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Abstract

Automatic Design of Feistel Ciphers Using Constraint
Techniques

by
Venkatesh Ramamoorthy

Dissertation Advisor: Marius C.Silaghi, Ph.D.

In symmetric key cryptographic algorithms that operate on the Feistel principle,
Cryptographic substitution boxes (S-boxes) are employed to introduce confusion
into the message being encrypted. These S-boxes constitute the non-linear part in
most cryptographic algorithms, and their design has been the focus of attention
among researchers for several years. The concerns yield major design requirements.
In particular, they should be highly nonlinear. Current work in S-box design to
satisfy security requirements employ approaches such as human-made, math-made,
generate-and-test, spectral inversion and local search. Recent approaches employ
neural networks and distributed methodologies.

This work addresses the application of constraint-based search techniques to
find cryptographic substitution boxes (S-boxes). In this approach, variables are
defined, the domain of each variable is specified, and common security requirements
for an S-box are modeled into constraints involving relevant variables. The model
is input to a solver that outputs the S-boxes.

We have made a number of contributions. First, the quality of obtained S-boxes

is superior to the ones currently published by the Data Encryption Standard (DES)

1



as part of its specification based on Matsui’s security metric. Second, due to the
enormity of the problem, several heuristics are investigated for n-ary Constraint
Satisfaction Problem (CSP) solvers to speed up S-box search and generation. We
apply the properties of CSPs to reduce the search space to obtain solutions both, ef-
ficiently and having higher quality according to Matsui’s measure for non-linearity.
We derive new results on Linear Approximation Tables for an S-box, and on the
condition of a partially assigned S-box to form a complete S-box. A method of
visiting S-box variables that will efficiently generate S-boxes is identified. A form
of value-ordering to propel this efficiency further has been discovered.The proper-
ties of constraints are used to discover new forms of symmetry of S-boxes. Finally,
a novel metric for search efficiency of systematic searches such as this application

has been quantified.
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Chapter 1
Introduction

Cryptography is the science of hiding information. A reason for this hiding
of information is, for example, to ensure its confidentiality. The original mes-
sage being transformed is called the plaintext and the transformed message, the
ciphertext. The process of transformation is called encryption and the reverse pro-
cess of retrieving the message from its transformed equivalent is called decryption.
Encryption and decryption of a message is done using keys.

The same key that is used to encrypt the message can be used for decryption.
This situation is akin to a lock that has one key. Such a cryptographic algorithm is
called a Symmetric key algorithm. Alternatively, a different (but related) key can
be used for decryption from the key used for encryption. Imagine a locking mecha-
nism that can be activated using one key and deactivated using a correspondingly
different key. This kind of a cryptographic algorithm is called an Asymmetric key
algorithm.

Symmetric key algorithms operate on the principle of Feistel ciphers [21]. The
Data Encryption Standard (abbr. DES) cryptographic algorithm [1] is an example
of a Feistel cipher. They operate on the principle of confusion and diffusion. Diffu-
sion is used to distribute the bits in the input message being encrypted and de-skew
the message, and is accomplished using permutations. Confusion is introduced
in the message during encryption by substituting parts of the message, replacing
them with values. Both are accomplished using substitution boxes (S-boxes), which
constitutes the most nonlinear transformation in the entire encryption algorithm.

DES is based on eight S-boxes, numbered from S up to Ss, shown in Figure 1.1.
Each S-box, organized in the figure as a 4 x 16 matrix, takes in a six-bit input and
gives out a 4-bit output. Thus the total number of input bits to all eight S-boxes
taken together is 48, while the total number of output bits is 32.

An example demonstrates DES S-box usage.

Example 1.1 Consider 39 as the 6-bit input to be substituted using DES S-box
Ss, i.e., Sg(39) is to be determined. Let yoy1y2ysyays = 1001115 (39 in binary).
The row s selected by bits yoys = 115 = 3, corresponding to the last row of S-box
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(b) DES S-boxes S5 — Sg

Figure 1.1: Substitution Boxes (S-boxes) S; — Sg used in the Data Encryption
Standard (DES)



Ss. The value of Sg(39) is now obtained by indexing into the column y1y2ysys of
this row, namely, column 0011y, or column 3. The entry for S-box Sg in row 3,
column 8, read off from Figure 1.1, is 7, that is, Sg(39) = 7.

The S-boxes of DES have been the subject of intense speculation by the cryp-
tographic community. Of particular interest has been the manner in which they
have been designed, and why the specific numbers shown in Table 1.1 have ap-
peared in the algorithm, particularly due to the classified nature of the design [58].
It was not until after ground-breaking results on differential cryptanalysis by Bi-
ham [11], and subsequent results on linear cryptanalysis by Matsui [34], that the
design criteria have been published [16|. The requirements for S-box design are
specified to ensure maximum security, and a number of them are available in the
literature |72, 45, 6, 5, 64, 38|.

There are several methods now available to design S-boxes for Feistel ciphers.
A classification is made [62] in which S-boxes are generated using random num-
bers, random generate- and-test, human-made and math-made entries. Recent ap-
proaches employ local search, spectral inversion, neural networks and distributed
approaches. In most cases, the S-boxes generated need to be checked for satisfac-
tion of the security requirements.

Our work employs a novel approach that uses Constraint Satisfaction Problems
(CSPs) to obtain S-boxes. Each security requirement is modeled as a constraint
in this approach. The solutions to the CSP are the S-boxes that satisfy the
constraints. The main advantage of this approach over the existing ones is that
no explicit testing of each S-box for security requirements is necessary since the
solutions already satisfy the constraints that model the requirements.

1.1 Problem Statement

S-box Generation Generate a set of cryptographic substitution boxes (S-boxes)
that satisfy known design criteria, with each criterion being modeled as a
constraint.

Efficiency of Generation Improve upon S-box generation efficiency using this
approach.

Quality of S-boxes Generated Provide measures to determine the quality of
S-boxes generated using this approach. Improve upon the quality of S-boxes
using the properties of CSPs. Compare and contrast with equivalent metrics
of S-boxes generated using known approaches.



Arrangements of S-boxes Examine arrangements of S-boxes and examine the
overall quality metric of the resulting arrangement.

1.2 Solution Outline

Determining S-boxes can be formulated as a CSP. A CSP consists of variables,
domains and constraints. This first step of S-box problem formulation involves
identifying the variables, domain of values assumed by each variable, and the
constraints connecting the variables.

Next, the model obtained by specifying the variables, domains and constraints
is input to a solver. The solver is then executed to yield the S-boxes that satisfy
the known constraints. Performance issues are likely to surface and heuristics for
speedup are being formulated. An S-box has a particular size that should be
parameterized. The model should allow for generating lower-size S-boxes, leading
to experiments to be performed to examine efficiency of S-box generation using
the CSP approach.

To formulate new heuristics, properties of CSPs are applied. In this regard,
interesting observations are made. First, a number of constraints are binary, in-
volving two variables, while others are n-ary constraints dealing with more than
two variables. Then, some n-ary constraints can be decomposed into lower-arity
predicates while others are not straightforwardly decomposable and special forms
of projections are being formulated. Aspects of symmetry of constraints are inves-
tigated, and their impact assessed on solution speedup.

An important issue is to ascertain the quality of each generated S-box for
which a security metric is arrived at, with lower and upper bounds in terms of the
S-box size. The special forms of projections for the n-ary constraints includes this
security metric.

Finally, an analysis of arranging S-boxes in order to determine an optimum
mix is carried out.

1.3 Main Contributions

Our contributions in the CSP-based approach to the design of S-boxes for Feistel
Ciphers have been the following.

S-box Generation

1. Using CSPs, we have successfully obtained S-boxes that satisfy the specified
criteria, each of which is modeled as a constraint for the CSP.



Efficiency of Generation

1. We have formulated a number of heuristics to improve upon efficiency of
S-box generation. The most promising heuristic from the efficiency viewpoint
is an incremental, complete heuristic employing a zig-zag variable ordering
and permuted domains to generate 6 x 4 S-boxes.

2. New properties have been formulated and proved for S-box nonlinearity and
decomposition of n-ary constraints, to reduce search and speed up S-box
generation.

3. New symmetries of S-boxes have been discovered using the CSP methodol-
ogy, improving efficiency further.

Quality of S-boxes Generated

1. Using an incomplete heuristic, we have obtained 6 x 4 S-boxes that are su-
perior in quality to those published in |1] depicted in Figure 1.1, as governed
by Matsui’s metric for the quality of an S-box.

2. A new pattern of visiting S-box entries to speed up the search has been
found. A new shuffling of values assigned to S-boxes to not only speed up
search but also, improve S-box quality, has been found.

Arrangements of S-boxes

1. An optimum arrangement of a specified number of S-boxes selected from
those generated by our model is determined. A metric derived from the
differential cryptanalysis of DES |11] is adopted as the certitude of optimality
of this arrangement.

1.4 Organization of the Dissertation

The rest of this Dissertation is organized in the following manner. Chapter 2
discusses the S-boxes, where in DES they are located, along with an overview of the
evolution of those numbers. It describes relevant research into S-box construction
and provides a classification to reveal where our work fits into S-box design. This
Chapter also discusses aspects of CSPs relevant to the problem on hand. The CSP
solver used in our work in various ways is outlined in an algorithmic fashion at the
end of this Chapter.



Chapter 3 discusses our CSP strategy to solve the problem. It presents the
modeling of all binary constraints formulated from the S-box requirements.

Chapter 4 models the first of the two n-ary constraints, namely, the nonlin-
earity constraint. This constraint is straightforwardly implementable as a non-
incremental heuristic using a generate-and-test approach, leading to gross ineffi-
ciencies. Two incremental heuristics are discussed, one being an incomplete heuris-
tic and the other, a complete heuristic using constraint decomposition. Both incre-
mental heuristics significantly improve upon S-box generation speeds. In addition,
the incomplete heuristic has yielded 6 x 4 S-boxes having nonlinearity metric su-
perior those of the eight DES S-boxes of Figure 1.1.

Chapter 5 models the second of the two n-ary constraints, which we denote
in that Chapter as the COUNT constraint. This constraint is implementable as
a generate-and-test heuristic, which again, leads to inefficient search for S-boxes.
An incremental heuristic is presented. The COUNT constraint is not straightfor-
wardly decomposable into constraints of smaller arity. Nevertheless, a projection
scheme is employed leading to domain-reduction and adding to efficiency over the
incremental heuristic. This is the second, novel heuristic we present in this Chap-
ter.

Chapter 6 discusses aspects of symmetry in S-boxes to contribute to search
efficiency, and arrangement of multiple S-boxes to maximize a probabilistic cost
function.

Chapter 7 presents experimental results of the various heuristics and their effi-
ciencies. An efficiency analysis is also made varying the size of S-boxes, beginning
with smaller-sized S-boxes and on the S-boxes of Simple DES, a miniaturized vari-
ant of DES provided in [62]. A measure of search progress to quantify efficiency
rather than the simple measure of the number of solutions, while generating large-
size S-boxes, is formulated. The results of heuristics that improve upon the quality
of S-boxes are presented, along with our main contribution of obtaining S-boxes
having quality better than the published DES S-boxes as adjudged by Matsui’s
security metric. We also present orders of efficiencies of variable and value ordering
in the experiments.

Chapter 8 discusses the results obtained in Chapter Seven in the light of which
heuristic is the most promising, and provides an insight into the nature of the
search space. Chapter 9 concludes this Dissertation.



Chapter 2
Background and Related Work

We review the literature related to our topic of research, namely, employing
systematic search of cryptographic substitution boxes (abbr. S-boxes) using CSPs.
The cryptographic algorithm chosen for our experimentation is the Data Encryp-
tion Standard (abbr. DES) [1]. The reasons for choosing DES are:

1. It is simple to understand and implement, and has in fact been the defini-
tive standard since 1977 for twenty years before the Advanced Encryption
Standard (AES) development effort.

2. Extensive research has been done on S-box design of DES-like algorithms
and we would like to compare our results against existing work.

3. Eventually an attempt can be made to investigate how the results could be
applied — and perhaps, generalized — to the current Advanced Encryption
Standard (AES [2]).

In addition, we feel that the mathematical structure of the S-boxes for the
AES do not lend themselves for directly investigating S-box search in the AES
algorithm. In any case, AES is not a Feistel cipher unlike DES and several other
Feistel ciphers, and DES is the right way to begin from.

Our approach to S-box search is a novel one, and to assess against known
techniques, one needs to review the following topics, to start with:

1. Existing cryptographic algorithms, where in Cryptography do the S-boxes
fit in, and what the properties of these S-boxes are.

2. S-box design. This directly stems from the properties required of an S-box.
How S-boxes are currently designed, namely, existing techniques that yield
such S-boxes, are studied to analyze how our approach differs from those in
the literature to find S-boxes, and also, for more ideas.

3. Existing approaches to S-box search and the their differences from our ap-
proach



The relevant literature is classified into the following topics to form the struc-
ture for this Chapter.

1. Cryptography
2. S-box design and construction, and

3. Search techniques and CSPs

2.1 Cryptography

The science of Cryptology is classified into two bodies: Cryptography and Crypt-
analysis.

2.1.1 Classification

Cryptography is the science of transforming an input data, for transmission or
storage, by an entity, into a form that cannot be legible to any entity other than
the one transforming the data. This transformation is done with the help of a key.
The data being transformed is called plaintext. The transformed data is called
ciphertext. The process of transformation is called encryption and the key used
for transformation is called an encryption key. To be able to retrieve the data, the
entity applies an inverse transformation and a key. The process of inverse trans-
formation is called decryption and the key used for this transformation is called a
decryption key. The transforming algorithm is called a cipher, or Cryptographic
Algorithm. Both these terms are used interchangeably in this Dissertation.

Cryptanalysis on the other hand, is the science of deducing the encryption key
given parts of the ciphertext, and optionally, the corresponding plaintext.

Figure 2.1 graphically illustrates the different types of cryptographic algo-
rithms. There are two types of ciphers, namely, Stream Ciphers and Block Ci-
phers. Depending on whether the same key used for encryption is also used for
decryption, or otherwise, we also have Asymmetric (or Public) Key Algorithms
and Symmetric (or Secret) Key Algorithms.

2.1.2  Stream Ciphers

Stream ciphers are used to encrypt variable-sized data (typically at the bit level)
with the help of a variable encryption key. The simplest stream cipher is the
exclusive-OR operator, which takes in a stream of plaintext bits and performs a
bit-wise exclusive-OR on these bits with a key-stream generated by a key-stream
generator, to yield the ciphertext. The same key-stream, when exclusively-ORed
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Cryptographic Algorithms

Symmetric-key Algorithms Asymmetric (Public) key Algorithms
‘ (Encryption / Decryption, Digital Siguatures, Key Management)

Stream Ciphers Block Ciphers
Feistel Ciphers Non-Feistel Ciphers Integer Discrete Elliptic Error—correcting
(DES, Blowfish, Twofish, (IDEA, AES/Rijndael) Factorization ~ Logarithm Curves Codes
MARS, RC-6, CAST, Serpent) (RSA, Paillier) (Diffie-Hellman, (EC-DH, (McEliece)
ElGamal, DSA) EC-ElGamal,
EC-DSA)

Figure 2.1: A Classification of Cryptographic Algorithms

with the ciphertext will (obviously) yield the plaintext. A more involved stream
cipher employs shift registers. They are easily implemented in hardware, are very
reliable, can perform at high speeds, and are typically used in military applications.
A disadvantage is that the size of the key-stream should be equal to that of the
data-stream, which is not practical.

2.1.3  Block Ciphers

Block ciphers encrypt fixed-length blocks of data with the encryption key. For
example, a 1-MB file is divided into a number of fixed-length blocks. Each block
is encrypted using the key. The block-length and key-length, usually measured in
bits, depends upon the cipher. For DES, they both are equal to 64 bits. For the
AES, the block-length is 128 bits but Rijndael [18] (of which the AES is a part)
additionally supports block-lengths of 160, 192, 224 and 256 bits. The key-length
is either of 128, 192 and 256 bits for both, Rijndael and the AES. Block ciphers are
used in commercial applications such as banking transactions, disk protection and
sector-level encryption. However they suffer from the drawback of cryptanalysis.
This happens because the key size is smaller than all of the data being encrypted.
For DES, the key is 64 bits long but the data being encrypted can be arbitrarily
long, and the same key is repeatedly used for each block the data is divided into.
Cryptanalysis exploits this repetitive nature of operations.
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2.1.4 Asymmetric (Public) Key Cryptographic Algorithms

In asymmetric key encryption, the key used for decryption is different from that
used for encryption. However, they are always related. Asymmetric key cryptosys-
tems are usually put to use in the following way. One of the keys — the one used
for encryption — is usually published by the user so that anyone in the world can
use to encrypt data to send to this user. The second key is kept private and in
the user’s custody, used to decrypt the received ciphertext. The encryption key is
called the public key and the decryption key, the private key.

Asymmetric key algorithms are designed in such a way that the public key
cannot be used to determine the private key. It is the difficulty of determining this
relationship between the keys that protects the cryptanalysis of these algorithms.
Rivest-Shamir-Adleman (RSA) [36], ElGamal [58], Paillier [44], McEliece [65] and
Elliptic Curve Cryptography (ECC) [62] are some examples of asymmetric key
algorithms.

Asymmetric key algorithms (with the exception of McEliece and ECC) are
based on number theory and deal with large prime numbers, typically around 4096
bits at most (around 1230 decimal digits). (ECC has around 183-bit key-lengths).
The RSA algorithm rests on the Integer Factorization problem while the ElGamal,
Diffie-Hellman and DSA |3] algorithms rely on the Discrete Logarithm problem.
The Paillier encryption algorithm [44] relies on the Composite Residuosity Class
problem. The McEliece encryption algorithm is based on the theory of error-
correcting codes [65], [35]. These problems determine the relationship between the
public and private keys.

Asymmetric-key algorithms rely on heavy mathematical computation (in par-
ticular, modular exponentiation). Algorithms for performing arithmetic on very
large numbers, also called multiprecision numbers, are discussed in [36]. As such,
asymimetric key algorithms are not suitable for encryption of bulk data such as
large files. They are used in key management (section 2.1.6).

Asymmetric key algorithms are also used for digital signatures. Signing a
document is an operation performed by a user with the private key. The signed
document, when sent to a recipient, is first verified by that recipient using the
sender’s corresponding public key available with the recipient. Since the signer
used the private key, which is kept secret with the signer, only the signer and no
one else would have signed the document. The RSA encryption algorithm is used
for digital signatures as well. For this algorithm, the public and private keys are
interchangeable. This is not true in general, for ElGamal has a signature algorithm
different from that used for encryption / decryption. Another signature algorithm
used is the Digital Signature Algorithm (DSA).



12

Asymmetric key algorithms assume that the sender already has the recipient’s
public key. How does the sender first get this public key from a recipient? This
topic is mentioned under the topic of key management (section 2.1.6).

ECC relies on the difficulty of finding the abscissae of a point on a curve given
its ordinate, modulo a prime. ECC has analogs for the Diffie-Hellman and DSA
algorithms, called EC-DH and EC-DSA [28| algorithms, respectively.

2.1.5  Symmetric (or Secret) Key Cryptographic Algorithms

In symmetric key encryption, the same key is used for encryption and decryption.
Usually, symmetric key encryption algorithms rely on logical operations such as bit
left-shift, right-shift, left and right rotations, exclusive-OR, AND, OR, and NOT
operations. They lend themselves naturally towards hardware implementations,
while software implementations need to be optimized for high-speed operations.
Due to their high-speed operation, symmetric key algorithms are used for bulk data
encryption and decryption. DES [1], AES [2], IDEA [32]|, CAST [4], Blowfish [57],
Twofish [59] and several others are examples of symmetric key algorithms.

An assumption inherent in symmetric key encryption and decryption is that
the encryption key is already shared between the sender and recipient. How this
sharing is done is the subject of key management, discussed in Section 2.1.6.

2.1.6 An Overview of Key Management, Secret Sharing and Security Protocols

Key management is used to solve the assumptions of symmetric and public key
cryptosysterms.

1. In symmetric key cryptosystems, the two parties involved in secure commu-
nications already have the encryption key in place. This is ensured using key
negotiation or key agreement.

2. In public key cryptosystems, the sender is assumed to possess the recipient’s
public key. This is ensured using digital certificates |58].

Key agreement is done using an asymmetric key encryption algorithm. The
sender wishing to transmit the symmetric key securely to the recipient encrypts
the symmetric key with the recipient’s public key and sends the ciphertext to the
recipient. Since this symmetric key is only around 64-256 bits long, speed is not an
issue. The recipient decrypts the received ciphertext using the private key. Now
both parties have the symmetric key available with them, for bulk data encryption.
Notice that a protocol has evolved during this process.
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Key negotiation is done between the sender and recipient using information
common to everyone, and information known only to the sender and only to the
recipient (not both). The Diffie-Hellman key negotiation protocol is an example.

With keys being shared between parties involved in communication, arises the
idea of how secrets can be shared between the parties. Shamir’s secret sharing
scheme |52] can be used to split a secret into shares, one for each participant, such
that a minimum number of participants (called a threshold) only can reconstruct
the secret. A different, and somewhat less efficient threshold scheme was developed
by Blakley [12]. Verifiable secret sharing is proposed in [61] to achieve security
against cheating participants. If everyone in the group of participants can verify
that the shares are correctly distributed, the scheme is called a publicly verifiable
secret sharing scheme.

Operations can also be done on secrets by the group of participants using
their shares alone, without knowing what the underlying secrets are. Such opera-
tions can include resizing (reducing) the threshold of a share, performing addition,
subtraction, scalar multiplication and multiplication of secrets. More operations
include generating a random number or a random bit without each user knowing
its value, computing the square root of a secret using its shares, finding the mul-
tiplicative inverse of a secret, unbounded fan-in (multiplying secrets), and logical
operations (AND, OR, NOT, exclusive-OR) [19].

An example of a security protocol is by Needham and Schroeder |42, that has
been modeled as a soft CSP over the framework of semirings |8 for confidentiality
analysis.

Further discussions on Asymmetric key algorithms, key management and se-
curity protocols [62, 58, 36| are outside the scope of this Dissertation.

2.2 Feistel Networks

This section discusses Feistel Networks, their workings (especially DES), and where
the S-boxes fit into a symmetric key cipher are now discussed.

2.2.1 Confusion and Diffusion

Symmetric key block ciphers operate on the principles of product ciphers, using
confusion and diffusion [62, 58, 40]. Confusion is introduced during transformation
to make the relationship between the key and ciphertext as complex as possible.
This is usually achieved by substituting parts of plaintext bits with constant bits
using substitution boxes (S-boxes).

Diffusion on the other hand is introduced during transformation in order to
spread the influence of plaintext characters over as much of the ciphertext as
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possible. This ensures that statistical properties of the plaintext are hidden in the
ciphertext. Diffusion is accomplished by permuting the plaintext bits.

A product cipher composes the operations of confusion and diffusion. Doing
so only once is not sufficient, and repeating these operations achieves the desired
effect.

2.2.2  The Feistel network as a Product Cipher

The Feistel network, first designed by Horst Feistel, is a product cipher that re-
peatedly performs the following steps on a block of plaintext: Permute the input
bits (diffusion), and apply S-boxes (confusion) on these permuted bits. These
steps, called an encryption round, also consist of mixing a transformation of the
encryption key, called subkey. Each round uses a subkey different from the others,
and the subkeys are generated from the encryption key using a key schedule.

Let a block of plaintext being encrypted be represented by m = Lo Ry, where
the block m is of length n bits, and Ly and Ry are two halves of this block,
each having length n/2 bits. Let also, the key schedule take the encryption key
K as input and generate subkeys K, Ky, ... K,, for the r rounds. A round of
encryption is a function f, that takes in two inputs, a subkey K; and a half-
block R;_1, and gives out an n/2-bit half-block R;, 1 <1 < r. Define half-blocks
Ll,Rl,Lg,Rg, . .LT,RT, where for ¢ = 1,2,3,. Ty

Li=R, 4, Ri=Li1® f(Ki, Ri_1).

Visually, this means that there are r transformations on a half-block, and in
each round, a transformation is followed by a swap of the two encrypted half-blocks.
After the last round, the swap step is undone and the ciphertext, therefore, is R, L,..
The situation is depicted in figure 2.2.

An interesting features of the Feistel network is that the decryption algorithm
is the same as the encryption algorithm, except that the subkeys are consumed in
each round in an order that is the reverse of the order used in encryption. This
is good since one does not have to implement separate algorithms for encryption
and decryption.

2.2.3 The Data Encryption Standard (DES)

DES is a 16-round Feistel cipher that takes a 64-bit input block of plaintext, a
64-bit key, and outputs a 64-bit output block of plaintext. The key schedule
generates 16 48-bit subkeys, each to be used in one round of encryption. An initial
permutation (IP) is applied to the 64-bit plaintext block before the 16 rounds
begin. For the rounds, each block is divided into a left and right 32-bit half-block
that forms LoRy of Figure 2.2.
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2.2.4  The Round Function and the S-boxes of DES

The round function f for DES is shown in Figure 2.3. f consists of an expansion
function E, an exclusive-OR operation with the subkey for the current round, an
application of eight Substitution Boxes (S-boxes), and a permutation P on the
bits.

E stretches a 32-bit half-block by repeating 16 bits once, to yield a 48-bit
value. This is exclusively-ORed with the 48-bit subkey in the current round. The
48-bit exclusive-OR result is input to eight S-boxes, each taking in six bits. Each
S-box produces a 4-bit output, and the eight 4-bit outputs together form a 32-
bit output. This result is permuted using P to yield a 32-bit value, which now
exclusively-ORed with the other 32-bit half to give the output half-block of a round
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of DES encryption. The other half-block (directly from the input) and this output
half-block are interchanged before being passed to the next round.

After the last round, no interchange is done, and the inverse permutation I P~!
is applied to both half-blocks taken together to yield a 64-bit output ciphertext
block.

As shown in Figure 2.3, the round function f contains the S-boxes that are the
subject of this Dissertation. The S-boxes of DES that have been published in [1]
are shown in Table 1.1 and they consist of fixed numbers. An interesting feature
of the Feistel network is that these S-boxes can be replaced by other S-boxes,
and the encryption and decryption will still work. Obviously the encryption will
produce a different ciphertext now.

2.3 The Design of Substitution Boxes

Each S-box in DES yields a 4-bit output string for a 6-bit input string, suggesting
a many-to-one function. The numbers in the DES S-boxes are fixed and are shown
in Table 1.1. The S-boxes of DES have been the subject of intense speculation
right from their inception. The design principles are the results of years of research
by the cryptographic community, particularly after allegations that the NSA may
have modified them to introduce a trap-door for the government to intercept mes-
sages [58]. The design criteria was classified and were revealed [16] only after
results of differential cryptanalysis were published by Eli Biham, and linear crypt-
analysis by Matsui [34]. A lucid tutorial of differential and linear cryptanalysis
is provided in [26]. Susan Landau [33] discusses these, and in addition, provides
a third attack by Wiener. According to the paper, based on exhaustive search
but with technology at that time (1993), Wiener estimated that the $1-Million
machine with 57,000 DES chips and a pipelined architecture (constantly feeding
data and computing simultaneously) could break a DES-encrypted message in 3.5
hours.

2.3.1 The Security Criteria for DES S-bozxes

The design requirements of DES, eight in number, are listed in Table 2.1 [16].
These design criteria are labelled S-1, S-2, and so on upto S-8. In our work, we
formulate constraints to model the requirements, and input the constraints to a
solver. Substitution Boxes are generated by the solver to satisfy the constraints
that model the stated requirements. This approach to S-box generation turns
out to be a novel one, and no literature has been available so far that relates to
this specific approach. Therefore, existing approaches of designing and generating
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substitution boxes are discussed, and mention is made of how the ideas are being
(or will be) applied to our work.

S-1 “Each S-box has six bits of input and four bits of output.”

S-2 “No output bit of an S-box should be too close to a linear function of
the input bits. (That is, if we select any output bit position and any
subset of the six input bit positions, the fraction of inputs for which
this output bit equals the exclusive-OR of these input bits should not
be close to 0 or 1, but rather should be near 1).”

S-3 “If we fix the leftmost and rightmost input bits of the S-box and vary
the four middle bits, each possible 4-bit output is attained exactly once
as the middle four input bits range over their 16 possibilities.”

S-4 “If two inputs to an S-box differ in exactly one bit, the outputs must
differ in at least two bits.”

S-5 “If two inputs to an S-box differ in the two middle bits exactly, the
outputs must differ in at least two bits.”

S-6 “If two inputs to an S-box differ in their first two bits and are identical
in their last two bits, the two outputs must not be the same.”

S-7 “For any nonzero 6-bit difference between inputs AI; ;, no more than
eight of the 32 pairs of inputs exhibiting AI; ; may result in the same
output difference AO; ;.”

S-8 “Similar to S-7, but with stronger restrictions in the case AQ; ; — 0 for
the case of three active S-boxes on round 7.”

A criterion, stronger than S-2, named as S-2’ [16] is often quoted:

S-2’ “No linear combination of output bits of an S-box should be too close
to a linear function of the input bits. (That is, if we select any subset
of the four output bit positions and any subset of the six input bit
positions, the fraction of inputs for which the exclusive-OR of the
output bits equals the exclusive-OR of these input bits should not be

close to 0 or 1, but rather should be near %).”

Table 2.1: The S-box criteria used by IBM for designing DES [16]
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2.3.2 S-boxes and Boolean Functions

An n x m S-box is defined to be a Boolean Mapping S : Zon — Zom that takes an
n-bit string and gives out an m-bit string. Here Z; stands for the set {0, ...k — 1}.
S need not be invertible. They are used in the generation of a parameterized
substitution of x, through the function

[ i Lom X Lgn — Lom, f(x,y) =2 @ S(y),

where y is the parameter. The obtained substitution function is a parameterized
bijection, and it is therefore often referred to as a permutation function.
If n = m, S is more likely to be a one-one and onto itself, that is, a permutation
of the set {z : 0 <z < 2"}. This is, in fact, recommended for an n x n S-box [73].
A Boolean function is defined to be a Boolean Mapping F' : Zon — Zs that
takes as input an n-bit string and yields as output either 0 or 1. Thus a Boolean
function is an n x 1 S-box and is many-to-one.

2.3.83 S-box Representation

Current literature suggests three ways [38] in which an n x m S-box S(z), 0 <
x < 2" is represented. We add a fourth representation that is used in our work.

Function Representation using m-bit numbers In this representation, the
mapping is defined as
S(x) =10 <r, <2™, (2.1)

Bitwise Representation with Bits from Boolean functions In this repre-
sentation, each S-box entry is expressed as an aggregation of bits, each in turn
generated by a Boolean function:

| Coa(2) Coa(x) . Cola) |, (2.2)

where 0 < i < m and each C;(z) : Zon — Zs is a Boolean function. Cj(z) is
regarded in [38] as a “column of the S-box (entry)".

The (decimal) expression formed from the bitwise representation of an S-box,
given by

S(x) =2"1Cp 1 () + 2" 2C_a(x) + 2" 73C3(z) + . .. + Co(),

provides for conversion from the bit-wise representation into the functional
representation using m-bit numbers given by Equation 2.1, and conversely.
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Boolean Matrix An S-box can be represented by a 2™ X m binary matrix
[Cijlon s> Wherec;; € Zp,0 <i < 2",0< 5 <m. (2.3)

S(z) is now obtained as follows:

m—1
S(x) = Z cijm_j_l
=0

This representation can be viewed as a binary wvector or one-dimensional form
of representation of all 2" entries of an S-box. We now formulate a two-dimensional
representation that is more useful in our work, in which each entry can be either
binary, decimal or hexadecimal.

A Tabular form of S-box Representation In our work, each n x m S-box
is organized as a 2"~ x 2™ table, to contain a total of 2" entries. The (n — m)
bits taken together form the row-select, and the remaining m bits index into the
column of the selected row. Each row is a permutation of the m-bit numbers in
Zom. Thus each S-box has 2"~™ such occurrences of these numbers, one in each
row. In other words, there exists four inputs that map to the same S-box entry in
the table (many-to-one function).

For example, each S-box of DES is typically organized as a table with 4 rows,
16 columns as Figure 1.1 illustrates. The input to each S-box ranges from 0 to 64,

while the corresponding output ranges from 0 to 16. Example 1.1 discusses the
usage of a DES S-box.

2.3.4  Specification of S-boxes in Cryptographic Algorithms

The DES S-boxes of Figure 1.1 are fixed and specified as part of the algorithm
specification [1|. For other algorithms, the S-boxes may be similarly fixed or may
be variable, or often, computed depending upon a parameter. Different ways of
specifying S-boxes in a cipher are now discussed.

Based upon the different ways in which the S-boxes are specified, in crypto-
graphic algorithms they can be classified as follows:

Fized S-boxes

These substitution boxes are constant, and are specified as part of the algorithm
to be used for encryption / decryption. Several Feistel ciphers specify S-boxes
that fall under this category. Examples are DES and CAST-256 [4].
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Variable S-boxes

In these algorithms, the entries in the substitution boxes are generated as a part
of the encryption / decryption process, and used at that point. They get modified
between two encryption rounds. Blowfish |57] is an example where the S-boxes
depend on the encryption key. This is done to counter linear and differential
cryptanalysis. Another example is Twofish [59]. IDEA [32], although not a Feistel
cipher, implements a multiplication step modulo (2! + 1) which is also viewed as
an S-box [58], and this operation depends on parts of the key (i.e. a key-dependent
S-box). An advantage is a saving on memory tables that would otherwise have to
be initialized had the entries been fixed. A disadvantage of this scheme is that for
every encryption / decryption session, the S-boxes have to be set up and startup
times can become expensive if the operation has to be carried out repeatedly using
different keys.

2.8.5 S-box Generation Techniques

Four techniques are outlined for the generation of S-boxes |62, 40].

Random

Generate S-box entries using some pseudo-random number generator, or from a
table of random digits. For small-size S-boxes, like the 6 x 4 S-boxes of DES, this
strategy may result in undesirable characteristics, but for those having large size
(for example, 64 x 32 S-boxes, this approach should be acceptable.

