-Oz [67℄ provides an ALLDISTINCT modulethat helps the developer to spe
ify an Alldiff 
onstraint. We were able to usethis module to advantage for generating solutions that satis�ed 
riterion S-2 alone.Simply de
omposing an Alldiff 
onstraint having n variables into nC2 binary
onstraints does not always give us the desired performan
e. In fa
t, the pruningperforman
e is poor, with a 
omplexity of O(n2) [27℄. In 
omparison, the originalset of Alldiff 
onstrains performs at O(dn1.5), where d is the maximum 
ardinalityof domains.A nai�ve algorithm that is O(n3) in the number of variables is dis
ussed in [27℄.This algorithm 
onsiders an interval I = [a, b] where a is the smallest value ofall domains and b, the largest. If #I is less than the 
ardinality of the variablesparti
ipating in I, there is no solution. If I is a Hall Interval, the bounds areupdated. Regin's algorithm [50℄, is an improvement over the nai�ve implementationand has O(n2d2), where d is the maximum domain-size. Mehlhorn and Thielpresent another that performs in time O(n) plus the time required for sorting theendpoints of the intervals.Puget's algorithm [49℄ for bounds 
onsisten
y of Alldiff 
onstraints is
O(n log2 n).Le
onte's range 
onsisten
y algorithm runs in time O(n2d), where d is theaverage domain size.Régin's hyper-ar
 
onsisten
y algorithm on Alldiff, based on mat
hing theory,
onstru
ts a value graph in time O(d|XC| + |XC | + |DC |) where the subs
ripted
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C's stand for the variables parti
ipating in the mat
hing 
over of the value graph.
d is the maximum 
ardinality of the domains of the variables. Hop
roft and Karpimplemented a maximum mat
hing algorithm on the value graph, that runs intime O(

√

|XC |m), where m is the number of edges in the value graph.Régin proposes another form of Alldiff, namely, the symmetri
 Alldiff 
on-straint [51℄. This is equivalently expressible as an Alldiff 
onstraint along withadditional information on symmetry. However the symmetri
 form exhibits moreglobal information that the split-version of the CSP. The additional informationis used for pruning.2.6.5 Limited Dis
repan
y Sear
hWhile running our CSP solver, we often obtain several solutions that appear iden-ti
al in the values assigned to the �rst few variables. We may want to limit su
hsolutions and move on to those that look �di�erent".Tree sear
h methods are useful for solving many pra
ti
al problems be
ause
arefully-tuned su

essor-ordering heuristi
s guide the sear
h towards regions ofthe spa
e that are likely to 
ontain solutions.Limited Dis
repan
y Sear
h (LDS) is introdu
ed by Harvey and Ginsberg [24℄.During sear
h, when a goal node is not rea
hed, the thinking is that the sear
hwould have su

eeded had it not been for a small number of �wrong turns" along theway. The point at whi
h the wrong turn o

urs is referred to as a dis
repan
y. Thispaper demonstrates a novel sear
h te
hnique 
alled Limited Dis
repan
y Sear
h,whi
h is a ba
ktra
king algorithm that sear
hes the nodes of the tree in in
reasingorder of su
h dis
repan
ies. The paper shows how this te
hnique 
an be expe
tedto outperform existing approa
hes.The existing approa
hes dis
ussed are iterative sampling and ba
ktra
king.In iterative sampling, without su

essor-ordering heuristi
, iterative sampling isine�e
tive when the solution density is not very high. In ba
ktra
king, mistakesmade early in the sear
h pro
ess, parti
ularly when the subtree is large or whenthere are very few solutions present, present a tremendous burden on the heuristi
early in the sear
h pro
ess.The idea of LDS is that when a heuristi
 fails, it would have led to a solution ifonly it had not made one or two �wrong turns" that got it o� tra
k. One should beable to systemati
ally follow the heuristi
 at all but one dis
repan
y. If that fails,one 
an follow the heuristi
 at all but two dis
repan
ies. And so on. Thus, LDSdoes a depth-�rst sear
h traversal of the tree, limiting the number of dis
repan
iesto a dis
repan
y limit x. When, eventually, x = d, where d is the maximum depthof the tree, then the sear
h be
omes exhaustive.



39A theoreti
al 
omparison is made with the two existing methods, examiningthe likelihood of �nding a solution in the spe
i�ed amount of time. The paperde�nes a mistake probability m as the probability that a randomly sele
ted 
hildof a good node is not having any goals in its subtree. The heuristi
 probability
p is equal to (1 − m) (or greater, if it does better than random sele
tion). The
han
e of �nding a solution on a random path (iterative sampling) to depth d is
(1−m)d. Given spe
i�
 values for p and m, the paper demonstrates the theoreti
alprobabilities of su

ess as a fun
tion of the height of the tree for iterative sampling,
hronologi
al ba
ktra
king and LDS for various values of p.When p = 0.8, LDS performs slightly worse under these 
onditions. As pin
reases to 0.85, 0.9, 0.95, the 
urve for LDS goes way higher 
ompared to theothers, suggesting that the performan
e of LDS in
reases dramati
ally with better
p. Ri
hard [30℄ dis
usses an improvement of Limited Dis
repan
y Sear
h overthe earlier one by Harvey and Ginsberg [24℄. In the improved version (ILDS),a number of sear
h paths that were repeatedly traversed in ea
h iteration in theearlier version (OLDS) are eliminated.An analyti
al 
omparison of the two algorithms is made in the paper. If thedepth of the sear
h tree is d, then the total number of paths generated by OLDSin a 
omplete sear
h to depth d is (d + 2)2d−1. This is also the asymptoti
 time
omplexity of OLDS. In 
omparison, the 
omplexity of ILDS is O(2d), suggestingthat OLDS may be worse than ILDS by a fa
tor of d+2

2
, in the worst-
ase s
enario.Usually this does not happen sin
e, OLDS was designed for very large trees andonly a few iterations were needed. Another reason is that when integrated intoCSPs or bran
h-and-bound methods, a great deal of pruning disallows rea
hing allthe way down to the maximum depth.The paper analyti
ally 
ompares ILDS with DFS sin
e the authors found thatILDS is still ine�
ient to DFS due to the larger number of internal nodes generatedby ILDS. If b is the bran
hing fa
tor and d, the depth of the tree, then for DFS, thetotal number of nodes is bd+1−1

b−1
. In 
omparison, for ILDS, the total number of nodesis found to be equal to b(bd+1−1)

(b−1)2
. The ratio of the total number of nodes generatedin ILDS to that in DFS is equal to b

b−1
. The expressions were approximated in thepaper but that was not ne
essary; the ratio is still the same. As the bran
hingfa
tor in
reases, the ratio de
reases. When pruning happens, the overhead of ILDSin
reases.Ine�e
tiveness of Limited Dis
repan
y Sear
h for our workWe dis
overed that limited dis
repan
y sear
h is not e�e
tive for our work. LDSis used where a goal assignment is not found, to expand in a di�erent dire
tion



40using the notion of the �number of wrong turns". However, in our work, wealready have several goal assignments. Our obje
tive is to see �di�erent" kindsof goal assignments rather than the �same kinds" of goal assignments. LDS will
ertainly give us �di�erent" kinds of goal assignments upon expanding in a di�erentdire
tion. But, it will still give us the �same" kind of assignments within that�di�erent" kind. As su
h, this approa
h is not re
ommended, and we 
onsiderreordering the domains a

ording to a random permutation.2.7 The Solver for Binary ConstraintsAlgorithm 1 outlines the solver in its original form. The solver handles binary
onstraints represented in extensional form, pre-
omputed and input to it. Thesolver generates S-boxes employing Maintenan
e of Ar
 Consisten
y (MAC) [55℄with AC2001 [9℄.Pro
edure Solver is re
ursive. The inputs are the set of variables X, the setof (redu
ed) domains D′, the pre
omputed binary 
onstraints C2, re
ursion level
k and threshold τ of optimality of the solutions sought. The solver is invoked forthe �rst time with D′ = D (the initial set of domains), and k = 0 (to indi
atethe starting variable). Here the fun
tion ProcessNary() returns true if k = |X|.This is the 
ondition that all variables are assigned and forms the base 
ase forre
ursion to terminate. Fun
tion MakeAndCheckSBox() 
reates an S-box Φ with allvalues assigned, and returns the same. Fun
tions InitPartialVarsAndCounts(),
ReverseUpdateCountDistSet() and ReverseUpdateCount() perform no opera-tion. Boolean fun
tions CheckPartialSBox() and ProcessOtherDomains() simplyreturn true. Under these 
ir
umstan
es, when all variables are assigned, Line 9prints the solution that satis�es all binary 
onstraints in C2. All of the fun
tionsthat hitherto return true or perform trivial operations (or even none) implementthe heuristi
s proposed in the paper for the global n-ary 
onstraints for S-2 andS-7.Pro
edure Sele
tNextVariable, 
alled in Line 3 sele
ts the next variable Xjand returns its index j, as governed by a permutation π : Z|X| → Z|X|. Twovariable-ordering heuristi
s are 
onsidered in our work for performan
e evaluations(subse
tion 5.5.2), namely, the default straight-line and an alternative, zig-zagordering.In Line 11, the next available value v is assigned to xj ∈ X from its redu
eddomain D′

j . All other elements in D′
j are added to a deletion set DS (Line 12).Establishment of Ar
 Consisten
y using AC2001 is made at Line 16 by the fun
tionEstablishAC, �ltering domains in D′ to return a set D′′ of redu
ed-domains. Ifno redu
ed-domain in D′′ is empty, the solver re
urses in Line 17. The fun
tion
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Pro
edure Solver(X, D′, C2, k, τ)input : Variables X = {x0, x1, . . . , x2n−1},Domain-subsets D′ = {D′

i : 0 ≤ i < 2n}, with D′
k ⊆ Dkbeing the domain-subset for xk,

C2 is the set of binary 
onstraints for the 4 
riteria S-3 to S-6,
k is the re
ursion level (xk ∈ X is the 
urrent variable),
τ = The threshold s
ore sought for ea
h S-box solution.output: n×m S-boxes having a maximum s
ore equal to τ1 begin2 InitPartialVarsAndCounts()3 j ← SelectNextVariable(k)4 c1 ← CheckPartialSBox()5 if c1 then6 c2 ← ProcessNary()7 if c2 then8 Φ← MakeAndCheckSBox()9 PrintSBox(Φ)10 else11 forea
h v ∈ D′

j do12 DS ← {(j, w) : w ∈ D′
j ∧ w 6= v}13 D′

j ← {v}14 c4 ← ProcessOtherDomains(DS, D′, j, v)15 if c4 then16 D′′ ← EstablishAC(D′, DS)17 if no domain in D′′ is empty then18 Solver(X, D′′, C2, k + 1, τ)19 ReverseUpdateCountDistSet()20 D′
j ← RestoreDomain(xj)21 ReverseUpdateCount()

Pro
edure Sele
tNextVariable(k)1 begin2 return π(k) ;
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RestoreDomain() restores the domain D′

j of xj before the next value from D′
j is
onsidered at Line 11.2.8 NotationsFor a number x, we use |x| to denote its absolute value. If X is a set, then

|X| represents its 
ardinality (number of elements in the set X). Whenever aset is written with bra
es, its 
ardinality is written with a # pre
eding the setitself. For example, the 
ardinality of the set {a0, a1, a2, . . . ak−1} is written as
#{a0, a1, a2, . . . ak−1}.The symbol ⊕ denotes the bitwise ex
lusive-OR (or XOR) of two bit patterns
a and b having identi
al bitlength, and the operation is written as a ⊕ b. Thesymbol · denotes the bitwise AND of two quantities a and b having identi
albitlength and the operation is written as a · b. The one's-
omplement of a bitpattern a, also 
alled the negation of a or the NOT-operation on a, is written as
ā. In logi
al expressions (as opposed to bitwise arithmeti
), the symbol ∧ is usedfor 
onjun
tion, the symbol ∨ used for disjun
tion and the symbol ¬, used fornegation.A linear 
ombination of Boolean variables x0, x1, x2, . . . , xk−1, is given by theexpression

k−1
⊕

i=0

ai · xi = a0 · x0 ⊕ . . .⊕ ak−1 · xk−1where ai are Boolean 
oe�
ients, ⊕ is the bit-wise ex
lusive-OR operator and · thebit-wise AND operator. A linear Boolean fun
tion Lω(x) on an n-bit input x =
x0 . . . xn−1 de�ned by an n-bit sele
tor ω = ω0 . . . ωn−1 is 
omputed [14℄ as:

Lω(x) = ω0 · x0 ⊕ . . .⊕ ωn−1 · xn−1 =
n−1
⊕

i=0

ωi · xi (2.10)The parity of a binary quantity a is equal to the number of one's in a. If a hasan odd number of 1's, it is said to follow odd parity and if this number is even,it is said to have even parity. The 
he
k for parity is made by 
omputing theex
lusive-OR of the bits in a. The result of the ex
lusive-OR is either 0 or 1; if 1,
a possesses odd parity, otherwise a possesses even parity. It is easy to see that theparity of a is obtained by taking the sum of the bits in a modulo-2.Some existing 
riteria are based on the 
on
epts of Hamming weight and Ham-ming Distan
e. The Hamming weight of a given bit-pattern u, denoted by wt(u),is de�ned as the number of 1's in u. The di�eren
e between two n-bit numbers x



43and y is equal to x⊕ y. The Hamming Distan
e between x and y is the minimumnumber of 
hanges to be made to x to obtain y, and is equal to wt(x⊕ y).
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Chapter 3CSP Models for Se
urity CriteriaWe model the se
urity 
riteria listed in Table 2.1 and dis
uss 
onstraint for-mulation strategies. Binary 
onstraints are formulated in this Chapter, and n-ary
onstraints, in Chapters 4 and 5 to model the se
urity requirements.3.1 Constraint Formulation StrategySome of the S-box 
riteria of Table 2.1 
an be formulated as binary 
onstraintswhile others get formulated as n-ary 
onstraints. Moreover, some 
riteria mayoperate on a 
ombination of solutions generated. A strategy is put in pla
e beforeattempting to formulate 
onstraints for ea
h 
riterion.3.1.1 One S-box, and 
ombination of S-boxesIn the S-box 
riteria one 
an observe that S-8 applies to more than one S-boxtaken together (three S-boxes in this 
ase). All other 
riteria apply to only one

S-box. The following two-step strategy for 
onstraint formulation is adopted inthis work.1. Generate S-boxes that satisfy all 
riteria ex
ept S-8, �ltering out all those
S-boxes that do not satisfy these other 
riteria.2. Consider a subset of the set of generated solutions, and repeatedly validateS-8 on all su
h subsets. Only those solutions that satisfy all eight 
riteriaremain behind while all others get �ltered out.The details of Step 1 are dis
ussed throughout this Chapter and also, in Chap-ters 4 and 5. Step 2 is formulated as a separate problem and dis
ussed in Chapter 6.3.1.2 Binary and n-ary 
onstraints of DES CriteriaIn the S-box 
riteria of Table 2.1, one 
an further observe the following: S-2 andS-7 gives rise to n-ary 
onstraints that take in more than two variables, while the



45remaining 
riteria S-3 to S-6 all give rise to binary 
onstraints. In this work, thefollowing steps are followed in the order below:1. The remaining 
riteria S-3 to S-6 are �rst analyzed and are modeled asbinary 
onstraints in this Chapter.2. S-2 is positioned to validate and a

ept only those solutions satisfying it. Inthat sense S-2 serves as a ��lter". This is a generate-and-test approa
h. De-
omposition of S-2 into hard 
onstraints by employing proje
tion, resultingin heuristi
s for sear
h speedup, are proposed in Chapter 4.3. Those S-boxes a

epted by S-2 will be further �ltered by a se
ond ��lter"that implements the n-ary global 
onstraint S-7. This is also a generate-and-test approa
h. A in
remental approa
h, and a novel te
hnique of proje
tingon the domains of future variables, is dis
ussed in Chapter 5 to speed up the
onstraint for S-7.3.1.3 A problem solverTo implement Step 1 mentioned in subse
tion 3.1.1, the binary 
onstraints for-mulated for 
riteria S-3 to S-6 will be pre
ompiled into a solver that will emitoutputs to satisfy only these 
riteria.Now the solver will be modi�ed to in
lude heuristi
s for the n-ary 
onstraintS-2 and S-7. The solver will take in the partially-
orre
t solutions and run the
n-ary 
onstraints to yield S-boxes that will satisfy all eight DES 
riteria.3.2 The CSP FormulationWe will now dis
uss the variables, domains for ea
h variable, and 
onstraint for-mulation. S-2 is referred to as the nonlinearity 
onstraint and its formulation isdealt with in Chapter 4. We will refer to 
riterion S-7 as the COUNT 
onstraintfor la
k of a suitable terminology in the literature. The modeling of this 
riterionwill be dis
ussed in Chapter 5.3.2.1 Variables of the CSP ModelFor an n×m S-box requiring n inputs, 2n variables are required. These variableswill be represented by xi, where ea
h xi is the output of one S-box, 0 ≤ i ≤ 2n−1.The set of variables for the CSP is the set {x0, x1, . . . , x2n−1}.Spe
i�
ally, for 6 × 4 S-boxes su
h as those used in DES, with n = 6, thereare 64 values of the 4-bit output of an S-box, ea
h output 
orresponding to one



466-bit input. Let these 64 values be represented by variables x0, x1, . . . x63, with
xi ∈ {x : 0 ≤ x ≤ 15}, 0 ≤ i ≤ 63. Ea
h variable xi spe
i�es the output ofan S-box 
orresponding to input i of the S-box, 0 ≤ i ≤ 63. For example, x0
orresponds to 6-bit input 0 (0000002, in binary). Output x1 
orresponds to 6-bitinput 1 (0000012 in binary), and so on.The set X of the 64 variables for a 6× 4 S-box is given by

X = {x0, x1, x2, . . . x63}Using these variables, an 6× 4 S-box is organized as shown in Table 3.1. For
onvenien
e, the values for the two-bit numbers x0x5 (row index) and the four-bitnumbers x1x2x3x4 (
olumn index) of an input to the S-box are expressed in thede
imal number system.The pe
uliar pattern in whi
h the 6×4 S-box entries xi is organized is observedin Figure 3.1. For example, while traversing a
ross the �rst row from left toright, the variables are listed as x0, x2, . . . x30 instead of the more intuitive listing
x0, x1, . . . x15. Similarly in the se
ond row, only the x's with odd subs
ripts appear.This interesting layout is due to the fa
t that the �rst and last bits of the six-bitinput, and not the two leftmost bits, form the row-sele
tion. (Equivalently, this isbe
ause the middle four and not the last four bits of the input to a 6 × 4 S-boxforms the 
olumn-sele
tion.)

x1x2x3x4

x0x5 0 1 2 3 . . . 12 13 14 150 x0 x2 x4 x6 . . . x24 x26 x28 x301 x1 x3 x5 x7 . . . x25 x27 x29 x312 x32 x34 x36 x38 . . . x56 x58 x60 x623 x33 x35 x37 x39 . . . x57 x59 x61 x63Table 3.1: Distribution of the 
onstraint variables in a 6× 4 S-box3.2.2 Domain of ea
h variable, and Domain-set of the CSPFor an n ×m S-box that yields an m-bit output, ea
h variable xi ∈ X, 0 ≤ i ≤
2m − 1 assumes integral values from the set {0, 1, . . . , (2m − 1)}. The domain Difor ea
h xi is then given by:

Di = {0, 1, 2, . . . , 2m − 1}The domain-set D of the CSP is the set of su
h domains, one for ea
h variable.



47A 6× 4 S-box su
h as the one used in DES yields a 4-bit output value (m = 4)ranging from 0 up to a maximum of 15. In other words the domain of ea
h variable
xi in the set X = {x0, x1, . . . , x15} of variables, is the set Di, 0 ≤ i ≤ 63, given by:

Di = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}The domain-set D of the CSP is the set of domains of ea
h variable, and is asingleton set:
D = {D0, D1, . . .D63}

= {{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}} (3.1)3.2.3 Modeling Criterion S-1�Ea
h S-box has six bits of input and four bits of output.�Criterion S-1 is impli
it in the 
hoi
e of variables. This is not dis
ussed anyfurther.3.2.4 Modeling Criterion S-3�If we �x the leftmost and rightmost input bits of the S-box and vary the four middlebits, ea
h possible 4-bit output is attained exa
tly on
e as the middle four input bitsrange over their 16 possibilities.�Fixing the leftmost and rightmost input bits y0y5 to any of the possible four
ombinations, sele
ts one of four subsets of the variables. Generation of 
onstraintsfor 
lause S-3 is now straightforward. All we require is that no two output vari-ables, in ea
h subset, should be equal. The inequalities are dire
tly expressible asAlldiff 
onstraints [49℄, [27℄:
Alldiff(x0, x2, x4, ..., x30)

Alldiff(x1, x3, x5, ..., x31)

Alldiff(x32, x34, x36, ..., x62)

Alldiff(x33, x35, x37, ..., x63)For 6 × 4 S-boxes, ea
h Alldiff 
onstraint is expressible as 16×15
2

= 120 bi-nary 
onstraints and all of these Alldiff 
onstraints repla
e 480 binary inequality
onstraints. In general, for an n×m S-box organized as a 2n−m × 2m table, thereare 2n−m Alldiff 
onstraints for ea
h row of the table. Ea
h of these 
ontains 2mvariables and is expressible as 2m×(2m−1)
2

binary 
onstraints. The total number ofbinary 
onstraints that these Alldiff 
onstraints repla
e



48
= 2n−m ×

2m × (2m − 1)

2
= 2n−1(2m − 1).3.2.5 Modeling Criterion S-4�If two inputs to an S-box di�er in exa
tly one bit, the outputs must di�er in atleast two bits."Consider any two 6-bit inputs i and j and their 
orresponding outputs xi, xj ∈

D, of a DES S-box S. Criterion S-4 
an be written in First-Order Logi
 as:
(∀i)(∀j)(0 ≤ i < j ≤ 63) ∧ wt(i⊕ j) = 1

⇒ wt(xi ⊕ xj) ≥ 2 (3.2)For a 6 × 4 S-box, ea
h variable will parti
ipate in exa
tly 6 su
h binary
onstraints (one for ea
h input bit), generating 192 binary 
onstraints. For an
n ×m S-box, ea
h variable parti
ipates in exa
tly n 
onstraints. Sin
e there are
2n variables, the total number of 
onstraints is equal to 2n × n and half of these
onstraints repeat due to symmetry. Therefore the number of binary 
onstraintsfor 
riterion S-4 is equal to n× 2n−1.3.2.6 Modeling Criterion S-5�If two inputs to an S-box di�er in the two middle bits exa
tly, the outputs mustdi�er in at least two bits."Consider any two 6-bit inputs i and j and their 
orresponding outputs xi, xj ∈
D, of a DES S-box S. The fa
t that the 6-bit inputs i and j di�er in the twomiddle bits implies that this 6-bit di�eren
e is exa
tly equal to 0011002. S-5 
anbe written in First-Order Logi
 as:

(∀i)(∀j)(0 ≤ i, j ≤ 63) ∧ (i 6= j) ∧ (i⊕ j = 0011002)

⇒ wt(xi ⊕ xj) ≥ 2 (3.3)For DES, this results in 32 binary 
onstraints, ea
h variable (S-box entry)parti
ipating in exa
tly one su
h binary 
onstraint. For an n × m S-box, two
n-bit inputs di�er in their middle two bits in exa
tly one way. As su
h, ea
hvariable gives rise to exa
tly one binary 
onstraint. For the 2n variables there are
2n 
onstraints, and half of these repeat due to symmetry. Therefore, the numberof binary 
onstraints for 
riterion S-5 is equal to 2n−1. Note that n should be aneven number, and n ≥ 2.



493.2.7 Modeling Criterion S-6�If two inputs to an S-box di�er in their �rst two bits and are identi
al in theirlast two bits, the two outputs must not be the same."Consider any two 6-bit inputs i and j and their 
orresponding outputs xi, xj ∈
D, of a DES S-box S. The fa
t that the 6-bit inputs i and j di�er in their �rsttwo bits and are identi
al in their last two bits, implies that the input-di�eren
e
(i ⊕ j) ∧ 1100112 is exa
tly equal to 1100002. S-6 
an be written in First-OrderLogi
 as:

(∀i)(∀j)(0 ≤ i < j ≤ 63), [(i⊕ j) ∧ 1100112] = 1100002

⇒ xi 6= xj (3.4)For DES, ea
h variable is involved in 4 su
h binary 
onstraints (one for ea
hpossible 
ombination of the two middle input bits), resulting in a total of 128 newbinary 
onstraints.For an n × m S-box, let us 
onsider two n-bit inputs. Their �rst two bitsdi�er and simultaneously, their last two bits are identi
al in exa
tly one way. Theremaining (n − 4) bits 
an be sele
ted in 2n−4 ways (these bits may or may notdi�er, nothing is said about them). Therefore ea
h variable parti
ipates in 2n−4binary 
onstraints. For the 2n variables, we have a total of 2n × 2n−4 = 22n−4
onstraints, half of whi
h are identi
al due to symmetry. Therefore, for an n×m
S-box, the number of binary 
onstraints for 
riterion S-6 is equal to 22n−4

2
= 22n−5.Note that n ≥ 4.3.2.8 Total Number of Binary ConstraintsThe total number of binary 
onstraints, obtained by adding the above four results,is equal to 2n−1×(2m+n+2n−4), n ≥ 4. For DES, this works out to 832 
onstraints.160 of these binary 
onstraints 
ontain two variables that parti
ipated in otherbinary 
onstraints in the set. After 
orresponding 
onstraints are 
omposed (referExample 2.2), the total number of binary 
onstraints formulated for 
riteria S-3,S-4, S-5 and S-6 is redu
ed to 672.3.3 Summary and Looking AheadIn this 
hapter we have formulated binary 
onstraints for 
riteria S-3, S-4, S-5and S-6 spe
i�ed for DES S-box design. Criterion S-1 is impli
it in the 
hoi
eof variables. In our experiments, these binary 
onstraints have been pre
ompiled



50into a solver (Se
tion 2.7) that stores the binary 
onstraints in extensional form(Se
tion 2.6.1).In the binary 
onstraints modeled, their appli
ablity is a fun
tion of the S-boxinput size n for an n×m S-box. While all of them are appli
able for 6×4 S-boxessu
h as those of DES, S-5 does not make sense for 5×3 S-boxes n = 5 is not even.In the experiments dis
ussed in Chapter 7, su
h 
riteria would have to be eithermodi�ed or relaxed when running the solver on small-sized problems.Criteria S-2 and S-7 are n-ary 
onstraints. The key 
hallenge is how to runthe binary-
onstraint solver on these 
onstraints e�
iently. There are essentiallytwo approa
hes for ensuring e�
ien
y, both employing proje
tions:1. Proje
t an n-ary 
onstraint on past assignments and 
he
k if the n-ary 
on-straint is satis�ed partially for ea
h assignment.2. Proje
t domain-values of future variables onto past assignments to 
om-pletely eliminate 
he
ks for 
onstraint satisfa
tion.The se
ond approa
h is better than the �rst, sin
e, no expli
it 
he
king isrequired and all elements available after propagation are part of the solution spa
e.Both heuristi
s are in
remental, not 
he
king on a 
omplete S-box but on a partialassignments. Chapter 4 introdu
es the idea of a partially assigned S-box, anddis
usses the �rst approa
h applied to 
riteria S-2 and S-7. Chapter 5 dis
ussesthe se
ond approa
h applied to 
riterion S-7.Criterion S-8 deals with multiple S-boxes and 
annot be modeled in this exist-ing CSP framework. We dis
uss this 
riterion in Chapter 6. We have determineda way by whi
h this 
riterion 
an be modeled as a pure CSP, by in
reasing thevariables (and hen
e the solution spa
e). This will be treated as future work anddis
ussed in some detail in Chapter 9.
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Chapter 4The Nonlinearity ConstraintCriterion S-2 is referred to as the nonlinearity requirement. The essen
e of thisrequirement is that the output of an S-box should be highly nonlinear. A measureof nonlinearity is derived in this Chapter, dire
tly from Matsui's work on LinearCryptanalysis of DES [34℄.In this Chapter, we model S-box nonlinearity as a 
onstraint. As we shall see,the result is a soft CSP. We will then formulate heuristi
s for speedup of S-boxsear
h to satisfy this 
riterion in addition to 
riteria S-3 to S-6.First, the nonlinearity requirement is repeated here for 
onvenien
e:S-2: �No output bit of an S-box should be too 
lose to a linear fun
tion ofthe input bits. (That is, if we sele
t any output bit position and any subset of thesix input bit positions, the fra
tion of inputs for whi
h this output bit equals theex
lusive-OR of these input bits should not be 
lose to 0 or 1, but rather should benear 1

2
).� [16℄Before pro
eeding any further with the nonlinearity analysis, let us dis
uss theidea of a partially assigned S-box and derive some properties of this kind of S-box.The derived properties are not present in 
urrent literature on S-boxes, and is oneof the main 
ontributions of this Dissertation.4.1 Partially Assigned S-boxesIn the literature, ea
h S-box entry or all entries are formed one bit at a time andthese are often referred to as partial S-boxes. Often these entries are populatedone row at a time or one 
olumn at a time [38℄. In all of these 
ases, the S-boxentries are formed bit by bit. In 
ontrast, in our formulation ea
h S-box entry is a
omplete number. However not all entries are assigned simultaneously or in otherwords, we do not always deal with 
ompletely �lled S-boxes. In CSP terminology,this amounts to variables not all of whi
h are being assigned immediately. Thisgives rise to in
remental evaluations, whi
h will be formulated for 
he
king S-2and S-7. Throughout the rest of this Dissertation, we will refer to a PartiallyAssigned S-box to mean an assignment to a subset of the variables in X of the

S-box.



