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AbstratAutomati Design of Feistel Ciphers Using ConstraintTehniquesbyVenkatesh RamamoorthyDissertation Advisor: Marius C.Silaghi, Ph.D.In symmetri key ryptographi algorithms that operate on the Feistel priniple,Cryptographi substitution boxes (S-boxes) are employed to introdue onfusioninto the message being enrypted. These S-boxes onstitute the non-linear part inmost ryptographi algorithms, and their design has been the fous of attentionamong researhers for several years. The onerns yield major design requirements.In partiular, they should be highly nonlinear. Current work in S-box design tosatisfy seurity requirements employ approahes suh as human-made, math-made,generate-and-test, spetral inversion and loal searh. Reent approahes employneural networks and distributed methodologies.This work addresses the appliation of onstraint-based searh tehniques to�nd ryptographi substitution boxes (S-boxes). In this approah, variables arede�ned, the domain of eah variable is spei�ed, and ommon seurity requirementsfor an S-box are modeled into onstraints involving relevant variables. The modelis input to a solver that outputs the S-boxes.We have made a number of ontributions. First, the quality of obtained S-boxesis superior to the ones urrently published by the Data Enryption Standard (DES)iii



as part of its spei�ation based on Matsui's seurity metri. Seond, due to theenormity of the problem, several heuristis are investigated for n-ary ConstraintSatisfation Problem (CSP) solvers to speed up S-box searh and generation. Weapply the properties of CSPs to redue the searh spae to obtain solutions both, ef-�iently and having higher quality aording to Matsui's measure for non-linearity.We derive new results on Linear Approximation Tables for an S-box, and on theondition of a partially assigned S-box to form a omplete S-box. A method ofvisiting S-box variables that will e�iently generate S-boxes is identi�ed. A formof value-ordering to propel this e�ieny further has been disovered.The proper-ties of onstraints are used to disover new forms of symmetry of S-boxes. Finally,a novel metri for searh e�ieny of systemati searhes suh as this appliationhas been quanti�ed.
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1
Chapter 1IntrodutionCryptography is the siene of hiding information. A reason for this hidingof information is, for example, to ensure its on�dentiality. The original mes-sage being transformed is alled the plaintext and the transformed message, theiphertext. The proess of transformation is alled enryption and the reverse pro-ess of retrieving the message from its transformed equivalent is alled deryption.Enryption and deryption of a message is done using keys.The same key that is used to enrypt the message an be used for deryption.This situation is akin to a lok that has one key. Suh a ryptographi algorithm isalled a Symmetri key algorithm. Alternatively, a di�erent (but related) key anbe used for deryption from the key used for enryption. Imagine a loking meha-nism that an be ativated using one key and deativated using a orrespondinglydi�erent key. This kind of a ryptographi algorithm is alled an Asymmetri keyalgorithm.Symmetri key algorithms operate on the priniple of Feistel iphers [21℄. TheData Enryption Standard (abbr. DES) ryptographi algorithm [1℄ is an exampleof a Feistel ipher. They operate on the priniple of onfusion and di�usion. Di�u-sion is used to distribute the bits in the input message being enrypted and de-skewthe message, and is aomplished using permutations. Confusion is introduedin the message during enryption by substituting parts of the message, replaingthem with values. Both are aomplished using substitution boxes (S-boxes), whihonstitutes the most nonlinear transformation in the entire enryption algorithm.DES is based on eight S-boxes, numbered from S1 up to S8, shown in Figure 1.1.Eah S-box, organized in the �gure as a 4×16 matrix, takes in a six-bit input andgives out a 4-bit output. Thus the total number of input bits to all eight S-boxestaken together is 48, while the total number of output bits is 32.An example demonstrates DES S-box usage.Example 1.1 Consider 39 as the 6-bit input to be substituted using DES S-box

S8, i.e., S8(39) is to be determined. Let y0y1y2y3y4y5 = 1001112 (39 in binary).The row is seleted by bits y0y5 = 112 = 3, orresponding to the last row of S-box
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S10 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 71 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 82 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 03 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13
S20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150 15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 101 3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 52 0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 153 13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9
S30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150 10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 81 13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 12 13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 73 1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12
S40 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150 7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 151 3 8 11 5 6 15 0 3 4 7 2 12 1 10 14 92 0 6 9 0 12 11 7 13 15 1 3 14 5 2 8 43 3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14(a) DES S-boxes S1 � S4
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S50 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150 2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 91 14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 62 4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 143 11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3
S60 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150 12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 111 10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 82 9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 63 4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13
S70 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150 4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 11 13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 62 1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 23 6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12
S80 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150 13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 71 1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 22 7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 83 2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11(b) DES S-boxes S5 � S8Figure 1.1: Substitution Boxes (S-boxes) S1 � S8 used in the Data EnryptionStandard (DES)



4
S8. The value of S8(39) is now obtained by indexing into the olumn y1y2y3y4 ofthis row, namely, olumn 00112, or olumn 3. The entry for S-box S8 in row 3,olumn 3, read o� from Figure 1.1, is 7, that is, S8(39) = 7.The S-boxes of DES have been the subjet of intense speulation by the ryp-tographi ommunity. Of partiular interest has been the manner in whih theyhave been designed, and why the spei� numbers shown in Table 1.1 have ap-peared in the algorithm, partiularly due to the lassi�ed nature of the design [58℄.It was not until after ground-breaking results on di�erential ryptanalysis by Bi-ham [11℄, and subsequent results on linear ryptanalysis by Matsui [34℄, that thedesign riteria have been published [16℄. The requirements for S-box design arespei�ed to ensure maximum seurity, and a number of them are available in theliterature [72, 45, 6, 5, 64, 38℄.There are several methods now available to design S-boxes for Feistel iphers.A lassi�ation is made [62℄ in whih S-boxes are generated using random num-bers, random generate- and-test, human-made and math-made entries. Reent ap-proahes employ loal searh, spetral inversion, neural networks and distributedapproahes. In most ases, the S-boxes generated need to be heked for satisfa-tion of the seurity requirements.Our work employs a novel approah that uses Constraint Satisfation Problems(CSPs) to obtain S-boxes. Eah seurity requirement is modeled as a onstraintin this approah. The solutions to the CSP are the S-boxes that satisfy theonstraints. The main advantage of this approah over the existing ones is thatno expliit testing of eah S-box for seurity requirements is neessary sine thesolutions already satisfy the onstraints that model the requirements.1.1 Problem Statement
S-box Generation Generate a set of ryptographi substitution boxes (S-boxes)that satisfy known design riteria, with eah riterion being modeled as aonstraint.E�ieny of Generation Improve upon S-box generation e�ieny using thisapproah.Quality of S-boxes Generated Provide measures to determine the quality of

S-boxes generated using this approah. Improve upon the quality of S-boxesusing the properties of CSPs. Compare and ontrast with equivalent metrisof S-boxes generated using known approahes.



5Arrangements of S-boxes Examine arrangements of S-boxes and examine theoverall quality metri of the resulting arrangement.1.2 Solution OutlineDetermining S-boxes an be formulated as a CSP. A CSP onsists of variables,domains and onstraints. This �rst step of S-box problem formulation involvesidentifying the variables, domain of values assumed by eah variable, and theonstraints onneting the variables.Next, the model obtained by speifying the variables, domains and onstraintsis input to a solver. The solver is then exeuted to yield the S-boxes that satisfythe known onstraints. Performane issues are likely to surfae and heuristis forspeedup are being formulated. An S-box has a partiular size that should beparameterized. The model should allow for generating lower-size S-boxes, leadingto experiments to be performed to examine e�ieny of S-box generation usingthe CSP approah.To formulate new heuristis, properties of CSPs are applied. In this regard,interesting observations are made. First, a number of onstraints are binary, in-volving two variables, while others are n-ary onstraints dealing with more thantwo variables. Then, some n-ary onstraints an be deomposed into lower-arityprediates while others are not straightforwardly deomposable and speial formsof projetions are being formulated. Aspets of symmetry of onstraints are inves-tigated, and their impat assessed on solution speedup.An important issue is to asertain the quality of eah generated S-box forwhih a seurity metri is arrived at, with lower and upper bounds in terms of the
S-box size. The speial forms of projetions for the n-ary onstraints inludes thisseurity metri.Finally, an analysis of arranging S-boxes in order to determine an optimummix is arried out.1.3 Main ContributionsOur ontributions in the CSP-based approah to the design of S-boxes for FeistelCiphers have been the following.
S-box Generation1. Using CSPs, we have suessfully obtained S-boxes that satisfy the spei�edriteria, eah of whih is modeled as a onstraint for the CSP.



6E�ieny of Generation1. We have formulated a number of heuristis to improve upon e�ieny of
S-box generation. The most promising heuristi from the e�ieny viewpointis an inremental, omplete heuristi employing a zig-zag variable orderingand permuted domains to generate 6× 4 S-boxes.2. New properties have been formulated and proved for S-box nonlinearity anddeomposition of n-ary onstraints, to redue searh and speed up S-boxgeneration.3. New symmetries of S-boxes have been disovered using the CSP methodol-ogy, improving e�ieny further.Quality of S-boxes Generated1. Using an inomplete heuristi, we have obtained 6× 4 S-boxes that are su-perior in quality to those published in [1℄ depited in Figure 1.1, as governedby Matsui's metri for the quality of an S-box.2. A new pattern of visiting S-box entries to speed up the searh has beenfound. A new shu�ing of values assigned to S-boxes to not only speed upsearh but also, improve S-box quality, has been found.Arrangements of S-boxes1. An optimum arrangement of a spei�ed number of S-boxes seleted fromthose generated by our model is determined. A metri derived from thedi�erential ryptanalysis of DES [11℄ is adopted as the ertitude of optimalityof this arrangement.1.4 Organization of the DissertationThe rest of this Dissertation is organized in the following manner. Chapter 2disusses the S-boxes, where in DES they are loated, along with an overview of theevolution of those numbers. It desribes relevant researh into S-box onstrutionand provides a lassi�ation to reveal where our work �ts into S-box design. ThisChapter also disusses aspets of CSPs relevant to the problem on hand. The CSPsolver used in our work in various ways is outlined in an algorithmi fashion at theend of this Chapter.



7Chapter 3 disusses our CSP strategy to solve the problem. It presents themodeling of all binary onstraints formulated from the S-box requirements.Chapter 4 models the �rst of the two n-ary onstraints, namely, the nonlin-earity onstraint. This onstraint is straightforwardly implementable as a non-inremental heuristi using a generate-and-test approah, leading to gross ine�-ienies. Two inremental heuristis are disussed, one being an inomplete heuris-ti and the other, a omplete heuristi using onstraint deomposition. Both inre-mental heuristis signi�antly improve upon S-box generation speeds. In addition,the inomplete heuristi has yielded 6× 4 S-boxes having nonlinearity metri su-perior those of the eight DES S-boxes of Figure 1.1.Chapter 5 models the seond of the two n-ary onstraints, whih we denotein that Chapter as the COUNT onstraint. This onstraint is implementable asa generate-and-test heuristi, whih again, leads to ine�ient searh for S-boxes.An inremental heuristi is presented. The COUNT onstraint is not straightfor-wardly deomposable into onstraints of smaller arity. Nevertheless, a projetionsheme is employed leading to domain-redution and adding to e�ieny over theinremental heuristi. This is the seond, novel heuristi we present in this Chap-ter.Chapter 6 disusses aspets of symmetry in S-boxes to ontribute to searhe�ieny, and arrangement of multiple S-boxes to maximize a probabilisti ostfuntion.Chapter 7 presents experimental results of the various heuristis and their e�-ienies. An e�ieny analysis is also made varying the size of S-boxes, beginningwith smaller-sized S-boxes and on the S-boxes of Simple DES, a miniaturized vari-ant of DES provided in [62℄. A measure of searh progress to quantify e�ienyrather than the simple measure of the number of solutions, while generating large-size S-boxes, is formulated. The results of heuristis that improve upon the qualityof S-boxes are presented, along with our main ontribution of obtaining S-boxeshaving quality better than the published DES S-boxes as adjudged by Matsui'sseurity metri. We also present orders of e�ienies of variable and value orderingin the experiments.Chapter 8 disusses the results obtained in Chapter Seven in the light of whihheuristi is the most promising, and provides an insight into the nature of thesearh spae. Chapter 9 onludes this Dissertation.
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Chapter 2Bakground and Related WorkWe review the literature related to our topi of researh, namely, employingsystemati searh of ryptographi substitution boxes (abbr. S-boxes) using CSPs.The ryptographi algorithm hosen for our experimentation is the Data Enryp-tion Standard (abbr. DES) [1℄. The reasons for hoosing DES are:1. It is simple to understand and implement, and has in fat been the de�ni-tive standard sine 1977 for twenty years before the Advaned EnryptionStandard (AES) development e�ort.2. Extensive researh has been done on S-box design of DES-like algorithmsand we would like to ompare our results against existing work.3. Eventually an attempt an be made to investigate how the results ould beapplied � and perhaps, generalized � to the urrent Advaned EnryptionStandard (AES [2℄).In addition, we feel that the mathematial struture of the S-boxes for theAES do not lend themselves for diretly investigating S-box searh in the AESalgorithm. In any ase, AES is not a Feistel ipher unlike DES and several otherFeistel iphers, and DES is the right way to begin from.Our approah to S-box searh is a novel one, and to assess against knowntehniques, one needs to review the following topis, to start with:1. Existing ryptographi algorithms, where in Cryptography do the S-boxes�t in, and what the properties of these S-boxes are.2. S-box design. This diretly stems from the properties required of an S-box.How S-boxes are urrently designed, namely, existing tehniques that yieldsuh S-boxes, are studied to analyze how our approah di�ers from those inthe literature to �nd S-boxes, and also, for more ideas.3. Existing approahes to S-box searh and the their di�erenes from our ap-proah



9The relevant literature is lassi�ed into the following topis to form the stru-ture for this Chapter.1. Cryptography2. S-box design and onstrution, and3. Searh tehniques and CSPs2.1 CryptographyThe siene of Cryptology is lassi�ed into two bodies: Cryptography and Crypt-analysis.2.1.1 Classi�ationCryptography is the siene of transforming an input data, for transmission orstorage, by an entity, into a form that annot be legible to any entity other thanthe one transforming the data. This transformation is done with the help of a key.The data being transformed is alled plaintext. The transformed data is allediphertext. The proess of transformation is alled enryption and the key usedfor transformation is alled an enryption key. To be able to retrieve the data, theentity applies an inverse transformation and a key. The proess of inverse trans-formation is alled deryption and the key used for this transformation is alled aderyption key. The transforming algorithm is alled a ipher, or CryptographiAlgorithm. Both these terms are used interhangeably in this Dissertation.Cryptanalysis on the other hand, is the siene of deduing the enryption keygiven parts of the iphertext, and optionally, the orresponding plaintext.Figure 2.1 graphially illustrates the di�erent types of ryptographi algo-rithms. There are two types of iphers, namely, Stream Ciphers and Blok Ci-phers. Depending on whether the same key used for enryption is also used forderyption, or otherwise, we also have Asymmetri (or Publi) Key Algorithmsand Symmetri (or Seret) Key Algorithms.2.1.2 Stream CiphersStream iphers are used to enrypt variable-sized data (typially at the bit level)with the help of a variable enryption key. The simplest stream ipher is theexlusive-OR operator, whih takes in a stream of plaintext bits and performs abit-wise exlusive-OR on these bits with a key-stream generated by a key-streamgenerator, to yield the iphertext. The same key-stream, when exlusively-ORed
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Symmetric−key Algorithms Asymmetric (Public) key Algorithms

Stream Ciphers Block Ciphers

Feistel Ciphers Non−Feistel Ciphers

(DES, Blowfish, Twofish,
MARS, RC−6, CAST, Serpent)

(IDEA, AES/Rijndael)

Error−correcting

Codes

Discrete

Logarithm
(Diffie−Hellman,
ElGamal, DSA)

Elliptic

Curves
(EC−DH,

EC−DSA)

EC−ElGamal,

(McEliece)

Cryptographic Algorithms

Integer

Factorization
(RSA, Paillier)

(Encryption / Decryption, Digital Siguatures, Key Management)

Figure 2.1: A Classi�ation of Cryptographi Algorithmswith the iphertext will (obviously) yield the plaintext. A more involved streamipher employs shift registers. They are easily implemented in hardware, are veryreliable, an perform at high speeds, and are typially used in military appliations.A disadvantage is that the size of the key-stream should be equal to that of thedata-stream, whih is not pratial.2.1.3 Blok CiphersBlok iphers enrypt �xed-length bloks of data with the enryption key. Forexample, a 1-MB �le is divided into a number of �xed-length bloks. Eah blokis enrypted using the key. The blok-length and key-length, usually measured inbits, depends upon the ipher. For DES, they both are equal to 64 bits. For theAES, the blok-length is 128 bits but Rijndael [18℄ (of whih the AES is a part)additionally supports blok-lengths of 160, 192, 224 and 256 bits. The key-lengthis either of 128, 192 and 256 bits for both, Rijndael and the AES. Blok iphers areused in ommerial appliations suh as banking transations, disk protetion andsetor-level enryption. However they su�er from the drawbak of ryptanalysis.This happens beause the key size is smaller than all of the data being enrypted.For DES, the key is 64 bits long but the data being enrypted an be arbitrarilylong, and the same key is repeatedly used for eah blok the data is divided into.Cryptanalysis exploits this repetitive nature of operations.



112.1.4 Asymmetri (Publi) Key Cryptographi AlgorithmsIn asymmetri key enryption, the key used for deryption is di�erent from thatused for enryption. However, they are always related. Asymmetri key ryptosys-tems are usually put to use in the following way. One of the keys � the one usedfor enryption � is usually published by the user so that anyone in the world anuse to enrypt data to send to this user. The seond key is kept private and inthe user's ustody, used to derypt the reeived iphertext. The enryption key isalled the publi key and the deryption key, the private key.Asymmetri key algorithms are designed in suh a way that the publi keyannot be used to determine the private key. It is the di�ulty of determining thisrelationship between the keys that protets the ryptanalysis of these algorithms.Rivest-Shamir-Adleman (RSA) [36℄, ElGamal [58℄, Paillier [44℄, MEliee [65℄ andEllipti Curve Cryptography (ECC) [62℄ are some examples of asymmetri keyalgorithms.Asymmetri key algorithms (with the exeption of MEliee and ECC) arebased on number theory and deal with large prime numbers, typially around 4096bits at most (around 1230 deimal digits). (ECC has around 183-bit key-lengths).The RSA algorithm rests on the Integer Fatorization problem while the ElGamal,Di�e-Hellman and DSA [3℄ algorithms rely on the Disrete Logarithm problem.The Paillier enryption algorithm [44℄ relies on the Composite Residuosity Classproblem. The MEliee enryption algorithm is based on the theory of error-orreting odes [65℄, [35℄. These problems determine the relationship between thepubli and private keys.Asymmetri-key algorithms rely on heavy mathematial omputation (in par-tiular, modular exponentiation). Algorithms for performing arithmeti on verylarge numbers, also alled multipreision numbers, are disussed in [36℄. As suh,asymmetri key algorithms are not suitable for enryption of bulk data suh aslarge �les. They are used in key management (setion 2.1.6).Asymmetri key algorithms are also used for digital signatures. Signing adoument is an operation performed by a user with the private key. The signeddoument, when sent to a reipient, is �rst veri�ed by that reipient using thesender's orresponding publi key available with the reipient. Sine the signerused the private key, whih is kept seret with the signer, only the signer and noone else would have signed the doument. The RSA enryption algorithm is usedfor digital signatures as well. For this algorithm, the publi and private keys areinterhangeable. This is not true in general, for ElGamal has a signature algorithmdi�erent from that used for enryption / deryption. Another signature algorithmused is the Digital Signature Algorithm (DSA).



12Asymmetri key algorithms assume that the sender already has the reipient'spubli key. How does the sender �rst get this publi key from a reipient? Thistopi is mentioned under the topi of key management (setion 2.1.6).ECC relies on the di�ulty of �nding the absissae of a point on a urve givenits ordinate, modulo a prime. ECC has analogs for the Di�e-Hellman and DSAalgorithms, alled EC-DH and EC-DSA [28℄ algorithms, respetively.2.1.5 Symmetri (or Seret) Key Cryptographi AlgorithmsIn symmetri key enryption, the same key is used for enryption and deryption.Usually, symmetri key enryption algorithms rely on logial operations suh as bitleft-shift, right-shift, left and right rotations, exlusive-OR, AND, OR, and NOToperations. They lend themselves naturally towards hardware implementations,while software implementations need to be optimized for high-speed operations.Due to their high-speed operation, symmetri key algorithms are used for bulk dataenryption and deryption. DES [1℄, AES [2℄, IDEA [32℄, CAST [4℄, Blow�sh [57℄,Two�sh [59℄ and several others are examples of symmetri key algorithms.An assumption inherent in symmetri key enryption and deryption is thatthe enryption key is already shared between the sender and reipient. How thissharing is done is the subjet of key management, disussed in Setion 2.1.6.2.1.6 An Overview of Key Management, Seret Sharing and Seurity ProtoolsKey management is used to solve the assumptions of symmetri and publi keyryptosystems.1. In symmetri key ryptosystems, the two parties involved in seure ommu-niations already have the enryption key in plae. This is ensured using keynegotiation or key agreement.2. In publi key ryptosystems, the sender is assumed to possess the reipient'spubli key. This is ensured using digital erti�ates [58℄.Key agreement is done using an asymmetri key enryption algorithm. Thesender wishing to transmit the symmetri key seurely to the reipient enryptsthe symmetri key with the reipient's publi key and sends the iphertext to thereipient. Sine this symmetri key is only around 64-256 bits long, speed is not anissue. The reipient derypts the reeived iphertext using the private key. Nowboth parties have the symmetri key available with them, for bulk data enryption.Notie that a protool has evolved during this proess.



13Key negotiation is done between the sender and reipient using informationommon to everyone, and information known only to the sender and only to thereipient (not both). The Di�e-Hellman key negotiation protool is an example.With keys being shared between parties involved in ommuniation, arises theidea of how serets an be shared between the parties. Shamir's seret sharingsheme [52℄ an be used to split a seret into shares, one for eah partiipant, suhthat a minimum number of partiipants (alled a threshold) only an reonstrutthe seret. A di�erent, and somewhat less e�ient threshold sheme was developedby Blakley [12℄. Veri�able seret sharing is proposed in [61℄ to ahieve seurityagainst heating partiipants. If everyone in the group of partiipants an verifythat the shares are orretly distributed, the sheme is alled a publily veri�ableseret sharing sheme.Operations an also be done on serets by the group of partiipants usingtheir shares alone, without knowing what the underlying serets are. Suh opera-tions an inlude resizing (reduing) the threshold of a share, performing addition,subtration, salar multipliation and multipliation of serets. More operationsinlude generating a random number or a random bit without eah user knowingits value, omputing the square root of a seret using its shares, �nding the mul-tipliative inverse of a seret, unbounded fan-in (multiplying serets), and logialoperations (AND, OR, NOT, exlusive-OR) [19℄.An example of a seurity protool is by Needham and Shroeder [42℄, that hasbeen modeled as a soft CSP over the framework of semirings [8℄ for on�dentialityanalysis.Further disussions on Asymmetri key algorithms, key management and se-urity protools [62, 58, 36℄ are outside the sope of this Dissertation.2.2 Feistel NetworksThis setion disusses Feistel Networks, their workings (espeially DES), and wherethe S-boxes �t into a symmetri key ipher are now disussed.2.2.1 Confusion and Di�usionSymmetri key blok iphers operate on the priniples of produt iphers, usingonfusion and di�usion [62, 58, 40℄. Confusion is introdued during transformationto make the relationship between the key and iphertext as omplex as possible.This is usually ahieved by substituting parts of plaintext bits with onstant bitsusing substitution boxes (S-boxes).Di�usion on the other hand is introdued during transformation in order tospread the in�uene of plaintext haraters over as muh of the iphertext as



14possible. This ensures that statistial properties of the plaintext are hidden in theiphertext. Di�usion is aomplished by permuting the plaintext bits.A produt ipher omposes the operations of onfusion and di�usion. Doingso only one is not su�ient, and repeating these operations ahieves the desirede�et.2.2.2 The Feistel network as a Produt CipherThe Feistel network, �rst designed by Horst Feistel, is a produt ipher that re-peatedly performs the following steps on a blok of plaintext: Permute the inputbits (di�usion), and apply S-boxes (onfusion) on these permuted bits. Thesesteps, alled an enryption round, also onsist of mixing a transformation of theenryption key, alled subkey. Eah round uses a subkey di�erent from the others,and the subkeys are generated from the enryption key using a key shedule.Let a blok of plaintext being enrypted be represented by m = L0R0, wherethe blok m is of length n bits, and L0 and R0 are two halves of this blok,eah having length n/2 bits. Let also, the key shedule take the enryption key
K as input and generate subkeys K1, K2, . . .Kr, for the r rounds. A round ofenryption is a funtion f , that takes in two inputs, a subkey Ki and a half-blok Ri−1, and gives out an n/2-bit half-blok Ri, 1 ≤ i ≤ r. De�ne half-bloks
L1, R1, L2, R2, . . . Lr, Rr, where for i = 1, 2, 3, . . . , r,

Li = Ri−1, Ri = Li−1 ⊕ f(Ki, Ri−1).Visually, this means that there are r transformations on a half-blok, and ineah round, a transformation is followed by a swap of the two enrypted half-bloks.After the last round, the swap step is undone and the iphertext, therefore, is RrLr.The situation is depited in �gure 2.2.An interesting features of the Feistel network is that the deryption algorithmis the same as the enryption algorithm, exept that the subkeys are onsumed ineah round in an order that is the reverse of the order used in enryption. Thisis good sine one does not have to implement separate algorithms for enryptionand deryption.2.2.3 The Data Enryption Standard (DES)DES is a 16-round Feistel ipher that takes a 64-bit input blok of plaintext, a64-bit key, and outputs a 64-bit output blok of plaintext. The key shedulegenerates 16 48-bit subkeys, eah to be used in one round of enryption. An initialpermutation (IP ) is applied to the 64-bit plaintext blok before the 16 roundsbegin. For the rounds, eah blok is divided into a left and right 32-bit half-blokthat forms L0R0 of Figure 2.2.
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Figure 2.3: The funtion f of DES that uses S-boxes2.2.4 The Round Funtion and the S-boxes of DESThe round funtion f for DES is shown in Figure 2.3. f onsists of an expansionfuntion E, an exlusive-OR operation with the subkey for the urrent round, anappliation of eight Substitution Boxes (S-boxes), and a permutation P on thebits.
E strethes a 32-bit half-blok by repeating 16 bits one, to yield a 48-bitvalue. This is exlusively-ORed with the 48-bit subkey in the urrent round. The48-bit exlusive-OR result is input to eight S-boxes, eah taking in six bits. Eah

S-box produes a 4-bit output, and the eight 4-bit outputs together form a 32-bit output. This result is permuted using P to yield a 32-bit value, whih nowexlusively-ORed with the other 32-bit half to give the output half-blok of a round



17of DES enryption. The other half-blok (diretly from the input) and this outputhalf-blok are interhanged before being passed to the next round.After the last round, no interhange is done, and the inverse permutation IP−1is applied to both half-bloks taken together to yield a 64-bit output iphertextblok.As shown in Figure 2.3, the round funtion f ontains the S-boxes that are thesubjet of this Dissertation. The S-boxes of DES that have been published in [1℄are shown in Table 1.1 and they onsist of �xed numbers. An interesting featureof the Feistel network is that these S-boxes an be replaed by other S-boxes,and the enryption and deryption will still work. Obviously the enryption willprodue a di�erent iphertext now.2.3 The Design of Substitution BoxesEah S-box in DES yields a 4-bit output string for a 6-bit input string, suggestinga many-to-one funtion. The numbers in the DES S-boxes are �xed and are shownin Table 1.1. The S-boxes of DES have been the subjet of intense speulationright from their ineption. The design priniples are the results of years of researhby the ryptographi ommunity, partiularly after allegations that the NSA mayhave modi�ed them to introdue a trap-door for the government to interept mes-sages [58℄. The design riteria was lassi�ed and were revealed [16℄ only afterresults of di�erential ryptanalysis were published by Eli Biham, and linear rypt-analysis by Matsui [34℄. A luid tutorial of di�erential and linear ryptanalysisis provided in [26℄. Susan Landau [33℄ disusses these, and in addition, providesa third attak by Wiener. Aording to the paper, based on exhaustive searhbut with tehnology at that time (1993), Wiener estimated that the $1-Millionmahine with 57,000 DES hips and a pipelined arhiteture (onstantly feedingdata and omputing simultaneously) ould break a DES-enrypted message in 3.5hours.2.3.1 The Seurity Criteria for DES S-boxesThe design requirements of DES, eight in number, are listed in Table 2.1 [16℄.These design riteria are labelled S-1, S-2, and so on upto S-8. In our work, weformulate onstraints to model the requirements, and input the onstraints to asolver. Substitution Boxes are generated by the solver to satisfy the onstraintsthat model the stated requirements. This approah to S-box generation turnsout to be a novel one, and no literature has been available so far that relates tothis spei� approah. Therefore, existing approahes of designing and generating



18substitution boxes are disussed, and mention is made of how the ideas are being(or will be) applied to our work.S-1 �Eah S-box has six bits of input and four bits of output.�S-2 �No output bit of an S-box should be too lose to a linear funtion ofthe input bits. (That is, if we selet any output bit position and anysubset of the six input bit positions, the fration of inputs for whihthis output bit equals the exlusive-OR of these input bits should notbe lose to 0 or 1, but rather should be near 1
2).�S-3 �If we �x the leftmost and rightmost input bits of the S-box and varythe four middle bits, eah possible 4-bit output is attained exatly oneas the middle four input bits range over their 16 possibilities.�S-4 �If two inputs to an S-box di�er in exatly one bit, the outputs mustdi�er in at least two bits.�S-5 �If two inputs to an S-box di�er in the two middle bits exatly, theoutputs must di�er in at least two bits.�S-6 �If two inputs to an S-box di�er in their �rst two bits and are identialin their last two bits, the two outputs must not be the same.�S-7 �For any nonzero 6-bit di�erene between inputs ∆Ii,j, no more thaneight of the 32 pairs of inputs exhibiting ∆Ii,j may result in the sameoutput di�erene ∆Oi,j.�S-8 �Similar to S-7, but with stronger restritions in the ase ∆Oi,j = 0 forthe ase of three ative S-boxes on round i.�A riterion, stronger than S-2, named as S-2' [16℄ is often quoted:S-2' �No linear ombination of output bits of an S-box should be too loseto a linear funtion of the input bits. (That is, if we selet any subsetof the four output bit positions and any subset of the six input bitpositions, the fration of inputs for whih the exlusive-OR of theoutput bits equals the exlusive-OR of these input bits should not belose to 0 or 1, but rather should be near 1

2)."Table 2.1: The S-box riteria used by IBM for designing DES [16℄



192.3.2 S-boxes and Boolean FuntionsAn n×m S-box is de�ned to be a Boolean Mapping S : Z2n → Z2m that takes an
n-bit string and gives out an m-bit string. Here Zk stands for the set {0, ...k− 1}.
S need not be invertible. They are used in the generation of a parameterizedsubstitution of x, through the funtion

f : Z2m × Z2n → Z2m , f(x, y) = x⊕ S(y),where y is the parameter. The obtained substitution funtion is a parameterizedbijetion, and it is therefore often referred to as a permutation funtion.If n = m, S is more likely to be a one-one and onto itself, that is, a permutationof the set {x : 0 ≤ x < 2n}. This is, in fat, reommended for an n×n S-box [73℄.A Boolean funtion is de�ned to be a Boolean Mapping F : Z2n → Z2 thattakes as input an n-bit string and yields as output either 0 or 1. Thus a Booleanfuntion is an n× 1 S-box and is many-to-one.2.3.3 S-box RepresentationCurrent literature suggests three ways [38℄ in whih an n × m S-box S(x), 0 ≤
x < 2n, is represented. We add a fourth representation that is used in our work.Funtion Representation using m-bit numbers In this representation, themapping is de�ned as

S(x) = rx, 0 ≤ rx < 2m. (2.1)Bitwise Representation with Bits from Boolean funtions In this repre-sentation, eah S-box entry is expressed as an aggregation of bits, eah in turngenerated by a Boolean funtion:
[

Cm−1(x) Cm−2(x) . . . C0(x)
]

, (2.2)where 0 ≤ i < m and eah Ci(x) : Z2n → Z2 is a Boolean funtion. Ci(x) isregarded in [38℄ as a �olumn of the S-box (entry)".The (deimal) expression formed from the bitwise representation of an S-box,given by
S(x) = 2m−1Cm−1(x) + 2m−2Cm−2(x) + 2m−3Cm−3(x) + . . . + C0(x),provides for onversion from the bit-wise representation into the funtionalrepresentation using m-bit numbers given by Equation 2.1, and onversely.



20Boolean Matrix An S-box an be represented by a 2n ×m binary matrix
[cij ]2n×m

, wherecij ∈ Z2, 0 ≤ i < 2n, 0 ≤ j < m. (2.3)
S(x) is now obtained as follows:

S(x) =
m−1
∑

j=0

cxj2
m−j−1This representation an be viewed as a binary vetor or one-dimensional formof representation of all 2n entries of an S-box. We now formulate a two-dimensionalrepresentation that is more useful in our work, in whih eah entry an be eitherbinary, deimal or hexadeimal.A Tabular form of S-box Representation In our work, eah n ×m S-boxis organized as a 2n−m × 2m table, to ontain a total of 2n entries. The (n −m)bits taken together form the row-selet, and the remaining m bits index into theolumn of the seleted row. Eah row is a permutation of the m-bit numbers in

Z2m . Thus eah S-box has 2n−m suh ourrenes of these numbers, one in eahrow. In other words, there exists four inputs that map to the same S-box entry inthe table (many-to-one funtion).For example, eah S-box of DES is typially organized as a table with 4 rows,16 olumns as Figure 1.1 illustrates. The input to eah S-box ranges from 0 to 64,while the orresponding output ranges from 0 to 16. Example 1.1 disusses theusage of a DES S-box.2.3.4 Spei�ation of S-boxes in Cryptographi AlgorithmsThe DES S-boxes of Figure 1.1 are �xed and spei�ed as part of the algorithmspei�ation [1℄. For other algorithms, the S-boxes may be similarly �xed or maybe variable, or often, omputed depending upon a parameter. Di�erent ways ofspeifying S-boxes in a ipher are now disussed.Based upon the di�erent ways in whih the S-boxes are spei�ed, in rypto-graphi algorithms they an be lassi�ed as follows:Fixed S-boxesThese substitution boxes are onstant, and are spei�ed as part of the algorithmto be used for enryption / deryption. Several Feistel iphers speify S-boxesthat fall under this ategory. Examples are DES and CAST-256 [4℄.



21Variable S-boxesIn these algorithms, the entries in the substitution boxes are generated as a partof the enryption / deryption proess, and used at that point. They get modi�edbetween two enryption rounds. Blow�sh [57℄ is an example where the S-boxesdepend on the enryption key. This is done to ounter linear and di�erentialryptanalysis. Another example is Two�sh [59℄. IDEA [32℄, although not a Feistelipher, implements a multipliation step modulo (216 + 1) whih is also viewed asan S-box [58℄, and this operation depends on parts of the key (i.e. a key-dependent
S-box). An advantage is a saving on memory tables that would otherwise have tobe initialized had the entries been �xed. A disadvantage of this sheme is that forevery enryption / deryption session, the S-boxes have to be set up and startuptimes an beome expensive if the operation has to be arried out repeatedly usingdi�erent keys.2.3.5 S-box Generation TehniquesFour tehniques are outlined for the generation of S-boxes [62, 40℄.RandomGenerate S-box entries using some pseudo-random number generator, or from atable of random digits. For small-size S-boxes, like the 6× 4 S-boxes of DES, thisstrategy may result in undesirable harateristis, but for those having large size(for example, 64× 32 S-boxes, this approah should be aeptable.A variation of this tehnique is to initialize S-boxes with pseudo-random digitsand as rounds progress, keep hanging them depending upon the data and / orthe key. This is exatly what is done in Blow�sh [57℄ and Two�sh [59℄.Random with testingRandomly selet S-box entries, then test the results against various riteria. We�nd that the level of testing subdivides this tehnique further.Generate-and-test every entryEvery S-box entry is randomly generated and tested. In addition, eah entryis tested against its neighbors that are the several other entries, within the same
S-box. Among the eight design riteria S-1 to S-8 of DES [16℄ (Table 2.1), riteriaS-3 to S-7 examine neighboring entries in an S-box. This sheme is disussed indetail in Setion 2.5.