A variation of this technique is to initialize S-boxes with pseudo-random digits
and as rounds progress, keep changing them depending upon the data and / or
the key. This is exactly what is done in Blowfish [57| and Twofish |59].

Random with testing

Randomly select S-box entries, then test the results against various criteria. We
find that the level of testing subdivides this technique further.

Generate-and-test every entry

Every S-box entry is randomly generated and tested. In addition, each entry
is tested against its neighbors that are the several other entries, within the same
S-box. Among the eight design criteria S-1 to S-8 of DES [16] (Table 2.1), criteria
S-3 to S-7 examine neighboring entries in an S-box. This scheme is discussed in
detail in Section 2.5.
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An obvious extension of testing every entry in a single S-box is to test entries
across multiple S-boxes. This requirement stems from the fact that not all S-boxes
can be identical. Testing and rejecting S-boxes by examining their influence on
neighboring S-boxes has been recommended [17]. DES constraint S-8 [16] suggests
this requirement for any three out of the eight S-boxes. These tests are apparently
formulated to thwart attacks due to differential cryptanalysis [11].

Human-made

This strategy more or less employs a manual approach and the underlying mathe-
matics used to support the same is very simple. The S-boxes of DES were appar-
ently formulated using this approach. For large-size S-boxes the approach becomes
impractical. Even for small-sized ones, testing, particularly at the bit-level, can
become cumbersome and prone to human errors, with more efforts required to
review and correct.

The first S-boxes for Feistel ciphers were designed by hand. Early security
attacks have propelled the research for guidelines (i.e., requirements) that avoid
known vulnerabilities. These requirements prove to be so difficult to achieve, to
the point where it is said [1| that the DES designing team dropped guards when
hand-picking their last S-box (given the fact that their last S-box is susceptible
to attacks from differential cryptanalysis [11]).

Math-made

Generate S-boxes based on mathematical principles. Using mathematical con-
struction, the resulting S-boxes can be constructed to offer proven security against
linear and differential cryptanalysis, together with good diffusion. For example,
Bent functions 2.4.5 are loaded into S-box entries as part of S-box construc-
tion [53, 23, 7, 38|.

2.4 Recommended Properties of an S-box

The S-boxes of DES form the only non-linear part of the algorithm [72]. As such,
any lacuna in S-box design will severely affect the cipher. After the results of
Biham’s differential cryptanalysis [11] and Mastui’s linear cryptanalysis [34] were
published, cryptographers worked on deriving more criteria for S-boxes in order
to thwart against these and other attacks.

Several design criteria have been evolved and these are discussed below. In our
work, we have not used any of these since our objective is to generate S-boxes that
satisfy DES criteria alone to begin with. Once that is done, we can improve on
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search space by modeling each of these requirements into a constraint, adding to
the existing set of constraints and narrowing the search space.

2.4.1 Nonlinearity

An obvious requirement is that the S-boxes be nonlinear. This means that no
output should be close to a linear combination of any subset of the input bits. The
DES design criterion S-2 in Table 2.1 recommends that the fraction of the number
of output bits that is a linear combination of a subset of input bits should be neither
0 nor 1, but close to % [16]. Table 2.1 additionally specifies a more stringent,
optional criterion labelled S-2’. This requirement states that the fraction of a
linear combination of a subset of output bits to that of the input bits should be
close to %

Nonlinearity is defined in terms of the distance from the set of all affine func-
tions [45, 23|. It is also defined in terms of the spectrum of a Boolean function
(also called the Walsh Transform) [23]. Algorithms to construct non-linear Boolean
functions and S-boxes using the bit-by-bit approach is provided in [45].

Gupta and Sarkar |23] has modified an elegant algorithm by Zhang and Zheng
to generate S-boxes having an extended degree. They have also modified the
Maiorana-McFarland technique to generate S-boxes having non-linearity better
than previously known construction methods. The S-boxes generated by them are

useful for stream ciphers.

2.4.2  Diffusion characteristics of S-boxes

A requirement of a good S-box is the possession of strong diffusion characteristics.
This means that changing a small number of its input bits should result in a change
in a very large number of its output bits.

2.4.3 Awvalanche Criterion, and Strict Avalanche Criterion

A requirement of a good cipher is that in general, complementing one bit of the
input should result in a change in an average of half the number of output bits.
This requirement is called the Avalanche Criterion. A more stringent requirement
called the Strict Avalanche Criterion (SAC) |72] states that each output bit should
change with a probability of % whenever a single input bit is complemented. SAC
is quantified in [38] in terms of another measure, the dynamic distance of an S-box.
This paper also defines a Mazimum Order SAC (MOSAC), and recommends that
an ideal S-box should satisfy MOSAC.
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There is also a Guaranteed Avalanche Criterion (GAC) [64]. An S-box satisfies
a GAC of order v if any single-bit inversion at its input results in at least v bits
of inversion at its corresponding output.

Heys and Tavares [64] discusses the effect of the number of rounds, S-box size,
diffusion characteristics on avalanche characteristics. Specifically, the avalanche
criterion is satisfied in fewer rounds when the guaranteed avalanche parameter ~
increases. When the size of the S-box increases, the avalanche behavior of the
encryption network improves.

Seberry, Zhang and Zheng [60] propose a novel systematic scheme of generat-
ing S-boxes based on group Hadamard matrices. In particular, their generated
S-boxes satisfies the SAC. They have defined a measure of robustness against dif-
ferential cryptanalysis, and ensured that the S-boxes generated by them satisfy
this measure.

2.4.4 Bit Independence Criterion

The Bit Independence Criterion (BIC) [72] states that when any single input bit
1 is inverted, for all 7, 5, k, output bits j and k should change independently. The
BIC is quantified in [38| in terms of the distance to higher order BIC (DHOBIC).

There is another measure quantified in [38], called the Mazimum Order BIC
(MOBIC), defined in terms of the dynamic distance. The paper recommends that
an ideal S-box should satisfy MOBIC.

2.4.5 Bent functions

Mister and Adams [38| propose that all linear combinations of S-box columns
should be bent functions. Bent functions are a special class of Boolean functions
that are highly non-linear |7]. They are defined in terms of the spectrum of a
Boolean Function (the Walsh Transform) [38], [23]. These are used for S-box
construction by the bit-by-bit construction method discussed in subsection 2.3.5.

2.5 Search techniques

While there are a number of search techniques in the discipline of Artificial In-
telligence (Al) |54], we can divide the approaches to S-box search, using Al, into
two simple classes for our purposes, namely, Nonsystematic Search and Systematic
Search. In this section, we focus on S-boxes generated in the available literature,
and classify them into the appropriate Al category. Figure 2.4 summarizes the
taxonomy of S-box search.
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S-box Search

Non-systematic Search Systematic Search

Random Generate- Local Search Systematic Generate— Constra
and-Test and-Test Satisfaction

|

Bit—by—hit Row/Column  One-time

Figure 2.4: Classification of S-box Search Techniques

2.5.1 Nonsystematic Search

In this form of search, there is no systematic way in which S-boxes are searched
from beginning to end. Two schemes immediately fall in this category: Random
generate-and-test, and Local Search. The S-box search in the literature easily falls
into one of these two categories.

Random generate-and-test

In this scheme, an S-box is filled with random entries and tested to satisfy the
desired properties. Note that this class is akin to the one discussed in subsec-
tion 2.3.5. A striking feature summarized from the literature is the manner in
which the S-box entries are loaded prior to testing. The approaches in the avail-
able literature, for our purposes, can be classified into three categories:

1. Bit-by-bit generation-and-testing In this approach, each bit of every
S-box entry is loaded with a Boolean function and tested for satisfaction of
the mathematical properties of the S-box properties up to the accumulation
of the current bit. [38| loads a Bent function bit-by-bit, with the bits
distributed across a column of an S-box, and tests for criteria such as its non-
linearity and highest dynamic distance. Individual bits of a 4 x4 S-box entry
are chosen and together, they are tested against the four design criteria such
as bijection, nonlinearity, strict avalanche and output bit independence |72, 6,
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5]. A recent approach uses neural networks to model Bent functions [31] since
the sigmoid function used there lends itself naturally towards implementation
of Bent functions. These can be loaded bit-by-bit into an S-box and tested
for the other criteria. For our purposes, this approach clearly falls under the
bit-by-bit generation-and-testing category of S-box search.

O’Connor |43 combinatorially analyzes this bit-by-bit scheme for n x n
S-boxes and shows that there are practical limits up to which this approach
can generate S-boxes efficiently. In particular, the author shows that the
bit-by-bit method of generation can become infeasible when m > 6.

A cellular automata based approach to S-box design |63] employs one cell per
bit of an S-box. The objectives are to maximize nonlinearity and minimize
a second condition, that of autocorrelation of the S-boxes.

. Row / Column generation-and-testing In this approach, each row of
an S-box is generated and tested. The rationale behind this is that each
row of an n x m S-box is a bijection, just as is the case with DES. Each
entry of DES in one row would be viewed as a 4 x 4 bijective S-box now.
The interactions between S-box entries as prescribed by the DES criteria
S-3 through S-7 [16] is perceived in [6] as interactions between these 4 x 4
S-boxes, and is not addressed in the latter paper. The authors demonstrate
that the S-boxes constructed using this approach proved superior to the
n x n S-boxes constructed by Pieprzyk and Finkelstein [45] using the bit-by-
bit approach. But that was not due to any problem in that approach. The
limitation of this paper is that the authors focussed only on nonlinearity of
S-boxes [6], and a number of other properties were not met.

. One-time generation of all entries, and testing of each In this ap-
proach, an S-box is filled with entries and tests are carried out to check if
the S-box satisfies mathematical properties. The paper by Cheng, et.al [73|
devises a scheme by which they compute 8 x 8 S-boxes by encrypting the
plaintext numbers {0,1,...,255} using randomly-generated 2-bit subkeys,
and with a 6-round mini-version of the IDEA cipher. These S-boxes were
tested for the properties of bijection, nonlinearity, avalanche criteria, output
bit independence criteria, equiprobable input / output exclusive-OR distri-
bution and in addition, the inverse S-boxes were also tested to satisfy these
properties.
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Local Search

In this approach, search for S-boxes is done using hill-climbing, genetic algorithms,
and simulated annealing. Such meta-heuristic and evolutionary techniques have
emerged as potentially very powerful tools for the design of S-boxes [14]. One
feature of these techniques is the existence of a cost function that should be min-
imized or maximized. In [15], the cost function is based on the Walsh-Hadamard
spectra. The requirement is that either the non-linearity should be high or the
autocorrelation should be low [15], [13].

As part of S-box generation using this approach, an S-box is generated (ran-
domly or otherwise) and then tested. This conforms to the one-time generate-
and-test approach discussed in Section 2.5.1, except that the generation need not
always be based on mathematical principles and could be random. After each
S-box is filled with entries, one tries to perform a local search to optimize the cost
function.

Millan [37| performed hill-climbing as part of the local search. Clark, Jacob
and Stepney [15| performed a two-step local search. The first step is annealing
to minimize the cost function. Let Sy, be the best S-box just encountered in
the search process. The next step is to hill-climb from this point with respect
to non-linearity, or with respect to autocorrelation, to produce the final solution
fsane [15]. Then the non-linearity, autocorrelation and algebraic degree of fsape is
measured. A comparison with Millan’s method suggested that this was superior,
and the authors infer that the hill-climbing step did not contribute significantly
but the annealing step added to a dramatic increase in non-linearity.

The paper by Chakraborty, et.al [13] discusses experiments to determine the
empirical values of two adjustment parameters X and R used in the spectrum-
based cost functions. They have concluded that for an n x n bijective S-box,
R > 3.5 and X < 2%, and that R should be an integer.

Clark, Jacob, Maitra and Stanica [14] used a similar approach to search for
Boolean functions, but a completely different search space. Instead of searching
the space of Boolean functions for those with the desired properties of non-linearity,
autocorrelation, among others, they searched the entire spectrum of artifacts (per-
mutations of Walsh Transforms of all functions) to determine which of those are
Boolean by spectral inversions (inverse Walsh Transforms). Annealing is again
used as part of the search process. The cost function is the distance from a near-
est Boolean function to which a (non-Boolean) element of the search space can
“collapse" to. Using this idea, they have uncovered S-boxes that have hitherto
been not obtained using any other means.
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2.5.2  Systematic search

The advantage of local search over systematic search is that the memory require-
ments are small, and a solution can be found in a very short time [54]. For, one
instantiates an S-box not satisfying the desired properties, and the guided search
quickly homes to a near-neighbor that satisfies these properties.

The disadvantage is that, there is the extra effort of testing the assigned ele-
ment of the search-space for those properties is exercised. Moreover, it is possible
that the cost function gets optimized but the solution is still approximate. For
example, [14| would give rise to almost Boolean functions.

We consider two approaches to systematic search: Generate-and-test and Con-
straint Satisfaction Problems (CSPs). Our work uses the CSP approach.

Systematic Generate-and-test

In this approach to systematic search, we assign values to each S-box entry starting
from the lowest, and verify if all properties of the S-box are satisfied. If even one
property is not satisfied, we discard that S-box and take the next value of the
last-assigned variable. If all values of the last-assigned variable are exhausted, we
backtrack and choose the next value for the penultimate variable, and so on.

This approach is very inefficient, particularly for large-size S-boxes. For a
(n,n) bijective S-box, the worst-case number of searches is equal to (27)*". Even
for small-size S-boxes such as (4,4), the maximum number of checks is 16, i.e.
264 (very high!). Hence this approach is not at all recommended.

Constraint Satisfaction Problem (CSP) Based Approach

This is the approach used in our work. The closest work of modeling security
requirements using CSPs was presented by Bistarelli, et.al [8] to analyze security
protocols. There the authors model the network that arises out of the execution
of security protocols as a Soft CSP (SCSP) using the framework of semirings.
The aspect of confidentiality, one of the goals of the security protocols, analyzed,
is further formalized as the property of the solution of the SCSP. Two SCSPs
have been posed: A policy SCSP that models the network arising out of protocol
execution for those admissible protocols that have terminated successfully, and an
imputable SCSP that models a given network configuration. The authors compare
the solutions obtained for these two problems to determine whether the given
configuration hides a confidentiality attack. The approach is demonstrated on the
Needham-Scroeder Security Protocol based on Asymmetric Key Cryptosystems.
To our knowledge, employing CSPs is a first-time approach to S-box design. We
generate an entire S-box already satisfying all of the properties that are modeled
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as constraints. The S-boxes are generated using propagation and inferencing. No
extra step of testing is required as is being done in the earlier approaches, since,
the constraints are satisfied as part of solution generation, suggesting a major
advantage of the CSP approach over the existing ones. Another advantage using
this approach is that each S-box entry is complete in itself unlike those in the
literature where each S-box is populated a bit at a time, or a row/column at a
time. We will introduce the novel idea of a Partially Assigned S-boxz in Chapter 3,
in which an S-box does not have all entries assigned. This assignment can be
done either row-wise or column-wise depending upon the heuristic used. The
partially assigned S-box will incrementally be extended to a complete S-box with
all entries assigned, and all requirements satisfied at any point in search. The
idea of extending a partially assigned S-box gives rise to a set of incremental
heuristics discussed in Chapters 4 and 5, to significantly speed up S-box search as
the experimental results in Chapter 7 will reveal.

2.6 Constraint Satisfaction Problems (CSPs)
A Constraint Satisfaction Problem (CSP) is a triplet (X, D, C) where:

1. X is a set of variables, X = {x1,29,...,2,}

2. D is a set of domains, D = {Dy, Ds,...,D,}. Each of the D;’s is in itself a
set of domain-values that the variable x;, 1 <7 < n, can assume.

3. C'is a set of relations on a subset of the set X of variables. Each element of C,
say Cj, for some i, is a relation R; defined on a subset S; C X, denoting valid
assignments to the variables in S; simultaneously. If S; = {x;1, T, ...,z } is
the set of variables with variable x; having domain D;, , 1 < k <r, then R;
is a subset of the Cartesian Product D;; X D;o X D;5 X ...x D;,. A constraint
C; on the variables in S; can also be written as a pair C; = (S;, R;).

Definition 2.1 (Binary and n-ary Constraint) If a relation ¢ € C' on a sub-
set of the set X of variables is binary, then the particular constraint in the set C
is called a binary constraint, having two variables. A constraint with more than
two variables is called an n-ary constraint.

Definition 2.2 (Instantiation) An instantiation of a set of wvariables
{Tiy, @iy, ..., } € X where each variable x;, has domain D;,, 1 < k < r,
is a tuple of ordered pairs ((x;,, ai,), (Tiy, Qiy), - - -, (Tiy, @;,.)) in which each ordered
pair (z;,, a;,) represents an assignment of the value a;, € D;, to the variable x;, ,
1<k<nr/[20]
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Informally, an instantiation of a subset of the set of variables is an assignment
of an element to each variable in the set from its domain. The tuple is alter-
natively written as (x; = a1, = ag,...,x, = a,), or even more compactly, as
(a1, aq,...,a,). In Chapters 4 and 5, we will discuss the novel idea of a partially
assigned S-boz, which is an instantiation of a subset of the set of variables in our
model.

Definition 2.3 (Solution to a CSP) A solution of a CSP (X, D,C) is an in-
stantiation of all its variables in X such that all constraints in C' is satisfied.

The S-boxes in our work that have all entries present such that all security
criteria are satisfied form the solutions to the CSP.

2.6.1 Representation of a CSP

For our purposes, we consider three ways to represent a CSP [20]. The first
of these is used in our work while the other two are mentioned for completeness
purposes.

Boolean Matrix Consider a binary constraint with variables z and y. Let their
domains be D, = {doy,dy,ds,...,dp_1} and D, = {eg,e1,€2,...,€,-1}, respec-
tively. A binary constraint involving x and y can be represented as a Boolean
m X n matrix [a;;]mxn,- In this representation, the binary element a;;, 0 <i < m,
0 < j < n, is defined as follows:

1, 1fx:d2/\y:e]
aij = .
0, otherwise
The Boolean matrix representation is also referred to as the exztensional repre-

sentation or extensional form, and is the representation used in our work.
We now study this representation with the help of three examples.

Example 2.1 Consider a CSP with two variables x and y, and domains D, and
D, respectively. Let D, = D, = {0,1,2,3}. Consider the following constraint
inwvolving x and y:

r+y=4 (2.4)

Constraint 2.4 can be written in an expanded form as follows, consistent with
D, and D,:
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From this expansion, the extensional representation of constraint 2./ results in
the following Boolean matriz A, with the elements of D, forming its row numbers
and the elements of D, its column numbers. In other words, the row and column
numbering for the matriz A begin from 0 rather than 1. Thus an entry in the
matriz A in Row 1 and Column 3 is 1, corresponding to the Boolean expression
xr=1Ay =3 and similarly, for the other two Boolean expressions.

A=

o O OO
= o O O

0
0
1
0

o O = O

This particular constraint results in a square, symmetric matriz but in general, the
matriz need neither be square nor symmetric.

When there exists more than one binary constraint involving the same two vari-
ables, they can be combined by AND-ing the Boolean entries in their extensional
representation. Example 2.2 discusses this property.

Example 2.2 Consider a CSP with two variables x and y, and domains D, and
D, respectively. Let D, = D, = {0,1,2,3}. Consider the following binary con-
straints involving the same two variables x and y:

r+y=4
r—y=2 (2.5)

Constraints 2.5 can be expanded into the following:

r=1ANy=3, x=2ANy=2, x=3Ny=1
r=2Ny=0,z=3ANy=1

We now have two expanded constraints in x and y. Note that both constraints
should be satisfied simultaneously. The expanded constraints are represented in
extentional form using matrices Ay and As, respectively, to yield:

0000 0000
0001 0000
A1_0010’A2_1000
0100 0100

By ANDing the entries in the two matrices Ay and As, we obtain the following
matrix:
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A= (2.6)

o O OO
_— o O O
o O OO

o O O

0

The AND-operation is the composition used since both constraints 2.5 should
hold simultaneously. This what we will do in our S-box formulation in Chapter 3.

The constraint resulting from the matrix A that serves as its extensional rep-
resentation (Equation 2.6) is

r=3Ny=1
which 18 none other than the solution to the CSP.

The following example demonstrates the effect of reordering the domains of
variables on the extensional representation of a constraint.

Example 2.3 Consider a CSP with two variables x and y, and domains D, and
D, respectively. Let D, = D, = {0,1,2,3}. Consider the following constraint
inwvolving x and y:
r+2y=4 (2.7)
Equation 2.7 can be expanded into the following:

r=0ANy=2,z=2Ay=1 (2.8)

The extensional representation of constraints 2.8 is given by the following 4 x 4
matriz.

0
0
A= 1

o O OO
oS o O
o O OO

0

Now let us order the domains D, and D, to yield ordered domains D! =
{2,0,3,1} and D;, = {3,2,1,0}.

To maintain FEq. 2.8, the rows and columns of the matrix A should now be
shuffied. Shuffling the entries accordingly results in the following matriz A’:

A =

o O O O
o O = O
S O O
oS O O O

—~

[N

e

~
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/

y» Where:

Define permutation functions A, : D, — D! and \, : D, — D

0123 0123
A9”‘(2031)’*@‘(3210)

Let us now attempt to determine the matriz A" directly from permutations A\,
and \,. Applying N\, and N\, directly on the numbers involved in constraint 2.8
will not yield A" as the extensional representation of the resulting constraint. For,
direct application yields the following:

= 2(0) Ay = A2, = Au(2) Ay = A, (1)

or
r=2ANy=1lz=3Ay=2

resulting in the extensional representation

A — ?é A

o O O
o= O O
= o O O
o O OO

0

The inverse permutations of A\, and X\, are given by:
. 2031)_(0123
v 0123 1 30 2
. 3210\ (0123
v {01 23) \3210

It turns out that application of the inverses \;' and )\y_l to the numbers in
constraint 2.8 yields the desired result. This application implies the following:

and

r=X0)Ay=X"12),2 =212 Ay =) (1)
or
r=1Ny=1Lxr=0Ay=2

which results in the matriz A" given by Equation 2.9.

Constraint Graph A binary constraint can be graphically represented by a
constraint graph. The variables of the set X serve as the nodes of the graph.
Whenever any two variables participate in a particular constraint, they are con-
nected by an edge. A dual graph is obtained by interchanging the original graph’s
nodes into edges and edges into nodes.
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Hypergraph For n-ary constraints, all variables participating in any one con-
straint are lumped into a node of the graph. Thus each node is a subset of X. Two
nodes, formed by subsets X; and X5, are connected if and only if the set X; N X5 is
non-empty. Such a graph is called a hypergraph. An n-ary constraint is converted
into a set of binary constraints using the dual graph of its underlying hypergraph.

2.6.2  An overview of S-box Search Strategy using CSPs

To examine the feasibility of the CSP approach to S-box search, we modeled
the eight criteria of DES into constraints. Criterion S-8 is found to deal with
multiple S-boxes and is handled separately at another level, discussed in Chapter 6.
Criterion S-1 to S-7 are modeled as constraints. Out of these, criterion S-1 will
be found to be already modeled based on variable choice. S-3 to S-6 are binary
constraints while S-2 and S-7 are n-ary constraints.

Initially we tried to model the constraints using the CSP programming language
Mozart-Oz [67]. However we quickly found that a number of DES constraints had
to be checked at the bit level, for which Mozart-Oz proved to be insufficient. There-
fore, we resorted to a CTT—Dbased solver to take in our model in its appropriate
form, and generate solutions.

The solver is introduced in Section 2.7 in pseudo-code form (Algorithm 1). In
its original form, the solver handles only binary constraints. Our strategy is to
model constraints for criteria S-3 to S-6 (Chapter 3) and precompile these into
the solver, generate solutions to satisfy these binary constraints, and then test
them on constraints S-2 and S-7. The approach turned out to be very inefficient
(systematic generate-and-test!) In general, generate-and-test is not recommended
as discussed earlier, and constraint propagation needs to be carried out. We for-
mulate several heuristics for the constraints that model criteria S-2 (Chapter 4
and S-7 (Chapter 5).

For the binary constraints, we discuss constraint propagation that is imme-
diately related to our work, namely, arc-consistency, and its relaxed forms, viz.
bounds consistency and range consistency. A11diff constraints will be addressed
next, particularly suited for S-3.

2.6.3  An Overview of Constraint Propagation

Old CSP solvers employed so called intelligent backtrackers, namely algorithms
for intelligent management of conflict recording between values of variables. Some
examples of intelligent backtrackers are: graph-based backjumping, conflict-based
backjumping, dynamic backtracking and backmarking [20, 47, 22, 29]. These algo-
rithms are able to efficiently identify relevant culprit variables for found conflicts,
and thereby avoid some redundant search.
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Modern solvers use look-ahead techniques, such as: forward checking, arc and
path consistency, or singleton consistency [56, 39]. A scheme that, based on (parts
of) a CSP P, infers additional (redundant) constraints to be added to P, is called
a filtering operation. Given a filtering operation A for CSPs,

A:CSP— CSP

a CSP P is locally consistent with respect to A (e.g., arc consistent, path consis-
tent, etc.) if it is a fixed point of A, i.e.,

P = A(P).

One of the most commonly used local consistency concepts is arc consistency.
It is based on the Waltz filtering operation [71] that uses a constraint Cj on two
variables xy and x5 subject to unary constraints z; € D; and x5 € D, respectively.
This filtering operation infers the new constraints with stronger D; and Ds:

D1 = DlﬁCk(D2)|E1
Dy = D2ka(D1)|SC2>

where by Cx(D;)|., we denote the projection of the domain D; for z;, through the
relation CY%, on the variable x;. Practically, Waltz filtering removes values from the
domains of variables. New domains (sets in unary constraints) obtained this way
are traditionally referred to as labels of the corresponding variables. The repeated
application of the Waltz filtering operation until reaching the fixed point is called
arc consistency (AC). The labels obtained at fixed point by repeated application
of this filtering process are called arc consistent labels. The CSP whose domains
are arc consistent labels is said to be arc consistent. If arc consistency removes all
the elements from the domain of some variable (also called domain wipe-out), we
can infer that the CSP has no solution.

Various ways to repeatedly apply Waltz filtering have been studied in the past.
They differ by the way of selecting the constraint for the next filtering operation,
or by the additional information stored about the progress of the last filtering step
on each given constraint. Such information can help in only incrementally filtering
the constraint when the labels of its variables change. The best such filtering
algorithms are AC2001 and AC-3; |9, 66]. Sometimes filtering algorithms are
not applied repeatedly until the fixed point is achieved. For example, they may be
applied only a fixed number of times, as in the case of directed arc consistency [68].

Look-ahead (local filtering) can be either used in a pre-processing step, or re-
peatedly called at various points throughout the search process. The latter case
is referred to as maintenance of the corresponding consistency concept. Mainte-
nance of arc consistency (MAC) [55] is commonly referred to as one of the best
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CSP solvers. Each assignment of a value to a variable (called the current variable)
is propagated as if a filtering step would have restricted the label of that variable
to the corresponding value. MAC has been studied under several versions, differ-
entiated by the selection of the points at which the arc consistency is enforced.
Typically it is enforced after any change of a label.

2.6.4 Forms of Arc-Consistency of CSPs

Arc-consistency is extended to Generalized Arc Consistency (GAC), and also, is
slightly relaxed as Bounds Consistency and Range Consistency. Bounds and Range
consistency are used in A11diff constraints, to be discussed next. We also mention
Singleton consistency which is used in the C** solver employed in our work.

Generalized Arc Consistency (GAC)

While arc-consistency is applicable to binary constraints, this notion is extended
to the domains of more than two variables participating in an n-ary constraint.

Dechter [20] defines GAC as follows: Given a constraint network R = (X, D, C)
with S C X and Rg € C, a variable x is arc-consistent relative to Ry if and only
if, for every value a € D, there exists a tuple t € S in the domain of variables in
S, such that t[z] = a. t can be called a support for a.

Dechter discusses how AC-1 can be extended to GAC and informs that the
complexity of the main step in GAC is bounded by O(d"™!), where d bounds the
domain-size and r is the constraint scope size. Bessiere, et.al. [10] extended AC-
2001/3.1 to GAC2001/3.1. The complexity of GAC2001/3.1 is O(er?d"), where e
is the number of constraints.

In the next two definitions below, 1,5 form a two-element set while |1,5] is an
interval (actually, a closed interval), i.e. the set {1,2,3,4,5}.

Range Consistency

An n-ary constraint C(xy,zs,...,x,) where no domain D; is empty, is called
range-consistent [27] if and only if, for each variable x; and value d; € D,
there exist values d; € [min Dy,max D;|, do € [min Dy, maxDsl, ..., d;i_; €
[min D;_y, max D;_1], di11,€ [min D1, max D;4], ..., d, € [minD,, maxD,]
such that (dy,ds,...,d,) € C.

This means that range consistency does not check for the feasibility of the
constraint for each and every domain-value of the participating variables, but only
with respect to intervals that include those domain-values.
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Bounds Consistency

An n-ary constraint C(xq,zs,...,x,) where no domain D; is empty, is called
bounds-consistent [27] if and only if, for each variable z; and value d; €
{min D;, max D,}, there exist values d; € [min Dy, max D], dy € [min Dy, max Ds|,
ceny dip € [minD;_y,max D;_4], diy1,€ [minD;y,max D], ..., d, €
[min D,,, max D,,] such that (dy,ds,...,d,) € C.

This means that bounds consistency does not even check all domain-values of
the variables participating in the constraint, but only the minimum and maximum
values. Bounds consistency can be viewed as a relaxation of range consistency.

A11diff Constraints

While formulating constraints for our CSP solver for DES S-boxes, the criterion
S-2 is found to be made of n-ary constraints, specifying that each S-box row
should not contain duplicates. In other words, the variables participating in each
row should possess different values. Such constraints can be easily modeled as
A11diff constraints and consistency algorithms specially available for these kinds
of constraint can be used to advantage |27, [49], [51], [50].

The programming language Mozart-Oz 67| provides an ALLDISTINCT module
that helps the developer to specify an A11diff constraint. We were able to use
this module to advantage for generating solutions that satisfied criterion S-2 alone.

Simply decomposing an A11diff constraint having n variables into "Cs binary
constraints does not always give us the desired performance. In fact, the pruning
performance is poor, with a complexity of O(n?) [27]. In comparison, the original
set of AL1diff constrains performs at O(dn'?), where d is the maximum cardinality
of domains.

A naive algorithm that is O(n?) in the number of variables is discussed in [27].
This algorithm considers an interval I = [a,b] where a is the smallest value of
all domains and b, the largest. If #1 is less than the cardinality of the variables
participating in 7, there is no solution. If [ is a Hall Interval, the bounds are
updated. Regin’s algorithm [50], is an improvement over the naive implementation
and has O(n?d?), where d is the maximum domain-size. Mehlhorn and Thiel
present another that performs in time O(n) plus the time required for sorting the
endpoints of the intervals.

Puget’s algorithm [49] for bounds consistency of Al11diff constraints is
O(nlogyn).

Leconte’s range consistency algorithm runs in time O(n?d), where d is the
average domain size.

Régin’s hyper-arc consistency algorithm on A11diff, based on matching theory,
constructs a value graph in time O(d|X¢| + | X¢| + |D¢|) where the subscripted
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C’s stand for the variables participating in the matching cover of the value graph.
d is the maximum cardinality of the domains of the variables. Hopcroft and Karp
implemented a maximum matching algorithm on the value graph, that runs in
time O(y/|X¢|m), where m is the number of edges in the value graph.

Régin proposes another form of A11diff, namely, the symmetric A11diff con-
straint [51]. This is equivalently expressible as an A11diff constraint along with
additional information on symmetry. However the symmetric form exhibits more
global information that the split-version of the CSP. The additional information
is used for pruning.

2.6.5 Limited Discrepancy Search

While running our CSP solver, we often obtain several solutions that appear iden-
tical in the values assigned to the first few variables. We may want to limit such
solutions and move on to those that look “different".

Tree search methods are useful for solving many practical problems because
carefully-tuned successor-ordering heuristics guide the search towards regions of
the space that are likely to contain solutions.

Limited Discrepancy Search (LDS) is introduced by Harvey and Ginsberg [24].
During search, when a goal node is not reached, the thinking is that the search
would have succeeded had it not been for a small number of “wrong turns" along the
way. The point at which the wrong turn occurs is referred to as a discrepancy. This
paper demonstrates a novel search technique called Limited Discrepancy Search,
which is a backtracking algorithm that searches the nodes of the tree in increasing
order of such discrepancies. The paper shows how this technique can be expected
to outperform existing approaches.

The existing approaches discussed are iterative sampling and backtracking.
In iterative sampling, without successor-ordering heuristic, iterative sampling is
ineffective when the solution density is not very high. In backtracking, mistakes
made early in the search process, particularly when the subtree is large or when
there are very few solutions present, present a tremendous burden on the heuristic
early in the search process.

The idea of LDS is that when a heuristic fails, it would have led to a solution if
only it had not made one or two “wrong turns'" that got it off track. One should be
able to systematically follow the heuristic at all but one discrepancy. If that fails,
one can follow the heuristic at all but two discrepancies. And so on. Thus, LDS
does a depth-first search traversal of the tree, limiting the number of discrepancies
to a discrepancy limit z. When, eventually, + = d, where d is the maximum depth
of the tree, then the search becomes exhaustive.
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A theoretical comparison is made with the two existing methods, examining
the likelihood of finding a solution in the specified amount of time. The paper
defines a mistake probability m as the probability that a randomly selected child
of a good node is not having any goals in its subtree. The heuristic probability
p is equal to (1 —m) (or greater, if it does better than random selection). The
chance of finding a solution on a random path (iterative sampling) to depth d is
(1—m)<. Given specific values for p and m, the paper demonstrates the theoretical
probabilities of success as a function of the height of the tree for iterative sampling,
chronological backtracking and LDS for various values of p.

When p = 0.8, LDS performs slightly worse under these conditions. As p
increases to 0.85, 0.9, 0.95, the curve for LDS goes way higher compared to the
others, suggesting that the performance of LDS increases dramatically with better
.