52De�nition 4.1 (Partially Assigned S-box) An S-box is partially assigned ifand only if not all of its entries are assigned.Let X be the set of variables of an S-box and X ′ ⊆ X, the set of variables of apartially assigned S-box. We will denote a partial assignment to the variables in
X of an S-box as follows. The tuple

A = 〈(x0, d0), (x1, d1), . . . , (x|X′|−1, d|X′|−1)〉 (4.1)
orresponds to the partial assignment x0 = d0, x1 = d1, . . . , x|X′|−1 = d|X′|−1.The unassigned entries are given an invalid value (−1 in our implementations).In the illustrations for partial S-boxes these unassigned entries are not shown.This notation will be used in Chapter 7 to quantify the sear
h points en
ounteredduring S-box sear
h.Example 4.1 For the 
omplete S-box S8 of DES given in Figure 1.1, severalpartially assigned S-boxes are possible. A partial assignment to variables x0 =
13, x1 = 1, x2 = 2, x3 = 15, . . . , x20 = 3 results in the partial S-box of Figure 4.1.13 2 8 4 6 15 11 1 10 9 31 15 13 8 10 3 7 4 12 5Figure 4.1: A partially assigned S-box obtained by assigning values to variables
x0, x1, . . . , x20. Note that this assignment follows a zig-zag pattern.As per the notation governed by equation 4.1, this assignment is equivalent tothe tuple

A = 〈(x0, 13), (x1, 1), (x2, 2), . . . , (x19, 5), (x20, 3)〉Noti
e that the way entries are populated depends on the manner in whi
h thevariables are organized with referen
e to Figure 3.1. Another fa
t worth observingis that the partially assigned S-box formation is 
ontingent upon the order inwhi
h the variables are assigned. Example 4.2 illustrates this aspe
t.Example 4.2 In Chapter 5, we will 
onsider a straight line variableordering heuristi
. In this heuristi
, variables with even subs
ripts
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x0, x2, . . . , x30 are �rst assigned to �ll the �rst row, followed by thosewith odd subs
ripts x1, x3, . . . , x31 to �ll the se
ond, and so on. Inthis 
on�guration if we 
onsider the following variable assignments,namely, (x0, x2, x4, x6, x8, x10, x12, x14, x16, x18, x20, x22, x24, x26, x28, x30) =
(13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7) and (x1, x3, x5, x7, x9, x11) =
(1, 15, 13, 8, 10, 3) then the partial S-box of Figure 4.2 will result.13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 71 15 13 8 10 3Figure 4.2: A partially assigned S-box resulting from variables assigned using astraight-line pattern (row-wise)As per the notation governed by equation 4.1, this assignment is equivalent tothe tuple

A = 〈(x0, 13), (x2, 2), (x4, 8), (x6, 4), (x8, 6), (x10, 15), (x12, 11), (x14, 1),

(x16, 10), (x18, 9), (x20, 3), (x22, 14), (x22, 5), (x24, 0), (x26, 12), (x28, 7),

(x1, 1), (x3, 15), (x5, 13), (x7, 8), (x9, 10), (x11, 3)〉In Chapter 3, we have denoted X as the set of variables for the S-box entries.For a partial S-box, we denote X ′ to be the variable-set, with X ′ ⊆ X. We willalso denote a fully-�lled S-box (whi
h we will refer to simply as an S-box as has
ustomarily been done) by Φ and a partially assigned S-box by Φ′.4.2 Analysis of Criterion S-2The rationale behind 
riterion S-2 is to ensure that an S-box is highly non-linear.Matsui's work on linear 
ryptanalysis [34℄ uses a table 
alled the Linear Approxi-mation Table (LAT) that re
ords the 
ounts of linear 
ombinations of all subsetsof input and output bits, for a parti
ular S-box. Consider an n×m S-box, i.e. onethat for any n-bit input i = i0 . . . in−1 yields the m-bit output xi = xi0 . . . xim−1
.The linear 
ombinations to be 
he
ked for equality are obtained by sele
ting bitsin i and xi using sele
tors a and b respe
tively, where 0 ≤ a < 2n and 0 ≤ b < 2m.Example 4.3 Let us 
onsider a 6× 4 S-box that takes as input i = 46 and givesan output xi = x46 = 13. To 
he
k how 
lose this input/output relationship is



54to a linear relationship, we need to �t a linear equation between the bits of i =
1011102 = ioi1i2i3i4i5 and of xi = 11014 = xi0xi1xi2xi3. If the bits 0, 2, 4 and 5of input i and bits 1, 2 of output xi, are sele
ted, then the following equation is
he
ked:

i0 ⊕ i2 ⊕ i4 ⊕ i5
?
= xi1 ⊕ xi2

1 · i0 ⊕ 0 · i1 ⊕ 1 · i2 ⊕ 0 · i3 ⊕ 1 · i4 ⊕ 1⊕ i5
?
= 0 · xi0 ⊕ 1 · xi1 ⊕ 1 · xi2 ⊕ 0 · xi3

a0i0 ⊕ a1i1 ⊕ a2i2 ⊕ a3i3 ⊕ a4i4 ⊕ a5i5
?
= b0xi0 ⊕ b1xi1 ⊕ b2xi2 ⊕ b3xi3i.e. La(i)
?
= Lb(xi)or, L43(46)
?
= L6(13)where a = a0a1a2a3a4a5 = 1010112 = 43 and b = b0b1b2b3 = 01102 = 6 aresele
tors for the bits 0,2,4,5 of the S-box input i and bits 1,2 of S-box output xi,respe
tively. This is a linear equation and if satis�ed, the relationship as governedby this equation is indeed linear.We are not interested in merely one parti
ular linear relationship. We want to
he
k sear
h for linear relationships in all possible sele
tions of input and outputbits of the S-box. The way of doing this is to enumerate all possible 
ombinations(sele
tions) among the 26 = 64 sele
tions of subsets of input bits in i versus the

24 = 16 subsets of output bits of xi and see how many of them are related bylinear equations.Example 4.4 Consider the entry x46 = 13 of the 6×4 S-box of Example 4.3. Wewould like to know what the linear relationships between input 46 (= 1011102)andoutput 13 (= 11012) exist. To do so, run the following 
he
k for all sele
tors
a = a0a1a2a3a4a5, b = b0b1b2b3, 1 ≤ a < 64, 1 ≤ b < 16:

a0 · 1⊕ a1 · 0⊕ a2 · 1⊕ a3 · 1⊕ a4 · 1⊕ a5 · 0
?
= b0 · 1⊕ b1 · 1⊕ b2 · 0⊕ b3 · 1i.e. La(i)
?
= Lb(xi)or, La(46)
?
= Lb(13)Note that we have ex
luded the sele
tors a = 0, b = 0 be
ause if nothing issele
ted, the trivial and uninteresting result 0 = 0 is en
ountered.
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b 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
a0 64 32 32 32 32 32 32 32 32 32 32 32 32 32 32 321 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 322 32 34 32 30 30 32 34 32 30 32 30 36 28 30 32 383 32 30 32 34 30 36 26 36 30 28 38 32 28 34 32 344 32 30 30 32 32 34 30 28 34 32 36 30 38 32 32 46... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...59 32 38 30 28 34 32 36 34 24 26 30 32 38 32 32 3460 32 34 32 34 28 26 36 34 36 34 40 30 32 34 36 3061 32 30 44 26 40 34 28 38 36 30 28 30 36 34 28 3462 32 24 36 32 30 34 30 38 42 38 34 34 32 32 28 3263 32 24 32 36 34 30 22 30 26 38 30 38 28 36 28 32Table 4.1: Tabulating the 
ounts NΦ

X(a, b) for the S-box S8 of Figure 1.14.2.1 Counting Linear Relationships in a Completely Filled S-box: NΦ
X(a, b)For a given S-box Φ with all variables in X, let us de�ne NΦ

X(a, b) as follows:
NΦ

X(a, b) = #{i : La(i)=Lb(xi); a, i ∈ Z2n ; b, xi ∈ Z2m} (4.2)where Lω(x) is de�ned in Equation 2.10. Equation 4.2 suggests that linear 
om-binations of input and output bits of all entries in an S-box are 
ounted. Theminimum value of NΦ
X(a, b) is zero and the maximum value is 2n. The values of

NΦ
X(a, b) are tabulated in a 2n×2m matrix. Example 4.5 illustrates the tabulationpro
ess.Example 4.5 Consider DES S-box S8 of Figure 1.1. This is a 6× 4 S-box with

n = 6 and m = 4. Form a table the rows of whi
h are indexed by a and the
olumns, by b, where a ∈ Z64, and b ∈ Z16. Table 4.1 displays the table having
26 = 64 rows and 24 = 16 
olumns having a total of 64× 16 = 1024 entries. Onlythe �rst 4 and last 4 rows of the table are shown in the �gure, along with all the
olumns.Let us study the entry 
orresponding to Row 3, Column 5 of the table, forwhi
h a = 3 = 0000112 = a0a1a2a3a4a5 and b = 5 = 01012 = b0b1b2b3. Thisentry is equal to the total number of times the following equation is satis�ed forall 64 4-bit entries xi = xi0xi1xi2xi3 of S-box S8 
orresponding to ea
h 6-bit input
i = i0i1i2i3i4i5, 0 ≤ i < 64:



56
L3(i) = L5(xi)

0 · i0 ⊕ 0 · i1 ⊕ 0 · i2 ⊕ 0 · i3 ⊕ 1 · i4 ⊕ 1 · i5 = 0 · xi0 ⊕ 1 · xi1 ⊕ 0 · xi2 ⊕ 1 · xi3

i4 ⊕ i5 = xi1 ⊕ xi3 (4.3)The entry in the table under row 3, 
olumn 5 reads 36, whi
h means that for36 entries out of the 64 in DES S-box S8, Equation 4.3 is satis�ed. The maximumvalue of an entry is 64 sin
e S8 
ontains 64 entries. This pro
ess is repeated forall entries (a, b) in the table to yield a 
ount for every possible linear 
ombinationsof the bits in an S-box input and its 
orresponding output.4.2.2 Counting Linear Relationships in a Partially Assigned S-box: NΦ′

X′(a, b)In Matsui's work, the quantity NΦ
X(a, b) is spe
i�ed for an S-box that has all itsentries �lled. Given a partial n × m S-box Φ′ and variable-set X ′ ⊆ X, let usde�ne another quantity NΦ′

X′(a, b) as follows:
NΦ′

X′(a, b) = #{i : La(i)=Lb(xi); xi ∈ X ′; a ∈ Z2n ; b, xi ∈ Z2m}4.2.3 Properties of NΦ′

X′(a, b)Besides Matsui's properties for NΦ′

X′(a, b) [34℄, the following properties also followfrom the de�nition of NΦ′

X′(a, b).Property 4.1 For any a,b,X ′,Φ′, 0 ≤ NΦ′

X′(a, b) ≤ |X ′|.This property follows at on
e from the fa
t that NΦ′

X′(a, b) is a 
ount, whi
hranges between the minimum value of 0 and the maximum value of |X ′|.Property 4.2 For any a,b,u,X ′,Φ′, NΦ′

X′∪{u}(a, b)−NΦ′

X′(a, b) ∈ {0, 1}.This property follows at on
e sin
e, adding an S-box entry due to the assign-ment to a variable u /∈ X ′ results in the 
ounts of equalities of linear 
ombinationsof S-box inputs and outputs either in
reasing by 0 or 1.Let us examine, through an example, the manner in whi
h N ′Φ′

X (a, b) progressesas ea
h variable of an S-box is assigned a value. We will also be able to understandthe properties of NΦ′

X′(a, b) just listed. We assume that the S-box entries areassigned in the manner in Example 4.1.
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b 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
a0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 01 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 02 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 03 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 04 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...59 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 060 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 061 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 062 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 063 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0Table 4.2: Tabulating the 
ounts NΦ′

X′(a, b) for a partially assigned S-box Φ′ withonly the �rst entry x0 = 13 is populated.Example 4.6 Consider again, the DES 6×4 S-box S8 of Figure 1.1. Assign onlythe variable x0 = 13 with the �rst entry in the S-box, with all remaining variablesunassigned. For this partially assigned S-box, let us organize a table exa
tly in themanner presented in Example 4.5, resulting in Table 4.2.As one 
an observe, assigning a value to a single variable results in a table for
NΦ′

X′(a, b) that 
ontains entries having either 0 or 1. That is be
ause for a singleassignment, either a linear 
ombination of subsets of input bits versus output bitsresults in either an equality (entry 1) or an inequality (entry 0). With one morevariable assigned (that is, two variables assigned), the resulting table is obtainedby adding the (0-1) tables of the individual entries. Another way of stating thisis that the entries in the table due to the previous assignment is in
reased by atmost 1 to form the 
umulative table. This is what Property 4.2 states.The new 
umulative table formed will now have entries that range between0 and 2. In general, when a partially assigned S-box 
ontains |X ′| entries, its
NΦ′

X′(a, b) entry ranges from 0 up to |X ′|. This is what Property 4.1 states.Example 4.7 The values for NΦ′

X′(a, b) of the partially assigned S-box Φ′ of Fig-ure 4.1, with assignments made to variables X ′ = {x0, x1, . . . , x20}, is displayed inTable 4.3.Observe that the entries range between 0 and 21. In fa
t, the minimum entryis 5 while the maximum entry is 21. Also observe that an entry may be even or
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b 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
a0 21 9 11 11 11 11 9 9 10 10 10 10 10 6 10 101 11 11 9 9 13 9 11 11 10 14 10 10 10 10 10 102 11 11 9 9 11 11 9 13 8 8 8 12 10 10 18 103 11 11 9 13 11 11 9 17 10 10 10 10 8 8 8 124 12 10 8 6 10 12 10 8 9 11 11 9 13 11 11 17... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...59 10 10 12 12 10 14 16 8 5 9 9 9 11 11 11 1160 9 7 9 11 11 9 11 9 14 12 12 10 14 12 12 661 11 9 11 9 13 11 5 15 10 8 8 10 14 12 12 1062 11 5 11 13 11 9 11 13 12 10 10 12 10 12 8 1063 11 9 11 13 7 9 7 9 6 16 12 14 12 10 10 12Table 4.3: Tabulating the 
ounts NΦ′

X′(a, b) for the partially assigned S-box Φ′ ofFigure 4.1.odd. In 
ontrast, for an S-box having all entries, the NΦ
X(a, b) entries are alwayseven.4.2.4 A Measure of Nonlinearity of an S-boxFor sele
tors a and b de�ned as above, let p(a, b) denote the fra
tion of 
ases when

La(i) = Lb(xi), 
omputed as:
p(a, b) =

NΦ
X(a, b)

2n
(4.4)If p(a, b) is equal to 1, this indi
ates that the linear 
ombination of the outputbits sele
ted by b equals a linear 
ombination of the input bits sele
ted by a, i.e.,

∀i, La(i) = Lb(xi).If p(a, b) is equal to zero, then the linear 
ombination of the output bits sele
tedby b is never equal to the linear 
ombination of input bits sele
ted by a. DES
riterion S-2 (and the stronger 
riterion S-2') stipulates that p(a, b) should benear 1
2
for all a, b.We are interested in how 
lose p(a, b) is to 1

2
. Let ρ(a, b) denote the absolutevalue of the di�eren
e between these quantities. Then,

ρ(a, b) = |p(a, b)−
1

2
| (4.5)



59Multiplying equation 4.5 by 2n, we have the following:
2n × ρ(a, b) = 2n × |p(a, b)−

1

2
| = |NX(a, b)− 2n−1|by substituting for NX(a, b) from equation 4.4. DES 
riterion S-2 (and S-2')alternatively stipulates that |NX(a, b)− 2n−1| for all sele
tor-pairs (a, b) should beas 
lose to zero as possible.4.2.5 The S
ore of an S-boxThe ideal 
ase where |NΦ

X(a, b)−2n−1| is exa
tly equal to zero for all sele
tor-pairs
(a, b), has so far not been attained in the literature for 
ommon 
ryptosystems.The most e�e
tive linear approximation of a DES S-box is obtained if, for some
a and b, |NΦ

X(a, b)− 2n−1| is maximal. To redu
e the weakest point of the S-box,we use the so 
alled e�e
tiveness of linearization [46℄ of an S-box Φ as the s
ore,
σX(Φ), given by the maximum value of |NX(a, b)− 2n−1| over all (a, b):

σX(Φ) = max{|NΦ
X(a, b)− 2n−1| : 1 ≤ a < |X|; 1 ≤ b < |D|} (4.6)It 
an be easily observed that an S-box with a smaller s
ore is 
onsidered better(i.e. less linear and more nonlinear).Matsui [34℄ 
onsidered the general 
ase when b is not a power of 2, 
orrespond-ing to the 
riterion S-2' that is stri
ter than S-2. Coppersmith [16℄ labelled S-2'as an additional property not originally used in the design of the S-boxes for DES,and we will adhere to the same premise a

ordingly, in our work. Therefore, inEquation 4.6, we will always assume that b is a power of 2.4.2.6 The Linear Approximation Table (LAT)The linear approximation table [34℄ for an n×m S-box is a 2n×2m matrix [34℄. Itsrows are headed by sele
tor a (0 ≤ a < 2n) and 
olumns, by sele
tor b (0 ≤ b < 2m).Ea
h entry is equal to the value of NX(a, b)− 2n−1 (in
luding its sign). The entry,in row a and 
olumn b represent a measure of the 
orrelation between the inputbits sele
ted by a and the output bits sele
ted by b. Properties of the table, andof NΦ

X(a, b), are dis
ussed in [34, 46, 26℄.As Equation 4.6 suggests, the s
ore σX(Φ) of the n×m S-box Φ is obtained bytaking the maximum value of the absolute values of all entries falling under those
olumns whose heading is a power of two.
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b 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
a0 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 02 0 2 0 -2 -2 0 2 0 -2 0 -2 4 -4 -2 0 63 0 -2 0 2 -2 4 -6 4 -2 -4 6 0 -4 2 0 24 0 -2 -2 0 0 2 -2 -4 2 0 4 -2 6 0 0 14... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...59 0 6 -2 -4 2 0 4 2 -8 -6 -2 0 6 0 0 260 0 2 0 2 -4 -6 4 2 4 2 8 -2 0 2 4 -261 0 -2 12 -6 8 2 -4 6 4 -2 -4 -2 4 2 -4 262 0 -8 4 0 -2 2 -2 6 10 6 2 2 0 0 -4 063 0 -8 0 4 2 -2 -10 -2 -6 6 -2 6 -4 4 -4 0Table 4.4: The Linear Approximation Table for DES S-box S8 of Figure 1.1Example 4.8 The �rst �ve and last �ve rows of the Linear Approximation Tablefor the DES 6×4 S-box S8, with n = 6 and m = 4, are shown in in Table 4.4. Ea
hentry in this table is equal to NX(a, b)− 2n−1 = NX(a, b)− 25 = NX(a, b)− 32. Inother words, the table 
onstru
ted in this example follows straightforwardly fromthat of Example 4.5 (Table 4.1) by subtra
ting 32 from ea
h entry of the lattertable.The s
ore of DES S-box S-8 is obtained by taking the maximum values of theabsolute values of the entries under 
olumns 1, 2, 4 and 8 that are powers of two,whi
h is equal to 12.4.2.7 The S
ore of a Partially Assigned S-boxThe s
ore σX′ , X ′ ⊆ X, of a partially assigned n×m S-box Φ′ is de�ned as follows:

σX′(Φ′) = max{|NΦ′

X′(a, b)− 2n−1| : 1 ≤ a < 2n; 1 ≤ b < |2m|}

4.3 Modeling Criterion S-2: A Non-in
remental, CompleteHeuristi
The 
riteria S-2 leads to a soft 
onstraint that minimizes σX(Φ). When imple-mented as a hard 
onstraint for a threshold τ , it has the form:
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σX(Φ) ≤ τ (4.7)The fun
tions the pro
edure Solver of Algorithm 1 are listed in Table 4.5.Fun
tions InitialPartialVarsAndCounts() and Che
kPartialSBox() are usedin in
remental heuristi
s and therefore, there is nothing to be done for this heuris-ti
. Fun
tion Pro
essNary() only 
he
ks if all variables are instantiated, re-turning true if so, and false otherwise. This fun
tion, along with fun
tionsReverseUpdateCountDistSet() and ReverseUpdateCount(), is designed to 
he
kfor 
riterion S-7, dis
ussed in detail in Chapter 5.Fun
tion MakeAndChe
kSBox() 
alls fun
tion MakeSBox() that prepares an

S-box Φ from the assignment to all variables in X. Next, MakeAndChe
kSBox()veri�es Equation refEq:s2 and if this equation is satis�ed, veri�es if the 
onstraintsfor 
riterion S-7 are also satis�ed (refer Chapter 5). If both are satis�ed, this fun
-tion returns the S-box Φ that satis�es all modeled 
onstraints, whi
h is printed inSolver (Algorithm 1, Line 9).Fun
tion Des
riptionInitPartialVarsAndCounts() (No operation)Che
kPartialSBox() return truePro
essNary() return (k = |X|).MakeAndChe
kSBox() Φ← MakeSBox(X)Compute σX(Φ) using Equation 4.6if (σX(Φ) ≤ τ)∧ (S-7 is satis�ed)(refer Chapter 5) return ΦPro
essOtherDomains() return trueReverseUpdateCountDistSet() (No operation)ReverseUpdateCount() (No operation)Table 4.5: Fun
tions for the Nonin
remental, Complete Heuristi
 for S-2, inSolverThe 
onstraint of Equation 4.7 is not implemented using an extensional repre-sentation. Rather, a spe
ialized fun
tion is added to the solver that works with a
2n+m size storage, repli
ated at ea
h level in the sear
h tree. This results in a totalspa
e requirement of 22n+m bytes. For DES boxes the 
onstraint requires 64kB.



624.4 Modeling Criterion S-2: An In
remental, In
ompleteChe
kEquation 4.7 suggests a non-in
remental approa
h to S-2 
he
king. Experimentsdis
ussed in Chapter 7 reveal a very ine�
ient S-box sear
h using this heuristi
as expe
ted.We formulate an in
remental 
he
k by whi
h after ea
h variable is assigned,determine σX′ and repeat so long as Equation 4.7 is not violated. As soon as thisequation is violated, we ba
ktra
k. This approa
h has signi�
antly speeded up thesear
h for S-boxes. Moreover, it led to 6 × 4 S-boxes that yielded values of σXsuperior to those for the published eight DES S-boxes. Table 4.6 implements thefun
tions for this heuristi
 in pseudo
ode form.Fun
tion Des
riptionInitPartialVarsAndCounts() Let X ′ ← {x : x ∈ X ∧ x is assigned.}Che
kPartialSBox() Φ′ ← MakePartialSBox(X ′)Compute σ′
X(Φ′) using Equation 4.7return ← (σX′(Φ′) ≤ τ)Pro
essNary() return (k = |X|)MakeAndChe
kSBox() Φ← MakeSBox(X)Pro
essOtherDomains() (No operation)ReverseUpdateCountDistSet() (No operation)ReverseUpdateCount() (No operation)Table 4.6: Fun
tions for the In
remental, In
omplete Heuristi
 for S-2, in SolverThe fun
tion InitPartialVarsAndCounts() keeps tra
k of the variables thatare assigned, in X ′. The fun
tion Che
kPartialSBox() a
tually performs theveri�
ation of Equation 4.7. However, the 
he
k for violation is done in Solver(Algorithm 1), in the if-statement after Step 6. Fun
tion Pro
essNary() simply
he
ks if all variables have been instantiated. It is a
tually designed to perform
he
ks for the global n-ary 
onstraint for S-7, and is dis
ussed in Chapter 5.So are fun
tions Pro
essOtherDomains(), ReverseUpdateCountDistSet() andReverseUpdateCount(). In the end, by the time Line 9 is en
ountered, all vari-ables are assigned and 
riterion S-2 is satis�ed (not ne
essarily S-7), and the

S-box is output.Despite its e�
a
y, this heuristi
 is in
omplete. The reason is that although
σX′(Φ′) ex
eeded the threshold τ on some partial assignment to variables in X ′, itis not ne
essary that upon the next assignment, σX′(Φ′) will monotoni
ally in
rease



63to always ex
eed τ . (Property 4.2 suggests that NΦ′

X′(a, b) in
reases monotoni
ally� but not stri
tly � by at most 1.) In fa
t, σX′(Φ′) is often found to de
rease duringsubsequent assignments, whi
h this heuristi
 does not 
at
h. This partial S-boxshould not always be abandoned.We further formulate a 
omplete heuristi
 by providing a 
hara
terization fora partial S-box Φ′ to extend to a 
omplete S-box Φ. The tri
k to obtaining the
ondition is to not study the progress of σX′(Φ′), but to analyze so for NΦ′

X′(a, b).4.5 Modeling Criterion S-2: An In
remental, CompleteChe
k using Soft Constraint De
ompositionWe will now proje
t the soft 
onstraint of Eq. 4.7 onto hard 
onstraints involving φvariables, φ being the number of variables instantiated to form a partially assigned
S-box Φ′ and φ ≤ |X|. During proje
tion, the goal is for the �nal s
ore of S-box
Φ to not ex
eed the maximum threshold τ :

max
a,b
|NΦ

X(a, b)−
|X|

2
| ≤ τ (4.8)4.5.1 Constru
tion of a Partially assigned S-boxFigure 4.3 depi
ts the distribution of the 
ounts NΦ′

X′(a, b) on one sele
tor-pair
(a, b), for a partially instantiated S-box Φ′. The horizontal axis is the number ofvariables instantiated, φ. After |X ′| variables are instantiated at point A alongthe solid line, the dashed line at a 45-degree angle with the horizontal representsthe pathologi
al 
ase where the s
ore σX′ = NΦ′

X′(a, b) in
reases by one for everysubsequent extension of Φ′ up to point D. The solid zig-zag lines 
onne
ting points
A and C represents the 
orresponding, �a
tual� distribution of NΦ′

X′(a, b) for the
omplete S-box Φ to attain the s
ore equal to σX′ = NΦ
X(a, b) at point C. Fromthis 
onstru
tion, we have OF = NΦ′

X′(a, b), OG = NΦ
X(a, b), FH = BD = AB =

|X| − |X ′|, and OH = OF + FH = NΦ′

X′(a, b) + |X| − |X ′|.4.5.2 Lower and Upper bounds for maxa,b NΦ′

X′(a, b)Let us observe two properties of partially assigned S-boxes.Property 4.3 A partially instantiated S-box Φ′ with values for variables in
X ′, X ′ ⊆ X, 
annot be extended to a solution with s
ore better than a threshold τif the following inequality is not satis�ed:

max
a,b

NΦ′

X′(a, b) ≥ |X ′| − τ −
|X|

2
(4.9)
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+|X| − |X′|

NΦ
X
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NΦ
′

X′
(a, b)

|X||X′|O(0, 0)

45◦

Values of NΦ′

X′
(a, b)

NΦ
′

X′
(a, b)

Number of variables assigned, φFigure 4.3: Evaluating partially instantiated S-boxes.Proof By 
onstru
tion, (|X| − |X ′|) remaining variables are to be instantiatedin order to extend Φ′ to Φ. To guarantee extensibility, the following inequalityshould hold:
OG ≤ OH

NΦ
X(a, b) ≤ NΦ′

X′(a, b) + |X| − |X ′|This is true for all sele
tors a and b, and in parti
ular, holds for the maximumvalue of NΦ
X(a, b) (resp. NΦ′

X′(a, b)) over all a, b:
max

a,b
NΦ

X(a, b) ≤ |X| − |X ′|+ max
a,b

NΦ′

X′(a, b) (4.10)From the goal spe
i�ed by Equation 4.8,
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|X|

2
−max

a,b
NΦ

X(a, b) ≤ τi.e. |X|
2
− τ ≤ max

a,b
NΦ

X(a, b) (4.11)Combining Eq. 4.10 and Eq. 4.11,
|X|

2
− τ ≤ max

a,b
NΦ

X(a, b) ≤ |X| − |X ′|+ max
a,b

NΦ′

X′(a, b)By transitivity and regrouping,
max

a,b
NΦ′

X′(a, b) ≥
|X|

2
− τ − |X|+ |X ′|i.e. max

a,b
NΦ′

X′(a, b) ≥ |X ′| − τ −
|X|

2

Q.E.D.Property 4.4 A partially instantiated S-box Φ′ with values for variables in
X ′, X ′ ⊆ X, 
annot be extended to a solution with s
ore better than a threshold τif the following inequality is not satis�ed:

max
a,b

NΦ′

X′(a, b) ≤
|X|

2
+ τ (4.12)Proof Given a partial S-box assignment Φ′ with variables in X ′, by the end of the
onstru
tion of any solution Φ obtained by extending Φ′, the following inequalityholds:

OF ≤ OGi.e. NΦ′

X′(a, b) ≤ NΦ
X(a, b) (4.13)This is true for all sele
tors a and b, and in parti
ular, holds for the maximumvalue of NΦ′

X′(a, b) (resp. NΦ
X(a, b)) over all a, b:

max
a,b

NΦ′

X′(a, b) ≤ max
a,b

NΦ
X(a, b) (4.14)From the goal spe
i�ed by Eq. 4.8,



66
max

a,b
NΦ

X(a, b)−
|X|

2
≤ τi.e. max

a,b
NΦ

X(a, b) ≤
|X|

2
+ τ (4.15)Combining Eq. 4.14 and 4.15,

max
a,b

NΦ′

X′(a, b) ≤ max
a,b

NΦ
X(a, b) ≤

|X|

2
+ τThe result follows by transitivity.