22An obvious extension of testing every entry in a single S-box is to test entriesaross multiple S-boxes. This requirement stems from the fat that not all S-boxesan be idential. Testing and rejeting S-boxes by examining their in�uene onneighboring S-boxes has been reommended [17℄. DES onstraint S-8 [16℄ suggeststhis requirement for any three out of the eight S-boxes. These tests are apparentlyformulated to thwart attaks due to di�erential ryptanalysis [11℄.Human-madeThis strategy more or less employs a manual approah and the underlying mathe-matis used to support the same is very simple. The S-boxes of DES were appar-ently formulated using this approah. For large-size S-boxes the approah beomesimpratial. Even for small-sized ones, testing, partiularly at the bit-level, anbeome umbersome and prone to human errors, with more e�orts required toreview and orret.The �rst S-boxes for Feistel iphers were designed by hand. Early seurityattaks have propelled the researh for guidelines (i.e., requirements) that avoidknown vulnerabilities. These requirements prove to be so di�ult to ahieve, tothe point where it is said [1℄ that the DES designing team dropped guards whenhand-piking their last S-box (given the fat that their last S-box is suseptibleto attaks from di�erential ryptanalysis [11℄).Math-madeGenerate S-boxes based on mathematial priniples. Using mathematial on-strution, the resulting S-boxes an be onstruted to o�er proven seurity againstlinear and di�erential ryptanalysis, together with good di�usion. For example,Bent funtions 2.4.5 are loaded into S-box entries as part of S-box onstru-tion [53, 23, 7, 38℄.2.4 Reommended Properties of an S-boxThe S-boxes of DES form the only non-linear part of the algorithm [72℄. As suh,any launa in S-box design will severely a�et the ipher. After the results ofBiham's di�erential ryptanalysis [11℄ and Mastui's linear ryptanalysis [34℄ werepublished, ryptographers worked on deriving more riteria for S-boxes in orderto thwart against these and other attaks.Several design riteria have been evolved and these are disussed below. In ourwork, we have not used any of these sine our objetive is to generate S-boxes thatsatisfy DES riteria alone to begin with. One that is done, we an improve on



23searh spae by modeling eah of these requirements into a onstraint, adding tothe existing set of onstraints and narrowing the searh spae.2.4.1 NonlinearityAn obvious requirement is that the S-boxes be nonlinear. This means that nooutput should be lose to a linear ombination of any subset of the input bits. TheDES design riterion S-2 in Table 2.1 reommends that the fration of the numberof output bits that is a linear ombination of a subset of input bits should be neither0 nor 1, but lose to 1
2
[16℄. Table 2.1 additionally spei�es a more stringent,optional riterion labelled S-2'. This requirement states that the fration of alinear ombination of a subset of output bits to that of the input bits should belose to 1

2
.Nonlinearity is de�ned in terms of the distane from the set of all a�ne fun-tions [45, 23℄. It is also de�ned in terms of the spetrum of a Boolean funtion(also alled theWalsh Transform) [23℄. Algorithms to onstrut non-linear Booleanfuntions and S-boxes using the bit-by-bit approah is provided in [45℄.Gupta and Sarkar [23℄ has modi�ed an elegant algorithm by Zhang and Zhengto generate S-boxes having an extended degree. They have also modi�ed theMaiorana-MFarland tehnique to generate S-boxes having non-linearity betterthan previously known onstrution methods. The S-boxes generated by them areuseful for stream iphers.2.4.2 Di�usion harateristis of S-boxesA requirement of a good S-box is the possession of strong di�usion harateristis.This means that hanging a small number of its input bits should result in a hangein a very large number of its output bits.2.4.3 Avalanhe Criterion, and Strit Avalanhe CriterionA requirement of a good ipher is that in general, omplementing one bit of theinput should result in a hange in an average of half the number of output bits.This requirement is alled the Avalanhe Criterion. A more stringent requirementalled the Strit Avalanhe Criterion (SAC) [72℄ states that eah output bit shouldhange with a probability of 1

2
whenever a single input bit is omplemented. SACis quanti�ed in [38℄ in terms of another measure, the dynami distane of an S-box.This paper also de�nes a Maximum Order SAC (MOSAC), and reommends thatan ideal S-box should satisfy MOSAC.



24There is also a Guaranteed Avalanhe Criterion (GAC) [64℄. An S-box satis�esa GAC of order γ if any single-bit inversion at its input results in at least γ bitsof inversion at its orresponding output.Heys and Tavares [64℄ disusses the e�et of the number of rounds, S-box size,di�usion harateristis on avalanhe harateristis. Spei�ally, the avalanheriterion is satis�ed in fewer rounds when the guaranteed avalanhe parameter γinreases. When the size of the S-box inreases, the avalanhe behavior of theenryption network improves.Seberry, Zhang and Zheng [60℄ propose a novel systemati sheme of generat-ing S-boxes based on group Hadamard matries. In partiular, their generated
S-boxes satis�es the SAC. They have de�ned a measure of robustness against dif-ferential ryptanalysis, and ensured that the S-boxes generated by them satisfythis measure.2.4.4 Bit Independene CriterionThe Bit Independene Criterion (BIC) [72℄ states that when any single input bit
i is inverted, for all i, j, k, output bits j and k should hange independently. TheBIC is quanti�ed in [38℄ in terms of the distane to higher order BIC (DHOBIC).There is another measure quanti�ed in [38℄, alled the Maximum Order BIC(MOBIC), de�ned in terms of the dynami distane. The paper reommends thatan ideal S-box should satisfy MOBIC.2.4.5 Bent funtionsMister and Adams [38℄ propose that all linear ombinations of S-box olumnsshould be bent funtions. Bent funtions are a speial lass of Boolean funtionsthat are highly non-linear [7℄. They are de�ned in terms of the spetrum of aBoolean Funtion (the Walsh Transform) [38℄, [23℄. These are used for S-boxonstrution by the bit-by-bit onstrution method disussed in subsetion 2.3.5.2.5 Searh tehniquesWhile there are a number of searh tehniques in the disipline of Arti�ial In-telligene (AI) [54℄, we an divide the approahes to S-box searh, using AI, intotwo simple lasses for our purposes, namely, Nonsystemati Searh and SystematiSearh. In this setion, we fous on S-boxes generated in the available literature,and lassify them into the appropriate AI ategory. Figure 2.4 summarizes thetaxonomy of S-box searh.
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Figure 2.4: Classi�ation of S-box Searh Tehniques2.5.1 Nonsystemati SearhIn this form of searh, there is no systemati way in whih S-boxes are searhedfrom beginning to end. Two shemes immediately fall in this ategory: Randomgenerate-and-test, and Loal Searh. The S-box searh in the literature easily fallsinto one of these two ategories.Random generate-and-testIn this sheme, an S-box is �lled with random entries and tested to satisfy thedesired properties. Note that this lass is akin to the one disussed in subse-tion 2.3.5. A striking feature summarized from the literature is the manner inwhih the S-box entries are loaded prior to testing. The approahes in the avail-able literature, for our purposes, an be lassi�ed into three ategories:1. Bit-by-bit generation-and-testing In this approah, eah bit of every
S-box entry is loaded with a Boolean funtion and tested for satisfation ofthe mathematial properties of the S-box properties up to the aumulationof the urrent bit. [38℄ loads a Bent funtion bit-by-bit, with the bitsdistributed aross a olumn of an S-box, and tests for riteria suh as its non-linearity and highest dynami distane. Individual bits of a 4×4 S-box entryare hosen and together, they are tested against the four design riteria suhas bijetion, nonlinearity, strit avalanhe and output bit independene [72, 6,



265℄. A reent approah uses neural networks to model Bent funtions [31℄ sinethe sigmoid funtion used there lends itself naturally towards implementationof Bent funtions. These an be loaded bit-by-bit into an S-box and testedfor the other riteria. For our purposes, this approah learly falls under thebit-by-bit generation-and-testing ategory of S-box searh.O'Connor [43℄ ombinatorially analyzes this bit-by-bit sheme for n × n
S-boxes and shows that there are pratial limits up to whih this approahan generate S-boxes e�iently. In partiular, the author shows that thebit-by-bit method of generation an beome infeasible when m > 6.A ellular automata based approah to S-box design [63℄ employs one ell perbit of an S-box. The objetives are to maximize nonlinearity and minimizea seond ondition, that of autoorrelation of the S-boxes.2. Row / Column generation-and-testing In this approah, eah row ofan S-box is generated and tested. The rationale behind this is that eahrow of an n × m S-box is a bijetion, just as is the ase with DES. Eahentry of DES in one row would be viewed as a 4 × 4 bijetive S-box now.The interations between S-box entries as presribed by the DES riteriaS-3 through S-7 [16℄ is pereived in [6℄ as interations between these 4 × 4
S-boxes, and is not addressed in the latter paper. The authors demonstratethat the S-boxes onstruted using this approah proved superior to the
n×n S-boxes onstruted by Pieprzyk and Finkelstein [45℄ using the bit-by-bit approah. But that was not due to any problem in that approah. Thelimitation of this paper is that the authors foussed only on nonlinearity of
S-boxes [6℄, and a number of other properties were not met.3. One-time generation of all entries, and testing of eah In this ap-proah, an S-box is �lled with entries and tests are arried out to hek ifthe S-box satis�es mathematial properties. The paper by Cheng, et.al [73℄devises a sheme by whih they ompute 8 × 8 S-boxes by enrypting theplaintext numbers {0, 1, . . . , 255} using randomly-generated 2-bit subkeys,and with a 6-round mini-version of the IDEA ipher. These S-boxes weretested for the properties of bijetion, nonlinearity, avalanhe riteria, outputbit independene riteria, equiprobable input / output exlusive-OR distri-bution and in addition, the inverse S-boxes were also tested to satisfy theseproperties.



27Loal SearhIn this approah, searh for S-boxes is done using hill-limbing, geneti algorithms,and simulated annealing. Suh meta-heuristi and evolutionary tehniques haveemerged as potentially very powerful tools for the design of S-boxes [14℄. Onefeature of these tehniques is the existene of a ost funtion that should be min-imized or maximized. In [15℄, the ost funtion is based on the Walsh-Hadamardspetra. The requirement is that either the non-linearity should be high or theautoorrelation should be low [15℄, [13℄.As part of S-box generation using this approah, an S-box is generated (ran-domly or otherwise) and then tested. This onforms to the one-time generate-and-test approah disussed in Setion 2.5.1, exept that the generation need notalways be based on mathematial priniples and ould be random. After eah
S-box is �lled with entries, one tries to perform a loal searh to optimize the ostfuntion.Millan [37℄ performed hill-limbing as part of the loal searh. Clark, Jaoband Stepney [15℄ performed a two-step loal searh. The �rst step is annealingto minimize the ost funtion. Let Ssa be the best S-box just enountered inthe searh proess. The next step is to hill-limb from this point with respetto non-linearity, or with respet to autoorrelation, to produe the �nal solution
fsahc [15℄. Then the non-linearity, autoorrelation and algebrai degree of fsahc ismeasured. A omparison with Millan's method suggested that this was superior,and the authors infer that the hill-limbing step did not ontribute signi�antlybut the annealing step added to a dramati inrease in non-linearity.The paper by Chakraborty, et.al [13℄ disusses experiments to determine theempirial values of two adjustment parameters X and R used in the spetrum-based ost funtions. They have onluded that for an n × n bijetive S-box,
R > 3.5 and X < 2

n
2 , and that R should be an integer.Clark, Jaob, Maitra and Stania [14℄ used a similar approah to searh forBoolean funtions, but a ompletely di�erent searh spae. Instead of searhingthe spae of Boolean funtions for those with the desired properties of non-linearity,autoorrelation, among others, they searhed the entire spetrum of artifats (per-mutations of Walsh Transforms of all funtions) to determine whih of those areBoolean by spetral inversions (inverse Walsh Transforms). Annealing is againused as part of the searh proess. The ost funtion is the distane from a near-est Boolean funtion to whih a (non-Boolean) element of the searh spae an�ollapse" to. Using this idea, they have unovered S-boxes that have hithertobeen not obtained using any other means.



282.5.2 Systemati searhThe advantage of loal searh over systemati searh is that the memory require-ments are small, and a solution an be found in a very short time [54℄. For, oneinstantiates an S-box not satisfying the desired properties, and the guided searhquikly homes to a near-neighbor that satis�es these properties.The disadvantage is that, there is the extra e�ort of testing the assigned ele-ment of the searh-spae for those properties is exerised. Moreover, it is possiblethat the ost funtion gets optimized but the solution is still approximate. Forexample, [14℄ would give rise to almost Boolean funtions.We onsider two approahes to systemati searh: Generate-and-test and Con-straint Satisfation Problems (CSPs). Our work uses the CSP approah.Systemati Generate-and-testIn this approah to systemati searh, we assign values to eah S-box entry startingfrom the lowest, and verify if all properties of the S-box are satis�ed. If even oneproperty is not satis�ed, we disard that S-box and take the next value of thelast-assigned variable. If all values of the last-assigned variable are exhausted, webaktrak and hoose the next value for the penultimate variable, and so on.This approah is very ine�ient, partiularly for large-size S-boxes. For a(n,n) bijetive S-box, the worst-ase number of searhes is equal to (2n)2n . Evenfor small-size S-boxes suh as (4,4), the maximum number of heks is 1616, i.e.
264 (very high!). Hene this approah is not at all reommended.Constraint Satisfation Problem (CSP) Based ApproahThis is the approah used in our work. The losest work of modeling seurityrequirements using CSPs was presented by Bistarelli, et.al [8℄ to analyze seurityprotools. There the authors model the network that arises out of the exeutionof seurity protools as a Soft CSP (SCSP) using the framework of semirings.The aspet of on�dentiality, one of the goals of the seurity protools, analyzed,is further formalized as the property of the solution of the SCSP. Two SCSPshave been posed: A poliy SCSP that models the network arising out of protoolexeution for those admissible protools that have terminated suessfully, and animputable SCSP that models a given network on�guration. The authors omparethe solutions obtained for these two problems to determine whether the givenon�guration hides a on�dentiality attak. The approah is demonstrated on theNeedham-Sroeder Seurity Protool based on Asymmetri Key Cryptosystems.To our knowledge, employing CSPs is a �rst-time approah to S-box design. Wegenerate an entire S-box already satisfying all of the properties that are modeled



29as onstraints. The S-boxes are generated using propagation and inferening. Noextra step of testing is required as is being done in the earlier approahes, sine,the onstraints are satis�ed as part of solution generation, suggesting a majoradvantage of the CSP approah over the existing ones. Another advantage usingthis approah is that eah S-box entry is omplete in itself unlike those in theliterature where eah S-box is populated a bit at a time, or a row/olumn at atime. We will introdue the novel idea of a Partially Assigned S-box in Chapter 3,in whih an S-box does not have all entries assigned. This assignment an bedone either row-wise or olumn-wise depending upon the heuristi used. Thepartially assigned S-box will inrementally be extended to a omplete S-box withall entries assigned, and all requirements satis�ed at any point in searh. Theidea of extending a partially assigned S-box gives rise to a set of inrementalheuristis disussed in Chapters 4 and 5, to signi�antly speed up S-box searh asthe experimental results in Chapter 7 will reveal.2.6 Constraint Satisfation Problems (CSPs)A Constraint Satisfation Problem (CSP) is a triplet (X, D, C) where:1. X is a set of variables, X = {x1, x2, . . . , xn}2. D is a set of domains, D = {D1, D2, . . . , Dn}. Eah of the Di's is in itself aset of domain-values that the variable xi, 1 ≤ i ≤ n, an assume.3. C is a set of relations on a subset of the set X of variables. Eah element of C,say Ci, for some i, is a relation Ri de�ned on a subset Si ⊆ X, denoting validassignments to the variables in Si simultaneously. If Si = {xi1, xi2, . . . , xir} isthe set of variables with variable xik having domain Dik , 1 ≤ k ≤ r, then Riis a subset of the Cartesian Produt Di1×Di2×Di3× . . .×Dir. A onstraint
Ci on the variables in Si an also be written as a pair Ci = 〈Si, Ri〉.De�nition 2.1 (Binary and n-ary Constraint) If a relation c ∈ C on a sub-set of the set X of variables is binary, then the partiular onstraint in the set Cis alled a binary onstraint, having two variables. A onstraint with more thantwo variables is alled an n-ary onstraint.De�nition 2.2 (Instantiation) An instantiation of a set of variables

{xi1 , xi2 , . . . , xir} ⊆ X where eah variable xik has domain Dik , 1 ≤ k ≤ r,is a tuple of ordered pairs 〈(xi1 , ai1), (xi2, ai2), . . . , (xik , aik)〉 in whih eah orderedpair (xik , aik) represents an assignment of the value aik ∈ Dik to the variable xik ,
1 ≤ k ≤ r [20℄.



30Informally, an instantiation of a subset of the set of variables is an assignmentof an element to eah variable in the set from its domain. The tuple is alter-natively written as (x1 = a1, x2 = a2, . . . , xr = ar), or even more ompatly, as
(a1, a2, . . . , ar). In Chapters 4 and 5, we will disuss the novel idea of a partiallyassigned S-box, whih is an instantiation of a subset of the set of variables in ourmodel.De�nition 2.3 (Solution to a CSP) A solution of a CSP (X, D, C) is an in-stantiation of all its variables in X suh that all onstraints in C is satis�ed.The S-boxes in our work that have all entries present suh that all seurityriteria are satis�ed form the solutions to the CSP.2.6.1 Representation of a CSPFor our purposes, we onsider three ways to represent a CSP [20℄. The �rstof these is used in our work while the other two are mentioned for ompletenesspurposes.Boolean Matrix Consider a binary onstraint with variables x and y. Let theirdomains be Dx = {d0, d1, d2, . . . , dm−1} and Dy = {e0, e1, e2, . . . , en−1}, respe-tively. A binary onstraint involving x and y an be represented as a Boolean
m× n matrix [aij]m×n. In this representation, the binary element aij , 0 ≤ i < m,
0 ≤ j < n, is de�ned as follows:

aij =

{

1, if x = di ∧ y = ej

0, otherwiseThe Boolean matrix representation is also referred to as the extensional repre-sentation or extensional form, and is the representation used in our work.We now study this representation with the help of three examples.Example 2.1 Consider a CSP with two variables x and y, and domains Dx and
Dy respetively. Let Dx = Dy = {0, 1, 2, 3}. Consider the following onstraintinvolving x and y:

x + y = 4 (2.4)Constraint 2.4 an be written in an expanded form as follows, onsistent with
Dx and Dy:

x = 1 ∧ y = 3, x = 2 ∧ y = 2, x = 3 ∧ y = 1



31From this expansion, the extensional representation of onstraint 2.4 results inthe following Boolean matrix A, with the elements of Dx forming its row numbersand the elements of Dy, its olumn numbers. In other words, the row and olumnnumbering for the matrix A begin from 0 rather than 1. Thus an entry in thematrix A in Row 1 and Column 3 is 1, orresponding to the Boolean expression
x = 1 ∧ y = 3 and similarly, for the other two Boolean expressions.

A =











0 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0









This partiular onstraint results in a square, symmetri matrix but in general, thematrix need neither be square nor symmetri.When there exists more than one binary onstraint involving the same two vari-ables, they an be ombined by AND-ing the Boolean entries in their extensionalrepresentation. Example 2.2 disusses this property.Example 2.2 Consider a CSP with two variables x and y, and domains Dx and
Dy respetively. Let Dx = Dy = {0, 1, 2, 3}. Consider the following binary on-straints involving the same two variables x and y:

x + y = 4

x− y = 2 (2.5)Constraints 2.5 an be expanded into the following:
x = 1 ∧ y = 3, x = 2 ∧ y = 2, x = 3 ∧ y = 1

x = 2 ∧ y = 0, x = 3 ∧ y = 1We now have two expanded onstraints in x and y. Note that both onstraintsshould be satis�ed simultaneously. The expanded onstraints are represented inextentional form using matries A1 and A2, respetively, to yield:
A1 =











0 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0











, A2 =











0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0











.By ANDing the entries in the two matries A1 and A2, we obtain the followingmatrix:
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A =











0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0











(2.6)The AND-operation is the omposition used sine both onstraints 2.5 shouldhold simultaneously. This what we will do in our S-box formulation in Chapter 3.The onstraint resulting from the matrix A that serves as its extensional rep-resentation (Equation 2.6) is
x = 3 ∧ y = 1whih is none other than the solution to the CSP.The following example demonstrates the e�et of reordering the domains ofvariables on the extensional representation of a onstraint.Example 2.3 Consider a CSP with two variables x and y, and domains Dx and

Dy respetively. Let Dx = Dy = {0, 1, 2, 3}. Consider the following onstraintinvolving x and y:
x + 2y = 4 (2.7)Equation 2.7 an be expanded into the following:

x = 0 ∧ y = 2, x = 2 ∧ y = 1 (2.8)The extensional representation of onstraints 2.8 is given by the following 4×4matrix.
A =











0 0 1 0
0 0 0 0
0 1 0 0
0 0 0 0









Now let us order the domains Dx and Dy to yield ordered domains D′
x =

{2, 0, 3, 1} and D′
y = {3, 2, 1, 0}.To maintain Eq. 2.8, the rows and olumns of the matrix A should now beshu�ed. Shu�ing the entries aordingly results in the following matrix A′:

A′ =











0 0 1 0
0 1 0 0
0 0 0 0
0 0 0 0











(2.9)



33De�ne permutation funtions λx : Dx → D′
x and λy : Dy → D′

y, where:
λx =

(

0 1 2 3
2 0 3 1

)

, λy =

(

0 1 2 3
3 2 1 0

)Let us now attempt to determine the matrix A′ diretly from permutations λxand λy. Applying λx and λy diretly on the numbers involved in onstraint 2.8will not yield A′ as the extensional representation of the resulting onstraint. For,diret appliation yields the following:
x = λx(0) ∧ y = λy(2), x = λx(2) ∧ y = λy(1)or

x = 2 ∧ y = 1, x = 3 ∧ y = 2resulting in the extensional representation
A′′ =











0 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0











6= A′The inverse permutations of λx and λy are given by:
λ−1

x =

(

2 0 3 1
0 1 2 3

)

=

(

0 1 2 3
1 3 0 2

)and
λ−1

y =

(

3 2 1 0
0 1 2 3

)

=

(

0 1 2 3
3 2 1 0

)It turns out that appliation of the inverses λ−1
x and λ−1

y to the numbers inonstraint 2.8 yields the desired result. This appliation implies the following:
x = λ−1

x (0) ∧ y = λ−1
y (2), x = λ−1

x (2) ∧ y = λ−1
y (1)or

x = 1 ∧ y = 1, x = 0 ∧ y = 2whih results in the matrix A′ given by Equation 2.9.Constraint Graph A binary onstraint an be graphially represented by aonstraint graph. The variables of the set X serve as the nodes of the graph.Whenever any two variables partiipate in a partiular onstraint, they are on-neted by an edge. A dual graph is obtained by interhanging the original graph'snodes into edges and edges into nodes.



34Hypergraph For n-ary onstraints, all variables partiipating in any one on-straint are lumped into a node of the graph. Thus eah node is a subset of X. Twonodes, formed by subsets X1 and X2, are onneted if and only if the set X1∩X2 isnon-empty. Suh a graph is alled a hypergraph. An n-ary onstraint is onvertedinto a set of binary onstraints using the dual graph of its underlying hypergraph.2.6.2 An overview of S-box Searh Strategy using CSPsTo examine the feasibility of the CSP approah to S-box searh, we modeledthe eight riteria of DES into onstraints. Criterion S-8 is found to deal withmultiple S-boxes and is handled separately at another level, disussed in Chapter 6.Criterion S-1 to S-7 are modeled as onstraints. Out of these, riterion S-1 willbe found to be already modeled based on variable hoie. S-3 to S-6 are binaryonstraints while S-2 and S-7 are n-ary onstraints.Initially we tried to model the onstraints using the CSP programming languageMozart-Oz [67℄. However we quikly found that a number of DES onstraints hadto be heked at the bit level, for whih Mozart-Oz proved to be insu�ient. There-fore, we resorted to a C++�based solver to take in our model in its appropriateform, and generate solutions.The solver is introdued in Setion 2.7 in pseudo-ode form (Algorithm 1). Inits original form, the solver handles only binary onstraints. Our strategy is tomodel onstraints for riteria S-3 to S-6 (Chapter 3) and preompile these intothe solver, generate solutions to satisfy these binary onstraints, and then testthem on onstraints S-2 and S-7. The approah turned out to be very ine�ient(systemati generate-and-test!) In general, generate-and-test is not reommendedas disussed earlier, and onstraint propagation needs to be arried out. We for-mulate several heuristis for the onstraints that model riteria S-2 (Chapter 4and S-7 (Chapter 5).For the binary onstraints, we disuss onstraint propagation that is imme-diately related to our work, namely, ar-onsisteny, and its relaxed forms, viz.bounds onsisteny and range onsisteny. Alldiff onstraints will be addressednext, partiularly suited for S-3.2.6.3 An Overview of Constraint PropagationOld CSP solvers employed so alled intelligent baktrakers, namely algorithmsfor intelligent management of on�it reording between values of variables. Someexamples of intelligent baktrakers are: graph-based bakjumping, on�it-basedbakjumping, dynami baktraking and bakmarking [20, 47, 22, 29℄. These algo-rithms are able to e�iently identify relevant ulprit variables for found on�its,and thereby avoid some redundant searh.



35Modern solvers use look-ahead tehniques, suh as: forward heking, ar andpath onsisteny, or singleton onsisteny [56, 39℄. A sheme that, based on (partsof) a CSP P , infers additional (redundant) onstraints to be added to P , is alleda �ltering operation. Given a �ltering operation A for CSPs,
A : CSP → CSPa CSP P is loally onsistent with respet to A (e.g., ar onsistent, path onsis-tent, et.) if it is a �xed point of A, i.e.,

P = A(P ).One of the most ommonly used loal onsisteny onepts is ar onsisteny.It is based on the Waltz �ltering operation [71℄ that uses a onstraint Ck on twovariables x1 and x2 subjet to unary onstraints x1 ∈ D1 and x2 ∈ D2 respetively.This �ltering operation infers the new onstraints with stronger D1 and D2:
D1 := D1 ∩ Ck(D2)|x1

D2 := D2 ∩ Ck(D1)|x2
,where by Ck(Dj)|xi

we denote the projetion of the domain Dj for xj , through therelation Ck, on the variable xi. Pratially, Waltz �ltering removes values from thedomains of variables. New domains (sets in unary onstraints) obtained this wayare traditionally referred to as labels of the orresponding variables. The repeatedappliation of the Waltz �ltering operation until reahing the �xed point is alledar onsisteny (AC). The labels obtained at �xed point by repeated appliationof this �ltering proess are alled ar onsistent labels. The CSP whose domainsare ar onsistent labels is said to be ar onsistent. If ar onsisteny removes allthe elements from the domain of some variable (also alled domain wipe-out), wean infer that the CSP has no solution.Various ways to repeatedly apply Waltz �ltering have been studied in the past.They di�er by the way of seleting the onstraint for the next �ltering operation,or by the additional information stored about the progress of the last �ltering stepon eah given onstraint. Suh information an help in only inrementally �lteringthe onstraint when the labels of its variables hange. The best suh �lteringalgorithms are AC2001 and AC-3d [9, 66℄. Sometimes �ltering algorithms arenot applied repeatedly until the �xed point is ahieved. For example, they may beapplied only a �xed number of times, as in the ase of direted ar onsisteny [68℄.Look-ahead (loal �ltering) an be either used in a pre-proessing step, or re-peatedly alled at various points throughout the searh proess. The latter aseis referred to as maintenane of the orresponding onsisteny onept. Mainte-nane of ar onsisteny (MAC) [55℄ is ommonly referred to as one of the best



36CSP solvers. Eah assignment of a value to a variable (alled the urrent variable)is propagated as if a �ltering step would have restrited the label of that variableto the orresponding value. MAC has been studied under several versions, di�er-entiated by the seletion of the points at whih the ar onsisteny is enfored.Typially it is enfored after any hange of a label.2.6.4 Forms of Ar-Consisteny of CSPsAr-onsisteny is extended to Generalized Ar Consisteny (GAC), and also, isslightly relaxed as Bounds Consisteny and Range Consisteny. Bounds and Rangeonsisteny are used in Alldiff onstraints, to be disussed next. We also mentionSingleton onsisteny whih is used in the C++ solver employed in our work.Generalized Ar Consisteny (GAC)While ar-onsisteny is appliable to binary onstraints, this notion is extendedto the domains of more than two variables partiipating in an n-ary onstraint.Dehter [20℄ de�nes GAC as follows: Given a onstraint network R = (X, D, C)with S ⊆ X and RS ∈ C, a variable x is ar-onsistent relative to RS if and onlyif, for every value a ∈ Dx there exists a tuple t ∈ S in the domain of variables in
S, suh that t[x] = a. t an be alled a support for a.Dehter disusses how AC-1 an be extended to GAC and informs that theomplexity of the main step in GAC is bounded by O(dr+1), where d bounds thedomain-size and r is the onstraint sope size. Bessiere, et.al. [10℄ extended AC-2001/3.1 to GAC2001/3.1. The omplexity of GAC2001/3.1 is O(er2dr), where eis the number of onstraints.In the next two de�nitions below, 1,5 form a two-element set while [1,5℄ is aninterval (atually, a losed interval), i.e. the set {1, 2, 3, 4, 5}.Range ConsistenyAn n-ary onstraint C(x1, x2, . . . , xn) where no domain Di is empty, is alledrange-onsistent [27℄ if and only if, for eah variable xi and value di ∈ Di,there exist values d1 ∈ [min D1, max D1], d2 ∈ [min D2, max D2], . . ., di−1 ∈
[min Di−1, max Di−1], di+1,∈ [min Di+1, max Di+1], . . ., dn ∈ [min Dn, max Dn]suh that (d1, d2, . . . , dn) ∈ C.This means that range onsisteny does not hek for the feasibility of theonstraint for eah and every domain-value of the partiipating variables, but onlywith respet to intervals that inlude those domain-values.



37Bounds ConsistenyAn n-ary onstraint C(x1, x2, . . . , xn) where no domain Di is empty, is alledbounds-onsistent [27℄ if and only if, for eah variable xi and value di ∈
{min Di, max Di}, there exist values d1 ∈ [min D1, maxD1], d2 ∈ [min D2, max D2],
. . ., di−1 ∈ [min Di−1, max Di−1], di+1,∈ [min Di+1, max Di+1], . . ., dn ∈
[min Dn, max Dn] suh that (d1, d2, . . . , dn) ∈ C.This means that bounds onsisteny does not even hek all domain-values ofthe variables partiipating in the onstraint, but only the minimum and maximumvalues. Bounds onsisteny an be viewed as a relaxation of range onsisteny.Alldiff ConstraintsWhile formulating onstraints for our CSP solver for DES S-boxes, the riterionS-2 is found to be made of n-ary onstraints, speifying that eah S-box rowshould not ontain dupliates. In other words, the variables partiipating in eahrow should possess di�erent values. Suh onstraints an be easily modeled asAlldiff onstraints and onsisteny algorithms speially available for these kindsof onstraint an be used to advantage [27℄, [49℄, [51℄, [50℄.The programming language Mozart-Oz [67℄ provides an ALLDISTINCT modulethat helps the developer to speify an Alldiff onstraint. We were able to usethis module to advantage for generating solutions that satis�ed riterion S-2 alone.Simply deomposing an Alldiff onstraint having n variables into nC2 binaryonstraints does not always give us the desired performane. In fat, the pruningperformane is poor, with a omplexity of O(n2) [27℄. In omparison, the originalset of Alldiff onstrains performs at O(dn1.5), where d is the maximum ardinalityof domains.A nai�ve algorithm that is O(n3) in the number of variables is disussed in [27℄.This algorithm onsiders an interval I = [a, b] where a is the smallest value ofall domains and b, the largest. If #I is less than the ardinality of the variablespartiipating in I, there is no solution. If I is a Hall Interval, the bounds areupdated. Regin's algorithm [50℄, is an improvement over the nai�ve implementationand has O(n2d2), where d is the maximum domain-size. Mehlhorn and Thielpresent another that performs in time O(n) plus the time required for sorting theendpoints of the intervals.Puget's algorithm [49℄ for bounds onsisteny of Alldiff onstraints is
O(n log2 n).Leonte's range onsisteny algorithm runs in time O(n2d), where d is theaverage domain size.Régin's hyper-ar onsisteny algorithm on Alldiff, based on mathing theory,onstruts a value graph in time O(d|XC| + |XC | + |DC |) where the subsripted



38
C's stand for the variables partiipating in the mathing over of the value graph.
d is the maximum ardinality of the domains of the variables. Hoproft and Karpimplemented a maximum mathing algorithm on the value graph, that runs intime O(

√

|XC |m), where m is the number of edges in the value graph.Régin proposes another form of Alldiff, namely, the symmetri Alldiff on-straint [51℄. This is equivalently expressible as an Alldiff onstraint along withadditional information on symmetry. However the symmetri form exhibits moreglobal information that the split-version of the CSP. The additional informationis used for pruning.2.6.5 Limited Disrepany SearhWhile running our CSP solver, we often obtain several solutions that appear iden-tial in the values assigned to the �rst few variables. We may want to limit suhsolutions and move on to those that look �di�erent".Tree searh methods are useful for solving many pratial problems beausearefully-tuned suessor-ordering heuristis guide the searh towards regions ofthe spae that are likely to ontain solutions.Limited Disrepany Searh (LDS) is introdued by Harvey and Ginsberg [24℄.During searh, when a goal node is not reahed, the thinking is that the searhwould have sueeded had it not been for a small number of �wrong turns" along theway. The point at whih the wrong turn ours is referred to as a disrepany. Thispaper demonstrates a novel searh tehnique alled Limited Disrepany Searh,whih is a baktraking algorithm that searhes the nodes of the tree in inreasingorder of suh disrepanies. The paper shows how this tehnique an be expetedto outperform existing approahes.The existing approahes disussed are iterative sampling and baktraking.In iterative sampling, without suessor-ordering heuristi, iterative sampling isine�etive when the solution density is not very high. In baktraking, mistakesmade early in the searh proess, partiularly when the subtree is large or whenthere are very few solutions present, present a tremendous burden on the heuristiearly in the searh proess.The idea of LDS is that when a heuristi fails, it would have led to a solution ifonly it had not made one or two �wrong turns" that got it o� trak. One should beable to systematially follow the heuristi at all but one disrepany. If that fails,one an follow the heuristi at all but two disrepanies. And so on. Thus, LDSdoes a depth-�rst searh traversal of the tree, limiting the number of disrepaniesto a disrepany limit x. When, eventually, x = d, where d is the maximum depthof the tree, then the searh beomes exhaustive.



