Improving Scheduling by Learning


Andreas Schutt


The University of Melbourne


Peter J. Stuckey


Scheduling problems appear in many industrial problems with different facets and requirements of a solution. A solution is a schedule of a set of activities subject to constraints such as precedence relations and resource restrictions on the maximum number of concurrent activities. This dissertation presents new deductive techniques for precedence and cumulative resource constraints in constraint programming to improve solution processes of combinatorial scheduling problems, in particular, and combinatorial problems, in general.

Due to their intractability, many schedulers either solve a simplified problem or are tailored to a specific problem, but are inflexible with respect to changes in the problem statement. Constraint Programming (CP) offers a powerful framework for combinatorial problems which also tackles the demand of flexibility of changes in the problem statement due to a strict separation of problem modelling, search algorithms, and high-specialised deduction techniques. Moreover, recent advanced Cp solvers such as lazy clause generation (LCG) additionally include sophisticated conflict learning technologies. Their efficiency depends, amongst other things, on reusable explanations formulated by deductive algorithms.

Unit two variable per inequality (UTVPI) constraints are one of the largest integer constraint class that is solvable in polynomial time. These constraints can model precedence relations between activities. A new theoretical result about reasoning of UTVPI systems is shown, based on that, new incremental deductive algorithms are created for manipulating UTVPI constraints including satisfiability, implication, and explanation. These algorithms are asymptotically faster on sparse UTVPI systems than current algorithms.

Cumulative constraints enforce resource restrictions in scheduling problems. We show how, by adding explanation to the cumulative constraint in an LCG solver, we can solve resource-constrained project scheduling problems far faster than other comparable methods. Furthermore, a complete LCG-based approach including cumulative constraints is developed for an industrial carpet cutting problem. This approach outperforms the current incomplete method on all industrial instances provided.