Q.E.D.Eq. 4.9 and Eq. 4.12 fa
ilitate de
omposition of the soft 
onstraint of Eq. 4.7into hard 
onstraints. On
e a partial S-box Φ′ is 
onstru
ted with φ = |X ′| < |X|
2variables assigned, Hφ,τ

C7

he
ks to see if Φ′ satis�es the above two inequalities. Ifnot, Φ′ is reje
ted otherwise Φ′ is extended by instantiating the next variable andthe 
he
ks are repeated. The pro
ess goes on until an S-box Φ with all variablesassigned, is obtained by whi
h time S-2 is now already satis�ed.4.5.3 An ExampleAn example is provided to understand the working of this heuristi
.Example 4.9 We �nd in Chapter 7 that the maximum s
ore for all of the DES

S-boxes of Figure 1.1 is equal to 18. Consider that our threshold τ for a 6 × 4
S-box Φ is 16. Sin
e there are 26 = 64 variables X = {x0, x1, . . . , x63}, the partial
he
k should begin after |X|

2
+ τ variables are assigned, that is, after (32+16) = 48variables are assigned. Let us examine the progress of maxa,b NΦ′

X′(a, b) and thes
ore as we in
rementally assign to the remaining 16 variables, starting from x48.For ea
h variable assigned, Table 4.9 populates the forms assumed by Eq. 4.9and Eq. 4.12.Thus, after x63 is assigned to yield S-box Φ with all entries �lled in,
maxa,b NΦ

X(a, b) will range between 16 and 48. As a result, its s
ore will alwaysrange between 0 and 16.4.5.4 The Solver that Implements this Heuristi
The in
remental, 
omplete 
he
king heuristi
 is implemented in the solver Solverof Algorithm 1, for whi
h the fun
tions of the latter algorithm are des
ribed inTable 4.8.



67Variable Number of variables Inequalities 4.9assigned |X ′| and 4.12
x48 49 1 ≤ maxa,b NΦ′

X′(a, b) ≤ 48
x49 50 2 ≤ maxa,b NΦ′

X′(a, b) ≤ 48
x50 51 3 ≤ maxa,b NΦ′

X′(a, b) ≤ 48
x51 52 4 ≤ maxa,b NΦ′

X′(a, b) ≤ 48... ... ...
x60 61 13 ≤ maxa,b NΦ′

X′(a, b) ≤ 48
x61 62 14 ≤ maxa,b NΦ′

X′(a, b) ≤ 48
x62 63 15 ≤ maxa,b NΦ′

X′(a, b) ≤ 48
x63 64 16 ≤ maxa,b NΦ′

X′(a, b) ≤ 48Table 4.7: Progress made by the in
remental 
he
ks after assignments to the �rst48 variables, for a 6× 4 S-box with a threshold s
ore of 16 soughtThe implementation of this heuristi
 is very similar to that of the in-
omplete, in
remental 
he
k of Table 4.6, with the di�eren
e in fun
tionChe
kPartialSBox(). In this heuristi
, this fun
tion is 
onditionally 
alledonly after the �rst (X
2

+ τ) variables are assigned. In that 
ase, the fun
-tion Che
kPartialSBox() returns the results of the veri�
ation of Eq. 4.9 andEq. 4.12. However, the 
he
k for violation is done in Solver (subse
tion 2.7),in the if-statement after Step 6. Just as in the 
ase for the in
omplete heuris-ti
, fun
tion Pro
essNary() simply 
he
ks if all variables have been instanti-ated. It is a
tually designed to perform 
he
ks for the global n-ary 
onstraintfor S-7, dis
ussed in Chapter 5. So are fun
tions Pro
essOtherDomains(),ReverseUpdateCountDistSet() and ReverseUpdateCount(). In the end, by thetime Line 9 is en
ountered, all variables are assigned and 
riterion S-2 is satis�ed(not ne
essarily S-7), and the S-box is output.This heuristi
 is 
omplete and �nds all solutions, now that the progress of
maxa,b NΦ′

X′(a, b) is kept tra
k of, instead of the s
ore σ′
X(Φ′) of the partially as-signed S-box Φ′.4.6 Summary of Heuristi
s and Looking AheadWe have dis
ussed the following heuristi
s for DES 
riterion S-2:1. A non-in
remental, 
omplete heuristi
, namely, the generate-and-test ap-proa
h to satisfying 
riterion S-2 by verifying Eq. 4.7.



68Fun
tion Des
riptionInitPartialVarsAndCounts() Let X ′ ← {x : x ∈ X ∧ x is assigned.}
Che
kPartialSBox() if (k ≥ |X|

2
+ τ) thens2ok ← false

Φ′ ← MakePartialSBox(X ′)Determine M ← maxa,bN
Φ′

X′(a, b)s2ok← (|X ′|−τ− |X|
2
≤M ≤ |X|

2
+τ)end ifreturn s2okPro
essNary() return (k = |X|)MakeAndChe
kSBox() Φ← MakeSBox(X)Pro
essOtherDomains() return trueReverseUpdateCountDistSet() (No operation)ReverseUpdateCount() (No operation)Table 4.8: Fun
tions for the In
remental, Complete Heuristi
 for S-2, in Solver2. An in
remental, in
omplete heuristi
 to partial S-box 
he
king, namely, onein whi
h S-2 is 
he
ked by verifying Eq. 4.7 for every partial assignment.This heuristi
 abandons partial solutions that violate Eq. 4.7 that may havea
tually be
ome solutions upon extension.3. An in
remental, 
omplete heuristi
 to partial S-box 
he
king, namely, onein whi
h S-2 is 
he
ked by verifying Eq. 4.9 and Eq. 4.12.Experiments will reveal signi�
ant speedup of the in
remental heuristi
 overthe non-in
remental approa
h (both 
omplete). The in
remental but in
ompleteapproa
h will be seen to generate 6×4 S-boxes superior to the existing, publishedDES S-boxes. This is not observed in the 
ase of either of the two 
omplete heuris-ti
s developed in this Chapter. All of these results are presented in Chapter 7.We next dis
uss development of heuristi
s for 
riterion S-7 whi
h we will 
allas the COUNT 
onstraint. The fun
tions implemented in this Chapter will berepeated in Chapter 5, but now the fun
tions designed for S-7 will also be in pla
e,rendering full implementations of heuristi
s to generate solutions that satisfy all
riteria.
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Chapter 5De
omposition of Global Constraints, andHeuristi
sS-7: �For any nonzero 6-bit di�eren
e between inputs ∆Ii,j, no more than eightof the 32 pairs of inputs exhibiting ∆Ii,j may result in the same output di�eren
e

∆Oi,j.� [16℄We now formulate 
riterion S-7 as a 
onstraint. This 
riterion deals with 
ountsof di�eren
es (Hamming distan
es) between pairs of variables. As su
h, we willoften refer to the resulting 
onstraint as the COUNT 
onstraint.The COUNT 
onstraint is a global n-ary 
onstraint. It is n-ary be
ause itinvolves parti
ipation of more than two variables. It is global be
ause it 
anbe de
omposed into smaller-arity 
onstraints (not ne
essarily binary). However,this de
omposition is not straightforward be
ause the variables themselves are notbeing split. A fun
tion on the variables, namely 
ounts of the di�eren
es betweenpairs of variables is being 
onsidered for splitting.In spite of this infeasibility of straightforward splitting, we demonstrate anelegant way by whi
h proje
tion is employed to a
hieve the domain-redu
tionsresulting in S-box speedup.This 
hapter outlines three heuristi
s for S-7: A non-in
remental heuristi
(generate-and-test), a simple in
remental heuristi
 (taking advantage of the in
re-mental heuristi
 for S-2), and the domain-redu
tion heuristi
 for S-7 that employsproje
tions.An optimization, introdu
ed in Solver (Se
tion 2.7), is dis
ussed in Se
-tion 5.5.1. The fun
tion Sele
tNextVariable in Solver sele
ts the next variabledepending upon the type of variable-ordering heuristi
 employed. This fun
tion isampli�ed in Se
tion 5.5.2. Two heuristi
s are 
onsidered there, namely, a StraightLine variable-ordering heuristi
 (the default ordering of arranging from left toright in an S-box su
h as the one in Figure 3.1), and a Zig-Zag variable-orderingheuristi
.
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S813 2 8 4 6 15 11 1 10 9 3 14 5 0 12 71 15 13 8 10 3 7 4 12 5 6 11 0 14 9 27 11 4 1 9 12 14 2 0 6 10 13 15 3 5 82 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11Figure 5.1: DES S-box S8 used in Example 5.15.1 Modeling 
riterion S-7We formulate S-7 for an n×m S-box. Only input pairs (i, 2n−1−i), 0 ≤ i < 2n−1,to the S-box di�er by all n bits. Consider the set O7 = {(xi, x2n−1−i) : 0 ≤ i <

2n−1)} of pairs of outputs 
orresponding to these input-pairs, with |O7| = 2n−1.Criterion S-7 applies to m-bit di�eren
es d = xi ⊕ x2n−1−i, 0 ≤ d < 2m.Let f : Z2m → Z2n−1 denote a 
ount fun
tion, with f(d) signifying the frequen
yof o

urren
e of an m-bit number d = xi ⊕ x2n−1−i where (xi, x2n−1−i) ∈ O7,
0 ≤ i < 2n−1. Note that

Σ2n−1−1
i=0 f(xi ⊕ x2n−1−i) = 2n−1.A

ording to S-7, no more than eight elements in O7 should evaluate to thesame m-bit di�eren
e d. Criterion S-7 is formulated for an n × m S-box as an

n-ary global Boolean 
onstraint in the following way:
2n−1−1
∧

i=0

f(xi ⊕ x2n−i−1) ≤ 8 (5.1)Example 5.1 Consider the S-box S8 of DES of Figure 1.1, repeated in Figure 5.1for 
onvenien
e.Inputs 0 and 63 di�er by all 6 bits, so do inputs 1 and 62, 2 and 61, and ingeneral, i and (63 − i), 0 ≤ i < 32. We are interested in 
orresponding outputsof xi and x63−i. There are 32 pairs of outputs, (xi, x63−i). Their ex
lusive-ORis equal to xi ⊕ x63−i whi
h is a 4-bit value, ranging from 0 up to 15. Let d ≡
d(xi, x63−i) = xi ⊕ x63−i represent these 4-bit values.Listed in Table 5.1 are the pairs (xi, x63−i) and the distan
e between themembers of ea
h pair. For example, (x0, x63) = (13, 11) = (11012, 10112), and
d(x0, x63) = x0 ⊕ x63 = 11012 ⊕ 10112 = 01102 = 6, shown in the se
ond and third
olumns for the �rst row of the table. There are 32 su
h rows for the 32 pairs.The number of times the distan
es d o

urs is now summarized in Table 5.2.
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(xi, x63−i) Corresponding Distances/Differences

0 ≤ i < 32 S-box values d(xi, x63−i) ≡ d = xi ⊕ x63−i

(x0, x63) (13, 11) 6
(x1, x62) (1,8) 9
(x2, x61) (2,6) 4
(x3, x60) (15,5) 10
(x4, x59) (8,5) 13
(x5, x58) (13,3) 14
(x6, x57) (4,3) 7
(x7, x56) (8,15) 7
(x8, x55) (6,0) 6
(x9, x54) (10,13) 7
(x10, x53) (15,9) 6
(x11, x52) (3,10) 9
(x12, x51) (11,12) 7
(x13, x50) (7,6) 1
(x14, x49) (1,15) 14
(x15, x48) (4,0) 4
(x16, x47) (10,13) 7
(x17, x46) (12,2) 14
(x18, x45) (9,8) 1
(x19, x44) (5,14) 11
(x20, x43) (3,10) 9
(x21, x42) (6,12) 10
(x22, x41) (14,4) 10
(x23, x40) (11,9) 2
(x24, x39) (5,7) 2
(x25, x38) (0,1) 1
(x26, x37) (0,14) 14
(x27, x36) (14,4) 10
(x28, x35) (12,1) 13
(x29, x34) (9,11) 2
(x30, x33) (7,2) 5
(x31, x32) (2,7) 5Table 5.1: Pairs of output bits for DES S-box S8, whose 
orresponding input bitsdi�er by all 6 bits, along with di�eren
es (distan
es) between these output-pairs.



72Distan
es, d 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15Frequen
y, f(d) 0 3 3 0 2 2 3 5 0 3 4 1 0 2 4 0Table 5.2: Frequen
y of o

urren
e of d of Table 5.1For example, the value d = 7 o

urs �ve times be
ause in ea
h of the �ve pairs
(x6, x57), (x7, x56), (x9, x54), (x12, x51) and x16, x47), the �rst value is at a distan
e7 from the se
ond.None of the frequen
ies in Table 5.2 ex
eeds 8 and therefore DES S-box S8satis�es 
riterion S-7.If any frequen
y in the table ex
eeds 8 for an S-box, that S-box violates 
riterionS-7 and should be reje
ted.Remark 5.1 After 
reating the frequen
y table for the entire S-box, the followingequation holds:

2n−1
∑

d=0

f(d) =
|X|

2Fun
tion Des
riptionInitPartialVarsAndCounts() if (k = 0) then c0, c1, . . . , c2m−1 ← 0Che
kPartialSBox() return truePro
essNary() return (k = |X|).MakeAndChe
kSBox() Φ← MakeSBox(X)Compute σX(Φ) using Equation 4.6Let d← xi ⊕ x2m−1−i, 0 ≤ i < 2m−1Compute cd = f(d) as in Table 5.2if (σX(Φ) ≤ τ) ∧ ((∀d)(cd ≤ 8)) return ΦPro
essOtherDomains() return trueReverseUpdateCountDistSet() (No operation)ReverseUpdateCount() (No operation)Table 5.3: Fun
tions for Nonin
remental, Complete Heuristi
s for S-2 and S-7, inSolver (Se
tion 2.7)



735.2 A Non-in
remental Heuristi
 for the COUNT 
onstraintThe �rst heuristi
 is a straightforward implementation of Eq. 5.1, as Table 5.3suggests. This Table is an extension of Table 4.5, with the 
he
k for Eq. 5.1ampli�ed. We will denote this implementation by Hφ,τ
S .Alternatively, we 
ould extend the implementation of Table 4.5 to in
lude thisheuristi
 for S-7, whi
h we will 
all Hφ,τ

C . In either 
ase, one 
an expe
t thisimplementation of the COUNT 
onstraint to be ine�
ient (systemati
 generate-and-test), and an improvement upon S-box sear
h speed is ne
essary.5.3 An In
remental Heuristi
 that 
he
ks Partially-Assigned S-boxes for the COUNT ConstraintFor a 
ompletely-�lled S-box Φ having φ variables, instead of in
rementing 
ountsand 
he
king for S-7 after instantiating all φ variables the way the non-in
rementalheuristi
 does, a partial S-box Φ′ that eventually extends to Φ is 
onsidered. 2m
ounts {c0, c1, . . . , c2m−1} are initialized to zero. Ea
h of these 
ounts is subs
riptedby the di�eren
e d = xi ⊕ x2n−1−i between the outputs xi and x2n−1−i of Φ whoseinputs di�er by all m bits. The 
ounts are in
remented by 1 after at least |X|
2

as-signments are made. If any 
ount cd ex
eeds 8, S-7 is violated and the solver reje
tsthe partial S-box Φ′. Table 5.5 implements this heuristi
, extending Table 4.8. Wewill denote this implementation by Hφ,τ
C7

.Example 5.2 Consider the partially assigned S-box of Figure 5.2 having variables
x0 up to x40 assigned. Sin
e variables up to x31 are assigned, the frequen
ies cd 
anbe determined starting from the assignment to x32. These frequen
ies are re
ordedin Table 5.4.0 3 5 6 9 10 12 15 7 4 2 1 14 13 11 83 0 6 5 10 9 15 12 4 7 1 2 13 14 8 113 0 6 5 100 3 5 8Figure 5.2: A Partial S-box obtained by assigning values to variables x0, x1, . . . , x40Note that x22 = 1 from Figure 5.2. As a result of earlier domain-redu
tionsdue to AC2001 following earlier assignments, the (redu
ed) domain of x41 is
{6, 9, 12, 15}. Consider the assignment x41 = 6. Let d = x41⊕x63−41 = x41⊕x22 =



74Distan
es, d 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15Frequen
y, cd 0 0 0 0 0 0 1 0 8 0 0 0 0 0 0 0Table 5.4: Frequen
y of o

urren
e of d for the Partially Assigned S-box of Fig-ure 5.2
6 ⊕ 1 = 7. Sin
e cd = c7 = 0 6= 8, in
rement c7 by 1 so that the entry for c7,whi
h is 0 in Table 5.4, now be
omes 1 and the next variable x42 is 
onsidered forassignment. The pro
ess repeats.Consider now the assignment x41 = 9. Let d = x41 ⊕ x63−41 = x41 ⊕ x22 =
9 ⊕ 1 = 8. Note that cd = c8 = 8 from Table 5.4, and therefore the assignment
x41 = 9 in
reases c8 by 1 to 9, violating the 
onstraint for S-7. This assignmenttherefore results in reje
tion of the resulting partially assigned S-box and x41 = 9has to be abandoned.Remark 5.2 If |X|

2
+ k variables are assigned values, then the following is true:

2n−1
∑

d=0

cd = kIf k = |X|
2
, then this equation redu
es to the one mentioned in Remark 5.1.Remark 5.3 An improvement to Hφ,τ

C7

an be made by redu
ing the number of
he
ks for S-7. Che
king if cd > 8 immediately after assigning values to the �rst

|X|
2

variables is of no use sin
e all cd's ex
ept one are set to zero and the one cd willbe equal to 1. No cd will ever attain 8 at this point. The starting point to verify if
cd > 8 is, a
tually, after |X|

2
+ 8 variables are assigned values sin
e, at this pointit is possible that exa
tly one cd attained 8 for some d while all others are zeros.(k = 8 in Remark 5.2.)

Hφ,τ
C7


an be further improved by a novel approa
h of integrating the n-ary
onstraint into the solver, proje
ting onto domains of future variables redu
ingthese during the pro
ess, prior to applying AC2001. The approa
h is dis
ussednext.5.4 An In
remental Heuristi
 that employs Proje
tionsJust as in the earlier in
remental heuristi
 for S-7, let cd denote the 
ount ofdistan
es d where d is the distan
e between xi and x2n−i−1 representing S-box



75Fun
tion Des
riptionInitPartialVarsAndCounts() Let X ′ ← {x : x ∈ X ∧ x is assigned.}if (k = 0) then Let: c0, c1, . . . , c2m−1 ←
0

Che
kPartialSBox()
Set s2ok ← true, s7ok ← trueif (k ≥ |X|

2
+ τ) then {Che
k S-2 par-tially}

Φ′ ← MakePartialSBox(X ′)if Φ′ violates either Property 4.3 orProperty 4.4 then s2ok ← falseend ifif (k ≥ X
2
)∧ s2ok then {Che
k S-7 par-tially}Let d← xk ⊕ x|X|−k−1if (cd + 1 > 8) then s7ok ← falseif s7ok then cd ← cd + 1end ifreturn s2ok ∧ s7okPro
essNary() if (k = |X|) then return true else re-turn falseMakeAndChe
kSBox() Φ← MakeSBox(X)Pro
essOtherDomains() return trueReverseUpdateCountDistSet() (No operation)ReverseUpdateCount() if (k ≥ |X|

2
) then cd ← cd − 1Table 5.5: Fun
tions for Hφ,τ

C7
in Solver (Se
tion 2.7)outputs for those pairs of inputs that di�er by all n bits, with 0 ≤ d < 2m. Allthe cd's, namely, c0, c1, . . . , c2m−1, are initialized to zero. So long as |X ′| < |X|

2
, cdis not updated, similar to what o

urs in fun
tion Che
kPartialSBox of heuristi


Hφ,τ
C7

.For assignments to the next eight variables xi when |X|
2
≤ i < |X|

2
+8, in
rementthe 
ount cd = c|X|−i−1. During these assignments, 1 ≤ cd < 8 and no 
he
king for

cd > 8 is needed at this point.



76The 
he
king for S-7 begins when cd be
omes equal to 8 starting from thenext variable assignment. Denote this next assignment by xk = v, with |X|
2

+ 8 ≤
k < |X| and v ∈ D′

k, D′
k being the (redu
ed) domain of xk. A distan
e-set

∆ = {d = x|X|−k−1 ⊕ xk : cd = 8} is formed from this point onwards, with
0 ≤ |∆| ≤ 2m.Whenever |X|

2
+8 ≤ k < |X|, remove values f ∈ {x|X|−k−1⊕e : e ∈ ∆} from thedomains in D′ \D′
X′ \{D′

k} of all future variables. If a domain be
omes empty dueto this removal, abandon the assignment xk = v sin
e a dead-end is en
ountered.Otherwise, add ea
h of these removed values f to the deletion set DS.This heuristi
 also needs to restore values of 
ounts cd and also, undoes the
urrent addition to the distan
e-set ∆ at the 
urrent level of re
ursion beforetermination. Table 5.6 implements this heuristi
, and is an extension of Table 4.8.We will denote the implementation of Table 5.6 by Hφ,τ
AC7.Remark 5.4 Hφ,τ

AC7 ensures that 0 ≤ cd < 9.For this reason, no expli
it 
he
king of S-7 (in
rementally) is required as is the
ase with Hφ,τ
C7

.Property 5.1 Hφ,τ
AC7 gives the same set of S-boxes as Hφ,τ

C7
.ProofLet d = v ⊕ w and cd = 8. Consider the partial S-box having variable xk thatis to be assigned the value v from its domain D (i.e. v ∈ D), and having a variable

x|X|−k−1 = w already assigned, where |X|
2

+ 8 ≤ k < |X|. It is enough to provethat both heuristi
s Hφ,τ
C7

and Hφ,τ
AC7 will not assign xk = v.Suppose Hφ,τ

C7
tentatively assigns xk = v. Then we have

xk ⊕ x|X|−k−1 = v ⊕ w = dand Hφ,τ
C7

in
rements cd by 1, so that
cd > 8. violating S-7. Hφ,τ

C7
abandons the assignment xk = v whi
h will not be 
onsid-ered.Sin
e cd = 8, Hφ,τ

AC7 has in
luded d in the distan
e-set ∆ so that d ∈ ∆. Toproje
t x|X|−k−1 on D that is the domain of future variable xk, Hφ,τ
AC7 now traverses

∆ to 
ompute
e = d⊕ x|X|−k−1 = (v ⊕ w)⊕ w = v



77Fun
tion Des
riptionInitPartialVarsAndCounts() Let X ′ ← {x : x ∈ X ∧ x is assigned.}Let ∆← φif (k = 0) then c0, c1, . . . , c2m−1 ← 0

Che
kPartialSBox() Set s2ok ← trueif (k ≥ |X|
2

+ τ) then {Che
k S-2 par-tially}
Φ′ ← MakePartialSBox(X ′)if Φ′ violates either Property 4.3 orProperty 4.4 then s2ok ← falseend ifreturn s2okPro
essNary() if (k = |X|) then return true else re-turn falseMakeAndChe
kSBox() Φ← MakeSBox(X)

Pro
essOtherDomains()
if k ≥ |X|

2
thenSet d← xj ⊕ x|X|−j−1, cd ← cd + 1if (k ≥ |X|
2

+ 8) ∧ (cd = 8) then
∆← ∆ ∪ {d}for all e ∈ ∆ doSet f ← x|X|−j−1 ⊕ efor all x ∈ X \ (X ′ ∪ {xj}) doif f ∈ D′

x then
D′

x ← D′
x \ {f}if (D′

x = φ) return false
DS ← DS ∪ {f}end ifend forend forend ifend ifreturn true



78Fun
tion Des
ription
ReverseUpdateCountDistSet() if (k ≥ |X|

2
) thenif (k ≥ |X|
2

+ 8) ∧ (cd = 8) thenSet ∆← ∆ \ {d}end ifSet cd ← cd − 1end ifReverseUpdateCount() (No operation)Table 5.6: Fun
tions for Heuristi
 Hφ,τ
AC7 in Solver (Se
tion 2.7). Sin
e v ∈ D, HAC7 removes v from D, avoiding the assignment xk = v.Thus heuristi
s Hφ,τ

C7
and Hφ,τ

AC7 do not assign xk = v and this 
ompletes theproof.
Q.E.D.Example 5.3 Consider the partially assigned S-box of Figure 5.3 having variables

x0 up to x47 assigned. Sin
e variables up to x31 are assigned, the frequen
ies cd 
anbe determined starting from the assignment to x32. These frequen
ies are re
ordedin Table 5.7.0 3 5 6 9 10 12 15 7 4 2 1 14 13 11 83 0 6 5 10 9 15 12 4 7 1 2 13 14 8 113 0 6 5 15 12 10 90 3 5 6 12 15 9 10Figure 5.3: A Partial S-box obtained by assigning values to variables x0, x1, . . . , x47From the frequen
y table of Table 5.7, two distan
es d have 
ounts equal to8, namely, when d = 8, 13. These two values of d form the distan
e-set ∆ =
{8, 13}. As a result of earlier domain-redu
tions due to AC2001 following earlierassignments, the (redu
ed) domains for the future variables x48, x49, . . . , x63 arere
orded in the se
ond 
olumn of Table 5.8.Now traverse ea
h element e ∈ ∆ and remove values f = e ⊕ x63−i from thedomain of xi, 48 ≤ i < 64. The 
omputed values for f are in the third 
olumn



79Distan
es, d 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15Frequen
y, cd 0 0 0 0 0 0 0 0 8 0 0 0 0 8 0 0Table 5.7: Frequen
y of o

urren
e of d for the Partially Assigned S-box of Fig-ure 5.3of Table 5.8, while the redu
ed domains of the future variables are in the last
olumn of this table. For future variable x56 having (redu
ed) domain {1, 2, 4, 8},
x63−56 = x7 = 5 from Figure 5.3. e ∈ {8, 13} and f ∈ {8 ⊕ 5, 13 ⊕ 5} = {13, 8}as shown in the third 
olumn of Table 5.8 against variable x56. Removing thesevalues from the domain of x56 results in its redu
ed domain of {1, 2, 4}.Future Domain before Values to Domain AfterVariable Value Removal Remove Value Removal

x48 {8, 13, 14} {4, 1} {8, 13, 14}
x49 {11, 13, 14} {7, 2} {11, 13, 14}
x50 {11, 13, 14} {7, 2} {11, 13, 14}
x51 {8, 13, 14} {4, 1} {8, 13, 14}
x52 {8, 11, 13} {1, 4} {8, 11, 13}
x53 {8, 11, 14} {2, 7} {8, 11, 14}
x54 {8, 11, 14} {2, 7} {8, 11, 14}
x55 {8, 11, 13} {1, 4} {8, 11, 13}
x56 {1, 2, 4, 8} {13, 8} {1, 2, 4}
x57 {1, 2, 7, 11} {14, 11} {1, 2, 7}
x58 {1, 2, 7, 11} {14, 11} {1, 2, 7}
x59 {1, 2, 4, 8} {13, 8} {1, 2, 4}
x60 {1, 4, 7, 13} {8, 13} {1, 4, 7}
x61 {2, 4, 7, 14} {11, 14} {2, 4, 7}
x62 {2, 4, 7, 14} {11, 14} {2, 4, 7}
x63 {1, 4, 7, 13} {8, 13} {1, 4, 7}Table 5.8: Domains of future variables with values being removed due to proje
-tions of past assignments



805.5 Heuristi
sWe have dis
ussed the following heuristi
s employed by Solver for the n-ary
onstraints in our model, as governed by fun
tions InitPartialVarsAndCounts,PrePro
ess, Che
kPartialSBox, Pro
essNary, MakeAndChe
kSBox,Pro
essOtherDomains, ReverseUpdateCountDistSet and ReverseUpdateCount(Se
tion 2.7).Heuristi
 Hφ,τ
S Che
k the 
riteria S-2 and S-7 after a 
omplete S-box is formed.Heuristi
 Hφ,τ
C De
ompose the n-ary soft 
onstraint S-2 into hard 
onstraints byproje
tion onto already-assigned variables X ′ ⊆ X (Chapter 5). Che
k S-7after an entire S-box is formed, reje
ting if S-7 is violated.Heuristi
 Hφ,τ
C7

De
ompose the n-ary soft 
onstraint S-2 into hard 
onstraints byproje
tion onto already-assigned variables X ′ ⊆ X (Chapter 5). Che
k S-7at ea
h assignment where appli
able.Heuristi
 Hφ,τ
AC7 De
ompose the n-ary soft 
onstraint S-2 into hard 
onstraintsby proje
tion onto already-assigned variables X ′ ⊆ X (Chapter 5). Proje
tthe not-so-straightforwardly-de
omposable n-ary 
onstraint S-7 into binary
onstraints.We now introdu
e an optimization to Solver (Se
tion 2.7) to redu
e 
alls tofun
tion EstablishAC, and subsequently dis
uss a variable-ordering heuristi
 asgoverned by fun
tion π.5.5.1 Optimizations on the three Heuristi
sIn Solver (Se
tion 2.7), the deletion set DS is always populated by adding to it allvalues other than the one being assigned to the 
urrent variable, from its (redu
ed)domain (Line 12). In 
ase this domain is a singleton, DS is empty and no ar
-
onsisten
y 
he
k is required. A

ordingly, the 
all to fun
tion EstablishFullAC
an be made 
onditional. The program segment after Line 16 in Solver takesthe form shown in Table 5.9. This optimization redu
es the number of 
alls tothe fun
tion EstablishFullAC resulting in some speedup as the experiments willreveal.We refer to the three heuristi
s respe
tively, as HOφ,τ

S , HOφ,τ
C7

and HOφ,τ
AC7 withthe optimization introdu
ed in Solver(). Chapter 7 illustrates the speedup of so-lution generation resulting from this optimization and redu
tion of ar
-
onsisten
y
he
ks resulting from this optimization.