Richard [30] discusses an improvement of Limited Discrepancy Search over
the earlier one by Harvey and Ginsberg [24]. In the improved version (ILDS),
a number of search paths that were repeatedly traversed in each iteration in the
earlier version (OLDS) are eliminated.

An analytical comparison of the two algorithms is made in the paper. If the
depth of the search tree is d, then the total number of paths generated by OLDS
in a complete search to depth d is (d + 2)2%~!. This is also the asymptotic time
complexity of OLDS. In comparison, the complexity of ILDS is O(2¢), suggesting
that OLDS may be worse than ILDS by a factor of %, in the worst-case scenario.
Usually this does not happen since, OLDS was designed for very large trees and
only a few iterations were needed. Another reason is that when integrated into
CSPs or branch-and-bound methods, a great deal of pruning disallows reaching all
the way down to the maximum depth.

The paper analytically compares ILDS with DFS since the authors found that
ILDS is still inefficient to DF'S due to the larger number of internal nodes generated
by ILDS. If b is the branching factor and d, the depth of the tree, then for DFS, the
total number of nodes is bd;_ll_l. In comparison, for ILDS, the total number of nodes

b(bdt1-1)
(b-1)2

in ILDS to that in DF'S is equal to % The expressions were approximated in the
paper but that was not necessary; the ratio is still the same. As the branching
factor increases, the ratio decreases. When pruning happens, the overhead of ILDS
increases.

is found to be equal to . The ratio of the total number of nodes generated

Ineffectiveness of Limited Discrepancy Search for our work

We discovered that limited discrepancy search is not effective for our work. LDS
is used where a goal assignment is not found, to expand in a different direction
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using the notion of the “number of wrong turns". However, in our work, we
already have several goal assignments. Our objective is to see “different" kinds
of goal assignments rather than the “same kinds" of goal assignments. LDS will
certainly give us “different" kinds of goal assignments upon expanding in a different
direction. But, it will still give us the “same" kind of assignments within that
“different" kind. As such, this approach is not recommended, and we consider
reordering the domains according to a random permutation.

2.7 The Solver for Binary Constraints

Algorithm 1 outlines the solver in its original form. The solver handles binary
constraints represented in extensional form, pre-computed and input to it. The
solver generates S-boxes employing Maintenance of Arc Consistency (MAC) [55]
with AC2001 [9].

Procedure Solver is recursive. The inputs are the set of variables X, the set
of (reduced) domains D', the precomputed binary constraints Cy, recursion level
k and threshold 7 of optimality of the solutions sought. The solver is invoked for
the first time with D’ = D (the initial set of domains), and k£ = 0 (to indicate
the starting variable). Here the function ProcessNary() returns true if £ = | X|.
This is the condition that all variables are assigned and forms the base case for
recursion to terminate. Function MakeAndCheckSBox() creates an S-box ® with all
values assigned, and returns the same. Functions InitPartialVarsAndCounts(),
ReverseUpdateCountDistSet() and ReverseUpdateCount() perform no opera-
tion. Boolean functions CheckPartialSBox() and ProcessOtherDomains() simply
return true. Under these circumstances, when all variables are assigned, Line 9
prints the solution that satisfies all binary constraints in Cs. All of the functions
that hitherto return true or perform trivial operations (or even none) implement
the heuristics proposed in the paper for the global n-ary constraints for S-2 and
S-7.

Procedure SelectNextVariable, called in Line 3 selects the next variable X
and returns its index j, as governed by a permutation 7w : Z;x| — Zx;. Two
variable-ordering heuristics are considered in our work for performance evaluations
(subsection 5.5.2), namely, the default straight-line and an alternative, zig-zag
ordering.

In Line 11, the next available value v is assigned to z; € X from its reduced
domain D7. All other elements in D’ are added to a deletion set DS (Line 12).
Establishment of Arc Consistency using AC2001 is made at Line 16 by the function
EstablishAC, filtering domains in D’ to return a set D” of reduced-domains. If
no reduced-domain in D" is empty, the solver recurses in Line 17. The function
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Procedure Solver(X, D', Cy, k, T)

input : Variables X = {zg,x1,..., 2201},
Domain-subsets D' = {D}: 0 <1i < 2"}, with D} C Dy
being the domain-subset for xy,
C5 is the set of binary constraints for the 4 criteria S-3 to S-6,
k is the recursion level (z; € X is the current variable),
7 = The threshold score sought for each S-box solution.
output: n x m S-boxes having a maximum score equal to 7

1 begin

2 InitPartialVarsAndCounts()

3 | Jj <+ SelectNextVariable(k)

4 ¢ < CheckPartialSBox()

5 if ¢; then

6 ¢y < ProcessNary()

7 if ¢; then

8 ® «— MakeAndCheckSBox()

9 PrintSBox(®)

10 else

11 foreach v € D do

12 DS «—{(j,w) :w € D; ANw # v}
13 D’ — {v}

14 ¢4 < ProcessOtherDomains(DS, D', j, v)
15 if ¢, then

16 D" — EstablishAC(D’, DS)
17 if no domain in D" is empty then
18 L Solver(X, D", Co k+1,7)
19 ReverseUpdateCountDistSet ()
20 | D < RestoreDomain(z;)

21 ReverseUpdateCount|()

Procedure SelectNextVariable(k)

1 begin
2 | return w(k) ;
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RestoreDomain() restores the domain D} of x; before the next value from D is
considered at Line 11.

2.8 Notations

For a number z, we use |z| to denote its absolute value. If X is a set, then
| X| represents its cardinality (number of elements in the set X). Whenever a
set is written with braces, its cardinality is written with a # preceding the set
itself. For example, the cardinality of the set {ag, a1, as,...ap_1} is written as
#{ao, ay, ag, ... Clk_l}.

The symbol @& denotes the bitwise exclusive-OR (or XOR) of two bit patterns
a and b having identical bitlength, and the operation is written as a & b. The
symbol - denotes the bitwise AND of two quantities a and b having identical
bitlength and the operation is written as a - b. The one’s-complement of a bit
pattern a, also called the negation of a or the NOT-operation on a, is written as
a. In logical expressions (as opposed to bitwise arithmetic), the symbol A is used
for conjunction, the symbol V used for disjunction and the symbol —, used for

negation.
A linear combination of Boolean variables xg, 1, 2, ..., xx_1, is given by the
expression
k—1
@CL,’-ZEZ' =ag - ToD...Dap_1" " Tr_1
i=0

where a; are Boolean coefficients, @ is the bit-wise exclusive-OR. operator and - the
bit-wise AND operator. A linear Boolean function L, (z) on an n-bit input = =
xg...x,_1 defined by an n-bit selector w = wy . ..w,_; is computed [14] as:

n—1

Lw(x):wo-xo@...@wn_1~xn_1 :@wlxz (210)
i=0

The parity of a binary quantity a is equal to the number of one’s in a. If a has
an odd number of 1’s, it is said to follow odd parity and if this number is even,
it is said to have even parity. The check for parity is made by computing the
exclusive-OR . of the bits in a. The result of the exclusive-OR is either 0 or 1; if 1,
a possesses odd parity, otherwise a possesses even parity. It is easy to see that the

parity of a is obtained by taking the sum of the bits in ¢ modulo-2.
Some existing criteria are based on the concepts of Hamming weight and Ham-
ming Distance. The Hamming weight of a given bit-pattern u, denoted by wt(u),
is defined as the number of 1’s in u. The difference between two n-bit numbers x
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and y is equal to z @ y. The Hamming Distance between z and y is the minimum
number of changes to be made to = to obtain y, and is equal to wt(z @ y).
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Chapter 3
CSP Models for Security Criteria

We model the security criteria listed in Table 2.1 and discuss constraint for-
mulation strategies. Binary constraints are formulated in this Chapter, and n-ary
constraints, in Chapters 4 and 5 to model the security requirements.

3.1 Constraint Formulation Strategy

Some of the S-box criteria of Table 2.1 can be formulated as binary constraints
while others get formulated as n-ary constraints. Moreover, some criteria may
operate on a combination of solutions generated. A strategy is put in place before
attempting to formulate constraints for each criterion.

3.1.1 One S-box, and combination of S-boxes

In the S-box criteria one can observe that S-8 applies to more than one S-box
taken together (three S-boxes in this case). All other criteria apply to only one
S-box. The following two-step strategy for constraint formulation is adopted in
this work.

1. Generate S-boxes that satisfy all criteria except S-8, filtering out all those
S-boxes that do not satisfy these other criteria.

2. Consider a subset of the set of generated solutions, and repeatedly validate
S-8 on all such subsets. Only those solutions that satisfy all eight criteria
remain behind while all others get filtered out.

The details of Step 1 are discussed throughout this Chapter and also, in Chap-
ters 4 and 5. Step 2 is formulated as a separate problem and discussed in Chapter 6.
3.1.2  Binary and n-ary constraints of DES Criteria

In the S-box criteria of Table 2.1, one can further observe the following: S-2 and
S-7 gives rise to n-ary constraints that take in more than two variables, while the
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remaining criteria S-3 to S-6 all give rise to binary constraints. In this work, the
following steps are followed in the order below:

1. The remaining criteria S-3 to S-6 are first analyzed and are modeled as
binary constraints in this Chapter.

2. S-2 is positioned to validate and accept only those solutions satisfying it. In
that sense S-2 serves as a “filter". This is a generate-and-test approach. De-
composition of S-2 into hard constraints by employing projection, resulting
in heuristics for search speedup, are proposed in Chapter 4.

3. Those S-boxes accepted by S-2 will be further filtered by a second “filter"
that implements the n-ary global constraint S-7. This is also a generate-and-
test approach. A incremental approach, and a novel technique of projecting
on the domains of future variables, is discussed in Chapter 5 to speed up the
constraint for S-7.

3.1.3 A problem solver

To implement Step 1 mentioned in subsection 3.1.1, the binary constraints for-
mulated for criteria S-3 to S-6 will be precompiled into a solver that will emit
outputs to satisty only these criteria.

Now the solver will be modified to include heuristics for the n-ary constraint
S-2 and S-7. The solver will take in the partially-correct solutions and run the
n-ary constraints to yield S-boxes that will satisfy all eight DES criteria.

3.2 The CSP Formulation

We will now discuss the variables, domains for each variable, and constraint for-
mulation. S-2 is referred to as the nonlinearity constraint and its formulation is
dealt with in Chapter 4. We will refer to criterion S-7 as the COUNT constraint
for lack of a suitable terminology in the literature. The modeling of this criterion
will be discussed in Chapter 5.

3.2.1 Variables of the CSP Model

For an n x m S-box requiring n inputs, 2" variables are required. These variables
will be represented by x;, where each x; is the output of one S-box, 0 <7 < 2" —1.
The set of variables for the CSP is the set {xg, z1,...,xon_1}.

Specifically, for 6 x 4 S-boxes such as those used in DES, with n = 6, there
are 64 values of the 4-bit output of an S-box, each output corresponding to one
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6-bit input. Let these 64 values be represented by variables zg, 1, ...xg3, with
r; € {x : 0 < x < 15}, 0 < i < 63. Each variable z; specifies the output of
an S-box corresponding to input 7 of the S-box, 0 < ¢ < 63. For example, x
corresponds to 6-bit input 0 (0000005, in binary). Output z; corresponds to 6-bit
input 1 (000001 in binary), and so on.

The set X of the 64 variables for a 6 x 4 S-box is given by

X = {l’o,l‘l,xg, .. .Iﬁg}

Using these variables, an 6 x 4 S-box is organized as shown in Table 3.1. For
convenience, the values for the two-bit numbers zox5 (row index) and the four-bit
numbers x;xox374 (column index) of an input to the S-box are expressed in the
decimal number system.

The peculiar pattern in which the 6 x4 S-box entries x; is organized is observed
in Figure 3.1. For example, while traversing across the first row from left to
right, the variables are listed as xg, 2o, . . . 39 instead of the more intuitive listing
Zo, X1, ...T15. Similarly in the second row, only the x’s with odd subscripts appear.
This interesting layout is due to the fact that the first and last bits of the six-bit
input, and not the two leftmost bits, form the row-selection. (Equivalently, this is
because the middle four and not the last four bits of the input to a 6 x 4 S-box
forms the column-selection.)

T1T2X3T4
Tols 0 1 2 3 ... 12 13 14 15
0 Tog X2 Ty Xe ... Tag Tog Tag T30
1 T T3 Ty g ... X9y T97 X929 XT31
2 T32 T34 T36 T38 ... Ts6 Tz8 LTeo L62
3 T3z X35 37 T39 ... Tz Ts9 Tel  Te3

Table 3.1: Distribution of the constraint variables in a 6 x 4 S-box

3.2.2  Domain of each variable, and Domain-set of the CSP

For an n x m S-box that yields an m-bit output, each variable z; € X,0 < i <
2™ — 1 assumes integral values from the set {0,1,...,(2™ —1)}. The domain D;
for each x; is then given by:

D;={0,1,2,...,2m — 1}

The domain-set D of the CSP is the set of such domains, one for each variable.
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A 6 x4 S-box such as the one used in DES yields a 4-bit output value (m = 4)
ranging from 0 up to a maximum of 15. In other words the domain of each variable
x; in the set X = {xg,z1,..., 215} of variables, is the set D;,0 < ¢ < 63, given by:

D; ={0,1,2,3,4,5,6,7,8,9,10,11,12,13, 14, 15}

The domain-set D of the CSP is the set of domains of each variable, and is a
singleton set:

D - {Do,Dl,...Dﬁg}
= {{0,1,2,3,4,5,6,7,8,9,10,11,12,13, 14, 15} } (3.1)

3.2.8 Modeling Criterion S-1

“Each S-box has six bits of input and four bits of output.”
Criterion S-1 is implicit in the choice of variables. This is not discussed any
further.

3.2.4  Modeling Criterion S-3

“If we fix the leftmost and rightmost input bits of the S-box and vary the four middle
bits, each possible /-bit output is attained exactly once as the middle four input bits
range over their 16 possibilities.”

Fixing the leftmost and rightmost input bits yoys to any of the possible four
combinations, selects one of four subsets of the variables. Generation of constraints
for clause S-3 is now straightforward. All we require is that no two output vari-
ables, in each subset, should be equal. The inequalities are directly expressible as
A11diff constraints [49], [27]:

Alldiff
Alldiff
Alldiff
Alldiff

Lo, L2, T4, -, $30)
T1,T3,Ts5, ..., ZL’31)

X32, X34, T36, ---7%‘2)

o~ o~ o~

X33, 35, L37, ~->I63)

For 6 x 4 S-boxes, each A11diff constraint is expressible as % = 120 bi-
nary constraints and all of these A11diff constraints replace 480 binary inequality
constraints. In general, for an n x m S-box organized as a 2"~ x 2™ table, there
are 2"~ A11diff constraints for each row of the table. Each of these contains 2™
variables and is expressible as % binary constraints. The total number of

binary constraints that these A11diff constraints replace
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om % (27 — 1
gn=m & % — on—l(gm 1),

3.2.5 Modeling Criterion S-4

“If two inputs to an S-box differ in exactly one bit, the outputs must differ in at
least two bits."

Consider any two 6-bit inputs ¢ and j and their corresponding outputs x;, z; €
D, of a DES S-box S. Criterion S-4 can be written in First-Order Logic as:

(Vi) (V1) (0 <i<j<63) Awt(i®j) =1
= wt(z; B x;) > 2 (3.2)

For a 6 x 4 S-box, each variable will participate in exactly 6 such binary
constraints (one for each input bit), generating 192 binary constraints. For an
n X m S-box, each variable participates in exactly n constraints. Since there are
2™ variables, the total number of constraints is equal to 2" x n and half of these
constraints repeat due to symmetry. Therefore the number of binary constraints
for criterion S-4 is equal to n x 2771,

3.2.6 Modeling Criterion S-5

“If two inputs to an S-box differ in the two middle bits exactly, the outputs must
differ in at least two bits."

Consider any two 6-bit inputs ¢ and j and their corresponding outputs x;,z; €
D, of a DES S-box S. The fact that the 6-bit inputs ¢ and j differ in the two
middle bits implies that this 6-bit difference is exactly equal to 0011005. S-5 can
be written in First-Order Logic as:

(Vi)(V5)(0 <d,5 < 63) A (i # J) A (i @ j = 0011002)
= wt(x; & ;) > 2 (3.3)

For DES, this results in 32 binary constraints, each variable (S-box entry)
participating in exactly one such binary constraint. For an n x m S-box, two
n-bit inputs differ in their middle two bits in exactly one way. As such, each
variable gives rise to exactly one binary constraint. For the 2" variables there are
2™ constraints, and half of these repeat due to symmetry. Therefore, the number
of binary constraints for criterion S-5 is equal to 2"~!. Note that n should be an
even number, and n > 2.
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3.2.7 Modeling Criterion S-6

“If two inputs to an S-box differ in their first two bits and are identical in their
last two bits, the two outputs must not be the same."

Consider any two 6-bit inputs ¢ and j and their corresponding outputs x;,z; €
D, of a DES S-box S. The fact that the 6-bit inputs ¢ and j differ in their first
two bits and are identical in their last two bits, implies that the input-difference
(1 @ j) A 110011, is exactly equal to 1100005. S-6 can be written in First-Order
Logic as:

(Vi) (V§)(0 < i < j < 63),[(i® j) A 1100115] = 1100005

For DES, each variable is involved in 4 such binary constraints (one for each
possible combination of the two middle input bits), resulting in a total of 128 new
binary constraints.

For an n x m S-box, let us consider two n-bit inputs. Their first two bits
differ and simultaneously, their last two bits are identical in exactly one way. The
remaining (n — 4) bits can be selected in 2"~* ways (these bits may or may not
differ, nothing is said about them). Therefore each variable participates in 2"~
binary constraints. For the 2" variables, we have a total of 2" x 2"=4 = 2274
constraints, half of which are identical due to symmetry. Therefore, for an n x m
S-box, the number of binary constraints for criterion S-6 is equal to 227;74 = 2205,
Note that n > 4.

3.2.8 Total Number of Binary Constraints

The total number of binary constraints, obtained by adding the above four results,
is equal to 2" 71 x (2™ +n+2""1), n > 4. For DES, this works out to 832 constraints.
160 of these binary constraints contain two variables that participated in other
binary constraints in the set. After corresponding constraints are composed (refer
Example 2.2), the total number of binary constraints formulated for criteria S-3,
S-4, S-5 and S-6 is reduced to 672.

3.3 Summary and Looking Ahead

In this chapter we have formulated binary constraints for criteria S-3, S-4, S-5
and S-6 specified for DES S-box design. Criterion S-1 is implicit in the choice
of variables. In our experiments, these binary constraints have been precompiled



50

into a solver (Section 2.7) that stores the binary constraints in extensional form
(Section 2.6.1).

In the binary constraints modeled, their applicablity is a function of the S-box
input size n for an n x m S-box. While all of them are applicable for 6 x 4 S-boxes
such as those of DES, S-5 does not make sense for 5 x 3 S-boxes n = 5 is not even.
In the experiments discussed in Chapter 7, such criteria would have to be either
modified or relaxed when running the solver on small-sized problems.

Criteria S-2 and S-7 are n-ary constraints. The key challenge is how to run
the binary-constraint solver on these constraints efficiently. There are essentially
two approaches for ensuring efficiency, both employing projections:

1. Project an n-ary constraint on past assignments and check if the n-ary con-
straint is satisfied partially for each assignment.

2. Project domain-values of future variables onto past assignments to com-
pletely eliminate checks for constraint satisfaction.

The second approach is better than the first, since, no explicit checking is
required and all elements available after propagation are part of the solution space.
Both heuristics are incremental, not checking on a complete S-box but on a partial
assignments. Chapter 4 introduces the idea of a partially assigned S-box, and
discusses the first approach applied to criteria S-2 and S-7. Chapter 5 discusses
the second approach applied to criterion S-7.

Criterion S-8 deals with multiple S-boxes and cannot be modeled in this exist-
ing CSP framework. We discuss this criterion in Chapter 6. We have determined
a way by which this criterion can be modeled as a pure CSP, by increasing the
variables (and hence the solution space). This will be treated as future work and
discussed in some detail in Chapter 9.
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Chapter 4
The Nonlinearity Constraint

Criterion S-2 is referred to as the nonlinearity requirement. The essence of this
requirement is that the output of an S-box should be highly nonlinear. A measure
of nonlinearity is derived in this Chapter, directly from Matsui’s work on Linear
Cryptanalysis of DES [34].

In this Chapter, we model S-box nonlinearity as a constraint. As we shall see,
the result is a soft CSP. We will then formulate heuristics for speedup of S-box
search to satisfy this criterion in addition to criteria S-3 to S-6.

First, the nonlinearity requirement is repeated here for convenience:

S-2: “No output bit of an S-box should be too close to a linear function of
the input bits. (That is, if we select any output bit position and any subset of the
siz input bit positions, the fraction of inputs for which this output bit equals the
exclusive-OR of these input bits should not be close to 0 or 1, but rather should be
near 3 ).” [16]

Before proceeding any further with the nonlinearity analysis, let us discuss the
idea of a partially assigned S-box and derive some properties of this kind of S-box.
The derived properties are not present in current literature on S-boxes, and is one
of the main contributions of this Dissertation.

4.1 Partially Assigned S-boxes

In the literature, each S-box entry or all entries are formed one bit at a time and
these are often referred to as partial S-boxes. Often these entries are populated
one row at a time or one column at a time [38]. In all of these cases, the S-box
entries are formed bit by bit. In contrast, in our formulation each S-box entry is a
complete number. However not all entries are assigned simultaneously or in other
words, we do not always deal with completely filled S-boxes. In CSP terminology,
this amounts to variables not all of which are being assigned immediately. This
gives rise to incremental evaluations, which will be formulated for checking S-2
and S-7. Throughout the rest of this Dissertation, we will refer to a Partially
Assigned S-box to mean an assignment to a subset of the variables in X of the
S-box.
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Definition 4.1 (Partially Assigned S-box) An S-boz is partially assigned if
and only iof not all of its entries are assigned.

Let X be the set of variables of an S-box and X’ C X, the set of variables of a
partially assigned S-box. We will denote a partial assignment to the variables in
X of an S-box as follows. The tuple

A = <(ZL’0, do), (1’1, dl), ey (:L'|X/‘_1, d|X/‘_1)> (4.1)

corresponds to the partial assignment xo = do, 21 = dy, ..., 7)x/—1 = d|x/|-1.
The unassigned entries are given an invalid value (—1 in our implementations).
In the illustrations for partial S-boxes these unassigned entries are not shown.
This notation will be used in Chapter 7 to quantify the search points encountered
during S-box search.

Example 4.1 For the complete S-box Sg of DES given in Figure 1.1, several
partially assigned S-boxes are possible. A partial assignment to variables xq =
13,21 =1, = 2,23 =15, ..., x99 = 3 results in the partial S-box of Figure 4.1.

13 2 8 4 6 15 11 1 10 9 3
1 15 13 8 10 3 7 4 12 5

Figure 4.1: A partially assigned S-box obtained by assigning values to variables
Xo,T1,...,To. Note that this assignment follows a zig-zag pattern.

As per the notation governed by equation 4.1, this assignment is equivalent to
the tuple

A = <(l’0, 13), (.]71, 1), (IQ, 2), coey (1’19, 5), (LUQ(), 3)>

Notice that the way entries are populated depends on the manner in which the
variables are organized with reference to Figure 3.1. Another fact worth observing
is that the partially assigned S-box formation is contingent upon the order in
which the variables are assigned. Example 4.2 illustrates this aspect.

Example 4.2 In Chapter 5, we will consider a straight line wvariable
ordering heuristic. In  this heuristic, wvariables with even subscripts
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Xo,T9,...,T39 are first assigned to fill the first row, followed by those
with odd subscripts x1,x3,...,x31 to fill the second, and so on. In
this  configuration if we consider the following wariable assignments,
namely, (w0, T2, 4, T6, T, T10, T12, T14, T16, T18, L20, T22, T24, T26, T28, T30) =
(13,2,8,4,6,15,11,1,10,9,3,14,5,0,12,7)  and  (x1, 23, x5, T7,Tg, T11) =
(1,15,13,8,10, 3) then the partial S-box of Figure 4.2 will result.

3 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7

Figure 4.2: A partially assigned S-box resulting from variables assigned using a
straight-line pattern (row-wise)

As per the notation governed by equation 4.1, this assignment is equivalent to
the tuple

A = <(LUO, 13), (.]72, 2), (.]74, 8), (Iﬁ, 4), (.]78, 6), (I'lo, 15), (1’12, 11), (25'14, 1),
(1'16, 10), (1'18, 9), (ZL’Q(), 3), (1'22, 14), (1’22, 5), (1’24, 0), (1'26, 12), (1’28, 7),
(.]71, 1), (.]73, 15), (.]75, 13), (LU7, 8), (.C(Zg, 10), (1’11, 3))

In Chapter 3, we have denoted X as the set of variables for the S-box entries.
For a partial S-box, we denote X’ to be the variable-set, with X’ C X. We will
also denote a fully-filled S-box (which we will refer to simply as an S-box as has
customarily been done) by ® and a partially assigned S-box by ®'.

4.2 Analysis of Criterion S-2

The rationale behind criterion S-2 is to ensure that an S-box is highly non-linear.
Matsui’s work on linear cryptanalysis [34| uses a table called the Linear Approxi-
mation Table (LAT) that records the counts of linear combinations of all subsets
of input and output bits, for a particular S-box. Consider an n x m S-box, i.e. one
that for any n-bit input ¢ = 79 ...%,_1 yields the m-bit output =; = x;, ... z;,, ,.
The linear combinations to be checked for equality are obtained by selecting bits
in ¢ and z; using selectors a and b respectively, where 0 < a < 2" and 0 < b < 2™,

Example 4.3 Let us consider a 6 X 4 S-box that takes as input i = 46 and gives
an output x; = w46 = 13. To check how close this input/output relationship is
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to a linear relationship, we need to fit a linear equation between the bits of i =

of input © and bits 1, 2 of output x;, are selected, then the following equation is
checked:

Qo ®is By Bis = x5 O 1,
1ig®0- i1 D1 io®0-i5Pl-is®1lDiy = 0O-2y®1l-2, @1 -2, B0y
apto D ariy © agiz © aziz D aqly O asis = boiy B brws, D baxy, B baw;,
ie. Lo(i) = Ly(z;)
or, L43(46) < L¢(13)

where a = agaiasazasas = 101011y = 43 and b = byb1bybs = 0110, = 6 are
selectors for the bits 0,2,4,5 of the S-box input © and bits 1,2 of S-box output x;,
respectively. This 1s a linear equation and iof satisfied, the relationship as governed
by this equation is indeed linear.

We are not interested in merely one particular linear relationship. We want to
check search for linear relationships in all possible selections of input and output
bits of the S-box. The way of doing this is to enumerate all possible combinations
(selections) among the 25 = 64 selections of subsets of input bits in i versus the
2% = 16 subsets of output bits of z; and see how many of them are related by
linear equations.

Example 4.4 Consider the entry x4 = 13 of the 6 x 4 S-box of Example 4.3. We
would like to know what the linear relationships between input 46 (= 1011105 )and
output 13 (= 1101y) exist. To do so, run the following check for all selectors
a = apa1asa3a4as, b = bob1babs, 1 < a < 64,1 <b < 16:

aol@a10®a21@a31€9a41@a50 ; bol@bll@bgo@bgl
ie. Lo(i) = Ly(z;)
or, Lo(46) = L,(13)

Note that we have excluded the selectors a = 0,b = 0 because if nothing is
selected, the trivial and uninteresting result 0 = 0 is encountered.
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0123456 78 9101112131415

64 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32
32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32
32 34 32 30 30 32 34 32 30 32 30 36 28 30 32 38
32 30 32 34 30 36 26 36 30 28 38 32 28 34 32 34
32 30 30 32 32 34 30 28 34 32 36 30 38 32 32 46

R NN RO

59|32 38 30 28 34 32 36 34 24 26 30 32 38 32 32 34
60 | 32 34 32 34 28 26 36 34 36 34 40 30 32 34 36 30
61|32 30 44 26 40 34 28 38 36 30 28 30 36 34 28 34
62|32 24 36 32 30 34 30 38 42 38 34 34 32 32 28 32
63 |32 24 32 36 34 30 22 30 26 38 30 38 28 36 28 32

Table 4.1: Tabulating the counts N (a,b) for the S-box Sy of Figure 1.1

4.2.1 Counting Linear Relationships in a Completely Filled S-boz: N%(a,b)

For a given S-box ® with all variables in X, let us define N%(a,b) as follows:

Ny(a,b) = #{i : Lo(i)=Ly(x;); a,i € Zon; b, x; € Ziym } (4.2)

where L, (z) is defined in Equation 2.10. Equation 4.2 suggests that linear com-
binations of input and output bits of all entries in an S-box are counted. The
minimum value of Ng(a,b) is zero and the maximum value is 2". The values of
N2 (a,b) are tabulated in a 2" x 2™ matrix. Example 4.5 illustrates the tabulation
process.

Example 4.5 Consider DES S-box Sy of Figure 1.1. This is a 6 x 4 S-box with
n =6 and m = 4. Form a table the rows of which are indexed by a and the
columns, by b, where a € Zgy, and b € Z1g. Table 4.1 displays the table having
26 = 64 rows and 2* = 16 columns having a total of 64 x 16 = 1024 entries. Only
the first 4 and last / rows of the table are shown in the figure, along with all the
columns.

Let us study the entry corresponding to Row 3, Column 5 of the table, for
which a = 3 = 0000112 = Qpa1a2a3a4as and b = 5 = 01012 = boblbgbg. This
entry 1s equal to the total number of times the following equation s satisfied for
all 64 4-bit entries x; = T;oTi1Tio%;5 of S-box S corresponding to each 6-bit input

1 = 1gl112130475, 0 < 7 < 64:
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Ls(t) = Ls(xi)
’é4@’é5 = ZL’il@l’ig (43)

The entry in the table under row 3, column & reads 36, which means that for
36 entries out of the 64 in DES S-box Sg, Equation 4.3 is satisfied. The mazimum
value of an entry is 64 since Sg contains 64 entries. This process is repeated for
all entries (a,b) in the table to yield a count for every possible linear combinations
of the bits in an S-box input and its corresponding output.

4.2.2  Counting Linear Relationships in a Partially Assigned S-box: N (a,b)

In Matsui’s work, the quantity N¥(a,b) is specified for an S-box that has all its
entries filled. Given a partial n x m S-box ®" and variable-set X’ C X, let us
define another quantity N2, (a,b) as follows:

NE(a,b) = #{i : Lo(i))=Ly(x;); 2 € X';0 € Zyn; b, 5 € Zgm

4.2.8  Properties of Ny (a,b)

Besides Matsui’s properties for N/ (a,b) 34|, the following properties also follow
from the definition of N (a,b).

Property 4.1 For any a,b,X’,®, 0 < N&,(a,b) < |X'|.

This property follows at once from the fact that N¥ (a,b) is a count, which
ranges between the minimum value of 0 and the maximum value of | X’|.

Property 4.2 For any a,b,u,X’,®', N%U{u}(a, b) — N¥(a,b) € {0,1}.

This property follows at once since, adding an S-box entry due to the assign-
ment to a variable u ¢ X’ results in the counts of equalities of linear combinations
of S-box inputs and outputs either increasing by 0 or 1.

Let us examine, through an example, the manner in which N (a, b) progresses
as each variable of an S-box is assigned a value. We will also be able to understand
the properties of N¥(a,b) just listed. We assume that the S-box entries are
assigned in the manner in Example 4.1.
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b101234567891011121314 15
a

0(1010010101 0 1 1 0 1 O
111010010101 0 1 1 0 1 O
211010010101 01 1 0 1 O
311010010101 0 1 1 0 1 O
411010010101 01 1 0 1 O
5911010010101 0 1 1 0 1 O
60/1010010101 0 1 1 0 1 O
611010010101 0 1 1 0 1 O
6211010010101 0 1 1 0 1 O
63/1010010101 0 1 1 0 1 O

Table 4.2: Tabulating the counts N2 (a,b) for a partially assigned S-box @' with
only the first entry xq = 13 is populated.

Example 4.6 Consider again, the DES 6 x4 S-box Sg of Figure 1.1. Assign only
the variable xo = 13 with the first entry in the S-box, with all remaining variables
unassigned. For this partially assigned S-bozx, let us organize a table exactly in the
manner presented in Example 4.5, resulting in Table 4.2.

As one can observe, assigning a value to a single variable results in a table for
N¢(a,b) that contains entries having either 0 or 1. That is because for a single
assignment, either a linear combination of subsets of input bits versus output bits
results in either an equality (entry 1) or an inequality (entry 0). With one more
variable assigned (that is, two variables assigned), the resulting table is obtained
by adding the (0-1) tables of the individual entries. Another way of stating this
is that the entries in the table due to the previous assignment is increased by at
most 1 to form the cumulative table. This is what Property 4.2 states.

The new cumulative table formed will now have entries that range between
0 and 2. In general, when a partially assigned S-box contains |X'| entries, its
N (a,b) entry ranges from 0 up to |X’|. This is what Property 4.1 states.

Example 4.7 The values for N, (a,b) of the partially assigned S-box ® of Fig-
ure 4.1, with assignments made to variables X' = {xg, x1,..., T}, is displayed in
Table 4.3.

Observe that the entries range between 0 and 21. In fact, the minimum entry
1s & while the maximum entry is 21. Also observe that an entry may be even or
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0123456 78 9101112131415

21 911111111 9 91010101010 61010
1111 9 913 9111110141010 10 10 10 10
1111 9 91111 913 8 & 81210101810
1111 9131111 91710101010 8 8 812
1210 8 6101210 8 91111 913111117

=W N = O o

59110101212101416 8 5 9 9 911111111
60 9 7 91111 911 914121210141212 6
61111 911 91311 51510 8 81014121210
62111 5111311 911131210 10121012 810
63(11 91113 7 9 7 9 61612141210 10 12

Table 4.3: Tabulating the counts N&(a,b) for the partially assigned S-box ®' of
Figure 4.1.

odd. In contrast, for an S-box having all entries, the Ny (a,b) entries are always
even.