39A theoretial omparison is made with the two existing methods, examiningthe likelihood of �nding a solution in the spei�ed amount of time. The paperde�nes a mistake probability m as the probability that a randomly seleted hildof a good node is not having any goals in its subtree. The heuristi probability
p is equal to (1 − m) (or greater, if it does better than random seletion). Thehane of �nding a solution on a random path (iterative sampling) to depth d is
(1−m)d. Given spei� values for p and m, the paper demonstrates the theoretialprobabilities of suess as a funtion of the height of the tree for iterative sampling,hronologial baktraking and LDS for various values of p.When p = 0.8, LDS performs slightly worse under these onditions. As pinreases to 0.85, 0.9, 0.95, the urve for LDS goes way higher ompared to theothers, suggesting that the performane of LDS inreases dramatially with better
p. Rihard [30℄ disusses an improvement of Limited Disrepany Searh overthe earlier one by Harvey and Ginsberg [24℄. In the improved version (ILDS),a number of searh paths that were repeatedly traversed in eah iteration in theearlier version (OLDS) are eliminated.An analytial omparison of the two algorithms is made in the paper. If thedepth of the searh tree is d, then the total number of paths generated by OLDSin a omplete searh to depth d is (d + 2)2d−1. This is also the asymptoti timeomplexity of OLDS. In omparison, the omplexity of ILDS is O(2d), suggestingthat OLDS may be worse than ILDS by a fator of d+2

2
, in the worst-ase senario.Usually this does not happen sine, OLDS was designed for very large trees andonly a few iterations were needed. Another reason is that when integrated intoCSPs or branh-and-bound methods, a great deal of pruning disallows reahing allthe way down to the maximum depth.The paper analytially ompares ILDS with DFS sine the authors found thatILDS is still ine�ient to DFS due to the larger number of internal nodes generatedby ILDS. If b is the branhing fator and d, the depth of the tree, then for DFS, thetotal number of nodes is bd+1−1

b−1
. In omparison, for ILDS, the total number of nodesis found to be equal to b(bd+1−1)

(b−1)2
. The ratio of the total number of nodes generatedin ILDS to that in DFS is equal to b

b−1
. The expressions were approximated in thepaper but that was not neessary; the ratio is still the same. As the branhingfator inreases, the ratio dereases. When pruning happens, the overhead of ILDSinreases.Ine�etiveness of Limited Disrepany Searh for our workWe disovered that limited disrepany searh is not e�etive for our work. LDSis used where a goal assignment is not found, to expand in a di�erent diretion



40using the notion of the �number of wrong turns". However, in our work, wealready have several goal assignments. Our objetive is to see �di�erent" kindsof goal assignments rather than the �same kinds" of goal assignments. LDS willertainly give us �di�erent" kinds of goal assignments upon expanding in a di�erentdiretion. But, it will still give us the �same" kind of assignments within that�di�erent" kind. As suh, this approah is not reommended, and we onsiderreordering the domains aording to a random permutation.2.7 The Solver for Binary ConstraintsAlgorithm 1 outlines the solver in its original form. The solver handles binaryonstraints represented in extensional form, pre-omputed and input to it. Thesolver generates S-boxes employing Maintenane of Ar Consisteny (MAC) [55℄with AC2001 [9℄.Proedure Solver is reursive. The inputs are the set of variables X, the setof (redued) domains D′, the preomputed binary onstraints C2, reursion level
k and threshold τ of optimality of the solutions sought. The solver is invoked forthe �rst time with D′ = D (the initial set of domains), and k = 0 (to indiatethe starting variable). Here the funtion ProcessNary() returns true if k = |X|.This is the ondition that all variables are assigned and forms the base ase forreursion to terminate. Funtion MakeAndCheckSBox() reates an S-box Φ with allvalues assigned, and returns the same. Funtions InitPartialVarsAndCounts(),
ReverseUpdateCountDistSet() and ReverseUpdateCount() perform no opera-tion. Boolean funtions CheckPartialSBox() and ProcessOtherDomains() simplyreturn true. Under these irumstanes, when all variables are assigned, Line 9prints the solution that satis�es all binary onstraints in C2. All of the funtionsthat hitherto return true or perform trivial operations (or even none) implementthe heuristis proposed in the paper for the global n-ary onstraints for S-2 andS-7.Proedure SeletNextVariable, alled in Line 3 selets the next variable Xjand returns its index j, as governed by a permutation π : Z|X| → Z|X|. Twovariable-ordering heuristis are onsidered in our work for performane evaluations(subsetion 5.5.2), namely, the default straight-line and an alternative, zig-zagordering.In Line 11, the next available value v is assigned to xj ∈ X from its redueddomain D′

j . All other elements in D′
j are added to a deletion set DS (Line 12).Establishment of Ar Consisteny using AC2001 is made at Line 16 by the funtionEstablishAC, �ltering domains in D′ to return a set D′′ of redued-domains. Ifno redued-domain in D′′ is empty, the solver reurses in Line 17. The funtion
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Proedure Solver(X, D′, C2, k, τ)input : Variables X = {x0, x1, . . . , x2n−1},Domain-subsets D′ = {D′

i : 0 ≤ i < 2n}, with D′
k ⊆ Dkbeing the domain-subset for xk,

C2 is the set of binary onstraints for the 4 riteria S-3 to S-6,
k is the reursion level (xk ∈ X is the urrent variable),
τ = The threshold sore sought for eah S-box solution.output: n×m S-boxes having a maximum sore equal to τ1 begin2 InitPartialVarsAndCounts()3 j ← SelectNextVariable(k)4 c1 ← CheckPartialSBox()5 if c1 then6 c2 ← ProcessNary()7 if c2 then8 Φ← MakeAndCheckSBox()9 PrintSBox(Φ)10 else11 foreah v ∈ D′

j do12 DS ← {(j, w) : w ∈ D′
j ∧ w 6= v}13 D′

j ← {v}14 c4 ← ProcessOtherDomains(DS, D′, j, v)15 if c4 then16 D′′ ← EstablishAC(D′, DS)17 if no domain in D′′ is empty then18 Solver(X, D′′, C2, k + 1, τ)19 ReverseUpdateCountDistSet()20 D′
j ← RestoreDomain(xj)21 ReverseUpdateCount()

Proedure SeletNextVariable(k)1 begin2 return π(k) ;
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RestoreDomain() restores the domain D′

j of xj before the next value from D′
j isonsidered at Line 11.2.8 NotationsFor a number x, we use |x| to denote its absolute value. If X is a set, then

|X| represents its ardinality (number of elements in the set X). Whenever aset is written with braes, its ardinality is written with a # preeding the setitself. For example, the ardinality of the set {a0, a1, a2, . . . ak−1} is written as
#{a0, a1, a2, . . . ak−1}.The symbol ⊕ denotes the bitwise exlusive-OR (or XOR) of two bit patterns
a and b having idential bitlength, and the operation is written as a ⊕ b. Thesymbol · denotes the bitwise AND of two quantities a and b having identialbitlength and the operation is written as a · b. The one's-omplement of a bitpattern a, also alled the negation of a or the NOT-operation on a, is written as
ā. In logial expressions (as opposed to bitwise arithmeti), the symbol ∧ is usedfor onjuntion, the symbol ∨ used for disjuntion and the symbol ¬, used fornegation.A linear ombination of Boolean variables x0, x1, x2, . . . , xk−1, is given by theexpression

k−1
⊕

i=0

ai · xi = a0 · x0 ⊕ . . .⊕ ak−1 · xk−1where ai are Boolean oe�ients, ⊕ is the bit-wise exlusive-OR operator and · thebit-wise AND operator. A linear Boolean funtion Lω(x) on an n-bit input x =
x0 . . . xn−1 de�ned by an n-bit seletor ω = ω0 . . . ωn−1 is omputed [14℄ as:

Lω(x) = ω0 · x0 ⊕ . . .⊕ ωn−1 · xn−1 =
n−1
⊕

i=0

ωi · xi (2.10)The parity of a binary quantity a is equal to the number of one's in a. If a hasan odd number of 1's, it is said to follow odd parity and if this number is even,it is said to have even parity. The hek for parity is made by omputing theexlusive-OR of the bits in a. The result of the exlusive-OR is either 0 or 1; if 1,
a possesses odd parity, otherwise a possesses even parity. It is easy to see that theparity of a is obtained by taking the sum of the bits in a modulo-2.Some existing riteria are based on the onepts of Hamming weight and Ham-ming Distane. The Hamming weight of a given bit-pattern u, denoted by wt(u),is de�ned as the number of 1's in u. The di�erene between two n-bit numbers x



43and y is equal to x⊕ y. The Hamming Distane between x and y is the minimumnumber of hanges to be made to x to obtain y, and is equal to wt(x⊕ y).
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Chapter 3CSP Models for Seurity CriteriaWe model the seurity riteria listed in Table 2.1 and disuss onstraint for-mulation strategies. Binary onstraints are formulated in this Chapter, and n-aryonstraints, in Chapters 4 and 5 to model the seurity requirements.3.1 Constraint Formulation StrategySome of the S-box riteria of Table 2.1 an be formulated as binary onstraintswhile others get formulated as n-ary onstraints. Moreover, some riteria mayoperate on a ombination of solutions generated. A strategy is put in plae beforeattempting to formulate onstraints for eah riterion.3.1.1 One S-box, and ombination of S-boxesIn the S-box riteria one an observe that S-8 applies to more than one S-boxtaken together (three S-boxes in this ase). All other riteria apply to only one

S-box. The following two-step strategy for onstraint formulation is adopted inthis work.1. Generate S-boxes that satisfy all riteria exept S-8, �ltering out all those
S-boxes that do not satisfy these other riteria.2. Consider a subset of the set of generated solutions, and repeatedly validateS-8 on all suh subsets. Only those solutions that satisfy all eight riteriaremain behind while all others get �ltered out.The details of Step 1 are disussed throughout this Chapter and also, in Chap-ters 4 and 5. Step 2 is formulated as a separate problem and disussed in Chapter 6.3.1.2 Binary and n-ary onstraints of DES CriteriaIn the S-box riteria of Table 2.1, one an further observe the following: S-2 andS-7 gives rise to n-ary onstraints that take in more than two variables, while the



45remaining riteria S-3 to S-6 all give rise to binary onstraints. In this work, thefollowing steps are followed in the order below:1. The remaining riteria S-3 to S-6 are �rst analyzed and are modeled asbinary onstraints in this Chapter.2. S-2 is positioned to validate and aept only those solutions satisfying it. Inthat sense S-2 serves as a ��lter". This is a generate-and-test approah. De-omposition of S-2 into hard onstraints by employing projetion, resultingin heuristis for searh speedup, are proposed in Chapter 4.3. Those S-boxes aepted by S-2 will be further �ltered by a seond ��lter"that implements the n-ary global onstraint S-7. This is also a generate-and-test approah. A inremental approah, and a novel tehnique of projetingon the domains of future variables, is disussed in Chapter 5 to speed up theonstraint for S-7.3.1.3 A problem solverTo implement Step 1 mentioned in subsetion 3.1.1, the binary onstraints for-mulated for riteria S-3 to S-6 will be preompiled into a solver that will emitoutputs to satisfy only these riteria.Now the solver will be modi�ed to inlude heuristis for the n-ary onstraintS-2 and S-7. The solver will take in the partially-orret solutions and run the
n-ary onstraints to yield S-boxes that will satisfy all eight DES riteria.3.2 The CSP FormulationWe will now disuss the variables, domains for eah variable, and onstraint for-mulation. S-2 is referred to as the nonlinearity onstraint and its formulation isdealt with in Chapter 4. We will refer to riterion S-7 as the COUNT onstraintfor lak of a suitable terminology in the literature. The modeling of this riterionwill be disussed in Chapter 5.3.2.1 Variables of the CSP ModelFor an n×m S-box requiring n inputs, 2n variables are required. These variableswill be represented by xi, where eah xi is the output of one S-box, 0 ≤ i ≤ 2n−1.The set of variables for the CSP is the set {x0, x1, . . . , x2n−1}.Spei�ally, for 6 × 4 S-boxes suh as those used in DES, with n = 6, thereare 64 values of the 4-bit output of an S-box, eah output orresponding to one



466-bit input. Let these 64 values be represented by variables x0, x1, . . . x63, with
xi ∈ {x : 0 ≤ x ≤ 15}, 0 ≤ i ≤ 63. Eah variable xi spei�es the output ofan S-box orresponding to input i of the S-box, 0 ≤ i ≤ 63. For example, x0orresponds to 6-bit input 0 (0000002, in binary). Output x1 orresponds to 6-bitinput 1 (0000012 in binary), and so on.The set X of the 64 variables for a 6× 4 S-box is given by

X = {x0, x1, x2, . . . x63}Using these variables, an 6× 4 S-box is organized as shown in Table 3.1. Foronveniene, the values for the two-bit numbers x0x5 (row index) and the four-bitnumbers x1x2x3x4 (olumn index) of an input to the S-box are expressed in thedeimal number system.The peuliar pattern in whih the 6×4 S-box entries xi is organized is observedin Figure 3.1. For example, while traversing aross the �rst row from left toright, the variables are listed as x0, x2, . . . x30 instead of the more intuitive listing
x0, x1, . . . x15. Similarly in the seond row, only the x's with odd subsripts appear.This interesting layout is due to the fat that the �rst and last bits of the six-bitinput, and not the two leftmost bits, form the row-seletion. (Equivalently, this isbeause the middle four and not the last four bits of the input to a 6 × 4 S-boxforms the olumn-seletion.)

x1x2x3x4

x0x5 0 1 2 3 . . . 12 13 14 150 x0 x2 x4 x6 . . . x24 x26 x28 x301 x1 x3 x5 x7 . . . x25 x27 x29 x312 x32 x34 x36 x38 . . . x56 x58 x60 x623 x33 x35 x37 x39 . . . x57 x59 x61 x63Table 3.1: Distribution of the onstraint variables in a 6× 4 S-box3.2.2 Domain of eah variable, and Domain-set of the CSPFor an n ×m S-box that yields an m-bit output, eah variable xi ∈ X, 0 ≤ i ≤
2m − 1 assumes integral values from the set {0, 1, . . . , (2m − 1)}. The domain Difor eah xi is then given by:

Di = {0, 1, 2, . . . , 2m − 1}The domain-set D of the CSP is the set of suh domains, one for eah variable.



47A 6× 4 S-box suh as the one used in DES yields a 4-bit output value (m = 4)ranging from 0 up to a maximum of 15. In other words the domain of eah variable
xi in the set X = {x0, x1, . . . , x15} of variables, is the set Di, 0 ≤ i ≤ 63, given by:

Di = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}The domain-set D of the CSP is the set of domains of eah variable, and is asingleton set:
D = {D0, D1, . . .D63}

= {{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}} (3.1)3.2.3 Modeling Criterion S-1�Eah S-box has six bits of input and four bits of output.�Criterion S-1 is impliit in the hoie of variables. This is not disussed anyfurther.3.2.4 Modeling Criterion S-3�If we �x the leftmost and rightmost input bits of the S-box and vary the four middlebits, eah possible 4-bit output is attained exatly one as the middle four input bitsrange over their 16 possibilities.�Fixing the leftmost and rightmost input bits y0y5 to any of the possible fourombinations, selets one of four subsets of the variables. Generation of onstraintsfor lause S-3 is now straightforward. All we require is that no two output vari-ables, in eah subset, should be equal. The inequalities are diretly expressible asAlldiff onstraints [49℄, [27℄:
Alldiff(x0, x2, x4, ..., x30)

Alldiff(x1, x3, x5, ..., x31)

Alldiff(x32, x34, x36, ..., x62)

Alldiff(x33, x35, x37, ..., x63)For 6 × 4 S-boxes, eah Alldiff onstraint is expressible as 16×15
2

= 120 bi-nary onstraints and all of these Alldiff onstraints replae 480 binary inequalityonstraints. In general, for an n×m S-box organized as a 2n−m × 2m table, thereare 2n−m Alldiff onstraints for eah row of the table. Eah of these ontains 2mvariables and is expressible as 2m×(2m−1)
2

binary onstraints. The total number ofbinary onstraints that these Alldiff onstraints replae
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= 2n−m ×

2m × (2m − 1)

2
= 2n−1(2m − 1).3.2.5 Modeling Criterion S-4�If two inputs to an S-box di�er in exatly one bit, the outputs must di�er in atleast two bits."Consider any two 6-bit inputs i and j and their orresponding outputs xi, xj ∈

D, of a DES S-box S. Criterion S-4 an be written in First-Order Logi as:
(∀i)(∀j)(0 ≤ i < j ≤ 63) ∧ wt(i⊕ j) = 1

⇒ wt(xi ⊕ xj) ≥ 2 (3.2)For a 6 × 4 S-box, eah variable will partiipate in exatly 6 suh binaryonstraints (one for eah input bit), generating 192 binary onstraints. For an
n ×m S-box, eah variable partiipates in exatly n onstraints. Sine there are
2n variables, the total number of onstraints is equal to 2n × n and half of theseonstraints repeat due to symmetry. Therefore the number of binary onstraintsfor riterion S-4 is equal to n× 2n−1.3.2.6 Modeling Criterion S-5�If two inputs to an S-box di�er in the two middle bits exatly, the outputs mustdi�er in at least two bits."Consider any two 6-bit inputs i and j and their orresponding outputs xi, xj ∈
D, of a DES S-box S. The fat that the 6-bit inputs i and j di�er in the twomiddle bits implies that this 6-bit di�erene is exatly equal to 0011002. S-5 anbe written in First-Order Logi as:

(∀i)(∀j)(0 ≤ i, j ≤ 63) ∧ (i 6= j) ∧ (i⊕ j = 0011002)

⇒ wt(xi ⊕ xj) ≥ 2 (3.3)For DES, this results in 32 binary onstraints, eah variable (S-box entry)partiipating in exatly one suh binary onstraint. For an n × m S-box, two
n-bit inputs di�er in their middle two bits in exatly one way. As suh, eahvariable gives rise to exatly one binary onstraint. For the 2n variables there are
2n onstraints, and half of these repeat due to symmetry. Therefore, the numberof binary onstraints for riterion S-5 is equal to 2n−1. Note that n should be aneven number, and n ≥ 2.



493.2.7 Modeling Criterion S-6�If two inputs to an S-box di�er in their �rst two bits and are idential in theirlast two bits, the two outputs must not be the same."Consider any two 6-bit inputs i and j and their orresponding outputs xi, xj ∈
D, of a DES S-box S. The fat that the 6-bit inputs i and j di�er in their �rsttwo bits and are idential in their last two bits, implies that the input-di�erene
(i ⊕ j) ∧ 1100112 is exatly equal to 1100002. S-6 an be written in First-OrderLogi as:

(∀i)(∀j)(0 ≤ i < j ≤ 63), [(i⊕ j) ∧ 1100112] = 1100002

⇒ xi 6= xj (3.4)For DES, eah variable is involved in 4 suh binary onstraints (one for eahpossible ombination of the two middle input bits), resulting in a total of 128 newbinary onstraints.For an n × m S-box, let us onsider two n-bit inputs. Their �rst two bitsdi�er and simultaneously, their last two bits are idential in exatly one way. Theremaining (n − 4) bits an be seleted in 2n−4 ways (these bits may or may notdi�er, nothing is said about them). Therefore eah variable partiipates in 2n−4binary onstraints. For the 2n variables, we have a total of 2n × 2n−4 = 22n−4onstraints, half of whih are idential due to symmetry. Therefore, for an n×m
S-box, the number of binary onstraints for riterion S-6 is equal to 22n−4

2
= 22n−5.Note that n ≥ 4.3.2.8 Total Number of Binary ConstraintsThe total number of binary onstraints, obtained by adding the above four results,is equal to 2n−1×(2m+n+2n−4), n ≥ 4. For DES, this works out to 832 onstraints.160 of these binary onstraints ontain two variables that partiipated in otherbinary onstraints in the set. After orresponding onstraints are omposed (referExample 2.2), the total number of binary onstraints formulated for riteria S-3,S-4, S-5 and S-6 is redued to 672.3.3 Summary and Looking AheadIn this hapter we have formulated binary onstraints for riteria S-3, S-4, S-5and S-6 spei�ed for DES S-box design. Criterion S-1 is impliit in the hoieof variables. In our experiments, these binary onstraints have been preompiled



50into a solver (Setion 2.7) that stores the binary onstraints in extensional form(Setion 2.6.1).In the binary onstraints modeled, their appliablity is a funtion of the S-boxinput size n for an n×m S-box. While all of them are appliable for 6×4 S-boxessuh as those of DES, S-5 does not make sense for 5×3 S-boxes n = 5 is not even.In the experiments disussed in Chapter 7, suh riteria would have to be eithermodi�ed or relaxed when running the solver on small-sized problems.Criteria S-2 and S-7 are n-ary onstraints. The key hallenge is how to runthe binary-onstraint solver on these onstraints e�iently. There are essentiallytwo approahes for ensuring e�ieny, both employing projetions:1. Projet an n-ary onstraint on past assignments and hek if the n-ary on-straint is satis�ed partially for eah assignment.2. Projet domain-values of future variables onto past assignments to om-pletely eliminate heks for onstraint satisfation.The seond approah is better than the �rst, sine, no expliit heking isrequired and all elements available after propagation are part of the solution spae.Both heuristis are inremental, not heking on a omplete S-box but on a partialassignments. Chapter 4 introdues the idea of a partially assigned S-box, anddisusses the �rst approah applied to riteria S-2 and S-7. Chapter 5 disussesthe seond approah applied to riterion S-7.Criterion S-8 deals with multiple S-boxes and annot be modeled in this exist-ing CSP framework. We disuss this riterion in Chapter 6. We have determineda way by whih this riterion an be modeled as a pure CSP, by inreasing thevariables (and hene the solution spae). This will be treated as future work anddisussed in some detail in Chapter 9.
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Chapter 4The Nonlinearity ConstraintCriterion S-2 is referred to as the nonlinearity requirement. The essene of thisrequirement is that the output of an S-box should be highly nonlinear. A measureof nonlinearity is derived in this Chapter, diretly from Matsui's work on LinearCryptanalysis of DES [34℄.In this Chapter, we model S-box nonlinearity as a onstraint. As we shall see,the result is a soft CSP. We will then formulate heuristis for speedup of S-boxsearh to satisfy this riterion in addition to riteria S-3 to S-6.First, the nonlinearity requirement is repeated here for onveniene:S-2: �No output bit of an S-box should be too lose to a linear funtion ofthe input bits. (That is, if we selet any output bit position and any subset of thesix input bit positions, the fration of inputs for whih this output bit equals theexlusive-OR of these input bits should not be lose to 0 or 1, but rather should benear 1

2
).� [16℄Before proeeding any further with the nonlinearity analysis, let us disuss theidea of a partially assigned S-box and derive some properties of this kind of S-box.The derived properties are not present in urrent literature on S-boxes, and is oneof the main ontributions of this Dissertation.4.1 Partially Assigned S-boxesIn the literature, eah S-box entry or all entries are formed one bit at a time andthese are often referred to as partial S-boxes. Often these entries are populatedone row at a time or one olumn at a time [38℄. In all of these ases, the S-boxentries are formed bit by bit. In ontrast, in our formulation eah S-box entry is aomplete number. However not all entries are assigned simultaneously or in otherwords, we do not always deal with ompletely �lled S-boxes. In CSP terminology,this amounts to variables not all of whih are being assigned immediately. Thisgives rise to inremental evaluations, whih will be formulated for heking S-2and S-7. Throughout the rest of this Dissertation, we will refer to a PartiallyAssigned S-box to mean an assignment to a subset of the variables in X of the

S-box.



52De�nition 4.1 (Partially Assigned S-box) An S-box is partially assigned ifand only if not all of its entries are assigned.Let X be the set of variables of an S-box and X ′ ⊆ X, the set of variables of apartially assigned S-box. We will denote a partial assignment to the variables in
X of an S-box as follows. The tuple

A = 〈(x0, d0), (x1, d1), . . . , (x|X′|−1, d|X′|−1)〉 (4.1)orresponds to the partial assignment x0 = d0, x1 = d1, . . . , x|X′|−1 = d|X′|−1.The unassigned entries are given an invalid value (−1 in our implementations).In the illustrations for partial S-boxes these unassigned entries are not shown.This notation will be used in Chapter 7 to quantify the searh points enounteredduring S-box searh.Example 4.1 For the omplete S-box S8 of DES given in Figure 1.1, severalpartially assigned S-boxes are possible. A partial assignment to variables x0 =
13, x1 = 1, x2 = 2, x3 = 15, . . . , x20 = 3 results in the partial S-box of Figure 4.1.13 2 8 4 6 15 11 1 10 9 31 15 13 8 10 3 7 4 12 5Figure 4.1: A partially assigned S-box obtained by assigning values to variables
x0, x1, . . . , x20. Note that this assignment follows a zig-zag pattern.As per the notation governed by equation 4.1, this assignment is equivalent tothe tuple

A = 〈(x0, 13), (x1, 1), (x2, 2), . . . , (x19, 5), (x20, 3)〉Notie that the way entries are populated depends on the manner in whih thevariables are organized with referene to Figure 3.1. Another fat worth observingis that the partially assigned S-box formation is ontingent upon the order inwhih the variables are assigned. Example 4.2 illustrates this aspet.Example 4.2 In Chapter 5, we will onsider a straight line variableordering heuristi. In this heuristi, variables with even subsripts
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x0, x2, . . . , x30 are �rst assigned to �ll the �rst row, followed by thosewith odd subsripts x1, x3, . . . , x31 to �ll the seond, and so on. Inthis on�guration if we onsider the following variable assignments,namely, (x0, x2, x4, x6, x8, x10, x12, x14, x16, x18, x20, x22, x24, x26, x28, x30) =
(13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7) and (x1, x3, x5, x7, x9, x11) =
(1, 15, 13, 8, 10, 3) then the partial S-box of Figure 4.2 will result.13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 71 15 13 8 10 3Figure 4.2: A partially assigned S-box resulting from variables assigned using astraight-line pattern (row-wise)As per the notation governed by equation 4.1, this assignment is equivalent tothe tuple

A = 〈(x0, 13), (x2, 2), (x4, 8), (x6, 4), (x8, 6), (x10, 15), (x12, 11), (x14, 1),

(x16, 10), (x18, 9), (x20, 3), (x22, 14), (x22, 5), (x24, 0), (x26, 12), (x28, 7),

(x1, 1), (x3, 15), (x5, 13), (x7, 8), (x9, 10), (x11, 3)〉In Chapter 3, we have denoted X as the set of variables for the S-box entries.For a partial S-box, we denote X ′ to be the variable-set, with X ′ ⊆ X. We willalso denote a fully-�lled S-box (whih we will refer to simply as an S-box as hasustomarily been done) by Φ and a partially assigned S-box by Φ′.4.2 Analysis of Criterion S-2The rationale behind riterion S-2 is to ensure that an S-box is highly non-linear.Matsui's work on linear ryptanalysis [34℄ uses a table alled the Linear Approxi-mation Table (LAT) that reords the ounts of linear ombinations of all subsetsof input and output bits, for a partiular S-box. Consider an n×m S-box, i.e. onethat for any n-bit input i = i0 . . . in−1 yields the m-bit output xi = xi0 . . . xim−1
.The linear ombinations to be heked for equality are obtained by seleting bitsin i and xi using seletors a and b respetively, where 0 ≤ a < 2n and 0 ≤ b < 2m.Example 4.3 Let us onsider a 6× 4 S-box that takes as input i = 46 and givesan output xi = x46 = 13. To hek how lose this input/output relationship is



54to a linear relationship, we need to �t a linear equation between the bits of i =
1011102 = ioi1i2i3i4i5 and of xi = 11014 = xi0xi1xi2xi3. If the bits 0, 2, 4 and 5of input i and bits 1, 2 of output xi, are seleted, then the following equation isheked:

i0 ⊕ i2 ⊕ i4 ⊕ i5
?
= xi1 ⊕ xi2

1 · i0 ⊕ 0 · i1 ⊕ 1 · i2 ⊕ 0 · i3 ⊕ 1 · i4 ⊕ 1⊕ i5
?
= 0 · xi0 ⊕ 1 · xi1 ⊕ 1 · xi2 ⊕ 0 · xi3

a0i0 ⊕ a1i1 ⊕ a2i2 ⊕ a3i3 ⊕ a4i4 ⊕ a5i5
?
= b0xi0 ⊕ b1xi1 ⊕ b2xi2 ⊕ b3xi3i.e. La(i)
?
= Lb(xi)or, L43(46)
?
= L6(13)where a = a0a1a2a3a4a5 = 1010112 = 43 and b = b0b1b2b3 = 01102 = 6 areseletors for the bits 0,2,4,5 of the S-box input i and bits 1,2 of S-box output xi,respetively. This is a linear equation and if satis�ed, the relationship as governedby this equation is indeed linear.We are not interested in merely one partiular linear relationship. We want tohek searh for linear relationships in all possible seletions of input and outputbits of the S-box. The way of doing this is to enumerate all possible ombinations(seletions) among the 26 = 64 seletions of subsets of input bits in i versus the

24 = 16 subsets of output bits of xi and see how many of them are related bylinear equations.Example 4.4 Consider the entry x46 = 13 of the 6×4 S-box of Example 4.3. Wewould like to know what the linear relationships between input 46 (= 1011102)andoutput 13 (= 11012) exist. To do so, run the following hek for all seletors
a = a0a1a2a3a4a5, b = b0b1b2b3, 1 ≤ a < 64, 1 ≤ b < 16:

a0 · 1⊕ a1 · 0⊕ a2 · 1⊕ a3 · 1⊕ a4 · 1⊕ a5 · 0
?
= b0 · 1⊕ b1 · 1⊕ b2 · 0⊕ b3 · 1i.e. La(i)
?
= Lb(xi)or, La(46)
?
= Lb(13)Note that we have exluded the seletors a = 0, b = 0 beause if nothing isseleted, the trivial and uninteresting result 0 = 0 is enountered.
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b 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
a0 64 32 32 32 32 32 32 32 32 32 32 32 32 32 32 321 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 322 32 34 32 30 30 32 34 32 30 32 30 36 28 30 32 383 32 30 32 34 30 36 26 36 30 28 38 32 28 34 32 344 32 30 30 32 32 34 30 28 34 32 36 30 38 32 32 46... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...59 32 38 30 28 34 32 36 34 24 26 30 32 38 32 32 3460 32 34 32 34 28 26 36 34 36 34 40 30 32 34 36 3061 32 30 44 26 40 34 28 38 36 30 28 30 36 34 28 3462 32 24 36 32 30 34 30 38 42 38 34 34 32 32 28 3263 32 24 32 36 34 30 22 30 26 38 30 38 28 36 28 32Table 4.1: Tabulating the ounts NΦ

X(a, b) for the S-box S8 of Figure 1.14.2.1 Counting Linear Relationships in a Completely Filled S-box: NΦ
X(a, b)For a given S-box Φ with all variables in X, let us de�ne NΦ

X(a, b) as follows:
NΦ

X(a, b) = #{i : La(i)=Lb(xi); a, i ∈ Z2n ; b, xi ∈ Z2m} (4.2)where Lω(x) is de�ned in Equation 2.10. Equation 4.2 suggests that linear om-binations of input and output bits of all entries in an S-box are ounted. Theminimum value of NΦ
X(a, b) is zero and the maximum value is 2n. The values of

NΦ
X(a, b) are tabulated in a 2n×2m matrix. Example 4.5 illustrates the tabulationproess.Example 4.5 Consider DES S-box S8 of Figure 1.1. This is a 6× 4 S-box with

n = 6 and m = 4. Form a table the rows of whih are indexed by a and theolumns, by b, where a ∈ Z64, and b ∈ Z16. Table 4.1 displays the table having
26 = 64 rows and 24 = 16 olumns having a total of 64× 16 = 1024 entries. Onlythe �rst 4 and last 4 rows of the table are shown in the �gure, along with all theolumns.Let us study the entry orresponding to Row 3, Column 5 of the table, forwhih a = 3 = 0000112 = a0a1a2a3a4a5 and b = 5 = 01012 = b0b1b2b3. Thisentry is equal to the total number of times the following equation is satis�ed forall 64 4-bit entries xi = xi0xi1xi2xi3 of S-box S8 orresponding to eah 6-bit input
i = i0i1i2i3i4i5, 0 ≤ i < 64:
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L3(i) = L5(xi)

0 · i0 ⊕ 0 · i1 ⊕ 0 · i2 ⊕ 0 · i3 ⊕ 1 · i4 ⊕ 1 · i5 = 0 · xi0 ⊕ 1 · xi1 ⊕ 0 · xi2 ⊕ 1 · xi3

i4 ⊕ i5 = xi1 ⊕ xi3 (4.3)The entry in the table under row 3, olumn 5 reads 36, whih means that for36 entries out of the 64 in DES S-box S8, Equation 4.3 is satis�ed. The maximumvalue of an entry is 64 sine S8 ontains 64 entries. This proess is repeated forall entries (a, b) in the table to yield a ount for every possible linear ombinationsof the bits in an S-box input and its orresponding output.4.2.2 Counting Linear Relationships in a Partially Assigned S-box: NΦ′

X′(a, b)In Matsui's work, the quantity NΦ
X(a, b) is spei�ed for an S-box that has all itsentries �lled. Given a partial n × m S-box Φ′ and variable-set X ′ ⊆ X, let usde�ne another quantity NΦ′

X′(a, b) as follows:
NΦ′

X′(a, b) = #{i : La(i)=Lb(xi); xi ∈ X ′; a ∈ Z2n ; b, xi ∈ Z2m}4.2.3 Properties of NΦ′

X′(a, b)Besides Matsui's properties for NΦ′

X′(a, b) [34℄, the following properties also followfrom the de�nition of NΦ′

X′(a, b).Property 4.1 For any a,b,X ′,Φ′, 0 ≤ NΦ′

X′(a, b) ≤ |X ′|.This property follows at one from the fat that NΦ′

X′(a, b) is a ount, whihranges between the minimum value of 0 and the maximum value of |X ′|.Property 4.2 For any a,b,u,X ′,Φ′, NΦ′

X′∪{u}(a, b)−NΦ′

X′(a, b) ∈ {0, 1}.This property follows at one sine, adding an S-box entry due to the assign-ment to a variable u /∈ X ′ results in the ounts of equalities of linear ombinationsof S-box inputs and outputs either inreasing by 0 or 1.Let us examine, through an example, the manner in whih N ′Φ′

X (a, b) progressesas eah variable of an S-box is assigned a value. We will also be able to understandthe properties of NΦ′

X′(a, b) just listed. We assume that the S-box entries areassigned in the manner in Example 4.1.
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b 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
a0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 01 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 02 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 03 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 04 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...59 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 060 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 061 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 062 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 063 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0Table 4.2: Tabulating the ounts NΦ′

X′(a, b) for a partially assigned S-box Φ′ withonly the �rst entry x0 = 13 is populated.Example 4.6 Consider again, the DES 6×4 S-box S8 of Figure 1.1. Assign onlythe variable x0 = 13 with the �rst entry in the S-box, with all remaining variablesunassigned. For this partially assigned S-box, let us organize a table exatly in themanner presented in Example 4.5, resulting in Table 4.2.As one an observe, assigning a value to a single variable results in a table for
NΦ′

X′(a, b) that ontains entries having either 0 or 1. That is beause for a singleassignment, either a linear ombination of subsets of input bits versus output bitsresults in either an equality (entry 1) or an inequality (entry 0). With one morevariable assigned (that is, two variables assigned), the resulting table is obtainedby adding the (0-1) tables of the individual entries. Another way of stating thisis that the entries in the table due to the previous assignment is inreased by atmost 1 to form the umulative table. This is what Property 4.2 states.The new umulative table formed will now have entries that range between0 and 2. In general, when a partially assigned S-box ontains |X ′| entries, its
NΦ′

X′(a, b) entry ranges from 0 up to |X ′|. This is what Property 4.1 states.Example 4.7 The values for NΦ′

X′(a, b) of the partially assigned S-box Φ′ of Fig-ure 4.1, with assignments made to variables X ′ = {x0, x1, . . . , x20}, is displayed inTable 4.3.Observe that the entries range between 0 and 21. In fat, the minimum entryis 5 while the maximum entry is 21. Also observe that an entry may be even or
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b 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
a0 21 9 11 11 11 11 9 9 10 10 10 10 10 6 10 101 11 11 9 9 13 9 11 11 10 14 10 10 10 10 10 102 11 11 9 9 11 11 9 13 8 8 8 12 10 10 18 103 11 11 9 13 11 11 9 17 10 10 10 10 8 8 8 124 12 10 8 6 10 12 10 8 9 11 11 9 13 11 11 17... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...59 10 10 12 12 10 14 16 8 5 9 9 9 11 11 11 1160 9 7 9 11 11 9 11 9 14 12 12 10 14 12 12 661 11 9 11 9 13 11 5 15 10 8 8 10 14 12 12 1062 11 5 11 13 11 9 11 13 12 10 10 12 10 12 8 1063 11 9 11 13 7 9 7 9 6 16 12 14 12 10 10 12Table 4.3: Tabulating the ounts NΦ′