81if c4 thenif DS 6= φ then
D′′ ← EstablishAC(D′, DS)else
D′′ ← D′end ifif no domain in D′′ is empty then
Solver(X, D′′, C2, k + 1, τ)end ifend ifReverseUpdateCountDistSet()Table 5.9: An optimization introdu
ed in Solver (Se
tion 2.7)

5.5.2 Variable Ordering Heuristi
sIn the three heuristi
s Hφ,τ
S , Hφ,τ

C7
and Hφ,τ

AC7, and their optimized variants HOφ,τ
S ,

HOφ,τ
C7

and HOφ,τ
AC7 respe
tively, variable-ordering heuristi
s are employed as spe
i-�ed in the fun
tion Sele
tNextVariable of Solver (Se
tion 2.7). We will 
onsidertwo su
h heuristi
s.Straight-Line Variable-Ordering Heuristi
 In a Straight-Line Variable-Ordering Heuristi
, the variables are assigned in the logi
al order while read-ing S-box entries, that is, row-wise, for the S-box arrangement of Fig-ure 3.1. Referring to this �gure, the sequen
e of variable ordering is

x0, x2, . . . , x30, x1, x3, . . . , x31, x32, x34, . . . , x62, x33, x35, . . . , x63. For this heuristi
,the ordering fun
tion π assumes the following de�nition for an n×m S-box:
π(k) =



















2k, if k < 2n−2

2k − 2n−1 + 1, if 2n−2 ≤ k < 2n−1

2k − 2n−1, if 2n−1 ≤ k < 3× 2n−2

2k − 2n + 1 if 3× 2n−2 ≤ k < 2n

(5.2)Example 4.2 demonstrates a partially assigned S-box that follows the straight-line variable ordering heuristi
.Zig-Zag Variable-Ordering Heuristi
 A se
ond heuristi
 under 
onsiderationis what we will refer to as the Zig-Zag Variable Ordering Heuristi
. Here, variablesare assigned values in a zig-zag order, that is, x0, x1, x2, . . . , x63. If one visits the



82variables in the S-box of Figure 3.1, a zig-zag pattern is observed and hen
e thename for this heuristi
. For this heuristi
, the ordering fun
tion π assumes thefollowing de�nition for the sequen
e of variables of an n×m S-box:
π(k) = k (5.3)This is the variable-ordering heuristi
 that has been used in all the examples ofthis Chapter. In parti
ular, example 4.1 demonstrates a partially assigned S-boxthat follows the zig-zag variable ordering heuristi
.The de�nitions of π(k) given by equations 5.2 and 5.3 are to be used in Solver(Se
tion 2.7), in the fun
tion Sele
tNextVariable(k).Analogs of the three heuristi
s Hφ,τ
S , Hφ,τ

C7
and Hφ,τ

AC7, and their optimized vari-ants HOφ,τ
S , HOφ,τ

C7
and HOφ,τ

AC7 respe
tively, now result. These heuristi
s are 
alled
V φ,τ

S , V φ,τ
C7

and V φ,τ
AC7, and their optimized variants, V Oφ,τ

S , V Oφ,τ
C7

and V Oφ,τ
AC7, re-spe
tively, for Straight-Line variable ordering. For Zig-Zag variable ordering, theheuristi
s will have the same annotation, namely, Hφ,τ

S , Hφ,τ
C7

, Hφ,τ
AC7, and theiroptimized variants HOφ,τ

S , HOφ,τ
C7

and HOφ,τ
AC7, respe
tively.A step should not be present in heuristi
 V φ,τ

AC7 (V Oφ,τ
AC7) that is present in

Hφ,τ
AC7 (HOφ,τ

AC7). In Table 5.6, the extra 
he
k (k ≥ |X|
2

+ 8) that appears infun
tions Pro
essOtherDomains and ReverseUpdateCountDistSet for heuristi

Hφ,τ

AC7 (HOφ,τ
AC7) is no longer appli
able, and this 
he
k should be removed fromthese two pla
es while implementing V φ,τ

AC7 (V Oφ,τ
AC7).5.5.3 Domain Ordering Heuristi
sThe ordering of domains for ea
h variable is another 
onsideration worth exploringfrom the viewpoint of e�
ien
y of sear
h. No modi�
ation is done to the solverand no new steps are ne
essary. Only the domains pre
ompiled into the solver arepermuted. Two domain-ordering heuristi
s are examined.Default Ordering In this heuristi
, the domain for ea
h variable is ordered inas
ending order, that is, for ea
h variable of an n×m S-box, its domain is the set

D = {0, 1, 2, . . . , 2m − 1}.Random Permutation Here the domain of ea
h variable is randomly permutedbased on a spe
i�ed seed. In the se
tion on experiments, we will 
onsider one su
hrandom ordering for the purposes of 
omparison.Further dis
ussion on domain-ordering heuristi
s is made in Chapter 7.



835.6 Summary and Looking AheadThe COUNT 
onstraint is a global n-ary 
onstraint. We have dis
ussed a non-in
remental approa
h to 
he
king for this 
onstraint, and an in
remental approa
hto 
he
king on partially assigned S-boxes.The global n-ary 
onstraint for 
riterion S-7 is not straightforwardly de
ompos-able into binary 
onstraints. Nevertheless, we are able to integrate this 
onstraintinto the solver by proje
ting past assignments onto the domains of future variables.During the pro
ess, these domains are redu
ed.An optimization has been introdu
ed in Solver (subse
tion 5.5.1) to avoidunne
essary ar
-
onsisten
y 
he
king in 
ase nothing is added to the deletion set
DS. This happens when the (redu
ed) domain of the variable being 
onsideredfor assignment 
ontains only one element.Two kinds of variable ordering heuristi
s are 
onsidered (subse
tion 5.5.2): Astraight-line variable ordering and an alternative zig-zag variable ordering. Value-ordering is 
onsidered by randomly permutating domains (subse
tion 5.5.3).Chapter 7 dis
usses the performan
es of the several heuristi
s under these 
ir-
umstan
es.
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Chapter 6Symmetry. The Multiple S-box ProblemIn this 
hapter, we will dis
uss symmetry of S-boxes stri
tly from a CSP stand-point. Our main obje
tive in this Chapter is to demonstrate new forms of sym-metries in S-boxes that the CSP model so elegantly exposes.We also dis
uss the 
riterion S-8 that involves arrangements of S-boxes takeneight at a time, and sele
tion of arrangements that minimizes a 
ost fun
tion.6.1 Symmetry in CSPs and Symmetri
 ConstraintsA 
onstraint is symmetri
 if, upon inter
hanging some or all of the variables (valuesto ea
h variable) with others in its s
ope (domain), the 
onstraint is not altered.Example 6.1 The ternary 
onstraint given by the equation x + y + z = 5, issymmetri
, be
ause, if we inter
hange x and y, the resulting 
onstraint be
omes

y + x + z = 5 whi
h is the same as the given one. Similar is the 
ase if x isinter
hanged with y, y with z and z with x simultaneously. This is an example ofa 
onstraint with variable symmetry.6.1.1 Symmetry and E�
ien
yDue to symmetry, solution tuples that are en
ountered far later in the system-ati
 sear
h for solutions would already have been available if the symmetry wereidenti�ed, adding to e�
ien
y of solution generation.Example 6.2 Let the domains of the variables x, y and z of Example 6.1 be theset of integers {0, 1, 2, 3, 4, 5}. The assignment x = 0, y = 0, z = 5, or (0, 0, 5)for brevity, 
learly satis�es the 
onstraint x + y + z = 5. Upon simultaneouslyrepla
ing x, y, z with z, y, x respe
tively, the resulting 
onstraint is un
hanged asExample 6.1 suggests. Now the abbreviated assignment be
omes (5, 0, 0) whi
h isalso a solution. This solution would have o

urred mu
h later in the solution spa
eafter a systemati
 sear
h. But we are able to identify the same immediately dueto symmetry. In other words, identifying symmetry adds to e�
ien
y of solutiongeneration.



856.1.2 Value, Variable and Conditional SymmetryA 
onstraint possesses value symmetry if inter
hanging valid values assigned tovariables 
ontinues to satisfy the 
onstraint. It possesses variable symmetry if thevariables in its s
ope 
an be permuted, and 
onditional symmetry if the solutionsare preserved subje
t to some 
ondition. A CSP 
an possess more than one ofthese forms of symmetry simultaneously. For example, the 
onstraints analyzed inExamples 6.1 and 6.2 possess both, variable and value symmetry.Example 6.3 Consider the following CSP for the problem of �nding PythagoreanTriplets, involving variables X = {x, y, z}:
x2 + y2 = z2

x, y, z ∈ {3, 4, . . . , 100}A solution is x = 3, y = 4, z = 5. Upon inter
hanging the values of x and
y, the assignment x = 4, y = 3, z = 5 is also a solution. This CSP possessesvalue symmetry. Moreover, if x and y are inter
hanged, the equation remainsmathemati
ally unaltered and the CSP possesses variable symmetry as well.6.1.3 Breaking of Symmetry in CSPsBreaking of all symmetries is shown to be NP-hard, however, there are pra
ti
always by whi
h most of these 
an be broken [70℄. For example, 
onstraints areadded to remove the aforementioned forms of symmetry [48, 69℄.Example 6.4 Consider Example 6.3 that involves �nding Pythagorean Triplets.A number of solutions involve values of x and y inter
hanged due to symmetry,su
h as, x = 5, y = 12, z = 13 and x = 12, y = 5, z = 13. It is often su�
ient tohave one of these two solutions instead of having both. By imposing an orderingon the values of x and y, namely, by adding the 
onstraint,

x < ythe solution x = 12, y = 5, z = 13 is eliminated and symmetry is broken.6.2 Symmetry in S-boxesUsing our CSP model formulated in Chapters 3, 4 and 5, we have identi�ed �veforms of symmetry in S-boxes dire
tly arising out of the 
riteria for DES S-2 toS-7. These forms are the following:



861. Row Symmetry, due to 
riterion S-42. Column Symmetry, due to 
riterion S-53. Diagonal Symmetry, due to 
riterion S-6,4. Rotational Symmetry, due to 
riterion S-7, and5. Bit Inversion Symmetry, due to 
riteria S-2, S-3, S-4, S-5, S-6 and S-7.The granularity of the symmetry being addressed is very important. We havesymmetry of an individual 
onstraint, we have symmetry of sets of 
onstraints,and ultimately of the entire CSP. An individual 
onstraint may exhibit symmetrybut the appropriate transformation may violate another 
onstraint and therefore,may not result in an S-box. Forms of symmetry that satisfy all 
onstraints andtherefore, result in newer S-boxes, are also prevalent. The Row, Column and Di-agonal symmetry fall under the �rst 
ategory, not ne
essarily resulting in S-boxes.On the other hand, the Rotational and Bit Inversion symmetry will satisfy all theother 
onstraints, and will yield alternative S-boxes, as we will see in this Chapter.6.3 Relevant Properties of the ex
lusive-OR Operator, Par-ity, and the Linear Approximation TableLet us �rst dis
uss properties of the ex
lusive-OR operator relevant to symmetryof S-boxes. We will prove these for two bits a and b and extend these to the gen-eral 
ase where the operands are n-bit quantities. Next, we dis
uss the parity ofa number and its properties. Finally, we dis
uss properties of the Linear Approx-imation Table for a 6× 4 S-box that will be used in Rotational and Bit Inversionsymmetries.6.3.1 Relevant Properties of the ex
lusive-OR OperatorDe�nition 6.1 The ex
lusive-OR operator on two Boolean quantities a and b isde�ned by the following expression:
a⊕ b = a · b + a · b (6.1)Remark 6.1 The ex
lusive-OR operator on two n-bit quantities A = a0a1 . . . an−1and B = b0b1 . . . bn−1 is equal to the n-bit bit-pattern formed by the bits a0 ⊕ b0,

a1⊕ b1, . . . , an−1⊕ bn−1. In other words, if n is the word-length of a 
omputer, theoperation A⊕ B results in n parallel ex
lusive-OR operations on 1-bit operands.
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e the following properties for twoBoolean entities a and b. Generalizations to n-bit bit-patterns A and B are easilymade.1. a⊕ 0 = 0⊕ a = a2. a⊕ 1 = 1⊕ a = a3. a⊕ a = 04. a⊕ a = 15. The ex
lusive-OR operation on two Boolean quantities a and b is 
ommuta-tive, that is, a⊕ b = b⊕ a.6. The ex
lusive-OR operation on three Boolean quantities a, b and c is asso-
iative, that is, (a⊕ b)⊕ c = a⊕ (b⊕ c).7. The result of the ex
lusive-OR operation on a and b is the same as that oftheir one's-
omplements, a and b respe
tively, that is, a⊕ b = a⊕ b.8. For Boolean variables a and b, the following equations hold: a⊕ (a⊕ b) = b,
b ⊕ (a ⊕ b) = a. This property easily extends to two n-bit operands A and
B, that is, A ⊕ (A ⊕ B) = B and B ⊕ (A ⊕ B) = A. The idea is used instream 
iphers for en
ryption and de
ryption. It is also used in high-speedsoftware implementations of symmetri
 key 
ryptographi
 algorithms.6.3.2 The Parity of a Bit PatternRe
all that the parity of an n-bit bit pattern a = a0a1 . . . an−1 is equal to thenumber of 1's in the bit pattern. If there are an odd number of 1's, then we saythat a is of odd parity; if this 
ount is an even number, a is said to be of evenparity. The parity p of a is also equal to the ex
lusive-OR of the bits in a, that is,

p = a0 ⊕ a1 ⊕ . . .⊕ an−1Property 6.1 If an n-bit number a has parity p (p = 1 for odd parity and 0 foreven), then its 1's-
omplement ā has parity p̄ if n is odd and p if n is even.



88Proof Let a = a0a1a2 . . . an−1. Then by the de�nition of parity,
p = a0 ⊕ a1 ⊕ a2 ⊕ . . .⊕ an−1 (6.2)We also have the following Boolean identity:

1⊕ 1⊕ . . .⊕ 1, n times =

{

1, for odd n
0, for even n

(6.3)Let q be the parity of ā, obtained by ex
lusive-OR of ea
h bit in a with 1.Then,
q = (a0 ⊕ 1)⊕ (a1 ⊕ 1)⊕ . . .⊕ (an−1 ⊕ 1)

= (a0 ⊕ a1 ⊕ a2 ⊕ . . .⊕ an−1)⊕ (1⊕ 1⊕ . . .⊕ 1, n times)
=

{

p⊕ 1, if n is odd
p⊕ 0, if n is even , using Equations 6.2 and 6.3

=

{

p̄, if n is odd
p, if n is even

Q.E.D.6.3.3 Relevant Properties of the Linear Approximation TableWe will now prove some important results that hold for the Linear ApproximationTable of an S-box of Chapter 4. For simpli
ity, the dis
ussion is limited to 6× 4
S-boxessin
e it is their symmetry that is being 
onsidered. These properties for theLinear Approximation Table are being dis
ussed here rather than in Chapter 4, forimmediate use in results on Symmetry, parti
ularly Rotational and Bit InversionSymmetry.We 
onsider one layer of the S-box Φ, obtained by making an assignment to asingle variable xi 
orresponding to input i (Example 4.6). Ea
h entry in this layeris either 0 or 1 depending upon whether equation La(i) = Lb(xi) holds or not, forany a, b (subse
tion 4.2.1). In other words, we 
an 
onsider ea
h entry of a layerto be equal to La(i)⊕ Lb(xi), also equal to La(i)⊕ Lb(xi)⊕ 1.Property 6.2 Let i = i0i1 . . . i5, a = a0a1 . . . a5 and p = a0⊕a1⊕. . .⊕a5 representthe parity of a, equal to the number of 1's in the binary representation of a. Then
La(i) = La(i)⊕ p.



89Proof We have
La(i) = a0i0 ⊕ a1i1 ⊕ . . .⊕ a5i5

= a0 · (i0 ⊕ 1)⊕ a1 · (i1 ⊕ 1)⊕ . . .⊕ a5(i5 ⊕ 1)

= (a0i0 ⊕ a1i1 ⊕ . . .⊕ a5i5)⊕ (a0 ⊕ a1 ⊕ . . .⊕ a5)

= La(i)⊕ pwhi
h proves the proposition.
Q.E.D.Property 6.3 Ea
h entry in the Linear Approximation Table 
orresponding tothe single assignment xi = v of an S-box di�ers from the 
orresponding entry forthe single assignment xi = v by the parity p of a, the number of the row in theTable in whi
h the entry is situated.Proof For the single assignment xi = v, ea
h entry in the Linear ApproximationTable is of the form y = La(i)⊕Lb(v)⊕1 as dis
ussed at the start of this subse
tion.Consider the Linear Approximation Table for the assignment xi = v. Ea
h entryin this table will be of the form

La(i)⊕ Lb(v)⊕ 1

= La(i)⊕ p⊕ Lb(v)⊕ 1, (Property 6.2)
= La(i)⊕ Lb(v)⊕ 1⊕ p, (Commutativity of ex
lusive-OR)
= y ⊕ pwhi
h is the required result. This result will be used in proving the invarian
e ofthe s
ore of an S-box over Rotational symmetry.

Q.E.D.Remark 6.2 Property 6.3 
an be reworded as follows: Given a single assignment
xi = v for an S-box entry. An entry in Row a and Column b of the LinearApproximation Table for the assignment xi = v̄ is equal to the truth value of thefollowing expression:

La(i) =

{

Lb(v), if a has odd parity
Lb(v), if a has even parityProperty 6.4 Ea
h entry in the Linear Approximation Table 
orresponding tothe single assignment xi = v of an S-box di�ers from the 
orresponding entry forthe single assignment xi = v by the parity q of b, the number of the 
olumn in theTable where the entry is situated.



90Proof For the single assignment xi = v, ea
h entry in the Linear ApproximationTable is of the form y = La(i)⊕Lb(v)⊕1 as dis
ussed at the start of this subse
tion.Consider the Linear Approximation Table for the assignment xi = v. Ea
h entryin this table will be of the form
La(i)⊕ Lb(v)⊕ 1

= La(i)⊕ Lb(v)⊕ q ⊕ 1, (Property 6.2)
= La(i)⊕ Lb(v)⊕ 1⊕ q, (Commutativity of ex
lusive-OR)
= y ⊕ qwhi
h is the required result. This result will be used in proving the invarian
e ofthe s
ore of an S-box over Bit Inversion symmetry.

Q.E.D.Remark 6.3 Property 6.4 
an be reworded as follows: Given a single assignment
xi = v for an S-box entry. An entry in Row a and Column b of the LinearApproximation Table for the assignment xi = v̄ is equal to the truth value of thefollowing expression:

La(i) =

{

Lb(v), if b has odd parity
Lb(v), if b has even parityLet us examine ea
h form of symmetry against the 
riteria spe
i�ed. In theremainder of this Chapter, the dis
ussion is made with referen
e to 6× 4 S-boxes.6.4 Row SymmetryWe de�ne row symmetry of a 6×4 S-box to mean that if its rows are inter
hanged,the resulting 
on�guration still satis�es the 
riterion (or 
riteria) in question.Property 6.5 Criterion S-4 exhibits row symmetry but only if the top two andbottom two row inter
hanges o

ur simultaneously.Proof Consider two S-box inputs 2i and (2i + 1) that di�er only in their leastsigni�
ant bits, 0 ≤ i < 32. The requirement of 
riterion S-4 is satis�ed anda

ording to 
riterion S-4,
wt(x2i ⊕ x2i+1) ≥ 2 (6.4)By the 
ommutativity property of the ex
lusive-OR operation, Equation 6.4
an be rewritten as:



91
wt(x2i+1 ⊕ x2i) ≥ 2This means that inter
hanging x2i+1 and x2i does not a�e
t the 
onstraint for
riterion S-4, suggesting that S-4 possesses variable symmetry. With referen
e toFigure 6.1, variables (i.e. S-box outputs) x2i o

ur in Row 0 whenever 0 ≤ i < 16and Row 2 for 16 ≤ i < 32, while variables (S-box outputs) x2i+1 o

ur in the othertwo rows, Row 1 and Row 3. In other words, variables with even subs
ripts x2jand 
orresponding variables with odd subs
ripts x2j⊕1 having inputs that di�er intheir least signi�
ant bits, are in the neighboring rows of the S-box when organizedas in Figure 6.1 that are inter
hangeable. This proves the proposition.

Q.E.D.6.4.1 Only the Least Signi�
ant Bits
i1i2i3i4

i0i5 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150 x0 x2 x4 x6 x8 x10 x12 x14 x16 x18 x20 x22 x24 x26 x28 x301 x1 x3 x5 x7 x9 x11 x13 x15 x17 x19 x21 x23 x25 x27 x29 x312 x32 x34 x36 x38 x40 x42 x44 x46 x48 x50 x52 x54 x56 x58 x60 x621 x33 x35 x37 x39 x41 x43 x45 x47 x49 x51 x53 x55 x57 x59 x61 x63Figure 6.1: S-6 for a 6 × 4 S-box exhibiting Row Symmetry. The odd rows areshown in bold font.We have 
onsidered only the least signi�
ant bits for any two input bits to the
S-box. This satis�es the requirement for S-4, namely that the two inputs di�er inonly one bit. However, S-4 need not be satis�ed only in this manner. In fa
t, the6-bit input i 
an di�er by 1 bit with 6-bit inputs i⊕2j , where 0 ≤ i < 64, 0 ≤ j < 6.That is, ea
h variable xi is involved with variables xi⊕2j in a 
onstraint, 0 ≤ i < 64,
0 ≤ j < 6. There are 6 su
h binary 
onstraints for ea
h variable leading to a totalof 192 
onstraints for S-4. (Also, refer Subse
tion 3.2.5.) Table 6.1 demonstratesthese di�eren
es for ea
h variable. For example, the �rst entry of the top left table
ontains x0 on the left hand 
olumn headed by �Row 0 Variable� and six variables
x1, x2, x4, x8, x16, x32 on the right-hand-
olumn headed by �Di�ers from ea
h of thefollowing Variables�. The interpretation of this line, using Equation 3.2, leads tothe following six 
onstraints for variable x0:
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wt(x0 ⊕ x1) ≥ 2

wt(x0 ⊕ x2) ≥ 2

wt(x0 ⊕ x4) ≥ 2

wt(x0 ⊕ x8) ≥ 2

wt(x0 ⊕ x16) ≥ 2

wt(x0 ⊕ x32) ≥ 2 (6.5)For example, to satisfy 
riterion S-4, variable x0 in Row 0 should di�er fromthe six variables x1, x2, x4, x8, x16 and x32 by at least two bits sin
e S-box input 0di�ers from ea
h of 1, 2, 4, 8, 16 and 32 by exa
tly one bit. We are 
onsidering,for row symmetry, only the �rst of these six variables that are shown in boldfa
ein Table 6.1. Thus the set of variables in ea
h 
olumn headed by �Row� in thistable and the �rst of the list of six variables on its right, in the 
olumn headed by�Di�ers from ea
h of the following variables�, reside in 
onse
utive rows and areinter
hangeable, resulting in row symmetry. Table 6.1 should be 
ompared withFigure 6.1 whi
h pi
turizes the row symmetry, the variables in the odd rows beingshown in boldfa
e.The row symmetry is not 
onditional. For example, whether the other �vevariables x2, x4, x8, x16 and x32 among the six (upon in
luding x1) parti
ipate with
x0 in the symmetry or not, the row symmetry is preserved only be
ause of the �rstvariable x1 in the set of ea
h of these six variables involved in S-4.6.4.2 Simultaneous Row Inter
hangesThe reason for the inter
hanges between rows to be simultaneous is the following.Ea
h 
onstraint listed in a row 
ontains exa
tly one variable from the third andea
h listed for the se
ond row 
ontains exa
tly one from the fourth. For example,
onsider the six 
onstraints involving x0. Among these, Equation 6.5 
ontains theonly variable x32 from Row 2. The same is true for the other 
onstraints involvingthe remaining variables.Inter
hanging only the �rst two rows and keeping the third and fourth rows asthey are, result in the variables parti
ipating in those 
onstraints get inter
hangedex
ept for the variables of the untou
hed rows, giving rise to new 
onstraints thatare not in S-4. Due to the upper bound on the total number of 
onstraints for S-4,the new 
onstraints end up repla
ing some of the existing 
onstraints in S-4, andare therefore invalid. For example, inter
hanging Row 0 and Row 1 of Figure 6.1results in the following 
onstraints for variable x1:
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Row 0 Di�ers from ea
h of Row 1 Di�ers from ea
h ofVariable the following Variables Variable the following Variables
x0 x1, x2, x4, x8, x16, x32, x1 x0, x3, x5, x9, x17, x33,
x2 x3, x0, x6, x10, x18, x34, x3 x2, x1, x7, x11, x19, x35,
x4 x5, x6, x0, x12, x20, x36, x5 x4, x7, x1, x13, x21, x37,
x6 x7, x4, x2, x14, x22, x38, x7 x6, x5, x3, x15, x23, x39,
x8 x9, x10, x12, x0, x24, x40, x9 x8, x11, x13, x1, x25, x41,
x10 x11, x8, x14, x2, x26, x42, x11 x10, x9, x15, x3, x27, x43,
x12 x13, x14, x8, x4, x28, x44, x13 x12, x15, x9, x5, x29, x45,
x14 x15, x12, x10, x6, x30, x46, x15 x14, x13, x11, x7, x31, x47,
x16 x17, x18, x20, x24, x0, x48, x17 x16, x19, x21, x25, x1, x49,
x18 x19, x16, x22, x26, x2, x50, x19 x18, x17, x23, x27, x3, x51,
x20 x21, x22, x16, x28, x4, x52, x21 x20, x23, x17, x29, x5, x53,
x22 x23, x20, x18, x30, x6, x54, x23 x22, x21, x19, x31, x7, x55,
x24 x25, x26, x28, x16, x8, x56, x25 x24, x27, x29, x17, x9, x57,
x26 x27, x24, x30, x18, x10, x58, x27 x26, x25, x31, x19, x11, x59,
x28 x29, x30, x24, x20, x12, x60, x29 x28, x31, x25, x21, x13, x61,
x30 x31, x28, x26, x22, x14, x62, x31 x30, x29, x27, x23, x15, x63,Row 2 Di�ers from ea
h of Row 3 Di�ers from ea
h ofVariable the following Variables Variable the following Variables
x32 x33, x34, x36, x40, x48, x0 x33 x32, x35, x37, x41, x49, x1

x34 x35, x32, x38, x42, x50, x2 x35 x34, x33, x39, x43, x51, x3

x36 x37, x38, x32, x44, x52, x4 x37 x36, x39, x33, x45, x53, x5

x38 x39, x36, x34, x46, x54, x6 x39 x38, x37, x35, x47, x55, x7

x40 x41, x42, x44, x32, x56, x8 x41 x40, x43, x45, x33, x57, x9

x42 x43, x40, x46, x34, x58, x10 x43 x42, x41, x47, x35, x59, x11

x44 x45, x46, x40, x36, x60, x12 x45 x44, x47, x41, x37, x61, x13

x46 x47, x44, x42, x38, x62, x14 x47 x46, x45, x43, x39, x63, x15

x48 x49, x50, x52, x56, x32, x16 x49 x48, x51, x53, x57, x33, x17

x50 x51, x48, x54, x58, x34, x18 x51 x50, x49, x55, x59, x35, x19

x52 x53, x54, x48, x60, x36, x20 x53 x52, x55, x49, x61, x37, x21

x54 x55, x52, x50, x62, x38, x22 x55 x54, x53, x51, x63, x39, x23

x56 x57, x58, x60, x48, x40, x24 x57 x56, x59, x61, x49, x41, x25

x58 x59, x56, x62, x50, x42, x26 x59 x58, x57, x63, x51, x43, x27

x60 x61, x62, x56, x52, x44, x28 x61 x60, x63, x57, x53, x45, x29

x62 x63, x60, x58, x54, x46, x30 x63 x62, x61, x59, x55, x47, x31Table 6.1: Relationships between the variables parti
ipating in Criterion S-4
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S813 2 8 4 6 15 11 1 10 9 3 14 5 0 12 71 15 13 8 10 3 7 4 12 5 6 11 0 14 9 27 11 4 1 9 12 14 2 0 6 10 13 15 3 5 82 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11(a)Rows 0 and 1 inter
hanged, and Rows 2 and 3 inter
hanged1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 213 2 8 4 6 15 11 1 10 9 3 14 5 0 12 72 1 14 7 4 10 8 13 15 12 9 0 3 5 6 117 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8
(b)Figure 6.2: (a) The DES S-box S8. (b) An S-box derived S8 due to row symmetry,having a s
ore equal to 12

wt(x1 ⊕ x0) ≥ 2

wt(x1 ⊕ x3) ≥ 2

wt(x1 ⊕ x5) ≥ 2

wt(x1 ⊕ x9) ≥ 2

wt(x1 ⊕ x17) ≥ 2

wt(x1 ⊕ x32) ≥ 2 (6.6)Sin
e x1 is involved in six 
onstraints, 
riterion S-4 leads to 192 
onstraints.In equation 6.6, the 6-bit inputs 1 (= 0000012) and 32 (= 1000002) of the lastinequality do not di�er by one bit, but by two bits. Criterion S-4 does not spe
ifywhat happens in this 
ase. The issue we are having is due to the maximum boundon the total number of 
onstraints, resulting in some valid 
onstraints gettingrepla
ed by new 
onstraints su
h as the last inequality, violating S-4.6.4.3 An Example of Row SymmetryExample 6.5 Consider the DES S-box S8 depi
ted in Figure 6.2(a). Upon inter-
hanging Row 0 and Row 1, and simultaneously inter
hanging Row 2 and Row 3,the resulting 
on�guration is depi
ted in Figure 6.2(b).