4.2.4 A Measure of Nonlinearity of an S-box

For selectors a and b defined as above, let p(a,b) denote the fraction of cases when
L,(i) = Ly(x;), computed as:
)
p(a,b) = w (4.4)

If p(a, b) is equal to 1, this indicates that the linear combination of the output
bits selected by b equals a linear combination of the input bits selected by a, i.e.,
Vi, Lo (1) = Ly(x;).

If p(a, b) is equal to zero, then the linear combination of the output bits selected
by b is never equal to the linear combination of input bits selected by a. DES
criterion S-2 (and the stronger criterion S-2) stipulates that p(a,b) should be
near % for all a, b.

We are interested in how close p(a,b) is to 1. Let p(a,b) denote the absolute
value of the difference between these quantities. Then,

pla.h) = lp(a.b) ~ 3 (4.5)
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Multiplying equation 4.5 by 2", we have the following:

1
2" X pla,b) = 2" X |p(a,) = 5| = |Nx(a,0) — 2|

by substituting for Nx(a,b) from equation 4.4. DES criterion S-2 (and S-27)
alternatively stipulates that | Ny (a,b) — 2"~1| for all selector-pairs (a, b) should be
as close to zero as possible.

4.2.5 The Score of an S-box

The ideal case where |N$(a,b) — 2" is exactly equal to zero for all selector-pairs
(a,b), has so far not been attained in the literature for common cryptosystems.
The most effective linear approximation of a DES S-box is obtained if, for some
a and b, |[Ng(a,b) — 2" is maximal. To reduce the weakest point of the S-box,
we use the so called effectiveness of linearization [46] of an S-box ® as the score,
ox(®), given by the maximum value of |[Nx(a,b) — 2"~ over all (a, b):

ox(®) = maz{|N%(a,b) — 2" : 1 < a < |X|;1 < b < |D|} (4.6)

It can be easily observed that an S-box with a smaller score is considered better
(i.e. less linear and more nonlinear).

Matsui [34] considered the general case when b is not a power of 2, correspond-
ing to the criterion S-2° that is stricter than S-2. Coppersmith [16] labelled S-2°
as an additional property not originally used in the design of the S-boxes for DES,
and we will adhere to the same premise accordingly, in our work. Therefore, in
Equation 4.6, we will always assume that b is a power of 2.

4.2.6  The Linear Approximation Table (LAT)

The linear approximation table [34] for an n xm S-box is a 2" x 2" matrix [34]. Its
rows are headed by selector a (0 < a < 2") and columns, by selector b (0 < b < 2™).
Each entry is equal to the value of Nx(a,b) —2"~! (including its sign). The entry,
in row a and column b represent a measure of the correlation between the input
bits selected by a and the output bits selected by b. Properties of the table, and
of N%(a,b), are discussed in |34, 46, 26].

As Equation 4.6 suggests, the score ox(®) of the n xm S-box ® is obtained by
taking the maximum value of the absolute values of all entries falling under those
columns whose heading is a power of two.
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b 01 2345 67 891011121314 15
a

01320 0000 00 O0O0O0OO0OO0OO0OO0O
11000000 OO0OOO0OOOOOOO
2102 0-2-20 20-20-24-4-206
31020224 -64-2-460-42 0 2
410-2-2002 -2-4204-26 0 014
29, 06-2-420 42-86-206 00 2
60 02 0246 42 42 8-220 2 4-2
61| 0-212-6 8 2 -4 6 4-2-4-2 4 2-4 2
62 0-8 4 0-22 -26106 2 2 0 0-4 0
63| 0-8 04 2-2-10-2 -6 6-2 6-4 4-4 0

Table 4.4: The Linear Approximation Table for DES S-box Sg of Figure 1.1

Example 4.8 The first five and last five rows of the Linear Approximation Table
for the DES 6 x4 S-box Sy, withn = 6 and m = 4, are shown in in Table 4.4. Fach
entry in this table is equal to Nx(a,b) —2"~' = Nx(a,b) — 2° = Nx(a,b) — 32. In
other words, the table constructed in this example follows straightforwardly from
that of Example 4.5 (Table 4.1) by subtracting 32 from each entry of the latter
table.

The score of DES S-box S-8 is obtained by taking the maximum values of the
absolute values of the entries under columns 1, 2, 4 and 8 that are powers of two,
which s equal to 12.

4.2.7 The Score of a Partially Assigned S-box
The score ox/, X' C X, of a partially assigned nxm S-box @’ is defined as follows:

ox () = maz{|Ng (a,b) — 2" :1<a<2%1<b< 2™}

4.3 Modeling Criterion S-2: A Non-incremental, Complete
Heuristic

The criteria S-2 leads to a soft constraint that minimizes ox(®). When imple-
mented as a hard constraint for a threshold 7, it has the form:
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ox(®) <7 (4.7)

The functions the procedure Solver of Algorithm 1 are listed in Table 4.5.
Functions InitialPartialVarsAndCounts() and CheckPartialSBox () are used
in incremental heuristics and therefore, there is nothing to be done for this heuris-
tic. Function ProcessNary() only checks if all variables are instantiated, re-
turning true if so, and false otherwise. This function, along with functions
ReverseUpdateCountDistSet () and ReverseUpdateCount (), is designed to check
for criterion S-7, discussed in detail in Chapter 5.

Function MakeAndCheckSBox () calls function MakeSBox() that prepares an
S-box ® from the assignment to all variables in X. Next, MakeAndCheckSBox ()
verifies Equation refEq:s2 and if this equation is satisfied, verifies if the constraints
for criterion S-7 are also satisfied (refer Chapter 5). If both are satisfied, this func-
tion returns the S-box ® that satisfies all modeled constraints, which is printed in
Solver (Algorithm 1, Line 9).

Function Description
InitPartialVarsAndCounts() | (No operation)
CheckPartialSBox() return true
ProcessNary() return (k = |X]|).
MakeAndCheckSBox() $ «— MakeSBox(X)

Compute ox(®P) using Equation 4.6
if (ox(P) < 7)A (S-T7 is satisfied)
(refer Chapter 5) return @

ProcessOtherDomains|() return true
ReverseUpdateCountDistSet() | (No operation)
ReverseUpdateCount() (No operation)

Table 4.5: Functions for the Nonincremental, Complete Heuristic for S-2, in
Solver

The constraint of Equation 4.7 is not implemented using an extensional repre-
sentation. Rather, a specialized function is added to the solver that works with a
2nH™M gize storage, replicated at each level in the search tree. This results in a total
space requirement of 22"*™ bytes. For DES boxes the constraint requires 64kB.
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4.4 Modeling Criterion S-2: An Incremental, Incomplete
Check

Equation 4.7 suggests a non-incremental approach to S-2 checking. Experiments
discussed in Chapter 7 reveal a very inefficient S-box search using this heuristic
as expected.

We formulate an incremental check by which after each variable is assigned,
determine oxs and repeat so long as Equation 4.7 is not violated. As soon as this
equation is violated, we backtrack. This approach has significantly speeded up the
search for S-boxes. Moreover, it led to 6 x 4 S-boxes that yielded values of ox
superior to those for the published eight DES S-boxes. Table 4.6 implements the
functions for this heuristic in pseudocode form.

Function Description
InitPartialVarsAndCounts() Let X' «— {2 :2 € X Az is assigned.}
' < MakePartialSBox(X')
CheckPartialSBox() Compute o’x (9’) using Equation 4.7
return «— (ox/(9) < 1)
ProcessNary() return (k = | X|)
MakeAndCheckSBox() $ «— MakeSBox(X)
ProcessOtherDomains|() (No operation)
ReverseUpdateCountDistSet() (No operation)
ReverseUpdateCount|() (No operation)

Table 4.6: Functions for the Incremental, Incomplete Heuristic for S-2, in Solver

The function InitPartialVarsAndCounts () keeps track of the variables that
are assigned, in X’. The function CheckPartialSBox() actually performs the
verification of Equation 4.7. However, the check for violation is done in Solver
(Algorithm 1), in the if-statement after Step 6. Function ProcessNary () simply
checks if all variables have been instantiated. It is actually designed to perform
checks for the global n-ary constraint for S-7, and is discussed in Chapter 5.
So are functions ProcessOtherDomains (), ReverseUpdateCountDistSet () and
ReverseUpdateCount (). In the end, by the time Line 9 is encountered, all vari-
ables are assigned and criterion S-2 is satisfied (not necessarily S-7), and the
S-box is output.

Despite its efficacy, this heuristic is incomplete. The reason is that although
ox/(®') exceeded the threshold 7 on some partial assignment to variables in X', it
is not necessary that upon the next assignment, ox:(®") will monotonically increase
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to always exceed 7. (Property 4.2 suggests that N/ (a,b) increases monotonically
— but not strictly — by at most 1.) In fact, ox/(®’) is often found to decrease during
subsequent assignments, which this heuristic does not catch. This partial S-box
should not always be abandoned.

We further formulate a complete heuristic by providing a characterization for
a partial S-box @’ to extend to a complete S-box ®. The trick to obtaining the
condition is to not study the progress of ox:(®'), but to analyze so for N¥(a, b).

4.5 Modeling Criterion S-2: An Incremental, Complete
Check using Soft Constraint Decomposition

We will now project the soft constraint of Eq. 4.7 onto hard constraints involving ¢
variables, ¢ being the number of variables instantiated to form a partially assigned
S-box @ and ¢ < |X|. During projection, the goal is for the final score of S-box
® to not exceed the maximum threshold 7:

RS

max IN%(a,b) — 7| <rT (4.8)

4.5.1 Construction of a Partially assigned S-box

Figure 4.3 depicts the distribution of the counts N (a,b) on one selector-pair
(a,b), for a partially instantiated S-box ®’. The horizontal axis is the number of
variables instantiated, ¢. After | X’| variables are instantiated at point A along
the solid line, the dashed line at a 45-degree angle with the horizontal represents
the pathological case where the score oy, = N¥,(a,b) increases by one for every
subsequent extension of ' up to point D. The solid zig-zag lines connecting points
A and C represents the corresponding, “actual” distribution of N (a,b) for the
complete S-box ® to attain the score equal to ox: = N¥(a,b) at point C. From
this construction, we have OF = Ng/(a,b), OG = Ng(a,b), FH = BD = AB =
|X| —|X'|, and OH = OF + FH = N¥(a,b) + | X| — | X'|.

4.5.2  Lower and Upper bounds for max,, Nv(a,b)

Let us observe two properties of partially assigned S-boxes.

Property 4.3 A partially instantiated S-box @ with wvalues for variables in
X', X" C X, cannot be extended to a solution with score better than a threshold T
if the following inequality is not satisfied:

1X]

_ (4.9)

IIIEIL)XN@;(CL, b) > | X'| —7—
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Values of N;I;,/ (a,b)

RO

’

N§/(a7 b)—
+IX] = X

N%(a,b)7

’

N;/(a’7 b)A

0(0,0)
Number of variables assigned, ¢

Figure 4.3: Evaluating partially instantiated S-boxes.

Proof By construction, (|X|— |X’|) remaining variables are to be instantiated
in order to extend ®" to ®. To guarantee extensibility, the following inequality
should hold:

oG
N%(a,0)

OH

<
< Nyi(a,0) +[X]| - |X'

This is true for all selectors a and b, and in particular, holds for the maximum
value of Ng(a,b) (resp. N/ (a,b)) over all a, b:

max N2(a,b) < |X|—|X'| + max N (a,b) (4.10)

From the goal specified by Equation 4.8,
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X

%—H}L%XN;(a,b) < 7
ie X1 < N2(a. b 4.11
e T_Ig%Xx(a,) (4.11)

Combining Eq. 4.10 and Eq. 4.11,

X ’
Pl < s N (a8) < [X] — X 4 g N (o)

By transitivity and regrouping,

X
Pl i+ 1
X

2

max N&(a,b) >
a,

ie. m%XNq’i(a,b) > X' —-7—
a,

Q.E.D.

Property 4.4 A partially instantiated S-box @ with wvalues for variables in
X', X" C X, cannot be extended to a solution with score better than a threshold T
if the following inequality is not satisfied:

) X
max Ny (a,b) < % +7 (4.12)
Proof Given a partial S-box assignment &’ with variables in X', by the end of the

construction of any solution ® obtained by extending @', the following inequality
holds:

OF
ie. N¥(a,b)

oG

<
< N%(a,b) (4.13)

This is true for all selectors a and b, and in particular, holds for the maximum
value of N&(a,b) (resp. N2 (a,b)) over all a, b:

max N (a,b) < max Ny (a,b) (4.14)

From the goal specified by Eq. 4.8,
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X
m%XNj{;(a,b)—% < 7
ie. max Ne(a,b) < ﬁ 4.1
e mpx Vo) < Sl (4.1

Combining Eq. 4.14 and 4.15,
RY

m%XN<I>:(a, b) < m%XNj{;(a, b) < > +7

The result follows by transitivity.
Q.E.D.
Eq. 4.9 and Eq. 4.12 facilitate decomposition of the soft constraint of Eq. 4.7
into hard constraints. Once a partial S-box @’ is constructed with ¢ = |X'| < %
variables assigned, Hg’; checks to see if @’ satisfies the above two inequalities. If
not, @’ is rejected otherwise ®’ is extended by instantiating the next variable and
the checks are repeated. The process goes on until an S-box ® with all variables
assigned, is obtained by which time S-2 is now already satisfied.

4.5.8  An Ezample

An example is provided to understand the working of this heuristic.

Example 4.9 We find in Chapter 7 that the maximum score for all of the DES
S-bozxes of Figure 1.1 is equal to 18. Consider that our threshold T for a 6 x 4
S-box ® is 16. Since there are 2° = 64 variables X = {zo,x1,..., 263}, the partial
check should begin after % + 7 variables are assigned, that is, after (32+16) = 48
variables are assigned. Let us evamine the progress of max,, Ny (a,b) and the
score as we incrementally assign to the remaining 16 variables, starting from 4.

For each variable assigned, Table 4.9 populates the forms assumed by Eq. 4.9
and Eq. 4.12.

Thus, after xgz is assigned to yield S-box @ with all entries filled in,
max,, N%(a,b) will range between 16 and 48. As a result, its score will always
range between 0 and 16.

4.5.4  The Solver that Implements this Heuristic

The incremental, complete checking heuristic is implemented in the solver Solver
of Algorithm 1, for which the functions of the latter algorithm are described in
Table 4.8.
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Variable | Number of variables Inequalities 4.9

assigned | X and 4.12
T8 49 1 < max,, NX’,( ,b) < 48
T4 50 2 < max,, N¥(a,b) < 48
50 51 3 <max,, Ny ,(a, b) < 48
T51 52 4 < maxg NX,(a, b) < 48
Z6o 61 13< maxabNX,(a, b) < 48
Te1 62 14 < maXg p N (CL, b) S 48
T62 63 15 < max,, N (a,b) < 48
Z63 64 16 < maxabNX,(a, b) < 48

Table 4.7: Progress made by the incremental checks after assignments to the first
48 variables, for a 6 x 4 S-box with a threshold score of 16 sought

The implementation of this heuristic is very similar to that of the in-
complete, incremental check of Table 4.6, with the difference in function
CheckPartialSBox (). In this heuristic, this function is conditionally called
only after the first (% + 7) variables are assigned. In that case, the func-
tion CheckPartialSBox() returns the results of the verification of Eq. 4.9 and
Eq. 4.12. However, the check for violation is done in Solver (subsection 2.7),
in the if-statement after Step 6. Just as in the case for the incomplete heuris-
tic, function ProcessNary() simply checks if all variables have been instanti-
ated. It is actually designed to perform checks for the global n-ary constraint
for S-7, discussed in Chapter 5. So are functions ProcessOtherDomains(),
ReverseUpdateCountDistSet () and ReverseUpdateCount (). In the end, by the
time Line 9 is encountered, all variables are assigned and criterion S-2 is satisfied
(not necessarily S-7), and the S-box is output.

This heuristic is complete and finds all solutions, now that the progress of
max, , N (a,b) is kept track of, instead of the score o’y (®') of the partially as-
signed S-box @’.

4.6 Summary of Heuristics and Looking Ahead

We have discussed the following heuristics for DES criterion S-2:

1. A non-incremental, complete heuristic, namely, the generate-and-test ap-
proach to satisfying criterion S-2 by verifying Eq. 4.7.
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Function

Description

InitPartialVarsAndCounts|()

Let X'« {z:x € X Az is assigned.}

if (k> %‘ + 7) then
s20k « false
d’ « MakePartialSBox(X')

CheckPartialSBox() Determine M « max,, Ny (a,b)
s20k « (| X'|—7—Bl < < B4y
end if
return s2ok
ProcessNary() return (k = | X|)
MakeAndCheckSBox() $ «— MakeSBox(X)

ProcessOtherDomains|()

return true

ReverseUpdateCountDistSet|()

(No operation)

ReverseUpdateCount|()

(No operation)

Table 4.8: Functions for the Incremental, Complete Heuristic for S-2, in Solver

2. An incremental, incomplete heuristic to partial S-box checking, namely, one
in which S-2 is checked by verifying Eq. 4.7 for every partial assignment.
This heuristic abandons partial solutions that violate Eq. 4.7 that may have
actually become solutions upon extension.

3. An incremental, complete heuristic to partial S-box checking, namely, one
in which S-2 is checked by verifying Eq. 4.9 and Eq. 4.12.

Experiments will reveal significant speedup of the incremental heuristic over
the non-incremental approach (both complete). The incremental but incomplete
approach will be seen to generate 6 x 4 S-boxes superior to the existing, published
DES S-boxes. This is not observed in the case of either of the two complete heuris-
tics developed in this Chapter. All of these results are presented in Chapter 7.

We next discuss development of heuristics for criterion S-7 which we will call
as the COUNT constraint. The functions implemented in this Chapter will be
repeated in Chapter 5, but now the functions designed for S-7 will also be in place,
rendering full implementations of heuristics to generate solutions that satisfy all

criteria.



69

Chapter 5

Decomposition of Global Constraints, and
Heuristics

S-7: “For any nonzero 6-bit difference between inputs AL j, no more than eight
of the 32 pairs of inputs exhibiting AL j may result in the same output difference
AO; ;.7 |16]

We now formulate criterion S-7 as a constraint. This criterion deals with counts
of differences (Hamming distances) between pairs of variables. As such, we will
often refer to the resulting constraint as the COUNT constraint.

The COUNT constraint is a global n-ary constraint. It is m-ary because it
involves participation of more than two variables. It is global because it can
be decomposed into smaller-arity constraints (not necessarily binary). However,
this decomposition is not straightforward because the variables themselves are not
being split. A function on the variables, namely counts of the differences between
pairs of variables is being considered for splitting.

In spite of this infeasibility of straightforward splitting, we demonstrate an
elegant way by which projection is employed to achieve the domain-reductions
resulting in S-box speedup.

This chapter outlines three heuristics for S-7: A non-incremental heuristic
(generate-and-test), a simple incremental heuristic (taking advantage of the incre-
mental heuristic for S-2), and the domain-reduction heuristic for S-7 that employs
projections.

An optimization, introduced in Solver (Section 2.7), is discussed in Sec-
tion 5.5.1. The function SelectNextVariable in Solver selects the next variable
depending upon the type of variable-ordering heuristic employed. This function is
amplified in Section 5.5.2. Two heuristics are considered there, namely, a Straight
Line variable-ordering heuristic (the default ordering of arranging from left to
right in an S-box such as the one in Figure 3.1), and a Zig-Zag variable-ordering
heuristic.
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Ss
3 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7
1 15 13 8 10 3 7 4 12 5 6 11 O 14 9 2
7T 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8
2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11

Figure 5.1: DES S-box Sg used in Example 5.1

5.1 Modeling criterion S-7

We formulate S-7 for an n xm S-box. Only input pairs (i,2" —1—14), 0 < i < 271
to the S-box differ by all n bits. Consider the set O; = {(x;, 290 _1-;) : 0 < i <
271} of pairs of outputs corresponding to these input-pairs, with |O] = 2771,
Criterion S-7 applies to m-bit differences d = x; B xon_1_;, 0 < d < 2.

Let f : Zom — Zgn—1 denote a count function, with f(d) signifying the frequency
of occurrence of an m-bit number d = x; @ xon_1_; where (x;,z9n_1;) € Oq,
0 < i< 2" ! Note that

2?261_1f(55i ® zon_q1_;) = 2",

According to S-7, no more than eight elements in O; should evaluate to the
same m-bit difference d. Criterion S-7 is formulated for an n x m S-box as an
n-ary global Boolean constraint in the following way:

27L71_1

N flai@am i) <8 (5.1)
i=0

Example 5.1 Consider the S-box Ss of DES of Figure 1.1, repeated in Figure 5.1
for convenience.

Inputs 0 and 63 differ by all 6 bits, so do inputs 1 and 62, 2 and 61, and in
general, i and (63 — i), 0 < i < 32. We are interested in corresponding outputs
of x; and xes_;. There are 32 pairs of outputs, (x;,Tes—;). Their exclusive-OR
is equal to x; @ xg3—; which is a 4-bit value, ranging from 0 up to 15. Let d =
d(x;, xe3—;) = T; ® we3—; represent these 4-bit values.

Listed in Table 5.1 are the pairs (x;,x63—;) and the distance between the
members of each pair. For example, (xg,xe3) = (13,11) = (11015,10115), and
d(zo, xe3) = To D x63 = 11015 @ 10115 = 01105 = 6, shown in the second and third
columns for the first row of the table. There are 32 such rows for the 32 pairs.

The number of times the distances d occurs is now summarized in Table 5.2.
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(x;,z63—;) | Corresponding | Distances/Differences
0<i<32| S-box values | d(z;,x¢3—;) =d = ;B xe3-;
(.CL’(), 1’63) (13, ]_1) 6
(ZL’l, 1'62) (1,8) 9
(ZL’Q, 1'61) (2,6) 4
(1'3, ZL’@()) (15,5) 10
(.]74, 1’59) (8,5) 13
(.]75, 1’58) (13,3) 14
(ZL’@, 1'57) (4,3) 7
(1'7, 1'56) (8,15) 7
(ZL’g, 1'55) (6,0) 6
(.C(Zg, 1’54) (10,13) 7
(1’10, 1’53) (15,9) 6
(1'11, 1'52) (3,10) 9
(1'12, 1'51) (]_]_,]_2) 7
(1'13, 1'50) (7,6) 1
(1’14, 1’49) (]_,]_5) 14
(1’15, :1:48) (4,0) 4
(1’16, 1’47) (10,13) 7
(1'17, 1'46) (12,2) 14
(1'18, 1'45) (9,8) 1
(1’19, 1’44) (5,14) 11
(1’20, 1’43) (3,10) 9
(1’21, 1’42) (6,12) 10
(1'22, 1'41) (14,4) 10
(1'23, 1'40) (11,9) 2
(1'24, 1'39) (5,7) 2
(1’25, :1:38) (0,1) 1
(1’26, 1’37) (0,14) 14
(1'27, 1'36) (14,4) 10
(3728, 1'35) (12,1) 13
(1'29, 1'34) (9,11) 2
(1’30, 1’33) (7,2) )
(1’31, 1’32) (2,7) )

Table 5.1: Pairs of output bits for DES S-box Sg, whose corresponding input bits
differ by all 6 bits, along with differences (distances) between these output-pairs.
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Distances, d |0|1]2[3[4[5]6]7[8]9[10[11]12[13[14]15
Frequency, f(d)|0]3]3]0[2[2[3[5/0(3] 4] 1| 0] 2| 4] 0

Table 5.2: Frequency of occurrence of d of Table 5.1

For example, the value d =7 occurs five times because in each of the five pairs
(6, 257), (T7,56), (To,T54), (T12,T51) and x16,x47), the first value is at a distance
7 from the second.

None of the frequencies in Table 5.2 exceeds 8 and therefore DES S-box Sg
satisfies criterion S-7.

If any frequency in the table exceeds 8 for an S-box, that S-box violates criterion
S-7 and should be rejected.

Remark 5.1 After creating the frequency table for the entire S-box, the following

equation holds:
2" —1 |X‘
> ="
d=0

Function Description
InitPartialVarsAndCounts() if (k=0) then cy,c1,...,com_1 0
CheckPartialSBox() return true

ProcessNary() return (k = | X]).
MakeAndCheckSBox() $ «— MakeSBox(X)

Compute ox(®P) using Equation 4.6

Let d «— x; & Tom_1-;,0 <1< gm—1
Compute ¢g = f(d) as in Table 5.2

if (ox(®) <7) A ((Vd)(cqg < 8)) return

ProcessOtherDomains|() return true
ReverseUpdateCountDistSet() | (No operation)
ReverseUpdateCount() (No operation)

Table 5.3: Functions for Nonincremental, Complete Heuristics for S-2 and S-7, in
Solver (Section 2.7)
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5.2 A Non-incremental Heuristic for the COUNT constraint

The first heuristic is a straightforward implementation of Eq. 5.1, as Table 5.3
suggests. This Table is an extension of Table 4.5, with the check for Eq. 5.1
amplified. We will denote this implementation by Hg".

Alternatively, we could extend the implementation of Table 4.5 to include this
heuristic for S-7, which we will call Hg’T. In either case, one can expect this
implementation of the COUNT constraint to be inefficient (systematic generate-
and-test), and an improvement upon S-box search speed is necessary.

5.3 An Incremental Heuristic that checks Partially-
Assigned S-boxes for the COUNT Constraint

For a completely-filled S-box ® having ¢ variables, instead of incrementing counts
and checking for S-7 after instantiating all ¢ variables the way the non-incremental
heuristic does, a partial S-box @ that eventually extends to ® is considered. 2™
counts {cg, ¢1, . .., com_1 } are initialized to zero. Each of these counts is subscripted
by the difference d = x; ® xon_1_; between the outputs z; and xon_1_; of & whose
inputs differ by all m bits. The counts are incremented by 1 after at least %‘ as-
signments are made. If any count ¢y exceeds 8, S-7 is violated and the solver rejects
the partial S-box ®’. Table 5.5 implements this heuristic, extending Table 4.8. We

will denote this implementation by Hg;'.

Example 5.2 Consider the partially assigned S-box of Figure 5.2 having variables
o up to xyo assigned. Since variables up to x3; are assigned, the frequencies cq can
be determined starting from the assignment to x3o. These frequencies are recorded
in Table 5.4.

0 3 56 9 10 12 15 7 4 2 1 14 13 11 8
3 06 5 10 9 15 12 4 7 1 2 13 14 8 11
3 0 6 5 10
0 3 5 8
Figure 5.2: A Partial S-box obtained by assigning values to variables xg, z1, ..., Z4

Note that xoo = 1 from Figure 5.2. As a result of earlier domain-reductions
due to AC2001 following earlier assignments, the (reduced) domain of x4 is
{6,9,12,15}. Consider the assignment x4; = 6. Let d = 141 D Te3_41 = Tg1 DTog =
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Distances, d [0]1|2|3[4|5|6|7|8]9]10|11]12]13|14]|15
Frequency, c;|0{0(0(0|0|01]{0(8|0| O] O] O] O O O

Table 5.4: Frequency of occurrence of d for the Partially Assigned S-box of Fig-
ure 5.2

61 =7 Sincecg=cy =0 #8, increment c; by 1 so that the entry for cy,
which is 0 in Table 5.4, now becomes 1 and the next variable x4 is considered for
assignment. The process repeats.

Consider now the assignment x4 = 9. Let d = x4 D Tg3_41 = Ta1 D Too =
9@ 1 = 8. Note that cqy = cg = 8 from Table 5.4, and therefore the assignment
x41 = 9 increases cg by 1 to 9, violating the constraint for S-7. This assignment
therefore results in rejection of the resulting partially assigned S-box and x4 =9
has to be abandoned.

Remark 5.2 If %‘ + k variables are assigned values, then the following is true:

2" —1

Z Cq = k
d=0

If k= %‘, then this equation reduces to the one mentioned in Remark 5.1.

Remark 5.3 An improvement to Hg’f{ can be made by reducing the number of
checks for S-7. Checking if cq; > 8 immediately after assigning values to the first
% variables s of no use since all cq’s except one are set to zero and the one cq will
be equal to 1. No cq will ever attain 8 at this point. The starting point to verify if
cq > 8 18, actually, after % + 8 wvariables are assigned values since, at this point
it 1s possible that exactly one cq attained § for some d while all others are zeros.

(k =8 in Remark 5.2.)

Hgf can be further improved by a novel approach of integrating the n-ary
constraint into the solver, projecting onto domains of future variables reducing
these during the process, prior to applying AC2001. The approach is discussed
next.

5.4 An Incremental Heuristic that employs Projections

Just as in the earlier incremental heuristic for S-7, let c¢; denote the count of
distances d where d is the distance between x; and zon_; 1 representing S-box
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Function Description
Let X' — {z:x € X Az is assigned.}
InitPartialVarsAndCounts|() if (k =0) then Let: cy,c1,...,com_1
0

Set s20k < true, s7ok « true
if (k> 14 7) then {Check S-2 par-
tially}
' « MakePartialSBox(X')
if &’ violates either Property 4.3 or
Property 4.4 then s2ok < false

: end if
CheckPartialSBox() if (k > 3)A s20k then {Check S-7 par-
tially}
Let d «— T D T|X|-k-1
if (c;+1 > 8) then s7ok « false
if s7ok then c; < c;+1
end if
return s2ok A s7ok
ProcessNary() if (k = |X]) then return true else re-
turn false
MakeAndCheckSBox() ® — MakeSBox(X)
ProcessOtherDomains() return true
ReverseUpdateCountDistSet() (No operation)
ReverseUpdateCount() if (k > %) then c;«—cy—1

Table 5.5: Functions for H¢" in Solver (Section 2.7)

outputs for those pairs of inputs that differ by all n bits, with 0 < d < 2™. All
the ¢;’s, namely, cg, ¢y, ..., com_1, are initialized to zero. So long as | X'| < %‘, Cq

is not updated, similar to what occurs in function CheckPartialSBox of heuristic
¢7T
He!'.

For assignments to the next eight variables z; when % <1< % +8, increment

the count cq = ¢|x|—j—;. During these assignments, 1 < ¢; < 8 and no checking for

cq > 8 is needed at this point.
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The checking for S-7 begins when c¢; becomes equal to 8 starting from the
next variable assignment. Denote this next assignment by z, = v, with |£2\ +8<
k < |X| and v € Dj, D} being the (reduced) domain of zy. A distance-set
A = {d = xx|—k-1 ® 2 : ¢qg = 8} is formed from this point onwards, with
0 <A <2m.

Whenever %‘+8 < k < |X]|, remove values f € {x|x|—r—1De : e € A} from the
domains in D'\ D', \{Dy},} of all future variables. If a domain becomes empty due
to this removal, abandon the assignment x, = v since a dead-end is encountered.
Otherwise, add each of these removed values f to the deletion set D.S.

This heuristic also needs to restore values of counts ¢; and also, undoes the
current addition to the distance-set A at the current level of recursion before
termination. Table 5.6 implements this heuristic, and is an extension of Table 4.8.
We will denote the implementation of Table 5.6 by H47.

Remark 5.4 H%/ ensures that 0 < ¢4 < 9.

For this reason, no explicit checking of S-7 (incrementally) is required as is the
case with H .

Property 5.1 H%Z, gives the same set of S-bozes as Hg@’;.

Proof

Let d = v @ w and ¢4 = 8. Consider the partial S-box having variable x; that
is to be assigned the value v from its domain D (i.e. v € D), and having a variable
T x|-k—1 = w already assigned, where %‘ +8 < k < |X]|. It is enough to prove
that both heuristics Hgf and H%7 will not assign z = v.

Suppose Hgi’f tentatively assigns z; = v. Then we have

T DT x|-k—1 =VDW=d

and H¢" increments ¢g by 1, so that

cqg > 8

violating S-7. Hg’: abandons the assignment x;, = v which will not be consid-
ered.

Since ¢g = 8, H%Z- has included d in the distance-set A so that d € A. To
project xx|—x—1 on D that is the domain of future variable xy, Hﬁ& now traverses
A to compute

e=d@r)x|-p-1=VOW) DW=



Function

Description

InitPartialVarsAndCounts|()

Let X' — {z:2 € X Az is assigned.}
Let A «— ¢
if (k=0) then ¢, c,...,com_1 0

CheckPartialSBox()

Set s20k « true
if (k> 214 1) then {Check S-2 par-
tially}
¢’ < MakePartialSBox(X')
if @’ violates either Property 4.3 or
Property 4.4 then s2ok < false
end if
return s2ok

ProcessNary()

if (k = |X]) then return true else re-
turn false

MakeAndCheckSBox()

® — MakeSBox(X)

ProcessOtherDomains|()

if k> 1 then
Set d « x; ® Tx|—j—1, Cq ¢+ 1
if (k> 214 8)A(cy=8) then
A — AU{d}
for all e € A do
Set f «— xx—j—1De
for all z € X \ (X' U{z;}) do
if f € D! then

D, — D\ {f}
if (D, = ¢) return false
DS — DSUA{f}
end if
end for
end for
end if
end if

return true

7
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Function Description
if (k> 1) then
if (k> 214+ 8)A(cs=8) then
ReverseUpdateCountDistSet() Set A — A\ {d}
end if
Set cg+—cq—1
end if
ReverseUpdateCount() (No operation)

Table 5.6: Functions for Heuristic H5Z, in Solver (Section 2.7)

Since v € D, H a7 removes v from D, avoiding the assignment x; = v.
Thus heuristics Hg’; and H%7%. do not assign x; = v and this completes the
proof.
Q.E.D.

Example 5.3 Consider the partially assigned S-box of Figure 5.3 having variables
To up to xy7 assigned. Since variables up to x3; are assigned, the frequencies cq can

be determined starting from the assignment to x3o. These frequencies are recorded
in Table 5.7.