X′(a, b) for the partially assigned S-box Φ′ ofFigure 4.1.odd. In ontrast, for an S-box having all entries, the NΦ
X(a, b) entries are alwayseven.4.2.4 A Measure of Nonlinearity of an S-boxFor seletors a and b de�ned as above, let p(a, b) denote the fration of ases when

La(i) = Lb(xi), omputed as:
p(a, b) =

NΦ
X(a, b)

2n
(4.4)If p(a, b) is equal to 1, this indiates that the linear ombination of the outputbits seleted by b equals a linear ombination of the input bits seleted by a, i.e.,

∀i, La(i) = Lb(xi).If p(a, b) is equal to zero, then the linear ombination of the output bits seletedby b is never equal to the linear ombination of input bits seleted by a. DESriterion S-2 (and the stronger riterion S-2') stipulates that p(a, b) should benear 1
2
for all a, b.We are interested in how lose p(a, b) is to 1

2
. Let ρ(a, b) denote the absolutevalue of the di�erene between these quantities. Then,

ρ(a, b) = |p(a, b)−
1

2
| (4.5)



59Multiplying equation 4.5 by 2n, we have the following:
2n × ρ(a, b) = 2n × |p(a, b)−

1

2
| = |NX(a, b)− 2n−1|by substituting for NX(a, b) from equation 4.4. DES riterion S-2 (and S-2')alternatively stipulates that |NX(a, b)− 2n−1| for all seletor-pairs (a, b) should beas lose to zero as possible.4.2.5 The Sore of an S-boxThe ideal ase where |NΦ

X(a, b)−2n−1| is exatly equal to zero for all seletor-pairs
(a, b), has so far not been attained in the literature for ommon ryptosystems.The most e�etive linear approximation of a DES S-box is obtained if, for some
a and b, |NΦ

X(a, b)− 2n−1| is maximal. To redue the weakest point of the S-box,we use the so alled e�etiveness of linearization [46℄ of an S-box Φ as the sore,
σX(Φ), given by the maximum value of |NX(a, b)− 2n−1| over all (a, b):

σX(Φ) = max{|NΦ
X(a, b)− 2n−1| : 1 ≤ a < |X|; 1 ≤ b < |D|} (4.6)It an be easily observed that an S-box with a smaller sore is onsidered better(i.e. less linear and more nonlinear).Matsui [34℄ onsidered the general ase when b is not a power of 2, orrespond-ing to the riterion S-2' that is striter than S-2. Coppersmith [16℄ labelled S-2'as an additional property not originally used in the design of the S-boxes for DES,and we will adhere to the same premise aordingly, in our work. Therefore, inEquation 4.6, we will always assume that b is a power of 2.4.2.6 The Linear Approximation Table (LAT)The linear approximation table [34℄ for an n×m S-box is a 2n×2m matrix [34℄. Itsrows are headed by seletor a (0 ≤ a < 2n) and olumns, by seletor b (0 ≤ b < 2m).Eah entry is equal to the value of NX(a, b)− 2n−1 (inluding its sign). The entry,in row a and olumn b represent a measure of the orrelation between the inputbits seleted by a and the output bits seleted by b. Properties of the table, andof NΦ

X(a, b), are disussed in [34, 46, 26℄.As Equation 4.6 suggests, the sore σX(Φ) of the n×m S-box Φ is obtained bytaking the maximum value of the absolute values of all entries falling under thoseolumns whose heading is a power of two.
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b 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
a0 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 02 0 2 0 -2 -2 0 2 0 -2 0 -2 4 -4 -2 0 63 0 -2 0 2 -2 4 -6 4 -2 -4 6 0 -4 2 0 24 0 -2 -2 0 0 2 -2 -4 2 0 4 -2 6 0 0 14... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...59 0 6 -2 -4 2 0 4 2 -8 -6 -2 0 6 0 0 260 0 2 0 2 -4 -6 4 2 4 2 8 -2 0 2 4 -261 0 -2 12 -6 8 2 -4 6 4 -2 -4 -2 4 2 -4 262 0 -8 4 0 -2 2 -2 6 10 6 2 2 0 0 -4 063 0 -8 0 4 2 -2 -10 -2 -6 6 -2 6 -4 4 -4 0Table 4.4: The Linear Approximation Table for DES S-box S8 of Figure 1.1Example 4.8 The �rst �ve and last �ve rows of the Linear Approximation Tablefor the DES 6×4 S-box S8, with n = 6 and m = 4, are shown in in Table 4.4. Eahentry in this table is equal to NX(a, b)− 2n−1 = NX(a, b)− 25 = NX(a, b)− 32. Inother words, the table onstruted in this example follows straightforwardly fromthat of Example 4.5 (Table 4.1) by subtrating 32 from eah entry of the lattertable.The sore of DES S-box S-8 is obtained by taking the maximum values of theabsolute values of the entries under olumns 1, 2, 4 and 8 that are powers of two,whih is equal to 12.4.2.7 The Sore of a Partially Assigned S-boxThe sore σX′ , X ′ ⊆ X, of a partially assigned n×m S-box Φ′ is de�ned as follows:

σX′(Φ′) = max{|NΦ′

X′(a, b)− 2n−1| : 1 ≤ a < 2n; 1 ≤ b < |2m|}

4.3 Modeling Criterion S-2: A Non-inremental, CompleteHeuristiThe riteria S-2 leads to a soft onstraint that minimizes σX(Φ). When imple-mented as a hard onstraint for a threshold τ , it has the form:
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σX(Φ) ≤ τ (4.7)The funtions the proedure Solver of Algorithm 1 are listed in Table 4.5.Funtions InitialPartialVarsAndCounts() and ChekPartialSBox() are usedin inremental heuristis and therefore, there is nothing to be done for this heuris-ti. Funtion ProessNary() only heks if all variables are instantiated, re-turning true if so, and false otherwise. This funtion, along with funtionsReverseUpdateCountDistSet() and ReverseUpdateCount(), is designed to hekfor riterion S-7, disussed in detail in Chapter 5.Funtion MakeAndChekSBox() alls funtion MakeSBox() that prepares an

S-box Φ from the assignment to all variables in X. Next, MakeAndChekSBox()veri�es Equation refEq:s2 and if this equation is satis�ed, veri�es if the onstraintsfor riterion S-7 are also satis�ed (refer Chapter 5). If both are satis�ed, this fun-tion returns the S-box Φ that satis�es all modeled onstraints, whih is printed inSolver (Algorithm 1, Line 9).Funtion DesriptionInitPartialVarsAndCounts() (No operation)ChekPartialSBox() return trueProessNary() return (k = |X|).MakeAndChekSBox() Φ← MakeSBox(X)Compute σX(Φ) using Equation 4.6if (σX(Φ) ≤ τ)∧ (S-7 is satis�ed)(refer Chapter 5) return ΦProessOtherDomains() return trueReverseUpdateCountDistSet() (No operation)ReverseUpdateCount() (No operation)Table 4.5: Funtions for the Noninremental, Complete Heuristi for S-2, inSolverThe onstraint of Equation 4.7 is not implemented using an extensional repre-sentation. Rather, a speialized funtion is added to the solver that works with a
2n+m size storage, repliated at eah level in the searh tree. This results in a totalspae requirement of 22n+m bytes. For DES boxes the onstraint requires 64kB.



624.4 Modeling Criterion S-2: An Inremental, InompleteChekEquation 4.7 suggests a non-inremental approah to S-2 heking. Experimentsdisussed in Chapter 7 reveal a very ine�ient S-box searh using this heuristias expeted.We formulate an inremental hek by whih after eah variable is assigned,determine σX′ and repeat so long as Equation 4.7 is not violated. As soon as thisequation is violated, we baktrak. This approah has signi�antly speeded up thesearh for S-boxes. Moreover, it led to 6 × 4 S-boxes that yielded values of σXsuperior to those for the published eight DES S-boxes. Table 4.6 implements thefuntions for this heuristi in pseudoode form.Funtion DesriptionInitPartialVarsAndCounts() Let X ′ ← {x : x ∈ X ∧ x is assigned.}ChekPartialSBox() Φ′ ← MakePartialSBox(X ′)Compute σ′
X(Φ′) using Equation 4.7return ← (σX′(Φ′) ≤ τ)ProessNary() return (k = |X|)MakeAndChekSBox() Φ← MakeSBox(X)ProessOtherDomains() (No operation)ReverseUpdateCountDistSet() (No operation)ReverseUpdateCount() (No operation)Table 4.6: Funtions for the Inremental, Inomplete Heuristi for S-2, in SolverThe funtion InitPartialVarsAndCounts() keeps trak of the variables thatare assigned, in X ′. The funtion ChekPartialSBox() atually performs theveri�ation of Equation 4.7. However, the hek for violation is done in Solver(Algorithm 1), in the if-statement after Step 6. Funtion ProessNary() simplyheks if all variables have been instantiated. It is atually designed to performheks for the global n-ary onstraint for S-7, and is disussed in Chapter 5.So are funtions ProessOtherDomains(), ReverseUpdateCountDistSet() andReverseUpdateCount(). In the end, by the time Line 9 is enountered, all vari-ables are assigned and riterion S-2 is satis�ed (not neessarily S-7), and the

S-box is output.Despite its e�ay, this heuristi is inomplete. The reason is that although
σX′(Φ′) exeeded the threshold τ on some partial assignment to variables in X ′, itis not neessary that upon the next assignment, σX′(Φ′) will monotonially inrease



63to always exeed τ . (Property 4.2 suggests that NΦ′

X′(a, b) inreases monotonially� but not stritly � by at most 1.) In fat, σX′(Φ′) is often found to derease duringsubsequent assignments, whih this heuristi does not ath. This partial S-boxshould not always be abandoned.We further formulate a omplete heuristi by providing a haraterization fora partial S-box Φ′ to extend to a omplete S-box Φ. The trik to obtaining theondition is to not study the progress of σX′(Φ′), but to analyze so for NΦ′

X′(a, b).4.5 Modeling Criterion S-2: An Inremental, CompleteChek using Soft Constraint DeompositionWe will now projet the soft onstraint of Eq. 4.7 onto hard onstraints involving φvariables, φ being the number of variables instantiated to form a partially assigned
S-box Φ′ and φ ≤ |X|. During projetion, the goal is for the �nal sore of S-box
Φ to not exeed the maximum threshold τ :

max
a,b
|NΦ

X(a, b)−
|X|

2
| ≤ τ (4.8)4.5.1 Constrution of a Partially assigned S-boxFigure 4.3 depits the distribution of the ounts NΦ′

X′(a, b) on one seletor-pair
(a, b), for a partially instantiated S-box Φ′. The horizontal axis is the number ofvariables instantiated, φ. After |X ′| variables are instantiated at point A alongthe solid line, the dashed line at a 45-degree angle with the horizontal representsthe pathologial ase where the sore σX′ = NΦ′

X′(a, b) inreases by one for everysubsequent extension of Φ′ up to point D. The solid zig-zag lines onneting points
A and C represents the orresponding, �atual� distribution of NΦ′

X′(a, b) for theomplete S-box Φ to attain the sore equal to σX′ = NΦ
X(a, b) at point C. Fromthis onstrution, we have OF = NΦ′

X′(a, b), OG = NΦ
X(a, b), FH = BD = AB =

|X| − |X ′|, and OH = OF + FH = NΦ′

X′(a, b) + |X| − |X ′|.4.5.2 Lower and Upper bounds for maxa,b NΦ′

X′(a, b)Let us observe two properties of partially assigned S-boxes.Property 4.3 A partially instantiated S-box Φ′ with values for variables in
X ′, X ′ ⊆ X, annot be extended to a solution with sore better than a threshold τif the following inequality is not satis�ed:

max
a,b

NΦ′

X′(a, b) ≥ |X ′| − τ −
|X|

2
(4.9)
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NΦ
′

X′
(a, b)

|X||X′|O(0, 0)

45◦

Values of NΦ′

X′
(a, b)

NΦ
′

X′
(a, b)

Number of variables assigned, φFigure 4.3: Evaluating partially instantiated S-boxes.Proof By onstrution, (|X| − |X ′|) remaining variables are to be instantiatedin order to extend Φ′ to Φ. To guarantee extensibility, the following inequalityshould hold:
OG ≤ OH

NΦ
X(a, b) ≤ NΦ′

X′(a, b) + |X| − |X ′|This is true for all seletors a and b, and in partiular, holds for the maximumvalue of NΦ
X(a, b) (resp. NΦ′

X′(a, b)) over all a, b:
max

a,b
NΦ

X(a, b) ≤ |X| − |X ′|+ max
a,b

NΦ′

X′(a, b) (4.10)From the goal spei�ed by Equation 4.8,
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|X|

2
−max

a,b
NΦ

X(a, b) ≤ τi.e. |X|
2
− τ ≤ max

a,b
NΦ

X(a, b) (4.11)Combining Eq. 4.10 and Eq. 4.11,
|X|

2
− τ ≤ max

a,b
NΦ

X(a, b) ≤ |X| − |X ′|+ max
a,b

NΦ′

X′(a, b)By transitivity and regrouping,
max

a,b
NΦ′

X′(a, b) ≥
|X|

2
− τ − |X|+ |X ′|i.e. max

a,b
NΦ′

X′(a, b) ≥ |X ′| − τ −
|X|

2

Q.E.D.Property 4.4 A partially instantiated S-box Φ′ with values for variables in
X ′, X ′ ⊆ X, annot be extended to a solution with sore better than a threshold τif the following inequality is not satis�ed:

max
a,b

NΦ′

X′(a, b) ≤
|X|

2
+ τ (4.12)Proof Given a partial S-box assignment Φ′ with variables in X ′, by the end of theonstrution of any solution Φ obtained by extending Φ′, the following inequalityholds:

OF ≤ OGi.e. NΦ′

X′(a, b) ≤ NΦ
X(a, b) (4.13)This is true for all seletors a and b, and in partiular, holds for the maximumvalue of NΦ′

X′(a, b) (resp. NΦ
X(a, b)) over all a, b:

max
a,b

NΦ′

X′(a, b) ≤ max
a,b

NΦ
X(a, b) (4.14)From the goal spei�ed by Eq. 4.8,
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max

a,b
NΦ

X(a, b)−
|X|

2
≤ τi.e. max

a,b
NΦ

X(a, b) ≤
|X|

2
+ τ (4.15)Combining Eq. 4.14 and 4.15,

max
a,b

NΦ′

X′(a, b) ≤ max
a,b

NΦ
X(a, b) ≤

|X|

2
+ τThe result follows by transitivity.

Q.E.D.Eq. 4.9 and Eq. 4.12 failitate deomposition of the soft onstraint of Eq. 4.7into hard onstraints. One a partial S-box Φ′ is onstruted with φ = |X ′| < |X|
2variables assigned, Hφ,τ

C7
heks to see if Φ′ satis�es the above two inequalities. Ifnot, Φ′ is rejeted otherwise Φ′ is extended by instantiating the next variable andthe heks are repeated. The proess goes on until an S-box Φ with all variablesassigned, is obtained by whih time S-2 is now already satis�ed.4.5.3 An ExampleAn example is provided to understand the working of this heuristi.Example 4.9 We �nd in Chapter 7 that the maximum sore for all of the DES

S-boxes of Figure 1.1 is equal to 18. Consider that our threshold τ for a 6 × 4
S-box Φ is 16. Sine there are 26 = 64 variables X = {x0, x1, . . . , x63}, the partialhek should begin after |X|

2
+ τ variables are assigned, that is, after (32+16) = 48variables are assigned. Let us examine the progress of maxa,b NΦ′

X′(a, b) and thesore as we inrementally assign to the remaining 16 variables, starting from x48.For eah variable assigned, Table 4.9 populates the forms assumed by Eq. 4.9and Eq. 4.12.Thus, after x63 is assigned to yield S-box Φ with all entries �lled in,
maxa,b NΦ

X(a, b) will range between 16 and 48. As a result, its sore will alwaysrange between 0 and 16.4.5.4 The Solver that Implements this HeuristiThe inremental, omplete heking heuristi is implemented in the solver Solverof Algorithm 1, for whih the funtions of the latter algorithm are desribed inTable 4.8.



67Variable Number of variables Inequalities 4.9assigned |X ′| and 4.12
x48 49 1 ≤ maxa,b NΦ′

X′(a, b) ≤ 48
x49 50 2 ≤ maxa,b NΦ′

X′(a, b) ≤ 48
x50 51 3 ≤ maxa,b NΦ′

X′(a, b) ≤ 48
x51 52 4 ≤ maxa,b NΦ′

X′(a, b) ≤ 48... ... ...
x60 61 13 ≤ maxa,b NΦ′

X′(a, b) ≤ 48
x61 62 14 ≤ maxa,b NΦ′

X′(a, b) ≤ 48
x62 63 15 ≤ maxa,b NΦ′

X′(a, b) ≤ 48
x63 64 16 ≤ maxa,b NΦ′

X′(a, b) ≤ 48Table 4.7: Progress made by the inremental heks after assignments to the �rst48 variables, for a 6× 4 S-box with a threshold sore of 16 soughtThe implementation of this heuristi is very similar to that of the in-omplete, inremental hek of Table 4.6, with the di�erene in funtionChekPartialSBox(). In this heuristi, this funtion is onditionally alledonly after the �rst (X
2

+ τ) variables are assigned. In that ase, the fun-tion ChekPartialSBox() returns the results of the veri�ation of Eq. 4.9 andEq. 4.12. However, the hek for violation is done in Solver (subsetion 2.7),in the if-statement after Step 6. Just as in the ase for the inomplete heuris-ti, funtion ProessNary() simply heks if all variables have been instanti-ated. It is atually designed to perform heks for the global n-ary onstraintfor S-7, disussed in Chapter 5. So are funtions ProessOtherDomains(),ReverseUpdateCountDistSet() and ReverseUpdateCount(). In the end, by thetime Line 9 is enountered, all variables are assigned and riterion S-2 is satis�ed(not neessarily S-7), and the S-box is output.This heuristi is omplete and �nds all solutions, now that the progress of
maxa,b NΦ′

X′(a, b) is kept trak of, instead of the sore σ′
X(Φ′) of the partially as-signed S-box Φ′.4.6 Summary of Heuristis and Looking AheadWe have disussed the following heuristis for DES riterion S-2:1. A non-inremental, omplete heuristi, namely, the generate-and-test ap-proah to satisfying riterion S-2 by verifying Eq. 4.7.



68Funtion DesriptionInitPartialVarsAndCounts() Let X ′ ← {x : x ∈ X ∧ x is assigned.}
ChekPartialSBox() if (k ≥ |X|

2
+ τ) thens2ok ← false

Φ′ ← MakePartialSBox(X ′)Determine M ← maxa,bN
Φ′

X′(a, b)s2ok← (|X ′|−τ− |X|
2
≤M ≤ |X|

2
+τ)end ifreturn s2okProessNary() return (k = |X|)MakeAndChekSBox() Φ← MakeSBox(X)ProessOtherDomains() return trueReverseUpdateCountDistSet() (No operation)ReverseUpdateCount() (No operation)Table 4.8: Funtions for the Inremental, Complete Heuristi for S-2, in Solver2. An inremental, inomplete heuristi to partial S-box heking, namely, onein whih S-2 is heked by verifying Eq. 4.7 for every partial assignment.This heuristi abandons partial solutions that violate Eq. 4.7 that may haveatually beome solutions upon extension.3. An inremental, omplete heuristi to partial S-box heking, namely, onein whih S-2 is heked by verifying Eq. 4.9 and Eq. 4.12.Experiments will reveal signi�ant speedup of the inremental heuristi overthe non-inremental approah (both omplete). The inremental but inompleteapproah will be seen to generate 6×4 S-boxes superior to the existing, publishedDES S-boxes. This is not observed in the ase of either of the two omplete heuris-tis developed in this Chapter. All of these results are presented in Chapter 7.We next disuss development of heuristis for riterion S-7 whih we will allas the COUNT onstraint. The funtions implemented in this Chapter will berepeated in Chapter 5, but now the funtions designed for S-7 will also be in plae,rendering full implementations of heuristis to generate solutions that satisfy allriteria.
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Chapter 5Deomposition of Global Constraints, andHeuristisS-7: �For any nonzero 6-bit di�erene between inputs ∆Ii,j, no more than eightof the 32 pairs of inputs exhibiting ∆Ii,j may result in the same output di�erene

∆Oi,j.� [16℄We now formulate riterion S-7 as a onstraint. This riterion deals with ountsof di�erenes (Hamming distanes) between pairs of variables. As suh, we willoften refer to the resulting onstraint as the COUNT onstraint.The COUNT onstraint is a global n-ary onstraint. It is n-ary beause itinvolves partiipation of more than two variables. It is global beause it anbe deomposed into smaller-arity onstraints (not neessarily binary). However,this deomposition is not straightforward beause the variables themselves are notbeing split. A funtion on the variables, namely ounts of the di�erenes betweenpairs of variables is being onsidered for splitting.In spite of this infeasibility of straightforward splitting, we demonstrate anelegant way by whih projetion is employed to ahieve the domain-redutionsresulting in S-box speedup.This hapter outlines three heuristis for S-7: A non-inremental heuristi(generate-and-test), a simple inremental heuristi (taking advantage of the inre-mental heuristi for S-2), and the domain-redution heuristi for S-7 that employsprojetions.An optimization, introdued in Solver (Setion 2.7), is disussed in Se-tion 5.5.1. The funtion SeletNextVariable in Solver selets the next variabledepending upon the type of variable-ordering heuristi employed. This funtion isampli�ed in Setion 5.5.2. Two heuristis are onsidered there, namely, a StraightLine variable-ordering heuristi (the default ordering of arranging from left toright in an S-box suh as the one in Figure 3.1), and a Zig-Zag variable-orderingheuristi.
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S813 2 8 4 6 15 11 1 10 9 3 14 5 0 12 71 15 13 8 10 3 7 4 12 5 6 11 0 14 9 27 11 4 1 9 12 14 2 0 6 10 13 15 3 5 82 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11Figure 5.1: DES S-box S8 used in Example 5.15.1 Modeling riterion S-7We formulate S-7 for an n×m S-box. Only input pairs (i, 2n−1−i), 0 ≤ i < 2n−1,to the S-box di�er by all n bits. Consider the set O7 = {(xi, x2n−1−i) : 0 ≤ i <

2n−1)} of pairs of outputs orresponding to these input-pairs, with |O7| = 2n−1.Criterion S-7 applies to m-bit di�erenes d = xi ⊕ x2n−1−i, 0 ≤ d < 2m.Let f : Z2m → Z2n−1 denote a ount funtion, with f(d) signifying the frequenyof ourrene of an m-bit number d = xi ⊕ x2n−1−i where (xi, x2n−1−i) ∈ O7,
0 ≤ i < 2n−1. Note that

Σ2n−1−1
i=0 f(xi ⊕ x2n−1−i) = 2n−1.Aording to S-7, no more than eight elements in O7 should evaluate to thesame m-bit di�erene d. Criterion S-7 is formulated for an n × m S-box as an

n-ary global Boolean onstraint in the following way:
2n−1−1
∧

i=0

f(xi ⊕ x2n−i−1) ≤ 8 (5.1)Example 5.1 Consider the S-box S8 of DES of Figure 1.1, repeated in Figure 5.1for onveniene.Inputs 0 and 63 di�er by all 6 bits, so do inputs 1 and 62, 2 and 61, and ingeneral, i and (63 − i), 0 ≤ i < 32. We are interested in orresponding outputsof xi and x63−i. There are 32 pairs of outputs, (xi, x63−i). Their exlusive-ORis equal to xi ⊕ x63−i whih is a 4-bit value, ranging from 0 up to 15. Let d ≡
d(xi, x63−i) = xi ⊕ x63−i represent these 4-bit values.Listed in Table 5.1 are the pairs (xi, x63−i) and the distane between themembers of eah pair. For example, (x0, x63) = (13, 11) = (11012, 10112), and
d(x0, x63) = x0 ⊕ x63 = 11012 ⊕ 10112 = 01102 = 6, shown in the seond and thirdolumns for the �rst row of the table. There are 32 suh rows for the 32 pairs.The number of times the distanes d ours is now summarized in Table 5.2.
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(xi, x63−i) Corresponding Distances/Differences

0 ≤ i < 32 S-box values d(xi, x63−i) ≡ d = xi ⊕ x63−i

(x0, x63) (13, 11) 6
(x1, x62) (1,8) 9
(x2, x61) (2,6) 4
(x3, x60) (15,5) 10
(x4, x59) (8,5) 13
(x5, x58) (13,3) 14
(x6, x57) (4,3) 7
(x7, x56) (8,15) 7
(x8, x55) (6,0) 6
(x9, x54) (10,13) 7
(x10, x53) (15,9) 6
(x11, x52) (3,10) 9
(x12, x51) (11,12) 7
(x13, x50) (7,6) 1
(x14, x49) (1,15) 14
(x15, x48) (4,0) 4
(x16, x47) (10,13) 7
(x17, x46) (12,2) 14
(x18, x45) (9,8) 1
(x19, x44) (5,14) 11
(x20, x43) (3,10) 9
(x21, x42) (6,12) 10
(x22, x41) (14,4) 10
(x23, x40) (11,9) 2
(x24, x39) (5,7) 2
(x25, x38) (0,1) 1
(x26, x37) (0,14) 14
(x27, x36) (14,4) 10
(x28, x35) (12,1) 13
(x29, x34) (9,11) 2
(x30, x33) (7,2) 5
(x31, x32) (2,7) 5Table 5.1: Pairs of output bits for DES S-box S8, whose orresponding input bitsdi�er by all 6 bits, along with di�erenes (distanes) between these output-pairs.



72Distanes, d 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15Frequeny, f(d) 0 3 3 0 2 2 3 5 0 3 4 1 0 2 4 0Table 5.2: Frequeny of ourrene of d of Table 5.1For example, the value d = 7 ours �ve times beause in eah of the �ve pairs
(x6, x57), (x7, x56), (x9, x54), (x12, x51) and x16, x47), the �rst value is at a distane7 from the seond.None of the frequenies in Table 5.2 exeeds 8 and therefore DES S-box S8satis�es riterion S-7.If any frequeny in the table exeeds 8 for an S-box, that S-box violates riterionS-7 and should be rejeted.Remark 5.1 After reating the frequeny table for the entire S-box, the followingequation holds:

2n−1
∑

d=0

f(d) =
|X|

2Funtion DesriptionInitPartialVarsAndCounts() if (k = 0) then c0, c1, . . . , c2m−1 ← 0ChekPartialSBox() return trueProessNary() return (k = |X|).MakeAndChekSBox() Φ← MakeSBox(X)Compute σX(Φ) using Equation 4.6Let d← xi ⊕ x2m−1−i, 0 ≤ i < 2m−1Compute cd = f(d) as in Table 5.2if (σX(Φ) ≤ τ) ∧ ((∀d)(cd ≤ 8)) return ΦProessOtherDomains() return trueReverseUpdateCountDistSet() (No operation)ReverseUpdateCount() (No operation)Table 5.3: Funtions for Noninremental, Complete Heuristis for S-2 and S-7, inSolver (Setion 2.7)



735.2 A Non-inremental Heuristi for the COUNT onstraintThe �rst heuristi is a straightforward implementation of Eq. 5.1, as Table 5.3suggests. This Table is an extension of Table 4.5, with the hek for Eq. 5.1ampli�ed. We will denote this implementation by Hφ,τ
S .Alternatively, we ould extend the implementation of Table 4.5 to inlude thisheuristi for S-7, whih we will all Hφ,τ

C . In either ase, one an expet thisimplementation of the COUNT onstraint to be ine�ient (systemati generate-and-test), and an improvement upon S-box searh speed is neessary.5.3 An Inremental Heuristi that heks Partially-Assigned S-boxes for the COUNT ConstraintFor a ompletely-�lled S-box Φ having φ variables, instead of inrementing ountsand heking for S-7 after instantiating all φ variables the way the non-inrementalheuristi does, a partial S-box Φ′ that eventually extends to Φ is onsidered. 2mounts {c0, c1, . . . , c2m−1} are initialized to zero. Eah of these ounts is subsriptedby the di�erene d = xi ⊕ x2n−1−i between the outputs xi and x2n−1−i of Φ whoseinputs di�er by all m bits. The ounts are inremented by 1 after at least |X|
2

as-signments are made. If any ount cd exeeds 8, S-7 is violated and the solver rejetsthe partial S-box Φ′. Table 5.5 implements this heuristi, extending Table 4.8. Wewill denote this implementation by Hφ,τ
C7

.Example 5.2 Consider the partially assigned S-box of Figure 5.2 having variables
x0 up to x40 assigned. Sine variables up to x31 are assigned, the frequenies cd anbe determined starting from the assignment to x32. These frequenies are reordedin Table 5.4.0 3 5 6 9 10 12 15 7 4 2 1 14 13 11 83 0 6 5 10 9 15 12 4 7 1 2 13 14 8 113 0 6 5 100 3 5 8Figure 5.2: A Partial S-box obtained by assigning values to variables x0, x1, . . . , x40Note that x22 = 1 from Figure 5.2. As a result of earlier domain-redutionsdue to AC2001 following earlier assignments, the (redued) domain of x41 is
{6, 9, 12, 15}. Consider the assignment x41 = 6. Let d = x41⊕x63−41 = x41⊕x22 =



74Distanes, d 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15Frequeny, cd 0 0 0 0 0 0 1 0 8 0 0 0 0 0 0 0Table 5.4: Frequeny of ourrene of d for the Partially Assigned S-box of Fig-ure 5.2
6 ⊕ 1 = 7. Sine cd = c7 = 0 6= 8, inrement c7 by 1 so that the entry for c7,whih is 0 in Table 5.4, now beomes 1 and the next variable x42 is onsidered forassignment. The proess repeats.Consider now the assignment x41 = 9. Let d = x41 ⊕ x63−41 = x41 ⊕ x22 =
9 ⊕ 1 = 8. Note that cd = c8 = 8 from Table 5.4, and therefore the assignment
x41 = 9 inreases c8 by 1 to 9, violating the onstraint for S-7. This assignmenttherefore results in rejetion of the resulting partially assigned S-box and x41 = 9has to be abandoned.Remark 5.2 If |X|

2
+ k variables are assigned values, then the following is true:

2n−1
∑

d=0

cd = kIf k = |X|
2
, then this equation redues to the one mentioned in Remark 5.1.Remark 5.3 An improvement to Hφ,τ

C7
an be made by reduing the number ofheks for S-7. Cheking if cd > 8 immediately after assigning values to the �rst

|X|
2

variables is of no use sine all cd's exept one are set to zero and the one cd willbe equal to 1. No cd will ever attain 8 at this point. The starting point to verify if
cd > 8 is, atually, after |X|

2
+ 8 variables are assigned values sine, at this pointit is possible that exatly one cd attained 8 for some d while all others are zeros.(k = 8 in Remark 5.2.)

Hφ,τ
C7

an be further improved by a novel approah of integrating the n-aryonstraint into the solver, projeting onto domains of future variables reduingthese during the proess, prior to applying AC2001. The approah is disussednext.5.4 An Inremental Heuristi that employs ProjetionsJust as in the earlier inremental heuristi for S-7, let cd denote the ount ofdistanes d where d is the distane between xi and x2n−i−1 representing S-box



75Funtion DesriptionInitPartialVarsAndCounts() Let X ′ ← {x : x ∈ X ∧ x is assigned.}if (k = 0) then Let: c0, c1, . . . , c2m−1 ←
0

ChekPartialSBox()
Set s2ok ← true, s7ok ← trueif (k ≥ |X|

2
+ τ) then {Chek S-2 par-tially}

Φ′ ← MakePartialSBox(X ′)if Φ′ violates either Property 4.3 orProperty 4.4 then s2ok ← falseend ifif (k ≥ X
2
)∧ s2ok then {Chek S-7 par-tially}Let d← xk ⊕ x|X|−k−1if (cd + 1 > 8) then s7ok ← falseif s7ok then cd ← cd + 1end ifreturn s2ok ∧ s7okProessNary() if (k = |X|) then return true else re-turn falseMakeAndChekSBox() Φ← MakeSBox(X)ProessOtherDomains() return trueReverseUpdateCountDistSet() (No operation)ReverseUpdateCount() if (k ≥ |X|

2
) then cd ← cd − 1Table 5.5: Funtions for Hφ,τ

C7
in Solver (Setion 2.7)outputs for those pairs of inputs that di�er by all n bits, with 0 ≤ d < 2m. Allthe cd's, namely, c0, c1, . . . , c2m−1, are initialized to zero. So long as |X ′| < |X|

2
, cdis not updated, similar to what ours in funtion ChekPartialSBox of heuristi

Hφ,τ
C7

.For assignments to the next eight variables xi when |X|
2
≤ i < |X|

2
+8, inrementthe ount cd = c|X|−i−1. During these assignments, 1 ≤ cd < 8 and no heking for

cd > 8 is needed at this point.