95Pairs of variables parti
ipating Columns of Figure 6.3in Equation 6.7 that are inter
hangeable
(x0 : x12) (x1 : x13) (x32 : x44) (x33 : x45) Column 0 with Column 6
(x2 : x14) (x3 : x15) (x34 : x46) (x35 : x47) Column 1 with Column 7
(x4 : x8) (x5 : x9) (x36 : x40) (x37 : x41) Column 2 with Column 4
(x6 : x10) (x7 : x11) (x38 : x42) (x39 : x43) Column 3 with Column 5
(x16 : x28) (x17 : x29) (x48 : x60) (x49 : x61) Column 8 with Column 14
(x18 : x30) (x19 : x31) (x50 : x62) (x51 : x63) Column 9 with Column 15
(x20 : x24) (x21 : x25) (x52 : x56) (x53 : x57) Column 10 with Column 12
(x22 : x26) (x23 : x27) (x54 : x58) (x55 : x59) Column 11 with Column 13Table 6.2: Relationships between the variables parti
ipating in Criterion S-56.5 Column SymmetryA 6× 4 S-box exhibits 
olumn symmetry if, upon inter
hanging some or all of its
olumns, the resulting 
on�guration still satis�es the spe
i�ed 
riterion.Property 6.6 For a 6 × 4 S-box, Criterion S-5 exhibits 
olumn symmetry butonly if the following 
olumn inter
hanges o

ur simultaneously: Columns 0 and 6,1 and 7, 2 and 4, 3 and 5, 8 and 14, 9 and 15, 10 and 12, and 11 with 13.Proof Let us rewrite Equation 3.3 for a 6× 4 S-box, with the de
imal number12 repla
ing the equivalent binary number 0011002:

(∀i)(∀j)(0 ≤ i, j ≤ 63) ∧ (i 6= j) ∧ (i⊕ j = 12)

⇒ wt(xi ⊕ xj) ≥ 2 (6.7)Sin
e
i⊕ j = 12we have

i⊕ 12 = i⊕ (i⊕ j), from Eq. 6.8 (6.8)
= j, by Asso
iativity property of ex
lusive-OR (6.9)Substituting for j from equation 6.9, equation 6.7 
an be rewritten as:

(∀i)(0 ≤ i < 32) ∧ wt(xi ⊕ xi⊕12) ≥ 2 (6.10)Due to the 
ommutativity property of the ex
lusive-OR operator, equation 6.10
an be rewritten in the following way:



96
(∀i)(0 ≤ i < 32) ∧ wt(xi⊕12 ⊕ xi) ≥ 2 (6.11)In other words, variables xj and xi⊕12 
an be inter
hanged. For example, for i =

0, 1, 32, 33, variables xi = x0, x1, x32, x33 reside in Column 0 and the 
orrespondingvariables xi⊕12 = x12, x13, x44, x45 reside in Column 6, as shown in �gure 6.3, andColumns 0 and 6 
an be inter
hanged. The same reasoning holds for ea
h of theother 
olumns for the other values of i. This 
ompletes the proof.
Q.E.D.Table 6.2 depi
ts the relationships between the variables parti
ipating in Equa-tion 6.7. In the left-hand 
olumn, the notation (xi : xj) means that there exists a
onstraint between variables xi and xj governed by Equation 6.7. Noting the 
om-mutativity of the ex
lusive-OR operator, a 
onstraint of the form xi ⊕ xj 
an berewritten as xj ⊕xi, leading to an inter
hange of these variables. A

ordingly, theinterpretation in terms of 
olumn inter
hanges is given in the right-hand 
olumn ofTable 6.2. Figure 6.3 additionally shows the inter
hangeable 
olumns identi
allyformatted. An observation visible in Table 6.2 is that inter
hanges within 
olumns0 to 7 are identi
al with those within 
olumns 8 to 15. For this reason and to add
larity, Figure 6.3 shows the only the �rst eight inter
hangeable 
olumns.

x1x2x3x4

x0x5 0 1 2 3 4 5 6 7 8 . . . 150 x0 [x2] x4 (x6) x8 (x10) x12 [x14] x16 . . . x301 x1 [x3] x5 (x7) x9 (x11) x13 [x15] x17 . . . x312 x32 [x34] x36 (x38) x40 (x42) x44 [x46] x48 . . . x623 x33 [x35] x37 (x39) x41 (x43) x45 [x47] x49 . . . x63Figure 6.3: S-5 for a 6× 4 S-box exhibiting Column Symmetry. Inter
hangeable
olumns are formatted identi
ally. Only 
olumns 0 − 7 are shown, and 
olumns
8− 15 are similarly inter
hangeable.Example 6.6 Consider the DES S-box S8 depi
ted in Figure 6.4(a). Upon si-multaneously inter
hanging 
olumns 0 and 6, 1 and 7, 2 and 4, 3 and 5, 8 and14, 9 and 15, 10 and 12, and 11 with 13, the resulting 
on�guration is depi
ted inFigure 6.4(b). This 
on�guration is an S-box with a s
ore equal to 12.6.5.1 Simultaneous Column Inter
hangesAll eight pairs of 
olumns should be inter
hanged simultaneously for the resulting
on�guration to be an S-box satisfying all 
riteria. Let us see what happens if, for
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S813 2 8 4 6 15 11 1 10 9 3 14 5 0 12 71 15 13 8 10 3 7 4 12 5 6 11 0 14 9 27 11 4 1 9 12 14 2 0 6 10 13 15 3 5 82 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11(a)After simultaneous 
olumn inter
hanges11 1 6 15 8 4 13 2 12 7 5 0 3 14 10 97 4 10 3 13 8 1 15 9 2 0 14 6 11 12 514 2 9 12 4 1 7 11 5 8 15 3 10 13 0 68 13 4 10 14 7 2 1 6 11 3 5 9 0 15 12(b)Figure 6.4: (a) The DES S-box S8. (b) An S-box derived from S8 due to 
olumnsymmetry having a s
ore equal to 12example, exa
tly one pair of 
olumns, say, 
olumn 0 and 
olumn 6, is inter
hanged,with the remaining seven pairs of 
olumns kept inta
t. We want to see the e�e
tof this inter
hange on one of the other 
riteria, say, S-4. This inter
hange entailsswapping of the variables in the following pairs: (x0, x12), (x1, x13), (x32, x44) and

(x33, x45). Let us rewrite a portion of Table 6.2 that involves only these variables inthe left-hand-
olumn, before and after 
olumn inter
hange. The result is Table 6.3.Similar to the problem in row symmetry when row inter
hanges are not simul-taneous, new 
onstraints now arise that are not in S-4. Due to the upper boundon the total number of 
onstraints for S-4, the new 
onstraints end up repla
ingsome of the existing 
onstraints resulting in S-4 getting violated. In this example,the following new 
onstraints for variable x2 are derived from Table 6.3.
wt(x12 ⊕ x2) ≥ 2

wt(x16 ⊕ x2) ≥ 2 (6.12)As we have seen earlier, 
riterion S-4 leads to 192 
onstraints. In equation 6.12,the 6-bit inputs 12 (= 0011002) and 2 (= 0000102) of the �rst inequality do notdi�er by one bit, but by three bits. The same is true of the se
ond inequality, forinputs 16 and 2. Criterion S-4 does not spe
ify what happens in this 
ase. Theissue we are having is that due to the maximum bound on the total number of
onstraints for S-4, some valid 
onstraints are repla
ed by these new inequalities,violating S-4.



98Row 0 Di�ers from ea
h of Row 1 Di�ers from ea
h ofVariable the following Variables Variable the following Variables
x0 x1, x2, x4, x8, x16, x32, x1 x0, x3, x5, x9, x17, x33

x12 x13, x14, x8, x4, x28, x44, x13 x12, x15, x9, x5, x29, x45Row 2 Di�ers from ea
h of Row 3 Di�ers from ea
h ofVariable the following Variables Variable the following Variables
x32 x33, x34, x36, x40, x48, x0 x33 x32, x35, x37, x41, x49, x1

x44 x45, x46, x40, x36, x60, x12 x45 x44, x47, x41, x37, x61, x13(a) Before inter
hanging 
olumns 0 and 6Row 0 Di�ers from ea
h of Row 1 Di�ers from ea
h ofVariable the following Variables Variable the following Variables
x12 x13, x2, x4, x8, x16, x32, x13 x12, x3, x5, x9, x17, x33

x0 x1, x14, x8, x4, x28, x44, x1 x0, x15, x9, x5, x29, x45Row 2 Di�ers from ea
h of Row 3 Di�ers from ea
h ofVariable the following Variables Variable the following Variables
x44 x45, x34, x36, x40, x48, x0 x45 x44, x35, x37, x41, x49, x1

x32 x33, x46, x40, x36, x60, x12 x33 x32, x47, x41, x37, x61, x13(b) After inter
hanging 
olumns 0 and 6Table 6.3: Relationships between the variables parti
ipating in Criterion S-4 beforeand after inter
hanging 
olumns 0 and 6. Not all relationships are shown.6.6 Diagonal SymmetryA 6×4 S-box exhibits diagonal symmetry if, upon inter
hanging some or all of itselements in a diagonal-wise fashion, the resulting 
on�guration still satis�es thespe
i�ed 
riterion. For our purposes, imagine the S-box to be divided into fourequal-sized re
tangular quadrants. Figure 6.5 illustrates the idea.Property 6.7 For a 6 × 4 S-box, Criterion S-6 exhibits diagonal symmetry butonly if the following diagonal inter
hanges o

ur simultaneously:1. The top left and bottom right quadrants, and2. The top right and bottom left quadrants
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S8 x1x2x3x4

x0x5 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150 x0 x2 x4 x6 x8 x10 x12 x14 x16 x18 x20 x22 x24 x26 x28 x301 x1 x3 x5 x7 x9 x11 x13 x15 x17 x19 x21 x23 x25 x27 x29 x312 x32 x34 x36 x38 x40 x42 x44 x46 x48 x50 x52 x54 x56 x58 x60 x623 x33 x35 x37 x39 x41 x43 x45 x47 x49 x51 x53 x55 x57 x59 x61 x63Figure 6.5: S-6 for a 6× 4 S-box exhibiting Diagonal Symmetry. Inter
hangeablequadrants have entries formatted identi
ally.Proof Let us rewrite Equation 3.4 for a 6× 4 S-box, with the de
imal numbers51 and 48 repla
ing the equivalent binary number 1100112 and 1100002:
(∀i)(∀j)(0 ≤ i < j ≤ 63), [(i⊕ j) ∧ 51] = 48

⇒ xi 6= xj (6.13)It is easy to 
he
k that if i = 0, then j = 48, 52, 56, 60. If i = 1, then
j = 49, 53, 57, 61, and so on. The 
onsequent inequality-relationships between xiand ea
h of the four variables xj parti
ipating in the 
onstraint 6.13 are depi
tedin Table 6.4. Note that sin
e x0 is not equal to ea
h of x48, x52, x56 and x60, thereverse is also true, namely, that x0 will appear as one of the four variables in ea
hrow for x48, x52, x56 and x60, and likewise for all variables 
onstituting the S-box.A

ordingly, the total number of 
onstraints that Equation 6.13 gives rise to is128, as dis
ussed in subse
tion 3.2.7.By arranging variables x0, x1, . . . , x15 their related quadruplets arrange to
x48, x49, . . . , x63. These two form the top-left and bottom-right quadrants ofthe S-box respe
tively, as illustrated in Figure 6.5. The same is true with theother two sets of variables, namely, x16, x17, . . . , x33 and their related quadruplets
x32, x33, . . . , x47, that respe
tively form the top-right and bottom-left quadrants ofthe S-box of Figure 6.5. Due to the 
ommutativity property of the ex
lusive-ORoperator, the re
tangles are diagonally inter
hangeable. This 
ompletes the proof.

Q.E.D.6.6.1 Simultaneous Inter
hanges of Diagonal Re
tanglesThe quadrants should be diagonally inter
hanged simultaneously. Let us see why.It is possible for two variables not parti
ipating in any 
onstraint other than S-6,to have equal values. Assume that x0 = x46. If we inter
hange the bottom-leftand top-right quadrants without inter
hanging the other two, x46 will appear on



100Variable Di�ers from ea
h of Variable Di�ers from ea
h ofthe following variables the following variables
x0 x48, x52 x56 x60 x1 x49, x53 x57 x61

x2 x50, x54 x58 x62 x3 x51, x55 x59 x63

x4 x52, x48 x60 x56 x5 x53, x49 x61 x57

x6 x54, x50 x62 x58 x7 x55, x51 x63 x59

x8 x56, x60 x48 x52 x9 x57, x61 x49 x53

x10 x58, x62 x50 x54 x11 x59, x63 x51 x55

x12 x60, x56 x52 x48 x13 x61, x57 x53 x49

x14 x62, x58 x54 x50 x15 x63, x59 x55 x51

x16 x32, x36 x40 x44 x17 x33, x37 x41 x45

x18 x34, x38 x42 x46 x19 x35, x39 x43 x47

x20 x36, x32 x44 x40 x21 x37, x33 x45 x41

x22 x38, x34 x46 x42 x23 x39, x35 x47 x43

x24 x40, x44 x32 x36 x25 x41, x45 x33 x37

x26 x42, x46 x34 x38 x27 x43, x47 x35 x39

x28 x44, x40 x36 x32 x29 x45, x41 x37 x33

x30 x46, x42 x38 x34 x31 x47, x43 x39 x35

x32 x16, x20 x24 x28 x33 x17, x21 x25 x29

x34 x18, x22 x26 x30 x35 x19, x23 x27 x31

x36 x20, x16 x28 x24 x37 x21, x17 x29 x25

x38 x22, x18 x30 x26 x39 x23, x19 x31 x27

x40 x24, x28 x16 x20 x41 x25, x29 x17 x21

x42 x26, x30 x18 x22 x43 x27, x31 x19 x23

x44 x28, x24 x20 x16 x45 x29, x25 x21 x17

x46 x30, x26 x22 x18 x47 x31, x27 x23 x19

x48 x0, x4 x8 x12 x49 x1, x5 x9 x13

x50 x2, x6 x10 x14 x51 x3, x7 x11 x15

x52 x4, x0 x12 x8 x53 x5, x1 x13 x9

x54 x6, x2 x14 x10 x55 x7, x3 x15 x11

x56 x8, x12 x0 x4 x57 x9, x13 x1 x5

x58 x10, x14 x2 x6 x59 x11, x15 x3 x7

x60 x12, x8 x4 x0 x61 x13, x9 x5 x1

x62 x14, x10 x6 x2 x63 x15, x11 x7 x3Table 6.4: Relationships between the variables parti
ipating in Criterion S-6the top row. But this violates 
riterion S-3 that states that ea
h row should be a



101
S813 2 8 4 6 15 11 1 10 9 3 14 5 0 12 71 15 13 8 10 3 7 4 12 5 6 11 0 14 9 27 11 4 1 9 12 14 2 0 6 10 13 15 3 5 82 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11(a)Quadrants diagonally inter
hanged0 6 10 13 15 3 5 8 7 11 4 1 9 12 14 215 12 9 0 3 5 6 11 2 1 14 7 4 10 8 1310 9 3 14 5 0 12 7 13 2 8 4 6 15 11 112 5 6 11 0 14 9 2 1 15 13 8 10 3 7 4(b)Figure 6.6: (a) The DES S-box S8 split into four quadrants. (b) A 
on�gurationobtained due to Diagonal Symmetry, having a s
ore equal to 12.one-one permutation of Z16. To satisfy S-3, the other two quadrants should alsobe inter
hanged.Example 6.7 Consider the DES S-box S-8 depi
ted in Figure 6.6(a) as split intofour quadrants. Upon inter
hanging the top-left and bottom-right quadrants, andsimultaneously inter
hanging the other two quadrants, the resulting 
on�gurationis depi
ted in Figure 6.6(b). This 
on�guration is an S-box that satis�es the other
riteria and has a s
ore equal to 12.6.7 Is the Resulting Con�guration Always an S-box?When an S-box is transformed to another 
on�guration using either or row, 
ol-umn, and diagonal symmetry property of the appropriate 
onstraint that modelsthe parti
ular 
riterion, only the parti
ular 
onstraint is satis�ed. We have seenthat the transformed 
on�guration is not ne
essarily an S-box be
ause other 
on-straint(s) may get violated due to the transformation. For the transformed 
on-�guration to be an S-box, the inter
hanges have to be simultaneous in ea
h typeof symmetry.The other problem is that the s
ore of the transformed 
on�guration mayex
eed the spe
i�ed threshold, violating 
riterion S-2 spe
i�ed by 
onstraint 4.7.It turns out that the S-box of Figure 6.1(b) is an alternate S-box having a s
oreof 12 and satisfying all of the 
onstraints. This s
ore is the same as that of the
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S8 x1x2x3x4

x0x5 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150 x63 x61 x59 x57 x55 x53 x51 x49 x47 x45 x43 x41 x39 x37 x35 x331 x62 x60 x58 x56 x54 x52 x50 x48 x46 x44 x42 x40 x38 x36 x34 x322 x31 x29 x27 x25 x23 x21 x19 x17 x15 x13 x11 x9 x7 x5 x3 x13 x30 x28 x26 x24 x22 x20 x18 x16 x14 x12 x10 x8 x6 x4 x2 x0Figure 6.7: S-7 for a 6× 4 S-box exhibiting Rotational Symmetryoriginal DES S-box S-8, i.e., has not 
hanged for this example. The same is trueof the 
on�guration of Figure 6.5, that it is an S-box with s
ore 12.In the next two se
tions, we dis
uss Rotational Symmetry and Bit InversionSymmetry. We prove that these two forms of symmetry always yield an S-boxupon appropriate transformation, and that their s
ores will never 
hange.6.8 Rotational SymmetryAn S-box exhibits rotational symmetry with respe
t to a 
onstraint if, upon rotat-ing the same by 180◦ about both, its top and left edges, the resulting 
on�gurationstill satis�es the 
onstraint.Property 6.8 Criterion S-7 exhibits rotational symmetry for a 6× 4 S-box.Proof Let us rewrite the COUNT 
onstraint of 
riterion S-7 given by Equa-tion 5.1 for a 6× 4 S-box:
31
∧

i=0

f(xi ⊕ x63−i) ≤ 8 (6.14)By the 
ommutativity property of the ex
lusive-OR operation, xi and x63−iare inter
hangeable. Inter
hanging the values of these variables therefore does nota�e
t Equation 6.14. Repositioning the S-box entries results in a 
on�gurationobtained by rotating the S-box to an upside-down position (Figure 6.7). Thisproves the proposition.
Q.E.D.6.8.1 Impa
t on Constraints for Criteria S-2 to S-6Upon applying a 180◦�rotation about its top and left edges, as Figure 6.7 suggests,ea
h row still has unique entries suggesting that 
riterion S-3 is una�e
ted. All



103of the 
riteria S-4, S-5 and S-6 are similarly preserved, and are easily veri�edusing Tables 6.1, 6.2 and Table 6.4 should be analyzed. For example, reading therows of Table 6.4 ba
kwards results in traversing the 
olumns of Figure 6.7 whose
olumn-numbers are spe
i�ed in the Table.Let us examine how the s
ore of the 
on�guration of Figure 6.7 is a�e
ted, thatis, whether S-box rotation has an impa
t on 
riterion S-2.Property 6.9 The s
ore σX(Φ) of an S-box Φ is una�e
ted by S-box rotation.Proof Consider two entries xi = v and xi = w of an S-box. We are going tointer
hange the values to these variables by setting xi = v, studying the layeredlinear approximation table for this assignment, setting xi and analyzing the 
or-responding layered linear approximation table, and adding the entries in the twotables to examine the e�e
t of both assignments.If xi = v is moved to xi = v, all rows in the layered linear approximation tablefor xi = v numbered by a having odd parity get inverted while those having evenparity do not 
hange, due to Property 6.3 . Upon simultaneously assigning xi = w,all rows a′ in the layered table for the entry xi = w get similarly inverted if a′ hasodd parity, and do not 
hange for even parity. Adding these two tables results ina linear approximation table for xi = v and xi = w that is identi
al to one for
xi = w and xi = v. This is now extended to all entries in the S-box, resulting inits �nal, 
umulative linear approximation table not 
hanging when all of its bitsare inverted. As su
h, the s
ore does not 
hange.

Q.E.D.Example 6.8 Consider the DES S-box S8 depi
ted in Figure 6.8(a). Upon in-verting this S-box by 180◦, Figure 6.8(b) depi
ts the resulting S-box having a s
oreequal to 12, the same as that of S8.6.9 Bit Inversion SymmetryAn S-box exhibits inversion symmetry if, upon repla
ing all of its entries by theirone's-
omplements, the resulting 
on�guration is still an S-box. As we have seenthus far, the 
onstraint for 
riteria S-4 exhibits row symmetry, that for S-5 pos-sesses 
olumn symmetry, S-6 has diagonal and S-7, rotational symmetry. Wewould like to know whi
h parti
ular 
onstraint possess bit inversion symmetry.Property 6.10 All 
onstraints modeling 
riteria S-3 to S-7 possess bit inversionsymmetry.



104Proof The result follows at on
e from the ex
lusive-OR property of invarian
eto 
omplementation of its two operands: A⊕ B = A⊕ B for two n-bit quantities
A and B. It also follows from the fa
t that A 6= B is equivalent to A 6= B. For,
A 6= B ⇒ A⊕B 6= 0⇒ A⊕B 6= 0⇒ A 6= B.

Q.E.D.To get a further insight into the proof, the 
onstraints modeling ea
h 
riteriaS-3 to S-6 are studied as follows:1. S-3: This is the Alldiff 
onstraint on the variables in ea
h row, whi
hremain di�erent upon 
omplementing the entries in that row. Hen
e S-3 isuna�e
ted by bit inversion, exhibiting symmetry.2. S-4: For 0 ≤ i < 32,
wt(x2i ⊕ x2i+1) ≥ 2is equivalent to:
wt(x2i ⊕ x2i+1) ≥ 2suggesting that S-4 is una�e
ted by inverting the bits of all S-box entries,exhibiting bit inversion symmetry.

S813 2 8 4 6 15 11 1 10 9 3 14 5 0 12 71 15 13 8 10 3 7 4 12 5 6 11 0 14 9 27 11 4 1 9 12 14 2 0 6 10 13 15 3 5 82 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11(a)Rotation about the Top and Left Edges by 180◦11 6 5 3 0 9 12 15 13 8 10 4 7 14 1 28 5 3 15 13 10 6 0 2 14 12 9 1 4 11 72 9 7 14 0 11 6 5 12 4 7 3 10 8 13 15 17 12 0 5 14 3 9 10 1 11 15 6 4 8 2 13(b)Figure 6.8: (a) The DES S-box S8. (b) The S-box obtained due to RotationalSymmetry, having a s
ore equal to 12.



1053. S-5: Equation 6.7 is rewritten as
(∀i)(∀j)(0 ≤ i, j ≤ 63) ∧ (i 6= j) ∧ (i⊕ j = 12)

⇒ wt(xi ⊕ xj) ≥ 2This equation is equivalent to the following:
(∀i)(∀j)(0 ≤ i, j ≤ 63) ∧ (i 6= j) ∧ (i⊕ j = 12)

⇒ wt(xi ⊕ xj) ≥ 2suggesting invarian
e of S-5 over bitwise 
omplementation.4. S-6: Equation 6.13 is rewritten as
(∀i)(∀j)(0 ≤ i < j ≤ 63), [(i⊕ j) ∧ 51] = 48

⇒ xi 6= xjThis equation is equivalent to:
(∀i)(∀j)(0 ≤ i < j ≤ 63), [(i⊕ j) ∧ 51] = 48

⇒ xi 6= xjsuggesting invarian
e of S-6 over bitwise 
omplementation.5. S-7: The COUNT 
onstraint is modeled Equation 6.14, rewritten as follows:
31
∧

i=0

f(xi ⊕ xi) ≤ 8This equation is equivalent to:
31
∧

i=0

f(xi ⊕ xi) ≤ 8suggesting invarian
e of S-7 over bitwise 
omplementation.6.9.1 E�e
t of Bit Inversion on the S
ore of an S-boxWe have seen how bit inversion did not a�e
t the Alldiff 
onstraint modeling
riterion S-3, binary 
onstraints modeling 
riteria S-4 to S-6, and the COUNT
onstraint for S-7. Will the resulting 
on�guration still remain an S-box? Inother words, what happens to its s
ore? The following property establishes thisimportant fa
t.



106Property 6.11 The s
ore σX(Φ) of an S-box Φ does not 
hange upon bitwise
omplementation of the entries in Φ.Proof Consider two entries xi = v and xj = v of an S-box. We are going tointer
hange the values to these variables by setting xi = v, studying the layeredlinear approximation table for this assignment, setting xj = v and analyzing the
orresponding layered linear approximation table, and adding the entries in thetwo tables to examine the e�e
t of both assignments.If xi = v is 
hanged to xi = v, all of its entries in the 
olumns of the layeredlinear approximation table for xi = v that are headed by b having odd parityget inverted due to Property 6.4. Upon simultaneously 
hanging to xj = v fromthe earlier assignment xj = v, the 
orresponding 
olumns for the entry xj = vget similarly inverted in its layered linear approximation table. Adding these twotables results in a linear approximation table for xi = v and xj = v that is identi
alto one for xi = v and xj = v. This is now extended to all entries in the S-box,resulting in its �nal, 
umulative linear approximation table not 
hanging when allof its bits are inverted. As su
h, the s
ore does not 
hange.
Q.E.D.Example 6.9 Consider the DES S-box S8 depi
ted in Figure 6.9(a). Upon re-pla
ing ea
h entry in this S-box by its one's-
omplement (by subtra
ting ea
h entryfrom 24 − 1 = 15), Figure 6.9(b) depi
ts the resulting S-box having a s
ore equalto 12, the same as that of S8.6.10 The Multiple S-box ProblemThe S-box 
riterion S-8 for multiple S-boxes is now dis
ussed along with an ex-ample. The 
riterion for three S-boxes, mentioned in Chapter 3, is repeated herefor 
onvenien
e:S-8 �Similar to S-7, but with stronger restri
tions in the 
ase ∆Oi,j = 0 for the
ase of three a
tive S-boxes on round i.� [16℄.Let us �rst see what an a
tive S-box is.6.10.1 A
tive S-Boxes in a parti
ular RoundGiven a probable bit pattern, an S-box Sj (1 ≤ j ≤ 8 is said to be a
tive on a round

i of en
ryption / de
ryption if the di�eren
e ∆Ii,j between inputs mi and m′
i to

S-box Sj , in round i, are not all zero during this round. Then ∆Ii,j = mi⊕m′
i [16℄.Now ∆Ii,j = 0⇒ mi = m′

i, that is, two di�erent messages to be input to the same
S-box Sj have identi
al 
ontent. If this is so, then the S-box is ina
tive. As the
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S813 2 8 4 6 15 11 1 10 9 3 14 5 0 12 71 15 13 8 10 3 7 4 12 5 6 11 0 14 9 27 11 4 1 9 12 14 2 0 6 10 13 15 3 5 82 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11(a)Entries with Bits Complemented2 13 7 11 9 0 4 14 5 6 12 1 10 15 3 814 0 2 7 5 12 8 11 3 10 9 4 15 1 6 138 4 11 14 6 3 1 13 15 9 5 2 0 12 10 713 14 1 8 11 5 7 2 0 3 6 15 12 10 9 4(b)Figure 6.9: (a) The DES S-box S8. (b) The S-box obtained due to Bit InversionSymmetry, having a s
ore equal to 12.number of rounds i in
reases, the number of a
tive S-boxes also in
reases [16℄.Criterion S-8 deals with a
tive S-boxes taken three at a time, ea
h having inputsnot always identi
al when 
ompared pair-wise. The S-boxes are listed as Sj ,

Sj mod 8+1 and S(j mod 8+1) mod 8+1, 1 ≤ j ≤ 8, S8 and S1 being treated as adja
entto ea
h other.Similar to the Linear Approximation Table, an XOR Distribution Table [11℄ is
onstru
ted. This table 
onsiders di�eren
es between two inputs to an S-box andbetween their 
orresponding outputs, and is used by Biham and Shamir in thedi�erential 
ryptanalysis of DES.6.10.2 XOR Distribution TableIn this table, di�eren
es of inputs to an S-box Sj and di�eren
es in the outputsof Sj are 
onsidered. Consider two inputs k and k′ to the same S-box Sj, with
orresponding outputs xk and x′
k. Determine the following two di�eren
es:
∆k = k ⊕ k′

∆xk = xk ⊕ x′
kEa
h entry in the di�erential approximation table is de�ned as follows, for a

n×m S-box Sj .
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b 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
a0 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 0 0 0 6 0 2 4 4 0 10 12 4 10 6 2 42 0 0 0 8 0 4 4 4 0 6 8 6 12 6 4 23 14 4 2 2 10 6 4 2 6 4 4 0 2 2 2 04 0 0 0 6 0 10 10 6 0 4 6 4 2 8 6 25 4 8 6 2 2 4 4 2 0 4 4 0 12 2 4 66 0 4 2 4 8 2 6 2 8 4 4 2 4 2 0 127 2 4 10 4 0 4 8 4 2 4 8 2 2 2 4 48 0 0 0 12 0 8 8 4 0 6 2 8 8 2 2 49 0 2 4 0 2 4 6 0 2 2 8 0 10 0 2 1210 0 8 6 2 2 8 6 0 6 4 6 0 4 0 2 1011 2 4 0 10 2 2 4 0 2 6 2 6 6 4 2 1212 0 0 0 8 0 6 6 0 0 6 6 4 6 6 14 213 6 6 4 8 4 8 2 6 0 6 4 6 0 2 0 214 0 4 8 8 6 6 4 0 6 6 4 0 0 4 0 815 2 0 2 4 4 6 4 2 4 8 2 2 2 6 8 816 0 0 0 0 0 0 2 14 0 6 6 12 4 6 8 617 6 8 2 4 6 4 8 6 4 0 6 6 0 4 0 018 0 8 4 2 6 6 4 6 6 4 2 6 6 0 4 0... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...59 2 6 4 0 0 2 4 6 4 6 8 6 4 4 6 260 0 10 4 0 12 0 4 2 6 0 4 12 4 4 2 061 0 8 6 2 2 6 0 8 4 4 0 4 0 12 4 462 4 8 2 2 2 4 4 14 4 2 0 2 0 8 4 463 4 8 4 2 4 0 2 4 4 2 4 8 8 6 2 2Table 6.5: Tabulating the 
ounts D1(a, b) for the S-box S1 of Figure 1.1
Dj(a, b) = #{k : ∆k = ∆xk; ∆k ∈ Z2n ; ∆xk ∈ Z2m} (6.15)Example 6.10 The di�erential approximation table of S-box S1 used in [11℄, is
onstru
ted as shown in Table 6.5. Ea
h entry is denoted as D1(a, b) for S-box S1,where a is the row number and b, the 
olumn number of the table, 0 ≤ a < 64, 0 ≤

b < 16.Note the di�eren
e between equations 6.15 and 4.2. In equation 4.2, it is thelinear 
ombination of subsets of input and output bits that are 
onsidered for