03 56 9 10 12 15 7 4 2 1 14 13 11 8
3 06 5 10 9 15 12 4 7 1 2 13 14 8 11
3 0 6 5 15 12 10 9
0 3 56 12 15 9 10
Figure 5.3: A Partial S-box obtained by assigning values to variables xg, 1, ..., Z47

From the frequency table of Table 5.7, two distances d have counts equal to
8, namely, when d = 8,13. These two values of d form the distance-set A =
{8,13}. As a result of earlier domain-reductions due to AC2001 following earlier
assignments, the (reduced) domains for the future variables T4g, Tag, ..., Tez are
recorded in the second column of Table 5.8.

Now traverse each element e € A and remove values f = e @ xg3_; from the
domain of x;, 48 < i < 64. The computed values for f are in the third column
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Distances, d [0]1]2]3[4]5]6]7[8[9[10[1L[12]13]14[15
Frequency, c;|0(0(0]0]0[0[0[0[8[0] 0] 0] 0] 8] 0] ©

Table 5.7: Frequency of occurrence of d for the Partially Assigned S-box of Fig-
ure 5.3

of Table 5.8, while the reduced domains of the future variables are in the last
column of this table. For future variable x5 having (reduced) domain {1,2,4,8},
Te3_56 = T7 = b from Figure 5.3. e € {8,13} and f € {8® 5,13 ® 5} = {13,8}
as shown in the third column of Table 5.8 against variable x55. Removing these
values from the domain of xs¢ results in its reduced domain of {1,2,4}.

Future Domain before | Values to | Domain After
Variable | Value Removal | Remove | Value Removal
48 {8, 13,14} {4,1} {8, 13,14}

T 49 {11,13,14} {7,2} {11,13,14}
50 {11,13,14} {7,2} {11,13,14}
Ts1 {8,13,14} {4,1} {8,13,14}
T {8,11,13} {1,4} {8,11,13}
T53 {8,11, 14} {2,7} {8,11, 14}
Ty {8,11, 14} {2,7} {8,11, 14}
Ts5 {8,11,13} {1,4} {8,11,13}
Ts6 {1,2,4,8} {13, 8} {1,2,4}

Ty {1,2,7,11} {14,11} {1,2,7}

T8 {1,2,7,11} {14,11} {1,2,7}

T59 {1,2,4,8} {13, 8} {1,2,4}

Z60 {1,4,7,13} {8,13} {1,4,7}

Te1 {2,4,7,14} {11, 14} {2,4,7}

T2 {2,4,7,14} {11, 14} {2,4,7}

Te3 {1,4, 7, 13} {8,13} {1,4, 7}

Table 5.8: Domains of future variables with values being removed due to projec-
tions of past assignments
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5.5 Heuristics

We have discussed the following heuristics employed by Solver for the n-ary
constraints in our model, as governed by functions InitPartialVarsAndCounts,
PreProcess, CheckPartialSBox, ProcessNary, MakeAndCheckSBox,
ProcessOtherDomains, ReverseUpdateCountDistSet and ReverseUpdateCount
(Section 2.7).

Heuristic H{" Check the criteria S-2 and S-7 after a complete S-box is formed.

Heuristic H>" Decompose the n-ary soft constraint S-2 into hard constraints by
projection onto already-assigned variables X’ C X (Chapter 5). Check S-7
after an entire S-box is formed, rejecting if S-7 is violated.

Heuristic H7 Decompose the n-ary soft constraint S-2 into hard constraints by
projection onto already-assigned variables X’ C X (Chapter 5). Check S-7
at each assignment where applicable.

Heuristic Hﬁ& Decompose the n-ary soft constraint S-2 into hard constraints
by projection onto already-assigned variables X’ C X (Chapter 5). Project
the not-so-straightforwardly-decomposable n-ary constraint S-7 into binary
constraints.

We now introduce an optimization to Solver (Section 2.7) to reduce calls to
function EstablishAC, and subsequently discuss a variable-ordering heuristic as
governed by function 7.

5.5.1 Optimizations on the three Heuristics

In Solver (Section 2.7), the deletion set DS is always populated by adding to it all
values other than the one being assigned to the current variable, from its (reduced)
domain (Line 12). In case this domain is a singleton, DS is empty and no arc-
consistency check is required. Accordingly, the call to function EstablishFullAC
can be made conditional. The program segment after Line 16 in Solver takes
the form shown in Table 5.9. This optimization reduces the number of calls to
the function EstablishFullAC resulting in some speedup as the experiments will
reveal.

We refer to the three heuristics respectively, as HOZ”, H Og’: and HO%Z, with
the optimization introduced in Solver (). Chapter 7 illustrates the speedup of so-
lution generation resulting from this optimization and reduction of arc-consistency
checks resulting from this optimization.
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if ¢, then
if DS # ¢ then
D" «— EstablishAC(D’, DS)
else
D// «— D/
end if
if no domain in D” is empty then
Solver(X, D" Co, k +1,7)
end if
end if
ReverseUpdateCountDistSet()

Table 5.9: An optimization introduced in Solver (Section 2.7)

5.5.2  Variable Ordering Heuristics

In the three heuristics HE", Hg and H4Z,, and their optimized variants HO%”,
H Og’: and H Oﬁ’& respectively, variable-ordering heuristics are employed as speci-
fied in the function SelectNextVariable of Solver (Section 2.7). We will consider
two such heuristics.

Straight-Line Variable-Ordering Heuristic In a Straight-Line Variable-
Ordering Heuristic, the variables are assigned in the logical order while read-
ing S-box entries, that is, row-wise, for the S-box arrangement of Fig-
ure 3.1. Referring to this figure, the sequence of variable ordering is
Lo, T2y...,230,L1,23,...,T31,T32,L34,...,L62,L33,L35,.-.,LE3- For this heuristic,
the ordering function 7 assumes the following definition for an n x m S-box:

2k, if k < 2n2
2k — 2t 41, ifn 2 <k < 2nt
TR)=Y 2k —ont 2t <k <3x 20 (5:2)

2k—-2"+1 if 3 x 272 <k < 2"

Example 4.2 demonstrates a partially assigned S-box that follows the straight-
line variable ordering heuristic.

Zig-Zag Variable-Ordering Heuristic A second heuristic under consideration
is what we will refer to as the Zig-Zag Variable Ordering Heuristic. Here, variables
are assigned values in a zig-zag order, that is, xg, 1, 9, ..., xe3. If one visits the
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variables in the S-box of Figure 3.1, a zig-zag pattern is observed and hence the
name for this heuristic. For this heuristic, the ordering function 7 assumes the
following definition for the sequence of variables of an n x m S-box:

w(k) =k (5.3)

This is the variable-ordering heuristic that has been used in all the examples of
this Chapter. In particular, example 4.1 demonstrates a partially assigned S-box
that follows the zig-zag variable ordering heuristic.

The definitions of (k) given by equations 5.2 and 5.3 are to be used in Solver
(Section 2.7), in the function SelectNextVariable (k).

Analogs of the three heuristics HE", H and H$7-, and their optimized vari-
ants HOZ', O and HO%Z, respectively, now result. These heuristics are called
VST, VET and VAC7, and their optimized variants, VO%", VO?}’ and VOYZ,, re-
spectively, for Straight-Line variable ordering. For Zig—Zag variable ordering, the
heuristics will have the same annotation, namely, HYT Hc7 , H%Z-, and their
optimized variants HO%™, H Og’ and HO%Z, respectively

A step should not be present in heuristic Via, (VO%Z,) that is present in
HYL. (HO%Z.). In Table 5.6, the extra check (k > |)2(\ + 8) that appears in
functlons ProcessOtherDomains and ReverseUpdateCountDistSet for heuristic
HY, (HO%Z,) is no longer applicable and this check should be removed from
these two places while implementing Vi (VO%E.).

5.5.3 Domain Ordering Heuristics

The ordering of domains for each variable is another consideration worth exploring
from the viewpoint of efficiency of search. No modification is done to the solver
and no new steps are necessary. Only the domains precompiled into the solver are
permuted. Two domain-ordering heuristics are examined.

Default Ordering In this heuristic, the domain for each variable is ordered in
ascending order, that is, for each variable of an n x m S-box, its domain is the set
D =1{0,1,2,...,2m —1}.

Random Permutation Here the domain of each variable is randomly permuted
based on a specified seed. In the section on experiments, we will consider one such
random ordering for the purposes of comparison.

Further discussion on domain-ordering heuristics is made in Chapter 7.
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5.6 Summary and Looking Ahead

The COUNT constraint is a global n-ary constraint. We have discussed a non-
incremental approach to checking for this constraint, and an incremental approach
to checking on partially assigned S-boxes.

The global n-ary constraint for criterion S-7 is not straightforwardly decompos-
able into binary constraints. Nevertheless, we are able to integrate this constraint
into the solver by projecting past assignments onto the domains of future variables.
During the process, these domains are reduced.

An optimization has been introduced in Solver (subsection 5.5.1) to avoid
unnecessary arc-consistency checking in case nothing is added to the deletion set
DS. This happens when the (reduced) domain of the variable being considered
for assignment contains only one element.

Two kinds of variable ordering heuristics are considered (subsection 5.5.2): A
straight-line variable ordering and an alternative zig-zag variable ordering. Value-
ordering is considered by randomly permutating domains (subsection 5.5.3).

Chapter 7 discusses the performances of the several heuristics under these cir-
cumstances.
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Chapter 6
Symmetry. The Multiple S-box Problem

In this chapter, we will discuss symmetry of S-boxes strictly from a CSP stand-
point. Our main objective in this Chapter is to demonstrate new forms of sym-
metries in S-boxes that the CSP model so elegantly exposes.

We also discuss the criterion S-8 that involves arrangements of S-boxes taken
eight at a time, and selection of arrangements that minimizes a cost function.

6.1 Symmetry in CSPs and Symmetric Constraints

A constraint is symmetric if, upon interchanging some or all of the variables (values
to each variable) with others in its scope (domain), the constraint is not altered.

Example 6.1 The ternary constraint given by the equation x +y + z = 5, s
symmetric, because, if we interchange x and y, the resulting constraint becomes
Yy + x + 2z = 5 which is the same as the given one. Similar is the case if x s
interchanged with y, y with z and z with x simultaneously. This is an example of
a constraint with variable symmetry.

6.1.1 Symmetry and Efficiency

Due to symmetry, solution tuples that are encountered far later in the system-
atic search for solutions would already have been available if the symmetry were
identified, adding to efficiency of solution generation.

Example 6.2 Let the domains of the variables x, y and z of Example 6.1 be the
set of integers {0,1,2,3,4,5}. The assignment x = 0,y = 0,z = 5, or (0,0,5)
for brevity, clearly satisfies the constraint x + vy + 2z = 5. Upon simultaneously
replacing x,y, z with z,y,x respectively, the resulting constraint is unchanged as
Ezample 6.1 suggests. Now the abbreviated assignment becomes (5,0,0) which is
also a solution. This solution would have occurred much later in the solution space
after a systematic search. But we are able to identify the same immediately due
to symmetry. In other words, identifying symmetry adds to efficiency of solution
generation.
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6.1.2 Value, Variable and Conditional Symmetry

A constraint possesses value symmetry if interchanging valid values assigned to
variables continues to satisfy the constraint. It possesses variable symmetry if the
variables in its scope can be permuted, and conditional symmetry if the solutions
are preserved subject to some condition. A CSP can possess more than one of
these forms of symmetry simultaneously. For example, the constraints analyzed in
Examples 6.1 and 6.2 possess both, variable and value symmetry.

Example 6.3 Consider the following CSP for the problem of finding Pythagorean
Triplets, involving variables X = {z,y, z}:

2y = 2

r,y,z € {3,4,...,100}

A solution is x = 3,y = 4,z = 5. Upon interchanging the values of x and
y, the assignment x = 4,y = 3,z = b s also a solution. This CSP possesses
value symmetry. Moreover, if x and y are interchanged, the equation remains
mathematically unaltered and the CSP possesses variable symmetry as well.

6.1.3 Breaking of Symmetry in CSPs

Breaking of all symmetries is shown to be NP-hard, however, there are practical
ways by which most of these can be broken [70]. For example, constraints are
added to remove the aforementioned forms of symmetry [48, 69].

Example 6.4 Consider Example 6.3 that involves finding Pythagorean Triplets.
A number of solutions involve values of x and y interchanged due to symmetry,
such as, t =5,y =12,z = 13 and v = 12,y = 5,z = 13. It is often sufficient to
have one of these two solutions instead of having both. By imposing an ordering
on the values of x and y, namely, by adding the constraint,

r <y

the solution v = 12,y = 5, z = 13 is eliminated and symmetry is broken.

6.2 Symmetry in S-boxes

Using our CSP model formulated in Chapters 3, 4 and 5, we have identified five
forms of symmetry in S-boxes directly arising out of the criteria for DES S-2 to
S-7. These forms are the following:
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—_

. Row Symmetry, due to criterion S-4

2. Column Symmetry, due to criterion S-5

w

. Diagonal Symmetry, due to criterion S-6,
4. Rotational Symmetry, due to criterion S-7, and

5. Bit Inversion Symmetry, due to criteria S-2, S-3, S-4, S-5, S-6 and S-7.

The granularity of the symmetry being addressed is very important. We have
symmetry of an individual constraint, we have symmetry of sets of constraints,
and ultimately of the entire CSP. An individual constraint may exhibit symmetry
but the appropriate transformation may violate another constraint and therefore,
may not result in an S-box. Forms of symmetry that satisfy all constraints and
therefore, result in newer S-boxes, are also prevalent. The Row, Column and Di-
agonal symmetry fall under the first category, not necessarily resulting in S-boxes.
On the other hand, the Rotational and Bit Inversion symmetry will satisfy all the
other constraints, and will yield alternative S-boxes, as we will see in this Chapter.

6.3 Relevant Properties of the exclusive-OR Operator, Par-
ity, and the Linear Approximation Table

Let us first discuss properties of the exclusive-OR, operator relevant to symmetry
of S-boxes. We will prove these for two bits @ and b and extend these to the gen-
eral case where the operands are n-bit quantities. Next, we discuss the parity of
a number and its properties. Finally, we discuss properties of the Linear Approx-
imation Table for a 6 x 4 S-box that will be used in Rotational and Bit Inversion
symmetries.

6.3.1 Relevant Properties of the exclusive-OR Operator

Definition 6.1 The exclusive-OR operator on two Boolean quantities a and b is
defined by the following expression:

a®b=a-b+a-b (6.1)

Remark 6.1 The exclusive-OR operator on two n-bit quantities A = agay . . . Gp_1
and B = byby ...b,_1 is equal to the n-bit bit-pattern formed by the bits ag @ by,
a1®by, ..., a1 Dby_1. In other words, if n is the word-length of a computer, the
operation A & B results in n parallel exclusive-OR operations on 1-bit operands.
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From this definition, it is easy to deduce the following properties for two
Boolean entities a and b. Generalizations to n-bit bit-patterns A and B are easily
made.

—_

., a®0=0Da=a
2.a0l=1da=1a
3.a®a=0
4. a®a=1

5. The exclusive-OR operation on two Boolean quantities a and b is commuta-
tive, that is, a b = b @ a.

6. The exclusive-OR, operation on three Boolean quantities a, b and ¢ is asso-
ciative, that is, (a ®b) @ c=a @ (b @ c).

7. The result of the exclusive-OR. operation on a and b is the same as that of
their one’s-complements, @ and b respectively, that is, a &b = a & b.

8. For Boolean variables a and b, the following equations hold: a @ (a ®b) = b,
b@® (a ®b) = a. This property easily extends to two n-bit operands A and
B, that is, A® (A® B) = Band B@& (A® B) = A. The idea is used in
stream ciphers for encryption and decryption. It is also used in high-speed
software implementations of symmetric key cryptographic algorithms.

6.3.2 The Parity of a Bit Pattern

Recall that the parity of an n-bit bit pattern a = apa;...a,_; is equal to the
number of 1’s in the bit pattern. If there are an odd number of 1’s, then we say
that a is of odd parity; if this count is an even number, a is said to be of even
parity. The parity p of a is also equal to the exclusive-OR, of the bits in a, that is,

p=ayDa d...0 a1

Property 6.1 If an n-bit number a has parity p (p =1 for odd parity and 0O for
even), then its 1’s-complement a has parity p if n is odd and p if n is even.
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Proof Let a =agaias...a,_1. Then by the definition of parity,
p=agPDa Bas®...PDa,_1 (6.2)
We also have the following Boolean identity:

1, for odd n
0, forevenn

1@1@...@1,ntimes:{ (6.3)

Let g be the parity of a, obtained by exclusive-OR of each bit in a with 1.
Then,

g = () ®(ad®)d...d (a1 D 1)
= (@@ ®as®.. Da,1)D(1®1d ... 1, n times)

p@ 1 if n is odd
if n is even

{p 1fnlsodd

p, if nis even

, using Equations 6.2 and 6.3

Q.E.D.

6.3.3 Relevant Properties of the Linear Approximation Table

We will now prove some important results that hold for the Linear Approximation
Table of an S-box of Chapter 4. For simplicity, the discussion is limited to 6 x 4
S-boxessince it is their symmetry that is being considered. These properties for the
Linear Approximation Table are being discussed here rather than in Chapter 4, for
immediate use in results on Symmetry, particularly Rotational and Bit Inversion
Symmetry.

We consider one layer of the S-box ®, obtained by making an assignment to a
single variable x; corresponding to input ¢ (Example 4.6). Each entry in this layer
is either 0 or 1 depending upon whether equation L, (i) = Ly(x;) holds or not, for
any a,b (subsection 4.2.1). In other words, we can consider each entry of a layer
to be equal to L, (i) ® Ly(x;), also equal to L, (i) ® Ly(x;) & 1.

Property 6.2 Leti =19ty ...15, a = apgay ...as and p = agPba,PB...Bas represent
the parity of a, equal to the number of 1’s in the binary representation of a. Then
Lo(i) = La(i) ® p-



89

Proof We have

L,(1) = agio® a1ty & ... S asis
= a-(l0®)Da- (11D D...Pas(isD1)
= (apip @ ariy ® ... Dasis) D (agDar ®...Das)
= Li(i)®p

which proves the proposition.
Q.E.D.

Property 6.3 Fach entry in the Linear Approzimation Table corresponding to
the single assignment x; = v of an S-box differs from the corresponding entry for
the single assignment x; = v by the parity p of a, the number of the row in the
Table in which the entry is situated.

Proof For the single assignment x; = v, each entry in the Linear Approximation
Table is of the form y = L,(1)® Ly(v)®1 as discussed at the start of this subsection.
Consider the Linear Approximation Table for the assignment z; = v. Each entry
in this table will be of the form

Lo() & Ly(v) & 1
= Lu.(i)®p® Ly(v) & 1, (Property 6.2)

= L,(i) ® Ly(v) ® 1 @ p, (Commutativity of exclusive-OR)
= ydp

which is the required result. This result will be used in proving the invariance of
the score of an S-box over Rotational symmetry.
Q.E.D.

Remark 6.2 Property 6.3 can be reworded as follows: Given a single assignment
x; = v for an S-box entry. An entry in Row a and Column b of the Linear
Approximation Table for the assignment x; = v 1s equal to the truth value of the
following expression:

La(i) = Ly(v), if a has odd parity
) Le(v), if a has even parity

Property 6.4 Fach entry in the Linear Approzimation Table corresponding to
the single assignment x; = v of an S-box differs from the corresponding entry for
the single assignment x; =7 by the parity q of b, the number of the column in the
Table where the entry is situated.
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Proof For the single assignment x; = v, each entry in the Linear Approximation
Table is of the form y = L,(1)® Ly(v)®1 as discussed at the start of this subsection.
Consider the Linear Approximation Table for the assignment x; = 7. Each entry
in this table will be of the form

Lo(i) ® Ly(v) @ 1
L,(i) ® Ly(v) ® q¢® 1, (Property 6.2)
L,(i) ® Ly(v) ® 1 & ¢, (Commutativity of exclusive-OR)
= yoSyq
which is the required result. This result will be used in proving the invariance of

the score of an S-box over Bit Inversion symmetry.
Q.E.D.

Remark 6.3 Property 6.4 can be reworded as follows: Given a single assignment
x; = v for an S-box entry. An entry in Row a and Column b of the Linear
Approzimation Table for the assignment x; = v is equal to the truth value of the
following expression:

Lo(i) = Ly(v), if b has odd parity
S Ly(v),  if b has even parity

Let us examine each form of symmetry against the criteria specified. In the
remainder of this Chapter, the discussion is made with reference to 6 x 4 S-boxes.

6.4 Row Symmetry

We define row symmetry of a 6 x4 S-box to mean that if its rows are interchanged,
the resulting configuration still satisfies the criterion (or criteria) in question.

Property 6.5 Criterion S-4 exhibits row symmetry but only if the top two and
bottom two row interchanges occur simultaneously.

Proof Consider two S-box inputs 2i and (2i + 1) that differ only in their least
significant bits, 0 < ¢ < 32. The requirement of criterion S-4 is satisfied and
according to criterion S-4,

wt(xm' © $2i+1) > 2 (6.4)

By the commutativity property of the exclusive-OR, operation, Equation 6.4
can be rewritten as:
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wt(Toi01 B Tei) > 2

This means that interchanging x,; .1 and x5; does not affect the constraint for
criterion S-4, suggesting that S-4 possesses variable symmetry. With reference to
Figure 6.1, variables (i.e. S-box outputs) zy; occur in Row 0 whenever 0 < i < 16
and Row 2 for 16 < i < 32, while variables (S-box outputs) x9;11 occur in the other
two rows, Row 1 and Row 3. In other words, variables with even subscripts xy;
and corresponding variables with odd subscripts 241 having inputs that differ in
their least significant bits, are in the neighboring rows of the S-box when organized

as in Figure 6.1 that are interchangeable. This proves the proposition.
Q.E.D.

6.4.1 Only the Least Significant Bits

11121374

105 | 0 1 2 3 4 ) 6 7 8 9 10 11 12 13 14 15
0 Top T2 T4 Te T T10 T12 Ti4 Tie T18 L20 T22 T24 T26 T2 T30
1 X1 X3 X5 X7 X9 Xj11 X13 X15 X17 X19 X21 X23 X25 X27 X29 X31
2 | x32 T34 T36 X3y T40 T42 T4 T46 T4s T50 T52 Tsa L6 Ts8 L0 L62
1 X33 X35 X37 X39 X41 X43 X45 X4q7 X49 X51 X53 X55 X57 X59 X1 X63

Figure 6.1: S-6 for a 6 x 4 S-box exhibiting Row Symmetry. The odd rows are
shown in bold font.

We have considered only the least significant bits for any two input bits to the
S-box. This satisfies the requirement for S-4, namely that the two inputs differ in
only one bit. However, S-4 need not be satisfied only in this manner. In fact, the
6-bit input ¢ can differ by 1 bit with 6-bit inputs :@®27, where 0 < i < 64,0 < j < 6.
That is, each variable x; is involved with variables z;40; in a constraint, 0 <7 < 64,
0 < j < 6. There are 6 such binary constraints for each variable leading to a total
of 192 constraints for S-4. (Also, refer Subsection 3.2.5.) Table 6.1 demonstrates
these differences for each variable. For example, the first entry of the top left table
contains xg on the left hand column headed by “Row 0 Variable” and six variables
X1, To, T4, Tg, T1g, 32 on the right-hand-column headed by “Differs from each of the
following Variables”. The interpretation of this line, using Equation 3.2, leads to
the following six constraints for variable xg:
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vV IV IV IV IV IV
OO0 NN NN

(6.5)

For example, to satisfy criterion S-4, variable xy in Row 0 should differ from
the six variables x1, xo, x4, T3, T16 and x3p by at least two bits since S-box input 0
differs from each of 1, 2, 4, 8, 16 and 32 by exactly one bit. We are considering,
for row symmetry, only the first of these six variables that are shown in boldface
in Table 6.1. Thus the set of variables in each column headed by “Row” in this
table and the first of the list of six variables on its right, in the column headed by
“Differs from each of the following variables”, reside in consecutive rows and are
interchangeable, resulting in row symmetry. Table 6.1 should be compared with
Figure 6.1 which picturizes the row symmetry, the variables in the odd rows being
shown in boldface.

The row symmetry is not conditional. For example, whether the other five
variables xq, x4, g, 16 and x3; among the six (upon including z;) participate with
Zo in the symmetry or not, the row symmetry is preserved only because of the first
variable z; in the set of each of these six variables involved in S-4.

6.4.2 Simultaneous Row Interchanges

The reason for the interchanges between rows to be simultaneous is the following.
Each constraint listed in a row contains exactly one variable from the third and
each listed for the second row contains exactly one from the fourth. For example,
consider the six constraints involving xy. Among these, Equation 6.5 contains the
only variable x3, from Row 2. The same is true for the other constraints involving
the remaining variables.

Interchanging only the first two rows and keeping the third and fourth rows as
they are, result in the variables participating in those constraints get interchanged
except for the variables of the untouched rows, giving rise to new constraints that
are not in S-4. Due to the upper bound on the total number of constraints for S-4,
the new constraints end up replacing some of the existing constraints in S-4, and
are therefore invalid. For example, interchanging Row 0 and Row 1 of Figure 6.1
results in the following constraints for variable xy:
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Row 0 Differs from each of Row 1 Differs from each of
Variable | the following Variables | Variable | the following Variables
Lo X1, L2, T4, L8, L165 L32; I X0, L3, L5, Ly, L17, L33,

T2 X3,20,L6; X105 L18, T34, T3 X2, L1, L7, T11, 19, L35,

Ty X5, 265 L0; X125 L20, 36, Ts X4, X7, L1, 13, T21, X375

Te X7, X4y X2, T4, X22, T38, Z7 X6, L5, X3, L15, L23, L39,

T3 X9, L10, L12, L0, L24, L 40, Ty X8, T11, X135 L1, 25, T41,
10 X11, T8, T14, T2, T26, L42, T11 X10, L9, L15, L3, L27, L43,
T12 X13,T14, T8, T4, T28, T44, r13 X12, T15, L9, L5, 29, L45,
T14 X15,T12, 105 L6, T30, T46, T15 X14, 13, T11, L7, T31, T47,
T16 X17,L18, 205 X245, L0, T48, Zi7 X165 119, L21, L25, L1, L49,
T18 X19, T16, 22, L26, L2, T50, T19 X18,L17, 123, L27, L3, L51,
20 X21,L22, T16, L28, L4, T52, T21 X20, 123, 17, L29, L5, L53,
L22 X23, L20, L18; 30, L6 L54, To3 X22, L21, L19, 31, L7, L55,
Loy X25, L26, 28, L16, L85 L56, Tos X24, Lo7, L29, 17, L9, L57,
Log X27, L24, L30, 18, L10, T58, To7 X26, L25, L31, L19, L11, L59,
T2g X29, T30, 24, L20, L12, L60, T29 X28, 31, 125, L21, L13, L61,
T30 X31, L28, V26, L22, L14, 162, T31 X30, 129, 27, L23, L15, L63,
Row 2 Differs from each of Row 3 Differs from each of
Variable | the following Variables | Variable | the following Variables
I32 X33, L34, L36, L40, L48, Lo T33 X32, T35, L37, L41, T49, T1
L34 X35, L32, L38, L42, T50, L2 T35 X34, T33, L39, L43, T51, L3
T36 X37, L38, L32, 44, 52, T4 I37 X36, 39, L33, L45, T53, L5
I38 X39, L36, L34, L46, L54, LTe T39 X38, 37, L35, L47, T55, L7
L40 X41, T42, T44, T32, T56, T8 T4 X40, T43, T45, L33, T57, L9
L42 X43, T40, T46, L34, Ts8, L10 | T43 X42, T41, T47, T35, T59, T11
L44 X45, T465 L40, L36, L60) L12 | T45 Xa4, Ty7, T41, L37, T61, 13
T46 Xa7, Taq, T42, T38, Te2, T14 | T47 X46, T45, L43, T39, L3, T15
T48 X49, T50, L52, 56, L32, L16 | T49 X48, T51, L53, L57, L33, L17
T50 X51, L48, L54, 58, L34, T18 | T51 X50;, 49, L55, L59, L35, L19
T52 X53, 54, L48, L60, L36, L20 | Ts53 X52; T55, L49, L61, L37, T21
T54 X555, L52, 50, L62, L38, L22 | XTs5 X54, T53, T51, L63, 39, 23
Ts56 X57, L58, L60, 48, L40, L24 | T57 X56, 59, L61, L49, T41, T25
T58 X59, L56, L62, L50, L42, L26 | T59 X58;, L57, L63, L51, 43, L27
L60 X61, L62, L56, 52, L4, T2g | Te1 X60, L63, L57, L53, L45, L29
L62 X63, L60, 58y L54, La6, L30 | L63 X62, T61, L59, L55, T47, T31
Table 6.1: Relationships between the variables participating in Criterion S-4
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Ss
3 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7
1 15 13 8 10 3 7 4 12 5 6 11 O 14 9 2
1 2 6 8
7

—_

7 11 4 9 12 14 0 10 13 15 3 5
2 1 14 4 10 8 13 15 12 9 0 3 5 6 11

1
(a)

Rows 0 and 1 interchanged, and Rows 2 and 3 interchanged
1 1 13 8 10 3 7 4 12 5 6 11 0 14 9 2
3 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7
2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11
T 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8

(b)

Figure 6.2: (a) The DES S-box Ss. (b) An S-box derived Sg due to row symmetry,
having a score equal to 12

wt(xy ®xy) > 2
wt(rxy ®x3) > 2
wt(xy B rs) > 2
wt(zy © x9) > 2
wt(zy ®w17) > 2
wt(r) © r32) > 2 (6.6)

Since x is involved in six constraints, criterion S-4 leads to 192 constraints.
In equation 6.6, the 6-bit inputs 1 (= 0000013) and 32 (= 1000003) of the last
inequality do not differ by one bit, but by two bits. Criterion S-4 does not specify
what happens in this case. The issue we are having is due to the maximum bound
on the total number of constraints, resulting in some valid constraints getting
replaced by new constraints such as the last inequality, violating S-4.

6.4.3 An Ezample of Row Symmetry

Example 6.5 Consider the DES S-box Sy depicted in Figure 6.2(a). Upon inter-
changing Row 0 and Row 1, and simultaneously interchanging Row 2 and Row 3,
the resulting configuration is depicted in Figure 6.2(b).
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Pairs of variables participating Columns of Figure 6.3
in Equation 6.7 that are interchangeable
(xo:mw12) (w1 :713) (%32 :w44) (w33 :x45) | Column 0 with Column 6
([L’g : 1'14) ([L’g : 1’15) (1'34 : 1'46) (1'35 : 1'47) Column 1 with Column 7
(1’4 : 1'8) (1’5 : [L’g) (1'36 : 1'40) (1'37 : 1'41) Column 2 with Column 4
(x6 : x10) (27:m11)  (T3s:@a2) (T30 : 243) | Column 3 with Column 5
(25'16 : 1’28) (25'17 : 1’29) (1’48 : :1:60) (1’49 : 1’61) Column 8 with Column 14
(x18 1 x30) (719 :w31) (50 : Te2) (w51 @ we3) | Column 9 with Column 15
(LUQO : 1’24) (IQl : 1’25) (1’52 : :1:56) (1’53 : 1’57) Column 10 with Column 12
(1’22 . 1'26) (1’23 . 1'27) (1'54 . 1'58) (1'55 . 1'59) Column 11 with Column 13

Table 6.2: Relationships between the variables participating in Criterion S-5

6.5 Column Symmetry

A 6 x 4 S-box exhibits column symmetry if, upon interchanging some or all of its
columns, the resulting configuration still satisfies the specified criterion.

Property 6.6 For a 6 x 4 S-box, Criterion S-5 exhibits column symmetry but
only if the following column interchanges occur simultaneously: Columns 0 and 6,
1and 7, 2 and 4, 3 and 5, 8 and 14, 9 and 15, 10 and 12, and 11 with 15.

Proof Let us rewrite Equation 3.3 for a 6 x 4 S-box, with the decimal number
12 replacing the equivalent binary number 0011005:

(Vi) (V)0 <i, ) SB)AGEAJ)A(ID) = 12)

= wt(z; Bxj) > 2 (6.7)
Since
i =12
we have
i®12 = i®(i®j), from Eq. 6.8 (6.8)
= 4, by Associativity property of exclusive-OR (6.9)

Substituting for j from equation 6.9, equation 6.7 can be rewritten as:
(Vi)(0 < i < 32) ANwt(x; ® xig12) > 2 (6.10)

Due to the commutativity property of the exclusive-OR operator, equation 6.10
can be rewritten in the following way:
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(Vi) (0 < i < 32) A wt(zigiz @ ;) > 2 (6.11)

In other words, variables x; and x;g:12 can be interchanged. For example, for i =
0,1, 32,33, variables x; = x¢, x1, 32, £33 reside in Column 0 and the corresponding
variables x;z19 = X192, T13, Taq, 45 reside in Column 6, as shown in figure 6.3, and
Columns 0 and 6 can be interchanged. The same reasoning holds for each of the
other columns for the other values of i. This completes the proof.

Q.E.D.

Table 6.2 depicts the relationships between the variables participating in Equa-
tion 6.7. In the left-hand column, the notation (x; : ;) means that there exists a
constraint between variables x; and x; governed by Equation 6.7. Noting the com-
mutativity of the exclusive-OR operator, a constraint of the form z; @ ; can be
rewritten as z; @ z;, leading to an interchange of these variables. Accordingly, the
interpretation in terms of column interchanges is given in the right-hand column of
Table 6.2. Figure 6.3 additionally shows the interchangeable columns identically
formatted. An observation visible in Table 6.2 is that interchanges within columns
0 to 7 are identical with those within columns 8 to 15. For this reason and to add
clarity, Figure 6.3 shows the only the first eight interchangeable columns.

T1T2T3T4
Toxrs | O 1 2 3 4 5 6 7 &8 ... 15
0 |xo [w2] T1 (w6) Ts (710) X1z [T1a] @16 ... 30
I | xy [z3] 75 (27) @5 (x11) X3 [T1s5] 217 ... @3
2 |Xs2 [ws4) Tz (738) Tao (Ta2) Xaa [Tag] Tas ... T2
3 | xs3 [r35] Tar (v30) Tmn (Ta3) Xas [Tar] a9 ... T3

Figure 6.3: S-5 for a 6 x 4 S-box exhibiting Column Symmetry. Interchangeable
columns are formatted identically. Only columns 0 — 7 are shown, and columns
8 — 15 are similarly interchangeable.