76The heking for S-7 begins when cd beomes equal to 8 starting from thenext variable assignment. Denote this next assignment by xk = v, with |X|
2

+ 8 ≤
k < |X| and v ∈ D′

k, D′
k being the (redued) domain of xk. A distane-set

∆ = {d = x|X|−k−1 ⊕ xk : cd = 8} is formed from this point onwards, with
0 ≤ |∆| ≤ 2m.Whenever |X|

2
+8 ≤ k < |X|, remove values f ∈ {x|X|−k−1⊕e : e ∈ ∆} from thedomains in D′ \D′
X′ \{D′

k} of all future variables. If a domain beomes empty dueto this removal, abandon the assignment xk = v sine a dead-end is enountered.Otherwise, add eah of these removed values f to the deletion set DS.This heuristi also needs to restore values of ounts cd and also, undoes theurrent addition to the distane-set ∆ at the urrent level of reursion beforetermination. Table 5.6 implements this heuristi, and is an extension of Table 4.8.We will denote the implementation of Table 5.6 by Hφ,τ
AC7.Remark 5.4 Hφ,τ

AC7 ensures that 0 ≤ cd < 9.For this reason, no expliit heking of S-7 (inrementally) is required as is thease with Hφ,τ
C7

.Property 5.1 Hφ,τ
AC7 gives the same set of S-boxes as Hφ,τ

C7
.ProofLet d = v ⊕ w and cd = 8. Consider the partial S-box having variable xk thatis to be assigned the value v from its domain D (i.e. v ∈ D), and having a variable

x|X|−k−1 = w already assigned, where |X|
2

+ 8 ≤ k < |X|. It is enough to provethat both heuristis Hφ,τ
C7

and Hφ,τ
AC7 will not assign xk = v.Suppose Hφ,τ

C7
tentatively assigns xk = v. Then we have

xk ⊕ x|X|−k−1 = v ⊕ w = dand Hφ,τ
C7

inrements cd by 1, so that
cd > 8. violating S-7. Hφ,τ

C7
abandons the assignment xk = v whih will not be onsid-ered.Sine cd = 8, Hφ,τ

AC7 has inluded d in the distane-set ∆ so that d ∈ ∆. Toprojet x|X|−k−1 on D that is the domain of future variable xk, Hφ,τ
AC7 now traverses

∆ to ompute
e = d⊕ x|X|−k−1 = (v ⊕ w)⊕ w = v



77Funtion DesriptionInitPartialVarsAndCounts() Let X ′ ← {x : x ∈ X ∧ x is assigned.}Let ∆← φif (k = 0) then c0, c1, . . . , c2m−1 ← 0

ChekPartialSBox() Set s2ok ← trueif (k ≥ |X|
2

+ τ) then {Chek S-2 par-tially}
Φ′ ← MakePartialSBox(X ′)if Φ′ violates either Property 4.3 orProperty 4.4 then s2ok ← falseend ifreturn s2okProessNary() if (k = |X|) then return true else re-turn falseMakeAndChekSBox() Φ← MakeSBox(X)

ProessOtherDomains()
if k ≥ |X|

2
thenSet d← xj ⊕ x|X|−j−1, cd ← cd + 1if (k ≥ |X|
2

+ 8) ∧ (cd = 8) then
∆← ∆ ∪ {d}for all e ∈ ∆ doSet f ← x|X|−j−1 ⊕ efor all x ∈ X \ (X ′ ∪ {xj}) doif f ∈ D′

x then
D′

x ← D′
x \ {f}if (D′

x = φ) return false
DS ← DS ∪ {f}end ifend forend forend ifend ifreturn true



78Funtion Desription
ReverseUpdateCountDistSet() if (k ≥ |X|

2
) thenif (k ≥ |X|
2

+ 8) ∧ (cd = 8) thenSet ∆← ∆ \ {d}end ifSet cd ← cd − 1end ifReverseUpdateCount() (No operation)Table 5.6: Funtions for Heuristi Hφ,τ
AC7 in Solver (Setion 2.7). Sine v ∈ D, HAC7 removes v from D, avoiding the assignment xk = v.Thus heuristis Hφ,τ

C7
and Hφ,τ

AC7 do not assign xk = v and this ompletes theproof.
Q.E.D.Example 5.3 Consider the partially assigned S-box of Figure 5.3 having variables

x0 up to x47 assigned. Sine variables up to x31 are assigned, the frequenies cd anbe determined starting from the assignment to x32. These frequenies are reordedin Table 5.7.0 3 5 6 9 10 12 15 7 4 2 1 14 13 11 83 0 6 5 10 9 15 12 4 7 1 2 13 14 8 113 0 6 5 15 12 10 90 3 5 6 12 15 9 10Figure 5.3: A Partial S-box obtained by assigning values to variables x0, x1, . . . , x47From the frequeny table of Table 5.7, two distanes d have ounts equal to8, namely, when d = 8, 13. These two values of d form the distane-set ∆ =
{8, 13}. As a result of earlier domain-redutions due to AC2001 following earlierassignments, the (redued) domains for the future variables x48, x49, . . . , x63 arereorded in the seond olumn of Table 5.8.Now traverse eah element e ∈ ∆ and remove values f = e ⊕ x63−i from thedomain of xi, 48 ≤ i < 64. The omputed values for f are in the third olumn



79Distanes, d 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15Frequeny, cd 0 0 0 0 0 0 0 0 8 0 0 0 0 8 0 0Table 5.7: Frequeny of ourrene of d for the Partially Assigned S-box of Fig-ure 5.3of Table 5.8, while the redued domains of the future variables are in the lastolumn of this table. For future variable x56 having (redued) domain {1, 2, 4, 8},
x63−56 = x7 = 5 from Figure 5.3. e ∈ {8, 13} and f ∈ {8 ⊕ 5, 13 ⊕ 5} = {13, 8}as shown in the third olumn of Table 5.8 against variable x56. Removing thesevalues from the domain of x56 results in its redued domain of {1, 2, 4}.Future Domain before Values to Domain AfterVariable Value Removal Remove Value Removal

x48 {8, 13, 14} {4, 1} {8, 13, 14}
x49 {11, 13, 14} {7, 2} {11, 13, 14}
x50 {11, 13, 14} {7, 2} {11, 13, 14}
x51 {8, 13, 14} {4, 1} {8, 13, 14}
x52 {8, 11, 13} {1, 4} {8, 11, 13}
x53 {8, 11, 14} {2, 7} {8, 11, 14}
x54 {8, 11, 14} {2, 7} {8, 11, 14}
x55 {8, 11, 13} {1, 4} {8, 11, 13}
x56 {1, 2, 4, 8} {13, 8} {1, 2, 4}
x57 {1, 2, 7, 11} {14, 11} {1, 2, 7}
x58 {1, 2, 7, 11} {14, 11} {1, 2, 7}
x59 {1, 2, 4, 8} {13, 8} {1, 2, 4}
x60 {1, 4, 7, 13} {8, 13} {1, 4, 7}
x61 {2, 4, 7, 14} {11, 14} {2, 4, 7}
x62 {2, 4, 7, 14} {11, 14} {2, 4, 7}
x63 {1, 4, 7, 13} {8, 13} {1, 4, 7}Table 5.8: Domains of future variables with values being removed due to proje-tions of past assignments



805.5 HeuristisWe have disussed the following heuristis employed by Solver for the n-aryonstraints in our model, as governed by funtions InitPartialVarsAndCounts,PreProess, ChekPartialSBox, ProessNary, MakeAndChekSBox,ProessOtherDomains, ReverseUpdateCountDistSet and ReverseUpdateCount(Setion 2.7).Heuristi Hφ,τ
S Chek the riteria S-2 and S-7 after a omplete S-box is formed.Heuristi Hφ,τ
C Deompose the n-ary soft onstraint S-2 into hard onstraints byprojetion onto already-assigned variables X ′ ⊆ X (Chapter 5). Chek S-7after an entire S-box is formed, rejeting if S-7 is violated.Heuristi Hφ,τ
C7

Deompose the n-ary soft onstraint S-2 into hard onstraints byprojetion onto already-assigned variables X ′ ⊆ X (Chapter 5). Chek S-7at eah assignment where appliable.Heuristi Hφ,τ
AC7 Deompose the n-ary soft onstraint S-2 into hard onstraintsby projetion onto already-assigned variables X ′ ⊆ X (Chapter 5). Projetthe not-so-straightforwardly-deomposable n-ary onstraint S-7 into binaryonstraints.We now introdue an optimization to Solver (Setion 2.7) to redue alls tofuntion EstablishAC, and subsequently disuss a variable-ordering heuristi asgoverned by funtion π.5.5.1 Optimizations on the three HeuristisIn Solver (Setion 2.7), the deletion set DS is always populated by adding to it allvalues other than the one being assigned to the urrent variable, from its (redued)domain (Line 12). In ase this domain is a singleton, DS is empty and no ar-onsisteny hek is required. Aordingly, the all to funtion EstablishFullACan be made onditional. The program segment after Line 16 in Solver takesthe form shown in Table 5.9. This optimization redues the number of alls tothe funtion EstablishFullAC resulting in some speedup as the experiments willreveal.We refer to the three heuristis respetively, as HOφ,τ

S , HOφ,τ
C7

and HOφ,τ
AC7 withthe optimization introdued in Solver(). Chapter 7 illustrates the speedup of so-lution generation resulting from this optimization and redution of ar-onsistenyheks resulting from this optimization.



81if c4 thenif DS 6= φ then
D′′ ← EstablishAC(D′, DS)else
D′′ ← D′end ifif no domain in D′′ is empty then
Solver(X, D′′, C2, k + 1, τ)end ifend ifReverseUpdateCountDistSet()Table 5.9: An optimization introdued in Solver (Setion 2.7)

5.5.2 Variable Ordering HeuristisIn the three heuristis Hφ,τ
S , Hφ,τ

C7
and Hφ,τ

AC7, and their optimized variants HOφ,τ
S ,

HOφ,τ
C7

and HOφ,τ
AC7 respetively, variable-ordering heuristis are employed as spei-�ed in the funtion SeletNextVariable of Solver (Setion 2.7). We will onsidertwo suh heuristis.Straight-Line Variable-Ordering Heuristi In a Straight-Line Variable-Ordering Heuristi, the variables are assigned in the logial order while read-ing S-box entries, that is, row-wise, for the S-box arrangement of Fig-ure 3.1. Referring to this �gure, the sequene of variable ordering is

x0, x2, . . . , x30, x1, x3, . . . , x31, x32, x34, . . . , x62, x33, x35, . . . , x63. For this heuristi,the ordering funtion π assumes the following de�nition for an n×m S-box:
π(k) =



















2k, if k < 2n−2

2k − 2n−1 + 1, if 2n−2 ≤ k < 2n−1

2k − 2n−1, if 2n−1 ≤ k < 3× 2n−2

2k − 2n + 1 if 3× 2n−2 ≤ k < 2n

(5.2)Example 4.2 demonstrates a partially assigned S-box that follows the straight-line variable ordering heuristi.Zig-Zag Variable-Ordering Heuristi A seond heuristi under onsiderationis what we will refer to as the Zig-Zag Variable Ordering Heuristi. Here, variablesare assigned values in a zig-zag order, that is, x0, x1, x2, . . . , x63. If one visits the



82variables in the S-box of Figure 3.1, a zig-zag pattern is observed and hene thename for this heuristi. For this heuristi, the ordering funtion π assumes thefollowing de�nition for the sequene of variables of an n×m S-box:
π(k) = k (5.3)This is the variable-ordering heuristi that has been used in all the examples ofthis Chapter. In partiular, example 4.1 demonstrates a partially assigned S-boxthat follows the zig-zag variable ordering heuristi.The de�nitions of π(k) given by equations 5.2 and 5.3 are to be used in Solver(Setion 2.7), in the funtion SeletNextVariable(k).Analogs of the three heuristis Hφ,τ
S , Hφ,τ

C7
and Hφ,τ

AC7, and their optimized vari-ants HOφ,τ
S , HOφ,τ

C7
and HOφ,τ

AC7 respetively, now result. These heuristis are alled
V φ,τ

S , V φ,τ
C7

and V φ,τ
AC7, and their optimized variants, V Oφ,τ

S , V Oφ,τ
C7

and V Oφ,τ
AC7, re-spetively, for Straight-Line variable ordering. For Zig-Zag variable ordering, theheuristis will have the same annotation, namely, Hφ,τ

S , Hφ,τ
C7

, Hφ,τ
AC7, and theiroptimized variants HOφ,τ

S , HOφ,τ
C7

and HOφ,τ
AC7, respetively.A step should not be present in heuristi V φ,τ

AC7 (V Oφ,τ
AC7) that is present in

Hφ,τ
AC7 (HOφ,τ

AC7). In Table 5.6, the extra hek (k ≥ |X|
2

+ 8) that appears infuntions ProessOtherDomains and ReverseUpdateCountDistSet for heuristi
Hφ,τ

AC7 (HOφ,τ
AC7) is no longer appliable, and this hek should be removed fromthese two plaes while implementing V φ,τ

AC7 (V Oφ,τ
AC7).5.5.3 Domain Ordering HeuristisThe ordering of domains for eah variable is another onsideration worth exploringfrom the viewpoint of e�ieny of searh. No modi�ation is done to the solverand no new steps are neessary. Only the domains preompiled into the solver arepermuted. Two domain-ordering heuristis are examined.Default Ordering In this heuristi, the domain for eah variable is ordered inasending order, that is, for eah variable of an n×m S-box, its domain is the set

D = {0, 1, 2, . . . , 2m − 1}.Random Permutation Here the domain of eah variable is randomly permutedbased on a spei�ed seed. In the setion on experiments, we will onsider one suhrandom ordering for the purposes of omparison.Further disussion on domain-ordering heuristis is made in Chapter 7.



835.6 Summary and Looking AheadThe COUNT onstraint is a global n-ary onstraint. We have disussed a non-inremental approah to heking for this onstraint, and an inremental approahto heking on partially assigned S-boxes.The global n-ary onstraint for riterion S-7 is not straightforwardly deompos-able into binary onstraints. Nevertheless, we are able to integrate this onstraintinto the solver by projeting past assignments onto the domains of future variables.During the proess, these domains are redued.An optimization has been introdued in Solver (subsetion 5.5.1) to avoidunneessary ar-onsisteny heking in ase nothing is added to the deletion set
DS. This happens when the (redued) domain of the variable being onsideredfor assignment ontains only one element.Two kinds of variable ordering heuristis are onsidered (subsetion 5.5.2): Astraight-line variable ordering and an alternative zig-zag variable ordering. Value-ordering is onsidered by randomly permutating domains (subsetion 5.5.3).Chapter 7 disusses the performanes of the several heuristis under these ir-umstanes.
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Chapter 6Symmetry. The Multiple S-box ProblemIn this hapter, we will disuss symmetry of S-boxes stritly from a CSP stand-point. Our main objetive in this Chapter is to demonstrate new forms of sym-metries in S-boxes that the CSP model so elegantly exposes.We also disuss the riterion S-8 that involves arrangements of S-boxes takeneight at a time, and seletion of arrangements that minimizes a ost funtion.6.1 Symmetry in CSPs and Symmetri ConstraintsA onstraint is symmetri if, upon interhanging some or all of the variables (valuesto eah variable) with others in its sope (domain), the onstraint is not altered.Example 6.1 The ternary onstraint given by the equation x + y + z = 5, issymmetri, beause, if we interhange x and y, the resulting onstraint beomes

y + x + z = 5 whih is the same as the given one. Similar is the ase if x isinterhanged with y, y with z and z with x simultaneously. This is an example ofa onstraint with variable symmetry.6.1.1 Symmetry and E�ienyDue to symmetry, solution tuples that are enountered far later in the system-ati searh for solutions would already have been available if the symmetry wereidenti�ed, adding to e�ieny of solution generation.Example 6.2 Let the domains of the variables x, y and z of Example 6.1 be theset of integers {0, 1, 2, 3, 4, 5}. The assignment x = 0, y = 0, z = 5, or (0, 0, 5)for brevity, learly satis�es the onstraint x + y + z = 5. Upon simultaneouslyreplaing x, y, z with z, y, x respetively, the resulting onstraint is unhanged asExample 6.1 suggests. Now the abbreviated assignment beomes (5, 0, 0) whih isalso a solution. This solution would have ourred muh later in the solution spaeafter a systemati searh. But we are able to identify the same immediately dueto symmetry. In other words, identifying symmetry adds to e�ieny of solutiongeneration.



856.1.2 Value, Variable and Conditional SymmetryA onstraint possesses value symmetry if interhanging valid values assigned tovariables ontinues to satisfy the onstraint. It possesses variable symmetry if thevariables in its sope an be permuted, and onditional symmetry if the solutionsare preserved subjet to some ondition. A CSP an possess more than one ofthese forms of symmetry simultaneously. For example, the onstraints analyzed inExamples 6.1 and 6.2 possess both, variable and value symmetry.Example 6.3 Consider the following CSP for the problem of �nding PythagoreanTriplets, involving variables X = {x, y, z}:
x2 + y2 = z2

x, y, z ∈ {3, 4, . . . , 100}A solution is x = 3, y = 4, z = 5. Upon interhanging the values of x and
y, the assignment x = 4, y = 3, z = 5 is also a solution. This CSP possessesvalue symmetry. Moreover, if x and y are interhanged, the equation remainsmathematially unaltered and the CSP possesses variable symmetry as well.6.1.3 Breaking of Symmetry in CSPsBreaking of all symmetries is shown to be NP-hard, however, there are pratialways by whih most of these an be broken [70℄. For example, onstraints areadded to remove the aforementioned forms of symmetry [48, 69℄.Example 6.4 Consider Example 6.3 that involves �nding Pythagorean Triplets.A number of solutions involve values of x and y interhanged due to symmetry,suh as, x = 5, y = 12, z = 13 and x = 12, y = 5, z = 13. It is often su�ient tohave one of these two solutions instead of having both. By imposing an orderingon the values of x and y, namely, by adding the onstraint,

x < ythe solution x = 12, y = 5, z = 13 is eliminated and symmetry is broken.6.2 Symmetry in S-boxesUsing our CSP model formulated in Chapters 3, 4 and 5, we have identi�ed �veforms of symmetry in S-boxes diretly arising out of the riteria for DES S-2 toS-7. These forms are the following:



861. Row Symmetry, due to riterion S-42. Column Symmetry, due to riterion S-53. Diagonal Symmetry, due to riterion S-6,4. Rotational Symmetry, due to riterion S-7, and5. Bit Inversion Symmetry, due to riteria S-2, S-3, S-4, S-5, S-6 and S-7.The granularity of the symmetry being addressed is very important. We havesymmetry of an individual onstraint, we have symmetry of sets of onstraints,and ultimately of the entire CSP. An individual onstraint may exhibit symmetrybut the appropriate transformation may violate another onstraint and therefore,may not result in an S-box. Forms of symmetry that satisfy all onstraints andtherefore, result in newer S-boxes, are also prevalent. The Row, Column and Di-agonal symmetry fall under the �rst ategory, not neessarily resulting in S-boxes.On the other hand, the Rotational and Bit Inversion symmetry will satisfy all theother onstraints, and will yield alternative S-boxes, as we will see in this Chapter.6.3 Relevant Properties of the exlusive-OR Operator, Par-ity, and the Linear Approximation TableLet us �rst disuss properties of the exlusive-OR operator relevant to symmetryof S-boxes. We will prove these for two bits a and b and extend these to the gen-eral ase where the operands are n-bit quantities. Next, we disuss the parity ofa number and its properties. Finally, we disuss properties of the Linear Approx-imation Table for a 6× 4 S-box that will be used in Rotational and Bit Inversionsymmetries.6.3.1 Relevant Properties of the exlusive-OR OperatorDe�nition 6.1 The exlusive-OR operator on two Boolean quantities a and b isde�ned by the following expression:
a⊕ b = a · b + a · b (6.1)Remark 6.1 The exlusive-OR operator on two n-bit quantities A = a0a1 . . . an−1and B = b0b1 . . . bn−1 is equal to the n-bit bit-pattern formed by the bits a0 ⊕ b0,

a1⊕ b1, . . . , an−1⊕ bn−1. In other words, if n is the word-length of a omputer, theoperation A⊕ B results in n parallel exlusive-OR operations on 1-bit operands.



87From this de�nition, it is easy to dedue the following properties for twoBoolean entities a and b. Generalizations to n-bit bit-patterns A and B are easilymade.1. a⊕ 0 = 0⊕ a = a2. a⊕ 1 = 1⊕ a = a3. a⊕ a = 04. a⊕ a = 15. The exlusive-OR operation on two Boolean quantities a and b is ommuta-tive, that is, a⊕ b = b⊕ a.6. The exlusive-OR operation on three Boolean quantities a, b and c is asso-iative, that is, (a⊕ b)⊕ c = a⊕ (b⊕ c).7. The result of the exlusive-OR operation on a and b is the same as that oftheir one's-omplements, a and b respetively, that is, a⊕ b = a⊕ b.8. For Boolean variables a and b, the following equations hold: a⊕ (a⊕ b) = b,
b ⊕ (a ⊕ b) = a. This property easily extends to two n-bit operands A and
B, that is, A ⊕ (A ⊕ B) = B and B ⊕ (A ⊕ B) = A. The idea is used instream iphers for enryption and deryption. It is also used in high-speedsoftware implementations of symmetri key ryptographi algorithms.6.3.2 The Parity of a Bit PatternReall that the parity of an n-bit bit pattern a = a0a1 . . . an−1 is equal to thenumber of 1's in the bit pattern. If there are an odd number of 1's, then we saythat a is of odd parity; if this ount is an even number, a is said to be of evenparity. The parity p of a is also equal to the exlusive-OR of the bits in a, that is,

p = a0 ⊕ a1 ⊕ . . .⊕ an−1Property 6.1 If an n-bit number a has parity p (p = 1 for odd parity and 0 foreven), then its 1's-omplement ā has parity p̄ if n is odd and p if n is even.



88Proof Let a = a0a1a2 . . . an−1. Then by the de�nition of parity,
p = a0 ⊕ a1 ⊕ a2 ⊕ . . .⊕ an−1 (6.2)We also have the following Boolean identity:

1⊕ 1⊕ . . .⊕ 1, n times =

{

1, for odd n
0, for even n

(6.3)Let q be the parity of ā, obtained by exlusive-OR of eah bit in a with 1.Then,
q = (a0 ⊕ 1)⊕ (a1 ⊕ 1)⊕ . . .⊕ (an−1 ⊕ 1)

= (a0 ⊕ a1 ⊕ a2 ⊕ . . .⊕ an−1)⊕ (1⊕ 1⊕ . . .⊕ 1, n times)
=

{

p⊕ 1, if n is odd
p⊕ 0, if n is even , using Equations 6.2 and 6.3

=

{

p̄, if n is odd
p, if n is even

Q.E.D.6.3.3 Relevant Properties of the Linear Approximation TableWe will now prove some important results that hold for the Linear ApproximationTable of an S-box of Chapter 4. For simpliity, the disussion is limited to 6× 4
S-boxessine it is their symmetry that is being onsidered. These properties for theLinear Approximation Table are being disussed here rather than in Chapter 4, forimmediate use in results on Symmetry, partiularly Rotational and Bit InversionSymmetry.We onsider one layer of the S-box Φ, obtained by making an assignment to asingle variable xi orresponding to input i (Example 4.6). Eah entry in this layeris either 0 or 1 depending upon whether equation La(i) = Lb(xi) holds or not, forany a, b (subsetion 4.2.1). In other words, we an onsider eah entry of a layerto be equal to La(i)⊕ Lb(xi), also equal to La(i)⊕ Lb(xi)⊕ 1.Property 6.2 Let i = i0i1 . . . i5, a = a0a1 . . . a5 and p = a0⊕a1⊕. . .⊕a5 representthe parity of a, equal to the number of 1's in the binary representation of a. Then
La(i) = La(i)⊕ p.



89Proof We have
La(i) = a0i0 ⊕ a1i1 ⊕ . . .⊕ a5i5

= a0 · (i0 ⊕ 1)⊕ a1 · (i1 ⊕ 1)⊕ . . .⊕ a5(i5 ⊕ 1)

= (a0i0 ⊕ a1i1 ⊕ . . .⊕ a5i5)⊕ (a0 ⊕ a1 ⊕ . . .⊕ a5)

= La(i)⊕ pwhih proves the proposition.
Q.E.D.Property 6.3 Eah entry in the Linear Approximation Table orresponding tothe single assignment xi = v of an S-box di�ers from the orresponding entry forthe single assignment xi = v by the parity p of a, the number of the row in theTable in whih the entry is situated.Proof For the single assignment xi = v, eah entry in the Linear ApproximationTable is of the form y = La(i)⊕Lb(v)⊕1 as disussed at the start of this subsetion.Consider the Linear Approximation Table for the assignment xi = v. Eah entryin this table will be of the form

La(i)⊕ Lb(v)⊕ 1

= La(i)⊕ p⊕ Lb(v)⊕ 1, (Property 6.2)
= La(i)⊕ Lb(v)⊕ 1⊕ p, (Commutativity of exlusive-OR)
= y ⊕ pwhih is the required result. This result will be used in proving the invariane ofthe sore of an S-box over Rotational symmetry.

Q.E.D.Remark 6.2 Property 6.3 an be reworded as follows: Given a single assignment
xi = v for an S-box entry. An entry in Row a and Column b of the LinearApproximation Table for the assignment xi = v̄ is equal to the truth value of thefollowing expression:

La(i) =

{

Lb(v), if a has odd parity
Lb(v), if a has even parityProperty 6.4 Eah entry in the Linear Approximation Table orresponding tothe single assignment xi = v of an S-box di�ers from the orresponding entry forthe single assignment xi = v by the parity q of b, the number of the olumn in theTable where the entry is situated.



90Proof For the single assignment xi = v, eah entry in the Linear ApproximationTable is of the form y = La(i)⊕Lb(v)⊕1 as disussed at the start of this subsetion.Consider the Linear Approximation Table for the assignment xi = v. Eah entryin this table will be of the form
La(i)⊕ Lb(v)⊕ 1

= La(i)⊕ Lb(v)⊕ q ⊕ 1, (Property 6.2)
= La(i)⊕ Lb(v)⊕ 1⊕ q, (Commutativity of exlusive-OR)
= y ⊕ qwhih is the required result. This result will be used in proving the invariane ofthe sore of an S-box over Bit Inversion symmetry.

Q.E.D.Remark 6.3 Property 6.4 an be reworded as follows: Given a single assignment
xi = v for an S-box entry. An entry in Row a and Column b of the LinearApproximation Table for the assignment xi = v̄ is equal to the truth value of thefollowing expression:

La(i) =

{

Lb(v), if b has odd parity
Lb(v), if b has even parityLet us examine eah form of symmetry against the riteria spei�ed. In theremainder of this Chapter, the disussion is made with referene to 6× 4 S-boxes.6.4 Row SymmetryWe de�ne row symmetry of a 6×4 S-box to mean that if its rows are interhanged,the resulting on�guration still satis�es the riterion (or riteria) in question.Property 6.5 Criterion S-4 exhibits row symmetry but only if the top two andbottom two row interhanges our simultaneously.Proof Consider two S-box inputs 2i and (2i + 1) that di�er only in their leastsigni�ant bits, 0 ≤ i < 32. The requirement of riterion S-4 is satis�ed andaording to riterion S-4,
wt(x2i ⊕ x2i+1) ≥ 2 (6.4)By the ommutativity property of the exlusive-OR operation, Equation 6.4an be rewritten as:
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wt(x2i+1 ⊕ x2i) ≥ 2This means that interhanging x2i+1 and x2i does not a�et the onstraint forriterion S-4, suggesting that S-4 possesses variable symmetry. With referene toFigure 6.1, variables (i.e. S-box outputs) x2i our in Row 0 whenever 0 ≤ i < 16and Row 2 for 16 ≤ i < 32, while variables (S-box outputs) x2i+1 our in the othertwo rows, Row 1 and Row 3. In other words, variables with even subsripts x2jand orresponding variables with odd subsripts x2j⊕1 having inputs that di�er intheir least signi�ant bits, are in the neighboring rows of the S-box when organizedas in Figure 6.1 that are interhangeable. This proves the proposition.

Q.E.D.6.4.1 Only the Least Signi�ant Bits
i1i2i3i4

i0i5 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150 x0 x2 x4 x6 x8 x10 x12 x14 x16 x18 x20 x22 x24 x26 x28 x301 x1 x3 x5 x7 x9 x11 x13 x15 x17 x19 x21 x23 x25 x27 x29 x312 x32 x34 x36 x38 x40 x42 x44 x46 x48 x50 x52 x54 x56 x58 x60 x621 x33 x35 x37 x39 x41 x43 x45 x47 x49 x51 x53 x55 x57 x59 x61 x63Figure 6.1: S-6 for a 6 × 4 S-box exhibiting Row Symmetry. The odd rows areshown in bold font.We have onsidered only the least signi�ant bits for any two input bits to the
S-box. This satis�es the requirement for S-4, namely that the two inputs di�er inonly one bit. However, S-4 need not be satis�ed only in this manner. In fat, the6-bit input i an di�er by 1 bit with 6-bit inputs i⊕2j , where 0 ≤ i < 64, 0 ≤ j < 6.That is, eah variable xi is involved with variables xi⊕2j in a onstraint, 0 ≤ i < 64,
0 ≤ j < 6. There are 6 suh binary onstraints for eah variable leading to a totalof 192 onstraints for S-4. (Also, refer Subsetion 3.2.5.) Table 6.1 demonstratesthese di�erenes for eah variable. For example, the �rst entry of the top left tableontains x0 on the left hand olumn headed by �Row 0 Variable� and six variables
x1, x2, x4, x8, x16, x32 on the right-hand-olumn headed by �Di�ers from eah of thefollowing Variables�. The interpretation of this line, using Equation 3.2, leads tothe following six onstraints for variable x0:
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wt(x0 ⊕ x1) ≥ 2

wt(x0 ⊕ x2) ≥ 2

wt(x0 ⊕ x4) ≥ 2

wt(x0 ⊕ x8) ≥ 2

wt(x0 ⊕ x16) ≥ 2

wt(x0 ⊕ x32) ≥ 2 (6.5)For example, to satisfy riterion S-4, variable x0 in Row 0 should di�er fromthe six variables x1, x2, x4, x8, x16 and x32 by at least two bits sine S-box input 0di�ers from eah of 1, 2, 4, 8, 16 and 32 by exatly one bit. We are onsidering,for row symmetry, only the �rst of these six variables that are shown in boldfaein Table 6.1. Thus the set of variables in eah olumn headed by �Row� in thistable and the �rst of the list of six variables on its right, in the olumn headed by�Di�ers from eah of the following variables�, reside in onseutive rows and areinterhangeable, resulting in row symmetry. Table 6.1 should be ompared withFigure 6.1 whih piturizes the row symmetry, the variables in the odd rows beingshown in boldfae.The row symmetry is not onditional. For example, whether the other �vevariables x2, x4, x8, x16 and x32 among the six (upon inluding x1) partiipate with
x0 in the symmetry or not, the row symmetry is preserved only beause of the �rstvariable x1 in the set of eah of these six variables involved in S-4.6.4.2 Simultaneous Row InterhangesThe reason for the interhanges between rows to be simultaneous is the following.Eah onstraint listed in a row ontains exatly one variable from the third andeah listed for the seond row ontains exatly one from the fourth. For example,onsider the six onstraints involving x0. Among these, Equation 6.5 ontains theonly variable x32 from Row 2. The same is true for the other onstraints involvingthe remaining variables.Interhanging only the �rst two rows and keeping the third and fourth rows asthey are, result in the variables partiipating in those onstraints get interhangedexept for the variables of the untouhed rows, giving rise to new onstraints thatare not in S-4. Due to the upper bound on the total number of onstraints for S-4,the new onstraints end up replaing some of the existing onstraints in S-4, andare therefore invalid. For example, interhanging Row 0 and Row 1 of Figure 6.1results in the following onstraints for variable x1:
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Row 0 Di�ers from eah of Row 1 Di�ers from eah ofVariable the following Variables Variable the following Variables
x0 x1, x2, x4, x8, x16, x32, x1 x0, x3, x5, x9, x17, x33,
x2 x3, x0, x6, x10, x18, x34, x3 x2, x1, x7, x11, x19, x35,
x4 x5, x6, x0, x12, x20, x36, x5 x4, x7, x1, x13, x21, x37,
x6 x7, x4, x2, x14, x22, x38, x7 x6, x5, x3, x15, x23, x39,
x8 x9, x10, x12, x0, x24, x40, x9 x8, x11, x13, x1, x25, x41,
x10 x11, x8, x14, x2, x26, x42, x11 x10, x9, x15, x3, x27, x43,
x12 x13, x14, x8, x4, x28, x44, x13 x12, x15, x9, x5, x29, x45,
x14 x15, x12, x10, x6, x30, x46, x15 x14, x13, x11, x7, x31, x47,
x16 x17, x18, x20, x24, x0, x48, x17 x16, x19, x21, x25, x1, x49,
x18 x19, x16, x22, x26, x2, x50, x19 x18, x17, x23, x27, x3, x51,
x20 x21, x22, x16, x28, x4, x52, x21 x20, x23, x17, x29, x5, x53,
x22 x23, x20, x18, x30, x6, x54, x23 x22, x21, x19, x31, x7, x55,
x24 x25, x26, x28, x16, x8, x56, x25 x24, x27, x29, x17, x9, x57,
x26 x27, x24, x30, x18, x10, x58, x27 x26, x25, x31, x19, x11, x59,
x28 x29, x30, x24, x20, x12, x60, x29 x28, x31, x25, x21, x13, x61,
x30 x31, x28, x26, x22, x14, x62, x31 x30, x29, x27, x23, x15, x63,Row 2 Di�ers from eah of Row 3 Di�ers from eah ofVariable the following Variables Variable the following Variables
x32 x33, x34, x36, x40, x48, x0 x33 x32, x35, x37, x41, x49, x1

x34 x35, x32, x38, x42, x50, x2 x35 x34, x33, x39, x43, x51, x3

x36 x37, x38, x32, x44, x52, x4 x37 x36, x39, x33, x45, x53, x5

x38 x39, x36, x34, x46, x54, x6 x39 x38, x37, x35, x47, x55, x7

x40 x41, x42, x44, x32, x56, x8 x41 x40, x43, x45, x33, x57, x9

x42 x43, x40, x46, x34, x58, x10 x43 x42, x41, x47, x35, x59, x11

x44 x45, x46, x40, x36, x60, x12 x45 x44, x47, x41, x37, x61, x13

x46 x47, x44, x42, x38, x62, x14 x47 x46, x45, x43, x39, x63, x15

x48 x49, x50, x52, x56, x32, x16 x49 x48, x51, x53, x57, x33, x17

x50 x51, x48, x54, x58, x34, x18 x51 x50, x49, x55, x59, x35, x19

x52 x53, x54, x48, x60, x36, x20 x53 x52, x55, x49, x61, x37, x21

x54 x55, x52, x50, x62, x38, x22 x55 x54, x53, x51, x63, x39, x23

x56 x57, x58, x60, x48, x40, x24 x57 x56, x59, x61, x49, x41, x25

x58 x59, x56, x62, x50, x42, x26 x59 x58, x57, x63, x51, x43, x27

x60 x61, x62, x56, x52, x44, x28 x61 x60, x63, x57, x53, x45, x29

x62 x63, x60, x58, x54, x46, x30 x63 x62, x61, x59, x55, x47, x31Table 6.1: Relationships between the variables partiipating in Criterion S-4
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S813 2 8 4 6 15 11 1 10 9 3 14 5 0 12 71 15 13 8 10 3 7 4 12 5 6 11 0 14 9 27 11 4 1 9 12 14 2 0 6 10 13 15 3 5 82 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11(a)Rows 0 and 1 interhanged, and Rows 2 and 3 interhanged1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 213 2 8 4 6 15 11 1 10 9 3 14 5 0 12 72 1 14 7 4 10 8 13 15 12 9 0 3 5 6 117 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8
(b)Figure 6.2: (a) The DES S-box S8. (b) An S-box derived S8 due to row symmetry,having a sore equal to 12

wt(x1 ⊕ x0) ≥ 2

wt(x1 ⊕ x3) ≥ 2

wt(x1 ⊕ x5) ≥ 2

wt(x1 ⊕ x9) ≥ 2

wt(x1 ⊕ x17) ≥ 2

wt(x1 ⊕ x32) ≥ 2 (6.6)Sine x1 is involved in six onstraints, riterion S-4 leads to 192 onstraints.In equation 6.6, the 6-bit inputs 1 (= 0000012) and 32 (= 1000002) of the lastinequality do not di�er by one bit, but by two bits. Criterion S-4 does not speifywhat happens in this ase. The issue we are having is due to the maximum boundon the total number of onstraints, resulting in some valid onstraints gettingreplaed by new onstraints suh as the last inequality, violating S-4.6.4.3 An Example of Row SymmetryExample 6.5 Consider the DES S-box S8 depited in Figure 6.2(a). Upon inter-hanging Row 0 and Row 1, and simultaneously interhanging Row 2 and Row 3,the resulting on�guration is depited in Figure 6.2(b).