109equality. The de�nition of DΦ(a, b) is simpler. Equation 6.15 re
ords 
ounts ofequalities of merely di�eren
es between any two inputs k and k′ (∆k = k ⊕ k′),and their 
orresponding outputs xk and xk′ (∆xk = xk ⊕ xk′) of an S-box.6.10.3 Probability MeasureThe probability of an output di�eren
e ∆xk = b given that the 
orrespondinginput di�eren
e ∆k = a, for a 6 × 4 S-boxSj is approximated by the followingequation:
P (∆xk = b|∆k = a) =

Dj(a, b)

64
(6.16)Example 6.11 For the DES S-box S1 of �gure 1.1, the probability that two outputsdi�er by 5 given that the 
orresponding inputs di�er by 7 is approximated as follows:

P (∆xk = 5|∆k = 7) =
D1(7, 5)

64

=
4

64
, from Row 7, Column 5 of Table 6.5

=
1

166.10.4 Atta
k on an S-box with Highest ProbabilityThe following bit-patterns are derived [16℄ by taking three adja
ent S-boxes
Sj , Sj mod 8+1 and S(j mod 8+1) mod 8+1, where 1 ≤ j ≤ 8, in order to simplify theanalysis:

∆Ii,j = 00cd112, c, d ∈ Z2

∆Ii,j mod 8+1 = 11gh102, g, h ∈ Z2

∆Ii,(j mod 8+1) mod 8+1 = 10km002, k, m ∈ Z2The obje
tive is to minimize the highest probability of su

ess of an atta
k.To �nd the highest probability of su

ess, determine c, d so as to maximize the
onditional probability for one S-box Sj. Similarly, determine g, h for the adja-
ent S-box Sj mod 8+1, and k, m for the next-adja
ent S-box S(j mod 8+1) mod 8+1 tomaximize the respe
tive highest probabilities.For an S-box Sj, 1 ≤ j ≤ 8, let
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q0,j = P (∆xr = 0|∆r = 00cd112)

= max
c,d

Dj(00cd112, 0)

64
from Eq. 6.16

=
max{Dj(3, 0), Dj(7, 0), Dj(11, 0), Dj(15, 0)}

64
(6.17)

q1,j = max
g,h

P (∆xr = 0|∆r = 11gh102)

= max
g,h

Dj(11gh102, 0)

64
from Eq. 6.16

=
max{Dj(50, 0), Dj(54, 0), Dj(58, 0), Dj(62, 0)}

64
(6.18)

q2,j = max
k,m

P (∆xr = 0|∆r = 10km002)

= max
k,m

Dj(10km002, 0)

64
from Eq. 6.16

=
max{Dj(32, 0), Dj(36, 0), Dj(40, 0), Dj(44, 0)}

64
(6.19)Upon determining q0,j, q1,j mod 8+1 and q2,(j mod 8+1) mod 8+1 for three adja
ent

S-boxes, the highest probability of su

ess of an atta
k (assuming independen
e)is equal to their produ
t, namely,
q0,j · q1,j mod 8+1 · q2,(j mod 8+1) mod 8+1.Example 6.12 Consider the DES S-box S1 (j = 1) used in Example 6.10. Fromequation 6.17,
q0,1 =

max{14, 2, 2, 2}

64
=

14

64
=

7

32by looking up 
olumn 0 under rows 3, 7, 11 and 15 of the XOR table of S-box
S1, namely Table 6.5, and substituting in equation 6.17. Similarly for S-box S2adja
ent to S1, equation 6.18 gives

q1,2 =
max{8, 8, 4, 4}

64
=

8

64
=

1

8by looking up 
olumn 0 under rows 50, 54, 58 and 62 of its XOR table. For thenext adja
ent S-box S3, we similarly look up 
olumn 0 under rows 32,36,40,44 ofits XOR table and substitute in equation 6.19 to yield
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q2,3 =

max{0, 4, 6, 10}

64
=

10

64
=

5

32The highest probability of su

ess of an atta
k is now
= q0,1 · q1,2 · q2,3

=
7

32
×

1

8
×

5

32

=
35

81926.10.5 Modeling Criterion S-8Criterion S-8 
an now be written as follows. Arrange the eight S-boxes
Sj , Sj mod 8+1, S(j mod 8+1) mod 8+1, 1 ≤ j ≤ 8, so as to minimize the following quan-tity:

p = max
j=1,2,...,8

q0,j · q1,j mod 8+1 · q2,(j mod 8+1) mod 8+1 (6.20)Sin
e the denominator of equation 6.20 is equal to at most 643 for 6×4 S-boxestaken three at a time, we 
an rewrite equations 6.17, 6.18 and 6.19 to avoid �oating-point errors during the implementation of this 
riterion as follows. Compute:
Q0,j = max

c,d
64× q0,j

= max
c,d

Dj(00cd112, 0)

= max{Dj(3, 0), Dj(7, 0), Dj(11, 0), Dj(15, 0)} (6.21)
Q1,j = max

g,h
64× q1,j

= max
c,d

Dj(11gh102, 0)

= max{Dj(50, 0), Dj(54, 0), Dj(58, 0), Dj(62, 0)} (6.22)
Q2,j = max

k,m
64× q2,j

= max
k,m

Dj(10km002, 0)

= max{Dj(32, 0), Dj(36, 0), Dj(40, 0), Dj(44, 0)} (6.23)



112Example 6.13 For adja
ent S-boxes S1, S2 and S3, equations 6.21, 6.22 and 6.23yield the following values:
Q0,1 = max{14, 2, 2, 2} = 14

Q1,2 = max{8, 8, 4, 4} = 8

Q2,3 = max{0, 4, 6, 10} = 10The highest probability of su

ess of an atta
k 
orresponds to the followingquantity:
Q0,1 ×Q1,2 ×Q2,3 = 14× 8× 10 = 1120Equation 6.20 is similarly transformed. Determine an arrangement of eight

S-boxes S1, S2, . . . , S8 so as to minimize
P = max

j=1,2,...,8
Q0,j ·Q1,j mod 8+1 ·Q2,(j mod 8+1) mod 8+1 (6.24)The quantity P will be referred to as the di�eren
e-s
ore of an arrangement ofeight S-boxes S1 to S8.Example 6.14 We have found the maximum probability P using equation 6.24for arranging S-boxes S1, S2, S3. Denote the maximum probability for this tripletby P1. Similarly, determine P2 for the triplet S2, S3, S4, p3 for S3, S4, S5, andso on, until P8 for S8, S1, S2. Compute P (1) = max{P1, P2, . . . , P8}. This is thedi�eren
e-s
ore for the arrangement (S1, S2, . . . , S8).There are a total of 8! arrangements of all eight S-boxes. For ea
h arrangement,
ompute di�eren
e-s
ores P (i) in the manner just mentioned, 2 ≤ i < 8!. Finally,determine the minimum of these di�eren
e-s
ores, equal to mini=1,2,...,8! P

(i). Thearrangements of the eight S-boxes that 
orrespond to this di�eren
e-s
ore 
onstitutethe best possible arrangements that minimize the maximum probability of atta
k.The results of implementing S-8 are dis
ussed in Chapter 7.6.11 SummaryThe various forms of symmetry of the 
onstraints modeled in our CSP formulationof the S-box problem is summarized in Table 6.6.Out of these forms of symmetries, the row, 
olumn and diagonal symmetryhold good only if the inter
hanges of rows (respe
tively, 
olumns and quadrants)are made simultaneously. Otherwise some other 
onstraints are violated and theresulting 
on�guration is not an S-box. The rotational and bit inversion forms of



113Constraint for Row Column Diagonal Rotational Bit InversionCriterion Symmetry Symmetry Symmetry Symmetry SymmetryS-2 ×S-3 ×S-4 × ×S-5 × ×S-6 × ×S-7 × ×Table 6.6: Summary of Results on Symmetry of 
onstraints modeling S-box Cri-teriasymmetry, however, yield an S-box that satisfy all 
onstraints. The row, 
olumnand diagonal symmetry of the S-box may or may not impa
t its s
ore. (This hasto be either proved or disproved!) We have only veri�ed this for DES S-boxes.However, the rotational and bit inversion symmetries do not a�e
t the s
ore of the
S-box. We have proved these properties in this Chapter.From the viewpoint of e�
ien
y, an S-box results in an extra one due to rowsymmetry, one more due to 
olumn symmetry, a third due to diagonal, a fourthdue to rotational and a �fth due to the bit inversion symmetry. In other words,one S-box results in 25 = 32 S-boxes already available and therefore, a 32-foldspeedup of S-box sear
h. By adding symmetry breaking 
onstraints to the solver,we should be able to prune further and avoid visiting these new S-boxes whenthey are eventually en
ountered in sear
h.Criterion S-8 deals with multiple S-boxes taken three at a time. The obje
tiveof this 
riterion is to thwart di�erential 
ryptanalysis. An XOR table employed inBiham's work on di�erential 
ryptanalysis [11℄ is used to model this 
riterion.This 
riterion is not implementable into the existing framework that yields one
S-box at a time. In Chapter 9, we will dis
uss an alternative formulation thatmodels S-8 into a set of 
onstraints. By doing this, the entire S-box formulationwill be shown to be modeled stri
tly as a CSP.
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Chapter 7Performan
e Measures, Experiments andResultsWe dis
uss four measures that will be used to evaluate the heuristi
s for the n-ary 
onstraints developed in Chapters 4 and 5. One measure is 
on
erned with thequality of S-boxes generated. The remaining three measures deal with exe
utione�
ien
y and provide us with various kinds of information.In this Chapter we dis
uss several experiments. To begin with, problems be-ing studied for performan
e using various heuristi
s are summarized and labelleda

ordingly. The solver is run on small-sized CSP's to generate small-sized n×m

S-boxes using the generate-and-test approa
hes to 
riteria S-2 and S-7, verify
ompleteness, and examine results. The summarized heuristi
s are studied throughexperiments and their performan
es, measured against the quality of S-boxes aswell as the quanti�
ations for e�
ien
y developed in this 
hapter.7.1 Summary of ProblemsAlgorithm 1 implemented as Solver using AC2001 is used to evaluate the followingapproa
hes to the modeling of S-box generation problems:
• The S-2 
riterion is translated to a single hard 
onstraint based on thethreshold τ , and the S-7 
riterion is implemented as a single n-ary 
onstraint.This family of CSPs that employ the 
omplete, non-in
remental heuristi
s

V φ,τ
S , V Oφ,τ

S , Hφ,τ
S and HOφ,τ

S for n×m S-boxes, is denoted by DESn,m
S,τ .

• The S-2 
riterion is implemented using the 
onstraints employed by thein
omplete, in
remental heuristi
 Hφ,τ
I , in whi
h S-7 is implemented as asingle n-ary 
onstraint. This family of CSPs, for n×m S-boxes, is denotedby DESn,m

I,τ .
• The S-2 
riterion is implemented using the 
omplete, in
remental heuristi


Hφ,τ
C , in whi
h S-7 is implemented as a single n-ary 
onstraint. This familyof CSPs, for n×m S-boxes, is denoted by DESn,m

C,τ .
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• The S-2 
riterion is implemented using 
omplete, in
remental heuristi
s

V Φ,τ
C7

, V OΦ,τ
C7

, HΦ,τ
C7

, and HOΦ,τ
C7

, where S-2 and S-7 are in
rementally
he
ked. This family of CSPs, for n×m S-boxes, is denoted by DESn,m
C7,τ .

• The S-2 
riterion is implemented using 
omplete, in
remental heuristi
s
V Φ,τ

AC7
, V OΦ,τ

AC7
, HΦ,τ

AC7
, and HOΦ,τ

AC7
, where S-2 is in
rementally 
he
ked andS-7, de
omposed by proje
ting past assignments over domains of future vari-ables. This family of CSPs, for n×m S-boxes, is denoted by DESn,m

AC7,τ .For brevity, throughout the remainder of this Chapter, Algorithm 1 that im-plements the solver of Se
tion 2.7 will be referred to as MAC2001(τ), where τ isthe threshold of the S-box s
ore.7.2 Performan
e Metri
sWe now dis
uss what measures are 
ompared while running experiments using theaforementioned heuristi
s, along with reasons for the measures 
onsidered. Thefollowing four metri
s are used:1. The quality metri
 of an S-box2. A quanti�
ation of sear
h points3. CPU elapsed time, and4. Number of 
ompletely-�lled S-boxes generatedThe quality metri
 of an S-box helps us 
ompare how well a heuristi
 gener-ates �better� quality S-boxes 
ompared with another. Quantifying sear
h pointsprovides us information on how far into the sear
h spa
e ea
h of the heuristi
s ad-van
es with time. The farther the advan
ement, the more e�
ient is the heuristi
.The CPU elapsed time informs how long ea
h heuristi
 took to generate a spe
i�ednumber of S-boxes. Finally, 
ounting the number of 
ompletely-�lled S-boxes isanother e�
ien
y metri
.The order in whi
h the above metri
s are listed should be noted. The s
oreof an S-box is the most important metri
 be
ause, we would like to obtain high-quality S-boxes as early as we 
an. The quanti�
ation of sear
h points is next inorder of preferen
e. It gives us an idea of how �qui
kly� S-boxes 
an be obtainedwith the aforementioned heuristi
s. The CPU time gives us the same idea. How-ever, the expression that quanti�es the sear
h points gives us more information
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h spa
e that mere timing results do not. This fa
twill be
ome apparent in the results of experiments. Finally, the number of S-boxesgenerated deals with 
ompletely-�lled S-boxes alone, sin
e 
ounting partially as-signed S-boxes do not make sense. This 
ount only suggests speedup just as theCPU elapsed time does, and does not similarly provide information on the natureof sear
h spa
e the way the quanti�
ation results do.We will a
tually en
ounter two kinds of information about the nature of sear
hspa
e. The �rst kind deals with �
lusters� of S-boxes having the same �good� qual-ity as adjudged by the quality metri
. The se
ond kind of information deals withspurts of �many� S-boxes being generated 
ompared to a long duration betweentwo S-boxes generated, as revealed by the quanti�
ation of sear
h spa
e and to alesser extent, by CPU time and 
ounting the number of solutions.Let us now dis
uss the four performan
e metri
s.7.2.1 The Quality Metri
 for an S-boxThe equation for the s
ore σX(Φ) of an S-box Φ given by Equation 4.6 providesus with the quality metri
 for the S-box. For an n×m S-box, the maximum valueof this s
ore is equal to 2n−1 while the minimum value is equal to zero. An S-box
Φ1 is 
onsidered �better� than a se
ond S-box Φ2 if σX(Φ1) < σX(Φ2).7.2.2 A Measure of the Sear
h Spa
eInstead of attempting an exhaustive 
overage of the sear
h spa
e, the 
ertitude ofoptimality is evaluated by measuring the fra
tion of sear
h spa
e that Solver()
overs while generating S-boxes. Let us develop the 
on
epts needed to formulatean expression for this metri
. For simpli
ity, we assume that the domains for ea
hvariable in X are identi
al and equal to Zd.En
oding for a Partially Assigned S-box Given a partial assignment involv-ing variables in the set X ′ = {x0, x1, . . . , x|X′|−1} with X ′ ⊆ X, an en
oding E foran n×m partially assigned S-box is de�ned as:

Sp =
|X′|−1
∑

i=0

λ−1(xπ(i)) · d
|X′|−i−1 (7.1)where d = 2m, and λ : Zd → Zd and π : Z|X′| → Z|X′| are permutationfun
tions that determine value and variable ordering, respe
tively. π is dis
ussedin se
tion 5.5.2 while λ is dis
ussed in se
tion 7.3. λ−1 is the inverse permutation
orresponding to λ on Zd. This en
oding is easily extensible to a 
ompletely-�lled

S-box by setting |X ′| = |X|, the number of variables in the S-box.



117In simple words, ea
h n × m S-box 
an be regarded as a radix-d numberhaving |X ′| digits in that radix. The entry of this S-box for λ−1(xπ(0)) is the mostsigni�
ant digit that varies least-frequently, while that for xπ(|X′|−1) is the leastsigni�
ant digit that varies most-frequently.We now state and prove two properties for Sp. For proving purposes, withoutloss of generality, let us de�ne permutation fun
tions λ : Zd → Zd and π : Z|X′| →
Z|X′| as follows:

λ(k) = k, where 0 ≤ k < d

π(k) = k, where 0 ≤ k < |X ′|so that λ−1(k) = kBased on these de�nitions, Eq. 7.1 is rewritten as:
Sp =

|X′|−1
∑

i=0

xi · d
|X′|−i−1 (7.2)where X ′ = {x0, x1, x2, . . . , x|X′|−1}.Property 7.1 (Uniqueness) Sp is unique to ea
h assignment.ProofThe result follows at on
e if the number of variables in any two partial assign-ments di�er. Consider two di�erent (partial) assignments to the same number ofvariables in X ′:

A = 〈(x0, d0), (x1, d1), . . . , (x|X′|−1, d|X′|−1)〉,

A′ = 〈(x0, d
′
0), (x1, d

′
1), . . . , (x|X′|−1, d

′
|X′|−1)〉where di, d

′
i ∈ Zd and di 6= d′

i, whenever 0 ≤ i < |X ′|. Let the en
oding for A(A′) be Sp (S ′
p). We have to prove that S ′

p = Sp ⇒ A′ = A. From Eq. 7.2,
Sp =

|X′|−1
∑

i=0

di · d
|X′|−i−1 and S ′

p =
|X′|−1
∑

i=0

d′
i · d

|X′|−i−1For Sp and S ′
p to be not unique, we should have S ′

p = Sp, i.e.
|X′|−1
∑

i=0

d′
i · d

|X′|−i−1 =
|X′|−1
∑

i=0

di · d
|X′|−i−1



118Equating the 
o-e�
ients, we obtain d′
i = di whenever 0 ≤ i < |X ′|. Therefore,

S ′
p = Sp ⇒ A′ = A establishing uniqueness.

Q.E.D.From the en
oding Sp, a (partial or 
omplete) assignment is uniquely �retrieved�by repeatedly dividing Sp by d and 
olle
ting remainders that serve as the valuesassigned to the variables. The pro
ess terminates immediately when the dividendbe
omes zero. At this point the remaining variables are unassigned in the 
ase ofa partial assignment.Property 7.2 (Stri
t Monotoni
ity) Sp in
reases stri
tly monotoni
ally assear
h progresses.ProofLet the variables be represented by X ′ = {x0, x1, . . . , xj , xj+1, . . . , x|X′|−1}. Letthe domain of variable xj+1 ∈ X ′ be Zd = {d
(0)
j+1, d

(1)
j+1, . . . , d

(d−1)
j+1 }, with d

(k+1)
j+1 >

d
(k)
j+1 whenever 0 ≤ k < d− 1. Then d

(k+1)
j+1 ≥ d

(k)
j+1 + 1, and

d
(k+1)
j+1 − d

(k)
j+1 − 1 ≥ 0 (7.3)Consider two 
onse
utive (partial) assignments. We examine the 
ase when thevalue to variable xj+1 
hanges from d

(k)
j+1 to the value d

(k+1)
j+1 . We further 
onsider theassignment to the remaining variables xj+2, . . . , x|X′|−1 arising due to systemati
sear
h. In the pathologi
al 
ase, prior to xj+1 
hanging, these remaining variableshad the maximum value in Zd, equal to (d− 1). When the value of xj+1 
hanges,the remaining variables now assume the minimum value in Zd, that is, 0. In otherwords, 
onsider the following two assignments:

Aj = 〈(x0, d0), (x1, d1), . . . , (xj, dj),

(xj+1, d
(k)
j+1), (xj+2, d− 1), . . . , (x|X′|−1, d− 1)〉,

Aj+1 = 〈(x0, d0), (x1, d1), . . . , (xj, dj), (xj+1, d
(k+1)
j+1 ), (xj+2, 0), . . . , (x|X′|−1, 0)〉,where d0, d1, . . . , dj ∈ Zd.Let S(j)

p (S(j+1)
p ) denote the en
odings of Aj (Aj+1). Then using Eq. 7.2, weobtain:
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S(j)

p =
|X′|−1
∑

i=0

xi · d
|X′|−i−1

=
j
∑

i=0

di · d
|X′|−i−1 + d

(k)
j+1 · d

|X′|−j−2 +
|X′|−1
∑

i=j+2

(d− 1) · d|X′|−i−1

S(j+1)
p =

|X′|−1
∑

i=0

xi · d
|X′|−i−1

=
j
∑

i=0

di · d
|X′|−i−1 + d

(k+1)
j+1 · d

|X′|−j−2 +
|X′|−1
∑

i=j+2

0 · d|X′|−i−1By subtra
tion,
S(j+1)

p − S(j)
p = (d

(k+1)
j+1 − d

(k)
j+1) · d

|X′|−j−2 −
|X′|−1
∑

i=j+2

(d− 1) · d|X′|−i−1

= (d
(k+1)
j+1 − d

(k)
j+1) · d

|X′|−j−2 − (d− 1)×

(1 + d + d2 + . . . + d|X′|−j−3)

= (d
(k+1)
j+1 − d

(k)
j+1) · d

|X′|−j−2 − (d− 1)×
d|X′|−j−2 − 1

d− 1
(if d 6= 1)

= (d
(k+1)
j+1 − d

(k)
j+1 − 1) · d|X′|−j−2 + 1 (if d 6= 1)

≥ 1 from Eq. 7.3The same result follows if d = 1, by setting this value for d dire
tly into the�rst step. Sin
e S(j+1)
p > S(j)

p , S(j)
p in
reases stri
tly monotoni
ally.

Q.E.D.Fra
tion of Sear
h Spa
e Let p, the fra
tion of the sear
h spa
e p (0 ≤ p < 1)
overed by Solver(). p is approximated as follows. For an n×m S-box, the totalnumber of enumerations is equal to 2m×2n and forms the denominator of p. Thefra
tion p of sear
h spa
e for the 6× 4 S-box is given by the following ratio:
p =

Sp

2m×2n =
λ−1(xπ(i)) · d

|X′|−i−1

2m×2n , from Eq. 7.1 (7.4)This is the metri
 that we will use in our experiments to 
ompare performan
eof heuristi
s. However, we will express this metri
 in a more readable manner inthe following paragraphs.



120Heuristi
 First Sear
h Point Sp1
(in Hexade
imal), and Corresponding Fra
tion, a

H
φ,16
I

Sp1
= 033056659aa9cffc744728dbed1eb281300395a9566cfacfd7ed7b4e218214b8

a = 0.012456321531011171706977161053827542615230725548026705570504434171742344721

V
φ,16
S

(No solutions found)
V O

φ,16
S

(No solutions found)
V

φ,16
C7

Sp1
= 03569acf7421edb83065a9fc4712de8b3065acf94d8b712e09f3c05a824d0000

a = 0.013040233276235570484942204477017154420405709642663933645624638940629054168

V
φ,16
AC7

Sp1
= 3569acf7421edb83065a9fc4712de8b3065acf94d8b721e0ca960351b478000

a = 0.013040233276235570484942204477017154420405709642663933683860530915394054745

V O
φ,16
C7

Sp1
= 3569acf7421edb83065a9fc4712de8b3065acf94d8b712e053a000000000000

a = 0.013040233276235570484942204477017154420405709642663933645624638940629054168

V O
φ,16
AC7

Sp1
= 3569acf7421edb83065a9fc4712de8b3065acf94db8712e05a9c3061b4e0000

a = 0.013040233276235570484942204477017154420405709642664403467543665769604504057

H
φ,16
S

, Sp1
= 033056659AA9CFFC74472112EDDEB88B30036556CFFC9AA9DEED8BB821127447

HO
φ,16
S

a = 0.012456321531011171706977135898667979325824166971089322438578599427830606050

H
φ,16
C7

Sp1
= 033056659AA9CFFC74472112EDDEB88B300369AF5CC5F69A4DB8100000000000

a = 0.012456321531011171706977135898667979325824167732326887336844001622173067893

H
φ,16
AC7

Sp1
= 33056659aa9cffc74472112eddeb88b300369acf5cf5a964d7e82d700000000

a = 0.012456321531011171706977135898667979325824167730683235082199556313454298076

HO
φ,16
C7

Sp1
= 033056659aa9cffc74472112eddeb88b300369a6f55f9ccaed70000000000000

a = 0.012456321531011171706977135898667979325824167726576701853008982422599743978

HO
φ,16
AC7

Sp1
= 33056659aa9cffc74472112eddeb88b300369af5cc5fa968bedd00000000000

a = 0.012456321531011171706977135898667979325824167732326887499378089911418120883Table 7.1: First sear
h point generated by solvers employing various heuristi
s, onordered domains of variablesFirst Sear
h Point, and O�set Let Sp1
represent the �rst-generated S-boxby the solver. Let a represent the fra
tion of sear
h spa
e 
overed by the solverwhen the �rst solution is obtained. The value for a is obtained by substituting thevalue of Sp1

into equation 7.4:
a =

Sp1

2m×2n (7.5)For all solutions di�erent from the �rst, de�ne a sear
h o�set r as follows:
r = p− a =

Sp − S1
p

2m×2n (7.6)Note that |r| < 1. (For the �rst sear
h point, r = 0.) The remaining sub-se
tions analyze the variation in p = a + r with time for the heuristi
s used inSolver().Table 7.1 lists out the value of Sp1
for ea
h heuristi
. The in
omplete heuristi


Hφ,16
I shows a value di�erent from all of the other, 
omplete heuristi
s, whi
h isto be expe
ted. Even for 
omplete heuristi
s, the straight-line variable ordering



121shows an Sp1
value di�erent from the zig-zag ordering, on
e again an expe
tedresult.7.2.3 CPU Elapsed TimeTiming results have been re
orded for every S-box generated (in
luding partiallyassigned S-boxes). These timings are the CPU exe
ution times and are output bythe fun
tion getrusage(RUSAGE_SELF, &time) where time is the elapsed time (inse
onds) sin
e the experiment started. This fun
tion is 
alled twi
e, on
e at startto re
ord the elapsed CPU time at the �rst sear
h point, and thereafter, after ea
hsear
h point is en
ountered, often at ea
h minute. A 
omparison of CPU timesby the di�erent heuristi
s provides information related to speed-up. This is donefor reporting purposes only. No further analysis is 
arried out on this metri
. Inthe experimental results reported in this Chapter, the 
olum �Time (se
onds)� or�Time (hrs)� always refers to the CPU elapsed time.7.2.4 Number of Completely-�lled S-boxesWhenever an S-box with all entries is obtained, a 
ount of the number of solutionsis in
remented by 1. After ea
h minute, along with the CPU time, the numberof solutions is also reported. A 
omparison of the number of 
omplete S-boxesgenerated so far, against ea
h heuristi
, provides information on e�
ien
y of theheuristi
. On
e again, this is done for reporting purposes only. No further analysisis made on this metri
.7.3 Random Permutation of DomainsTo study the e�e
t of domain-ordering on heuristi
 performan
e, the sear
h spa
e isshu�ed by randomly permuting the domains of ea
h variable. Pro
edure Permutefrom [25℄ permutes an ordering of integers π using random seed s, and, for re-produ
ibility purposes, is provided below. The drand48() fun
tion in Permuteis the one provided in standard GNU C library. Also, to allow the repli
ation ofthe reported experiments, the seed is set at start with the help of the fun
tionseed48([1000,0,0℄). The swap() fun
tion inter
hanges two integers.7.4 SetupThe hardware environment 
onsists of an Intel Pentium Core-2 Duo 3-GHz CPUand 3.3 GB RAM. GNU/Linux Ubuntu 9.04 is the operating system. Binary 
on-straints are pre
ompiled for S-box 
riteria S-3, S-4, S-5, and S-6 (Se
tion 2.3.1).