Example 6.6 Consider the DES S-box Sg depicted in Figure 6.4(a). Upon si-
multaneously interchanging columns 0 and 6, 1 and 7, 2 and 4, 3 and 5, 8 and
14, 9 and 15, 10 and 12, and 11 with 13, the resulting configuration is depicted in
Figure 6.4(b). This configuration is an S-box with a score equal to 12.

6.5.1 Simultaneous Column Interchanges

All eight pairs of columns should be interchanged simultaneously for the resulting
configuration to be an S-box satisfying all criteria. Let us see what happens if, for
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Ss
3 2 8 4 6 1 11 1 10 9 3 14 5 0 12 7
1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2
11 4 1 9 12 14 2 0 6 10 13 15 3 5 8
2 1 14 7 4 10 8 13 15 12 9 0O 3 5 6 11

(a)

After simultaneous column interchanges
1 6 15 8 4 13 2 12 7 5 0 3 14 10 9
7T 4 10 3 13 8 1 15 9 2 0 14 6 11 12 5
2 9 12 4 1 7 11 5 8 15 3 10 13 0 6
8§ 13 4 10 14 7 2 1 6 11 3 5 9 0 15 12

(b)

Figure 6.4: (a) The DES S-box Ss. (b) An S-box derived from Sg due to column
symmetry having a score equal to 12

example, exactly one pair of columns, say, column 0 and column 6, is interchanged,
with the remaining seven pairs of columns kept intact. We want to see the effect
of this interchange on one of the other criteria, say, S-4. This interchange entails
swapping of the variables in the following pairs: (xg, z12), (21, 213), (232, 244) and
(733, 45). Let us rewrite a portion of Table 6.2 that involves only these variables in
the left-hand-column, before and after column interchange. The result is Table 6.3.

Similar to the problem in row symmetry when row interchanges are not simul-
taneous, new constraints now arise that are not in S-4. Due to the upper bound
on the total number of constraints for S-4, the new constraints end up replacing
some of the existing constraints resulting in S-4 getting violated. In this example,
the following new constraints for variable x5 are derived from Table 6.3.

(6.12)

As we have seen earlier, criterion S-4 leads to 192 constraints. In equation 6.12,
the 6-bit inputs 12 (= 001100;) and 2 (= 0000105) of the first inequality do not
differ by one bit, but by three bits. The same is true of the second inequality, for
inputs 16 and 2. Criterion S-4 does not specify what happens in this case. The
issue we are having is that due to the maximum bound on the total number of
constraints for S-4, some valid constraints are replaced by these new inequalities,
violating S-4.
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Row 0 Differs from each of Row 1 Differs from each of
Variable | the following Variables | Variable | the following Variables
Zo X1,T2, Ty, T8, L16, L32, (gl X0, L3, 25, L9, L17, L33
T2 X13, T14, T8, T4, L28, L44, L13 X12, T15, L9, L5, 29, L45
Row 2 Differs from each of Row 3 Differs from each of
Variable | the following Variables | Variable | the following Variables
I32 X33, L34, L36, 40, L48, Lo I33 X32, I35, L37, 41, L49, T1
Lyg X45, T46, L405 L36, T60, L12 | T45 Xa4, T47, T41, T37, T61, L13
(a) Before interchanging columns 0 and 6
Row 0 Differs from each of Row 1 Differs from each of
Variable | the following Variables | Variable | the following Variables
T2 X13, L2, T4, T8, T16, L325 T13 X12, 23, T5, L9, L17, L33
Zo X1,T14, X8, T4, L28, L44, a1 X0, L15, L9, L5, L29, T45
Row 2 Differs from each of Row 3 Differs from each of
Variable | the following Variables | Variable | the following Variables
T a4 X45, L34, L36, L40, L48, Lo T45 Xa4, T35, L37, 41, T49, T1
T32 X33, L46, L40, L36, L60, L12 | T33 X32, L47, L41, L37, T61, L13

(b) After interchanging columns 0 and 6

Table 6.3: Relationships between the variables participating in Criterion S-4 before
and after interchanging columns 0 and 6. Not all relationships are shown.

6.6 Diagonal Symmetry

A 6 x4 S-box exhibits diagonal symmetry if, upon interchanging some or all of its
elements in a diagonal-wise fashion, the resulting configuration still satisfies the
specified criterion. For our purposes, imagine the S-box to be divided into four
equal-sized rectangular quadrants. Figure 6.5 illustrates the idea.

Property 6.7 For a 6 x 4 S-box, Criterion S-6 exhibits diagonal symmetry but
only if the following diagonal interchanges occur simultaneously:

1. The top left and bottom right quadrants, and

2. The top right and bottom left quadrants
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58 L1934
Toxs o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 Ty X2 T4 T Ty T1p T12 T4 X16 X18 X20 X22 X24 X26 X28 X30

Ty X3 X5 Ty Tg T11 XT13 X1 X7 X19 X21 X23 Xz5 X227 X29 X31

1
2 X32 X34 X36 X38 X40 X42 X44 X46 T48 T50 Ts2 T4 Ts56 T8 Leo Le2
3 | X33 X35 X37 X390 X41 X43 X45 X47 T49 T51 T53 Tss Ts7 Tsg Tel Le3

Figure 6.5: S-6 for a 6 x 4 S-box exhibiting Diagonal Symmetry. Interchangeable
quadrants have entries formatted identically.

Proof Let us rewrite Equation 3.4 for a 6 x 4 S-box, with the decimal numbers
51 and 48 replacing the equivalent binary number 1100115 and 110000,:

(Vi) (Vi) (0 <i<j<63),[(®j) A5l = 48
=T # 1 (6.13)

It is easy to check that if ¢ = 0, then j = 48,52,56,60. If ¢ = 1, then
J =49,53,57,61, and so on. The consequent inequality-relationships between z;
and each of the four variables z; participating in the constraint 6.13 are depicted
in Table 6.4. Note that since xy is not equal to each of x5, x50, 56 and zgg, the
reverse is also true, namely, that xy will appear as one of the four variables in each
row for x4g, 50, T56 and xgg, and likewise for all variables constituting the S-box.
Accordingly, the total number of constraints that Equation 6.13 gives rise to is
128, as discussed in subsection 3.2.7.

By arranging variables xg,x,..., 215 their related quadruplets arrange to
X48, T49, - - -, Te3. LThese two form the top-left and bottom-right quadrants of
the S-box respectively, as illustrated in Figure 6.5. The same is true with the
other two sets of variables, namely, x4, 217, ..., x33 and their related quadruplets
X32,T33, ..., Tye7, that respectively form the top-right and bottom-left quadrants of
the S-box of Figure 6.5. Due to the commutativity property of the exclusive-OR

operator, the rectangles are diagonally interchangeable. This completes the proof.
Q.E.D.

6.6.1 Simultaneous Interchanges of Diagonal Rectangles

The quadrants should be diagonally interchanged simultaneously. Let us see why.
It is possible for two variables not participating in any constraint other than S-6,
to have equal values. Assume that o = x4. If we interchange the bottom-left
and top-right quadrants without interchanging the other two, x4 will appear on
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Variable | Differs from each of | Variable | Differs from each of
the following variables the following variables
Lo Ta8, T2 Tse  Teo T Tg9, T3 L7  Tel
T2 T50, T4 Tsg T2 I3 Ts51, 5 Ts9 T3
Ty Ts2, 48 Teo Tse 5 T53, T49 Te1 L7
L T4, 50 Te2 Ts T Ts5, 51 Tez  Ts9
Ty Ts6, Lo L48 52 L9 Ts7, Tl L49 T3
T10 Ts8, T2 50 Ts4 T1 Ts9, T3 51 Tss
T12 Teo, T  LTs2 48 T13 Te1, Ts7 T3 T4
T14 Te2, T8  Tsa T T15 T3, Ts9 Tss sl
T16 T32, T36 T40 T44 T17 T33, T37 T4l T45
T18 T34, XT38 T42 T46 T19 T35, XT39 43 47
L20 T36, 32 T44 T40 T21 T37, X33 T4s T4l
T22 T38, T34 T4 T42 T23 T39, T35 Ta7 T43
T24 T40, T44a T32 T36 T25 Ty1, 45 T33  T37
T26 Tg2, T4 T34 T38 To7 T43, Ty7 T35 T39
Tog Tyaq, Ty40 T36 T32 T29 Tg5, T41 37 X33
T30 Ta6, T42 38 T34 T31 Tyg7, 43 X39 X35
T32 Ti6, 20 24 T28 L33 Ti7, T21  T25  X29
T34 T18, T2 T T30 T35 T19, T23 T27 T31
T36 T20, T16 T2g8 T24 T37 To1, X177 T29 X5
T38 T2, T18 T30 T2 T39 T3, T19 T31 Lot
L40 Loy, X288 Tie X2 Ty L5, X29 T17 T21
L42 Lo, T30 T18 X22 L43 Tor, X31 X9 X23
T 44 Tog, T4 T20 T16 T45 To9, T25 T21 X7
T46 T30, T26 T2 T18 Ty T31, T27 T2g T19
L48 Lo, T4 Xy T2 L49 Ty, 5 X9  X13
50 T2, Teg T T4 T51 T3, X7 X1 Ti5
T52 Ty, To T12 Ty T53 Ts5, X1 T3 X9
T54 Tg, T2 T1a T10 Ts55 T7, T3 Tis T11
Ts56 Iy, Ti2 Tp X4 T57 Tg, T13 T1 Tp
Ts58 T10, T4 T2  Tg T59 T11, T15 T3 X7
L60 Ti2, Tg Ty Xo Le1 T3, L9 T5 T
L2 Ti4, T10 Te X2 T3 T15, 11 L7 X3

Table 6.4: Relationships between the variables participating in Criterion S-6

the top row. But this violates criterion S-3 that states that each row should be a
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Ss
3 2 8 4 6 15 11 110 9 3 14 5 0 12 7
1 15 13 8 10 3 7 412 5 6 11 0 14 9 2
7 11 4 1 9 12 14 2|0 6 10 13 15 3 5 8
2 1 14 7 4 10 8 13}15 12 9 0 3 5 6 11

Quadrants diagonally interchanged
0 6 10 13 15 3 5 8|7 11 4 1 9 12 14 2
5 12 9 0 3 5 6 11,2 1 14 7 4 10 8 13
00 9 3 14 5 0 12 7}13 2 8 4 6 15 11 1
12 5 o6 11 0 14 9 2|1 1, 13 8 10 3 7 4

(b)

Figure 6.6: (a) The DES S-box Ss split into four quadrants. (b) A configuration
obtained due to Diagonal Symmetry, having a score equal to 12.

one-one permutation of Zg. To satisfy S-3, the other two quadrants should also
be interchanged.

Example 6.7 Consider the DES S-box S-8 depicted in Figure 6.6(a) as split into
four quadrants. Upon interchanging the top-left and bottom-right quadrants, and
stmultaneously interchanging the other two quadrants, the resulting configuration
is depicted in Figure 6.6(b). This configuration is an S-box that satisfies the other
criteria and has a score equal to 12.

6.7 Is the Resulting Configuration Always an S-box?

When an S-box is transformed to another configuration using either or row, col-
umn, and diagonal symmetry property of the appropriate constraint that models
the particular criterion, only the particular constraint is satisfied. We have seen
that the transformed configuration is not necessarily an S-box because other con-
straint(s) may get violated due to the transformation. For the transformed con-
figuration to be an S-box, the interchanges have to be simultaneous in each type
of symmetry.

The other problem is that the score of the transformed configuration may
exceed the specified threshold, violating criterion S-2 specified by constraint 4.7.
It turns out that the S-box of Figure 6.1(b) is an alternate S-box having a score
of 12 and satisfying all of the constraints. This score is the same as that of the
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Sg L1X2T3T 4
Tols 0O 1 2 3 4 5 6 7 &8 910 11 12 13 14 15
0 |63 Te1 59 Ts7 Tss T53 Ts1 Tag T4y T45 T43 T4l T39 T37 T35 T33
1 Te2 Lo Ts8 L56 Ls4 Ts2 Lo L48 Tae Laq T42 T4p T38 T36 T34 T32
2 | X31 To9 Toy Tos T3 X9y Tig Ti7 T1s T13 T11 L9 Ty Ts T3 Xy
3 | ®30 Tog Tag Toas Toz Top T1g T16 T14 T12 T10 T8 T T4 To Lo

Figure 6.7: S-7 for a 6 x 4 S-box exhibiting Rotational Symmetry

original DES S-box S-8, i.e., has not changed for this example. The same is true
of the configuration of Figure 6.5, that it is an S-box with score 12.

In the next two sections, we discuss Rotational Symmetry and Bit Inversion
Symmetry. We prove that these two forms of symmetry always yield an S-box
upon appropriate transformation, and that their scores will never change.

6.8 Rotational Symmetry

An S-box exhibits rotational symmetry with respect to a constraint if, upon rotat-
ing the same by 180° about both, its top and left edges, the resulting configuration
still satisfies the constraint.

Property 6.8 Criterion S-7 exhibits rotational symmetry for a 6 x 4 S-boz.

Proof Let us rewrite the COUNT constraint of criterion S-7 given by Equa-
tion 5.1 for a 6 x 4 S-box:

31
N [l ® wesi) <8 (6.14)
i=0

By the commutativity property of the exclusive-OR operation, x; and xg3_;
are interchangeable. Interchanging the values of these variables therefore does not
affect Equation 6.14. Repositioning the S-box entries results in a configuration
obtained by rotating the S-box to an upside-down position (Figure 6.7). This
proves the proposition.

Q.E.D.

6.8.1 Impact on Constraints for Criteria S-2 to S-6

Upon applying a 180°-rotation about its top and left edges, as Figure 6.7 suggests,
each row still has unique entries suggesting that criterion S-3 is unaffected. All
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of the criteria S-4, S-5 and S-6 are similarly preserved, and are easily verified
using Tables 6.1, 6.2 and Table 6.4 should be analyzed. For example, reading the
rows of Table 6.4 backwards results in traversing the columns of Figure 6.7 whose
column-numbers are specified in the Table.

Let us examine how the score of the configuration of Figure 6.7 is affected, that
is, whether S-box rotation has an impact on criterion S-2.

Property 6.9 The score ox(®) of an S-box ® is unaffected by S-box rotation.

Proof Consider two entries z; = v and z; = w of an S-box. We are going to
interchange the values to these variables by setting z; = v, studying the layered
linear approximation table for this assignment, setting z; and analyzing the cor-
responding layered linear approximation table, and adding the entries in the two
tables to examine the effect of both assignments.

If ; = v is moved to z; = v, all rows in the layered linear approximation table
for x; = v numbered by a having odd parity get inverted while those having even
parity do not change, due to Property 6.3 . Upon simultaneously assigning z; = w,
all rows @’ in the layered table for the entry x; = w get similarly inverted if o’ has
odd parity, and do not change for even parity. Adding these two tables results in
a linear approximation table for z; = v and x; = w that is identical to one for
x; = w and x; = v. This is now extended to all entries in the S-box, resulting in
its final, cumulative linear approximation table not changing when all of its bits

are inverted. As such, the score does not change.
Q.E.D.

Example 6.8 Consider the DES S-box Ss depicted in Figure 6.8(a). Upon in-
verting this S-box by 180°, Figure 6.8(b) depicts the resulting S-box having a score
equal to 12, the same as that of Ss.

6.9 Bit Inversion Symmetry

An S-box exhibits inversion symmetry if, upon replacing all of its entries by their
one’s-complements, the resulting configuration is still an S-box. As we have seen
thus far, the constraint for criteria S-4 exhibits row symmetry, that for S-5 pos-
sesses column symmetry, S-6 has diagonal and S-7, rotational symmetry. We
would like to know which particular constraint possess bit inversion symmetry.

Property 6.10 All constraints modeling criteria S-3 to S-T7 possess bit inversion
symmetry.
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Proof The result follows at once from the exclusive-OR. property of invariance
to complementation of its two operands: A @® B = A @® B for two n-bit quantities
A and B. It also follows from the fact that A # B is equivalent to A # B. For,
A+4#B=A®B#0=A®B+#0=A+B.
Q.E.D.
To get a further insight into the proof, the constraints modeling each criteria
S-3 to S-6 are studied as follows:

1. S-3: This is the A11diff constraint on the variables in each row, which
remain different upon complementing the entries in that row. Hence S-3 is
unaffected by bit inversion, exhibiting symmetry.

2. S-4: For 0 <1 < 32,
wt(wg; © Toip1) > 2
is equivalent to:

wt(Ty B Tig1) > 2

suggesting that S-4 is unaffected by inverting the bits of all S-box entries,
exhibiting bit inversion symmetry.

Ss
13 2 8§ 4 6 15 11 1 10 9 3 14 5 0 12 7
1 15 3 8 10 3 7 4 12 5 6 11 0 14 9 2
7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8
2 1 4 7 4 10 8 13 15 12 9 0 3 5 6 11

(a)

Rotation about the Top and Left Edges by 180°
11 6 o 3 0 9 12 15 13 8 10 4 7 14 1 2
8 5) 3 15 13 10 6 O 2 14 12 9 1 4 11 7
2 9714 0 11 6 o5 12 4 7 3 10 8 13 15 1
7 12 0O 5 14 3 9 10 1 11 15 6 4 8 2 13 ‘

(b)

Figure 6.8: (a) The DES S-box Ss. (b) The S-box obtained due to Rotational
Symmetry, having a score equal to 12.
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3. S-5: Equation 6.7 is rewritten as

(Vi)(vi) (0 <i, ) SB) A AT AN(EDF = 12)
= wt(z; B xj) > 2

This equation is equivalent to the following:

(Vi)(vi)) (0 <i, ) SB) A #J)ANEDT = 12)
= wt(T; T;) > 2

suggesting invariance of S-5 over bitwise complementation.

4. S-6: Equation 6.13 is rewritten as
(Vi) (Vi)(0<i<j<63),[(tdj)AbBl] = 48
= 1; #
This equation is equivalent to:
(Vi) (Vi)(0<i<j<63),[(tdj)AbBl] = 48
=T # 7T
suggesting invariance of S-6 over bitwise complementation.
5. S-7: The COUNT constraint is modeled Equation 6.14, rewritten as follows:
31
/\ f(:L’Z S ZE;) <8
i=0
This equation is equivalent to:
31
A f@e) <8

1=0

suggesting invariance of S-7 over bitwise complementation.

6.9.1 FEffect of Bit Inversion on the Score of an S-box

We have seen how bit inversion did not affect the A11diff constraint modeling
criterion S-3, binary constraints modeling criteria S-4 to S-6, and the COUNT
constraint for S-7. Will the resulting configuration still remain an S-box? In
other words, what happens to its score? The following property establishes this
important fact.
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Property 6.11 The score ox(®) of an S-boxr ® does not change upon bitwise
complementation of the entries in .

Proof Consider two entries x; = v and x; = 7 of an S-box. We are going to
interchange the values to these variables by setting z; = 7, studying the layered
linear approximation table for this assignment, setting x; = v and analyzing the
corresponding layered linear approximation table, and adding the entries in the
two tables to examine the effect of both assignments.

If x; = v is changed to x; = U, all of its entries in the columns of the layered
linear approximation table for x; = v that are headed by b having odd parity
get inverted due to Property 6.4. Upon simultaneously changing to z; = v from
the earlier assignment x; = v, the corresponding columns for the entry z; = v
get similarly inverted in its layered linear approximation table. Adding these two
tables results in a linear approximation table for x; = v and x; = ¥ that is identical
to one for ; = 7 and x; = v. This is now extended to all entries in the S-box,
resulting in its final, cumulative linear approximation table not changing when all
of its bits are inverted. As such, the score does not change.

Q.E.D.

Example 6.9 Consider the DES S-box Ss depicted in Figure 6.9(a). Upon re-
placing each entry in this S-box by its one’s-complement (by subtracting each entry
from 2% —1 = 15), Figure 6.9(b) depicts the resulting S-box having a score equal
to 12, the same as that of Ss.

6.10 The Multiple S-box Problem

The S-box criterion S-8 for multiple S-boxes is now discussed along with an ex-
ample. The criterion for three S-boxes, mentioned in Chapter 3, is repeated here
for convenience:

S-8 “Similar to S-7, but with stronger restrictions in the case AO;; — 0 for the
case of three active S-boxes on round .” [16].
Let us first see what an active S-box is.

6.10.1 Active S-Bozes in a particular Round

Given a probable bit pattern, an S-box S; (1 < j < 8issaid to be active on a round
i of encryption / decryption if the difference Al ; between inputs m; and m/ to
S-box S}, in round ¢, are not all zero during this round. Then AL ; = m; &m; [16].
Now Al; ; = 0 = m; = m}, that is, two different messages to be input to the same
S-box S; have identical content. If this is so, then the S-box is inactive. As the
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Ss
3 2 8 4 6 1 11 1 10 9 3 14 5 0 12 7
1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2
11 4 1 9 12 14 2 0 6 10 13 15 3 5 8
2 1 14 7 4 10 8 13 15 12 9 0O 3 5 6 11

Entries with Bits Complemented
2 13 7 11 9 0 4 14 5 6 12 1 10 15 3 8
4 0 2 7 5 12 8 11 3 10 9 4 15 1 6 13
§ 4 11 14 6 3 1 13 15 9 5 2 0 12 10 7
3 14 1 8 11 5 7 2 0 3 6 15 12 10 9 4

(b)

Figure 6.9: (a) The DES S-box Ss. (b) The S-box obtained due to Bit Inversion
Symmetry, having a score equal to 12.

number of rounds ¢ increases, the number of active S-boxes also increases [16].
Criterion S-8 deals with active S-boxes taken three at a time, each having inputs
not always identical when compared pair-wise. The S-boxes are listed as 5},
S mod 841 and S(j mod 8+1) mod 841, 1 < J < 8, Sg and Sy being treated as adjacent
to each other.

Similar to the Linear Approximation Table, an XOR Distribution Table |11] is
constructed. This table considers differences between two inputs to an S-box and
between their corresponding outputs, and is used by Biham and Shamir in the
differential cryptanalysis of DES.

6.10.2 XOR Distribution Table

In this table, differences of inputs to an S-box S; and differences in the outputs
of S; are considered. Consider two inputs k& and k' to the same S-box S;, with
corresponding outputs z; and xj,. Determine the following two differences:

Ak = koK
Ar, = z,® )

Each entry in the differential approximation table is defined as follows, for a
n x m S-box 5.
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b 0123456 78 9101112131415
a

0(64 0 0 000000 OO0O0OO0OO0OO0OO0
110006 024401012 410 6 2 4
210008044406 8 612 6 4 2
3114 4 2 210 6 4 26 4 4 0 2 2 2 0
410006 01010 60 4 6 4 2 8 6 2
o1 486 2 2 442044012 2 46
61042 4826 2844242 012
712 410 4 0 4 8 42 48 2 2 2 44
8100012 0 8 8 40 6 2 8 8 2 2 4
9102 4024602280100 212
10 0 8 6 2 2 86 0646040 210
1112 4 010 2 2 4 02 6 2 6 6 4 212
12 0 0 0 8 06 6 00 6 6 4 6 614 2
13/ 6 6 48 48260646020 2
141 0 4 8 8 6 6 4 06 6 4 0 0 4 0 8
1512 0 2 4 46 4248222688
16 0 0 0 00 0 2140 6 612 4 6 8 6
1716 8 2 46 48 640660400
181 0 8 4 26 6 466 4266040
29126 400 2 4646 864 4©6 2
60| 010 4 012 0 4 26 0 412 4 4 2 O
611 0 8 6 2 2 6 0 84 4 0 4 012 4 4
62| 4 8 2 2 2 4 4144 2 0 2 0 8 4 4
63| 4 8 4 2 4 0 2 44 2 4 8 8 6 2 2

Table 6.5: Tabulating the counts D;(a,b) for the S-box S; of Figure 1.1

Dj(a, b) = #{k‘ Ak = Al’k7 Ak € Zgn, Al'k € ng} (615)

Example 6.10 The differential approximation table of S-box Sy used in [11], is
constructed as shown in Table 6.5. Fach entry is denoted as D(a,b) for S-box S,
where a is the row number and b, the column number of the table, 0 < a < 64,0 <

b < 16.

Note the difference between equations 6.15 and 4.2. In equation 4.2, it is the
linear combination of subsets of input and output bits that are considered for
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equality. The definition of D®(a,b) is simpler. Equation 6.15 records counts of
equalities of merely differences between any two inputs k and &' (Ak = k @ k'),
and their corresponding outputs xy and xp (Azy = xp @ xp/) of an S-box.

6.10.3 Probability Measure

The probability of an output difference Az, = b given that the corresponding
input difference Ak = a, for a 6 x 4 S-boxS; is approximated by the following
equation:

Dj(a,b)
64

Example 6.11 Forthe DES S-box Sy of figure 1.1, the probability that two outputs
differ by 5 given that the corresponding inputs differ by 7 is approximated as follows:

P(Azy, = b|Ak = a) =

(6.16)

Dl (7a 5)
64

4
= 61 from Row 7, Column & of Table 6.5
1

16

P(Axy =5|Ak=T7) =

6.10.4 Attack on an S-box with Highest Probability

The following bit-patterns are derived [16] by taking three adjacent S-boxes
Sj,Sjmod 8+1 and S(j mod 84+1) mod 841, Where 1 < j < 8, in order to simplify the
analysis:

AIi’j = OOCd].lg, C, de Zg
Alijmods+1 = 11ghl0s,9,h € Zy
AL (j mod 8+1) mod 8+1 = 10km00y, k,m € Zy

The objective is to minimize the highest probability of success of an attack.
To find the highest probability of success, determine c,d so as to maximize the
conditional probability for one S-box S;. Similarly, determine g, h for the adja-
cent S-box Sj mod s+1, and k,m for the next-adjacent S-box S(; mod 8+1) mod 8+1 t0
maximize the respective highest probabilities.

For an S-box Sj, 1 < j <8, let
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q.,; = P(Az, =0]Ar =00cdll,)

D;(00cd115,0
= max i 24 2 )from Eq. 6.16

_ max{D;(3,0), D;(7, %)zi D;(11,0), D;(15,0)} (6.17)

q; = max P(Az, = 0[Ar = 11gh10,)
g7

D;(11gh1
= max ;(119510,.0) from Eq. 6.16
g:h 64

_ max{D;(50,0), Dj(54a6(jl)> D;(58,0), D;(62,0)} (6.18)

425 = IilaXP(Axr = O|AT = 10km002)

= max Dj(lOkGTZOO%O) from Eq. 6.16

maX{Dj (327 0)7 Dj(367 0)7 D](407 0)7 Dj(447 O)}

= i (6.19)

Upon determining qoj, G1,j mods+1 and Ga,(j mod 8+1) mod 8+1 for three adjacent
S-boxes, the highest probability of success of an attack (assuming independence)
is equal to their product, namely,

qo,5 - 41,5 mod 8+1 * 42,(j mod 8+1) mod 8+1

Example 6.12 Consider the DES S-box Sy (j = 1) used in Example 6.10. From
equation 6.17,

_ max{14,2,2,2} 14 7
do1 = 64 61 32
by looking up column 0 under rows 3, 7, 11 and 15 of the XOR table of S-box
S1, namely Table 6.5, and substituting in equation 6.17. Similarly for S-box So
adjacent to Sy, equation 6.18 gives

_ max{8,8,4,4} 8 1

h2 = 64 T 648
by looking up column 0 under rows 50, 54, 58 and 62 of its XOR table. For the
next adjacent S-box Ss, we similarly look up column 0 under rows 32,36,40,44 of

its XOR table and substitute in equation 6.19 to yield
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~ max{0,4,6,10} 10 5
23 = 64 6 32
The highest probability of success of an attack is now

= qo,1°4q12" 423
7 1 5
= — X =X —
32 8 32
- 35
8192

6.10.5 Modeling Criterion S-8

Criterion S-8 can now be written as follows. Arrange the eight S-boxes
S}, 55 mod 8+15 5(j mod 8+1) mod 8+1, 1 < J < 8, 0 as to minimize the following quan-
tity:

p= Max qo; - qi,jmods+l " G2,(j mod 8+1) mod 8+1 (6.20)

Since the denominator of equation 6.20 is equal to at most 642 for 6 x 4 S-boxes
taken three at a time, we can rewrite equations 6.17, 6.18 and 6.19 to avoid floating-
point errors during the implementation of this criterion as follows. Compute:

Qov,; = max 64 < qo;
= max D;(00cd11,,0)
= maX{Dj(?)vO)uDj(77 0)7DJ(1170)7D](1570)} (621)
Qi = max 64 X q1;
9,

= max D;(11gh10,,0)
= max{D;(50,0), D;(54,0), D;(58,0), D;(62,0)} (6.22)

Qg,j = I};laX 64 x q2,;
= max D;(10km004, 0)
— max{D,(32,0), D;(36,0), D;(40,0), D;(44,0)} (6.23)
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Example 6.13 For adjacent S-boxes S1, So and Ss3, equations 6.21, 6.22 and 6.23
yield the following values:

Qo1 = max{14,2,2,2} =14
Q12 = max{8,8,4,4} =8
Q23 = max{0,4,6,10} =10

The highest probability of success of an attack corresponds to the following
quantity:

Qo1 X Q12 X Qa3 =14 x 8 x 10 = 1120

Equation 6.20 is similarly transformed. Determine an arrangement of eight
S-boxes Si, 55, ..., so as to minimize

P = jmax Qo5+ Q1,5 mod 8+1 * Q2,(j mod 8+1) mod 8+1 (6.24)

The quantity P will be referred to as the difference-score of an arrangement of
eight S-boxes S to Ss.

Example 6.14 We have found the maximum probability P using equation 6.24
for arranging S-boxes Sy, S5, S53. Denote the maximum probability for this triplet
by Py. Similarly, determine Py for the triplet S, S3,S4, ps for S3,S4,Ss, and
so on, until Py for Sg,S1,Sy. Compute PY) = max{P,, P,,..., Ps}. This is the
difference-score for the arrangement (S, Sa, ..., Ss).

There are a total of 8! arrangements of all eight S-boxes. For each arrangement,
compute difference-scores P in the manner just mentioned, 2 < i < 8. Finally,
determine the minimum of these difference-scores, equal to min;—; o g PO The
arrangements of the eight S-bozes that correspond to this difference-score constitute
the best possible arrangements that minimize the maximum probability of attack.

The results of implementing S-8 are discussed in Chapter 7.

6.11 Summary

The various forms of symmetry of the constraints modeled in our CSP formulation
of the S-box problem is summarized in Table 6.6.

Out of these forms of symmetries, the row, column and diagonal symmetry
hold good only if the interchanges of rows (respectively, columns and quadrants)
are made simultaneously. Otherwise some other constraints are violated and the
resulting configuration is not an S-box. The rotational and bit inversion forms of
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Constraint for Row Column Diagonal Rotational | Bit Inversion
Criterion Symmetry | Symmetry | Symmetry | Symmetry Symmetry
S-2 X
S-3 X
S-4 X X
S-5 X X
S-6 X X
S-7 X X

Table 6.6: Summary of Results on Symmetry of constraints modeling S-box Cri-
teria

symmetry, however, yield an S-box that satisfy all constraints. The row, column
and diagonal symmetry of the S-box may or may not impact its score. (This has
to be either proved or disproved!) We have only verified this for DES S-boxes.
However, the rotational and bit inversion symmetries do not affect the score of the
S-box. We have proved these properties in this Chapter.

From the viewpoint of efficiency, an S-box results in an extra one due to row
symmetry, one more due to column symmetry, a third due to diagonal, a fourth
due to rotational and a fifth due to the bit inversion symmetry. In other words,
one S-box results in 2° = 32 S-boxes already available and therefore, a 32-fold
speedup of S-box search. By adding symmetry breaking constraints to the solver,
we should be able to prune further and avoid visiting these new S-boxes when
they are eventually encountered in search.

Criterion S-8 deals with multiple S-boxes taken three at a time. The objective
of this criterion is to thwart differential cryptanalysis. An XOR table employed in
Biham’s work on differential cryptanalysis [11] is used to model this criterion.

This criterion is not implementable into the existing framework that yields one
S-box at a time. In Chapter 9, we will discuss an alternative formulation that
models S-8 into a set of constraints. By doing this, the entire S-box formulation
will be shown to be modeled strictly as a CSP.
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Chapter 7

Performance Measures, Experiments and
Results

We discuss four measures that will be used to evaluate the heuristics for the n-
ary constraints developed in Chapters 4 and 5. One measure is concerned with the
quality of S-boxes generated. The remaining three measures deal with execution
efficiency and provide us with various kinds of information.

In this Chapter we discuss several experiments. To begin with, problems be-
ing studied for performance using various heuristics are summarized and labelled
accordingly. The solver is run on small-sized CSP’s to generate small-sized n x m
S-boxes using the generate-and-test approaches to criteria S-2 and S-7, verify
completeness, and examine results. The summarized heuristics are studied through
experiments and their performances, measured against the quality of S-boxes as
well as the quantifications for efficiency developed in this chapter.

7.1 Summary of Problems

Algorithm 1 implemented as Solver using AC2001 is used to evaluate the following
approaches to the modeling of S-box generation problems:

e The S-2 criterion is translated to a single hard constraint based on the
threshold 7, and the S-7 criterion is implemented as a single n-ary constraint.
This family of CSPs that employ the complete, non-incremental heuristics

VET, VO™, HE™ and HOE™ for n x m S-boxes, is denoted by DESg™".

e The S-2 criterion is implemented using the constraints employed by the
incomplete, incremental heuristic H;”", in which S-7 is implemented as a
single n-ary constraint. This family of CSPs, for n x m S-boxes, is denoted
by DES}".

e The S-2 criterion is implemented using the complete, incremental heuristic
HZ@’T, in which S-7 is implemented as a single n-ary constraint. This family
of CSPs, for n x m S-boxes, is denoted by DES:".
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e The S-2 criterion is implemented using complete, incremental heuristics
VC7 , VOC7, HC7, and HOC7, where S-2 and S-7 are incrementally
checked. This family of CSPs, for n x m S-boxes, is denoted by DESE;".

e The S-2 criterion is implemented using complete, incremental heuristics
VAC7, vVo* Al AC , and H Oj’(;, where S-2 is incrementally checked and
S-7, decomposed by projecting past assignments over domains of future vari-
ables. This family of CSPs, for n x m S-boxes, is denoted by DES¢” .