95Pairs of variables partiipating Columns of Figure 6.3in Equation 6.7 that are interhangeable
(x0 : x12) (x1 : x13) (x32 : x44) (x33 : x45) Column 0 with Column 6
(x2 : x14) (x3 : x15) (x34 : x46) (x35 : x47) Column 1 with Column 7
(x4 : x8) (x5 : x9) (x36 : x40) (x37 : x41) Column 2 with Column 4
(x6 : x10) (x7 : x11) (x38 : x42) (x39 : x43) Column 3 with Column 5
(x16 : x28) (x17 : x29) (x48 : x60) (x49 : x61) Column 8 with Column 14
(x18 : x30) (x19 : x31) (x50 : x62) (x51 : x63) Column 9 with Column 15
(x20 : x24) (x21 : x25) (x52 : x56) (x53 : x57) Column 10 with Column 12
(x22 : x26) (x23 : x27) (x54 : x58) (x55 : x59) Column 11 with Column 13Table 6.2: Relationships between the variables partiipating in Criterion S-56.5 Column SymmetryA 6× 4 S-box exhibits olumn symmetry if, upon interhanging some or all of itsolumns, the resulting on�guration still satis�es the spei�ed riterion.Property 6.6 For a 6 × 4 S-box, Criterion S-5 exhibits olumn symmetry butonly if the following olumn interhanges our simultaneously: Columns 0 and 6,1 and 7, 2 and 4, 3 and 5, 8 and 14, 9 and 15, 10 and 12, and 11 with 13.Proof Let us rewrite Equation 3.3 for a 6× 4 S-box, with the deimal number12 replaing the equivalent binary number 0011002:

(∀i)(∀j)(0 ≤ i, j ≤ 63) ∧ (i 6= j) ∧ (i⊕ j = 12)

⇒ wt(xi ⊕ xj) ≥ 2 (6.7)Sine
i⊕ j = 12we have

i⊕ 12 = i⊕ (i⊕ j), from Eq. 6.8 (6.8)
= j, by Assoiativity property of exlusive-OR (6.9)Substituting for j from equation 6.9, equation 6.7 an be rewritten as:

(∀i)(0 ≤ i < 32) ∧ wt(xi ⊕ xi⊕12) ≥ 2 (6.10)Due to the ommutativity property of the exlusive-OR operator, equation 6.10an be rewritten in the following way:
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(∀i)(0 ≤ i < 32) ∧ wt(xi⊕12 ⊕ xi) ≥ 2 (6.11)In other words, variables xj and xi⊕12 an be interhanged. For example, for i =

0, 1, 32, 33, variables xi = x0, x1, x32, x33 reside in Column 0 and the orrespondingvariables xi⊕12 = x12, x13, x44, x45 reside in Column 6, as shown in �gure 6.3, andColumns 0 and 6 an be interhanged. The same reasoning holds for eah of theother olumns for the other values of i. This ompletes the proof.
Q.E.D.Table 6.2 depits the relationships between the variables partiipating in Equa-tion 6.7. In the left-hand olumn, the notation (xi : xj) means that there exists aonstraint between variables xi and xj governed by Equation 6.7. Noting the om-mutativity of the exlusive-OR operator, a onstraint of the form xi ⊕ xj an berewritten as xj ⊕xi, leading to an interhange of these variables. Aordingly, theinterpretation in terms of olumn interhanges is given in the right-hand olumn ofTable 6.2. Figure 6.3 additionally shows the interhangeable olumns identiallyformatted. An observation visible in Table 6.2 is that interhanges within olumns0 to 7 are idential with those within olumns 8 to 15. For this reason and to addlarity, Figure 6.3 shows the only the �rst eight interhangeable olumns.

x1x2x3x4

x0x5 0 1 2 3 4 5 6 7 8 . . . 150 x0 [x2] x4 (x6) x8 (x10) x12 [x14] x16 . . . x301 x1 [x3] x5 (x7) x9 (x11) x13 [x15] x17 . . . x312 x32 [x34] x36 (x38) x40 (x42) x44 [x46] x48 . . . x623 x33 [x35] x37 (x39) x41 (x43) x45 [x47] x49 . . . x63Figure 6.3: S-5 for a 6× 4 S-box exhibiting Column Symmetry. Interhangeableolumns are formatted identially. Only olumns 0 − 7 are shown, and olumns
8− 15 are similarly interhangeable.Example 6.6 Consider the DES S-box S8 depited in Figure 6.4(a). Upon si-multaneously interhanging olumns 0 and 6, 1 and 7, 2 and 4, 3 and 5, 8 and14, 9 and 15, 10 and 12, and 11 with 13, the resulting on�guration is depited inFigure 6.4(b). This on�guration is an S-box with a sore equal to 12.6.5.1 Simultaneous Column InterhangesAll eight pairs of olumns should be interhanged simultaneously for the resultingon�guration to be an S-box satisfying all riteria. Let us see what happens if, for
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S813 2 8 4 6 15 11 1 10 9 3 14 5 0 12 71 15 13 8 10 3 7 4 12 5 6 11 0 14 9 27 11 4 1 9 12 14 2 0 6 10 13 15 3 5 82 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11(a)After simultaneous olumn interhanges11 1 6 15 8 4 13 2 12 7 5 0 3 14 10 97 4 10 3 13 8 1 15 9 2 0 14 6 11 12 514 2 9 12 4 1 7 11 5 8 15 3 10 13 0 68 13 4 10 14 7 2 1 6 11 3 5 9 0 15 12(b)Figure 6.4: (a) The DES S-box S8. (b) An S-box derived from S8 due to olumnsymmetry having a sore equal to 12example, exatly one pair of olumns, say, olumn 0 and olumn 6, is interhanged,with the remaining seven pairs of olumns kept intat. We want to see the e�etof this interhange on one of the other riteria, say, S-4. This interhange entailsswapping of the variables in the following pairs: (x0, x12), (x1, x13), (x32, x44) and

(x33, x45). Let us rewrite a portion of Table 6.2 that involves only these variables inthe left-hand-olumn, before and after olumn interhange. The result is Table 6.3.Similar to the problem in row symmetry when row interhanges are not simul-taneous, new onstraints now arise that are not in S-4. Due to the upper boundon the total number of onstraints for S-4, the new onstraints end up replaingsome of the existing onstraints resulting in S-4 getting violated. In this example,the following new onstraints for variable x2 are derived from Table 6.3.
wt(x12 ⊕ x2) ≥ 2

wt(x16 ⊕ x2) ≥ 2 (6.12)As we have seen earlier, riterion S-4 leads to 192 onstraints. In equation 6.12,the 6-bit inputs 12 (= 0011002) and 2 (= 0000102) of the �rst inequality do notdi�er by one bit, but by three bits. The same is true of the seond inequality, forinputs 16 and 2. Criterion S-4 does not speify what happens in this ase. Theissue we are having is that due to the maximum bound on the total number ofonstraints for S-4, some valid onstraints are replaed by these new inequalities,violating S-4.



98Row 0 Di�ers from eah of Row 1 Di�ers from eah ofVariable the following Variables Variable the following Variables
x0 x1, x2, x4, x8, x16, x32, x1 x0, x3, x5, x9, x17, x33

x12 x13, x14, x8, x4, x28, x44, x13 x12, x15, x9, x5, x29, x45Row 2 Di�ers from eah of Row 3 Di�ers from eah ofVariable the following Variables Variable the following Variables
x32 x33, x34, x36, x40, x48, x0 x33 x32, x35, x37, x41, x49, x1

x44 x45, x46, x40, x36, x60, x12 x45 x44, x47, x41, x37, x61, x13(a) Before interhanging olumns 0 and 6Row 0 Di�ers from eah of Row 1 Di�ers from eah ofVariable the following Variables Variable the following Variables
x12 x13, x2, x4, x8, x16, x32, x13 x12, x3, x5, x9, x17, x33

x0 x1, x14, x8, x4, x28, x44, x1 x0, x15, x9, x5, x29, x45Row 2 Di�ers from eah of Row 3 Di�ers from eah ofVariable the following Variables Variable the following Variables
x44 x45, x34, x36, x40, x48, x0 x45 x44, x35, x37, x41, x49, x1

x32 x33, x46, x40, x36, x60, x12 x33 x32, x47, x41, x37, x61, x13(b) After interhanging olumns 0 and 6Table 6.3: Relationships between the variables partiipating in Criterion S-4 beforeand after interhanging olumns 0 and 6. Not all relationships are shown.6.6 Diagonal SymmetryA 6×4 S-box exhibits diagonal symmetry if, upon interhanging some or all of itselements in a diagonal-wise fashion, the resulting on�guration still satis�es thespei�ed riterion. For our purposes, imagine the S-box to be divided into fourequal-sized retangular quadrants. Figure 6.5 illustrates the idea.Property 6.7 For a 6 × 4 S-box, Criterion S-6 exhibits diagonal symmetry butonly if the following diagonal interhanges our simultaneously:1. The top left and bottom right quadrants, and2. The top right and bottom left quadrants
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S8 x1x2x3x4

x0x5 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150 x0 x2 x4 x6 x8 x10 x12 x14 x16 x18 x20 x22 x24 x26 x28 x301 x1 x3 x5 x7 x9 x11 x13 x15 x17 x19 x21 x23 x25 x27 x29 x312 x32 x34 x36 x38 x40 x42 x44 x46 x48 x50 x52 x54 x56 x58 x60 x623 x33 x35 x37 x39 x41 x43 x45 x47 x49 x51 x53 x55 x57 x59 x61 x63Figure 6.5: S-6 for a 6× 4 S-box exhibiting Diagonal Symmetry. Interhangeablequadrants have entries formatted identially.Proof Let us rewrite Equation 3.4 for a 6× 4 S-box, with the deimal numbers51 and 48 replaing the equivalent binary number 1100112 and 1100002:
(∀i)(∀j)(0 ≤ i < j ≤ 63), [(i⊕ j) ∧ 51] = 48

⇒ xi 6= xj (6.13)It is easy to hek that if i = 0, then j = 48, 52, 56, 60. If i = 1, then
j = 49, 53, 57, 61, and so on. The onsequent inequality-relationships between xiand eah of the four variables xj partiipating in the onstraint 6.13 are depitedin Table 6.4. Note that sine x0 is not equal to eah of x48, x52, x56 and x60, thereverse is also true, namely, that x0 will appear as one of the four variables in eahrow for x48, x52, x56 and x60, and likewise for all variables onstituting the S-box.Aordingly, the total number of onstraints that Equation 6.13 gives rise to is128, as disussed in subsetion 3.2.7.By arranging variables x0, x1, . . . , x15 their related quadruplets arrange to
x48, x49, . . . , x63. These two form the top-left and bottom-right quadrants ofthe S-box respetively, as illustrated in Figure 6.5. The same is true with theother two sets of variables, namely, x16, x17, . . . , x33 and their related quadruplets
x32, x33, . . . , x47, that respetively form the top-right and bottom-left quadrants ofthe S-box of Figure 6.5. Due to the ommutativity property of the exlusive-ORoperator, the retangles are diagonally interhangeable. This ompletes the proof.

Q.E.D.6.6.1 Simultaneous Interhanges of Diagonal RetanglesThe quadrants should be diagonally interhanged simultaneously. Let us see why.It is possible for two variables not partiipating in any onstraint other than S-6,to have equal values. Assume that x0 = x46. If we interhange the bottom-leftand top-right quadrants without interhanging the other two, x46 will appear on



100Variable Di�ers from eah of Variable Di�ers from eah ofthe following variables the following variables
x0 x48, x52 x56 x60 x1 x49, x53 x57 x61

x2 x50, x54 x58 x62 x3 x51, x55 x59 x63

x4 x52, x48 x60 x56 x5 x53, x49 x61 x57

x6 x54, x50 x62 x58 x7 x55, x51 x63 x59

x8 x56, x60 x48 x52 x9 x57, x61 x49 x53

x10 x58, x62 x50 x54 x11 x59, x63 x51 x55

x12 x60, x56 x52 x48 x13 x61, x57 x53 x49

x14 x62, x58 x54 x50 x15 x63, x59 x55 x51

x16 x32, x36 x40 x44 x17 x33, x37 x41 x45

x18 x34, x38 x42 x46 x19 x35, x39 x43 x47

x20 x36, x32 x44 x40 x21 x37, x33 x45 x41

x22 x38, x34 x46 x42 x23 x39, x35 x47 x43

x24 x40, x44 x32 x36 x25 x41, x45 x33 x37

x26 x42, x46 x34 x38 x27 x43, x47 x35 x39

x28 x44, x40 x36 x32 x29 x45, x41 x37 x33

x30 x46, x42 x38 x34 x31 x47, x43 x39 x35

x32 x16, x20 x24 x28 x33 x17, x21 x25 x29

x34 x18, x22 x26 x30 x35 x19, x23 x27 x31

x36 x20, x16 x28 x24 x37 x21, x17 x29 x25

x38 x22, x18 x30 x26 x39 x23, x19 x31 x27

x40 x24, x28 x16 x20 x41 x25, x29 x17 x21

x42 x26, x30 x18 x22 x43 x27, x31 x19 x23

x44 x28, x24 x20 x16 x45 x29, x25 x21 x17

x46 x30, x26 x22 x18 x47 x31, x27 x23 x19

x48 x0, x4 x8 x12 x49 x1, x5 x9 x13

x50 x2, x6 x10 x14 x51 x3, x7 x11 x15

x52 x4, x0 x12 x8 x53 x5, x1 x13 x9

x54 x6, x2 x14 x10 x55 x7, x3 x15 x11

x56 x8, x12 x0 x4 x57 x9, x13 x1 x5

x58 x10, x14 x2 x6 x59 x11, x15 x3 x7

x60 x12, x8 x4 x0 x61 x13, x9 x5 x1

x62 x14, x10 x6 x2 x63 x15, x11 x7 x3Table 6.4: Relationships between the variables partiipating in Criterion S-6the top row. But this violates riterion S-3 that states that eah row should be a
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S813 2 8 4 6 15 11 1 10 9 3 14 5 0 12 71 15 13 8 10 3 7 4 12 5 6 11 0 14 9 27 11 4 1 9 12 14 2 0 6 10 13 15 3 5 82 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11(a)Quadrants diagonally interhanged0 6 10 13 15 3 5 8 7 11 4 1 9 12 14 215 12 9 0 3 5 6 11 2 1 14 7 4 10 8 1310 9 3 14 5 0 12 7 13 2 8 4 6 15 11 112 5 6 11 0 14 9 2 1 15 13 8 10 3 7 4(b)Figure 6.6: (a) The DES S-box S8 split into four quadrants. (b) A on�gurationobtained due to Diagonal Symmetry, having a sore equal to 12.one-one permutation of Z16. To satisfy S-3, the other two quadrants should alsobe interhanged.Example 6.7 Consider the DES S-box S-8 depited in Figure 6.6(a) as split intofour quadrants. Upon interhanging the top-left and bottom-right quadrants, andsimultaneously interhanging the other two quadrants, the resulting on�gurationis depited in Figure 6.6(b). This on�guration is an S-box that satis�es the otherriteria and has a sore equal to 12.6.7 Is the Resulting Con�guration Always an S-box?When an S-box is transformed to another on�guration using either or row, ol-umn, and diagonal symmetry property of the appropriate onstraint that modelsthe partiular riterion, only the partiular onstraint is satis�ed. We have seenthat the transformed on�guration is not neessarily an S-box beause other on-straint(s) may get violated due to the transformation. For the transformed on-�guration to be an S-box, the interhanges have to be simultaneous in eah typeof symmetry.The other problem is that the sore of the transformed on�guration mayexeed the spei�ed threshold, violating riterion S-2 spei�ed by onstraint 4.7.It turns out that the S-box of Figure 6.1(b) is an alternate S-box having a soreof 12 and satisfying all of the onstraints. This sore is the same as that of the
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S8 x1x2x3x4

x0x5 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150 x63 x61 x59 x57 x55 x53 x51 x49 x47 x45 x43 x41 x39 x37 x35 x331 x62 x60 x58 x56 x54 x52 x50 x48 x46 x44 x42 x40 x38 x36 x34 x322 x31 x29 x27 x25 x23 x21 x19 x17 x15 x13 x11 x9 x7 x5 x3 x13 x30 x28 x26 x24 x22 x20 x18 x16 x14 x12 x10 x8 x6 x4 x2 x0Figure 6.7: S-7 for a 6× 4 S-box exhibiting Rotational Symmetryoriginal DES S-box S-8, i.e., has not hanged for this example. The same is trueof the on�guration of Figure 6.5, that it is an S-box with sore 12.In the next two setions, we disuss Rotational Symmetry and Bit InversionSymmetry. We prove that these two forms of symmetry always yield an S-boxupon appropriate transformation, and that their sores will never hange.6.8 Rotational SymmetryAn S-box exhibits rotational symmetry with respet to a onstraint if, upon rotat-ing the same by 180◦ about both, its top and left edges, the resulting on�gurationstill satis�es the onstraint.Property 6.8 Criterion S-7 exhibits rotational symmetry for a 6× 4 S-box.Proof Let us rewrite the COUNT onstraint of riterion S-7 given by Equa-tion 5.1 for a 6× 4 S-box:
31
∧

i=0

f(xi ⊕ x63−i) ≤ 8 (6.14)By the ommutativity property of the exlusive-OR operation, xi and x63−iare interhangeable. Interhanging the values of these variables therefore does nota�et Equation 6.14. Repositioning the S-box entries results in a on�gurationobtained by rotating the S-box to an upside-down position (Figure 6.7). Thisproves the proposition.
Q.E.D.6.8.1 Impat on Constraints for Criteria S-2 to S-6Upon applying a 180◦�rotation about its top and left edges, as Figure 6.7 suggests,eah row still has unique entries suggesting that riterion S-3 is una�eted. All



103of the riteria S-4, S-5 and S-6 are similarly preserved, and are easily veri�edusing Tables 6.1, 6.2 and Table 6.4 should be analyzed. For example, reading therows of Table 6.4 bakwards results in traversing the olumns of Figure 6.7 whoseolumn-numbers are spei�ed in the Table.Let us examine how the sore of the on�guration of Figure 6.7 is a�eted, thatis, whether S-box rotation has an impat on riterion S-2.Property 6.9 The sore σX(Φ) of an S-box Φ is una�eted by S-box rotation.Proof Consider two entries xi = v and xi = w of an S-box. We are going tointerhange the values to these variables by setting xi = v, studying the layeredlinear approximation table for this assignment, setting xi and analyzing the or-responding layered linear approximation table, and adding the entries in the twotables to examine the e�et of both assignments.If xi = v is moved to xi = v, all rows in the layered linear approximation tablefor xi = v numbered by a having odd parity get inverted while those having evenparity do not hange, due to Property 6.3 . Upon simultaneously assigning xi = w,all rows a′ in the layered table for the entry xi = w get similarly inverted if a′ hasodd parity, and do not hange for even parity. Adding these two tables results ina linear approximation table for xi = v and xi = w that is idential to one for
xi = w and xi = v. This is now extended to all entries in the S-box, resulting inits �nal, umulative linear approximation table not hanging when all of its bitsare inverted. As suh, the sore does not hange.

Q.E.D.Example 6.8 Consider the DES S-box S8 depited in Figure 6.8(a). Upon in-verting this S-box by 180◦, Figure 6.8(b) depits the resulting S-box having a soreequal to 12, the same as that of S8.6.9 Bit Inversion SymmetryAn S-box exhibits inversion symmetry if, upon replaing all of its entries by theirone's-omplements, the resulting on�guration is still an S-box. As we have seenthus far, the onstraint for riteria S-4 exhibits row symmetry, that for S-5 pos-sesses olumn symmetry, S-6 has diagonal and S-7, rotational symmetry. Wewould like to know whih partiular onstraint possess bit inversion symmetry.Property 6.10 All onstraints modeling riteria S-3 to S-7 possess bit inversionsymmetry.



104Proof The result follows at one from the exlusive-OR property of invarianeto omplementation of its two operands: A⊕ B = A⊕ B for two n-bit quantities
A and B. It also follows from the fat that A 6= B is equivalent to A 6= B. For,
A 6= B ⇒ A⊕B 6= 0⇒ A⊕B 6= 0⇒ A 6= B.

Q.E.D.To get a further insight into the proof, the onstraints modeling eah riteriaS-3 to S-6 are studied as follows:1. S-3: This is the Alldiff onstraint on the variables in eah row, whihremain di�erent upon omplementing the entries in that row. Hene S-3 isuna�eted by bit inversion, exhibiting symmetry.2. S-4: For 0 ≤ i < 32,
wt(x2i ⊕ x2i+1) ≥ 2is equivalent to:
wt(x2i ⊕ x2i+1) ≥ 2suggesting that S-4 is una�eted by inverting the bits of all S-box entries,exhibiting bit inversion symmetry.

S813 2 8 4 6 15 11 1 10 9 3 14 5 0 12 71 15 13 8 10 3 7 4 12 5 6 11 0 14 9 27 11 4 1 9 12 14 2 0 6 10 13 15 3 5 82 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11(a)Rotation about the Top and Left Edges by 180◦11 6 5 3 0 9 12 15 13 8 10 4 7 14 1 28 5 3 15 13 10 6 0 2 14 12 9 1 4 11 72 9 7 14 0 11 6 5 12 4 7 3 10 8 13 15 17 12 0 5 14 3 9 10 1 11 15 6 4 8 2 13(b)Figure 6.8: (a) The DES S-box S8. (b) The S-box obtained due to RotationalSymmetry, having a sore equal to 12.



1053. S-5: Equation 6.7 is rewritten as
(∀i)(∀j)(0 ≤ i, j ≤ 63) ∧ (i 6= j) ∧ (i⊕ j = 12)

⇒ wt(xi ⊕ xj) ≥ 2This equation is equivalent to the following:
(∀i)(∀j)(0 ≤ i, j ≤ 63) ∧ (i 6= j) ∧ (i⊕ j = 12)

⇒ wt(xi ⊕ xj) ≥ 2suggesting invariane of S-5 over bitwise omplementation.4. S-6: Equation 6.13 is rewritten as
(∀i)(∀j)(0 ≤ i < j ≤ 63), [(i⊕ j) ∧ 51] = 48

⇒ xi 6= xjThis equation is equivalent to:
(∀i)(∀j)(0 ≤ i < j ≤ 63), [(i⊕ j) ∧ 51] = 48

⇒ xi 6= xjsuggesting invariane of S-6 over bitwise omplementation.5. S-7: The COUNT onstraint is modeled Equation 6.14, rewritten as follows:
31
∧

i=0

f(xi ⊕ xi) ≤ 8This equation is equivalent to:
31
∧

i=0

f(xi ⊕ xi) ≤ 8suggesting invariane of S-7 over bitwise omplementation.6.9.1 E�et of Bit Inversion on the Sore of an S-boxWe have seen how bit inversion did not a�et the Alldiff onstraint modelingriterion S-3, binary onstraints modeling riteria S-4 to S-6, and the COUNTonstraint for S-7. Will the resulting on�guration still remain an S-box? Inother words, what happens to its sore? The following property establishes thisimportant fat.



106Property 6.11 The sore σX(Φ) of an S-box Φ does not hange upon bitwiseomplementation of the entries in Φ.Proof Consider two entries xi = v and xj = v of an S-box. We are going tointerhange the values to these variables by setting xi = v, studying the layeredlinear approximation table for this assignment, setting xj = v and analyzing theorresponding layered linear approximation table, and adding the entries in thetwo tables to examine the e�et of both assignments.If xi = v is hanged to xi = v, all of its entries in the olumns of the layeredlinear approximation table for xi = v that are headed by b having odd parityget inverted due to Property 6.4. Upon simultaneously hanging to xj = v fromthe earlier assignment xj = v, the orresponding olumns for the entry xj = vget similarly inverted in its layered linear approximation table. Adding these twotables results in a linear approximation table for xi = v and xj = v that is identialto one for xi = v and xj = v. This is now extended to all entries in the S-box,resulting in its �nal, umulative linear approximation table not hanging when allof its bits are inverted. As suh, the sore does not hange.
Q.E.D.Example 6.9 Consider the DES S-box S8 depited in Figure 6.9(a). Upon re-plaing eah entry in this S-box by its one's-omplement (by subtrating eah entryfrom 24 − 1 = 15), Figure 6.9(b) depits the resulting S-box having a sore equalto 12, the same as that of S8.6.10 The Multiple S-box ProblemThe S-box riterion S-8 for multiple S-boxes is now disussed along with an ex-ample. The riterion for three S-boxes, mentioned in Chapter 3, is repeated herefor onveniene:S-8 �Similar to S-7, but with stronger restritions in the ase ∆Oi,j = 0 for thease of three ative S-boxes on round i.� [16℄.Let us �rst see what an ative S-box is.6.10.1 Ative S-Boxes in a partiular RoundGiven a probable bit pattern, an S-box Sj (1 ≤ j ≤ 8 is said to be ative on a round

i of enryption / deryption if the di�erene ∆Ii,j between inputs mi and m′
i to

S-box Sj , in round i, are not all zero during this round. Then ∆Ii,j = mi⊕m′
i [16℄.Now ∆Ii,j = 0⇒ mi = m′

i, that is, two di�erent messages to be input to the same
S-box Sj have idential ontent. If this is so, then the S-box is inative. As the
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S813 2 8 4 6 15 11 1 10 9 3 14 5 0 12 71 15 13 8 10 3 7 4 12 5 6 11 0 14 9 27 11 4 1 9 12 14 2 0 6 10 13 15 3 5 82 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11(a)Entries with Bits Complemented2 13 7 11 9 0 4 14 5 6 12 1 10 15 3 814 0 2 7 5 12 8 11 3 10 9 4 15 1 6 138 4 11 14 6 3 1 13 15 9 5 2 0 12 10 713 14 1 8 11 5 7 2 0 3 6 15 12 10 9 4(b)Figure 6.9: (a) The DES S-box S8. (b) The S-box obtained due to Bit InversionSymmetry, having a sore equal to 12.number of rounds i inreases, the number of ative S-boxes also inreases [16℄.Criterion S-8 deals with ative S-boxes taken three at a time, eah having inputsnot always idential when ompared pair-wise. The S-boxes are listed as Sj ,

Sj mod 8+1 and S(j mod 8+1) mod 8+1, 1 ≤ j ≤ 8, S8 and S1 being treated as adjaentto eah other.Similar to the Linear Approximation Table, an XOR Distribution Table [11℄ isonstruted. This table onsiders di�erenes between two inputs to an S-box andbetween their orresponding outputs, and is used by Biham and Shamir in thedi�erential ryptanalysis of DES.6.10.2 XOR Distribution TableIn this table, di�erenes of inputs to an S-box Sj and di�erenes in the outputsof Sj are onsidered. Consider two inputs k and k′ to the same S-box Sj, withorresponding outputs xk and x′
k. Determine the following two di�erenes:
∆k = k ⊕ k′

∆xk = xk ⊕ x′
kEah entry in the di�erential approximation table is de�ned as follows, for a

n×m S-box Sj .
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b 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
a0 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 0 0 0 6 0 2 4 4 0 10 12 4 10 6 2 42 0 0 0 8 0 4 4 4 0 6 8 6 12 6 4 23 14 4 2 2 10 6 4 2 6 4 4 0 2 2 2 04 0 0 0 6 0 10 10 6 0 4 6 4 2 8 6 25 4 8 6 2 2 4 4 2 0 4 4 0 12 2 4 66 0 4 2 4 8 2 6 2 8 4 4 2 4 2 0 127 2 4 10 4 0 4 8 4 2 4 8 2 2 2 4 48 0 0 0 12 0 8 8 4 0 6 2 8 8 2 2 49 0 2 4 0 2 4 6 0 2 2 8 0 10 0 2 1210 0 8 6 2 2 8 6 0 6 4 6 0 4 0 2 1011 2 4 0 10 2 2 4 0 2 6 2 6 6 4 2 1212 0 0 0 8 0 6 6 0 0 6 6 4 6 6 14 213 6 6 4 8 4 8 2 6 0 6 4 6 0 2 0 214 0 4 8 8 6 6 4 0 6 6 4 0 0 4 0 815 2 0 2 4 4 6 4 2 4 8 2 2 2 6 8 816 0 0 0 0 0 0 2 14 0 6 6 12 4 6 8 617 6 8 2 4 6 4 8 6 4 0 6 6 0 4 0 018 0 8 4 2 6 6 4 6 6 4 2 6 6 0 4 0... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...59 2 6 4 0 0 2 4 6 4 6 8 6 4 4 6 260 0 10 4 0 12 0 4 2 6 0 4 12 4 4 2 061 0 8 6 2 2 6 0 8 4 4 0 4 0 12 4 462 4 8 2 2 2 4 4 14 4 2 0 2 0 8 4 463 4 8 4 2 4 0 2 4 4 2 4 8 8 6 2 2Table 6.5: Tabulating the ounts D1(a, b) for the S-box S1 of Figure 1.1
Dj(a, b) = #{k : ∆k = ∆xk; ∆k ∈ Z2n ; ∆xk ∈ Z2m} (6.15)Example 6.10 The di�erential approximation table of S-box S1 used in [11℄, isonstruted as shown in Table 6.5. Eah entry is denoted as D1(a, b) for S-box S1,where a is the row number and b, the olumn number of the table, 0 ≤ a < 64, 0 ≤

b < 16.Note the di�erene between equations 6.15 and 4.2. In equation 4.2, it is thelinear ombination of subsets of input and output bits that are onsidered for



109equality. The de�nition of DΦ(a, b) is simpler. Equation 6.15 reords ounts ofequalities of merely di�erenes between any two inputs k and k′ (∆k = k ⊕ k′),and their orresponding outputs xk and xk′ (∆xk = xk ⊕ xk′) of an S-box.6.10.3 Probability MeasureThe probability of an output di�erene ∆xk = b given that the orrespondinginput di�erene ∆k = a, for a 6 × 4 S-boxSj is approximated by the followingequation:
P (∆xk = b|∆k = a) =

Dj(a, b)

64
(6.16)Example 6.11 For the DES S-box S1 of �gure 1.1, the probability that two outputsdi�er by 5 given that the orresponding inputs di�er by 7 is approximated as follows:

P (∆xk = 5|∆k = 7) =
D1(7, 5)

64

=
4

64
, from Row 7, Column 5 of Table 6.5

=
1

166.10.4 Attak on an S-box with Highest ProbabilityThe following bit-patterns are derived [16℄ by taking three adjaent S-boxes
Sj , Sj mod 8+1 and S(j mod 8+1) mod 8+1, where 1 ≤ j ≤ 8, in order to simplify theanalysis:

∆Ii,j = 00cd112, c, d ∈ Z2

∆Ii,j mod 8+1 = 11gh102, g, h ∈ Z2

∆Ii,(j mod 8+1) mod 8+1 = 10km002, k, m ∈ Z2The objetive is to minimize the highest probability of suess of an attak.To �nd the highest probability of suess, determine c, d so as to maximize theonditional probability for one S-box Sj. Similarly, determine g, h for the adja-ent S-box Sj mod 8+1, and k, m for the next-adjaent S-box S(j mod 8+1) mod 8+1 tomaximize the respetive highest probabilities.For an S-box Sj, 1 ≤ j ≤ 8, let
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q0,j = P (∆xr = 0|∆r = 00cd112)

= max
c,d

Dj(00cd112, 0)

64
from Eq. 6.16

=
max{Dj(3, 0), Dj(7, 0), Dj(11, 0), Dj(15, 0)}

64
(6.17)

q1,j = max
g,h

P (∆xr = 0|∆r = 11gh102)

= max
g,h

Dj(11gh102, 0)

64
from Eq. 6.16

=
max{Dj(50, 0), Dj(54, 0), Dj(58, 0), Dj(62, 0)}

64
(6.18)

q2,j = max
k,m

P (∆xr = 0|∆r = 10km002)

= max
k,m

Dj(10km002, 0)

64
from Eq. 6.16

=
max{Dj(32, 0), Dj(36, 0), Dj(40, 0), Dj(44, 0)}

64
(6.19)Upon determining q0,j, q1,j mod 8+1 and q2,(j mod 8+1) mod 8+1 for three adjaent

S-boxes, the highest probability of suess of an attak (assuming independene)is equal to their produt, namely,
q0,j · q1,j mod 8+1 · q2,(j mod 8+1) mod 8+1.Example 6.12 Consider the DES S-box S1 (j = 1) used in Example 6.10. Fromequation 6.17,
q0,1 =

max{14, 2, 2, 2}

64
=

14

64
=

7

32by looking up olumn 0 under rows 3, 7, 11 and 15 of the XOR table of S-box
S1, namely Table 6.5, and substituting in equation 6.17. Similarly for S-box S2adjaent to S1, equation 6.18 gives

q1,2 =
max{8, 8, 4, 4}

64
=

8

64
=

1

8by looking up olumn 0 under rows 50, 54, 58 and 62 of its XOR table. For thenext adjaent S-box S3, we similarly look up olumn 0 under rows 32,36,40,44 ofits XOR table and substitute in equation 6.19 to yield
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q2,3 =

max{0, 4, 6, 10}

64
=

10

64
=

5

32The highest probability of suess of an attak is now
= q0,1 · q1,2 · q2,3

=
7

32
×

1

8
×

5

32

=
35

81926.10.5 Modeling Criterion S-8Criterion S-8 an now be written as follows. Arrange the eight S-boxes
Sj , Sj mod 8+1, S(j mod 8+1) mod 8+1, 1 ≤ j ≤ 8, so as to minimize the following quan-tity:

p = max
j=1,2,...,8

q0,j · q1,j mod 8+1 · q2,(j mod 8+1) mod 8+1 (6.20)Sine the denominator of equation 6.20 is equal to at most 643 for 6×4 S-boxestaken three at a time, we an rewrite equations 6.17, 6.18 and 6.19 to avoid �oating-point errors during the implementation of this riterion as follows. Compute:
Q0,j = max

c,d
64× q0,j

= max
c,d

Dj(00cd112, 0)

= max{Dj(3, 0), Dj(7, 0), Dj(11, 0), Dj(15, 0)} (6.21)
Q1,j = max

g,h
64× q1,j

= max
c,d

Dj(11gh102, 0)

= max{Dj(50, 0), Dj(54, 0), Dj(58, 0), Dj(62, 0)} (6.22)
Q2,j = max

k,m
64× q2,j

= max
k,m

Dj(10km002, 0)

= max{Dj(32, 0), Dj(36, 0), Dj(40, 0), Dj(44, 0)} (6.23)



112Example 6.13 For adjaent S-boxes S1, S2 and S3, equations 6.21, 6.22 and 6.23yield the following values:
Q0,1 = max{14, 2, 2, 2} = 14

Q1,2 = max{8, 8, 4, 4} = 8

Q2,3 = max{0, 4, 6, 10} = 10The highest probability of suess of an attak orresponds to the followingquantity:
Q0,1 ×Q1,2 ×Q2,3 = 14× 8× 10 = 1120Equation 6.20 is similarly transformed. Determine an arrangement of eight

S-boxes S1, S2, . . . , S8 so as to minimize
P = max

j=1,2,...,8
Q0,j ·Q1,j mod 8+1 ·Q2,(j mod 8+1) mod 8+1 (6.24)The quantity P will be referred to as the di�erene-sore of an arrangement ofeight S-boxes S1 to S8.Example 6.14 We have found the maximum probability P using equation 6.24for arranging S-boxes S1, S2, S3. Denote the maximum probability for this tripletby P1. Similarly, determine P2 for the triplet S2, S3, S4, p3 for S3, S4, S5, andso on, until P8 for S8, S1, S2. Compute P (1) = max{P1, P2, . . . , P8}. This is thedi�erene-sore for the arrangement (S1, S2, . . . , S8).There are a total of 8! arrangements of all eight S-boxes. For eah arrangement,ompute di�erene-sores P (i) in the manner just mentioned, 2 ≤ i < 8!. Finally,determine the minimum of these di�erene-sores, equal to mini=1,2,...,8! P

(i). Thearrangements of the eight S-boxes that orrespond to this di�erene-sore onstitutethe best possible arrangements that minimize the maximum probability of attak.The results of implementing S-8 are disussed in Chapter 7.6.11 SummaryThe various forms of symmetry of the onstraints modeled in our CSP formulationof the S-box problem is summarized in Table 6.6.Out of these forms of symmetries, the row, olumn and diagonal symmetryhold good only if the interhanges of rows (respetively, olumns and quadrants)are made simultaneously. Otherwise some other onstraints are violated and theresulting on�guration is not an S-box. The rotational and bit inversion forms of



113Constraint for Row Column Diagonal Rotational Bit InversionCriterion Symmetry Symmetry Symmetry Symmetry SymmetryS-2 ×S-3 ×S-4 × ×S-5 × ×S-6 × ×S-7 × ×Table 6.6: Summary of Results on Symmetry of onstraints modeling S-box Cri-teriasymmetry, however, yield an S-box that satisfy all onstraints. The row, olumnand diagonal symmetry of the S-box may or may not impat its sore. (This hasto be either proved or disproved!) We have only veri�ed this for DES S-boxes.However, the rotational and bit inversion symmetries do not a�et the sore of the
S-box. We have proved these properties in this Chapter.From the viewpoint of e�ieny, an S-box results in an extra one due to rowsymmetry, one more due to olumn symmetry, a third due to diagonal, a fourthdue to rotational and a �fth due to the bit inversion symmetry. In other words,one S-box results in 25 = 32 S-boxes already available and therefore, a 32-foldspeedup of S-box searh. By adding symmetry breaking onstraints to the solver,we should be able to prune further and avoid visiting these new S-boxes whenthey are eventually enountered in searh.Criterion S-8 deals with multiple S-boxes taken three at a time. The objetiveof this riterion is to thwart di�erential ryptanalysis. An XOR table employed inBiham's work on di�erential ryptanalysis [11℄ is used to model this riterion.This riterion is not implementable into the existing framework that yields one
S-box at a time. In Chapter 9, we will disuss an alternative formulation thatmodels S-8 into a set of onstraints. By doing this, the entire S-box formulationwill be shown to be modeled stritly as a CSP.
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Chapter 7Performane Measures, Experiments andResultsWe disuss four measures that will be used to evaluate the heuristis for the n-ary onstraints developed in Chapters 4 and 5. One measure is onerned with thequality of S-boxes generated. The remaining three measures deal with exeutione�ieny and provide us with various kinds of information.In this Chapter we disuss several experiments. To begin with, problems be-ing studied for performane using various heuristis are summarized and labelledaordingly. The solver is run on small-sized CSP's to generate small-sized n×m

S-boxes using the generate-and-test approahes to riteria S-2 and S-7, verifyompleteness, and examine results. The summarized heuristis are studied throughexperiments and their performanes, measured against the quality of S-boxes aswell as the quanti�ations for e�ieny developed in this hapter.7.1 Summary of ProblemsAlgorithm 1 implemented as Solver using AC2001 is used to evaluate the followingapproahes to the modeling of S-box generation problems:
• The S-2 riterion is translated to a single hard onstraint based on thethreshold τ , and the S-7 riterion is implemented as a single n-ary onstraint.This family of CSPs that employ the omplete, non-inremental heuristis

V φ,τ
S , V Oφ,τ

S , Hφ,τ
S and HOφ,τ

S for n×m S-boxes, is denoted by DESn,m
S,τ .