122Pro
edure Permute(π, s)inputs : An ordering π of integers, and a seed s.output: A permutation of π1 begin2 Let π = (d0, d1, . . . , d|π|−1) ;3 seed48(s) ;4 for i← 0 to (|π| − 1) do5 p← ⌊(|π| − i)× drand48()⌋ ; /* 0 ≤ p < |π| − i */6 swap(di, dp+i);These 
onstraints are then input to the solvers implementing the aforementionedheuristi
s for 
riteria S-2 and S-7.The experiments are broadly 
lassi�ed into the following types:1. E�
ien
ies for small-sized S-boxes su
h as 4×4 and 5×3 S-boxes, dis
ussedin Se
tion 7.5.2. Generation of 
omplete 6× 4 S-boxes, dis
ussed in Se
tion 7.6. The experi-ments have been run for a duration ranging from 5 hours to 4 days to 
apturevarious information regarding 
omplete S-box generation.3. Comparison of performan
e of heuristi
s for 6 × 4 S-box generation. Thisinvolves �nding how far in the sear
h spa
e ea
h heuristi
 has advan
ed upto. The measure of Se
tion 7.2.2 is used in the 
omparison. Here, partial
S-boxes are sampled ea
h minute and in
luded in the performan
e plots.The experiments have been run for two days, and the results are dis
ussedin Se
tion 7.7. The quality metri
 (the s
ore) is thresholded by a maximumvalue τ in ea
h experiment (refer se
tion 4.3), and observations on the qualityof generated S-boxes is made.7.5 E�
ien
ies for Small-Sized S-boxesIn this se
tion we evaluate the s
ores σX(Φ) of ea
h of the eight published DES

S-boxes Φ. Next, we attempt to generate all 4×2 S-boxes and also, examine thoseof Simple DES [62℄. Finally, an attempt is made to generate all 5× 3 S-boxes toexamine the duration of sear
h.
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S-box, Φ S1 S2 S3 S4 S5 S6 S7 S8S
ore, σX(Φ) 14 14 14 10 14 12 18 12Table 7.2: S
ores obtained for existing 6× 4 S-boxes of DESConstraint Time # of S
ore-wise breakupCombinations (se
onds) S-boxes S
ore 8 S
ore 6 S
ore 4 S
ore 2No 
onstraints 136228.906250 4294967296 3931260 517882560 3496729600 276422720S-3 only 35.029600 331776 11904 153600 166272 0S-4 only 0.000089 4 4 0 0 0S-5 only 6.410940 65536 7936 45056 12544 0S-6 only 13214.516602 429981696 2103616 91728896 323934912 12214272S-3, S-5 0.433693 4096 384 2048 1664 0S-3, S-6 5.224500 46656 6240 22272 18144 0S-5, S-6 2.085620 20736 4160 13312 3264 0S-3, S-5, S-6 0.165739 1600 224 768 608 0Table 7.3: Statisti
s of 4 × 2 S-boxes generated by MAC2001(τ) to satisfy 
om-binations of DES 
riteria7.5.1 Evaluation of DES S-boxes S1 to S8We employ Matsui's metri
 to s
ore the eight DES S-boxes of Figure 1.1, proposedby IBM. The s
ores we have found are reported in Table 7.2.Observation S-box S7 possesses the (not-so-good) s
ore of 18 and S-box S4,the (best) s
ore of 10. In addition, a number of S-boxes possess a s
ore of 14. No

S-box with a s
ore of 8 was found during the manual 
onstru
tion. Interestingly,the last S-box S8 used in breaking DES [11℄, yielded a �se
ond-best� s
ore of 12.In general, the maximum value τ of the s
ore of an n×m S-box is equal to 2n−1,and is the value used for small values of n as the experiments suggest. For large-sized S-boxes su
h as 6 × 4, the maximum value of the s
ore is 
onsidered equalto 16 (= 26

4
) and not 26−1 = 32 sin
e, there are too many 6× 4 S-boxes generatedhaving s
ore equal to 16 and we would like to study generation of (better) S-boxeswith smaller s
ores.7.5.2 Problem DES4,2

S,8: Generation of 4× 2 S-boxesThis problem generates 4× 2 S-boxes (16 variables, at domain size 4). CriterionS-7 no longer applies. Not all 
riteria S-3, S-4, S-5 and S-6 result in solutionswhen applied together. Table 7.3 reports results obtained using some 
ombinationsof 
riteria that yield solutions. The threshold τ assumes the maximum value of
24−1 = 8.



124Total time Total number S
ore-wise breakup(se
onds) of S-boxes S
ore 16 S
ore 12 S
ore 814.2659 32,640 25728 3456 3456Table 7.4: The s
ores of 5× 3 S-Boxes generated by the model, with 
riteria S-5and S-6 relaxedThe S-boxes of Simple DES [62℄Simple DES is proposed in [62℄ and employs two 4 × 2 S-boxes S0 and S1. Ourmodel reports that both S-boxes S0 and S1 do not satisfy DES 
riteria S-3 toS-6. Applying 
riterion S-2 yielded a s
ore equal to 5 for S-box S0. In general,all entries in the linear approximation table for an S-box, and therefore the s
ore,should be even. The reason for the odd-numbered s
ore in the 
ase of S-box S0is that this S-box has two identi
al entries in row 3 (resulting in 
riterion S-3 notbeing satis�ed). S-box S1 yielded a s
ore of 6. Two entries in row 2 of S-box S1are identi
al, resulting in the presen
e of an odd-numbered entry equal to 5 in itslinear approximation table (and 
riterion S-3 not being satis�ed).Con
lusion: This approa
h on problem DES4,2
S,8 generates 4× 2 S-boxes onlywhen some of the DES 
riteria S-2 to S-7 are relaxed. Results on 
ombinations ofsatis�ed 
riteria, generation times and number of S-boxes are reported in Table 7.3.7.5.3 5× 3 S-boxesThis problem, spe
i�ed as DES5,3

S,16, generates 5×3 S-boxes (32 variables, ea
h withdomain 
ardinality equal to 8). Criteria S-5 and S-6 are relaxed. The thresholdassumes a maximum value of 25−1 = 16. The solver 
ould �nd all solutions andterminate. Table 7.4 reports S-box generation times and number of S-boxes fordi�erent s
ores, with a total of 32,640 S-boxes generated.Con
lusion: The approa
h of running Solver() on problem DES5,3
S,16 generates

5 × 3 S-boxes to satisfy all remaining 
onstraints when 
riteria S-5 and S-6 arerelaxed. No 5× 3 S-boxes of s
ores 6, 4 and 2 were found.7.6 Experimental Results for 6× 4 S-box GenerationIn the earlier problems for generating smaller-sized S-boxes, the 
omplete heuristi
was used. For 6 × 4 S-boxes, however, we have formulated several alternativeheuristi
s for 
riteria S-2 and S-7 to improve sear
h speed and/or S-box quality.As su
h, a whole se
tion is devoted to 6× 4 generation.



125Time Sear
h spa
e # of S-boxes(hrs) in
rement, r (σX(Φ) = 16)1 1.1980 × 10−49 42 2.1725 × 10−48 143 4.2091 × 10−48 154 4.2091 × 10−48 265 6.1340 × 10−48 40Table 7.5: MAC2001(16) on Problem DES6,4
S,16 � Performan
e statisti
s7.6.1 Problem DES6,4

S,16: Complete, Non-in
remental Heuristi
sWe report the results of exe
uting Solver() employing the following 
om-plete, non-in
remental heuristi
s: H64,τ
S , HO64,τ

S , V 64,τ
S and V O64,τ

S . The formertwo heuristi
s are the optimized and non-optimized versions employing defaultvariable-ordering, while the latter two heuristi
s are the 
orresponding versionsthat employ even/odd variable-ordering.
S-boxes generated by Solver(), for ea
h heuristi
, are sampled ea
h minuteand the fra
tion of sear
h spa
e o�set is determined using Equation 7.6. Table 7.1re
ords the values for the fra
tion of sear
h-spa
e a traversed prior to the �rst

S-box. The values di�er with the variable-ordering heuristi
 employed, otherwise,they are identi
al for all heuristi
s within that ordering (as expe
ted).Table 7.5 reports the sear
h time (se
onds), the in
rement r of the fra
tion ofsear
h spa
e 
overed from the partial S-box generated during the �rst minute, andthe number of S-boxes with all entries �lled, obtained in these time frames, forheuristi
s Hφ,16
S and V φ,16

S that employ no optimization.All sear
hes with this approa
h have so far resulted in 6×4 S-boxes with s
ore
σX(Φ) equal to 16. As Table 7.5 reports, the �rst four S-boxes having s
ore 16were generated after about an hour of sear
h 
ommen
ement. Large wait-timeswere visible between S-box generations su
h as, for example, between 14 and 15solutions.Spe
ifying the maximum s
ore τ equal to 16 should enable MAC2001(16) togenerate S-boxes with �better� s
ores (values of σX(Φ) less than τ). However wereport that S-boxes with �better� s
ores of 14, 12, 10, 8, and so on did not surfa
efrom this approa
h in the stipulated time-frames. We also report that experimentswith MAC2001(τ) for τ = 14, 12, 10 and 8 did not yield 6 × 4 S-boxes for thesethresholds in the �ve-hour time-frame used for running MAC2001(16).The issue addressed in the next two problems is the improvement of sear
hspeed of MAC2001(τ) over DES6,4

S,τ .



126Time Sear
h spa
e # of S-boxes(hrs) in
rement, r (σX(Φ) = 16)1 1.0216× 10−44 207862 2.6504× 10−44 359573 9.1542× 10−44 491104 9.9395× 10−44 809335 1.0615× 10−43 94069Table 7.6: Algorithm MAC2001(16) on Problem DES6,4
C,16 � Performan
e statisti
sTime Sear
h spa
e # of S-boxes(hrs) in
rement, r (σX(Φ) = 16)1 1.6929× 10−44 245242 9.6042× 10−44 434623 9.9080× 10−44 686684 9.9956× 10−44 935235 1.1456× 10−43 108043Table 7.7: MAC2001(16) on Problem DES6,4

C7,16 � Performan
e statisti
s
MAC2001(16) on Problems DES6,4

C,τ , for various thresholds τ (Soft ConstraintDe
omposition)The results of running MAC2001(τ) on the family of problems DES6,4
C,τ are re-ported in Table 7.6, with τ = 16.Observations A 
omparison with the results of Table 7.5 suggests that using theformulation of problem DES6,4

C,τ indeed speeded up the sear
h for S-boxes when
τ = 16, where the marginal 
overage of the sear
h spa
e grows with a fa
tor of
105. This model is 
omplete, �nding all solutions the way the model involving theformulation of problem DES6,4

S,τ does.This approa
h shares the drawba
k as with problems DES6,4
S,τ , of its inability togenerate S-boxes with s
ores of 14, 12, 10 and 8 in reasonable time-frames, when

τ = 16, or when τ = 14, 12, 10, 8.Problem DES6,4
C7,τ , for various thresholds τThe results of running AlgorithmMAC2001(τ) on this problem are reported belowfor τ = 16.



127A 
omparison with the results of Table 7.5 suggests that using the formulationof problem DES6,4
C,τ indeed speeded up the sear
h for S-boxes when τ = 16, wherethe marginal 
overage of the sear
h spa
e grows with a fa
tor of 105. This modelis 
omplete, �nding all solutions the way the model involving the formulation ofproblem DES6,4

S,τ does.A 
omparison of this table with the results of Table 7.5 suggests that using theformulation of DES6,4
C7,16 indeed speeded up the sear
h for S-boxes when τ = 16,where the marginal 
overage of the sear
h spa
e grows with a fa
tor of 105, while
omparing with Table 7.6 reveals a marginal fa
tor of 1.08.Algorithm MAC2001(τ) on problem DES6,4

C7,τ possesses the same disadvantageas on problems DES6,4
S,τ and DES6,4

C,τ , namely, that even when τ = 16, 14, 12, 10, 8,the model does not generate S-boxes with lesser s
ores.The speedup is observed in the plot of Figure 7.1 generated from a four-day runof the above experiments using formulations of problems DES6,4
C,16 and DES6,4

C7,16.The plot displays �jumps� at the points at whi
h a number of variables get reas-signed. One su
h jump, not evident in the plot, o

urred nearly one-and-a-halfhours after start of the experiment, from an in
rement- point of 2.6532 × 10−44(after 38062 S-boxes were generated) to a value of 8.3333× 10−44 (when the next
S-box was obtained). Frequent, gradual jumps were visible between 24 and 32hours. The more the number of jumps, the more the sear
h spa
e is un
overed.Also shown in the plot is the �rst approa
h using the formulation to problem
DES6,4

S,16. The �rst approa
h did not exhibit any su
h jumps in the two days thatit was run. These jumps would have presumably o

urred after a long duration.Con
lusion: The approa
h using the formulation of problem DES6,4
C7,τ to gen-erate 6 × 4 S-boxes results in the fastest model we 
urrently have, 
ompared tothose resulting from problems DES6,4

S,τ and DES6,4
C,τ .None of these models have yielded 6 × 4 S-boxes having s
ores below 16 sofar. The issue addressed in the next problem is generation of S-boxes with s
oresbelow (and in
luding) τ .Problem DES6,4

I,τ , for various thresholds τThe approa
h using the formulation for problem DES6,4
I,τ is used to generate

S-boxes with di�erent thresholds τ = 16, 14, 12, 10, 8 The experiment is run sepa-rately on ea
h of these τ -values for a �ve-hour duration. The following observationsare made in this time-frame.
• This approa
h yields S-boxes with s
ores τ and (τ − 2), and no more, when

τ = 16, 14, 12, 10. The results in Tables 7.8 to 7.11 for ea
h τ report themeasure of sear
h-spa
e 
overed, and the number of S-boxes generated inea
h hour over the stipulated duration.
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6,4Figure 7.1: Fra
tion of sear
h spa
e as a fun
tion of sear
h time (hours), 
overedby Algorithm MAC2001(16) on Problems DES6,4

S,16, DES6,4
C,16, and DES6,4

C7,16.Time Sear
h spa
e # of S-boxes(hrs) o�set, r σX(Φ) = 16 σX(Φ) = 141 8.9771 × 10−46 44698 119522 9.3263 × 10−46 95205 318903 9.0561 × 10−44 145929 462474 9.0585 × 10−44 194165 622745 9.0906 × 10−44 240745 79167Table 7.8: Approa
h using problem DES6,4
I,16 formulation � Performan
e statisti
s

• S-boxes with di�erent s
ores appear immediately at a number of points inthe sear
h spa
e. Note the di�erent points in sear
h-spa
e signi�ed by thedi�erent values for r in Table 7.8, where σX(Φ) = 16, 
ompared with those inTables 7.5, 7.6 and 7.7. Note also, how 
losely the solutions for s
ore (τ − 2)follow those for s
ore τ , given τ . This �nds S-boxes having s
ores (τ − 2)and τ in parts of the sear
h tree di�erent from those explored by Algorithm
MAC2001(16) on Problems DES6,4

S,16, DES6,4
C,16, and DES6,4

C7,16.
• The S-boxes generated by the approa
h using the formulation for Problem

DES6,4
I,τ , having s
ore σX(Φ) = (τ − 2), need not be identi
al to those forproblem DES6,4

I,τ−2, where τ = 16, 14, 12. Among Tables 7.8, 7.9, 7.10,and 7.11, this 
an be seen in any two under the 
olumn for r, for the same



129Time Sear
h spa
e # of S-boxes(hrs) o�set, r σX(Φ) = 14 σX(Φ) = 121 5.6792 × 10−47 21584 36022 8.9688 × 10−44 50235 68273 9.0033 × 10−44 83017 124964 9.0559 × 10−44 121126 187485 1.0650 × 10−43 157850 23692Table 7.9: Approa
h using problem DES6,4
I,14 formulation � Performan
e statisti
s

σX(Φ) = 12 σX(Φ) = 10Time Sear
h spa
e # of Sear
h spa
e # of(hrs) o�set, r S-boxes o�set, r S-boxes1 1.7846× 10−44 11056 1.7965× 10−44 1032 6.1985× 10−44 23160 6.2677× 10−44 1633 3.0668× 10−43 37652 3.0668× 10−43 4184 3.1389× 10−43 50742 3.1389× 10−43 8505 3.1424× 10−43 62293 3.1424× 10−43 1041Table 7.10: Approa
h using Problem DES6,4
I,12 formulation � Performan
e statisti
s

σX(Φ) = 10 σX(Φ) = 8Time Sear
h spa
e # of Sear
h spa
e # of(hrs) o�set, r S-boxes o�set, r S-boxes1 3.5594× 10−44 8562 3.5594× 10−44 35832 5.7281× 10−41 17827 6.2206× 10−41 49993 6.4607× 10−41 27875 6.4607× 10−41 78364 6.8814× 10−41 37875 6.8814× 10−41 108835 1.0300× 10−40 47671 1.0300× 10−40 13602Table 7.11: Approa
h using Problem DES6,4
I,10 formulation � Performan
e statisti
ss
ore σX(Φ). For example, the values of r in Table 7.8 and Table 7.9 when

σX(Φ) = 14 di�er under the same time-row.
• The experiment generates �better� S-boxes 
ompared to the earlier experimentinvolving formulations for problems DES6,4

S,16, DES6,4
C,16 and DES6,4

C7,16. Even



1300 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150 0 3 5 6 9 10 15 12 7 4 14 13 2 1 8 111 3 0 6 5 10 9 12 15 4 7 13 14 1 2 11 82 3 15 0 12 5 6 9 10 4 8 7 11 14 13 2 13 0 12 3 15 9 10 5 6 7 11 4 8 2 1 14 13Figure 7.2: A 6 × 4 S-box with s
ore 8, generated by Algorithm MAC2001(10)applied over Problem DES6,4
I,100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150 0 3 5 6 9 10 15 12 7 4 14 13 2 1 8 111 3 0 6 5 10 9 12 15 4 7 13 14 1 2 11 82 3 15 0 12 5 6 9 10 4 8 11 2 14 13 7 13 0 12 3 15 9 10 5 6 7 11 4 8 2 1 14 13Figure 7.3: A 6 × 4 S-box with s
ore 10, generated by Algorithm MAC2001(10)applied over Problem DES6,4
I,10when τ = 16, this experiment yielded S-boxes in times below the approa
hesfor the earlier problems, parti
ularly for Problem DES6,4

S,16. For example, inone hour, only four S-boxes were obtained using Algorithm MAC2001(16)on Problem DES6,4
S,16, all having s
ore 16. In 
omparison, the same algorithmon Problem DES6,4
I,16 yielded 56649 S-boxes, with s
ore equal to 16 and 14.AlgorithmMAC2001(10) on Problem DES6,4

I,10 yielded S-boxes having s
oresof 10 and 8. A sample S-box with a s
ore equal to 10 is shown in Figure 7.3,and one with s
ore 8, in Figure 7.2.
S-boxes below s
ore 8 have not been obtained in the stipulated time-frame.Based on Matsui's S-box quality metri
, S-boxes with a s
ore of 8 are su-perior to those spe
i�ed for DES, with the �best� DES S-box having a s
oreequal to 10 as Table 7.2 reports.SummaryApplying Algorithm MAC2001(τ) over Problem DES6,4

I,τ additionally yielded �bet-ter� S-boxes having s
ore equal to at most (τ − 2), when τ = 16, 14, 12, 10. How-ever, those S-boxes are not identi
al to the ones generated by applying Algorithm
MAC2001(τ − 2) over Problem DES6,4

I,τ−2. The sear
h-point is seen to di�er, sug-



131gesting the in
omplete nature of this model. However the time taken to generate
S-boxes is less 
ompared to that of the 
omplete model obtained by applyingAlgorithm MAC2001(τ) over Problem DES6,4

S,τ . At the same time, the lattermodel, and its improvements (Algorithm MAC2001(τ) on Problems DES6,4
C,τ and

DES6,4
C7,τ) have not been as 
apable of generating �better� S-boxes the way theformer performed in the stipulated time-frame.7.7 Comparisons Between Heuristi
sIn this se
tion, a 
omparison of the following heuristi
s is made from the viewpointof performan
e:1. Non-in
remental heuristi
s2. Soft Constraint De
omposition Heuristi
 for S-2 and In
remental Che
k forS-7, namely, heuristi
 HC7

φ3. De
omposition of the COUNT 
onstraint for S-7 by proje
tion onto domainsof future variables, whi
h is heuristi
 HAC7
φ.In this se
tion, the heuristi
s will be 
ompared for performan
e of 6× 4 S-boxgeneration against the following parameters.1. Subse
tion 7.7.1 demonstrates the e�e
t of introdu
ing the 
ondition forno ar
-
onsisten
y 
he
k upon domain wipe-out, whi
h is the optimizationdis
ussed in subse
tion 5.5.1.2. Subse
tion 7.7.2 
ompares heuristi
 performan
e for Straight-line variableordering versus zig-zag variable ordering, dis
ussed in subse
tion 5.5.2Ea
h subse
tion, 
ompares 
omplete heuristi
s over the default ordering of do-mains of variables, and domains permuted using the random permutation dis
ussedin Se
tion 7.3 by the pro
edure Permute. For 6× 4 S-boxes, the default orderingof the domains is the in
reasing order, namely, the set {0, 1, 2, . . . , 15}. The setupfor the random permutation of domains has been dis
ussed in Se
tion 7.3.In the experiments, the threshold of the s
ore sought is τ = 16, a value betterthan the maximum s
ore of 18 of DES S-box S7.
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(c) (d)Figure 7.4: Performan
e of unoptimized and optimized heuristi
s. Heuristi
s V φ
Sand V Oφ

S have not generated any S-boxes in the stipulated time-frame and no
urve is visible for these heuristi
s in Plots (a) and (b)7.7.1 Performan
e of Unoptimized versus Optimized Heuristi
sEight plots are provided in this analysis in whi
h unoptimized heuristi
s and theiroptimized variants are separately 
ompared. Four of these plots are for normalordering of domains of variables while the remaining four are for permutation ofdomains.Default Domain-OrderingFigure 7.4 displays the plots of heuristi
s Hφ
S , HOφ

S, V φ
S , and V Oφ

S for defaultordering of values to variables.The plots are similar in shape indi
ating that all of these heuristi
s traverse thesame path in the sear
h tree. The plots, as expe
ted, are monoti
ally in
reasing.



133The almost-horizontal lines indi
ate that almost all values assigned to variables donot 
hange ex
ept for the last few of these. When a verti
al-line (jump) is en
oun-tered, it means that values assigned to the last several variables have 
hanged.Straight-Line Variable Ordering Noti
e that the non-in
remental heuristi
s
V φ

S and its optimized variant V Oφ
S has not produ
ed any S-boxes during the two-day run of the experiment, and is not present in the �rst two plots.In the 
ase of in
remental 
he
king, optimization results in a slight improvementof V Oφ

C7
(V Oφ

AC7) over the V φ
C7

(V φ
AC7). In parti
ular, near the 20-hour mark, V Oφ

C7depi
ts a 5.3-per
ent in
rease over V φ
C7
. V Oφ

AC7 exhibits a 4.6-per
ent in
rease over
V φ

AC7. For both unoptimized and optimized heuristi
s, the in
rease be
omes moreprominent as time progresses and as the heuristi
s advan
e further into the sear
hspa
e.Zig-Zag Variable Ordering The non-in
remental heuristi
 Hφ
S and its opti-mized variant HOφ

S has generated 384 S-boxes during the two-day run of theexperiment.Without optimization, Hφ,16
AC7 
onsistently shows a 14-per
ent performan
e in-
rease over Hφ,16

C7
. With optimization in pla
e, the performan
e of respe
tive heuris-ti
s HOφ,16

AC7 over HOφ,16
C7

has slightly improved to 15%.One 
an 
on
lude that proje
ting the COUNT 
onstraint over future variables,redu
ing their domains during the pro
ess, exhibits superior performan
e overin
remental 
he
king of the COUNT 
onstraint regardless of whether optimizationis present or not in both 
ases. The optimization of Table 5.9 results in furtherspeedup due to redu
tion in 
alls to the fun
tion EstablishFullAC.Permuted Domain-OrderingFigure 7.5 depi
ts the performan
e 
hara
teristi
s of unoptimized heuristi
s V φ
C7
,

V φ
AC7, and optimized heuristi
s V Oφ

C7
and V Oφ

AC7, when the domains of variablesare randomly permuted using the seed of 1000.Noti
e that for this parti
ular permutation of domains, the in
remental heuris-ti
 that proje
ts past assignments on to domains of future variables exhibits no sig-ni�
ant improvement over the in
remental 
he
king heuristi
, regardless of whethervariables are ordered by straight-line or zig-zag approa
h.
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(c) (d)Figure 7.5: Performan
e of unoptimized and optimized heuristi
s for permuteddomainsStraight-Line Variable Ordering The optimized versions of both of the afore-mentioned heuristi
s are seen to exhibit a 46-per
ent in
rease over the unoptimizedversions for this parti
ular permutation. Therefore for this variable ordering, theoptimization by preventing further 
onsisten
y-
he
king in 
ase a domain wipe-outo

urred, appears promising when domains are randomly permuted.Zig-Zag Variable Ordering The performan
e of the optimized heuristi
 em-ploying this form of variable ordering di�ers from that of the unoptimized heuristi
by a very small amount, about 1.5 per
ent. However, the heuristi
s due to thisordering exhibit a jump within the se
ond minute, over the solution spa
e. More-over, the ensuing horizontal line suggests that a lot of solutions di�ering only inthe values of the last few variables is found using this permutation.
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e of heuristi
s employing Straight Line Variable Orderingfor ordered domains
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HOC7
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HOAC7
φ,16Figure 7.7: Performan
e of heuristi
s employing Zig-Zag Variable Ordering forordered domains7.7.2 Performan
e of Heuristi
s using Straight-Line and Zig-Zag Variable Order-ingFigure 7.6 depi
ts the performan
e of all in
remental heuristi
s (unoptimized andoptimized), using straight line variable ordering, and Figure 7.7, using zig-zag
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VOC7

φ,16

VOAC7
φ,16

VC7

φ,16

VAC7
φ,16Figure 7.8: Performan
e of heuristi
s employing Straight Line Variable Orderingfor permuted domainsvariable ordering, both for ordered domains. Figure 7.8 and 7.9 exhibit the plotsfor permuted domains.Default Domain-OrderingIn the plot of Figure 7.6 employing straight line variable ordering, ea
h heuristi
appears to exhibit a 10-per
ent in
rease in e�
ien
y against the other as per thefollowing ordering: V Oφ

AC7 ≥ V OC7
φ ≥ V φ

AC7 ≥ V φ
C7
. The plot suggests that theoptimized version of V Oφ

C7
is more e�
ient than the unoptimized version of V φ

AC7.The plot of Figure 7.7 employing zig-zag ordering exhibits a stark 
ontrast.Namely, HOφ
AC7 ≥ HAC7φ ≥ HOφ

C7
≥ Hφ

C7
. HOφ

C7
has an e�
ien
y about 12per
ent above HC7

, HAC7 is about 5.5 per
ent more e�
ient over HOC7
, and

HOAC7 is the most e�
ient, being about 13.2 per
ent above HAC7.Permuted Domain-OrderingThe plot of Figure 7.8 employing straight line variable ordering with permuteddomains, exhibits a 
ompletely di�erent behavior from that of Figure 7.6. Heuristi

V φ

C7
and V φ

AC7 (V Oφ
C7

and V Oφ
AC7) exhibit very similar e�
ien
ies. The proje
tion
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HOAC7
φ,16Figure 7.9: Performan
e of heuristi
s employing Zig-Zag Variable Ordering forpermuted domainsof past assignments on to the domains of future variables, redu
ing these domainsduring the pro
ess, seem to have no e�e
t. The optimization of skipping the ar
-
onsisten
y 
he
k when a domain wipe-out o

urs appears to yield a 31-per
ente�
ien
y over the unoptimized version.The plot of Figure 7.9 using a zig-zag variable ordering with permuted domainsexhibits a jump within the se
ond minute of starting the experiment. At this point,a large number of assignments to variables has 
hanged. Moreover, after the jump,the 
urve has remained almost 
onstant, suggesting a large number of solutionswith only the last few variable assignments 
hanging while the �rst several valuesremained the same in this solution spa
e.7.8 Results on SymmetryWe report results on symmetry of DES S-boxes, and on the violations of one ormore 
riteria due to non-simultaneous inter
hanges of rows, 
olumns or quadrants.We also report the result of an experiment performed in an attempt to breaksymmetry by restri
ting domain-values.