For brevity, throughout the remainder of this Chapter, Algorithm 1 that im-
plements the solver of Section 2.7 will be referred to as M AC2001(7), where 7 is
the threshold of the S-box score.

7.2 Performance Metrics

We now discuss what measures are compared while running experiments using the
aforementioned heuristics, along with reasons for the measures considered. The
following four metrics are used:

1. The quality metric of an S-box

2. A quantification of search points

3. CPU elapsed time, and

4. Number of completely-filled S-boxes generated

The quality metric of an S-box helps us compare how well a heuristic gener-
ates “better” quality S-boxes compared with another. Quantifying search points
provides us information on how far into the search space each of the heuristics ad-
vances with time. The farther the advancement, the more efficient is the heuristic.
The CPU elapsed time informs how long each heuristic took to generate a specified
number of S-boxes. Finally, counting the number of completely-filled S-boxes is
another efficiency metric.

The order in which the above metrics are listed should be noted. The score
of an S-box is the most important metric because, we would like to obtain high-
quality S-boxes as early as we can. The quantification of search points is next in
order of preference. It gives us an idea of how “quickly” S-boxes can be obtained
with the aforementioned heuristics. The CPU time gives us the same idea. How-
ever, the expression that quantifies the search points gives us more information
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about the nature of the search space that mere timing results do not. This fact
will become apparent in the results of experiments. Finally, the number of S-boxes
generated deals with completely-filled S-boxes alone, since counting partially as-
signed S-boxes do not make sense. This count only suggests speedup just as the
CPU elapsed time does, and does not similarly provide information on the nature
of search space the way the quantification results do.

We will actually encounter two kinds of information about the nature of search
space. The first kind deals with “clusters” of S-boxes having the same “good” qual-
ity as adjudged by the quality metric. The second kind of information deals with
spurts of “many” S-boxes being generated compared to a long duration between
two S-boxes generated, as revealed by the quantification of search space and to a
lesser extent, by CPU time and counting the number of solutions.

Let us now discuss the four performance metrics.

7.2.1 The Quality Metric for an S-box

The equation for the score ox(®) of an S-box ® given by Equation 4.6 provides
us with the quality metric for the S-box. For an n x m S-box, the maximum value
of this score is equal to 2"~ while the minimum value is equal to zero. An S-box
®, is considered “better” than a second S-box @5 if ox (1) < ox(P2).

7.2.2 A Measure of the Search Space

Instead of attempting an exhaustive coverage of the search space, the certitude of
optimality is evaluated by measuring the fraction of search space that Solver ()
covers while generating S-boxes. Let us develop the concepts needed to formulate
an expression for this metric. For simplicity, we assume that the domains for each
variable in X are identical and equal to Z,.

Encoding for a Partially Assigned S-box Given a partial assignment involv-
ing variables in the set X’ = {zo,z1,...,2x/-1} with X' C X, an encoding E for
an n x m partially assigned S-box is defined as:

1X7|—1
Sp= 20 A (ae) - X (7.1)
i=0

where d = 2™, and A\ : Zg — Zq and 7 : Zjx| — Zx+| are permutation
functions that determine value and variable ordering, respectively. 7 is discussed
in section 5.5.2 while X is discussed in section 7.3. A7! is the inverse permutation
corresponding to A on Zy. This encoding is easily extensible to a completely-filled

S-box by setting |X’| = | X|, the number of variables in the S-box.
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In simple words, each n x m S-box can be regarded as a radix-d number
having | X’| digits in that radix. The entry of this S-box for A= (a,(g)) is the most
significant digit that varies least-frequently, while that for x.(x/—1) is the least
significant digit that varies most-frequently.

We now state and prove two properties for S,. For proving purposes, without
loss of generality, let us define permutation functions A : Z; — Z; and 7 : Z|x/| —
Zx as follows:

AMEk) = k, where 0 <k <d
(k) = k, where 0 <k < |X'|
so that A\™H(k) = k

Based on these definitions, Eq. 7.1 is rewritten as:

X1 ,
Sp= 3 z-d*T! (7.2)

1=0

where X' = {x, 1,2, ..., 2|x/-1}
Property 7.1 (Uniqueness) S, is unique to each assignment.

Proof

The result follows at once if the number of variables in any two partial assign-
ments differ. Consider two different (partial) assignments to the same number of
variables in X':

A = <($07d0),($1,d1)7---7($|X'\—1,d|X/\—1)>,
A = <($0>d6)7($1>d3)>"-a(x|X’\—1ad1X/‘_1)>

where d;,d; € Z; and d; # d}, whenever 0 < i < |X'|. Let the encoding for A
(A’) be S, (S},). We have to prove that S|, = S, = A" = A. From Eq. 7.2,

X1 , X/|-1 ,
Sp= > di-d*and S, = Y d-d¥17!
=0 =0

For S, and S;, to be not unique, we should have S, = S, i.e.

| X -1 |X7|-1

Z d; . d\X’|—i—1 _ Z dz . d|X’\—i—1
=0

=0
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Equating the co-efficients, we obtain d; = d; whenever 0 < ¢ < |X’|. Therefore,
S, = 5, = A’ = A establishing uniqueness.
Q.E.D.
From the encoding S,, a (partial or complete) assignment is uniquely “retrieved”
by repeatedly dividing S, by d and collecting remainders that serve as the values
assigned to the variables. The process terminates immediately when the dividend
becomes zero. At this point the remaining variables are unassigned in the case of
a partial assignment.

Property 7.2 (Strict Monotonicity) S, increases strictly monotonically as
search progresses.

Proof
Let the variables be represented by X' = {xo, z1,..., 2, %j41,...,2x/-1}. Let

the domain of variable z;,; € X’ be Zy —{%+h]2h~wdﬁfﬁ, ith d\71) >

d(+1 whenever 0 < k£ < d — 1. Then d]]_f{l > d]H +1, and

dY —dl) —1>0 (7.3)

Consider two consecutive (partial) assignments. We examine the case when the
value to variable z;, changes from d(+1 to the value alJJrl We further consider the
assignment to the remaining variables z;.9,...,xx/—; arising due to systematic
search. In the pathological case, prior to x4, changing, these remaining variables
had the maximum value in Z4, equal to (d — 1). When the value of x;,, changes,
the remaining variables now assume the minimum value in Z4, that is, 0. In other
words, consider the following two assignments:

Aj = <($0, do), ($1, d1)7 cey (%‘7 dj)v
(xj—i-la dglj-)l)v ('Ij+27 d— 1)7 SRR (x\X’|—17 d— 1))7
Aj+1 = <($0, do), ($1, d1), cee (%‘7 dj)v ($j+1, dﬁtl))’ ($j+27 0)7 R ($|X/\—17 0)>7
where dy, dy, ..., dj € Zyg.

Let S (SY™V) denote the encodings of A; (A;j41). Then using Eq. 7.2, we
obtain:
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O _ N i
Spj - Z €Z; - d
i=0
j . . X .
= Y d-d¥T d§-+)1 XTI N (d - 1) - dX
' i=j+2
‘ X .
S}(}Hl) _ Z T - JX1=i—1
i=0

J |X/|—1
= Zdz . dIX |—i=1 + dglf:il) . d|X [—j—2 + Z 0- d\X |—i—1
' i=j+2
By subtraction,
k k X1
1 N N
SjH S(J = (d§‘+t)_d§‘+)1)'d‘x|]2— Z (d—l)-d‘X| !
i=j+2
= (Y —dl) dY T (@ 1)
l+d+d*+.. . +dXT=73)

. dX'l=i-2 _q
i —dly) - dX (d—l)x?

50— 0
1 from Eq. 7.3

(
(
( (if d # 1)
(

v

The same result follows if d = 1, by setting this value for d directly into the
first step. Since SY™ > S0 SU) increases strictly monotonically.
Q.E.D.

Fraction of Search Space Let p, the fraction of the search space p (0 < p < 1)
covered by Solver (). pis approximated as follows. For an n x m S-box, the total
number of enumerations is equal to 2™*?" and forms the denominator of p. The
fraction p of search space for the 6 x 4 S-box is given by the following ratio:

Sy A (e - A
p= 2m><2" - 2m><2"

, from Eq. 7.1 (7.4)

This is the metric that we will use in our experiments to compare performance
of heuristics. However, we will express this metric in a more readable manner in
the following paragraphs.
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Heuristic | First Search Point Sp, (in Hexadecimal), and Corresponding Fraction, a
H}p'lﬁ Sp, = 033056659aa9cffc744728dbed1eb281300395a9566cfacfd7ed7b4e218214b8

a = 0.012456321531011171706977161053827542615230725548026705570504434171742344721
V;'w (No solutions found)
VOg’16 (No solutions found)
Vg;lﬁ Sp, = 03569acf7421edb83065a9fc4712de8b3065acf94d8b712e09f3c05a824d0000

a = 0.013040233276235570484942204477017154420405709642663933645624638940629054168
VXS? Sp, = 3569acf7421edb83065a9fc4712de8b3065acf94d8b721e0ca960351b478000

a = 0.013040233276235570484942204477017154420405709642663933683860530915394054745
VO@’;G Sp, = 3569acf7421edb83065a9fc4712de8b3065acf94d8b712e053a000000000000

a = 0.013040233276235570484942204477017154420405709642663933645624638940629054168
VOﬁ’ég Sp, = 3569acf7421edb83065a9fc4712de8b3065acf94db8712e05a9c3061b4e0000

a = 0.013040233276235570484942204477017154420405709642664403467543665769604504057
Hg'lﬁ, Sp, = 033056659AA9CFFC74472112EDDEB88B30036556CFFCOAAODEEDS8BB821127447
I{Og'16 a = 0.012456321531011171706977135898667979325824166971089322438578599427830606050
Hg;w Sp, = 033056659AA9CFFC74472112EDDEB88B300369AF5CCEF69A4DB8100000000000

a = 0.012456321531011171706977135898667979325824167732326887336844001622173067893
Hz'cl,(; Sp, = 33056659aa9cffc74472112eddeb88b300369acf5cf5a964d7e82d700000000

a = 0.012456321531011171706977135898667979325824167730683235082199556313454298076
I{Og'?16 Sp, = 033056659aa9cffc74472112eddeb88b300369a6£55f9ccaed70000000000000

a = 0.012456321531011171706977135898667979325824167726576701853008982422599743978
Hoz'éi Sp, = 33056659aa9cffc74472112eddeb88b300369af5cc5£a968bedd00000000000

a = 0.012456321531011171706977135898667979325824167732326887499378089911418120883

Table 7.1: First search point generated by solvers employing various heuristics, on
ordered domains of variables

First Search Point, and Offset Let S, represent the first-generated S-box
by the solver. Let a represent the fraction of search space covered by the solver
when the first solution is obtained. The value for a is obtained by substituting the
value of S, into equation 7.4:
S.
a=—" (7.5)

o 2m><2”

For all solutions different from the first, define a search offset r as follows:

S, — S}

2m><2"

r=p—a= (7.6)

Note that |r| < 1. (For the first search point, » = 0.) The remaining sub-
sections analyze the variation in p = a + r with time for the heuristics used in
Solver().

Table 7.1 lists out the value of S, for each heuristic. The incomplete heuristic
H}MG shows a value different from all of the other, complete heuristics, which is
to be expected. Even for complete heuristics, the straight-line variable ordering
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shows an S,, value different from the zig-zag ordering, once again an expected
result.

7.2.3 CPU FElapsed Time

Timing results have been recorded for every S-box generated (including partially
assigned S-boxes). These timings are the CPU execution times and are output by
the function getrusage (RUSAGE_SELF, &time) where time is the elapsed time (in
seconds) since the experiment started. This function is called twice, once at start
to record the elapsed CPU time at the first search point, and thereafter, after each
search point is encountered, often at each minute. A comparison of CPU times
by the different heuristics provides information related to speed-up. This is done
for reporting purposes only. No further analysis is carried out on this metric. In
the experimental results reported in this Chapter, the colum “Time (seconds)” or
“Time (hrs)” always refers to the CPU elapsed time.

7.2.4  Number of Completely-filled S-boxes

Whenever an S-box with all entries is obtained, a count of the number of solutions
is incremented by 1. After each minute, along with the CPU time, the number
of solutions is also reported. A comparison of the number of complete S-boxes
generated so far, against each heuristic, provides information on efficiency of the
heuristic. Once again, this is done for reporting purposes only. No further analysis
is made on this metric.

7.3 Random Permutation of Domains

To study the effect of domain-ordering on heuristic performance, the search space is
shuffled by randomly permuting the domains of each variable. Procedure Permute
from [25] permutes an ordering of integers 7 using random seed s, and, for re-
producibility purposes, is provided below. The drand48() function in Permute
is the one provided in standard GNU C library. Also, to allow the replication of
the reported experiments, the seed is set at start with the help of the function
seed48([1000,0,0]). The swap() function interchanges two integers.

7.4 Setup

The hardware environment consists of an Intel Pentium Core-2 Duo 3-GHz CPU
and 3.3 GB RAM. GNU /Linux Ubuntu 9.04 is the operating system. Binary con-
straints are precompiled for S-box criteria S-3, S-4, S-5, and S-6 (Section 2.3.1).
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Procedure Permute(r, s)
inputs : An ordering 7 of integers, and a seed s.
output: A permutation of 7

1 begin

2 Let 7 = (do, dy, ..., djz-1) ;

3 seed48(s) ;

4 for i — 0 to (|r| — 1) do

5 p < |(|r| — i) x drand48() | ; /¥ 0<p<|m|—i */
¢ L swap(d;, dy1.):

These constraints are then input to the solvers implementing the aforementioned
heuristics for criteria S-2 and S-7.
The experiments are broadly classified into the following types:

1. Efficiencies for small-sized S-boxes such as 4 x4 and 5 x 3 S-boxes, discussed
in Section 7.5.

2. Generation of complete 6 x 4 S-boxes, discussed in Section 7.6. The experi-
ments have been run for a duration ranging from 5 hours to 4 days to capture
various information regarding complete S-box generation.

3. Comparison of performance of heuristics for 6 x 4 S-box generation. This
involves finding how far in the search space each heuristic has advanced up
to. The measure of Section 7.2.2 is used in the comparison. Here, partial
S-boxes are sampled each minute and included in the performance plots.
The experiments have been run for two days, and the results are discussed
in Section 7.7. The quality metric (the score) is thresholded by a maximum
value 7 in each experiment (refer section 4.3), and observations on the quality
of generated S-boxes is made.

7.5 FEfficiencies for Small-Sized S-boxes

In this section we evaluate the scores ox(®) of each of the eight published DES
S-boxes ®. Next, we attempt to generate all 4 x 2 S-boxes and also, examine those
of Simple DES [62]. Finally, an attempt is made to generate all 5 x 3 S-boxes to
examine the duration of search.
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S-box, ® S1| S| S3| Sa| S5 | S6|S7| Ss
Score, ox(®) | 14 | 14 | 14 | 10 | 14 | 12 | 18 | 12

Table 7.2: Scores obtained for existing 6 x 4 S-boxes of DES

Constraint Time # of Score-wise breakup

Combinations (seconds) S-boxes Score 8 Score 6 Score 4 Score 2
No constraints 136228.906250 | 4294967296 | 3931260 | 517882560 | 3496729600 | 276422720
S-3 only 35.029600 331776 11904 153600 166272 0
S-4 only 0.000089 4 4 0 0 0
S-5 only 6.410940 65536 7936 45056 12544 0
S-6 only 13214.516602 429981696 | 2103616 91728896 323934912 12214272
S-3, S-5 0.433693 4096 384 2048 1664 0
S-3, S-6 5.224500 46656 6240 22272 18144 0
S-5, S-6 2.085620 20736 4160 13312 3264 0
S-3, S-5, S-6 0.165739 1600 224 768 608 0

Table 7.3: Statistics of 4 x 2 S-boxes generated by MAC2001(7) to satisfy com-
binations of DES criteria

7.5.1 FEvaluation of DES S-boxes Sy to Sg

We employ Matsui’s metric to score the eight DES S-boxes of Figure 1.1, proposed
by IBM. The scores we have found are reported in Table 7.2.

Observation S-box S; possesses the (not-so-good) score of 18 and S-box Sy,
the (best) score of 10. In addition, a number of S-boxes possess a score of 14. No
S-box with a score of 8 was found during the manual construction. Interestingly,
the last S-box Sg used in breaking DES [11], yielded a “second-best” score of 12.

In general, the maximum value 7 of the score of an n x m S-box is equal to 27!,
and is the value used for small values of n as the experiments suggest. For large-
sized S-boxes such as 6 x 4, the maximum value of the score is considered equal
to 16 (= %) and not 267! = 32 since, there are too many 6 x 4 S-boxes generated
having score equal to 16 and we would like to study generation of (better) S-boxes
with smaller scores.

7.5.2  Problem DESé:g: Generation of 4 x 2 S-boxes

This problem generates 4 x 2 S-boxes (16 variables, at domain size 4). Criterion
S-7 no longer applies. Not all criteria S-3, S-4, S-5 and S-6 result in solutions
when applied together. Table 7.3 reports results obtained using some combinations
of criteria that yield solutions. The threshold 7 assumes the maximum value of
24-1 =8,
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Total time | Total number Score-wise breakup
(seconds) of S-boxes Score 16 | Score 12 | Score 8
14.2659 32,640 25728 3456 3456

Table 7.4: The scores of 5 x 3 S-Boxes generated by the model, with criteria S-5
and S-6 relaxed

The S-bozes of Simple DES [62]

Simple DES is proposed in [62] and employs two 4 x 2 S-boxes Sy and S;. Our
model reports that both S-boxes Sy and S; do not satisfy DES criteria S-3 to
S-6. Applying criterion S-2 yielded a score equal to 5 for S-box Sy. In general,
all entries in the linear approximation table for an S-box, and therefore the score,
should be even. The reason for the odd-numbered score in the case of S-box Sy
is that this S-box has two identical entries in row 3 (resulting in criterion S-3 not
being satisfied). S-box S; yielded a score of 6. Two entries in row 2 of S-box S
are identical, resulting in the presence of an odd-numbered entry equal to 5 in its
linear approximation table (and criterion S-3 not being satisfied).

Conclusion: This approach on problem DESéz% generates 4 x 2 S-boxes only
when some of the DES criteria S-2 to S-7 are relaxed. Results on combinations of
satisfied criteria, generation times and number of S-boxes are reported in Table 7.3.

7.5.3 5x3 S-bozes

This problem, specified as DES;’;i’G, generates 5x 3 S-boxes (32 variables, each with
domain cardinality equal to 8). Criteria S-5 and S-6 are relaxed. The threshold
assumes a maximum value of 2°~1 = 16. The solver could find all solutions and
terminate. Table 7.4 reports S-box generation times and number of S-boxes for
different scores, with a total of 32,640 S-boxes generated.

Concluston: The approach of running Solver () on problem DESg:?{G generates
5 x 3 S-boxes to satisfy all remaining constraints when criteria S-5 and S-6 are
relaxed. No 5 x 3 S-boxes of scores 6, 4 and 2 were found.

7.6 Experimental Results for 6 x 4 S-box Generation

In the earlier problems for generating smaller-sized S-boxes, the complete heuristic
was used. For 6 x 4 S-boxes, however, we have formulated several alternative
heuristics for criteria S-2 and S-7 to improve search speed and/or S-box quality.
As such, a whole section is devoted to 6 x 4 generation.
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Time | Search space | # of S-boxes
(hrs) | increment, r | (ox(®) = 16)
1 1.1980 x 10~% 4
2 2.1725 x 1078 14
3 4.2091 x 10~48 15
4 4.2091 x 10~48 26
5 6.1340 x 10~8 40

Table 7.5: M AC2001(16) on Problem DESgﬁﬁ — Performance statistics

7.6.1 Problem DESg’ébx Complete, Non-incremental Heuristics

We report the results of executing Solver() employing the following com-
plete, non-incremental heuristics: Hg"", HOS™™ V&5 and VOE"". The former
two heuristics are the optimized and non-optimized versions employing default
variable-ordering, while the latter two heuristics are the corresponding versions
that employ even/odd variable-ordering.

S-boxes generated by Solver(), for each heuristic, are sampled each minute
and the fraction of search space offset is determined using Equation 7.6. Table 7.1
records the values for the fraction of search-space a traversed prior to the first
S-box. The values differ with the variable-ordering heuristic employed, otherwise,
they are identical for all heuristics within that ordering (as expected).

Table 7.5 reports the search time (seconds), the increment r of the fraction of
search space covered from the partial S-box generated during the first minute, and
the number of S-boxes with all entries filled, obtained in these time frames, for
heuristics H2'® and Vf’lﬁ that employ no optimization.

All searches with this approach have so far resulted in 6 x 4 S-boxes with score
ox(®P) equal to 16. As Table 7.5 reports, the first four S-boxes having score 16
were generated after about an hour of search commencement. Large wait-times
were visible between S-box generations such as, for example, between 14 and 15
solutions.

Specifying the maximum score 7 equal to 16 should enable M AC2001(16) to
generate S-boxes with “better” scores (values of ox(®) less than 7). However we
report that S-boxes with “better” scores of 14, 12, 10, 8, and so on did not surface
from this approach in the stipulated time-frames. We also report that experiments
with M AC2001(7) for 7 = 14,12,10 and 8 did not yield 6 x 4 S-boxes for these
thresholds in the five-hour time-frame used for running M AC2001(16).

The issue addressed in the next two problems is the improvement of search
speed of M AC2001(7) over DESgﬁ.
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Time | Search space | # of S-boxes
(hrs) | increment, r | (ox(P) = 16)
1 1.0216 x 10~* 20786
2 2.6504 x 10~# 35957
3 ]9.1542 x 107* 49110
4 9.9395 x 10—+ 80933
5 1.0615 x 10=%3 94069

Table 7.6: Algorithm M AC2001(16) on Problem DESg’iG — Performance statistics

Time | Search space | # of S-boxes
(hrs) | increment, r | (ox(®) = 16)
1 1.6929 x 10~# 24524
2 9.6042 x 10~ 43462
3 9.9080 x 10~ 68668
4 9.9956 x 10~ 93523
5 1.1456 x 10~# 108043

Table 7.7: M AC2001(16) on Problem DESSJilG — Performance statistics

MAC2001(16) on Problems DES?;’%T, for wvarious thresholds T (Soft Constraint
Decomposition)

The results of running M AC2001(7) on the family of problems DESg’?; are re-
ported in Table 7.6, with 7 = 16.

Observations A comparison with the results of Table 7.5 suggests that using the
formulation of problem DESGC’fT indeed speeded up the search for S-boxes when
7 = 16, where the marginal coverage of the search space grows with a factor of
105. This model is complete, finding all solutions the way the model involving the
formulation of problem DESgﬁ does.

This approach shares the drawback as with problems DESgﬁ, of its inability to
generate S-boxes with scores of 14, 12, 10 and 8 in reasonable time-frames, when
7 =16, or when 7 = 14,12,10, 8.

Problem DESg’f’T, for various thresholds T

The results of running Algorithm M AC2001(7) on this problem are reported below
for 7 = 16.
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A comparison with the results of Table 7.5 suggests that using the formulation
of problem DES&A; indeed speeded up the search for S-boxes when 7 = 16, where
the marginal coverage of the search space grows with a factor of 10°. This model
is complete, finding all solutions the way the model involving the formulation of
problem DESg’,ﬁ does.

A comparison of this table with the results of Table 7.5 suggests that using the
formulation of DESgilG indeed speeded up the search for S-boxes when 7 = 16,
where the marginal coverage of the search space grows with a factor of 10°, while
comparing with Table 7.6 reveals a marginal factor of 1.08.

Algorithm M AC2001(7) on problem DESg’j‘,T possesses the same disadvantage

as on problems DESgﬁ and DESg’fr, namely, that even when 7 = 16, 14,12, 10, 8,
the model does not generate S-boxes with lesser scores.

The speedup is observed in the plot of Figure 7.1 generated from a four-day run
of the above experiments using formulations of problems DESg’iG and DESgJi 16
The plot displays “jumps” at the points at which a number of variables get reas-
signed. Omne such jump, not evident in the plot, occurred nearly one-and-a-half
hours after start of the experiment, from an increment- point of 2.6532 x 10=%4
(after 38062 S-boxes were generated) to a value of 8.3333 x 10™%* (when the next
S-box was obtained). Frequent, gradual jumps were visible between 24 and 32
hours. The more the number of jumps, the more the search space is uncovered.
Also shown in the plot is the first approach using the formulation to problem
DESg:%. The first approach did not exhibit any such jumps in the two days that
it was run. These jumps would have presumably occurred after a long duration.

Conclusion: The approach using the formulation of problem DESgJi » to gen-
erate 6 X 4 S-boxes results in the fastest model we currently have, compared to
those resulting from problems DESg’ﬁ and DESg’i.

None of these models have yielded 6 x 4 S-boxes having scores below 16 so
far. The issue addressed in the next problem is generation of S-boxes with scores
below (and including) 7.

Problem DES?’f_, for various thresholds T

The approach using the formulation for problem DES?f_ is used to generate
S-boxes with different thresholds 7 = 16, 14,12, 10,8 The experiment is run sepa-
rately on each of these T-values for a five-hour duration. The following observations
are made in this time-frame.

e This approach yields S-bozes with scores 7 and (T — 2), and no more, when
7 = 16,14,12,10. The results in Tables 7.8 to 7.11 for each 7 report the
measure of search-space covered, and the number of S-boxes generated in
each hour over the stipulated duration.
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Performance of MAC2001(16) over the three approaches

atbe-42 1

atde-42 A

at+3e-42 -

at2e-42 -

Fraction of search-space

atle-42 -

0 16 32 48 64 80 96
Time (hours)

Figure 7.1: Fraction of search space as a function of search time (hours) covered
by Algorithm M AC2001(16) on Problems DESS 16> DESC 16, and DESC7 16+

Time | Search space 7# of S-boxes
(hrs) offset, r ox(®) =16 | ox(P) =14
1 8.9771 x 10~ 44698 11952
2 9.3263 x 10746 95205 31890
3 9.0561 x 10~*4 145929 46247
4 9.0585 x 10~44 194165 62274
5 9.0906 x 10~ 240745 79167

Table 7.8: Approach using problem DESIG:;}G formulation — Performance statistics

o S-boxes with different scores appear immediately at a number of points in
the search space. Note the different points in search-space signified by the
different values for r in Table 7.8, where ox(®) = 16, compared with those in
Tables 7.5, 7.6 and 7.7. Note also, how closely the solutions for score (17— 2)
follow those for score 7, given 7. This finds S-boxes having scores (7 — 2)
and 7 in parts of the search tree diﬁ'erent from those explored by Algorithm
MAC?2001(16) on Problems DESS 167 DESC 16, and DESC7 16-

e The S-boxes generated by the approach using the formulation for Problem
DESIT, having score ox(®) = (1 — 2), need not be identical to those for
problem DESIT o, where T = 16,14,12. Among Tables 7.8, 7.9, 7.10,
and 7.11, this can be seen in any two under the column for r, for the same



Time | Search space 7# of S-boxes
(hrs) offset, r ox(®) =14 | ox(P) =12
1 5.6792 x 10~%7 21584 3602
2 8.9688 x 10~44 50235 6827
3 9.0033 x 10~* 83017 12496
4 9.0559 x 10~44 121126 18748
5 1.0650 x 1043 157850 23692
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Table 7.9: Approach using problem DES?:f‘4 formulation — Performance statistics

Ux(®)212 Ux(q)):]_o

Time | Search space # of | Search space 7# of
(hrs) offset, r S-boxes offset, r S-boxes

1 1.7846 x 10~ | 11056 | 1.7965 x 10~ 103

2 6.1985 x 10~* | 23160 | 6.2677 x 10~ 163

3 3.0668 x 1073 | 37652 | 3.0668 x 10~ 418

4 3.1389 x 1073 | 50742 | 3.1389 x 10~ 850

5) 3.1424 x 10~ 62293 3.1424 x 10743 1041

Table 7.10: Approach using Problem DES?fQ formulation — Performance statistics

ox(®) =10 ox(®) =38
Time | Search space # of | Search space 7# of
(hrs) offset, r S-boxes offset, r S-boxes
1 3.5594 x 10~ 8562 3.5594 x 10~# 3583
2 5.7281 x 10~4 17827 | 6.2206 x 1074 4999
3 6.4607 x 1074 | 27875 | 6.4607 x 10~* 7836
4 6.8814 x 1074 | 37875 | 6.8814 x 10~# 10883
5 1.0300 x 1074 | 47671 | 1.0300 x 1074° | 13602

Table 7.11: Approach using Problem DES?fO formulation — Performance statistics

score ox(®P). For example, the values of r in Table 7.8 and Table 7.9 when
ox(®) = 14 differ under the same time-row.

o The experiment generates “better” S-boxes compared to the earlier experiment
involving formulations for problems DESg’éG, DESg’iG and DESg’iw, Even
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012 3 45 6 78 9101112131415
0 35 6 91015127 41413 2 1 811
3 06 510 912154 71314 1 211 8
315012 5 6 9104 8 7111413 2 1
012315 910 5 6711 4 8 2 11413

W N = O

Figure 7.2: A 6 x 4 S-box with score 8, generated by Algorithm MAC2001(10)

applied over Problem DES?’?O

012 3 45 6 78 9101112131415
0 35 6 91015127 41413 2 1 811
3 06 510 912154 71314 1 211 8
315012 5 6 9104 811 21413 7 1
012315 910 5 6711 4 8 2 11413

W N = O

Figure 7.3: A 6 x 4 S-box with score 10, generated by Algorithm MAC2001(10)
applied over Problem DES?’?O

when 7 = 16, this experiment yielded S-boxes in times below the approaches
for the earlier problems, particularly for Problem DESg’jG. For example, in
one hour, only four S-boxes were obtained using Algorithm M AC2001(16)
on Problem DESf;ﬁG, all having score 16. In comparison, the same algorithm

on Problem DES?fG yielded 56649 S-boxes, with score equal to 16 and 14.

Algorithm M AC2001(10) on Problem DES?’?O yielded S-boxes having scores
of 10 and 8. A sample S-box with a score equal to 10 is shown in Figure 7.3,
and one with score 8, in Figure 7.2.

S-boxes below score 8 have not been obtained in the stipulated time-frame.
Based on Matsui’s S-box quality metric, S-boxes with a score of 8 are su-
perior to those specified for DES, with the “best” DES S-box having a score
equal to 10 as Table 7.2 reports.

Summary

Applying Algorithm M AC2001(r) over Problem DES}’; additionally yielded “bet-
ter” S-boxes having score equal to at most (7 — 2), when 7 = 16, 14,12, 10. How-
ever, those S-boxes are not identical to the ones generated by applying Algorithm
MAC2001(7 — 2) over Problem DESIG:ff_Q. The search-point is seen to differ, sug-
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gesting the incomplete nature of this model. However the time taken to generate
S-boxes is less compared to that of the complete model obtained by applying
Algorithm MAC2001(7) over Problem DESgﬁ. At the same time, the latter

model, and its improvements (Algorithm A AC2001(7) on Problems DES&A; and

DESgiT) have not been as capable of generating “better” S-boxes the way the
former performed in the stipulated time-frame.

7.7 Comparisons Between Heuristics

In this section, a comparison of the following heuristics is made from the viewpoint
of performance:

1. Non-incremental heuristics

2. Soft Constraint Decomposition Heuristic for S-2 and Incremental Check for
S-7, namely, heuristic H¢,?

3. Decomposition of the COUNT constraint for S-7 by projection onto domains
of future variables, which is heuristic H4c7%.

In this section, the heuristics will be compared for performance of 6 x 4 S-box
generation against the following parameters.

1. Subsection 7.7.1 demonstrates the effect of introducing the condition for
no arc-consistency check upon domain wipe-out, which is the optimization
discussed in subsection 5.5.1.

2. Subsection 7.7.2 compares heuristic performance for Straight-line variable
ordering versus zig-zag variable ordering, discussed in subsection 5.5.2

Each subsection, compares complete heuristics over the default ordering of do-
mains of variables, and domains permuted using the random permutation discussed
in Section 7.3 by the procedure Permute. For 6 x 4 S-boxes, the default ordering
of the domains is the increasing order, namely, the set {0,1,2,...,15}. The setup
for the random permutation of domains has been discussed in Section 7.3.

In the experiments, the threshold of the score sought is 7 = 16, a value better
than the maximum score of 18 of DES S-box S5.
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Performance of the three Unoptimized Heuristics Performance of the three Optimized Heuristics

Straight-Line Variable and Default Domain Ordering Straight-Line Variable and Default Domain Ordering
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Figure 7.4: Performance of unoptimized and optimized heuristics. Heuristics Vs‘?
and Vqu5 have not generated any S-boxes in the stipulated time-frame and no
curve is visible for these heuristics in Plots (a) and (b)

7.7.1 Performance of Unoptimized versus Optimized Heuristics

Eight plots are provided in this analysis in which unoptimized heuristics and their
optimized variants are separately compared. Four of these plots are for normal
ordering of domains of variables while the remaining four are for permutation of
domains.

Default Domain-Ordering

Figure 7.4 displays the plots of heuristics Hg, H Og, Vs? , and VO? for default
ordering of values to variables.

The plots are similar in shape indicating that all of these heuristics traverse the
same path in the search tree. The plots, as expected, are monotically increasing.
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The almost-horizontal lines indicate that almost all values assigned to variables do
not change except for the last few of these. When a vertical-line (jump) is encoun-
tered, it means that values assigned to the last several variables have changed.