• The S-2 riterion is implemented using the onstraints employed by theinomplete, inremental heuristi Hφ,τ
I , in whih S-7 is implemented as asingle n-ary onstraint. This family of CSPs, for n×m S-boxes, is denotedby DESn,m

I,τ .
• The S-2 riterion is implemented using the omplete, inremental heuristi

Hφ,τ
C , in whih S-7 is implemented as a single n-ary onstraint. This familyof CSPs, for n×m S-boxes, is denoted by DESn,m

C,τ .
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• The S-2 riterion is implemented using omplete, inremental heuristis

V Φ,τ
C7

, V OΦ,τ
C7

, HΦ,τ
C7

, and HOΦ,τ
C7

, where S-2 and S-7 are inrementallyheked. This family of CSPs, for n×m S-boxes, is denoted by DESn,m
C7,τ .

• The S-2 riterion is implemented using omplete, inremental heuristis
V Φ,τ

AC7
, V OΦ,τ

AC7
, HΦ,τ

AC7
, and HOΦ,τ

AC7
, where S-2 is inrementally heked andS-7, deomposed by projeting past assignments over domains of future vari-ables. This family of CSPs, for n×m S-boxes, is denoted by DESn,m

AC7,τ .For brevity, throughout the remainder of this Chapter, Algorithm 1 that im-plements the solver of Setion 2.7 will be referred to as MAC2001(τ), where τ isthe threshold of the S-box sore.7.2 Performane MetrisWe now disuss what measures are ompared while running experiments using theaforementioned heuristis, along with reasons for the measures onsidered. Thefollowing four metris are used:1. The quality metri of an S-box2. A quanti�ation of searh points3. CPU elapsed time, and4. Number of ompletely-�lled S-boxes generatedThe quality metri of an S-box helps us ompare how well a heuristi gener-ates �better� quality S-boxes ompared with another. Quantifying searh pointsprovides us information on how far into the searh spae eah of the heuristis ad-vanes with time. The farther the advanement, the more e�ient is the heuristi.The CPU elapsed time informs how long eah heuristi took to generate a spei�ednumber of S-boxes. Finally, ounting the number of ompletely-�lled S-boxes isanother e�ieny metri.The order in whih the above metris are listed should be noted. The soreof an S-box is the most important metri beause, we would like to obtain high-quality S-boxes as early as we an. The quanti�ation of searh points is next inorder of preferene. It gives us an idea of how �quikly� S-boxes an be obtainedwith the aforementioned heuristis. The CPU time gives us the same idea. How-ever, the expression that quanti�es the searh points gives us more information



116about the nature of the searh spae that mere timing results do not. This fatwill beome apparent in the results of experiments. Finally, the number of S-boxesgenerated deals with ompletely-�lled S-boxes alone, sine ounting partially as-signed S-boxes do not make sense. This ount only suggests speedup just as theCPU elapsed time does, and does not similarly provide information on the natureof searh spae the way the quanti�ation results do.We will atually enounter two kinds of information about the nature of searhspae. The �rst kind deals with �lusters� of S-boxes having the same �good� qual-ity as adjudged by the quality metri. The seond kind of information deals withspurts of �many� S-boxes being generated ompared to a long duration betweentwo S-boxes generated, as revealed by the quanti�ation of searh spae and to alesser extent, by CPU time and ounting the number of solutions.Let us now disuss the four performane metris.7.2.1 The Quality Metri for an S-boxThe equation for the sore σX(Φ) of an S-box Φ given by Equation 4.6 providesus with the quality metri for the S-box. For an n×m S-box, the maximum valueof this sore is equal to 2n−1 while the minimum value is equal to zero. An S-box
Φ1 is onsidered �better� than a seond S-box Φ2 if σX(Φ1) < σX(Φ2).7.2.2 A Measure of the Searh SpaeInstead of attempting an exhaustive overage of the searh spae, the ertitude ofoptimality is evaluated by measuring the fration of searh spae that Solver()overs while generating S-boxes. Let us develop the onepts needed to formulatean expression for this metri. For simpliity, we assume that the domains for eahvariable in X are idential and equal to Zd.Enoding for a Partially Assigned S-box Given a partial assignment involv-ing variables in the set X ′ = {x0, x1, . . . , x|X′|−1} with X ′ ⊆ X, an enoding E foran n×m partially assigned S-box is de�ned as:

Sp =
|X′|−1
∑

i=0

λ−1(xπ(i)) · d
|X′|−i−1 (7.1)where d = 2m, and λ : Zd → Zd and π : Z|X′| → Z|X′| are permutationfuntions that determine value and variable ordering, respetively. π is disussedin setion 5.5.2 while λ is disussed in setion 7.3. λ−1 is the inverse permutationorresponding to λ on Zd. This enoding is easily extensible to a ompletely-�lled

S-box by setting |X ′| = |X|, the number of variables in the S-box.



117In simple words, eah n × m S-box an be regarded as a radix-d numberhaving |X ′| digits in that radix. The entry of this S-box for λ−1(xπ(0)) is the mostsigni�ant digit that varies least-frequently, while that for xπ(|X′|−1) is the leastsigni�ant digit that varies most-frequently.We now state and prove two properties for Sp. For proving purposes, withoutloss of generality, let us de�ne permutation funtions λ : Zd → Zd and π : Z|X′| →
Z|X′| as follows:

λ(k) = k, where 0 ≤ k < d

π(k) = k, where 0 ≤ k < |X ′|so that λ−1(k) = kBased on these de�nitions, Eq. 7.1 is rewritten as:
Sp =

|X′|−1
∑

i=0

xi · d
|X′|−i−1 (7.2)where X ′ = {x0, x1, x2, . . . , x|X′|−1}.Property 7.1 (Uniqueness) Sp is unique to eah assignment.ProofThe result follows at one if the number of variables in any two partial assign-ments di�er. Consider two di�erent (partial) assignments to the same number ofvariables in X ′:

A = 〈(x0, d0), (x1, d1), . . . , (x|X′|−1, d|X′|−1)〉,

A′ = 〈(x0, d
′
0), (x1, d

′
1), . . . , (x|X′|−1, d

′
|X′|−1)〉where di, d

′
i ∈ Zd and di 6= d′

i, whenever 0 ≤ i < |X ′|. Let the enoding for A(A′) be Sp (S ′
p). We have to prove that S ′

p = Sp ⇒ A′ = A. From Eq. 7.2,
Sp =

|X′|−1
∑

i=0

di · d
|X′|−i−1 and S ′

p =
|X′|−1
∑

i=0

d′
i · d

|X′|−i−1For Sp and S ′
p to be not unique, we should have S ′

p = Sp, i.e.
|X′|−1
∑

i=0

d′
i · d

|X′|−i−1 =
|X′|−1
∑

i=0

di · d
|X′|−i−1



118Equating the o-e�ients, we obtain d′
i = di whenever 0 ≤ i < |X ′|. Therefore,

S ′
p = Sp ⇒ A′ = A establishing uniqueness.

Q.E.D.From the enoding Sp, a (partial or omplete) assignment is uniquely �retrieved�by repeatedly dividing Sp by d and olleting remainders that serve as the valuesassigned to the variables. The proess terminates immediately when the dividendbeomes zero. At this point the remaining variables are unassigned in the ase ofa partial assignment.Property 7.2 (Strit Monotoniity) Sp inreases stritly monotonially assearh progresses.ProofLet the variables be represented by X ′ = {x0, x1, . . . , xj , xj+1, . . . , x|X′|−1}. Letthe domain of variable xj+1 ∈ X ′ be Zd = {d
(0)
j+1, d

(1)
j+1, . . . , d

(d−1)
j+1 }, with d

(k+1)
j+1 >

d
(k)
j+1 whenever 0 ≤ k < d− 1. Then d

(k+1)
j+1 ≥ d

(k)
j+1 + 1, and

d
(k+1)
j+1 − d

(k)
j+1 − 1 ≥ 0 (7.3)Consider two onseutive (partial) assignments. We examine the ase when thevalue to variable xj+1 hanges from d

(k)
j+1 to the value d

(k+1)
j+1 . We further onsider theassignment to the remaining variables xj+2, . . . , x|X′|−1 arising due to systematisearh. In the pathologial ase, prior to xj+1 hanging, these remaining variableshad the maximum value in Zd, equal to (d− 1). When the value of xj+1 hanges,the remaining variables now assume the minimum value in Zd, that is, 0. In otherwords, onsider the following two assignments:

Aj = 〈(x0, d0), (x1, d1), . . . , (xj, dj),

(xj+1, d
(k)
j+1), (xj+2, d− 1), . . . , (x|X′|−1, d− 1)〉,

Aj+1 = 〈(x0, d0), (x1, d1), . . . , (xj, dj), (xj+1, d
(k+1)
j+1 ), (xj+2, 0), . . . , (x|X′|−1, 0)〉,where d0, d1, . . . , dj ∈ Zd.Let S(j)

p (S(j+1)
p ) denote the enodings of Aj (Aj+1). Then using Eq. 7.2, weobtain:
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S(j)

p =
|X′|−1
∑

i=0

xi · d
|X′|−i−1

=
j
∑

i=0

di · d
|X′|−i−1 + d

(k)
j+1 · d

|X′|−j−2 +
|X′|−1
∑

i=j+2

(d− 1) · d|X′|−i−1

S(j+1)
p =

|X′|−1
∑

i=0

xi · d
|X′|−i−1

=
j
∑

i=0

di · d
|X′|−i−1 + d

(k+1)
j+1 · d

|X′|−j−2 +
|X′|−1
∑

i=j+2

0 · d|X′|−i−1By subtration,
S(j+1)

p − S(j)
p = (d

(k+1)
j+1 − d

(k)
j+1) · d

|X′|−j−2 −
|X′|−1
∑

i=j+2

(d− 1) · d|X′|−i−1

= (d
(k+1)
j+1 − d

(k)
j+1) · d

|X′|−j−2 − (d− 1)×

(1 + d + d2 + . . . + d|X′|−j−3)

= (d
(k+1)
j+1 − d

(k)
j+1) · d

|X′|−j−2 − (d− 1)×
d|X′|−j−2 − 1

d− 1
(if d 6= 1)

= (d
(k+1)
j+1 − d

(k)
j+1 − 1) · d|X′|−j−2 + 1 (if d 6= 1)

≥ 1 from Eq. 7.3The same result follows if d = 1, by setting this value for d diretly into the�rst step. Sine S(j+1)
p > S(j)

p , S(j)
p inreases stritly monotonially.

Q.E.D.Fration of Searh Spae Let p, the fration of the searh spae p (0 ≤ p < 1)overed by Solver(). p is approximated as follows. For an n×m S-box, the totalnumber of enumerations is equal to 2m×2n and forms the denominator of p. Thefration p of searh spae for the 6× 4 S-box is given by the following ratio:
p =

Sp

2m×2n =
λ−1(xπ(i)) · d

|X′|−i−1

2m×2n , from Eq. 7.1 (7.4)This is the metri that we will use in our experiments to ompare performaneof heuristis. However, we will express this metri in a more readable manner inthe following paragraphs.



120Heuristi First Searh Point Sp1
(in Hexadeimal), and Corresponding Fration, a

H
φ,16
I

Sp1
= 033056659aa9cffc744728dbed1eb281300395a9566cfacfd7ed7b4e218214b8

a = 0.012456321531011171706977161053827542615230725548026705570504434171742344721

V
φ,16
S

(No solutions found)
V O

φ,16
S

(No solutions found)
V

φ,16
C7

Sp1
= 03569acf7421edb83065a9fc4712de8b3065acf94d8b712e09f3c05a824d0000

a = 0.013040233276235570484942204477017154420405709642663933645624638940629054168

V
φ,16
AC7

Sp1
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a = 0.012456321531011171706977135898667979325824167732326887499378089911418120883Table 7.1: First searh point generated by solvers employing various heuristis, onordered domains of variablesFirst Searh Point, and O�set Let Sp1
represent the �rst-generated S-boxby the solver. Let a represent the fration of searh spae overed by the solverwhen the �rst solution is obtained. The value for a is obtained by substituting thevalue of Sp1

into equation 7.4:
a =

Sp1

2m×2n (7.5)For all solutions di�erent from the �rst, de�ne a searh o�set r as follows:
r = p− a =

Sp − S1
p

2m×2n (7.6)Note that |r| < 1. (For the �rst searh point, r = 0.) The remaining sub-setions analyze the variation in p = a + r with time for the heuristis used inSolver().Table 7.1 lists out the value of Sp1
for eah heuristi. The inomplete heuristi

Hφ,16
I shows a value di�erent from all of the other, omplete heuristis, whih isto be expeted. Even for omplete heuristis, the straight-line variable ordering



121shows an Sp1
value di�erent from the zig-zag ordering, one again an expetedresult.7.2.3 CPU Elapsed TimeTiming results have been reorded for every S-box generated (inluding partiallyassigned S-boxes). These timings are the CPU exeution times and are output bythe funtion getrusage(RUSAGE_SELF, &time) where time is the elapsed time (inseonds) sine the experiment started. This funtion is alled twie, one at startto reord the elapsed CPU time at the �rst searh point, and thereafter, after eahsearh point is enountered, often at eah minute. A omparison of CPU timesby the di�erent heuristis provides information related to speed-up. This is donefor reporting purposes only. No further analysis is arried out on this metri. Inthe experimental results reported in this Chapter, the olum �Time (seonds)� or�Time (hrs)� always refers to the CPU elapsed time.7.2.4 Number of Completely-�lled S-boxesWhenever an S-box with all entries is obtained, a ount of the number of solutionsis inremented by 1. After eah minute, along with the CPU time, the numberof solutions is also reported. A omparison of the number of omplete S-boxesgenerated so far, against eah heuristi, provides information on e�ieny of theheuristi. One again, this is done for reporting purposes only. No further analysisis made on this metri.7.3 Random Permutation of DomainsTo study the e�et of domain-ordering on heuristi performane, the searh spae isshu�ed by randomly permuting the domains of eah variable. Proedure Permutefrom [25℄ permutes an ordering of integers π using random seed s, and, for re-produibility purposes, is provided below. The drand48() funtion in Permuteis the one provided in standard GNU C library. Also, to allow the repliation ofthe reported experiments, the seed is set at start with the help of the funtionseed48([1000,0,0℄). The swap() funtion interhanges two integers.7.4 SetupThe hardware environment onsists of an Intel Pentium Core-2 Duo 3-GHz CPUand 3.3 GB RAM. GNU/Linux Ubuntu 9.04 is the operating system. Binary on-straints are preompiled for S-box riteria S-3, S-4, S-5, and S-6 (Setion 2.3.1).



122Proedure Permute(π, s)inputs : An ordering π of integers, and a seed s.output: A permutation of π1 begin2 Let π = (d0, d1, . . . , d|π|−1) ;3 seed48(s) ;4 for i← 0 to (|π| − 1) do5 p← ⌊(|π| − i)× drand48()⌋ ; /* 0 ≤ p < |π| − i */6 swap(di, dp+i);These onstraints are then input to the solvers implementing the aforementionedheuristis for riteria S-2 and S-7.The experiments are broadly lassi�ed into the following types:1. E�ienies for small-sized S-boxes suh as 4×4 and 5×3 S-boxes, disussedin Setion 7.5.2. Generation of omplete 6× 4 S-boxes, disussed in Setion 7.6. The experi-ments have been run for a duration ranging from 5 hours to 4 days to apturevarious information regarding omplete S-box generation.3. Comparison of performane of heuristis for 6 × 4 S-box generation. Thisinvolves �nding how far in the searh spae eah heuristi has advaned upto. The measure of Setion 7.2.2 is used in the omparison. Here, partial
S-boxes are sampled eah minute and inluded in the performane plots.The experiments have been run for two days, and the results are disussedin Setion 7.7. The quality metri (the sore) is thresholded by a maximumvalue τ in eah experiment (refer setion 4.3), and observations on the qualityof generated S-boxes is made.7.5 E�ienies for Small-Sized S-boxesIn this setion we evaluate the sores σX(Φ) of eah of the eight published DES

S-boxes Φ. Next, we attempt to generate all 4×2 S-boxes and also, examine thoseof Simple DES [62℄. Finally, an attempt is made to generate all 5× 3 S-boxes toexamine the duration of searh.
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S-box, Φ S1 S2 S3 S4 S5 S6 S7 S8Sore, σX(Φ) 14 14 14 10 14 12 18 12Table 7.2: Sores obtained for existing 6× 4 S-boxes of DESConstraint Time # of Sore-wise breakupCombinations (seonds) S-boxes Sore 8 Sore 6 Sore 4 Sore 2No onstraints 136228.906250 4294967296 3931260 517882560 3496729600 276422720S-3 only 35.029600 331776 11904 153600 166272 0S-4 only 0.000089 4 4 0 0 0S-5 only 6.410940 65536 7936 45056 12544 0S-6 only 13214.516602 429981696 2103616 91728896 323934912 12214272S-3, S-5 0.433693 4096 384 2048 1664 0S-3, S-6 5.224500 46656 6240 22272 18144 0S-5, S-6 2.085620 20736 4160 13312 3264 0S-3, S-5, S-6 0.165739 1600 224 768 608 0Table 7.3: Statistis of 4 × 2 S-boxes generated by MAC2001(τ) to satisfy om-binations of DES riteria7.5.1 Evaluation of DES S-boxes S1 to S8We employ Matsui's metri to sore the eight DES S-boxes of Figure 1.1, proposedby IBM. The sores we have found are reported in Table 7.2.Observation S-box S7 possesses the (not-so-good) sore of 18 and S-box S4,the (best) sore of 10. In addition, a number of S-boxes possess a sore of 14. No

S-box with a sore of 8 was found during the manual onstrution. Interestingly,the last S-box S8 used in breaking DES [11℄, yielded a �seond-best� sore of 12.In general, the maximum value τ of the sore of an n×m S-box is equal to 2n−1,and is the value used for small values of n as the experiments suggest. For large-sized S-boxes suh as 6 × 4, the maximum value of the sore is onsidered equalto 16 (= 26

4
) and not 26−1 = 32 sine, there are too many 6× 4 S-boxes generatedhaving sore equal to 16 and we would like to study generation of (better) S-boxeswith smaller sores.7.5.2 Problem DES4,2

S,8: Generation of 4× 2 S-boxesThis problem generates 4× 2 S-boxes (16 variables, at domain size 4). CriterionS-7 no longer applies. Not all riteria S-3, S-4, S-5 and S-6 result in solutionswhen applied together. Table 7.3 reports results obtained using some ombinationsof riteria that yield solutions. The threshold τ assumes the maximum value of
24−1 = 8.



124Total time Total number Sore-wise breakup(seonds) of S-boxes Sore 16 Sore 12 Sore 814.2659 32,640 25728 3456 3456Table 7.4: The sores of 5× 3 S-Boxes generated by the model, with riteria S-5and S-6 relaxedThe S-boxes of Simple DES [62℄Simple DES is proposed in [62℄ and employs two 4 × 2 S-boxes S0 and S1. Ourmodel reports that both S-boxes S0 and S1 do not satisfy DES riteria S-3 toS-6. Applying riterion S-2 yielded a sore equal to 5 for S-box S0. In general,all entries in the linear approximation table for an S-box, and therefore the sore,should be even. The reason for the odd-numbered sore in the ase of S-box S0is that this S-box has two idential entries in row 3 (resulting in riterion S-3 notbeing satis�ed). S-box S1 yielded a sore of 6. Two entries in row 2 of S-box S1are idential, resulting in the presene of an odd-numbered entry equal to 5 in itslinear approximation table (and riterion S-3 not being satis�ed).Conlusion: This approah on problem DES4,2
S,8 generates 4× 2 S-boxes onlywhen some of the DES riteria S-2 to S-7 are relaxed. Results on ombinations ofsatis�ed riteria, generation times and number of S-boxes are reported in Table 7.3.7.5.3 5× 3 S-boxesThis problem, spei�ed as DES5,3

S,16, generates 5×3 S-boxes (32 variables, eah withdomain ardinality equal to 8). Criteria S-5 and S-6 are relaxed. The thresholdassumes a maximum value of 25−1 = 16. The solver ould �nd all solutions andterminate. Table 7.4 reports S-box generation times and number of S-boxes fordi�erent sores, with a total of 32,640 S-boxes generated.Conlusion: The approah of running Solver() on problem DES5,3
S,16 generates

5 × 3 S-boxes to satisfy all remaining onstraints when riteria S-5 and S-6 arerelaxed. No 5× 3 S-boxes of sores 6, 4 and 2 were found.7.6 Experimental Results for 6× 4 S-box GenerationIn the earlier problems for generating smaller-sized S-boxes, the omplete heuristiwas used. For 6 × 4 S-boxes, however, we have formulated several alternativeheuristis for riteria S-2 and S-7 to improve searh speed and/or S-box quality.As suh, a whole setion is devoted to 6× 4 generation.



125Time Searh spae # of S-boxes(hrs) inrement, r (σX(Φ) = 16)1 1.1980 × 10−49 42 2.1725 × 10−48 143 4.2091 × 10−48 154 4.2091 × 10−48 265 6.1340 × 10−48 40Table 7.5: MAC2001(16) on Problem DES6,4
S,16 � Performane statistis7.6.1 Problem DES6,4

S,16: Complete, Non-inremental HeuristisWe report the results of exeuting Solver() employing the following om-plete, non-inremental heuristis: H64,τ
S , HO64,τ

S , V 64,τ
S and V O64,τ

S . The formertwo heuristis are the optimized and non-optimized versions employing defaultvariable-ordering, while the latter two heuristis are the orresponding versionsthat employ even/odd variable-ordering.
S-boxes generated by Solver(), for eah heuristi, are sampled eah minuteand the fration of searh spae o�set is determined using Equation 7.6. Table 7.1reords the values for the fration of searh-spae a traversed prior to the �rst

S-box. The values di�er with the variable-ordering heuristi employed, otherwise,they are idential for all heuristis within that ordering (as expeted).Table 7.5 reports the searh time (seonds), the inrement r of the fration ofsearh spae overed from the partial S-box generated during the �rst minute, andthe number of S-boxes with all entries �lled, obtained in these time frames, forheuristis Hφ,16
S and V φ,16

S that employ no optimization.All searhes with this approah have so far resulted in 6×4 S-boxes with sore
σX(Φ) equal to 16. As Table 7.5 reports, the �rst four S-boxes having sore 16were generated after about an hour of searh ommenement. Large wait-timeswere visible between S-box generations suh as, for example, between 14 and 15solutions.Speifying the maximum sore τ equal to 16 should enable MAC2001(16) togenerate S-boxes with �better� sores (values of σX(Φ) less than τ). However wereport that S-boxes with �better� sores of 14, 12, 10, 8, and so on did not surfaefrom this approah in the stipulated time-frames. We also report that experimentswith MAC2001(τ) for τ = 14, 12, 10 and 8 did not yield 6 × 4 S-boxes for thesethresholds in the �ve-hour time-frame used for running MAC2001(16).The issue addressed in the next two problems is the improvement of searhspeed of MAC2001(τ) over DES6,4

S,τ .



126Time Searh spae # of S-boxes(hrs) inrement, r (σX(Φ) = 16)1 1.0216× 10−44 207862 2.6504× 10−44 359573 9.1542× 10−44 491104 9.9395× 10−44 809335 1.0615× 10−43 94069Table 7.6: Algorithm MAC2001(16) on Problem DES6,4
C,16 � Performane statistisTime Searh spae # of S-boxes(hrs) inrement, r (σX(Φ) = 16)1 1.6929× 10−44 245242 9.6042× 10−44 434623 9.9080× 10−44 686684 9.9956× 10−44 935235 1.1456× 10−43 108043Table 7.7: MAC2001(16) on Problem DES6,4

C7,16 � Performane statistis
MAC2001(16) on Problems DES6,4

C,τ , for various thresholds τ (Soft ConstraintDeomposition)The results of running MAC2001(τ) on the family of problems DES6,4
C,τ are re-ported in Table 7.6, with τ = 16.Observations A omparison with the results of Table 7.5 suggests that using theformulation of problem DES6,4

C,τ indeed speeded up the searh for S-boxes when
τ = 16, where the marginal overage of the searh spae grows with a fator of
105. This model is omplete, �nding all solutions the way the model involving theformulation of problem DES6,4

S,τ does.This approah shares the drawbak as with problems DES6,4
S,τ , of its inability togenerate S-boxes with sores of 14, 12, 10 and 8 in reasonable time-frames, when

τ = 16, or when τ = 14, 12, 10, 8.Problem DES6,4
C7,τ , for various thresholds τThe results of running AlgorithmMAC2001(τ) on this problem are reported belowfor τ = 16.



127A omparison with the results of Table 7.5 suggests that using the formulationof problem DES6,4
C,τ indeed speeded up the searh for S-boxes when τ = 16, wherethe marginal overage of the searh spae grows with a fator of 105. This modelis omplete, �nding all solutions the way the model involving the formulation ofproblem DES6,4

S,τ does.A omparison of this table with the results of Table 7.5 suggests that using theformulation of DES6,4
C7,16 indeed speeded up the searh for S-boxes when τ = 16,where the marginal overage of the searh spae grows with a fator of 105, whileomparing with Table 7.6 reveals a marginal fator of 1.08.Algorithm MAC2001(τ) on problem DES6,4

C7,τ possesses the same disadvantageas on problems DES6,4
S,τ and DES6,4

C,τ , namely, that even when τ = 16, 14, 12, 10, 8,the model does not generate S-boxes with lesser sores.The speedup is observed in the plot of Figure 7.1 generated from a four-day runof the above experiments using formulations of problems DES6,4
C,16 and DES6,4

C7,16.The plot displays �jumps� at the points at whih a number of variables get reas-signed. One suh jump, not evident in the plot, ourred nearly one-and-a-halfhours after start of the experiment, from an inrement- point of 2.6532 × 10−44(after 38062 S-boxes were generated) to a value of 8.3333× 10−44 (when the next
S-box was obtained). Frequent, gradual jumps were visible between 24 and 32hours. The more the number of jumps, the more the searh spae is unovered.Also shown in the plot is the �rst approah using the formulation to problem
DES6,4

S,16. The �rst approah did not exhibit any suh jumps in the two days thatit was run. These jumps would have presumably ourred after a long duration.Conlusion: The approah using the formulation of problem DES6,4
C7,τ to gen-erate 6 × 4 S-boxes results in the fastest model we urrently have, ompared tothose resulting from problems DES6,4

S,τ and DES6,4
C,τ .None of these models have yielded 6 × 4 S-boxes having sores below 16 sofar. The issue addressed in the next problem is generation of S-boxes with soresbelow (and inluding) τ .Problem DES6,4

I,τ , for various thresholds τThe approah using the formulation for problem DES6,4
I,τ is used to generate

S-boxes with di�erent thresholds τ = 16, 14, 12, 10, 8 The experiment is run sepa-rately on eah of these τ -values for a �ve-hour duration. The following observationsare made in this time-frame.
• This approah yields S-boxes with sores τ and (τ − 2), and no more, when

τ = 16, 14, 12, 10. The results in Tables 7.8 to 7.11 for eah τ report themeasure of searh-spae overed, and the number of S-boxes generated ineah hour over the stipulated duration.
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6,4Figure 7.1: Fration of searh spae as a funtion of searh time (hours), overedby Algorithm MAC2001(16) on Problems DES6,4

S,16, DES6,4
C,16, and DES6,4

C7,16.Time Searh spae # of S-boxes(hrs) o�set, r σX(Φ) = 16 σX(Φ) = 141 8.9771 × 10−46 44698 119522 9.3263 × 10−46 95205 318903 9.0561 × 10−44 145929 462474 9.0585 × 10−44 194165 622745 9.0906 × 10−44 240745 79167Table 7.8: Approah using problem DES6,4
I,16 formulation � Performane statistis

• S-boxes with di�erent sores appear immediately at a number of points inthe searh spae. Note the di�erent points in searh-spae signi�ed by thedi�erent values for r in Table 7.8, where σX(Φ) = 16, ompared with those inTables 7.5, 7.6 and 7.7. Note also, how losely the solutions for sore (τ − 2)follow those for sore τ , given τ . This �nds S-boxes having sores (τ − 2)and τ in parts of the searh tree di�erent from those explored by Algorithm
MAC2001(16) on Problems DES6,4

S,16, DES6,4
C,16, and DES6,4

C7,16.
• The S-boxes generated by the approah using the formulation for Problem

DES6,4
I,τ , having sore σX(Φ) = (τ − 2), need not be idential to those forproblem DES6,4

I,τ−2, where τ = 16, 14, 12. Among Tables 7.8, 7.9, 7.10,and 7.11, this an be seen in any two under the olumn for r, for the same



129Time Searh spae # of S-boxes(hrs) o�set, r σX(Φ) = 14 σX(Φ) = 121 5.6792 × 10−47 21584 36022 8.9688 × 10−44 50235 68273 9.0033 × 10−44 83017 124964 9.0559 × 10−44 121126 187485 1.0650 × 10−43 157850 23692Table 7.9: Approah using problem DES6,4
I,14 formulation � Performane statistis

σX(Φ) = 12 σX(Φ) = 10Time Searh spae # of Searh spae # of(hrs) o�set, r S-boxes o�set, r S-boxes1 1.7846× 10−44 11056 1.7965× 10−44 1032 6.1985× 10−44 23160 6.2677× 10−44 1633 3.0668× 10−43 37652 3.0668× 10−43 4184 3.1389× 10−43 50742 3.1389× 10−43 8505 3.1424× 10−43 62293 3.1424× 10−43 1041Table 7.10: Approah using Problem DES6,4
I,12 formulation � Performane statistis

σX(Φ) = 10 σX(Φ) = 8Time Searh spae # of Searh spae # of(hrs) o�set, r S-boxes o�set, r S-boxes1 3.5594× 10−44 8562 3.5594× 10−44 35832 5.7281× 10−41 17827 6.2206× 10−41 49993 6.4607× 10−41 27875 6.4607× 10−41 78364 6.8814× 10−41 37875 6.8814× 10−41 108835 1.0300× 10−40 47671 1.0300× 10−40 13602Table 7.11: Approah using Problem DES6,4
I,10 formulation � Performane statistissore σX(Φ). For example, the values of r in Table 7.8 and Table 7.9 when

σX(Φ) = 14 di�er under the same time-row.
• The experiment generates �better� S-boxes ompared to the earlier experimentinvolving formulations for problems DES6,4

S,16, DES6,4
C,16 and DES6,4

C7,16. Even



1300 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150 0 3 5 6 9 10 15 12 7 4 14 13 2 1 8 111 3 0 6 5 10 9 12 15 4 7 13 14 1 2 11 82 3 15 0 12 5 6 9 10 4 8 7 11 14 13 2 13 0 12 3 15 9 10 5 6 7 11 4 8 2 1 14 13Figure 7.2: A 6 × 4 S-box with sore 8, generated by Algorithm MAC2001(10)applied over Problem DES6,4
I,100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150 0 3 5 6 9 10 15 12 7 4 14 13 2 1 8 111 3 0 6 5 10 9 12 15 4 7 13 14 1 2 11 82 3 15 0 12 5 6 9 10 4 8 11 2 14 13 7 13 0 12 3 15 9 10 5 6 7 11 4 8 2 1 14 13Figure 7.3: A 6 × 4 S-box with sore 10, generated by Algorithm MAC2001(10)applied over Problem DES6,4
I,10when τ = 16, this experiment yielded S-boxes in times below the approahesfor the earlier problems, partiularly for Problem DES6,4

S,16. For example, inone hour, only four S-boxes were obtained using Algorithm MAC2001(16)on Problem DES6,4
S,16, all having sore 16. In omparison, the same algorithmon Problem DES6,4
I,16 yielded 56649 S-boxes, with sore equal to 16 and 14.AlgorithmMAC2001(10) on Problem DES6,4

I,10 yielded S-boxes having soresof 10 and 8. A sample S-box with a sore equal to 10 is shown in Figure 7.3,and one with sore 8, in Figure 7.2.
S-boxes below sore 8 have not been obtained in the stipulated time-frame.Based on Matsui's S-box quality metri, S-boxes with a sore of 8 are su-perior to those spei�ed for DES, with the �best� DES S-box having a soreequal to 10 as Table 7.2 reports.SummaryApplying Algorithm MAC2001(τ) over Problem DES6,4

I,τ additionally yielded �bet-ter� S-boxes having sore equal to at most (τ − 2), when τ = 16, 14, 12, 10. How-ever, those S-boxes are not idential to the ones generated by applying Algorithm
MAC2001(τ − 2) over Problem DES6,4

I,τ−2. The searh-point is seen to di�er, sug-



131gesting the inomplete nature of this model. However the time taken to generate
S-boxes is less ompared to that of the omplete model obtained by applyingAlgorithm MAC2001(τ) over Problem DES6,4

S,τ . At the same time, the lattermodel, and its improvements (Algorithm MAC2001(τ) on Problems DES6,4
C,τ and

DES6,4
C7,τ) have not been as apable of generating �better� S-boxes the way theformer performed in the stipulated time-frame.7.7 Comparisons Between HeuristisIn this setion, a omparison of the following heuristis is made from the viewpointof performane:1. Non-inremental heuristis2. Soft Constraint Deomposition Heuristi for S-2 and Inremental Chek forS-7, namely, heuristi HC7

φ3. Deomposition of the COUNT onstraint for S-7 by projetion onto domainsof future variables, whih is heuristi HAC7
φ.In this setion, the heuristis will be ompared for performane of 6× 4 S-boxgeneration against the following parameters.1. Subsetion 7.7.1 demonstrates the e�et of introduing the ondition forno ar-onsisteny hek upon domain wipe-out, whih is the optimizationdisussed in subsetion 5.5.1.2. Subsetion 7.7.2 ompares heuristi performane for Straight-line variableordering versus zig-zag variable ordering, disussed in subsetion 5.5.2Eah subsetion, ompares omplete heuristis over the default ordering of do-mains of variables, and domains permuted using the random permutation disussedin Setion 7.3 by the proedure Permute. For 6× 4 S-boxes, the default orderingof the domains is the inreasing order, namely, the set {0, 1, 2, . . . , 15}. The setupfor the random permutation of domains has been disussed in Setion 7.3.In the experiments, the threshold of the sore sought is τ = 16, a value betterthan the maximum sore of 18 of DES S-box S7.
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(c) (d)Figure 7.4: Performane of unoptimized and optimized heuristis. Heuristis V φ
Sand V Oφ

S have not generated any S-boxes in the stipulated time-frame and nourve is visible for these heuristis in Plots (a) and (b)7.7.1 Performane of Unoptimized versus Optimized HeuristisEight plots are provided in this analysis in whih unoptimized heuristis and theiroptimized variants are separately ompared. Four of these plots are for normalordering of domains of variables while the remaining four are for permutation ofdomains.Default Domain-OrderingFigure 7.4 displays the plots of heuristis Hφ
S , HOφ

S, V φ
S , and V Oφ

S for defaultordering of values to variables.The plots are similar in shape indiating that all of these heuristis traverse thesame path in the searh tree. The plots, as expeted, are monotially inreasing.