138Operation on Total # of # S-boxes, Criteria violatedDES S-box Con�gur- and impa
t on By Remainingations S
ore Con�gurationsInter
hange Rows (S-4) 32 16, no 
hange S-4Inter
hange Columns (S-5) 2048 16, no 
hange S-4Inter
hange Diagonals (S-6) 32 16, no 
hange S-3Rotate S-box (S-7) 16 16, no 
hange NoneInvert S-box entries 16 16, no 
hange NoneTable 7.12: Observations made by inter
hanging Rows, Columns and Diagonals ofall eight DES S-boxes7.8.1 Symmetry of DES S-boxesWe have veri�ed row, 
olumn, diagonal, rotational and bit inversion symmeties ofall the eight S-boxes of DES. All 
on�gurations were 
onsidered, in
luding thosein whi
h simultaneous inter
hanges were not done. Table 7.12 summarizes theresults of the experiments on these 
on�gurations.7.8.2 Breaking Symmetry by Restri
ting Domain-ValuesSin
e ea
h S-box possesses the property of Bit Inversion, there is a likelihoodthat restri
ting the domain of at least one variable will result in pruning of atleast one future variable resulting in further redu
tion of the sear
h spa
e, andthe 
onsequent optimization. To verify this fa
t, we have performed the followingexperiment. Introdu
e a new variable x−1 that assumes a domain identi
al to thatof the S-box variables. Add the following, new 
onstraint between x−1 and x0:
x−1 = 0 ∧ x0 ∈ {0, 1, 2, 3, 4, 5, 6, 7}The idea is to restri
t the domain of x0 to the set {0, 1, 2, 3, 4, 5, 6, 7} withoutdisturbing the symmetry of all existing 
onstraints involving x0. Upon runningthe solver now, the following was observed.No further redu
tion has happened to the domain D0 of x0, suggesting thatrestri
ting the value(s) of any of the S-box variables to take advantage of theproperty of symmetry does not result in further optimization.The examples of Chapter 6 suggest that on
e an S-box is found, a few others
an be written down immediately due to Rotational and Bit Inversion symmetryproperties of appropriate 
onstraints. Unfortunately this idea will not work withSolver� an intelligent ba
ktra
ker � and those symmetri
 S-boxes will end up
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7 with s
ore 8, generated by the Solver. This S-boxis used in the pla
e of DES S-box S7.eventually getting reprodu
ed. We have not 
ontinued with further investigationof symmetry for the time-being.7.9 Results on Criterion S-8We have formulated S-8 based on equation 6.24. This 
onstraint works on 8! =

40320 permutation of eight S-boxes taken all at a time. The di�eren
e-s
ore givenby equation 6.24 is 
ompared in this se
tion for various arrangements.7.9.1 The DES S-boxes S1 to S8For the existing arrangement (S1, S2, S3, S4, S5, S6, S7, S8), the di�eren
e-s
oreevaluates to 1120. There are 832 arrangements having this di�eren
e-s
ore.However, this is not the minimum di�eren
e-s
ore. The minimum value isa
tually equal to 1024. There are a total of 256 su
h arrangements. An examplearrangement is (S2, S1, S4, S3, S6, S5, S8, S7).7.9.2 Eight �best� S-boxes generated by the SolverThe minimum di�eren
e-s
ore of the �rst eight S-boxes having a s
ore equal to8, generated by the solver, evaluates to 82944. We need to develop a heuristi
to dis
ard an S-box, substitute it with another, and attempt to minimize thedi�eren
e-s
ore.7.9.3 Repla
ing a DES S-boxWe have repla
ed DES S-box S7 having the �worst� s
ore equal to 18, with the
S-box S ′

7 of Figure 7.10 generated by the CSP approa
h having a s
ore equal to 8.The result is that the arrangement (S2, S1, S4, S3, S6, S5, S8, S
′
7) yielded adi�eren
e-s
ore equal to 960, a value �better� than that of the existing DES S-boxeswith the same arrangement.
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Chapter 8Dis
ussionIn this 
hapter, we summarize the observations made from the experiments inChapter 7. We will also add pointers to more work that 
an be done in S-boxgeneration using CSPs.8.1 Small-size S-box Generation using CSPsWe are able to generate 4×2 and 5×3 S-boxes. The 
riteria spe
i�ed in Chapter 3do not simultaneously satisfy S-boxes of these sizes. Most 
riteria, parti
ularlybinary 
onstraints S-3 to S-6, and the n-ary 
onstraint S-7, pose a requirementon the size of the inputs to an S-box, with the 
onsequent outputs based on theserequirements. Some 
riteria had to be relaxed. For a S-42 S-box, 
riterion S-7does not apply while 
ombinations of the other 
riteria S-3 to S-6 are 
onsideredin Table 7.3. For 5 × 3 S-boxes, 
riteria S-5 and S-6 have been relaxed. Thereason is that, for 
riterion S-5, there are no �middle two� bits a

essible in a 5-bit

S-box input. As for S-6, implementing this 
he
k did not result in any solutions.The smallest S-box that 
an possibly go through all eight 
riteria needs aninput bitlength of 6, su
h as those used in DES.8.2 Complete 6× 4 S-box GenerationA 
omplete S-box, whi
h we ordinarily refer to as an S-box, is one in whi
h allvariables are assigned. Based upon the experiments detailed in Se
tion 7.6 for
6×4 S-box generation starting from a thresholding s
ore of τ = 16, we have foundthat the 
omplete, non-in
remental heuristi
 Hφ,16

S indeed generate S-boxes butbarely around 384 S-boxes over a two-day run. This gets speeded up by a fa
torof 100,000 when we formulated our idea of partially-assigned S-boxes. Heuristi
s
Hφ,16

C , Hφ,16
C7

and Hφ,16
AC7 are the resulting heuristi
s. However, with this spe
i�edthreshold, these heuristi
s have not visited the sear
h spa
e that 
ontained many

S-boxes with better s
ores su
h as 14 and below.Using an in
omplete, in
remental heuristi
 Hφ,16
I , we are able to obtain S-boxesof better s
ores su
h as 14, 12, 10 and even 8. The highlight of this heuristi
 is its



141ability to yield S-boxes having s
ores better than the best S-boxes of DES havings
ores 10, namely, s
ore 8. We have performed a proof-of-
on
ept using a few ofthese S-boxes having s
ore 8. In this trial, all eight S-boxes have been repla
ed bythe few 
hosen S-boxes in an implementation of DES. En
ryption and de
ryptionworks as expe
ted.We have run experiments on random-permutation-and-restarts of domains.None of the 
omplete heuristi
s have yielded S-boxes having s
ore equal to 8.At most, we have obtained S-boxes with s
ores up to 10. The in
omplete heuristi
has, however, yielded S-boxes with a s
ore up to 8 using domain permutation.Based on the experiments performed for generating 
ompletely �lled S-boxes,one 
an 
on
lude that the most promising heuristi
 for e�
ient exploration is
Hφ,τ

AC7. However, the heuristi
 that yields the best quality of S-boxes as measuredby Matsui's metri
 is Hφ,τ
I .8.3 Performan
e Comparison of Complete, In
rementalHeuristi
sOn the basis of the experiments in Chapter 7, one 
an safely 
on
lude that regard-less of optimization or variable ordering, the in
remental heuristi
 with proje
tionof past assignments on to future 
onstraints performs more e�
iently 
omparedto the in
remental heuristi
 that treats S-7 as a single n-ary 
onstraint. This istrue of both, as
ending-ordered domains and permuted domains given the permu-tation with seed 1000. For the zig-zag variable ordering heuristi
, the per
entageof e�
ien
y goes up from about 5% to about 15% as reported in the experiments.8.4 E�e
t of Variable and Value OrderingWe have 
onsidered two forms of variable ordering for 6 × 4 S-box generation:The default straight-line variable ordering in whi
h ea
h S-box is populated byassigning values in a row-wise fashion, and Zig-Zag variable ordering in whi
h theentries are assigned in a zig-zag manner for the �rst two rows, followed by the lasttwo rows.Intuitively, we felt that straight-line variable ordering should have yielded bet-ter results 
ompared to zig-zag ordering, in terms of performan
e. However, ourresults were surprising. The zig-zag pattern appeared to perform way better in
omparison with the straightforward straight-line variable ordering. When do-mains were permuted, the results were even more interesting for zig-zag variableordering. Within the �rst few minutes over a two-day run, the sear
h jumped tothe farthest point ever en
ountered in our systemati
 sear
h (to a s
ale of 10−23 as



142the plot of Figure 7.9 suggests) and remained 
onstant thereafter. This suggeststhat there are a large number of S-boxes with s
ore of 16 and below en
ounteredin this sear
h spa
e, given this permutation.We have obtained a newer result. Heuristi
 HOφ,16
AC7 (zig-zag variable ordering)yields S-boxes having s
ores equal to 14, 12 and even 10 when a threshold of 16is spe
i�ed, in the permuted-domain-spa
e. This has never happened when thedomains are default-ordered, using any of the 
omplete heuristi
s, given that thethreshold is τ = 16. Emboldened with this a
hievement, we have attempted tore-run the same experiment with thresholds τ = 14, 12 to see if we 
an get S-boxeswith s
ores 8 and below. So far, we have obtained S-boxes with s
ores up to10. We are now running the experiment with thresholds τ = 10, 8 to see what ishappening.In CSP literature, variable ordering has been suggested as a promising alterna-tive for e�
ient sear
h-spa
e exploration. We 
an 
on
lude that merely orderingvariables in some fashion need not ne
essarily give very promising results, always.The straight-line heuristi
 is a 
ase in point. The zig-zag heuristi
 appeared tobe more promising. The fa
t that the plot of Figure 7.9 be
ame 
onstant afterthe jump suggests that there are a large number of S-boxes with s
ore at most 16in this sear
h spa
e. The heuristi
 worked for this permutation. For some otherpermutation, it may very well prove to be more ine�
ient. In our 
ase, the sear
hspa
e is very large. The nature of the sear
h spa
e plays a role in de
iding on thevariable ordering heuristi
.A promising variable ordering heuristi
 we need to try with, is to sele
t thenext variable having least domain 
ardinality to make the next assignment, and
ontinue further. This is well-known in CSP literature and it will be interestingto study the e�e
t of this heuristi
 on our appli
ation.As for value (domain) ordering, although we have employed random ordering(with a seed of 1000 in the experiments of Chapter 7), a probabilisti
 strategy tosele
t the next value assigned to a variable 
an be used. The literature dis
usses ametri
 
alled promise value asso
iated with a domain-value sele
ted. The greaterthe promise value, the better. We 
an then permute the domains of variables inthe des
ending order of promise values. Note that after the �rst few variables areassigned, the promise values of subsequent domains are likely to 
hange, suggestinga dynami
 permutation of the domains for variables, one by one as and when anassignment is made.8.5 E�e
t of OptimizationThe optimization of all heuristi
s, dis
ussed in subse
tion 5.5.1, has yielded slightspeed-up. For example, for a straight-line variable ordering, heuristi
 V Oφ,τ

C7
is



143around 1.1 per
ent more e�
ient than V φ,τ
C7

. Similar is the 
ase of V Oφ,τ
AC7 over V φ,τ

AC7.With zig-zag variable ordering, the optimization yielded slightly more promise(1.4% in both 
ases).8.6 SymmetrySymmetry has been addressed in S-boxes based upon the 
onstraints that possessthe property of symmetry. We have seen 
onditional row, 
olumn and diagonalsymmetry that need not always yield S-boxes. Rotational and Bit Inversion Sym-metry however, yields alternative S-boxes. Theoreti
ally, due to these two formsof symmetry, a 400%-speedup is a
hieved due to the fa
t that (1) Bit InversionSymmetry redu
es the sear
h spa
e by half, and (2) Rotational Symmetry redu
esfurther by half.We have also experimented measuring the impa
t of symmetry on sear
h, byadding a new symmetry-breaking 
onstraint. The speedup en
ountered is insignif-i
ant.Reje
ting an S-box simply be
ause it is symmetri
 (and its s
ore did not
hange) need not ne
essarily work. The reason is, in 
riteria S-8, the probability
P with the S-box and its symmetri
 version may be di�erent when either S-boxis brought into intera
tion with the other seven. Unless the 
ontrary is proved, wewill still need to have all S-boxes and their symmetri
 versions, whi
h 
annot bedis
arded. This needs to be investigated further and a

ordingly, 
onsideration ismade of whether to add new symmetry- breaking 
onstraints to redu
e the solutionspa
e.
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Chapter 9Con
lusionsWe 
on
lude this Dissertation by summarizing our 
ontributions and enumer-ating the limitations and future dire
tions of our work on employing CSPs togenerate S-boxes.9.1 Summary of ContributionsWe have proposed a novel approa
h to the design of S-boxes for Feistel Ciphers,an example of whi
h is the Data En
ryption Standard (DES). For the purposesof this Dissertation, the eight se
urity 
riteria of DES have been formulated into
onstraints. These eight 
riteria are numbered S-1 to S-8.For CSP formulation, variables have been identi�ed along with their domains.S-1 is already inherent in the 
hoi
e of variables and has not been dis
ussed fur-ther. S-8 deals with multiple S-boxes and is dis
ussed separately. S-3 to S-6 arebinary 
onstraints whi
h have been pre
ompiled into a solver Solver that outputssolutions to satisfy these 
onstraints. S-7 and S-2 are n-ary global 
onstraintswhi
h have been formulated as heuristi
s to run on the solutions to generate the

S-boxes. The �ner aspe
ts of our 
ontributions are now presented.9.1.1 Heuristi
sNon-in
remental Heuristi
 Hφ,τ
S This heuristi
 
he
ks to see if S-2 and S-7is satis�ed. This is a nai�ve implementation employing systemati
 generate-and-test, and is very ine�
ient.In
remental, In
omplete Heuristi
 Hφ,τ

I This heuristi
 
he
ks after ea
h as-signment to see if S-2 is satis�ed, with S-7 implemented as an n-ary global
onstraint. This heuristi
 has been the most promising among all for gen-erating high- quality S-boxes, having generated S-boxes with a s
ore of 8,superior to the best s
ore of all of the eight S-boxes of DES. The two �guresbelow display two su
h S-boxes, the �rst being with a s
ore of 8 and the onefollowing it, with a s
ore equal to 10.
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ore 10, generated by our solverIn
remental, Complete Heuristi
 Hφ,τ
C We have formulated the notion of apartially assigned S-box. The following are new properties of linear approx-imation tables for partially assigned S-boxes.1. For any a,b,X ′,Φ′, 0 ≤ NΦ′

X′(a, b) ≤ |X ′|.2. For any a,b,u,X ′,Φ′, NΦ′

X′∪{u}(a, b)−NΦ′

X′(a, b) ∈ {0, 1}.The 
ondition on when a partially assigned S-box 
an be extended to a full
S-box that will satisfy S-2, is:

|X ′| − τ −
|X|

2
≤ max

a,b
NΦ′

X′(a, b) ≤
|X|

2
+ τS-7 is implemented as an n-ary global 
onstraint.In
remental, Complete Heuristi
 Hφ,τ

C7
Having provided for in
rementally
he
king to see if S-2 is satis�ed, the next logi
al step is to in
remental-ize the 
he
k for S-7.In
remental, Complete Heuristi
 Hφ,τ

AC7 The 
onstraint for 
riterion S-7 � theCOUNT 
onstraint � is a global n-ary 
onstraint that 
annot be straight-forwardly de
omposed into binary 
onstraints. Nevertheless, we have formu-lated a novel heuristi
 by whi
h past assignments of values to variables are



146proje
ted onto domains of future variables, redu
ing the domains during thepro
ess and improving upon e�
ien
y.We have proved that Hφ,τ
AC7 and Hφ,τ

C7
produ
e identi
al sequen
es of S-boxes.9.1.2 Optimization to SolverFor the 
omplete heuristi
s Hφ,τ

S , Hφ,τ
C7

, and Hφ,τ
AC7, we have introdu
ed an op-timization into Solver by not 
he
king for ar
-
onsisten
y if the deletion-set isempty. The resulting heuristi
s are HOφ,τ

S , HOφ,τ
C7
, and HOφ,τ

AC7, respe
tively. Theperforman
e of the optimized heuristi
s is marginally higher than that of the 
or-responding, unoptimized heuristi
s.9.1.3 Order of E�
ien
y resulting from Ordering of VariablesWe have found that visiting the variables in a zig-zag fashion generates S-boxesmore e�
iently 
ompared to the straight-line manner in whi
h the variables arevisited over ea
h row of an S-box. We 
an also 
on
lude that variable-ordering,although promising in most 
ases, should a

ount for the nature of sear
h spa
eto see if it has many solutions for e�
ient S-box generation, parti
ularly for large-sized sear
h spa
es.9.1.4 Order of E�
ien
y resulting from Ordering of DomainsWe have found that the e�
ien
y of Solver is mu
h higher (about 35%) forpermuted domains when using a zig-zag variable ordering, 
ompared to straight-line variable ordering. We are also able to un
over a large number of S-boxeshaving lesser s
ores. With the threshold τ = 16, S-boxes with s
ores equal to16, 14, 12 and 10 have been un
overed. This has not been the 
ase with thedefault (as
ending order) domain-ordering where only Hφ,τ
I emitted these lower-s
ore S-boxes.9.1.5 Sear
h E�
ien
y Metri
For addressing performan
e of heuristi
s on sear
h spa
es using systemati
 sear
h,merely 
ounting the number of S-boxes is not su�
ient. To arrive at a betterunderstanding of the sear
h spa
e, we have formulated a metri
 to measure sear
he�
ien
y by de�ning the fra
tion of sear
h spa
e traversed by ea
h of our heuristi
s.Heuristi
 Hφ,τ

AC7 using zig-zag variable ordering on randomly-permuted domainso�ers traversal of a large amount of sear
h spa
e in the shortest possible time
ompared to the others, based on this metri
.



147Constraint for Row Column Diagonal Rotational Bit InversionCriterion Symmetry Symmetry Symmetry Symmetry SymmetryS-2 ×S-3 ×S-4 × ×S-5 × ×S-6 × ×S-7 × ×Table 9.1: Summary of Results on Symmetry of 
onstraints modeling S-box Cri-teria9.1.6 New Forms of SymmetriesOur CSP methodology has exposed new forms of symmetry in S-boxes and theseare summarized in the table below.Rotational and bit inversion symmetry are the only two forms of symmetry thatresult in an S-box that satis�es all 
onstraints. We have proved the invarian
e ofthe s
ore of an S-box over these two symmetries. Symmetry is broken by addingmore 
onstraints.9.2 Limitations and Future WorkThis Dissertation attempts to model the eight 
riteria spe
i�ed in [16℄ as a CSP.The limitations of our formulation, heuristi
s, symmetry, variable and value or-dering will now be addressed along with pointers in future dire
tions.9.2.1 Alldiff Constraints
S-box 
riteria S-3 to S-4 result in binary 
onstraints in whi
h the values to twovariables are unequal. All of these are in the 
ategory of the Alldiff 
onstraint invarious ways. A future task is to model all of these 
onstraints into Alldiff 
on-straints, and employ e�
ient algorithms to pro
ess this spe
ial form of 
onstraints,using an e�
ient algorithm by Puget [49℄.9.2.2 Variable OrderingA form of variable ordering pres
ribed in CSP literature is to sele
t the nextvariable for assignment, that has the least domain 
ardinality. It is interesting tostudy the performan
e of this variable ordering heuristi
 against straight line andzig-zag ordering heuristi
s used in our appli
ation.Another form of dynami
 variable ordering is worth exploring. We 
an listthe variables in the des
ending order of the number of times they appear in the
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onstraints. We expe
t around half the number of variables (32 out of the 64, for
6× 4 S-boxes) in this listing. The next variable to be sele
ted for assignment willthen be among the most-
onstrained variables.The sele
tion of the next variable from the variable-ordering need not be madein the beginning. In fa
t, as equation 4.9 suggests, at least |X|

2
variables should beassigned before partial 
he
ks are made for S-2. And for S-7, as dis
ussed at theend of se
tion 5.3 and throughout se
tion 5.4, at least |X|

2
+ 8 variables should beassigned before initiating any partial 
he
ks. One 
an empiri
ally sele
t the nextvariable from this point onwards. In general, one should parameterize the point ofsele
tion by a parameter α su
h that the variable xα should be the next variablefrom where sele
tion should begin based upon the variable-ordering. For example,when α = 0, begin sele
ting from the �rst variable in the variable-ordering. When

α = |X|
2
, begin this sele
tion from the middle, and so on. One may 
hoose α tobe below, or above, the middle variable (for example, α = |X|

2
+ 8) and see howthe asymmetry helps. Alternatively, examine the performan
e of the solver bysequentially varying α, and determine empiri
ally the optimum point for α for theparti
ular heuristi
. This should be done for ordered as well as permuted domains.9.2.3 Value OrderingInstead of randomly shu�ing the domains of ea
h variable, assign, based uponthe 
urrent state of the S-box, a promise value to ea
h of the (redu
ed) domain-elements for the 
urrent variable being assigned. The higher the promise value,the better. Next, sele
t the domain-element with the highest promise value andassign to the variable. The promise values for the subsequent domains may now
hange. Repeat the pro
ess.9.2.4 SymmetryProve or disprove that even after performing rotational and bit inversion transfor-mations to obtain symmetri
 S-boxes whose s
ores do not 
hange, the probability

P of Equation 6.24 does not 
hange. If P does not indeed 
hange, then symmetry
an be broken by adding new 
onstraints and symmetri
 S-boxes 
an be dis
arded,redu
ing the sear
h spa
e and improving upon e�
ien
y.9.2.5 The S
ore σX(Φ) of the S-box ΦWe have been able to experimentally obtain 6 × 4 S-boxes with the �best� s
oreequal to 8. Using our solvers, we have been unable to go below this value in thetime-frame spe
i�ed in our experiments. Is it a
tually possible to obtain S-boxeswith better s
ores (values of 6, 4, 2 and ideally, 0)? Do su
h S-boxes even exist?



149We don't know. If we are able to use information-theoreti
 results to prove (ordisprove) the existen
e of 6× 4 S-boxes with su
h lesser s
ores, or even determinethe minimum value of the s
ore, it will be a key result.In se
tion 3.3, we mentioned two approa
hes to proje
tions. In one, assignmentto the 
urrent variable is proje
ted on past assignments. This approa
h is employedfor n-ary 
onstraints S-2 (se
tion 4.4) and S-7 (se
tion 5.3). The problem withthis approa
h is that there are still partial 
he
ks that need to be 
arried out.For S-2, the s
ore threshold τ is built into these partial 
he
ks (equations 4.9and 4.12). The se
ond approa
h is of proje
ting domains of future variables ontopast assignments, whi
h is dis
ussed for S-7 (se
tion 5.4). The advantage of thisapproa
h is that after domains of future variables are redu
ed, no expli
it 
he
ksare required, and the next assignment always results in an S-box. If we are able toemploy this approa
h for the nonlinear 
onstraint S-2 with τ as a parameter, we
an generate S-boxes with s
ores of 8, 6, 4, 2 and even 0 in real-time! In parti
ular,if no su
h S-boxes with s
ores equal of 6, 4, 2 or 0 are found, the solution spa
ewould be empty and we would have proved the result experimentally � a veryimportant result.9.2.6 Adding New Se
urity CriteriaThere have been more advan
es in work on S-box design during and after publi-
ation of the eight design 
riteria. Some examples are the use of Bent fun
tions in
S-box design, avalan
he properties and stri
t avalan
he 
riteria, bit independen
e
riteria and higher-order bit independen
e 
riteria. These 
an be modeled intoadditional 
onstraints and input to the CSP.9.2.7 Almost-Similar S-boxesIn all of our 
omplete sear
h heuristi
s, the �rst several S-boxes generated havealways been possessing identi
al rows and 
olumns. Although this is not an issueof �symmetry�, it is an issue of �similarity� of S-boxes. If we have to sele
t 8
S-boxes and arrange them to satisfy S-8, we want to ensure that they shouldnever possess identi
al rows and 
olumns. For this, we need to 
ome up with ameasure to remove �similar�, or �almost-similar� S-boxes. This is another dire
tionalong whi
h we would like to pro
eed further.9.2.8 Systemati
 Sampling of Performan
e MeasuresWe have formulated equation 7.6 for the measure of performan
e and have 
om-pared heuristi
s by 
omparing the values of (a+ p) in this equation. To determinea per
entage, we have taken those points on the performan
e 
urves when the



150�jumps� are en
ountered in these 
urves. The reason we 
onsidered those �jumps�is that this was where we 
ould easily read o� the variations in heuristi
s and
al
ulate per
entage di�eren
es. We 
ould have very well 
hosen (
onsistently)a di�erent point on the performan
e 
urves. Instead of following an ad-ho
 ap-proa
h and sampling arbitrary points, a more systemati
 sampling 
ould be doneas follows. Measure the area under the performan
e 
urves and determine theirdi�eren
es up to a spe
i�ed time (for example, at the end of �ve hours). The
hanges in the areas will represent the ne
essary speed-ups.9.2.9 Other SolversAs mentioned in Se
tion 2.6.2, Mozart-Oz is a programming language used for
onstraint programming. We attempted to model our S-box problem as a CSPusing this programming language, but qui
kly dis
overed that it does not lenditself �exibly for bit-level operations. Commer
ial solvers su
h as ILOGTM havenot been evaluated due to budget requirements. Not only that, 
ustomizing andtailoring the solver to suit our requirement is a grey area and pur
hasing su
hsoftware involves making a feasibility analysis, something that is to be done at adi�erent level. We have instead employed a home-grown solver implemented inC++ for our purposes. Formulating this problem as a CSP using other solverswill be 
onsidered eventually, parti
ularly for the purposes of implementing newse
urity 
riteria.9.2.10 NP -CompletenessOur main obje
tive is to maximize nonlinearity by minimizing the s
ore σX(Φ) foran S-box Φ. Another measure, not spe
i�ed in the list of 
riteria of Table 2.1 andnot modeled in our work, is auto
orrelation [15, 41℄. The smaller the measure ofauto
orrelation, the better. Designing an S-box that has maximum nonlinearityand minimum auto
orrelation is known to be NP -
omplete [41℄. In general, solvinga CSP is also known to be NP -
omplete. Can we 
on
lude that the S-box DesignProblem is NP -
omplete solely on the basis of these arguments? To a
tually provethis result, one needs to �rst prove that the given problem is in NP . Next, �nd aproblem known to be NP -
omplete and employ a 
onstru
tion to transform thisknown problem to the equivalent S-box design problem.



1519.3 An Alternative CSP Based Approa
h to Model all EightCriteriaWe have modeled 
riteria S-2 to S-7. Criterion S-8 
ould not be modeled bythis framework alone. An expli
it 
he
k of 
riterion S-8 after generation of eight
S-boxes had to be done.A way to ensure that the entire set of 
riteria S-2 to S-8 is modeled stri
tlyas a CSP1 is the following.Instead of formulating 64 variables for one 6 × 4 S-box, formulate 64 × 8 =
512 variables for eight 6 × 4 S-boxes. In other words, the variables X =
{x0, x1, . . . , x63, x64, . . . , x511}. The domains are identi
al for all of these variablesin X, equal to {0, 1, . . . , 15}. A solution to this problem is an assignment to all
512 variables. In other words, the solution generates eight S-boxes Si where ea
h
S-box Si has variables {x64i, x64i+1, x64i+2, . . . , x64i+63}, 0 ≤ i < 8.9.3.1 The Formulation of Constraints for Individual S-boxesThe 
onstraints for S-2 to S-7, governed by equations 4.7 to 5.1 will now beidenti
al for the variables in S-box Si, 0 ≤ i < 8. Sin
e these 
riteria gives rise to672 binary 
onstraints for 
riteria S-3 to S-6 for ea
h S-box Si, the total numberof binary 
onstraints in this formulation will equal 672× 8 = 5376.9.3.2 Modeling Criterion S-8Criterion S-8 is now modeled as an n-ary 
onstraint as follows (refer se
tion 6.10).Let

Q0,i = max{Di(3, 0), Di(7, 0), Di(11, 0), Di(15, 0)}

Q1,i = max{Di(50, 0), Di(54, 0), Di(58, 0), Di(62, 0)}

Q2,i = max{Di(32, 0), Di(36, 0), Di(40, 0), Di(44, 0)}where Di(a, b) is the entry in the XOR table for S-box Si under row a, 
olumn
b. Arrange the eight S-boxes Si, 0 ≤ i < 8, so as to minimize the followingprobability:

P = max
i=0,2,...,7

Q0,i mod 8 ·Q1,(i+1) mod 8 ·Q2,(i+2) mod 8 (9.1)We note the di�eren
e in the way the modulus is taken, in this equation as
ompared to equation 6.24. There, 1 ≤ j ≤ 8 while in equation 9.1, 0 ≤ i < 8.1This idea is due to Dr. Philip Chan.



152The main advantage of this approa
h to modeling the S-box problem as apure CSP approa
h is that pruning 
an now o

ur a
ross S-boxes due to the
onstraint 9.1 for 
riterion S-8. The limitation of this approa
h is that the sear
hspa
e has now in
reased from 1664 for 6 × 4 S-boxes, to 16512, i.e. by a fa
tor of
168 whi
h is in itself exponential. We need to formulate novel heuristi
s for S-8to proje
t domains and generate solutions. This is in addition to the formulationsof proje
tion-based heuristi
s for 
riteria S-2 and S-7 dis
ussed, respe
tively, in
hapters 4 and 5.9.3.3 Experimental Observations and IssuesWe have modeled the S-box problem for 6× 4 S-boxes and have formulated 
on-straints involving all 512 variables. The variable ordering sele
ted by us is thezig-zag ordering and domains are ordered in as
ending order. The nonlinearitythreshold (for S-2) is 
hosen equal to 16. The following observations are made.
S-box Generation In the �rst solution, eight S-boxes are identi
al. This is tobe expe
ted due to the systemati
 nature of the sear
h.After an S-box set of eight S-boxes is generated, the last few variables (around30) of only the last S-box 
hange values for the next solution that forms the nextset of eight S-boxes. The remaining seven S-boxes out of these eight have not
hanged in their entries in our experiments thus far. This is expe
ted due to theexponential nature of the sear
h spa
e.Di�eren
e S
ore equal to zero The di�eren
e-s
ore of all of the eight S-boxesin the �rst solution, and in the next few, turn out to be zero! Does this meanthat this S-box set is better in 
omparison with what we have found thus far?Cryptanalyti
ally it does not appear to be so.To 
he
k whether eight identi
al S-boxes always yields a di�eren
e-s
ore equalto zero or not, we have run a 
he
k for S-8 on eight identi
al 
opies of DES S-boxS-1. The di�eren
e-s
ore evaluates to 1008, not zero.We need to interpret the di�eren
e-s
ore and possibly threshold the same. The
on�guration of eight identi
al S-boxes generated by us, and many others havingthe �rst several identi
al S-boxes, may have to be reje
ted based on the threshold.We 
an use a maximum threshold to limit sear
h. Sin
e we know that the bests
ore (Se
tion 7.9.3) is 960, this 
an be used as the upper threshold to reje
t S-boxsets that yield a higher di�eren
e-s
ore.



1539.3.4 Improvements � Sear
h SpeedupUsing this alternative model, revisiting of S-boxes in the sear
h-spa
e need to beavoided. Also, there are two levels in whi
h sear
h 
an be speeded up. These
onsiderations are dis
ussed.Revisiting of Solutions Criterion S-8 works on the 8! permutations of a setof eight S-boxes. These 8! permutations are visited at the end of every 
ompleteassignment to all 512 variables.A way to speed up is to mark or en
ode ea
h permutation. We see that ea
hpermutation will eventually get revisited as part of the systemati
 sear
h. Whenthis happens, examine if they have been marked before and if so, dis
ard thesolution.Di�erent Sets of S-boxes In this idea, we attempt to exer
ise a 
he
k on setsof eight S-boxes. Let the S-boxes be labeled as S1, S2, . . . , S8. The eight S-boxesmay appear in di�erent orders at several sear
h-points. For example, a 
ompleteassignment may eventually yield an S-box set that 
orresponds to a permutationof the eight S-boxes just labeled.We do not have to determine the quantity governed by Eq. 9.1 for all 8!permutations after ea
h 
omplete assignment. Instead, it is enough to deter-mine this quantity only for the eight triplets Sj , Sj mod 8+1, S(j mod 8+1) mod 8+1 where
1 ≤ j ≤ 8, sin
e ea
h permutation gets visited as part of the sear
h.9.4 Con
luding RemarksWe have addressed the �age-old problem of S-box design� using CSP methodology.This is a known, hard problem, whi
h we have visited using the novel approa
hof systemati
 sear
h using CSPs. During the pro
ess, we have obtained S-boxeswith superior quality metri
 
ompared to those of the best DES S-boxes. Wehave applied the properties of CSPs to formulate heuristi
s, and have derivednew results not known in the literature on S-box design. New S-box symmetrieshave been dis
overed in this work. For the purpose of systemati
 sear
h, a novelquanti�
ation of sear
h e�
ien
y has been proposed.We are not 
laiming to have solved the S-box design problem, but have dis
ov-ered new results in S-box design using a modeling te
hnique that provides avenuesfor expansion into future resear
h on S-box design.
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