Straight-Line Variable Ordering Notice that the non-incremental heuristics
V¢ and its optimized variant VO% has not produced any S-boxes during the two-
day run of the experiment, and is not present in the first two plots.

In the case of incremental checking, optimization results in a slight improvement
of VO%7 (VO% ) over the V(}i (V$..). In particular, near the 20-hour mark, VO‘é7
depicts a 5.3-percent increase over V(i. VOﬁm exhibits a 4.6-percent increase over
Vf07. For both unoptimized and optimized heuristics, the increase becomes more
prominent as time progresses and as the heuristics advance further into the search
space.

Zig-Zag Variable Ordering The non-incremental heuristic Hg and its opti-
mized variant H 02 has generated 384 S-boxes during the two-day run of the
experiment.

Without optimization, Hﬁéf; consistently shows a 14-percent performance in-
crease over HC’?IG. With optimization in place, the performance of respective heuris-
tics HOG4s over HOE!® has slightly improved to 15%.

One can conclude that projecting the COUNT constraint over future variables,
reducing their domains during the process, exhibits superior performance over
incremental checking of the COUNT constraint regardless of whether optimization
is present or not in both cases. The optimization of Table 5.9 results in further
speedup due to reduction in calls to the function EstablishFullAC.

Permuted Domain-Ordering

Figure 7.5 depicts the performance characteristics of unoptimized heuristics Vgi,

V.., and optimized heuristics VO‘é7 and VO, when the domains of variables
are randomly permuted using the seed of 1000.

Notice that for this particular permutation of domains, the incremental heuris-
tic that projects past assignments on to domains of future variables exhibits no sig-
nificant improvement over the incremental checking heuristic, regardless of whether
variables are ordered by straight-line or zig-zag approach.
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Performance of the three Unoptimized Heuristics Performance of the three Optimized Heuristics

Straight-Line Variable and Permuted Domain Ordering Straight-Line Variable and Permuted Domain Ordering
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Figure 7.5: Performance of unoptimized and optimized heuristics for permuted
domains

Straight-Line Variable Ordering The optimized versions of both of the afore-
mentioned heuristics are seen to exhibit a 46-percent increase over the unoptimized
versions for this particular permutation. Therefore for this variable ordering, the
optimization by preventing further consistency-checking in case a domain wipe-out
occurred, appears promising when domains are randomly permuted.

Zig-Zag Variable Ordering The performance of the optimized heuristic em-
ploying this form of variable ordering differs from that of the unoptimized heuristic
by a very small amount, about 1.5 percent. However, the heuristics due to this
ordering exhibit a jump within the second minute, over the solution space. More-
over, the ensuing horizontal line suggests that a lot of solutions differing only in
the values of the last few variables is found using this permutation.
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Figure 7.6: Performance of heuristics employing Straight Line Variable Ordering

for ordered domains
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Figure 7.7: Performance of heuristics employing Zig-Zag Variable Ordering for

ordered domains

7.7.2  Performance of Heuristics using Straight-Line and Zig-Zag Variable Order-

mg

Figure 7.6 depicts the performance of all incremental heuristics (unoptimized and
optimized), using straight line variable ordering, and Figure 7.7, using zig-zag
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Performance of Partial-Check Heuristics on Permuted Domains
with Even/Odd Variable Ordering
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Figure 7.8: Performance of heuristics employing Straight Line Variable Ordering
for permuted domains

variable ordering, both for ordered domains. Figure 7.8 and 7.9 exhibit the plots
for permuted domains.

Default Domain-Ordering

In the plot of Figure 7.6 employing straight line variable ordering, each heuristic
appears to exhibit a 10-percent increase in efficiency against the other as per the
following ordering: VO%,, > VOe,¢ > Vi, > ng The plot suggests that the
optimized version of VO‘é7 is more efficient than the unoptimized version of V.

The plot of Figure 7.7 employing zig-zag ordering exhibits a stark contrast.
Namely, HO% oy > Hacrd > HO?@7 > H&. HO%7 has an efficiency about 12
percent above He., Hac7 is about 5.5 percent more efficient over HO¢,, and
HO z¢7 is the most efficient, being about 13.2 percent above H 4¢7.

Permuted Domain-Ordering

The plot of Figure 7.8 employing straight line variable ordering with permuted
domains, exhibits a completely different behavior from that of Figure 7.6. Heuristic
Vg7 and V. (VO%7 and VO ) exhibit very similar efficiencies. The projection
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Performance of Partial Check Heuristics (Unoptimized and Optimized)
Zig-Zag Variable and Permuted Domain Ordering
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Figure 7.9: Performance of heuristics employing Zig-Zag Variable Ordering for
permuted domains

of past assignments on to the domains of future variables, reducing these domains
during the process, seem to have no effect. The optimization of skipping the arc-
consistency check when a domain wipe-out occurs appears to yield a 31-percent
efficiency over the unoptimized version.

The plot of Figure 7.9 using a zig-zag variable ordering with permuted domains
exhibits a jump within the second minute of starting the experiment. At this point,
a large number of assignments to variables has changed. Moreover, after the jump,
the curve has remained almost constant, suggesting a large number of solutions
with only the last few variable assignments changing while the first several values
remained the same in this solution space.

7.8 Results on Symmetry

We report results on symmetry of DES S-boxes, and on the violations of one or
more criteria due to non-simultaneous interchanges of rows, columns or quadrants.
We also report the result of an experiment performed in an attempt to break
symmetry by restricting domain-values.
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Operation on Total # of | # S-boxes, Criteria violated
DES S-box Configur- | and impact on | By Remaining
ations Score Configurations
Interchange Rows (S-4) 32 16, no change S-4
Interchange Columns (S-5) 2048 16, no change S-4
Interchange Diagonals (S-6) 32 16, no change S-3
Rotate S-box (S-7) 16 16, no change None
Invert S-box entries 16 16, no change None

Table 7.12: Observations made by interchanging Rows, Columns and Diagonals of
all eight DES S-boxes

7.8.1 Symmetry of DES S-bozes

We have verified row, column, diagonal, rotational and bit inversion symmeties of
all the eight S-boxes of DES. All configurations were considered, including those
in which simultaneous interchanges were not done. Table 7.12 summarizes the
results of the experiments on these configurations.

7.8.2  Breaking Symmetry by Restricting Domain-Values

Since each S-box possesses the property of Bit Inversion, there is a likelihood
that restricting the domain of at least one variable will result in pruning of at
least one future variable resulting in further reduction of the search space, and
the consequent optimization. To verify this fact, we have performed the following
experiment. Introduce a new variable x_; that assumes a domain identical to that
of the S-box variables. Add the following, new constraint between x_; and xg:

2 =0Am€{0,1,2,3,4,56,7}

The idea is to restrict the domain of x to the set {0,1,2,3,4,5,6, 7} without
disturbing the symmetry of all existing constraints involving x,. Upon running
the solver now, the following was observed.

No further reduction has happened to the domain Dy of xg, suggesting that
restricting the value(s) of any of the S-box variables to take advantage of the
property of symmetry does not result in further optimization.

The examples of Chapter 6 suggest that once an S-box is found, a few others
can be written down immediately due to Rotational and Bit Inversion symmetry
properties of appropriate constraints. Unfortunately this idea will not work with
Solver— an intelligent backtracker — and those symmetric S-boxes will end up
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Figure 7.10: A 6 x 4 S-box S7 with score 8, generated by the Solver. This S-box
is used in the place of DES S-box S7.

eventually getting reproduced. We have not continued with further investigation
of symmetry for the time-being.

7.9 Results on Criterion S-8

We have formulated S-8 based on equation 6.24. This constraint works on 8! =
40320 permutation of eight S-boxes taken all at a time. The difference-score given
by equation 6.24 is compared in this section for various arrangements.

7.9.1 The DES S-boxes Sy to Sg

For the existing arrangement (Si,Ss,Ss,Sy, S5, S6, S7,5s), the difference-score

evaluates to 1120. There are 832 arrangements having this difference-score.
Howewver, this is not the minimum difference-score. The minimum value is

actually equal to 1024. There are a total of 256 such arrangements. An example

arrangement is (SQ, Sl, 54, 53, Sﬁ, 55, Sg, 57)

7.9.2  Eight “best” S-boxes generated by the Solver

The minimum difference-score of the first eight S-boxes having a score equal to
8, generated by the solver, evaluates to 82944. We need to develop a heuristic
to discard an S-box, substitute it with another, and attempt to minimize the
difference-score.

7.9.3  Replacing a DES S-box

We have replaced DES S-box S7 having the “worst” score equal to 18, with the
S-box S7 of Figure 7.10 generated by the CSP approach having a score equal to 8.

The result is that the arrangement (Ss,Si, Sy, S35, S6, S5, s, 57) yielded a
difference-score equal to 960, a value “better” than that of the existing DES S-boxes
with the same arrangement.
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Chapter 8
Discussion

In this chapter, we summarize the observations made from the experiments in
Chapter 7. We will also add pointers to more work that can be done in S-box
generation using CSPs.

8.1 Small-size S-box Generation using CSPs

We are able to generate 4 x 2 and 5 x 3 S-boxes. The criteria specified in Chapter 3
do not simultaneously satisfy S-boxes of these sizes. Most criteria, particularly
binary constraints S-3 to S-6, and the n-ary constraint S-7, pose a requirement
on the size of the inputs to an S-box, with the consequent outputs based on these
requirements. Some criteria had to be relaxed. For a S-42 S-box, criterion S-7
does not apply while combinations of the other criteria S-3 to S-6 are considered
in Table 7.3. For 5 x 3 S-boxes, criteria S-5 and S-6 have been relaxed. The
reason is that, for criterion S-5, there are no “middle two” bits accessible in a 5-bit
S-box input. As for S-6, implementing this check did not result in any solutions.

The smallest S-box that can possibly go through all eight criteria needs an
input bitlength of 6, such as those used in DES.

8.2 Complete 6 x 4 S-box Generation

A complete S-box, which we ordinarily refer to as an S-box, is one in which all
variables are assigned. Based upon the experiments detailed in Section 7.6 for
6 x 4 S-box generation starting from a thresholding score of 7 = 16, we have found
that the complete, non-incremental heuristic H 3’16 indeed generate S-boxes but
barely around 384 S-boxes over a two-day run. This gets speeded up by a factor
of 100,000 when we formulated our idea of partially-assigned S-boxes. Heuristics
HE', Hg;m and HY2S are the resulting heuristics. However, with this specified
threshold, these heuristics have not visited the search space that contained many
S-boxes with better scores such as 14 and below.

Using an incomplete, incremental heuristic Hf’w, we are able to obtain S-boxes

of better scores such as 14, 12, 10 and even 8. The highlight of this heuristic is its
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ability to yield S-boxes having scores better than the best S-boxes of DES having
scores 10, namely, score 8. We have performed a proof-of-concept using a few of
these S-boxes having score 8. In this trial, all eight S-boxes have been replaced by
the few chosen S-boxes in an implementation of DES. Encryption and decryption
works as expected.

We have run experiments on random-permutation-and-restarts of domains.
None of the complete heuristics have yielded S-boxes having score equal to 8.
At most, we have obtained S-boxes with scores up to 10. The incomplete heuristic
has, however, yielded S-boxes with a score up to 8 using domain permutation.

Based on the experiments performed for generating completely filled S-boxes,
one can conclude that the most promising heuristic for efficient exploration is
Hﬁ&. However, the heuristic that yields the best quality of S-boxes as measured
by Matsui’s metric is H}"".

8.3 Performance Comparison of Complete, Incremental
Heuristics

On the basis of the experiments in Chapter 7, one can safely conclude that regard-
less of optimization or variable ordering, the incremental heuristic with projection
of past assignments on to future constraints performs more efficiently compared
to the incremental heuristic that treats S-7 as a single n-ary constraint. This is
true of both, ascending-ordered domains and permuted domains given the permu-
tation with seed 1000. For the zig-zag variable ordering heuristic, the percentage
of efficiency goes up from about 5% to about 15% as reported in the experiments.

8.4 Effect of Variable and Value Ordering

We have considered two forms of variable ordering for 6 x 4 S-box generation:
The default straight-line variable ordering in which each S-box is populated by
assigning values in a row-wise fashion, and Zig-Zag variable ordering in which the
entries are assigned in a zig-zag manner for the first two rows, followed by the last
two rows.

Intuitively, we felt that straight-line variable ordering should have yielded bet-
ter results compared to zig-zag ordering, in terms of performance. However, our
results were surprising. The zig-zag pattern appeared to perform way better in
comparison with the straightforward straight-line variable ordering. When do-
mains were permuted, the results were even more interesting for zig-zag variable
ordering. Within the first few minutes over a two-day run, the search jumped to
the farthest point ever encountered in our systematic search (to a scale of 10723 as
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the plot of Figure 7.9 suggests) and remained constant thereafter. This suggests
that there are a large number of S-boxes with score of 16 and below encountered
in this search space, given this permutation.

We have obtained a newer result. Heuristic HO% (zig-zag variable ordering)
yields S-boxes having scores equal to 14, 12 and even 10 when a threshold of 16
is specified, in the permuted-domain-space. This has never happened when the
domains are default-ordered, using any of the complete heuristics, given that the
threshold is 7 = 16. Emboldened with this achievement, we have attempted to
re-run the same experiment with thresholds 7 = 14, 12 to see if we can get S-boxes
with scores 8 and below. So far, we have obtained S-boxes with scores up to
10. We are now running the experiment with thresholds 7 = 10,8 to see what is
happening.

In CSP literature, variable ordering has been suggested as a promising alterna-
tive for efficient search-space exploration. We can conclude that merely ordering
variables in some fashion need not necessarily give very promising results, always.
The straight-line heuristic is a case in point. The zig-zag heuristic appeared to
be more promising. The fact that the plot of Figure 7.9 became constant after
the jump suggests that there are a large number of S-boxes with score at most 16
in this search space. The heuristic worked for this permutation. For some other
permutation, it may very well prove to be more inefficient. In our case, the search
space is very large. The nature of the search space plays a role in deciding on the
variable ordering heuristic.

A promising variable ordering heuristic we need to try with, is to select the
next variable having least domain cardinality to make the next assignment, and
continue further. This is well-known in CSP literature and it will be interesting
to study the effect of this heuristic on our application.

As for value (domain) ordering, although we have employed random ordering
(with a seed of 1000 in the experiments of Chapter 7), a probabilistic strategy to
select the next value assigned to a variable can be used. The literature discusses a
metric called promise value associated with a domain-value selected. The greater
the promise value, the better. We can then permute the domains of variables in
the descending order of promise values. Note that after the first few variables are
assigned, the promise values of subsequent domains are likely to change, suggesting
a dynamic permutation of the domains for variables, one by one as and when an
assignment is made.

8.5 Effect of Optimization

The optimization of all heuristics, discussed in subsection 5.5.1, has yielded slight
speed-up. For example, for a straight-line variable ordering, heuristic VO%; is



143

around 1.1 percent more efficient than V%", Similar is the case of VO’ over Ve
With zig-zag variable ordering, the optimization yielded slightly more promise
(1.4% in both cases).

8.6 Symmetry

Symmetry has been addressed in S-boxes based upon the constraints that possess
the property of symmetry. We have seen conditional row, column and diagonal
symmetry that need not always yield S-boxes. Rotational and Bit Inversion Sym-
metry however, yields alternative S-boxes. Theoretically, due to these two forms
of symmetry, a 400%-speedup is achieved due to the fact that (1) Bit Inversion
Symmetry reduces the search space by half, and (2) Rotational Symmetry reduces
further by half.

We have also experimented measuring the impact of symmetry on search, by
adding a new symmetry-breaking constraint. The speedup encountered is insignif-
icant.

Rejecting an S-box simply because it is symmetric (and its score did not
change) need not necessarily work. The reason is, in criteria S-8, the probability
P with the S-box and its symmetric version may be different when either S-box
is brought into interaction with the other seven. Unless the contrary is proved, we
will still need to have all S-boxes and their symmetric versions, which cannot be
discarded. This needs to be investigated further and accordingly, consideration is
made of whether to add new symmetry- breaking constraints to reduce the solution
space.
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Chapter 9
Conclusions

We conclude this Dissertation by summarizing our contributions and enumer-
ating the limitations and future directions of our work on employing CSPs to
generate S-boxes.

9.1 Summary of Contributions

We have proposed a novel approach to the design of S-boxes for Feistel Ciphers,
an example of which is the Data Encryption Standard (DES). For the purposes
of this Dissertation, the eight security criteria of DES have been formulated into
constraints. These eight criteria are numbered S-1 to S-8.

For CSP formulation, variables have been identified along with their domains.
S-1 is already inherent in the choice of variables and has not been discussed fur-
ther. S-8 deals with multiple S-boxes and is discussed separately. S-3 to S-6 are
binary constraints which have been precompiled into a solver Solver that outputs
solutions to satisfy these constraints. S-7 and S-2 are n-ary global constraints
which have been formulated as heuristics to run on the solutions to generate the
S-boxes. The finer aspects of our contributions are now presented.

9.1.1 Heuristics

Non-incremental Heuristic " This heuristic checks to see if S-2 and S-7
is satisfied. This is a naiVe implementation employing systematic generate-
and-test, and is very inefficient.

Incremental, Incomplete Heuristic H;’" This heuristic checks after each as-
signment to see if S-2 is satisfied, with S-7 implemented as an n-ary global
constraint. This heuristic has been the most promising among all for gen-
erating high- quality S-boxes, having generated S-boxes with a score of 8§,
superior to the best score of all of the eight S-boxes of DES. The two figures
below display two such S-boxes, the first being with a score of 8 and the one
following it, with a score equal to 10.



145

012 3 45 6 78 9101112131415
0 35 6 91015127 41413 2 1 811
3 06 510 912154 71314 1 211 8
315012 5 6 9104 8 7111413 2 1
012315 910 5 6711 4 8 2 11413

W N = O

Figure 9.1: A 6 x 4 S-box with score 8, generated by our solver
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Figure 9.2: A 6 x 4 S-box with score 10, generated by our solver

Incremental, Complete Heuristic Hg’T We have formulated the notion of a
partially assigned S-box. The following are new properties of linear approx-
imation tables for partially assigned S-boxes.

1. For any a,b,X’,®', 0 < N2 (a,b) < |X'|.
2. For any a,b,u,X’,®', Nj‘;;u{u}(a, b) — N&(a,b) € {0,1}.

The condition on when a partially assigned S-box can be extended to a full
S-box that will satisfy S-2, is:

RS

X /
| X' — 71— |2—| < rré%xNj{;,(a, b) < - t7

S-7 is implemented as an n-ary global constraint.

Incremental, Complete Heuristic Hg’f Having provided for incrementally
checking to see if S-2 is satisfied, the next logical step is to incremental-
ize the check for S-7.

Incremental, Complete Heuristic H%7, The constraint for criterion S-7 — the
COUNT constraint — is a global n-ary constraint that cannot be straight-
forwardly decomposed into binary constraints. Nevertheless, we have formu-
lated a novel heuristic by which past assignments of values to variables are
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projected onto domains of future variables, reducing the domains during the
process and improving upon efficiency.

We have proved that H%7, and Hg’: produce identical sequences of S-boxes.

9.1.2  Optimization to Solver

For the complete heuristics Hg”, Hg’;, and H5Z., we have introduced an op-
timization into Solver by not checking for arc-consistency if the deletion-set is
empty. The resulting heuristics are HO%", H Og’;, and HO%Z.., respectively. The
performance of the optimized heuristics is marginally higher than that of the cor-
responding, unoptimized heuristics.

9.1.3 Order of Efficiency resulting from Ordering of Variables

We have found that visiting the variables in a zig-zag fashion generates S-boxes
more efficiently compared to the straight-line manner in which the variables are
visited over each row of an S-box. We can also conclude that variable-ordering,
although promising in most cases, should account for the nature of search space
to see if it has many solutions for efficient S-box generation, particularly for large-
sized search spaces.

9.1.4 Order of Efficiency resulting from Ordering of Domains

We have found that the efficiency of Solver is much higher (about 35%) for
permuted domains when using a zig-zag variable ordering, compared to straight-
line variable ordering. We are also able to uncover a large number of S-boxes
having lesser scores. With the threshold 7 = 16, S-boxes with scores equal to
16, 14, 12 and 10 have been uncovered. This has not been the case with the
default (ascending order) domain-ordering where only H;'" emitted these lower-
score S-boxes.

9.1.5 Search Efficiency Metric

For addressing performance of heuristics on search spaces using systematic search,
merely counting the number of S-boxes is not sufficient. To arrive at a better
understanding of the search space, we have formulated a metric to measure search
efficiency by defining the fraction of search space traversed by each of our heuristics.
Heuristic Hﬁ& using zig-zag variable ordering on randomly-permuted domains
offers traversal of a large amount of search space in the shortest possible time
compared to the others, based on this metric.
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Constraint for Row Column Diagonal Rotational | Bit Inversion
Criterion Symmetry | Symmetry | Symmetry | Symmetry Symmetry
S-2 X
S-3 X
S-4 X X
S-5 X X
S-6 X X
S-7 X X

Table 9.1: Summary of Results on Symmetry of constraints modeling S-box Cri-
teria

9.1.6 New Forms of Symmetries

Our CSP methodology has exposed new forms of symmetry in S-boxes and these
are summarized in the table below.

Rotational and bit inversion symmetry are the only two forms of symmetry that
result in an S-box that satisfies all constraints. We have proved the invariance of
the score of an S-box over these two symmetries. Symmetry is broken by adding
more constraints.

9.2 Limitations and Future Work

This Dissertation attempts to model the eight criteria specified in [16] as a CSP.
The limitations of our formulation, heuristics, symmetry, variable and value or-
dering will now be addressed along with pointers in future directions.

9.2.1 Al11diff Constraints

S-box criteria S-3 to S-4 result in binary constraints in which the values to two
variables are unequal. All of these are in the category of the A11diff constraint in
various ways. A future task is to model all of these constraints into A11diff con-
straints, and employ efficient algorithms to process this special form of constraints,
using an efficient algorithm by Puget [49].

9.2.2  Variable Ordering

A form of variable ordering prescribed in CSP literature is to select the next
variable for assignment, that has the least domain cardinality. It is interesting to
study the performance of this variable ordering heuristic against straight line and
zig-zag ordering heuristics used in our application.

Another form of dynamic variable ordering is worth exploring. We can list
the variables in the descending order of the number of times they appear in the
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constraints. We expect around half the number of variables (32 out of the 64, for
6 x 4 S-boxes) in this listing. The next variable to be selected for assignment will
then be among the most-constrained variables.

The selection of the next variable from the variable-ordering need not be made
in the beginning. In fact, as equation 4.9 suggests, at least % variables should be
assigned before partial checks are made for S-2. And for S-7, as discussed at the
end of section 5.3 and throughout section 5.4, at least % + 8 variables should be
assigned before initiating any partial checks. One can empirically select the next
variable from this point onwards. In general, one should parameterize the point of
selection by a parameter a such that the variable z, should be the next variable
from where selection should begin based upon the variable-ordering. For example,
when o = 0, begin selecting from the first variable in the variable-ordering. When

a = %‘, begin this selection from the middle, and so on. One may choose « to

be below, or above, the middle variable (for example, @ = % + 8) and see how
the asymmetry helps. Alternatively, examine the performance of the solver by
sequentially varying «, and determine empirically the optimum point for o for the
particular heuristic. This should be done for ordered as well as permuted domains.

9.2.3 Value Ordering

Instead of randomly shuffling the domains of each variable, assign, based upon
the current state of the S-box, a promise value to each of the (reduced) domain-
elements for the current variable being assigned. The higher the promise value,
the better. Next, select the domain-element with the highest promise value and
assign to the variable. The promise values for the subsequent domains may now
change. Repeat the process.

9.2.4  Symmetry

Prove or disprove that even after performing rotational and bit inversion transfor-
mations to obtain symmetric S-boxes whose scores do not change, the probability
P of Equation 6.24 does not change. If P does not indeed change, then symmetry
can be broken by adding new constraints and symmetric S-boxes can be discarded,
reducing the search space and improving upon efficiency.

9.2.5 The Score ox(®P) of the S-box ®

We have been able to experimentally obtain 6 x 4 S-boxes with the “best” score
equal to 8. Using our solvers, we have been unable to go below this value in the
time-frame specified in our experiments. Is it actually possible to obtain S-boxes
with better scores (values of 6, 4, 2 and ideally, 0)7 Do such S-boxes even exist?
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We don’t know. If we are able to use information-theoretic results to prove (or
disprove) the existence of 6 x 4 S-boxes with such lesser scores, or even determine
the minimum value of the score, it will be a key result.

In section 3.3, we mentioned two approaches to projections. In one, assignment
to the current variable is projected on past assignments. This approach is employed
for n-ary constraints S-2 (section 4.4) and S-7 (section 5.3). The problem with
this approach is that there are still partial checks that need to be carried out.
For S-2, the score threshold 7 is built into these partial checks (equations 4.9
and 4.12). The second approach is of projecting domains of future variables onto
past assignments, which is discussed for S-7 (section 5.4). The advantage of this
approach is that after domains of future variables are reduced, no explicit checks
are required, and the next assignment always results in an S-box. If we are able to
employ this approach for the nonlinear constraint S-2 with 7 as a parameter, we
can generate S-boxes with scores of 8, 6, 4, 2 and even 0 in real-time! In particular,
if no such S-boxes with scores equal of 6, 4, 2 or 0 are found, the solution space
would be empty and we would have proved the result experimentally — a very
important result.

9.2.6 Adding New Security Criteria

There have been more advances in work on S-box design during and after publi-
cation of the eight design criteria. Some examples are the use of Bent functions in
S-box design, avalanche properties and strict avalanche criteria, bit independence
criteria and higher-order bit independence criteria. These can be modeled into
additional constraints and input to the CSP.

9.2.7 Almost-Similar S-boxes

In all of our complete search heuristics, the first several S-boxes generated have
always been possessing identical rows and columns. Although this is not an issue
of “symmetry”, it is an issue of “similarity” of S-boxes. If we have to select 8
S-boxes and arrange them to satisfy S-8, we want to ensure that they should
never possess identical rows and columns. For this, we need to come up with a
measure to remove “similar”, or “almost-similar” S-boxes. This is another direction
along which we would like to proceed further.

9.2.8 Systematic Sampling of Performance Measures

We have formulated equation 7.6 for the measure of performance and have com-
pared heuristics by comparing the values of (a+ p) in this equation. To determine
a percentage, we have taken those points on the performance curves when the
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“jumps” are encountered in these curves. The reason we considered those “jumps”
is that this was where we could easily read off the variations in heuristics and
calculate percentage differences. We could have very well chosen (consistently)
a different point on the performance curves. Instead of following an ad-hoc ap-
proach and sampling arbitrary points, a more systematic sampling could be done
as follows. Measure the area under the performance curves and determine their
differences up to a specified time (for example, at the end of five hours). The
changes in the areas will represent the necessary speed-ups.

9.2.9 Other Solvers

As mentioned in Section 2.6.2, Mozart-Oz is a programming language used for
constraint programming. We attempted to model our S-box problem as a CSP
using this programming language, but quickly discovered that it does not lend
itself flexibly for bit-level operations. Commercial solvers such as ILOGTM have
not been evaluated due to budget requirements. Not only that, customizing and
tailoring the solver to suit our requirement is a grey area and purchasing such
software involves making a feasibility analysis, something that is to be done at a
different level. We have instead employed a home-grown solver implemented in
C** for our purposes. Formulating this problem as a CSP using other solvers
will be considered eventually, particularly for the purposes of implementing new
security criteria.

9.2.10 NP-Completeness

Our main objective is to maximize nonlinearity by minimizing the score ox(®) for
an S-box ®. Another measure, not specified in the list of criteria of Table 2.1 and
not modeled in our work, is autocorrelation [15, 41|. The smaller the measure of
autocorrelation, the better. Designing an S-box that has maximum nonlinearity
and minimum autocorrelation is known to be N P-complete [41]. In general, solving
a CSP is also known to be N P-complete. Can we conclude that the S-box Design
Problem is N P-complete solely on the basis of these arguments? To actually prove
this result, one needs to first prove that the given problem is in NP. Next, find a
problem known to be N P-complete and employ a construction to transform this
known problem to the equivalent S-box design problem.



151

9.3 An Alternative CSP Based Approach to Model all Eight
Criteria

We have modeled criteria S-2 to S-7. Criterion S-8 could not be modeled by
this framework alone. An explicit check of criterion S-8 after generation of eight
S-boxes had to be done.

A way to ensure that the entire set of criteria S-2 to S-8 is modeled strictly
as a CSP! is the following.

Instead of formulating 64 variables for one 6 x 4 S-box, formulate 64 x 8 =
512 variables for eight 6 x 4 S-boxes. In other words, the variables X =
{xo,x1,..., %63, Tea,---,T511}. The domains are identical for all of these variables
in X, equal to {0,1,...,15}. A solution to this problem is an assignment to all
512 variables. In other words, the solution generates eight S-boxes S; where each
S-box Sz has variables {x64i7 L64i+15 L645425 + - - 7x64i+63}7 0 S 1< 8.

9.3.1 The Formulation of Constraints for Individual S-boxes

The constraints for S-2 to S-7, governed by equations 4.7 to 5.1 will now be
identical for the variables in S-box S;, 0 < ¢ < 8. Since these criteria gives rise to
672 binary constraints for criteria S-3 to S-6 for each S-box 5;, the total number
of binary constraints in this formulation will equal 672 x 8 = 5376.

9.3.2 Modeling Criterion S-8

Criterion S-8 is now modeled as an n-ary constraint as follows (refer section 6.10).
Let

Qo; = max{D;(3,0), D;y(7,0), D;(11,0), D;(15,0)}
Ql,i = maX{Di(50’ 0)7 Dz(54> O)a Dz(58> O)a Dz(62’ O)}
Q2; = max{D;(32,0), D;(36,0), D;(40,0), D;(44,0)}

where D;(a, b) is the entry in the XOR table for S-box S; under row a, column
b. Arrange the eight S-boxes 5;, 0 < i < 8, so as to minimize the following
probability:

P = ,Jnax 7QO,i mod 8 * Q1,(i41) mod 8 * {2,(i4+2) mod 8 (9.1)

We note the difference in the way the modulus is taken, in this equation as
compared to equation 6.24. There, 1 < 7 < 8 while in equation 9.1, 0 <7 < 8.

I This idea is due to Dr. Philip Chan.
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The main advantage of this approach to modeling the S-box problem as a
pure CSP approach is that pruning can now occur across S-boxes due to the
constraint 9.1 for criterion S-8. The limitation of this approach is that the search
space has now increased from 16% for 6 x 4 S-boxes, to 16°'2, i.e. by a factor of
16® which is in itself exponential. We need to formulate novel heuristics for S-8
to project domains and generate solutions. This is in addition to the formulations
of projection-based heuristics for criteria S-2 and S-7 discussed, respectively, in
chapters 4 and 5.

9.3.3 Experimental Observations and Issues

We have modeled the S-box problem for 6 x 4 S-boxes and have formulated con-
straints involving all 512 variables. The variable ordering selected by us is the
zig-zag ordering and domains are ordered in ascending order. The nonlinearity
threshold (for S-2) is chosen equal to 16. The following observations are made.

S-box Generation In the first solution, eight S-boxes are identical. This is to
be expected due to the systematic nature of the search.

After an S-box set of eight S-boxes is generated, the last few variables (around
30) of only the last S-box change values for the next solution that forms the next
set of eight S-boxes. The remaining seven S-boxes out of these eight have not
changed in their entries in our experiments thus far. This is expected due to the
exponential nature of the search space.

Difference Score equal to zero The difference-score of all of the eight S-boxes
in the first solution, and in the next few, turn out to be zero! Does this mean
that this S-box set is better in comparison with what we have found thus far?
Cryptanalytically it does not appear to be so.

To check whether eight identical S-boxes always yields a difference-score equal
to zero or not, we have run a check for S-8 on eight identical copies of DES S-box
S-1. The difference-score evaluates to 1008, not zero.

We need to interpret the difference-score and possibly threshold the same. The
configuration of eight identical S-boxes generated by us, and many others having
the first several identical S-boxes, may have to be rejected based on the threshold.

We can use a maximum threshold to limit search. Since we know that the best
score (Section 7.9.3) is 960, this can be used as the upper threshold to reject S-box
sets that yield a higher difference-score.
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9.3.4 Improvements — Search Speedup

Using this alternative model, revisiting of S-boxes in the search-space need to be
avoided. Also, there are two levels in which search can be speeded up. These
considerations are discussed.

Revisiting of Solutions Criterion S-8 works on the 8! permutations of a set
of eight S-boxes. These 8! permutations are visited at the end of every complete
assignment to all 512 variables.

A way to speed up is to mark or encode each permutation. We see that each
permutation will eventually get revisited as part of the systematic search. When
this happens, examine if they have been marked before and if so, discard the
solution.

Different Sets of S-boxes In this idea, we attempt to exercise a check on sets
of eight S-boxes. Let the S-boxes be labeled as Si, Ss, ..., Ss. The eight S-boxes
may appear in different orders at several search-points. For example, a complete
assignment may eventually yield an S-box set that corresponds to a permutation
of the eight S-boxes just labeled.

We do not have to determine the quantity governed by Eq. 9.1 for all 8!
permutations after each complete assignment. Instead, it is enough to deter-
mine this quantity only for the eight triplets S}, S mod 8415 S(j mod 8+1) mod 8+1 Where
1 <5 <8, since each permutation gets visited as part of the search.

9.4 Concluding Remarks

We have addressed the “age-old problem of S-box design” using CSP methodology.
This is a known, hard problem, which we have visited using the novel approach
of systematic search using CSPs. During the process, we have obtained S-boxes
with superior quality metric compared to those of the best DES S-boxes. We
have applied the properties of CSPs to formulate heuristics, and have derived
new results not known in the literature on S-box design. New S-box symmetries
have been discovered in this work. For the purpose of systematic search, a novel
quantification of search efficiency has been proposed.

We are not claiming to have solved the S-box design problem, but have discov-
ered new results in S-box design using a modeling technique that provides avenues
for expansion into future research on S-box design.
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