133The almost-horizontal lines indiate that almost all values assigned to variables donot hange exept for the last few of these. When a vertial-line (jump) is enoun-tered, it means that values assigned to the last several variables have hanged.Straight-Line Variable Ordering Notie that the non-inremental heuristis
V φ

S and its optimized variant V Oφ
S has not produed any S-boxes during the two-day run of the experiment, and is not present in the �rst two plots.In the ase of inremental heking, optimization results in a slight improvementof V Oφ

C7
(V Oφ

AC7) over the V φ
C7

(V φ
AC7). In partiular, near the 20-hour mark, V Oφ

C7depits a 5.3-perent inrease over V φ
C7
. V Oφ

AC7 exhibits a 4.6-perent inrease over
V φ

AC7. For both unoptimized and optimized heuristis, the inrease beomes moreprominent as time progresses and as the heuristis advane further into the searhspae.Zig-Zag Variable Ordering The non-inremental heuristi Hφ
S and its opti-mized variant HOφ

S has generated 384 S-boxes during the two-day run of theexperiment.Without optimization, Hφ,16
AC7 onsistently shows a 14-perent performane in-rease over Hφ,16

C7
. With optimization in plae, the performane of respetive heuris-tis HOφ,16

AC7 over HOφ,16
C7

has slightly improved to 15%.One an onlude that projeting the COUNT onstraint over future variables,reduing their domains during the proess, exhibits superior performane overinremental heking of the COUNT onstraint regardless of whether optimizationis present or not in both ases. The optimization of Table 5.9 results in furtherspeedup due to redution in alls to the funtion EstablishFullAC.Permuted Domain-OrderingFigure 7.5 depits the performane harateristis of unoptimized heuristis V φ
C7
,

V φ
AC7, and optimized heuristis V Oφ

C7
and V Oφ

AC7, when the domains of variablesare randomly permuted using the seed of 1000.Notie that for this partiular permutation of domains, the inremental heuris-ti that projets past assignments on to domains of future variables exhibits no sig-ni�ant improvement over the inremental heking heuristi, regardless of whethervariables are ordered by straight-line or zig-zag approah.
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(c) (d)Figure 7.5: Performane of unoptimized and optimized heuristis for permuteddomainsStraight-Line Variable Ordering The optimized versions of both of the afore-mentioned heuristis are seen to exhibit a 46-perent inrease over the unoptimizedversions for this partiular permutation. Therefore for this variable ordering, theoptimization by preventing further onsisteny-heking in ase a domain wipe-outourred, appears promising when domains are randomly permuted.Zig-Zag Variable Ordering The performane of the optimized heuristi em-ploying this form of variable ordering di�ers from that of the unoptimized heuristiby a very small amount, about 1.5 perent. However, the heuristis due to thisordering exhibit a jump within the seond minute, over the solution spae. More-over, the ensuing horizontal line suggests that a lot of solutions di�ering only inthe values of the last few variables is found using this permutation.
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a

a+0.8e-42

a+1.6e-42

a+2.4e-42

a+3.2e-42

a+4.0e-42

 0  5  10  15  20  25  30  35  40  45  50

Fr
ac

tio
n 

of
 s

ea
rc

h-
sp

ac
e 

(a
+

r)

Time (hours)

Performance of Partial Check Heuristics (Unoptimized and Optimized)
Zig-Zag Variable and Default Domain Ordering

HC7

φ,16

HAC7
φ,16

HOC7

φ,16

HOAC7
φ,16Figure 7.7: Performane of heuristis employing Zig-Zag Variable Ordering forordered domains7.7.2 Performane of Heuristis using Straight-Line and Zig-Zag Variable Order-ingFigure 7.6 depits the performane of all inremental heuristis (unoptimized andoptimized), using straight line variable ordering, and Figure 7.7, using zig-zag
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Performance of Partial-Check Heuristics on Permuted Domains
with Even/Odd Variable Ordering

VOC7

φ,16

VOAC7
φ,16

VC7

φ,16

VAC7
φ,16Figure 7.8: Performane of heuristis employing Straight Line Variable Orderingfor permuted domainsvariable ordering, both for ordered domains. Figure 7.8 and 7.9 exhibit the plotsfor permuted domains.Default Domain-OrderingIn the plot of Figure 7.6 employing straight line variable ordering, eah heuristiappears to exhibit a 10-perent inrease in e�ieny against the other as per thefollowing ordering: V Oφ

AC7 ≥ V OC7
φ ≥ V φ

AC7 ≥ V φ
C7
. The plot suggests that theoptimized version of V Oφ

C7
is more e�ient than the unoptimized version of V φ

AC7.The plot of Figure 7.7 employing zig-zag ordering exhibits a stark ontrast.Namely, HOφ
AC7 ≥ HAC7φ ≥ HOφ

C7
≥ Hφ

C7
. HOφ

C7
has an e�ieny about 12perent above HC7

, HAC7 is about 5.5 perent more e�ient over HOC7
, and

HOAC7 is the most e�ient, being about 13.2 perent above HAC7.Permuted Domain-OrderingThe plot of Figure 7.8 employing straight line variable ordering with permuteddomains, exhibits a ompletely di�erent behavior from that of Figure 7.6. Heuristi
V φ

C7
and V φ

AC7 (V Oφ
C7

and V Oφ
AC7) exhibit very similar e�ienies. The projetion
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φ,16

HAC7
φ,16

HOC7

φ,16

HOAC7
φ,16Figure 7.9: Performane of heuristis employing Zig-Zag Variable Ordering forpermuted domainsof past assignments on to the domains of future variables, reduing these domainsduring the proess, seem to have no e�et. The optimization of skipping the ar-onsisteny hek when a domain wipe-out ours appears to yield a 31-perente�ieny over the unoptimized version.The plot of Figure 7.9 using a zig-zag variable ordering with permuted domainsexhibits a jump within the seond minute of starting the experiment. At this point,a large number of assignments to variables has hanged. Moreover, after the jump,the urve has remained almost onstant, suggesting a large number of solutionswith only the last few variable assignments hanging while the �rst several valuesremained the same in this solution spae.7.8 Results on SymmetryWe report results on symmetry of DES S-boxes, and on the violations of one ormore riteria due to non-simultaneous interhanges of rows, olumns or quadrants.We also report the result of an experiment performed in an attempt to breaksymmetry by restriting domain-values.



138Operation on Total # of # S-boxes, Criteria violatedDES S-box Con�gur- and impat on By Remainingations Sore Con�gurationsInterhange Rows (S-4) 32 16, no hange S-4Interhange Columns (S-5) 2048 16, no hange S-4Interhange Diagonals (S-6) 32 16, no hange S-3Rotate S-box (S-7) 16 16, no hange NoneInvert S-box entries 16 16, no hange NoneTable 7.12: Observations made by interhanging Rows, Columns and Diagonals ofall eight DES S-boxes7.8.1 Symmetry of DES S-boxesWe have veri�ed row, olumn, diagonal, rotational and bit inversion symmeties ofall the eight S-boxes of DES. All on�gurations were onsidered, inluding thosein whih simultaneous interhanges were not done. Table 7.12 summarizes theresults of the experiments on these on�gurations.7.8.2 Breaking Symmetry by Restriting Domain-ValuesSine eah S-box possesses the property of Bit Inversion, there is a likelihoodthat restriting the domain of at least one variable will result in pruning of atleast one future variable resulting in further redution of the searh spae, andthe onsequent optimization. To verify this fat, we have performed the followingexperiment. Introdue a new variable x−1 that assumes a domain idential to thatof the S-box variables. Add the following, new onstraint between x−1 and x0:
x−1 = 0 ∧ x0 ∈ {0, 1, 2, 3, 4, 5, 6, 7}The idea is to restrit the domain of x0 to the set {0, 1, 2, 3, 4, 5, 6, 7} withoutdisturbing the symmetry of all existing onstraints involving x0. Upon runningthe solver now, the following was observed.No further redution has happened to the domain D0 of x0, suggesting thatrestriting the value(s) of any of the S-box variables to take advantage of theproperty of symmetry does not result in further optimization.The examples of Chapter 6 suggest that one an S-box is found, a few othersan be written down immediately due to Rotational and Bit Inversion symmetryproperties of appropriate onstraints. Unfortunately this idea will not work withSolver� an intelligent baktraker � and those symmetri S-boxes will end up



1390 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150 0 3 5 6 9 10 15 12 7 8 2 1 14 13 4 111 3 0 6 5 10 12 9 15 4 13 8 14 1 11 7 22 9 5 15 3 10 12 6 0 4 2 1 14 7 11 8 133 5 9 10 0 3 6 15 12 8 14 13 7 4 1 2 11Figure 7.10: A 6× 4 S-box S ′
7 with sore 8, generated by the Solver. This S-boxis used in the plae of DES S-box S7.eventually getting reprodued. We have not ontinued with further investigationof symmetry for the time-being.7.9 Results on Criterion S-8We have formulated S-8 based on equation 6.24. This onstraint works on 8! =

40320 permutation of eight S-boxes taken all at a time. The di�erene-sore givenby equation 6.24 is ompared in this setion for various arrangements.7.9.1 The DES S-boxes S1 to S8For the existing arrangement (S1, S2, S3, S4, S5, S6, S7, S8), the di�erene-soreevaluates to 1120. There are 832 arrangements having this di�erene-sore.However, this is not the minimum di�erene-sore. The minimum value isatually equal to 1024. There are a total of 256 suh arrangements. An examplearrangement is (S2, S1, S4, S3, S6, S5, S8, S7).7.9.2 Eight �best� S-boxes generated by the SolverThe minimum di�erene-sore of the �rst eight S-boxes having a sore equal to8, generated by the solver, evaluates to 82944. We need to develop a heuristito disard an S-box, substitute it with another, and attempt to minimize thedi�erene-sore.7.9.3 Replaing a DES S-boxWe have replaed DES S-box S7 having the �worst� sore equal to 18, with the
S-box S ′

7 of Figure 7.10 generated by the CSP approah having a sore equal to 8.The result is that the arrangement (S2, S1, S4, S3, S6, S5, S8, S
′
7) yielded adi�erene-sore equal to 960, a value �better� than that of the existing DES S-boxeswith the same arrangement.
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Chapter 8DisussionIn this hapter, we summarize the observations made from the experiments inChapter 7. We will also add pointers to more work that an be done in S-boxgeneration using CSPs.8.1 Small-size S-box Generation using CSPsWe are able to generate 4×2 and 5×3 S-boxes. The riteria spei�ed in Chapter 3do not simultaneously satisfy S-boxes of these sizes. Most riteria, partiularlybinary onstraints S-3 to S-6, and the n-ary onstraint S-7, pose a requirementon the size of the inputs to an S-box, with the onsequent outputs based on theserequirements. Some riteria had to be relaxed. For a S-42 S-box, riterion S-7does not apply while ombinations of the other riteria S-3 to S-6 are onsideredin Table 7.3. For 5 × 3 S-boxes, riteria S-5 and S-6 have been relaxed. Thereason is that, for riterion S-5, there are no �middle two� bits aessible in a 5-bit

S-box input. As for S-6, implementing this hek did not result in any solutions.The smallest S-box that an possibly go through all eight riteria needs aninput bitlength of 6, suh as those used in DES.8.2 Complete 6× 4 S-box GenerationA omplete S-box, whih we ordinarily refer to as an S-box, is one in whih allvariables are assigned. Based upon the experiments detailed in Setion 7.6 for
6×4 S-box generation starting from a thresholding sore of τ = 16, we have foundthat the omplete, non-inremental heuristi Hφ,16

S indeed generate S-boxes butbarely around 384 S-boxes over a two-day run. This gets speeded up by a fatorof 100,000 when we formulated our idea of partially-assigned S-boxes. Heuristis
Hφ,16

C , Hφ,16
C7

and Hφ,16
AC7 are the resulting heuristis. However, with this spei�edthreshold, these heuristis have not visited the searh spae that ontained many

S-boxes with better sores suh as 14 and below.Using an inomplete, inremental heuristi Hφ,16
I , we are able to obtain S-boxesof better sores suh as 14, 12, 10 and even 8. The highlight of this heuristi is its



141ability to yield S-boxes having sores better than the best S-boxes of DES havingsores 10, namely, sore 8. We have performed a proof-of-onept using a few ofthese S-boxes having sore 8. In this trial, all eight S-boxes have been replaed bythe few hosen S-boxes in an implementation of DES. Enryption and deryptionworks as expeted.We have run experiments on random-permutation-and-restarts of domains.None of the omplete heuristis have yielded S-boxes having sore equal to 8.At most, we have obtained S-boxes with sores up to 10. The inomplete heuristihas, however, yielded S-boxes with a sore up to 8 using domain permutation.Based on the experiments performed for generating ompletely �lled S-boxes,one an onlude that the most promising heuristi for e�ient exploration is
Hφ,τ

AC7. However, the heuristi that yields the best quality of S-boxes as measuredby Matsui's metri is Hφ,τ
I .8.3 Performane Comparison of Complete, InrementalHeuristisOn the basis of the experiments in Chapter 7, one an safely onlude that regard-less of optimization or variable ordering, the inremental heuristi with projetionof past assignments on to future onstraints performs more e�iently omparedto the inremental heuristi that treats S-7 as a single n-ary onstraint. This istrue of both, asending-ordered domains and permuted domains given the permu-tation with seed 1000. For the zig-zag variable ordering heuristi, the perentageof e�ieny goes up from about 5% to about 15% as reported in the experiments.8.4 E�et of Variable and Value OrderingWe have onsidered two forms of variable ordering for 6 × 4 S-box generation:The default straight-line variable ordering in whih eah S-box is populated byassigning values in a row-wise fashion, and Zig-Zag variable ordering in whih theentries are assigned in a zig-zag manner for the �rst two rows, followed by the lasttwo rows.Intuitively, we felt that straight-line variable ordering should have yielded bet-ter results ompared to zig-zag ordering, in terms of performane. However, ourresults were surprising. The zig-zag pattern appeared to perform way better inomparison with the straightforward straight-line variable ordering. When do-mains were permuted, the results were even more interesting for zig-zag variableordering. Within the �rst few minutes over a two-day run, the searh jumped tothe farthest point ever enountered in our systemati searh (to a sale of 10−23 as



142the plot of Figure 7.9 suggests) and remained onstant thereafter. This suggeststhat there are a large number of S-boxes with sore of 16 and below enounteredin this searh spae, given this permutation.We have obtained a newer result. Heuristi HOφ,16
AC7 (zig-zag variable ordering)yields S-boxes having sores equal to 14, 12 and even 10 when a threshold of 16is spei�ed, in the permuted-domain-spae. This has never happened when thedomains are default-ordered, using any of the omplete heuristis, given that thethreshold is τ = 16. Emboldened with this ahievement, we have attempted tore-run the same experiment with thresholds τ = 14, 12 to see if we an get S-boxeswith sores 8 and below. So far, we have obtained S-boxes with sores up to10. We are now running the experiment with thresholds τ = 10, 8 to see what ishappening.In CSP literature, variable ordering has been suggested as a promising alterna-tive for e�ient searh-spae exploration. We an onlude that merely orderingvariables in some fashion need not neessarily give very promising results, always.The straight-line heuristi is a ase in point. The zig-zag heuristi appeared tobe more promising. The fat that the plot of Figure 7.9 beame onstant afterthe jump suggests that there are a large number of S-boxes with sore at most 16in this searh spae. The heuristi worked for this permutation. For some otherpermutation, it may very well prove to be more ine�ient. In our ase, the searhspae is very large. The nature of the searh spae plays a role in deiding on thevariable ordering heuristi.A promising variable ordering heuristi we need to try with, is to selet thenext variable having least domain ardinality to make the next assignment, andontinue further. This is well-known in CSP literature and it will be interestingto study the e�et of this heuristi on our appliation.As for value (domain) ordering, although we have employed random ordering(with a seed of 1000 in the experiments of Chapter 7), a probabilisti strategy toselet the next value assigned to a variable an be used. The literature disusses ametri alled promise value assoiated with a domain-value seleted. The greaterthe promise value, the better. We an then permute the domains of variables inthe desending order of promise values. Note that after the �rst few variables areassigned, the promise values of subsequent domains are likely to hange, suggestinga dynami permutation of the domains for variables, one by one as and when anassignment is made.8.5 E�et of OptimizationThe optimization of all heuristis, disussed in subsetion 5.5.1, has yielded slightspeed-up. For example, for a straight-line variable ordering, heuristi V Oφ,τ

C7
is



143around 1.1 perent more e�ient than V φ,τ
C7

. Similar is the ase of V Oφ,τ
AC7 over V φ,τ

AC7.With zig-zag variable ordering, the optimization yielded slightly more promise(1.4% in both ases).8.6 SymmetrySymmetry has been addressed in S-boxes based upon the onstraints that possessthe property of symmetry. We have seen onditional row, olumn and diagonalsymmetry that need not always yield S-boxes. Rotational and Bit Inversion Sym-metry however, yields alternative S-boxes. Theoretially, due to these two formsof symmetry, a 400%-speedup is ahieved due to the fat that (1) Bit InversionSymmetry redues the searh spae by half, and (2) Rotational Symmetry reduesfurther by half.We have also experimented measuring the impat of symmetry on searh, byadding a new symmetry-breaking onstraint. The speedup enountered is insignif-iant.Rejeting an S-box simply beause it is symmetri (and its sore did nothange) need not neessarily work. The reason is, in riteria S-8, the probability
P with the S-box and its symmetri version may be di�erent when either S-boxis brought into interation with the other seven. Unless the ontrary is proved, wewill still need to have all S-boxes and their symmetri versions, whih annot bedisarded. This needs to be investigated further and aordingly, onsideration ismade of whether to add new symmetry- breaking onstraints to redue the solutionspae.



144
Chapter 9ConlusionsWe onlude this Dissertation by summarizing our ontributions and enumer-ating the limitations and future diretions of our work on employing CSPs togenerate S-boxes.9.1 Summary of ContributionsWe have proposed a novel approah to the design of S-boxes for Feistel Ciphers,an example of whih is the Data Enryption Standard (DES). For the purposesof this Dissertation, the eight seurity riteria of DES have been formulated intoonstraints. These eight riteria are numbered S-1 to S-8.For CSP formulation, variables have been identi�ed along with their domains.S-1 is already inherent in the hoie of variables and has not been disussed fur-ther. S-8 deals with multiple S-boxes and is disussed separately. S-3 to S-6 arebinary onstraints whih have been preompiled into a solver Solver that outputssolutions to satisfy these onstraints. S-7 and S-2 are n-ary global onstraintswhih have been formulated as heuristis to run on the solutions to generate the

S-boxes. The �ner aspets of our ontributions are now presented.9.1.1 HeuristisNon-inremental Heuristi Hφ,τ
S This heuristi heks to see if S-2 and S-7is satis�ed. This is a nai�ve implementation employing systemati generate-and-test, and is very ine�ient.Inremental, Inomplete Heuristi Hφ,τ

I This heuristi heks after eah as-signment to see if S-2 is satis�ed, with S-7 implemented as an n-ary globalonstraint. This heuristi has been the most promising among all for gen-erating high- quality S-boxes, having generated S-boxes with a sore of 8,superior to the best sore of all of the eight S-boxes of DES. The two �guresbelow display two suh S-boxes, the �rst being with a sore of 8 and the onefollowing it, with a sore equal to 10.
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C We have formulated the notion of apartially assigned S-box. The following are new properties of linear approx-imation tables for partially assigned S-boxes.1. For any a,b,X ′,Φ′, 0 ≤ NΦ′

X′(a, b) ≤ |X ′|.2. For any a,b,u,X ′,Φ′, NΦ′

X′∪{u}(a, b)−NΦ′

X′(a, b) ∈ {0, 1}.The ondition on when a partially assigned S-box an be extended to a full
S-box that will satisfy S-2, is:

|X ′| − τ −
|X|

2
≤ max

a,b
NΦ′

X′(a, b) ≤
|X|

2
+ τS-7 is implemented as an n-ary global onstraint.Inremental, Complete Heuristi Hφ,τ

C7
Having provided for inrementallyheking to see if S-2 is satis�ed, the next logial step is to inremental-ize the hek for S-7.Inremental, Complete Heuristi Hφ,τ

AC7 The onstraint for riterion S-7 � theCOUNT onstraint � is a global n-ary onstraint that annot be straight-forwardly deomposed into binary onstraints. Nevertheless, we have formu-lated a novel heuristi by whih past assignments of values to variables are



146projeted onto domains of future variables, reduing the domains during theproess and improving upon e�ieny.We have proved that Hφ,τ
AC7 and Hφ,τ

C7
produe idential sequenes of S-boxes.9.1.2 Optimization to SolverFor the omplete heuristis Hφ,τ

S , Hφ,τ
C7

, and Hφ,τ
AC7, we have introdued an op-timization into Solver by not heking for ar-onsisteny if the deletion-set isempty. The resulting heuristis are HOφ,τ

S , HOφ,τ
C7
, and HOφ,τ

AC7, respetively. Theperformane of the optimized heuristis is marginally higher than that of the or-responding, unoptimized heuristis.9.1.3 Order of E�ieny resulting from Ordering of VariablesWe have found that visiting the variables in a zig-zag fashion generates S-boxesmore e�iently ompared to the straight-line manner in whih the variables arevisited over eah row of an S-box. We an also onlude that variable-ordering,although promising in most ases, should aount for the nature of searh spaeto see if it has many solutions for e�ient S-box generation, partiularly for large-sized searh spaes.9.1.4 Order of E�ieny resulting from Ordering of DomainsWe have found that the e�ieny of Solver is muh higher (about 35%) forpermuted domains when using a zig-zag variable ordering, ompared to straight-line variable ordering. We are also able to unover a large number of S-boxeshaving lesser sores. With the threshold τ = 16, S-boxes with sores equal to16, 14, 12 and 10 have been unovered. This has not been the ase with thedefault (asending order) domain-ordering where only Hφ,τ
I emitted these lower-sore S-boxes.9.1.5 Searh E�ieny MetriFor addressing performane of heuristis on searh spaes using systemati searh,merely ounting the number of S-boxes is not su�ient. To arrive at a betterunderstanding of the searh spae, we have formulated a metri to measure searhe�ieny by de�ning the fration of searh spae traversed by eah of our heuristis.Heuristi Hφ,τ

AC7 using zig-zag variable ordering on randomly-permuted domainso�ers traversal of a large amount of searh spae in the shortest possible timeompared to the others, based on this metri.



147Constraint for Row Column Diagonal Rotational Bit InversionCriterion Symmetry Symmetry Symmetry Symmetry SymmetryS-2 ×S-3 ×S-4 × ×S-5 × ×S-6 × ×S-7 × ×Table 9.1: Summary of Results on Symmetry of onstraints modeling S-box Cri-teria9.1.6 New Forms of SymmetriesOur CSP methodology has exposed new forms of symmetry in S-boxes and theseare summarized in the table below.Rotational and bit inversion symmetry are the only two forms of symmetry thatresult in an S-box that satis�es all onstraints. We have proved the invariane ofthe sore of an S-box over these two symmetries. Symmetry is broken by addingmore onstraints.9.2 Limitations and Future WorkThis Dissertation attempts to model the eight riteria spei�ed in [16℄ as a CSP.The limitations of our formulation, heuristis, symmetry, variable and value or-dering will now be addressed along with pointers in future diretions.9.2.1 Alldiff Constraints
S-box riteria S-3 to S-4 result in binary onstraints in whih the values to twovariables are unequal. All of these are in the ategory of the Alldiff onstraint invarious ways. A future task is to model all of these onstraints into Alldiff on-straints, and employ e�ient algorithms to proess this speial form of onstraints,using an e�ient algorithm by Puget [49℄.9.2.2 Variable OrderingA form of variable ordering presribed in CSP literature is to selet the nextvariable for assignment, that has the least domain ardinality. It is interesting tostudy the performane of this variable ordering heuristi against straight line andzig-zag ordering heuristis used in our appliation.Another form of dynami variable ordering is worth exploring. We an listthe variables in the desending order of the number of times they appear in the



148onstraints. We expet around half the number of variables (32 out of the 64, for
6× 4 S-boxes) in this listing. The next variable to be seleted for assignment willthen be among the most-onstrained variables.The seletion of the next variable from the variable-ordering need not be madein the beginning. In fat, as equation 4.9 suggests, at least |X|

2
variables should beassigned before partial heks are made for S-2. And for S-7, as disussed at theend of setion 5.3 and throughout setion 5.4, at least |X|

2
+ 8 variables should beassigned before initiating any partial heks. One an empirially selet the nextvariable from this point onwards. In general, one should parameterize the point ofseletion by a parameter α suh that the variable xα should be the next variablefrom where seletion should begin based upon the variable-ordering. For example,when α = 0, begin seleting from the �rst variable in the variable-ordering. When

α = |X|
2
, begin this seletion from the middle, and so on. One may hoose α tobe below, or above, the middle variable (for example, α = |X|

2
+ 8) and see howthe asymmetry helps. Alternatively, examine the performane of the solver bysequentially varying α, and determine empirially the optimum point for α for thepartiular heuristi. This should be done for ordered as well as permuted domains.9.2.3 Value OrderingInstead of randomly shu�ing the domains of eah variable, assign, based uponthe urrent state of the S-box, a promise value to eah of the (redued) domain-elements for the urrent variable being assigned. The higher the promise value,the better. Next, selet the domain-element with the highest promise value andassign to the variable. The promise values for the subsequent domains may nowhange. Repeat the proess.9.2.4 SymmetryProve or disprove that even after performing rotational and bit inversion transfor-mations to obtain symmetri S-boxes whose sores do not hange, the probability

P of Equation 6.24 does not hange. If P does not indeed hange, then symmetryan be broken by adding new onstraints and symmetri S-boxes an be disarded,reduing the searh spae and improving upon e�ieny.9.2.5 The Sore σX(Φ) of the S-box ΦWe have been able to experimentally obtain 6 × 4 S-boxes with the �best� soreequal to 8. Using our solvers, we have been unable to go below this value in thetime-frame spei�ed in our experiments. Is it atually possible to obtain S-boxeswith better sores (values of 6, 4, 2 and ideally, 0)? Do suh S-boxes even exist?



149We don't know. If we are able to use information-theoreti results to prove (ordisprove) the existene of 6× 4 S-boxes with suh lesser sores, or even determinethe minimum value of the sore, it will be a key result.In setion 3.3, we mentioned two approahes to projetions. In one, assignmentto the urrent variable is projeted on past assignments. This approah is employedfor n-ary onstraints S-2 (setion 4.4) and S-7 (setion 5.3). The problem withthis approah is that there are still partial heks that need to be arried out.For S-2, the sore threshold τ is built into these partial heks (equations 4.9and 4.12). The seond approah is of projeting domains of future variables ontopast assignments, whih is disussed for S-7 (setion 5.4). The advantage of thisapproah is that after domains of future variables are redued, no expliit heksare required, and the next assignment always results in an S-box. If we are able toemploy this approah for the nonlinear onstraint S-2 with τ as a parameter, wean generate S-boxes with sores of 8, 6, 4, 2 and even 0 in real-time! In partiular,if no suh S-boxes with sores equal of 6, 4, 2 or 0 are found, the solution spaewould be empty and we would have proved the result experimentally � a veryimportant result.9.2.6 Adding New Seurity CriteriaThere have been more advanes in work on S-box design during and after publi-ation of the eight design riteria. Some examples are the use of Bent funtions in
S-box design, avalanhe properties and strit avalanhe riteria, bit independeneriteria and higher-order bit independene riteria. These an be modeled intoadditional onstraints and input to the CSP.9.2.7 Almost-Similar S-boxesIn all of our omplete searh heuristis, the �rst several S-boxes generated havealways been possessing idential rows and olumns. Although this is not an issueof �symmetry�, it is an issue of �similarity� of S-boxes. If we have to selet 8
S-boxes and arrange them to satisfy S-8, we want to ensure that they shouldnever possess idential rows and olumns. For this, we need to ome up with ameasure to remove �similar�, or �almost-similar� S-boxes. This is another diretionalong whih we would like to proeed further.9.2.8 Systemati Sampling of Performane MeasuresWe have formulated equation 7.6 for the measure of performane and have om-pared heuristis by omparing the values of (a+ p) in this equation. To determinea perentage, we have taken those points on the performane urves when the



150�jumps� are enountered in these urves. The reason we onsidered those �jumps�is that this was where we ould easily read o� the variations in heuristis andalulate perentage di�erenes. We ould have very well hosen (onsistently)a di�erent point on the performane urves. Instead of following an ad-ho ap-proah and sampling arbitrary points, a more systemati sampling ould be doneas follows. Measure the area under the performane urves and determine theirdi�erenes up to a spei�ed time (for example, at the end of �ve hours). Thehanges in the areas will represent the neessary speed-ups.9.2.9 Other SolversAs mentioned in Setion 2.6.2, Mozart-Oz is a programming language used foronstraint programming. We attempted to model our S-box problem as a CSPusing this programming language, but quikly disovered that it does not lenditself �exibly for bit-level operations. Commerial solvers suh as ILOGTM havenot been evaluated due to budget requirements. Not only that, ustomizing andtailoring the solver to suit our requirement is a grey area and purhasing suhsoftware involves making a feasibility analysis, something that is to be done at adi�erent level. We have instead employed a home-grown solver implemented inC++ for our purposes. Formulating this problem as a CSP using other solverswill be onsidered eventually, partiularly for the purposes of implementing newseurity riteria.9.2.10 NP -CompletenessOur main objetive is to maximize nonlinearity by minimizing the sore σX(Φ) foran S-box Φ. Another measure, not spei�ed in the list of riteria of Table 2.1 andnot modeled in our work, is autoorrelation [15, 41℄. The smaller the measure ofautoorrelation, the better. Designing an S-box that has maximum nonlinearityand minimum autoorrelation is known to be NP -omplete [41℄. In general, solvinga CSP is also known to be NP -omplete. Can we onlude that the S-box DesignProblem is NP -omplete solely on the basis of these arguments? To atually provethis result, one needs to �rst prove that the given problem is in NP . Next, �nd aproblem known to be NP -omplete and employ a onstrution to transform thisknown problem to the equivalent S-box design problem.



1519.3 An Alternative CSP Based Approah to Model all EightCriteriaWe have modeled riteria S-2 to S-7. Criterion S-8 ould not be modeled bythis framework alone. An expliit hek of riterion S-8 after generation of eight
S-boxes had to be done.A way to ensure that the entire set of riteria S-2 to S-8 is modeled stritlyas a CSP1 is the following.Instead of formulating 64 variables for one 6 × 4 S-box, formulate 64 × 8 =
512 variables for eight 6 × 4 S-boxes. In other words, the variables X =
{x0, x1, . . . , x63, x64, . . . , x511}. The domains are idential for all of these variablesin X, equal to {0, 1, . . . , 15}. A solution to this problem is an assignment to all
512 variables. In other words, the solution generates eight S-boxes Si where eah
S-box Si has variables {x64i, x64i+1, x64i+2, . . . , x64i+63}, 0 ≤ i < 8.9.3.1 The Formulation of Constraints for Individual S-boxesThe onstraints for S-2 to S-7, governed by equations 4.7 to 5.1 will now beidential for the variables in S-box Si, 0 ≤ i < 8. Sine these riteria gives rise to672 binary onstraints for riteria S-3 to S-6 for eah S-box Si, the total numberof binary onstraints in this formulation will equal 672× 8 = 5376.9.3.2 Modeling Criterion S-8Criterion S-8 is now modeled as an n-ary onstraint as follows (refer setion 6.10).Let

Q0,i = max{Di(3, 0), Di(7, 0), Di(11, 0), Di(15, 0)}

Q1,i = max{Di(50, 0), Di(54, 0), Di(58, 0), Di(62, 0)}

Q2,i = max{Di(32, 0), Di(36, 0), Di(40, 0), Di(44, 0)}where Di(a, b) is the entry in the XOR table for S-box Si under row a, olumn
b. Arrange the eight S-boxes Si, 0 ≤ i < 8, so as to minimize the followingprobability:

P = max
i=0,2,...,7

Q0,i mod 8 ·Q1,(i+1) mod 8 ·Q2,(i+2) mod 8 (9.1)We note the di�erene in the way the modulus is taken, in this equation asompared to equation 6.24. There, 1 ≤ j ≤ 8 while in equation 9.1, 0 ≤ i < 8.1This idea is due to Dr. Philip Chan.



152The main advantage of this approah to modeling the S-box problem as apure CSP approah is that pruning an now our aross S-boxes due to theonstraint 9.1 for riterion S-8. The limitation of this approah is that the searhspae has now inreased from 1664 for 6 × 4 S-boxes, to 16512, i.e. by a fator of
168 whih is in itself exponential. We need to formulate novel heuristis for S-8to projet domains and generate solutions. This is in addition to the formulationsof projetion-based heuristis for riteria S-2 and S-7 disussed, respetively, inhapters 4 and 5.9.3.3 Experimental Observations and IssuesWe have modeled the S-box problem for 6× 4 S-boxes and have formulated on-straints involving all 512 variables. The variable ordering seleted by us is thezig-zag ordering and domains are ordered in asending order. The nonlinearitythreshold (for S-2) is hosen equal to 16. The following observations are made.
S-box Generation In the �rst solution, eight S-boxes are idential. This is tobe expeted due to the systemati nature of the searh.After an S-box set of eight S-boxes is generated, the last few variables (around30) of only the last S-box hange values for the next solution that forms the nextset of eight S-boxes. The remaining seven S-boxes out of these eight have nothanged in their entries in our experiments thus far. This is expeted due to theexponential nature of the searh spae.Di�erene Sore equal to zero The di�erene-sore of all of the eight S-boxesin the �rst solution, and in the next few, turn out to be zero! Does this meanthat this S-box set is better in omparison with what we have found thus far?Cryptanalytially it does not appear to be so.To hek whether eight idential S-boxes always yields a di�erene-sore equalto zero or not, we have run a hek for S-8 on eight idential opies of DES S-boxS-1. The di�erene-sore evaluates to 1008, not zero.We need to interpret the di�erene-sore and possibly threshold the same. Theon�guration of eight idential S-boxes generated by us, and many others havingthe �rst several idential S-boxes, may have to be rejeted based on the threshold.We an use a maximum threshold to limit searh. Sine we know that the bestsore (Setion 7.9.3) is 960, this an be used as the upper threshold to rejet S-boxsets that yield a higher di�erene-sore.



1539.3.4 Improvements � Searh SpeedupUsing this alternative model, revisiting of S-boxes in the searh-spae need to beavoided. Also, there are two levels in whih searh an be speeded up. Theseonsiderations are disussed.Revisiting of Solutions Criterion S-8 works on the 8! permutations of a setof eight S-boxes. These 8! permutations are visited at the end of every ompleteassignment to all 512 variables.A way to speed up is to mark or enode eah permutation. We see that eahpermutation will eventually get revisited as part of the systemati searh. Whenthis happens, examine if they have been marked before and if so, disard thesolution.Di�erent Sets of S-boxes In this idea, we attempt to exerise a hek on setsof eight S-boxes. Let the S-boxes be labeled as S1, S2, . . . , S8. The eight S-boxesmay appear in di�erent orders at several searh-points. For example, a ompleteassignment may eventually yield an S-box set that orresponds to a permutationof the eight S-boxes just labeled.We do not have to determine the quantity governed by Eq. 9.1 for all 8!permutations after eah omplete assignment. Instead, it is enough to deter-mine this quantity only for the eight triplets Sj , Sj mod 8+1, S(j mod 8+1) mod 8+1 where
1 ≤ j ≤ 8, sine eah permutation gets visited as part of the searh.9.4 Conluding RemarksWe have addressed the �age-old problem of S-box design� using CSP methodology.This is a known, hard problem, whih we have visited using the novel approahof systemati searh using CSPs. During the proess, we have obtained S-boxeswith superior quality metri ompared to those of the best DES S-boxes. Wehave applied the properties of CSPs to formulate heuristis, and have derivednew results not known in the literature on S-box design. New S-box symmetrieshave been disovered in this work. For the purpose of systemati searh, a novelquanti�ation of searh e�ieny has been proposed.We are not laiming to have solved the S-box design problem, but have disov-ered new results in S-box design using a modeling tehnique that provides avenuesfor expansion into future researh on S-box design.
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